1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65 
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION					\
70 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
72 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
73 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77 
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT		(5*HZ)
80 
81 static char version[] =
82 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87 		   "BCM57710/57711/57711E/"
88 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89 		   "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95 
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99 		 " Set number of queues (default is as a number of CPUs)");
100 
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104 
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108 				"(1 INT#x; 2 MSI)");
109 
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113 
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117 
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121 
122 struct workqueue_struct *bnx2x_wq;
123 
124 struct bnx2x_mac_vals {
125 	u32 xmac_addr;
126 	u32 xmac_val;
127 	u32 emac_addr;
128 	u32 emac_val;
129 	u32 umac_addr;
130 	u32 umac_val;
131 	u32 bmac_addr;
132 	u32 bmac_val[2];
133 };
134 
135 enum bnx2x_board_type {
136 	BCM57710 = 0,
137 	BCM57711,
138 	BCM57711E,
139 	BCM57712,
140 	BCM57712_MF,
141 	BCM57712_VF,
142 	BCM57800,
143 	BCM57800_MF,
144 	BCM57800_VF,
145 	BCM57810,
146 	BCM57810_MF,
147 	BCM57810_VF,
148 	BCM57840_4_10,
149 	BCM57840_2_20,
150 	BCM57840_MF,
151 	BCM57840_VF,
152 	BCM57811,
153 	BCM57811_MF,
154 	BCM57840_O,
155 	BCM57840_MFO,
156 	BCM57811_VF
157 };
158 
159 /* indexed by board_type, above */
160 static struct {
161 	char *name;
162 } board_info[] = {
163 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185 
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
248 #endif
249 
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272 	{ 0 }
273 };
274 
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276 
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284 
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286 				       u32 addr, dma_addr_t mapping)
287 {
288 	REG_WR(bp,  addr, U64_LO(mapping));
289 	REG_WR(bp,  addr + 4, U64_HI(mapping));
290 }
291 
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293 				  dma_addr_t mapping, u16 abs_fid)
294 {
295 	u32 addr = XSEM_REG_FAST_MEMORY +
296 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297 
298 	__storm_memset_dma_mapping(bp, addr, mapping);
299 }
300 
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302 				  u16 pf_id)
303 {
304 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305 		pf_id);
306 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307 		pf_id);
308 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309 		pf_id);
310 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311 		pf_id);
312 }
313 
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315 				 u8 enable)
316 {
317 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318 		enable);
319 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320 		enable);
321 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322 		enable);
323 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324 		enable);
325 }
326 
327 static void storm_memset_eq_data(struct bnx2x *bp,
328 				 struct event_ring_data *eq_data,
329 				u16 pfid)
330 {
331 	size_t size = sizeof(struct event_ring_data);
332 
333 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334 
335 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337 
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339 				 u16 pfid)
340 {
341 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342 	REG_WR16(bp, addr, eq_prod);
343 }
344 
345 /* used only at init
346  * locking is done by mcp
347  */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353 			       PCICFG_VENDOR_ID_OFFSET);
354 }
355 
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358 	u32 val;
359 
360 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363 			       PCICFG_VENDOR_ID_OFFSET);
364 
365 	return val;
366 }
367 
368 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE	"dst_addr [none]"
373 
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375 			  struct dmae_command *dmae, int msglvl)
376 {
377 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378 	int i;
379 
380 	switch (dmae->opcode & DMAE_COMMAND_DST) {
381 	case DMAE_CMD_DST_PCI:
382 		if (src_type == DMAE_CMD_SRC_PCI)
383 			DP(msglvl, "DMAE: opcode 0x%08x\n"
384 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
386 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
389 			   dmae->comp_val);
390 		else
391 			DP(msglvl, "DMAE: opcode 0x%08x\n"
392 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
393 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
394 			   dmae->opcode, dmae->src_addr_lo >> 2,
395 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
397 			   dmae->comp_val);
398 		break;
399 	case DMAE_CMD_DST_GRC:
400 		if (src_type == DMAE_CMD_SRC_PCI)
401 			DP(msglvl, "DMAE: opcode 0x%08x\n"
402 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
404 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405 			   dmae->len, dmae->dst_addr_lo >> 2,
406 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
407 			   dmae->comp_val);
408 		else
409 			DP(msglvl, "DMAE: opcode 0x%08x\n"
410 			   "src [%08x], len [%d*4], dst [%08x]\n"
411 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
412 			   dmae->opcode, dmae->src_addr_lo >> 2,
413 			   dmae->len, dmae->dst_addr_lo >> 2,
414 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
415 			   dmae->comp_val);
416 		break;
417 	default:
418 		if (src_type == DMAE_CMD_SRC_PCI)
419 			DP(msglvl, "DMAE: opcode 0x%08x\n"
420 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
421 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
422 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424 			   dmae->comp_val);
425 		else
426 			DP(msglvl, "DMAE: opcode 0x%08x\n"
427 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
428 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429 			   dmae->opcode, dmae->src_addr_lo >> 2,
430 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431 			   dmae->comp_val);
432 		break;
433 	}
434 
435 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437 		   i, *(((u32 *)dmae) + i));
438 }
439 
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443 	u32 cmd_offset;
444 	int i;
445 
446 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449 	}
450 	REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452 
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456 			   DMAE_CMD_C_ENABLE);
457 }
458 
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461 	return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463 
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465 			     bool with_comp, u8 comp_type)
466 {
467 	u32 opcode = 0;
468 
469 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
471 
472 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473 
474 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478 
479 #ifdef __BIG_ENDIAN
480 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484 	if (with_comp)
485 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486 	return opcode;
487 }
488 
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490 				      struct dmae_command *dmae,
491 				      u8 src_type, u8 dst_type)
492 {
493 	memset(dmae, 0, sizeof(struct dmae_command));
494 
495 	/* set the opcode */
496 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497 					 true, DMAE_COMP_PCI);
498 
499 	/* fill in the completion parameters */
500 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502 	dmae->comp_val = DMAE_COMP_VAL;
503 }
504 
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
507 {
508 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
509 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510 	int rc = 0;
511 
512 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513 
514 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
515 	 * as long as this code is called both from syscall context and
516 	 * from ndo_set_rx_mode() flow that may be called from BH.
517 	 */
518 	spin_lock_bh(&bp->dmae_lock);
519 
520 	/* reset completion */
521 	*wb_comp = 0;
522 
523 	/* post the command on the channel used for initializations */
524 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525 
526 	/* wait for completion */
527 	udelay(5);
528 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529 
530 		if (!cnt ||
531 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533 			BNX2X_ERR("DMAE timeout!\n");
534 			rc = DMAE_TIMEOUT;
535 			goto unlock;
536 		}
537 		cnt--;
538 		udelay(50);
539 	}
540 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
541 		BNX2X_ERR("DMAE PCI error!\n");
542 		rc = DMAE_PCI_ERROR;
543 	}
544 
545 unlock:
546 	spin_unlock_bh(&bp->dmae_lock);
547 	return rc;
548 }
549 
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551 		      u32 len32)
552 {
553 	int rc;
554 	struct dmae_command dmae;
555 
556 	if (!bp->dmae_ready) {
557 		u32 *data = bnx2x_sp(bp, wb_data[0]);
558 
559 		if (CHIP_IS_E1(bp))
560 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561 		else
562 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
563 		return;
564 	}
565 
566 	/* set opcode and fixed command fields */
567 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568 
569 	/* fill in addresses and len */
570 	dmae.src_addr_lo = U64_LO(dma_addr);
571 	dmae.src_addr_hi = U64_HI(dma_addr);
572 	dmae.dst_addr_lo = dst_addr >> 2;
573 	dmae.dst_addr_hi = 0;
574 	dmae.len = len32;
575 
576 	/* issue the command and wait for completion */
577 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
578 	if (rc) {
579 		BNX2X_ERR("DMAE returned failure %d\n", rc);
580 		bnx2x_panic();
581 	}
582 }
583 
584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
585 {
586 	int rc;
587 	struct dmae_command dmae;
588 
589 	if (!bp->dmae_ready) {
590 		u32 *data = bnx2x_sp(bp, wb_data[0]);
591 		int i;
592 
593 		if (CHIP_IS_E1(bp))
594 			for (i = 0; i < len32; i++)
595 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
596 		else
597 			for (i = 0; i < len32; i++)
598 				data[i] = REG_RD(bp, src_addr + i*4);
599 
600 		return;
601 	}
602 
603 	/* set opcode and fixed command fields */
604 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
605 
606 	/* fill in addresses and len */
607 	dmae.src_addr_lo = src_addr >> 2;
608 	dmae.src_addr_hi = 0;
609 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
610 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
611 	dmae.len = len32;
612 
613 	/* issue the command and wait for completion */
614 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
615 	if (rc) {
616 		BNX2X_ERR("DMAE returned failure %d\n", rc);
617 		bnx2x_panic();
618 	}
619 }
620 
621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
622 				      u32 addr, u32 len)
623 {
624 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
625 	int offset = 0;
626 
627 	while (len > dmae_wr_max) {
628 		bnx2x_write_dmae(bp, phys_addr + offset,
629 				 addr + offset, dmae_wr_max);
630 		offset += dmae_wr_max * 4;
631 		len -= dmae_wr_max;
632 	}
633 
634 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
635 }
636 
637 static int bnx2x_mc_assert(struct bnx2x *bp)
638 {
639 	char last_idx;
640 	int i, rc = 0;
641 	u32 row0, row1, row2, row3;
642 
643 	/* XSTORM */
644 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
645 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
646 	if (last_idx)
647 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
648 
649 	/* print the asserts */
650 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
651 
652 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
653 			      XSTORM_ASSERT_LIST_OFFSET(i));
654 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
655 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
656 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
658 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
660 
661 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
662 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
663 				  i, row3, row2, row1, row0);
664 			rc++;
665 		} else {
666 			break;
667 		}
668 	}
669 
670 	/* TSTORM */
671 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
672 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
673 	if (last_idx)
674 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
675 
676 	/* print the asserts */
677 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
678 
679 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
680 			      TSTORM_ASSERT_LIST_OFFSET(i));
681 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
682 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
683 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
685 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
687 
688 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
689 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
690 				  i, row3, row2, row1, row0);
691 			rc++;
692 		} else {
693 			break;
694 		}
695 	}
696 
697 	/* CSTORM */
698 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
699 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
700 	if (last_idx)
701 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
702 
703 	/* print the asserts */
704 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
705 
706 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
707 			      CSTORM_ASSERT_LIST_OFFSET(i));
708 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
709 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
710 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
712 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
714 
715 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
716 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
717 				  i, row3, row2, row1, row0);
718 			rc++;
719 		} else {
720 			break;
721 		}
722 	}
723 
724 	/* USTORM */
725 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
726 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
727 	if (last_idx)
728 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
729 
730 	/* print the asserts */
731 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
732 
733 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
734 			      USTORM_ASSERT_LIST_OFFSET(i));
735 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
736 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
737 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
738 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
739 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
740 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
741 
742 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
743 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
744 				  i, row3, row2, row1, row0);
745 			rc++;
746 		} else {
747 			break;
748 		}
749 	}
750 
751 	return rc;
752 }
753 
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755 {
756 	u32 addr, val;
757 	u32 mark, offset;
758 	__be32 data[9];
759 	int word;
760 	u32 trace_shmem_base;
761 	if (BP_NOMCP(bp)) {
762 		BNX2X_ERR("NO MCP - can not dump\n");
763 		return;
764 	}
765 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766 		(bp->common.bc_ver & 0xff0000) >> 16,
767 		(bp->common.bc_ver & 0xff00) >> 8,
768 		(bp->common.bc_ver & 0xff));
769 
770 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773 
774 	if (BP_PATH(bp) == 0)
775 		trace_shmem_base = bp->common.shmem_base;
776 	else
777 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778 	addr = trace_shmem_base - 0x800;
779 
780 	/* validate TRCB signature */
781 	mark = REG_RD(bp, addr);
782 	if (mark != MFW_TRACE_SIGNATURE) {
783 		BNX2X_ERR("Trace buffer signature is missing.");
784 		return ;
785 	}
786 
787 	/* read cyclic buffer pointer */
788 	addr += 4;
789 	mark = REG_RD(bp, addr);
790 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
791 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
792 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
793 
794 	printk("%s", lvl);
795 
796 	/* dump buffer after the mark */
797 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
798 		for (word = 0; word < 8; word++)
799 			data[word] = htonl(REG_RD(bp, offset + 4*word));
800 		data[8] = 0x0;
801 		pr_cont("%s", (char *)data);
802 	}
803 
804 	/* dump buffer before the mark */
805 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
806 		for (word = 0; word < 8; word++)
807 			data[word] = htonl(REG_RD(bp, offset + 4*word));
808 		data[8] = 0x0;
809 		pr_cont("%s", (char *)data);
810 	}
811 	printk("%s" "end of fw dump\n", lvl);
812 }
813 
814 static void bnx2x_fw_dump(struct bnx2x *bp)
815 {
816 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
817 }
818 
819 static void bnx2x_hc_int_disable(struct bnx2x *bp)
820 {
821 	int port = BP_PORT(bp);
822 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
823 	u32 val = REG_RD(bp, addr);
824 
825 	/* in E1 we must use only PCI configuration space to disable
826 	 * MSI/MSIX capability
827 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
828 	 */
829 	if (CHIP_IS_E1(bp)) {
830 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
831 		 * Use mask register to prevent from HC sending interrupts
832 		 * after we exit the function
833 		 */
834 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
835 
836 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
837 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
838 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
839 	} else
840 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
841 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
842 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
843 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
844 
845 	DP(NETIF_MSG_IFDOWN,
846 	   "write %x to HC %d (addr 0x%x)\n",
847 	   val, port, addr);
848 
849 	/* flush all outstanding writes */
850 	mmiowb();
851 
852 	REG_WR(bp, addr, val);
853 	if (REG_RD(bp, addr) != val)
854 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
855 }
856 
857 static void bnx2x_igu_int_disable(struct bnx2x *bp)
858 {
859 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
860 
861 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
862 		 IGU_PF_CONF_INT_LINE_EN |
863 		 IGU_PF_CONF_ATTN_BIT_EN);
864 
865 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
866 
867 	/* flush all outstanding writes */
868 	mmiowb();
869 
870 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
871 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
872 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874 
875 static void bnx2x_int_disable(struct bnx2x *bp)
876 {
877 	if (bp->common.int_block == INT_BLOCK_HC)
878 		bnx2x_hc_int_disable(bp);
879 	else
880 		bnx2x_igu_int_disable(bp);
881 }
882 
883 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
884 {
885 	int i;
886 	u16 j;
887 	struct hc_sp_status_block_data sp_sb_data;
888 	int func = BP_FUNC(bp);
889 #ifdef BNX2X_STOP_ON_ERROR
890 	u16 start = 0, end = 0;
891 	u8 cos;
892 #endif
893 	if (disable_int)
894 		bnx2x_int_disable(bp);
895 
896 	bp->stats_state = STATS_STATE_DISABLED;
897 	bp->eth_stats.unrecoverable_error++;
898 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
899 
900 	BNX2X_ERR("begin crash dump -----------------\n");
901 
902 	/* Indices */
903 	/* Common */
904 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
905 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
906 		  bp->spq_prod_idx, bp->stats_counter);
907 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
908 		  bp->def_status_blk->atten_status_block.attn_bits,
909 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
910 		  bp->def_status_blk->atten_status_block.status_block_id,
911 		  bp->def_status_blk->atten_status_block.attn_bits_index);
912 	BNX2X_ERR("     def (");
913 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
914 		pr_cont("0x%x%s",
915 			bp->def_status_blk->sp_sb.index_values[i],
916 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
917 
918 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
919 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
920 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
921 			i*sizeof(u32));
922 
923 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
924 	       sp_sb_data.igu_sb_id,
925 	       sp_sb_data.igu_seg_id,
926 	       sp_sb_data.p_func.pf_id,
927 	       sp_sb_data.p_func.vnic_id,
928 	       sp_sb_data.p_func.vf_id,
929 	       sp_sb_data.p_func.vf_valid,
930 	       sp_sb_data.state);
931 
932 	for_each_eth_queue(bp, i) {
933 		struct bnx2x_fastpath *fp = &bp->fp[i];
934 		int loop;
935 		struct hc_status_block_data_e2 sb_data_e2;
936 		struct hc_status_block_data_e1x sb_data_e1x;
937 		struct hc_status_block_sm  *hc_sm_p =
938 			CHIP_IS_E1x(bp) ?
939 			sb_data_e1x.common.state_machine :
940 			sb_data_e2.common.state_machine;
941 		struct hc_index_data *hc_index_p =
942 			CHIP_IS_E1x(bp) ?
943 			sb_data_e1x.index_data :
944 			sb_data_e2.index_data;
945 		u8 data_size, cos;
946 		u32 *sb_data_p;
947 		struct bnx2x_fp_txdata txdata;
948 
949 		/* Rx */
950 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
951 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
952 			  fp->rx_comp_prod,
953 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
954 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
955 			  fp->rx_sge_prod, fp->last_max_sge,
956 			  le16_to_cpu(fp->fp_hc_idx));
957 
958 		/* Tx */
959 		for_each_cos_in_tx_queue(fp, cos)
960 		{
961 			txdata = *fp->txdata_ptr[cos];
962 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
963 				  i, txdata.tx_pkt_prod,
964 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
965 				  txdata.tx_bd_cons,
966 				  le16_to_cpu(*txdata.tx_cons_sb));
967 		}
968 
969 		loop = CHIP_IS_E1x(bp) ?
970 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
971 
972 		/* host sb data */
973 
974 		if (IS_FCOE_FP(fp))
975 			continue;
976 
977 		BNX2X_ERR("     run indexes (");
978 		for (j = 0; j < HC_SB_MAX_SM; j++)
979 			pr_cont("0x%x%s",
980 			       fp->sb_running_index[j],
981 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
982 
983 		BNX2X_ERR("     indexes (");
984 		for (j = 0; j < loop; j++)
985 			pr_cont("0x%x%s",
986 			       fp->sb_index_values[j],
987 			       (j == loop - 1) ? ")" : " ");
988 		/* fw sb data */
989 		data_size = CHIP_IS_E1x(bp) ?
990 			sizeof(struct hc_status_block_data_e1x) :
991 			sizeof(struct hc_status_block_data_e2);
992 		data_size /= sizeof(u32);
993 		sb_data_p = CHIP_IS_E1x(bp) ?
994 			(u32 *)&sb_data_e1x :
995 			(u32 *)&sb_data_e2;
996 		/* copy sb data in here */
997 		for (j = 0; j < data_size; j++)
998 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
999 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1000 				j * sizeof(u32));
1001 
1002 		if (!CHIP_IS_E1x(bp)) {
1003 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1004 				sb_data_e2.common.p_func.pf_id,
1005 				sb_data_e2.common.p_func.vf_id,
1006 				sb_data_e2.common.p_func.vf_valid,
1007 				sb_data_e2.common.p_func.vnic_id,
1008 				sb_data_e2.common.same_igu_sb_1b,
1009 				sb_data_e2.common.state);
1010 		} else {
1011 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1012 				sb_data_e1x.common.p_func.pf_id,
1013 				sb_data_e1x.common.p_func.vf_id,
1014 				sb_data_e1x.common.p_func.vf_valid,
1015 				sb_data_e1x.common.p_func.vnic_id,
1016 				sb_data_e1x.common.same_igu_sb_1b,
1017 				sb_data_e1x.common.state);
1018 		}
1019 
1020 		/* SB_SMs data */
1021 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1022 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1023 				j, hc_sm_p[j].__flags,
1024 				hc_sm_p[j].igu_sb_id,
1025 				hc_sm_p[j].igu_seg_id,
1026 				hc_sm_p[j].time_to_expire,
1027 				hc_sm_p[j].timer_value);
1028 		}
1029 
1030 		/* Indices data */
1031 		for (j = 0; j < loop; j++) {
1032 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1033 			       hc_index_p[j].flags,
1034 			       hc_index_p[j].timeout);
1035 		}
1036 	}
1037 
1038 #ifdef BNX2X_STOP_ON_ERROR
1039 
1040 	/* event queue */
1041 	BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1042 	for (i = 0; i < NUM_EQ_DESC; i++) {
1043 		u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1044 
1045 		BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1046 			  i, bp->eq_ring[i].message.opcode,
1047 			  bp->eq_ring[i].message.error);
1048 		BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1049 	}
1050 
1051 	/* Rings */
1052 	/* Rx */
1053 	for_each_valid_rx_queue(bp, i) {
1054 		struct bnx2x_fastpath *fp = &bp->fp[i];
1055 
1056 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1057 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1058 		for (j = start; j != end; j = RX_BD(j + 1)) {
1059 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1060 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1061 
1062 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1063 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1064 		}
1065 
1066 		start = RX_SGE(fp->rx_sge_prod);
1067 		end = RX_SGE(fp->last_max_sge);
1068 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1069 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1070 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1071 
1072 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1073 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1074 		}
1075 
1076 		start = RCQ_BD(fp->rx_comp_cons - 10);
1077 		end = RCQ_BD(fp->rx_comp_cons + 503);
1078 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1079 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1080 
1081 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1082 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1083 		}
1084 	}
1085 
1086 	/* Tx */
1087 	for_each_valid_tx_queue(bp, i) {
1088 		struct bnx2x_fastpath *fp = &bp->fp[i];
1089 		for_each_cos_in_tx_queue(fp, cos) {
1090 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1091 
1092 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1093 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1094 			for (j = start; j != end; j = TX_BD(j + 1)) {
1095 				struct sw_tx_bd *sw_bd =
1096 					&txdata->tx_buf_ring[j];
1097 
1098 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1099 					  i, cos, j, sw_bd->skb,
1100 					  sw_bd->first_bd);
1101 			}
1102 
1103 			start = TX_BD(txdata->tx_bd_cons - 10);
1104 			end = TX_BD(txdata->tx_bd_cons + 254);
1105 			for (j = start; j != end; j = TX_BD(j + 1)) {
1106 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1107 
1108 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1109 					  i, cos, j, tx_bd[0], tx_bd[1],
1110 					  tx_bd[2], tx_bd[3]);
1111 			}
1112 		}
1113 	}
1114 #endif
1115 	bnx2x_fw_dump(bp);
1116 	bnx2x_mc_assert(bp);
1117 	BNX2X_ERR("end crash dump -----------------\n");
1118 }
1119 
1120 /*
1121  * FLR Support for E2
1122  *
1123  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1124  * initialization.
1125  */
1126 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1127 #define FLR_WAIT_INTERVAL	50	/* usec */
1128 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1129 
1130 struct pbf_pN_buf_regs {
1131 	int pN;
1132 	u32 init_crd;
1133 	u32 crd;
1134 	u32 crd_freed;
1135 };
1136 
1137 struct pbf_pN_cmd_regs {
1138 	int pN;
1139 	u32 lines_occup;
1140 	u32 lines_freed;
1141 };
1142 
1143 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1144 				     struct pbf_pN_buf_regs *regs,
1145 				     u32 poll_count)
1146 {
1147 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1148 	u32 cur_cnt = poll_count;
1149 
1150 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1151 	crd = crd_start = REG_RD(bp, regs->crd);
1152 	init_crd = REG_RD(bp, regs->init_crd);
1153 
1154 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1155 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1156 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1157 
1158 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1159 	       (init_crd - crd_start))) {
1160 		if (cur_cnt--) {
1161 			udelay(FLR_WAIT_INTERVAL);
1162 			crd = REG_RD(bp, regs->crd);
1163 			crd_freed = REG_RD(bp, regs->crd_freed);
1164 		} else {
1165 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1166 			   regs->pN);
1167 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1168 			   regs->pN, crd);
1169 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1170 			   regs->pN, crd_freed);
1171 			break;
1172 		}
1173 	}
1174 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1175 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1176 }
1177 
1178 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1179 				     struct pbf_pN_cmd_regs *regs,
1180 				     u32 poll_count)
1181 {
1182 	u32 occup, to_free, freed, freed_start;
1183 	u32 cur_cnt = poll_count;
1184 
1185 	occup = to_free = REG_RD(bp, regs->lines_occup);
1186 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1187 
1188 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1189 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1190 
1191 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1192 		if (cur_cnt--) {
1193 			udelay(FLR_WAIT_INTERVAL);
1194 			occup = REG_RD(bp, regs->lines_occup);
1195 			freed = REG_RD(bp, regs->lines_freed);
1196 		} else {
1197 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1198 			   regs->pN);
1199 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1200 			   regs->pN, occup);
1201 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1202 			   regs->pN, freed);
1203 			break;
1204 		}
1205 	}
1206 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1207 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1208 }
1209 
1210 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1211 				    u32 expected, u32 poll_count)
1212 {
1213 	u32 cur_cnt = poll_count;
1214 	u32 val;
1215 
1216 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1217 		udelay(FLR_WAIT_INTERVAL);
1218 
1219 	return val;
1220 }
1221 
1222 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1223 				    char *msg, u32 poll_cnt)
1224 {
1225 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1226 	if (val != 0) {
1227 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1228 		return 1;
1229 	}
1230 	return 0;
1231 }
1232 
1233 /* Common routines with VF FLR cleanup */
1234 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1235 {
1236 	/* adjust polling timeout */
1237 	if (CHIP_REV_IS_EMUL(bp))
1238 		return FLR_POLL_CNT * 2000;
1239 
1240 	if (CHIP_REV_IS_FPGA(bp))
1241 		return FLR_POLL_CNT * 120;
1242 
1243 	return FLR_POLL_CNT;
1244 }
1245 
1246 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1247 {
1248 	struct pbf_pN_cmd_regs cmd_regs[] = {
1249 		{0, (CHIP_IS_E3B0(bp)) ?
1250 			PBF_REG_TQ_OCCUPANCY_Q0 :
1251 			PBF_REG_P0_TQ_OCCUPANCY,
1252 		    (CHIP_IS_E3B0(bp)) ?
1253 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1254 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1255 		{1, (CHIP_IS_E3B0(bp)) ?
1256 			PBF_REG_TQ_OCCUPANCY_Q1 :
1257 			PBF_REG_P1_TQ_OCCUPANCY,
1258 		    (CHIP_IS_E3B0(bp)) ?
1259 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1260 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1261 		{4, (CHIP_IS_E3B0(bp)) ?
1262 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1263 			PBF_REG_P4_TQ_OCCUPANCY,
1264 		    (CHIP_IS_E3B0(bp)) ?
1265 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1266 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1267 	};
1268 
1269 	struct pbf_pN_buf_regs buf_regs[] = {
1270 		{0, (CHIP_IS_E3B0(bp)) ?
1271 			PBF_REG_INIT_CRD_Q0 :
1272 			PBF_REG_P0_INIT_CRD ,
1273 		    (CHIP_IS_E3B0(bp)) ?
1274 			PBF_REG_CREDIT_Q0 :
1275 			PBF_REG_P0_CREDIT,
1276 		    (CHIP_IS_E3B0(bp)) ?
1277 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1278 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1279 		{1, (CHIP_IS_E3B0(bp)) ?
1280 			PBF_REG_INIT_CRD_Q1 :
1281 			PBF_REG_P1_INIT_CRD,
1282 		    (CHIP_IS_E3B0(bp)) ?
1283 			PBF_REG_CREDIT_Q1 :
1284 			PBF_REG_P1_CREDIT,
1285 		    (CHIP_IS_E3B0(bp)) ?
1286 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1287 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1288 		{4, (CHIP_IS_E3B0(bp)) ?
1289 			PBF_REG_INIT_CRD_LB_Q :
1290 			PBF_REG_P4_INIT_CRD,
1291 		    (CHIP_IS_E3B0(bp)) ?
1292 			PBF_REG_CREDIT_LB_Q :
1293 			PBF_REG_P4_CREDIT,
1294 		    (CHIP_IS_E3B0(bp)) ?
1295 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1296 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1297 	};
1298 
1299 	int i;
1300 
1301 	/* Verify the command queues are flushed P0, P1, P4 */
1302 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1303 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1304 
1305 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1306 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1307 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1308 }
1309 
1310 #define OP_GEN_PARAM(param) \
1311 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1312 
1313 #define OP_GEN_TYPE(type) \
1314 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1315 
1316 #define OP_GEN_AGG_VECT(index) \
1317 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1318 
1319 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1320 {
1321 	u32 op_gen_command = 0;
1322 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1323 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1324 	int ret = 0;
1325 
1326 	if (REG_RD(bp, comp_addr)) {
1327 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1328 		return 1;
1329 	}
1330 
1331 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1332 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1333 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1334 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1335 
1336 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1337 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1338 
1339 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1340 		BNX2X_ERR("FW final cleanup did not succeed\n");
1341 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1342 		   (REG_RD(bp, comp_addr)));
1343 		bnx2x_panic();
1344 		return 1;
1345 	}
1346 	/* Zero completion for next FLR */
1347 	REG_WR(bp, comp_addr, 0);
1348 
1349 	return ret;
1350 }
1351 
1352 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1353 {
1354 	u16 status;
1355 
1356 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1357 	return status & PCI_EXP_DEVSTA_TRPND;
1358 }
1359 
1360 /* PF FLR specific routines
1361 */
1362 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1363 {
1364 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1365 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1367 			"CFC PF usage counter timed out",
1368 			poll_cnt))
1369 		return 1;
1370 
1371 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1372 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373 			DORQ_REG_PF_USAGE_CNT,
1374 			"DQ PF usage counter timed out",
1375 			poll_cnt))
1376 		return 1;
1377 
1378 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1379 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1381 			"QM PF usage counter timed out",
1382 			poll_cnt))
1383 		return 1;
1384 
1385 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1386 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1388 			"Timers VNIC usage counter timed out",
1389 			poll_cnt))
1390 		return 1;
1391 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1393 			"Timers NUM_SCANS usage counter timed out",
1394 			poll_cnt))
1395 		return 1;
1396 
1397 	/* Wait DMAE PF usage counter to zero */
1398 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1399 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1400 			"DMAE command register timed out",
1401 			poll_cnt))
1402 		return 1;
1403 
1404 	return 0;
1405 }
1406 
1407 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1408 {
1409 	u32 val;
1410 
1411 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1412 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1413 
1414 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1415 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1416 
1417 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1418 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1419 
1420 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1421 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1422 
1423 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1424 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1425 
1426 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1427 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1428 
1429 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1430 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1431 
1432 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1433 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1434 	   val);
1435 }
1436 
1437 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1438 {
1439 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1440 
1441 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1442 
1443 	/* Re-enable PF target read access */
1444 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1445 
1446 	/* Poll HW usage counters */
1447 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1448 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1449 		return -EBUSY;
1450 
1451 	/* Zero the igu 'trailing edge' and 'leading edge' */
1452 
1453 	/* Send the FW cleanup command */
1454 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1455 		return -EBUSY;
1456 
1457 	/* ATC cleanup */
1458 
1459 	/* Verify TX hw is flushed */
1460 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1461 
1462 	/* Wait 100ms (not adjusted according to platform) */
1463 	msleep(100);
1464 
1465 	/* Verify no pending pci transactions */
1466 	if (bnx2x_is_pcie_pending(bp->pdev))
1467 		BNX2X_ERR("PCIE Transactions still pending\n");
1468 
1469 	/* Debug */
1470 	bnx2x_hw_enable_status(bp);
1471 
1472 	/*
1473 	 * Master enable - Due to WB DMAE writes performed before this
1474 	 * register is re-initialized as part of the regular function init
1475 	 */
1476 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1477 
1478 	return 0;
1479 }
1480 
1481 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1482 {
1483 	int port = BP_PORT(bp);
1484 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1485 	u32 val = REG_RD(bp, addr);
1486 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1487 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1488 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1489 
1490 	if (msix) {
1491 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1492 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1493 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495 		if (single_msix)
1496 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1497 	} else if (msi) {
1498 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1499 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1500 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1501 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1502 	} else {
1503 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1504 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1505 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1506 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1507 
1508 		if (!CHIP_IS_E1(bp)) {
1509 			DP(NETIF_MSG_IFUP,
1510 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1511 
1512 			REG_WR(bp, addr, val);
1513 
1514 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1515 		}
1516 	}
1517 
1518 	if (CHIP_IS_E1(bp))
1519 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1520 
1521 	DP(NETIF_MSG_IFUP,
1522 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1523 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1524 
1525 	REG_WR(bp, addr, val);
1526 	/*
1527 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1528 	 */
1529 	mmiowb();
1530 	barrier();
1531 
1532 	if (!CHIP_IS_E1(bp)) {
1533 		/* init leading/trailing edge */
1534 		if (IS_MF(bp)) {
1535 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1536 			if (bp->port.pmf)
1537 				/* enable nig and gpio3 attention */
1538 				val |= 0x1100;
1539 		} else
1540 			val = 0xffff;
1541 
1542 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1543 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1544 	}
1545 
1546 	/* Make sure that interrupts are indeed enabled from here on */
1547 	mmiowb();
1548 }
1549 
1550 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1551 {
1552 	u32 val;
1553 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1556 
1557 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1558 
1559 	if (msix) {
1560 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1561 			 IGU_PF_CONF_SINGLE_ISR_EN);
1562 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563 			IGU_PF_CONF_ATTN_BIT_EN);
1564 
1565 		if (single_msix)
1566 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1567 	} else if (msi) {
1568 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1569 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1570 			IGU_PF_CONF_ATTN_BIT_EN |
1571 			IGU_PF_CONF_SINGLE_ISR_EN);
1572 	} else {
1573 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1574 		val |= (IGU_PF_CONF_INT_LINE_EN |
1575 			IGU_PF_CONF_ATTN_BIT_EN |
1576 			IGU_PF_CONF_SINGLE_ISR_EN);
1577 	}
1578 
1579 	/* Clean previous status - need to configure igu prior to ack*/
1580 	if ((!msix) || single_msix) {
1581 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1582 		bnx2x_ack_int(bp);
1583 	}
1584 
1585 	val |= IGU_PF_CONF_FUNC_EN;
1586 
1587 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1588 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589 
1590 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1591 
1592 	if (val & IGU_PF_CONF_INT_LINE_EN)
1593 		pci_intx(bp->pdev, true);
1594 
1595 	barrier();
1596 
1597 	/* init leading/trailing edge */
1598 	if (IS_MF(bp)) {
1599 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600 		if (bp->port.pmf)
1601 			/* enable nig and gpio3 attention */
1602 			val |= 0x1100;
1603 	} else
1604 		val = 0xffff;
1605 
1606 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1607 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1608 
1609 	/* Make sure that interrupts are indeed enabled from here on */
1610 	mmiowb();
1611 }
1612 
1613 void bnx2x_int_enable(struct bnx2x *bp)
1614 {
1615 	if (bp->common.int_block == INT_BLOCK_HC)
1616 		bnx2x_hc_int_enable(bp);
1617 	else
1618 		bnx2x_igu_int_enable(bp);
1619 }
1620 
1621 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1622 {
1623 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1624 	int i, offset;
1625 
1626 	if (disable_hw)
1627 		/* prevent the HW from sending interrupts */
1628 		bnx2x_int_disable(bp);
1629 
1630 	/* make sure all ISRs are done */
1631 	if (msix) {
1632 		synchronize_irq(bp->msix_table[0].vector);
1633 		offset = 1;
1634 		if (CNIC_SUPPORT(bp))
1635 			offset++;
1636 		for_each_eth_queue(bp, i)
1637 			synchronize_irq(bp->msix_table[offset++].vector);
1638 	} else
1639 		synchronize_irq(bp->pdev->irq);
1640 
1641 	/* make sure sp_task is not running */
1642 	cancel_delayed_work(&bp->sp_task);
1643 	cancel_delayed_work(&bp->period_task);
1644 	flush_workqueue(bnx2x_wq);
1645 }
1646 
1647 /* fast path */
1648 
1649 /*
1650  * General service functions
1651  */
1652 
1653 /* Return true if succeeded to acquire the lock */
1654 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1655 {
1656 	u32 lock_status;
1657 	u32 resource_bit = (1 << resource);
1658 	int func = BP_FUNC(bp);
1659 	u32 hw_lock_control_reg;
1660 
1661 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1662 	   "Trying to take a lock on resource %d\n", resource);
1663 
1664 	/* Validating that the resource is within range */
1665 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1666 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1667 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1668 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1669 		return false;
1670 	}
1671 
1672 	if (func <= 5)
1673 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1674 	else
1675 		hw_lock_control_reg =
1676 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1677 
1678 	/* Try to acquire the lock */
1679 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1680 	lock_status = REG_RD(bp, hw_lock_control_reg);
1681 	if (lock_status & resource_bit)
1682 		return true;
1683 
1684 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1685 	   "Failed to get a lock on resource %d\n", resource);
1686 	return false;
1687 }
1688 
1689 /**
1690  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1691  *
1692  * @bp:	driver handle
1693  *
1694  * Returns the recovery leader resource id according to the engine this function
1695  * belongs to. Currently only only 2 engines is supported.
1696  */
1697 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1698 {
1699 	if (BP_PATH(bp))
1700 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1701 	else
1702 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1703 }
1704 
1705 /**
1706  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1707  *
1708  * @bp: driver handle
1709  *
1710  * Tries to acquire a leader lock for current engine.
1711  */
1712 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1713 {
1714 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1715 }
1716 
1717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1718 
1719 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1720 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1721 {
1722 	/* Set the interrupt occurred bit for the sp-task to recognize it
1723 	 * must ack the interrupt and transition according to the IGU
1724 	 * state machine.
1725 	 */
1726 	atomic_set(&bp->interrupt_occurred, 1);
1727 
1728 	/* The sp_task must execute only after this bit
1729 	 * is set, otherwise we will get out of sync and miss all
1730 	 * further interrupts. Hence, the barrier.
1731 	 */
1732 	smp_wmb();
1733 
1734 	/* schedule sp_task to workqueue */
1735 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1736 }
1737 
1738 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1739 {
1740 	struct bnx2x *bp = fp->bp;
1741 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1742 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1743 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1744 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1745 
1746 	DP(BNX2X_MSG_SP,
1747 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1748 	   fp->index, cid, command, bp->state,
1749 	   rr_cqe->ramrod_cqe.ramrod_type);
1750 
1751 	/* If cid is within VF range, replace the slowpath object with the
1752 	 * one corresponding to this VF
1753 	 */
1754 	if (cid >= BNX2X_FIRST_VF_CID  &&
1755 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1756 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1757 
1758 	switch (command) {
1759 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1760 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1761 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1762 		break;
1763 
1764 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1765 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1766 		drv_cmd = BNX2X_Q_CMD_SETUP;
1767 		break;
1768 
1769 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1770 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1771 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1772 		break;
1773 
1774 	case (RAMROD_CMD_ID_ETH_HALT):
1775 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1776 		drv_cmd = BNX2X_Q_CMD_HALT;
1777 		break;
1778 
1779 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1780 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1781 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1782 		break;
1783 
1784 	case (RAMROD_CMD_ID_ETH_EMPTY):
1785 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1786 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1787 		break;
1788 
1789 	default:
1790 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1791 			  command, fp->index);
1792 		return;
1793 	}
1794 
1795 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1796 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1797 		/* q_obj->complete_cmd() failure means that this was
1798 		 * an unexpected completion.
1799 		 *
1800 		 * In this case we don't want to increase the bp->spq_left
1801 		 * because apparently we haven't sent this command the first
1802 		 * place.
1803 		 */
1804 #ifdef BNX2X_STOP_ON_ERROR
1805 		bnx2x_panic();
1806 #else
1807 		return;
1808 #endif
1809 	/* SRIOV: reschedule any 'in_progress' operations */
1810 	bnx2x_iov_sp_event(bp, cid, true);
1811 
1812 	smp_mb__before_atomic_inc();
1813 	atomic_inc(&bp->cq_spq_left);
1814 	/* push the change in bp->spq_left and towards the memory */
1815 	smp_mb__after_atomic_inc();
1816 
1817 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1818 
1819 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1820 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1821 		/* if Q update ramrod is completed for last Q in AFEX vif set
1822 		 * flow, then ACK MCP at the end
1823 		 *
1824 		 * mark pending ACK to MCP bit.
1825 		 * prevent case that both bits are cleared.
1826 		 * At the end of load/unload driver checks that
1827 		 * sp_state is cleared, and this order prevents
1828 		 * races
1829 		 */
1830 		smp_mb__before_clear_bit();
1831 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1832 		wmb();
1833 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1834 		smp_mb__after_clear_bit();
1835 
1836 		/* schedule the sp task as mcp ack is required */
1837 		bnx2x_schedule_sp_task(bp);
1838 	}
1839 
1840 	return;
1841 }
1842 
1843 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1844 {
1845 	struct bnx2x *bp = netdev_priv(dev_instance);
1846 	u16 status = bnx2x_ack_int(bp);
1847 	u16 mask;
1848 	int i;
1849 	u8 cos;
1850 
1851 	/* Return here if interrupt is shared and it's not for us */
1852 	if (unlikely(status == 0)) {
1853 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1854 		return IRQ_NONE;
1855 	}
1856 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1857 
1858 #ifdef BNX2X_STOP_ON_ERROR
1859 	if (unlikely(bp->panic))
1860 		return IRQ_HANDLED;
1861 #endif
1862 
1863 	for_each_eth_queue(bp, i) {
1864 		struct bnx2x_fastpath *fp = &bp->fp[i];
1865 
1866 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1867 		if (status & mask) {
1868 			/* Handle Rx or Tx according to SB id */
1869 			for_each_cos_in_tx_queue(fp, cos)
1870 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1871 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1872 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1873 			status &= ~mask;
1874 		}
1875 	}
1876 
1877 	if (CNIC_SUPPORT(bp)) {
1878 		mask = 0x2;
1879 		if (status & (mask | 0x1)) {
1880 			struct cnic_ops *c_ops = NULL;
1881 
1882 			rcu_read_lock();
1883 			c_ops = rcu_dereference(bp->cnic_ops);
1884 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1885 				      CNIC_DRV_STATE_HANDLES_IRQ))
1886 				c_ops->cnic_handler(bp->cnic_data, NULL);
1887 			rcu_read_unlock();
1888 
1889 			status &= ~mask;
1890 		}
1891 	}
1892 
1893 	if (unlikely(status & 0x1)) {
1894 
1895 		/* schedule sp task to perform default status block work, ack
1896 		 * attentions and enable interrupts.
1897 		 */
1898 		bnx2x_schedule_sp_task(bp);
1899 
1900 		status &= ~0x1;
1901 		if (!status)
1902 			return IRQ_HANDLED;
1903 	}
1904 
1905 	if (unlikely(status))
1906 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1907 		   status);
1908 
1909 	return IRQ_HANDLED;
1910 }
1911 
1912 /* Link */
1913 
1914 /*
1915  * General service functions
1916  */
1917 
1918 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1919 {
1920 	u32 lock_status;
1921 	u32 resource_bit = (1 << resource);
1922 	int func = BP_FUNC(bp);
1923 	u32 hw_lock_control_reg;
1924 	int cnt;
1925 
1926 	/* Validating that the resource is within range */
1927 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1928 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1929 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1930 		return -EINVAL;
1931 	}
1932 
1933 	if (func <= 5) {
1934 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1935 	} else {
1936 		hw_lock_control_reg =
1937 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1938 	}
1939 
1940 	/* Validating that the resource is not already taken */
1941 	lock_status = REG_RD(bp, hw_lock_control_reg);
1942 	if (lock_status & resource_bit) {
1943 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1944 		   lock_status, resource_bit);
1945 		return -EEXIST;
1946 	}
1947 
1948 	/* Try for 5 second every 5ms */
1949 	for (cnt = 0; cnt < 1000; cnt++) {
1950 		/* Try to acquire the lock */
1951 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1952 		lock_status = REG_RD(bp, hw_lock_control_reg);
1953 		if (lock_status & resource_bit)
1954 			return 0;
1955 
1956 		usleep_range(5000, 10000);
1957 	}
1958 	BNX2X_ERR("Timeout\n");
1959 	return -EAGAIN;
1960 }
1961 
1962 int bnx2x_release_leader_lock(struct bnx2x *bp)
1963 {
1964 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1965 }
1966 
1967 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969 	u32 lock_status;
1970 	u32 resource_bit = (1 << resource);
1971 	int func = BP_FUNC(bp);
1972 	u32 hw_lock_control_reg;
1973 
1974 	/* Validating that the resource is within range */
1975 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1976 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1977 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1978 		return -EINVAL;
1979 	}
1980 
1981 	if (func <= 5) {
1982 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1983 	} else {
1984 		hw_lock_control_reg =
1985 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1986 	}
1987 
1988 	/* Validating that the resource is currently taken */
1989 	lock_status = REG_RD(bp, hw_lock_control_reg);
1990 	if (!(lock_status & resource_bit)) {
1991 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
1992 			  lock_status, resource_bit);
1993 		return -EFAULT;
1994 	}
1995 
1996 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1997 	return 0;
1998 }
1999 
2000 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2001 {
2002 	/* The GPIO should be swapped if swap register is set and active */
2003 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2004 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2005 	int gpio_shift = gpio_num +
2006 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2007 	u32 gpio_mask = (1 << gpio_shift);
2008 	u32 gpio_reg;
2009 	int value;
2010 
2011 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2012 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2013 		return -EINVAL;
2014 	}
2015 
2016 	/* read GPIO value */
2017 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2018 
2019 	/* get the requested pin value */
2020 	if ((gpio_reg & gpio_mask) == gpio_mask)
2021 		value = 1;
2022 	else
2023 		value = 0;
2024 
2025 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2026 
2027 	return value;
2028 }
2029 
2030 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2031 {
2032 	/* The GPIO should be swapped if swap register is set and active */
2033 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2034 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2035 	int gpio_shift = gpio_num +
2036 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2037 	u32 gpio_mask = (1 << gpio_shift);
2038 	u32 gpio_reg;
2039 
2040 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2041 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2042 		return -EINVAL;
2043 	}
2044 
2045 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2046 	/* read GPIO and mask except the float bits */
2047 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2048 
2049 	switch (mode) {
2050 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2051 		DP(NETIF_MSG_LINK,
2052 		   "Set GPIO %d (shift %d) -> output low\n",
2053 		   gpio_num, gpio_shift);
2054 		/* clear FLOAT and set CLR */
2055 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2056 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2057 		break;
2058 
2059 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2060 		DP(NETIF_MSG_LINK,
2061 		   "Set GPIO %d (shift %d) -> output high\n",
2062 		   gpio_num, gpio_shift);
2063 		/* clear FLOAT and set SET */
2064 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2065 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2066 		break;
2067 
2068 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2069 		DP(NETIF_MSG_LINK,
2070 		   "Set GPIO %d (shift %d) -> input\n",
2071 		   gpio_num, gpio_shift);
2072 		/* set FLOAT */
2073 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2074 		break;
2075 
2076 	default:
2077 		break;
2078 	}
2079 
2080 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2081 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2082 
2083 	return 0;
2084 }
2085 
2086 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2087 {
2088 	u32 gpio_reg = 0;
2089 	int rc = 0;
2090 
2091 	/* Any port swapping should be handled by caller. */
2092 
2093 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2094 	/* read GPIO and mask except the float bits */
2095 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2096 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2097 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2098 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2099 
2100 	switch (mode) {
2101 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2102 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2103 		/* set CLR */
2104 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2105 		break;
2106 
2107 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2108 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2109 		/* set SET */
2110 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2111 		break;
2112 
2113 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2114 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2115 		/* set FLOAT */
2116 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2117 		break;
2118 
2119 	default:
2120 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2121 		rc = -EINVAL;
2122 		break;
2123 	}
2124 
2125 	if (rc == 0)
2126 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2127 
2128 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2129 
2130 	return rc;
2131 }
2132 
2133 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2134 {
2135 	/* The GPIO should be swapped if swap register is set and active */
2136 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2137 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2138 	int gpio_shift = gpio_num +
2139 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2140 	u32 gpio_mask = (1 << gpio_shift);
2141 	u32 gpio_reg;
2142 
2143 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2144 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2145 		return -EINVAL;
2146 	}
2147 
2148 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2149 	/* read GPIO int */
2150 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2151 
2152 	switch (mode) {
2153 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2154 		DP(NETIF_MSG_LINK,
2155 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2156 		   gpio_num, gpio_shift);
2157 		/* clear SET and set CLR */
2158 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2159 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2160 		break;
2161 
2162 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2163 		DP(NETIF_MSG_LINK,
2164 		   "Set GPIO INT %d (shift %d) -> output high\n",
2165 		   gpio_num, gpio_shift);
2166 		/* clear CLR and set SET */
2167 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2168 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2169 		break;
2170 
2171 	default:
2172 		break;
2173 	}
2174 
2175 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2176 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177 
2178 	return 0;
2179 }
2180 
2181 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2182 {
2183 	u32 spio_reg;
2184 
2185 	/* Only 2 SPIOs are configurable */
2186 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2187 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2188 		return -EINVAL;
2189 	}
2190 
2191 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2192 	/* read SPIO and mask except the float bits */
2193 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2194 
2195 	switch (mode) {
2196 	case MISC_SPIO_OUTPUT_LOW:
2197 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2198 		/* clear FLOAT and set CLR */
2199 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2200 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2201 		break;
2202 
2203 	case MISC_SPIO_OUTPUT_HIGH:
2204 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2205 		/* clear FLOAT and set SET */
2206 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2207 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2208 		break;
2209 
2210 	case MISC_SPIO_INPUT_HI_Z:
2211 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2212 		/* set FLOAT */
2213 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2214 		break;
2215 
2216 	default:
2217 		break;
2218 	}
2219 
2220 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2221 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2222 
2223 	return 0;
2224 }
2225 
2226 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2227 {
2228 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2229 	switch (bp->link_vars.ieee_fc &
2230 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2231 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2232 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2233 						   ADVERTISED_Pause);
2234 		break;
2235 
2236 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2237 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2238 						  ADVERTISED_Pause);
2239 		break;
2240 
2241 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2242 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2243 		break;
2244 
2245 	default:
2246 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2247 						   ADVERTISED_Pause);
2248 		break;
2249 	}
2250 }
2251 
2252 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2253 {
2254 	/* Initialize link parameters structure variables
2255 	 * It is recommended to turn off RX FC for jumbo frames
2256 	 *  for better performance
2257 	 */
2258 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2259 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2260 	else
2261 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2262 }
2263 
2264 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2265 {
2266 	u32 pause_enabled = 0;
2267 
2268 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2269 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2270 			pause_enabled = 1;
2271 
2272 		REG_WR(bp, BAR_USTRORM_INTMEM +
2273 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2274 		       pause_enabled);
2275 	}
2276 
2277 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2278 	   pause_enabled ? "enabled" : "disabled");
2279 }
2280 
2281 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2282 {
2283 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2284 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2285 
2286 	if (!BP_NOMCP(bp)) {
2287 		bnx2x_set_requested_fc(bp);
2288 		bnx2x_acquire_phy_lock(bp);
2289 
2290 		if (load_mode == LOAD_DIAG) {
2291 			struct link_params *lp = &bp->link_params;
2292 			lp->loopback_mode = LOOPBACK_XGXS;
2293 			/* do PHY loopback at 10G speed, if possible */
2294 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2295 				if (lp->speed_cap_mask[cfx_idx] &
2296 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2297 					lp->req_line_speed[cfx_idx] =
2298 					SPEED_10000;
2299 				else
2300 					lp->req_line_speed[cfx_idx] =
2301 					SPEED_1000;
2302 			}
2303 		}
2304 
2305 		if (load_mode == LOAD_LOOPBACK_EXT) {
2306 			struct link_params *lp = &bp->link_params;
2307 			lp->loopback_mode = LOOPBACK_EXT;
2308 		}
2309 
2310 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2311 
2312 		bnx2x_release_phy_lock(bp);
2313 
2314 		bnx2x_init_dropless_fc(bp);
2315 
2316 		bnx2x_calc_fc_adv(bp);
2317 
2318 		if (bp->link_vars.link_up) {
2319 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2320 			bnx2x_link_report(bp);
2321 		}
2322 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2323 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2324 		return rc;
2325 	}
2326 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2327 	return -EINVAL;
2328 }
2329 
2330 void bnx2x_link_set(struct bnx2x *bp)
2331 {
2332 	if (!BP_NOMCP(bp)) {
2333 		bnx2x_acquire_phy_lock(bp);
2334 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2335 		bnx2x_release_phy_lock(bp);
2336 
2337 		bnx2x_init_dropless_fc(bp);
2338 
2339 		bnx2x_calc_fc_adv(bp);
2340 	} else
2341 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2342 }
2343 
2344 static void bnx2x__link_reset(struct bnx2x *bp)
2345 {
2346 	if (!BP_NOMCP(bp)) {
2347 		bnx2x_acquire_phy_lock(bp);
2348 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2349 		bnx2x_release_phy_lock(bp);
2350 	} else
2351 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2352 }
2353 
2354 void bnx2x_force_link_reset(struct bnx2x *bp)
2355 {
2356 	bnx2x_acquire_phy_lock(bp);
2357 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2358 	bnx2x_release_phy_lock(bp);
2359 }
2360 
2361 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2362 {
2363 	u8 rc = 0;
2364 
2365 	if (!BP_NOMCP(bp)) {
2366 		bnx2x_acquire_phy_lock(bp);
2367 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2368 				     is_serdes);
2369 		bnx2x_release_phy_lock(bp);
2370 	} else
2371 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2372 
2373 	return rc;
2374 }
2375 
2376 /* Calculates the sum of vn_min_rates.
2377    It's needed for further normalizing of the min_rates.
2378    Returns:
2379      sum of vn_min_rates.
2380        or
2381      0 - if all the min_rates are 0.
2382      In the later case fairness algorithm should be deactivated.
2383      If not all min_rates are zero then those that are zeroes will be set to 1.
2384  */
2385 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2386 				      struct cmng_init_input *input)
2387 {
2388 	int all_zero = 1;
2389 	int vn;
2390 
2391 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2392 		u32 vn_cfg = bp->mf_config[vn];
2393 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2394 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2395 
2396 		/* Skip hidden vns */
2397 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2398 			vn_min_rate = 0;
2399 		/* If min rate is zero - set it to 1 */
2400 		else if (!vn_min_rate)
2401 			vn_min_rate = DEF_MIN_RATE;
2402 		else
2403 			all_zero = 0;
2404 
2405 		input->vnic_min_rate[vn] = vn_min_rate;
2406 	}
2407 
2408 	/* if ETS or all min rates are zeros - disable fairness */
2409 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2410 		input->flags.cmng_enables &=
2411 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2412 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2413 	} else if (all_zero) {
2414 		input->flags.cmng_enables &=
2415 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2416 		DP(NETIF_MSG_IFUP,
2417 		   "All MIN values are zeroes fairness will be disabled\n");
2418 	} else
2419 		input->flags.cmng_enables |=
2420 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2421 }
2422 
2423 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2424 				    struct cmng_init_input *input)
2425 {
2426 	u16 vn_max_rate;
2427 	u32 vn_cfg = bp->mf_config[vn];
2428 
2429 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2430 		vn_max_rate = 0;
2431 	else {
2432 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2433 
2434 		if (IS_MF_SI(bp)) {
2435 			/* maxCfg in percents of linkspeed */
2436 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2437 		} else /* SD modes */
2438 			/* maxCfg is absolute in 100Mb units */
2439 			vn_max_rate = maxCfg * 100;
2440 	}
2441 
2442 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2443 
2444 	input->vnic_max_rate[vn] = vn_max_rate;
2445 }
2446 
2447 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2448 {
2449 	if (CHIP_REV_IS_SLOW(bp))
2450 		return CMNG_FNS_NONE;
2451 	if (IS_MF(bp))
2452 		return CMNG_FNS_MINMAX;
2453 
2454 	return CMNG_FNS_NONE;
2455 }
2456 
2457 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2458 {
2459 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2460 
2461 	if (BP_NOMCP(bp))
2462 		return; /* what should be the default value in this case */
2463 
2464 	/* For 2 port configuration the absolute function number formula
2465 	 * is:
2466 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2467 	 *
2468 	 *      and there are 4 functions per port
2469 	 *
2470 	 * For 4 port configuration it is
2471 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2472 	 *
2473 	 *      and there are 2 functions per port
2474 	 */
2475 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2476 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2477 
2478 		if (func >= E1H_FUNC_MAX)
2479 			break;
2480 
2481 		bp->mf_config[vn] =
2482 			MF_CFG_RD(bp, func_mf_config[func].config);
2483 	}
2484 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2485 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2486 		bp->flags |= MF_FUNC_DIS;
2487 	} else {
2488 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2489 		bp->flags &= ~MF_FUNC_DIS;
2490 	}
2491 }
2492 
2493 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2494 {
2495 	struct cmng_init_input input;
2496 	memset(&input, 0, sizeof(struct cmng_init_input));
2497 
2498 	input.port_rate = bp->link_vars.line_speed;
2499 
2500 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2501 		int vn;
2502 
2503 		/* read mf conf from shmem */
2504 		if (read_cfg)
2505 			bnx2x_read_mf_cfg(bp);
2506 
2507 		/* vn_weight_sum and enable fairness if not 0 */
2508 		bnx2x_calc_vn_min(bp, &input);
2509 
2510 		/* calculate and set min-max rate for each vn */
2511 		if (bp->port.pmf)
2512 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2513 				bnx2x_calc_vn_max(bp, vn, &input);
2514 
2515 		/* always enable rate shaping and fairness */
2516 		input.flags.cmng_enables |=
2517 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2518 
2519 		bnx2x_init_cmng(&input, &bp->cmng);
2520 		return;
2521 	}
2522 
2523 	/* rate shaping and fairness are disabled */
2524 	DP(NETIF_MSG_IFUP,
2525 	   "rate shaping and fairness are disabled\n");
2526 }
2527 
2528 static void storm_memset_cmng(struct bnx2x *bp,
2529 			      struct cmng_init *cmng,
2530 			      u8 port)
2531 {
2532 	int vn;
2533 	size_t size = sizeof(struct cmng_struct_per_port);
2534 
2535 	u32 addr = BAR_XSTRORM_INTMEM +
2536 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2537 
2538 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2539 
2540 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2541 		int func = func_by_vn(bp, vn);
2542 
2543 		addr = BAR_XSTRORM_INTMEM +
2544 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2545 		size = sizeof(struct rate_shaping_vars_per_vn);
2546 		__storm_memset_struct(bp, addr, size,
2547 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2548 
2549 		addr = BAR_XSTRORM_INTMEM +
2550 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2551 		size = sizeof(struct fairness_vars_per_vn);
2552 		__storm_memset_struct(bp, addr, size,
2553 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2554 	}
2555 }
2556 
2557 /* init cmng mode in HW according to local configuration */
2558 void bnx2x_set_local_cmng(struct bnx2x *bp)
2559 {
2560 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2561 
2562 	if (cmng_fns != CMNG_FNS_NONE) {
2563 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2564 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2565 	} else {
2566 		/* rate shaping and fairness are disabled */
2567 		DP(NETIF_MSG_IFUP,
2568 		   "single function mode without fairness\n");
2569 	}
2570 }
2571 
2572 /* This function is called upon link interrupt */
2573 static void bnx2x_link_attn(struct bnx2x *bp)
2574 {
2575 	/* Make sure that we are synced with the current statistics */
2576 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2577 
2578 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2579 
2580 	bnx2x_init_dropless_fc(bp);
2581 
2582 	if (bp->link_vars.link_up) {
2583 
2584 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2585 			struct host_port_stats *pstats;
2586 
2587 			pstats = bnx2x_sp(bp, port_stats);
2588 			/* reset old mac stats */
2589 			memset(&(pstats->mac_stx[0]), 0,
2590 			       sizeof(struct mac_stx));
2591 		}
2592 		if (bp->state == BNX2X_STATE_OPEN)
2593 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2594 	}
2595 
2596 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2597 		bnx2x_set_local_cmng(bp);
2598 
2599 	__bnx2x_link_report(bp);
2600 
2601 	if (IS_MF(bp))
2602 		bnx2x_link_sync_notify(bp);
2603 }
2604 
2605 void bnx2x__link_status_update(struct bnx2x *bp)
2606 {
2607 	if (bp->state != BNX2X_STATE_OPEN)
2608 		return;
2609 
2610 	/* read updated dcb configuration */
2611 	if (IS_PF(bp)) {
2612 		bnx2x_dcbx_pmf_update(bp);
2613 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2614 		if (bp->link_vars.link_up)
2615 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2616 		else
2617 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2618 			/* indicate link status */
2619 		bnx2x_link_report(bp);
2620 
2621 	} else { /* VF */
2622 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2623 					  SUPPORTED_10baseT_Full |
2624 					  SUPPORTED_100baseT_Half |
2625 					  SUPPORTED_100baseT_Full |
2626 					  SUPPORTED_1000baseT_Full |
2627 					  SUPPORTED_2500baseX_Full |
2628 					  SUPPORTED_10000baseT_Full |
2629 					  SUPPORTED_TP |
2630 					  SUPPORTED_FIBRE |
2631 					  SUPPORTED_Autoneg |
2632 					  SUPPORTED_Pause |
2633 					  SUPPORTED_Asym_Pause);
2634 		bp->port.advertising[0] = bp->port.supported[0];
2635 
2636 		bp->link_params.bp = bp;
2637 		bp->link_params.port = BP_PORT(bp);
2638 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2639 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2640 		bp->link_params.req_line_speed[0] = SPEED_10000;
2641 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2642 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2643 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2644 		bp->link_vars.line_speed = SPEED_10000;
2645 		bp->link_vars.link_status =
2646 			(LINK_STATUS_LINK_UP |
2647 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2648 		bp->link_vars.link_up = 1;
2649 		bp->link_vars.duplex = DUPLEX_FULL;
2650 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2651 		__bnx2x_link_report(bp);
2652 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2653 	}
2654 }
2655 
2656 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2657 				  u16 vlan_val, u8 allowed_prio)
2658 {
2659 	struct bnx2x_func_state_params func_params = {NULL};
2660 	struct bnx2x_func_afex_update_params *f_update_params =
2661 		&func_params.params.afex_update;
2662 
2663 	func_params.f_obj = &bp->func_obj;
2664 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2665 
2666 	/* no need to wait for RAMROD completion, so don't
2667 	 * set RAMROD_COMP_WAIT flag
2668 	 */
2669 
2670 	f_update_params->vif_id = vifid;
2671 	f_update_params->afex_default_vlan = vlan_val;
2672 	f_update_params->allowed_priorities = allowed_prio;
2673 
2674 	/* if ramrod can not be sent, response to MCP immediately */
2675 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2676 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2677 
2678 	return 0;
2679 }
2680 
2681 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2682 					  u16 vif_index, u8 func_bit_map)
2683 {
2684 	struct bnx2x_func_state_params func_params = {NULL};
2685 	struct bnx2x_func_afex_viflists_params *update_params =
2686 		&func_params.params.afex_viflists;
2687 	int rc;
2688 	u32 drv_msg_code;
2689 
2690 	/* validate only LIST_SET and LIST_GET are received from switch */
2691 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2692 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2693 			  cmd_type);
2694 
2695 	func_params.f_obj = &bp->func_obj;
2696 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2697 
2698 	/* set parameters according to cmd_type */
2699 	update_params->afex_vif_list_command = cmd_type;
2700 	update_params->vif_list_index = vif_index;
2701 	update_params->func_bit_map =
2702 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2703 	update_params->func_to_clear = 0;
2704 	drv_msg_code =
2705 		(cmd_type == VIF_LIST_RULE_GET) ?
2706 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2707 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2708 
2709 	/* if ramrod can not be sent, respond to MCP immediately for
2710 	 * SET and GET requests (other are not triggered from MCP)
2711 	 */
2712 	rc = bnx2x_func_state_change(bp, &func_params);
2713 	if (rc < 0)
2714 		bnx2x_fw_command(bp, drv_msg_code, 0);
2715 
2716 	return 0;
2717 }
2718 
2719 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2720 {
2721 	struct afex_stats afex_stats;
2722 	u32 func = BP_ABS_FUNC(bp);
2723 	u32 mf_config;
2724 	u16 vlan_val;
2725 	u32 vlan_prio;
2726 	u16 vif_id;
2727 	u8 allowed_prio;
2728 	u8 vlan_mode;
2729 	u32 addr_to_write, vifid, addrs, stats_type, i;
2730 
2731 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2732 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2733 		DP(BNX2X_MSG_MCP,
2734 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2735 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2736 	}
2737 
2738 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2739 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2740 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2741 		DP(BNX2X_MSG_MCP,
2742 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2743 		   vifid, addrs);
2744 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2745 					       addrs);
2746 	}
2747 
2748 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2749 		addr_to_write = SHMEM2_RD(bp,
2750 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2751 		stats_type = SHMEM2_RD(bp,
2752 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2753 
2754 		DP(BNX2X_MSG_MCP,
2755 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2756 		   addr_to_write);
2757 
2758 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2759 
2760 		/* write response to scratchpad, for MCP */
2761 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2762 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2763 			       *(((u32 *)(&afex_stats))+i));
2764 
2765 		/* send ack message to MCP */
2766 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2767 	}
2768 
2769 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2770 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2771 		bp->mf_config[BP_VN(bp)] = mf_config;
2772 		DP(BNX2X_MSG_MCP,
2773 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2774 		   mf_config);
2775 
2776 		/* if VIF_SET is "enabled" */
2777 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2778 			/* set rate limit directly to internal RAM */
2779 			struct cmng_init_input cmng_input;
2780 			struct rate_shaping_vars_per_vn m_rs_vn;
2781 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2782 			u32 addr = BAR_XSTRORM_INTMEM +
2783 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2784 
2785 			bp->mf_config[BP_VN(bp)] = mf_config;
2786 
2787 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2788 			m_rs_vn.vn_counter.rate =
2789 				cmng_input.vnic_max_rate[BP_VN(bp)];
2790 			m_rs_vn.vn_counter.quota =
2791 				(m_rs_vn.vn_counter.rate *
2792 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2793 
2794 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2795 
2796 			/* read relevant values from mf_cfg struct in shmem */
2797 			vif_id =
2798 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2799 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2800 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2801 			vlan_val =
2802 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2803 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2804 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2805 			vlan_prio = (mf_config &
2806 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2807 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2808 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2809 			vlan_mode =
2810 				(MF_CFG_RD(bp,
2811 					   func_mf_config[func].afex_config) &
2812 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2813 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2814 			allowed_prio =
2815 				(MF_CFG_RD(bp,
2816 					   func_mf_config[func].afex_config) &
2817 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2818 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2819 
2820 			/* send ramrod to FW, return in case of failure */
2821 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2822 						   allowed_prio))
2823 				return;
2824 
2825 			bp->afex_def_vlan_tag = vlan_val;
2826 			bp->afex_vlan_mode = vlan_mode;
2827 		} else {
2828 			/* notify link down because BP->flags is disabled */
2829 			bnx2x_link_report(bp);
2830 
2831 			/* send INVALID VIF ramrod to FW */
2832 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2833 
2834 			/* Reset the default afex VLAN */
2835 			bp->afex_def_vlan_tag = -1;
2836 		}
2837 	}
2838 }
2839 
2840 static void bnx2x_pmf_update(struct bnx2x *bp)
2841 {
2842 	int port = BP_PORT(bp);
2843 	u32 val;
2844 
2845 	bp->port.pmf = 1;
2846 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2847 
2848 	/*
2849 	 * We need the mb() to ensure the ordering between the writing to
2850 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2851 	 */
2852 	smp_mb();
2853 
2854 	/* queue a periodic task */
2855 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2856 
2857 	bnx2x_dcbx_pmf_update(bp);
2858 
2859 	/* enable nig attention */
2860 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2861 	if (bp->common.int_block == INT_BLOCK_HC) {
2862 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2863 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2864 	} else if (!CHIP_IS_E1x(bp)) {
2865 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2866 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2867 	}
2868 
2869 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2870 }
2871 
2872 /* end of Link */
2873 
2874 /* slow path */
2875 
2876 /*
2877  * General service functions
2878  */
2879 
2880 /* send the MCP a request, block until there is a reply */
2881 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2882 {
2883 	int mb_idx = BP_FW_MB_IDX(bp);
2884 	u32 seq;
2885 	u32 rc = 0;
2886 	u32 cnt = 1;
2887 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2888 
2889 	mutex_lock(&bp->fw_mb_mutex);
2890 	seq = ++bp->fw_seq;
2891 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2892 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2893 
2894 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2895 			(command | seq), param);
2896 
2897 	do {
2898 		/* let the FW do it's magic ... */
2899 		msleep(delay);
2900 
2901 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2902 
2903 		/* Give the FW up to 5 second (500*10ms) */
2904 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2905 
2906 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2907 	   cnt*delay, rc, seq);
2908 
2909 	/* is this a reply to our command? */
2910 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2911 		rc &= FW_MSG_CODE_MASK;
2912 	else {
2913 		/* FW BUG! */
2914 		BNX2X_ERR("FW failed to respond!\n");
2915 		bnx2x_fw_dump(bp);
2916 		rc = 0;
2917 	}
2918 	mutex_unlock(&bp->fw_mb_mutex);
2919 
2920 	return rc;
2921 }
2922 
2923 static void storm_memset_func_cfg(struct bnx2x *bp,
2924 				 struct tstorm_eth_function_common_config *tcfg,
2925 				 u16 abs_fid)
2926 {
2927 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2928 
2929 	u32 addr = BAR_TSTRORM_INTMEM +
2930 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2931 
2932 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2933 }
2934 
2935 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2936 {
2937 	if (CHIP_IS_E1x(bp)) {
2938 		struct tstorm_eth_function_common_config tcfg = {0};
2939 
2940 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2941 	}
2942 
2943 	/* Enable the function in the FW */
2944 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2945 	storm_memset_func_en(bp, p->func_id, 1);
2946 
2947 	/* spq */
2948 	if (p->func_flgs & FUNC_FLG_SPQ) {
2949 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2950 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2951 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2952 	}
2953 }
2954 
2955 /**
2956  * bnx2x_get_common_flags - Return common flags
2957  *
2958  * @bp		device handle
2959  * @fp		queue handle
2960  * @zero_stats	TRUE if statistics zeroing is needed
2961  *
2962  * Return the flags that are common for the Tx-only and not normal connections.
2963  */
2964 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2965 					    struct bnx2x_fastpath *fp,
2966 					    bool zero_stats)
2967 {
2968 	unsigned long flags = 0;
2969 
2970 	/* PF driver will always initialize the Queue to an ACTIVE state */
2971 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2972 
2973 	/* tx only connections collect statistics (on the same index as the
2974 	 * parent connection). The statistics are zeroed when the parent
2975 	 * connection is initialized.
2976 	 */
2977 
2978 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2979 	if (zero_stats)
2980 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2981 
2982 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2983 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2984 
2985 #ifdef BNX2X_STOP_ON_ERROR
2986 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2987 #endif
2988 
2989 	return flags;
2990 }
2991 
2992 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2993 				       struct bnx2x_fastpath *fp,
2994 				       bool leading)
2995 {
2996 	unsigned long flags = 0;
2997 
2998 	/* calculate other queue flags */
2999 	if (IS_MF_SD(bp))
3000 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3001 
3002 	if (IS_FCOE_FP(fp)) {
3003 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3004 		/* For FCoE - force usage of default priority (for afex) */
3005 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3006 	}
3007 
3008 	if (!fp->disable_tpa) {
3009 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3010 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3011 		if (fp->mode == TPA_MODE_GRO)
3012 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3013 	}
3014 
3015 	if (leading) {
3016 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3017 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3018 	}
3019 
3020 	/* Always set HW VLAN stripping */
3021 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3022 
3023 	/* configure silent vlan removal */
3024 	if (IS_MF_AFEX(bp))
3025 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3026 
3027 	return flags | bnx2x_get_common_flags(bp, fp, true);
3028 }
3029 
3030 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3031 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3032 	u8 cos)
3033 {
3034 	gen_init->stat_id = bnx2x_stats_id(fp);
3035 	gen_init->spcl_id = fp->cl_id;
3036 
3037 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3038 	if (IS_FCOE_FP(fp))
3039 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3040 	else
3041 		gen_init->mtu = bp->dev->mtu;
3042 
3043 	gen_init->cos = cos;
3044 }
3045 
3046 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3047 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3048 	struct bnx2x_rxq_setup_params *rxq_init)
3049 {
3050 	u8 max_sge = 0;
3051 	u16 sge_sz = 0;
3052 	u16 tpa_agg_size = 0;
3053 
3054 	if (!fp->disable_tpa) {
3055 		pause->sge_th_lo = SGE_TH_LO(bp);
3056 		pause->sge_th_hi = SGE_TH_HI(bp);
3057 
3058 		/* validate SGE ring has enough to cross high threshold */
3059 		WARN_ON(bp->dropless_fc &&
3060 				pause->sge_th_hi + FW_PREFETCH_CNT >
3061 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3062 
3063 		tpa_agg_size = TPA_AGG_SIZE;
3064 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3065 			SGE_PAGE_SHIFT;
3066 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3067 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3068 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3069 	}
3070 
3071 	/* pause - not for e1 */
3072 	if (!CHIP_IS_E1(bp)) {
3073 		pause->bd_th_lo = BD_TH_LO(bp);
3074 		pause->bd_th_hi = BD_TH_HI(bp);
3075 
3076 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3077 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3078 		/*
3079 		 * validate that rings have enough entries to cross
3080 		 * high thresholds
3081 		 */
3082 		WARN_ON(bp->dropless_fc &&
3083 				pause->bd_th_hi + FW_PREFETCH_CNT >
3084 				bp->rx_ring_size);
3085 		WARN_ON(bp->dropless_fc &&
3086 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3087 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3088 
3089 		pause->pri_map = 1;
3090 	}
3091 
3092 	/* rxq setup */
3093 	rxq_init->dscr_map = fp->rx_desc_mapping;
3094 	rxq_init->sge_map = fp->rx_sge_mapping;
3095 	rxq_init->rcq_map = fp->rx_comp_mapping;
3096 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3097 
3098 	/* This should be a maximum number of data bytes that may be
3099 	 * placed on the BD (not including paddings).
3100 	 */
3101 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3102 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3103 
3104 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3105 	rxq_init->tpa_agg_sz = tpa_agg_size;
3106 	rxq_init->sge_buf_sz = sge_sz;
3107 	rxq_init->max_sges_pkt = max_sge;
3108 	rxq_init->rss_engine_id = BP_FUNC(bp);
3109 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3110 
3111 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3112 	 *
3113 	 * For PF Clients it should be the maximum available number.
3114 	 * VF driver(s) may want to define it to a smaller value.
3115 	 */
3116 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3117 
3118 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3119 	rxq_init->fw_sb_id = fp->fw_sb_id;
3120 
3121 	if (IS_FCOE_FP(fp))
3122 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3123 	else
3124 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3125 	/* configure silent vlan removal
3126 	 * if multi function mode is afex, then mask default vlan
3127 	 */
3128 	if (IS_MF_AFEX(bp)) {
3129 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3130 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3131 	}
3132 }
3133 
3134 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3135 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3136 	u8 cos)
3137 {
3138 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3139 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3140 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3141 	txq_init->fw_sb_id = fp->fw_sb_id;
3142 
3143 	/*
3144 	 * set the tss leading client id for TX classification ==
3145 	 * leading RSS client id
3146 	 */
3147 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3148 
3149 	if (IS_FCOE_FP(fp)) {
3150 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3151 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3152 	}
3153 }
3154 
3155 static void bnx2x_pf_init(struct bnx2x *bp)
3156 {
3157 	struct bnx2x_func_init_params func_init = {0};
3158 	struct event_ring_data eq_data = { {0} };
3159 	u16 flags;
3160 
3161 	if (!CHIP_IS_E1x(bp)) {
3162 		/* reset IGU PF statistics: MSIX + ATTN */
3163 		/* PF */
3164 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3165 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3166 			   (CHIP_MODE_IS_4_PORT(bp) ?
3167 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3168 		/* ATTN */
3169 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3170 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3171 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3172 			   (CHIP_MODE_IS_4_PORT(bp) ?
3173 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3174 	}
3175 
3176 	/* function setup flags */
3177 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3178 
3179 	/* This flag is relevant for E1x only.
3180 	 * E2 doesn't have a TPA configuration in a function level.
3181 	 */
3182 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3183 
3184 	func_init.func_flgs = flags;
3185 	func_init.pf_id = BP_FUNC(bp);
3186 	func_init.func_id = BP_FUNC(bp);
3187 	func_init.spq_map = bp->spq_mapping;
3188 	func_init.spq_prod = bp->spq_prod_idx;
3189 
3190 	bnx2x_func_init(bp, &func_init);
3191 
3192 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3193 
3194 	/*
3195 	 * Congestion management values depend on the link rate
3196 	 * There is no active link so initial link rate is set to 10 Gbps.
3197 	 * When the link comes up The congestion management values are
3198 	 * re-calculated according to the actual link rate.
3199 	 */
3200 	bp->link_vars.line_speed = SPEED_10000;
3201 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3202 
3203 	/* Only the PMF sets the HW */
3204 	if (bp->port.pmf)
3205 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3206 
3207 	/* init Event Queue - PCI bus guarantees correct endianity*/
3208 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3209 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3210 	eq_data.producer = bp->eq_prod;
3211 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3212 	eq_data.sb_id = DEF_SB_ID;
3213 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3214 }
3215 
3216 static void bnx2x_e1h_disable(struct bnx2x *bp)
3217 {
3218 	int port = BP_PORT(bp);
3219 
3220 	bnx2x_tx_disable(bp);
3221 
3222 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3223 }
3224 
3225 static void bnx2x_e1h_enable(struct bnx2x *bp)
3226 {
3227 	int port = BP_PORT(bp);
3228 
3229 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3230 
3231 	/* Tx queue should be only re-enabled */
3232 	netif_tx_wake_all_queues(bp->dev);
3233 
3234 	/*
3235 	 * Should not call netif_carrier_on since it will be called if the link
3236 	 * is up when checking for link state
3237 	 */
3238 }
3239 
3240 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3241 
3242 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3243 {
3244 	struct eth_stats_info *ether_stat =
3245 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3246 	struct bnx2x_vlan_mac_obj *mac_obj =
3247 		&bp->sp_objs->mac_obj;
3248 	int i;
3249 
3250 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3251 		ETH_STAT_INFO_VERSION_LEN);
3252 
3253 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3254 	 * mac_local field in ether_stat struct. The base address is offset by 2
3255 	 * bytes to account for the field being 8 bytes but a mac address is
3256 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3257 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3258 	 * allocated by the ether_stat struct, so the macs will land in their
3259 	 * proper positions.
3260 	 */
3261 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3262 		memset(ether_stat->mac_local + i, 0,
3263 		       sizeof(ether_stat->mac_local[0]));
3264 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3265 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3266 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3267 				ETH_ALEN);
3268 	ether_stat->mtu_size = bp->dev->mtu;
3269 	if (bp->dev->features & NETIF_F_RXCSUM)
3270 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3271 	if (bp->dev->features & NETIF_F_TSO)
3272 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3273 	ether_stat->feature_flags |= bp->common.boot_mode;
3274 
3275 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3276 
3277 	ether_stat->txq_size = bp->tx_ring_size;
3278 	ether_stat->rxq_size = bp->rx_ring_size;
3279 }
3280 
3281 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3282 {
3283 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3284 	struct fcoe_stats_info *fcoe_stat =
3285 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3286 
3287 	if (!CNIC_LOADED(bp))
3288 		return;
3289 
3290 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3291 
3292 	fcoe_stat->qos_priority =
3293 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3294 
3295 	/* insert FCoE stats from ramrod response */
3296 	if (!NO_FCOE(bp)) {
3297 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3298 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3299 			tstorm_queue_statistics;
3300 
3301 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3302 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3303 			xstorm_queue_statistics;
3304 
3305 		struct fcoe_statistics_params *fw_fcoe_stat =
3306 			&bp->fw_stats_data->fcoe;
3307 
3308 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3309 			  fcoe_stat->rx_bytes_lo,
3310 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3311 
3312 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3313 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3314 			  fcoe_stat->rx_bytes_lo,
3315 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3316 
3317 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3318 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3319 			  fcoe_stat->rx_bytes_lo,
3320 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3321 
3322 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3323 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3324 			  fcoe_stat->rx_bytes_lo,
3325 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3326 
3327 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3328 			  fcoe_stat->rx_frames_lo,
3329 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3330 
3331 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3332 			  fcoe_stat->rx_frames_lo,
3333 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3334 
3335 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3336 			  fcoe_stat->rx_frames_lo,
3337 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3338 
3339 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3340 			  fcoe_stat->rx_frames_lo,
3341 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3342 
3343 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3344 			  fcoe_stat->tx_bytes_lo,
3345 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3346 
3347 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3348 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3349 			  fcoe_stat->tx_bytes_lo,
3350 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3351 
3352 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3353 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3354 			  fcoe_stat->tx_bytes_lo,
3355 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3356 
3357 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3358 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3359 			  fcoe_stat->tx_bytes_lo,
3360 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3361 
3362 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3363 			  fcoe_stat->tx_frames_lo,
3364 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3365 
3366 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3367 			  fcoe_stat->tx_frames_lo,
3368 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3369 
3370 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3371 			  fcoe_stat->tx_frames_lo,
3372 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3373 
3374 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3375 			  fcoe_stat->tx_frames_lo,
3376 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3377 	}
3378 
3379 	/* ask L5 driver to add data to the struct */
3380 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3381 }
3382 
3383 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3384 {
3385 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3386 	struct iscsi_stats_info *iscsi_stat =
3387 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3388 
3389 	if (!CNIC_LOADED(bp))
3390 		return;
3391 
3392 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3393 	       ETH_ALEN);
3394 
3395 	iscsi_stat->qos_priority =
3396 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3397 
3398 	/* ask L5 driver to add data to the struct */
3399 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3400 }
3401 
3402 /* called due to MCP event (on pmf):
3403  *	reread new bandwidth configuration
3404  *	configure FW
3405  *	notify others function about the change
3406  */
3407 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3408 {
3409 	if (bp->link_vars.link_up) {
3410 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3411 		bnx2x_link_sync_notify(bp);
3412 	}
3413 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3414 }
3415 
3416 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3417 {
3418 	bnx2x_config_mf_bw(bp);
3419 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3420 }
3421 
3422 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3423 {
3424 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3425 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3426 }
3427 
3428 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3429 {
3430 	enum drv_info_opcode op_code;
3431 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3432 
3433 	/* if drv_info version supported by MFW doesn't match - send NACK */
3434 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3435 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3436 		return;
3437 	}
3438 
3439 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3440 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3441 
3442 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3443 	       sizeof(union drv_info_to_mcp));
3444 
3445 	switch (op_code) {
3446 	case ETH_STATS_OPCODE:
3447 		bnx2x_drv_info_ether_stat(bp);
3448 		break;
3449 	case FCOE_STATS_OPCODE:
3450 		bnx2x_drv_info_fcoe_stat(bp);
3451 		break;
3452 	case ISCSI_STATS_OPCODE:
3453 		bnx2x_drv_info_iscsi_stat(bp);
3454 		break;
3455 	default:
3456 		/* if op code isn't supported - send NACK */
3457 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3458 		return;
3459 	}
3460 
3461 	/* if we got drv_info attn from MFW then these fields are defined in
3462 	 * shmem2 for sure
3463 	 */
3464 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3465 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3466 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3467 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3468 
3469 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3470 }
3471 
3472 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3473 {
3474 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3475 
3476 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3477 
3478 		/*
3479 		 * This is the only place besides the function initialization
3480 		 * where the bp->flags can change so it is done without any
3481 		 * locks
3482 		 */
3483 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3484 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3485 			bp->flags |= MF_FUNC_DIS;
3486 
3487 			bnx2x_e1h_disable(bp);
3488 		} else {
3489 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3490 			bp->flags &= ~MF_FUNC_DIS;
3491 
3492 			bnx2x_e1h_enable(bp);
3493 		}
3494 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3495 	}
3496 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3497 		bnx2x_config_mf_bw(bp);
3498 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3499 	}
3500 
3501 	/* Report results to MCP */
3502 	if (dcc_event)
3503 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3504 	else
3505 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3506 }
3507 
3508 /* must be called under the spq lock */
3509 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3510 {
3511 	struct eth_spe *next_spe = bp->spq_prod_bd;
3512 
3513 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3514 		bp->spq_prod_bd = bp->spq;
3515 		bp->spq_prod_idx = 0;
3516 		DP(BNX2X_MSG_SP, "end of spq\n");
3517 	} else {
3518 		bp->spq_prod_bd++;
3519 		bp->spq_prod_idx++;
3520 	}
3521 	return next_spe;
3522 }
3523 
3524 /* must be called under the spq lock */
3525 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3526 {
3527 	int func = BP_FUNC(bp);
3528 
3529 	/*
3530 	 * Make sure that BD data is updated before writing the producer:
3531 	 * BD data is written to the memory, the producer is read from the
3532 	 * memory, thus we need a full memory barrier to ensure the ordering.
3533 	 */
3534 	mb();
3535 
3536 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3537 		 bp->spq_prod_idx);
3538 	mmiowb();
3539 }
3540 
3541 /**
3542  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3543  *
3544  * @cmd:	command to check
3545  * @cmd_type:	command type
3546  */
3547 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3548 {
3549 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3550 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3551 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3552 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3553 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3554 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3555 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3556 		return true;
3557 	else
3558 		return false;
3559 }
3560 
3561 /**
3562  * bnx2x_sp_post - place a single command on an SP ring
3563  *
3564  * @bp:		driver handle
3565  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3566  * @cid:	SW CID the command is related to
3567  * @data_hi:	command private data address (high 32 bits)
3568  * @data_lo:	command private data address (low 32 bits)
3569  * @cmd_type:	command type (e.g. NONE, ETH)
3570  *
3571  * SP data is handled as if it's always an address pair, thus data fields are
3572  * not swapped to little endian in upper functions. Instead this function swaps
3573  * data as if it's two u32 fields.
3574  */
3575 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3576 		  u32 data_hi, u32 data_lo, int cmd_type)
3577 {
3578 	struct eth_spe *spe;
3579 	u16 type;
3580 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3581 
3582 #ifdef BNX2X_STOP_ON_ERROR
3583 	if (unlikely(bp->panic)) {
3584 		BNX2X_ERR("Can't post SP when there is panic\n");
3585 		return -EIO;
3586 	}
3587 #endif
3588 
3589 	spin_lock_bh(&bp->spq_lock);
3590 
3591 	if (common) {
3592 		if (!atomic_read(&bp->eq_spq_left)) {
3593 			BNX2X_ERR("BUG! EQ ring full!\n");
3594 			spin_unlock_bh(&bp->spq_lock);
3595 			bnx2x_panic();
3596 			return -EBUSY;
3597 		}
3598 	} else if (!atomic_read(&bp->cq_spq_left)) {
3599 			BNX2X_ERR("BUG! SPQ ring full!\n");
3600 			spin_unlock_bh(&bp->spq_lock);
3601 			bnx2x_panic();
3602 			return -EBUSY;
3603 	}
3604 
3605 	spe = bnx2x_sp_get_next(bp);
3606 
3607 	/* CID needs port number to be encoded int it */
3608 	spe->hdr.conn_and_cmd_data =
3609 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3610 				    HW_CID(bp, cid));
3611 
3612 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3613 
3614 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3615 		 SPE_HDR_FUNCTION_ID);
3616 
3617 	spe->hdr.type = cpu_to_le16(type);
3618 
3619 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3620 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3621 
3622 	/*
3623 	 * It's ok if the actual decrement is issued towards the memory
3624 	 * somewhere between the spin_lock and spin_unlock. Thus no
3625 	 * more explicit memory barrier is needed.
3626 	 */
3627 	if (common)
3628 		atomic_dec(&bp->eq_spq_left);
3629 	else
3630 		atomic_dec(&bp->cq_spq_left);
3631 
3632 	DP(BNX2X_MSG_SP,
3633 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3634 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3635 	   (u32)(U64_LO(bp->spq_mapping) +
3636 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3637 	   HW_CID(bp, cid), data_hi, data_lo, type,
3638 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3639 
3640 	bnx2x_sp_prod_update(bp);
3641 	spin_unlock_bh(&bp->spq_lock);
3642 	return 0;
3643 }
3644 
3645 /* acquire split MCP access lock register */
3646 static int bnx2x_acquire_alr(struct bnx2x *bp)
3647 {
3648 	u32 j, val;
3649 	int rc = 0;
3650 
3651 	might_sleep();
3652 	for (j = 0; j < 1000; j++) {
3653 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3654 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3655 		if (val & MCPR_ACCESS_LOCK_LOCK)
3656 			break;
3657 
3658 		usleep_range(5000, 10000);
3659 	}
3660 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3661 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3662 		rc = -EBUSY;
3663 	}
3664 
3665 	return rc;
3666 }
3667 
3668 /* release split MCP access lock register */
3669 static void bnx2x_release_alr(struct bnx2x *bp)
3670 {
3671 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3672 }
3673 
3674 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3675 #define BNX2X_DEF_SB_IDX	0x0002
3676 
3677 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3678 {
3679 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3680 	u16 rc = 0;
3681 
3682 	barrier(); /* status block is written to by the chip */
3683 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3684 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3685 		rc |= BNX2X_DEF_SB_ATT_IDX;
3686 	}
3687 
3688 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3689 		bp->def_idx = def_sb->sp_sb.running_index;
3690 		rc |= BNX2X_DEF_SB_IDX;
3691 	}
3692 
3693 	/* Do not reorder: indices reading should complete before handling */
3694 	barrier();
3695 	return rc;
3696 }
3697 
3698 /*
3699  * slow path service functions
3700  */
3701 
3702 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3703 {
3704 	int port = BP_PORT(bp);
3705 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3706 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3707 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3708 				       NIG_REG_MASK_INTERRUPT_PORT0;
3709 	u32 aeu_mask;
3710 	u32 nig_mask = 0;
3711 	u32 reg_addr;
3712 
3713 	if (bp->attn_state & asserted)
3714 		BNX2X_ERR("IGU ERROR\n");
3715 
3716 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3717 	aeu_mask = REG_RD(bp, aeu_addr);
3718 
3719 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3720 	   aeu_mask, asserted);
3721 	aeu_mask &= ~(asserted & 0x3ff);
3722 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3723 
3724 	REG_WR(bp, aeu_addr, aeu_mask);
3725 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3726 
3727 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3728 	bp->attn_state |= asserted;
3729 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3730 
3731 	if (asserted & ATTN_HARD_WIRED_MASK) {
3732 		if (asserted & ATTN_NIG_FOR_FUNC) {
3733 
3734 			bnx2x_acquire_phy_lock(bp);
3735 
3736 			/* save nig interrupt mask */
3737 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3738 
3739 			/* If nig_mask is not set, no need to call the update
3740 			 * function.
3741 			 */
3742 			if (nig_mask) {
3743 				REG_WR(bp, nig_int_mask_addr, 0);
3744 
3745 				bnx2x_link_attn(bp);
3746 			}
3747 
3748 			/* handle unicore attn? */
3749 		}
3750 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3751 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3752 
3753 		if (asserted & GPIO_2_FUNC)
3754 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3755 
3756 		if (asserted & GPIO_3_FUNC)
3757 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3758 
3759 		if (asserted & GPIO_4_FUNC)
3760 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3761 
3762 		if (port == 0) {
3763 			if (asserted & ATTN_GENERAL_ATTN_1) {
3764 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3765 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3766 			}
3767 			if (asserted & ATTN_GENERAL_ATTN_2) {
3768 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3769 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3770 			}
3771 			if (asserted & ATTN_GENERAL_ATTN_3) {
3772 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3773 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3774 			}
3775 		} else {
3776 			if (asserted & ATTN_GENERAL_ATTN_4) {
3777 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3778 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3779 			}
3780 			if (asserted & ATTN_GENERAL_ATTN_5) {
3781 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3782 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3783 			}
3784 			if (asserted & ATTN_GENERAL_ATTN_6) {
3785 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3786 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3787 			}
3788 		}
3789 
3790 	} /* if hardwired */
3791 
3792 	if (bp->common.int_block == INT_BLOCK_HC)
3793 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3794 			    COMMAND_REG_ATTN_BITS_SET);
3795 	else
3796 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3797 
3798 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3799 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3800 	REG_WR(bp, reg_addr, asserted);
3801 
3802 	/* now set back the mask */
3803 	if (asserted & ATTN_NIG_FOR_FUNC) {
3804 		/* Verify that IGU ack through BAR was written before restoring
3805 		 * NIG mask. This loop should exit after 2-3 iterations max.
3806 		 */
3807 		if (bp->common.int_block != INT_BLOCK_HC) {
3808 			u32 cnt = 0, igu_acked;
3809 			do {
3810 				igu_acked = REG_RD(bp,
3811 						   IGU_REG_ATTENTION_ACK_BITS);
3812 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3813 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3814 			if (!igu_acked)
3815 				DP(NETIF_MSG_HW,
3816 				   "Failed to verify IGU ack on time\n");
3817 			barrier();
3818 		}
3819 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3820 		bnx2x_release_phy_lock(bp);
3821 	}
3822 }
3823 
3824 static void bnx2x_fan_failure(struct bnx2x *bp)
3825 {
3826 	int port = BP_PORT(bp);
3827 	u32 ext_phy_config;
3828 	/* mark the failure */
3829 	ext_phy_config =
3830 		SHMEM_RD(bp,
3831 			 dev_info.port_hw_config[port].external_phy_config);
3832 
3833 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3834 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3835 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3836 		 ext_phy_config);
3837 
3838 	/* log the failure */
3839 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3840 			    "Please contact OEM Support for assistance\n");
3841 
3842 	/* Schedule device reset (unload)
3843 	 * This is due to some boards consuming sufficient power when driver is
3844 	 * up to overheat if fan fails.
3845 	 */
3846 	smp_mb__before_clear_bit();
3847 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3848 	smp_mb__after_clear_bit();
3849 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3850 }
3851 
3852 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3853 {
3854 	int port = BP_PORT(bp);
3855 	int reg_offset;
3856 	u32 val;
3857 
3858 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3859 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3860 
3861 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3862 
3863 		val = REG_RD(bp, reg_offset);
3864 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3865 		REG_WR(bp, reg_offset, val);
3866 
3867 		BNX2X_ERR("SPIO5 hw attention\n");
3868 
3869 		/* Fan failure attention */
3870 		bnx2x_hw_reset_phy(&bp->link_params);
3871 		bnx2x_fan_failure(bp);
3872 	}
3873 
3874 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3875 		bnx2x_acquire_phy_lock(bp);
3876 		bnx2x_handle_module_detect_int(&bp->link_params);
3877 		bnx2x_release_phy_lock(bp);
3878 	}
3879 
3880 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3881 
3882 		val = REG_RD(bp, reg_offset);
3883 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3884 		REG_WR(bp, reg_offset, val);
3885 
3886 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3887 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3888 		bnx2x_panic();
3889 	}
3890 }
3891 
3892 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3893 {
3894 	u32 val;
3895 
3896 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3897 
3898 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3899 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3900 		/* DORQ discard attention */
3901 		if (val & 0x2)
3902 			BNX2X_ERR("FATAL error from DORQ\n");
3903 	}
3904 
3905 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3906 
3907 		int port = BP_PORT(bp);
3908 		int reg_offset;
3909 
3910 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3911 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3912 
3913 		val = REG_RD(bp, reg_offset);
3914 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3915 		REG_WR(bp, reg_offset, val);
3916 
3917 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3918 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3919 		bnx2x_panic();
3920 	}
3921 }
3922 
3923 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3924 {
3925 	u32 val;
3926 
3927 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3928 
3929 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3930 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3931 		/* CFC error attention */
3932 		if (val & 0x2)
3933 			BNX2X_ERR("FATAL error from CFC\n");
3934 	}
3935 
3936 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3937 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3938 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3939 		/* RQ_USDMDP_FIFO_OVERFLOW */
3940 		if (val & 0x18000)
3941 			BNX2X_ERR("FATAL error from PXP\n");
3942 
3943 		if (!CHIP_IS_E1x(bp)) {
3944 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3945 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3946 		}
3947 	}
3948 
3949 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3950 
3951 		int port = BP_PORT(bp);
3952 		int reg_offset;
3953 
3954 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3955 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3956 
3957 		val = REG_RD(bp, reg_offset);
3958 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3959 		REG_WR(bp, reg_offset, val);
3960 
3961 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3962 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3963 		bnx2x_panic();
3964 	}
3965 }
3966 
3967 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3968 {
3969 	u32 val;
3970 
3971 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3972 
3973 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3974 			int func = BP_FUNC(bp);
3975 
3976 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3977 			bnx2x_read_mf_cfg(bp);
3978 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3979 					func_mf_config[BP_ABS_FUNC(bp)].config);
3980 			val = SHMEM_RD(bp,
3981 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3982 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3983 				bnx2x_dcc_event(bp,
3984 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3985 
3986 			if (val & DRV_STATUS_SET_MF_BW)
3987 				bnx2x_set_mf_bw(bp);
3988 
3989 			if (val & DRV_STATUS_DRV_INFO_REQ)
3990 				bnx2x_handle_drv_info_req(bp);
3991 
3992 			if (val & DRV_STATUS_VF_DISABLED)
3993 				bnx2x_vf_handle_flr_event(bp);
3994 
3995 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3996 				bnx2x_pmf_update(bp);
3997 
3998 			if (bp->port.pmf &&
3999 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4000 				bp->dcbx_enabled > 0)
4001 				/* start dcbx state machine */
4002 				bnx2x_dcbx_set_params(bp,
4003 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4004 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4005 				bnx2x_handle_afex_cmd(bp,
4006 					val & DRV_STATUS_AFEX_EVENT_MASK);
4007 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4008 				bnx2x_handle_eee_event(bp);
4009 			if (bp->link_vars.periodic_flags &
4010 			    PERIODIC_FLAGS_LINK_EVENT) {
4011 				/*  sync with link */
4012 				bnx2x_acquire_phy_lock(bp);
4013 				bp->link_vars.periodic_flags &=
4014 					~PERIODIC_FLAGS_LINK_EVENT;
4015 				bnx2x_release_phy_lock(bp);
4016 				if (IS_MF(bp))
4017 					bnx2x_link_sync_notify(bp);
4018 				bnx2x_link_report(bp);
4019 			}
4020 			/* Always call it here: bnx2x_link_report() will
4021 			 * prevent the link indication duplication.
4022 			 */
4023 			bnx2x__link_status_update(bp);
4024 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4025 
4026 			BNX2X_ERR("MC assert!\n");
4027 			bnx2x_mc_assert(bp);
4028 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4029 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4030 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4031 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4032 			bnx2x_panic();
4033 
4034 		} else if (attn & BNX2X_MCP_ASSERT) {
4035 
4036 			BNX2X_ERR("MCP assert!\n");
4037 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4038 			bnx2x_fw_dump(bp);
4039 
4040 		} else
4041 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4042 	}
4043 
4044 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4045 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4046 		if (attn & BNX2X_GRC_TIMEOUT) {
4047 			val = CHIP_IS_E1(bp) ? 0 :
4048 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4049 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4050 		}
4051 		if (attn & BNX2X_GRC_RSV) {
4052 			val = CHIP_IS_E1(bp) ? 0 :
4053 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4054 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4055 		}
4056 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4057 	}
4058 }
4059 
4060 /*
4061  * Bits map:
4062  * 0-7   - Engine0 load counter.
4063  * 8-15  - Engine1 load counter.
4064  * 16    - Engine0 RESET_IN_PROGRESS bit.
4065  * 17    - Engine1 RESET_IN_PROGRESS bit.
4066  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4067  *         on the engine
4068  * 19    - Engine1 ONE_IS_LOADED.
4069  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4070  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4071  *         just the one belonging to its engine).
4072  *
4073  */
4074 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4075 
4076 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4077 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4078 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4079 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4080 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4081 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4082 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4083 
4084 /*
4085  * Set the GLOBAL_RESET bit.
4086  *
4087  * Should be run under rtnl lock
4088  */
4089 void bnx2x_set_reset_global(struct bnx2x *bp)
4090 {
4091 	u32 val;
4092 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4093 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4094 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4095 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4096 }
4097 
4098 /*
4099  * Clear the GLOBAL_RESET bit.
4100  *
4101  * Should be run under rtnl lock
4102  */
4103 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4104 {
4105 	u32 val;
4106 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4107 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4108 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4109 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4110 }
4111 
4112 /*
4113  * Checks the GLOBAL_RESET bit.
4114  *
4115  * should be run under rtnl lock
4116  */
4117 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4118 {
4119 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4120 
4121 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4122 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4123 }
4124 
4125 /*
4126  * Clear RESET_IN_PROGRESS bit for the current engine.
4127  *
4128  * Should be run under rtnl lock
4129  */
4130 static void bnx2x_set_reset_done(struct bnx2x *bp)
4131 {
4132 	u32 val;
4133 	u32 bit = BP_PATH(bp) ?
4134 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4135 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4136 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4137 
4138 	/* Clear the bit */
4139 	val &= ~bit;
4140 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4141 
4142 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4143 }
4144 
4145 /*
4146  * Set RESET_IN_PROGRESS for the current engine.
4147  *
4148  * should be run under rtnl lock
4149  */
4150 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4151 {
4152 	u32 val;
4153 	u32 bit = BP_PATH(bp) ?
4154 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4155 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4156 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4157 
4158 	/* Set the bit */
4159 	val |= bit;
4160 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4161 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4162 }
4163 
4164 /*
4165  * Checks the RESET_IN_PROGRESS bit for the given engine.
4166  * should be run under rtnl lock
4167  */
4168 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4169 {
4170 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4171 	u32 bit = engine ?
4172 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4173 
4174 	/* return false if bit is set */
4175 	return (val & bit) ? false : true;
4176 }
4177 
4178 /*
4179  * set pf load for the current pf.
4180  *
4181  * should be run under rtnl lock
4182  */
4183 void bnx2x_set_pf_load(struct bnx2x *bp)
4184 {
4185 	u32 val1, val;
4186 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4187 			     BNX2X_PATH0_LOAD_CNT_MASK;
4188 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4189 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4190 
4191 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4192 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4193 
4194 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4195 
4196 	/* get the current counter value */
4197 	val1 = (val & mask) >> shift;
4198 
4199 	/* set bit of that PF */
4200 	val1 |= (1 << bp->pf_num);
4201 
4202 	/* clear the old value */
4203 	val &= ~mask;
4204 
4205 	/* set the new one */
4206 	val |= ((val1 << shift) & mask);
4207 
4208 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4209 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4210 }
4211 
4212 /**
4213  * bnx2x_clear_pf_load - clear pf load mark
4214  *
4215  * @bp:		driver handle
4216  *
4217  * Should be run under rtnl lock.
4218  * Decrements the load counter for the current engine. Returns
4219  * whether other functions are still loaded
4220  */
4221 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4222 {
4223 	u32 val1, val;
4224 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4225 			     BNX2X_PATH0_LOAD_CNT_MASK;
4226 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4227 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4228 
4229 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4230 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4231 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4232 
4233 	/* get the current counter value */
4234 	val1 = (val & mask) >> shift;
4235 
4236 	/* clear bit of that PF */
4237 	val1 &= ~(1 << bp->pf_num);
4238 
4239 	/* clear the old value */
4240 	val &= ~mask;
4241 
4242 	/* set the new one */
4243 	val |= ((val1 << shift) & mask);
4244 
4245 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4246 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4247 	return val1 != 0;
4248 }
4249 
4250 /*
4251  * Read the load status for the current engine.
4252  *
4253  * should be run under rtnl lock
4254  */
4255 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4256 {
4257 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4258 			     BNX2X_PATH0_LOAD_CNT_MASK);
4259 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4260 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4261 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4262 
4263 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4264 
4265 	val = (val & mask) >> shift;
4266 
4267 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4268 	   engine, val);
4269 
4270 	return val != 0;
4271 }
4272 
4273 static void _print_parity(struct bnx2x *bp, u32 reg)
4274 {
4275 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4276 }
4277 
4278 static void _print_next_block(int idx, const char *blk)
4279 {
4280 	pr_cont("%s%s", idx ? ", " : "", blk);
4281 }
4282 
4283 static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4284 					    int par_num, bool print)
4285 {
4286 	int i = 0;
4287 	u32 cur_bit = 0;
4288 	for (i = 0; sig; i++) {
4289 		cur_bit = ((u32)0x1 << i);
4290 		if (sig & cur_bit) {
4291 			switch (cur_bit) {
4292 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4293 				if (print) {
4294 					_print_next_block(par_num++, "BRB");
4295 					_print_parity(bp,
4296 						      BRB1_REG_BRB1_PRTY_STS);
4297 				}
4298 				break;
4299 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4300 				if (print) {
4301 					_print_next_block(par_num++, "PARSER");
4302 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4303 				}
4304 				break;
4305 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4306 				if (print) {
4307 					_print_next_block(par_num++, "TSDM");
4308 					_print_parity(bp,
4309 						      TSDM_REG_TSDM_PRTY_STS);
4310 				}
4311 				break;
4312 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4313 				if (print) {
4314 					_print_next_block(par_num++,
4315 							  "SEARCHER");
4316 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4317 				}
4318 				break;
4319 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4320 				if (print) {
4321 					_print_next_block(par_num++, "TCM");
4322 					_print_parity(bp,
4323 						      TCM_REG_TCM_PRTY_STS);
4324 				}
4325 				break;
4326 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4327 				if (print) {
4328 					_print_next_block(par_num++, "TSEMI");
4329 					_print_parity(bp,
4330 						      TSEM_REG_TSEM_PRTY_STS_0);
4331 					_print_parity(bp,
4332 						      TSEM_REG_TSEM_PRTY_STS_1);
4333 				}
4334 				break;
4335 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4336 				if (print) {
4337 					_print_next_block(par_num++, "XPB");
4338 					_print_parity(bp, GRCBASE_XPB +
4339 							  PB_REG_PB_PRTY_STS);
4340 				}
4341 				break;
4342 			}
4343 
4344 			/* Clear the bit */
4345 			sig &= ~cur_bit;
4346 		}
4347 	}
4348 
4349 	return par_num;
4350 }
4351 
4352 static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4353 					    int par_num, bool *global,
4354 					    bool print)
4355 {
4356 	int i = 0;
4357 	u32 cur_bit = 0;
4358 	for (i = 0; sig; i++) {
4359 		cur_bit = ((u32)0x1 << i);
4360 		if (sig & cur_bit) {
4361 			switch (cur_bit) {
4362 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4363 				if (print) {
4364 					_print_next_block(par_num++, "PBF");
4365 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4366 				}
4367 				break;
4368 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4369 				if (print) {
4370 					_print_next_block(par_num++, "QM");
4371 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4372 				}
4373 				break;
4374 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4375 				if (print) {
4376 					_print_next_block(par_num++, "TM");
4377 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4378 				}
4379 				break;
4380 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4381 				if (print) {
4382 					_print_next_block(par_num++, "XSDM");
4383 					_print_parity(bp,
4384 						      XSDM_REG_XSDM_PRTY_STS);
4385 				}
4386 				break;
4387 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4388 				if (print) {
4389 					_print_next_block(par_num++, "XCM");
4390 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4391 				}
4392 				break;
4393 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4394 				if (print) {
4395 					_print_next_block(par_num++, "XSEMI");
4396 					_print_parity(bp,
4397 						      XSEM_REG_XSEM_PRTY_STS_0);
4398 					_print_parity(bp,
4399 						      XSEM_REG_XSEM_PRTY_STS_1);
4400 				}
4401 				break;
4402 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4403 				if (print) {
4404 					_print_next_block(par_num++,
4405 							  "DOORBELLQ");
4406 					_print_parity(bp,
4407 						      DORQ_REG_DORQ_PRTY_STS);
4408 				}
4409 				break;
4410 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4411 				if (print) {
4412 					_print_next_block(par_num++, "NIG");
4413 					if (CHIP_IS_E1x(bp)) {
4414 						_print_parity(bp,
4415 							NIG_REG_NIG_PRTY_STS);
4416 					} else {
4417 						_print_parity(bp,
4418 							NIG_REG_NIG_PRTY_STS_0);
4419 						_print_parity(bp,
4420 							NIG_REG_NIG_PRTY_STS_1);
4421 					}
4422 				}
4423 				break;
4424 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4425 				if (print)
4426 					_print_next_block(par_num++,
4427 							  "VAUX PCI CORE");
4428 				*global = true;
4429 				break;
4430 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4431 				if (print) {
4432 					_print_next_block(par_num++, "DEBUG");
4433 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4434 				}
4435 				break;
4436 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4437 				if (print) {
4438 					_print_next_block(par_num++, "USDM");
4439 					_print_parity(bp,
4440 						      USDM_REG_USDM_PRTY_STS);
4441 				}
4442 				break;
4443 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4444 				if (print) {
4445 					_print_next_block(par_num++, "UCM");
4446 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4447 				}
4448 				break;
4449 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4450 				if (print) {
4451 					_print_next_block(par_num++, "USEMI");
4452 					_print_parity(bp,
4453 						      USEM_REG_USEM_PRTY_STS_0);
4454 					_print_parity(bp,
4455 						      USEM_REG_USEM_PRTY_STS_1);
4456 				}
4457 				break;
4458 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4459 				if (print) {
4460 					_print_next_block(par_num++, "UPB");
4461 					_print_parity(bp, GRCBASE_UPB +
4462 							  PB_REG_PB_PRTY_STS);
4463 				}
4464 				break;
4465 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4466 				if (print) {
4467 					_print_next_block(par_num++, "CSDM");
4468 					_print_parity(bp,
4469 						      CSDM_REG_CSDM_PRTY_STS);
4470 				}
4471 				break;
4472 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4473 				if (print) {
4474 					_print_next_block(par_num++, "CCM");
4475 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4476 				}
4477 				break;
4478 			}
4479 
4480 			/* Clear the bit */
4481 			sig &= ~cur_bit;
4482 		}
4483 	}
4484 
4485 	return par_num;
4486 }
4487 
4488 static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4489 					    int par_num, bool print)
4490 {
4491 	int i = 0;
4492 	u32 cur_bit = 0;
4493 	for (i = 0; sig; i++) {
4494 		cur_bit = ((u32)0x1 << i);
4495 		if (sig & cur_bit) {
4496 			switch (cur_bit) {
4497 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4498 				if (print) {
4499 					_print_next_block(par_num++, "CSEMI");
4500 					_print_parity(bp,
4501 						      CSEM_REG_CSEM_PRTY_STS_0);
4502 					_print_parity(bp,
4503 						      CSEM_REG_CSEM_PRTY_STS_1);
4504 				}
4505 				break;
4506 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4507 				if (print) {
4508 					_print_next_block(par_num++, "PXP");
4509 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4510 					_print_parity(bp,
4511 						      PXP2_REG_PXP2_PRTY_STS_0);
4512 					_print_parity(bp,
4513 						      PXP2_REG_PXP2_PRTY_STS_1);
4514 				}
4515 				break;
4516 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4517 				if (print)
4518 					_print_next_block(par_num++,
4519 					"PXPPCICLOCKCLIENT");
4520 				break;
4521 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4522 				if (print) {
4523 					_print_next_block(par_num++, "CFC");
4524 					_print_parity(bp,
4525 						      CFC_REG_CFC_PRTY_STS);
4526 				}
4527 				break;
4528 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4529 				if (print) {
4530 					_print_next_block(par_num++, "CDU");
4531 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4532 				}
4533 				break;
4534 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4535 				if (print) {
4536 					_print_next_block(par_num++, "DMAE");
4537 					_print_parity(bp,
4538 						      DMAE_REG_DMAE_PRTY_STS);
4539 				}
4540 				break;
4541 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4542 				if (print) {
4543 					_print_next_block(par_num++, "IGU");
4544 					if (CHIP_IS_E1x(bp))
4545 						_print_parity(bp,
4546 							HC_REG_HC_PRTY_STS);
4547 					else
4548 						_print_parity(bp,
4549 							IGU_REG_IGU_PRTY_STS);
4550 				}
4551 				break;
4552 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4553 				if (print) {
4554 					_print_next_block(par_num++, "MISC");
4555 					_print_parity(bp,
4556 						      MISC_REG_MISC_PRTY_STS);
4557 				}
4558 				break;
4559 			}
4560 
4561 			/* Clear the bit */
4562 			sig &= ~cur_bit;
4563 		}
4564 	}
4565 
4566 	return par_num;
4567 }
4568 
4569 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4570 					   bool *global, bool print)
4571 {
4572 	int i = 0;
4573 	u32 cur_bit = 0;
4574 	for (i = 0; sig; i++) {
4575 		cur_bit = ((u32)0x1 << i);
4576 		if (sig & cur_bit) {
4577 			switch (cur_bit) {
4578 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4579 				if (print)
4580 					_print_next_block(par_num++, "MCP ROM");
4581 				*global = true;
4582 				break;
4583 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4584 				if (print)
4585 					_print_next_block(par_num++,
4586 							  "MCP UMP RX");
4587 				*global = true;
4588 				break;
4589 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4590 				if (print)
4591 					_print_next_block(par_num++,
4592 							  "MCP UMP TX");
4593 				*global = true;
4594 				break;
4595 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4596 				if (print)
4597 					_print_next_block(par_num++,
4598 							  "MCP SCPAD");
4599 				*global = true;
4600 				break;
4601 			}
4602 
4603 			/* Clear the bit */
4604 			sig &= ~cur_bit;
4605 		}
4606 	}
4607 
4608 	return par_num;
4609 }
4610 
4611 static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4612 					    int par_num, bool print)
4613 {
4614 	int i = 0;
4615 	u32 cur_bit = 0;
4616 	for (i = 0; sig; i++) {
4617 		cur_bit = ((u32)0x1 << i);
4618 		if (sig & cur_bit) {
4619 			switch (cur_bit) {
4620 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4621 				if (print) {
4622 					_print_next_block(par_num++, "PGLUE_B");
4623 					_print_parity(bp,
4624 						PGLUE_B_REG_PGLUE_B_PRTY_STS);
4625 				}
4626 				break;
4627 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4628 				if (print) {
4629 					_print_next_block(par_num++, "ATC");
4630 					_print_parity(bp,
4631 						      ATC_REG_ATC_PRTY_STS);
4632 				}
4633 				break;
4634 			}
4635 
4636 			/* Clear the bit */
4637 			sig &= ~cur_bit;
4638 		}
4639 	}
4640 
4641 	return par_num;
4642 }
4643 
4644 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4645 			      u32 *sig)
4646 {
4647 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4648 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4649 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4650 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4651 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4652 		int par_num = 0;
4653 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4654 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4655 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4656 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4657 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4658 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4659 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4660 		if (print)
4661 			netdev_err(bp->dev,
4662 				   "Parity errors detected in blocks: ");
4663 		par_num = bnx2x_check_blocks_with_parity0(bp,
4664 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4665 		par_num = bnx2x_check_blocks_with_parity1(bp,
4666 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4667 		par_num = bnx2x_check_blocks_with_parity2(bp,
4668 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4669 		par_num = bnx2x_check_blocks_with_parity3(
4670 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4671 		par_num = bnx2x_check_blocks_with_parity4(bp,
4672 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4673 
4674 		if (print)
4675 			pr_cont("\n");
4676 
4677 		return true;
4678 	} else
4679 		return false;
4680 }
4681 
4682 /**
4683  * bnx2x_chk_parity_attn - checks for parity attentions.
4684  *
4685  * @bp:		driver handle
4686  * @global:	true if there was a global attention
4687  * @print:	show parity attention in syslog
4688  */
4689 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4690 {
4691 	struct attn_route attn = { {0} };
4692 	int port = BP_PORT(bp);
4693 
4694 	attn.sig[0] = REG_RD(bp,
4695 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4696 			     port*4);
4697 	attn.sig[1] = REG_RD(bp,
4698 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4699 			     port*4);
4700 	attn.sig[2] = REG_RD(bp,
4701 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4702 			     port*4);
4703 	attn.sig[3] = REG_RD(bp,
4704 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4705 			     port*4);
4706 
4707 	if (!CHIP_IS_E1x(bp))
4708 		attn.sig[4] = REG_RD(bp,
4709 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4710 				     port*4);
4711 
4712 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4713 }
4714 
4715 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4716 {
4717 	u32 val;
4718 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4719 
4720 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4721 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4722 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4723 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4724 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4725 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4726 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4727 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4728 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4729 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4730 		if (val &
4731 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4732 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4733 		if (val &
4734 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4735 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4736 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4737 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4738 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4739 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4740 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4741 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4742 	}
4743 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4744 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4745 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4746 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4747 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4748 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4749 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4750 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4751 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4752 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4753 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4754 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4755 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4756 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4757 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4758 	}
4759 
4760 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4761 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4762 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4763 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4764 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4765 	}
4766 }
4767 
4768 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4769 {
4770 	struct attn_route attn, *group_mask;
4771 	int port = BP_PORT(bp);
4772 	int index;
4773 	u32 reg_addr;
4774 	u32 val;
4775 	u32 aeu_mask;
4776 	bool global = false;
4777 
4778 	/* need to take HW lock because MCP or other port might also
4779 	   try to handle this event */
4780 	bnx2x_acquire_alr(bp);
4781 
4782 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4783 #ifndef BNX2X_STOP_ON_ERROR
4784 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4785 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4786 		/* Disable HW interrupts */
4787 		bnx2x_int_disable(bp);
4788 		/* In case of parity errors don't handle attentions so that
4789 		 * other function would "see" parity errors.
4790 		 */
4791 #else
4792 		bnx2x_panic();
4793 #endif
4794 		bnx2x_release_alr(bp);
4795 		return;
4796 	}
4797 
4798 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4799 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4800 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4801 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4802 	if (!CHIP_IS_E1x(bp))
4803 		attn.sig[4] =
4804 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4805 	else
4806 		attn.sig[4] = 0;
4807 
4808 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4809 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4810 
4811 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4812 		if (deasserted & (1 << index)) {
4813 			group_mask = &bp->attn_group[index];
4814 
4815 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4816 			   index,
4817 			   group_mask->sig[0], group_mask->sig[1],
4818 			   group_mask->sig[2], group_mask->sig[3],
4819 			   group_mask->sig[4]);
4820 
4821 			bnx2x_attn_int_deasserted4(bp,
4822 					attn.sig[4] & group_mask->sig[4]);
4823 			bnx2x_attn_int_deasserted3(bp,
4824 					attn.sig[3] & group_mask->sig[3]);
4825 			bnx2x_attn_int_deasserted1(bp,
4826 					attn.sig[1] & group_mask->sig[1]);
4827 			bnx2x_attn_int_deasserted2(bp,
4828 					attn.sig[2] & group_mask->sig[2]);
4829 			bnx2x_attn_int_deasserted0(bp,
4830 					attn.sig[0] & group_mask->sig[0]);
4831 		}
4832 	}
4833 
4834 	bnx2x_release_alr(bp);
4835 
4836 	if (bp->common.int_block == INT_BLOCK_HC)
4837 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4838 			    COMMAND_REG_ATTN_BITS_CLR);
4839 	else
4840 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4841 
4842 	val = ~deasserted;
4843 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4844 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4845 	REG_WR(bp, reg_addr, val);
4846 
4847 	if (~bp->attn_state & deasserted)
4848 		BNX2X_ERR("IGU ERROR\n");
4849 
4850 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4851 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4852 
4853 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4854 	aeu_mask = REG_RD(bp, reg_addr);
4855 
4856 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4857 	   aeu_mask, deasserted);
4858 	aeu_mask |= (deasserted & 0x3ff);
4859 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4860 
4861 	REG_WR(bp, reg_addr, aeu_mask);
4862 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4863 
4864 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4865 	bp->attn_state &= ~deasserted;
4866 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4867 }
4868 
4869 static void bnx2x_attn_int(struct bnx2x *bp)
4870 {
4871 	/* read local copy of bits */
4872 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4873 								attn_bits);
4874 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4875 								attn_bits_ack);
4876 	u32 attn_state = bp->attn_state;
4877 
4878 	/* look for changed bits */
4879 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4880 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4881 
4882 	DP(NETIF_MSG_HW,
4883 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4884 	   attn_bits, attn_ack, asserted, deasserted);
4885 
4886 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4887 		BNX2X_ERR("BAD attention state\n");
4888 
4889 	/* handle bits that were raised */
4890 	if (asserted)
4891 		bnx2x_attn_int_asserted(bp, asserted);
4892 
4893 	if (deasserted)
4894 		bnx2x_attn_int_deasserted(bp, deasserted);
4895 }
4896 
4897 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4898 		      u16 index, u8 op, u8 update)
4899 {
4900 	u32 igu_addr = bp->igu_base_addr;
4901 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4902 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4903 			     igu_addr);
4904 }
4905 
4906 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4907 {
4908 	/* No memory barriers */
4909 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4910 	mmiowb(); /* keep prod updates ordered */
4911 }
4912 
4913 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4914 				      union event_ring_elem *elem)
4915 {
4916 	u8 err = elem->message.error;
4917 
4918 	if (!bp->cnic_eth_dev.starting_cid  ||
4919 	    (cid < bp->cnic_eth_dev.starting_cid &&
4920 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4921 		return 1;
4922 
4923 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4924 
4925 	if (unlikely(err)) {
4926 
4927 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4928 			  cid);
4929 		bnx2x_panic_dump(bp, false);
4930 	}
4931 	bnx2x_cnic_cfc_comp(bp, cid, err);
4932 	return 0;
4933 }
4934 
4935 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4936 {
4937 	struct bnx2x_mcast_ramrod_params rparam;
4938 	int rc;
4939 
4940 	memset(&rparam, 0, sizeof(rparam));
4941 
4942 	rparam.mcast_obj = &bp->mcast_obj;
4943 
4944 	netif_addr_lock_bh(bp->dev);
4945 
4946 	/* Clear pending state for the last command */
4947 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4948 
4949 	/* If there are pending mcast commands - send them */
4950 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4951 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4952 		if (rc < 0)
4953 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4954 				  rc);
4955 	}
4956 
4957 	netif_addr_unlock_bh(bp->dev);
4958 }
4959 
4960 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4961 					    union event_ring_elem *elem)
4962 {
4963 	unsigned long ramrod_flags = 0;
4964 	int rc = 0;
4965 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4966 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4967 
4968 	/* Always push next commands out, don't wait here */
4969 	__set_bit(RAMROD_CONT, &ramrod_flags);
4970 
4971 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4972 			    >> BNX2X_SWCID_SHIFT) {
4973 	case BNX2X_FILTER_MAC_PENDING:
4974 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4975 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4976 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4977 		else
4978 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4979 
4980 		break;
4981 	case BNX2X_FILTER_MCAST_PENDING:
4982 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4983 		/* This is only relevant for 57710 where multicast MACs are
4984 		 * configured as unicast MACs using the same ramrod.
4985 		 */
4986 		bnx2x_handle_mcast_eqe(bp);
4987 		return;
4988 	default:
4989 		BNX2X_ERR("Unsupported classification command: %d\n",
4990 			  elem->message.data.eth_event.echo);
4991 		return;
4992 	}
4993 
4994 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4995 
4996 	if (rc < 0)
4997 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4998 	else if (rc > 0)
4999 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5000 }
5001 
5002 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5003 
5004 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5005 {
5006 	netif_addr_lock_bh(bp->dev);
5007 
5008 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5009 
5010 	/* Send rx_mode command again if was requested */
5011 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5012 		bnx2x_set_storm_rx_mode(bp);
5013 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5014 				    &bp->sp_state))
5015 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5016 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5017 				    &bp->sp_state))
5018 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5019 
5020 	netif_addr_unlock_bh(bp->dev);
5021 }
5022 
5023 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5024 					      union event_ring_elem *elem)
5025 {
5026 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5027 		DP(BNX2X_MSG_SP,
5028 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5029 		   elem->message.data.vif_list_event.func_bit_map);
5030 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5031 			elem->message.data.vif_list_event.func_bit_map);
5032 	} else if (elem->message.data.vif_list_event.echo ==
5033 		   VIF_LIST_RULE_SET) {
5034 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5035 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5036 	}
5037 }
5038 
5039 /* called with rtnl_lock */
5040 static void bnx2x_after_function_update(struct bnx2x *bp)
5041 {
5042 	int q, rc;
5043 	struct bnx2x_fastpath *fp;
5044 	struct bnx2x_queue_state_params queue_params = {NULL};
5045 	struct bnx2x_queue_update_params *q_update_params =
5046 		&queue_params.params.update;
5047 
5048 	/* Send Q update command with afex vlan removal values for all Qs */
5049 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5050 
5051 	/* set silent vlan removal values according to vlan mode */
5052 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5053 		  &q_update_params->update_flags);
5054 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5055 		  &q_update_params->update_flags);
5056 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5057 
5058 	/* in access mode mark mask and value are 0 to strip all vlans */
5059 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5060 		q_update_params->silent_removal_value = 0;
5061 		q_update_params->silent_removal_mask = 0;
5062 	} else {
5063 		q_update_params->silent_removal_value =
5064 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5065 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5066 	}
5067 
5068 	for_each_eth_queue(bp, q) {
5069 		/* Set the appropriate Queue object */
5070 		fp = &bp->fp[q];
5071 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5072 
5073 		/* send the ramrod */
5074 		rc = bnx2x_queue_state_change(bp, &queue_params);
5075 		if (rc < 0)
5076 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5077 				  q);
5078 	}
5079 
5080 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5081 		fp = &bp->fp[FCOE_IDX(bp)];
5082 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5083 
5084 		/* clear pending completion bit */
5085 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5086 
5087 		/* mark latest Q bit */
5088 		smp_mb__before_clear_bit();
5089 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5090 		smp_mb__after_clear_bit();
5091 
5092 		/* send Q update ramrod for FCoE Q */
5093 		rc = bnx2x_queue_state_change(bp, &queue_params);
5094 		if (rc < 0)
5095 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5096 				  q);
5097 	} else {
5098 		/* If no FCoE ring - ACK MCP now */
5099 		bnx2x_link_report(bp);
5100 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5101 	}
5102 }
5103 
5104 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5105 	struct bnx2x *bp, u32 cid)
5106 {
5107 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5108 
5109 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5110 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5111 	else
5112 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5113 }
5114 
5115 static void bnx2x_eq_int(struct bnx2x *bp)
5116 {
5117 	u16 hw_cons, sw_cons, sw_prod;
5118 	union event_ring_elem *elem;
5119 	u8 echo;
5120 	u32 cid;
5121 	u8 opcode;
5122 	int rc, spqe_cnt = 0;
5123 	struct bnx2x_queue_sp_obj *q_obj;
5124 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5125 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5126 
5127 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5128 
5129 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5130 	 * when we get the next-page we need to adjust so the loop
5131 	 * condition below will be met. The next element is the size of a
5132 	 * regular element and hence incrementing by 1
5133 	 */
5134 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5135 		hw_cons++;
5136 
5137 	/* This function may never run in parallel with itself for a
5138 	 * specific bp, thus there is no need in "paired" read memory
5139 	 * barrier here.
5140 	 */
5141 	sw_cons = bp->eq_cons;
5142 	sw_prod = bp->eq_prod;
5143 
5144 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5145 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5146 
5147 	for (; sw_cons != hw_cons;
5148 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5149 
5150 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5151 
5152 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5153 		if (!rc) {
5154 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5155 			   rc);
5156 			goto next_spqe;
5157 		}
5158 
5159 		/* elem CID originates from FW; actually LE */
5160 		cid = SW_CID((__force __le32)
5161 			     elem->message.data.cfc_del_event.cid);
5162 		opcode = elem->message.opcode;
5163 
5164 		/* handle eq element */
5165 		switch (opcode) {
5166 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5167 			DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5168 			bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5169 			continue;
5170 
5171 		case EVENT_RING_OPCODE_STAT_QUERY:
5172 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5173 			   "got statistics comp event %d\n",
5174 			   bp->stats_comp++);
5175 			/* nothing to do with stats comp */
5176 			goto next_spqe;
5177 
5178 		case EVENT_RING_OPCODE_CFC_DEL:
5179 			/* handle according to cid range */
5180 			/*
5181 			 * we may want to verify here that the bp state is
5182 			 * HALTING
5183 			 */
5184 			DP(BNX2X_MSG_SP,
5185 			   "got delete ramrod for MULTI[%d]\n", cid);
5186 
5187 			if (CNIC_LOADED(bp) &&
5188 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5189 				goto next_spqe;
5190 
5191 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5192 
5193 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5194 				break;
5195 
5196 			goto next_spqe;
5197 
5198 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5199 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5200 			if (f_obj->complete_cmd(bp, f_obj,
5201 						BNX2X_F_CMD_TX_STOP))
5202 				break;
5203 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5204 			goto next_spqe;
5205 
5206 		case EVENT_RING_OPCODE_START_TRAFFIC:
5207 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5208 			if (f_obj->complete_cmd(bp, f_obj,
5209 						BNX2X_F_CMD_TX_START))
5210 				break;
5211 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5212 			goto next_spqe;
5213 
5214 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5215 			echo = elem->message.data.function_update_event.echo;
5216 			if (echo == SWITCH_UPDATE) {
5217 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5218 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5219 				if (f_obj->complete_cmd(
5220 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5221 					break;
5222 
5223 			} else {
5224 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5225 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5226 				f_obj->complete_cmd(bp, f_obj,
5227 						    BNX2X_F_CMD_AFEX_UPDATE);
5228 
5229 				/* We will perform the Queues update from
5230 				 * sp_rtnl task as all Queue SP operations
5231 				 * should run under rtnl_lock.
5232 				 */
5233 				smp_mb__before_clear_bit();
5234 				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5235 					&bp->sp_rtnl_state);
5236 				smp_mb__after_clear_bit();
5237 
5238 				schedule_delayed_work(&bp->sp_rtnl_task, 0);
5239 			}
5240 
5241 			goto next_spqe;
5242 
5243 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5244 			f_obj->complete_cmd(bp, f_obj,
5245 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5246 			bnx2x_after_afex_vif_lists(bp, elem);
5247 			goto next_spqe;
5248 		case EVENT_RING_OPCODE_FUNCTION_START:
5249 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5250 			   "got FUNC_START ramrod\n");
5251 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5252 				break;
5253 
5254 			goto next_spqe;
5255 
5256 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5257 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5258 			   "got FUNC_STOP ramrod\n");
5259 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5260 				break;
5261 
5262 			goto next_spqe;
5263 		}
5264 
5265 		switch (opcode | bp->state) {
5266 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5267 		      BNX2X_STATE_OPEN):
5268 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5269 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5270 			cid = elem->message.data.eth_event.echo &
5271 				BNX2X_SWCID_MASK;
5272 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5273 			   cid);
5274 			rss_raw->clear_pending(rss_raw);
5275 			break;
5276 
5277 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5278 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5279 		case (EVENT_RING_OPCODE_SET_MAC |
5280 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5281 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5282 		      BNX2X_STATE_OPEN):
5283 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5284 		      BNX2X_STATE_DIAG):
5285 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5286 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5287 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5288 			bnx2x_handle_classification_eqe(bp, elem);
5289 			break;
5290 
5291 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5292 		      BNX2X_STATE_OPEN):
5293 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5294 		      BNX2X_STATE_DIAG):
5295 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5296 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5297 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5298 			bnx2x_handle_mcast_eqe(bp);
5299 			break;
5300 
5301 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5302 		      BNX2X_STATE_OPEN):
5303 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5304 		      BNX2X_STATE_DIAG):
5305 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5306 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5307 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5308 			bnx2x_handle_rx_mode_eqe(bp);
5309 			break;
5310 		default:
5311 			/* unknown event log error and continue */
5312 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5313 				  elem->message.opcode, bp->state);
5314 		}
5315 next_spqe:
5316 		spqe_cnt++;
5317 	} /* for */
5318 
5319 	smp_mb__before_atomic_inc();
5320 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5321 
5322 	bp->eq_cons = sw_cons;
5323 	bp->eq_prod = sw_prod;
5324 	/* Make sure that above mem writes were issued towards the memory */
5325 	smp_wmb();
5326 
5327 	/* update producer */
5328 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5329 }
5330 
5331 static void bnx2x_sp_task(struct work_struct *work)
5332 {
5333 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5334 
5335 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5336 
5337 	/* make sure the atomic interrupt_occurred has been written */
5338 	smp_rmb();
5339 	if (atomic_read(&bp->interrupt_occurred)) {
5340 
5341 		/* what work needs to be performed? */
5342 		u16 status = bnx2x_update_dsb_idx(bp);
5343 
5344 		DP(BNX2X_MSG_SP, "status %x\n", status);
5345 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5346 		atomic_set(&bp->interrupt_occurred, 0);
5347 
5348 		/* HW attentions */
5349 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5350 			bnx2x_attn_int(bp);
5351 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5352 		}
5353 
5354 		/* SP events: STAT_QUERY and others */
5355 		if (status & BNX2X_DEF_SB_IDX) {
5356 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5357 
5358 		if (FCOE_INIT(bp) &&
5359 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5360 				/* Prevent local bottom-halves from running as
5361 				 * we are going to change the local NAPI list.
5362 				 */
5363 				local_bh_disable();
5364 				napi_schedule(&bnx2x_fcoe(bp, napi));
5365 				local_bh_enable();
5366 			}
5367 
5368 			/* Handle EQ completions */
5369 			bnx2x_eq_int(bp);
5370 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5371 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5372 
5373 			status &= ~BNX2X_DEF_SB_IDX;
5374 		}
5375 
5376 		/* if status is non zero then perhaps something went wrong */
5377 		if (unlikely(status))
5378 			DP(BNX2X_MSG_SP,
5379 			   "got an unknown interrupt! (status 0x%x)\n", status);
5380 
5381 		/* ack status block only if something was actually handled */
5382 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5383 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5384 	}
5385 
5386 	/* must be called after the EQ processing (since eq leads to sriov
5387 	 * ramrod completion flows).
5388 	 * This flow may have been scheduled by the arrival of a ramrod
5389 	 * completion, or by the sriov code rescheduling itself.
5390 	 */
5391 	bnx2x_iov_sp_task(bp);
5392 
5393 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5394 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5395 			       &bp->sp_state)) {
5396 		bnx2x_link_report(bp);
5397 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5398 	}
5399 }
5400 
5401 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5402 {
5403 	struct net_device *dev = dev_instance;
5404 	struct bnx2x *bp = netdev_priv(dev);
5405 
5406 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5407 		     IGU_INT_DISABLE, 0);
5408 
5409 #ifdef BNX2X_STOP_ON_ERROR
5410 	if (unlikely(bp->panic))
5411 		return IRQ_HANDLED;
5412 #endif
5413 
5414 	if (CNIC_LOADED(bp)) {
5415 		struct cnic_ops *c_ops;
5416 
5417 		rcu_read_lock();
5418 		c_ops = rcu_dereference(bp->cnic_ops);
5419 		if (c_ops)
5420 			c_ops->cnic_handler(bp->cnic_data, NULL);
5421 		rcu_read_unlock();
5422 	}
5423 
5424 	/* schedule sp task to perform default status block work, ack
5425 	 * attentions and enable interrupts.
5426 	 */
5427 	bnx2x_schedule_sp_task(bp);
5428 
5429 	return IRQ_HANDLED;
5430 }
5431 
5432 /* end of slow path */
5433 
5434 void bnx2x_drv_pulse(struct bnx2x *bp)
5435 {
5436 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5437 		 bp->fw_drv_pulse_wr_seq);
5438 }
5439 
5440 static void bnx2x_timer(unsigned long data)
5441 {
5442 	struct bnx2x *bp = (struct bnx2x *) data;
5443 
5444 	if (!netif_running(bp->dev))
5445 		return;
5446 
5447 	if (IS_PF(bp) &&
5448 	    !BP_NOMCP(bp)) {
5449 		int mb_idx = BP_FW_MB_IDX(bp);
5450 		u32 drv_pulse;
5451 		u32 mcp_pulse;
5452 
5453 		++bp->fw_drv_pulse_wr_seq;
5454 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5455 		/* TBD - add SYSTEM_TIME */
5456 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5457 		bnx2x_drv_pulse(bp);
5458 
5459 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5460 			     MCP_PULSE_SEQ_MASK);
5461 		/* The delta between driver pulse and mcp response
5462 		 * should be 1 (before mcp response) or 0 (after mcp response)
5463 		 */
5464 		if ((drv_pulse != mcp_pulse) &&
5465 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5466 			/* someone lost a heartbeat... */
5467 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5468 				  drv_pulse, mcp_pulse);
5469 		}
5470 	}
5471 
5472 	if (bp->state == BNX2X_STATE_OPEN)
5473 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5474 
5475 	/* sample pf vf bulletin board for new posts from pf */
5476 	if (IS_VF(bp))
5477 		bnx2x_timer_sriov(bp);
5478 
5479 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5480 }
5481 
5482 /* end of Statistics */
5483 
5484 /* nic init */
5485 
5486 /*
5487  * nic init service functions
5488  */
5489 
5490 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5491 {
5492 	u32 i;
5493 	if (!(len%4) && !(addr%4))
5494 		for (i = 0; i < len; i += 4)
5495 			REG_WR(bp, addr + i, fill);
5496 	else
5497 		for (i = 0; i < len; i++)
5498 			REG_WR8(bp, addr + i, fill);
5499 }
5500 
5501 /* helper: writes FP SP data to FW - data_size in dwords */
5502 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5503 				int fw_sb_id,
5504 				u32 *sb_data_p,
5505 				u32 data_size)
5506 {
5507 	int index;
5508 	for (index = 0; index < data_size; index++)
5509 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5510 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5511 			sizeof(u32)*index,
5512 			*(sb_data_p + index));
5513 }
5514 
5515 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5516 {
5517 	u32 *sb_data_p;
5518 	u32 data_size = 0;
5519 	struct hc_status_block_data_e2 sb_data_e2;
5520 	struct hc_status_block_data_e1x sb_data_e1x;
5521 
5522 	/* disable the function first */
5523 	if (!CHIP_IS_E1x(bp)) {
5524 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5525 		sb_data_e2.common.state = SB_DISABLED;
5526 		sb_data_e2.common.p_func.vf_valid = false;
5527 		sb_data_p = (u32 *)&sb_data_e2;
5528 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5529 	} else {
5530 		memset(&sb_data_e1x, 0,
5531 		       sizeof(struct hc_status_block_data_e1x));
5532 		sb_data_e1x.common.state = SB_DISABLED;
5533 		sb_data_e1x.common.p_func.vf_valid = false;
5534 		sb_data_p = (u32 *)&sb_data_e1x;
5535 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5536 	}
5537 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5538 
5539 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5540 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5541 			CSTORM_STATUS_BLOCK_SIZE);
5542 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5543 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5544 			CSTORM_SYNC_BLOCK_SIZE);
5545 }
5546 
5547 /* helper:  writes SP SB data to FW */
5548 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5549 		struct hc_sp_status_block_data *sp_sb_data)
5550 {
5551 	int func = BP_FUNC(bp);
5552 	int i;
5553 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5554 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5555 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5556 			i*sizeof(u32),
5557 			*((u32 *)sp_sb_data + i));
5558 }
5559 
5560 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5561 {
5562 	int func = BP_FUNC(bp);
5563 	struct hc_sp_status_block_data sp_sb_data;
5564 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5565 
5566 	sp_sb_data.state = SB_DISABLED;
5567 	sp_sb_data.p_func.vf_valid = false;
5568 
5569 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5570 
5571 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5572 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5573 			CSTORM_SP_STATUS_BLOCK_SIZE);
5574 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5575 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5576 			CSTORM_SP_SYNC_BLOCK_SIZE);
5577 }
5578 
5579 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5580 					   int igu_sb_id, int igu_seg_id)
5581 {
5582 	hc_sm->igu_sb_id = igu_sb_id;
5583 	hc_sm->igu_seg_id = igu_seg_id;
5584 	hc_sm->timer_value = 0xFF;
5585 	hc_sm->time_to_expire = 0xFFFFFFFF;
5586 }
5587 
5588 /* allocates state machine ids. */
5589 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5590 {
5591 	/* zero out state machine indices */
5592 	/* rx indices */
5593 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5594 
5595 	/* tx indices */
5596 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5597 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5598 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5599 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5600 
5601 	/* map indices */
5602 	/* rx indices */
5603 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5604 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5605 
5606 	/* tx indices */
5607 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5608 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5609 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5610 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5611 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5612 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5613 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5614 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5615 }
5616 
5617 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5618 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5619 {
5620 	int igu_seg_id;
5621 
5622 	struct hc_status_block_data_e2 sb_data_e2;
5623 	struct hc_status_block_data_e1x sb_data_e1x;
5624 	struct hc_status_block_sm  *hc_sm_p;
5625 	int data_size;
5626 	u32 *sb_data_p;
5627 
5628 	if (CHIP_INT_MODE_IS_BC(bp))
5629 		igu_seg_id = HC_SEG_ACCESS_NORM;
5630 	else
5631 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5632 
5633 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5634 
5635 	if (!CHIP_IS_E1x(bp)) {
5636 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5637 		sb_data_e2.common.state = SB_ENABLED;
5638 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5639 		sb_data_e2.common.p_func.vf_id = vfid;
5640 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5641 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5642 		sb_data_e2.common.same_igu_sb_1b = true;
5643 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5644 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5645 		hc_sm_p = sb_data_e2.common.state_machine;
5646 		sb_data_p = (u32 *)&sb_data_e2;
5647 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5648 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5649 	} else {
5650 		memset(&sb_data_e1x, 0,
5651 		       sizeof(struct hc_status_block_data_e1x));
5652 		sb_data_e1x.common.state = SB_ENABLED;
5653 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5654 		sb_data_e1x.common.p_func.vf_id = 0xff;
5655 		sb_data_e1x.common.p_func.vf_valid = false;
5656 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5657 		sb_data_e1x.common.same_igu_sb_1b = true;
5658 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5659 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5660 		hc_sm_p = sb_data_e1x.common.state_machine;
5661 		sb_data_p = (u32 *)&sb_data_e1x;
5662 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5663 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5664 	}
5665 
5666 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5667 				       igu_sb_id, igu_seg_id);
5668 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5669 				       igu_sb_id, igu_seg_id);
5670 
5671 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5672 
5673 	/* write indices to HW - PCI guarantees endianity of regpairs */
5674 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5675 }
5676 
5677 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5678 				     u16 tx_usec, u16 rx_usec)
5679 {
5680 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5681 				    false, rx_usec);
5682 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5683 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5684 				       tx_usec);
5685 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5686 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5687 				       tx_usec);
5688 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5689 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5690 				       tx_usec);
5691 }
5692 
5693 static void bnx2x_init_def_sb(struct bnx2x *bp)
5694 {
5695 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5696 	dma_addr_t mapping = bp->def_status_blk_mapping;
5697 	int igu_sp_sb_index;
5698 	int igu_seg_id;
5699 	int port = BP_PORT(bp);
5700 	int func = BP_FUNC(bp);
5701 	int reg_offset, reg_offset_en5;
5702 	u64 section;
5703 	int index;
5704 	struct hc_sp_status_block_data sp_sb_data;
5705 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5706 
5707 	if (CHIP_INT_MODE_IS_BC(bp)) {
5708 		igu_sp_sb_index = DEF_SB_IGU_ID;
5709 		igu_seg_id = HC_SEG_ACCESS_DEF;
5710 	} else {
5711 		igu_sp_sb_index = bp->igu_dsb_id;
5712 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5713 	}
5714 
5715 	/* ATTN */
5716 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5717 					    atten_status_block);
5718 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5719 
5720 	bp->attn_state = 0;
5721 
5722 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5723 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5724 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5725 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5726 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5727 		int sindex;
5728 		/* take care of sig[0]..sig[4] */
5729 		for (sindex = 0; sindex < 4; sindex++)
5730 			bp->attn_group[index].sig[sindex] =
5731 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5732 
5733 		if (!CHIP_IS_E1x(bp))
5734 			/*
5735 			 * enable5 is separate from the rest of the registers,
5736 			 * and therefore the address skip is 4
5737 			 * and not 16 between the different groups
5738 			 */
5739 			bp->attn_group[index].sig[4] = REG_RD(bp,
5740 					reg_offset_en5 + 0x4*index);
5741 		else
5742 			bp->attn_group[index].sig[4] = 0;
5743 	}
5744 
5745 	if (bp->common.int_block == INT_BLOCK_HC) {
5746 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5747 				     HC_REG_ATTN_MSG0_ADDR_L);
5748 
5749 		REG_WR(bp, reg_offset, U64_LO(section));
5750 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5751 	} else if (!CHIP_IS_E1x(bp)) {
5752 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5753 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5754 	}
5755 
5756 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5757 					    sp_sb);
5758 
5759 	bnx2x_zero_sp_sb(bp);
5760 
5761 	/* PCI guarantees endianity of regpairs */
5762 	sp_sb_data.state		= SB_ENABLED;
5763 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5764 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5765 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5766 	sp_sb_data.igu_seg_id		= igu_seg_id;
5767 	sp_sb_data.p_func.pf_id		= func;
5768 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5769 	sp_sb_data.p_func.vf_id		= 0xff;
5770 
5771 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5772 
5773 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5774 }
5775 
5776 void bnx2x_update_coalesce(struct bnx2x *bp)
5777 {
5778 	int i;
5779 
5780 	for_each_eth_queue(bp, i)
5781 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5782 					 bp->tx_ticks, bp->rx_ticks);
5783 }
5784 
5785 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5786 {
5787 	spin_lock_init(&bp->spq_lock);
5788 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5789 
5790 	bp->spq_prod_idx = 0;
5791 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5792 	bp->spq_prod_bd = bp->spq;
5793 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5794 }
5795 
5796 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5797 {
5798 	int i;
5799 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5800 		union event_ring_elem *elem =
5801 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5802 
5803 		elem->next_page.addr.hi =
5804 			cpu_to_le32(U64_HI(bp->eq_mapping +
5805 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5806 		elem->next_page.addr.lo =
5807 			cpu_to_le32(U64_LO(bp->eq_mapping +
5808 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5809 	}
5810 	bp->eq_cons = 0;
5811 	bp->eq_prod = NUM_EQ_DESC;
5812 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5813 	/* we want a warning message before it gets wrought... */
5814 	atomic_set(&bp->eq_spq_left,
5815 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5816 }
5817 
5818 /* called with netif_addr_lock_bh() */
5819 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5820 			unsigned long rx_mode_flags,
5821 			unsigned long rx_accept_flags,
5822 			unsigned long tx_accept_flags,
5823 			unsigned long ramrod_flags)
5824 {
5825 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5826 	int rc;
5827 
5828 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5829 
5830 	/* Prepare ramrod parameters */
5831 	ramrod_param.cid = 0;
5832 	ramrod_param.cl_id = cl_id;
5833 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5834 	ramrod_param.func_id = BP_FUNC(bp);
5835 
5836 	ramrod_param.pstate = &bp->sp_state;
5837 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5838 
5839 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5840 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5841 
5842 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5843 
5844 	ramrod_param.ramrod_flags = ramrod_flags;
5845 	ramrod_param.rx_mode_flags = rx_mode_flags;
5846 
5847 	ramrod_param.rx_accept_flags = rx_accept_flags;
5848 	ramrod_param.tx_accept_flags = tx_accept_flags;
5849 
5850 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5851 	if (rc < 0) {
5852 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5853 		return rc;
5854 	}
5855 
5856 	return 0;
5857 }
5858 
5859 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5860 				   unsigned long *rx_accept_flags,
5861 				   unsigned long *tx_accept_flags)
5862 {
5863 	/* Clear the flags first */
5864 	*rx_accept_flags = 0;
5865 	*tx_accept_flags = 0;
5866 
5867 	switch (rx_mode) {
5868 	case BNX2X_RX_MODE_NONE:
5869 		/*
5870 		 * 'drop all' supersedes any accept flags that may have been
5871 		 * passed to the function.
5872 		 */
5873 		break;
5874 	case BNX2X_RX_MODE_NORMAL:
5875 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5876 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5877 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5878 
5879 		/* internal switching mode */
5880 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5881 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5882 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5883 
5884 		break;
5885 	case BNX2X_RX_MODE_ALLMULTI:
5886 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5887 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5888 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5889 
5890 		/* internal switching mode */
5891 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5892 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5893 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5894 
5895 		break;
5896 	case BNX2X_RX_MODE_PROMISC:
5897 		/* According to definition of SI mode, iface in promisc mode
5898 		 * should receive matched and unmatched (in resolution of port)
5899 		 * unicast packets.
5900 		 */
5901 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5902 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5903 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5904 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5905 
5906 		/* internal switching mode */
5907 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5908 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5909 
5910 		if (IS_MF_SI(bp))
5911 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5912 		else
5913 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5914 
5915 		break;
5916 	default:
5917 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5918 		return -EINVAL;
5919 	}
5920 
5921 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5922 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5923 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5924 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5925 	}
5926 
5927 	return 0;
5928 }
5929 
5930 /* called with netif_addr_lock_bh() */
5931 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5932 {
5933 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5934 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5935 	int rc;
5936 
5937 	if (!NO_FCOE(bp))
5938 		/* Configure rx_mode of FCoE Queue */
5939 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5940 
5941 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5942 				     &tx_accept_flags);
5943 	if (rc)
5944 		return rc;
5945 
5946 	__set_bit(RAMROD_RX, &ramrod_flags);
5947 	__set_bit(RAMROD_TX, &ramrod_flags);
5948 
5949 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5950 				   rx_accept_flags, tx_accept_flags,
5951 				   ramrod_flags);
5952 }
5953 
5954 static void bnx2x_init_internal_common(struct bnx2x *bp)
5955 {
5956 	int i;
5957 
5958 	if (IS_MF_SI(bp))
5959 		/*
5960 		 * In switch independent mode, the TSTORM needs to accept
5961 		 * packets that failed classification, since approximate match
5962 		 * mac addresses aren't written to NIG LLH
5963 		 */
5964 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5965 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5966 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5967 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5968 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5969 
5970 	/* Zero this manually as its initialization is
5971 	   currently missing in the initTool */
5972 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5973 		REG_WR(bp, BAR_USTRORM_INTMEM +
5974 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5975 	if (!CHIP_IS_E1x(bp)) {
5976 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5977 			CHIP_INT_MODE_IS_BC(bp) ?
5978 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5979 	}
5980 }
5981 
5982 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5983 {
5984 	switch (load_code) {
5985 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5986 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5987 		bnx2x_init_internal_common(bp);
5988 		/* no break */
5989 
5990 	case FW_MSG_CODE_DRV_LOAD_PORT:
5991 		/* nothing to do */
5992 		/* no break */
5993 
5994 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5995 		/* internal memory per function is
5996 		   initialized inside bnx2x_pf_init */
5997 		break;
5998 
5999 	default:
6000 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6001 		break;
6002 	}
6003 }
6004 
6005 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6006 {
6007 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6008 }
6009 
6010 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6011 {
6012 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6013 }
6014 
6015 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6016 {
6017 	if (CHIP_IS_E1x(fp->bp))
6018 		return BP_L_ID(fp->bp) + fp->index;
6019 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6020 		return bnx2x_fp_igu_sb_id(fp);
6021 }
6022 
6023 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6024 {
6025 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6026 	u8 cos;
6027 	unsigned long q_type = 0;
6028 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6029 	fp->rx_queue = fp_idx;
6030 	fp->cid = fp_idx;
6031 	fp->cl_id = bnx2x_fp_cl_id(fp);
6032 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6033 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6034 	/* qZone id equals to FW (per path) client id */
6035 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6036 
6037 	/* init shortcut */
6038 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6039 
6040 	/* Setup SB indices */
6041 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6042 
6043 	/* Configure Queue State object */
6044 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6045 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6046 
6047 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6048 
6049 	/* init tx data */
6050 	for_each_cos_in_tx_queue(fp, cos) {
6051 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6052 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6053 				  FP_COS_TO_TXQ(fp, cos, bp),
6054 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6055 		cids[cos] = fp->txdata_ptr[cos]->cid;
6056 	}
6057 
6058 	/* nothing more for vf to do here */
6059 	if (IS_VF(bp))
6060 		return;
6061 
6062 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6063 		      fp->fw_sb_id, fp->igu_sb_id);
6064 	bnx2x_update_fpsb_idx(fp);
6065 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6066 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6067 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6068 
6069 	/**
6070 	 * Configure classification DBs: Always enable Tx switching
6071 	 */
6072 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6073 
6074 	DP(NETIF_MSG_IFUP,
6075 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6076 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6077 	   fp->igu_sb_id);
6078 }
6079 
6080 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6081 {
6082 	int i;
6083 
6084 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6085 		struct eth_tx_next_bd *tx_next_bd =
6086 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6087 
6088 		tx_next_bd->addr_hi =
6089 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6090 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6091 		tx_next_bd->addr_lo =
6092 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6093 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6094 	}
6095 
6096 	*txdata->tx_cons_sb = cpu_to_le16(0);
6097 
6098 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6099 	txdata->tx_db.data.zero_fill1 = 0;
6100 	txdata->tx_db.data.prod = 0;
6101 
6102 	txdata->tx_pkt_prod = 0;
6103 	txdata->tx_pkt_cons = 0;
6104 	txdata->tx_bd_prod = 0;
6105 	txdata->tx_bd_cons = 0;
6106 	txdata->tx_pkt = 0;
6107 }
6108 
6109 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6110 {
6111 	int i;
6112 
6113 	for_each_tx_queue_cnic(bp, i)
6114 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6115 }
6116 
6117 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6118 {
6119 	int i;
6120 	u8 cos;
6121 
6122 	for_each_eth_queue(bp, i)
6123 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6124 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6125 }
6126 
6127 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6128 {
6129 	if (!NO_FCOE(bp))
6130 		bnx2x_init_fcoe_fp(bp);
6131 
6132 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6133 		      BNX2X_VF_ID_INVALID, false,
6134 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6135 
6136 	/* ensure status block indices were read */
6137 	rmb();
6138 	bnx2x_init_rx_rings_cnic(bp);
6139 	bnx2x_init_tx_rings_cnic(bp);
6140 
6141 	/* flush all */
6142 	mb();
6143 	mmiowb();
6144 }
6145 
6146 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6147 {
6148 	int i;
6149 
6150 	/* Setup NIC internals and enable interrupts */
6151 	for_each_eth_queue(bp, i)
6152 		bnx2x_init_eth_fp(bp, i);
6153 
6154 	/* ensure status block indices were read */
6155 	rmb();
6156 	bnx2x_init_rx_rings(bp);
6157 	bnx2x_init_tx_rings(bp);
6158 
6159 	if (IS_PF(bp)) {
6160 		/* Initialize MOD_ABS interrupts */
6161 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6162 				       bp->common.shmem_base,
6163 				       bp->common.shmem2_base, BP_PORT(bp));
6164 
6165 		/* initialize the default status block and sp ring */
6166 		bnx2x_init_def_sb(bp);
6167 		bnx2x_update_dsb_idx(bp);
6168 		bnx2x_init_sp_ring(bp);
6169 	} else {
6170 		bnx2x_memset_stats(bp);
6171 	}
6172 }
6173 
6174 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6175 {
6176 	bnx2x_init_eq_ring(bp);
6177 	bnx2x_init_internal(bp, load_code);
6178 	bnx2x_pf_init(bp);
6179 	bnx2x_stats_init(bp);
6180 
6181 	/* flush all before enabling interrupts */
6182 	mb();
6183 	mmiowb();
6184 
6185 	bnx2x_int_enable(bp);
6186 
6187 	/* Check for SPIO5 */
6188 	bnx2x_attn_int_deasserted0(bp,
6189 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6190 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6191 }
6192 
6193 /* gzip service functions */
6194 static int bnx2x_gunzip_init(struct bnx2x *bp)
6195 {
6196 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6197 					    &bp->gunzip_mapping, GFP_KERNEL);
6198 	if (bp->gunzip_buf  == NULL)
6199 		goto gunzip_nomem1;
6200 
6201 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6202 	if (bp->strm  == NULL)
6203 		goto gunzip_nomem2;
6204 
6205 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6206 	if (bp->strm->workspace == NULL)
6207 		goto gunzip_nomem3;
6208 
6209 	return 0;
6210 
6211 gunzip_nomem3:
6212 	kfree(bp->strm);
6213 	bp->strm = NULL;
6214 
6215 gunzip_nomem2:
6216 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6217 			  bp->gunzip_mapping);
6218 	bp->gunzip_buf = NULL;
6219 
6220 gunzip_nomem1:
6221 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6222 	return -ENOMEM;
6223 }
6224 
6225 static void bnx2x_gunzip_end(struct bnx2x *bp)
6226 {
6227 	if (bp->strm) {
6228 		vfree(bp->strm->workspace);
6229 		kfree(bp->strm);
6230 		bp->strm = NULL;
6231 	}
6232 
6233 	if (bp->gunzip_buf) {
6234 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6235 				  bp->gunzip_mapping);
6236 		bp->gunzip_buf = NULL;
6237 	}
6238 }
6239 
6240 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6241 {
6242 	int n, rc;
6243 
6244 	/* check gzip header */
6245 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6246 		BNX2X_ERR("Bad gzip header\n");
6247 		return -EINVAL;
6248 	}
6249 
6250 	n = 10;
6251 
6252 #define FNAME				0x8
6253 
6254 	if (zbuf[3] & FNAME)
6255 		while ((zbuf[n++] != 0) && (n < len));
6256 
6257 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6258 	bp->strm->avail_in = len - n;
6259 	bp->strm->next_out = bp->gunzip_buf;
6260 	bp->strm->avail_out = FW_BUF_SIZE;
6261 
6262 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6263 	if (rc != Z_OK)
6264 		return rc;
6265 
6266 	rc = zlib_inflate(bp->strm, Z_FINISH);
6267 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6268 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6269 			   bp->strm->msg);
6270 
6271 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6272 	if (bp->gunzip_outlen & 0x3)
6273 		netdev_err(bp->dev,
6274 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6275 				bp->gunzip_outlen);
6276 	bp->gunzip_outlen >>= 2;
6277 
6278 	zlib_inflateEnd(bp->strm);
6279 
6280 	if (rc == Z_STREAM_END)
6281 		return 0;
6282 
6283 	return rc;
6284 }
6285 
6286 /* nic load/unload */
6287 
6288 /*
6289  * General service functions
6290  */
6291 
6292 /* send a NIG loopback debug packet */
6293 static void bnx2x_lb_pckt(struct bnx2x *bp)
6294 {
6295 	u32 wb_write[3];
6296 
6297 	/* Ethernet source and destination addresses */
6298 	wb_write[0] = 0x55555555;
6299 	wb_write[1] = 0x55555555;
6300 	wb_write[2] = 0x20;		/* SOP */
6301 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6302 
6303 	/* NON-IP protocol */
6304 	wb_write[0] = 0x09000000;
6305 	wb_write[1] = 0x55555555;
6306 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6307 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6308 }
6309 
6310 /* some of the internal memories
6311  * are not directly readable from the driver
6312  * to test them we send debug packets
6313  */
6314 static int bnx2x_int_mem_test(struct bnx2x *bp)
6315 {
6316 	int factor;
6317 	int count, i;
6318 	u32 val = 0;
6319 
6320 	if (CHIP_REV_IS_FPGA(bp))
6321 		factor = 120;
6322 	else if (CHIP_REV_IS_EMUL(bp))
6323 		factor = 200;
6324 	else
6325 		factor = 1;
6326 
6327 	/* Disable inputs of parser neighbor blocks */
6328 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6329 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6330 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6331 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6332 
6333 	/*  Write 0 to parser credits for CFC search request */
6334 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6335 
6336 	/* send Ethernet packet */
6337 	bnx2x_lb_pckt(bp);
6338 
6339 	/* TODO do i reset NIG statistic? */
6340 	/* Wait until NIG register shows 1 packet of size 0x10 */
6341 	count = 1000 * factor;
6342 	while (count) {
6343 
6344 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6345 		val = *bnx2x_sp(bp, wb_data[0]);
6346 		if (val == 0x10)
6347 			break;
6348 
6349 		usleep_range(10000, 20000);
6350 		count--;
6351 	}
6352 	if (val != 0x10) {
6353 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6354 		return -1;
6355 	}
6356 
6357 	/* Wait until PRS register shows 1 packet */
6358 	count = 1000 * factor;
6359 	while (count) {
6360 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6361 		if (val == 1)
6362 			break;
6363 
6364 		usleep_range(10000, 20000);
6365 		count--;
6366 	}
6367 	if (val != 0x1) {
6368 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6369 		return -2;
6370 	}
6371 
6372 	/* Reset and init BRB, PRS */
6373 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6374 	msleep(50);
6375 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6376 	msleep(50);
6377 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6378 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6379 
6380 	DP(NETIF_MSG_HW, "part2\n");
6381 
6382 	/* Disable inputs of parser neighbor blocks */
6383 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6384 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6385 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6386 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6387 
6388 	/* Write 0 to parser credits for CFC search request */
6389 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6390 
6391 	/* send 10 Ethernet packets */
6392 	for (i = 0; i < 10; i++)
6393 		bnx2x_lb_pckt(bp);
6394 
6395 	/* Wait until NIG register shows 10 + 1
6396 	   packets of size 11*0x10 = 0xb0 */
6397 	count = 1000 * factor;
6398 	while (count) {
6399 
6400 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6401 		val = *bnx2x_sp(bp, wb_data[0]);
6402 		if (val == 0xb0)
6403 			break;
6404 
6405 		usleep_range(10000, 20000);
6406 		count--;
6407 	}
6408 	if (val != 0xb0) {
6409 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6410 		return -3;
6411 	}
6412 
6413 	/* Wait until PRS register shows 2 packets */
6414 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6415 	if (val != 2)
6416 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6417 
6418 	/* Write 1 to parser credits for CFC search request */
6419 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6420 
6421 	/* Wait until PRS register shows 3 packets */
6422 	msleep(10 * factor);
6423 	/* Wait until NIG register shows 1 packet of size 0x10 */
6424 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6425 	if (val != 3)
6426 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6427 
6428 	/* clear NIG EOP FIFO */
6429 	for (i = 0; i < 11; i++)
6430 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6431 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6432 	if (val != 1) {
6433 		BNX2X_ERR("clear of NIG failed\n");
6434 		return -4;
6435 	}
6436 
6437 	/* Reset and init BRB, PRS, NIG */
6438 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6439 	msleep(50);
6440 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6441 	msleep(50);
6442 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6443 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6444 	if (!CNIC_SUPPORT(bp))
6445 		/* set NIC mode */
6446 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6447 
6448 	/* Enable inputs of parser neighbor blocks */
6449 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6450 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6451 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6452 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6453 
6454 	DP(NETIF_MSG_HW, "done\n");
6455 
6456 	return 0; /* OK */
6457 }
6458 
6459 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6460 {
6461 	u32 val;
6462 
6463 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6464 	if (!CHIP_IS_E1x(bp))
6465 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6466 	else
6467 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6468 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6469 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6470 	/*
6471 	 * mask read length error interrupts in brb for parser
6472 	 * (parsing unit and 'checksum and crc' unit)
6473 	 * these errors are legal (PU reads fixed length and CAC can cause
6474 	 * read length error on truncated packets)
6475 	 */
6476 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6477 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6478 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6479 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6480 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6481 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6482 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6483 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6484 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6485 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6486 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6487 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6488 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6489 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6490 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6491 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6492 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6493 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6494 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6495 
6496 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6497 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6498 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6499 	if (!CHIP_IS_E1x(bp))
6500 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6501 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6502 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6503 
6504 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6505 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6506 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6507 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6508 
6509 	if (!CHIP_IS_E1x(bp))
6510 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6511 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6512 
6513 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6514 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6515 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6516 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6517 }
6518 
6519 static void bnx2x_reset_common(struct bnx2x *bp)
6520 {
6521 	u32 val = 0x1400;
6522 
6523 	/* reset_common */
6524 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6525 	       0xd3ffff7f);
6526 
6527 	if (CHIP_IS_E3(bp)) {
6528 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6529 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6530 	}
6531 
6532 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6533 }
6534 
6535 static void bnx2x_setup_dmae(struct bnx2x *bp)
6536 {
6537 	bp->dmae_ready = 0;
6538 	spin_lock_init(&bp->dmae_lock);
6539 }
6540 
6541 static void bnx2x_init_pxp(struct bnx2x *bp)
6542 {
6543 	u16 devctl;
6544 	int r_order, w_order;
6545 
6546 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6547 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6548 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6549 	if (bp->mrrs == -1)
6550 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6551 	else {
6552 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6553 		r_order = bp->mrrs;
6554 	}
6555 
6556 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6557 }
6558 
6559 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6560 {
6561 	int is_required;
6562 	u32 val;
6563 	int port;
6564 
6565 	if (BP_NOMCP(bp))
6566 		return;
6567 
6568 	is_required = 0;
6569 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6570 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6571 
6572 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6573 		is_required = 1;
6574 
6575 	/*
6576 	 * The fan failure mechanism is usually related to the PHY type since
6577 	 * the power consumption of the board is affected by the PHY. Currently,
6578 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6579 	 */
6580 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6581 		for (port = PORT_0; port < PORT_MAX; port++) {
6582 			is_required |=
6583 				bnx2x_fan_failure_det_req(
6584 					bp,
6585 					bp->common.shmem_base,
6586 					bp->common.shmem2_base,
6587 					port);
6588 		}
6589 
6590 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6591 
6592 	if (is_required == 0)
6593 		return;
6594 
6595 	/* Fan failure is indicated by SPIO 5 */
6596 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6597 
6598 	/* set to active low mode */
6599 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6600 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6601 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6602 
6603 	/* enable interrupt to signal the IGU */
6604 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6605 	val |= MISC_SPIO_SPIO5;
6606 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6607 }
6608 
6609 void bnx2x_pf_disable(struct bnx2x *bp)
6610 {
6611 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6612 	val &= ~IGU_PF_CONF_FUNC_EN;
6613 
6614 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6615 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6616 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6617 }
6618 
6619 static void bnx2x__common_init_phy(struct bnx2x *bp)
6620 {
6621 	u32 shmem_base[2], shmem2_base[2];
6622 	/* Avoid common init in case MFW supports LFA */
6623 	if (SHMEM2_RD(bp, size) >
6624 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6625 		return;
6626 	shmem_base[0] =  bp->common.shmem_base;
6627 	shmem2_base[0] = bp->common.shmem2_base;
6628 	if (!CHIP_IS_E1x(bp)) {
6629 		shmem_base[1] =
6630 			SHMEM2_RD(bp, other_shmem_base_addr);
6631 		shmem2_base[1] =
6632 			SHMEM2_RD(bp, other_shmem2_base_addr);
6633 	}
6634 	bnx2x_acquire_phy_lock(bp);
6635 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6636 			      bp->common.chip_id);
6637 	bnx2x_release_phy_lock(bp);
6638 }
6639 
6640 /**
6641  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6642  *
6643  * @bp:		driver handle
6644  */
6645 static int bnx2x_init_hw_common(struct bnx2x *bp)
6646 {
6647 	u32 val;
6648 
6649 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6650 
6651 	/*
6652 	 * take the RESET lock to protect undi_unload flow from accessing
6653 	 * registers while we're resetting the chip
6654 	 */
6655 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6656 
6657 	bnx2x_reset_common(bp);
6658 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6659 
6660 	val = 0xfffc;
6661 	if (CHIP_IS_E3(bp)) {
6662 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6663 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6664 	}
6665 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6666 
6667 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6668 
6669 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6670 
6671 	if (!CHIP_IS_E1x(bp)) {
6672 		u8 abs_func_id;
6673 
6674 		/**
6675 		 * 4-port mode or 2-port mode we need to turn of master-enable
6676 		 * for everyone, after that, turn it back on for self.
6677 		 * so, we disregard multi-function or not, and always disable
6678 		 * for all functions on the given path, this means 0,2,4,6 for
6679 		 * path 0 and 1,3,5,7 for path 1
6680 		 */
6681 		for (abs_func_id = BP_PATH(bp);
6682 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6683 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6684 				REG_WR(bp,
6685 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6686 				    1);
6687 				continue;
6688 			}
6689 
6690 			bnx2x_pretend_func(bp, abs_func_id);
6691 			/* clear pf enable */
6692 			bnx2x_pf_disable(bp);
6693 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6694 		}
6695 	}
6696 
6697 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6698 	if (CHIP_IS_E1(bp)) {
6699 		/* enable HW interrupt from PXP on USDM overflow
6700 		   bit 16 on INT_MASK_0 */
6701 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6702 	}
6703 
6704 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6705 	bnx2x_init_pxp(bp);
6706 
6707 #ifdef __BIG_ENDIAN
6708 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6709 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6710 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6711 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6712 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6713 	/* make sure this value is 0 */
6714 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6715 
6716 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6717 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6718 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6719 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6720 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6721 #endif
6722 
6723 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6724 
6725 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6726 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6727 
6728 	/* let the HW do it's magic ... */
6729 	msleep(100);
6730 	/* finish PXP init */
6731 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6732 	if (val != 1) {
6733 		BNX2X_ERR("PXP2 CFG failed\n");
6734 		return -EBUSY;
6735 	}
6736 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6737 	if (val != 1) {
6738 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6739 		return -EBUSY;
6740 	}
6741 
6742 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6743 	 * have entries with value "0" and valid bit on.
6744 	 * This needs to be done by the first PF that is loaded in a path
6745 	 * (i.e. common phase)
6746 	 */
6747 	if (!CHIP_IS_E1x(bp)) {
6748 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6749  * (i.e. vnic3) to start even if it is marked as "scan-off".
6750  * This occurs when a different function (func2,3) is being marked
6751  * as "scan-off". Real-life scenario for example: if a driver is being
6752  * load-unloaded while func6,7 are down. This will cause the timer to access
6753  * the ilt, translate to a logical address and send a request to read/write.
6754  * Since the ilt for the function that is down is not valid, this will cause
6755  * a translation error which is unrecoverable.
6756  * The Workaround is intended to make sure that when this happens nothing fatal
6757  * will occur. The workaround:
6758  *	1.  First PF driver which loads on a path will:
6759  *		a.  After taking the chip out of reset, by using pretend,
6760  *		    it will write "0" to the following registers of
6761  *		    the other vnics.
6762  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6763  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6764  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6765  *		    And for itself it will write '1' to
6766  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6767  *		    dmae-operations (writing to pram for example.)
6768  *		    note: can be done for only function 6,7 but cleaner this
6769  *			  way.
6770  *		b.  Write zero+valid to the entire ILT.
6771  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6772  *		    VNIC3 (of that port). The range allocated will be the
6773  *		    entire ILT. This is needed to prevent  ILT range error.
6774  *	2.  Any PF driver load flow:
6775  *		a.  ILT update with the physical addresses of the allocated
6776  *		    logical pages.
6777  *		b.  Wait 20msec. - note that this timeout is needed to make
6778  *		    sure there are no requests in one of the PXP internal
6779  *		    queues with "old" ILT addresses.
6780  *		c.  PF enable in the PGLC.
6781  *		d.  Clear the was_error of the PF in the PGLC. (could have
6782  *		    occurred while driver was down)
6783  *		e.  PF enable in the CFC (WEAK + STRONG)
6784  *		f.  Timers scan enable
6785  *	3.  PF driver unload flow:
6786  *		a.  Clear the Timers scan_en.
6787  *		b.  Polling for scan_on=0 for that PF.
6788  *		c.  Clear the PF enable bit in the PXP.
6789  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6790  *		e.  Write zero+valid to all ILT entries (The valid bit must
6791  *		    stay set)
6792  *		f.  If this is VNIC 3 of a port then also init
6793  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6794  *		    to the last entry in the ILT.
6795  *
6796  *	Notes:
6797  *	Currently the PF error in the PGLC is non recoverable.
6798  *	In the future the there will be a recovery routine for this error.
6799  *	Currently attention is masked.
6800  *	Having an MCP lock on the load/unload process does not guarantee that
6801  *	there is no Timer disable during Func6/7 enable. This is because the
6802  *	Timers scan is currently being cleared by the MCP on FLR.
6803  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6804  *	there is error before clearing it. But the flow above is simpler and
6805  *	more general.
6806  *	All ILT entries are written by zero+valid and not just PF6/7
6807  *	ILT entries since in the future the ILT entries allocation for
6808  *	PF-s might be dynamic.
6809  */
6810 		struct ilt_client_info ilt_cli;
6811 		struct bnx2x_ilt ilt;
6812 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6813 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6814 
6815 		/* initialize dummy TM client */
6816 		ilt_cli.start = 0;
6817 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6818 		ilt_cli.client_num = ILT_CLIENT_TM;
6819 
6820 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6821 		 * Step 2: set the timers first/last ilt entry to point
6822 		 * to the entire range to prevent ILT range error for 3rd/4th
6823 		 * vnic	(this code assumes existence of the vnic)
6824 		 *
6825 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6826 		 * with dummy TM client
6827 		 *
6828 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6829 		 * and his brother are split registers
6830 		 */
6831 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6832 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6833 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6834 
6835 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6836 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6837 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6838 	}
6839 
6840 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6841 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6842 
6843 	if (!CHIP_IS_E1x(bp)) {
6844 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6845 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6846 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6847 
6848 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6849 
6850 		/* let the HW do it's magic ... */
6851 		do {
6852 			msleep(200);
6853 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6854 		} while (factor-- && (val != 1));
6855 
6856 		if (val != 1) {
6857 			BNX2X_ERR("ATC_INIT failed\n");
6858 			return -EBUSY;
6859 		}
6860 	}
6861 
6862 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6863 
6864 	bnx2x_iov_init_dmae(bp);
6865 
6866 	/* clean the DMAE memory */
6867 	bp->dmae_ready = 1;
6868 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6869 
6870 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6871 
6872 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6873 
6874 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6875 
6876 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6877 
6878 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6879 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6880 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6881 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6882 
6883 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6884 
6885 	/* QM queues pointers table */
6886 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6887 
6888 	/* soft reset pulse */
6889 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6890 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6891 
6892 	if (CNIC_SUPPORT(bp))
6893 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6894 
6895 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6896 
6897 	if (!CHIP_REV_IS_SLOW(bp))
6898 		/* enable hw interrupt from doorbell Q */
6899 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6900 
6901 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6902 
6903 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6904 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6905 
6906 	if (!CHIP_IS_E1(bp))
6907 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6908 
6909 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6910 		if (IS_MF_AFEX(bp)) {
6911 			/* configure that VNTag and VLAN headers must be
6912 			 * received in afex mode
6913 			 */
6914 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6915 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6916 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6917 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6918 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6919 		} else {
6920 			/* Bit-map indicating which L2 hdrs may appear
6921 			 * after the basic Ethernet header
6922 			 */
6923 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6924 			       bp->path_has_ovlan ? 7 : 6);
6925 		}
6926 	}
6927 
6928 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6929 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6930 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6931 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6932 
6933 	if (!CHIP_IS_E1x(bp)) {
6934 		/* reset VFC memories */
6935 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6936 			   VFC_MEMORIES_RST_REG_CAM_RST |
6937 			   VFC_MEMORIES_RST_REG_RAM_RST);
6938 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6939 			   VFC_MEMORIES_RST_REG_CAM_RST |
6940 			   VFC_MEMORIES_RST_REG_RAM_RST);
6941 
6942 		msleep(20);
6943 	}
6944 
6945 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6946 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6947 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6948 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6949 
6950 	/* sync semi rtc */
6951 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6952 	       0x80000000);
6953 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6954 	       0x80000000);
6955 
6956 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6957 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6958 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6959 
6960 	if (!CHIP_IS_E1x(bp)) {
6961 		if (IS_MF_AFEX(bp)) {
6962 			/* configure that VNTag and VLAN headers must be
6963 			 * sent in afex mode
6964 			 */
6965 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6966 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6967 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6968 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6969 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6970 		} else {
6971 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6972 			       bp->path_has_ovlan ? 7 : 6);
6973 		}
6974 	}
6975 
6976 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6977 
6978 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6979 
6980 	if (CNIC_SUPPORT(bp)) {
6981 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6982 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6983 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6984 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6985 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6986 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6987 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6988 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6989 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6990 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6991 	}
6992 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6993 
6994 	if (sizeof(union cdu_context) != 1024)
6995 		/* we currently assume that a context is 1024 bytes */
6996 		dev_alert(&bp->pdev->dev,
6997 			  "please adjust the size of cdu_context(%ld)\n",
6998 			  (long)sizeof(union cdu_context));
6999 
7000 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7001 	val = (4 << 24) + (0 << 12) + 1024;
7002 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7003 
7004 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7005 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7006 	/* enable context validation interrupt from CFC */
7007 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7008 
7009 	/* set the thresholds to prevent CFC/CDU race */
7010 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7011 
7012 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7013 
7014 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7015 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7016 
7017 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7018 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7019 
7020 	/* Reset PCIE errors for debug */
7021 	REG_WR(bp, 0x2814, 0xffffffff);
7022 	REG_WR(bp, 0x3820, 0xffffffff);
7023 
7024 	if (!CHIP_IS_E1x(bp)) {
7025 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7026 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7027 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7028 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7029 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7030 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7031 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7032 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7033 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7034 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7035 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7036 	}
7037 
7038 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7039 	if (!CHIP_IS_E1(bp)) {
7040 		/* in E3 this done in per-port section */
7041 		if (!CHIP_IS_E3(bp))
7042 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7043 	}
7044 	if (CHIP_IS_E1H(bp))
7045 		/* not applicable for E2 (and above ...) */
7046 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7047 
7048 	if (CHIP_REV_IS_SLOW(bp))
7049 		msleep(200);
7050 
7051 	/* finish CFC init */
7052 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7053 	if (val != 1) {
7054 		BNX2X_ERR("CFC LL_INIT failed\n");
7055 		return -EBUSY;
7056 	}
7057 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7058 	if (val != 1) {
7059 		BNX2X_ERR("CFC AC_INIT failed\n");
7060 		return -EBUSY;
7061 	}
7062 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7063 	if (val != 1) {
7064 		BNX2X_ERR("CFC CAM_INIT failed\n");
7065 		return -EBUSY;
7066 	}
7067 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7068 
7069 	if (CHIP_IS_E1(bp)) {
7070 		/* read NIG statistic
7071 		   to see if this is our first up since powerup */
7072 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7073 		val = *bnx2x_sp(bp, wb_data[0]);
7074 
7075 		/* do internal memory self test */
7076 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7077 			BNX2X_ERR("internal mem self test failed\n");
7078 			return -EBUSY;
7079 		}
7080 	}
7081 
7082 	bnx2x_setup_fan_failure_detection(bp);
7083 
7084 	/* clear PXP2 attentions */
7085 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7086 
7087 	bnx2x_enable_blocks_attention(bp);
7088 	bnx2x_enable_blocks_parity(bp);
7089 
7090 	if (!BP_NOMCP(bp)) {
7091 		if (CHIP_IS_E1x(bp))
7092 			bnx2x__common_init_phy(bp);
7093 	} else
7094 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7095 
7096 	return 0;
7097 }
7098 
7099 /**
7100  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7101  *
7102  * @bp:		driver handle
7103  */
7104 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7105 {
7106 	int rc = bnx2x_init_hw_common(bp);
7107 
7108 	if (rc)
7109 		return rc;
7110 
7111 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7112 	if (!BP_NOMCP(bp))
7113 		bnx2x__common_init_phy(bp);
7114 
7115 	return 0;
7116 }
7117 
7118 static int bnx2x_init_hw_port(struct bnx2x *bp)
7119 {
7120 	int port = BP_PORT(bp);
7121 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7122 	u32 low, high;
7123 	u32 val;
7124 
7125 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7126 
7127 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7128 
7129 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7130 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7131 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7132 
7133 	/* Timers bug workaround: disables the pf_master bit in pglue at
7134 	 * common phase, we need to enable it here before any dmae access are
7135 	 * attempted. Therefore we manually added the enable-master to the
7136 	 * port phase (it also happens in the function phase)
7137 	 */
7138 	if (!CHIP_IS_E1x(bp))
7139 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7140 
7141 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7142 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7143 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7144 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7145 
7146 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7147 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7148 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7149 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7150 
7151 	/* QM cid (connection) count */
7152 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7153 
7154 	if (CNIC_SUPPORT(bp)) {
7155 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7156 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7157 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7158 	}
7159 
7160 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7161 
7162 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7163 
7164 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7165 
7166 		if (IS_MF(bp))
7167 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7168 		else if (bp->dev->mtu > 4096) {
7169 			if (bp->flags & ONE_PORT_FLAG)
7170 				low = 160;
7171 			else {
7172 				val = bp->dev->mtu;
7173 				/* (24*1024 + val*4)/256 */
7174 				low = 96 + (val/64) +
7175 						((val % 64) ? 1 : 0);
7176 			}
7177 		} else
7178 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7179 		high = low + 56;	/* 14*1024/256 */
7180 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7181 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7182 	}
7183 
7184 	if (CHIP_MODE_IS_4_PORT(bp))
7185 		REG_WR(bp, (BP_PORT(bp) ?
7186 			    BRB1_REG_MAC_GUARANTIED_1 :
7187 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7188 
7189 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7190 	if (CHIP_IS_E3B0(bp)) {
7191 		if (IS_MF_AFEX(bp)) {
7192 			/* configure headers for AFEX mode */
7193 			REG_WR(bp, BP_PORT(bp) ?
7194 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7195 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7196 			REG_WR(bp, BP_PORT(bp) ?
7197 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7198 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7199 			REG_WR(bp, BP_PORT(bp) ?
7200 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7201 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7202 		} else {
7203 			/* Ovlan exists only if we are in multi-function +
7204 			 * switch-dependent mode, in switch-independent there
7205 			 * is no ovlan headers
7206 			 */
7207 			REG_WR(bp, BP_PORT(bp) ?
7208 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7209 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7210 			       (bp->path_has_ovlan ? 7 : 6));
7211 		}
7212 	}
7213 
7214 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7215 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7216 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7217 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7218 
7219 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7220 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7221 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7222 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7223 
7224 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7225 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7226 
7227 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7228 
7229 	if (CHIP_IS_E1x(bp)) {
7230 		/* configure PBF to work without PAUSE mtu 9000 */
7231 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7232 
7233 		/* update threshold */
7234 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7235 		/* update init credit */
7236 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7237 
7238 		/* probe changes */
7239 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7240 		udelay(50);
7241 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7242 	}
7243 
7244 	if (CNIC_SUPPORT(bp))
7245 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7246 
7247 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7248 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7249 
7250 	if (CHIP_IS_E1(bp)) {
7251 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7252 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7253 	}
7254 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7255 
7256 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7257 
7258 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7259 	/* init aeu_mask_attn_func_0/1:
7260 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7261 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7262 	 *             bits 4-7 are used for "per vn group attention" */
7263 	val = IS_MF(bp) ? 0xF7 : 0x7;
7264 	/* Enable DCBX attention for all but E1 */
7265 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7266 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7267 
7268 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7269 
7270 	if (!CHIP_IS_E1x(bp)) {
7271 		/* Bit-map indicating which L2 hdrs may appear after the
7272 		 * basic Ethernet header
7273 		 */
7274 		if (IS_MF_AFEX(bp))
7275 			REG_WR(bp, BP_PORT(bp) ?
7276 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7277 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7278 		else
7279 			REG_WR(bp, BP_PORT(bp) ?
7280 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7281 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7282 			       IS_MF_SD(bp) ? 7 : 6);
7283 
7284 		if (CHIP_IS_E3(bp))
7285 			REG_WR(bp, BP_PORT(bp) ?
7286 				   NIG_REG_LLH1_MF_MODE :
7287 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7288 	}
7289 	if (!CHIP_IS_E3(bp))
7290 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7291 
7292 	if (!CHIP_IS_E1(bp)) {
7293 		/* 0x2 disable mf_ov, 0x1 enable */
7294 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7295 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7296 
7297 		if (!CHIP_IS_E1x(bp)) {
7298 			val = 0;
7299 			switch (bp->mf_mode) {
7300 			case MULTI_FUNCTION_SD:
7301 				val = 1;
7302 				break;
7303 			case MULTI_FUNCTION_SI:
7304 			case MULTI_FUNCTION_AFEX:
7305 				val = 2;
7306 				break;
7307 			}
7308 
7309 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7310 						  NIG_REG_LLH0_CLS_TYPE), val);
7311 		}
7312 		{
7313 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7314 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7315 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7316 		}
7317 	}
7318 
7319 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7320 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7321 	if (val & MISC_SPIO_SPIO5) {
7322 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7323 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7324 		val = REG_RD(bp, reg_addr);
7325 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7326 		REG_WR(bp, reg_addr, val);
7327 	}
7328 
7329 	return 0;
7330 }
7331 
7332 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7333 {
7334 	int reg;
7335 	u32 wb_write[2];
7336 
7337 	if (CHIP_IS_E1(bp))
7338 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7339 	else
7340 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7341 
7342 	wb_write[0] = ONCHIP_ADDR1(addr);
7343 	wb_write[1] = ONCHIP_ADDR2(addr);
7344 	REG_WR_DMAE(bp, reg, wb_write, 2);
7345 }
7346 
7347 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7348 {
7349 	u32 data, ctl, cnt = 100;
7350 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7351 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7352 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7353 	u32 sb_bit =  1 << (idu_sb_id%32);
7354 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7355 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7356 
7357 	/* Not supported in BC mode */
7358 	if (CHIP_INT_MODE_IS_BC(bp))
7359 		return;
7360 
7361 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7362 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7363 		IGU_REGULAR_CLEANUP_SET				|
7364 		IGU_REGULAR_BCLEANUP;
7365 
7366 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7367 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7368 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7369 
7370 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7371 			 data, igu_addr_data);
7372 	REG_WR(bp, igu_addr_data, data);
7373 	mmiowb();
7374 	barrier();
7375 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7376 			  ctl, igu_addr_ctl);
7377 	REG_WR(bp, igu_addr_ctl, ctl);
7378 	mmiowb();
7379 	barrier();
7380 
7381 	/* wait for clean up to finish */
7382 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7383 		msleep(20);
7384 
7385 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7386 		DP(NETIF_MSG_HW,
7387 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7388 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7389 	}
7390 }
7391 
7392 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7393 {
7394 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7395 }
7396 
7397 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7398 {
7399 	u32 i, base = FUNC_ILT_BASE(func);
7400 	for (i = base; i < base + ILT_PER_FUNC; i++)
7401 		bnx2x_ilt_wr(bp, i, 0);
7402 }
7403 
7404 static void bnx2x_init_searcher(struct bnx2x *bp)
7405 {
7406 	int port = BP_PORT(bp);
7407 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7408 	/* T1 hash bits value determines the T1 number of entries */
7409 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7410 }
7411 
7412 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7413 {
7414 	int rc;
7415 	struct bnx2x_func_state_params func_params = {NULL};
7416 	struct bnx2x_func_switch_update_params *switch_update_params =
7417 		&func_params.params.switch_update;
7418 
7419 	/* Prepare parameters for function state transitions */
7420 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7421 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7422 
7423 	func_params.f_obj = &bp->func_obj;
7424 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7425 
7426 	/* Function parameters */
7427 	switch_update_params->suspend = suspend;
7428 
7429 	rc = bnx2x_func_state_change(bp, &func_params);
7430 
7431 	return rc;
7432 }
7433 
7434 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7435 {
7436 	int rc, i, port = BP_PORT(bp);
7437 	int vlan_en = 0, mac_en[NUM_MACS];
7438 
7439 	/* Close input from network */
7440 	if (bp->mf_mode == SINGLE_FUNCTION) {
7441 		bnx2x_set_rx_filter(&bp->link_params, 0);
7442 	} else {
7443 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7444 				   NIG_REG_LLH0_FUNC_EN);
7445 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7446 			  NIG_REG_LLH0_FUNC_EN, 0);
7447 		for (i = 0; i < NUM_MACS; i++) {
7448 			mac_en[i] = REG_RD(bp, port ?
7449 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7450 					      4 * i) :
7451 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7452 					      4 * i));
7453 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7454 					      4 * i) :
7455 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7456 		}
7457 	}
7458 
7459 	/* Close BMC to host */
7460 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7461 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7462 
7463 	/* Suspend Tx switching to the PF. Completion of this ramrod
7464 	 * further guarantees that all the packets of that PF / child
7465 	 * VFs in BRB were processed by the Parser, so it is safe to
7466 	 * change the NIC_MODE register.
7467 	 */
7468 	rc = bnx2x_func_switch_update(bp, 1);
7469 	if (rc) {
7470 		BNX2X_ERR("Can't suspend tx-switching!\n");
7471 		return rc;
7472 	}
7473 
7474 	/* Change NIC_MODE register */
7475 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7476 
7477 	/* Open input from network */
7478 	if (bp->mf_mode == SINGLE_FUNCTION) {
7479 		bnx2x_set_rx_filter(&bp->link_params, 1);
7480 	} else {
7481 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7482 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7483 		for (i = 0; i < NUM_MACS; i++) {
7484 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7485 					      4 * i) :
7486 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7487 				  mac_en[i]);
7488 		}
7489 	}
7490 
7491 	/* Enable BMC to host */
7492 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7493 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7494 
7495 	/* Resume Tx switching to the PF */
7496 	rc = bnx2x_func_switch_update(bp, 0);
7497 	if (rc) {
7498 		BNX2X_ERR("Can't resume tx-switching!\n");
7499 		return rc;
7500 	}
7501 
7502 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7503 	return 0;
7504 }
7505 
7506 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7507 {
7508 	int rc;
7509 
7510 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7511 
7512 	if (CONFIGURE_NIC_MODE(bp)) {
7513 		/* Configure searcher as part of function hw init */
7514 		bnx2x_init_searcher(bp);
7515 
7516 		/* Reset NIC mode */
7517 		rc = bnx2x_reset_nic_mode(bp);
7518 		if (rc)
7519 			BNX2X_ERR("Can't change NIC mode!\n");
7520 		return rc;
7521 	}
7522 
7523 	return 0;
7524 }
7525 
7526 static int bnx2x_init_hw_func(struct bnx2x *bp)
7527 {
7528 	int port = BP_PORT(bp);
7529 	int func = BP_FUNC(bp);
7530 	int init_phase = PHASE_PF0 + func;
7531 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7532 	u16 cdu_ilt_start;
7533 	u32 addr, val;
7534 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7535 	int i, main_mem_width, rc;
7536 
7537 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7538 
7539 	/* FLR cleanup - hmmm */
7540 	if (!CHIP_IS_E1x(bp)) {
7541 		rc = bnx2x_pf_flr_clnup(bp);
7542 		if (rc) {
7543 			bnx2x_fw_dump(bp);
7544 			return rc;
7545 		}
7546 	}
7547 
7548 	/* set MSI reconfigure capability */
7549 	if (bp->common.int_block == INT_BLOCK_HC) {
7550 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7551 		val = REG_RD(bp, addr);
7552 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7553 		REG_WR(bp, addr, val);
7554 	}
7555 
7556 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7557 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7558 
7559 	ilt = BP_ILT(bp);
7560 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7561 
7562 	if (IS_SRIOV(bp))
7563 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7564 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7565 
7566 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7567 	 * those of the VFs, so start line should be reset
7568 	 */
7569 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7570 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7571 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7572 		ilt->lines[cdu_ilt_start + i].page_mapping =
7573 			bp->context[i].cxt_mapping;
7574 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7575 	}
7576 
7577 	bnx2x_ilt_init_op(bp, INITOP_SET);
7578 
7579 	if (!CONFIGURE_NIC_MODE(bp)) {
7580 		bnx2x_init_searcher(bp);
7581 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7582 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7583 	} else {
7584 		/* Set NIC mode */
7585 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7586 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7587 	}
7588 
7589 	if (!CHIP_IS_E1x(bp)) {
7590 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7591 
7592 		/* Turn on a single ISR mode in IGU if driver is going to use
7593 		 * INT#x or MSI
7594 		 */
7595 		if (!(bp->flags & USING_MSIX_FLAG))
7596 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7597 		/*
7598 		 * Timers workaround bug: function init part.
7599 		 * Need to wait 20msec after initializing ILT,
7600 		 * needed to make sure there are no requests in
7601 		 * one of the PXP internal queues with "old" ILT addresses
7602 		 */
7603 		msleep(20);
7604 		/*
7605 		 * Master enable - Due to WB DMAE writes performed before this
7606 		 * register is re-initialized as part of the regular function
7607 		 * init
7608 		 */
7609 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7610 		/* Enable the function in IGU */
7611 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7612 	}
7613 
7614 	bp->dmae_ready = 1;
7615 
7616 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7617 
7618 	if (!CHIP_IS_E1x(bp))
7619 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7620 
7621 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7622 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7623 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7624 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7625 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7626 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7627 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7628 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7629 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7630 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7631 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7632 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7633 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7634 
7635 	if (!CHIP_IS_E1x(bp))
7636 		REG_WR(bp, QM_REG_PF_EN, 1);
7637 
7638 	if (!CHIP_IS_E1x(bp)) {
7639 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7640 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7641 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7642 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7643 	}
7644 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7645 
7646 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7647 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7648 
7649 	bnx2x_iov_init_dq(bp);
7650 
7651 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7652 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7653 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7654 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7655 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7656 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7657 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7658 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7659 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7660 	if (!CHIP_IS_E1x(bp))
7661 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7662 
7663 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7664 
7665 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7666 
7667 	if (!CHIP_IS_E1x(bp))
7668 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7669 
7670 	if (IS_MF(bp)) {
7671 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7672 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7673 	}
7674 
7675 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7676 
7677 	/* HC init per function */
7678 	if (bp->common.int_block == INT_BLOCK_HC) {
7679 		if (CHIP_IS_E1H(bp)) {
7680 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7681 
7682 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7683 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7684 		}
7685 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7686 
7687 	} else {
7688 		int num_segs, sb_idx, prod_offset;
7689 
7690 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7691 
7692 		if (!CHIP_IS_E1x(bp)) {
7693 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7694 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7695 		}
7696 
7697 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7698 
7699 		if (!CHIP_IS_E1x(bp)) {
7700 			int dsb_idx = 0;
7701 			/**
7702 			 * Producer memory:
7703 			 * E2 mode: address 0-135 match to the mapping memory;
7704 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7705 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7706 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7707 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7708 			 * 144-147 reserved.
7709 			 *
7710 			 * E1.5 mode - In backward compatible mode;
7711 			 * for non default SB; each even line in the memory
7712 			 * holds the U producer and each odd line hold
7713 			 * the C producer. The first 128 producers are for
7714 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7715 			 * producers are for the DSB for each PF.
7716 			 * Each PF has five segments: (the order inside each
7717 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7718 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7719 			 * 144-147 attn prods;
7720 			 */
7721 			/* non-default-status-blocks */
7722 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7723 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7724 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7725 				prod_offset = (bp->igu_base_sb + sb_idx) *
7726 					num_segs;
7727 
7728 				for (i = 0; i < num_segs; i++) {
7729 					addr = IGU_REG_PROD_CONS_MEMORY +
7730 							(prod_offset + i) * 4;
7731 					REG_WR(bp, addr, 0);
7732 				}
7733 				/* send consumer update with value 0 */
7734 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7735 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7736 				bnx2x_igu_clear_sb(bp,
7737 						   bp->igu_base_sb + sb_idx);
7738 			}
7739 
7740 			/* default-status-blocks */
7741 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7742 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7743 
7744 			if (CHIP_MODE_IS_4_PORT(bp))
7745 				dsb_idx = BP_FUNC(bp);
7746 			else
7747 				dsb_idx = BP_VN(bp);
7748 
7749 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7750 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7751 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7752 
7753 			/*
7754 			 * igu prods come in chunks of E1HVN_MAX (4) -
7755 			 * does not matters what is the current chip mode
7756 			 */
7757 			for (i = 0; i < (num_segs * E1HVN_MAX);
7758 			     i += E1HVN_MAX) {
7759 				addr = IGU_REG_PROD_CONS_MEMORY +
7760 							(prod_offset + i)*4;
7761 				REG_WR(bp, addr, 0);
7762 			}
7763 			/* send consumer update with 0 */
7764 			if (CHIP_INT_MODE_IS_BC(bp)) {
7765 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7766 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7767 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7768 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7769 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7770 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7771 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7772 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7773 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7774 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7775 			} else {
7776 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7777 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7778 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7779 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7780 			}
7781 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7782 
7783 			/* !!! These should become driver const once
7784 			   rf-tool supports split-68 const */
7785 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7786 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7787 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7788 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7789 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7790 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7791 		}
7792 	}
7793 
7794 	/* Reset PCIE errors for debug */
7795 	REG_WR(bp, 0x2114, 0xffffffff);
7796 	REG_WR(bp, 0x2120, 0xffffffff);
7797 
7798 	if (CHIP_IS_E1x(bp)) {
7799 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7800 		main_mem_base = HC_REG_MAIN_MEMORY +
7801 				BP_PORT(bp) * (main_mem_size * 4);
7802 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7803 		main_mem_width = 8;
7804 
7805 		val = REG_RD(bp, main_mem_prty_clr);
7806 		if (val)
7807 			DP(NETIF_MSG_HW,
7808 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7809 			   val);
7810 
7811 		/* Clear "false" parity errors in MSI-X table */
7812 		for (i = main_mem_base;
7813 		     i < main_mem_base + main_mem_size * 4;
7814 		     i += main_mem_width) {
7815 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7816 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7817 					 i, main_mem_width / 4);
7818 		}
7819 		/* Clear HC parity attention */
7820 		REG_RD(bp, main_mem_prty_clr);
7821 	}
7822 
7823 #ifdef BNX2X_STOP_ON_ERROR
7824 	/* Enable STORMs SP logging */
7825 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7826 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7827 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7828 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7829 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7830 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7831 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7832 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7833 #endif
7834 
7835 	bnx2x_phy_probe(&bp->link_params);
7836 
7837 	return 0;
7838 }
7839 
7840 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7841 {
7842 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7843 
7844 	if (!CHIP_IS_E1x(bp))
7845 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7846 			       sizeof(struct host_hc_status_block_e2));
7847 	else
7848 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7849 			       sizeof(struct host_hc_status_block_e1x));
7850 
7851 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7852 }
7853 
7854 void bnx2x_free_mem(struct bnx2x *bp)
7855 {
7856 	int i;
7857 
7858 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7859 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7860 
7861 	if (IS_VF(bp))
7862 		return;
7863 
7864 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7865 		       sizeof(struct host_sp_status_block));
7866 
7867 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7868 		       sizeof(struct bnx2x_slowpath));
7869 
7870 	for (i = 0; i < L2_ILT_LINES(bp); i++)
7871 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7872 			       bp->context[i].size);
7873 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7874 
7875 	BNX2X_FREE(bp->ilt->lines);
7876 
7877 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7878 
7879 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7880 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7881 
7882 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7883 
7884 	bnx2x_iov_free_mem(bp);
7885 }
7886 
7887 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7888 {
7889 	if (!CHIP_IS_E1x(bp))
7890 		/* size = the status block + ramrod buffers */
7891 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7892 				sizeof(struct host_hc_status_block_e2));
7893 	else
7894 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7895 				&bp->cnic_sb_mapping,
7896 				sizeof(struct
7897 				       host_hc_status_block_e1x));
7898 
7899 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7900 		/* allocate searcher T2 table, as it wasn't allocated before */
7901 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7902 
7903 	/* write address to which L5 should insert its values */
7904 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
7905 		&bp->slowpath->drv_info_to_mcp;
7906 
7907 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7908 		goto alloc_mem_err;
7909 
7910 	return 0;
7911 
7912 alloc_mem_err:
7913 	bnx2x_free_mem_cnic(bp);
7914 	BNX2X_ERR("Can't allocate memory\n");
7915 	return -ENOMEM;
7916 }
7917 
7918 int bnx2x_alloc_mem(struct bnx2x *bp)
7919 {
7920 	int i, allocated, context_size;
7921 
7922 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7923 		/* allocate searcher T2 table */
7924 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7925 
7926 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7927 			sizeof(struct host_sp_status_block));
7928 
7929 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7930 			sizeof(struct bnx2x_slowpath));
7931 
7932 	/* Allocate memory for CDU context:
7933 	 * This memory is allocated separately and not in the generic ILT
7934 	 * functions because CDU differs in few aspects:
7935 	 * 1. There are multiple entities allocating memory for context -
7936 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7937 	 * its own ILT lines.
7938 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
7939 	 * for the other ILT clients), to be efficient we want to support
7940 	 * allocation of sub-page-size in the last entry.
7941 	 * 3. Context pointers are used by the driver to pass to FW / update
7942 	 * the context (for the other ILT clients the pointers are used just to
7943 	 * free the memory during unload).
7944 	 */
7945 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7946 
7947 	for (i = 0, allocated = 0; allocated < context_size; i++) {
7948 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7949 					  (context_size - allocated));
7950 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7951 				&bp->context[i].cxt_mapping,
7952 				bp->context[i].size);
7953 		allocated += bp->context[i].size;
7954 	}
7955 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7956 
7957 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7958 		goto alloc_mem_err;
7959 
7960 	if (bnx2x_iov_alloc_mem(bp))
7961 		goto alloc_mem_err;
7962 
7963 	/* Slow path ring */
7964 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7965 
7966 	/* EQ */
7967 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7968 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7969 
7970 	return 0;
7971 
7972 alloc_mem_err:
7973 	bnx2x_free_mem(bp);
7974 	BNX2X_ERR("Can't allocate memory\n");
7975 	return -ENOMEM;
7976 }
7977 
7978 /*
7979  * Init service functions
7980  */
7981 
7982 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7983 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7984 		      int mac_type, unsigned long *ramrod_flags)
7985 {
7986 	int rc;
7987 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7988 
7989 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7990 
7991 	/* Fill general parameters */
7992 	ramrod_param.vlan_mac_obj = obj;
7993 	ramrod_param.ramrod_flags = *ramrod_flags;
7994 
7995 	/* Fill a user request section if needed */
7996 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7997 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7998 
7999 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8000 
8001 		/* Set the command: ADD or DEL */
8002 		if (set)
8003 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8004 		else
8005 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8006 	}
8007 
8008 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8009 
8010 	if (rc == -EEXIST) {
8011 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8012 		/* do not treat adding same MAC as error */
8013 		rc = 0;
8014 	} else if (rc < 0)
8015 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8016 
8017 	return rc;
8018 }
8019 
8020 int bnx2x_del_all_macs(struct bnx2x *bp,
8021 		       struct bnx2x_vlan_mac_obj *mac_obj,
8022 		       int mac_type, bool wait_for_comp)
8023 {
8024 	int rc;
8025 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8026 
8027 	/* Wait for completion of requested */
8028 	if (wait_for_comp)
8029 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8030 
8031 	/* Set the mac type of addresses we want to clear */
8032 	__set_bit(mac_type, &vlan_mac_flags);
8033 
8034 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8035 	if (rc < 0)
8036 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8037 
8038 	return rc;
8039 }
8040 
8041 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8042 {
8043 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
8044 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8045 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8046 		   "Ignoring Zero MAC for STORAGE SD mode\n");
8047 		return 0;
8048 	}
8049 
8050 	if (IS_PF(bp)) {
8051 		unsigned long ramrod_flags = 0;
8052 
8053 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8054 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8055 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8056 					 &bp->sp_objs->mac_obj, set,
8057 					 BNX2X_ETH_MAC, &ramrod_flags);
8058 	} else { /* vf */
8059 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8060 					     bp->fp->index, true);
8061 	}
8062 }
8063 
8064 int bnx2x_setup_leading(struct bnx2x *bp)
8065 {
8066 	if (IS_PF(bp))
8067 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8068 	else /* VF */
8069 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8070 }
8071 
8072 /**
8073  * bnx2x_set_int_mode - configure interrupt mode
8074  *
8075  * @bp:		driver handle
8076  *
8077  * In case of MSI-X it will also try to enable MSI-X.
8078  */
8079 int bnx2x_set_int_mode(struct bnx2x *bp)
8080 {
8081 	int rc = 0;
8082 
8083 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8084 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8085 		return -EINVAL;
8086 	}
8087 
8088 	switch (int_mode) {
8089 	case BNX2X_INT_MODE_MSIX:
8090 		/* attempt to enable msix */
8091 		rc = bnx2x_enable_msix(bp);
8092 
8093 		/* msix attained */
8094 		if (!rc)
8095 			return 0;
8096 
8097 		/* vfs use only msix */
8098 		if (rc && IS_VF(bp))
8099 			return rc;
8100 
8101 		/* failed to enable multiple MSI-X */
8102 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8103 			       bp->num_queues,
8104 			       1 + bp->num_cnic_queues);
8105 
8106 		/* falling through... */
8107 	case BNX2X_INT_MODE_MSI:
8108 		bnx2x_enable_msi(bp);
8109 
8110 		/* falling through... */
8111 	case BNX2X_INT_MODE_INTX:
8112 		bp->num_ethernet_queues = 1;
8113 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8114 		BNX2X_DEV_INFO("set number of queues to 1\n");
8115 		break;
8116 	default:
8117 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8118 		return -EINVAL;
8119 	}
8120 	return 0;
8121 }
8122 
8123 /* must be called prior to any HW initializations */
8124 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8125 {
8126 	if (IS_SRIOV(bp))
8127 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8128 	return L2_ILT_LINES(bp);
8129 }
8130 
8131 void bnx2x_ilt_set_info(struct bnx2x *bp)
8132 {
8133 	struct ilt_client_info *ilt_client;
8134 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8135 	u16 line = 0;
8136 
8137 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8138 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8139 
8140 	/* CDU */
8141 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8142 	ilt_client->client_num = ILT_CLIENT_CDU;
8143 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8144 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8145 	ilt_client->start = line;
8146 	line += bnx2x_cid_ilt_lines(bp);
8147 
8148 	if (CNIC_SUPPORT(bp))
8149 		line += CNIC_ILT_LINES;
8150 	ilt_client->end = line - 1;
8151 
8152 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8153 	   ilt_client->start,
8154 	   ilt_client->end,
8155 	   ilt_client->page_size,
8156 	   ilt_client->flags,
8157 	   ilog2(ilt_client->page_size >> 12));
8158 
8159 	/* QM */
8160 	if (QM_INIT(bp->qm_cid_count)) {
8161 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8162 		ilt_client->client_num = ILT_CLIENT_QM;
8163 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8164 		ilt_client->flags = 0;
8165 		ilt_client->start = line;
8166 
8167 		/* 4 bytes for each cid */
8168 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8169 							 QM_ILT_PAGE_SZ);
8170 
8171 		ilt_client->end = line - 1;
8172 
8173 		DP(NETIF_MSG_IFUP,
8174 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8175 		   ilt_client->start,
8176 		   ilt_client->end,
8177 		   ilt_client->page_size,
8178 		   ilt_client->flags,
8179 		   ilog2(ilt_client->page_size >> 12));
8180 	}
8181 
8182 	if (CNIC_SUPPORT(bp)) {
8183 		/* SRC */
8184 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8185 		ilt_client->client_num = ILT_CLIENT_SRC;
8186 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8187 		ilt_client->flags = 0;
8188 		ilt_client->start = line;
8189 		line += SRC_ILT_LINES;
8190 		ilt_client->end = line - 1;
8191 
8192 		DP(NETIF_MSG_IFUP,
8193 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8194 		   ilt_client->start,
8195 		   ilt_client->end,
8196 		   ilt_client->page_size,
8197 		   ilt_client->flags,
8198 		   ilog2(ilt_client->page_size >> 12));
8199 
8200 		/* TM */
8201 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8202 		ilt_client->client_num = ILT_CLIENT_TM;
8203 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8204 		ilt_client->flags = 0;
8205 		ilt_client->start = line;
8206 		line += TM_ILT_LINES;
8207 		ilt_client->end = line - 1;
8208 
8209 		DP(NETIF_MSG_IFUP,
8210 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8211 		   ilt_client->start,
8212 		   ilt_client->end,
8213 		   ilt_client->page_size,
8214 		   ilt_client->flags,
8215 		   ilog2(ilt_client->page_size >> 12));
8216 	}
8217 
8218 	BUG_ON(line > ILT_MAX_LINES);
8219 }
8220 
8221 /**
8222  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8223  *
8224  * @bp:			driver handle
8225  * @fp:			pointer to fastpath
8226  * @init_params:	pointer to parameters structure
8227  *
8228  * parameters configured:
8229  *      - HC configuration
8230  *      - Queue's CDU context
8231  */
8232 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8233 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8234 {
8235 	u8 cos;
8236 	int cxt_index, cxt_offset;
8237 
8238 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8239 	if (!IS_FCOE_FP(fp)) {
8240 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8241 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8242 
8243 		/* If HC is supported, enable host coalescing in the transition
8244 		 * to INIT state.
8245 		 */
8246 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8247 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8248 
8249 		/* HC rate */
8250 		init_params->rx.hc_rate = bp->rx_ticks ?
8251 			(1000000 / bp->rx_ticks) : 0;
8252 		init_params->tx.hc_rate = bp->tx_ticks ?
8253 			(1000000 / bp->tx_ticks) : 0;
8254 
8255 		/* FW SB ID */
8256 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8257 			fp->fw_sb_id;
8258 
8259 		/*
8260 		 * CQ index among the SB indices: FCoE clients uses the default
8261 		 * SB, therefore it's different.
8262 		 */
8263 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8264 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8265 	}
8266 
8267 	/* set maximum number of COSs supported by this queue */
8268 	init_params->max_cos = fp->max_cos;
8269 
8270 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8271 	    fp->index, init_params->max_cos);
8272 
8273 	/* set the context pointers queue object */
8274 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8275 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8276 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8277 				ILT_PAGE_CIDS);
8278 		init_params->cxts[cos] =
8279 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8280 	}
8281 }
8282 
8283 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8284 			struct bnx2x_queue_state_params *q_params,
8285 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8286 			int tx_index, bool leading)
8287 {
8288 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8289 
8290 	/* Set the command */
8291 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8292 
8293 	/* Set tx-only QUEUE flags: don't zero statistics */
8294 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8295 
8296 	/* choose the index of the cid to send the slow path on */
8297 	tx_only_params->cid_index = tx_index;
8298 
8299 	/* Set general TX_ONLY_SETUP parameters */
8300 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8301 
8302 	/* Set Tx TX_ONLY_SETUP parameters */
8303 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8304 
8305 	DP(NETIF_MSG_IFUP,
8306 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8307 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8308 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8309 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8310 
8311 	/* send the ramrod */
8312 	return bnx2x_queue_state_change(bp, q_params);
8313 }
8314 
8315 /**
8316  * bnx2x_setup_queue - setup queue
8317  *
8318  * @bp:		driver handle
8319  * @fp:		pointer to fastpath
8320  * @leading:	is leading
8321  *
8322  * This function performs 2 steps in a Queue state machine
8323  *      actually: 1) RESET->INIT 2) INIT->SETUP
8324  */
8325 
8326 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8327 		       bool leading)
8328 {
8329 	struct bnx2x_queue_state_params q_params = {NULL};
8330 	struct bnx2x_queue_setup_params *setup_params =
8331 						&q_params.params.setup;
8332 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8333 						&q_params.params.tx_only;
8334 	int rc;
8335 	u8 tx_index;
8336 
8337 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8338 
8339 	/* reset IGU state skip FCoE L2 queue */
8340 	if (!IS_FCOE_FP(fp))
8341 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8342 			     IGU_INT_ENABLE, 0);
8343 
8344 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8345 	/* We want to wait for completion in this context */
8346 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8347 
8348 	/* Prepare the INIT parameters */
8349 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8350 
8351 	/* Set the command */
8352 	q_params.cmd = BNX2X_Q_CMD_INIT;
8353 
8354 	/* Change the state to INIT */
8355 	rc = bnx2x_queue_state_change(bp, &q_params);
8356 	if (rc) {
8357 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8358 		return rc;
8359 	}
8360 
8361 	DP(NETIF_MSG_IFUP, "init complete\n");
8362 
8363 	/* Now move the Queue to the SETUP state... */
8364 	memset(setup_params, 0, sizeof(*setup_params));
8365 
8366 	/* Set QUEUE flags */
8367 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8368 
8369 	/* Set general SETUP parameters */
8370 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8371 				FIRST_TX_COS_INDEX);
8372 
8373 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8374 			    &setup_params->rxq_params);
8375 
8376 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8377 			   FIRST_TX_COS_INDEX);
8378 
8379 	/* Set the command */
8380 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8381 
8382 	if (IS_FCOE_FP(fp))
8383 		bp->fcoe_init = true;
8384 
8385 	/* Change the state to SETUP */
8386 	rc = bnx2x_queue_state_change(bp, &q_params);
8387 	if (rc) {
8388 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8389 		return rc;
8390 	}
8391 
8392 	/* loop through the relevant tx-only indices */
8393 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8394 	      tx_index < fp->max_cos;
8395 	      tx_index++) {
8396 
8397 		/* prepare and send tx-only ramrod*/
8398 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8399 					  tx_only_params, tx_index, leading);
8400 		if (rc) {
8401 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8402 				  fp->index, tx_index);
8403 			return rc;
8404 		}
8405 	}
8406 
8407 	return rc;
8408 }
8409 
8410 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8411 {
8412 	struct bnx2x_fastpath *fp = &bp->fp[index];
8413 	struct bnx2x_fp_txdata *txdata;
8414 	struct bnx2x_queue_state_params q_params = {NULL};
8415 	int rc, tx_index;
8416 
8417 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8418 
8419 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8420 	/* We want to wait for completion in this context */
8421 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8422 
8423 	/* close tx-only connections */
8424 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8425 	     tx_index < fp->max_cos;
8426 	     tx_index++){
8427 
8428 		/* ascertain this is a normal queue*/
8429 		txdata = fp->txdata_ptr[tx_index];
8430 
8431 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8432 							txdata->txq_index);
8433 
8434 		/* send halt terminate on tx-only connection */
8435 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8436 		memset(&q_params.params.terminate, 0,
8437 		       sizeof(q_params.params.terminate));
8438 		q_params.params.terminate.cid_index = tx_index;
8439 
8440 		rc = bnx2x_queue_state_change(bp, &q_params);
8441 		if (rc)
8442 			return rc;
8443 
8444 		/* send halt terminate on tx-only connection */
8445 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8446 		memset(&q_params.params.cfc_del, 0,
8447 		       sizeof(q_params.params.cfc_del));
8448 		q_params.params.cfc_del.cid_index = tx_index;
8449 		rc = bnx2x_queue_state_change(bp, &q_params);
8450 		if (rc)
8451 			return rc;
8452 	}
8453 	/* Stop the primary connection: */
8454 	/* ...halt the connection */
8455 	q_params.cmd = BNX2X_Q_CMD_HALT;
8456 	rc = bnx2x_queue_state_change(bp, &q_params);
8457 	if (rc)
8458 		return rc;
8459 
8460 	/* ...terminate the connection */
8461 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8462 	memset(&q_params.params.terminate, 0,
8463 	       sizeof(q_params.params.terminate));
8464 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8465 	rc = bnx2x_queue_state_change(bp, &q_params);
8466 	if (rc)
8467 		return rc;
8468 	/* ...delete cfc entry */
8469 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8470 	memset(&q_params.params.cfc_del, 0,
8471 	       sizeof(q_params.params.cfc_del));
8472 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8473 	return bnx2x_queue_state_change(bp, &q_params);
8474 }
8475 
8476 static void bnx2x_reset_func(struct bnx2x *bp)
8477 {
8478 	int port = BP_PORT(bp);
8479 	int func = BP_FUNC(bp);
8480 	int i;
8481 
8482 	/* Disable the function in the FW */
8483 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8484 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8485 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8486 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8487 
8488 	/* FP SBs */
8489 	for_each_eth_queue(bp, i) {
8490 		struct bnx2x_fastpath *fp = &bp->fp[i];
8491 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8492 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8493 			   SB_DISABLED);
8494 	}
8495 
8496 	if (CNIC_LOADED(bp))
8497 		/* CNIC SB */
8498 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8499 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8500 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8501 
8502 	/* SP SB */
8503 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8504 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8505 		SB_DISABLED);
8506 
8507 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8508 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8509 		       0);
8510 
8511 	/* Configure IGU */
8512 	if (bp->common.int_block == INT_BLOCK_HC) {
8513 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8514 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8515 	} else {
8516 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8517 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8518 	}
8519 
8520 	if (CNIC_LOADED(bp)) {
8521 		/* Disable Timer scan */
8522 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8523 		/*
8524 		 * Wait for at least 10ms and up to 2 second for the timers
8525 		 * scan to complete
8526 		 */
8527 		for (i = 0; i < 200; i++) {
8528 			usleep_range(10000, 20000);
8529 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8530 				break;
8531 		}
8532 	}
8533 	/* Clear ILT */
8534 	bnx2x_clear_func_ilt(bp, func);
8535 
8536 	/* Timers workaround bug for E2: if this is vnic-3,
8537 	 * we need to set the entire ilt range for this timers.
8538 	 */
8539 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8540 		struct ilt_client_info ilt_cli;
8541 		/* use dummy TM client */
8542 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8543 		ilt_cli.start = 0;
8544 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8545 		ilt_cli.client_num = ILT_CLIENT_TM;
8546 
8547 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8548 	}
8549 
8550 	/* this assumes that reset_port() called before reset_func()*/
8551 	if (!CHIP_IS_E1x(bp))
8552 		bnx2x_pf_disable(bp);
8553 
8554 	bp->dmae_ready = 0;
8555 }
8556 
8557 static void bnx2x_reset_port(struct bnx2x *bp)
8558 {
8559 	int port = BP_PORT(bp);
8560 	u32 val;
8561 
8562 	/* Reset physical Link */
8563 	bnx2x__link_reset(bp);
8564 
8565 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8566 
8567 	/* Do not rcv packets to BRB */
8568 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8569 	/* Do not direct rcv packets that are not for MCP to the BRB */
8570 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8571 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8572 
8573 	/* Configure AEU */
8574 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8575 
8576 	msleep(100);
8577 	/* Check for BRB port occupancy */
8578 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8579 	if (val)
8580 		DP(NETIF_MSG_IFDOWN,
8581 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8582 
8583 	/* TODO: Close Doorbell port? */
8584 }
8585 
8586 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8587 {
8588 	struct bnx2x_func_state_params func_params = {NULL};
8589 
8590 	/* Prepare parameters for function state transitions */
8591 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8592 
8593 	func_params.f_obj = &bp->func_obj;
8594 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8595 
8596 	func_params.params.hw_init.load_phase = load_code;
8597 
8598 	return bnx2x_func_state_change(bp, &func_params);
8599 }
8600 
8601 static int bnx2x_func_stop(struct bnx2x *bp)
8602 {
8603 	struct bnx2x_func_state_params func_params = {NULL};
8604 	int rc;
8605 
8606 	/* Prepare parameters for function state transitions */
8607 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8608 	func_params.f_obj = &bp->func_obj;
8609 	func_params.cmd = BNX2X_F_CMD_STOP;
8610 
8611 	/*
8612 	 * Try to stop the function the 'good way'. If fails (in case
8613 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8614 	 * not in a debug mode, perform a state transaction in order to
8615 	 * enable further HW_RESET transaction.
8616 	 */
8617 	rc = bnx2x_func_state_change(bp, &func_params);
8618 	if (rc) {
8619 #ifdef BNX2X_STOP_ON_ERROR
8620 		return rc;
8621 #else
8622 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8623 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8624 		return bnx2x_func_state_change(bp, &func_params);
8625 #endif
8626 	}
8627 
8628 	return 0;
8629 }
8630 
8631 /**
8632  * bnx2x_send_unload_req - request unload mode from the MCP.
8633  *
8634  * @bp:			driver handle
8635  * @unload_mode:	requested function's unload mode
8636  *
8637  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8638  */
8639 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8640 {
8641 	u32 reset_code = 0;
8642 	int port = BP_PORT(bp);
8643 
8644 	/* Select the UNLOAD request mode */
8645 	if (unload_mode == UNLOAD_NORMAL)
8646 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8647 
8648 	else if (bp->flags & NO_WOL_FLAG)
8649 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8650 
8651 	else if (bp->wol) {
8652 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8653 		u8 *mac_addr = bp->dev->dev_addr;
8654 		u32 val;
8655 		u16 pmc;
8656 
8657 		/* The mac address is written to entries 1-4 to
8658 		 * preserve entry 0 which is used by the PMF
8659 		 */
8660 		u8 entry = (BP_VN(bp) + 1)*8;
8661 
8662 		val = (mac_addr[0] << 8) | mac_addr[1];
8663 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8664 
8665 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8666 		      (mac_addr[4] << 8) | mac_addr[5];
8667 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8668 
8669 		/* Enable the PME and clear the status */
8670 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8671 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8672 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8673 
8674 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8675 
8676 	} else
8677 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8678 
8679 	/* Send the request to the MCP */
8680 	if (!BP_NOMCP(bp))
8681 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8682 	else {
8683 		int path = BP_PATH(bp);
8684 
8685 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8686 		   path, load_count[path][0], load_count[path][1],
8687 		   load_count[path][2]);
8688 		load_count[path][0]--;
8689 		load_count[path][1 + port]--;
8690 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8691 		   path, load_count[path][0], load_count[path][1],
8692 		   load_count[path][2]);
8693 		if (load_count[path][0] == 0)
8694 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8695 		else if (load_count[path][1 + port] == 0)
8696 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8697 		else
8698 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8699 	}
8700 
8701 	return reset_code;
8702 }
8703 
8704 /**
8705  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8706  *
8707  * @bp:		driver handle
8708  * @keep_link:		true iff link should be kept up
8709  */
8710 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8711 {
8712 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8713 
8714 	/* Report UNLOAD_DONE to MCP */
8715 	if (!BP_NOMCP(bp))
8716 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8717 }
8718 
8719 static int bnx2x_func_wait_started(struct bnx2x *bp)
8720 {
8721 	int tout = 50;
8722 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8723 
8724 	if (!bp->port.pmf)
8725 		return 0;
8726 
8727 	/*
8728 	 * (assumption: No Attention from MCP at this stage)
8729 	 * PMF probably in the middle of TX disable/enable transaction
8730 	 * 1. Sync IRS for default SB
8731 	 * 2. Sync SP queue - this guarantees us that attention handling started
8732 	 * 3. Wait, that TX disable/enable transaction completes
8733 	 *
8734 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8735 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8736 	 * received completion for the transaction the state is TX_STOPPED.
8737 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8738 	 * transaction.
8739 	 */
8740 
8741 	/* make sure default SB ISR is done */
8742 	if (msix)
8743 		synchronize_irq(bp->msix_table[0].vector);
8744 	else
8745 		synchronize_irq(bp->pdev->irq);
8746 
8747 	flush_workqueue(bnx2x_wq);
8748 
8749 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8750 				BNX2X_F_STATE_STARTED && tout--)
8751 		msleep(20);
8752 
8753 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8754 						BNX2X_F_STATE_STARTED) {
8755 #ifdef BNX2X_STOP_ON_ERROR
8756 		BNX2X_ERR("Wrong function state\n");
8757 		return -EBUSY;
8758 #else
8759 		/*
8760 		 * Failed to complete the transaction in a "good way"
8761 		 * Force both transactions with CLR bit
8762 		 */
8763 		struct bnx2x_func_state_params func_params = {NULL};
8764 
8765 		DP(NETIF_MSG_IFDOWN,
8766 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8767 
8768 		func_params.f_obj = &bp->func_obj;
8769 		__set_bit(RAMROD_DRV_CLR_ONLY,
8770 					&func_params.ramrod_flags);
8771 
8772 		/* STARTED-->TX_ST0PPED */
8773 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8774 		bnx2x_func_state_change(bp, &func_params);
8775 
8776 		/* TX_ST0PPED-->STARTED */
8777 		func_params.cmd = BNX2X_F_CMD_TX_START;
8778 		return bnx2x_func_state_change(bp, &func_params);
8779 #endif
8780 	}
8781 
8782 	return 0;
8783 }
8784 
8785 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8786 {
8787 	int port = BP_PORT(bp);
8788 	int i, rc = 0;
8789 	u8 cos;
8790 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8791 	u32 reset_code;
8792 
8793 	/* Wait until tx fastpath tasks complete */
8794 	for_each_tx_queue(bp, i) {
8795 		struct bnx2x_fastpath *fp = &bp->fp[i];
8796 
8797 		for_each_cos_in_tx_queue(fp, cos)
8798 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8799 #ifdef BNX2X_STOP_ON_ERROR
8800 		if (rc)
8801 			return;
8802 #endif
8803 	}
8804 
8805 	/* Give HW time to discard old tx messages */
8806 	usleep_range(1000, 2000);
8807 
8808 	/* Clean all ETH MACs */
8809 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8810 				false);
8811 	if (rc < 0)
8812 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8813 
8814 	/* Clean up UC list  */
8815 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8816 				true);
8817 	if (rc < 0)
8818 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8819 			  rc);
8820 
8821 	/* Disable LLH */
8822 	if (!CHIP_IS_E1(bp))
8823 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8824 
8825 	/* Set "drop all" (stop Rx).
8826 	 * We need to take a netif_addr_lock() here in order to prevent
8827 	 * a race between the completion code and this code.
8828 	 */
8829 	netif_addr_lock_bh(bp->dev);
8830 	/* Schedule the rx_mode command */
8831 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8832 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8833 	else
8834 		bnx2x_set_storm_rx_mode(bp);
8835 
8836 	/* Cleanup multicast configuration */
8837 	rparam.mcast_obj = &bp->mcast_obj;
8838 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8839 	if (rc < 0)
8840 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8841 
8842 	netif_addr_unlock_bh(bp->dev);
8843 
8844 	bnx2x_iov_chip_cleanup(bp);
8845 
8846 	/*
8847 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8848 	 * this function should perform FUNC, PORT or COMMON HW
8849 	 * reset.
8850 	 */
8851 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8852 
8853 	/*
8854 	 * (assumption: No Attention from MCP at this stage)
8855 	 * PMF probably in the middle of TX disable/enable transaction
8856 	 */
8857 	rc = bnx2x_func_wait_started(bp);
8858 	if (rc) {
8859 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8860 #ifdef BNX2X_STOP_ON_ERROR
8861 		return;
8862 #endif
8863 	}
8864 
8865 	/* Close multi and leading connections
8866 	 * Completions for ramrods are collected in a synchronous way
8867 	 */
8868 	for_each_eth_queue(bp, i)
8869 		if (bnx2x_stop_queue(bp, i))
8870 #ifdef BNX2X_STOP_ON_ERROR
8871 			return;
8872 #else
8873 			goto unload_error;
8874 #endif
8875 
8876 	if (CNIC_LOADED(bp)) {
8877 		for_each_cnic_queue(bp, i)
8878 			if (bnx2x_stop_queue(bp, i))
8879 #ifdef BNX2X_STOP_ON_ERROR
8880 				return;
8881 #else
8882 				goto unload_error;
8883 #endif
8884 	}
8885 
8886 	/* If SP settings didn't get completed so far - something
8887 	 * very wrong has happen.
8888 	 */
8889 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8890 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8891 
8892 #ifndef BNX2X_STOP_ON_ERROR
8893 unload_error:
8894 #endif
8895 	rc = bnx2x_func_stop(bp);
8896 	if (rc) {
8897 		BNX2X_ERR("Function stop failed!\n");
8898 #ifdef BNX2X_STOP_ON_ERROR
8899 		return;
8900 #endif
8901 	}
8902 
8903 	/* Disable HW interrupts, NAPI */
8904 	bnx2x_netif_stop(bp, 1);
8905 	/* Delete all NAPI objects */
8906 	bnx2x_del_all_napi(bp);
8907 	if (CNIC_LOADED(bp))
8908 		bnx2x_del_all_napi_cnic(bp);
8909 
8910 	/* Release IRQs */
8911 	bnx2x_free_irq(bp);
8912 
8913 	/* Reset the chip */
8914 	rc = bnx2x_reset_hw(bp, reset_code);
8915 	if (rc)
8916 		BNX2X_ERR("HW_RESET failed\n");
8917 
8918 	/* Report UNLOAD_DONE to MCP */
8919 	bnx2x_send_unload_done(bp, keep_link);
8920 }
8921 
8922 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8923 {
8924 	u32 val;
8925 
8926 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8927 
8928 	if (CHIP_IS_E1(bp)) {
8929 		int port = BP_PORT(bp);
8930 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8931 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8932 
8933 		val = REG_RD(bp, addr);
8934 		val &= ~(0x300);
8935 		REG_WR(bp, addr, val);
8936 	} else {
8937 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8938 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8939 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8940 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8941 	}
8942 }
8943 
8944 /* Close gates #2, #3 and #4: */
8945 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8946 {
8947 	u32 val;
8948 
8949 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8950 	if (!CHIP_IS_E1(bp)) {
8951 		/* #4 */
8952 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8953 		/* #2 */
8954 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8955 	}
8956 
8957 	/* #3 */
8958 	if (CHIP_IS_E1x(bp)) {
8959 		/* Prevent interrupts from HC on both ports */
8960 		val = REG_RD(bp, HC_REG_CONFIG_1);
8961 		REG_WR(bp, HC_REG_CONFIG_1,
8962 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8963 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8964 
8965 		val = REG_RD(bp, HC_REG_CONFIG_0);
8966 		REG_WR(bp, HC_REG_CONFIG_0,
8967 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8968 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8969 	} else {
8970 		/* Prevent incoming interrupts in IGU */
8971 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8972 
8973 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8974 		       (!close) ?
8975 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8976 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8977 	}
8978 
8979 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8980 		close ? "closing" : "opening");
8981 	mmiowb();
8982 }
8983 
8984 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8985 
8986 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8987 {
8988 	/* Do some magic... */
8989 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8990 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8991 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8992 }
8993 
8994 /**
8995  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8996  *
8997  * @bp:		driver handle
8998  * @magic_val:	old value of the `magic' bit.
8999  */
9000 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9001 {
9002 	/* Restore the `magic' bit value... */
9003 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9004 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9005 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9006 }
9007 
9008 /**
9009  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9010  *
9011  * @bp:		driver handle
9012  * @magic_val:	old value of 'magic' bit.
9013  *
9014  * Takes care of CLP configurations.
9015  */
9016 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9017 {
9018 	u32 shmem;
9019 	u32 validity_offset;
9020 
9021 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9022 
9023 	/* Set `magic' bit in order to save MF config */
9024 	if (!CHIP_IS_E1(bp))
9025 		bnx2x_clp_reset_prep(bp, magic_val);
9026 
9027 	/* Get shmem offset */
9028 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9029 	validity_offset =
9030 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9031 
9032 	/* Clear validity map flags */
9033 	if (shmem > 0)
9034 		REG_WR(bp, shmem + validity_offset, 0);
9035 }
9036 
9037 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9038 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9039 
9040 /**
9041  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9042  *
9043  * @bp:	driver handle
9044  */
9045 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9046 {
9047 	/* special handling for emulation and FPGA,
9048 	   wait 10 times longer */
9049 	if (CHIP_REV_IS_SLOW(bp))
9050 		msleep(MCP_ONE_TIMEOUT*10);
9051 	else
9052 		msleep(MCP_ONE_TIMEOUT);
9053 }
9054 
9055 /*
9056  * initializes bp->common.shmem_base and waits for validity signature to appear
9057  */
9058 static int bnx2x_init_shmem(struct bnx2x *bp)
9059 {
9060 	int cnt = 0;
9061 	u32 val = 0;
9062 
9063 	do {
9064 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9065 		if (bp->common.shmem_base) {
9066 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9067 			if (val & SHR_MEM_VALIDITY_MB)
9068 				return 0;
9069 		}
9070 
9071 		bnx2x_mcp_wait_one(bp);
9072 
9073 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9074 
9075 	BNX2X_ERR("BAD MCP validity signature\n");
9076 
9077 	return -ENODEV;
9078 }
9079 
9080 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9081 {
9082 	int rc = bnx2x_init_shmem(bp);
9083 
9084 	/* Restore the `magic' bit value */
9085 	if (!CHIP_IS_E1(bp))
9086 		bnx2x_clp_reset_done(bp, magic_val);
9087 
9088 	return rc;
9089 }
9090 
9091 static void bnx2x_pxp_prep(struct bnx2x *bp)
9092 {
9093 	if (!CHIP_IS_E1(bp)) {
9094 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9095 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9096 		mmiowb();
9097 	}
9098 }
9099 
9100 /*
9101  * Reset the whole chip except for:
9102  *      - PCIE core
9103  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9104  *              one reset bit)
9105  *      - IGU
9106  *      - MISC (including AEU)
9107  *      - GRC
9108  *      - RBCN, RBCP
9109  */
9110 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9111 {
9112 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9113 	u32 global_bits2, stay_reset2;
9114 
9115 	/*
9116 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9117 	 * (per chip) blocks.
9118 	 */
9119 	global_bits2 =
9120 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9121 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9122 
9123 	/* Don't reset the following blocks.
9124 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9125 	 *            reset, as in 4 port device they might still be owned
9126 	 *            by the MCP (there is only one leader per path).
9127 	 */
9128 	not_reset_mask1 =
9129 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9130 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9131 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9132 
9133 	not_reset_mask2 =
9134 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9135 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9136 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9137 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9138 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9139 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9140 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9141 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9142 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9143 		MISC_REGISTERS_RESET_REG_2_PGLC |
9144 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9145 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9146 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9147 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9148 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9149 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9150 
9151 	/*
9152 	 * Keep the following blocks in reset:
9153 	 *  - all xxMACs are handled by the bnx2x_link code.
9154 	 */
9155 	stay_reset2 =
9156 		MISC_REGISTERS_RESET_REG_2_XMAC |
9157 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9158 
9159 	/* Full reset masks according to the chip */
9160 	reset_mask1 = 0xffffffff;
9161 
9162 	if (CHIP_IS_E1(bp))
9163 		reset_mask2 = 0xffff;
9164 	else if (CHIP_IS_E1H(bp))
9165 		reset_mask2 = 0x1ffff;
9166 	else if (CHIP_IS_E2(bp))
9167 		reset_mask2 = 0xfffff;
9168 	else /* CHIP_IS_E3 */
9169 		reset_mask2 = 0x3ffffff;
9170 
9171 	/* Don't reset global blocks unless we need to */
9172 	if (!global)
9173 		reset_mask2 &= ~global_bits2;
9174 
9175 	/*
9176 	 * In case of attention in the QM, we need to reset PXP
9177 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9178 	 * because otherwise QM reset would release 'close the gates' shortly
9179 	 * before resetting the PXP, then the PSWRQ would send a write
9180 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9181 	 * read the payload data from PSWWR, but PSWWR would not
9182 	 * respond. The write queue in PGLUE would stuck, dmae commands
9183 	 * would not return. Therefore it's important to reset the second
9184 	 * reset register (containing the
9185 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9186 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9187 	 * bit).
9188 	 */
9189 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9190 	       reset_mask2 & (~not_reset_mask2));
9191 
9192 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9193 	       reset_mask1 & (~not_reset_mask1));
9194 
9195 	barrier();
9196 	mmiowb();
9197 
9198 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9199 	       reset_mask2 & (~stay_reset2));
9200 
9201 	barrier();
9202 	mmiowb();
9203 
9204 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9205 	mmiowb();
9206 }
9207 
9208 /**
9209  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9210  * It should get cleared in no more than 1s.
9211  *
9212  * @bp:	driver handle
9213  *
9214  * It should get cleared in no more than 1s. Returns 0 if
9215  * pending writes bit gets cleared.
9216  */
9217 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9218 {
9219 	u32 cnt = 1000;
9220 	u32 pend_bits = 0;
9221 
9222 	do {
9223 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9224 
9225 		if (pend_bits == 0)
9226 			break;
9227 
9228 		usleep_range(1000, 2000);
9229 	} while (cnt-- > 0);
9230 
9231 	if (cnt <= 0) {
9232 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9233 			  pend_bits);
9234 		return -EBUSY;
9235 	}
9236 
9237 	return 0;
9238 }
9239 
9240 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9241 {
9242 	int cnt = 1000;
9243 	u32 val = 0;
9244 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9245 	u32 tags_63_32 = 0;
9246 
9247 	/* Empty the Tetris buffer, wait for 1s */
9248 	do {
9249 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9250 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9251 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9252 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9253 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9254 		if (CHIP_IS_E3(bp))
9255 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9256 
9257 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9258 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9259 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9260 		    (pgl_exp_rom2 == 0xffffffff) &&
9261 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9262 			break;
9263 		usleep_range(1000, 2000);
9264 	} while (cnt-- > 0);
9265 
9266 	if (cnt <= 0) {
9267 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9268 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9269 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9270 			  pgl_exp_rom2);
9271 		return -EAGAIN;
9272 	}
9273 
9274 	barrier();
9275 
9276 	/* Close gates #2, #3 and #4 */
9277 	bnx2x_set_234_gates(bp, true);
9278 
9279 	/* Poll for IGU VQs for 57712 and newer chips */
9280 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9281 		return -EAGAIN;
9282 
9283 	/* TBD: Indicate that "process kill" is in progress to MCP */
9284 
9285 	/* Clear "unprepared" bit */
9286 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9287 	barrier();
9288 
9289 	/* Make sure all is written to the chip before the reset */
9290 	mmiowb();
9291 
9292 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9293 	 * PSWHST, GRC and PSWRD Tetris buffer.
9294 	 */
9295 	usleep_range(1000, 2000);
9296 
9297 	/* Prepare to chip reset: */
9298 	/* MCP */
9299 	if (global)
9300 		bnx2x_reset_mcp_prep(bp, &val);
9301 
9302 	/* PXP */
9303 	bnx2x_pxp_prep(bp);
9304 	barrier();
9305 
9306 	/* reset the chip */
9307 	bnx2x_process_kill_chip_reset(bp, global);
9308 	barrier();
9309 
9310 	/* Recover after reset: */
9311 	/* MCP */
9312 	if (global && bnx2x_reset_mcp_comp(bp, val))
9313 		return -EAGAIN;
9314 
9315 	/* TBD: Add resetting the NO_MCP mode DB here */
9316 
9317 	/* Open the gates #2, #3 and #4 */
9318 	bnx2x_set_234_gates(bp, false);
9319 
9320 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9321 	 * reset state, re-enable attentions. */
9322 
9323 	return 0;
9324 }
9325 
9326 static int bnx2x_leader_reset(struct bnx2x *bp)
9327 {
9328 	int rc = 0;
9329 	bool global = bnx2x_reset_is_global(bp);
9330 	u32 load_code;
9331 
9332 	/* if not going to reset MCP - load "fake" driver to reset HW while
9333 	 * driver is owner of the HW
9334 	 */
9335 	if (!global && !BP_NOMCP(bp)) {
9336 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9337 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9338 		if (!load_code) {
9339 			BNX2X_ERR("MCP response failure, aborting\n");
9340 			rc = -EAGAIN;
9341 			goto exit_leader_reset;
9342 		}
9343 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9344 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9345 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9346 			rc = -EAGAIN;
9347 			goto exit_leader_reset2;
9348 		}
9349 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9350 		if (!load_code) {
9351 			BNX2X_ERR("MCP response failure, aborting\n");
9352 			rc = -EAGAIN;
9353 			goto exit_leader_reset2;
9354 		}
9355 	}
9356 
9357 	/* Try to recover after the failure */
9358 	if (bnx2x_process_kill(bp, global)) {
9359 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9360 			  BP_PATH(bp));
9361 		rc = -EAGAIN;
9362 		goto exit_leader_reset2;
9363 	}
9364 
9365 	/*
9366 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9367 	 * state.
9368 	 */
9369 	bnx2x_set_reset_done(bp);
9370 	if (global)
9371 		bnx2x_clear_reset_global(bp);
9372 
9373 exit_leader_reset2:
9374 	/* unload "fake driver" if it was loaded */
9375 	if (!global && !BP_NOMCP(bp)) {
9376 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9377 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9378 	}
9379 exit_leader_reset:
9380 	bp->is_leader = 0;
9381 	bnx2x_release_leader_lock(bp);
9382 	smp_mb();
9383 	return rc;
9384 }
9385 
9386 static void bnx2x_recovery_failed(struct bnx2x *bp)
9387 {
9388 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9389 
9390 	/* Disconnect this device */
9391 	netif_device_detach(bp->dev);
9392 
9393 	/*
9394 	 * Block ifup for all function on this engine until "process kill"
9395 	 * or power cycle.
9396 	 */
9397 	bnx2x_set_reset_in_progress(bp);
9398 
9399 	/* Shut down the power */
9400 	bnx2x_set_power_state(bp, PCI_D3hot);
9401 
9402 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9403 
9404 	smp_mb();
9405 }
9406 
9407 /*
9408  * Assumption: runs under rtnl lock. This together with the fact
9409  * that it's called only from bnx2x_sp_rtnl() ensure that it
9410  * will never be called when netif_running(bp->dev) is false.
9411  */
9412 static void bnx2x_parity_recover(struct bnx2x *bp)
9413 {
9414 	bool global = false;
9415 	u32 error_recovered, error_unrecovered;
9416 	bool is_parity;
9417 
9418 	DP(NETIF_MSG_HW, "Handling parity\n");
9419 	while (1) {
9420 		switch (bp->recovery_state) {
9421 		case BNX2X_RECOVERY_INIT:
9422 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9423 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9424 			WARN_ON(!is_parity);
9425 
9426 			/* Try to get a LEADER_LOCK HW lock */
9427 			if (bnx2x_trylock_leader_lock(bp)) {
9428 				bnx2x_set_reset_in_progress(bp);
9429 				/*
9430 				 * Check if there is a global attention and if
9431 				 * there was a global attention, set the global
9432 				 * reset bit.
9433 				 */
9434 
9435 				if (global)
9436 					bnx2x_set_reset_global(bp);
9437 
9438 				bp->is_leader = 1;
9439 			}
9440 
9441 			/* Stop the driver */
9442 			/* If interface has been removed - break */
9443 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9444 				return;
9445 
9446 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9447 
9448 			/* Ensure "is_leader", MCP command sequence and
9449 			 * "recovery_state" update values are seen on other
9450 			 * CPUs.
9451 			 */
9452 			smp_mb();
9453 			break;
9454 
9455 		case BNX2X_RECOVERY_WAIT:
9456 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9457 			if (bp->is_leader) {
9458 				int other_engine = BP_PATH(bp) ? 0 : 1;
9459 				bool other_load_status =
9460 					bnx2x_get_load_status(bp, other_engine);
9461 				bool load_status =
9462 					bnx2x_get_load_status(bp, BP_PATH(bp));
9463 				global = bnx2x_reset_is_global(bp);
9464 
9465 				/*
9466 				 * In case of a parity in a global block, let
9467 				 * the first leader that performs a
9468 				 * leader_reset() reset the global blocks in
9469 				 * order to clear global attentions. Otherwise
9470 				 * the gates will remain closed for that
9471 				 * engine.
9472 				 */
9473 				if (load_status ||
9474 				    (global && other_load_status)) {
9475 					/* Wait until all other functions get
9476 					 * down.
9477 					 */
9478 					schedule_delayed_work(&bp->sp_rtnl_task,
9479 								HZ/10);
9480 					return;
9481 				} else {
9482 					/* If all other functions got down -
9483 					 * try to bring the chip back to
9484 					 * normal. In any case it's an exit
9485 					 * point for a leader.
9486 					 */
9487 					if (bnx2x_leader_reset(bp)) {
9488 						bnx2x_recovery_failed(bp);
9489 						return;
9490 					}
9491 
9492 					/* If we are here, means that the
9493 					 * leader has succeeded and doesn't
9494 					 * want to be a leader any more. Try
9495 					 * to continue as a none-leader.
9496 					 */
9497 					break;
9498 				}
9499 			} else { /* non-leader */
9500 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9501 					/* Try to get a LEADER_LOCK HW lock as
9502 					 * long as a former leader may have
9503 					 * been unloaded by the user or
9504 					 * released a leadership by another
9505 					 * reason.
9506 					 */
9507 					if (bnx2x_trylock_leader_lock(bp)) {
9508 						/* I'm a leader now! Restart a
9509 						 * switch case.
9510 						 */
9511 						bp->is_leader = 1;
9512 						break;
9513 					}
9514 
9515 					schedule_delayed_work(&bp->sp_rtnl_task,
9516 								HZ/10);
9517 					return;
9518 
9519 				} else {
9520 					/*
9521 					 * If there was a global attention, wait
9522 					 * for it to be cleared.
9523 					 */
9524 					if (bnx2x_reset_is_global(bp)) {
9525 						schedule_delayed_work(
9526 							&bp->sp_rtnl_task,
9527 							HZ/10);
9528 						return;
9529 					}
9530 
9531 					error_recovered =
9532 					  bp->eth_stats.recoverable_error;
9533 					error_unrecovered =
9534 					  bp->eth_stats.unrecoverable_error;
9535 					bp->recovery_state =
9536 						BNX2X_RECOVERY_NIC_LOADING;
9537 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9538 						error_unrecovered++;
9539 						netdev_err(bp->dev,
9540 							   "Recovery failed. Power cycle needed\n");
9541 						/* Disconnect this device */
9542 						netif_device_detach(bp->dev);
9543 						/* Shut down the power */
9544 						bnx2x_set_power_state(
9545 							bp, PCI_D3hot);
9546 						smp_mb();
9547 					} else {
9548 						bp->recovery_state =
9549 							BNX2X_RECOVERY_DONE;
9550 						error_recovered++;
9551 						smp_mb();
9552 					}
9553 					bp->eth_stats.recoverable_error =
9554 						error_recovered;
9555 					bp->eth_stats.unrecoverable_error =
9556 						error_unrecovered;
9557 
9558 					return;
9559 				}
9560 			}
9561 		default:
9562 			return;
9563 		}
9564 	}
9565 }
9566 
9567 static int bnx2x_close(struct net_device *dev);
9568 
9569 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9570  * scheduled on a general queue in order to prevent a dead lock.
9571  */
9572 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9573 {
9574 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9575 
9576 	rtnl_lock();
9577 
9578 	if (!netif_running(bp->dev)) {
9579 		rtnl_unlock();
9580 		return;
9581 	}
9582 
9583 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9584 #ifdef BNX2X_STOP_ON_ERROR
9585 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9586 			  "you will need to reboot when done\n");
9587 		goto sp_rtnl_not_reset;
9588 #endif
9589 		/*
9590 		 * Clear all pending SP commands as we are going to reset the
9591 		 * function anyway.
9592 		 */
9593 		bp->sp_rtnl_state = 0;
9594 		smp_mb();
9595 
9596 		bnx2x_parity_recover(bp);
9597 
9598 		rtnl_unlock();
9599 		return;
9600 	}
9601 
9602 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9603 #ifdef BNX2X_STOP_ON_ERROR
9604 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9605 			  "you will need to reboot when done\n");
9606 		goto sp_rtnl_not_reset;
9607 #endif
9608 
9609 		/*
9610 		 * Clear all pending SP commands as we are going to reset the
9611 		 * function anyway.
9612 		 */
9613 		bp->sp_rtnl_state = 0;
9614 		smp_mb();
9615 
9616 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9617 		bnx2x_nic_load(bp, LOAD_NORMAL);
9618 
9619 		rtnl_unlock();
9620 		return;
9621 	}
9622 #ifdef BNX2X_STOP_ON_ERROR
9623 sp_rtnl_not_reset:
9624 #endif
9625 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9626 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9627 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9628 		bnx2x_after_function_update(bp);
9629 	/*
9630 	 * in case of fan failure we need to reset id if the "stop on error"
9631 	 * debug flag is set, since we trying to prevent permanent overheating
9632 	 * damage
9633 	 */
9634 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9635 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9636 		netif_device_detach(bp->dev);
9637 		bnx2x_close(bp->dev);
9638 		rtnl_unlock();
9639 		return;
9640 	}
9641 
9642 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9643 		DP(BNX2X_MSG_SP,
9644 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
9645 		bnx2x_vfpf_set_mcast(bp->dev);
9646 	}
9647 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9648 			       &bp->sp_rtnl_state)){
9649 		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9650 			bnx2x_tx_disable(bp);
9651 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9652 		}
9653 	}
9654 
9655 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9656 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9657 		bnx2x_set_rx_mode_inner(bp);
9658 	}
9659 
9660 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9661 			       &bp->sp_rtnl_state))
9662 		bnx2x_pf_set_vfs_vlan(bp);
9663 
9664 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state))
9665 		bnx2x_dcbx_stop_hw_tx(bp);
9666 
9667 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_RESUME, &bp->sp_rtnl_state))
9668 		bnx2x_dcbx_resume_hw_tx(bp);
9669 
9670 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
9671 	 * can be called from other contexts as well)
9672 	 */
9673 	rtnl_unlock();
9674 
9675 	/* enable SR-IOV if applicable */
9676 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9677 					       &bp->sp_rtnl_state)) {
9678 		bnx2x_disable_sriov(bp);
9679 		bnx2x_enable_sriov(bp);
9680 	}
9681 }
9682 
9683 static void bnx2x_period_task(struct work_struct *work)
9684 {
9685 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9686 
9687 	if (!netif_running(bp->dev))
9688 		goto period_task_exit;
9689 
9690 	if (CHIP_REV_IS_SLOW(bp)) {
9691 		BNX2X_ERR("period task called on emulation, ignoring\n");
9692 		goto period_task_exit;
9693 	}
9694 
9695 	bnx2x_acquire_phy_lock(bp);
9696 	/*
9697 	 * The barrier is needed to ensure the ordering between the writing to
9698 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9699 	 * the reading here.
9700 	 */
9701 	smp_mb();
9702 	if (bp->port.pmf) {
9703 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9704 
9705 		/* Re-queue task in 1 sec */
9706 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9707 	}
9708 
9709 	bnx2x_release_phy_lock(bp);
9710 period_task_exit:
9711 	return;
9712 }
9713 
9714 /*
9715  * Init service functions
9716  */
9717 
9718 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9719 {
9720 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9721 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9722 	return base + (BP_ABS_FUNC(bp)) * stride;
9723 }
9724 
9725 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9726 					struct bnx2x_mac_vals *vals)
9727 {
9728 	u32 val, base_addr, offset, mask, reset_reg;
9729 	bool mac_stopped = false;
9730 	u8 port = BP_PORT(bp);
9731 
9732 	/* reset addresses as they also mark which values were changed */
9733 	vals->bmac_addr = 0;
9734 	vals->umac_addr = 0;
9735 	vals->xmac_addr = 0;
9736 	vals->emac_addr = 0;
9737 
9738 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9739 
9740 	if (!CHIP_IS_E3(bp)) {
9741 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9742 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9743 		if ((mask & reset_reg) && val) {
9744 			u32 wb_data[2];
9745 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9746 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9747 						: NIG_REG_INGRESS_BMAC0_MEM;
9748 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9749 						: BIGMAC_REGISTER_BMAC_CONTROL;
9750 
9751 			/*
9752 			 * use rd/wr since we cannot use dmae. This is safe
9753 			 * since MCP won't access the bus due to the request
9754 			 * to unload, and no function on the path can be
9755 			 * loaded at this time.
9756 			 */
9757 			wb_data[0] = REG_RD(bp, base_addr + offset);
9758 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9759 			vals->bmac_addr = base_addr + offset;
9760 			vals->bmac_val[0] = wb_data[0];
9761 			vals->bmac_val[1] = wb_data[1];
9762 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9763 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
9764 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9765 		}
9766 		BNX2X_DEV_INFO("Disable emac Rx\n");
9767 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9768 		vals->emac_val = REG_RD(bp, vals->emac_addr);
9769 		REG_WR(bp, vals->emac_addr, 0);
9770 		mac_stopped = true;
9771 	} else {
9772 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9773 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9774 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9775 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9776 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9777 			       val & ~(1 << 1));
9778 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9779 			       val | (1 << 1));
9780 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9781 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9782 			REG_WR(bp, vals->xmac_addr, 0);
9783 			mac_stopped = true;
9784 		}
9785 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9786 		if (mask & reset_reg) {
9787 			BNX2X_DEV_INFO("Disable umac Rx\n");
9788 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9789 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9790 			vals->umac_val = REG_RD(bp, vals->umac_addr);
9791 			REG_WR(bp, vals->umac_addr, 0);
9792 			mac_stopped = true;
9793 		}
9794 	}
9795 
9796 	if (mac_stopped)
9797 		msleep(20);
9798 }
9799 
9800 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9801 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9802 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9803 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9804 
9805 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9806 {
9807 	u16 rcq, bd;
9808 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9809 
9810 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9811 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9812 
9813 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9814 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9815 
9816 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9817 		       port, bd, rcq);
9818 }
9819 
9820 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9821 {
9822 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9823 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9824 	if (!rc) {
9825 		BNX2X_ERR("MCP response failure, aborting\n");
9826 		return -EBUSY;
9827 	}
9828 
9829 	return 0;
9830 }
9831 
9832 static struct bnx2x_prev_path_list *
9833 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
9834 {
9835 	struct bnx2x_prev_path_list *tmp_list;
9836 
9837 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9838 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9839 		    bp->pdev->bus->number == tmp_list->bus &&
9840 		    BP_PATH(bp) == tmp_list->path)
9841 			return tmp_list;
9842 
9843 	return NULL;
9844 }
9845 
9846 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9847 {
9848 	struct bnx2x_prev_path_list *tmp_list;
9849 	int rc;
9850 
9851 	rc = down_interruptible(&bnx2x_prev_sem);
9852 	if (rc) {
9853 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9854 		return rc;
9855 	}
9856 
9857 	tmp_list = bnx2x_prev_path_get_entry(bp);
9858 	if (tmp_list) {
9859 		tmp_list->aer = 1;
9860 		rc = 0;
9861 	} else {
9862 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9863 			  BP_PATH(bp));
9864 	}
9865 
9866 	up(&bnx2x_prev_sem);
9867 
9868 	return rc;
9869 }
9870 
9871 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9872 {
9873 	struct bnx2x_prev_path_list *tmp_list;
9874 	int rc = false;
9875 
9876 	if (down_trylock(&bnx2x_prev_sem))
9877 		return false;
9878 
9879 	tmp_list = bnx2x_prev_path_get_entry(bp);
9880 	if (tmp_list) {
9881 		if (tmp_list->aer) {
9882 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9883 			   BP_PATH(bp));
9884 		} else {
9885 			rc = true;
9886 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9887 				       BP_PATH(bp));
9888 		}
9889 	}
9890 
9891 	up(&bnx2x_prev_sem);
9892 
9893 	return rc;
9894 }
9895 
9896 bool bnx2x_port_after_undi(struct bnx2x *bp)
9897 {
9898 	struct bnx2x_prev_path_list *entry;
9899 	bool val;
9900 
9901 	down(&bnx2x_prev_sem);
9902 
9903 	entry = bnx2x_prev_path_get_entry(bp);
9904 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9905 
9906 	up(&bnx2x_prev_sem);
9907 
9908 	return val;
9909 }
9910 
9911 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9912 {
9913 	struct bnx2x_prev_path_list *tmp_list;
9914 	int rc;
9915 
9916 	rc = down_interruptible(&bnx2x_prev_sem);
9917 	if (rc) {
9918 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9919 		return rc;
9920 	}
9921 
9922 	/* Check whether the entry for this path already exists */
9923 	tmp_list = bnx2x_prev_path_get_entry(bp);
9924 	if (tmp_list) {
9925 		if (!tmp_list->aer) {
9926 			BNX2X_ERR("Re-Marking the path.\n");
9927 		} else {
9928 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9929 			   BP_PATH(bp));
9930 			tmp_list->aer = 0;
9931 		}
9932 		up(&bnx2x_prev_sem);
9933 		return 0;
9934 	}
9935 	up(&bnx2x_prev_sem);
9936 
9937 	/* Create an entry for this path and add it */
9938 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9939 	if (!tmp_list) {
9940 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9941 		return -ENOMEM;
9942 	}
9943 
9944 	tmp_list->bus = bp->pdev->bus->number;
9945 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9946 	tmp_list->path = BP_PATH(bp);
9947 	tmp_list->aer = 0;
9948 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9949 
9950 	rc = down_interruptible(&bnx2x_prev_sem);
9951 	if (rc) {
9952 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9953 		kfree(tmp_list);
9954 	} else {
9955 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9956 		   BP_PATH(bp));
9957 		list_add(&tmp_list->list, &bnx2x_prev_list);
9958 		up(&bnx2x_prev_sem);
9959 	}
9960 
9961 	return rc;
9962 }
9963 
9964 static int bnx2x_do_flr(struct bnx2x *bp)
9965 {
9966 	struct pci_dev *dev = bp->pdev;
9967 
9968 	if (CHIP_IS_E1x(bp)) {
9969 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9970 		return -EINVAL;
9971 	}
9972 
9973 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9974 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9975 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9976 			  bp->common.bc_ver);
9977 		return -EINVAL;
9978 	}
9979 
9980 	if (!pci_wait_for_pending_transaction(dev))
9981 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
9982 
9983 	BNX2X_DEV_INFO("Initiating FLR\n");
9984 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9985 
9986 	return 0;
9987 }
9988 
9989 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9990 {
9991 	int rc;
9992 
9993 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
9994 
9995 	/* Test if previous unload process was already finished for this path */
9996 	if (bnx2x_prev_is_path_marked(bp))
9997 		return bnx2x_prev_mcp_done(bp);
9998 
9999 	BNX2X_DEV_INFO("Path is unmarked\n");
10000 
10001 	/* If function has FLR capabilities, and existing FW version matches
10002 	 * the one required, then FLR will be sufficient to clean any residue
10003 	 * left by previous driver
10004 	 */
10005 	rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
10006 
10007 	if (!rc) {
10008 		/* fw version is good */
10009 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10010 		rc = bnx2x_do_flr(bp);
10011 	}
10012 
10013 	if (!rc) {
10014 		/* FLR was performed */
10015 		BNX2X_DEV_INFO("FLR successful\n");
10016 		return 0;
10017 	}
10018 
10019 	BNX2X_DEV_INFO("Could not FLR\n");
10020 
10021 	/* Close the MCP request, return failure*/
10022 	rc = bnx2x_prev_mcp_done(bp);
10023 	if (!rc)
10024 		rc = BNX2X_PREV_WAIT_NEEDED;
10025 
10026 	return rc;
10027 }
10028 
10029 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10030 {
10031 	u32 reset_reg, tmp_reg = 0, rc;
10032 	bool prev_undi = false;
10033 	struct bnx2x_mac_vals mac_vals;
10034 
10035 	/* It is possible a previous function received 'common' answer,
10036 	 * but hasn't loaded yet, therefore creating a scenario of
10037 	 * multiple functions receiving 'common' on the same path.
10038 	 */
10039 	BNX2X_DEV_INFO("Common unload Flow\n");
10040 
10041 	memset(&mac_vals, 0, sizeof(mac_vals));
10042 
10043 	if (bnx2x_prev_is_path_marked(bp))
10044 		return bnx2x_prev_mcp_done(bp);
10045 
10046 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10047 
10048 	/* Reset should be performed after BRB is emptied */
10049 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10050 		u32 timer_count = 1000;
10051 
10052 		/* Close the MAC Rx to prevent BRB from filling up */
10053 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10054 
10055 		/* close LLH filters towards the BRB */
10056 		bnx2x_set_rx_filter(&bp->link_params, 0);
10057 
10058 		/* Check if the UNDI driver was previously loaded
10059 		 * UNDI driver initializes CID offset for normal bell to 0x7
10060 		 */
10061 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10062 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10063 			if (tmp_reg == 0x7) {
10064 				BNX2X_DEV_INFO("UNDI previously loaded\n");
10065 				prev_undi = true;
10066 				/* clear the UNDI indication */
10067 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10068 				/* clear possible idle check errors */
10069 				REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10070 			}
10071 		}
10072 		if (!CHIP_IS_E1x(bp))
10073 			/* block FW from writing to host */
10074 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10075 
10076 		/* wait until BRB is empty */
10077 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10078 		while (timer_count) {
10079 			u32 prev_brb = tmp_reg;
10080 
10081 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10082 			if (!tmp_reg)
10083 				break;
10084 
10085 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10086 
10087 			/* reset timer as long as BRB actually gets emptied */
10088 			if (prev_brb > tmp_reg)
10089 				timer_count = 1000;
10090 			else
10091 				timer_count--;
10092 
10093 			/* If UNDI resides in memory, manually increment it */
10094 			if (prev_undi)
10095 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10096 
10097 			udelay(10);
10098 		}
10099 
10100 		if (!timer_count)
10101 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10102 	}
10103 
10104 	/* No packets are in the pipeline, path is ready for reset */
10105 	bnx2x_reset_common(bp);
10106 
10107 	if (mac_vals.xmac_addr)
10108 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10109 	if (mac_vals.umac_addr)
10110 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10111 	if (mac_vals.emac_addr)
10112 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10113 	if (mac_vals.bmac_addr) {
10114 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10115 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10116 	}
10117 
10118 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10119 	if (rc) {
10120 		bnx2x_prev_mcp_done(bp);
10121 		return rc;
10122 	}
10123 
10124 	return bnx2x_prev_mcp_done(bp);
10125 }
10126 
10127 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10128  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10129  * the addresses of the transaction, resulting in was-error bit set in the pci
10130  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10131  * to clear the interrupt which detected this from the pglueb and the was done
10132  * bit
10133  */
10134 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10135 {
10136 	if (!CHIP_IS_E1x(bp)) {
10137 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10138 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10139 			DP(BNX2X_MSG_SP,
10140 			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10141 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10142 			       1 << BP_FUNC(bp));
10143 		}
10144 	}
10145 }
10146 
10147 static int bnx2x_prev_unload(struct bnx2x *bp)
10148 {
10149 	int time_counter = 10;
10150 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10151 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10152 
10153 	/* clear hw from errors which may have resulted from an interrupted
10154 	 * dmae transaction.
10155 	 */
10156 	bnx2x_prev_interrupted_dmae(bp);
10157 
10158 	/* Release previously held locks */
10159 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10160 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10161 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10162 
10163 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10164 	if (hw_lock_val) {
10165 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10166 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10167 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10168 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10169 		}
10170 
10171 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10172 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10173 	} else
10174 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10175 
10176 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10177 		BNX2X_DEV_INFO("Release previously held alr\n");
10178 		bnx2x_release_alr(bp);
10179 	}
10180 
10181 	do {
10182 		int aer = 0;
10183 		/* Lock MCP using an unload request */
10184 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10185 		if (!fw) {
10186 			BNX2X_ERR("MCP response failure, aborting\n");
10187 			rc = -EBUSY;
10188 			break;
10189 		}
10190 
10191 		rc = down_interruptible(&bnx2x_prev_sem);
10192 		if (rc) {
10193 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10194 				  rc);
10195 		} else {
10196 			/* If Path is marked by EEH, ignore unload status */
10197 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10198 				 bnx2x_prev_path_get_entry(bp)->aer);
10199 			up(&bnx2x_prev_sem);
10200 		}
10201 
10202 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10203 			rc = bnx2x_prev_unload_common(bp);
10204 			break;
10205 		}
10206 
10207 		/* non-common reply from MCP might require looping */
10208 		rc = bnx2x_prev_unload_uncommon(bp);
10209 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10210 			break;
10211 
10212 		msleep(20);
10213 	} while (--time_counter);
10214 
10215 	if (!time_counter || rc) {
10216 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
10217 		rc = -EBUSY;
10218 	}
10219 
10220 	/* Mark function if its port was used to boot from SAN */
10221 	if (bnx2x_port_after_undi(bp))
10222 		bp->link_params.feature_config_flags |=
10223 			FEATURE_CONFIG_BOOT_FROM_SAN;
10224 
10225 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10226 
10227 	return rc;
10228 }
10229 
10230 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10231 {
10232 	u32 val, val2, val3, val4, id, boot_mode;
10233 	u16 pmc;
10234 
10235 	/* Get the chip revision id and number. */
10236 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10237 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10238 	id = ((val & 0xffff) << 16);
10239 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10240 	id |= ((val & 0xf) << 12);
10241 
10242 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10243 	 * the configuration space (so we need to reg_rd)
10244 	 */
10245 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10246 	id |= (((val >> 24) & 0xf) << 4);
10247 	val = REG_RD(bp, MISC_REG_BOND_ID);
10248 	id |= (val & 0xf);
10249 	bp->common.chip_id = id;
10250 
10251 	/* force 57811 according to MISC register */
10252 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10253 		if (CHIP_IS_57810(bp))
10254 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10255 				(bp->common.chip_id & 0x0000FFFF);
10256 		else if (CHIP_IS_57810_MF(bp))
10257 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10258 				(bp->common.chip_id & 0x0000FFFF);
10259 		bp->common.chip_id |= 0x1;
10260 	}
10261 
10262 	/* Set doorbell size */
10263 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10264 
10265 	if (!CHIP_IS_E1x(bp)) {
10266 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10267 		if ((val & 1) == 0)
10268 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10269 		else
10270 			val = (val >> 1) & 1;
10271 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10272 						       "2_PORT_MODE");
10273 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10274 						 CHIP_2_PORT_MODE;
10275 
10276 		if (CHIP_MODE_IS_4_PORT(bp))
10277 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10278 		else
10279 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10280 	} else {
10281 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10282 		bp->pfid = bp->pf_num;			/* 0..7 */
10283 	}
10284 
10285 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10286 
10287 	bp->link_params.chip_id = bp->common.chip_id;
10288 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10289 
10290 	val = (REG_RD(bp, 0x2874) & 0x55);
10291 	if ((bp->common.chip_id & 0x1) ||
10292 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10293 		bp->flags |= ONE_PORT_FLAG;
10294 		BNX2X_DEV_INFO("single port device\n");
10295 	}
10296 
10297 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10298 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10299 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10300 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10301 		       bp->common.flash_size, bp->common.flash_size);
10302 
10303 	bnx2x_init_shmem(bp);
10304 
10305 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10306 					MISC_REG_GENERIC_CR_1 :
10307 					MISC_REG_GENERIC_CR_0));
10308 
10309 	bp->link_params.shmem_base = bp->common.shmem_base;
10310 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10311 	if (SHMEM2_RD(bp, size) >
10312 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10313 		bp->link_params.lfa_base =
10314 		REG_RD(bp, bp->common.shmem2_base +
10315 		       (u32)offsetof(struct shmem2_region,
10316 				     lfa_host_addr[BP_PORT(bp)]));
10317 	else
10318 		bp->link_params.lfa_base = 0;
10319 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10320 		       bp->common.shmem_base, bp->common.shmem2_base);
10321 
10322 	if (!bp->common.shmem_base) {
10323 		BNX2X_DEV_INFO("MCP not active\n");
10324 		bp->flags |= NO_MCP_FLAG;
10325 		return;
10326 	}
10327 
10328 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10329 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10330 
10331 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10332 					SHARED_HW_CFG_LED_MODE_MASK) >>
10333 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10334 
10335 	bp->link_params.feature_config_flags = 0;
10336 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10337 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10338 		bp->link_params.feature_config_flags |=
10339 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10340 	else
10341 		bp->link_params.feature_config_flags &=
10342 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10343 
10344 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10345 	bp->common.bc_ver = val;
10346 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10347 	if (val < BNX2X_BC_VER) {
10348 		/* for now only warn
10349 		 * later we might need to enforce this */
10350 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10351 			  BNX2X_BC_VER, val);
10352 	}
10353 	bp->link_params.feature_config_flags |=
10354 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10355 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10356 
10357 	bp->link_params.feature_config_flags |=
10358 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10359 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10360 	bp->link_params.feature_config_flags |=
10361 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10362 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10363 	bp->link_params.feature_config_flags |=
10364 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10365 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10366 
10367 	bp->link_params.feature_config_flags |=
10368 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10369 		FEATURE_CONFIG_MT_SUPPORT : 0;
10370 
10371 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10372 			BC_SUPPORTS_PFC_STATS : 0;
10373 
10374 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10375 			BC_SUPPORTS_FCOE_FEATURES : 0;
10376 
10377 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10378 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10379 
10380 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10381 			BC_SUPPORTS_RMMOD_CMD : 0;
10382 
10383 	boot_mode = SHMEM_RD(bp,
10384 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10385 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10386 	switch (boot_mode) {
10387 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10388 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10389 		break;
10390 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10391 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10392 		break;
10393 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10394 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10395 		break;
10396 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10397 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10398 		break;
10399 	}
10400 
10401 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10402 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10403 
10404 	BNX2X_DEV_INFO("%sWoL capable\n",
10405 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10406 
10407 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10408 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10409 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10410 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10411 
10412 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10413 		 val, val2, val3, val4);
10414 }
10415 
10416 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10417 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10418 
10419 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10420 {
10421 	int pfid = BP_FUNC(bp);
10422 	int igu_sb_id;
10423 	u32 val;
10424 	u8 fid, igu_sb_cnt = 0;
10425 
10426 	bp->igu_base_sb = 0xff;
10427 	if (CHIP_INT_MODE_IS_BC(bp)) {
10428 		int vn = BP_VN(bp);
10429 		igu_sb_cnt = bp->igu_sb_cnt;
10430 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10431 			FP_SB_MAX_E1x;
10432 
10433 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10434 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10435 
10436 		return 0;
10437 	}
10438 
10439 	/* IGU in normal mode - read CAM */
10440 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10441 	     igu_sb_id++) {
10442 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10443 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10444 			continue;
10445 		fid = IGU_FID(val);
10446 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10447 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10448 				continue;
10449 			if (IGU_VEC(val) == 0)
10450 				/* default status block */
10451 				bp->igu_dsb_id = igu_sb_id;
10452 			else {
10453 				if (bp->igu_base_sb == 0xff)
10454 					bp->igu_base_sb = igu_sb_id;
10455 				igu_sb_cnt++;
10456 			}
10457 		}
10458 	}
10459 
10460 #ifdef CONFIG_PCI_MSI
10461 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10462 	 * optional that number of CAM entries will not be equal to the value
10463 	 * advertised in PCI.
10464 	 * Driver should use the minimal value of both as the actual status
10465 	 * block count
10466 	 */
10467 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10468 #endif
10469 
10470 	if (igu_sb_cnt == 0) {
10471 		BNX2X_ERR("CAM configuration error\n");
10472 		return -EINVAL;
10473 	}
10474 
10475 	return 0;
10476 }
10477 
10478 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10479 {
10480 	int cfg_size = 0, idx, port = BP_PORT(bp);
10481 
10482 	/* Aggregation of supported attributes of all external phys */
10483 	bp->port.supported[0] = 0;
10484 	bp->port.supported[1] = 0;
10485 	switch (bp->link_params.num_phys) {
10486 	case 1:
10487 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10488 		cfg_size = 1;
10489 		break;
10490 	case 2:
10491 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10492 		cfg_size = 1;
10493 		break;
10494 	case 3:
10495 		if (bp->link_params.multi_phy_config &
10496 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10497 			bp->port.supported[1] =
10498 				bp->link_params.phy[EXT_PHY1].supported;
10499 			bp->port.supported[0] =
10500 				bp->link_params.phy[EXT_PHY2].supported;
10501 		} else {
10502 			bp->port.supported[0] =
10503 				bp->link_params.phy[EXT_PHY1].supported;
10504 			bp->port.supported[1] =
10505 				bp->link_params.phy[EXT_PHY2].supported;
10506 		}
10507 		cfg_size = 2;
10508 		break;
10509 	}
10510 
10511 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10512 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10513 			   SHMEM_RD(bp,
10514 			   dev_info.port_hw_config[port].external_phy_config),
10515 			   SHMEM_RD(bp,
10516 			   dev_info.port_hw_config[port].external_phy_config2));
10517 			return;
10518 	}
10519 
10520 	if (CHIP_IS_E3(bp))
10521 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10522 	else {
10523 		switch (switch_cfg) {
10524 		case SWITCH_CFG_1G:
10525 			bp->port.phy_addr = REG_RD(
10526 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10527 			break;
10528 		case SWITCH_CFG_10G:
10529 			bp->port.phy_addr = REG_RD(
10530 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10531 			break;
10532 		default:
10533 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10534 				  bp->port.link_config[0]);
10535 			return;
10536 		}
10537 	}
10538 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10539 	/* mask what we support according to speed_cap_mask per configuration */
10540 	for (idx = 0; idx < cfg_size; idx++) {
10541 		if (!(bp->link_params.speed_cap_mask[idx] &
10542 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10543 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10544 
10545 		if (!(bp->link_params.speed_cap_mask[idx] &
10546 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10547 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10548 
10549 		if (!(bp->link_params.speed_cap_mask[idx] &
10550 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10551 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10552 
10553 		if (!(bp->link_params.speed_cap_mask[idx] &
10554 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10555 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10556 
10557 		if (!(bp->link_params.speed_cap_mask[idx] &
10558 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10559 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10560 						     SUPPORTED_1000baseT_Full);
10561 
10562 		if (!(bp->link_params.speed_cap_mask[idx] &
10563 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10564 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10565 
10566 		if (!(bp->link_params.speed_cap_mask[idx] &
10567 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10568 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10569 
10570 		if (!(bp->link_params.speed_cap_mask[idx] &
10571 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10572 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10573 	}
10574 
10575 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10576 		       bp->port.supported[1]);
10577 }
10578 
10579 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10580 {
10581 	u32 link_config, idx, cfg_size = 0;
10582 	bp->port.advertising[0] = 0;
10583 	bp->port.advertising[1] = 0;
10584 	switch (bp->link_params.num_phys) {
10585 	case 1:
10586 	case 2:
10587 		cfg_size = 1;
10588 		break;
10589 	case 3:
10590 		cfg_size = 2;
10591 		break;
10592 	}
10593 	for (idx = 0; idx < cfg_size; idx++) {
10594 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10595 		link_config = bp->port.link_config[idx];
10596 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10597 		case PORT_FEATURE_LINK_SPEED_AUTO:
10598 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10599 				bp->link_params.req_line_speed[idx] =
10600 					SPEED_AUTO_NEG;
10601 				bp->port.advertising[idx] |=
10602 					bp->port.supported[idx];
10603 				if (bp->link_params.phy[EXT_PHY1].type ==
10604 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10605 					bp->port.advertising[idx] |=
10606 					(SUPPORTED_100baseT_Half |
10607 					 SUPPORTED_100baseT_Full);
10608 			} else {
10609 				/* force 10G, no AN */
10610 				bp->link_params.req_line_speed[idx] =
10611 					SPEED_10000;
10612 				bp->port.advertising[idx] |=
10613 					(ADVERTISED_10000baseT_Full |
10614 					 ADVERTISED_FIBRE);
10615 				continue;
10616 			}
10617 			break;
10618 
10619 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10620 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10621 				bp->link_params.req_line_speed[idx] =
10622 					SPEED_10;
10623 				bp->port.advertising[idx] |=
10624 					(ADVERTISED_10baseT_Full |
10625 					 ADVERTISED_TP);
10626 			} else {
10627 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10628 					    link_config,
10629 				    bp->link_params.speed_cap_mask[idx]);
10630 				return;
10631 			}
10632 			break;
10633 
10634 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10635 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10636 				bp->link_params.req_line_speed[idx] =
10637 					SPEED_10;
10638 				bp->link_params.req_duplex[idx] =
10639 					DUPLEX_HALF;
10640 				bp->port.advertising[idx] |=
10641 					(ADVERTISED_10baseT_Half |
10642 					 ADVERTISED_TP);
10643 			} else {
10644 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10645 					    link_config,
10646 					  bp->link_params.speed_cap_mask[idx]);
10647 				return;
10648 			}
10649 			break;
10650 
10651 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10652 			if (bp->port.supported[idx] &
10653 			    SUPPORTED_100baseT_Full) {
10654 				bp->link_params.req_line_speed[idx] =
10655 					SPEED_100;
10656 				bp->port.advertising[idx] |=
10657 					(ADVERTISED_100baseT_Full |
10658 					 ADVERTISED_TP);
10659 			} else {
10660 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10661 					    link_config,
10662 					  bp->link_params.speed_cap_mask[idx]);
10663 				return;
10664 			}
10665 			break;
10666 
10667 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10668 			if (bp->port.supported[idx] &
10669 			    SUPPORTED_100baseT_Half) {
10670 				bp->link_params.req_line_speed[idx] =
10671 								SPEED_100;
10672 				bp->link_params.req_duplex[idx] =
10673 								DUPLEX_HALF;
10674 				bp->port.advertising[idx] |=
10675 					(ADVERTISED_100baseT_Half |
10676 					 ADVERTISED_TP);
10677 			} else {
10678 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10679 				    link_config,
10680 				    bp->link_params.speed_cap_mask[idx]);
10681 				return;
10682 			}
10683 			break;
10684 
10685 		case PORT_FEATURE_LINK_SPEED_1G:
10686 			if (bp->port.supported[idx] &
10687 			    SUPPORTED_1000baseT_Full) {
10688 				bp->link_params.req_line_speed[idx] =
10689 					SPEED_1000;
10690 				bp->port.advertising[idx] |=
10691 					(ADVERTISED_1000baseT_Full |
10692 					 ADVERTISED_TP);
10693 			} else {
10694 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10695 				    link_config,
10696 				    bp->link_params.speed_cap_mask[idx]);
10697 				return;
10698 			}
10699 			break;
10700 
10701 		case PORT_FEATURE_LINK_SPEED_2_5G:
10702 			if (bp->port.supported[idx] &
10703 			    SUPPORTED_2500baseX_Full) {
10704 				bp->link_params.req_line_speed[idx] =
10705 					SPEED_2500;
10706 				bp->port.advertising[idx] |=
10707 					(ADVERTISED_2500baseX_Full |
10708 						ADVERTISED_TP);
10709 			} else {
10710 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10711 				    link_config,
10712 				    bp->link_params.speed_cap_mask[idx]);
10713 				return;
10714 			}
10715 			break;
10716 
10717 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10718 			if (bp->port.supported[idx] &
10719 			    SUPPORTED_10000baseT_Full) {
10720 				bp->link_params.req_line_speed[idx] =
10721 					SPEED_10000;
10722 				bp->port.advertising[idx] |=
10723 					(ADVERTISED_10000baseT_Full |
10724 						ADVERTISED_FIBRE);
10725 			} else {
10726 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10727 				    link_config,
10728 				    bp->link_params.speed_cap_mask[idx]);
10729 				return;
10730 			}
10731 			break;
10732 		case PORT_FEATURE_LINK_SPEED_20G:
10733 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10734 
10735 			break;
10736 		default:
10737 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10738 				  link_config);
10739 				bp->link_params.req_line_speed[idx] =
10740 							SPEED_AUTO_NEG;
10741 				bp->port.advertising[idx] =
10742 						bp->port.supported[idx];
10743 			break;
10744 		}
10745 
10746 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10747 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10748 		if (bp->link_params.req_flow_ctrl[idx] ==
10749 		    BNX2X_FLOW_CTRL_AUTO) {
10750 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10751 				bp->link_params.req_flow_ctrl[idx] =
10752 							BNX2X_FLOW_CTRL_NONE;
10753 			else
10754 				bnx2x_set_requested_fc(bp);
10755 		}
10756 
10757 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10758 			       bp->link_params.req_line_speed[idx],
10759 			       bp->link_params.req_duplex[idx],
10760 			       bp->link_params.req_flow_ctrl[idx],
10761 			       bp->port.advertising[idx]);
10762 	}
10763 }
10764 
10765 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10766 {
10767 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
10768 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
10769 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10770 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10771 }
10772 
10773 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10774 {
10775 	int port = BP_PORT(bp);
10776 	u32 config;
10777 	u32 ext_phy_type, ext_phy_config, eee_mode;
10778 
10779 	bp->link_params.bp = bp;
10780 	bp->link_params.port = port;
10781 
10782 	bp->link_params.lane_config =
10783 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10784 
10785 	bp->link_params.speed_cap_mask[0] =
10786 		SHMEM_RD(bp,
10787 			 dev_info.port_hw_config[port].speed_capability_mask) &
10788 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10789 	bp->link_params.speed_cap_mask[1] =
10790 		SHMEM_RD(bp,
10791 			 dev_info.port_hw_config[port].speed_capability_mask2) &
10792 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10793 	bp->port.link_config[0] =
10794 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10795 
10796 	bp->port.link_config[1] =
10797 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10798 
10799 	bp->link_params.multi_phy_config =
10800 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10801 	/* If the device is capable of WoL, set the default state according
10802 	 * to the HW
10803 	 */
10804 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10805 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10806 		   (config & PORT_FEATURE_WOL_ENABLED));
10807 
10808 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10809 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10810 		bp->flags |= NO_ISCSI_FLAG;
10811 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10812 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10813 		bp->flags |= NO_FCOE_FLAG;
10814 
10815 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10816 		       bp->link_params.lane_config,
10817 		       bp->link_params.speed_cap_mask[0],
10818 		       bp->port.link_config[0]);
10819 
10820 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10821 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10822 	bnx2x_phy_probe(&bp->link_params);
10823 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10824 
10825 	bnx2x_link_settings_requested(bp);
10826 
10827 	/*
10828 	 * If connected directly, work with the internal PHY, otherwise, work
10829 	 * with the external PHY
10830 	 */
10831 	ext_phy_config =
10832 		SHMEM_RD(bp,
10833 			 dev_info.port_hw_config[port].external_phy_config);
10834 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10835 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10836 		bp->mdio.prtad = bp->port.phy_addr;
10837 
10838 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10839 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10840 		bp->mdio.prtad =
10841 			XGXS_EXT_PHY_ADDR(ext_phy_config);
10842 
10843 	/* Configure link feature according to nvram value */
10844 	eee_mode = (((SHMEM_RD(bp, dev_info.
10845 		      port_feature_config[port].eee_power_mode)) &
10846 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10847 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10848 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10849 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10850 					   EEE_MODE_ENABLE_LPI |
10851 					   EEE_MODE_OUTPUT_TIME;
10852 	} else {
10853 		bp->link_params.eee_mode = 0;
10854 	}
10855 }
10856 
10857 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10858 {
10859 	u32 no_flags = NO_ISCSI_FLAG;
10860 	int port = BP_PORT(bp);
10861 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10862 				drv_lic_key[port].max_iscsi_conn);
10863 
10864 	if (!CNIC_SUPPORT(bp)) {
10865 		bp->flags |= no_flags;
10866 		return;
10867 	}
10868 
10869 	/* Get the number of maximum allowed iSCSI connections */
10870 	bp->cnic_eth_dev.max_iscsi_conn =
10871 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10872 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10873 
10874 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10875 		       bp->cnic_eth_dev.max_iscsi_conn);
10876 
10877 	/*
10878 	 * If maximum allowed number of connections is zero -
10879 	 * disable the feature.
10880 	 */
10881 	if (!bp->cnic_eth_dev.max_iscsi_conn)
10882 		bp->flags |= no_flags;
10883 }
10884 
10885 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10886 {
10887 	/* Port info */
10888 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10889 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10890 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10891 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10892 
10893 	/* Node info */
10894 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10895 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10896 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10897 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10898 }
10899 
10900 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10901 {
10902 	u8 count = 0;
10903 
10904 	if (IS_MF(bp)) {
10905 		u8 fid;
10906 
10907 		/* iterate over absolute function ids for this path: */
10908 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10909 			if (IS_MF_SD(bp)) {
10910 				u32 cfg = MF_CFG_RD(bp,
10911 						    func_mf_config[fid].config);
10912 
10913 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10914 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10915 					    FUNC_MF_CFG_PROTOCOL_FCOE))
10916 					count++;
10917 			} else {
10918 				u32 cfg = MF_CFG_RD(bp,
10919 						    func_ext_config[fid].
10920 								      func_cfg);
10921 
10922 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10923 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10924 					count++;
10925 			}
10926 		}
10927 	} else { /* SF */
10928 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10929 
10930 		for (port = 0; port < port_cnt; port++) {
10931 			u32 lic = SHMEM_RD(bp,
10932 					   drv_lic_key[port].max_fcoe_conn) ^
10933 				  FW_ENCODE_32BIT_PATTERN;
10934 			if (lic)
10935 				count++;
10936 		}
10937 	}
10938 
10939 	return count;
10940 }
10941 
10942 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10943 {
10944 	int port = BP_PORT(bp);
10945 	int func = BP_ABS_FUNC(bp);
10946 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10947 				drv_lic_key[port].max_fcoe_conn);
10948 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
10949 
10950 	if (!CNIC_SUPPORT(bp)) {
10951 		bp->flags |= NO_FCOE_FLAG;
10952 		return;
10953 	}
10954 
10955 	/* Get the number of maximum allowed FCoE connections */
10956 	bp->cnic_eth_dev.max_fcoe_conn =
10957 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10958 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10959 
10960 	/* Calculate the number of maximum allowed FCoE tasks */
10961 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10962 
10963 	/* check if FCoE resources must be shared between different functions */
10964 	if (num_fcoe_func)
10965 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
10966 
10967 	/* Read the WWN: */
10968 	if (!IS_MF(bp)) {
10969 		/* Port info */
10970 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10971 			SHMEM_RD(bp,
10972 				 dev_info.port_hw_config[port].
10973 				 fcoe_wwn_port_name_upper);
10974 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10975 			SHMEM_RD(bp,
10976 				 dev_info.port_hw_config[port].
10977 				 fcoe_wwn_port_name_lower);
10978 
10979 		/* Node info */
10980 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10981 			SHMEM_RD(bp,
10982 				 dev_info.port_hw_config[port].
10983 				 fcoe_wwn_node_name_upper);
10984 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10985 			SHMEM_RD(bp,
10986 				 dev_info.port_hw_config[port].
10987 				 fcoe_wwn_node_name_lower);
10988 	} else if (!IS_MF_SD(bp)) {
10989 		/*
10990 		 * Read the WWN info only if the FCoE feature is enabled for
10991 		 * this function.
10992 		 */
10993 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10994 			bnx2x_get_ext_wwn_info(bp, func);
10995 
10996 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10997 		bnx2x_get_ext_wwn_info(bp, func);
10998 	}
10999 
11000 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11001 
11002 	/*
11003 	 * If maximum allowed number of connections is zero -
11004 	 * disable the feature.
11005 	 */
11006 	if (!bp->cnic_eth_dev.max_fcoe_conn)
11007 		bp->flags |= NO_FCOE_FLAG;
11008 }
11009 
11010 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11011 {
11012 	/*
11013 	 * iSCSI may be dynamically disabled but reading
11014 	 * info here we will decrease memory usage by driver
11015 	 * if the feature is disabled for good
11016 	 */
11017 	bnx2x_get_iscsi_info(bp);
11018 	bnx2x_get_fcoe_info(bp);
11019 }
11020 
11021 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11022 {
11023 	u32 val, val2;
11024 	int func = BP_ABS_FUNC(bp);
11025 	int port = BP_PORT(bp);
11026 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11027 	u8 *fip_mac = bp->fip_mac;
11028 
11029 	if (IS_MF(bp)) {
11030 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11031 		 * FCoE MAC then the appropriate feature should be disabled.
11032 		 * In non SD mode features configuration comes from struct
11033 		 * func_ext_config.
11034 		 */
11035 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11036 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11037 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11038 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11039 						 iscsi_mac_addr_upper);
11040 				val = MF_CFG_RD(bp, func_ext_config[func].
11041 						iscsi_mac_addr_lower);
11042 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11043 				BNX2X_DEV_INFO
11044 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11045 			} else {
11046 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11047 			}
11048 
11049 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11050 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11051 						 fcoe_mac_addr_upper);
11052 				val = MF_CFG_RD(bp, func_ext_config[func].
11053 						fcoe_mac_addr_lower);
11054 				bnx2x_set_mac_buf(fip_mac, val, val2);
11055 				BNX2X_DEV_INFO
11056 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11057 			} else {
11058 				bp->flags |= NO_FCOE_FLAG;
11059 			}
11060 
11061 			bp->mf_ext_config = cfg;
11062 
11063 		} else { /* SD MODE */
11064 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11065 				/* use primary mac as iscsi mac */
11066 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11067 
11068 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11069 				BNX2X_DEV_INFO
11070 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11071 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11072 				/* use primary mac as fip mac */
11073 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11074 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11075 				BNX2X_DEV_INFO
11076 					("Read FIP MAC: %pM\n", fip_mac);
11077 			}
11078 		}
11079 
11080 		/* If this is a storage-only interface, use SAN mac as
11081 		 * primary MAC. Notice that for SD this is already the case,
11082 		 * as the SAN mac was copied from the primary MAC.
11083 		 */
11084 		if (IS_MF_FCOE_AFEX(bp))
11085 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11086 	} else {
11087 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11088 				iscsi_mac_upper);
11089 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11090 			       iscsi_mac_lower);
11091 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11092 
11093 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11094 				fcoe_fip_mac_upper);
11095 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11096 			       fcoe_fip_mac_lower);
11097 		bnx2x_set_mac_buf(fip_mac, val, val2);
11098 	}
11099 
11100 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11101 	if (!is_valid_ether_addr(iscsi_mac)) {
11102 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11103 		memset(iscsi_mac, 0, ETH_ALEN);
11104 	}
11105 
11106 	/* Disable FCoE if MAC configuration is invalid. */
11107 	if (!is_valid_ether_addr(fip_mac)) {
11108 		bp->flags |= NO_FCOE_FLAG;
11109 		memset(bp->fip_mac, 0, ETH_ALEN);
11110 	}
11111 }
11112 
11113 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11114 {
11115 	u32 val, val2;
11116 	int func = BP_ABS_FUNC(bp);
11117 	int port = BP_PORT(bp);
11118 
11119 	/* Zero primary MAC configuration */
11120 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
11121 
11122 	if (BP_NOMCP(bp)) {
11123 		BNX2X_ERROR("warning: random MAC workaround active\n");
11124 		eth_hw_addr_random(bp->dev);
11125 	} else if (IS_MF(bp)) {
11126 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11127 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11128 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11129 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11130 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11131 
11132 		if (CNIC_SUPPORT(bp))
11133 			bnx2x_get_cnic_mac_hwinfo(bp);
11134 	} else {
11135 		/* in SF read MACs from port configuration */
11136 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11137 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11138 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11139 
11140 		if (CNIC_SUPPORT(bp))
11141 			bnx2x_get_cnic_mac_hwinfo(bp);
11142 	}
11143 
11144 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11145 
11146 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11147 		dev_err(&bp->pdev->dev,
11148 			"bad Ethernet MAC address configuration: %pM\n"
11149 			"change it manually before bringing up the appropriate network interface\n",
11150 			bp->dev->dev_addr);
11151 }
11152 
11153 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11154 {
11155 	int tmp;
11156 	u32 cfg;
11157 
11158 	if (IS_VF(bp))
11159 		return 0;
11160 
11161 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11162 		/* Take function: tmp = func */
11163 		tmp = BP_ABS_FUNC(bp);
11164 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11165 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11166 	} else {
11167 		/* Take port: tmp = port */
11168 		tmp = BP_PORT(bp);
11169 		cfg = SHMEM_RD(bp,
11170 			       dev_info.port_hw_config[tmp].generic_features);
11171 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11172 	}
11173 	return cfg;
11174 }
11175 
11176 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11177 {
11178 	int /*abs*/func = BP_ABS_FUNC(bp);
11179 	int vn;
11180 	u32 val = 0;
11181 	int rc = 0;
11182 
11183 	bnx2x_get_common_hwinfo(bp);
11184 
11185 	/*
11186 	 * initialize IGU parameters
11187 	 */
11188 	if (CHIP_IS_E1x(bp)) {
11189 		bp->common.int_block = INT_BLOCK_HC;
11190 
11191 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11192 		bp->igu_base_sb = 0;
11193 	} else {
11194 		bp->common.int_block = INT_BLOCK_IGU;
11195 
11196 		/* do not allow device reset during IGU info processing */
11197 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11198 
11199 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11200 
11201 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11202 			int tout = 5000;
11203 
11204 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11205 
11206 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11207 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11208 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11209 
11210 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11211 				tout--;
11212 				usleep_range(1000, 2000);
11213 			}
11214 
11215 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11216 				dev_err(&bp->pdev->dev,
11217 					"FORCING Normal Mode failed!!!\n");
11218 				bnx2x_release_hw_lock(bp,
11219 						      HW_LOCK_RESOURCE_RESET);
11220 				return -EPERM;
11221 			}
11222 		}
11223 
11224 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11225 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11226 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11227 		} else
11228 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11229 
11230 		rc = bnx2x_get_igu_cam_info(bp);
11231 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11232 		if (rc)
11233 			return rc;
11234 	}
11235 
11236 	/*
11237 	 * set base FW non-default (fast path) status block id, this value is
11238 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11239 	 * determine the id used by the FW.
11240 	 */
11241 	if (CHIP_IS_E1x(bp))
11242 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11243 	else /*
11244 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11245 	      * the same queue are indicated on the same IGU SB). So we prefer
11246 	      * FW and IGU SBs to be the same value.
11247 	      */
11248 		bp->base_fw_ndsb = bp->igu_base_sb;
11249 
11250 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11251 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11252 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11253 
11254 	/*
11255 	 * Initialize MF configuration
11256 	 */
11257 
11258 	bp->mf_ov = 0;
11259 	bp->mf_mode = 0;
11260 	vn = BP_VN(bp);
11261 
11262 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11263 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11264 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11265 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11266 
11267 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11268 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11269 		else
11270 			bp->common.mf_cfg_base = bp->common.shmem_base +
11271 				offsetof(struct shmem_region, func_mb) +
11272 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11273 		/*
11274 		 * get mf configuration:
11275 		 * 1. Existence of MF configuration
11276 		 * 2. MAC address must be legal (check only upper bytes)
11277 		 *    for  Switch-Independent mode;
11278 		 *    OVLAN must be legal for Switch-Dependent mode
11279 		 * 3. SF_MODE configures specific MF mode
11280 		 */
11281 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11282 			/* get mf configuration */
11283 			val = SHMEM_RD(bp,
11284 				       dev_info.shared_feature_config.config);
11285 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11286 
11287 			switch (val) {
11288 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11289 				val = MF_CFG_RD(bp, func_mf_config[func].
11290 						mac_upper);
11291 				/* check for legal mac (upper bytes)*/
11292 				if (val != 0xffff) {
11293 					bp->mf_mode = MULTI_FUNCTION_SI;
11294 					bp->mf_config[vn] = MF_CFG_RD(bp,
11295 						   func_mf_config[func].config);
11296 				} else
11297 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
11298 				break;
11299 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11300 				if ((!CHIP_IS_E1x(bp)) &&
11301 				    (MF_CFG_RD(bp, func_mf_config[func].
11302 					       mac_upper) != 0xffff) &&
11303 				    (SHMEM2_HAS(bp,
11304 						afex_driver_support))) {
11305 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11306 					bp->mf_config[vn] = MF_CFG_RD(bp,
11307 						func_mf_config[func].config);
11308 				} else {
11309 					BNX2X_DEV_INFO("can not configure afex mode\n");
11310 				}
11311 				break;
11312 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11313 				/* get OV configuration */
11314 				val = MF_CFG_RD(bp,
11315 					func_mf_config[FUNC_0].e1hov_tag);
11316 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11317 
11318 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11319 					bp->mf_mode = MULTI_FUNCTION_SD;
11320 					bp->mf_config[vn] = MF_CFG_RD(bp,
11321 						func_mf_config[func].config);
11322 				} else
11323 					BNX2X_DEV_INFO("illegal OV for SD\n");
11324 				break;
11325 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11326 				bp->mf_config[vn] = 0;
11327 				break;
11328 			default:
11329 				/* Unknown configuration: reset mf_config */
11330 				bp->mf_config[vn] = 0;
11331 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11332 			}
11333 		}
11334 
11335 		BNX2X_DEV_INFO("%s function mode\n",
11336 			       IS_MF(bp) ? "multi" : "single");
11337 
11338 		switch (bp->mf_mode) {
11339 		case MULTI_FUNCTION_SD:
11340 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11341 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11342 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11343 				bp->mf_ov = val;
11344 				bp->path_has_ovlan = true;
11345 
11346 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11347 					       func, bp->mf_ov, bp->mf_ov);
11348 			} else {
11349 				dev_err(&bp->pdev->dev,
11350 					"No valid MF OV for func %d, aborting\n",
11351 					func);
11352 				return -EPERM;
11353 			}
11354 			break;
11355 		case MULTI_FUNCTION_AFEX:
11356 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11357 			break;
11358 		case MULTI_FUNCTION_SI:
11359 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11360 				       func);
11361 			break;
11362 		default:
11363 			if (vn) {
11364 				dev_err(&bp->pdev->dev,
11365 					"VN %d is in a single function mode, aborting\n",
11366 					vn);
11367 				return -EPERM;
11368 			}
11369 			break;
11370 		}
11371 
11372 		/* check if other port on the path needs ovlan:
11373 		 * Since MF configuration is shared between ports
11374 		 * Possible mixed modes are only
11375 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11376 		 */
11377 		if (CHIP_MODE_IS_4_PORT(bp) &&
11378 		    !bp->path_has_ovlan &&
11379 		    !IS_MF(bp) &&
11380 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11381 			u8 other_port = !BP_PORT(bp);
11382 			u8 other_func = BP_PATH(bp) + 2*other_port;
11383 			val = MF_CFG_RD(bp,
11384 					func_mf_config[other_func].e1hov_tag);
11385 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11386 				bp->path_has_ovlan = true;
11387 		}
11388 	}
11389 
11390 	/* adjust igu_sb_cnt to MF for E1x */
11391 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
11392 		bp->igu_sb_cnt /= E1HVN_MAX;
11393 
11394 	/* port info */
11395 	bnx2x_get_port_hwinfo(bp);
11396 
11397 	/* Get MAC addresses */
11398 	bnx2x_get_mac_hwinfo(bp);
11399 
11400 	bnx2x_get_cnic_info(bp);
11401 
11402 	return rc;
11403 }
11404 
11405 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11406 {
11407 	int cnt, i, block_end, rodi;
11408 	char vpd_start[BNX2X_VPD_LEN+1];
11409 	char str_id_reg[VENDOR_ID_LEN+1];
11410 	char str_id_cap[VENDOR_ID_LEN+1];
11411 	char *vpd_data;
11412 	char *vpd_extended_data = NULL;
11413 	u8 len;
11414 
11415 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11416 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11417 
11418 	if (cnt < BNX2X_VPD_LEN)
11419 		goto out_not_found;
11420 
11421 	/* VPD RO tag should be first tag after identifier string, hence
11422 	 * we should be able to find it in first BNX2X_VPD_LEN chars
11423 	 */
11424 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11425 			     PCI_VPD_LRDT_RO_DATA);
11426 	if (i < 0)
11427 		goto out_not_found;
11428 
11429 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11430 		    pci_vpd_lrdt_size(&vpd_start[i]);
11431 
11432 	i += PCI_VPD_LRDT_TAG_SIZE;
11433 
11434 	if (block_end > BNX2X_VPD_LEN) {
11435 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11436 		if (vpd_extended_data  == NULL)
11437 			goto out_not_found;
11438 
11439 		/* read rest of vpd image into vpd_extended_data */
11440 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11441 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11442 				   block_end - BNX2X_VPD_LEN,
11443 				   vpd_extended_data + BNX2X_VPD_LEN);
11444 		if (cnt < (block_end - BNX2X_VPD_LEN))
11445 			goto out_not_found;
11446 		vpd_data = vpd_extended_data;
11447 	} else
11448 		vpd_data = vpd_start;
11449 
11450 	/* now vpd_data holds full vpd content in both cases */
11451 
11452 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11453 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11454 	if (rodi < 0)
11455 		goto out_not_found;
11456 
11457 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11458 
11459 	if (len != VENDOR_ID_LEN)
11460 		goto out_not_found;
11461 
11462 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11463 
11464 	/* vendor specific info */
11465 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11466 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11467 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11468 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11469 
11470 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11471 						PCI_VPD_RO_KEYWORD_VENDOR0);
11472 		if (rodi >= 0) {
11473 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11474 
11475 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11476 
11477 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11478 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11479 				bp->fw_ver[len] = ' ';
11480 			}
11481 		}
11482 		kfree(vpd_extended_data);
11483 		return;
11484 	}
11485 out_not_found:
11486 	kfree(vpd_extended_data);
11487 	return;
11488 }
11489 
11490 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11491 {
11492 	u32 flags = 0;
11493 
11494 	if (CHIP_REV_IS_FPGA(bp))
11495 		SET_FLAGS(flags, MODE_FPGA);
11496 	else if (CHIP_REV_IS_EMUL(bp))
11497 		SET_FLAGS(flags, MODE_EMUL);
11498 	else
11499 		SET_FLAGS(flags, MODE_ASIC);
11500 
11501 	if (CHIP_MODE_IS_4_PORT(bp))
11502 		SET_FLAGS(flags, MODE_PORT4);
11503 	else
11504 		SET_FLAGS(flags, MODE_PORT2);
11505 
11506 	if (CHIP_IS_E2(bp))
11507 		SET_FLAGS(flags, MODE_E2);
11508 	else if (CHIP_IS_E3(bp)) {
11509 		SET_FLAGS(flags, MODE_E3);
11510 		if (CHIP_REV(bp) == CHIP_REV_Ax)
11511 			SET_FLAGS(flags, MODE_E3_A0);
11512 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11513 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11514 	}
11515 
11516 	if (IS_MF(bp)) {
11517 		SET_FLAGS(flags, MODE_MF);
11518 		switch (bp->mf_mode) {
11519 		case MULTI_FUNCTION_SD:
11520 			SET_FLAGS(flags, MODE_MF_SD);
11521 			break;
11522 		case MULTI_FUNCTION_SI:
11523 			SET_FLAGS(flags, MODE_MF_SI);
11524 			break;
11525 		case MULTI_FUNCTION_AFEX:
11526 			SET_FLAGS(flags, MODE_MF_AFEX);
11527 			break;
11528 		}
11529 	} else
11530 		SET_FLAGS(flags, MODE_SF);
11531 
11532 #if defined(__LITTLE_ENDIAN)
11533 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11534 #else /*(__BIG_ENDIAN)*/
11535 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11536 #endif
11537 	INIT_MODE_FLAGS(bp) = flags;
11538 }
11539 
11540 static int bnx2x_init_bp(struct bnx2x *bp)
11541 {
11542 	int func;
11543 	int rc;
11544 
11545 	mutex_init(&bp->port.phy_mutex);
11546 	mutex_init(&bp->fw_mb_mutex);
11547 	spin_lock_init(&bp->stats_lock);
11548 	sema_init(&bp->stats_sema, 1);
11549 
11550 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11551 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11552 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11553 	if (IS_PF(bp)) {
11554 		rc = bnx2x_get_hwinfo(bp);
11555 		if (rc)
11556 			return rc;
11557 	} else {
11558 		eth_zero_addr(bp->dev->dev_addr);
11559 	}
11560 
11561 	bnx2x_set_modes_bitmap(bp);
11562 
11563 	rc = bnx2x_alloc_mem_bp(bp);
11564 	if (rc)
11565 		return rc;
11566 
11567 	bnx2x_read_fwinfo(bp);
11568 
11569 	func = BP_FUNC(bp);
11570 
11571 	/* need to reset chip if undi was active */
11572 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
11573 		/* init fw_seq */
11574 		bp->fw_seq =
11575 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11576 							DRV_MSG_SEQ_NUMBER_MASK;
11577 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11578 
11579 		bnx2x_prev_unload(bp);
11580 	}
11581 
11582 	if (CHIP_REV_IS_FPGA(bp))
11583 		dev_err(&bp->pdev->dev, "FPGA detected\n");
11584 
11585 	if (BP_NOMCP(bp) && (func == 0))
11586 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11587 
11588 	bp->disable_tpa = disable_tpa;
11589 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11590 
11591 	/* Set TPA flags */
11592 	if (bp->disable_tpa) {
11593 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11594 		bp->dev->features &= ~NETIF_F_LRO;
11595 	} else {
11596 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11597 		bp->dev->features |= NETIF_F_LRO;
11598 	}
11599 
11600 	if (CHIP_IS_E1(bp))
11601 		bp->dropless_fc = 0;
11602 	else
11603 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11604 
11605 	bp->mrrs = mrrs;
11606 
11607 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11608 	if (IS_VF(bp))
11609 		bp->rx_ring_size = MAX_RX_AVAIL;
11610 
11611 	/* make sure that the numbers are in the right granularity */
11612 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11613 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11614 
11615 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11616 
11617 	init_timer(&bp->timer);
11618 	bp->timer.expires = jiffies + bp->current_interval;
11619 	bp->timer.data = (unsigned long) bp;
11620 	bp->timer.function = bnx2x_timer;
11621 
11622 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11623 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11624 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11625 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11626 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11627 		bnx2x_dcbx_init_params(bp);
11628 	} else {
11629 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11630 	}
11631 
11632 	if (CHIP_IS_E1x(bp))
11633 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11634 	else
11635 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11636 
11637 	/* multiple tx priority */
11638 	if (IS_VF(bp))
11639 		bp->max_cos = 1;
11640 	else if (CHIP_IS_E1x(bp))
11641 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11642 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11643 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11644 	else if (CHIP_IS_E3B0(bp))
11645 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11646 	else
11647 		BNX2X_ERR("unknown chip %x revision %x\n",
11648 			  CHIP_NUM(bp), CHIP_REV(bp));
11649 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11650 
11651 	/* We need at least one default status block for slow-path events,
11652 	 * second status block for the L2 queue, and a third status block for
11653 	 * CNIC if supported.
11654 	 */
11655 	if (IS_VF(bp))
11656 		bp->min_msix_vec_cnt = 1;
11657 	else if (CNIC_SUPPORT(bp))
11658 		bp->min_msix_vec_cnt = 3;
11659 	else /* PF w/o cnic */
11660 		bp->min_msix_vec_cnt = 2;
11661 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11662 
11663 	bp->dump_preset_idx = 1;
11664 
11665 	return rc;
11666 }
11667 
11668 /****************************************************************************
11669 * General service functions
11670 ****************************************************************************/
11671 
11672 /*
11673  * net_device service functions
11674  */
11675 
11676 /* called with rtnl_lock */
11677 static int bnx2x_open(struct net_device *dev)
11678 {
11679 	struct bnx2x *bp = netdev_priv(dev);
11680 	bool global = false;
11681 	int other_engine = BP_PATH(bp) ? 0 : 1;
11682 	bool other_load_status, load_status;
11683 	int rc;
11684 
11685 	bp->stats_init = true;
11686 
11687 	netif_carrier_off(dev);
11688 
11689 	bnx2x_set_power_state(bp, PCI_D0);
11690 
11691 	/* If parity had happen during the unload, then attentions
11692 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11693 	 * want the first function loaded on the current engine to
11694 	 * complete the recovery.
11695 	 * Parity recovery is only relevant for PF driver.
11696 	 */
11697 	if (IS_PF(bp)) {
11698 		other_load_status = bnx2x_get_load_status(bp, other_engine);
11699 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11700 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11701 		    bnx2x_chk_parity_attn(bp, &global, true)) {
11702 			do {
11703 				/* If there are attentions and they are in a
11704 				 * global blocks, set the GLOBAL_RESET bit
11705 				 * regardless whether it will be this function
11706 				 * that will complete the recovery or not.
11707 				 */
11708 				if (global)
11709 					bnx2x_set_reset_global(bp);
11710 
11711 				/* Only the first function on the current
11712 				 * engine should try to recover in open. In case
11713 				 * of attentions in global blocks only the first
11714 				 * in the chip should try to recover.
11715 				 */
11716 				if ((!load_status &&
11717 				     (!global || !other_load_status)) &&
11718 				      bnx2x_trylock_leader_lock(bp) &&
11719 				      !bnx2x_leader_reset(bp)) {
11720 					netdev_info(bp->dev,
11721 						    "Recovered in open\n");
11722 					break;
11723 				}
11724 
11725 				/* recovery has failed... */
11726 				bnx2x_set_power_state(bp, PCI_D3hot);
11727 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
11728 
11729 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11730 					  "If you still see this message after a few retries then power cycle is required.\n");
11731 
11732 				return -EAGAIN;
11733 			} while (0);
11734 		}
11735 	}
11736 
11737 	bp->recovery_state = BNX2X_RECOVERY_DONE;
11738 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
11739 	if (rc)
11740 		return rc;
11741 	return bnx2x_open_epilog(bp);
11742 }
11743 
11744 /* called with rtnl_lock */
11745 static int bnx2x_close(struct net_device *dev)
11746 {
11747 	struct bnx2x *bp = netdev_priv(dev);
11748 
11749 	/* Unload the driver, release IRQs */
11750 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11751 
11752 	return 0;
11753 }
11754 
11755 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11756 				      struct bnx2x_mcast_ramrod_params *p)
11757 {
11758 	int mc_count = netdev_mc_count(bp->dev);
11759 	struct bnx2x_mcast_list_elem *mc_mac =
11760 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11761 	struct netdev_hw_addr *ha;
11762 
11763 	if (!mc_mac)
11764 		return -ENOMEM;
11765 
11766 	INIT_LIST_HEAD(&p->mcast_list);
11767 
11768 	netdev_for_each_mc_addr(ha, bp->dev) {
11769 		mc_mac->mac = bnx2x_mc_addr(ha);
11770 		list_add_tail(&mc_mac->link, &p->mcast_list);
11771 		mc_mac++;
11772 	}
11773 
11774 	p->mcast_list_len = mc_count;
11775 
11776 	return 0;
11777 }
11778 
11779 static void bnx2x_free_mcast_macs_list(
11780 	struct bnx2x_mcast_ramrod_params *p)
11781 {
11782 	struct bnx2x_mcast_list_elem *mc_mac =
11783 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11784 				 link);
11785 
11786 	WARN_ON(!mc_mac);
11787 	kfree(mc_mac);
11788 }
11789 
11790 /**
11791  * bnx2x_set_uc_list - configure a new unicast MACs list.
11792  *
11793  * @bp: driver handle
11794  *
11795  * We will use zero (0) as a MAC type for these MACs.
11796  */
11797 static int bnx2x_set_uc_list(struct bnx2x *bp)
11798 {
11799 	int rc;
11800 	struct net_device *dev = bp->dev;
11801 	struct netdev_hw_addr *ha;
11802 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11803 	unsigned long ramrod_flags = 0;
11804 
11805 	/* First schedule a cleanup up of old configuration */
11806 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11807 	if (rc < 0) {
11808 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11809 		return rc;
11810 	}
11811 
11812 	netdev_for_each_uc_addr(ha, dev) {
11813 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11814 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11815 		if (rc == -EEXIST) {
11816 			DP(BNX2X_MSG_SP,
11817 			   "Failed to schedule ADD operations: %d\n", rc);
11818 			/* do not treat adding same MAC as error */
11819 			rc = 0;
11820 
11821 		} else if (rc < 0) {
11822 
11823 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11824 				  rc);
11825 			return rc;
11826 		}
11827 	}
11828 
11829 	/* Execute the pending commands */
11830 	__set_bit(RAMROD_CONT, &ramrod_flags);
11831 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11832 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
11833 }
11834 
11835 static int bnx2x_set_mc_list(struct bnx2x *bp)
11836 {
11837 	struct net_device *dev = bp->dev;
11838 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
11839 	int rc = 0;
11840 
11841 	rparam.mcast_obj = &bp->mcast_obj;
11842 
11843 	/* first, clear all configured multicast MACs */
11844 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11845 	if (rc < 0) {
11846 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11847 		return rc;
11848 	}
11849 
11850 	/* then, configure a new MACs list */
11851 	if (netdev_mc_count(dev)) {
11852 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11853 		if (rc) {
11854 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11855 				  rc);
11856 			return rc;
11857 		}
11858 
11859 		/* Now add the new MACs */
11860 		rc = bnx2x_config_mcast(bp, &rparam,
11861 					BNX2X_MCAST_CMD_ADD);
11862 		if (rc < 0)
11863 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11864 				  rc);
11865 
11866 		bnx2x_free_mcast_macs_list(&rparam);
11867 	}
11868 
11869 	return rc;
11870 }
11871 
11872 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11873 void bnx2x_set_rx_mode(struct net_device *dev)
11874 {
11875 	struct bnx2x *bp = netdev_priv(dev);
11876 
11877 	if (bp->state != BNX2X_STATE_OPEN) {
11878 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11879 		return;
11880 	} else {
11881 		/* Schedule an SP task to handle rest of change */
11882 		DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
11883 		smp_mb__before_clear_bit();
11884 		set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
11885 		smp_mb__after_clear_bit();
11886 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
11887 	}
11888 }
11889 
11890 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
11891 {
11892 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11893 
11894 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11895 
11896 	netif_addr_lock_bh(bp->dev);
11897 
11898 	if (bp->dev->flags & IFF_PROMISC) {
11899 		rx_mode = BNX2X_RX_MODE_PROMISC;
11900 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
11901 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
11902 		    CHIP_IS_E1(bp))) {
11903 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
11904 	} else {
11905 		if (IS_PF(bp)) {
11906 			/* some multicasts */
11907 			if (bnx2x_set_mc_list(bp) < 0)
11908 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
11909 
11910 			/* release bh lock, as bnx2x_set_uc_list might sleep */
11911 			netif_addr_unlock_bh(bp->dev);
11912 			if (bnx2x_set_uc_list(bp) < 0)
11913 				rx_mode = BNX2X_RX_MODE_PROMISC;
11914 			netif_addr_lock_bh(bp->dev);
11915 		} else {
11916 			/* configuring mcast to a vf involves sleeping (when we
11917 			 * wait for the pf's response).
11918 			 */
11919 			smp_mb__before_clear_bit();
11920 			set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11921 				&bp->sp_rtnl_state);
11922 			smp_mb__after_clear_bit();
11923 			schedule_delayed_work(&bp->sp_rtnl_task, 0);
11924 		}
11925 	}
11926 
11927 	bp->rx_mode = rx_mode;
11928 	/* handle ISCSI SD mode */
11929 	if (IS_MF_ISCSI_SD(bp))
11930 		bp->rx_mode = BNX2X_RX_MODE_NONE;
11931 
11932 	/* Schedule the rx_mode command */
11933 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11934 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11935 		netif_addr_unlock_bh(bp->dev);
11936 		return;
11937 	}
11938 
11939 	if (IS_PF(bp)) {
11940 		bnx2x_set_storm_rx_mode(bp);
11941 		netif_addr_unlock_bh(bp->dev);
11942 	} else {
11943 		/* VF will need to request the PF to make this change, and so
11944 		 * the VF needs to release the bottom-half lock prior to the
11945 		 * request (as it will likely require sleep on the VF side)
11946 		 */
11947 		netif_addr_unlock_bh(bp->dev);
11948 		bnx2x_vfpf_storm_rx_mode(bp);
11949 	}
11950 }
11951 
11952 /* called with rtnl_lock */
11953 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11954 			   int devad, u16 addr)
11955 {
11956 	struct bnx2x *bp = netdev_priv(netdev);
11957 	u16 value;
11958 	int rc;
11959 
11960 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11961 	   prtad, devad, addr);
11962 
11963 	/* The HW expects different devad if CL22 is used */
11964 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11965 
11966 	bnx2x_acquire_phy_lock(bp);
11967 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11968 	bnx2x_release_phy_lock(bp);
11969 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11970 
11971 	if (!rc)
11972 		rc = value;
11973 	return rc;
11974 }
11975 
11976 /* called with rtnl_lock */
11977 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11978 			    u16 addr, u16 value)
11979 {
11980 	struct bnx2x *bp = netdev_priv(netdev);
11981 	int rc;
11982 
11983 	DP(NETIF_MSG_LINK,
11984 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11985 	   prtad, devad, addr, value);
11986 
11987 	/* The HW expects different devad if CL22 is used */
11988 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11989 
11990 	bnx2x_acquire_phy_lock(bp);
11991 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11992 	bnx2x_release_phy_lock(bp);
11993 	return rc;
11994 }
11995 
11996 /* called with rtnl_lock */
11997 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11998 {
11999 	struct bnx2x *bp = netdev_priv(dev);
12000 	struct mii_ioctl_data *mdio = if_mii(ifr);
12001 
12002 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12003 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
12004 
12005 	if (!netif_running(dev))
12006 		return -EAGAIN;
12007 
12008 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12009 }
12010 
12011 #ifdef CONFIG_NET_POLL_CONTROLLER
12012 static void poll_bnx2x(struct net_device *dev)
12013 {
12014 	struct bnx2x *bp = netdev_priv(dev);
12015 	int i;
12016 
12017 	for_each_eth_queue(bp, i) {
12018 		struct bnx2x_fastpath *fp = &bp->fp[i];
12019 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12020 	}
12021 }
12022 #endif
12023 
12024 static int bnx2x_validate_addr(struct net_device *dev)
12025 {
12026 	struct bnx2x *bp = netdev_priv(dev);
12027 
12028 	/* query the bulletin board for mac address configured by the PF */
12029 	if (IS_VF(bp))
12030 		bnx2x_sample_bulletin(bp);
12031 
12032 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12033 		BNX2X_ERR("Non-valid Ethernet address\n");
12034 		return -EADDRNOTAVAIL;
12035 	}
12036 	return 0;
12037 }
12038 
12039 static const struct net_device_ops bnx2x_netdev_ops = {
12040 	.ndo_open		= bnx2x_open,
12041 	.ndo_stop		= bnx2x_close,
12042 	.ndo_start_xmit		= bnx2x_start_xmit,
12043 	.ndo_select_queue	= bnx2x_select_queue,
12044 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12045 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12046 	.ndo_validate_addr	= bnx2x_validate_addr,
12047 	.ndo_do_ioctl		= bnx2x_ioctl,
12048 	.ndo_change_mtu		= bnx2x_change_mtu,
12049 	.ndo_fix_features	= bnx2x_fix_features,
12050 	.ndo_set_features	= bnx2x_set_features,
12051 	.ndo_tx_timeout		= bnx2x_tx_timeout,
12052 #ifdef CONFIG_NET_POLL_CONTROLLER
12053 	.ndo_poll_controller	= poll_bnx2x,
12054 #endif
12055 	.ndo_setup_tc		= bnx2x_setup_tc,
12056 #ifdef CONFIG_BNX2X_SRIOV
12057 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12058 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12059 	.ndo_get_vf_config	= bnx2x_get_vf_config,
12060 #endif
12061 #ifdef NETDEV_FCOE_WWNN
12062 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12063 #endif
12064 
12065 #ifdef CONFIG_NET_RX_BUSY_POLL
12066 	.ndo_busy_poll		= bnx2x_low_latency_recv,
12067 #endif
12068 };
12069 
12070 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12071 {
12072 	struct device *dev = &bp->pdev->dev;
12073 
12074 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
12075 		bp->flags |= USING_DAC_FLAG;
12076 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
12077 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
12078 			return -EIO;
12079 		}
12080 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
12081 		dev_err(dev, "System does not support DMA, aborting\n");
12082 		return -EIO;
12083 	}
12084 
12085 	return 0;
12086 }
12087 
12088 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12089 			  struct net_device *dev, unsigned long board_type)
12090 {
12091 	int rc;
12092 	u32 pci_cfg_dword;
12093 	bool chip_is_e1x = (board_type == BCM57710 ||
12094 			    board_type == BCM57711 ||
12095 			    board_type == BCM57711E);
12096 
12097 	SET_NETDEV_DEV(dev, &pdev->dev);
12098 
12099 	bp->dev = dev;
12100 	bp->pdev = pdev;
12101 
12102 	rc = pci_enable_device(pdev);
12103 	if (rc) {
12104 		dev_err(&bp->pdev->dev,
12105 			"Cannot enable PCI device, aborting\n");
12106 		goto err_out;
12107 	}
12108 
12109 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12110 		dev_err(&bp->pdev->dev,
12111 			"Cannot find PCI device base address, aborting\n");
12112 		rc = -ENODEV;
12113 		goto err_out_disable;
12114 	}
12115 
12116 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12117 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12118 		rc = -ENODEV;
12119 		goto err_out_disable;
12120 	}
12121 
12122 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12123 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12124 	    PCICFG_REVESION_ID_ERROR_VAL) {
12125 		pr_err("PCI device error, probably due to fan failure, aborting\n");
12126 		rc = -ENODEV;
12127 		goto err_out_disable;
12128 	}
12129 
12130 	if (atomic_read(&pdev->enable_cnt) == 1) {
12131 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12132 		if (rc) {
12133 			dev_err(&bp->pdev->dev,
12134 				"Cannot obtain PCI resources, aborting\n");
12135 			goto err_out_disable;
12136 		}
12137 
12138 		pci_set_master(pdev);
12139 		pci_save_state(pdev);
12140 	}
12141 
12142 	if (IS_PF(bp)) {
12143 		bp->pm_cap = pdev->pm_cap;
12144 		if (bp->pm_cap == 0) {
12145 			dev_err(&bp->pdev->dev,
12146 				"Cannot find power management capability, aborting\n");
12147 			rc = -EIO;
12148 			goto err_out_release;
12149 		}
12150 	}
12151 
12152 	if (!pci_is_pcie(pdev)) {
12153 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12154 		rc = -EIO;
12155 		goto err_out_release;
12156 	}
12157 
12158 	rc = bnx2x_set_coherency_mask(bp);
12159 	if (rc)
12160 		goto err_out_release;
12161 
12162 	dev->mem_start = pci_resource_start(pdev, 0);
12163 	dev->base_addr = dev->mem_start;
12164 	dev->mem_end = pci_resource_end(pdev, 0);
12165 
12166 	dev->irq = pdev->irq;
12167 
12168 	bp->regview = pci_ioremap_bar(pdev, 0);
12169 	if (!bp->regview) {
12170 		dev_err(&bp->pdev->dev,
12171 			"Cannot map register space, aborting\n");
12172 		rc = -ENOMEM;
12173 		goto err_out_release;
12174 	}
12175 
12176 	/* In E1/E1H use pci device function given by kernel.
12177 	 * In E2/E3 read physical function from ME register since these chips
12178 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12179 	 * (depending on hypervisor).
12180 	 */
12181 	if (chip_is_e1x) {
12182 		bp->pf_num = PCI_FUNC(pdev->devfn);
12183 	} else {
12184 		/* chip is E2/3*/
12185 		pci_read_config_dword(bp->pdev,
12186 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12187 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12188 				  ME_REG_ABS_PF_NUM_SHIFT);
12189 	}
12190 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12191 
12192 	/* clean indirect addresses */
12193 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12194 			       PCICFG_VENDOR_ID_OFFSET);
12195 	/*
12196 	 * Clean the following indirect addresses for all functions since it
12197 	 * is not used by the driver.
12198 	 */
12199 	if (IS_PF(bp)) {
12200 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12201 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12202 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12203 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12204 
12205 		if (chip_is_e1x) {
12206 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12207 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12208 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12209 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12210 		}
12211 
12212 		/* Enable internal target-read (in case we are probed after PF
12213 		 * FLR). Must be done prior to any BAR read access. Only for
12214 		 * 57712 and up
12215 		 */
12216 		if (!chip_is_e1x)
12217 			REG_WR(bp,
12218 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12219 	}
12220 
12221 	dev->watchdog_timeo = TX_TIMEOUT;
12222 
12223 	dev->netdev_ops = &bnx2x_netdev_ops;
12224 	bnx2x_set_ethtool_ops(bp, dev);
12225 
12226 	dev->priv_flags |= IFF_UNICAST_FLT;
12227 
12228 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12229 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12230 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12231 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12232 	if (!CHIP_IS_E1x(bp)) {
12233 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12234 		dev->hw_enc_features =
12235 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12236 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12237 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12238 	}
12239 
12240 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12241 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12242 
12243 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12244 	if (bp->flags & USING_DAC_FLAG)
12245 		dev->features |= NETIF_F_HIGHDMA;
12246 
12247 	/* Add Loopback capability to the device */
12248 	dev->hw_features |= NETIF_F_LOOPBACK;
12249 
12250 #ifdef BCM_DCBNL
12251 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12252 #endif
12253 
12254 	/* get_port_hwinfo() will set prtad and mmds properly */
12255 	bp->mdio.prtad = MDIO_PRTAD_NONE;
12256 	bp->mdio.mmds = 0;
12257 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12258 	bp->mdio.dev = dev;
12259 	bp->mdio.mdio_read = bnx2x_mdio_read;
12260 	bp->mdio.mdio_write = bnx2x_mdio_write;
12261 
12262 	return 0;
12263 
12264 err_out_release:
12265 	if (atomic_read(&pdev->enable_cnt) == 1)
12266 		pci_release_regions(pdev);
12267 
12268 err_out_disable:
12269 	pci_disable_device(pdev);
12270 	pci_set_drvdata(pdev, NULL);
12271 
12272 err_out:
12273 	return rc;
12274 }
12275 
12276 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width,
12277 				       enum bnx2x_pci_bus_speed *speed)
12278 {
12279 	u32 link_speed, val = 0;
12280 
12281 	pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12282 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12283 
12284 	link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12285 
12286 	switch (link_speed) {
12287 	case 3:
12288 		*speed = BNX2X_PCI_LINK_SPEED_8000;
12289 		break;
12290 	case 2:
12291 		*speed = BNX2X_PCI_LINK_SPEED_5000;
12292 		break;
12293 	default:
12294 		*speed = BNX2X_PCI_LINK_SPEED_2500;
12295 	}
12296 }
12297 
12298 static int bnx2x_check_firmware(struct bnx2x *bp)
12299 {
12300 	const struct firmware *firmware = bp->firmware;
12301 	struct bnx2x_fw_file_hdr *fw_hdr;
12302 	struct bnx2x_fw_file_section *sections;
12303 	u32 offset, len, num_ops;
12304 	__be16 *ops_offsets;
12305 	int i;
12306 	const u8 *fw_ver;
12307 
12308 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12309 		BNX2X_ERR("Wrong FW size\n");
12310 		return -EINVAL;
12311 	}
12312 
12313 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12314 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12315 
12316 	/* Make sure none of the offsets and sizes make us read beyond
12317 	 * the end of the firmware data */
12318 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12319 		offset = be32_to_cpu(sections[i].offset);
12320 		len = be32_to_cpu(sections[i].len);
12321 		if (offset + len > firmware->size) {
12322 			BNX2X_ERR("Section %d length is out of bounds\n", i);
12323 			return -EINVAL;
12324 		}
12325 	}
12326 
12327 	/* Likewise for the init_ops offsets */
12328 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12329 	ops_offsets = (__force __be16 *)(firmware->data + offset);
12330 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12331 
12332 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12333 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12334 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12335 			return -EINVAL;
12336 		}
12337 	}
12338 
12339 	/* Check FW version */
12340 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12341 	fw_ver = firmware->data + offset;
12342 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12343 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12344 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12345 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12346 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12347 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12348 		       BCM_5710_FW_MAJOR_VERSION,
12349 		       BCM_5710_FW_MINOR_VERSION,
12350 		       BCM_5710_FW_REVISION_VERSION,
12351 		       BCM_5710_FW_ENGINEERING_VERSION);
12352 		return -EINVAL;
12353 	}
12354 
12355 	return 0;
12356 }
12357 
12358 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12359 {
12360 	const __be32 *source = (const __be32 *)_source;
12361 	u32 *target = (u32 *)_target;
12362 	u32 i;
12363 
12364 	for (i = 0; i < n/4; i++)
12365 		target[i] = be32_to_cpu(source[i]);
12366 }
12367 
12368 /*
12369    Ops array is stored in the following format:
12370    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12371  */
12372 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12373 {
12374 	const __be32 *source = (const __be32 *)_source;
12375 	struct raw_op *target = (struct raw_op *)_target;
12376 	u32 i, j, tmp;
12377 
12378 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12379 		tmp = be32_to_cpu(source[j]);
12380 		target[i].op = (tmp >> 24) & 0xff;
12381 		target[i].offset = tmp & 0xffffff;
12382 		target[i].raw_data = be32_to_cpu(source[j + 1]);
12383 	}
12384 }
12385 
12386 /* IRO array is stored in the following format:
12387  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12388  */
12389 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12390 {
12391 	const __be32 *source = (const __be32 *)_source;
12392 	struct iro *target = (struct iro *)_target;
12393 	u32 i, j, tmp;
12394 
12395 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12396 		target[i].base = be32_to_cpu(source[j]);
12397 		j++;
12398 		tmp = be32_to_cpu(source[j]);
12399 		target[i].m1 = (tmp >> 16) & 0xffff;
12400 		target[i].m2 = tmp & 0xffff;
12401 		j++;
12402 		tmp = be32_to_cpu(source[j]);
12403 		target[i].m3 = (tmp >> 16) & 0xffff;
12404 		target[i].size = tmp & 0xffff;
12405 		j++;
12406 	}
12407 }
12408 
12409 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12410 {
12411 	const __be16 *source = (const __be16 *)_source;
12412 	u16 *target = (u16 *)_target;
12413 	u32 i;
12414 
12415 	for (i = 0; i < n/2; i++)
12416 		target[i] = be16_to_cpu(source[i]);
12417 }
12418 
12419 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12420 do {									\
12421 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12422 	bp->arr = kmalloc(len, GFP_KERNEL);				\
12423 	if (!bp->arr)							\
12424 		goto lbl;						\
12425 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12426 	     (u8 *)bp->arr, len);					\
12427 } while (0)
12428 
12429 static int bnx2x_init_firmware(struct bnx2x *bp)
12430 {
12431 	const char *fw_file_name;
12432 	struct bnx2x_fw_file_hdr *fw_hdr;
12433 	int rc;
12434 
12435 	if (bp->firmware)
12436 		return 0;
12437 
12438 	if (CHIP_IS_E1(bp))
12439 		fw_file_name = FW_FILE_NAME_E1;
12440 	else if (CHIP_IS_E1H(bp))
12441 		fw_file_name = FW_FILE_NAME_E1H;
12442 	else if (!CHIP_IS_E1x(bp))
12443 		fw_file_name = FW_FILE_NAME_E2;
12444 	else {
12445 		BNX2X_ERR("Unsupported chip revision\n");
12446 		return -EINVAL;
12447 	}
12448 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12449 
12450 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12451 	if (rc) {
12452 		BNX2X_ERR("Can't load firmware file %s\n",
12453 			  fw_file_name);
12454 		goto request_firmware_exit;
12455 	}
12456 
12457 	rc = bnx2x_check_firmware(bp);
12458 	if (rc) {
12459 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12460 		goto request_firmware_exit;
12461 	}
12462 
12463 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12464 
12465 	/* Initialize the pointers to the init arrays */
12466 	/* Blob */
12467 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12468 
12469 	/* Opcodes */
12470 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12471 
12472 	/* Offsets */
12473 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12474 			    be16_to_cpu_n);
12475 
12476 	/* STORMs firmware */
12477 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12478 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12479 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12480 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12481 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12482 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12483 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12484 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12485 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12486 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12487 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12488 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12489 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12490 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12491 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12492 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12493 	/* IRO */
12494 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12495 
12496 	return 0;
12497 
12498 iro_alloc_err:
12499 	kfree(bp->init_ops_offsets);
12500 init_offsets_alloc_err:
12501 	kfree(bp->init_ops);
12502 init_ops_alloc_err:
12503 	kfree(bp->init_data);
12504 request_firmware_exit:
12505 	release_firmware(bp->firmware);
12506 	bp->firmware = NULL;
12507 
12508 	return rc;
12509 }
12510 
12511 static void bnx2x_release_firmware(struct bnx2x *bp)
12512 {
12513 	kfree(bp->init_ops_offsets);
12514 	kfree(bp->init_ops);
12515 	kfree(bp->init_data);
12516 	release_firmware(bp->firmware);
12517 	bp->firmware = NULL;
12518 }
12519 
12520 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12521 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12522 	.init_hw_cmn      = bnx2x_init_hw_common,
12523 	.init_hw_port     = bnx2x_init_hw_port,
12524 	.init_hw_func     = bnx2x_init_hw_func,
12525 
12526 	.reset_hw_cmn     = bnx2x_reset_common,
12527 	.reset_hw_port    = bnx2x_reset_port,
12528 	.reset_hw_func    = bnx2x_reset_func,
12529 
12530 	.gunzip_init      = bnx2x_gunzip_init,
12531 	.gunzip_end       = bnx2x_gunzip_end,
12532 
12533 	.init_fw          = bnx2x_init_firmware,
12534 	.release_fw       = bnx2x_release_firmware,
12535 };
12536 
12537 void bnx2x__init_func_obj(struct bnx2x *bp)
12538 {
12539 	/* Prepare DMAE related driver resources */
12540 	bnx2x_setup_dmae(bp);
12541 
12542 	bnx2x_init_func_obj(bp, &bp->func_obj,
12543 			    bnx2x_sp(bp, func_rdata),
12544 			    bnx2x_sp_mapping(bp, func_rdata),
12545 			    bnx2x_sp(bp, func_afex_rdata),
12546 			    bnx2x_sp_mapping(bp, func_afex_rdata),
12547 			    &bnx2x_func_sp_drv);
12548 }
12549 
12550 /* must be called after sriov-enable */
12551 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12552 {
12553 	int cid_count = BNX2X_L2_MAX_CID(bp);
12554 
12555 	if (IS_SRIOV(bp))
12556 		cid_count += BNX2X_VF_CIDS;
12557 
12558 	if (CNIC_SUPPORT(bp))
12559 		cid_count += CNIC_CID_MAX;
12560 
12561 	return roundup(cid_count, QM_CID_ROUND);
12562 }
12563 
12564 /**
12565  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12566  *
12567  * @dev:	pci device
12568  *
12569  */
12570 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12571 {
12572 	int index;
12573 	u16 control = 0;
12574 
12575 	/*
12576 	 * If MSI-X is not supported - return number of SBs needed to support
12577 	 * one fast path queue: one FP queue + SB for CNIC
12578 	 */
12579 	if (!pdev->msix_cap) {
12580 		dev_info(&pdev->dev, "no msix capability found\n");
12581 		return 1 + cnic_cnt;
12582 	}
12583 	dev_info(&pdev->dev, "msix capability found\n");
12584 
12585 	/*
12586 	 * The value in the PCI configuration space is the index of the last
12587 	 * entry, namely one less than the actual size of the table, which is
12588 	 * exactly what we want to return from this function: number of all SBs
12589 	 * without the default SB.
12590 	 * For VFs there is no default SB, then we return (index+1).
12591 	 */
12592 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12593 
12594 	index = control & PCI_MSIX_FLAGS_QSIZE;
12595 
12596 	return index;
12597 }
12598 
12599 static int set_max_cos_est(int chip_id)
12600 {
12601 	switch (chip_id) {
12602 	case BCM57710:
12603 	case BCM57711:
12604 	case BCM57711E:
12605 		return BNX2X_MULTI_TX_COS_E1X;
12606 	case BCM57712:
12607 	case BCM57712_MF:
12608 	case BCM57712_VF:
12609 		return BNX2X_MULTI_TX_COS_E2_E3A0;
12610 	case BCM57800:
12611 	case BCM57800_MF:
12612 	case BCM57800_VF:
12613 	case BCM57810:
12614 	case BCM57810_MF:
12615 	case BCM57840_4_10:
12616 	case BCM57840_2_20:
12617 	case BCM57840_O:
12618 	case BCM57840_MFO:
12619 	case BCM57810_VF:
12620 	case BCM57840_MF:
12621 	case BCM57840_VF:
12622 	case BCM57811:
12623 	case BCM57811_MF:
12624 	case BCM57811_VF:
12625 		return BNX2X_MULTI_TX_COS_E3B0;
12626 		return 1;
12627 	default:
12628 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
12629 		return -ENODEV;
12630 	}
12631 }
12632 
12633 static int set_is_vf(int chip_id)
12634 {
12635 	switch (chip_id) {
12636 	case BCM57712_VF:
12637 	case BCM57800_VF:
12638 	case BCM57810_VF:
12639 	case BCM57840_VF:
12640 	case BCM57811_VF:
12641 		return true;
12642 	default:
12643 		return false;
12644 	}
12645 }
12646 
12647 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12648 
12649 static int bnx2x_init_one(struct pci_dev *pdev,
12650 				    const struct pci_device_id *ent)
12651 {
12652 	struct net_device *dev = NULL;
12653 	struct bnx2x *bp;
12654 	int pcie_width;
12655 	enum bnx2x_pci_bus_speed pcie_speed;
12656 	int rc, max_non_def_sbs;
12657 	int rx_count, tx_count, rss_count, doorbell_size;
12658 	int max_cos_est;
12659 	bool is_vf;
12660 	int cnic_cnt;
12661 
12662 	/* An estimated maximum supported CoS number according to the chip
12663 	 * version.
12664 	 * We will try to roughly estimate the maximum number of CoSes this chip
12665 	 * may support in order to minimize the memory allocated for Tx
12666 	 * netdev_queue's. This number will be accurately calculated during the
12667 	 * initialization of bp->max_cos based on the chip versions AND chip
12668 	 * revision in the bnx2x_init_bp().
12669 	 */
12670 	max_cos_est = set_max_cos_est(ent->driver_data);
12671 	if (max_cos_est < 0)
12672 		return max_cos_est;
12673 	is_vf = set_is_vf(ent->driver_data);
12674 	cnic_cnt = is_vf ? 0 : 1;
12675 
12676 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12677 
12678 	/* add another SB for VF as it has no default SB */
12679 	max_non_def_sbs += is_vf ? 1 : 0;
12680 
12681 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
12682 	rss_count = max_non_def_sbs - cnic_cnt;
12683 
12684 	if (rss_count < 1)
12685 		return -EINVAL;
12686 
12687 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12688 	rx_count = rss_count + cnic_cnt;
12689 
12690 	/* Maximum number of netdev Tx queues:
12691 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12692 	 */
12693 	tx_count = rss_count * max_cos_est + cnic_cnt;
12694 
12695 	/* dev zeroed in init_etherdev */
12696 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12697 	if (!dev)
12698 		return -ENOMEM;
12699 
12700 	bp = netdev_priv(dev);
12701 
12702 	bp->flags = 0;
12703 	if (is_vf)
12704 		bp->flags |= IS_VF_FLAG;
12705 
12706 	bp->igu_sb_cnt = max_non_def_sbs;
12707 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12708 	bp->msg_enable = debug;
12709 	bp->cnic_support = cnic_cnt;
12710 	bp->cnic_probe = bnx2x_cnic_probe;
12711 
12712 	pci_set_drvdata(pdev, dev);
12713 
12714 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12715 	if (rc < 0) {
12716 		free_netdev(dev);
12717 		return rc;
12718 	}
12719 
12720 	BNX2X_DEV_INFO("This is a %s function\n",
12721 		       IS_PF(bp) ? "physical" : "virtual");
12722 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12723 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12724 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12725 		       tx_count, rx_count);
12726 
12727 	rc = bnx2x_init_bp(bp);
12728 	if (rc)
12729 		goto init_one_exit;
12730 
12731 	/* Map doorbells here as we need the real value of bp->max_cos which
12732 	 * is initialized in bnx2x_init_bp() to determine the number of
12733 	 * l2 connections.
12734 	 */
12735 	if (IS_VF(bp)) {
12736 		bp->doorbells = bnx2x_vf_doorbells(bp);
12737 		rc = bnx2x_vf_pci_alloc(bp);
12738 		if (rc)
12739 			goto init_one_exit;
12740 	} else {
12741 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12742 		if (doorbell_size > pci_resource_len(pdev, 2)) {
12743 			dev_err(&bp->pdev->dev,
12744 				"Cannot map doorbells, bar size too small, aborting\n");
12745 			rc = -ENOMEM;
12746 			goto init_one_exit;
12747 		}
12748 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12749 						doorbell_size);
12750 	}
12751 	if (!bp->doorbells) {
12752 		dev_err(&bp->pdev->dev,
12753 			"Cannot map doorbell space, aborting\n");
12754 		rc = -ENOMEM;
12755 		goto init_one_exit;
12756 	}
12757 
12758 	if (IS_VF(bp)) {
12759 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12760 		if (rc)
12761 			goto init_one_exit;
12762 	}
12763 
12764 	/* Enable SRIOV if capability found in configuration space */
12765 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12766 	if (rc)
12767 		goto init_one_exit;
12768 
12769 	/* calc qm_cid_count */
12770 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12771 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12772 
12773 	/* disable FCOE L2 queue for E1x*/
12774 	if (CHIP_IS_E1x(bp))
12775 		bp->flags |= NO_FCOE_FLAG;
12776 
12777 	/* Set bp->num_queues for MSI-X mode*/
12778 	bnx2x_set_num_queues(bp);
12779 
12780 	/* Configure interrupt mode: try to enable MSI-X/MSI if
12781 	 * needed.
12782 	 */
12783 	rc = bnx2x_set_int_mode(bp);
12784 	if (rc) {
12785 		dev_err(&pdev->dev, "Cannot set interrupts\n");
12786 		goto init_one_exit;
12787 	}
12788 	BNX2X_DEV_INFO("set interrupts successfully\n");
12789 
12790 	/* register the net device */
12791 	rc = register_netdev(dev);
12792 	if (rc) {
12793 		dev_err(&pdev->dev, "Cannot register net device\n");
12794 		goto init_one_exit;
12795 	}
12796 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12797 
12798 	if (!NO_FCOE(bp)) {
12799 		/* Add storage MAC address */
12800 		rtnl_lock();
12801 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12802 		rtnl_unlock();
12803 	}
12804 
12805 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12806 	BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12807 		       pcie_width, pcie_speed);
12808 
12809 	BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12810 		       board_info[ent->driver_data].name,
12811 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12812 		       pcie_width,
12813 		       pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" :
12814 		       pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" :
12815 		       pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" :
12816 		       "Unknown",
12817 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
12818 
12819 	return 0;
12820 
12821 init_one_exit:
12822 	if (bp->regview)
12823 		iounmap(bp->regview);
12824 
12825 	if (IS_PF(bp) && bp->doorbells)
12826 		iounmap(bp->doorbells);
12827 
12828 	free_netdev(dev);
12829 
12830 	if (atomic_read(&pdev->enable_cnt) == 1)
12831 		pci_release_regions(pdev);
12832 
12833 	pci_disable_device(pdev);
12834 	pci_set_drvdata(pdev, NULL);
12835 
12836 	return rc;
12837 }
12838 
12839 static void __bnx2x_remove(struct pci_dev *pdev,
12840 			   struct net_device *dev,
12841 			   struct bnx2x *bp,
12842 			   bool remove_netdev)
12843 {
12844 	/* Delete storage MAC address */
12845 	if (!NO_FCOE(bp)) {
12846 		rtnl_lock();
12847 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12848 		rtnl_unlock();
12849 	}
12850 
12851 #ifdef BCM_DCBNL
12852 	/* Delete app tlvs from dcbnl */
12853 	bnx2x_dcbnl_update_applist(bp, true);
12854 #endif
12855 
12856 	if (IS_PF(bp) &&
12857 	    !BP_NOMCP(bp) &&
12858 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
12859 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
12860 
12861 	/* Close the interface - either directly or implicitly */
12862 	if (remove_netdev) {
12863 		unregister_netdev(dev);
12864 	} else {
12865 		rtnl_lock();
12866 		dev_close(dev);
12867 		rtnl_unlock();
12868 	}
12869 
12870 	bnx2x_iov_remove_one(bp);
12871 
12872 	/* Power on: we can't let PCI layer write to us while we are in D3 */
12873 	if (IS_PF(bp))
12874 		bnx2x_set_power_state(bp, PCI_D0);
12875 
12876 	/* Disable MSI/MSI-X */
12877 	bnx2x_disable_msi(bp);
12878 
12879 	/* Power off */
12880 	if (IS_PF(bp))
12881 		bnx2x_set_power_state(bp, PCI_D3hot);
12882 
12883 	/* Make sure RESET task is not scheduled before continuing */
12884 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
12885 
12886 	/* send message via vfpf channel to release the resources of this vf */
12887 	if (IS_VF(bp))
12888 		bnx2x_vfpf_release(bp);
12889 
12890 	/* Assumes no further PCIe PM changes will occur */
12891 	if (system_state == SYSTEM_POWER_OFF) {
12892 		pci_wake_from_d3(pdev, bp->wol);
12893 		pci_set_power_state(pdev, PCI_D3hot);
12894 	}
12895 
12896 	if (bp->regview)
12897 		iounmap(bp->regview);
12898 
12899 	/* for vf doorbells are part of the regview and were unmapped along with
12900 	 * it. FW is only loaded by PF.
12901 	 */
12902 	if (IS_PF(bp)) {
12903 		if (bp->doorbells)
12904 			iounmap(bp->doorbells);
12905 
12906 		bnx2x_release_firmware(bp);
12907 	}
12908 	bnx2x_free_mem_bp(bp);
12909 
12910 	if (remove_netdev)
12911 		free_netdev(dev);
12912 
12913 	if (atomic_read(&pdev->enable_cnt) == 1)
12914 		pci_release_regions(pdev);
12915 
12916 	pci_disable_device(pdev);
12917 	pci_set_drvdata(pdev, NULL);
12918 }
12919 
12920 static void bnx2x_remove_one(struct pci_dev *pdev)
12921 {
12922 	struct net_device *dev = pci_get_drvdata(pdev);
12923 	struct bnx2x *bp;
12924 
12925 	if (!dev) {
12926 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12927 		return;
12928 	}
12929 	bp = netdev_priv(dev);
12930 
12931 	__bnx2x_remove(pdev, dev, bp, true);
12932 }
12933 
12934 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12935 {
12936 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12937 
12938 	bp->rx_mode = BNX2X_RX_MODE_NONE;
12939 
12940 	if (CNIC_LOADED(bp))
12941 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12942 
12943 	/* Stop Tx */
12944 	bnx2x_tx_disable(bp);
12945 	/* Delete all NAPI objects */
12946 	bnx2x_del_all_napi(bp);
12947 	if (CNIC_LOADED(bp))
12948 		bnx2x_del_all_napi_cnic(bp);
12949 	netdev_reset_tc(bp->dev);
12950 
12951 	del_timer_sync(&bp->timer);
12952 	cancel_delayed_work(&bp->sp_task);
12953 	cancel_delayed_work(&bp->period_task);
12954 
12955 	spin_lock_bh(&bp->stats_lock);
12956 	bp->stats_state = STATS_STATE_DISABLED;
12957 	spin_unlock_bh(&bp->stats_lock);
12958 
12959 	bnx2x_save_statistics(bp);
12960 
12961 	netif_carrier_off(bp->dev);
12962 
12963 	return 0;
12964 }
12965 
12966 /**
12967  * bnx2x_io_error_detected - called when PCI error is detected
12968  * @pdev: Pointer to PCI device
12969  * @state: The current pci connection state
12970  *
12971  * This function is called after a PCI bus error affecting
12972  * this device has been detected.
12973  */
12974 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12975 						pci_channel_state_t state)
12976 {
12977 	struct net_device *dev = pci_get_drvdata(pdev);
12978 	struct bnx2x *bp = netdev_priv(dev);
12979 
12980 	rtnl_lock();
12981 
12982 	BNX2X_ERR("IO error detected\n");
12983 
12984 	netif_device_detach(dev);
12985 
12986 	if (state == pci_channel_io_perm_failure) {
12987 		rtnl_unlock();
12988 		return PCI_ERS_RESULT_DISCONNECT;
12989 	}
12990 
12991 	if (netif_running(dev))
12992 		bnx2x_eeh_nic_unload(bp);
12993 
12994 	bnx2x_prev_path_mark_eeh(bp);
12995 
12996 	pci_disable_device(pdev);
12997 
12998 	rtnl_unlock();
12999 
13000 	/* Request a slot reset */
13001 	return PCI_ERS_RESULT_NEED_RESET;
13002 }
13003 
13004 /**
13005  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13006  * @pdev: Pointer to PCI device
13007  *
13008  * Restart the card from scratch, as if from a cold-boot.
13009  */
13010 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13011 {
13012 	struct net_device *dev = pci_get_drvdata(pdev);
13013 	struct bnx2x *bp = netdev_priv(dev);
13014 	int i;
13015 
13016 	rtnl_lock();
13017 	BNX2X_ERR("IO slot reset initializing...\n");
13018 	if (pci_enable_device(pdev)) {
13019 		dev_err(&pdev->dev,
13020 			"Cannot re-enable PCI device after reset\n");
13021 		rtnl_unlock();
13022 		return PCI_ERS_RESULT_DISCONNECT;
13023 	}
13024 
13025 	pci_set_master(pdev);
13026 	pci_restore_state(pdev);
13027 	pci_save_state(pdev);
13028 
13029 	if (netif_running(dev))
13030 		bnx2x_set_power_state(bp, PCI_D0);
13031 
13032 	if (netif_running(dev)) {
13033 		BNX2X_ERR("IO slot reset --> driver unload\n");
13034 
13035 		/* MCP should have been reset; Need to wait for validity */
13036 		bnx2x_init_shmem(bp);
13037 
13038 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13039 			u32 v;
13040 
13041 			v = SHMEM2_RD(bp,
13042 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13043 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13044 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13045 		}
13046 		bnx2x_drain_tx_queues(bp);
13047 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13048 		bnx2x_netif_stop(bp, 1);
13049 		bnx2x_free_irq(bp);
13050 
13051 		/* Report UNLOAD_DONE to MCP */
13052 		bnx2x_send_unload_done(bp, true);
13053 
13054 		bp->sp_state = 0;
13055 		bp->port.pmf = 0;
13056 
13057 		bnx2x_prev_unload(bp);
13058 
13059 		/* We should have reseted the engine, so It's fair to
13060 		 * assume the FW will no longer write to the bnx2x driver.
13061 		 */
13062 		bnx2x_squeeze_objects(bp);
13063 		bnx2x_free_skbs(bp);
13064 		for_each_rx_queue(bp, i)
13065 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13066 		bnx2x_free_fp_mem(bp);
13067 		bnx2x_free_mem(bp);
13068 
13069 		bp->state = BNX2X_STATE_CLOSED;
13070 	}
13071 
13072 	rtnl_unlock();
13073 
13074 	return PCI_ERS_RESULT_RECOVERED;
13075 }
13076 
13077 /**
13078  * bnx2x_io_resume - called when traffic can start flowing again
13079  * @pdev: Pointer to PCI device
13080  *
13081  * This callback is called when the error recovery driver tells us that
13082  * its OK to resume normal operation.
13083  */
13084 static void bnx2x_io_resume(struct pci_dev *pdev)
13085 {
13086 	struct net_device *dev = pci_get_drvdata(pdev);
13087 	struct bnx2x *bp = netdev_priv(dev);
13088 
13089 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13090 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13091 		return;
13092 	}
13093 
13094 	rtnl_lock();
13095 
13096 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13097 							DRV_MSG_SEQ_NUMBER_MASK;
13098 
13099 	if (netif_running(dev))
13100 		bnx2x_nic_load(bp, LOAD_NORMAL);
13101 
13102 	netif_device_attach(dev);
13103 
13104 	rtnl_unlock();
13105 }
13106 
13107 static const struct pci_error_handlers bnx2x_err_handler = {
13108 	.error_detected = bnx2x_io_error_detected,
13109 	.slot_reset     = bnx2x_io_slot_reset,
13110 	.resume         = bnx2x_io_resume,
13111 };
13112 
13113 static void bnx2x_shutdown(struct pci_dev *pdev)
13114 {
13115 	struct net_device *dev = pci_get_drvdata(pdev);
13116 	struct bnx2x *bp;
13117 
13118 	if (!dev)
13119 		return;
13120 
13121 	bp = netdev_priv(dev);
13122 	if (!bp)
13123 		return;
13124 
13125 	rtnl_lock();
13126 	netif_device_detach(dev);
13127 	rtnl_unlock();
13128 
13129 	/* Don't remove the netdevice, as there are scenarios which will cause
13130 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13131 	 * rootfs is mounted from SAN.
13132 	 */
13133 	__bnx2x_remove(pdev, dev, bp, false);
13134 }
13135 
13136 static struct pci_driver bnx2x_pci_driver = {
13137 	.name        = DRV_MODULE_NAME,
13138 	.id_table    = bnx2x_pci_tbl,
13139 	.probe       = bnx2x_init_one,
13140 	.remove      = bnx2x_remove_one,
13141 	.suspend     = bnx2x_suspend,
13142 	.resume      = bnx2x_resume,
13143 	.err_handler = &bnx2x_err_handler,
13144 #ifdef CONFIG_BNX2X_SRIOV
13145 	.sriov_configure = bnx2x_sriov_configure,
13146 #endif
13147 	.shutdown    = bnx2x_shutdown,
13148 };
13149 
13150 static int __init bnx2x_init(void)
13151 {
13152 	int ret;
13153 
13154 	pr_info("%s", version);
13155 
13156 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13157 	if (bnx2x_wq == NULL) {
13158 		pr_err("Cannot create workqueue\n");
13159 		return -ENOMEM;
13160 	}
13161 
13162 	ret = pci_register_driver(&bnx2x_pci_driver);
13163 	if (ret) {
13164 		pr_err("Cannot register driver\n");
13165 		destroy_workqueue(bnx2x_wq);
13166 	}
13167 	return ret;
13168 }
13169 
13170 static void __exit bnx2x_cleanup(void)
13171 {
13172 	struct list_head *pos, *q;
13173 
13174 	pci_unregister_driver(&bnx2x_pci_driver);
13175 
13176 	destroy_workqueue(bnx2x_wq);
13177 
13178 	/* Free globally allocated resources */
13179 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13180 		struct bnx2x_prev_path_list *tmp =
13181 			list_entry(pos, struct bnx2x_prev_path_list, list);
13182 		list_del(pos);
13183 		kfree(tmp);
13184 	}
13185 }
13186 
13187 void bnx2x_notify_link_changed(struct bnx2x *bp)
13188 {
13189 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13190 }
13191 
13192 module_init(bnx2x_init);
13193 module_exit(bnx2x_cleanup);
13194 
13195 /**
13196  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13197  *
13198  * @bp:		driver handle
13199  * @set:	set or clear the CAM entry
13200  *
13201  * This function will wait until the ramrod completion returns.
13202  * Return 0 if success, -ENODEV if ramrod doesn't return.
13203  */
13204 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13205 {
13206 	unsigned long ramrod_flags = 0;
13207 
13208 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13209 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13210 				 &bp->iscsi_l2_mac_obj, true,
13211 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13212 }
13213 
13214 /* count denotes the number of new completions we have seen */
13215 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13216 {
13217 	struct eth_spe *spe;
13218 	int cxt_index, cxt_offset;
13219 
13220 #ifdef BNX2X_STOP_ON_ERROR
13221 	if (unlikely(bp->panic))
13222 		return;
13223 #endif
13224 
13225 	spin_lock_bh(&bp->spq_lock);
13226 	BUG_ON(bp->cnic_spq_pending < count);
13227 	bp->cnic_spq_pending -= count;
13228 
13229 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13230 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13231 				& SPE_HDR_CONN_TYPE) >>
13232 				SPE_HDR_CONN_TYPE_SHIFT;
13233 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13234 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13235 
13236 		/* Set validation for iSCSI L2 client before sending SETUP
13237 		 *  ramrod
13238 		 */
13239 		if (type == ETH_CONNECTION_TYPE) {
13240 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13241 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13242 					ILT_PAGE_CIDS;
13243 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13244 					(cxt_index * ILT_PAGE_CIDS);
13245 				bnx2x_set_ctx_validation(bp,
13246 					&bp->context[cxt_index].
13247 							 vcxt[cxt_offset].eth,
13248 					BNX2X_ISCSI_ETH_CID(bp));
13249 			}
13250 		}
13251 
13252 		/*
13253 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13254 		 * and in the air. We also check that number of outstanding
13255 		 * COMMON ramrods is not more than the EQ and SPQ can
13256 		 * accommodate.
13257 		 */
13258 		if (type == ETH_CONNECTION_TYPE) {
13259 			if (!atomic_read(&bp->cq_spq_left))
13260 				break;
13261 			else
13262 				atomic_dec(&bp->cq_spq_left);
13263 		} else if (type == NONE_CONNECTION_TYPE) {
13264 			if (!atomic_read(&bp->eq_spq_left))
13265 				break;
13266 			else
13267 				atomic_dec(&bp->eq_spq_left);
13268 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13269 			   (type == FCOE_CONNECTION_TYPE)) {
13270 			if (bp->cnic_spq_pending >=
13271 			    bp->cnic_eth_dev.max_kwqe_pending)
13272 				break;
13273 			else
13274 				bp->cnic_spq_pending++;
13275 		} else {
13276 			BNX2X_ERR("Unknown SPE type: %d\n", type);
13277 			bnx2x_panic();
13278 			break;
13279 		}
13280 
13281 		spe = bnx2x_sp_get_next(bp);
13282 		*spe = *bp->cnic_kwq_cons;
13283 
13284 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13285 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13286 
13287 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13288 			bp->cnic_kwq_cons = bp->cnic_kwq;
13289 		else
13290 			bp->cnic_kwq_cons++;
13291 	}
13292 	bnx2x_sp_prod_update(bp);
13293 	spin_unlock_bh(&bp->spq_lock);
13294 }
13295 
13296 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13297 			       struct kwqe_16 *kwqes[], u32 count)
13298 {
13299 	struct bnx2x *bp = netdev_priv(dev);
13300 	int i;
13301 
13302 #ifdef BNX2X_STOP_ON_ERROR
13303 	if (unlikely(bp->panic)) {
13304 		BNX2X_ERR("Can't post to SP queue while panic\n");
13305 		return -EIO;
13306 	}
13307 #endif
13308 
13309 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13310 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13311 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
13312 		return -EAGAIN;
13313 	}
13314 
13315 	spin_lock_bh(&bp->spq_lock);
13316 
13317 	for (i = 0; i < count; i++) {
13318 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13319 
13320 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13321 			break;
13322 
13323 		*bp->cnic_kwq_prod = *spe;
13324 
13325 		bp->cnic_kwq_pending++;
13326 
13327 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13328 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
13329 		   spe->data.update_data_addr.hi,
13330 		   spe->data.update_data_addr.lo,
13331 		   bp->cnic_kwq_pending);
13332 
13333 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13334 			bp->cnic_kwq_prod = bp->cnic_kwq;
13335 		else
13336 			bp->cnic_kwq_prod++;
13337 	}
13338 
13339 	spin_unlock_bh(&bp->spq_lock);
13340 
13341 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13342 		bnx2x_cnic_sp_post(bp, 0);
13343 
13344 	return i;
13345 }
13346 
13347 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13348 {
13349 	struct cnic_ops *c_ops;
13350 	int rc = 0;
13351 
13352 	mutex_lock(&bp->cnic_mutex);
13353 	c_ops = rcu_dereference_protected(bp->cnic_ops,
13354 					  lockdep_is_held(&bp->cnic_mutex));
13355 	if (c_ops)
13356 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13357 	mutex_unlock(&bp->cnic_mutex);
13358 
13359 	return rc;
13360 }
13361 
13362 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13363 {
13364 	struct cnic_ops *c_ops;
13365 	int rc = 0;
13366 
13367 	rcu_read_lock();
13368 	c_ops = rcu_dereference(bp->cnic_ops);
13369 	if (c_ops)
13370 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13371 	rcu_read_unlock();
13372 
13373 	return rc;
13374 }
13375 
13376 /*
13377  * for commands that have no data
13378  */
13379 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13380 {
13381 	struct cnic_ctl_info ctl = {0};
13382 
13383 	ctl.cmd = cmd;
13384 
13385 	return bnx2x_cnic_ctl_send(bp, &ctl);
13386 }
13387 
13388 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13389 {
13390 	struct cnic_ctl_info ctl = {0};
13391 
13392 	/* first we tell CNIC and only then we count this as a completion */
13393 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13394 	ctl.data.comp.cid = cid;
13395 	ctl.data.comp.error = err;
13396 
13397 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
13398 	bnx2x_cnic_sp_post(bp, 0);
13399 }
13400 
13401 /* Called with netif_addr_lock_bh() taken.
13402  * Sets an rx_mode config for an iSCSI ETH client.
13403  * Doesn't block.
13404  * Completion should be checked outside.
13405  */
13406 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13407 {
13408 	unsigned long accept_flags = 0, ramrod_flags = 0;
13409 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13410 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13411 
13412 	if (start) {
13413 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
13414 		 * because it's the only way for UIO Queue to accept
13415 		 * multicasts (in non-promiscuous mode only one Queue per
13416 		 * function will receive multicast packets (leading in our
13417 		 * case).
13418 		 */
13419 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13420 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13421 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13422 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13423 
13424 		/* Clear STOP_PENDING bit if START is requested */
13425 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13426 
13427 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13428 	} else
13429 		/* Clear START_PENDING bit if STOP is requested */
13430 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13431 
13432 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13433 		set_bit(sched_state, &bp->sp_state);
13434 	else {
13435 		__set_bit(RAMROD_RX, &ramrod_flags);
13436 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13437 				    ramrod_flags);
13438 	}
13439 }
13440 
13441 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13442 {
13443 	struct bnx2x *bp = netdev_priv(dev);
13444 	int rc = 0;
13445 
13446 	switch (ctl->cmd) {
13447 	case DRV_CTL_CTXTBL_WR_CMD: {
13448 		u32 index = ctl->data.io.offset;
13449 		dma_addr_t addr = ctl->data.io.dma_addr;
13450 
13451 		bnx2x_ilt_wr(bp, index, addr);
13452 		break;
13453 	}
13454 
13455 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13456 		int count = ctl->data.credit.credit_count;
13457 
13458 		bnx2x_cnic_sp_post(bp, count);
13459 		break;
13460 	}
13461 
13462 	/* rtnl_lock is held.  */
13463 	case DRV_CTL_START_L2_CMD: {
13464 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13465 		unsigned long sp_bits = 0;
13466 
13467 		/* Configure the iSCSI classification object */
13468 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13469 				   cp->iscsi_l2_client_id,
13470 				   cp->iscsi_l2_cid, BP_FUNC(bp),
13471 				   bnx2x_sp(bp, mac_rdata),
13472 				   bnx2x_sp_mapping(bp, mac_rdata),
13473 				   BNX2X_FILTER_MAC_PENDING,
13474 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13475 				   &bp->macs_pool);
13476 
13477 		/* Set iSCSI MAC address */
13478 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13479 		if (rc)
13480 			break;
13481 
13482 		mmiowb();
13483 		barrier();
13484 
13485 		/* Start accepting on iSCSI L2 ring */
13486 
13487 		netif_addr_lock_bh(dev);
13488 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
13489 		netif_addr_unlock_bh(dev);
13490 
13491 		/* bits to wait on */
13492 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13493 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13494 
13495 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13496 			BNX2X_ERR("rx_mode completion timed out!\n");
13497 
13498 		break;
13499 	}
13500 
13501 	/* rtnl_lock is held.  */
13502 	case DRV_CTL_STOP_L2_CMD: {
13503 		unsigned long sp_bits = 0;
13504 
13505 		/* Stop accepting on iSCSI L2 ring */
13506 		netif_addr_lock_bh(dev);
13507 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
13508 		netif_addr_unlock_bh(dev);
13509 
13510 		/* bits to wait on */
13511 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13512 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13513 
13514 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13515 			BNX2X_ERR("rx_mode completion timed out!\n");
13516 
13517 		mmiowb();
13518 		barrier();
13519 
13520 		/* Unset iSCSI L2 MAC */
13521 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13522 					BNX2X_ISCSI_ETH_MAC, true);
13523 		break;
13524 	}
13525 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13526 		int count = ctl->data.credit.credit_count;
13527 
13528 		smp_mb__before_atomic_inc();
13529 		atomic_add(count, &bp->cq_spq_left);
13530 		smp_mb__after_atomic_inc();
13531 		break;
13532 	}
13533 	case DRV_CTL_ULP_REGISTER_CMD: {
13534 		int ulp_type = ctl->data.register_data.ulp_type;
13535 
13536 		if (CHIP_IS_E3(bp)) {
13537 			int idx = BP_FW_MB_IDX(bp);
13538 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13539 			int path = BP_PATH(bp);
13540 			int port = BP_PORT(bp);
13541 			int i;
13542 			u32 scratch_offset;
13543 			u32 *host_addr;
13544 
13545 			/* first write capability to shmem2 */
13546 			if (ulp_type == CNIC_ULP_ISCSI)
13547 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13548 			else if (ulp_type == CNIC_ULP_FCOE)
13549 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13550 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13551 
13552 			if ((ulp_type != CNIC_ULP_FCOE) ||
13553 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13554 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13555 				break;
13556 
13557 			/* if reached here - should write fcoe capabilities */
13558 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13559 			if (!scratch_offset)
13560 				break;
13561 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
13562 						   fcoe_features[path][port]);
13563 			host_addr = (u32 *) &(ctl->data.register_data.
13564 					      fcoe_features);
13565 			for (i = 0; i < sizeof(struct fcoe_capabilities);
13566 			     i += 4)
13567 				REG_WR(bp, scratch_offset + i,
13568 				       *(host_addr + i/4));
13569 		}
13570 		break;
13571 	}
13572 
13573 	case DRV_CTL_ULP_UNREGISTER_CMD: {
13574 		int ulp_type = ctl->data.ulp_type;
13575 
13576 		if (CHIP_IS_E3(bp)) {
13577 			int idx = BP_FW_MB_IDX(bp);
13578 			u32 cap;
13579 
13580 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13581 			if (ulp_type == CNIC_ULP_ISCSI)
13582 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13583 			else if (ulp_type == CNIC_ULP_FCOE)
13584 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13585 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13586 		}
13587 		break;
13588 	}
13589 
13590 	default:
13591 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
13592 		rc = -EINVAL;
13593 	}
13594 
13595 	return rc;
13596 }
13597 
13598 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13599 {
13600 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13601 
13602 	if (bp->flags & USING_MSIX_FLAG) {
13603 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13604 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13605 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
13606 	} else {
13607 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13608 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13609 	}
13610 	if (!CHIP_IS_E1x(bp))
13611 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13612 	else
13613 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13614 
13615 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13616 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13617 	cp->irq_arr[1].status_blk = bp->def_status_blk;
13618 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13619 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13620 
13621 	cp->num_irq = 2;
13622 }
13623 
13624 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13625 {
13626 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13627 
13628 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13629 			     bnx2x_cid_ilt_lines(bp);
13630 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13631 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13632 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13633 
13634 	if (NO_ISCSI_OOO(bp))
13635 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13636 }
13637 
13638 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13639 			       void *data)
13640 {
13641 	struct bnx2x *bp = netdev_priv(dev);
13642 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13643 	int rc;
13644 
13645 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13646 
13647 	if (ops == NULL) {
13648 		BNX2X_ERR("NULL ops received\n");
13649 		return -EINVAL;
13650 	}
13651 
13652 	if (!CNIC_SUPPORT(bp)) {
13653 		BNX2X_ERR("Can't register CNIC when not supported\n");
13654 		return -EOPNOTSUPP;
13655 	}
13656 
13657 	if (!CNIC_LOADED(bp)) {
13658 		rc = bnx2x_load_cnic(bp);
13659 		if (rc) {
13660 			BNX2X_ERR("CNIC-related load failed\n");
13661 			return rc;
13662 		}
13663 	}
13664 
13665 	bp->cnic_enabled = true;
13666 
13667 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13668 	if (!bp->cnic_kwq)
13669 		return -ENOMEM;
13670 
13671 	bp->cnic_kwq_cons = bp->cnic_kwq;
13672 	bp->cnic_kwq_prod = bp->cnic_kwq;
13673 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13674 
13675 	bp->cnic_spq_pending = 0;
13676 	bp->cnic_kwq_pending = 0;
13677 
13678 	bp->cnic_data = data;
13679 
13680 	cp->num_irq = 0;
13681 	cp->drv_state |= CNIC_DRV_STATE_REGD;
13682 	cp->iro_arr = bp->iro_arr;
13683 
13684 	bnx2x_setup_cnic_irq_info(bp);
13685 
13686 	rcu_assign_pointer(bp->cnic_ops, ops);
13687 
13688 	return 0;
13689 }
13690 
13691 static int bnx2x_unregister_cnic(struct net_device *dev)
13692 {
13693 	struct bnx2x *bp = netdev_priv(dev);
13694 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13695 
13696 	mutex_lock(&bp->cnic_mutex);
13697 	cp->drv_state = 0;
13698 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
13699 	mutex_unlock(&bp->cnic_mutex);
13700 	synchronize_rcu();
13701 	bp->cnic_enabled = false;
13702 	kfree(bp->cnic_kwq);
13703 	bp->cnic_kwq = NULL;
13704 
13705 	return 0;
13706 }
13707 
13708 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13709 {
13710 	struct bnx2x *bp = netdev_priv(dev);
13711 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13712 
13713 	/* If both iSCSI and FCoE are disabled - return NULL in
13714 	 * order to indicate CNIC that it should not try to work
13715 	 * with this device.
13716 	 */
13717 	if (NO_ISCSI(bp) && NO_FCOE(bp))
13718 		return NULL;
13719 
13720 	cp->drv_owner = THIS_MODULE;
13721 	cp->chip_id = CHIP_ID(bp);
13722 	cp->pdev = bp->pdev;
13723 	cp->io_base = bp->regview;
13724 	cp->io_base2 = bp->doorbells;
13725 	cp->max_kwqe_pending = 8;
13726 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13727 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13728 			     bnx2x_cid_ilt_lines(bp);
13729 	cp->ctx_tbl_len = CNIC_ILT_LINES;
13730 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13731 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13732 	cp->drv_ctl = bnx2x_drv_ctl;
13733 	cp->drv_register_cnic = bnx2x_register_cnic;
13734 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13735 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13736 	cp->iscsi_l2_client_id =
13737 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13738 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13739 
13740 	if (NO_ISCSI_OOO(bp))
13741 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13742 
13743 	if (NO_ISCSI(bp))
13744 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13745 
13746 	if (NO_FCOE(bp))
13747 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13748 
13749 	BNX2X_DEV_INFO(
13750 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13751 	   cp->ctx_blk_size,
13752 	   cp->ctx_tbl_offset,
13753 	   cp->ctx_tbl_len,
13754 	   cp->starting_cid);
13755 	return cp;
13756 }
13757 
13758 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13759 {
13760 	struct bnx2x *bp = fp->bp;
13761 	u32 offset = BAR_USTRORM_INTMEM;
13762 
13763 	if (IS_VF(bp))
13764 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
13765 	else if (!CHIP_IS_E1x(bp))
13766 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13767 	else
13768 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13769 
13770 	return offset;
13771 }
13772 
13773 /* called only on E1H or E2.
13774  * When pretending to be PF, the pretend value is the function number 0...7
13775  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13776  * combination
13777  */
13778 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13779 {
13780 	u32 pretend_reg;
13781 
13782 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13783 		return -1;
13784 
13785 	/* get my own pretend register */
13786 	pretend_reg = bnx2x_get_pretend_reg(bp);
13787 	REG_WR(bp, pretend_reg, pretend_func_val);
13788 	REG_RD(bp, pretend_reg);
13789 	return 0;
13790 }
13791