1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/aer.h>
31 #include <linux/init.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/bitops.h>
37 #include <linux/irq.h>
38 #include <linux/delay.h>
39 #include <asm/byteorder.h>
40 #include <linux/time.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/semaphore.h>
56 #include <linux/stringify.h>
57 #include <linux/vmalloc.h>
58 
59 #include "bnx2x.h"
60 #include "bnx2x_init.h"
61 #include "bnx2x_init_ops.h"
62 #include "bnx2x_cmn.h"
63 #include "bnx2x_vfpf.h"
64 #include "bnx2x_dcb.h"
65 #include "bnx2x_sp.h"
66 
67 #include <linux/firmware.h>
68 #include "bnx2x_fw_file_hdr.h"
69 /* FW files */
70 #define FW_FILE_VERSION					\
71 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
72 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
73 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
74 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
75 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78 
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT		(5*HZ)
81 
82 static char version[] =
83 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85 
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88 		   "BCM57710/57711/57711E/"
89 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90 		   "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96 
97 int bnx2x_num_queues;
98 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
99 MODULE_PARM_DESC(num_queues,
100 		 " Set number of queues (default is as a number of CPUs)");
101 
102 static int disable_tpa;
103 module_param(disable_tpa, int, S_IRUGO);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105 
106 static int int_mode;
107 module_param(int_mode, int, S_IRUGO);
108 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
109 				"(1 INT#x; 2 MSI)");
110 
111 static int dropless_fc;
112 module_param(dropless_fc, int, S_IRUGO);
113 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114 
115 static int mrrs = -1;
116 module_param(mrrs, int, S_IRUGO);
117 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118 
119 static int debug;
120 module_param(debug, int, S_IRUGO);
121 MODULE_PARM_DESC(debug, " Default debug msglevel");
122 
123 static struct workqueue_struct *bnx2x_wq;
124 struct workqueue_struct *bnx2x_iov_wq;
125 
126 struct bnx2x_mac_vals {
127 	u32 xmac_addr;
128 	u32 xmac_val;
129 	u32 emac_addr;
130 	u32 emac_val;
131 	u32 umac_addr;
132 	u32 umac_val;
133 	u32 bmac_addr;
134 	u32 bmac_val[2];
135 };
136 
137 enum bnx2x_board_type {
138 	BCM57710 = 0,
139 	BCM57711,
140 	BCM57711E,
141 	BCM57712,
142 	BCM57712_MF,
143 	BCM57712_VF,
144 	BCM57800,
145 	BCM57800_MF,
146 	BCM57800_VF,
147 	BCM57810,
148 	BCM57810_MF,
149 	BCM57810_VF,
150 	BCM57840_4_10,
151 	BCM57840_2_20,
152 	BCM57840_MF,
153 	BCM57840_VF,
154 	BCM57811,
155 	BCM57811_MF,
156 	BCM57840_O,
157 	BCM57840_MFO,
158 	BCM57811_VF
159 };
160 
161 /* indexed by board_type, above */
162 static struct {
163 	char *name;
164 } board_info[] = {
165 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
166 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
167 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
168 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
169 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
170 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
171 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
172 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
173 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
174 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
175 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
176 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
177 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
178 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
179 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
180 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
181 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
182 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
183 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
184 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
185 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
186 };
187 
188 #ifndef PCI_DEVICE_ID_NX2_57710
189 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57711
192 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57711E
195 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57712
198 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712_MF
201 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57712_VF
204 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57800
207 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800_MF
210 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57800_VF
213 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57810
216 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57810_MF
219 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57840_O
222 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57810_VF
225 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
228 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
231 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
234 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_MF
237 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_VF
240 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57811
243 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811_MF
246 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57811_VF
249 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
250 #endif
251 
252 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
253 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
254 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
273 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
274 	{ 0 }
275 };
276 
277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
278 
279 /* Global resources for unloading a previously loaded device */
280 #define BNX2X_PREV_WAIT_NEEDED 1
281 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
282 static LIST_HEAD(bnx2x_prev_list);
283 
284 /* Forward declaration */
285 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
286 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
287 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
288 
289 /****************************************************************************
290 * General service functions
291 ****************************************************************************/
292 
293 static void __storm_memset_dma_mapping(struct bnx2x *bp,
294 				       u32 addr, dma_addr_t mapping)
295 {
296 	REG_WR(bp,  addr, U64_LO(mapping));
297 	REG_WR(bp,  addr + 4, U64_HI(mapping));
298 }
299 
300 static void storm_memset_spq_addr(struct bnx2x *bp,
301 				  dma_addr_t mapping, u16 abs_fid)
302 {
303 	u32 addr = XSEM_REG_FAST_MEMORY +
304 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
305 
306 	__storm_memset_dma_mapping(bp, addr, mapping);
307 }
308 
309 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
310 				  u16 pf_id)
311 {
312 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
313 		pf_id);
314 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
315 		pf_id);
316 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
317 		pf_id);
318 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
319 		pf_id);
320 }
321 
322 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
323 				 u8 enable)
324 {
325 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
326 		enable);
327 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
328 		enable);
329 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
330 		enable);
331 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
332 		enable);
333 }
334 
335 static void storm_memset_eq_data(struct bnx2x *bp,
336 				 struct event_ring_data *eq_data,
337 				u16 pfid)
338 {
339 	size_t size = sizeof(struct event_ring_data);
340 
341 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
342 
343 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
344 }
345 
346 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
347 				 u16 pfid)
348 {
349 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
350 	REG_WR16(bp, addr, eq_prod);
351 }
352 
353 /* used only at init
354  * locking is done by mcp
355  */
356 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
357 {
358 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
359 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
360 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
361 			       PCICFG_VENDOR_ID_OFFSET);
362 }
363 
364 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
365 {
366 	u32 val;
367 
368 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
369 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
370 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
371 			       PCICFG_VENDOR_ID_OFFSET);
372 
373 	return val;
374 }
375 
376 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
377 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
378 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
379 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
380 #define DMAE_DP_DST_NONE	"dst_addr [none]"
381 
382 static void bnx2x_dp_dmae(struct bnx2x *bp,
383 			  struct dmae_command *dmae, int msglvl)
384 {
385 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
386 	int i;
387 
388 	switch (dmae->opcode & DMAE_COMMAND_DST) {
389 	case DMAE_CMD_DST_PCI:
390 		if (src_type == DMAE_CMD_SRC_PCI)
391 			DP(msglvl, "DMAE: opcode 0x%08x\n"
392 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
393 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
394 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
395 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
397 			   dmae->comp_val);
398 		else
399 			DP(msglvl, "DMAE: opcode 0x%08x\n"
400 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
401 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
402 			   dmae->opcode, dmae->src_addr_lo >> 2,
403 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
404 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
405 			   dmae->comp_val);
406 		break;
407 	case DMAE_CMD_DST_GRC:
408 		if (src_type == DMAE_CMD_SRC_PCI)
409 			DP(msglvl, "DMAE: opcode 0x%08x\n"
410 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
411 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
412 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
413 			   dmae->len, dmae->dst_addr_lo >> 2,
414 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
415 			   dmae->comp_val);
416 		else
417 			DP(msglvl, "DMAE: opcode 0x%08x\n"
418 			   "src [%08x], len [%d*4], dst [%08x]\n"
419 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
420 			   dmae->opcode, dmae->src_addr_lo >> 2,
421 			   dmae->len, dmae->dst_addr_lo >> 2,
422 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
423 			   dmae->comp_val);
424 		break;
425 	default:
426 		if (src_type == DMAE_CMD_SRC_PCI)
427 			DP(msglvl, "DMAE: opcode 0x%08x\n"
428 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
429 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
430 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
431 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
432 			   dmae->comp_val);
433 		else
434 			DP(msglvl, "DMAE: opcode 0x%08x\n"
435 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
436 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
437 			   dmae->opcode, dmae->src_addr_lo >> 2,
438 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439 			   dmae->comp_val);
440 		break;
441 	}
442 
443 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
444 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
445 		   i, *(((u32 *)dmae) + i));
446 }
447 
448 /* copy command into DMAE command memory and set DMAE command go */
449 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
450 {
451 	u32 cmd_offset;
452 	int i;
453 
454 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
455 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
456 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
457 	}
458 	REG_WR(bp, dmae_reg_go_c[idx], 1);
459 }
460 
461 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
462 {
463 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
464 			   DMAE_CMD_C_ENABLE);
465 }
466 
467 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
468 {
469 	return opcode & ~DMAE_CMD_SRC_RESET;
470 }
471 
472 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
473 			     bool with_comp, u8 comp_type)
474 {
475 	u32 opcode = 0;
476 
477 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
478 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
479 
480 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
481 
482 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
483 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
484 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
485 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
486 
487 #ifdef __BIG_ENDIAN
488 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
489 #else
490 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
491 #endif
492 	if (with_comp)
493 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
494 	return opcode;
495 }
496 
497 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
498 				      struct dmae_command *dmae,
499 				      u8 src_type, u8 dst_type)
500 {
501 	memset(dmae, 0, sizeof(struct dmae_command));
502 
503 	/* set the opcode */
504 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
505 					 true, DMAE_COMP_PCI);
506 
507 	/* fill in the completion parameters */
508 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
509 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
510 	dmae->comp_val = DMAE_COMP_VAL;
511 }
512 
513 /* issue a dmae command over the init-channel and wait for completion */
514 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
515 			       u32 *comp)
516 {
517 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
518 	int rc = 0;
519 
520 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
521 
522 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
523 	 * as long as this code is called both from syscall context and
524 	 * from ndo_set_rx_mode() flow that may be called from BH.
525 	 */
526 	spin_lock_bh(&bp->dmae_lock);
527 
528 	/* reset completion */
529 	*comp = 0;
530 
531 	/* post the command on the channel used for initializations */
532 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
533 
534 	/* wait for completion */
535 	udelay(5);
536 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
537 
538 		if (!cnt ||
539 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
540 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
541 			BNX2X_ERR("DMAE timeout!\n");
542 			rc = DMAE_TIMEOUT;
543 			goto unlock;
544 		}
545 		cnt--;
546 		udelay(50);
547 	}
548 	if (*comp & DMAE_PCI_ERR_FLAG) {
549 		BNX2X_ERR("DMAE PCI error!\n");
550 		rc = DMAE_PCI_ERROR;
551 	}
552 
553 unlock:
554 	spin_unlock_bh(&bp->dmae_lock);
555 	return rc;
556 }
557 
558 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
559 		      u32 len32)
560 {
561 	int rc;
562 	struct dmae_command dmae;
563 
564 	if (!bp->dmae_ready) {
565 		u32 *data = bnx2x_sp(bp, wb_data[0]);
566 
567 		if (CHIP_IS_E1(bp))
568 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
569 		else
570 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
571 		return;
572 	}
573 
574 	/* set opcode and fixed command fields */
575 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
576 
577 	/* fill in addresses and len */
578 	dmae.src_addr_lo = U64_LO(dma_addr);
579 	dmae.src_addr_hi = U64_HI(dma_addr);
580 	dmae.dst_addr_lo = dst_addr >> 2;
581 	dmae.dst_addr_hi = 0;
582 	dmae.len = len32;
583 
584 	/* issue the command and wait for completion */
585 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
586 	if (rc) {
587 		BNX2X_ERR("DMAE returned failure %d\n", rc);
588 #ifdef BNX2X_STOP_ON_ERROR
589 		bnx2x_panic();
590 #endif
591 	}
592 }
593 
594 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
595 {
596 	int rc;
597 	struct dmae_command dmae;
598 
599 	if (!bp->dmae_ready) {
600 		u32 *data = bnx2x_sp(bp, wb_data[0]);
601 		int i;
602 
603 		if (CHIP_IS_E1(bp))
604 			for (i = 0; i < len32; i++)
605 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
606 		else
607 			for (i = 0; i < len32; i++)
608 				data[i] = REG_RD(bp, src_addr + i*4);
609 
610 		return;
611 	}
612 
613 	/* set opcode and fixed command fields */
614 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
615 
616 	/* fill in addresses and len */
617 	dmae.src_addr_lo = src_addr >> 2;
618 	dmae.src_addr_hi = 0;
619 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
620 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
621 	dmae.len = len32;
622 
623 	/* issue the command and wait for completion */
624 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
625 	if (rc) {
626 		BNX2X_ERR("DMAE returned failure %d\n", rc);
627 #ifdef BNX2X_STOP_ON_ERROR
628 		bnx2x_panic();
629 #endif
630 	}
631 }
632 
633 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
634 				      u32 addr, u32 len)
635 {
636 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
637 	int offset = 0;
638 
639 	while (len > dmae_wr_max) {
640 		bnx2x_write_dmae(bp, phys_addr + offset,
641 				 addr + offset, dmae_wr_max);
642 		offset += dmae_wr_max * 4;
643 		len -= dmae_wr_max;
644 	}
645 
646 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
647 }
648 
649 static int bnx2x_mc_assert(struct bnx2x *bp)
650 {
651 	char last_idx;
652 	int i, rc = 0;
653 	u32 row0, row1, row2, row3;
654 
655 	/* XSTORM */
656 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
657 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
658 	if (last_idx)
659 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
660 
661 	/* print the asserts */
662 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
663 
664 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
665 			      XSTORM_ASSERT_LIST_OFFSET(i));
666 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
667 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
668 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
669 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
670 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
671 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
672 
673 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
674 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
675 				  i, row3, row2, row1, row0);
676 			rc++;
677 		} else {
678 			break;
679 		}
680 	}
681 
682 	/* TSTORM */
683 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
684 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
685 	if (last_idx)
686 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
687 
688 	/* print the asserts */
689 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
690 
691 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
692 			      TSTORM_ASSERT_LIST_OFFSET(i));
693 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
694 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
695 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
696 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
697 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
698 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
699 
700 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
701 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
702 				  i, row3, row2, row1, row0);
703 			rc++;
704 		} else {
705 			break;
706 		}
707 	}
708 
709 	/* CSTORM */
710 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
711 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
712 	if (last_idx)
713 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
714 
715 	/* print the asserts */
716 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
717 
718 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
719 			      CSTORM_ASSERT_LIST_OFFSET(i));
720 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
721 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
722 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
723 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
724 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
725 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
726 
727 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
728 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
729 				  i, row3, row2, row1, row0);
730 			rc++;
731 		} else {
732 			break;
733 		}
734 	}
735 
736 	/* USTORM */
737 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
738 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
739 	if (last_idx)
740 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
741 
742 	/* print the asserts */
743 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
744 
745 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
746 			      USTORM_ASSERT_LIST_OFFSET(i));
747 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
748 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
749 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
750 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
751 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
752 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
753 
754 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
755 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
756 				  i, row3, row2, row1, row0);
757 			rc++;
758 		} else {
759 			break;
760 		}
761 	}
762 
763 	return rc;
764 }
765 
766 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
767 #define SCRATCH_BUFFER_SIZE(bp)	\
768 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
769 
770 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
771 {
772 	u32 addr, val;
773 	u32 mark, offset;
774 	__be32 data[9];
775 	int word;
776 	u32 trace_shmem_base;
777 	if (BP_NOMCP(bp)) {
778 		BNX2X_ERR("NO MCP - can not dump\n");
779 		return;
780 	}
781 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
782 		(bp->common.bc_ver & 0xff0000) >> 16,
783 		(bp->common.bc_ver & 0xff00) >> 8,
784 		(bp->common.bc_ver & 0xff));
785 
786 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
787 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
788 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
789 
790 	if (BP_PATH(bp) == 0)
791 		trace_shmem_base = bp->common.shmem_base;
792 	else
793 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
794 
795 	/* sanity */
796 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
797 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
798 				SCRATCH_BUFFER_SIZE(bp)) {
799 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
800 			  trace_shmem_base);
801 		return;
802 	}
803 
804 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
805 
806 	/* validate TRCB signature */
807 	mark = REG_RD(bp, addr);
808 	if (mark != MFW_TRACE_SIGNATURE) {
809 		BNX2X_ERR("Trace buffer signature is missing.");
810 		return ;
811 	}
812 
813 	/* read cyclic buffer pointer */
814 	addr += 4;
815 	mark = REG_RD(bp, addr);
816 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
817 	if (mark >= trace_shmem_base || mark < addr + 4) {
818 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
819 		return;
820 	}
821 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
822 
823 	printk("%s", lvl);
824 
825 	/* dump buffer after the mark */
826 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
827 		for (word = 0; word < 8; word++)
828 			data[word] = htonl(REG_RD(bp, offset + 4*word));
829 		data[8] = 0x0;
830 		pr_cont("%s", (char *)data);
831 	}
832 
833 	/* dump buffer before the mark */
834 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
835 		for (word = 0; word < 8; word++)
836 			data[word] = htonl(REG_RD(bp, offset + 4*word));
837 		data[8] = 0x0;
838 		pr_cont("%s", (char *)data);
839 	}
840 	printk("%s" "end of fw dump\n", lvl);
841 }
842 
843 static void bnx2x_fw_dump(struct bnx2x *bp)
844 {
845 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
846 }
847 
848 static void bnx2x_hc_int_disable(struct bnx2x *bp)
849 {
850 	int port = BP_PORT(bp);
851 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
852 	u32 val = REG_RD(bp, addr);
853 
854 	/* in E1 we must use only PCI configuration space to disable
855 	 * MSI/MSIX capability
856 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
857 	 */
858 	if (CHIP_IS_E1(bp)) {
859 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
860 		 * Use mask register to prevent from HC sending interrupts
861 		 * after we exit the function
862 		 */
863 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
864 
865 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
866 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
867 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
868 	} else
869 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
870 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
871 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
872 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
873 
874 	DP(NETIF_MSG_IFDOWN,
875 	   "write %x to HC %d (addr 0x%x)\n",
876 	   val, port, addr);
877 
878 	/* flush all outstanding writes */
879 	mmiowb();
880 
881 	REG_WR(bp, addr, val);
882 	if (REG_RD(bp, addr) != val)
883 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
884 }
885 
886 static void bnx2x_igu_int_disable(struct bnx2x *bp)
887 {
888 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
889 
890 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
891 		 IGU_PF_CONF_INT_LINE_EN |
892 		 IGU_PF_CONF_ATTN_BIT_EN);
893 
894 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
895 
896 	/* flush all outstanding writes */
897 	mmiowb();
898 
899 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
900 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
901 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
902 }
903 
904 static void bnx2x_int_disable(struct bnx2x *bp)
905 {
906 	if (bp->common.int_block == INT_BLOCK_HC)
907 		bnx2x_hc_int_disable(bp);
908 	else
909 		bnx2x_igu_int_disable(bp);
910 }
911 
912 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
913 {
914 	int i;
915 	u16 j;
916 	struct hc_sp_status_block_data sp_sb_data;
917 	int func = BP_FUNC(bp);
918 #ifdef BNX2X_STOP_ON_ERROR
919 	u16 start = 0, end = 0;
920 	u8 cos;
921 #endif
922 	if (IS_PF(bp) && disable_int)
923 		bnx2x_int_disable(bp);
924 
925 	bp->stats_state = STATS_STATE_DISABLED;
926 	bp->eth_stats.unrecoverable_error++;
927 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
928 
929 	BNX2X_ERR("begin crash dump -----------------\n");
930 
931 	/* Indices */
932 	/* Common */
933 	if (IS_PF(bp)) {
934 		struct host_sp_status_block *def_sb = bp->def_status_blk;
935 		int data_size, cstorm_offset;
936 
937 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
938 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
939 			  bp->spq_prod_idx, bp->stats_counter);
940 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
941 			  def_sb->atten_status_block.attn_bits,
942 			  def_sb->atten_status_block.attn_bits_ack,
943 			  def_sb->atten_status_block.status_block_id,
944 			  def_sb->atten_status_block.attn_bits_index);
945 		BNX2X_ERR("     def (");
946 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
947 			pr_cont("0x%x%s",
948 				def_sb->sp_sb.index_values[i],
949 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
950 
951 		data_size = sizeof(struct hc_sp_status_block_data) /
952 			    sizeof(u32);
953 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
954 		for (i = 0; i < data_size; i++)
955 			*((u32 *)&sp_sb_data + i) =
956 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
957 					   i * sizeof(u32));
958 
959 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
960 			sp_sb_data.igu_sb_id,
961 			sp_sb_data.igu_seg_id,
962 			sp_sb_data.p_func.pf_id,
963 			sp_sb_data.p_func.vnic_id,
964 			sp_sb_data.p_func.vf_id,
965 			sp_sb_data.p_func.vf_valid,
966 			sp_sb_data.state);
967 	}
968 
969 	for_each_eth_queue(bp, i) {
970 		struct bnx2x_fastpath *fp = &bp->fp[i];
971 		int loop;
972 		struct hc_status_block_data_e2 sb_data_e2;
973 		struct hc_status_block_data_e1x sb_data_e1x;
974 		struct hc_status_block_sm  *hc_sm_p =
975 			CHIP_IS_E1x(bp) ?
976 			sb_data_e1x.common.state_machine :
977 			sb_data_e2.common.state_machine;
978 		struct hc_index_data *hc_index_p =
979 			CHIP_IS_E1x(bp) ?
980 			sb_data_e1x.index_data :
981 			sb_data_e2.index_data;
982 		u8 data_size, cos;
983 		u32 *sb_data_p;
984 		struct bnx2x_fp_txdata txdata;
985 
986 		/* Rx */
987 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
988 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
989 			  fp->rx_comp_prod,
990 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
991 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
992 			  fp->rx_sge_prod, fp->last_max_sge,
993 			  le16_to_cpu(fp->fp_hc_idx));
994 
995 		/* Tx */
996 		for_each_cos_in_tx_queue(fp, cos)
997 		{
998 			txdata = *fp->txdata_ptr[cos];
999 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1000 				  i, txdata.tx_pkt_prod,
1001 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1002 				  txdata.tx_bd_cons,
1003 				  le16_to_cpu(*txdata.tx_cons_sb));
1004 		}
1005 
1006 		loop = CHIP_IS_E1x(bp) ?
1007 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1008 
1009 		/* host sb data */
1010 
1011 		if (IS_FCOE_FP(fp))
1012 			continue;
1013 
1014 		BNX2X_ERR("     run indexes (");
1015 		for (j = 0; j < HC_SB_MAX_SM; j++)
1016 			pr_cont("0x%x%s",
1017 			       fp->sb_running_index[j],
1018 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1019 
1020 		BNX2X_ERR("     indexes (");
1021 		for (j = 0; j < loop; j++)
1022 			pr_cont("0x%x%s",
1023 			       fp->sb_index_values[j],
1024 			       (j == loop - 1) ? ")" : " ");
1025 
1026 		/* VF cannot access FW refelection for status block */
1027 		if (IS_VF(bp))
1028 			continue;
1029 
1030 		/* fw sb data */
1031 		data_size = CHIP_IS_E1x(bp) ?
1032 			sizeof(struct hc_status_block_data_e1x) :
1033 			sizeof(struct hc_status_block_data_e2);
1034 		data_size /= sizeof(u32);
1035 		sb_data_p = CHIP_IS_E1x(bp) ?
1036 			(u32 *)&sb_data_e1x :
1037 			(u32 *)&sb_data_e2;
1038 		/* copy sb data in here */
1039 		for (j = 0; j < data_size; j++)
1040 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1041 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1042 				j * sizeof(u32));
1043 
1044 		if (!CHIP_IS_E1x(bp)) {
1045 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1046 				sb_data_e2.common.p_func.pf_id,
1047 				sb_data_e2.common.p_func.vf_id,
1048 				sb_data_e2.common.p_func.vf_valid,
1049 				sb_data_e2.common.p_func.vnic_id,
1050 				sb_data_e2.common.same_igu_sb_1b,
1051 				sb_data_e2.common.state);
1052 		} else {
1053 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1054 				sb_data_e1x.common.p_func.pf_id,
1055 				sb_data_e1x.common.p_func.vf_id,
1056 				sb_data_e1x.common.p_func.vf_valid,
1057 				sb_data_e1x.common.p_func.vnic_id,
1058 				sb_data_e1x.common.same_igu_sb_1b,
1059 				sb_data_e1x.common.state);
1060 		}
1061 
1062 		/* SB_SMs data */
1063 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1064 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1065 				j, hc_sm_p[j].__flags,
1066 				hc_sm_p[j].igu_sb_id,
1067 				hc_sm_p[j].igu_seg_id,
1068 				hc_sm_p[j].time_to_expire,
1069 				hc_sm_p[j].timer_value);
1070 		}
1071 
1072 		/* Indices data */
1073 		for (j = 0; j < loop; j++) {
1074 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1075 			       hc_index_p[j].flags,
1076 			       hc_index_p[j].timeout);
1077 		}
1078 	}
1079 
1080 #ifdef BNX2X_STOP_ON_ERROR
1081 	if (IS_PF(bp)) {
1082 		/* event queue */
1083 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1084 		for (i = 0; i < NUM_EQ_DESC; i++) {
1085 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1086 
1087 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1088 				  i, bp->eq_ring[i].message.opcode,
1089 				  bp->eq_ring[i].message.error);
1090 			BNX2X_ERR("data: %x %x %x\n",
1091 				  data[0], data[1], data[2]);
1092 		}
1093 	}
1094 
1095 	/* Rings */
1096 	/* Rx */
1097 	for_each_valid_rx_queue(bp, i) {
1098 		struct bnx2x_fastpath *fp = &bp->fp[i];
1099 
1100 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1101 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1102 		for (j = start; j != end; j = RX_BD(j + 1)) {
1103 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1104 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1105 
1106 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1107 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1108 		}
1109 
1110 		start = RX_SGE(fp->rx_sge_prod);
1111 		end = RX_SGE(fp->last_max_sge);
1112 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1113 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1114 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1115 
1116 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1117 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1118 		}
1119 
1120 		start = RCQ_BD(fp->rx_comp_cons - 10);
1121 		end = RCQ_BD(fp->rx_comp_cons + 503);
1122 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1123 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1124 
1125 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1126 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1127 		}
1128 	}
1129 
1130 	/* Tx */
1131 	for_each_valid_tx_queue(bp, i) {
1132 		struct bnx2x_fastpath *fp = &bp->fp[i];
1133 		for_each_cos_in_tx_queue(fp, cos) {
1134 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1135 
1136 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1137 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1138 			for (j = start; j != end; j = TX_BD(j + 1)) {
1139 				struct sw_tx_bd *sw_bd =
1140 					&txdata->tx_buf_ring[j];
1141 
1142 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1143 					  i, cos, j, sw_bd->skb,
1144 					  sw_bd->first_bd);
1145 			}
1146 
1147 			start = TX_BD(txdata->tx_bd_cons - 10);
1148 			end = TX_BD(txdata->tx_bd_cons + 254);
1149 			for (j = start; j != end; j = TX_BD(j + 1)) {
1150 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1151 
1152 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1153 					  i, cos, j, tx_bd[0], tx_bd[1],
1154 					  tx_bd[2], tx_bd[3]);
1155 			}
1156 		}
1157 	}
1158 #endif
1159 	if (IS_PF(bp)) {
1160 		bnx2x_fw_dump(bp);
1161 		bnx2x_mc_assert(bp);
1162 	}
1163 	BNX2X_ERR("end crash dump -----------------\n");
1164 }
1165 
1166 /*
1167  * FLR Support for E2
1168  *
1169  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1170  * initialization.
1171  */
1172 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1173 #define FLR_WAIT_INTERVAL	50	/* usec */
1174 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1175 
1176 struct pbf_pN_buf_regs {
1177 	int pN;
1178 	u32 init_crd;
1179 	u32 crd;
1180 	u32 crd_freed;
1181 };
1182 
1183 struct pbf_pN_cmd_regs {
1184 	int pN;
1185 	u32 lines_occup;
1186 	u32 lines_freed;
1187 };
1188 
1189 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1190 				     struct pbf_pN_buf_regs *regs,
1191 				     u32 poll_count)
1192 {
1193 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1194 	u32 cur_cnt = poll_count;
1195 
1196 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1197 	crd = crd_start = REG_RD(bp, regs->crd);
1198 	init_crd = REG_RD(bp, regs->init_crd);
1199 
1200 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1201 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1202 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1203 
1204 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1205 	       (init_crd - crd_start))) {
1206 		if (cur_cnt--) {
1207 			udelay(FLR_WAIT_INTERVAL);
1208 			crd = REG_RD(bp, regs->crd);
1209 			crd_freed = REG_RD(bp, regs->crd_freed);
1210 		} else {
1211 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1212 			   regs->pN);
1213 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1214 			   regs->pN, crd);
1215 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1216 			   regs->pN, crd_freed);
1217 			break;
1218 		}
1219 	}
1220 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1221 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1222 }
1223 
1224 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1225 				     struct pbf_pN_cmd_regs *regs,
1226 				     u32 poll_count)
1227 {
1228 	u32 occup, to_free, freed, freed_start;
1229 	u32 cur_cnt = poll_count;
1230 
1231 	occup = to_free = REG_RD(bp, regs->lines_occup);
1232 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1233 
1234 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1235 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1236 
1237 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1238 		if (cur_cnt--) {
1239 			udelay(FLR_WAIT_INTERVAL);
1240 			occup = REG_RD(bp, regs->lines_occup);
1241 			freed = REG_RD(bp, regs->lines_freed);
1242 		} else {
1243 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1244 			   regs->pN);
1245 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1246 			   regs->pN, occup);
1247 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1248 			   regs->pN, freed);
1249 			break;
1250 		}
1251 	}
1252 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1253 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1254 }
1255 
1256 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1257 				    u32 expected, u32 poll_count)
1258 {
1259 	u32 cur_cnt = poll_count;
1260 	u32 val;
1261 
1262 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1263 		udelay(FLR_WAIT_INTERVAL);
1264 
1265 	return val;
1266 }
1267 
1268 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1269 				    char *msg, u32 poll_cnt)
1270 {
1271 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1272 	if (val != 0) {
1273 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1274 		return 1;
1275 	}
1276 	return 0;
1277 }
1278 
1279 /* Common routines with VF FLR cleanup */
1280 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1281 {
1282 	/* adjust polling timeout */
1283 	if (CHIP_REV_IS_EMUL(bp))
1284 		return FLR_POLL_CNT * 2000;
1285 
1286 	if (CHIP_REV_IS_FPGA(bp))
1287 		return FLR_POLL_CNT * 120;
1288 
1289 	return FLR_POLL_CNT;
1290 }
1291 
1292 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1293 {
1294 	struct pbf_pN_cmd_regs cmd_regs[] = {
1295 		{0, (CHIP_IS_E3B0(bp)) ?
1296 			PBF_REG_TQ_OCCUPANCY_Q0 :
1297 			PBF_REG_P0_TQ_OCCUPANCY,
1298 		    (CHIP_IS_E3B0(bp)) ?
1299 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1300 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1301 		{1, (CHIP_IS_E3B0(bp)) ?
1302 			PBF_REG_TQ_OCCUPANCY_Q1 :
1303 			PBF_REG_P1_TQ_OCCUPANCY,
1304 		    (CHIP_IS_E3B0(bp)) ?
1305 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1306 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1307 		{4, (CHIP_IS_E3B0(bp)) ?
1308 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1309 			PBF_REG_P4_TQ_OCCUPANCY,
1310 		    (CHIP_IS_E3B0(bp)) ?
1311 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1312 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1313 	};
1314 
1315 	struct pbf_pN_buf_regs buf_regs[] = {
1316 		{0, (CHIP_IS_E3B0(bp)) ?
1317 			PBF_REG_INIT_CRD_Q0 :
1318 			PBF_REG_P0_INIT_CRD ,
1319 		    (CHIP_IS_E3B0(bp)) ?
1320 			PBF_REG_CREDIT_Q0 :
1321 			PBF_REG_P0_CREDIT,
1322 		    (CHIP_IS_E3B0(bp)) ?
1323 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1324 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1325 		{1, (CHIP_IS_E3B0(bp)) ?
1326 			PBF_REG_INIT_CRD_Q1 :
1327 			PBF_REG_P1_INIT_CRD,
1328 		    (CHIP_IS_E3B0(bp)) ?
1329 			PBF_REG_CREDIT_Q1 :
1330 			PBF_REG_P1_CREDIT,
1331 		    (CHIP_IS_E3B0(bp)) ?
1332 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1333 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1334 		{4, (CHIP_IS_E3B0(bp)) ?
1335 			PBF_REG_INIT_CRD_LB_Q :
1336 			PBF_REG_P4_INIT_CRD,
1337 		    (CHIP_IS_E3B0(bp)) ?
1338 			PBF_REG_CREDIT_LB_Q :
1339 			PBF_REG_P4_CREDIT,
1340 		    (CHIP_IS_E3B0(bp)) ?
1341 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1342 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1343 	};
1344 
1345 	int i;
1346 
1347 	/* Verify the command queues are flushed P0, P1, P4 */
1348 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1349 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1350 
1351 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1352 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1353 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1354 }
1355 
1356 #define OP_GEN_PARAM(param) \
1357 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1358 
1359 #define OP_GEN_TYPE(type) \
1360 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1361 
1362 #define OP_GEN_AGG_VECT(index) \
1363 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1364 
1365 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1366 {
1367 	u32 op_gen_command = 0;
1368 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1369 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1370 	int ret = 0;
1371 
1372 	if (REG_RD(bp, comp_addr)) {
1373 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1374 		return 1;
1375 	}
1376 
1377 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1378 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1379 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1380 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1381 
1382 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1383 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1384 
1385 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1386 		BNX2X_ERR("FW final cleanup did not succeed\n");
1387 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1388 		   (REG_RD(bp, comp_addr)));
1389 		bnx2x_panic();
1390 		return 1;
1391 	}
1392 	/* Zero completion for next FLR */
1393 	REG_WR(bp, comp_addr, 0);
1394 
1395 	return ret;
1396 }
1397 
1398 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1399 {
1400 	u16 status;
1401 
1402 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1403 	return status & PCI_EXP_DEVSTA_TRPND;
1404 }
1405 
1406 /* PF FLR specific routines
1407 */
1408 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1409 {
1410 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1411 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1412 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1413 			"CFC PF usage counter timed out",
1414 			poll_cnt))
1415 		return 1;
1416 
1417 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1418 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1419 			DORQ_REG_PF_USAGE_CNT,
1420 			"DQ PF usage counter timed out",
1421 			poll_cnt))
1422 		return 1;
1423 
1424 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1425 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1426 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1427 			"QM PF usage counter timed out",
1428 			poll_cnt))
1429 		return 1;
1430 
1431 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1432 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1433 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1434 			"Timers VNIC usage counter timed out",
1435 			poll_cnt))
1436 		return 1;
1437 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1438 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1439 			"Timers NUM_SCANS usage counter timed out",
1440 			poll_cnt))
1441 		return 1;
1442 
1443 	/* Wait DMAE PF usage counter to zero */
1444 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1445 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1446 			"DMAE command register timed out",
1447 			poll_cnt))
1448 		return 1;
1449 
1450 	return 0;
1451 }
1452 
1453 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1454 {
1455 	u32 val;
1456 
1457 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1458 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1459 
1460 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1461 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1462 
1463 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1464 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1465 
1466 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1467 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1468 
1469 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1470 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1471 
1472 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1473 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1474 
1475 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1476 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1477 
1478 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1479 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1480 	   val);
1481 }
1482 
1483 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1484 {
1485 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1486 
1487 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1488 
1489 	/* Re-enable PF target read access */
1490 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1491 
1492 	/* Poll HW usage counters */
1493 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1494 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1495 		return -EBUSY;
1496 
1497 	/* Zero the igu 'trailing edge' and 'leading edge' */
1498 
1499 	/* Send the FW cleanup command */
1500 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1501 		return -EBUSY;
1502 
1503 	/* ATC cleanup */
1504 
1505 	/* Verify TX hw is flushed */
1506 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1507 
1508 	/* Wait 100ms (not adjusted according to platform) */
1509 	msleep(100);
1510 
1511 	/* Verify no pending pci transactions */
1512 	if (bnx2x_is_pcie_pending(bp->pdev))
1513 		BNX2X_ERR("PCIE Transactions still pending\n");
1514 
1515 	/* Debug */
1516 	bnx2x_hw_enable_status(bp);
1517 
1518 	/*
1519 	 * Master enable - Due to WB DMAE writes performed before this
1520 	 * register is re-initialized as part of the regular function init
1521 	 */
1522 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1523 
1524 	return 0;
1525 }
1526 
1527 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1528 {
1529 	int port = BP_PORT(bp);
1530 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1531 	u32 val = REG_RD(bp, addr);
1532 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1533 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1534 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1535 
1536 	if (msix) {
1537 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1538 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1539 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1540 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1541 		if (single_msix)
1542 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1543 	} else if (msi) {
1544 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1545 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1546 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1547 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1548 	} else {
1549 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1550 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1551 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1552 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1553 
1554 		if (!CHIP_IS_E1(bp)) {
1555 			DP(NETIF_MSG_IFUP,
1556 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1557 
1558 			REG_WR(bp, addr, val);
1559 
1560 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1561 		}
1562 	}
1563 
1564 	if (CHIP_IS_E1(bp))
1565 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1566 
1567 	DP(NETIF_MSG_IFUP,
1568 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1569 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1570 
1571 	REG_WR(bp, addr, val);
1572 	/*
1573 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1574 	 */
1575 	mmiowb();
1576 	barrier();
1577 
1578 	if (!CHIP_IS_E1(bp)) {
1579 		/* init leading/trailing edge */
1580 		if (IS_MF(bp)) {
1581 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1582 			if (bp->port.pmf)
1583 				/* enable nig and gpio3 attention */
1584 				val |= 0x1100;
1585 		} else
1586 			val = 0xffff;
1587 
1588 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1589 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1590 	}
1591 
1592 	/* Make sure that interrupts are indeed enabled from here on */
1593 	mmiowb();
1594 }
1595 
1596 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1597 {
1598 	u32 val;
1599 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1600 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1601 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1602 
1603 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1604 
1605 	if (msix) {
1606 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1607 			 IGU_PF_CONF_SINGLE_ISR_EN);
1608 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1609 			IGU_PF_CONF_ATTN_BIT_EN);
1610 
1611 		if (single_msix)
1612 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1613 	} else if (msi) {
1614 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1615 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1616 			IGU_PF_CONF_ATTN_BIT_EN |
1617 			IGU_PF_CONF_SINGLE_ISR_EN);
1618 	} else {
1619 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1620 		val |= (IGU_PF_CONF_INT_LINE_EN |
1621 			IGU_PF_CONF_ATTN_BIT_EN |
1622 			IGU_PF_CONF_SINGLE_ISR_EN);
1623 	}
1624 
1625 	/* Clean previous status - need to configure igu prior to ack*/
1626 	if ((!msix) || single_msix) {
1627 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1628 		bnx2x_ack_int(bp);
1629 	}
1630 
1631 	val |= IGU_PF_CONF_FUNC_EN;
1632 
1633 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1634 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1635 
1636 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1637 
1638 	if (val & IGU_PF_CONF_INT_LINE_EN)
1639 		pci_intx(bp->pdev, true);
1640 
1641 	barrier();
1642 
1643 	/* init leading/trailing edge */
1644 	if (IS_MF(bp)) {
1645 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1646 		if (bp->port.pmf)
1647 			/* enable nig and gpio3 attention */
1648 			val |= 0x1100;
1649 	} else
1650 		val = 0xffff;
1651 
1652 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1653 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1654 
1655 	/* Make sure that interrupts are indeed enabled from here on */
1656 	mmiowb();
1657 }
1658 
1659 void bnx2x_int_enable(struct bnx2x *bp)
1660 {
1661 	if (bp->common.int_block == INT_BLOCK_HC)
1662 		bnx2x_hc_int_enable(bp);
1663 	else
1664 		bnx2x_igu_int_enable(bp);
1665 }
1666 
1667 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1668 {
1669 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1670 	int i, offset;
1671 
1672 	if (disable_hw)
1673 		/* prevent the HW from sending interrupts */
1674 		bnx2x_int_disable(bp);
1675 
1676 	/* make sure all ISRs are done */
1677 	if (msix) {
1678 		synchronize_irq(bp->msix_table[0].vector);
1679 		offset = 1;
1680 		if (CNIC_SUPPORT(bp))
1681 			offset++;
1682 		for_each_eth_queue(bp, i)
1683 			synchronize_irq(bp->msix_table[offset++].vector);
1684 	} else
1685 		synchronize_irq(bp->pdev->irq);
1686 
1687 	/* make sure sp_task is not running */
1688 	cancel_delayed_work(&bp->sp_task);
1689 	cancel_delayed_work(&bp->period_task);
1690 	flush_workqueue(bnx2x_wq);
1691 }
1692 
1693 /* fast path */
1694 
1695 /*
1696  * General service functions
1697  */
1698 
1699 /* Return true if succeeded to acquire the lock */
1700 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1701 {
1702 	u32 lock_status;
1703 	u32 resource_bit = (1 << resource);
1704 	int func = BP_FUNC(bp);
1705 	u32 hw_lock_control_reg;
1706 
1707 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1708 	   "Trying to take a lock on resource %d\n", resource);
1709 
1710 	/* Validating that the resource is within range */
1711 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1712 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1713 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1714 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1715 		return false;
1716 	}
1717 
1718 	if (func <= 5)
1719 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1720 	else
1721 		hw_lock_control_reg =
1722 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1723 
1724 	/* Try to acquire the lock */
1725 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1726 	lock_status = REG_RD(bp, hw_lock_control_reg);
1727 	if (lock_status & resource_bit)
1728 		return true;
1729 
1730 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731 	   "Failed to get a lock on resource %d\n", resource);
1732 	return false;
1733 }
1734 
1735 /**
1736  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1737  *
1738  * @bp:	driver handle
1739  *
1740  * Returns the recovery leader resource id according to the engine this function
1741  * belongs to. Currently only only 2 engines is supported.
1742  */
1743 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1744 {
1745 	if (BP_PATH(bp))
1746 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1747 	else
1748 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1749 }
1750 
1751 /**
1752  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1753  *
1754  * @bp: driver handle
1755  *
1756  * Tries to acquire a leader lock for current engine.
1757  */
1758 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1759 {
1760 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1761 }
1762 
1763 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1764 
1765 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1766 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1767 {
1768 	/* Set the interrupt occurred bit for the sp-task to recognize it
1769 	 * must ack the interrupt and transition according to the IGU
1770 	 * state machine.
1771 	 */
1772 	atomic_set(&bp->interrupt_occurred, 1);
1773 
1774 	/* The sp_task must execute only after this bit
1775 	 * is set, otherwise we will get out of sync and miss all
1776 	 * further interrupts. Hence, the barrier.
1777 	 */
1778 	smp_wmb();
1779 
1780 	/* schedule sp_task to workqueue */
1781 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1782 }
1783 
1784 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1785 {
1786 	struct bnx2x *bp = fp->bp;
1787 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1788 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1789 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1790 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1791 
1792 	DP(BNX2X_MSG_SP,
1793 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1794 	   fp->index, cid, command, bp->state,
1795 	   rr_cqe->ramrod_cqe.ramrod_type);
1796 
1797 	/* If cid is within VF range, replace the slowpath object with the
1798 	 * one corresponding to this VF
1799 	 */
1800 	if (cid >= BNX2X_FIRST_VF_CID  &&
1801 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1802 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1803 
1804 	switch (command) {
1805 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1806 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1807 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1808 		break;
1809 
1810 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1811 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1812 		drv_cmd = BNX2X_Q_CMD_SETUP;
1813 		break;
1814 
1815 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1816 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1817 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1818 		break;
1819 
1820 	case (RAMROD_CMD_ID_ETH_HALT):
1821 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1822 		drv_cmd = BNX2X_Q_CMD_HALT;
1823 		break;
1824 
1825 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1826 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1827 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1828 		break;
1829 
1830 	case (RAMROD_CMD_ID_ETH_EMPTY):
1831 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1832 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1833 		break;
1834 
1835 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1836 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1837 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1838 		break;
1839 
1840 	default:
1841 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1842 			  command, fp->index);
1843 		return;
1844 	}
1845 
1846 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1847 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1848 		/* q_obj->complete_cmd() failure means that this was
1849 		 * an unexpected completion.
1850 		 *
1851 		 * In this case we don't want to increase the bp->spq_left
1852 		 * because apparently we haven't sent this command the first
1853 		 * place.
1854 		 */
1855 #ifdef BNX2X_STOP_ON_ERROR
1856 		bnx2x_panic();
1857 #else
1858 		return;
1859 #endif
1860 
1861 	smp_mb__before_atomic_inc();
1862 	atomic_inc(&bp->cq_spq_left);
1863 	/* push the change in bp->spq_left and towards the memory */
1864 	smp_mb__after_atomic_inc();
1865 
1866 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1867 
1868 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1869 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1870 		/* if Q update ramrod is completed for last Q in AFEX vif set
1871 		 * flow, then ACK MCP at the end
1872 		 *
1873 		 * mark pending ACK to MCP bit.
1874 		 * prevent case that both bits are cleared.
1875 		 * At the end of load/unload driver checks that
1876 		 * sp_state is cleared, and this order prevents
1877 		 * races
1878 		 */
1879 		smp_mb__before_clear_bit();
1880 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1881 		wmb();
1882 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1883 		smp_mb__after_clear_bit();
1884 
1885 		/* schedule the sp task as mcp ack is required */
1886 		bnx2x_schedule_sp_task(bp);
1887 	}
1888 
1889 	return;
1890 }
1891 
1892 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1893 {
1894 	struct bnx2x *bp = netdev_priv(dev_instance);
1895 	u16 status = bnx2x_ack_int(bp);
1896 	u16 mask;
1897 	int i;
1898 	u8 cos;
1899 
1900 	/* Return here if interrupt is shared and it's not for us */
1901 	if (unlikely(status == 0)) {
1902 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1903 		return IRQ_NONE;
1904 	}
1905 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1906 
1907 #ifdef BNX2X_STOP_ON_ERROR
1908 	if (unlikely(bp->panic))
1909 		return IRQ_HANDLED;
1910 #endif
1911 
1912 	for_each_eth_queue(bp, i) {
1913 		struct bnx2x_fastpath *fp = &bp->fp[i];
1914 
1915 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1916 		if (status & mask) {
1917 			/* Handle Rx or Tx according to SB id */
1918 			for_each_cos_in_tx_queue(fp, cos)
1919 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1920 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1921 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1922 			status &= ~mask;
1923 		}
1924 	}
1925 
1926 	if (CNIC_SUPPORT(bp)) {
1927 		mask = 0x2;
1928 		if (status & (mask | 0x1)) {
1929 			struct cnic_ops *c_ops = NULL;
1930 
1931 			rcu_read_lock();
1932 			c_ops = rcu_dereference(bp->cnic_ops);
1933 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1934 				      CNIC_DRV_STATE_HANDLES_IRQ))
1935 				c_ops->cnic_handler(bp->cnic_data, NULL);
1936 			rcu_read_unlock();
1937 
1938 			status &= ~mask;
1939 		}
1940 	}
1941 
1942 	if (unlikely(status & 0x1)) {
1943 
1944 		/* schedule sp task to perform default status block work, ack
1945 		 * attentions and enable interrupts.
1946 		 */
1947 		bnx2x_schedule_sp_task(bp);
1948 
1949 		status &= ~0x1;
1950 		if (!status)
1951 			return IRQ_HANDLED;
1952 	}
1953 
1954 	if (unlikely(status))
1955 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1956 		   status);
1957 
1958 	return IRQ_HANDLED;
1959 }
1960 
1961 /* Link */
1962 
1963 /*
1964  * General service functions
1965  */
1966 
1967 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969 	u32 lock_status;
1970 	u32 resource_bit = (1 << resource);
1971 	int func = BP_FUNC(bp);
1972 	u32 hw_lock_control_reg;
1973 	int cnt;
1974 
1975 	/* Validating that the resource is within range */
1976 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1977 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1978 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1979 		return -EINVAL;
1980 	}
1981 
1982 	if (func <= 5) {
1983 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1984 	} else {
1985 		hw_lock_control_reg =
1986 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1987 	}
1988 
1989 	/* Validating that the resource is not already taken */
1990 	lock_status = REG_RD(bp, hw_lock_control_reg);
1991 	if (lock_status & resource_bit) {
1992 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1993 		   lock_status, resource_bit);
1994 		return -EEXIST;
1995 	}
1996 
1997 	/* Try for 5 second every 5ms */
1998 	for (cnt = 0; cnt < 1000; cnt++) {
1999 		/* Try to acquire the lock */
2000 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2001 		lock_status = REG_RD(bp, hw_lock_control_reg);
2002 		if (lock_status & resource_bit)
2003 			return 0;
2004 
2005 		usleep_range(5000, 10000);
2006 	}
2007 	BNX2X_ERR("Timeout\n");
2008 	return -EAGAIN;
2009 }
2010 
2011 int bnx2x_release_leader_lock(struct bnx2x *bp)
2012 {
2013 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2014 }
2015 
2016 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2017 {
2018 	u32 lock_status;
2019 	u32 resource_bit = (1 << resource);
2020 	int func = BP_FUNC(bp);
2021 	u32 hw_lock_control_reg;
2022 
2023 	/* Validating that the resource is within range */
2024 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2025 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2026 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2027 		return -EINVAL;
2028 	}
2029 
2030 	if (func <= 5) {
2031 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2032 	} else {
2033 		hw_lock_control_reg =
2034 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2035 	}
2036 
2037 	/* Validating that the resource is currently taken */
2038 	lock_status = REG_RD(bp, hw_lock_control_reg);
2039 	if (!(lock_status & resource_bit)) {
2040 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2041 			  lock_status, resource_bit);
2042 		return -EFAULT;
2043 	}
2044 
2045 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2046 	return 0;
2047 }
2048 
2049 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2050 {
2051 	/* The GPIO should be swapped if swap register is set and active */
2052 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2053 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2054 	int gpio_shift = gpio_num +
2055 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2056 	u32 gpio_mask = (1 << gpio_shift);
2057 	u32 gpio_reg;
2058 	int value;
2059 
2060 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2061 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2062 		return -EINVAL;
2063 	}
2064 
2065 	/* read GPIO value */
2066 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2067 
2068 	/* get the requested pin value */
2069 	if ((gpio_reg & gpio_mask) == gpio_mask)
2070 		value = 1;
2071 	else
2072 		value = 0;
2073 
2074 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2075 
2076 	return value;
2077 }
2078 
2079 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2080 {
2081 	/* The GPIO should be swapped if swap register is set and active */
2082 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2083 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2084 	int gpio_shift = gpio_num +
2085 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2086 	u32 gpio_mask = (1 << gpio_shift);
2087 	u32 gpio_reg;
2088 
2089 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2090 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2091 		return -EINVAL;
2092 	}
2093 
2094 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2095 	/* read GPIO and mask except the float bits */
2096 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2097 
2098 	switch (mode) {
2099 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2100 		DP(NETIF_MSG_LINK,
2101 		   "Set GPIO %d (shift %d) -> output low\n",
2102 		   gpio_num, gpio_shift);
2103 		/* clear FLOAT and set CLR */
2104 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2105 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2106 		break;
2107 
2108 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2109 		DP(NETIF_MSG_LINK,
2110 		   "Set GPIO %d (shift %d) -> output high\n",
2111 		   gpio_num, gpio_shift);
2112 		/* clear FLOAT and set SET */
2113 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2114 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2115 		break;
2116 
2117 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2118 		DP(NETIF_MSG_LINK,
2119 		   "Set GPIO %d (shift %d) -> input\n",
2120 		   gpio_num, gpio_shift);
2121 		/* set FLOAT */
2122 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2123 		break;
2124 
2125 	default:
2126 		break;
2127 	}
2128 
2129 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2130 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2131 
2132 	return 0;
2133 }
2134 
2135 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2136 {
2137 	u32 gpio_reg = 0;
2138 	int rc = 0;
2139 
2140 	/* Any port swapping should be handled by caller. */
2141 
2142 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2143 	/* read GPIO and mask except the float bits */
2144 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2145 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2146 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2147 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2148 
2149 	switch (mode) {
2150 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2151 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2152 		/* set CLR */
2153 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2154 		break;
2155 
2156 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2157 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2158 		/* set SET */
2159 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2160 		break;
2161 
2162 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2163 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2164 		/* set FLOAT */
2165 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2166 		break;
2167 
2168 	default:
2169 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2170 		rc = -EINVAL;
2171 		break;
2172 	}
2173 
2174 	if (rc == 0)
2175 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2176 
2177 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2178 
2179 	return rc;
2180 }
2181 
2182 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2183 {
2184 	/* The GPIO should be swapped if swap register is set and active */
2185 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2186 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2187 	int gpio_shift = gpio_num +
2188 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2189 	u32 gpio_mask = (1 << gpio_shift);
2190 	u32 gpio_reg;
2191 
2192 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2193 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2194 		return -EINVAL;
2195 	}
2196 
2197 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2198 	/* read GPIO int */
2199 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2200 
2201 	switch (mode) {
2202 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2203 		DP(NETIF_MSG_LINK,
2204 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2205 		   gpio_num, gpio_shift);
2206 		/* clear SET and set CLR */
2207 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2208 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2209 		break;
2210 
2211 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2212 		DP(NETIF_MSG_LINK,
2213 		   "Set GPIO INT %d (shift %d) -> output high\n",
2214 		   gpio_num, gpio_shift);
2215 		/* clear CLR and set SET */
2216 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2217 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2218 		break;
2219 
2220 	default:
2221 		break;
2222 	}
2223 
2224 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2225 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2226 
2227 	return 0;
2228 }
2229 
2230 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2231 {
2232 	u32 spio_reg;
2233 
2234 	/* Only 2 SPIOs are configurable */
2235 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2236 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2237 		return -EINVAL;
2238 	}
2239 
2240 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2241 	/* read SPIO and mask except the float bits */
2242 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2243 
2244 	switch (mode) {
2245 	case MISC_SPIO_OUTPUT_LOW:
2246 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2247 		/* clear FLOAT and set CLR */
2248 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2249 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2250 		break;
2251 
2252 	case MISC_SPIO_OUTPUT_HIGH:
2253 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2254 		/* clear FLOAT and set SET */
2255 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2256 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2257 		break;
2258 
2259 	case MISC_SPIO_INPUT_HI_Z:
2260 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2261 		/* set FLOAT */
2262 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2263 		break;
2264 
2265 	default:
2266 		break;
2267 	}
2268 
2269 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2270 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2271 
2272 	return 0;
2273 }
2274 
2275 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2276 {
2277 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2278 	switch (bp->link_vars.ieee_fc &
2279 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2280 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2281 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2282 						   ADVERTISED_Pause);
2283 		break;
2284 
2285 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2286 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2287 						  ADVERTISED_Pause);
2288 		break;
2289 
2290 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2291 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2292 		break;
2293 
2294 	default:
2295 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2296 						   ADVERTISED_Pause);
2297 		break;
2298 	}
2299 }
2300 
2301 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2302 {
2303 	/* Initialize link parameters structure variables
2304 	 * It is recommended to turn off RX FC for jumbo frames
2305 	 *  for better performance
2306 	 */
2307 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2308 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2309 	else
2310 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2311 }
2312 
2313 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2314 {
2315 	u32 pause_enabled = 0;
2316 
2317 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2318 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2319 			pause_enabled = 1;
2320 
2321 		REG_WR(bp, BAR_USTRORM_INTMEM +
2322 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2323 		       pause_enabled);
2324 	}
2325 
2326 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2327 	   pause_enabled ? "enabled" : "disabled");
2328 }
2329 
2330 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2331 {
2332 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2333 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2334 
2335 	if (!BP_NOMCP(bp)) {
2336 		bnx2x_set_requested_fc(bp);
2337 		bnx2x_acquire_phy_lock(bp);
2338 
2339 		if (load_mode == LOAD_DIAG) {
2340 			struct link_params *lp = &bp->link_params;
2341 			lp->loopback_mode = LOOPBACK_XGXS;
2342 			/* do PHY loopback at 10G speed, if possible */
2343 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2344 				if (lp->speed_cap_mask[cfx_idx] &
2345 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2346 					lp->req_line_speed[cfx_idx] =
2347 					SPEED_10000;
2348 				else
2349 					lp->req_line_speed[cfx_idx] =
2350 					SPEED_1000;
2351 			}
2352 		}
2353 
2354 		if (load_mode == LOAD_LOOPBACK_EXT) {
2355 			struct link_params *lp = &bp->link_params;
2356 			lp->loopback_mode = LOOPBACK_EXT;
2357 		}
2358 
2359 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2360 
2361 		bnx2x_release_phy_lock(bp);
2362 
2363 		bnx2x_init_dropless_fc(bp);
2364 
2365 		bnx2x_calc_fc_adv(bp);
2366 
2367 		if (bp->link_vars.link_up) {
2368 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2369 			bnx2x_link_report(bp);
2370 		}
2371 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2372 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2373 		return rc;
2374 	}
2375 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2376 	return -EINVAL;
2377 }
2378 
2379 void bnx2x_link_set(struct bnx2x *bp)
2380 {
2381 	if (!BP_NOMCP(bp)) {
2382 		bnx2x_acquire_phy_lock(bp);
2383 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2384 		bnx2x_release_phy_lock(bp);
2385 
2386 		bnx2x_init_dropless_fc(bp);
2387 
2388 		bnx2x_calc_fc_adv(bp);
2389 	} else
2390 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2391 }
2392 
2393 static void bnx2x__link_reset(struct bnx2x *bp)
2394 {
2395 	if (!BP_NOMCP(bp)) {
2396 		bnx2x_acquire_phy_lock(bp);
2397 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2398 		bnx2x_release_phy_lock(bp);
2399 	} else
2400 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2401 }
2402 
2403 void bnx2x_force_link_reset(struct bnx2x *bp)
2404 {
2405 	bnx2x_acquire_phy_lock(bp);
2406 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2407 	bnx2x_release_phy_lock(bp);
2408 }
2409 
2410 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2411 {
2412 	u8 rc = 0;
2413 
2414 	if (!BP_NOMCP(bp)) {
2415 		bnx2x_acquire_phy_lock(bp);
2416 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2417 				     is_serdes);
2418 		bnx2x_release_phy_lock(bp);
2419 	} else
2420 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2421 
2422 	return rc;
2423 }
2424 
2425 /* Calculates the sum of vn_min_rates.
2426    It's needed for further normalizing of the min_rates.
2427    Returns:
2428      sum of vn_min_rates.
2429        or
2430      0 - if all the min_rates are 0.
2431      In the later case fairness algorithm should be deactivated.
2432      If not all min_rates are zero then those that are zeroes will be set to 1.
2433  */
2434 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2435 				      struct cmng_init_input *input)
2436 {
2437 	int all_zero = 1;
2438 	int vn;
2439 
2440 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2441 		u32 vn_cfg = bp->mf_config[vn];
2442 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2443 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2444 
2445 		/* Skip hidden vns */
2446 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2447 			vn_min_rate = 0;
2448 		/* If min rate is zero - set it to 1 */
2449 		else if (!vn_min_rate)
2450 			vn_min_rate = DEF_MIN_RATE;
2451 		else
2452 			all_zero = 0;
2453 
2454 		input->vnic_min_rate[vn] = vn_min_rate;
2455 	}
2456 
2457 	/* if ETS or all min rates are zeros - disable fairness */
2458 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2459 		input->flags.cmng_enables &=
2460 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2461 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2462 	} else if (all_zero) {
2463 		input->flags.cmng_enables &=
2464 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2465 		DP(NETIF_MSG_IFUP,
2466 		   "All MIN values are zeroes fairness will be disabled\n");
2467 	} else
2468 		input->flags.cmng_enables |=
2469 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2470 }
2471 
2472 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2473 				    struct cmng_init_input *input)
2474 {
2475 	u16 vn_max_rate;
2476 	u32 vn_cfg = bp->mf_config[vn];
2477 
2478 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2479 		vn_max_rate = 0;
2480 	else {
2481 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2482 
2483 		if (IS_MF_SI(bp)) {
2484 			/* maxCfg in percents of linkspeed */
2485 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2486 		} else /* SD modes */
2487 			/* maxCfg is absolute in 100Mb units */
2488 			vn_max_rate = maxCfg * 100;
2489 	}
2490 
2491 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2492 
2493 	input->vnic_max_rate[vn] = vn_max_rate;
2494 }
2495 
2496 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2497 {
2498 	if (CHIP_REV_IS_SLOW(bp))
2499 		return CMNG_FNS_NONE;
2500 	if (IS_MF(bp))
2501 		return CMNG_FNS_MINMAX;
2502 
2503 	return CMNG_FNS_NONE;
2504 }
2505 
2506 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2507 {
2508 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2509 
2510 	if (BP_NOMCP(bp))
2511 		return; /* what should be the default value in this case */
2512 
2513 	/* For 2 port configuration the absolute function number formula
2514 	 * is:
2515 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2516 	 *
2517 	 *      and there are 4 functions per port
2518 	 *
2519 	 * For 4 port configuration it is
2520 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2521 	 *
2522 	 *      and there are 2 functions per port
2523 	 */
2524 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2525 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2526 
2527 		if (func >= E1H_FUNC_MAX)
2528 			break;
2529 
2530 		bp->mf_config[vn] =
2531 			MF_CFG_RD(bp, func_mf_config[func].config);
2532 	}
2533 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2534 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2535 		bp->flags |= MF_FUNC_DIS;
2536 	} else {
2537 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2538 		bp->flags &= ~MF_FUNC_DIS;
2539 	}
2540 }
2541 
2542 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2543 {
2544 	struct cmng_init_input input;
2545 	memset(&input, 0, sizeof(struct cmng_init_input));
2546 
2547 	input.port_rate = bp->link_vars.line_speed;
2548 
2549 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2550 		int vn;
2551 
2552 		/* read mf conf from shmem */
2553 		if (read_cfg)
2554 			bnx2x_read_mf_cfg(bp);
2555 
2556 		/* vn_weight_sum and enable fairness if not 0 */
2557 		bnx2x_calc_vn_min(bp, &input);
2558 
2559 		/* calculate and set min-max rate for each vn */
2560 		if (bp->port.pmf)
2561 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2562 				bnx2x_calc_vn_max(bp, vn, &input);
2563 
2564 		/* always enable rate shaping and fairness */
2565 		input.flags.cmng_enables |=
2566 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2567 
2568 		bnx2x_init_cmng(&input, &bp->cmng);
2569 		return;
2570 	}
2571 
2572 	/* rate shaping and fairness are disabled */
2573 	DP(NETIF_MSG_IFUP,
2574 	   "rate shaping and fairness are disabled\n");
2575 }
2576 
2577 static void storm_memset_cmng(struct bnx2x *bp,
2578 			      struct cmng_init *cmng,
2579 			      u8 port)
2580 {
2581 	int vn;
2582 	size_t size = sizeof(struct cmng_struct_per_port);
2583 
2584 	u32 addr = BAR_XSTRORM_INTMEM +
2585 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2586 
2587 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2588 
2589 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2590 		int func = func_by_vn(bp, vn);
2591 
2592 		addr = BAR_XSTRORM_INTMEM +
2593 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2594 		size = sizeof(struct rate_shaping_vars_per_vn);
2595 		__storm_memset_struct(bp, addr, size,
2596 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2597 
2598 		addr = BAR_XSTRORM_INTMEM +
2599 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2600 		size = sizeof(struct fairness_vars_per_vn);
2601 		__storm_memset_struct(bp, addr, size,
2602 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2603 	}
2604 }
2605 
2606 /* init cmng mode in HW according to local configuration */
2607 void bnx2x_set_local_cmng(struct bnx2x *bp)
2608 {
2609 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2610 
2611 	if (cmng_fns != CMNG_FNS_NONE) {
2612 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2613 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2614 	} else {
2615 		/* rate shaping and fairness are disabled */
2616 		DP(NETIF_MSG_IFUP,
2617 		   "single function mode without fairness\n");
2618 	}
2619 }
2620 
2621 /* This function is called upon link interrupt */
2622 static void bnx2x_link_attn(struct bnx2x *bp)
2623 {
2624 	/* Make sure that we are synced with the current statistics */
2625 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2626 
2627 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2628 
2629 	bnx2x_init_dropless_fc(bp);
2630 
2631 	if (bp->link_vars.link_up) {
2632 
2633 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2634 			struct host_port_stats *pstats;
2635 
2636 			pstats = bnx2x_sp(bp, port_stats);
2637 			/* reset old mac stats */
2638 			memset(&(pstats->mac_stx[0]), 0,
2639 			       sizeof(struct mac_stx));
2640 		}
2641 		if (bp->state == BNX2X_STATE_OPEN)
2642 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2643 	}
2644 
2645 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2646 		bnx2x_set_local_cmng(bp);
2647 
2648 	__bnx2x_link_report(bp);
2649 
2650 	if (IS_MF(bp))
2651 		bnx2x_link_sync_notify(bp);
2652 }
2653 
2654 void bnx2x__link_status_update(struct bnx2x *bp)
2655 {
2656 	if (bp->state != BNX2X_STATE_OPEN)
2657 		return;
2658 
2659 	/* read updated dcb configuration */
2660 	if (IS_PF(bp)) {
2661 		bnx2x_dcbx_pmf_update(bp);
2662 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2663 		if (bp->link_vars.link_up)
2664 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2665 		else
2666 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2667 			/* indicate link status */
2668 		bnx2x_link_report(bp);
2669 
2670 	} else { /* VF */
2671 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2672 					  SUPPORTED_10baseT_Full |
2673 					  SUPPORTED_100baseT_Half |
2674 					  SUPPORTED_100baseT_Full |
2675 					  SUPPORTED_1000baseT_Full |
2676 					  SUPPORTED_2500baseX_Full |
2677 					  SUPPORTED_10000baseT_Full |
2678 					  SUPPORTED_TP |
2679 					  SUPPORTED_FIBRE |
2680 					  SUPPORTED_Autoneg |
2681 					  SUPPORTED_Pause |
2682 					  SUPPORTED_Asym_Pause);
2683 		bp->port.advertising[0] = bp->port.supported[0];
2684 
2685 		bp->link_params.bp = bp;
2686 		bp->link_params.port = BP_PORT(bp);
2687 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2688 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2689 		bp->link_params.req_line_speed[0] = SPEED_10000;
2690 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2691 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2692 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2693 		bp->link_vars.line_speed = SPEED_10000;
2694 		bp->link_vars.link_status =
2695 			(LINK_STATUS_LINK_UP |
2696 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2697 		bp->link_vars.link_up = 1;
2698 		bp->link_vars.duplex = DUPLEX_FULL;
2699 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2700 		__bnx2x_link_report(bp);
2701 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2702 	}
2703 }
2704 
2705 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2706 				  u16 vlan_val, u8 allowed_prio)
2707 {
2708 	struct bnx2x_func_state_params func_params = {NULL};
2709 	struct bnx2x_func_afex_update_params *f_update_params =
2710 		&func_params.params.afex_update;
2711 
2712 	func_params.f_obj = &bp->func_obj;
2713 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2714 
2715 	/* no need to wait for RAMROD completion, so don't
2716 	 * set RAMROD_COMP_WAIT flag
2717 	 */
2718 
2719 	f_update_params->vif_id = vifid;
2720 	f_update_params->afex_default_vlan = vlan_val;
2721 	f_update_params->allowed_priorities = allowed_prio;
2722 
2723 	/* if ramrod can not be sent, response to MCP immediately */
2724 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2725 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2726 
2727 	return 0;
2728 }
2729 
2730 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2731 					  u16 vif_index, u8 func_bit_map)
2732 {
2733 	struct bnx2x_func_state_params func_params = {NULL};
2734 	struct bnx2x_func_afex_viflists_params *update_params =
2735 		&func_params.params.afex_viflists;
2736 	int rc;
2737 	u32 drv_msg_code;
2738 
2739 	/* validate only LIST_SET and LIST_GET are received from switch */
2740 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2741 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2742 			  cmd_type);
2743 
2744 	func_params.f_obj = &bp->func_obj;
2745 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2746 
2747 	/* set parameters according to cmd_type */
2748 	update_params->afex_vif_list_command = cmd_type;
2749 	update_params->vif_list_index = vif_index;
2750 	update_params->func_bit_map =
2751 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2752 	update_params->func_to_clear = 0;
2753 	drv_msg_code =
2754 		(cmd_type == VIF_LIST_RULE_GET) ?
2755 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2756 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2757 
2758 	/* if ramrod can not be sent, respond to MCP immediately for
2759 	 * SET and GET requests (other are not triggered from MCP)
2760 	 */
2761 	rc = bnx2x_func_state_change(bp, &func_params);
2762 	if (rc < 0)
2763 		bnx2x_fw_command(bp, drv_msg_code, 0);
2764 
2765 	return 0;
2766 }
2767 
2768 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2769 {
2770 	struct afex_stats afex_stats;
2771 	u32 func = BP_ABS_FUNC(bp);
2772 	u32 mf_config;
2773 	u16 vlan_val;
2774 	u32 vlan_prio;
2775 	u16 vif_id;
2776 	u8 allowed_prio;
2777 	u8 vlan_mode;
2778 	u32 addr_to_write, vifid, addrs, stats_type, i;
2779 
2780 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2781 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2782 		DP(BNX2X_MSG_MCP,
2783 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2784 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2785 	}
2786 
2787 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2788 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2789 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2790 		DP(BNX2X_MSG_MCP,
2791 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2792 		   vifid, addrs);
2793 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2794 					       addrs);
2795 	}
2796 
2797 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2798 		addr_to_write = SHMEM2_RD(bp,
2799 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2800 		stats_type = SHMEM2_RD(bp,
2801 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2802 
2803 		DP(BNX2X_MSG_MCP,
2804 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2805 		   addr_to_write);
2806 
2807 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2808 
2809 		/* write response to scratchpad, for MCP */
2810 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2811 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2812 			       *(((u32 *)(&afex_stats))+i));
2813 
2814 		/* send ack message to MCP */
2815 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2816 	}
2817 
2818 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2819 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2820 		bp->mf_config[BP_VN(bp)] = mf_config;
2821 		DP(BNX2X_MSG_MCP,
2822 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2823 		   mf_config);
2824 
2825 		/* if VIF_SET is "enabled" */
2826 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2827 			/* set rate limit directly to internal RAM */
2828 			struct cmng_init_input cmng_input;
2829 			struct rate_shaping_vars_per_vn m_rs_vn;
2830 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2831 			u32 addr = BAR_XSTRORM_INTMEM +
2832 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2833 
2834 			bp->mf_config[BP_VN(bp)] = mf_config;
2835 
2836 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2837 			m_rs_vn.vn_counter.rate =
2838 				cmng_input.vnic_max_rate[BP_VN(bp)];
2839 			m_rs_vn.vn_counter.quota =
2840 				(m_rs_vn.vn_counter.rate *
2841 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2842 
2843 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2844 
2845 			/* read relevant values from mf_cfg struct in shmem */
2846 			vif_id =
2847 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2848 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2849 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2850 			vlan_val =
2851 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2852 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2853 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2854 			vlan_prio = (mf_config &
2855 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2856 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2857 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2858 			vlan_mode =
2859 				(MF_CFG_RD(bp,
2860 					   func_mf_config[func].afex_config) &
2861 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2862 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2863 			allowed_prio =
2864 				(MF_CFG_RD(bp,
2865 					   func_mf_config[func].afex_config) &
2866 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2867 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2868 
2869 			/* send ramrod to FW, return in case of failure */
2870 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2871 						   allowed_prio))
2872 				return;
2873 
2874 			bp->afex_def_vlan_tag = vlan_val;
2875 			bp->afex_vlan_mode = vlan_mode;
2876 		} else {
2877 			/* notify link down because BP->flags is disabled */
2878 			bnx2x_link_report(bp);
2879 
2880 			/* send INVALID VIF ramrod to FW */
2881 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2882 
2883 			/* Reset the default afex VLAN */
2884 			bp->afex_def_vlan_tag = -1;
2885 		}
2886 	}
2887 }
2888 
2889 static void bnx2x_pmf_update(struct bnx2x *bp)
2890 {
2891 	int port = BP_PORT(bp);
2892 	u32 val;
2893 
2894 	bp->port.pmf = 1;
2895 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2896 
2897 	/*
2898 	 * We need the mb() to ensure the ordering between the writing to
2899 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2900 	 */
2901 	smp_mb();
2902 
2903 	/* queue a periodic task */
2904 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2905 
2906 	bnx2x_dcbx_pmf_update(bp);
2907 
2908 	/* enable nig attention */
2909 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2910 	if (bp->common.int_block == INT_BLOCK_HC) {
2911 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2912 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2913 	} else if (!CHIP_IS_E1x(bp)) {
2914 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2915 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2916 	}
2917 
2918 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2919 }
2920 
2921 /* end of Link */
2922 
2923 /* slow path */
2924 
2925 /*
2926  * General service functions
2927  */
2928 
2929 /* send the MCP a request, block until there is a reply */
2930 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2931 {
2932 	int mb_idx = BP_FW_MB_IDX(bp);
2933 	u32 seq;
2934 	u32 rc = 0;
2935 	u32 cnt = 1;
2936 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2937 
2938 	mutex_lock(&bp->fw_mb_mutex);
2939 	seq = ++bp->fw_seq;
2940 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2941 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2942 
2943 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2944 			(command | seq), param);
2945 
2946 	do {
2947 		/* let the FW do it's magic ... */
2948 		msleep(delay);
2949 
2950 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2951 
2952 		/* Give the FW up to 5 second (500*10ms) */
2953 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2954 
2955 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2956 	   cnt*delay, rc, seq);
2957 
2958 	/* is this a reply to our command? */
2959 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2960 		rc &= FW_MSG_CODE_MASK;
2961 	else {
2962 		/* FW BUG! */
2963 		BNX2X_ERR("FW failed to respond!\n");
2964 		bnx2x_fw_dump(bp);
2965 		rc = 0;
2966 	}
2967 	mutex_unlock(&bp->fw_mb_mutex);
2968 
2969 	return rc;
2970 }
2971 
2972 static void storm_memset_func_cfg(struct bnx2x *bp,
2973 				 struct tstorm_eth_function_common_config *tcfg,
2974 				 u16 abs_fid)
2975 {
2976 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2977 
2978 	u32 addr = BAR_TSTRORM_INTMEM +
2979 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2980 
2981 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2982 }
2983 
2984 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2985 {
2986 	if (CHIP_IS_E1x(bp)) {
2987 		struct tstorm_eth_function_common_config tcfg = {0};
2988 
2989 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2990 	}
2991 
2992 	/* Enable the function in the FW */
2993 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2994 	storm_memset_func_en(bp, p->func_id, 1);
2995 
2996 	/* spq */
2997 	if (p->func_flgs & FUNC_FLG_SPQ) {
2998 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2999 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3000 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3001 	}
3002 }
3003 
3004 /**
3005  * bnx2x_get_common_flags - Return common flags
3006  *
3007  * @bp		device handle
3008  * @fp		queue handle
3009  * @zero_stats	TRUE if statistics zeroing is needed
3010  *
3011  * Return the flags that are common for the Tx-only and not normal connections.
3012  */
3013 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3014 					    struct bnx2x_fastpath *fp,
3015 					    bool zero_stats)
3016 {
3017 	unsigned long flags = 0;
3018 
3019 	/* PF driver will always initialize the Queue to an ACTIVE state */
3020 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3021 
3022 	/* tx only connections collect statistics (on the same index as the
3023 	 * parent connection). The statistics are zeroed when the parent
3024 	 * connection is initialized.
3025 	 */
3026 
3027 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3028 	if (zero_stats)
3029 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3030 
3031 	if (bp->flags & TX_SWITCHING)
3032 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3033 
3034 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3035 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3036 
3037 #ifdef BNX2X_STOP_ON_ERROR
3038 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3039 #endif
3040 
3041 	return flags;
3042 }
3043 
3044 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3045 				       struct bnx2x_fastpath *fp,
3046 				       bool leading)
3047 {
3048 	unsigned long flags = 0;
3049 
3050 	/* calculate other queue flags */
3051 	if (IS_MF_SD(bp))
3052 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3053 
3054 	if (IS_FCOE_FP(fp)) {
3055 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3056 		/* For FCoE - force usage of default priority (for afex) */
3057 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3058 	}
3059 
3060 	if (!fp->disable_tpa) {
3061 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3062 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3063 		if (fp->mode == TPA_MODE_GRO)
3064 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3065 	}
3066 
3067 	if (leading) {
3068 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3069 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3070 	}
3071 
3072 	/* Always set HW VLAN stripping */
3073 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3074 
3075 	/* configure silent vlan removal */
3076 	if (IS_MF_AFEX(bp))
3077 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3078 
3079 	return flags | bnx2x_get_common_flags(bp, fp, true);
3080 }
3081 
3082 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3083 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3084 	u8 cos)
3085 {
3086 	gen_init->stat_id = bnx2x_stats_id(fp);
3087 	gen_init->spcl_id = fp->cl_id;
3088 
3089 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3090 	if (IS_FCOE_FP(fp))
3091 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3092 	else
3093 		gen_init->mtu = bp->dev->mtu;
3094 
3095 	gen_init->cos = cos;
3096 }
3097 
3098 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3099 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3100 	struct bnx2x_rxq_setup_params *rxq_init)
3101 {
3102 	u8 max_sge = 0;
3103 	u16 sge_sz = 0;
3104 	u16 tpa_agg_size = 0;
3105 
3106 	if (!fp->disable_tpa) {
3107 		pause->sge_th_lo = SGE_TH_LO(bp);
3108 		pause->sge_th_hi = SGE_TH_HI(bp);
3109 
3110 		/* validate SGE ring has enough to cross high threshold */
3111 		WARN_ON(bp->dropless_fc &&
3112 				pause->sge_th_hi + FW_PREFETCH_CNT >
3113 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3114 
3115 		tpa_agg_size = TPA_AGG_SIZE;
3116 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3117 			SGE_PAGE_SHIFT;
3118 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3119 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3120 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3121 	}
3122 
3123 	/* pause - not for e1 */
3124 	if (!CHIP_IS_E1(bp)) {
3125 		pause->bd_th_lo = BD_TH_LO(bp);
3126 		pause->bd_th_hi = BD_TH_HI(bp);
3127 
3128 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3129 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3130 		/*
3131 		 * validate that rings have enough entries to cross
3132 		 * high thresholds
3133 		 */
3134 		WARN_ON(bp->dropless_fc &&
3135 				pause->bd_th_hi + FW_PREFETCH_CNT >
3136 				bp->rx_ring_size);
3137 		WARN_ON(bp->dropless_fc &&
3138 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3139 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3140 
3141 		pause->pri_map = 1;
3142 	}
3143 
3144 	/* rxq setup */
3145 	rxq_init->dscr_map = fp->rx_desc_mapping;
3146 	rxq_init->sge_map = fp->rx_sge_mapping;
3147 	rxq_init->rcq_map = fp->rx_comp_mapping;
3148 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3149 
3150 	/* This should be a maximum number of data bytes that may be
3151 	 * placed on the BD (not including paddings).
3152 	 */
3153 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3154 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3155 
3156 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3157 	rxq_init->tpa_agg_sz = tpa_agg_size;
3158 	rxq_init->sge_buf_sz = sge_sz;
3159 	rxq_init->max_sges_pkt = max_sge;
3160 	rxq_init->rss_engine_id = BP_FUNC(bp);
3161 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3162 
3163 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3164 	 *
3165 	 * For PF Clients it should be the maximum available number.
3166 	 * VF driver(s) may want to define it to a smaller value.
3167 	 */
3168 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3169 
3170 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3171 	rxq_init->fw_sb_id = fp->fw_sb_id;
3172 
3173 	if (IS_FCOE_FP(fp))
3174 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3175 	else
3176 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3177 	/* configure silent vlan removal
3178 	 * if multi function mode is afex, then mask default vlan
3179 	 */
3180 	if (IS_MF_AFEX(bp)) {
3181 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3182 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3183 	}
3184 }
3185 
3186 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3187 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3188 	u8 cos)
3189 {
3190 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3191 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3192 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3193 	txq_init->fw_sb_id = fp->fw_sb_id;
3194 
3195 	/*
3196 	 * set the tss leading client id for TX classification ==
3197 	 * leading RSS client id
3198 	 */
3199 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3200 
3201 	if (IS_FCOE_FP(fp)) {
3202 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3203 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3204 	}
3205 }
3206 
3207 static void bnx2x_pf_init(struct bnx2x *bp)
3208 {
3209 	struct bnx2x_func_init_params func_init = {0};
3210 	struct event_ring_data eq_data = { {0} };
3211 	u16 flags;
3212 
3213 	if (!CHIP_IS_E1x(bp)) {
3214 		/* reset IGU PF statistics: MSIX + ATTN */
3215 		/* PF */
3216 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3217 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3218 			   (CHIP_MODE_IS_4_PORT(bp) ?
3219 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3220 		/* ATTN */
3221 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3222 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3223 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3224 			   (CHIP_MODE_IS_4_PORT(bp) ?
3225 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3226 	}
3227 
3228 	/* function setup flags */
3229 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3230 
3231 	/* This flag is relevant for E1x only.
3232 	 * E2 doesn't have a TPA configuration in a function level.
3233 	 */
3234 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3235 
3236 	func_init.func_flgs = flags;
3237 	func_init.pf_id = BP_FUNC(bp);
3238 	func_init.func_id = BP_FUNC(bp);
3239 	func_init.spq_map = bp->spq_mapping;
3240 	func_init.spq_prod = bp->spq_prod_idx;
3241 
3242 	bnx2x_func_init(bp, &func_init);
3243 
3244 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3245 
3246 	/*
3247 	 * Congestion management values depend on the link rate
3248 	 * There is no active link so initial link rate is set to 10 Gbps.
3249 	 * When the link comes up The congestion management values are
3250 	 * re-calculated according to the actual link rate.
3251 	 */
3252 	bp->link_vars.line_speed = SPEED_10000;
3253 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3254 
3255 	/* Only the PMF sets the HW */
3256 	if (bp->port.pmf)
3257 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3258 
3259 	/* init Event Queue - PCI bus guarantees correct endianity*/
3260 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3261 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3262 	eq_data.producer = bp->eq_prod;
3263 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3264 	eq_data.sb_id = DEF_SB_ID;
3265 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3266 }
3267 
3268 static void bnx2x_e1h_disable(struct bnx2x *bp)
3269 {
3270 	int port = BP_PORT(bp);
3271 
3272 	bnx2x_tx_disable(bp);
3273 
3274 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3275 }
3276 
3277 static void bnx2x_e1h_enable(struct bnx2x *bp)
3278 {
3279 	int port = BP_PORT(bp);
3280 
3281 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3282 
3283 	/* Tx queue should be only re-enabled */
3284 	netif_tx_wake_all_queues(bp->dev);
3285 
3286 	/*
3287 	 * Should not call netif_carrier_on since it will be called if the link
3288 	 * is up when checking for link state
3289 	 */
3290 }
3291 
3292 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3293 
3294 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3295 {
3296 	struct eth_stats_info *ether_stat =
3297 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3298 	struct bnx2x_vlan_mac_obj *mac_obj =
3299 		&bp->sp_objs->mac_obj;
3300 	int i;
3301 
3302 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3303 		ETH_STAT_INFO_VERSION_LEN);
3304 
3305 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3306 	 * mac_local field in ether_stat struct. The base address is offset by 2
3307 	 * bytes to account for the field being 8 bytes but a mac address is
3308 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3309 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3310 	 * allocated by the ether_stat struct, so the macs will land in their
3311 	 * proper positions.
3312 	 */
3313 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3314 		memset(ether_stat->mac_local + i, 0,
3315 		       sizeof(ether_stat->mac_local[0]));
3316 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3317 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3318 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3319 				ETH_ALEN);
3320 	ether_stat->mtu_size = bp->dev->mtu;
3321 	if (bp->dev->features & NETIF_F_RXCSUM)
3322 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3323 	if (bp->dev->features & NETIF_F_TSO)
3324 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3325 	ether_stat->feature_flags |= bp->common.boot_mode;
3326 
3327 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3328 
3329 	ether_stat->txq_size = bp->tx_ring_size;
3330 	ether_stat->rxq_size = bp->rx_ring_size;
3331 
3332 #ifdef CONFIG_BNX2X_SRIOV
3333 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3334 #endif
3335 }
3336 
3337 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3338 {
3339 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3340 	struct fcoe_stats_info *fcoe_stat =
3341 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3342 
3343 	if (!CNIC_LOADED(bp))
3344 		return;
3345 
3346 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3347 
3348 	fcoe_stat->qos_priority =
3349 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3350 
3351 	/* insert FCoE stats from ramrod response */
3352 	if (!NO_FCOE(bp)) {
3353 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3354 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3355 			tstorm_queue_statistics;
3356 
3357 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3358 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3359 			xstorm_queue_statistics;
3360 
3361 		struct fcoe_statistics_params *fw_fcoe_stat =
3362 			&bp->fw_stats_data->fcoe;
3363 
3364 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3365 			  fcoe_stat->rx_bytes_lo,
3366 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3367 
3368 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3369 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3370 			  fcoe_stat->rx_bytes_lo,
3371 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3372 
3373 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3374 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3375 			  fcoe_stat->rx_bytes_lo,
3376 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3377 
3378 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3379 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3380 			  fcoe_stat->rx_bytes_lo,
3381 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3382 
3383 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3384 			  fcoe_stat->rx_frames_lo,
3385 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3386 
3387 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3388 			  fcoe_stat->rx_frames_lo,
3389 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3390 
3391 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3392 			  fcoe_stat->rx_frames_lo,
3393 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3394 
3395 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3396 			  fcoe_stat->rx_frames_lo,
3397 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3398 
3399 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3400 			  fcoe_stat->tx_bytes_lo,
3401 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3402 
3403 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3404 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3405 			  fcoe_stat->tx_bytes_lo,
3406 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3407 
3408 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3409 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3410 			  fcoe_stat->tx_bytes_lo,
3411 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3412 
3413 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3414 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3415 			  fcoe_stat->tx_bytes_lo,
3416 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3417 
3418 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3419 			  fcoe_stat->tx_frames_lo,
3420 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3421 
3422 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3423 			  fcoe_stat->tx_frames_lo,
3424 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3425 
3426 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3427 			  fcoe_stat->tx_frames_lo,
3428 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3429 
3430 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3431 			  fcoe_stat->tx_frames_lo,
3432 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3433 	}
3434 
3435 	/* ask L5 driver to add data to the struct */
3436 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3437 }
3438 
3439 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3440 {
3441 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3442 	struct iscsi_stats_info *iscsi_stat =
3443 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3444 
3445 	if (!CNIC_LOADED(bp))
3446 		return;
3447 
3448 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3449 	       ETH_ALEN);
3450 
3451 	iscsi_stat->qos_priority =
3452 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3453 
3454 	/* ask L5 driver to add data to the struct */
3455 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3456 }
3457 
3458 /* called due to MCP event (on pmf):
3459  *	reread new bandwidth configuration
3460  *	configure FW
3461  *	notify others function about the change
3462  */
3463 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3464 {
3465 	if (bp->link_vars.link_up) {
3466 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3467 		bnx2x_link_sync_notify(bp);
3468 	}
3469 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3470 }
3471 
3472 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3473 {
3474 	bnx2x_config_mf_bw(bp);
3475 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3476 }
3477 
3478 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3479 {
3480 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3481 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3482 }
3483 
3484 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3485 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3486 
3487 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3488 {
3489 	enum drv_info_opcode op_code;
3490 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3491 	bool release = false;
3492 	int wait;
3493 
3494 	/* if drv_info version supported by MFW doesn't match - send NACK */
3495 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3496 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3497 		return;
3498 	}
3499 
3500 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3501 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3502 
3503 	/* Must prevent other flows from accessing drv_info_to_mcp */
3504 	mutex_lock(&bp->drv_info_mutex);
3505 
3506 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3507 	       sizeof(union drv_info_to_mcp));
3508 
3509 	switch (op_code) {
3510 	case ETH_STATS_OPCODE:
3511 		bnx2x_drv_info_ether_stat(bp);
3512 		break;
3513 	case FCOE_STATS_OPCODE:
3514 		bnx2x_drv_info_fcoe_stat(bp);
3515 		break;
3516 	case ISCSI_STATS_OPCODE:
3517 		bnx2x_drv_info_iscsi_stat(bp);
3518 		break;
3519 	default:
3520 		/* if op code isn't supported - send NACK */
3521 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3522 		goto out;
3523 	}
3524 
3525 	/* if we got drv_info attn from MFW then these fields are defined in
3526 	 * shmem2 for sure
3527 	 */
3528 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3529 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3530 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3531 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3532 
3533 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3534 
3535 	/* Since possible management wants both this and get_driver_version
3536 	 * need to wait until management notifies us it finished utilizing
3537 	 * the buffer.
3538 	 */
3539 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3540 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3541 	} else if (!bp->drv_info_mng_owner) {
3542 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3543 
3544 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3545 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3546 
3547 			/* Management is done; need to clear indication */
3548 			if (indication & bit) {
3549 				SHMEM2_WR(bp, mfw_drv_indication,
3550 					  indication & ~bit);
3551 				release = true;
3552 				break;
3553 			}
3554 
3555 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3556 		}
3557 	}
3558 	if (!release) {
3559 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3560 		bp->drv_info_mng_owner = true;
3561 	}
3562 
3563 out:
3564 	mutex_unlock(&bp->drv_info_mutex);
3565 }
3566 
3567 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3568 {
3569 	u8 vals[4];
3570 	int i = 0;
3571 
3572 	if (bnx2x_format) {
3573 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3574 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3575 		if (i > 0)
3576 			vals[0] -= '0';
3577 	} else {
3578 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3579 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3580 	}
3581 
3582 	while (i < 4)
3583 		vals[i++] = 0;
3584 
3585 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3586 }
3587 
3588 void bnx2x_update_mng_version(struct bnx2x *bp)
3589 {
3590 	u32 iscsiver = DRV_VER_NOT_LOADED;
3591 	u32 fcoever = DRV_VER_NOT_LOADED;
3592 	u32 ethver = DRV_VER_NOT_LOADED;
3593 	int idx = BP_FW_MB_IDX(bp);
3594 	u8 *version;
3595 
3596 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3597 		return;
3598 
3599 	mutex_lock(&bp->drv_info_mutex);
3600 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3601 	if (bp->drv_info_mng_owner)
3602 		goto out;
3603 
3604 	if (bp->state != BNX2X_STATE_OPEN)
3605 		goto out;
3606 
3607 	/* Parse ethernet driver version */
3608 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3609 	if (!CNIC_LOADED(bp))
3610 		goto out;
3611 
3612 	/* Try getting storage driver version via cnic */
3613 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3614 	       sizeof(union drv_info_to_mcp));
3615 	bnx2x_drv_info_iscsi_stat(bp);
3616 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3617 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3618 
3619 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3620 	       sizeof(union drv_info_to_mcp));
3621 	bnx2x_drv_info_fcoe_stat(bp);
3622 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3623 	fcoever = bnx2x_update_mng_version_utility(version, false);
3624 
3625 out:
3626 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3627 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3628 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3629 
3630 	mutex_unlock(&bp->drv_info_mutex);
3631 
3632 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3633 	   ethver, iscsiver, fcoever);
3634 }
3635 
3636 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3637 {
3638 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3639 
3640 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3641 
3642 		/*
3643 		 * This is the only place besides the function initialization
3644 		 * where the bp->flags can change so it is done without any
3645 		 * locks
3646 		 */
3647 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3648 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3649 			bp->flags |= MF_FUNC_DIS;
3650 
3651 			bnx2x_e1h_disable(bp);
3652 		} else {
3653 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3654 			bp->flags &= ~MF_FUNC_DIS;
3655 
3656 			bnx2x_e1h_enable(bp);
3657 		}
3658 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3659 	}
3660 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3661 		bnx2x_config_mf_bw(bp);
3662 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3663 	}
3664 
3665 	/* Report results to MCP */
3666 	if (dcc_event)
3667 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3668 	else
3669 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3670 }
3671 
3672 /* must be called under the spq lock */
3673 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3674 {
3675 	struct eth_spe *next_spe = bp->spq_prod_bd;
3676 
3677 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3678 		bp->spq_prod_bd = bp->spq;
3679 		bp->spq_prod_idx = 0;
3680 		DP(BNX2X_MSG_SP, "end of spq\n");
3681 	} else {
3682 		bp->spq_prod_bd++;
3683 		bp->spq_prod_idx++;
3684 	}
3685 	return next_spe;
3686 }
3687 
3688 /* must be called under the spq lock */
3689 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3690 {
3691 	int func = BP_FUNC(bp);
3692 
3693 	/*
3694 	 * Make sure that BD data is updated before writing the producer:
3695 	 * BD data is written to the memory, the producer is read from the
3696 	 * memory, thus we need a full memory barrier to ensure the ordering.
3697 	 */
3698 	mb();
3699 
3700 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3701 		 bp->spq_prod_idx);
3702 	mmiowb();
3703 }
3704 
3705 /**
3706  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3707  *
3708  * @cmd:	command to check
3709  * @cmd_type:	command type
3710  */
3711 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3712 {
3713 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3714 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3715 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3716 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3717 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3718 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3719 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3720 		return true;
3721 	else
3722 		return false;
3723 }
3724 
3725 /**
3726  * bnx2x_sp_post - place a single command on an SP ring
3727  *
3728  * @bp:		driver handle
3729  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3730  * @cid:	SW CID the command is related to
3731  * @data_hi:	command private data address (high 32 bits)
3732  * @data_lo:	command private data address (low 32 bits)
3733  * @cmd_type:	command type (e.g. NONE, ETH)
3734  *
3735  * SP data is handled as if it's always an address pair, thus data fields are
3736  * not swapped to little endian in upper functions. Instead this function swaps
3737  * data as if it's two u32 fields.
3738  */
3739 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3740 		  u32 data_hi, u32 data_lo, int cmd_type)
3741 {
3742 	struct eth_spe *spe;
3743 	u16 type;
3744 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3745 
3746 #ifdef BNX2X_STOP_ON_ERROR
3747 	if (unlikely(bp->panic)) {
3748 		BNX2X_ERR("Can't post SP when there is panic\n");
3749 		return -EIO;
3750 	}
3751 #endif
3752 
3753 	spin_lock_bh(&bp->spq_lock);
3754 
3755 	if (common) {
3756 		if (!atomic_read(&bp->eq_spq_left)) {
3757 			BNX2X_ERR("BUG! EQ ring full!\n");
3758 			spin_unlock_bh(&bp->spq_lock);
3759 			bnx2x_panic();
3760 			return -EBUSY;
3761 		}
3762 	} else if (!atomic_read(&bp->cq_spq_left)) {
3763 			BNX2X_ERR("BUG! SPQ ring full!\n");
3764 			spin_unlock_bh(&bp->spq_lock);
3765 			bnx2x_panic();
3766 			return -EBUSY;
3767 	}
3768 
3769 	spe = bnx2x_sp_get_next(bp);
3770 
3771 	/* CID needs port number to be encoded int it */
3772 	spe->hdr.conn_and_cmd_data =
3773 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3774 				    HW_CID(bp, cid));
3775 
3776 	/* In some cases, type may already contain the func-id
3777 	 * mainly in SRIOV related use cases, so we add it here only
3778 	 * if it's not already set.
3779 	 */
3780 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3781 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3782 			SPE_HDR_CONN_TYPE;
3783 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3784 			 SPE_HDR_FUNCTION_ID);
3785 	} else {
3786 		type = cmd_type;
3787 	}
3788 
3789 	spe->hdr.type = cpu_to_le16(type);
3790 
3791 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3792 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3793 
3794 	/*
3795 	 * It's ok if the actual decrement is issued towards the memory
3796 	 * somewhere between the spin_lock and spin_unlock. Thus no
3797 	 * more explicit memory barrier is needed.
3798 	 */
3799 	if (common)
3800 		atomic_dec(&bp->eq_spq_left);
3801 	else
3802 		atomic_dec(&bp->cq_spq_left);
3803 
3804 	DP(BNX2X_MSG_SP,
3805 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3806 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3807 	   (u32)(U64_LO(bp->spq_mapping) +
3808 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3809 	   HW_CID(bp, cid), data_hi, data_lo, type,
3810 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3811 
3812 	bnx2x_sp_prod_update(bp);
3813 	spin_unlock_bh(&bp->spq_lock);
3814 	return 0;
3815 }
3816 
3817 /* acquire split MCP access lock register */
3818 static int bnx2x_acquire_alr(struct bnx2x *bp)
3819 {
3820 	u32 j, val;
3821 	int rc = 0;
3822 
3823 	might_sleep();
3824 	for (j = 0; j < 1000; j++) {
3825 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3826 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3827 		if (val & MCPR_ACCESS_LOCK_LOCK)
3828 			break;
3829 
3830 		usleep_range(5000, 10000);
3831 	}
3832 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3833 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3834 		rc = -EBUSY;
3835 	}
3836 
3837 	return rc;
3838 }
3839 
3840 /* release split MCP access lock register */
3841 static void bnx2x_release_alr(struct bnx2x *bp)
3842 {
3843 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3844 }
3845 
3846 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3847 #define BNX2X_DEF_SB_IDX	0x0002
3848 
3849 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3850 {
3851 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3852 	u16 rc = 0;
3853 
3854 	barrier(); /* status block is written to by the chip */
3855 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3856 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3857 		rc |= BNX2X_DEF_SB_ATT_IDX;
3858 	}
3859 
3860 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3861 		bp->def_idx = def_sb->sp_sb.running_index;
3862 		rc |= BNX2X_DEF_SB_IDX;
3863 	}
3864 
3865 	/* Do not reorder: indices reading should complete before handling */
3866 	barrier();
3867 	return rc;
3868 }
3869 
3870 /*
3871  * slow path service functions
3872  */
3873 
3874 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3875 {
3876 	int port = BP_PORT(bp);
3877 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3878 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3879 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3880 				       NIG_REG_MASK_INTERRUPT_PORT0;
3881 	u32 aeu_mask;
3882 	u32 nig_mask = 0;
3883 	u32 reg_addr;
3884 
3885 	if (bp->attn_state & asserted)
3886 		BNX2X_ERR("IGU ERROR\n");
3887 
3888 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3889 	aeu_mask = REG_RD(bp, aeu_addr);
3890 
3891 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3892 	   aeu_mask, asserted);
3893 	aeu_mask &= ~(asserted & 0x3ff);
3894 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3895 
3896 	REG_WR(bp, aeu_addr, aeu_mask);
3897 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3898 
3899 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3900 	bp->attn_state |= asserted;
3901 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3902 
3903 	if (asserted & ATTN_HARD_WIRED_MASK) {
3904 		if (asserted & ATTN_NIG_FOR_FUNC) {
3905 
3906 			bnx2x_acquire_phy_lock(bp);
3907 
3908 			/* save nig interrupt mask */
3909 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3910 
3911 			/* If nig_mask is not set, no need to call the update
3912 			 * function.
3913 			 */
3914 			if (nig_mask) {
3915 				REG_WR(bp, nig_int_mask_addr, 0);
3916 
3917 				bnx2x_link_attn(bp);
3918 			}
3919 
3920 			/* handle unicore attn? */
3921 		}
3922 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3923 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3924 
3925 		if (asserted & GPIO_2_FUNC)
3926 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3927 
3928 		if (asserted & GPIO_3_FUNC)
3929 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3930 
3931 		if (asserted & GPIO_4_FUNC)
3932 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3933 
3934 		if (port == 0) {
3935 			if (asserted & ATTN_GENERAL_ATTN_1) {
3936 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3937 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3938 			}
3939 			if (asserted & ATTN_GENERAL_ATTN_2) {
3940 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3941 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3942 			}
3943 			if (asserted & ATTN_GENERAL_ATTN_3) {
3944 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3945 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3946 			}
3947 		} else {
3948 			if (asserted & ATTN_GENERAL_ATTN_4) {
3949 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3950 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3951 			}
3952 			if (asserted & ATTN_GENERAL_ATTN_5) {
3953 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3954 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3955 			}
3956 			if (asserted & ATTN_GENERAL_ATTN_6) {
3957 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3958 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3959 			}
3960 		}
3961 
3962 	} /* if hardwired */
3963 
3964 	if (bp->common.int_block == INT_BLOCK_HC)
3965 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3966 			    COMMAND_REG_ATTN_BITS_SET);
3967 	else
3968 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3969 
3970 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3971 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3972 	REG_WR(bp, reg_addr, asserted);
3973 
3974 	/* now set back the mask */
3975 	if (asserted & ATTN_NIG_FOR_FUNC) {
3976 		/* Verify that IGU ack through BAR was written before restoring
3977 		 * NIG mask. This loop should exit after 2-3 iterations max.
3978 		 */
3979 		if (bp->common.int_block != INT_BLOCK_HC) {
3980 			u32 cnt = 0, igu_acked;
3981 			do {
3982 				igu_acked = REG_RD(bp,
3983 						   IGU_REG_ATTENTION_ACK_BITS);
3984 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3985 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3986 			if (!igu_acked)
3987 				DP(NETIF_MSG_HW,
3988 				   "Failed to verify IGU ack on time\n");
3989 			barrier();
3990 		}
3991 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3992 		bnx2x_release_phy_lock(bp);
3993 	}
3994 }
3995 
3996 static void bnx2x_fan_failure(struct bnx2x *bp)
3997 {
3998 	int port = BP_PORT(bp);
3999 	u32 ext_phy_config;
4000 	/* mark the failure */
4001 	ext_phy_config =
4002 		SHMEM_RD(bp,
4003 			 dev_info.port_hw_config[port].external_phy_config);
4004 
4005 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4006 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4007 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4008 		 ext_phy_config);
4009 
4010 	/* log the failure */
4011 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4012 			    "Please contact OEM Support for assistance\n");
4013 
4014 	/* Schedule device reset (unload)
4015 	 * This is due to some boards consuming sufficient power when driver is
4016 	 * up to overheat if fan fails.
4017 	 */
4018 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4019 }
4020 
4021 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4022 {
4023 	int port = BP_PORT(bp);
4024 	int reg_offset;
4025 	u32 val;
4026 
4027 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4028 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4029 
4030 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4031 
4032 		val = REG_RD(bp, reg_offset);
4033 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4034 		REG_WR(bp, reg_offset, val);
4035 
4036 		BNX2X_ERR("SPIO5 hw attention\n");
4037 
4038 		/* Fan failure attention */
4039 		bnx2x_hw_reset_phy(&bp->link_params);
4040 		bnx2x_fan_failure(bp);
4041 	}
4042 
4043 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4044 		bnx2x_acquire_phy_lock(bp);
4045 		bnx2x_handle_module_detect_int(&bp->link_params);
4046 		bnx2x_release_phy_lock(bp);
4047 	}
4048 
4049 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
4050 
4051 		val = REG_RD(bp, reg_offset);
4052 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4053 		REG_WR(bp, reg_offset, val);
4054 
4055 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4056 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4057 		bnx2x_panic();
4058 	}
4059 }
4060 
4061 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4062 {
4063 	u32 val;
4064 
4065 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4066 
4067 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4068 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4069 		/* DORQ discard attention */
4070 		if (val & 0x2)
4071 			BNX2X_ERR("FATAL error from DORQ\n");
4072 	}
4073 
4074 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
4075 
4076 		int port = BP_PORT(bp);
4077 		int reg_offset;
4078 
4079 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4080 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4081 
4082 		val = REG_RD(bp, reg_offset);
4083 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4084 		REG_WR(bp, reg_offset, val);
4085 
4086 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4087 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4088 		bnx2x_panic();
4089 	}
4090 }
4091 
4092 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4093 {
4094 	u32 val;
4095 
4096 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4097 
4098 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4099 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4100 		/* CFC error attention */
4101 		if (val & 0x2)
4102 			BNX2X_ERR("FATAL error from CFC\n");
4103 	}
4104 
4105 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4106 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4107 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4108 		/* RQ_USDMDP_FIFO_OVERFLOW */
4109 		if (val & 0x18000)
4110 			BNX2X_ERR("FATAL error from PXP\n");
4111 
4112 		if (!CHIP_IS_E1x(bp)) {
4113 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4114 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4115 		}
4116 	}
4117 
4118 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
4119 
4120 		int port = BP_PORT(bp);
4121 		int reg_offset;
4122 
4123 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4124 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4125 
4126 		val = REG_RD(bp, reg_offset);
4127 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4128 		REG_WR(bp, reg_offset, val);
4129 
4130 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4131 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4132 		bnx2x_panic();
4133 	}
4134 }
4135 
4136 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4137 {
4138 	u32 val;
4139 
4140 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4141 
4142 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4143 			int func = BP_FUNC(bp);
4144 
4145 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4146 			bnx2x_read_mf_cfg(bp);
4147 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4148 					func_mf_config[BP_ABS_FUNC(bp)].config);
4149 			val = SHMEM_RD(bp,
4150 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4151 			if (val & DRV_STATUS_DCC_EVENT_MASK)
4152 				bnx2x_dcc_event(bp,
4153 					    (val & DRV_STATUS_DCC_EVENT_MASK));
4154 
4155 			if (val & DRV_STATUS_SET_MF_BW)
4156 				bnx2x_set_mf_bw(bp);
4157 
4158 			if (val & DRV_STATUS_DRV_INFO_REQ)
4159 				bnx2x_handle_drv_info_req(bp);
4160 
4161 			if (val & DRV_STATUS_VF_DISABLED)
4162 				bnx2x_schedule_iov_task(bp,
4163 							BNX2X_IOV_HANDLE_FLR);
4164 
4165 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4166 				bnx2x_pmf_update(bp);
4167 
4168 			if (bp->port.pmf &&
4169 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4170 				bp->dcbx_enabled > 0)
4171 				/* start dcbx state machine */
4172 				bnx2x_dcbx_set_params(bp,
4173 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4174 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4175 				bnx2x_handle_afex_cmd(bp,
4176 					val & DRV_STATUS_AFEX_EVENT_MASK);
4177 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4178 				bnx2x_handle_eee_event(bp);
4179 			if (bp->link_vars.periodic_flags &
4180 			    PERIODIC_FLAGS_LINK_EVENT) {
4181 				/*  sync with link */
4182 				bnx2x_acquire_phy_lock(bp);
4183 				bp->link_vars.periodic_flags &=
4184 					~PERIODIC_FLAGS_LINK_EVENT;
4185 				bnx2x_release_phy_lock(bp);
4186 				if (IS_MF(bp))
4187 					bnx2x_link_sync_notify(bp);
4188 				bnx2x_link_report(bp);
4189 			}
4190 			/* Always call it here: bnx2x_link_report() will
4191 			 * prevent the link indication duplication.
4192 			 */
4193 			bnx2x__link_status_update(bp);
4194 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4195 
4196 			BNX2X_ERR("MC assert!\n");
4197 			bnx2x_mc_assert(bp);
4198 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4199 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4200 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4201 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4202 			bnx2x_panic();
4203 
4204 		} else if (attn & BNX2X_MCP_ASSERT) {
4205 
4206 			BNX2X_ERR("MCP assert!\n");
4207 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4208 			bnx2x_fw_dump(bp);
4209 
4210 		} else
4211 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4212 	}
4213 
4214 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4215 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4216 		if (attn & BNX2X_GRC_TIMEOUT) {
4217 			val = CHIP_IS_E1(bp) ? 0 :
4218 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4219 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4220 		}
4221 		if (attn & BNX2X_GRC_RSV) {
4222 			val = CHIP_IS_E1(bp) ? 0 :
4223 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4224 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4225 		}
4226 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4227 	}
4228 }
4229 
4230 /*
4231  * Bits map:
4232  * 0-7   - Engine0 load counter.
4233  * 8-15  - Engine1 load counter.
4234  * 16    - Engine0 RESET_IN_PROGRESS bit.
4235  * 17    - Engine1 RESET_IN_PROGRESS bit.
4236  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4237  *         on the engine
4238  * 19    - Engine1 ONE_IS_LOADED.
4239  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4240  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4241  *         just the one belonging to its engine).
4242  *
4243  */
4244 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4245 
4246 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4247 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4248 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4249 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4250 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4251 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4252 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4253 
4254 /*
4255  * Set the GLOBAL_RESET bit.
4256  *
4257  * Should be run under rtnl lock
4258  */
4259 void bnx2x_set_reset_global(struct bnx2x *bp)
4260 {
4261 	u32 val;
4262 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4263 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4264 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4265 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4266 }
4267 
4268 /*
4269  * Clear the GLOBAL_RESET bit.
4270  *
4271  * Should be run under rtnl lock
4272  */
4273 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4274 {
4275 	u32 val;
4276 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4277 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4278 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4279 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4280 }
4281 
4282 /*
4283  * Checks the GLOBAL_RESET bit.
4284  *
4285  * should be run under rtnl lock
4286  */
4287 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4288 {
4289 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4290 
4291 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4292 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4293 }
4294 
4295 /*
4296  * Clear RESET_IN_PROGRESS bit for the current engine.
4297  *
4298  * Should be run under rtnl lock
4299  */
4300 static void bnx2x_set_reset_done(struct bnx2x *bp)
4301 {
4302 	u32 val;
4303 	u32 bit = BP_PATH(bp) ?
4304 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4305 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4306 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4307 
4308 	/* Clear the bit */
4309 	val &= ~bit;
4310 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4311 
4312 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4313 }
4314 
4315 /*
4316  * Set RESET_IN_PROGRESS for the current engine.
4317  *
4318  * should be run under rtnl lock
4319  */
4320 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4321 {
4322 	u32 val;
4323 	u32 bit = BP_PATH(bp) ?
4324 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4325 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4326 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4327 
4328 	/* Set the bit */
4329 	val |= bit;
4330 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4331 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4332 }
4333 
4334 /*
4335  * Checks the RESET_IN_PROGRESS bit for the given engine.
4336  * should be run under rtnl lock
4337  */
4338 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4339 {
4340 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4341 	u32 bit = engine ?
4342 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4343 
4344 	/* return false if bit is set */
4345 	return (val & bit) ? false : true;
4346 }
4347 
4348 /*
4349  * set pf load for the current pf.
4350  *
4351  * should be run under rtnl lock
4352  */
4353 void bnx2x_set_pf_load(struct bnx2x *bp)
4354 {
4355 	u32 val1, val;
4356 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4357 			     BNX2X_PATH0_LOAD_CNT_MASK;
4358 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4359 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4360 
4361 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4362 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4363 
4364 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4365 
4366 	/* get the current counter value */
4367 	val1 = (val & mask) >> shift;
4368 
4369 	/* set bit of that PF */
4370 	val1 |= (1 << bp->pf_num);
4371 
4372 	/* clear the old value */
4373 	val &= ~mask;
4374 
4375 	/* set the new one */
4376 	val |= ((val1 << shift) & mask);
4377 
4378 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4379 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4380 }
4381 
4382 /**
4383  * bnx2x_clear_pf_load - clear pf load mark
4384  *
4385  * @bp:		driver handle
4386  *
4387  * Should be run under rtnl lock.
4388  * Decrements the load counter for the current engine. Returns
4389  * whether other functions are still loaded
4390  */
4391 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4392 {
4393 	u32 val1, val;
4394 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4395 			     BNX2X_PATH0_LOAD_CNT_MASK;
4396 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4397 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4398 
4399 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4400 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4401 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4402 
4403 	/* get the current counter value */
4404 	val1 = (val & mask) >> shift;
4405 
4406 	/* clear bit of that PF */
4407 	val1 &= ~(1 << bp->pf_num);
4408 
4409 	/* clear the old value */
4410 	val &= ~mask;
4411 
4412 	/* set the new one */
4413 	val |= ((val1 << shift) & mask);
4414 
4415 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4416 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4417 	return val1 != 0;
4418 }
4419 
4420 /*
4421  * Read the load status for the current engine.
4422  *
4423  * should be run under rtnl lock
4424  */
4425 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4426 {
4427 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4428 			     BNX2X_PATH0_LOAD_CNT_MASK);
4429 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4430 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4431 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4432 
4433 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4434 
4435 	val = (val & mask) >> shift;
4436 
4437 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4438 	   engine, val);
4439 
4440 	return val != 0;
4441 }
4442 
4443 static void _print_parity(struct bnx2x *bp, u32 reg)
4444 {
4445 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4446 }
4447 
4448 static void _print_next_block(int idx, const char *blk)
4449 {
4450 	pr_cont("%s%s", idx ? ", " : "", blk);
4451 }
4452 
4453 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4454 					    int *par_num, bool print)
4455 {
4456 	u32 cur_bit;
4457 	bool res;
4458 	int i;
4459 
4460 	res = false;
4461 
4462 	for (i = 0; sig; i++) {
4463 		cur_bit = (0x1UL << i);
4464 		if (sig & cur_bit) {
4465 			res |= true; /* Each bit is real error! */
4466 
4467 			if (print) {
4468 				switch (cur_bit) {
4469 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4470 					_print_next_block((*par_num)++, "BRB");
4471 					_print_parity(bp,
4472 						      BRB1_REG_BRB1_PRTY_STS);
4473 					break;
4474 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4475 					_print_next_block((*par_num)++,
4476 							  "PARSER");
4477 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4478 					break;
4479 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4480 					_print_next_block((*par_num)++, "TSDM");
4481 					_print_parity(bp,
4482 						      TSDM_REG_TSDM_PRTY_STS);
4483 					break;
4484 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4485 					_print_next_block((*par_num)++,
4486 							  "SEARCHER");
4487 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4488 					break;
4489 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4490 					_print_next_block((*par_num)++, "TCM");
4491 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4492 					break;
4493 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4494 					_print_next_block((*par_num)++,
4495 							  "TSEMI");
4496 					_print_parity(bp,
4497 						      TSEM_REG_TSEM_PRTY_STS_0);
4498 					_print_parity(bp,
4499 						      TSEM_REG_TSEM_PRTY_STS_1);
4500 					break;
4501 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4502 					_print_next_block((*par_num)++, "XPB");
4503 					_print_parity(bp, GRCBASE_XPB +
4504 							  PB_REG_PB_PRTY_STS);
4505 					break;
4506 				}
4507 			}
4508 
4509 			/* Clear the bit */
4510 			sig &= ~cur_bit;
4511 		}
4512 	}
4513 
4514 	return res;
4515 }
4516 
4517 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4518 					    int *par_num, bool *global,
4519 					    bool print)
4520 {
4521 	u32 cur_bit;
4522 	bool res;
4523 	int i;
4524 
4525 	res = false;
4526 
4527 	for (i = 0; sig; i++) {
4528 		cur_bit = (0x1UL << i);
4529 		if (sig & cur_bit) {
4530 			res |= true; /* Each bit is real error! */
4531 			switch (cur_bit) {
4532 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4533 				if (print) {
4534 					_print_next_block((*par_num)++, "PBF");
4535 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4536 				}
4537 				break;
4538 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4539 				if (print) {
4540 					_print_next_block((*par_num)++, "QM");
4541 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4542 				}
4543 				break;
4544 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4545 				if (print) {
4546 					_print_next_block((*par_num)++, "TM");
4547 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4548 				}
4549 				break;
4550 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4551 				if (print) {
4552 					_print_next_block((*par_num)++, "XSDM");
4553 					_print_parity(bp,
4554 						      XSDM_REG_XSDM_PRTY_STS);
4555 				}
4556 				break;
4557 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4558 				if (print) {
4559 					_print_next_block((*par_num)++, "XCM");
4560 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4561 				}
4562 				break;
4563 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4564 				if (print) {
4565 					_print_next_block((*par_num)++,
4566 							  "XSEMI");
4567 					_print_parity(bp,
4568 						      XSEM_REG_XSEM_PRTY_STS_0);
4569 					_print_parity(bp,
4570 						      XSEM_REG_XSEM_PRTY_STS_1);
4571 				}
4572 				break;
4573 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4574 				if (print) {
4575 					_print_next_block((*par_num)++,
4576 							  "DOORBELLQ");
4577 					_print_parity(bp,
4578 						      DORQ_REG_DORQ_PRTY_STS);
4579 				}
4580 				break;
4581 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4582 				if (print) {
4583 					_print_next_block((*par_num)++, "NIG");
4584 					if (CHIP_IS_E1x(bp)) {
4585 						_print_parity(bp,
4586 							NIG_REG_NIG_PRTY_STS);
4587 					} else {
4588 						_print_parity(bp,
4589 							NIG_REG_NIG_PRTY_STS_0);
4590 						_print_parity(bp,
4591 							NIG_REG_NIG_PRTY_STS_1);
4592 					}
4593 				}
4594 				break;
4595 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4596 				if (print)
4597 					_print_next_block((*par_num)++,
4598 							  "VAUX PCI CORE");
4599 				*global = true;
4600 				break;
4601 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4602 				if (print) {
4603 					_print_next_block((*par_num)++,
4604 							  "DEBUG");
4605 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4606 				}
4607 				break;
4608 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4609 				if (print) {
4610 					_print_next_block((*par_num)++, "USDM");
4611 					_print_parity(bp,
4612 						      USDM_REG_USDM_PRTY_STS);
4613 				}
4614 				break;
4615 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4616 				if (print) {
4617 					_print_next_block((*par_num)++, "UCM");
4618 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4619 				}
4620 				break;
4621 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4622 				if (print) {
4623 					_print_next_block((*par_num)++,
4624 							  "USEMI");
4625 					_print_parity(bp,
4626 						      USEM_REG_USEM_PRTY_STS_0);
4627 					_print_parity(bp,
4628 						      USEM_REG_USEM_PRTY_STS_1);
4629 				}
4630 				break;
4631 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4632 				if (print) {
4633 					_print_next_block((*par_num)++, "UPB");
4634 					_print_parity(bp, GRCBASE_UPB +
4635 							  PB_REG_PB_PRTY_STS);
4636 				}
4637 				break;
4638 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4639 				if (print) {
4640 					_print_next_block((*par_num)++, "CSDM");
4641 					_print_parity(bp,
4642 						      CSDM_REG_CSDM_PRTY_STS);
4643 				}
4644 				break;
4645 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4646 				if (print) {
4647 					_print_next_block((*par_num)++, "CCM");
4648 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4649 				}
4650 				break;
4651 			}
4652 
4653 			/* Clear the bit */
4654 			sig &= ~cur_bit;
4655 		}
4656 	}
4657 
4658 	return res;
4659 }
4660 
4661 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4662 					    int *par_num, bool print)
4663 {
4664 	u32 cur_bit;
4665 	bool res;
4666 	int i;
4667 
4668 	res = false;
4669 
4670 	for (i = 0; sig; i++) {
4671 		cur_bit = (0x1UL << i);
4672 		if (sig & cur_bit) {
4673 			res |= true; /* Each bit is real error! */
4674 			if (print) {
4675 				switch (cur_bit) {
4676 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4677 					_print_next_block((*par_num)++,
4678 							  "CSEMI");
4679 					_print_parity(bp,
4680 						      CSEM_REG_CSEM_PRTY_STS_0);
4681 					_print_parity(bp,
4682 						      CSEM_REG_CSEM_PRTY_STS_1);
4683 					break;
4684 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4685 					_print_next_block((*par_num)++, "PXP");
4686 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4687 					_print_parity(bp,
4688 						      PXP2_REG_PXP2_PRTY_STS_0);
4689 					_print_parity(bp,
4690 						      PXP2_REG_PXP2_PRTY_STS_1);
4691 					break;
4692 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4693 					_print_next_block((*par_num)++,
4694 							  "PXPPCICLOCKCLIENT");
4695 					break;
4696 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4697 					_print_next_block((*par_num)++, "CFC");
4698 					_print_parity(bp,
4699 						      CFC_REG_CFC_PRTY_STS);
4700 					break;
4701 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4702 					_print_next_block((*par_num)++, "CDU");
4703 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4704 					break;
4705 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4706 					_print_next_block((*par_num)++, "DMAE");
4707 					_print_parity(bp,
4708 						      DMAE_REG_DMAE_PRTY_STS);
4709 					break;
4710 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4711 					_print_next_block((*par_num)++, "IGU");
4712 					if (CHIP_IS_E1x(bp))
4713 						_print_parity(bp,
4714 							HC_REG_HC_PRTY_STS);
4715 					else
4716 						_print_parity(bp,
4717 							IGU_REG_IGU_PRTY_STS);
4718 					break;
4719 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4720 					_print_next_block((*par_num)++, "MISC");
4721 					_print_parity(bp,
4722 						      MISC_REG_MISC_PRTY_STS);
4723 					break;
4724 				}
4725 			}
4726 
4727 			/* Clear the bit */
4728 			sig &= ~cur_bit;
4729 		}
4730 	}
4731 
4732 	return res;
4733 }
4734 
4735 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4736 					    int *par_num, bool *global,
4737 					    bool print)
4738 {
4739 	bool res = false;
4740 	u32 cur_bit;
4741 	int i;
4742 
4743 	for (i = 0; sig; i++) {
4744 		cur_bit = (0x1UL << i);
4745 		if (sig & cur_bit) {
4746 			switch (cur_bit) {
4747 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4748 				if (print)
4749 					_print_next_block((*par_num)++,
4750 							  "MCP ROM");
4751 				*global = true;
4752 				res |= true;
4753 				break;
4754 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4755 				if (print)
4756 					_print_next_block((*par_num)++,
4757 							  "MCP UMP RX");
4758 				*global = true;
4759 				res |= true;
4760 				break;
4761 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4762 				if (print)
4763 					_print_next_block((*par_num)++,
4764 							  "MCP UMP TX");
4765 				*global = true;
4766 				res |= true;
4767 				break;
4768 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4769 				if (print)
4770 					_print_next_block((*par_num)++,
4771 							  "MCP SCPAD");
4772 				/* clear latched SCPAD PATIRY from MCP */
4773 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4774 				       1UL << 10);
4775 				break;
4776 			}
4777 
4778 			/* Clear the bit */
4779 			sig &= ~cur_bit;
4780 		}
4781 	}
4782 
4783 	return res;
4784 }
4785 
4786 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4787 					    int *par_num, bool print)
4788 {
4789 	u32 cur_bit;
4790 	bool res;
4791 	int i;
4792 
4793 	res = false;
4794 
4795 	for (i = 0; sig; i++) {
4796 		cur_bit = (0x1UL << i);
4797 		if (sig & cur_bit) {
4798 			res |= true; /* Each bit is real error! */
4799 			if (print) {
4800 				switch (cur_bit) {
4801 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4802 					_print_next_block((*par_num)++,
4803 							  "PGLUE_B");
4804 					_print_parity(bp,
4805 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4806 					break;
4807 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4808 					_print_next_block((*par_num)++, "ATC");
4809 					_print_parity(bp,
4810 						      ATC_REG_ATC_PRTY_STS);
4811 					break;
4812 				}
4813 			}
4814 			/* Clear the bit */
4815 			sig &= ~cur_bit;
4816 		}
4817 	}
4818 
4819 	return res;
4820 }
4821 
4822 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4823 			      u32 *sig)
4824 {
4825 	bool res = false;
4826 
4827 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4828 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4829 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4830 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4831 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4832 		int par_num = 0;
4833 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4834 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4835 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4836 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4837 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4838 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4839 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4840 		if (print)
4841 			netdev_err(bp->dev,
4842 				   "Parity errors detected in blocks: ");
4843 		res |= bnx2x_check_blocks_with_parity0(bp,
4844 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4845 		res |= bnx2x_check_blocks_with_parity1(bp,
4846 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4847 		res |= bnx2x_check_blocks_with_parity2(bp,
4848 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4849 		res |= bnx2x_check_blocks_with_parity3(bp,
4850 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4851 		res |= bnx2x_check_blocks_with_parity4(bp,
4852 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4853 
4854 		if (print)
4855 			pr_cont("\n");
4856 	}
4857 
4858 	return res;
4859 }
4860 
4861 /**
4862  * bnx2x_chk_parity_attn - checks for parity attentions.
4863  *
4864  * @bp:		driver handle
4865  * @global:	true if there was a global attention
4866  * @print:	show parity attention in syslog
4867  */
4868 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4869 {
4870 	struct attn_route attn = { {0} };
4871 	int port = BP_PORT(bp);
4872 
4873 	attn.sig[0] = REG_RD(bp,
4874 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4875 			     port*4);
4876 	attn.sig[1] = REG_RD(bp,
4877 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4878 			     port*4);
4879 	attn.sig[2] = REG_RD(bp,
4880 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4881 			     port*4);
4882 	attn.sig[3] = REG_RD(bp,
4883 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4884 			     port*4);
4885 	/* Since MCP attentions can't be disabled inside the block, we need to
4886 	 * read AEU registers to see whether they're currently disabled
4887 	 */
4888 	attn.sig[3] &= ((REG_RD(bp,
4889 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4890 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4891 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4892 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4893 
4894 	if (!CHIP_IS_E1x(bp))
4895 		attn.sig[4] = REG_RD(bp,
4896 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4897 				     port*4);
4898 
4899 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4900 }
4901 
4902 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4903 {
4904 	u32 val;
4905 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4906 
4907 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4908 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4909 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4910 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4911 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4912 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4913 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4914 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4915 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4916 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4917 		if (val &
4918 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4919 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4920 		if (val &
4921 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4922 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4923 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4924 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4925 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4926 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4927 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4928 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4929 	}
4930 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4931 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4932 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4933 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4934 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4935 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4936 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4937 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4938 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4939 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4940 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4941 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4942 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4943 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4944 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4945 	}
4946 
4947 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4948 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4949 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4950 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4951 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4952 	}
4953 }
4954 
4955 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4956 {
4957 	struct attn_route attn, *group_mask;
4958 	int port = BP_PORT(bp);
4959 	int index;
4960 	u32 reg_addr;
4961 	u32 val;
4962 	u32 aeu_mask;
4963 	bool global = false;
4964 
4965 	/* need to take HW lock because MCP or other port might also
4966 	   try to handle this event */
4967 	bnx2x_acquire_alr(bp);
4968 
4969 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4970 #ifndef BNX2X_STOP_ON_ERROR
4971 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4972 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4973 		/* Disable HW interrupts */
4974 		bnx2x_int_disable(bp);
4975 		/* In case of parity errors don't handle attentions so that
4976 		 * other function would "see" parity errors.
4977 		 */
4978 #else
4979 		bnx2x_panic();
4980 #endif
4981 		bnx2x_release_alr(bp);
4982 		return;
4983 	}
4984 
4985 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4986 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4987 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4988 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4989 	if (!CHIP_IS_E1x(bp))
4990 		attn.sig[4] =
4991 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4992 	else
4993 		attn.sig[4] = 0;
4994 
4995 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4996 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4997 
4998 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4999 		if (deasserted & (1 << index)) {
5000 			group_mask = &bp->attn_group[index];
5001 
5002 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5003 			   index,
5004 			   group_mask->sig[0], group_mask->sig[1],
5005 			   group_mask->sig[2], group_mask->sig[3],
5006 			   group_mask->sig[4]);
5007 
5008 			bnx2x_attn_int_deasserted4(bp,
5009 					attn.sig[4] & group_mask->sig[4]);
5010 			bnx2x_attn_int_deasserted3(bp,
5011 					attn.sig[3] & group_mask->sig[3]);
5012 			bnx2x_attn_int_deasserted1(bp,
5013 					attn.sig[1] & group_mask->sig[1]);
5014 			bnx2x_attn_int_deasserted2(bp,
5015 					attn.sig[2] & group_mask->sig[2]);
5016 			bnx2x_attn_int_deasserted0(bp,
5017 					attn.sig[0] & group_mask->sig[0]);
5018 		}
5019 	}
5020 
5021 	bnx2x_release_alr(bp);
5022 
5023 	if (bp->common.int_block == INT_BLOCK_HC)
5024 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5025 			    COMMAND_REG_ATTN_BITS_CLR);
5026 	else
5027 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5028 
5029 	val = ~deasserted;
5030 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5031 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5032 	REG_WR(bp, reg_addr, val);
5033 
5034 	if (~bp->attn_state & deasserted)
5035 		BNX2X_ERR("IGU ERROR\n");
5036 
5037 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5038 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5039 
5040 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5041 	aeu_mask = REG_RD(bp, reg_addr);
5042 
5043 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5044 	   aeu_mask, deasserted);
5045 	aeu_mask |= (deasserted & 0x3ff);
5046 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5047 
5048 	REG_WR(bp, reg_addr, aeu_mask);
5049 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5050 
5051 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5052 	bp->attn_state &= ~deasserted;
5053 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5054 }
5055 
5056 static void bnx2x_attn_int(struct bnx2x *bp)
5057 {
5058 	/* read local copy of bits */
5059 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5060 								attn_bits);
5061 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5062 								attn_bits_ack);
5063 	u32 attn_state = bp->attn_state;
5064 
5065 	/* look for changed bits */
5066 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5067 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5068 
5069 	DP(NETIF_MSG_HW,
5070 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5071 	   attn_bits, attn_ack, asserted, deasserted);
5072 
5073 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5074 		BNX2X_ERR("BAD attention state\n");
5075 
5076 	/* handle bits that were raised */
5077 	if (asserted)
5078 		bnx2x_attn_int_asserted(bp, asserted);
5079 
5080 	if (deasserted)
5081 		bnx2x_attn_int_deasserted(bp, deasserted);
5082 }
5083 
5084 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5085 		      u16 index, u8 op, u8 update)
5086 {
5087 	u32 igu_addr = bp->igu_base_addr;
5088 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5089 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5090 			     igu_addr);
5091 }
5092 
5093 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5094 {
5095 	/* No memory barriers */
5096 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5097 	mmiowb(); /* keep prod updates ordered */
5098 }
5099 
5100 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5101 				      union event_ring_elem *elem)
5102 {
5103 	u8 err = elem->message.error;
5104 
5105 	if (!bp->cnic_eth_dev.starting_cid  ||
5106 	    (cid < bp->cnic_eth_dev.starting_cid &&
5107 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5108 		return 1;
5109 
5110 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5111 
5112 	if (unlikely(err)) {
5113 
5114 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5115 			  cid);
5116 		bnx2x_panic_dump(bp, false);
5117 	}
5118 	bnx2x_cnic_cfc_comp(bp, cid, err);
5119 	return 0;
5120 }
5121 
5122 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5123 {
5124 	struct bnx2x_mcast_ramrod_params rparam;
5125 	int rc;
5126 
5127 	memset(&rparam, 0, sizeof(rparam));
5128 
5129 	rparam.mcast_obj = &bp->mcast_obj;
5130 
5131 	netif_addr_lock_bh(bp->dev);
5132 
5133 	/* Clear pending state for the last command */
5134 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5135 
5136 	/* If there are pending mcast commands - send them */
5137 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5138 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5139 		if (rc < 0)
5140 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5141 				  rc);
5142 	}
5143 
5144 	netif_addr_unlock_bh(bp->dev);
5145 }
5146 
5147 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5148 					    union event_ring_elem *elem)
5149 {
5150 	unsigned long ramrod_flags = 0;
5151 	int rc = 0;
5152 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5153 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5154 
5155 	/* Always push next commands out, don't wait here */
5156 	__set_bit(RAMROD_CONT, &ramrod_flags);
5157 
5158 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5159 			    >> BNX2X_SWCID_SHIFT) {
5160 	case BNX2X_FILTER_MAC_PENDING:
5161 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5162 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5163 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5164 		else
5165 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5166 
5167 		break;
5168 	case BNX2X_FILTER_MCAST_PENDING:
5169 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5170 		/* This is only relevant for 57710 where multicast MACs are
5171 		 * configured as unicast MACs using the same ramrod.
5172 		 */
5173 		bnx2x_handle_mcast_eqe(bp);
5174 		return;
5175 	default:
5176 		BNX2X_ERR("Unsupported classification command: %d\n",
5177 			  elem->message.data.eth_event.echo);
5178 		return;
5179 	}
5180 
5181 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5182 
5183 	if (rc < 0)
5184 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5185 	else if (rc > 0)
5186 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5187 }
5188 
5189 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5190 
5191 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5192 {
5193 	netif_addr_lock_bh(bp->dev);
5194 
5195 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5196 
5197 	/* Send rx_mode command again if was requested */
5198 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5199 		bnx2x_set_storm_rx_mode(bp);
5200 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5201 				    &bp->sp_state))
5202 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5203 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5204 				    &bp->sp_state))
5205 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5206 
5207 	netif_addr_unlock_bh(bp->dev);
5208 }
5209 
5210 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5211 					      union event_ring_elem *elem)
5212 {
5213 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5214 		DP(BNX2X_MSG_SP,
5215 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5216 		   elem->message.data.vif_list_event.func_bit_map);
5217 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5218 			elem->message.data.vif_list_event.func_bit_map);
5219 	} else if (elem->message.data.vif_list_event.echo ==
5220 		   VIF_LIST_RULE_SET) {
5221 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5222 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5223 	}
5224 }
5225 
5226 /* called with rtnl_lock */
5227 static void bnx2x_after_function_update(struct bnx2x *bp)
5228 {
5229 	int q, rc;
5230 	struct bnx2x_fastpath *fp;
5231 	struct bnx2x_queue_state_params queue_params = {NULL};
5232 	struct bnx2x_queue_update_params *q_update_params =
5233 		&queue_params.params.update;
5234 
5235 	/* Send Q update command with afex vlan removal values for all Qs */
5236 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5237 
5238 	/* set silent vlan removal values according to vlan mode */
5239 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5240 		  &q_update_params->update_flags);
5241 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5242 		  &q_update_params->update_flags);
5243 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5244 
5245 	/* in access mode mark mask and value are 0 to strip all vlans */
5246 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5247 		q_update_params->silent_removal_value = 0;
5248 		q_update_params->silent_removal_mask = 0;
5249 	} else {
5250 		q_update_params->silent_removal_value =
5251 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5252 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5253 	}
5254 
5255 	for_each_eth_queue(bp, q) {
5256 		/* Set the appropriate Queue object */
5257 		fp = &bp->fp[q];
5258 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5259 
5260 		/* send the ramrod */
5261 		rc = bnx2x_queue_state_change(bp, &queue_params);
5262 		if (rc < 0)
5263 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5264 				  q);
5265 	}
5266 
5267 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5268 		fp = &bp->fp[FCOE_IDX(bp)];
5269 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5270 
5271 		/* clear pending completion bit */
5272 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5273 
5274 		/* mark latest Q bit */
5275 		smp_mb__before_clear_bit();
5276 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5277 		smp_mb__after_clear_bit();
5278 
5279 		/* send Q update ramrod for FCoE Q */
5280 		rc = bnx2x_queue_state_change(bp, &queue_params);
5281 		if (rc < 0)
5282 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5283 				  q);
5284 	} else {
5285 		/* If no FCoE ring - ACK MCP now */
5286 		bnx2x_link_report(bp);
5287 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5288 	}
5289 }
5290 
5291 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5292 	struct bnx2x *bp, u32 cid)
5293 {
5294 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5295 
5296 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5297 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5298 	else
5299 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5300 }
5301 
5302 static void bnx2x_eq_int(struct bnx2x *bp)
5303 {
5304 	u16 hw_cons, sw_cons, sw_prod;
5305 	union event_ring_elem *elem;
5306 	u8 echo;
5307 	u32 cid;
5308 	u8 opcode;
5309 	int rc, spqe_cnt = 0;
5310 	struct bnx2x_queue_sp_obj *q_obj;
5311 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5312 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5313 
5314 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5315 
5316 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5317 	 * when we get the next-page we need to adjust so the loop
5318 	 * condition below will be met. The next element is the size of a
5319 	 * regular element and hence incrementing by 1
5320 	 */
5321 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5322 		hw_cons++;
5323 
5324 	/* This function may never run in parallel with itself for a
5325 	 * specific bp, thus there is no need in "paired" read memory
5326 	 * barrier here.
5327 	 */
5328 	sw_cons = bp->eq_cons;
5329 	sw_prod = bp->eq_prod;
5330 
5331 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5332 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5333 
5334 	for (; sw_cons != hw_cons;
5335 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5336 
5337 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5338 
5339 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5340 		if (!rc) {
5341 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5342 			   rc);
5343 			goto next_spqe;
5344 		}
5345 
5346 		/* elem CID originates from FW; actually LE */
5347 		cid = SW_CID((__force __le32)
5348 			     elem->message.data.cfc_del_event.cid);
5349 		opcode = elem->message.opcode;
5350 
5351 		/* handle eq element */
5352 		switch (opcode) {
5353 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5354 			bnx2x_vf_mbx_schedule(bp,
5355 					      &elem->message.data.vf_pf_event);
5356 			continue;
5357 
5358 		case EVENT_RING_OPCODE_STAT_QUERY:
5359 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5360 			       "got statistics comp event %d\n",
5361 			       bp->stats_comp++);
5362 			/* nothing to do with stats comp */
5363 			goto next_spqe;
5364 
5365 		case EVENT_RING_OPCODE_CFC_DEL:
5366 			/* handle according to cid range */
5367 			/*
5368 			 * we may want to verify here that the bp state is
5369 			 * HALTING
5370 			 */
5371 			DP(BNX2X_MSG_SP,
5372 			   "got delete ramrod for MULTI[%d]\n", cid);
5373 
5374 			if (CNIC_LOADED(bp) &&
5375 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5376 				goto next_spqe;
5377 
5378 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5379 
5380 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5381 				break;
5382 
5383 			goto next_spqe;
5384 
5385 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5386 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5387 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5388 			if (f_obj->complete_cmd(bp, f_obj,
5389 						BNX2X_F_CMD_TX_STOP))
5390 				break;
5391 			goto next_spqe;
5392 
5393 		case EVENT_RING_OPCODE_START_TRAFFIC:
5394 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5395 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5396 			if (f_obj->complete_cmd(bp, f_obj,
5397 						BNX2X_F_CMD_TX_START))
5398 				break;
5399 			goto next_spqe;
5400 
5401 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5402 			echo = elem->message.data.function_update_event.echo;
5403 			if (echo == SWITCH_UPDATE) {
5404 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5405 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5406 				if (f_obj->complete_cmd(
5407 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5408 					break;
5409 
5410 			} else {
5411 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5412 
5413 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5414 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5415 				f_obj->complete_cmd(bp, f_obj,
5416 						    BNX2X_F_CMD_AFEX_UPDATE);
5417 
5418 				/* We will perform the Queues update from
5419 				 * sp_rtnl task as all Queue SP operations
5420 				 * should run under rtnl_lock.
5421 				 */
5422 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5423 			}
5424 
5425 			goto next_spqe;
5426 
5427 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5428 			f_obj->complete_cmd(bp, f_obj,
5429 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5430 			bnx2x_after_afex_vif_lists(bp, elem);
5431 			goto next_spqe;
5432 		case EVENT_RING_OPCODE_FUNCTION_START:
5433 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5434 			   "got FUNC_START ramrod\n");
5435 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5436 				break;
5437 
5438 			goto next_spqe;
5439 
5440 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5441 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5442 			   "got FUNC_STOP ramrod\n");
5443 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5444 				break;
5445 
5446 			goto next_spqe;
5447 		}
5448 
5449 		switch (opcode | bp->state) {
5450 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5451 		      BNX2X_STATE_OPEN):
5452 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5453 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5454 			cid = elem->message.data.eth_event.echo &
5455 				BNX2X_SWCID_MASK;
5456 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5457 			   cid);
5458 			rss_raw->clear_pending(rss_raw);
5459 			break;
5460 
5461 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5462 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5463 		case (EVENT_RING_OPCODE_SET_MAC |
5464 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5465 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5466 		      BNX2X_STATE_OPEN):
5467 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5468 		      BNX2X_STATE_DIAG):
5469 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5470 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5471 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5472 			bnx2x_handle_classification_eqe(bp, elem);
5473 			break;
5474 
5475 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5476 		      BNX2X_STATE_OPEN):
5477 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5478 		      BNX2X_STATE_DIAG):
5479 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5480 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5481 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5482 			bnx2x_handle_mcast_eqe(bp);
5483 			break;
5484 
5485 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5486 		      BNX2X_STATE_OPEN):
5487 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5488 		      BNX2X_STATE_DIAG):
5489 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5490 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5491 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5492 			bnx2x_handle_rx_mode_eqe(bp);
5493 			break;
5494 		default:
5495 			/* unknown event log error and continue */
5496 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5497 				  elem->message.opcode, bp->state);
5498 		}
5499 next_spqe:
5500 		spqe_cnt++;
5501 	} /* for */
5502 
5503 	smp_mb__before_atomic_inc();
5504 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5505 
5506 	bp->eq_cons = sw_cons;
5507 	bp->eq_prod = sw_prod;
5508 	/* Make sure that above mem writes were issued towards the memory */
5509 	smp_wmb();
5510 
5511 	/* update producer */
5512 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5513 }
5514 
5515 static void bnx2x_sp_task(struct work_struct *work)
5516 {
5517 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5518 
5519 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5520 
5521 	/* make sure the atomic interrupt_occurred has been written */
5522 	smp_rmb();
5523 	if (atomic_read(&bp->interrupt_occurred)) {
5524 
5525 		/* what work needs to be performed? */
5526 		u16 status = bnx2x_update_dsb_idx(bp);
5527 
5528 		DP(BNX2X_MSG_SP, "status %x\n", status);
5529 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5530 		atomic_set(&bp->interrupt_occurred, 0);
5531 
5532 		/* HW attentions */
5533 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5534 			bnx2x_attn_int(bp);
5535 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5536 		}
5537 
5538 		/* SP events: STAT_QUERY and others */
5539 		if (status & BNX2X_DEF_SB_IDX) {
5540 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5541 
5542 		if (FCOE_INIT(bp) &&
5543 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5544 				/* Prevent local bottom-halves from running as
5545 				 * we are going to change the local NAPI list.
5546 				 */
5547 				local_bh_disable();
5548 				napi_schedule(&bnx2x_fcoe(bp, napi));
5549 				local_bh_enable();
5550 			}
5551 
5552 			/* Handle EQ completions */
5553 			bnx2x_eq_int(bp);
5554 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5555 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5556 
5557 			status &= ~BNX2X_DEF_SB_IDX;
5558 		}
5559 
5560 		/* if status is non zero then perhaps something went wrong */
5561 		if (unlikely(status))
5562 			DP(BNX2X_MSG_SP,
5563 			   "got an unknown interrupt! (status 0x%x)\n", status);
5564 
5565 		/* ack status block only if something was actually handled */
5566 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5567 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5568 	}
5569 
5570 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5571 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5572 			       &bp->sp_state)) {
5573 		bnx2x_link_report(bp);
5574 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5575 	}
5576 }
5577 
5578 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5579 {
5580 	struct net_device *dev = dev_instance;
5581 	struct bnx2x *bp = netdev_priv(dev);
5582 
5583 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5584 		     IGU_INT_DISABLE, 0);
5585 
5586 #ifdef BNX2X_STOP_ON_ERROR
5587 	if (unlikely(bp->panic))
5588 		return IRQ_HANDLED;
5589 #endif
5590 
5591 	if (CNIC_LOADED(bp)) {
5592 		struct cnic_ops *c_ops;
5593 
5594 		rcu_read_lock();
5595 		c_ops = rcu_dereference(bp->cnic_ops);
5596 		if (c_ops)
5597 			c_ops->cnic_handler(bp->cnic_data, NULL);
5598 		rcu_read_unlock();
5599 	}
5600 
5601 	/* schedule sp task to perform default status block work, ack
5602 	 * attentions and enable interrupts.
5603 	 */
5604 	bnx2x_schedule_sp_task(bp);
5605 
5606 	return IRQ_HANDLED;
5607 }
5608 
5609 /* end of slow path */
5610 
5611 void bnx2x_drv_pulse(struct bnx2x *bp)
5612 {
5613 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5614 		 bp->fw_drv_pulse_wr_seq);
5615 }
5616 
5617 static void bnx2x_timer(unsigned long data)
5618 {
5619 	struct bnx2x *bp = (struct bnx2x *) data;
5620 
5621 	if (!netif_running(bp->dev))
5622 		return;
5623 
5624 	if (IS_PF(bp) &&
5625 	    !BP_NOMCP(bp)) {
5626 		int mb_idx = BP_FW_MB_IDX(bp);
5627 		u16 drv_pulse;
5628 		u16 mcp_pulse;
5629 
5630 		++bp->fw_drv_pulse_wr_seq;
5631 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5632 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5633 		bnx2x_drv_pulse(bp);
5634 
5635 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5636 			     MCP_PULSE_SEQ_MASK);
5637 		/* The delta between driver pulse and mcp response
5638 		 * should not get too big. If the MFW is more than 5 pulses
5639 		 * behind, we should worry about it enough to generate an error
5640 		 * log.
5641 		 */
5642 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5643 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5644 				  drv_pulse, mcp_pulse);
5645 	}
5646 
5647 	if (bp->state == BNX2X_STATE_OPEN)
5648 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5649 
5650 	/* sample pf vf bulletin board for new posts from pf */
5651 	if (IS_VF(bp))
5652 		bnx2x_timer_sriov(bp);
5653 
5654 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5655 }
5656 
5657 /* end of Statistics */
5658 
5659 /* nic init */
5660 
5661 /*
5662  * nic init service functions
5663  */
5664 
5665 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5666 {
5667 	u32 i;
5668 	if (!(len%4) && !(addr%4))
5669 		for (i = 0; i < len; i += 4)
5670 			REG_WR(bp, addr + i, fill);
5671 	else
5672 		for (i = 0; i < len; i++)
5673 			REG_WR8(bp, addr + i, fill);
5674 }
5675 
5676 /* helper: writes FP SP data to FW - data_size in dwords */
5677 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5678 				int fw_sb_id,
5679 				u32 *sb_data_p,
5680 				u32 data_size)
5681 {
5682 	int index;
5683 	for (index = 0; index < data_size; index++)
5684 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5685 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5686 			sizeof(u32)*index,
5687 			*(sb_data_p + index));
5688 }
5689 
5690 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5691 {
5692 	u32 *sb_data_p;
5693 	u32 data_size = 0;
5694 	struct hc_status_block_data_e2 sb_data_e2;
5695 	struct hc_status_block_data_e1x sb_data_e1x;
5696 
5697 	/* disable the function first */
5698 	if (!CHIP_IS_E1x(bp)) {
5699 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5700 		sb_data_e2.common.state = SB_DISABLED;
5701 		sb_data_e2.common.p_func.vf_valid = false;
5702 		sb_data_p = (u32 *)&sb_data_e2;
5703 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5704 	} else {
5705 		memset(&sb_data_e1x, 0,
5706 		       sizeof(struct hc_status_block_data_e1x));
5707 		sb_data_e1x.common.state = SB_DISABLED;
5708 		sb_data_e1x.common.p_func.vf_valid = false;
5709 		sb_data_p = (u32 *)&sb_data_e1x;
5710 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5711 	}
5712 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5713 
5714 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5715 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5716 			CSTORM_STATUS_BLOCK_SIZE);
5717 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5718 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5719 			CSTORM_SYNC_BLOCK_SIZE);
5720 }
5721 
5722 /* helper:  writes SP SB data to FW */
5723 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5724 		struct hc_sp_status_block_data *sp_sb_data)
5725 {
5726 	int func = BP_FUNC(bp);
5727 	int i;
5728 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5729 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5730 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5731 			i*sizeof(u32),
5732 			*((u32 *)sp_sb_data + i));
5733 }
5734 
5735 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5736 {
5737 	int func = BP_FUNC(bp);
5738 	struct hc_sp_status_block_data sp_sb_data;
5739 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5740 
5741 	sp_sb_data.state = SB_DISABLED;
5742 	sp_sb_data.p_func.vf_valid = false;
5743 
5744 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5745 
5746 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5747 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5748 			CSTORM_SP_STATUS_BLOCK_SIZE);
5749 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5750 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5751 			CSTORM_SP_SYNC_BLOCK_SIZE);
5752 }
5753 
5754 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5755 					   int igu_sb_id, int igu_seg_id)
5756 {
5757 	hc_sm->igu_sb_id = igu_sb_id;
5758 	hc_sm->igu_seg_id = igu_seg_id;
5759 	hc_sm->timer_value = 0xFF;
5760 	hc_sm->time_to_expire = 0xFFFFFFFF;
5761 }
5762 
5763 /* allocates state machine ids. */
5764 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5765 {
5766 	/* zero out state machine indices */
5767 	/* rx indices */
5768 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5769 
5770 	/* tx indices */
5771 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5772 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5773 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5774 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5775 
5776 	/* map indices */
5777 	/* rx indices */
5778 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5779 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5780 
5781 	/* tx indices */
5782 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5783 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5784 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5785 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5786 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5787 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5788 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5789 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5790 }
5791 
5792 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5793 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5794 {
5795 	int igu_seg_id;
5796 
5797 	struct hc_status_block_data_e2 sb_data_e2;
5798 	struct hc_status_block_data_e1x sb_data_e1x;
5799 	struct hc_status_block_sm  *hc_sm_p;
5800 	int data_size;
5801 	u32 *sb_data_p;
5802 
5803 	if (CHIP_INT_MODE_IS_BC(bp))
5804 		igu_seg_id = HC_SEG_ACCESS_NORM;
5805 	else
5806 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5807 
5808 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5809 
5810 	if (!CHIP_IS_E1x(bp)) {
5811 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5812 		sb_data_e2.common.state = SB_ENABLED;
5813 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5814 		sb_data_e2.common.p_func.vf_id = vfid;
5815 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5816 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5817 		sb_data_e2.common.same_igu_sb_1b = true;
5818 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5819 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5820 		hc_sm_p = sb_data_e2.common.state_machine;
5821 		sb_data_p = (u32 *)&sb_data_e2;
5822 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5823 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5824 	} else {
5825 		memset(&sb_data_e1x, 0,
5826 		       sizeof(struct hc_status_block_data_e1x));
5827 		sb_data_e1x.common.state = SB_ENABLED;
5828 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5829 		sb_data_e1x.common.p_func.vf_id = 0xff;
5830 		sb_data_e1x.common.p_func.vf_valid = false;
5831 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5832 		sb_data_e1x.common.same_igu_sb_1b = true;
5833 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5834 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5835 		hc_sm_p = sb_data_e1x.common.state_machine;
5836 		sb_data_p = (u32 *)&sb_data_e1x;
5837 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5838 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5839 	}
5840 
5841 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5842 				       igu_sb_id, igu_seg_id);
5843 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5844 				       igu_sb_id, igu_seg_id);
5845 
5846 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5847 
5848 	/* write indices to HW - PCI guarantees endianity of regpairs */
5849 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5850 }
5851 
5852 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5853 				     u16 tx_usec, u16 rx_usec)
5854 {
5855 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5856 				    false, rx_usec);
5857 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5858 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5859 				       tx_usec);
5860 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5861 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5862 				       tx_usec);
5863 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5864 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5865 				       tx_usec);
5866 }
5867 
5868 static void bnx2x_init_def_sb(struct bnx2x *bp)
5869 {
5870 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5871 	dma_addr_t mapping = bp->def_status_blk_mapping;
5872 	int igu_sp_sb_index;
5873 	int igu_seg_id;
5874 	int port = BP_PORT(bp);
5875 	int func = BP_FUNC(bp);
5876 	int reg_offset, reg_offset_en5;
5877 	u64 section;
5878 	int index;
5879 	struct hc_sp_status_block_data sp_sb_data;
5880 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5881 
5882 	if (CHIP_INT_MODE_IS_BC(bp)) {
5883 		igu_sp_sb_index = DEF_SB_IGU_ID;
5884 		igu_seg_id = HC_SEG_ACCESS_DEF;
5885 	} else {
5886 		igu_sp_sb_index = bp->igu_dsb_id;
5887 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5888 	}
5889 
5890 	/* ATTN */
5891 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5892 					    atten_status_block);
5893 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5894 
5895 	bp->attn_state = 0;
5896 
5897 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5898 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5899 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5900 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5901 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5902 		int sindex;
5903 		/* take care of sig[0]..sig[4] */
5904 		for (sindex = 0; sindex < 4; sindex++)
5905 			bp->attn_group[index].sig[sindex] =
5906 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5907 
5908 		if (!CHIP_IS_E1x(bp))
5909 			/*
5910 			 * enable5 is separate from the rest of the registers,
5911 			 * and therefore the address skip is 4
5912 			 * and not 16 between the different groups
5913 			 */
5914 			bp->attn_group[index].sig[4] = REG_RD(bp,
5915 					reg_offset_en5 + 0x4*index);
5916 		else
5917 			bp->attn_group[index].sig[4] = 0;
5918 	}
5919 
5920 	if (bp->common.int_block == INT_BLOCK_HC) {
5921 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5922 				     HC_REG_ATTN_MSG0_ADDR_L);
5923 
5924 		REG_WR(bp, reg_offset, U64_LO(section));
5925 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5926 	} else if (!CHIP_IS_E1x(bp)) {
5927 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5928 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5929 	}
5930 
5931 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5932 					    sp_sb);
5933 
5934 	bnx2x_zero_sp_sb(bp);
5935 
5936 	/* PCI guarantees endianity of regpairs */
5937 	sp_sb_data.state		= SB_ENABLED;
5938 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5939 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5940 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5941 	sp_sb_data.igu_seg_id		= igu_seg_id;
5942 	sp_sb_data.p_func.pf_id		= func;
5943 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5944 	sp_sb_data.p_func.vf_id		= 0xff;
5945 
5946 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5947 
5948 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5949 }
5950 
5951 void bnx2x_update_coalesce(struct bnx2x *bp)
5952 {
5953 	int i;
5954 
5955 	for_each_eth_queue(bp, i)
5956 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5957 					 bp->tx_ticks, bp->rx_ticks);
5958 }
5959 
5960 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5961 {
5962 	spin_lock_init(&bp->spq_lock);
5963 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5964 
5965 	bp->spq_prod_idx = 0;
5966 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5967 	bp->spq_prod_bd = bp->spq;
5968 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5969 }
5970 
5971 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5972 {
5973 	int i;
5974 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5975 		union event_ring_elem *elem =
5976 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5977 
5978 		elem->next_page.addr.hi =
5979 			cpu_to_le32(U64_HI(bp->eq_mapping +
5980 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5981 		elem->next_page.addr.lo =
5982 			cpu_to_le32(U64_LO(bp->eq_mapping +
5983 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5984 	}
5985 	bp->eq_cons = 0;
5986 	bp->eq_prod = NUM_EQ_DESC;
5987 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5988 	/* we want a warning message before it gets wrought... */
5989 	atomic_set(&bp->eq_spq_left,
5990 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5991 }
5992 
5993 /* called with netif_addr_lock_bh() */
5994 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5995 			       unsigned long rx_mode_flags,
5996 			       unsigned long rx_accept_flags,
5997 			       unsigned long tx_accept_flags,
5998 			       unsigned long ramrod_flags)
5999 {
6000 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6001 	int rc;
6002 
6003 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6004 
6005 	/* Prepare ramrod parameters */
6006 	ramrod_param.cid = 0;
6007 	ramrod_param.cl_id = cl_id;
6008 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6009 	ramrod_param.func_id = BP_FUNC(bp);
6010 
6011 	ramrod_param.pstate = &bp->sp_state;
6012 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6013 
6014 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6015 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6016 
6017 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6018 
6019 	ramrod_param.ramrod_flags = ramrod_flags;
6020 	ramrod_param.rx_mode_flags = rx_mode_flags;
6021 
6022 	ramrod_param.rx_accept_flags = rx_accept_flags;
6023 	ramrod_param.tx_accept_flags = tx_accept_flags;
6024 
6025 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6026 	if (rc < 0) {
6027 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6028 		return rc;
6029 	}
6030 
6031 	return 0;
6032 }
6033 
6034 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6035 				   unsigned long *rx_accept_flags,
6036 				   unsigned long *tx_accept_flags)
6037 {
6038 	/* Clear the flags first */
6039 	*rx_accept_flags = 0;
6040 	*tx_accept_flags = 0;
6041 
6042 	switch (rx_mode) {
6043 	case BNX2X_RX_MODE_NONE:
6044 		/*
6045 		 * 'drop all' supersedes any accept flags that may have been
6046 		 * passed to the function.
6047 		 */
6048 		break;
6049 	case BNX2X_RX_MODE_NORMAL:
6050 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6051 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6052 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6053 
6054 		/* internal switching mode */
6055 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6056 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6057 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6058 
6059 		break;
6060 	case BNX2X_RX_MODE_ALLMULTI:
6061 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6062 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6063 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6064 
6065 		/* internal switching mode */
6066 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6067 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6068 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6069 
6070 		break;
6071 	case BNX2X_RX_MODE_PROMISC:
6072 		/* According to definition of SI mode, iface in promisc mode
6073 		 * should receive matched and unmatched (in resolution of port)
6074 		 * unicast packets.
6075 		 */
6076 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6077 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6078 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6079 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6080 
6081 		/* internal switching mode */
6082 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6083 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6084 
6085 		if (IS_MF_SI(bp))
6086 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6087 		else
6088 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6089 
6090 		break;
6091 	default:
6092 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6093 		return -EINVAL;
6094 	}
6095 
6096 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6097 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
6098 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6099 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6100 	}
6101 
6102 	return 0;
6103 }
6104 
6105 /* called with netif_addr_lock_bh() */
6106 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6107 {
6108 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6109 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6110 	int rc;
6111 
6112 	if (!NO_FCOE(bp))
6113 		/* Configure rx_mode of FCoE Queue */
6114 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6115 
6116 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6117 				     &tx_accept_flags);
6118 	if (rc)
6119 		return rc;
6120 
6121 	__set_bit(RAMROD_RX, &ramrod_flags);
6122 	__set_bit(RAMROD_TX, &ramrod_flags);
6123 
6124 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6125 				   rx_accept_flags, tx_accept_flags,
6126 				   ramrod_flags);
6127 }
6128 
6129 static void bnx2x_init_internal_common(struct bnx2x *bp)
6130 {
6131 	int i;
6132 
6133 	/* Zero this manually as its initialization is
6134 	   currently missing in the initTool */
6135 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6136 		REG_WR(bp, BAR_USTRORM_INTMEM +
6137 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6138 	if (!CHIP_IS_E1x(bp)) {
6139 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6140 			CHIP_INT_MODE_IS_BC(bp) ?
6141 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6142 	}
6143 }
6144 
6145 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6146 {
6147 	switch (load_code) {
6148 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6149 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6150 		bnx2x_init_internal_common(bp);
6151 		/* no break */
6152 
6153 	case FW_MSG_CODE_DRV_LOAD_PORT:
6154 		/* nothing to do */
6155 		/* no break */
6156 
6157 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6158 		/* internal memory per function is
6159 		   initialized inside bnx2x_pf_init */
6160 		break;
6161 
6162 	default:
6163 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6164 		break;
6165 	}
6166 }
6167 
6168 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6169 {
6170 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6171 }
6172 
6173 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6174 {
6175 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6176 }
6177 
6178 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6179 {
6180 	if (CHIP_IS_E1x(fp->bp))
6181 		return BP_L_ID(fp->bp) + fp->index;
6182 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6183 		return bnx2x_fp_igu_sb_id(fp);
6184 }
6185 
6186 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6187 {
6188 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6189 	u8 cos;
6190 	unsigned long q_type = 0;
6191 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6192 	fp->rx_queue = fp_idx;
6193 	fp->cid = fp_idx;
6194 	fp->cl_id = bnx2x_fp_cl_id(fp);
6195 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6196 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6197 	/* qZone id equals to FW (per path) client id */
6198 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6199 
6200 	/* init shortcut */
6201 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6202 
6203 	/* Setup SB indices */
6204 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6205 
6206 	/* Configure Queue State object */
6207 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6208 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6209 
6210 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6211 
6212 	/* init tx data */
6213 	for_each_cos_in_tx_queue(fp, cos) {
6214 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6215 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6216 				  FP_COS_TO_TXQ(fp, cos, bp),
6217 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6218 		cids[cos] = fp->txdata_ptr[cos]->cid;
6219 	}
6220 
6221 	/* nothing more for vf to do here */
6222 	if (IS_VF(bp))
6223 		return;
6224 
6225 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6226 		      fp->fw_sb_id, fp->igu_sb_id);
6227 	bnx2x_update_fpsb_idx(fp);
6228 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6229 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6230 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6231 
6232 	/**
6233 	 * Configure classification DBs: Always enable Tx switching
6234 	 */
6235 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6236 
6237 	DP(NETIF_MSG_IFUP,
6238 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6239 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6240 	   fp->igu_sb_id);
6241 }
6242 
6243 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6244 {
6245 	int i;
6246 
6247 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6248 		struct eth_tx_next_bd *tx_next_bd =
6249 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6250 
6251 		tx_next_bd->addr_hi =
6252 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6253 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6254 		tx_next_bd->addr_lo =
6255 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6256 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6257 	}
6258 
6259 	*txdata->tx_cons_sb = cpu_to_le16(0);
6260 
6261 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6262 	txdata->tx_db.data.zero_fill1 = 0;
6263 	txdata->tx_db.data.prod = 0;
6264 
6265 	txdata->tx_pkt_prod = 0;
6266 	txdata->tx_pkt_cons = 0;
6267 	txdata->tx_bd_prod = 0;
6268 	txdata->tx_bd_cons = 0;
6269 	txdata->tx_pkt = 0;
6270 }
6271 
6272 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6273 {
6274 	int i;
6275 
6276 	for_each_tx_queue_cnic(bp, i)
6277 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6278 }
6279 
6280 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6281 {
6282 	int i;
6283 	u8 cos;
6284 
6285 	for_each_eth_queue(bp, i)
6286 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6287 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6288 }
6289 
6290 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6291 {
6292 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6293 	unsigned long q_type = 0;
6294 
6295 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6296 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6297 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6298 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6299 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6300 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6301 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6302 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6303 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6304 			  fp);
6305 
6306 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6307 
6308 	/* qZone id equals to FW (per path) client id */
6309 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6310 	/* init shortcut */
6311 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6312 		bnx2x_rx_ustorm_prods_offset(fp);
6313 
6314 	/* Configure Queue State object */
6315 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6316 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6317 
6318 	/* No multi-CoS for FCoE L2 client */
6319 	BUG_ON(fp->max_cos != 1);
6320 
6321 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6322 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6323 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6324 
6325 	DP(NETIF_MSG_IFUP,
6326 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6327 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6328 	   fp->igu_sb_id);
6329 }
6330 
6331 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6332 {
6333 	if (!NO_FCOE(bp))
6334 		bnx2x_init_fcoe_fp(bp);
6335 
6336 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6337 		      BNX2X_VF_ID_INVALID, false,
6338 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6339 
6340 	/* ensure status block indices were read */
6341 	rmb();
6342 	bnx2x_init_rx_rings_cnic(bp);
6343 	bnx2x_init_tx_rings_cnic(bp);
6344 
6345 	/* flush all */
6346 	mb();
6347 	mmiowb();
6348 }
6349 
6350 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6351 {
6352 	int i;
6353 
6354 	/* Setup NIC internals and enable interrupts */
6355 	for_each_eth_queue(bp, i)
6356 		bnx2x_init_eth_fp(bp, i);
6357 
6358 	/* ensure status block indices were read */
6359 	rmb();
6360 	bnx2x_init_rx_rings(bp);
6361 	bnx2x_init_tx_rings(bp);
6362 
6363 	if (IS_PF(bp)) {
6364 		/* Initialize MOD_ABS interrupts */
6365 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6366 				       bp->common.shmem_base,
6367 				       bp->common.shmem2_base, BP_PORT(bp));
6368 
6369 		/* initialize the default status block and sp ring */
6370 		bnx2x_init_def_sb(bp);
6371 		bnx2x_update_dsb_idx(bp);
6372 		bnx2x_init_sp_ring(bp);
6373 	} else {
6374 		bnx2x_memset_stats(bp);
6375 	}
6376 }
6377 
6378 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6379 {
6380 	bnx2x_init_eq_ring(bp);
6381 	bnx2x_init_internal(bp, load_code);
6382 	bnx2x_pf_init(bp);
6383 	bnx2x_stats_init(bp);
6384 
6385 	/* flush all before enabling interrupts */
6386 	mb();
6387 	mmiowb();
6388 
6389 	bnx2x_int_enable(bp);
6390 
6391 	/* Check for SPIO5 */
6392 	bnx2x_attn_int_deasserted0(bp,
6393 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6394 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6395 }
6396 
6397 /* gzip service functions */
6398 static int bnx2x_gunzip_init(struct bnx2x *bp)
6399 {
6400 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6401 					    &bp->gunzip_mapping, GFP_KERNEL);
6402 	if (bp->gunzip_buf  == NULL)
6403 		goto gunzip_nomem1;
6404 
6405 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6406 	if (bp->strm  == NULL)
6407 		goto gunzip_nomem2;
6408 
6409 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6410 	if (bp->strm->workspace == NULL)
6411 		goto gunzip_nomem3;
6412 
6413 	return 0;
6414 
6415 gunzip_nomem3:
6416 	kfree(bp->strm);
6417 	bp->strm = NULL;
6418 
6419 gunzip_nomem2:
6420 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6421 			  bp->gunzip_mapping);
6422 	bp->gunzip_buf = NULL;
6423 
6424 gunzip_nomem1:
6425 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6426 	return -ENOMEM;
6427 }
6428 
6429 static void bnx2x_gunzip_end(struct bnx2x *bp)
6430 {
6431 	if (bp->strm) {
6432 		vfree(bp->strm->workspace);
6433 		kfree(bp->strm);
6434 		bp->strm = NULL;
6435 	}
6436 
6437 	if (bp->gunzip_buf) {
6438 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6439 				  bp->gunzip_mapping);
6440 		bp->gunzip_buf = NULL;
6441 	}
6442 }
6443 
6444 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6445 {
6446 	int n, rc;
6447 
6448 	/* check gzip header */
6449 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6450 		BNX2X_ERR("Bad gzip header\n");
6451 		return -EINVAL;
6452 	}
6453 
6454 	n = 10;
6455 
6456 #define FNAME				0x8
6457 
6458 	if (zbuf[3] & FNAME)
6459 		while ((zbuf[n++] != 0) && (n < len));
6460 
6461 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6462 	bp->strm->avail_in = len - n;
6463 	bp->strm->next_out = bp->gunzip_buf;
6464 	bp->strm->avail_out = FW_BUF_SIZE;
6465 
6466 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6467 	if (rc != Z_OK)
6468 		return rc;
6469 
6470 	rc = zlib_inflate(bp->strm, Z_FINISH);
6471 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6472 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6473 			   bp->strm->msg);
6474 
6475 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6476 	if (bp->gunzip_outlen & 0x3)
6477 		netdev_err(bp->dev,
6478 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6479 				bp->gunzip_outlen);
6480 	bp->gunzip_outlen >>= 2;
6481 
6482 	zlib_inflateEnd(bp->strm);
6483 
6484 	if (rc == Z_STREAM_END)
6485 		return 0;
6486 
6487 	return rc;
6488 }
6489 
6490 /* nic load/unload */
6491 
6492 /*
6493  * General service functions
6494  */
6495 
6496 /* send a NIG loopback debug packet */
6497 static void bnx2x_lb_pckt(struct bnx2x *bp)
6498 {
6499 	u32 wb_write[3];
6500 
6501 	/* Ethernet source and destination addresses */
6502 	wb_write[0] = 0x55555555;
6503 	wb_write[1] = 0x55555555;
6504 	wb_write[2] = 0x20;		/* SOP */
6505 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6506 
6507 	/* NON-IP protocol */
6508 	wb_write[0] = 0x09000000;
6509 	wb_write[1] = 0x55555555;
6510 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6511 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6512 }
6513 
6514 /* some of the internal memories
6515  * are not directly readable from the driver
6516  * to test them we send debug packets
6517  */
6518 static int bnx2x_int_mem_test(struct bnx2x *bp)
6519 {
6520 	int factor;
6521 	int count, i;
6522 	u32 val = 0;
6523 
6524 	if (CHIP_REV_IS_FPGA(bp))
6525 		factor = 120;
6526 	else if (CHIP_REV_IS_EMUL(bp))
6527 		factor = 200;
6528 	else
6529 		factor = 1;
6530 
6531 	/* Disable inputs of parser neighbor blocks */
6532 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6533 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6534 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6535 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6536 
6537 	/*  Write 0 to parser credits for CFC search request */
6538 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6539 
6540 	/* send Ethernet packet */
6541 	bnx2x_lb_pckt(bp);
6542 
6543 	/* TODO do i reset NIG statistic? */
6544 	/* Wait until NIG register shows 1 packet of size 0x10 */
6545 	count = 1000 * factor;
6546 	while (count) {
6547 
6548 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6549 		val = *bnx2x_sp(bp, wb_data[0]);
6550 		if (val == 0x10)
6551 			break;
6552 
6553 		usleep_range(10000, 20000);
6554 		count--;
6555 	}
6556 	if (val != 0x10) {
6557 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6558 		return -1;
6559 	}
6560 
6561 	/* Wait until PRS register shows 1 packet */
6562 	count = 1000 * factor;
6563 	while (count) {
6564 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6565 		if (val == 1)
6566 			break;
6567 
6568 		usleep_range(10000, 20000);
6569 		count--;
6570 	}
6571 	if (val != 0x1) {
6572 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6573 		return -2;
6574 	}
6575 
6576 	/* Reset and init BRB, PRS */
6577 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6578 	msleep(50);
6579 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6580 	msleep(50);
6581 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6582 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6583 
6584 	DP(NETIF_MSG_HW, "part2\n");
6585 
6586 	/* Disable inputs of parser neighbor blocks */
6587 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6588 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6589 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6590 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6591 
6592 	/* Write 0 to parser credits for CFC search request */
6593 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6594 
6595 	/* send 10 Ethernet packets */
6596 	for (i = 0; i < 10; i++)
6597 		bnx2x_lb_pckt(bp);
6598 
6599 	/* Wait until NIG register shows 10 + 1
6600 	   packets of size 11*0x10 = 0xb0 */
6601 	count = 1000 * factor;
6602 	while (count) {
6603 
6604 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6605 		val = *bnx2x_sp(bp, wb_data[0]);
6606 		if (val == 0xb0)
6607 			break;
6608 
6609 		usleep_range(10000, 20000);
6610 		count--;
6611 	}
6612 	if (val != 0xb0) {
6613 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6614 		return -3;
6615 	}
6616 
6617 	/* Wait until PRS register shows 2 packets */
6618 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6619 	if (val != 2)
6620 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6621 
6622 	/* Write 1 to parser credits for CFC search request */
6623 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6624 
6625 	/* Wait until PRS register shows 3 packets */
6626 	msleep(10 * factor);
6627 	/* Wait until NIG register shows 1 packet of size 0x10 */
6628 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6629 	if (val != 3)
6630 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6631 
6632 	/* clear NIG EOP FIFO */
6633 	for (i = 0; i < 11; i++)
6634 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6635 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6636 	if (val != 1) {
6637 		BNX2X_ERR("clear of NIG failed\n");
6638 		return -4;
6639 	}
6640 
6641 	/* Reset and init BRB, PRS, NIG */
6642 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6643 	msleep(50);
6644 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6645 	msleep(50);
6646 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6647 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6648 	if (!CNIC_SUPPORT(bp))
6649 		/* set NIC mode */
6650 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6651 
6652 	/* Enable inputs of parser neighbor blocks */
6653 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6654 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6655 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6656 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6657 
6658 	DP(NETIF_MSG_HW, "done\n");
6659 
6660 	return 0; /* OK */
6661 }
6662 
6663 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6664 {
6665 	u32 val;
6666 
6667 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6668 	if (!CHIP_IS_E1x(bp))
6669 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6670 	else
6671 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6672 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6673 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6674 	/*
6675 	 * mask read length error interrupts in brb for parser
6676 	 * (parsing unit and 'checksum and crc' unit)
6677 	 * these errors are legal (PU reads fixed length and CAC can cause
6678 	 * read length error on truncated packets)
6679 	 */
6680 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6681 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6682 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6683 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6684 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6685 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6686 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6687 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6688 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6689 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6690 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6691 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6692 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6693 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6694 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6695 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6696 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6697 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6698 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6699 
6700 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6701 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6702 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6703 	if (!CHIP_IS_E1x(bp))
6704 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6705 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6706 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6707 
6708 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6709 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6710 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6711 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6712 
6713 	if (!CHIP_IS_E1x(bp))
6714 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6715 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6716 
6717 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6718 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6719 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6720 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6721 }
6722 
6723 static void bnx2x_reset_common(struct bnx2x *bp)
6724 {
6725 	u32 val = 0x1400;
6726 
6727 	/* reset_common */
6728 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6729 	       0xd3ffff7f);
6730 
6731 	if (CHIP_IS_E3(bp)) {
6732 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6733 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6734 	}
6735 
6736 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6737 }
6738 
6739 static void bnx2x_setup_dmae(struct bnx2x *bp)
6740 {
6741 	bp->dmae_ready = 0;
6742 	spin_lock_init(&bp->dmae_lock);
6743 }
6744 
6745 static void bnx2x_init_pxp(struct bnx2x *bp)
6746 {
6747 	u16 devctl;
6748 	int r_order, w_order;
6749 
6750 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6751 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6752 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6753 	if (bp->mrrs == -1)
6754 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6755 	else {
6756 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6757 		r_order = bp->mrrs;
6758 	}
6759 
6760 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6761 }
6762 
6763 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6764 {
6765 	int is_required;
6766 	u32 val;
6767 	int port;
6768 
6769 	if (BP_NOMCP(bp))
6770 		return;
6771 
6772 	is_required = 0;
6773 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6774 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6775 
6776 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6777 		is_required = 1;
6778 
6779 	/*
6780 	 * The fan failure mechanism is usually related to the PHY type since
6781 	 * the power consumption of the board is affected by the PHY. Currently,
6782 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6783 	 */
6784 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6785 		for (port = PORT_0; port < PORT_MAX; port++) {
6786 			is_required |=
6787 				bnx2x_fan_failure_det_req(
6788 					bp,
6789 					bp->common.shmem_base,
6790 					bp->common.shmem2_base,
6791 					port);
6792 		}
6793 
6794 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6795 
6796 	if (is_required == 0)
6797 		return;
6798 
6799 	/* Fan failure is indicated by SPIO 5 */
6800 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6801 
6802 	/* set to active low mode */
6803 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6804 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6805 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6806 
6807 	/* enable interrupt to signal the IGU */
6808 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6809 	val |= MISC_SPIO_SPIO5;
6810 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6811 }
6812 
6813 void bnx2x_pf_disable(struct bnx2x *bp)
6814 {
6815 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6816 	val &= ~IGU_PF_CONF_FUNC_EN;
6817 
6818 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6819 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6820 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6821 }
6822 
6823 static void bnx2x__common_init_phy(struct bnx2x *bp)
6824 {
6825 	u32 shmem_base[2], shmem2_base[2];
6826 	/* Avoid common init in case MFW supports LFA */
6827 	if (SHMEM2_RD(bp, size) >
6828 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6829 		return;
6830 	shmem_base[0] =  bp->common.shmem_base;
6831 	shmem2_base[0] = bp->common.shmem2_base;
6832 	if (!CHIP_IS_E1x(bp)) {
6833 		shmem_base[1] =
6834 			SHMEM2_RD(bp, other_shmem_base_addr);
6835 		shmem2_base[1] =
6836 			SHMEM2_RD(bp, other_shmem2_base_addr);
6837 	}
6838 	bnx2x_acquire_phy_lock(bp);
6839 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6840 			      bp->common.chip_id);
6841 	bnx2x_release_phy_lock(bp);
6842 }
6843 
6844 /**
6845  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6846  *
6847  * @bp:		driver handle
6848  */
6849 static int bnx2x_init_hw_common(struct bnx2x *bp)
6850 {
6851 	u32 val;
6852 
6853 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6854 
6855 	/*
6856 	 * take the RESET lock to protect undi_unload flow from accessing
6857 	 * registers while we're resetting the chip
6858 	 */
6859 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6860 
6861 	bnx2x_reset_common(bp);
6862 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6863 
6864 	val = 0xfffc;
6865 	if (CHIP_IS_E3(bp)) {
6866 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6867 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6868 	}
6869 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6870 
6871 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6872 
6873 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6874 
6875 	if (!CHIP_IS_E1x(bp)) {
6876 		u8 abs_func_id;
6877 
6878 		/**
6879 		 * 4-port mode or 2-port mode we need to turn of master-enable
6880 		 * for everyone, after that, turn it back on for self.
6881 		 * so, we disregard multi-function or not, and always disable
6882 		 * for all functions on the given path, this means 0,2,4,6 for
6883 		 * path 0 and 1,3,5,7 for path 1
6884 		 */
6885 		for (abs_func_id = BP_PATH(bp);
6886 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6887 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6888 				REG_WR(bp,
6889 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6890 				    1);
6891 				continue;
6892 			}
6893 
6894 			bnx2x_pretend_func(bp, abs_func_id);
6895 			/* clear pf enable */
6896 			bnx2x_pf_disable(bp);
6897 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6898 		}
6899 	}
6900 
6901 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6902 	if (CHIP_IS_E1(bp)) {
6903 		/* enable HW interrupt from PXP on USDM overflow
6904 		   bit 16 on INT_MASK_0 */
6905 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6906 	}
6907 
6908 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6909 	bnx2x_init_pxp(bp);
6910 
6911 #ifdef __BIG_ENDIAN
6912 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6913 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6914 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6915 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6916 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6917 	/* make sure this value is 0 */
6918 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6919 
6920 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6921 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6922 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6923 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6924 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6925 #endif
6926 
6927 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6928 
6929 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6930 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6931 
6932 	/* let the HW do it's magic ... */
6933 	msleep(100);
6934 	/* finish PXP init */
6935 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6936 	if (val != 1) {
6937 		BNX2X_ERR("PXP2 CFG failed\n");
6938 		return -EBUSY;
6939 	}
6940 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6941 	if (val != 1) {
6942 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6943 		return -EBUSY;
6944 	}
6945 
6946 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6947 	 * have entries with value "0" and valid bit on.
6948 	 * This needs to be done by the first PF that is loaded in a path
6949 	 * (i.e. common phase)
6950 	 */
6951 	if (!CHIP_IS_E1x(bp)) {
6952 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6953  * (i.e. vnic3) to start even if it is marked as "scan-off".
6954  * This occurs when a different function (func2,3) is being marked
6955  * as "scan-off". Real-life scenario for example: if a driver is being
6956  * load-unloaded while func6,7 are down. This will cause the timer to access
6957  * the ilt, translate to a logical address and send a request to read/write.
6958  * Since the ilt for the function that is down is not valid, this will cause
6959  * a translation error which is unrecoverable.
6960  * The Workaround is intended to make sure that when this happens nothing fatal
6961  * will occur. The workaround:
6962  *	1.  First PF driver which loads on a path will:
6963  *		a.  After taking the chip out of reset, by using pretend,
6964  *		    it will write "0" to the following registers of
6965  *		    the other vnics.
6966  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6967  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6968  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6969  *		    And for itself it will write '1' to
6970  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6971  *		    dmae-operations (writing to pram for example.)
6972  *		    note: can be done for only function 6,7 but cleaner this
6973  *			  way.
6974  *		b.  Write zero+valid to the entire ILT.
6975  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6976  *		    VNIC3 (of that port). The range allocated will be the
6977  *		    entire ILT. This is needed to prevent  ILT range error.
6978  *	2.  Any PF driver load flow:
6979  *		a.  ILT update with the physical addresses of the allocated
6980  *		    logical pages.
6981  *		b.  Wait 20msec. - note that this timeout is needed to make
6982  *		    sure there are no requests in one of the PXP internal
6983  *		    queues with "old" ILT addresses.
6984  *		c.  PF enable in the PGLC.
6985  *		d.  Clear the was_error of the PF in the PGLC. (could have
6986  *		    occurred while driver was down)
6987  *		e.  PF enable in the CFC (WEAK + STRONG)
6988  *		f.  Timers scan enable
6989  *	3.  PF driver unload flow:
6990  *		a.  Clear the Timers scan_en.
6991  *		b.  Polling for scan_on=0 for that PF.
6992  *		c.  Clear the PF enable bit in the PXP.
6993  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6994  *		e.  Write zero+valid to all ILT entries (The valid bit must
6995  *		    stay set)
6996  *		f.  If this is VNIC 3 of a port then also init
6997  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6998  *		    to the last entry in the ILT.
6999  *
7000  *	Notes:
7001  *	Currently the PF error in the PGLC is non recoverable.
7002  *	In the future the there will be a recovery routine for this error.
7003  *	Currently attention is masked.
7004  *	Having an MCP lock on the load/unload process does not guarantee that
7005  *	there is no Timer disable during Func6/7 enable. This is because the
7006  *	Timers scan is currently being cleared by the MCP on FLR.
7007  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7008  *	there is error before clearing it. But the flow above is simpler and
7009  *	more general.
7010  *	All ILT entries are written by zero+valid and not just PF6/7
7011  *	ILT entries since in the future the ILT entries allocation for
7012  *	PF-s might be dynamic.
7013  */
7014 		struct ilt_client_info ilt_cli;
7015 		struct bnx2x_ilt ilt;
7016 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7017 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7018 
7019 		/* initialize dummy TM client */
7020 		ilt_cli.start = 0;
7021 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7022 		ilt_cli.client_num = ILT_CLIENT_TM;
7023 
7024 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7025 		 * Step 2: set the timers first/last ilt entry to point
7026 		 * to the entire range to prevent ILT range error for 3rd/4th
7027 		 * vnic	(this code assumes existence of the vnic)
7028 		 *
7029 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7030 		 * with dummy TM client
7031 		 *
7032 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7033 		 * and his brother are split registers
7034 		 */
7035 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7036 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7037 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7038 
7039 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7040 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7041 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7042 	}
7043 
7044 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7045 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7046 
7047 	if (!CHIP_IS_E1x(bp)) {
7048 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7049 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7050 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7051 
7052 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7053 
7054 		/* let the HW do it's magic ... */
7055 		do {
7056 			msleep(200);
7057 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7058 		} while (factor-- && (val != 1));
7059 
7060 		if (val != 1) {
7061 			BNX2X_ERR("ATC_INIT failed\n");
7062 			return -EBUSY;
7063 		}
7064 	}
7065 
7066 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7067 
7068 	bnx2x_iov_init_dmae(bp);
7069 
7070 	/* clean the DMAE memory */
7071 	bp->dmae_ready = 1;
7072 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7073 
7074 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7075 
7076 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7077 
7078 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7079 
7080 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7081 
7082 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7083 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7084 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7085 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7086 
7087 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7088 
7089 	/* QM queues pointers table */
7090 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7091 
7092 	/* soft reset pulse */
7093 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7094 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7095 
7096 	if (CNIC_SUPPORT(bp))
7097 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7098 
7099 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7100 
7101 	if (!CHIP_REV_IS_SLOW(bp))
7102 		/* enable hw interrupt from doorbell Q */
7103 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7104 
7105 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7106 
7107 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7108 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7109 
7110 	if (!CHIP_IS_E1(bp))
7111 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7112 
7113 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7114 		if (IS_MF_AFEX(bp)) {
7115 			/* configure that VNTag and VLAN headers must be
7116 			 * received in afex mode
7117 			 */
7118 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7119 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7120 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7121 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7122 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7123 		} else {
7124 			/* Bit-map indicating which L2 hdrs may appear
7125 			 * after the basic Ethernet header
7126 			 */
7127 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7128 			       bp->path_has_ovlan ? 7 : 6);
7129 		}
7130 	}
7131 
7132 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7133 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7134 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7135 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7136 
7137 	if (!CHIP_IS_E1x(bp)) {
7138 		/* reset VFC memories */
7139 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7140 			   VFC_MEMORIES_RST_REG_CAM_RST |
7141 			   VFC_MEMORIES_RST_REG_RAM_RST);
7142 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7143 			   VFC_MEMORIES_RST_REG_CAM_RST |
7144 			   VFC_MEMORIES_RST_REG_RAM_RST);
7145 
7146 		msleep(20);
7147 	}
7148 
7149 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7150 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7151 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7152 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7153 
7154 	/* sync semi rtc */
7155 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7156 	       0x80000000);
7157 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7158 	       0x80000000);
7159 
7160 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7161 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7162 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7163 
7164 	if (!CHIP_IS_E1x(bp)) {
7165 		if (IS_MF_AFEX(bp)) {
7166 			/* configure that VNTag and VLAN headers must be
7167 			 * sent in afex mode
7168 			 */
7169 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7170 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7171 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7172 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7173 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7174 		} else {
7175 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7176 			       bp->path_has_ovlan ? 7 : 6);
7177 		}
7178 	}
7179 
7180 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7181 
7182 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7183 
7184 	if (CNIC_SUPPORT(bp)) {
7185 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7186 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7187 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7188 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7189 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7190 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7191 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7192 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7193 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7194 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7195 	}
7196 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7197 
7198 	if (sizeof(union cdu_context) != 1024)
7199 		/* we currently assume that a context is 1024 bytes */
7200 		dev_alert(&bp->pdev->dev,
7201 			  "please adjust the size of cdu_context(%ld)\n",
7202 			  (long)sizeof(union cdu_context));
7203 
7204 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7205 	val = (4 << 24) + (0 << 12) + 1024;
7206 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7207 
7208 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7209 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7210 	/* enable context validation interrupt from CFC */
7211 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7212 
7213 	/* set the thresholds to prevent CFC/CDU race */
7214 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7215 
7216 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7217 
7218 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7219 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7220 
7221 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7222 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7223 
7224 	/* Reset PCIE errors for debug */
7225 	REG_WR(bp, 0x2814, 0xffffffff);
7226 	REG_WR(bp, 0x3820, 0xffffffff);
7227 
7228 	if (!CHIP_IS_E1x(bp)) {
7229 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7230 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7231 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7232 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7233 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7234 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7235 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7236 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7237 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7238 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7239 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7240 	}
7241 
7242 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7243 	if (!CHIP_IS_E1(bp)) {
7244 		/* in E3 this done in per-port section */
7245 		if (!CHIP_IS_E3(bp))
7246 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7247 	}
7248 	if (CHIP_IS_E1H(bp))
7249 		/* not applicable for E2 (and above ...) */
7250 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7251 
7252 	if (CHIP_REV_IS_SLOW(bp))
7253 		msleep(200);
7254 
7255 	/* finish CFC init */
7256 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7257 	if (val != 1) {
7258 		BNX2X_ERR("CFC LL_INIT failed\n");
7259 		return -EBUSY;
7260 	}
7261 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7262 	if (val != 1) {
7263 		BNX2X_ERR("CFC AC_INIT failed\n");
7264 		return -EBUSY;
7265 	}
7266 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7267 	if (val != 1) {
7268 		BNX2X_ERR("CFC CAM_INIT failed\n");
7269 		return -EBUSY;
7270 	}
7271 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7272 
7273 	if (CHIP_IS_E1(bp)) {
7274 		/* read NIG statistic
7275 		   to see if this is our first up since powerup */
7276 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7277 		val = *bnx2x_sp(bp, wb_data[0]);
7278 
7279 		/* do internal memory self test */
7280 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7281 			BNX2X_ERR("internal mem self test failed\n");
7282 			return -EBUSY;
7283 		}
7284 	}
7285 
7286 	bnx2x_setup_fan_failure_detection(bp);
7287 
7288 	/* clear PXP2 attentions */
7289 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7290 
7291 	bnx2x_enable_blocks_attention(bp);
7292 	bnx2x_enable_blocks_parity(bp);
7293 
7294 	if (!BP_NOMCP(bp)) {
7295 		if (CHIP_IS_E1x(bp))
7296 			bnx2x__common_init_phy(bp);
7297 	} else
7298 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7299 
7300 	return 0;
7301 }
7302 
7303 /**
7304  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7305  *
7306  * @bp:		driver handle
7307  */
7308 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7309 {
7310 	int rc = bnx2x_init_hw_common(bp);
7311 
7312 	if (rc)
7313 		return rc;
7314 
7315 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7316 	if (!BP_NOMCP(bp))
7317 		bnx2x__common_init_phy(bp);
7318 
7319 	return 0;
7320 }
7321 
7322 static int bnx2x_init_hw_port(struct bnx2x *bp)
7323 {
7324 	int port = BP_PORT(bp);
7325 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7326 	u32 low, high;
7327 	u32 val, reg;
7328 
7329 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7330 
7331 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7332 
7333 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7334 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7335 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7336 
7337 	/* Timers bug workaround: disables the pf_master bit in pglue at
7338 	 * common phase, we need to enable it here before any dmae access are
7339 	 * attempted. Therefore we manually added the enable-master to the
7340 	 * port phase (it also happens in the function phase)
7341 	 */
7342 	if (!CHIP_IS_E1x(bp))
7343 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7344 
7345 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7346 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7347 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7348 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7349 
7350 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7351 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7352 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7353 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7354 
7355 	/* QM cid (connection) count */
7356 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7357 
7358 	if (CNIC_SUPPORT(bp)) {
7359 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7360 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7361 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7362 	}
7363 
7364 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7365 
7366 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7367 
7368 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7369 
7370 		if (IS_MF(bp))
7371 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7372 		else if (bp->dev->mtu > 4096) {
7373 			if (bp->flags & ONE_PORT_FLAG)
7374 				low = 160;
7375 			else {
7376 				val = bp->dev->mtu;
7377 				/* (24*1024 + val*4)/256 */
7378 				low = 96 + (val/64) +
7379 						((val % 64) ? 1 : 0);
7380 			}
7381 		} else
7382 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7383 		high = low + 56;	/* 14*1024/256 */
7384 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7385 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7386 	}
7387 
7388 	if (CHIP_MODE_IS_4_PORT(bp))
7389 		REG_WR(bp, (BP_PORT(bp) ?
7390 			    BRB1_REG_MAC_GUARANTIED_1 :
7391 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7392 
7393 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7394 	if (CHIP_IS_E3B0(bp)) {
7395 		if (IS_MF_AFEX(bp)) {
7396 			/* configure headers for AFEX mode */
7397 			REG_WR(bp, BP_PORT(bp) ?
7398 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7399 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7400 			REG_WR(bp, BP_PORT(bp) ?
7401 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7402 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7403 			REG_WR(bp, BP_PORT(bp) ?
7404 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7405 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7406 		} else {
7407 			/* Ovlan exists only if we are in multi-function +
7408 			 * switch-dependent mode, in switch-independent there
7409 			 * is no ovlan headers
7410 			 */
7411 			REG_WR(bp, BP_PORT(bp) ?
7412 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7413 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7414 			       (bp->path_has_ovlan ? 7 : 6));
7415 		}
7416 	}
7417 
7418 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7419 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7420 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7421 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7422 
7423 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7424 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7425 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7426 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7427 
7428 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7429 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7430 
7431 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7432 
7433 	if (CHIP_IS_E1x(bp)) {
7434 		/* configure PBF to work without PAUSE mtu 9000 */
7435 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7436 
7437 		/* update threshold */
7438 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7439 		/* update init credit */
7440 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7441 
7442 		/* probe changes */
7443 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7444 		udelay(50);
7445 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7446 	}
7447 
7448 	if (CNIC_SUPPORT(bp))
7449 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7450 
7451 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7452 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7453 
7454 	if (CHIP_IS_E1(bp)) {
7455 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7456 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7457 	}
7458 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7459 
7460 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7461 
7462 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7463 	/* init aeu_mask_attn_func_0/1:
7464 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7465 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7466 	 *             bits 4-7 are used for "per vn group attention" */
7467 	val = IS_MF(bp) ? 0xF7 : 0x7;
7468 	/* Enable DCBX attention for all but E1 */
7469 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7470 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7471 
7472 	/* SCPAD_PARITY should NOT trigger close the gates */
7473 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7474 	REG_WR(bp, reg,
7475 	       REG_RD(bp, reg) &
7476 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7477 
7478 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7479 	REG_WR(bp, reg,
7480 	       REG_RD(bp, reg) &
7481 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7482 
7483 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7484 
7485 	if (!CHIP_IS_E1x(bp)) {
7486 		/* Bit-map indicating which L2 hdrs may appear after the
7487 		 * basic Ethernet header
7488 		 */
7489 		if (IS_MF_AFEX(bp))
7490 			REG_WR(bp, BP_PORT(bp) ?
7491 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7492 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7493 		else
7494 			REG_WR(bp, BP_PORT(bp) ?
7495 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7496 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7497 			       IS_MF_SD(bp) ? 7 : 6);
7498 
7499 		if (CHIP_IS_E3(bp))
7500 			REG_WR(bp, BP_PORT(bp) ?
7501 				   NIG_REG_LLH1_MF_MODE :
7502 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7503 	}
7504 	if (!CHIP_IS_E3(bp))
7505 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7506 
7507 	if (!CHIP_IS_E1(bp)) {
7508 		/* 0x2 disable mf_ov, 0x1 enable */
7509 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7510 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7511 
7512 		if (!CHIP_IS_E1x(bp)) {
7513 			val = 0;
7514 			switch (bp->mf_mode) {
7515 			case MULTI_FUNCTION_SD:
7516 				val = 1;
7517 				break;
7518 			case MULTI_FUNCTION_SI:
7519 			case MULTI_FUNCTION_AFEX:
7520 				val = 2;
7521 				break;
7522 			}
7523 
7524 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7525 						  NIG_REG_LLH0_CLS_TYPE), val);
7526 		}
7527 		{
7528 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7529 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7530 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7531 		}
7532 	}
7533 
7534 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7535 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7536 	if (val & MISC_SPIO_SPIO5) {
7537 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7538 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7539 		val = REG_RD(bp, reg_addr);
7540 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7541 		REG_WR(bp, reg_addr, val);
7542 	}
7543 
7544 	return 0;
7545 }
7546 
7547 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7548 {
7549 	int reg;
7550 	u32 wb_write[2];
7551 
7552 	if (CHIP_IS_E1(bp))
7553 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7554 	else
7555 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7556 
7557 	wb_write[0] = ONCHIP_ADDR1(addr);
7558 	wb_write[1] = ONCHIP_ADDR2(addr);
7559 	REG_WR_DMAE(bp, reg, wb_write, 2);
7560 }
7561 
7562 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7563 {
7564 	u32 data, ctl, cnt = 100;
7565 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7566 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7567 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7568 	u32 sb_bit =  1 << (idu_sb_id%32);
7569 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7570 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7571 
7572 	/* Not supported in BC mode */
7573 	if (CHIP_INT_MODE_IS_BC(bp))
7574 		return;
7575 
7576 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7577 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7578 		IGU_REGULAR_CLEANUP_SET				|
7579 		IGU_REGULAR_BCLEANUP;
7580 
7581 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7582 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7583 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7584 
7585 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7586 			 data, igu_addr_data);
7587 	REG_WR(bp, igu_addr_data, data);
7588 	mmiowb();
7589 	barrier();
7590 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7591 			  ctl, igu_addr_ctl);
7592 	REG_WR(bp, igu_addr_ctl, ctl);
7593 	mmiowb();
7594 	barrier();
7595 
7596 	/* wait for clean up to finish */
7597 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7598 		msleep(20);
7599 
7600 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7601 		DP(NETIF_MSG_HW,
7602 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7603 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7604 	}
7605 }
7606 
7607 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7608 {
7609 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7610 }
7611 
7612 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7613 {
7614 	u32 i, base = FUNC_ILT_BASE(func);
7615 	for (i = base; i < base + ILT_PER_FUNC; i++)
7616 		bnx2x_ilt_wr(bp, i, 0);
7617 }
7618 
7619 static void bnx2x_init_searcher(struct bnx2x *bp)
7620 {
7621 	int port = BP_PORT(bp);
7622 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7623 	/* T1 hash bits value determines the T1 number of entries */
7624 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7625 }
7626 
7627 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7628 {
7629 	int rc;
7630 	struct bnx2x_func_state_params func_params = {NULL};
7631 	struct bnx2x_func_switch_update_params *switch_update_params =
7632 		&func_params.params.switch_update;
7633 
7634 	/* Prepare parameters for function state transitions */
7635 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7636 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7637 
7638 	func_params.f_obj = &bp->func_obj;
7639 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7640 
7641 	/* Function parameters */
7642 	switch_update_params->suspend = suspend;
7643 
7644 	rc = bnx2x_func_state_change(bp, &func_params);
7645 
7646 	return rc;
7647 }
7648 
7649 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7650 {
7651 	int rc, i, port = BP_PORT(bp);
7652 	int vlan_en = 0, mac_en[NUM_MACS];
7653 
7654 	/* Close input from network */
7655 	if (bp->mf_mode == SINGLE_FUNCTION) {
7656 		bnx2x_set_rx_filter(&bp->link_params, 0);
7657 	} else {
7658 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7659 				   NIG_REG_LLH0_FUNC_EN);
7660 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7661 			  NIG_REG_LLH0_FUNC_EN, 0);
7662 		for (i = 0; i < NUM_MACS; i++) {
7663 			mac_en[i] = REG_RD(bp, port ?
7664 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7665 					      4 * i) :
7666 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7667 					      4 * i));
7668 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7669 					      4 * i) :
7670 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7671 		}
7672 	}
7673 
7674 	/* Close BMC to host */
7675 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7676 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7677 
7678 	/* Suspend Tx switching to the PF. Completion of this ramrod
7679 	 * further guarantees that all the packets of that PF / child
7680 	 * VFs in BRB were processed by the Parser, so it is safe to
7681 	 * change the NIC_MODE register.
7682 	 */
7683 	rc = bnx2x_func_switch_update(bp, 1);
7684 	if (rc) {
7685 		BNX2X_ERR("Can't suspend tx-switching!\n");
7686 		return rc;
7687 	}
7688 
7689 	/* Change NIC_MODE register */
7690 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7691 
7692 	/* Open input from network */
7693 	if (bp->mf_mode == SINGLE_FUNCTION) {
7694 		bnx2x_set_rx_filter(&bp->link_params, 1);
7695 	} else {
7696 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7697 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7698 		for (i = 0; i < NUM_MACS; i++) {
7699 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7700 					      4 * i) :
7701 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7702 				  mac_en[i]);
7703 		}
7704 	}
7705 
7706 	/* Enable BMC to host */
7707 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7708 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7709 
7710 	/* Resume Tx switching to the PF */
7711 	rc = bnx2x_func_switch_update(bp, 0);
7712 	if (rc) {
7713 		BNX2X_ERR("Can't resume tx-switching!\n");
7714 		return rc;
7715 	}
7716 
7717 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7718 	return 0;
7719 }
7720 
7721 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7722 {
7723 	int rc;
7724 
7725 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7726 
7727 	if (CONFIGURE_NIC_MODE(bp)) {
7728 		/* Configure searcher as part of function hw init */
7729 		bnx2x_init_searcher(bp);
7730 
7731 		/* Reset NIC mode */
7732 		rc = bnx2x_reset_nic_mode(bp);
7733 		if (rc)
7734 			BNX2X_ERR("Can't change NIC mode!\n");
7735 		return rc;
7736 	}
7737 
7738 	return 0;
7739 }
7740 
7741 static int bnx2x_init_hw_func(struct bnx2x *bp)
7742 {
7743 	int port = BP_PORT(bp);
7744 	int func = BP_FUNC(bp);
7745 	int init_phase = PHASE_PF0 + func;
7746 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7747 	u16 cdu_ilt_start;
7748 	u32 addr, val;
7749 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7750 	int i, main_mem_width, rc;
7751 
7752 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7753 
7754 	/* FLR cleanup - hmmm */
7755 	if (!CHIP_IS_E1x(bp)) {
7756 		rc = bnx2x_pf_flr_clnup(bp);
7757 		if (rc) {
7758 			bnx2x_fw_dump(bp);
7759 			return rc;
7760 		}
7761 	}
7762 
7763 	/* set MSI reconfigure capability */
7764 	if (bp->common.int_block == INT_BLOCK_HC) {
7765 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7766 		val = REG_RD(bp, addr);
7767 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7768 		REG_WR(bp, addr, val);
7769 	}
7770 
7771 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7772 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7773 
7774 	ilt = BP_ILT(bp);
7775 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7776 
7777 	if (IS_SRIOV(bp))
7778 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7779 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7780 
7781 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7782 	 * those of the VFs, so start line should be reset
7783 	 */
7784 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7785 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7786 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7787 		ilt->lines[cdu_ilt_start + i].page_mapping =
7788 			bp->context[i].cxt_mapping;
7789 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7790 	}
7791 
7792 	bnx2x_ilt_init_op(bp, INITOP_SET);
7793 
7794 	if (!CONFIGURE_NIC_MODE(bp)) {
7795 		bnx2x_init_searcher(bp);
7796 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7797 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7798 	} else {
7799 		/* Set NIC mode */
7800 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7801 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7802 	}
7803 
7804 	if (!CHIP_IS_E1x(bp)) {
7805 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7806 
7807 		/* Turn on a single ISR mode in IGU if driver is going to use
7808 		 * INT#x or MSI
7809 		 */
7810 		if (!(bp->flags & USING_MSIX_FLAG))
7811 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7812 		/*
7813 		 * Timers workaround bug: function init part.
7814 		 * Need to wait 20msec after initializing ILT,
7815 		 * needed to make sure there are no requests in
7816 		 * one of the PXP internal queues with "old" ILT addresses
7817 		 */
7818 		msleep(20);
7819 		/*
7820 		 * Master enable - Due to WB DMAE writes performed before this
7821 		 * register is re-initialized as part of the regular function
7822 		 * init
7823 		 */
7824 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7825 		/* Enable the function in IGU */
7826 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7827 	}
7828 
7829 	bp->dmae_ready = 1;
7830 
7831 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7832 
7833 	if (!CHIP_IS_E1x(bp))
7834 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7835 
7836 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7837 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7838 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7839 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7840 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7841 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7842 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7843 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7844 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7845 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7846 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7847 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7848 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7849 
7850 	if (!CHIP_IS_E1x(bp))
7851 		REG_WR(bp, QM_REG_PF_EN, 1);
7852 
7853 	if (!CHIP_IS_E1x(bp)) {
7854 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7855 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7856 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7857 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7858 	}
7859 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7860 
7861 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7862 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7863 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7864 
7865 	bnx2x_iov_init_dq(bp);
7866 
7867 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7868 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7869 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7870 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7871 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7872 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7873 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7874 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7875 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7876 	if (!CHIP_IS_E1x(bp))
7877 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7878 
7879 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7880 
7881 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7882 
7883 	if (!CHIP_IS_E1x(bp))
7884 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7885 
7886 	if (IS_MF(bp)) {
7887 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7888 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7889 	}
7890 
7891 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7892 
7893 	/* HC init per function */
7894 	if (bp->common.int_block == INT_BLOCK_HC) {
7895 		if (CHIP_IS_E1H(bp)) {
7896 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7897 
7898 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7899 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7900 		}
7901 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7902 
7903 	} else {
7904 		int num_segs, sb_idx, prod_offset;
7905 
7906 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7907 
7908 		if (!CHIP_IS_E1x(bp)) {
7909 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7910 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7911 		}
7912 
7913 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7914 
7915 		if (!CHIP_IS_E1x(bp)) {
7916 			int dsb_idx = 0;
7917 			/**
7918 			 * Producer memory:
7919 			 * E2 mode: address 0-135 match to the mapping memory;
7920 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7921 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7922 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7923 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7924 			 * 144-147 reserved.
7925 			 *
7926 			 * E1.5 mode - In backward compatible mode;
7927 			 * for non default SB; each even line in the memory
7928 			 * holds the U producer and each odd line hold
7929 			 * the C producer. The first 128 producers are for
7930 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7931 			 * producers are for the DSB for each PF.
7932 			 * Each PF has five segments: (the order inside each
7933 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7934 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7935 			 * 144-147 attn prods;
7936 			 */
7937 			/* non-default-status-blocks */
7938 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7939 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7940 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7941 				prod_offset = (bp->igu_base_sb + sb_idx) *
7942 					num_segs;
7943 
7944 				for (i = 0; i < num_segs; i++) {
7945 					addr = IGU_REG_PROD_CONS_MEMORY +
7946 							(prod_offset + i) * 4;
7947 					REG_WR(bp, addr, 0);
7948 				}
7949 				/* send consumer update with value 0 */
7950 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7951 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7952 				bnx2x_igu_clear_sb(bp,
7953 						   bp->igu_base_sb + sb_idx);
7954 			}
7955 
7956 			/* default-status-blocks */
7957 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7958 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7959 
7960 			if (CHIP_MODE_IS_4_PORT(bp))
7961 				dsb_idx = BP_FUNC(bp);
7962 			else
7963 				dsb_idx = BP_VN(bp);
7964 
7965 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7966 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7967 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7968 
7969 			/*
7970 			 * igu prods come in chunks of E1HVN_MAX (4) -
7971 			 * does not matters what is the current chip mode
7972 			 */
7973 			for (i = 0; i < (num_segs * E1HVN_MAX);
7974 			     i += E1HVN_MAX) {
7975 				addr = IGU_REG_PROD_CONS_MEMORY +
7976 							(prod_offset + i)*4;
7977 				REG_WR(bp, addr, 0);
7978 			}
7979 			/* send consumer update with 0 */
7980 			if (CHIP_INT_MODE_IS_BC(bp)) {
7981 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7982 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7983 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7984 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7985 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7986 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7987 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7988 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7989 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7990 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7991 			} else {
7992 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7993 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7994 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7995 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7996 			}
7997 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7998 
7999 			/* !!! These should become driver const once
8000 			   rf-tool supports split-68 const */
8001 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8002 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8003 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8004 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8005 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8006 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8007 		}
8008 	}
8009 
8010 	/* Reset PCIE errors for debug */
8011 	REG_WR(bp, 0x2114, 0xffffffff);
8012 	REG_WR(bp, 0x2120, 0xffffffff);
8013 
8014 	if (CHIP_IS_E1x(bp)) {
8015 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8016 		main_mem_base = HC_REG_MAIN_MEMORY +
8017 				BP_PORT(bp) * (main_mem_size * 4);
8018 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8019 		main_mem_width = 8;
8020 
8021 		val = REG_RD(bp, main_mem_prty_clr);
8022 		if (val)
8023 			DP(NETIF_MSG_HW,
8024 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8025 			   val);
8026 
8027 		/* Clear "false" parity errors in MSI-X table */
8028 		for (i = main_mem_base;
8029 		     i < main_mem_base + main_mem_size * 4;
8030 		     i += main_mem_width) {
8031 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8032 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8033 					 i, main_mem_width / 4);
8034 		}
8035 		/* Clear HC parity attention */
8036 		REG_RD(bp, main_mem_prty_clr);
8037 	}
8038 
8039 #ifdef BNX2X_STOP_ON_ERROR
8040 	/* Enable STORMs SP logging */
8041 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8042 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8043 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8044 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8045 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8046 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8047 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8048 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8049 #endif
8050 
8051 	bnx2x_phy_probe(&bp->link_params);
8052 
8053 	return 0;
8054 }
8055 
8056 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8057 {
8058 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8059 
8060 	if (!CHIP_IS_E1x(bp))
8061 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8062 			       sizeof(struct host_hc_status_block_e2));
8063 	else
8064 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8065 			       sizeof(struct host_hc_status_block_e1x));
8066 
8067 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8068 }
8069 
8070 void bnx2x_free_mem(struct bnx2x *bp)
8071 {
8072 	int i;
8073 
8074 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8075 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8076 
8077 	if (IS_VF(bp))
8078 		return;
8079 
8080 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8081 		       sizeof(struct host_sp_status_block));
8082 
8083 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8084 		       sizeof(struct bnx2x_slowpath));
8085 
8086 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8087 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8088 			       bp->context[i].size);
8089 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8090 
8091 	BNX2X_FREE(bp->ilt->lines);
8092 
8093 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8094 
8095 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8096 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8097 
8098 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8099 
8100 	bnx2x_iov_free_mem(bp);
8101 }
8102 
8103 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8104 {
8105 	if (!CHIP_IS_E1x(bp)) {
8106 		/* size = the status block + ramrod buffers */
8107 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8108 						    sizeof(struct host_hc_status_block_e2));
8109 		if (!bp->cnic_sb.e2_sb)
8110 			goto alloc_mem_err;
8111 	} else {
8112 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8113 						     sizeof(struct host_hc_status_block_e1x));
8114 		if (!bp->cnic_sb.e1x_sb)
8115 			goto alloc_mem_err;
8116 	}
8117 
8118 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8119 		/* allocate searcher T2 table, as it wasn't allocated before */
8120 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8121 		if (!bp->t2)
8122 			goto alloc_mem_err;
8123 	}
8124 
8125 	/* write address to which L5 should insert its values */
8126 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8127 		&bp->slowpath->drv_info_to_mcp;
8128 
8129 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8130 		goto alloc_mem_err;
8131 
8132 	return 0;
8133 
8134 alloc_mem_err:
8135 	bnx2x_free_mem_cnic(bp);
8136 	BNX2X_ERR("Can't allocate memory\n");
8137 	return -ENOMEM;
8138 }
8139 
8140 int bnx2x_alloc_mem(struct bnx2x *bp)
8141 {
8142 	int i, allocated, context_size;
8143 
8144 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8145 		/* allocate searcher T2 table */
8146 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8147 		if (!bp->t2)
8148 			goto alloc_mem_err;
8149 	}
8150 
8151 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8152 					     sizeof(struct host_sp_status_block));
8153 	if (!bp->def_status_blk)
8154 		goto alloc_mem_err;
8155 
8156 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8157 				       sizeof(struct bnx2x_slowpath));
8158 	if (!bp->slowpath)
8159 		goto alloc_mem_err;
8160 
8161 	/* Allocate memory for CDU context:
8162 	 * This memory is allocated separately and not in the generic ILT
8163 	 * functions because CDU differs in few aspects:
8164 	 * 1. There are multiple entities allocating memory for context -
8165 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8166 	 * its own ILT lines.
8167 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8168 	 * for the other ILT clients), to be efficient we want to support
8169 	 * allocation of sub-page-size in the last entry.
8170 	 * 3. Context pointers are used by the driver to pass to FW / update
8171 	 * the context (for the other ILT clients the pointers are used just to
8172 	 * free the memory during unload).
8173 	 */
8174 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8175 
8176 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8177 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8178 					  (context_size - allocated));
8179 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8180 						      bp->context[i].size);
8181 		if (!bp->context[i].vcxt)
8182 			goto alloc_mem_err;
8183 		allocated += bp->context[i].size;
8184 	}
8185 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8186 				 GFP_KERNEL);
8187 	if (!bp->ilt->lines)
8188 		goto alloc_mem_err;
8189 
8190 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8191 		goto alloc_mem_err;
8192 
8193 	if (bnx2x_iov_alloc_mem(bp))
8194 		goto alloc_mem_err;
8195 
8196 	/* Slow path ring */
8197 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8198 	if (!bp->spq)
8199 		goto alloc_mem_err;
8200 
8201 	/* EQ */
8202 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8203 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8204 	if (!bp->eq_ring)
8205 		goto alloc_mem_err;
8206 
8207 	return 0;
8208 
8209 alloc_mem_err:
8210 	bnx2x_free_mem(bp);
8211 	BNX2X_ERR("Can't allocate memory\n");
8212 	return -ENOMEM;
8213 }
8214 
8215 /*
8216  * Init service functions
8217  */
8218 
8219 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8220 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8221 		      int mac_type, unsigned long *ramrod_flags)
8222 {
8223 	int rc;
8224 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8225 
8226 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8227 
8228 	/* Fill general parameters */
8229 	ramrod_param.vlan_mac_obj = obj;
8230 	ramrod_param.ramrod_flags = *ramrod_flags;
8231 
8232 	/* Fill a user request section if needed */
8233 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8234 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8235 
8236 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8237 
8238 		/* Set the command: ADD or DEL */
8239 		if (set)
8240 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8241 		else
8242 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8243 	}
8244 
8245 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8246 
8247 	if (rc == -EEXIST) {
8248 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8249 		/* do not treat adding same MAC as error */
8250 		rc = 0;
8251 	} else if (rc < 0)
8252 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8253 
8254 	return rc;
8255 }
8256 
8257 int bnx2x_del_all_macs(struct bnx2x *bp,
8258 		       struct bnx2x_vlan_mac_obj *mac_obj,
8259 		       int mac_type, bool wait_for_comp)
8260 {
8261 	int rc;
8262 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8263 
8264 	/* Wait for completion of requested */
8265 	if (wait_for_comp)
8266 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8267 
8268 	/* Set the mac type of addresses we want to clear */
8269 	__set_bit(mac_type, &vlan_mac_flags);
8270 
8271 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8272 	if (rc < 0)
8273 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8274 
8275 	return rc;
8276 }
8277 
8278 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8279 {
8280 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
8281 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8282 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8283 		   "Ignoring Zero MAC for STORAGE SD mode\n");
8284 		return 0;
8285 	}
8286 
8287 	if (IS_PF(bp)) {
8288 		unsigned long ramrod_flags = 0;
8289 
8290 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8291 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8292 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8293 					 &bp->sp_objs->mac_obj, set,
8294 					 BNX2X_ETH_MAC, &ramrod_flags);
8295 	} else { /* vf */
8296 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8297 					     bp->fp->index, true);
8298 	}
8299 }
8300 
8301 int bnx2x_setup_leading(struct bnx2x *bp)
8302 {
8303 	if (IS_PF(bp))
8304 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8305 	else /* VF */
8306 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8307 }
8308 
8309 /**
8310  * bnx2x_set_int_mode - configure interrupt mode
8311  *
8312  * @bp:		driver handle
8313  *
8314  * In case of MSI-X it will also try to enable MSI-X.
8315  */
8316 int bnx2x_set_int_mode(struct bnx2x *bp)
8317 {
8318 	int rc = 0;
8319 
8320 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8321 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8322 		return -EINVAL;
8323 	}
8324 
8325 	switch (int_mode) {
8326 	case BNX2X_INT_MODE_MSIX:
8327 		/* attempt to enable msix */
8328 		rc = bnx2x_enable_msix(bp);
8329 
8330 		/* msix attained */
8331 		if (!rc)
8332 			return 0;
8333 
8334 		/* vfs use only msix */
8335 		if (rc && IS_VF(bp))
8336 			return rc;
8337 
8338 		/* failed to enable multiple MSI-X */
8339 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8340 			       bp->num_queues,
8341 			       1 + bp->num_cnic_queues);
8342 
8343 		/* falling through... */
8344 	case BNX2X_INT_MODE_MSI:
8345 		bnx2x_enable_msi(bp);
8346 
8347 		/* falling through... */
8348 	case BNX2X_INT_MODE_INTX:
8349 		bp->num_ethernet_queues = 1;
8350 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8351 		BNX2X_DEV_INFO("set number of queues to 1\n");
8352 		break;
8353 	default:
8354 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8355 		return -EINVAL;
8356 	}
8357 	return 0;
8358 }
8359 
8360 /* must be called prior to any HW initializations */
8361 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8362 {
8363 	if (IS_SRIOV(bp))
8364 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8365 	return L2_ILT_LINES(bp);
8366 }
8367 
8368 void bnx2x_ilt_set_info(struct bnx2x *bp)
8369 {
8370 	struct ilt_client_info *ilt_client;
8371 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8372 	u16 line = 0;
8373 
8374 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8375 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8376 
8377 	/* CDU */
8378 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8379 	ilt_client->client_num = ILT_CLIENT_CDU;
8380 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8381 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8382 	ilt_client->start = line;
8383 	line += bnx2x_cid_ilt_lines(bp);
8384 
8385 	if (CNIC_SUPPORT(bp))
8386 		line += CNIC_ILT_LINES;
8387 	ilt_client->end = line - 1;
8388 
8389 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8390 	   ilt_client->start,
8391 	   ilt_client->end,
8392 	   ilt_client->page_size,
8393 	   ilt_client->flags,
8394 	   ilog2(ilt_client->page_size >> 12));
8395 
8396 	/* QM */
8397 	if (QM_INIT(bp->qm_cid_count)) {
8398 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8399 		ilt_client->client_num = ILT_CLIENT_QM;
8400 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8401 		ilt_client->flags = 0;
8402 		ilt_client->start = line;
8403 
8404 		/* 4 bytes for each cid */
8405 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8406 							 QM_ILT_PAGE_SZ);
8407 
8408 		ilt_client->end = line - 1;
8409 
8410 		DP(NETIF_MSG_IFUP,
8411 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8412 		   ilt_client->start,
8413 		   ilt_client->end,
8414 		   ilt_client->page_size,
8415 		   ilt_client->flags,
8416 		   ilog2(ilt_client->page_size >> 12));
8417 	}
8418 
8419 	if (CNIC_SUPPORT(bp)) {
8420 		/* SRC */
8421 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8422 		ilt_client->client_num = ILT_CLIENT_SRC;
8423 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8424 		ilt_client->flags = 0;
8425 		ilt_client->start = line;
8426 		line += SRC_ILT_LINES;
8427 		ilt_client->end = line - 1;
8428 
8429 		DP(NETIF_MSG_IFUP,
8430 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8431 		   ilt_client->start,
8432 		   ilt_client->end,
8433 		   ilt_client->page_size,
8434 		   ilt_client->flags,
8435 		   ilog2(ilt_client->page_size >> 12));
8436 
8437 		/* TM */
8438 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8439 		ilt_client->client_num = ILT_CLIENT_TM;
8440 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8441 		ilt_client->flags = 0;
8442 		ilt_client->start = line;
8443 		line += TM_ILT_LINES;
8444 		ilt_client->end = line - 1;
8445 
8446 		DP(NETIF_MSG_IFUP,
8447 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8448 		   ilt_client->start,
8449 		   ilt_client->end,
8450 		   ilt_client->page_size,
8451 		   ilt_client->flags,
8452 		   ilog2(ilt_client->page_size >> 12));
8453 	}
8454 
8455 	BUG_ON(line > ILT_MAX_LINES);
8456 }
8457 
8458 /**
8459  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8460  *
8461  * @bp:			driver handle
8462  * @fp:			pointer to fastpath
8463  * @init_params:	pointer to parameters structure
8464  *
8465  * parameters configured:
8466  *      - HC configuration
8467  *      - Queue's CDU context
8468  */
8469 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8470 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8471 {
8472 	u8 cos;
8473 	int cxt_index, cxt_offset;
8474 
8475 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8476 	if (!IS_FCOE_FP(fp)) {
8477 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8478 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8479 
8480 		/* If HC is supported, enable host coalescing in the transition
8481 		 * to INIT state.
8482 		 */
8483 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8484 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8485 
8486 		/* HC rate */
8487 		init_params->rx.hc_rate = bp->rx_ticks ?
8488 			(1000000 / bp->rx_ticks) : 0;
8489 		init_params->tx.hc_rate = bp->tx_ticks ?
8490 			(1000000 / bp->tx_ticks) : 0;
8491 
8492 		/* FW SB ID */
8493 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8494 			fp->fw_sb_id;
8495 
8496 		/*
8497 		 * CQ index among the SB indices: FCoE clients uses the default
8498 		 * SB, therefore it's different.
8499 		 */
8500 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8501 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8502 	}
8503 
8504 	/* set maximum number of COSs supported by this queue */
8505 	init_params->max_cos = fp->max_cos;
8506 
8507 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8508 	    fp->index, init_params->max_cos);
8509 
8510 	/* set the context pointers queue object */
8511 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8512 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8513 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8514 				ILT_PAGE_CIDS);
8515 		init_params->cxts[cos] =
8516 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8517 	}
8518 }
8519 
8520 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8521 			struct bnx2x_queue_state_params *q_params,
8522 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8523 			int tx_index, bool leading)
8524 {
8525 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8526 
8527 	/* Set the command */
8528 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8529 
8530 	/* Set tx-only QUEUE flags: don't zero statistics */
8531 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8532 
8533 	/* choose the index of the cid to send the slow path on */
8534 	tx_only_params->cid_index = tx_index;
8535 
8536 	/* Set general TX_ONLY_SETUP parameters */
8537 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8538 
8539 	/* Set Tx TX_ONLY_SETUP parameters */
8540 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8541 
8542 	DP(NETIF_MSG_IFUP,
8543 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8544 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8545 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8546 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8547 
8548 	/* send the ramrod */
8549 	return bnx2x_queue_state_change(bp, q_params);
8550 }
8551 
8552 /**
8553  * bnx2x_setup_queue - setup queue
8554  *
8555  * @bp:		driver handle
8556  * @fp:		pointer to fastpath
8557  * @leading:	is leading
8558  *
8559  * This function performs 2 steps in a Queue state machine
8560  *      actually: 1) RESET->INIT 2) INIT->SETUP
8561  */
8562 
8563 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8564 		       bool leading)
8565 {
8566 	struct bnx2x_queue_state_params q_params = {NULL};
8567 	struct bnx2x_queue_setup_params *setup_params =
8568 						&q_params.params.setup;
8569 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8570 						&q_params.params.tx_only;
8571 	int rc;
8572 	u8 tx_index;
8573 
8574 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8575 
8576 	/* reset IGU state skip FCoE L2 queue */
8577 	if (!IS_FCOE_FP(fp))
8578 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8579 			     IGU_INT_ENABLE, 0);
8580 
8581 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8582 	/* We want to wait for completion in this context */
8583 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8584 
8585 	/* Prepare the INIT parameters */
8586 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8587 
8588 	/* Set the command */
8589 	q_params.cmd = BNX2X_Q_CMD_INIT;
8590 
8591 	/* Change the state to INIT */
8592 	rc = bnx2x_queue_state_change(bp, &q_params);
8593 	if (rc) {
8594 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8595 		return rc;
8596 	}
8597 
8598 	DP(NETIF_MSG_IFUP, "init complete\n");
8599 
8600 	/* Now move the Queue to the SETUP state... */
8601 	memset(setup_params, 0, sizeof(*setup_params));
8602 
8603 	/* Set QUEUE flags */
8604 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8605 
8606 	/* Set general SETUP parameters */
8607 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8608 				FIRST_TX_COS_INDEX);
8609 
8610 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8611 			    &setup_params->rxq_params);
8612 
8613 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8614 			   FIRST_TX_COS_INDEX);
8615 
8616 	/* Set the command */
8617 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8618 
8619 	if (IS_FCOE_FP(fp))
8620 		bp->fcoe_init = true;
8621 
8622 	/* Change the state to SETUP */
8623 	rc = bnx2x_queue_state_change(bp, &q_params);
8624 	if (rc) {
8625 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8626 		return rc;
8627 	}
8628 
8629 	/* loop through the relevant tx-only indices */
8630 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8631 	      tx_index < fp->max_cos;
8632 	      tx_index++) {
8633 
8634 		/* prepare and send tx-only ramrod*/
8635 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8636 					  tx_only_params, tx_index, leading);
8637 		if (rc) {
8638 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8639 				  fp->index, tx_index);
8640 			return rc;
8641 		}
8642 	}
8643 
8644 	return rc;
8645 }
8646 
8647 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8648 {
8649 	struct bnx2x_fastpath *fp = &bp->fp[index];
8650 	struct bnx2x_fp_txdata *txdata;
8651 	struct bnx2x_queue_state_params q_params = {NULL};
8652 	int rc, tx_index;
8653 
8654 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8655 
8656 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8657 	/* We want to wait for completion in this context */
8658 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8659 
8660 	/* close tx-only connections */
8661 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8662 	     tx_index < fp->max_cos;
8663 	     tx_index++){
8664 
8665 		/* ascertain this is a normal queue*/
8666 		txdata = fp->txdata_ptr[tx_index];
8667 
8668 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8669 							txdata->txq_index);
8670 
8671 		/* send halt terminate on tx-only connection */
8672 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8673 		memset(&q_params.params.terminate, 0,
8674 		       sizeof(q_params.params.terminate));
8675 		q_params.params.terminate.cid_index = tx_index;
8676 
8677 		rc = bnx2x_queue_state_change(bp, &q_params);
8678 		if (rc)
8679 			return rc;
8680 
8681 		/* send halt terminate on tx-only connection */
8682 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8683 		memset(&q_params.params.cfc_del, 0,
8684 		       sizeof(q_params.params.cfc_del));
8685 		q_params.params.cfc_del.cid_index = tx_index;
8686 		rc = bnx2x_queue_state_change(bp, &q_params);
8687 		if (rc)
8688 			return rc;
8689 	}
8690 	/* Stop the primary connection: */
8691 	/* ...halt the connection */
8692 	q_params.cmd = BNX2X_Q_CMD_HALT;
8693 	rc = bnx2x_queue_state_change(bp, &q_params);
8694 	if (rc)
8695 		return rc;
8696 
8697 	/* ...terminate the connection */
8698 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8699 	memset(&q_params.params.terminate, 0,
8700 	       sizeof(q_params.params.terminate));
8701 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8702 	rc = bnx2x_queue_state_change(bp, &q_params);
8703 	if (rc)
8704 		return rc;
8705 	/* ...delete cfc entry */
8706 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8707 	memset(&q_params.params.cfc_del, 0,
8708 	       sizeof(q_params.params.cfc_del));
8709 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8710 	return bnx2x_queue_state_change(bp, &q_params);
8711 }
8712 
8713 static void bnx2x_reset_func(struct bnx2x *bp)
8714 {
8715 	int port = BP_PORT(bp);
8716 	int func = BP_FUNC(bp);
8717 	int i;
8718 
8719 	/* Disable the function in the FW */
8720 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8721 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8722 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8723 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8724 
8725 	/* FP SBs */
8726 	for_each_eth_queue(bp, i) {
8727 		struct bnx2x_fastpath *fp = &bp->fp[i];
8728 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8729 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8730 			   SB_DISABLED);
8731 	}
8732 
8733 	if (CNIC_LOADED(bp))
8734 		/* CNIC SB */
8735 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8736 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8737 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8738 
8739 	/* SP SB */
8740 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8741 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8742 		SB_DISABLED);
8743 
8744 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8745 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8746 		       0);
8747 
8748 	/* Configure IGU */
8749 	if (bp->common.int_block == INT_BLOCK_HC) {
8750 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8751 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8752 	} else {
8753 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8754 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8755 	}
8756 
8757 	if (CNIC_LOADED(bp)) {
8758 		/* Disable Timer scan */
8759 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8760 		/*
8761 		 * Wait for at least 10ms and up to 2 second for the timers
8762 		 * scan to complete
8763 		 */
8764 		for (i = 0; i < 200; i++) {
8765 			usleep_range(10000, 20000);
8766 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8767 				break;
8768 		}
8769 	}
8770 	/* Clear ILT */
8771 	bnx2x_clear_func_ilt(bp, func);
8772 
8773 	/* Timers workaround bug for E2: if this is vnic-3,
8774 	 * we need to set the entire ilt range for this timers.
8775 	 */
8776 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8777 		struct ilt_client_info ilt_cli;
8778 		/* use dummy TM client */
8779 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8780 		ilt_cli.start = 0;
8781 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8782 		ilt_cli.client_num = ILT_CLIENT_TM;
8783 
8784 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8785 	}
8786 
8787 	/* this assumes that reset_port() called before reset_func()*/
8788 	if (!CHIP_IS_E1x(bp))
8789 		bnx2x_pf_disable(bp);
8790 
8791 	bp->dmae_ready = 0;
8792 }
8793 
8794 static void bnx2x_reset_port(struct bnx2x *bp)
8795 {
8796 	int port = BP_PORT(bp);
8797 	u32 val;
8798 
8799 	/* Reset physical Link */
8800 	bnx2x__link_reset(bp);
8801 
8802 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8803 
8804 	/* Do not rcv packets to BRB */
8805 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8806 	/* Do not direct rcv packets that are not for MCP to the BRB */
8807 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8808 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8809 
8810 	/* Configure AEU */
8811 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8812 
8813 	msleep(100);
8814 	/* Check for BRB port occupancy */
8815 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8816 	if (val)
8817 		DP(NETIF_MSG_IFDOWN,
8818 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8819 
8820 	/* TODO: Close Doorbell port? */
8821 }
8822 
8823 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8824 {
8825 	struct bnx2x_func_state_params func_params = {NULL};
8826 
8827 	/* Prepare parameters for function state transitions */
8828 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8829 
8830 	func_params.f_obj = &bp->func_obj;
8831 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8832 
8833 	func_params.params.hw_init.load_phase = load_code;
8834 
8835 	return bnx2x_func_state_change(bp, &func_params);
8836 }
8837 
8838 static int bnx2x_func_stop(struct bnx2x *bp)
8839 {
8840 	struct bnx2x_func_state_params func_params = {NULL};
8841 	int rc;
8842 
8843 	/* Prepare parameters for function state transitions */
8844 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8845 	func_params.f_obj = &bp->func_obj;
8846 	func_params.cmd = BNX2X_F_CMD_STOP;
8847 
8848 	/*
8849 	 * Try to stop the function the 'good way'. If fails (in case
8850 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8851 	 * not in a debug mode, perform a state transaction in order to
8852 	 * enable further HW_RESET transaction.
8853 	 */
8854 	rc = bnx2x_func_state_change(bp, &func_params);
8855 	if (rc) {
8856 #ifdef BNX2X_STOP_ON_ERROR
8857 		return rc;
8858 #else
8859 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8860 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8861 		return bnx2x_func_state_change(bp, &func_params);
8862 #endif
8863 	}
8864 
8865 	return 0;
8866 }
8867 
8868 /**
8869  * bnx2x_send_unload_req - request unload mode from the MCP.
8870  *
8871  * @bp:			driver handle
8872  * @unload_mode:	requested function's unload mode
8873  *
8874  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8875  */
8876 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8877 {
8878 	u32 reset_code = 0;
8879 	int port = BP_PORT(bp);
8880 
8881 	/* Select the UNLOAD request mode */
8882 	if (unload_mode == UNLOAD_NORMAL)
8883 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8884 
8885 	else if (bp->flags & NO_WOL_FLAG)
8886 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8887 
8888 	else if (bp->wol) {
8889 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8890 		u8 *mac_addr = bp->dev->dev_addr;
8891 		struct pci_dev *pdev = bp->pdev;
8892 		u32 val;
8893 		u16 pmc;
8894 
8895 		/* The mac address is written to entries 1-4 to
8896 		 * preserve entry 0 which is used by the PMF
8897 		 */
8898 		u8 entry = (BP_VN(bp) + 1)*8;
8899 
8900 		val = (mac_addr[0] << 8) | mac_addr[1];
8901 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8902 
8903 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8904 		      (mac_addr[4] << 8) | mac_addr[5];
8905 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8906 
8907 		/* Enable the PME and clear the status */
8908 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8909 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8910 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8911 
8912 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8913 
8914 	} else
8915 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8916 
8917 	/* Send the request to the MCP */
8918 	if (!BP_NOMCP(bp))
8919 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8920 	else {
8921 		int path = BP_PATH(bp);
8922 
8923 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8924 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8925 		   bnx2x_load_count[path][2]);
8926 		bnx2x_load_count[path][0]--;
8927 		bnx2x_load_count[path][1 + port]--;
8928 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8929 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8930 		   bnx2x_load_count[path][2]);
8931 		if (bnx2x_load_count[path][0] == 0)
8932 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8933 		else if (bnx2x_load_count[path][1 + port] == 0)
8934 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8935 		else
8936 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8937 	}
8938 
8939 	return reset_code;
8940 }
8941 
8942 /**
8943  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8944  *
8945  * @bp:		driver handle
8946  * @keep_link:		true iff link should be kept up
8947  */
8948 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8949 {
8950 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8951 
8952 	/* Report UNLOAD_DONE to MCP */
8953 	if (!BP_NOMCP(bp))
8954 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8955 }
8956 
8957 static int bnx2x_func_wait_started(struct bnx2x *bp)
8958 {
8959 	int tout = 50;
8960 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8961 
8962 	if (!bp->port.pmf)
8963 		return 0;
8964 
8965 	/*
8966 	 * (assumption: No Attention from MCP at this stage)
8967 	 * PMF probably in the middle of TX disable/enable transaction
8968 	 * 1. Sync IRS for default SB
8969 	 * 2. Sync SP queue - this guarantees us that attention handling started
8970 	 * 3. Wait, that TX disable/enable transaction completes
8971 	 *
8972 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8973 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8974 	 * received completion for the transaction the state is TX_STOPPED.
8975 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8976 	 * transaction.
8977 	 */
8978 
8979 	/* make sure default SB ISR is done */
8980 	if (msix)
8981 		synchronize_irq(bp->msix_table[0].vector);
8982 	else
8983 		synchronize_irq(bp->pdev->irq);
8984 
8985 	flush_workqueue(bnx2x_wq);
8986 	flush_workqueue(bnx2x_iov_wq);
8987 
8988 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8989 				BNX2X_F_STATE_STARTED && tout--)
8990 		msleep(20);
8991 
8992 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8993 						BNX2X_F_STATE_STARTED) {
8994 #ifdef BNX2X_STOP_ON_ERROR
8995 		BNX2X_ERR("Wrong function state\n");
8996 		return -EBUSY;
8997 #else
8998 		/*
8999 		 * Failed to complete the transaction in a "good way"
9000 		 * Force both transactions with CLR bit
9001 		 */
9002 		struct bnx2x_func_state_params func_params = {NULL};
9003 
9004 		DP(NETIF_MSG_IFDOWN,
9005 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
9006 
9007 		func_params.f_obj = &bp->func_obj;
9008 		__set_bit(RAMROD_DRV_CLR_ONLY,
9009 					&func_params.ramrod_flags);
9010 
9011 		/* STARTED-->TX_ST0PPED */
9012 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9013 		bnx2x_func_state_change(bp, &func_params);
9014 
9015 		/* TX_ST0PPED-->STARTED */
9016 		func_params.cmd = BNX2X_F_CMD_TX_START;
9017 		return bnx2x_func_state_change(bp, &func_params);
9018 #endif
9019 	}
9020 
9021 	return 0;
9022 }
9023 
9024 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9025 {
9026 	int port = BP_PORT(bp);
9027 	int i, rc = 0;
9028 	u8 cos;
9029 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9030 	u32 reset_code;
9031 
9032 	/* Wait until tx fastpath tasks complete */
9033 	for_each_tx_queue(bp, i) {
9034 		struct bnx2x_fastpath *fp = &bp->fp[i];
9035 
9036 		for_each_cos_in_tx_queue(fp, cos)
9037 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9038 #ifdef BNX2X_STOP_ON_ERROR
9039 		if (rc)
9040 			return;
9041 #endif
9042 	}
9043 
9044 	/* Give HW time to discard old tx messages */
9045 	usleep_range(1000, 2000);
9046 
9047 	/* Clean all ETH MACs */
9048 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9049 				false);
9050 	if (rc < 0)
9051 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9052 
9053 	/* Clean up UC list  */
9054 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9055 				true);
9056 	if (rc < 0)
9057 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9058 			  rc);
9059 
9060 	/* Disable LLH */
9061 	if (!CHIP_IS_E1(bp))
9062 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9063 
9064 	/* Set "drop all" (stop Rx).
9065 	 * We need to take a netif_addr_lock() here in order to prevent
9066 	 * a race between the completion code and this code.
9067 	 */
9068 	netif_addr_lock_bh(bp->dev);
9069 	/* Schedule the rx_mode command */
9070 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9071 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9072 	else
9073 		bnx2x_set_storm_rx_mode(bp);
9074 
9075 	/* Cleanup multicast configuration */
9076 	rparam.mcast_obj = &bp->mcast_obj;
9077 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9078 	if (rc < 0)
9079 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9080 
9081 	netif_addr_unlock_bh(bp->dev);
9082 
9083 	bnx2x_iov_chip_cleanup(bp);
9084 
9085 	/*
9086 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9087 	 * this function should perform FUNC, PORT or COMMON HW
9088 	 * reset.
9089 	 */
9090 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9091 
9092 	/*
9093 	 * (assumption: No Attention from MCP at this stage)
9094 	 * PMF probably in the middle of TX disable/enable transaction
9095 	 */
9096 	rc = bnx2x_func_wait_started(bp);
9097 	if (rc) {
9098 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9099 #ifdef BNX2X_STOP_ON_ERROR
9100 		return;
9101 #endif
9102 	}
9103 
9104 	/* Close multi and leading connections
9105 	 * Completions for ramrods are collected in a synchronous way
9106 	 */
9107 	for_each_eth_queue(bp, i)
9108 		if (bnx2x_stop_queue(bp, i))
9109 #ifdef BNX2X_STOP_ON_ERROR
9110 			return;
9111 #else
9112 			goto unload_error;
9113 #endif
9114 
9115 	if (CNIC_LOADED(bp)) {
9116 		for_each_cnic_queue(bp, i)
9117 			if (bnx2x_stop_queue(bp, i))
9118 #ifdef BNX2X_STOP_ON_ERROR
9119 				return;
9120 #else
9121 				goto unload_error;
9122 #endif
9123 	}
9124 
9125 	/* If SP settings didn't get completed so far - something
9126 	 * very wrong has happen.
9127 	 */
9128 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9129 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9130 
9131 #ifndef BNX2X_STOP_ON_ERROR
9132 unload_error:
9133 #endif
9134 	rc = bnx2x_func_stop(bp);
9135 	if (rc) {
9136 		BNX2X_ERR("Function stop failed!\n");
9137 #ifdef BNX2X_STOP_ON_ERROR
9138 		return;
9139 #endif
9140 	}
9141 
9142 	/* Disable HW interrupts, NAPI */
9143 	bnx2x_netif_stop(bp, 1);
9144 	/* Delete all NAPI objects */
9145 	bnx2x_del_all_napi(bp);
9146 	if (CNIC_LOADED(bp))
9147 		bnx2x_del_all_napi_cnic(bp);
9148 
9149 	/* Release IRQs */
9150 	bnx2x_free_irq(bp);
9151 
9152 	/* Reset the chip */
9153 	rc = bnx2x_reset_hw(bp, reset_code);
9154 	if (rc)
9155 		BNX2X_ERR("HW_RESET failed\n");
9156 
9157 	/* Report UNLOAD_DONE to MCP */
9158 	bnx2x_send_unload_done(bp, keep_link);
9159 }
9160 
9161 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9162 {
9163 	u32 val;
9164 
9165 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9166 
9167 	if (CHIP_IS_E1(bp)) {
9168 		int port = BP_PORT(bp);
9169 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9170 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9171 
9172 		val = REG_RD(bp, addr);
9173 		val &= ~(0x300);
9174 		REG_WR(bp, addr, val);
9175 	} else {
9176 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9177 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9178 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9179 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9180 	}
9181 }
9182 
9183 /* Close gates #2, #3 and #4: */
9184 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9185 {
9186 	u32 val;
9187 
9188 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9189 	if (!CHIP_IS_E1(bp)) {
9190 		/* #4 */
9191 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9192 		/* #2 */
9193 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9194 	}
9195 
9196 	/* #3 */
9197 	if (CHIP_IS_E1x(bp)) {
9198 		/* Prevent interrupts from HC on both ports */
9199 		val = REG_RD(bp, HC_REG_CONFIG_1);
9200 		REG_WR(bp, HC_REG_CONFIG_1,
9201 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9202 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9203 
9204 		val = REG_RD(bp, HC_REG_CONFIG_0);
9205 		REG_WR(bp, HC_REG_CONFIG_0,
9206 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9207 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9208 	} else {
9209 		/* Prevent incoming interrupts in IGU */
9210 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9211 
9212 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9213 		       (!close) ?
9214 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9215 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9216 	}
9217 
9218 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9219 		close ? "closing" : "opening");
9220 	mmiowb();
9221 }
9222 
9223 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9224 
9225 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9226 {
9227 	/* Do some magic... */
9228 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9229 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9230 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9231 }
9232 
9233 /**
9234  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9235  *
9236  * @bp:		driver handle
9237  * @magic_val:	old value of the `magic' bit.
9238  */
9239 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9240 {
9241 	/* Restore the `magic' bit value... */
9242 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9243 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9244 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9245 }
9246 
9247 /**
9248  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9249  *
9250  * @bp:		driver handle
9251  * @magic_val:	old value of 'magic' bit.
9252  *
9253  * Takes care of CLP configurations.
9254  */
9255 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9256 {
9257 	u32 shmem;
9258 	u32 validity_offset;
9259 
9260 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9261 
9262 	/* Set `magic' bit in order to save MF config */
9263 	if (!CHIP_IS_E1(bp))
9264 		bnx2x_clp_reset_prep(bp, magic_val);
9265 
9266 	/* Get shmem offset */
9267 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9268 	validity_offset =
9269 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9270 
9271 	/* Clear validity map flags */
9272 	if (shmem > 0)
9273 		REG_WR(bp, shmem + validity_offset, 0);
9274 }
9275 
9276 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9277 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9278 
9279 /**
9280  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9281  *
9282  * @bp:	driver handle
9283  */
9284 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9285 {
9286 	/* special handling for emulation and FPGA,
9287 	   wait 10 times longer */
9288 	if (CHIP_REV_IS_SLOW(bp))
9289 		msleep(MCP_ONE_TIMEOUT*10);
9290 	else
9291 		msleep(MCP_ONE_TIMEOUT);
9292 }
9293 
9294 /*
9295  * initializes bp->common.shmem_base and waits for validity signature to appear
9296  */
9297 static int bnx2x_init_shmem(struct bnx2x *bp)
9298 {
9299 	int cnt = 0;
9300 	u32 val = 0;
9301 
9302 	do {
9303 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9304 		if (bp->common.shmem_base) {
9305 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9306 			if (val & SHR_MEM_VALIDITY_MB)
9307 				return 0;
9308 		}
9309 
9310 		bnx2x_mcp_wait_one(bp);
9311 
9312 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9313 
9314 	BNX2X_ERR("BAD MCP validity signature\n");
9315 
9316 	return -ENODEV;
9317 }
9318 
9319 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9320 {
9321 	int rc = bnx2x_init_shmem(bp);
9322 
9323 	/* Restore the `magic' bit value */
9324 	if (!CHIP_IS_E1(bp))
9325 		bnx2x_clp_reset_done(bp, magic_val);
9326 
9327 	return rc;
9328 }
9329 
9330 static void bnx2x_pxp_prep(struct bnx2x *bp)
9331 {
9332 	if (!CHIP_IS_E1(bp)) {
9333 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9334 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9335 		mmiowb();
9336 	}
9337 }
9338 
9339 /*
9340  * Reset the whole chip except for:
9341  *      - PCIE core
9342  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9343  *              one reset bit)
9344  *      - IGU
9345  *      - MISC (including AEU)
9346  *      - GRC
9347  *      - RBCN, RBCP
9348  */
9349 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9350 {
9351 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9352 	u32 global_bits2, stay_reset2;
9353 
9354 	/*
9355 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9356 	 * (per chip) blocks.
9357 	 */
9358 	global_bits2 =
9359 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9360 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9361 
9362 	/* Don't reset the following blocks.
9363 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9364 	 *            reset, as in 4 port device they might still be owned
9365 	 *            by the MCP (there is only one leader per path).
9366 	 */
9367 	not_reset_mask1 =
9368 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9369 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9370 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9371 
9372 	not_reset_mask2 =
9373 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9374 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9375 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9376 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9377 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9378 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9379 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9380 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9381 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9382 		MISC_REGISTERS_RESET_REG_2_PGLC |
9383 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9384 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9385 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9386 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9387 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9388 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9389 
9390 	/*
9391 	 * Keep the following blocks in reset:
9392 	 *  - all xxMACs are handled by the bnx2x_link code.
9393 	 */
9394 	stay_reset2 =
9395 		MISC_REGISTERS_RESET_REG_2_XMAC |
9396 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9397 
9398 	/* Full reset masks according to the chip */
9399 	reset_mask1 = 0xffffffff;
9400 
9401 	if (CHIP_IS_E1(bp))
9402 		reset_mask2 = 0xffff;
9403 	else if (CHIP_IS_E1H(bp))
9404 		reset_mask2 = 0x1ffff;
9405 	else if (CHIP_IS_E2(bp))
9406 		reset_mask2 = 0xfffff;
9407 	else /* CHIP_IS_E3 */
9408 		reset_mask2 = 0x3ffffff;
9409 
9410 	/* Don't reset global blocks unless we need to */
9411 	if (!global)
9412 		reset_mask2 &= ~global_bits2;
9413 
9414 	/*
9415 	 * In case of attention in the QM, we need to reset PXP
9416 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9417 	 * because otherwise QM reset would release 'close the gates' shortly
9418 	 * before resetting the PXP, then the PSWRQ would send a write
9419 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9420 	 * read the payload data from PSWWR, but PSWWR would not
9421 	 * respond. The write queue in PGLUE would stuck, dmae commands
9422 	 * would not return. Therefore it's important to reset the second
9423 	 * reset register (containing the
9424 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9425 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9426 	 * bit).
9427 	 */
9428 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9429 	       reset_mask2 & (~not_reset_mask2));
9430 
9431 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9432 	       reset_mask1 & (~not_reset_mask1));
9433 
9434 	barrier();
9435 	mmiowb();
9436 
9437 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9438 	       reset_mask2 & (~stay_reset2));
9439 
9440 	barrier();
9441 	mmiowb();
9442 
9443 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9444 	mmiowb();
9445 }
9446 
9447 /**
9448  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9449  * It should get cleared in no more than 1s.
9450  *
9451  * @bp:	driver handle
9452  *
9453  * It should get cleared in no more than 1s. Returns 0 if
9454  * pending writes bit gets cleared.
9455  */
9456 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9457 {
9458 	u32 cnt = 1000;
9459 	u32 pend_bits = 0;
9460 
9461 	do {
9462 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9463 
9464 		if (pend_bits == 0)
9465 			break;
9466 
9467 		usleep_range(1000, 2000);
9468 	} while (cnt-- > 0);
9469 
9470 	if (cnt <= 0) {
9471 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9472 			  pend_bits);
9473 		return -EBUSY;
9474 	}
9475 
9476 	return 0;
9477 }
9478 
9479 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9480 {
9481 	int cnt = 1000;
9482 	u32 val = 0;
9483 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9484 	u32 tags_63_32 = 0;
9485 
9486 	/* Empty the Tetris buffer, wait for 1s */
9487 	do {
9488 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9489 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9490 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9491 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9492 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9493 		if (CHIP_IS_E3(bp))
9494 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9495 
9496 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9497 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9498 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9499 		    (pgl_exp_rom2 == 0xffffffff) &&
9500 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9501 			break;
9502 		usleep_range(1000, 2000);
9503 	} while (cnt-- > 0);
9504 
9505 	if (cnt <= 0) {
9506 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9507 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9508 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9509 			  pgl_exp_rom2);
9510 		return -EAGAIN;
9511 	}
9512 
9513 	barrier();
9514 
9515 	/* Close gates #2, #3 and #4 */
9516 	bnx2x_set_234_gates(bp, true);
9517 
9518 	/* Poll for IGU VQs for 57712 and newer chips */
9519 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9520 		return -EAGAIN;
9521 
9522 	/* TBD: Indicate that "process kill" is in progress to MCP */
9523 
9524 	/* Clear "unprepared" bit */
9525 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9526 	barrier();
9527 
9528 	/* Make sure all is written to the chip before the reset */
9529 	mmiowb();
9530 
9531 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9532 	 * PSWHST, GRC and PSWRD Tetris buffer.
9533 	 */
9534 	usleep_range(1000, 2000);
9535 
9536 	/* Prepare to chip reset: */
9537 	/* MCP */
9538 	if (global)
9539 		bnx2x_reset_mcp_prep(bp, &val);
9540 
9541 	/* PXP */
9542 	bnx2x_pxp_prep(bp);
9543 	barrier();
9544 
9545 	/* reset the chip */
9546 	bnx2x_process_kill_chip_reset(bp, global);
9547 	barrier();
9548 
9549 	/* clear errors in PGB */
9550 	if (!CHIP_IS_E1x(bp))
9551 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9552 
9553 	/* Recover after reset: */
9554 	/* MCP */
9555 	if (global && bnx2x_reset_mcp_comp(bp, val))
9556 		return -EAGAIN;
9557 
9558 	/* TBD: Add resetting the NO_MCP mode DB here */
9559 
9560 	/* Open the gates #2, #3 and #4 */
9561 	bnx2x_set_234_gates(bp, false);
9562 
9563 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9564 	 * reset state, re-enable attentions. */
9565 
9566 	return 0;
9567 }
9568 
9569 static int bnx2x_leader_reset(struct bnx2x *bp)
9570 {
9571 	int rc = 0;
9572 	bool global = bnx2x_reset_is_global(bp);
9573 	u32 load_code;
9574 
9575 	/* if not going to reset MCP - load "fake" driver to reset HW while
9576 	 * driver is owner of the HW
9577 	 */
9578 	if (!global && !BP_NOMCP(bp)) {
9579 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9580 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9581 		if (!load_code) {
9582 			BNX2X_ERR("MCP response failure, aborting\n");
9583 			rc = -EAGAIN;
9584 			goto exit_leader_reset;
9585 		}
9586 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9587 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9588 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9589 			rc = -EAGAIN;
9590 			goto exit_leader_reset2;
9591 		}
9592 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9593 		if (!load_code) {
9594 			BNX2X_ERR("MCP response failure, aborting\n");
9595 			rc = -EAGAIN;
9596 			goto exit_leader_reset2;
9597 		}
9598 	}
9599 
9600 	/* Try to recover after the failure */
9601 	if (bnx2x_process_kill(bp, global)) {
9602 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9603 			  BP_PATH(bp));
9604 		rc = -EAGAIN;
9605 		goto exit_leader_reset2;
9606 	}
9607 
9608 	/*
9609 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9610 	 * state.
9611 	 */
9612 	bnx2x_set_reset_done(bp);
9613 	if (global)
9614 		bnx2x_clear_reset_global(bp);
9615 
9616 exit_leader_reset2:
9617 	/* unload "fake driver" if it was loaded */
9618 	if (!global && !BP_NOMCP(bp)) {
9619 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9620 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9621 	}
9622 exit_leader_reset:
9623 	bp->is_leader = 0;
9624 	bnx2x_release_leader_lock(bp);
9625 	smp_mb();
9626 	return rc;
9627 }
9628 
9629 static void bnx2x_recovery_failed(struct bnx2x *bp)
9630 {
9631 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9632 
9633 	/* Disconnect this device */
9634 	netif_device_detach(bp->dev);
9635 
9636 	/*
9637 	 * Block ifup for all function on this engine until "process kill"
9638 	 * or power cycle.
9639 	 */
9640 	bnx2x_set_reset_in_progress(bp);
9641 
9642 	/* Shut down the power */
9643 	bnx2x_set_power_state(bp, PCI_D3hot);
9644 
9645 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9646 
9647 	smp_mb();
9648 }
9649 
9650 /*
9651  * Assumption: runs under rtnl lock. This together with the fact
9652  * that it's called only from bnx2x_sp_rtnl() ensure that it
9653  * will never be called when netif_running(bp->dev) is false.
9654  */
9655 static void bnx2x_parity_recover(struct bnx2x *bp)
9656 {
9657 	bool global = false;
9658 	u32 error_recovered, error_unrecovered;
9659 	bool is_parity;
9660 
9661 	DP(NETIF_MSG_HW, "Handling parity\n");
9662 	while (1) {
9663 		switch (bp->recovery_state) {
9664 		case BNX2X_RECOVERY_INIT:
9665 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9666 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9667 			WARN_ON(!is_parity);
9668 
9669 			/* Try to get a LEADER_LOCK HW lock */
9670 			if (bnx2x_trylock_leader_lock(bp)) {
9671 				bnx2x_set_reset_in_progress(bp);
9672 				/*
9673 				 * Check if there is a global attention and if
9674 				 * there was a global attention, set the global
9675 				 * reset bit.
9676 				 */
9677 
9678 				if (global)
9679 					bnx2x_set_reset_global(bp);
9680 
9681 				bp->is_leader = 1;
9682 			}
9683 
9684 			/* Stop the driver */
9685 			/* If interface has been removed - break */
9686 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9687 				return;
9688 
9689 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9690 
9691 			/* Ensure "is_leader", MCP command sequence and
9692 			 * "recovery_state" update values are seen on other
9693 			 * CPUs.
9694 			 */
9695 			smp_mb();
9696 			break;
9697 
9698 		case BNX2X_RECOVERY_WAIT:
9699 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9700 			if (bp->is_leader) {
9701 				int other_engine = BP_PATH(bp) ? 0 : 1;
9702 				bool other_load_status =
9703 					bnx2x_get_load_status(bp, other_engine);
9704 				bool load_status =
9705 					bnx2x_get_load_status(bp, BP_PATH(bp));
9706 				global = bnx2x_reset_is_global(bp);
9707 
9708 				/*
9709 				 * In case of a parity in a global block, let
9710 				 * the first leader that performs a
9711 				 * leader_reset() reset the global blocks in
9712 				 * order to clear global attentions. Otherwise
9713 				 * the gates will remain closed for that
9714 				 * engine.
9715 				 */
9716 				if (load_status ||
9717 				    (global && other_load_status)) {
9718 					/* Wait until all other functions get
9719 					 * down.
9720 					 */
9721 					schedule_delayed_work(&bp->sp_rtnl_task,
9722 								HZ/10);
9723 					return;
9724 				} else {
9725 					/* If all other functions got down -
9726 					 * try to bring the chip back to
9727 					 * normal. In any case it's an exit
9728 					 * point for a leader.
9729 					 */
9730 					if (bnx2x_leader_reset(bp)) {
9731 						bnx2x_recovery_failed(bp);
9732 						return;
9733 					}
9734 
9735 					/* If we are here, means that the
9736 					 * leader has succeeded and doesn't
9737 					 * want to be a leader any more. Try
9738 					 * to continue as a none-leader.
9739 					 */
9740 					break;
9741 				}
9742 			} else { /* non-leader */
9743 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9744 					/* Try to get a LEADER_LOCK HW lock as
9745 					 * long as a former leader may have
9746 					 * been unloaded by the user or
9747 					 * released a leadership by another
9748 					 * reason.
9749 					 */
9750 					if (bnx2x_trylock_leader_lock(bp)) {
9751 						/* I'm a leader now! Restart a
9752 						 * switch case.
9753 						 */
9754 						bp->is_leader = 1;
9755 						break;
9756 					}
9757 
9758 					schedule_delayed_work(&bp->sp_rtnl_task,
9759 								HZ/10);
9760 					return;
9761 
9762 				} else {
9763 					/*
9764 					 * If there was a global attention, wait
9765 					 * for it to be cleared.
9766 					 */
9767 					if (bnx2x_reset_is_global(bp)) {
9768 						schedule_delayed_work(
9769 							&bp->sp_rtnl_task,
9770 							HZ/10);
9771 						return;
9772 					}
9773 
9774 					error_recovered =
9775 					  bp->eth_stats.recoverable_error;
9776 					error_unrecovered =
9777 					  bp->eth_stats.unrecoverable_error;
9778 					bp->recovery_state =
9779 						BNX2X_RECOVERY_NIC_LOADING;
9780 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9781 						error_unrecovered++;
9782 						netdev_err(bp->dev,
9783 							   "Recovery failed. Power cycle needed\n");
9784 						/* Disconnect this device */
9785 						netif_device_detach(bp->dev);
9786 						/* Shut down the power */
9787 						bnx2x_set_power_state(
9788 							bp, PCI_D3hot);
9789 						smp_mb();
9790 					} else {
9791 						bp->recovery_state =
9792 							BNX2X_RECOVERY_DONE;
9793 						error_recovered++;
9794 						smp_mb();
9795 					}
9796 					bp->eth_stats.recoverable_error =
9797 						error_recovered;
9798 					bp->eth_stats.unrecoverable_error =
9799 						error_unrecovered;
9800 
9801 					return;
9802 				}
9803 			}
9804 		default:
9805 			return;
9806 		}
9807 	}
9808 }
9809 
9810 static int bnx2x_close(struct net_device *dev);
9811 
9812 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9813  * scheduled on a general queue in order to prevent a dead lock.
9814  */
9815 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9816 {
9817 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9818 
9819 	rtnl_lock();
9820 
9821 	if (!netif_running(bp->dev)) {
9822 		rtnl_unlock();
9823 		return;
9824 	}
9825 
9826 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9827 #ifdef BNX2X_STOP_ON_ERROR
9828 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9829 			  "you will need to reboot when done\n");
9830 		goto sp_rtnl_not_reset;
9831 #endif
9832 		/*
9833 		 * Clear all pending SP commands as we are going to reset the
9834 		 * function anyway.
9835 		 */
9836 		bp->sp_rtnl_state = 0;
9837 		smp_mb();
9838 
9839 		bnx2x_parity_recover(bp);
9840 
9841 		rtnl_unlock();
9842 		return;
9843 	}
9844 
9845 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9846 #ifdef BNX2X_STOP_ON_ERROR
9847 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9848 			  "you will need to reboot when done\n");
9849 		goto sp_rtnl_not_reset;
9850 #endif
9851 
9852 		/*
9853 		 * Clear all pending SP commands as we are going to reset the
9854 		 * function anyway.
9855 		 */
9856 		bp->sp_rtnl_state = 0;
9857 		smp_mb();
9858 
9859 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9860 		bnx2x_nic_load(bp, LOAD_NORMAL);
9861 
9862 		rtnl_unlock();
9863 		return;
9864 	}
9865 #ifdef BNX2X_STOP_ON_ERROR
9866 sp_rtnl_not_reset:
9867 #endif
9868 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9869 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9870 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9871 		bnx2x_after_function_update(bp);
9872 	/*
9873 	 * in case of fan failure we need to reset id if the "stop on error"
9874 	 * debug flag is set, since we trying to prevent permanent overheating
9875 	 * damage
9876 	 */
9877 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9878 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9879 		netif_device_detach(bp->dev);
9880 		bnx2x_close(bp->dev);
9881 		rtnl_unlock();
9882 		return;
9883 	}
9884 
9885 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9886 		DP(BNX2X_MSG_SP,
9887 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
9888 		bnx2x_vfpf_set_mcast(bp->dev);
9889 	}
9890 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9891 			       &bp->sp_rtnl_state)){
9892 		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9893 			bnx2x_tx_disable(bp);
9894 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9895 		}
9896 	}
9897 
9898 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9899 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9900 		bnx2x_set_rx_mode_inner(bp);
9901 	}
9902 
9903 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9904 			       &bp->sp_rtnl_state))
9905 		bnx2x_pf_set_vfs_vlan(bp);
9906 
9907 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
9908 		bnx2x_dcbx_stop_hw_tx(bp);
9909 		bnx2x_dcbx_resume_hw_tx(bp);
9910 	}
9911 
9912 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
9913 			       &bp->sp_rtnl_state))
9914 		bnx2x_update_mng_version(bp);
9915 
9916 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
9917 	 * can be called from other contexts as well)
9918 	 */
9919 	rtnl_unlock();
9920 
9921 	/* enable SR-IOV if applicable */
9922 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9923 					       &bp->sp_rtnl_state)) {
9924 		bnx2x_disable_sriov(bp);
9925 		bnx2x_enable_sriov(bp);
9926 	}
9927 }
9928 
9929 static void bnx2x_period_task(struct work_struct *work)
9930 {
9931 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9932 
9933 	if (!netif_running(bp->dev))
9934 		goto period_task_exit;
9935 
9936 	if (CHIP_REV_IS_SLOW(bp)) {
9937 		BNX2X_ERR("period task called on emulation, ignoring\n");
9938 		goto period_task_exit;
9939 	}
9940 
9941 	bnx2x_acquire_phy_lock(bp);
9942 	/*
9943 	 * The barrier is needed to ensure the ordering between the writing to
9944 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9945 	 * the reading here.
9946 	 */
9947 	smp_mb();
9948 	if (bp->port.pmf) {
9949 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9950 
9951 		/* Re-queue task in 1 sec */
9952 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9953 	}
9954 
9955 	bnx2x_release_phy_lock(bp);
9956 period_task_exit:
9957 	return;
9958 }
9959 
9960 /*
9961  * Init service functions
9962  */
9963 
9964 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9965 {
9966 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9967 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9968 	return base + (BP_ABS_FUNC(bp)) * stride;
9969 }
9970 
9971 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9972 					struct bnx2x_mac_vals *vals)
9973 {
9974 	u32 val, base_addr, offset, mask, reset_reg;
9975 	bool mac_stopped = false;
9976 	u8 port = BP_PORT(bp);
9977 
9978 	/* reset addresses as they also mark which values were changed */
9979 	vals->bmac_addr = 0;
9980 	vals->umac_addr = 0;
9981 	vals->xmac_addr = 0;
9982 	vals->emac_addr = 0;
9983 
9984 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9985 
9986 	if (!CHIP_IS_E3(bp)) {
9987 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9988 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9989 		if ((mask & reset_reg) && val) {
9990 			u32 wb_data[2];
9991 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9992 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9993 						: NIG_REG_INGRESS_BMAC0_MEM;
9994 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9995 						: BIGMAC_REGISTER_BMAC_CONTROL;
9996 
9997 			/*
9998 			 * use rd/wr since we cannot use dmae. This is safe
9999 			 * since MCP won't access the bus due to the request
10000 			 * to unload, and no function on the path can be
10001 			 * loaded at this time.
10002 			 */
10003 			wb_data[0] = REG_RD(bp, base_addr + offset);
10004 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10005 			vals->bmac_addr = base_addr + offset;
10006 			vals->bmac_val[0] = wb_data[0];
10007 			vals->bmac_val[1] = wb_data[1];
10008 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10009 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10010 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10011 		}
10012 		BNX2X_DEV_INFO("Disable emac Rx\n");
10013 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10014 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10015 		REG_WR(bp, vals->emac_addr, 0);
10016 		mac_stopped = true;
10017 	} else {
10018 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10019 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10020 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10021 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10022 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10023 			       val & ~(1 << 1));
10024 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10025 			       val | (1 << 1));
10026 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10027 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10028 			REG_WR(bp, vals->xmac_addr, 0);
10029 			mac_stopped = true;
10030 		}
10031 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10032 		if (mask & reset_reg) {
10033 			BNX2X_DEV_INFO("Disable umac Rx\n");
10034 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10035 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
10036 			vals->umac_val = REG_RD(bp, vals->umac_addr);
10037 			REG_WR(bp, vals->umac_addr, 0);
10038 			mac_stopped = true;
10039 		}
10040 	}
10041 
10042 	if (mac_stopped)
10043 		msleep(20);
10044 }
10045 
10046 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10047 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10048 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10049 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10050 
10051 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10052 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10053 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10054 #define BNX2X_PREV_UNDI_MF_PORT(p)	(0x1a150c + ((p) << 4))
10055 #define BNX2X_PREV_UNDI_MF_FUNC(f)	(0x1a184c + ((f) << 4))
10056 static bool bnx2x_prev_unload_undi_fw_supports_mf(struct bnx2x *bp)
10057 {
10058 	u8 major, minor, version;
10059 	u32 fw;
10060 
10061 	/* Must check that FW is loaded */
10062 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10063 	     MISC_REGISTERS_RESET_REG_1_RST_XSEM)) {
10064 		BNX2X_DEV_INFO("XSEM is reset - UNDI MF FW is not loaded\n");
10065 		return false;
10066 	}
10067 
10068 	/* Read Currently loaded FW version */
10069 	fw = REG_RD(bp, XSEM_REG_PRAM);
10070 	major = fw & 0xff;
10071 	minor = (fw >> 0x8) & 0xff;
10072 	version = (fw >> 0x10) & 0xff;
10073 	BNX2X_DEV_INFO("Loaded FW: 0x%08x: Major 0x%02x Minor 0x%02x Version 0x%02x\n",
10074 		       fw, major, minor, version);
10075 
10076 	if (major > BCM_5710_UNDI_FW_MF_MAJOR)
10077 		return true;
10078 
10079 	if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
10080 	    (minor > BCM_5710_UNDI_FW_MF_MINOR))
10081 		return true;
10082 
10083 	if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
10084 	    (minor == BCM_5710_UNDI_FW_MF_MINOR) &&
10085 	    (version >= BCM_5710_UNDI_FW_MF_VERS))
10086 		return true;
10087 
10088 	return false;
10089 }
10090 
10091 static void bnx2x_prev_unload_undi_mf(struct bnx2x *bp)
10092 {
10093 	int i;
10094 
10095 	/* Due to legacy (FW) code, the first function on each engine has a
10096 	 * different offset macro from the rest of the functions.
10097 	 * Setting this for all 8 functions is harmless regardless of whether
10098 	 * this is actually a multi-function device.
10099 	 */
10100 	for (i = 0; i < 2; i++)
10101 		REG_WR(bp, BNX2X_PREV_UNDI_MF_PORT(i), 1);
10102 
10103 	for (i = 2; i < 8; i++)
10104 		REG_WR(bp, BNX2X_PREV_UNDI_MF_FUNC(i - 2), 1);
10105 
10106 	BNX2X_DEV_INFO("UNDI FW (MF) set to discard\n");
10107 }
10108 
10109 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
10110 {
10111 	u16 rcq, bd;
10112 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
10113 
10114 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10115 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10116 
10117 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10118 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
10119 
10120 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10121 		       port, bd, rcq);
10122 }
10123 
10124 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10125 {
10126 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10127 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10128 	if (!rc) {
10129 		BNX2X_ERR("MCP response failure, aborting\n");
10130 		return -EBUSY;
10131 	}
10132 
10133 	return 0;
10134 }
10135 
10136 static struct bnx2x_prev_path_list *
10137 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10138 {
10139 	struct bnx2x_prev_path_list *tmp_list;
10140 
10141 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10142 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10143 		    bp->pdev->bus->number == tmp_list->bus &&
10144 		    BP_PATH(bp) == tmp_list->path)
10145 			return tmp_list;
10146 
10147 	return NULL;
10148 }
10149 
10150 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10151 {
10152 	struct bnx2x_prev_path_list *tmp_list;
10153 	int rc;
10154 
10155 	rc = down_interruptible(&bnx2x_prev_sem);
10156 	if (rc) {
10157 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10158 		return rc;
10159 	}
10160 
10161 	tmp_list = bnx2x_prev_path_get_entry(bp);
10162 	if (tmp_list) {
10163 		tmp_list->aer = 1;
10164 		rc = 0;
10165 	} else {
10166 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10167 			  BP_PATH(bp));
10168 	}
10169 
10170 	up(&bnx2x_prev_sem);
10171 
10172 	return rc;
10173 }
10174 
10175 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10176 {
10177 	struct bnx2x_prev_path_list *tmp_list;
10178 	bool rc = false;
10179 
10180 	if (down_trylock(&bnx2x_prev_sem))
10181 		return false;
10182 
10183 	tmp_list = bnx2x_prev_path_get_entry(bp);
10184 	if (tmp_list) {
10185 		if (tmp_list->aer) {
10186 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10187 			   BP_PATH(bp));
10188 		} else {
10189 			rc = true;
10190 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10191 				       BP_PATH(bp));
10192 		}
10193 	}
10194 
10195 	up(&bnx2x_prev_sem);
10196 
10197 	return rc;
10198 }
10199 
10200 bool bnx2x_port_after_undi(struct bnx2x *bp)
10201 {
10202 	struct bnx2x_prev_path_list *entry;
10203 	bool val;
10204 
10205 	down(&bnx2x_prev_sem);
10206 
10207 	entry = bnx2x_prev_path_get_entry(bp);
10208 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10209 
10210 	up(&bnx2x_prev_sem);
10211 
10212 	return val;
10213 }
10214 
10215 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10216 {
10217 	struct bnx2x_prev_path_list *tmp_list;
10218 	int rc;
10219 
10220 	rc = down_interruptible(&bnx2x_prev_sem);
10221 	if (rc) {
10222 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10223 		return rc;
10224 	}
10225 
10226 	/* Check whether the entry for this path already exists */
10227 	tmp_list = bnx2x_prev_path_get_entry(bp);
10228 	if (tmp_list) {
10229 		if (!tmp_list->aer) {
10230 			BNX2X_ERR("Re-Marking the path.\n");
10231 		} else {
10232 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10233 			   BP_PATH(bp));
10234 			tmp_list->aer = 0;
10235 		}
10236 		up(&bnx2x_prev_sem);
10237 		return 0;
10238 	}
10239 	up(&bnx2x_prev_sem);
10240 
10241 	/* Create an entry for this path and add it */
10242 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10243 	if (!tmp_list) {
10244 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10245 		return -ENOMEM;
10246 	}
10247 
10248 	tmp_list->bus = bp->pdev->bus->number;
10249 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10250 	tmp_list->path = BP_PATH(bp);
10251 	tmp_list->aer = 0;
10252 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10253 
10254 	rc = down_interruptible(&bnx2x_prev_sem);
10255 	if (rc) {
10256 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10257 		kfree(tmp_list);
10258 	} else {
10259 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10260 		   BP_PATH(bp));
10261 		list_add(&tmp_list->list, &bnx2x_prev_list);
10262 		up(&bnx2x_prev_sem);
10263 	}
10264 
10265 	return rc;
10266 }
10267 
10268 static int bnx2x_do_flr(struct bnx2x *bp)
10269 {
10270 	struct pci_dev *dev = bp->pdev;
10271 
10272 	if (CHIP_IS_E1x(bp)) {
10273 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10274 		return -EINVAL;
10275 	}
10276 
10277 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10278 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10279 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10280 			  bp->common.bc_ver);
10281 		return -EINVAL;
10282 	}
10283 
10284 	if (!pci_wait_for_pending_transaction(dev))
10285 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10286 
10287 	BNX2X_DEV_INFO("Initiating FLR\n");
10288 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10289 
10290 	return 0;
10291 }
10292 
10293 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10294 {
10295 	int rc;
10296 
10297 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10298 
10299 	/* Test if previous unload process was already finished for this path */
10300 	if (bnx2x_prev_is_path_marked(bp))
10301 		return bnx2x_prev_mcp_done(bp);
10302 
10303 	BNX2X_DEV_INFO("Path is unmarked\n");
10304 
10305 	/* If function has FLR capabilities, and existing FW version matches
10306 	 * the one required, then FLR will be sufficient to clean any residue
10307 	 * left by previous driver
10308 	 */
10309 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10310 
10311 	if (!rc) {
10312 		/* fw version is good */
10313 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10314 		rc = bnx2x_do_flr(bp);
10315 	}
10316 
10317 	if (!rc) {
10318 		/* FLR was performed */
10319 		BNX2X_DEV_INFO("FLR successful\n");
10320 		return 0;
10321 	}
10322 
10323 	BNX2X_DEV_INFO("Could not FLR\n");
10324 
10325 	/* Close the MCP request, return failure*/
10326 	rc = bnx2x_prev_mcp_done(bp);
10327 	if (!rc)
10328 		rc = BNX2X_PREV_WAIT_NEEDED;
10329 
10330 	return rc;
10331 }
10332 
10333 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10334 {
10335 	u32 reset_reg, tmp_reg = 0, rc;
10336 	bool prev_undi = false;
10337 	struct bnx2x_mac_vals mac_vals;
10338 
10339 	/* It is possible a previous function received 'common' answer,
10340 	 * but hasn't loaded yet, therefore creating a scenario of
10341 	 * multiple functions receiving 'common' on the same path.
10342 	 */
10343 	BNX2X_DEV_INFO("Common unload Flow\n");
10344 
10345 	memset(&mac_vals, 0, sizeof(mac_vals));
10346 
10347 	if (bnx2x_prev_is_path_marked(bp))
10348 		return bnx2x_prev_mcp_done(bp);
10349 
10350 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10351 
10352 	/* Reset should be performed after BRB is emptied */
10353 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10354 		u32 timer_count = 1000;
10355 
10356 		/* Close the MAC Rx to prevent BRB from filling up */
10357 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10358 
10359 		/* close LLH filters towards the BRB */
10360 		bnx2x_set_rx_filter(&bp->link_params, 0);
10361 
10362 		/* Check if the UNDI driver was previously loaded
10363 		 * UNDI driver initializes CID offset for normal bell to 0x7
10364 		 */
10365 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10366 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10367 			if (tmp_reg == 0x7) {
10368 				BNX2X_DEV_INFO("UNDI previously loaded\n");
10369 				prev_undi = true;
10370 				/* clear the UNDI indication */
10371 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10372 				/* clear possible idle check errors */
10373 				REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10374 			}
10375 		}
10376 		if (!CHIP_IS_E1x(bp))
10377 			/* block FW from writing to host */
10378 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10379 
10380 		/* wait until BRB is empty */
10381 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10382 		while (timer_count) {
10383 			u32 prev_brb = tmp_reg;
10384 
10385 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10386 			if (!tmp_reg)
10387 				break;
10388 
10389 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10390 
10391 			/* reset timer as long as BRB actually gets emptied */
10392 			if (prev_brb > tmp_reg)
10393 				timer_count = 1000;
10394 			else
10395 				timer_count--;
10396 
10397 			/* New UNDI FW supports MF and contains better
10398 			 * cleaning methods - might be redundant but harmless.
10399 			 */
10400 			if (bnx2x_prev_unload_undi_fw_supports_mf(bp)) {
10401 				bnx2x_prev_unload_undi_mf(bp);
10402 			} else if (prev_undi) {
10403 				/* If UNDI resides in memory,
10404 				 * manually increment it
10405 				 */
10406 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10407 			}
10408 			udelay(10);
10409 		}
10410 
10411 		if (!timer_count)
10412 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10413 	}
10414 
10415 	/* No packets are in the pipeline, path is ready for reset */
10416 	bnx2x_reset_common(bp);
10417 
10418 	if (mac_vals.xmac_addr)
10419 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10420 	if (mac_vals.umac_addr)
10421 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10422 	if (mac_vals.emac_addr)
10423 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10424 	if (mac_vals.bmac_addr) {
10425 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10426 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10427 	}
10428 
10429 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10430 	if (rc) {
10431 		bnx2x_prev_mcp_done(bp);
10432 		return rc;
10433 	}
10434 
10435 	return bnx2x_prev_mcp_done(bp);
10436 }
10437 
10438 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10439  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10440  * the addresses of the transaction, resulting in was-error bit set in the pci
10441  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10442  * to clear the interrupt which detected this from the pglueb and the was done
10443  * bit
10444  */
10445 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10446 {
10447 	if (!CHIP_IS_E1x(bp)) {
10448 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10449 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10450 			DP(BNX2X_MSG_SP,
10451 			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10452 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10453 			       1 << BP_FUNC(bp));
10454 		}
10455 	}
10456 }
10457 
10458 static int bnx2x_prev_unload(struct bnx2x *bp)
10459 {
10460 	int time_counter = 10;
10461 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10462 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10463 
10464 	/* clear hw from errors which may have resulted from an interrupted
10465 	 * dmae transaction.
10466 	 */
10467 	bnx2x_prev_interrupted_dmae(bp);
10468 
10469 	/* Release previously held locks */
10470 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10471 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10472 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10473 
10474 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10475 	if (hw_lock_val) {
10476 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10477 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10478 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10479 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10480 		}
10481 
10482 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10483 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10484 	} else
10485 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10486 
10487 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10488 		BNX2X_DEV_INFO("Release previously held alr\n");
10489 		bnx2x_release_alr(bp);
10490 	}
10491 
10492 	do {
10493 		int aer = 0;
10494 		/* Lock MCP using an unload request */
10495 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10496 		if (!fw) {
10497 			BNX2X_ERR("MCP response failure, aborting\n");
10498 			rc = -EBUSY;
10499 			break;
10500 		}
10501 
10502 		rc = down_interruptible(&bnx2x_prev_sem);
10503 		if (rc) {
10504 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10505 				  rc);
10506 		} else {
10507 			/* If Path is marked by EEH, ignore unload status */
10508 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10509 				 bnx2x_prev_path_get_entry(bp)->aer);
10510 			up(&bnx2x_prev_sem);
10511 		}
10512 
10513 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10514 			rc = bnx2x_prev_unload_common(bp);
10515 			break;
10516 		}
10517 
10518 		/* non-common reply from MCP might require looping */
10519 		rc = bnx2x_prev_unload_uncommon(bp);
10520 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10521 			break;
10522 
10523 		msleep(20);
10524 	} while (--time_counter);
10525 
10526 	if (!time_counter || rc) {
10527 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10528 		rc = -EPROBE_DEFER;
10529 	}
10530 
10531 	/* Mark function if its port was used to boot from SAN */
10532 	if (bnx2x_port_after_undi(bp))
10533 		bp->link_params.feature_config_flags |=
10534 			FEATURE_CONFIG_BOOT_FROM_SAN;
10535 
10536 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10537 
10538 	return rc;
10539 }
10540 
10541 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10542 {
10543 	u32 val, val2, val3, val4, id, boot_mode;
10544 	u16 pmc;
10545 
10546 	/* Get the chip revision id and number. */
10547 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10548 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10549 	id = ((val & 0xffff) << 16);
10550 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10551 	id |= ((val & 0xf) << 12);
10552 
10553 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10554 	 * the configuration space (so we need to reg_rd)
10555 	 */
10556 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10557 	id |= (((val >> 24) & 0xf) << 4);
10558 	val = REG_RD(bp, MISC_REG_BOND_ID);
10559 	id |= (val & 0xf);
10560 	bp->common.chip_id = id;
10561 
10562 	/* force 57811 according to MISC register */
10563 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10564 		if (CHIP_IS_57810(bp))
10565 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10566 				(bp->common.chip_id & 0x0000FFFF);
10567 		else if (CHIP_IS_57810_MF(bp))
10568 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10569 				(bp->common.chip_id & 0x0000FFFF);
10570 		bp->common.chip_id |= 0x1;
10571 	}
10572 
10573 	/* Set doorbell size */
10574 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10575 
10576 	if (!CHIP_IS_E1x(bp)) {
10577 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10578 		if ((val & 1) == 0)
10579 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10580 		else
10581 			val = (val >> 1) & 1;
10582 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10583 						       "2_PORT_MODE");
10584 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10585 						 CHIP_2_PORT_MODE;
10586 
10587 		if (CHIP_MODE_IS_4_PORT(bp))
10588 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10589 		else
10590 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10591 	} else {
10592 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10593 		bp->pfid = bp->pf_num;			/* 0..7 */
10594 	}
10595 
10596 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10597 
10598 	bp->link_params.chip_id = bp->common.chip_id;
10599 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10600 
10601 	val = (REG_RD(bp, 0x2874) & 0x55);
10602 	if ((bp->common.chip_id & 0x1) ||
10603 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10604 		bp->flags |= ONE_PORT_FLAG;
10605 		BNX2X_DEV_INFO("single port device\n");
10606 	}
10607 
10608 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10609 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10610 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10611 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10612 		       bp->common.flash_size, bp->common.flash_size);
10613 
10614 	bnx2x_init_shmem(bp);
10615 
10616 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10617 					MISC_REG_GENERIC_CR_1 :
10618 					MISC_REG_GENERIC_CR_0));
10619 
10620 	bp->link_params.shmem_base = bp->common.shmem_base;
10621 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10622 	if (SHMEM2_RD(bp, size) >
10623 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10624 		bp->link_params.lfa_base =
10625 		REG_RD(bp, bp->common.shmem2_base +
10626 		       (u32)offsetof(struct shmem2_region,
10627 				     lfa_host_addr[BP_PORT(bp)]));
10628 	else
10629 		bp->link_params.lfa_base = 0;
10630 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10631 		       bp->common.shmem_base, bp->common.shmem2_base);
10632 
10633 	if (!bp->common.shmem_base) {
10634 		BNX2X_DEV_INFO("MCP not active\n");
10635 		bp->flags |= NO_MCP_FLAG;
10636 		return;
10637 	}
10638 
10639 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10640 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10641 
10642 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10643 					SHARED_HW_CFG_LED_MODE_MASK) >>
10644 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10645 
10646 	bp->link_params.feature_config_flags = 0;
10647 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10648 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10649 		bp->link_params.feature_config_flags |=
10650 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10651 	else
10652 		bp->link_params.feature_config_flags &=
10653 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10654 
10655 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10656 	bp->common.bc_ver = val;
10657 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10658 	if (val < BNX2X_BC_VER) {
10659 		/* for now only warn
10660 		 * later we might need to enforce this */
10661 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10662 			  BNX2X_BC_VER, val);
10663 	}
10664 	bp->link_params.feature_config_flags |=
10665 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10666 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10667 
10668 	bp->link_params.feature_config_flags |=
10669 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10670 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10671 	bp->link_params.feature_config_flags |=
10672 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10673 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10674 	bp->link_params.feature_config_flags |=
10675 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10676 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10677 
10678 	bp->link_params.feature_config_flags |=
10679 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10680 		FEATURE_CONFIG_MT_SUPPORT : 0;
10681 
10682 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10683 			BC_SUPPORTS_PFC_STATS : 0;
10684 
10685 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10686 			BC_SUPPORTS_FCOE_FEATURES : 0;
10687 
10688 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10689 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10690 
10691 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10692 			BC_SUPPORTS_RMMOD_CMD : 0;
10693 
10694 	boot_mode = SHMEM_RD(bp,
10695 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10696 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10697 	switch (boot_mode) {
10698 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10699 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10700 		break;
10701 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10702 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10703 		break;
10704 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10705 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10706 		break;
10707 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10708 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10709 		break;
10710 	}
10711 
10712 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10713 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10714 
10715 	BNX2X_DEV_INFO("%sWoL capable\n",
10716 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10717 
10718 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10719 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10720 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10721 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10722 
10723 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10724 		 val, val2, val3, val4);
10725 }
10726 
10727 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10728 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10729 
10730 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10731 {
10732 	int pfid = BP_FUNC(bp);
10733 	int igu_sb_id;
10734 	u32 val;
10735 	u8 fid, igu_sb_cnt = 0;
10736 
10737 	bp->igu_base_sb = 0xff;
10738 	if (CHIP_INT_MODE_IS_BC(bp)) {
10739 		int vn = BP_VN(bp);
10740 		igu_sb_cnt = bp->igu_sb_cnt;
10741 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10742 			FP_SB_MAX_E1x;
10743 
10744 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10745 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10746 
10747 		return 0;
10748 	}
10749 
10750 	/* IGU in normal mode - read CAM */
10751 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10752 	     igu_sb_id++) {
10753 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10754 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10755 			continue;
10756 		fid = IGU_FID(val);
10757 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10758 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10759 				continue;
10760 			if (IGU_VEC(val) == 0)
10761 				/* default status block */
10762 				bp->igu_dsb_id = igu_sb_id;
10763 			else {
10764 				if (bp->igu_base_sb == 0xff)
10765 					bp->igu_base_sb = igu_sb_id;
10766 				igu_sb_cnt++;
10767 			}
10768 		}
10769 	}
10770 
10771 #ifdef CONFIG_PCI_MSI
10772 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10773 	 * optional that number of CAM entries will not be equal to the value
10774 	 * advertised in PCI.
10775 	 * Driver should use the minimal value of both as the actual status
10776 	 * block count
10777 	 */
10778 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10779 #endif
10780 
10781 	if (igu_sb_cnt == 0) {
10782 		BNX2X_ERR("CAM configuration error\n");
10783 		return -EINVAL;
10784 	}
10785 
10786 	return 0;
10787 }
10788 
10789 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10790 {
10791 	int cfg_size = 0, idx, port = BP_PORT(bp);
10792 
10793 	/* Aggregation of supported attributes of all external phys */
10794 	bp->port.supported[0] = 0;
10795 	bp->port.supported[1] = 0;
10796 	switch (bp->link_params.num_phys) {
10797 	case 1:
10798 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10799 		cfg_size = 1;
10800 		break;
10801 	case 2:
10802 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10803 		cfg_size = 1;
10804 		break;
10805 	case 3:
10806 		if (bp->link_params.multi_phy_config &
10807 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10808 			bp->port.supported[1] =
10809 				bp->link_params.phy[EXT_PHY1].supported;
10810 			bp->port.supported[0] =
10811 				bp->link_params.phy[EXT_PHY2].supported;
10812 		} else {
10813 			bp->port.supported[0] =
10814 				bp->link_params.phy[EXT_PHY1].supported;
10815 			bp->port.supported[1] =
10816 				bp->link_params.phy[EXT_PHY2].supported;
10817 		}
10818 		cfg_size = 2;
10819 		break;
10820 	}
10821 
10822 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10823 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10824 			   SHMEM_RD(bp,
10825 			   dev_info.port_hw_config[port].external_phy_config),
10826 			   SHMEM_RD(bp,
10827 			   dev_info.port_hw_config[port].external_phy_config2));
10828 			return;
10829 	}
10830 
10831 	if (CHIP_IS_E3(bp))
10832 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10833 	else {
10834 		switch (switch_cfg) {
10835 		case SWITCH_CFG_1G:
10836 			bp->port.phy_addr = REG_RD(
10837 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10838 			break;
10839 		case SWITCH_CFG_10G:
10840 			bp->port.phy_addr = REG_RD(
10841 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10842 			break;
10843 		default:
10844 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10845 				  bp->port.link_config[0]);
10846 			return;
10847 		}
10848 	}
10849 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10850 	/* mask what we support according to speed_cap_mask per configuration */
10851 	for (idx = 0; idx < cfg_size; idx++) {
10852 		if (!(bp->link_params.speed_cap_mask[idx] &
10853 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10854 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10855 
10856 		if (!(bp->link_params.speed_cap_mask[idx] &
10857 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10858 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10859 
10860 		if (!(bp->link_params.speed_cap_mask[idx] &
10861 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10862 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10863 
10864 		if (!(bp->link_params.speed_cap_mask[idx] &
10865 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10866 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10867 
10868 		if (!(bp->link_params.speed_cap_mask[idx] &
10869 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10870 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10871 						     SUPPORTED_1000baseT_Full);
10872 
10873 		if (!(bp->link_params.speed_cap_mask[idx] &
10874 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10875 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10876 
10877 		if (!(bp->link_params.speed_cap_mask[idx] &
10878 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10879 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10880 
10881 		if (!(bp->link_params.speed_cap_mask[idx] &
10882 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10883 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10884 	}
10885 
10886 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10887 		       bp->port.supported[1]);
10888 }
10889 
10890 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10891 {
10892 	u32 link_config, idx, cfg_size = 0;
10893 	bp->port.advertising[0] = 0;
10894 	bp->port.advertising[1] = 0;
10895 	switch (bp->link_params.num_phys) {
10896 	case 1:
10897 	case 2:
10898 		cfg_size = 1;
10899 		break;
10900 	case 3:
10901 		cfg_size = 2;
10902 		break;
10903 	}
10904 	for (idx = 0; idx < cfg_size; idx++) {
10905 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10906 		link_config = bp->port.link_config[idx];
10907 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10908 		case PORT_FEATURE_LINK_SPEED_AUTO:
10909 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10910 				bp->link_params.req_line_speed[idx] =
10911 					SPEED_AUTO_NEG;
10912 				bp->port.advertising[idx] |=
10913 					bp->port.supported[idx];
10914 				if (bp->link_params.phy[EXT_PHY1].type ==
10915 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10916 					bp->port.advertising[idx] |=
10917 					(SUPPORTED_100baseT_Half |
10918 					 SUPPORTED_100baseT_Full);
10919 			} else {
10920 				/* force 10G, no AN */
10921 				bp->link_params.req_line_speed[idx] =
10922 					SPEED_10000;
10923 				bp->port.advertising[idx] |=
10924 					(ADVERTISED_10000baseT_Full |
10925 					 ADVERTISED_FIBRE);
10926 				continue;
10927 			}
10928 			break;
10929 
10930 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10931 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10932 				bp->link_params.req_line_speed[idx] =
10933 					SPEED_10;
10934 				bp->port.advertising[idx] |=
10935 					(ADVERTISED_10baseT_Full |
10936 					 ADVERTISED_TP);
10937 			} else {
10938 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10939 					    link_config,
10940 				    bp->link_params.speed_cap_mask[idx]);
10941 				return;
10942 			}
10943 			break;
10944 
10945 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10946 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10947 				bp->link_params.req_line_speed[idx] =
10948 					SPEED_10;
10949 				bp->link_params.req_duplex[idx] =
10950 					DUPLEX_HALF;
10951 				bp->port.advertising[idx] |=
10952 					(ADVERTISED_10baseT_Half |
10953 					 ADVERTISED_TP);
10954 			} else {
10955 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10956 					    link_config,
10957 					  bp->link_params.speed_cap_mask[idx]);
10958 				return;
10959 			}
10960 			break;
10961 
10962 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10963 			if (bp->port.supported[idx] &
10964 			    SUPPORTED_100baseT_Full) {
10965 				bp->link_params.req_line_speed[idx] =
10966 					SPEED_100;
10967 				bp->port.advertising[idx] |=
10968 					(ADVERTISED_100baseT_Full |
10969 					 ADVERTISED_TP);
10970 			} else {
10971 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10972 					    link_config,
10973 					  bp->link_params.speed_cap_mask[idx]);
10974 				return;
10975 			}
10976 			break;
10977 
10978 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10979 			if (bp->port.supported[idx] &
10980 			    SUPPORTED_100baseT_Half) {
10981 				bp->link_params.req_line_speed[idx] =
10982 								SPEED_100;
10983 				bp->link_params.req_duplex[idx] =
10984 								DUPLEX_HALF;
10985 				bp->port.advertising[idx] |=
10986 					(ADVERTISED_100baseT_Half |
10987 					 ADVERTISED_TP);
10988 			} else {
10989 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10990 				    link_config,
10991 				    bp->link_params.speed_cap_mask[idx]);
10992 				return;
10993 			}
10994 			break;
10995 
10996 		case PORT_FEATURE_LINK_SPEED_1G:
10997 			if (bp->port.supported[idx] &
10998 			    SUPPORTED_1000baseT_Full) {
10999 				bp->link_params.req_line_speed[idx] =
11000 					SPEED_1000;
11001 				bp->port.advertising[idx] |=
11002 					(ADVERTISED_1000baseT_Full |
11003 					 ADVERTISED_TP);
11004 			} else {
11005 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11006 				    link_config,
11007 				    bp->link_params.speed_cap_mask[idx]);
11008 				return;
11009 			}
11010 			break;
11011 
11012 		case PORT_FEATURE_LINK_SPEED_2_5G:
11013 			if (bp->port.supported[idx] &
11014 			    SUPPORTED_2500baseX_Full) {
11015 				bp->link_params.req_line_speed[idx] =
11016 					SPEED_2500;
11017 				bp->port.advertising[idx] |=
11018 					(ADVERTISED_2500baseX_Full |
11019 						ADVERTISED_TP);
11020 			} else {
11021 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11022 				    link_config,
11023 				    bp->link_params.speed_cap_mask[idx]);
11024 				return;
11025 			}
11026 			break;
11027 
11028 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11029 			if (bp->port.supported[idx] &
11030 			    SUPPORTED_10000baseT_Full) {
11031 				bp->link_params.req_line_speed[idx] =
11032 					SPEED_10000;
11033 				bp->port.advertising[idx] |=
11034 					(ADVERTISED_10000baseT_Full |
11035 						ADVERTISED_FIBRE);
11036 			} else {
11037 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11038 				    link_config,
11039 				    bp->link_params.speed_cap_mask[idx]);
11040 				return;
11041 			}
11042 			break;
11043 		case PORT_FEATURE_LINK_SPEED_20G:
11044 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11045 
11046 			break;
11047 		default:
11048 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11049 				  link_config);
11050 				bp->link_params.req_line_speed[idx] =
11051 							SPEED_AUTO_NEG;
11052 				bp->port.advertising[idx] =
11053 						bp->port.supported[idx];
11054 			break;
11055 		}
11056 
11057 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11058 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11059 		if (bp->link_params.req_flow_ctrl[idx] ==
11060 		    BNX2X_FLOW_CTRL_AUTO) {
11061 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11062 				bp->link_params.req_flow_ctrl[idx] =
11063 							BNX2X_FLOW_CTRL_NONE;
11064 			else
11065 				bnx2x_set_requested_fc(bp);
11066 		}
11067 
11068 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11069 			       bp->link_params.req_line_speed[idx],
11070 			       bp->link_params.req_duplex[idx],
11071 			       bp->link_params.req_flow_ctrl[idx],
11072 			       bp->port.advertising[idx]);
11073 	}
11074 }
11075 
11076 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11077 {
11078 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11079 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11080 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11081 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11082 }
11083 
11084 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11085 {
11086 	int port = BP_PORT(bp);
11087 	u32 config;
11088 	u32 ext_phy_type, ext_phy_config, eee_mode;
11089 
11090 	bp->link_params.bp = bp;
11091 	bp->link_params.port = port;
11092 
11093 	bp->link_params.lane_config =
11094 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11095 
11096 	bp->link_params.speed_cap_mask[0] =
11097 		SHMEM_RD(bp,
11098 			 dev_info.port_hw_config[port].speed_capability_mask) &
11099 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11100 	bp->link_params.speed_cap_mask[1] =
11101 		SHMEM_RD(bp,
11102 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11103 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11104 	bp->port.link_config[0] =
11105 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11106 
11107 	bp->port.link_config[1] =
11108 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11109 
11110 	bp->link_params.multi_phy_config =
11111 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11112 	/* If the device is capable of WoL, set the default state according
11113 	 * to the HW
11114 	 */
11115 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11116 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11117 		   (config & PORT_FEATURE_WOL_ENABLED));
11118 
11119 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11120 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11121 		bp->flags |= NO_ISCSI_FLAG;
11122 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11123 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11124 		bp->flags |= NO_FCOE_FLAG;
11125 
11126 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11127 		       bp->link_params.lane_config,
11128 		       bp->link_params.speed_cap_mask[0],
11129 		       bp->port.link_config[0]);
11130 
11131 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11132 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11133 	bnx2x_phy_probe(&bp->link_params);
11134 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11135 
11136 	bnx2x_link_settings_requested(bp);
11137 
11138 	/*
11139 	 * If connected directly, work with the internal PHY, otherwise, work
11140 	 * with the external PHY
11141 	 */
11142 	ext_phy_config =
11143 		SHMEM_RD(bp,
11144 			 dev_info.port_hw_config[port].external_phy_config);
11145 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11146 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11147 		bp->mdio.prtad = bp->port.phy_addr;
11148 
11149 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11150 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11151 		bp->mdio.prtad =
11152 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11153 
11154 	/* Configure link feature according to nvram value */
11155 	eee_mode = (((SHMEM_RD(bp, dev_info.
11156 		      port_feature_config[port].eee_power_mode)) &
11157 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11158 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11159 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11160 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11161 					   EEE_MODE_ENABLE_LPI |
11162 					   EEE_MODE_OUTPUT_TIME;
11163 	} else {
11164 		bp->link_params.eee_mode = 0;
11165 	}
11166 }
11167 
11168 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11169 {
11170 	u32 no_flags = NO_ISCSI_FLAG;
11171 	int port = BP_PORT(bp);
11172 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11173 				drv_lic_key[port].max_iscsi_conn);
11174 
11175 	if (!CNIC_SUPPORT(bp)) {
11176 		bp->flags |= no_flags;
11177 		return;
11178 	}
11179 
11180 	/* Get the number of maximum allowed iSCSI connections */
11181 	bp->cnic_eth_dev.max_iscsi_conn =
11182 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11183 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11184 
11185 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11186 		       bp->cnic_eth_dev.max_iscsi_conn);
11187 
11188 	/*
11189 	 * If maximum allowed number of connections is zero -
11190 	 * disable the feature.
11191 	 */
11192 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11193 		bp->flags |= no_flags;
11194 }
11195 
11196 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11197 {
11198 	/* Port info */
11199 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11200 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11201 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11202 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11203 
11204 	/* Node info */
11205 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11206 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11207 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11208 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11209 }
11210 
11211 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11212 {
11213 	u8 count = 0;
11214 
11215 	if (IS_MF(bp)) {
11216 		u8 fid;
11217 
11218 		/* iterate over absolute function ids for this path: */
11219 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11220 			if (IS_MF_SD(bp)) {
11221 				u32 cfg = MF_CFG_RD(bp,
11222 						    func_mf_config[fid].config);
11223 
11224 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11225 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11226 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11227 					count++;
11228 			} else {
11229 				u32 cfg = MF_CFG_RD(bp,
11230 						    func_ext_config[fid].
11231 								      func_cfg);
11232 
11233 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11234 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11235 					count++;
11236 			}
11237 		}
11238 	} else { /* SF */
11239 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11240 
11241 		for (port = 0; port < port_cnt; port++) {
11242 			u32 lic = SHMEM_RD(bp,
11243 					   drv_lic_key[port].max_fcoe_conn) ^
11244 				  FW_ENCODE_32BIT_PATTERN;
11245 			if (lic)
11246 				count++;
11247 		}
11248 	}
11249 
11250 	return count;
11251 }
11252 
11253 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11254 {
11255 	int port = BP_PORT(bp);
11256 	int func = BP_ABS_FUNC(bp);
11257 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11258 				drv_lic_key[port].max_fcoe_conn);
11259 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11260 
11261 	if (!CNIC_SUPPORT(bp)) {
11262 		bp->flags |= NO_FCOE_FLAG;
11263 		return;
11264 	}
11265 
11266 	/* Get the number of maximum allowed FCoE connections */
11267 	bp->cnic_eth_dev.max_fcoe_conn =
11268 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11269 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11270 
11271 	/* Calculate the number of maximum allowed FCoE tasks */
11272 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11273 
11274 	/* check if FCoE resources must be shared between different functions */
11275 	if (num_fcoe_func)
11276 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11277 
11278 	/* Read the WWN: */
11279 	if (!IS_MF(bp)) {
11280 		/* Port info */
11281 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11282 			SHMEM_RD(bp,
11283 				 dev_info.port_hw_config[port].
11284 				 fcoe_wwn_port_name_upper);
11285 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11286 			SHMEM_RD(bp,
11287 				 dev_info.port_hw_config[port].
11288 				 fcoe_wwn_port_name_lower);
11289 
11290 		/* Node info */
11291 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11292 			SHMEM_RD(bp,
11293 				 dev_info.port_hw_config[port].
11294 				 fcoe_wwn_node_name_upper);
11295 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11296 			SHMEM_RD(bp,
11297 				 dev_info.port_hw_config[port].
11298 				 fcoe_wwn_node_name_lower);
11299 	} else if (!IS_MF_SD(bp)) {
11300 		/*
11301 		 * Read the WWN info only if the FCoE feature is enabled for
11302 		 * this function.
11303 		 */
11304 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11305 			bnx2x_get_ext_wwn_info(bp, func);
11306 
11307 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11308 		bnx2x_get_ext_wwn_info(bp, func);
11309 	}
11310 
11311 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11312 
11313 	/*
11314 	 * If maximum allowed number of connections is zero -
11315 	 * disable the feature.
11316 	 */
11317 	if (!bp->cnic_eth_dev.max_fcoe_conn)
11318 		bp->flags |= NO_FCOE_FLAG;
11319 }
11320 
11321 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11322 {
11323 	/*
11324 	 * iSCSI may be dynamically disabled but reading
11325 	 * info here we will decrease memory usage by driver
11326 	 * if the feature is disabled for good
11327 	 */
11328 	bnx2x_get_iscsi_info(bp);
11329 	bnx2x_get_fcoe_info(bp);
11330 }
11331 
11332 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11333 {
11334 	u32 val, val2;
11335 	int func = BP_ABS_FUNC(bp);
11336 	int port = BP_PORT(bp);
11337 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11338 	u8 *fip_mac = bp->fip_mac;
11339 
11340 	if (IS_MF(bp)) {
11341 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11342 		 * FCoE MAC then the appropriate feature should be disabled.
11343 		 * In non SD mode features configuration comes from struct
11344 		 * func_ext_config.
11345 		 */
11346 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11347 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11348 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11349 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11350 						 iscsi_mac_addr_upper);
11351 				val = MF_CFG_RD(bp, func_ext_config[func].
11352 						iscsi_mac_addr_lower);
11353 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11354 				BNX2X_DEV_INFO
11355 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11356 			} else {
11357 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11358 			}
11359 
11360 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11361 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11362 						 fcoe_mac_addr_upper);
11363 				val = MF_CFG_RD(bp, func_ext_config[func].
11364 						fcoe_mac_addr_lower);
11365 				bnx2x_set_mac_buf(fip_mac, val, val2);
11366 				BNX2X_DEV_INFO
11367 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11368 			} else {
11369 				bp->flags |= NO_FCOE_FLAG;
11370 			}
11371 
11372 			bp->mf_ext_config = cfg;
11373 
11374 		} else { /* SD MODE */
11375 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11376 				/* use primary mac as iscsi mac */
11377 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11378 
11379 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11380 				BNX2X_DEV_INFO
11381 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11382 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11383 				/* use primary mac as fip mac */
11384 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11385 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11386 				BNX2X_DEV_INFO
11387 					("Read FIP MAC: %pM\n", fip_mac);
11388 			}
11389 		}
11390 
11391 		/* If this is a storage-only interface, use SAN mac as
11392 		 * primary MAC. Notice that for SD this is already the case,
11393 		 * as the SAN mac was copied from the primary MAC.
11394 		 */
11395 		if (IS_MF_FCOE_AFEX(bp))
11396 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11397 	} else {
11398 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11399 				iscsi_mac_upper);
11400 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11401 			       iscsi_mac_lower);
11402 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11403 
11404 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11405 				fcoe_fip_mac_upper);
11406 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11407 			       fcoe_fip_mac_lower);
11408 		bnx2x_set_mac_buf(fip_mac, val, val2);
11409 	}
11410 
11411 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11412 	if (!is_valid_ether_addr(iscsi_mac)) {
11413 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11414 		memset(iscsi_mac, 0, ETH_ALEN);
11415 	}
11416 
11417 	/* Disable FCoE if MAC configuration is invalid. */
11418 	if (!is_valid_ether_addr(fip_mac)) {
11419 		bp->flags |= NO_FCOE_FLAG;
11420 		memset(bp->fip_mac, 0, ETH_ALEN);
11421 	}
11422 }
11423 
11424 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11425 {
11426 	u32 val, val2;
11427 	int func = BP_ABS_FUNC(bp);
11428 	int port = BP_PORT(bp);
11429 
11430 	/* Zero primary MAC configuration */
11431 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
11432 
11433 	if (BP_NOMCP(bp)) {
11434 		BNX2X_ERROR("warning: random MAC workaround active\n");
11435 		eth_hw_addr_random(bp->dev);
11436 	} else if (IS_MF(bp)) {
11437 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11438 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11439 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11440 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11441 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11442 
11443 		if (CNIC_SUPPORT(bp))
11444 			bnx2x_get_cnic_mac_hwinfo(bp);
11445 	} else {
11446 		/* in SF read MACs from port configuration */
11447 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11448 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11449 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11450 
11451 		if (CNIC_SUPPORT(bp))
11452 			bnx2x_get_cnic_mac_hwinfo(bp);
11453 	}
11454 
11455 	if (!BP_NOMCP(bp)) {
11456 		/* Read physical port identifier from shmem */
11457 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11458 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11459 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11460 		bp->flags |= HAS_PHYS_PORT_ID;
11461 	}
11462 
11463 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11464 
11465 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11466 		dev_err(&bp->pdev->dev,
11467 			"bad Ethernet MAC address configuration: %pM\n"
11468 			"change it manually before bringing up the appropriate network interface\n",
11469 			bp->dev->dev_addr);
11470 }
11471 
11472 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11473 {
11474 	int tmp;
11475 	u32 cfg;
11476 
11477 	if (IS_VF(bp))
11478 		return 0;
11479 
11480 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11481 		/* Take function: tmp = func */
11482 		tmp = BP_ABS_FUNC(bp);
11483 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11484 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11485 	} else {
11486 		/* Take port: tmp = port */
11487 		tmp = BP_PORT(bp);
11488 		cfg = SHMEM_RD(bp,
11489 			       dev_info.port_hw_config[tmp].generic_features);
11490 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11491 	}
11492 	return cfg;
11493 }
11494 
11495 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11496 {
11497 	int /*abs*/func = BP_ABS_FUNC(bp);
11498 	int vn;
11499 	u32 val = 0;
11500 	int rc = 0;
11501 
11502 	bnx2x_get_common_hwinfo(bp);
11503 
11504 	/*
11505 	 * initialize IGU parameters
11506 	 */
11507 	if (CHIP_IS_E1x(bp)) {
11508 		bp->common.int_block = INT_BLOCK_HC;
11509 
11510 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11511 		bp->igu_base_sb = 0;
11512 	} else {
11513 		bp->common.int_block = INT_BLOCK_IGU;
11514 
11515 		/* do not allow device reset during IGU info processing */
11516 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11517 
11518 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11519 
11520 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11521 			int tout = 5000;
11522 
11523 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11524 
11525 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11526 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11527 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11528 
11529 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11530 				tout--;
11531 				usleep_range(1000, 2000);
11532 			}
11533 
11534 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11535 				dev_err(&bp->pdev->dev,
11536 					"FORCING Normal Mode failed!!!\n");
11537 				bnx2x_release_hw_lock(bp,
11538 						      HW_LOCK_RESOURCE_RESET);
11539 				return -EPERM;
11540 			}
11541 		}
11542 
11543 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11544 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11545 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11546 		} else
11547 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11548 
11549 		rc = bnx2x_get_igu_cam_info(bp);
11550 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11551 		if (rc)
11552 			return rc;
11553 	}
11554 
11555 	/*
11556 	 * set base FW non-default (fast path) status block id, this value is
11557 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11558 	 * determine the id used by the FW.
11559 	 */
11560 	if (CHIP_IS_E1x(bp))
11561 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11562 	else /*
11563 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11564 	      * the same queue are indicated on the same IGU SB). So we prefer
11565 	      * FW and IGU SBs to be the same value.
11566 	      */
11567 		bp->base_fw_ndsb = bp->igu_base_sb;
11568 
11569 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11570 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11571 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11572 
11573 	/*
11574 	 * Initialize MF configuration
11575 	 */
11576 
11577 	bp->mf_ov = 0;
11578 	bp->mf_mode = 0;
11579 	vn = BP_VN(bp);
11580 
11581 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11582 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11583 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11584 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11585 
11586 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11587 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11588 		else
11589 			bp->common.mf_cfg_base = bp->common.shmem_base +
11590 				offsetof(struct shmem_region, func_mb) +
11591 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11592 		/*
11593 		 * get mf configuration:
11594 		 * 1. Existence of MF configuration
11595 		 * 2. MAC address must be legal (check only upper bytes)
11596 		 *    for  Switch-Independent mode;
11597 		 *    OVLAN must be legal for Switch-Dependent mode
11598 		 * 3. SF_MODE configures specific MF mode
11599 		 */
11600 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11601 			/* get mf configuration */
11602 			val = SHMEM_RD(bp,
11603 				       dev_info.shared_feature_config.config);
11604 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11605 
11606 			switch (val) {
11607 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11608 				val = MF_CFG_RD(bp, func_mf_config[func].
11609 						mac_upper);
11610 				/* check for legal mac (upper bytes)*/
11611 				if (val != 0xffff) {
11612 					bp->mf_mode = MULTI_FUNCTION_SI;
11613 					bp->mf_config[vn] = MF_CFG_RD(bp,
11614 						   func_mf_config[func].config);
11615 				} else
11616 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
11617 				break;
11618 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11619 				if ((!CHIP_IS_E1x(bp)) &&
11620 				    (MF_CFG_RD(bp, func_mf_config[func].
11621 					       mac_upper) != 0xffff) &&
11622 				    (SHMEM2_HAS(bp,
11623 						afex_driver_support))) {
11624 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11625 					bp->mf_config[vn] = MF_CFG_RD(bp,
11626 						func_mf_config[func].config);
11627 				} else {
11628 					BNX2X_DEV_INFO("can not configure afex mode\n");
11629 				}
11630 				break;
11631 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11632 				/* get OV configuration */
11633 				val = MF_CFG_RD(bp,
11634 					func_mf_config[FUNC_0].e1hov_tag);
11635 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11636 
11637 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11638 					bp->mf_mode = MULTI_FUNCTION_SD;
11639 					bp->mf_config[vn] = MF_CFG_RD(bp,
11640 						func_mf_config[func].config);
11641 				} else
11642 					BNX2X_DEV_INFO("illegal OV for SD\n");
11643 				break;
11644 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11645 				bp->mf_config[vn] = 0;
11646 				break;
11647 			default:
11648 				/* Unknown configuration: reset mf_config */
11649 				bp->mf_config[vn] = 0;
11650 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11651 			}
11652 		}
11653 
11654 		BNX2X_DEV_INFO("%s function mode\n",
11655 			       IS_MF(bp) ? "multi" : "single");
11656 
11657 		switch (bp->mf_mode) {
11658 		case MULTI_FUNCTION_SD:
11659 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11660 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11661 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11662 				bp->mf_ov = val;
11663 				bp->path_has_ovlan = true;
11664 
11665 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11666 					       func, bp->mf_ov, bp->mf_ov);
11667 			} else {
11668 				dev_err(&bp->pdev->dev,
11669 					"No valid MF OV for func %d, aborting\n",
11670 					func);
11671 				return -EPERM;
11672 			}
11673 			break;
11674 		case MULTI_FUNCTION_AFEX:
11675 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11676 			break;
11677 		case MULTI_FUNCTION_SI:
11678 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11679 				       func);
11680 			break;
11681 		default:
11682 			if (vn) {
11683 				dev_err(&bp->pdev->dev,
11684 					"VN %d is in a single function mode, aborting\n",
11685 					vn);
11686 				return -EPERM;
11687 			}
11688 			break;
11689 		}
11690 
11691 		/* check if other port on the path needs ovlan:
11692 		 * Since MF configuration is shared between ports
11693 		 * Possible mixed modes are only
11694 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11695 		 */
11696 		if (CHIP_MODE_IS_4_PORT(bp) &&
11697 		    !bp->path_has_ovlan &&
11698 		    !IS_MF(bp) &&
11699 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11700 			u8 other_port = !BP_PORT(bp);
11701 			u8 other_func = BP_PATH(bp) + 2*other_port;
11702 			val = MF_CFG_RD(bp,
11703 					func_mf_config[other_func].e1hov_tag);
11704 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11705 				bp->path_has_ovlan = true;
11706 		}
11707 	}
11708 
11709 	/* adjust igu_sb_cnt to MF for E1H */
11710 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
11711 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11712 
11713 	/* port info */
11714 	bnx2x_get_port_hwinfo(bp);
11715 
11716 	/* Get MAC addresses */
11717 	bnx2x_get_mac_hwinfo(bp);
11718 
11719 	bnx2x_get_cnic_info(bp);
11720 
11721 	return rc;
11722 }
11723 
11724 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11725 {
11726 	int cnt, i, block_end, rodi;
11727 	char vpd_start[BNX2X_VPD_LEN+1];
11728 	char str_id_reg[VENDOR_ID_LEN+1];
11729 	char str_id_cap[VENDOR_ID_LEN+1];
11730 	char *vpd_data;
11731 	char *vpd_extended_data = NULL;
11732 	u8 len;
11733 
11734 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11735 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11736 
11737 	if (cnt < BNX2X_VPD_LEN)
11738 		goto out_not_found;
11739 
11740 	/* VPD RO tag should be first tag after identifier string, hence
11741 	 * we should be able to find it in first BNX2X_VPD_LEN chars
11742 	 */
11743 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11744 			     PCI_VPD_LRDT_RO_DATA);
11745 	if (i < 0)
11746 		goto out_not_found;
11747 
11748 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11749 		    pci_vpd_lrdt_size(&vpd_start[i]);
11750 
11751 	i += PCI_VPD_LRDT_TAG_SIZE;
11752 
11753 	if (block_end > BNX2X_VPD_LEN) {
11754 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11755 		if (vpd_extended_data  == NULL)
11756 			goto out_not_found;
11757 
11758 		/* read rest of vpd image into vpd_extended_data */
11759 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11760 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11761 				   block_end - BNX2X_VPD_LEN,
11762 				   vpd_extended_data + BNX2X_VPD_LEN);
11763 		if (cnt < (block_end - BNX2X_VPD_LEN))
11764 			goto out_not_found;
11765 		vpd_data = vpd_extended_data;
11766 	} else
11767 		vpd_data = vpd_start;
11768 
11769 	/* now vpd_data holds full vpd content in both cases */
11770 
11771 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11772 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11773 	if (rodi < 0)
11774 		goto out_not_found;
11775 
11776 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11777 
11778 	if (len != VENDOR_ID_LEN)
11779 		goto out_not_found;
11780 
11781 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11782 
11783 	/* vendor specific info */
11784 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11785 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11786 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11787 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11788 
11789 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11790 						PCI_VPD_RO_KEYWORD_VENDOR0);
11791 		if (rodi >= 0) {
11792 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11793 
11794 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11795 
11796 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11797 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11798 				bp->fw_ver[len] = ' ';
11799 			}
11800 		}
11801 		kfree(vpd_extended_data);
11802 		return;
11803 	}
11804 out_not_found:
11805 	kfree(vpd_extended_data);
11806 	return;
11807 }
11808 
11809 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11810 {
11811 	u32 flags = 0;
11812 
11813 	if (CHIP_REV_IS_FPGA(bp))
11814 		SET_FLAGS(flags, MODE_FPGA);
11815 	else if (CHIP_REV_IS_EMUL(bp))
11816 		SET_FLAGS(flags, MODE_EMUL);
11817 	else
11818 		SET_FLAGS(flags, MODE_ASIC);
11819 
11820 	if (CHIP_MODE_IS_4_PORT(bp))
11821 		SET_FLAGS(flags, MODE_PORT4);
11822 	else
11823 		SET_FLAGS(flags, MODE_PORT2);
11824 
11825 	if (CHIP_IS_E2(bp))
11826 		SET_FLAGS(flags, MODE_E2);
11827 	else if (CHIP_IS_E3(bp)) {
11828 		SET_FLAGS(flags, MODE_E3);
11829 		if (CHIP_REV(bp) == CHIP_REV_Ax)
11830 			SET_FLAGS(flags, MODE_E3_A0);
11831 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11832 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11833 	}
11834 
11835 	if (IS_MF(bp)) {
11836 		SET_FLAGS(flags, MODE_MF);
11837 		switch (bp->mf_mode) {
11838 		case MULTI_FUNCTION_SD:
11839 			SET_FLAGS(flags, MODE_MF_SD);
11840 			break;
11841 		case MULTI_FUNCTION_SI:
11842 			SET_FLAGS(flags, MODE_MF_SI);
11843 			break;
11844 		case MULTI_FUNCTION_AFEX:
11845 			SET_FLAGS(flags, MODE_MF_AFEX);
11846 			break;
11847 		}
11848 	} else
11849 		SET_FLAGS(flags, MODE_SF);
11850 
11851 #if defined(__LITTLE_ENDIAN)
11852 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11853 #else /*(__BIG_ENDIAN)*/
11854 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11855 #endif
11856 	INIT_MODE_FLAGS(bp) = flags;
11857 }
11858 
11859 static int bnx2x_init_bp(struct bnx2x *bp)
11860 {
11861 	int func;
11862 	int rc;
11863 
11864 	mutex_init(&bp->port.phy_mutex);
11865 	mutex_init(&bp->fw_mb_mutex);
11866 	mutex_init(&bp->drv_info_mutex);
11867 	bp->drv_info_mng_owner = false;
11868 	spin_lock_init(&bp->stats_lock);
11869 	sema_init(&bp->stats_sema, 1);
11870 
11871 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11872 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11873 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11874 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
11875 	if (IS_PF(bp)) {
11876 		rc = bnx2x_get_hwinfo(bp);
11877 		if (rc)
11878 			return rc;
11879 	} else {
11880 		eth_zero_addr(bp->dev->dev_addr);
11881 	}
11882 
11883 	bnx2x_set_modes_bitmap(bp);
11884 
11885 	rc = bnx2x_alloc_mem_bp(bp);
11886 	if (rc)
11887 		return rc;
11888 
11889 	bnx2x_read_fwinfo(bp);
11890 
11891 	func = BP_FUNC(bp);
11892 
11893 	/* need to reset chip if undi was active */
11894 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
11895 		/* init fw_seq */
11896 		bp->fw_seq =
11897 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11898 							DRV_MSG_SEQ_NUMBER_MASK;
11899 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11900 
11901 		rc = bnx2x_prev_unload(bp);
11902 		if (rc) {
11903 			bnx2x_free_mem_bp(bp);
11904 			return rc;
11905 		}
11906 	}
11907 
11908 	if (CHIP_REV_IS_FPGA(bp))
11909 		dev_err(&bp->pdev->dev, "FPGA detected\n");
11910 
11911 	if (BP_NOMCP(bp) && (func == 0))
11912 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11913 
11914 	bp->disable_tpa = disable_tpa;
11915 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11916 	/* Reduce memory usage in kdump environment by disabling TPA */
11917 	bp->disable_tpa |= reset_devices;
11918 
11919 	/* Set TPA flags */
11920 	if (bp->disable_tpa) {
11921 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11922 		bp->dev->features &= ~NETIF_F_LRO;
11923 	} else {
11924 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11925 		bp->dev->features |= NETIF_F_LRO;
11926 	}
11927 
11928 	if (CHIP_IS_E1(bp))
11929 		bp->dropless_fc = 0;
11930 	else
11931 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11932 
11933 	bp->mrrs = mrrs;
11934 
11935 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11936 	if (IS_VF(bp))
11937 		bp->rx_ring_size = MAX_RX_AVAIL;
11938 
11939 	/* make sure that the numbers are in the right granularity */
11940 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11941 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11942 
11943 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11944 
11945 	init_timer(&bp->timer);
11946 	bp->timer.expires = jiffies + bp->current_interval;
11947 	bp->timer.data = (unsigned long) bp;
11948 	bp->timer.function = bnx2x_timer;
11949 
11950 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11951 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11952 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11953 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11954 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11955 		bnx2x_dcbx_init_params(bp);
11956 	} else {
11957 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11958 	}
11959 
11960 	if (CHIP_IS_E1x(bp))
11961 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11962 	else
11963 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11964 
11965 	/* multiple tx priority */
11966 	if (IS_VF(bp))
11967 		bp->max_cos = 1;
11968 	else if (CHIP_IS_E1x(bp))
11969 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11970 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11971 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11972 	else if (CHIP_IS_E3B0(bp))
11973 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11974 	else
11975 		BNX2X_ERR("unknown chip %x revision %x\n",
11976 			  CHIP_NUM(bp), CHIP_REV(bp));
11977 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11978 
11979 	/* We need at least one default status block for slow-path events,
11980 	 * second status block for the L2 queue, and a third status block for
11981 	 * CNIC if supported.
11982 	 */
11983 	if (IS_VF(bp))
11984 		bp->min_msix_vec_cnt = 1;
11985 	else if (CNIC_SUPPORT(bp))
11986 		bp->min_msix_vec_cnt = 3;
11987 	else /* PF w/o cnic */
11988 		bp->min_msix_vec_cnt = 2;
11989 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11990 
11991 	bp->dump_preset_idx = 1;
11992 
11993 	return rc;
11994 }
11995 
11996 /****************************************************************************
11997 * General service functions
11998 ****************************************************************************/
11999 
12000 /*
12001  * net_device service functions
12002  */
12003 
12004 /* called with rtnl_lock */
12005 static int bnx2x_open(struct net_device *dev)
12006 {
12007 	struct bnx2x *bp = netdev_priv(dev);
12008 	int rc;
12009 
12010 	bp->stats_init = true;
12011 
12012 	netif_carrier_off(dev);
12013 
12014 	bnx2x_set_power_state(bp, PCI_D0);
12015 
12016 	/* If parity had happen during the unload, then attentions
12017 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12018 	 * want the first function loaded on the current engine to
12019 	 * complete the recovery.
12020 	 * Parity recovery is only relevant for PF driver.
12021 	 */
12022 	if (IS_PF(bp)) {
12023 		int other_engine = BP_PATH(bp) ? 0 : 1;
12024 		bool other_load_status, load_status;
12025 		bool global = false;
12026 
12027 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12028 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12029 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12030 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12031 			do {
12032 				/* If there are attentions and they are in a
12033 				 * global blocks, set the GLOBAL_RESET bit
12034 				 * regardless whether it will be this function
12035 				 * that will complete the recovery or not.
12036 				 */
12037 				if (global)
12038 					bnx2x_set_reset_global(bp);
12039 
12040 				/* Only the first function on the current
12041 				 * engine should try to recover in open. In case
12042 				 * of attentions in global blocks only the first
12043 				 * in the chip should try to recover.
12044 				 */
12045 				if ((!load_status &&
12046 				     (!global || !other_load_status)) &&
12047 				      bnx2x_trylock_leader_lock(bp) &&
12048 				      !bnx2x_leader_reset(bp)) {
12049 					netdev_info(bp->dev,
12050 						    "Recovered in open\n");
12051 					break;
12052 				}
12053 
12054 				/* recovery has failed... */
12055 				bnx2x_set_power_state(bp, PCI_D3hot);
12056 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12057 
12058 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12059 					  "If you still see this message after a few retries then power cycle is required.\n");
12060 
12061 				return -EAGAIN;
12062 			} while (0);
12063 		}
12064 	}
12065 
12066 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12067 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12068 	if (rc)
12069 		return rc;
12070 	return 0;
12071 }
12072 
12073 /* called with rtnl_lock */
12074 static int bnx2x_close(struct net_device *dev)
12075 {
12076 	struct bnx2x *bp = netdev_priv(dev);
12077 
12078 	/* Unload the driver, release IRQs */
12079 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12080 
12081 	return 0;
12082 }
12083 
12084 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12085 				      struct bnx2x_mcast_ramrod_params *p)
12086 {
12087 	int mc_count = netdev_mc_count(bp->dev);
12088 	struct bnx2x_mcast_list_elem *mc_mac =
12089 		kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12090 	struct netdev_hw_addr *ha;
12091 
12092 	if (!mc_mac)
12093 		return -ENOMEM;
12094 
12095 	INIT_LIST_HEAD(&p->mcast_list);
12096 
12097 	netdev_for_each_mc_addr(ha, bp->dev) {
12098 		mc_mac->mac = bnx2x_mc_addr(ha);
12099 		list_add_tail(&mc_mac->link, &p->mcast_list);
12100 		mc_mac++;
12101 	}
12102 
12103 	p->mcast_list_len = mc_count;
12104 
12105 	return 0;
12106 }
12107 
12108 static void bnx2x_free_mcast_macs_list(
12109 	struct bnx2x_mcast_ramrod_params *p)
12110 {
12111 	struct bnx2x_mcast_list_elem *mc_mac =
12112 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12113 				 link);
12114 
12115 	WARN_ON(!mc_mac);
12116 	kfree(mc_mac);
12117 }
12118 
12119 /**
12120  * bnx2x_set_uc_list - configure a new unicast MACs list.
12121  *
12122  * @bp: driver handle
12123  *
12124  * We will use zero (0) as a MAC type for these MACs.
12125  */
12126 static int bnx2x_set_uc_list(struct bnx2x *bp)
12127 {
12128 	int rc;
12129 	struct net_device *dev = bp->dev;
12130 	struct netdev_hw_addr *ha;
12131 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12132 	unsigned long ramrod_flags = 0;
12133 
12134 	/* First schedule a cleanup up of old configuration */
12135 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12136 	if (rc < 0) {
12137 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12138 		return rc;
12139 	}
12140 
12141 	netdev_for_each_uc_addr(ha, dev) {
12142 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12143 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12144 		if (rc == -EEXIST) {
12145 			DP(BNX2X_MSG_SP,
12146 			   "Failed to schedule ADD operations: %d\n", rc);
12147 			/* do not treat adding same MAC as error */
12148 			rc = 0;
12149 
12150 		} else if (rc < 0) {
12151 
12152 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12153 				  rc);
12154 			return rc;
12155 		}
12156 	}
12157 
12158 	/* Execute the pending commands */
12159 	__set_bit(RAMROD_CONT, &ramrod_flags);
12160 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12161 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12162 }
12163 
12164 static int bnx2x_set_mc_list(struct bnx2x *bp)
12165 {
12166 	struct net_device *dev = bp->dev;
12167 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12168 	int rc = 0;
12169 
12170 	rparam.mcast_obj = &bp->mcast_obj;
12171 
12172 	/* first, clear all configured multicast MACs */
12173 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12174 	if (rc < 0) {
12175 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12176 		return rc;
12177 	}
12178 
12179 	/* then, configure a new MACs list */
12180 	if (netdev_mc_count(dev)) {
12181 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12182 		if (rc) {
12183 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12184 				  rc);
12185 			return rc;
12186 		}
12187 
12188 		/* Now add the new MACs */
12189 		rc = bnx2x_config_mcast(bp, &rparam,
12190 					BNX2X_MCAST_CMD_ADD);
12191 		if (rc < 0)
12192 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12193 				  rc);
12194 
12195 		bnx2x_free_mcast_macs_list(&rparam);
12196 	}
12197 
12198 	return rc;
12199 }
12200 
12201 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12202 static void bnx2x_set_rx_mode(struct net_device *dev)
12203 {
12204 	struct bnx2x *bp = netdev_priv(dev);
12205 
12206 	if (bp->state != BNX2X_STATE_OPEN) {
12207 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12208 		return;
12209 	} else {
12210 		/* Schedule an SP task to handle rest of change */
12211 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12212 				       NETIF_MSG_IFUP);
12213 	}
12214 }
12215 
12216 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12217 {
12218 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12219 
12220 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12221 
12222 	netif_addr_lock_bh(bp->dev);
12223 
12224 	if (bp->dev->flags & IFF_PROMISC) {
12225 		rx_mode = BNX2X_RX_MODE_PROMISC;
12226 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12227 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12228 		    CHIP_IS_E1(bp))) {
12229 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12230 	} else {
12231 		if (IS_PF(bp)) {
12232 			/* some multicasts */
12233 			if (bnx2x_set_mc_list(bp) < 0)
12234 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12235 
12236 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12237 			netif_addr_unlock_bh(bp->dev);
12238 			if (bnx2x_set_uc_list(bp) < 0)
12239 				rx_mode = BNX2X_RX_MODE_PROMISC;
12240 			netif_addr_lock_bh(bp->dev);
12241 		} else {
12242 			/* configuring mcast to a vf involves sleeping (when we
12243 			 * wait for the pf's response).
12244 			 */
12245 			bnx2x_schedule_sp_rtnl(bp,
12246 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12247 		}
12248 	}
12249 
12250 	bp->rx_mode = rx_mode;
12251 	/* handle ISCSI SD mode */
12252 	if (IS_MF_ISCSI_SD(bp))
12253 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12254 
12255 	/* Schedule the rx_mode command */
12256 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12257 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12258 		netif_addr_unlock_bh(bp->dev);
12259 		return;
12260 	}
12261 
12262 	if (IS_PF(bp)) {
12263 		bnx2x_set_storm_rx_mode(bp);
12264 		netif_addr_unlock_bh(bp->dev);
12265 	} else {
12266 		/* VF will need to request the PF to make this change, and so
12267 		 * the VF needs to release the bottom-half lock prior to the
12268 		 * request (as it will likely require sleep on the VF side)
12269 		 */
12270 		netif_addr_unlock_bh(bp->dev);
12271 		bnx2x_vfpf_storm_rx_mode(bp);
12272 	}
12273 }
12274 
12275 /* called with rtnl_lock */
12276 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12277 			   int devad, u16 addr)
12278 {
12279 	struct bnx2x *bp = netdev_priv(netdev);
12280 	u16 value;
12281 	int rc;
12282 
12283 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12284 	   prtad, devad, addr);
12285 
12286 	/* The HW expects different devad if CL22 is used */
12287 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12288 
12289 	bnx2x_acquire_phy_lock(bp);
12290 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12291 	bnx2x_release_phy_lock(bp);
12292 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12293 
12294 	if (!rc)
12295 		rc = value;
12296 	return rc;
12297 }
12298 
12299 /* called with rtnl_lock */
12300 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12301 			    u16 addr, u16 value)
12302 {
12303 	struct bnx2x *bp = netdev_priv(netdev);
12304 	int rc;
12305 
12306 	DP(NETIF_MSG_LINK,
12307 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12308 	   prtad, devad, addr, value);
12309 
12310 	/* The HW expects different devad if CL22 is used */
12311 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12312 
12313 	bnx2x_acquire_phy_lock(bp);
12314 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12315 	bnx2x_release_phy_lock(bp);
12316 	return rc;
12317 }
12318 
12319 /* called with rtnl_lock */
12320 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12321 {
12322 	struct bnx2x *bp = netdev_priv(dev);
12323 	struct mii_ioctl_data *mdio = if_mii(ifr);
12324 
12325 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12326 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
12327 
12328 	if (!netif_running(dev))
12329 		return -EAGAIN;
12330 
12331 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12332 }
12333 
12334 #ifdef CONFIG_NET_POLL_CONTROLLER
12335 static void poll_bnx2x(struct net_device *dev)
12336 {
12337 	struct bnx2x *bp = netdev_priv(dev);
12338 	int i;
12339 
12340 	for_each_eth_queue(bp, i) {
12341 		struct bnx2x_fastpath *fp = &bp->fp[i];
12342 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12343 	}
12344 }
12345 #endif
12346 
12347 static int bnx2x_validate_addr(struct net_device *dev)
12348 {
12349 	struct bnx2x *bp = netdev_priv(dev);
12350 
12351 	/* query the bulletin board for mac address configured by the PF */
12352 	if (IS_VF(bp))
12353 		bnx2x_sample_bulletin(bp);
12354 
12355 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12356 		BNX2X_ERR("Non-valid Ethernet address\n");
12357 		return -EADDRNOTAVAIL;
12358 	}
12359 	return 0;
12360 }
12361 
12362 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12363 				  struct netdev_phys_port_id *ppid)
12364 {
12365 	struct bnx2x *bp = netdev_priv(netdev);
12366 
12367 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12368 		return -EOPNOTSUPP;
12369 
12370 	ppid->id_len = sizeof(bp->phys_port_id);
12371 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12372 
12373 	return 0;
12374 }
12375 
12376 static const struct net_device_ops bnx2x_netdev_ops = {
12377 	.ndo_open		= bnx2x_open,
12378 	.ndo_stop		= bnx2x_close,
12379 	.ndo_start_xmit		= bnx2x_start_xmit,
12380 	.ndo_select_queue	= bnx2x_select_queue,
12381 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12382 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12383 	.ndo_validate_addr	= bnx2x_validate_addr,
12384 	.ndo_do_ioctl		= bnx2x_ioctl,
12385 	.ndo_change_mtu		= bnx2x_change_mtu,
12386 	.ndo_fix_features	= bnx2x_fix_features,
12387 	.ndo_set_features	= bnx2x_set_features,
12388 	.ndo_tx_timeout		= bnx2x_tx_timeout,
12389 #ifdef CONFIG_NET_POLL_CONTROLLER
12390 	.ndo_poll_controller	= poll_bnx2x,
12391 #endif
12392 	.ndo_setup_tc		= bnx2x_setup_tc,
12393 #ifdef CONFIG_BNX2X_SRIOV
12394 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12395 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12396 	.ndo_get_vf_config	= bnx2x_get_vf_config,
12397 #endif
12398 #ifdef NETDEV_FCOE_WWNN
12399 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12400 #endif
12401 
12402 #ifdef CONFIG_NET_RX_BUSY_POLL
12403 	.ndo_busy_poll		= bnx2x_low_latency_recv,
12404 #endif
12405 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
12406 };
12407 
12408 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12409 {
12410 	struct device *dev = &bp->pdev->dev;
12411 
12412 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12413 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12414 		dev_err(dev, "System does not support DMA, aborting\n");
12415 		return -EIO;
12416 	}
12417 
12418 	return 0;
12419 }
12420 
12421 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12422 {
12423 	if (bp->flags & AER_ENABLED) {
12424 		pci_disable_pcie_error_reporting(bp->pdev);
12425 		bp->flags &= ~AER_ENABLED;
12426 	}
12427 }
12428 
12429 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12430 			  struct net_device *dev, unsigned long board_type)
12431 {
12432 	int rc;
12433 	u32 pci_cfg_dword;
12434 	bool chip_is_e1x = (board_type == BCM57710 ||
12435 			    board_type == BCM57711 ||
12436 			    board_type == BCM57711E);
12437 
12438 	SET_NETDEV_DEV(dev, &pdev->dev);
12439 
12440 	bp->dev = dev;
12441 	bp->pdev = pdev;
12442 
12443 	rc = pci_enable_device(pdev);
12444 	if (rc) {
12445 		dev_err(&bp->pdev->dev,
12446 			"Cannot enable PCI device, aborting\n");
12447 		goto err_out;
12448 	}
12449 
12450 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12451 		dev_err(&bp->pdev->dev,
12452 			"Cannot find PCI device base address, aborting\n");
12453 		rc = -ENODEV;
12454 		goto err_out_disable;
12455 	}
12456 
12457 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12458 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12459 		rc = -ENODEV;
12460 		goto err_out_disable;
12461 	}
12462 
12463 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12464 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12465 	    PCICFG_REVESION_ID_ERROR_VAL) {
12466 		pr_err("PCI device error, probably due to fan failure, aborting\n");
12467 		rc = -ENODEV;
12468 		goto err_out_disable;
12469 	}
12470 
12471 	if (atomic_read(&pdev->enable_cnt) == 1) {
12472 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12473 		if (rc) {
12474 			dev_err(&bp->pdev->dev,
12475 				"Cannot obtain PCI resources, aborting\n");
12476 			goto err_out_disable;
12477 		}
12478 
12479 		pci_set_master(pdev);
12480 		pci_save_state(pdev);
12481 	}
12482 
12483 	if (IS_PF(bp)) {
12484 		if (!pdev->pm_cap) {
12485 			dev_err(&bp->pdev->dev,
12486 				"Cannot find power management capability, aborting\n");
12487 			rc = -EIO;
12488 			goto err_out_release;
12489 		}
12490 	}
12491 
12492 	if (!pci_is_pcie(pdev)) {
12493 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12494 		rc = -EIO;
12495 		goto err_out_release;
12496 	}
12497 
12498 	rc = bnx2x_set_coherency_mask(bp);
12499 	if (rc)
12500 		goto err_out_release;
12501 
12502 	dev->mem_start = pci_resource_start(pdev, 0);
12503 	dev->base_addr = dev->mem_start;
12504 	dev->mem_end = pci_resource_end(pdev, 0);
12505 
12506 	dev->irq = pdev->irq;
12507 
12508 	bp->regview = pci_ioremap_bar(pdev, 0);
12509 	if (!bp->regview) {
12510 		dev_err(&bp->pdev->dev,
12511 			"Cannot map register space, aborting\n");
12512 		rc = -ENOMEM;
12513 		goto err_out_release;
12514 	}
12515 
12516 	/* In E1/E1H use pci device function given by kernel.
12517 	 * In E2/E3 read physical function from ME register since these chips
12518 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12519 	 * (depending on hypervisor).
12520 	 */
12521 	if (chip_is_e1x) {
12522 		bp->pf_num = PCI_FUNC(pdev->devfn);
12523 	} else {
12524 		/* chip is E2/3*/
12525 		pci_read_config_dword(bp->pdev,
12526 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12527 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12528 				  ME_REG_ABS_PF_NUM_SHIFT);
12529 	}
12530 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12531 
12532 	/* clean indirect addresses */
12533 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12534 			       PCICFG_VENDOR_ID_OFFSET);
12535 
12536 	/* AER (Advanced Error reporting) configuration */
12537 	rc = pci_enable_pcie_error_reporting(pdev);
12538 	if (!rc)
12539 		bp->flags |= AER_ENABLED;
12540 	else
12541 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12542 
12543 	/*
12544 	 * Clean the following indirect addresses for all functions since it
12545 	 * is not used by the driver.
12546 	 */
12547 	if (IS_PF(bp)) {
12548 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12549 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12550 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12551 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12552 
12553 		if (chip_is_e1x) {
12554 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12555 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12556 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12557 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12558 		}
12559 
12560 		/* Enable internal target-read (in case we are probed after PF
12561 		 * FLR). Must be done prior to any BAR read access. Only for
12562 		 * 57712 and up
12563 		 */
12564 		if (!chip_is_e1x)
12565 			REG_WR(bp,
12566 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12567 	}
12568 
12569 	dev->watchdog_timeo = TX_TIMEOUT;
12570 
12571 	dev->netdev_ops = &bnx2x_netdev_ops;
12572 	bnx2x_set_ethtool_ops(bp, dev);
12573 
12574 	dev->priv_flags |= IFF_UNICAST_FLT;
12575 
12576 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12577 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12578 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12579 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12580 	if (!CHIP_IS_E1x(bp)) {
12581 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12582 				    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12583 		dev->hw_enc_features =
12584 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12585 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12586 			NETIF_F_GSO_IPIP |
12587 			NETIF_F_GSO_SIT |
12588 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12589 	}
12590 
12591 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12592 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12593 
12594 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12595 	dev->features |= NETIF_F_HIGHDMA;
12596 
12597 	/* Add Loopback capability to the device */
12598 	dev->hw_features |= NETIF_F_LOOPBACK;
12599 
12600 #ifdef BCM_DCBNL
12601 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12602 #endif
12603 
12604 	/* get_port_hwinfo() will set prtad and mmds properly */
12605 	bp->mdio.prtad = MDIO_PRTAD_NONE;
12606 	bp->mdio.mmds = 0;
12607 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12608 	bp->mdio.dev = dev;
12609 	bp->mdio.mdio_read = bnx2x_mdio_read;
12610 	bp->mdio.mdio_write = bnx2x_mdio_write;
12611 
12612 	return 0;
12613 
12614 err_out_release:
12615 	if (atomic_read(&pdev->enable_cnt) == 1)
12616 		pci_release_regions(pdev);
12617 
12618 err_out_disable:
12619 	pci_disable_device(pdev);
12620 
12621 err_out:
12622 	return rc;
12623 }
12624 
12625 static int bnx2x_check_firmware(struct bnx2x *bp)
12626 {
12627 	const struct firmware *firmware = bp->firmware;
12628 	struct bnx2x_fw_file_hdr *fw_hdr;
12629 	struct bnx2x_fw_file_section *sections;
12630 	u32 offset, len, num_ops;
12631 	__be16 *ops_offsets;
12632 	int i;
12633 	const u8 *fw_ver;
12634 
12635 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12636 		BNX2X_ERR("Wrong FW size\n");
12637 		return -EINVAL;
12638 	}
12639 
12640 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12641 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12642 
12643 	/* Make sure none of the offsets and sizes make us read beyond
12644 	 * the end of the firmware data */
12645 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12646 		offset = be32_to_cpu(sections[i].offset);
12647 		len = be32_to_cpu(sections[i].len);
12648 		if (offset + len > firmware->size) {
12649 			BNX2X_ERR("Section %d length is out of bounds\n", i);
12650 			return -EINVAL;
12651 		}
12652 	}
12653 
12654 	/* Likewise for the init_ops offsets */
12655 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12656 	ops_offsets = (__force __be16 *)(firmware->data + offset);
12657 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12658 
12659 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12660 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12661 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12662 			return -EINVAL;
12663 		}
12664 	}
12665 
12666 	/* Check FW version */
12667 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12668 	fw_ver = firmware->data + offset;
12669 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12670 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12671 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12672 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12673 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12674 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12675 		       BCM_5710_FW_MAJOR_VERSION,
12676 		       BCM_5710_FW_MINOR_VERSION,
12677 		       BCM_5710_FW_REVISION_VERSION,
12678 		       BCM_5710_FW_ENGINEERING_VERSION);
12679 		return -EINVAL;
12680 	}
12681 
12682 	return 0;
12683 }
12684 
12685 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12686 {
12687 	const __be32 *source = (const __be32 *)_source;
12688 	u32 *target = (u32 *)_target;
12689 	u32 i;
12690 
12691 	for (i = 0; i < n/4; i++)
12692 		target[i] = be32_to_cpu(source[i]);
12693 }
12694 
12695 /*
12696    Ops array is stored in the following format:
12697    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12698  */
12699 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12700 {
12701 	const __be32 *source = (const __be32 *)_source;
12702 	struct raw_op *target = (struct raw_op *)_target;
12703 	u32 i, j, tmp;
12704 
12705 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12706 		tmp = be32_to_cpu(source[j]);
12707 		target[i].op = (tmp >> 24) & 0xff;
12708 		target[i].offset = tmp & 0xffffff;
12709 		target[i].raw_data = be32_to_cpu(source[j + 1]);
12710 	}
12711 }
12712 
12713 /* IRO array is stored in the following format:
12714  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12715  */
12716 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12717 {
12718 	const __be32 *source = (const __be32 *)_source;
12719 	struct iro *target = (struct iro *)_target;
12720 	u32 i, j, tmp;
12721 
12722 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12723 		target[i].base = be32_to_cpu(source[j]);
12724 		j++;
12725 		tmp = be32_to_cpu(source[j]);
12726 		target[i].m1 = (tmp >> 16) & 0xffff;
12727 		target[i].m2 = tmp & 0xffff;
12728 		j++;
12729 		tmp = be32_to_cpu(source[j]);
12730 		target[i].m3 = (tmp >> 16) & 0xffff;
12731 		target[i].size = tmp & 0xffff;
12732 		j++;
12733 	}
12734 }
12735 
12736 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12737 {
12738 	const __be16 *source = (const __be16 *)_source;
12739 	u16 *target = (u16 *)_target;
12740 	u32 i;
12741 
12742 	for (i = 0; i < n/2; i++)
12743 		target[i] = be16_to_cpu(source[i]);
12744 }
12745 
12746 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12747 do {									\
12748 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12749 	bp->arr = kmalloc(len, GFP_KERNEL);				\
12750 	if (!bp->arr)							\
12751 		goto lbl;						\
12752 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12753 	     (u8 *)bp->arr, len);					\
12754 } while (0)
12755 
12756 static int bnx2x_init_firmware(struct bnx2x *bp)
12757 {
12758 	const char *fw_file_name;
12759 	struct bnx2x_fw_file_hdr *fw_hdr;
12760 	int rc;
12761 
12762 	if (bp->firmware)
12763 		return 0;
12764 
12765 	if (CHIP_IS_E1(bp))
12766 		fw_file_name = FW_FILE_NAME_E1;
12767 	else if (CHIP_IS_E1H(bp))
12768 		fw_file_name = FW_FILE_NAME_E1H;
12769 	else if (!CHIP_IS_E1x(bp))
12770 		fw_file_name = FW_FILE_NAME_E2;
12771 	else {
12772 		BNX2X_ERR("Unsupported chip revision\n");
12773 		return -EINVAL;
12774 	}
12775 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12776 
12777 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12778 	if (rc) {
12779 		BNX2X_ERR("Can't load firmware file %s\n",
12780 			  fw_file_name);
12781 		goto request_firmware_exit;
12782 	}
12783 
12784 	rc = bnx2x_check_firmware(bp);
12785 	if (rc) {
12786 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12787 		goto request_firmware_exit;
12788 	}
12789 
12790 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12791 
12792 	/* Initialize the pointers to the init arrays */
12793 	/* Blob */
12794 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12795 
12796 	/* Opcodes */
12797 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12798 
12799 	/* Offsets */
12800 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12801 			    be16_to_cpu_n);
12802 
12803 	/* STORMs firmware */
12804 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12805 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12806 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12807 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12808 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12809 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12810 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12811 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12812 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12813 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12814 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12815 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12816 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12817 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12818 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12819 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12820 	/* IRO */
12821 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12822 
12823 	return 0;
12824 
12825 iro_alloc_err:
12826 	kfree(bp->init_ops_offsets);
12827 init_offsets_alloc_err:
12828 	kfree(bp->init_ops);
12829 init_ops_alloc_err:
12830 	kfree(bp->init_data);
12831 request_firmware_exit:
12832 	release_firmware(bp->firmware);
12833 	bp->firmware = NULL;
12834 
12835 	return rc;
12836 }
12837 
12838 static void bnx2x_release_firmware(struct bnx2x *bp)
12839 {
12840 	kfree(bp->init_ops_offsets);
12841 	kfree(bp->init_ops);
12842 	kfree(bp->init_data);
12843 	release_firmware(bp->firmware);
12844 	bp->firmware = NULL;
12845 }
12846 
12847 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12848 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12849 	.init_hw_cmn      = bnx2x_init_hw_common,
12850 	.init_hw_port     = bnx2x_init_hw_port,
12851 	.init_hw_func     = bnx2x_init_hw_func,
12852 
12853 	.reset_hw_cmn     = bnx2x_reset_common,
12854 	.reset_hw_port    = bnx2x_reset_port,
12855 	.reset_hw_func    = bnx2x_reset_func,
12856 
12857 	.gunzip_init      = bnx2x_gunzip_init,
12858 	.gunzip_end       = bnx2x_gunzip_end,
12859 
12860 	.init_fw          = bnx2x_init_firmware,
12861 	.release_fw       = bnx2x_release_firmware,
12862 };
12863 
12864 void bnx2x__init_func_obj(struct bnx2x *bp)
12865 {
12866 	/* Prepare DMAE related driver resources */
12867 	bnx2x_setup_dmae(bp);
12868 
12869 	bnx2x_init_func_obj(bp, &bp->func_obj,
12870 			    bnx2x_sp(bp, func_rdata),
12871 			    bnx2x_sp_mapping(bp, func_rdata),
12872 			    bnx2x_sp(bp, func_afex_rdata),
12873 			    bnx2x_sp_mapping(bp, func_afex_rdata),
12874 			    &bnx2x_func_sp_drv);
12875 }
12876 
12877 /* must be called after sriov-enable */
12878 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12879 {
12880 	int cid_count = BNX2X_L2_MAX_CID(bp);
12881 
12882 	if (IS_SRIOV(bp))
12883 		cid_count += BNX2X_VF_CIDS;
12884 
12885 	if (CNIC_SUPPORT(bp))
12886 		cid_count += CNIC_CID_MAX;
12887 
12888 	return roundup(cid_count, QM_CID_ROUND);
12889 }
12890 
12891 /**
12892  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12893  *
12894  * @dev:	pci device
12895  *
12896  */
12897 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12898 {
12899 	int index;
12900 	u16 control = 0;
12901 
12902 	/*
12903 	 * If MSI-X is not supported - return number of SBs needed to support
12904 	 * one fast path queue: one FP queue + SB for CNIC
12905 	 */
12906 	if (!pdev->msix_cap) {
12907 		dev_info(&pdev->dev, "no msix capability found\n");
12908 		return 1 + cnic_cnt;
12909 	}
12910 	dev_info(&pdev->dev, "msix capability found\n");
12911 
12912 	/*
12913 	 * The value in the PCI configuration space is the index of the last
12914 	 * entry, namely one less than the actual size of the table, which is
12915 	 * exactly what we want to return from this function: number of all SBs
12916 	 * without the default SB.
12917 	 * For VFs there is no default SB, then we return (index+1).
12918 	 */
12919 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12920 
12921 	index = control & PCI_MSIX_FLAGS_QSIZE;
12922 
12923 	return index;
12924 }
12925 
12926 static int set_max_cos_est(int chip_id)
12927 {
12928 	switch (chip_id) {
12929 	case BCM57710:
12930 	case BCM57711:
12931 	case BCM57711E:
12932 		return BNX2X_MULTI_TX_COS_E1X;
12933 	case BCM57712:
12934 	case BCM57712_MF:
12935 		return BNX2X_MULTI_TX_COS_E2_E3A0;
12936 	case BCM57800:
12937 	case BCM57800_MF:
12938 	case BCM57810:
12939 	case BCM57810_MF:
12940 	case BCM57840_4_10:
12941 	case BCM57840_2_20:
12942 	case BCM57840_O:
12943 	case BCM57840_MFO:
12944 	case BCM57840_MF:
12945 	case BCM57811:
12946 	case BCM57811_MF:
12947 		return BNX2X_MULTI_TX_COS_E3B0;
12948 	case BCM57712_VF:
12949 	case BCM57800_VF:
12950 	case BCM57810_VF:
12951 	case BCM57840_VF:
12952 	case BCM57811_VF:
12953 		return 1;
12954 	default:
12955 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
12956 		return -ENODEV;
12957 	}
12958 }
12959 
12960 static int set_is_vf(int chip_id)
12961 {
12962 	switch (chip_id) {
12963 	case BCM57712_VF:
12964 	case BCM57800_VF:
12965 	case BCM57810_VF:
12966 	case BCM57840_VF:
12967 	case BCM57811_VF:
12968 		return true;
12969 	default:
12970 		return false;
12971 	}
12972 }
12973 
12974 static int bnx2x_init_one(struct pci_dev *pdev,
12975 				    const struct pci_device_id *ent)
12976 {
12977 	struct net_device *dev = NULL;
12978 	struct bnx2x *bp;
12979 	enum pcie_link_width pcie_width;
12980 	enum pci_bus_speed pcie_speed;
12981 	int rc, max_non_def_sbs;
12982 	int rx_count, tx_count, rss_count, doorbell_size;
12983 	int max_cos_est;
12984 	bool is_vf;
12985 	int cnic_cnt;
12986 
12987 	/* An estimated maximum supported CoS number according to the chip
12988 	 * version.
12989 	 * We will try to roughly estimate the maximum number of CoSes this chip
12990 	 * may support in order to minimize the memory allocated for Tx
12991 	 * netdev_queue's. This number will be accurately calculated during the
12992 	 * initialization of bp->max_cos based on the chip versions AND chip
12993 	 * revision in the bnx2x_init_bp().
12994 	 */
12995 	max_cos_est = set_max_cos_est(ent->driver_data);
12996 	if (max_cos_est < 0)
12997 		return max_cos_est;
12998 	is_vf = set_is_vf(ent->driver_data);
12999 	cnic_cnt = is_vf ? 0 : 1;
13000 
13001 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13002 
13003 	/* add another SB for VF as it has no default SB */
13004 	max_non_def_sbs += is_vf ? 1 : 0;
13005 
13006 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13007 	rss_count = max_non_def_sbs - cnic_cnt;
13008 
13009 	if (rss_count < 1)
13010 		return -EINVAL;
13011 
13012 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13013 	rx_count = rss_count + cnic_cnt;
13014 
13015 	/* Maximum number of netdev Tx queues:
13016 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13017 	 */
13018 	tx_count = rss_count * max_cos_est + cnic_cnt;
13019 
13020 	/* dev zeroed in init_etherdev */
13021 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13022 	if (!dev)
13023 		return -ENOMEM;
13024 
13025 	bp = netdev_priv(dev);
13026 
13027 	bp->flags = 0;
13028 	if (is_vf)
13029 		bp->flags |= IS_VF_FLAG;
13030 
13031 	bp->igu_sb_cnt = max_non_def_sbs;
13032 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13033 	bp->msg_enable = debug;
13034 	bp->cnic_support = cnic_cnt;
13035 	bp->cnic_probe = bnx2x_cnic_probe;
13036 
13037 	pci_set_drvdata(pdev, dev);
13038 
13039 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13040 	if (rc < 0) {
13041 		free_netdev(dev);
13042 		return rc;
13043 	}
13044 
13045 	BNX2X_DEV_INFO("This is a %s function\n",
13046 		       IS_PF(bp) ? "physical" : "virtual");
13047 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13048 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13049 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13050 		       tx_count, rx_count);
13051 
13052 	rc = bnx2x_init_bp(bp);
13053 	if (rc)
13054 		goto init_one_exit;
13055 
13056 	/* Map doorbells here as we need the real value of bp->max_cos which
13057 	 * is initialized in bnx2x_init_bp() to determine the number of
13058 	 * l2 connections.
13059 	 */
13060 	if (IS_VF(bp)) {
13061 		bp->doorbells = bnx2x_vf_doorbells(bp);
13062 		rc = bnx2x_vf_pci_alloc(bp);
13063 		if (rc)
13064 			goto init_one_exit;
13065 	} else {
13066 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13067 		if (doorbell_size > pci_resource_len(pdev, 2)) {
13068 			dev_err(&bp->pdev->dev,
13069 				"Cannot map doorbells, bar size too small, aborting\n");
13070 			rc = -ENOMEM;
13071 			goto init_one_exit;
13072 		}
13073 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13074 						doorbell_size);
13075 	}
13076 	if (!bp->doorbells) {
13077 		dev_err(&bp->pdev->dev,
13078 			"Cannot map doorbell space, aborting\n");
13079 		rc = -ENOMEM;
13080 		goto init_one_exit;
13081 	}
13082 
13083 	if (IS_VF(bp)) {
13084 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13085 		if (rc)
13086 			goto init_one_exit;
13087 	}
13088 
13089 	/* Enable SRIOV if capability found in configuration space */
13090 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13091 	if (rc)
13092 		goto init_one_exit;
13093 
13094 	/* calc qm_cid_count */
13095 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13096 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13097 
13098 	/* disable FCOE L2 queue for E1x*/
13099 	if (CHIP_IS_E1x(bp))
13100 		bp->flags |= NO_FCOE_FLAG;
13101 
13102 	/* Set bp->num_queues for MSI-X mode*/
13103 	bnx2x_set_num_queues(bp);
13104 
13105 	/* Configure interrupt mode: try to enable MSI-X/MSI if
13106 	 * needed.
13107 	 */
13108 	rc = bnx2x_set_int_mode(bp);
13109 	if (rc) {
13110 		dev_err(&pdev->dev, "Cannot set interrupts\n");
13111 		goto init_one_exit;
13112 	}
13113 	BNX2X_DEV_INFO("set interrupts successfully\n");
13114 
13115 	/* register the net device */
13116 	rc = register_netdev(dev);
13117 	if (rc) {
13118 		dev_err(&pdev->dev, "Cannot register net device\n");
13119 		goto init_one_exit;
13120 	}
13121 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13122 
13123 	if (!NO_FCOE(bp)) {
13124 		/* Add storage MAC address */
13125 		rtnl_lock();
13126 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13127 		rtnl_unlock();
13128 	}
13129 	if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13130 	    pcie_speed == PCI_SPEED_UNKNOWN ||
13131 	    pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13132 		BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13133 	else
13134 		BNX2X_DEV_INFO(
13135 		       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13136 		       board_info[ent->driver_data].name,
13137 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13138 		       pcie_width,
13139 		       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13140 		       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13141 		       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13142 		       "Unknown",
13143 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13144 
13145 	return 0;
13146 
13147 init_one_exit:
13148 	bnx2x_disable_pcie_error_reporting(bp);
13149 
13150 	if (bp->regview)
13151 		iounmap(bp->regview);
13152 
13153 	if (IS_PF(bp) && bp->doorbells)
13154 		iounmap(bp->doorbells);
13155 
13156 	free_netdev(dev);
13157 
13158 	if (atomic_read(&pdev->enable_cnt) == 1)
13159 		pci_release_regions(pdev);
13160 
13161 	pci_disable_device(pdev);
13162 
13163 	return rc;
13164 }
13165 
13166 static void __bnx2x_remove(struct pci_dev *pdev,
13167 			   struct net_device *dev,
13168 			   struct bnx2x *bp,
13169 			   bool remove_netdev)
13170 {
13171 	/* Delete storage MAC address */
13172 	if (!NO_FCOE(bp)) {
13173 		rtnl_lock();
13174 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13175 		rtnl_unlock();
13176 	}
13177 
13178 #ifdef BCM_DCBNL
13179 	/* Delete app tlvs from dcbnl */
13180 	bnx2x_dcbnl_update_applist(bp, true);
13181 #endif
13182 
13183 	if (IS_PF(bp) &&
13184 	    !BP_NOMCP(bp) &&
13185 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13186 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13187 
13188 	/* Close the interface - either directly or implicitly */
13189 	if (remove_netdev) {
13190 		unregister_netdev(dev);
13191 	} else {
13192 		rtnl_lock();
13193 		dev_close(dev);
13194 		rtnl_unlock();
13195 	}
13196 
13197 	bnx2x_iov_remove_one(bp);
13198 
13199 	/* Power on: we can't let PCI layer write to us while we are in D3 */
13200 	if (IS_PF(bp))
13201 		bnx2x_set_power_state(bp, PCI_D0);
13202 
13203 	/* Disable MSI/MSI-X */
13204 	bnx2x_disable_msi(bp);
13205 
13206 	/* Power off */
13207 	if (IS_PF(bp))
13208 		bnx2x_set_power_state(bp, PCI_D3hot);
13209 
13210 	/* Make sure RESET task is not scheduled before continuing */
13211 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
13212 
13213 	/* send message via vfpf channel to release the resources of this vf */
13214 	if (IS_VF(bp))
13215 		bnx2x_vfpf_release(bp);
13216 
13217 	/* Assumes no further PCIe PM changes will occur */
13218 	if (system_state == SYSTEM_POWER_OFF) {
13219 		pci_wake_from_d3(pdev, bp->wol);
13220 		pci_set_power_state(pdev, PCI_D3hot);
13221 	}
13222 
13223 	bnx2x_disable_pcie_error_reporting(bp);
13224 	if (remove_netdev) {
13225 		if (bp->regview)
13226 			iounmap(bp->regview);
13227 
13228 		/* For vfs, doorbells are part of the regview and were unmapped
13229 		 * along with it. FW is only loaded by PF.
13230 		 */
13231 		if (IS_PF(bp)) {
13232 			if (bp->doorbells)
13233 				iounmap(bp->doorbells);
13234 
13235 			bnx2x_release_firmware(bp);
13236 		}
13237 		bnx2x_free_mem_bp(bp);
13238 
13239 		free_netdev(dev);
13240 
13241 		if (atomic_read(&pdev->enable_cnt) == 1)
13242 			pci_release_regions(pdev);
13243 
13244 		pci_disable_device(pdev);
13245 	}
13246 }
13247 
13248 static void bnx2x_remove_one(struct pci_dev *pdev)
13249 {
13250 	struct net_device *dev = pci_get_drvdata(pdev);
13251 	struct bnx2x *bp;
13252 
13253 	if (!dev) {
13254 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13255 		return;
13256 	}
13257 	bp = netdev_priv(dev);
13258 
13259 	__bnx2x_remove(pdev, dev, bp, true);
13260 }
13261 
13262 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13263 {
13264 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13265 
13266 	bp->rx_mode = BNX2X_RX_MODE_NONE;
13267 
13268 	if (CNIC_LOADED(bp))
13269 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13270 
13271 	/* Stop Tx */
13272 	bnx2x_tx_disable(bp);
13273 	/* Delete all NAPI objects */
13274 	bnx2x_del_all_napi(bp);
13275 	if (CNIC_LOADED(bp))
13276 		bnx2x_del_all_napi_cnic(bp);
13277 	netdev_reset_tc(bp->dev);
13278 
13279 	del_timer_sync(&bp->timer);
13280 	cancel_delayed_work(&bp->sp_task);
13281 	cancel_delayed_work(&bp->period_task);
13282 
13283 	spin_lock_bh(&bp->stats_lock);
13284 	bp->stats_state = STATS_STATE_DISABLED;
13285 	spin_unlock_bh(&bp->stats_lock);
13286 
13287 	bnx2x_save_statistics(bp);
13288 
13289 	netif_carrier_off(bp->dev);
13290 
13291 	return 0;
13292 }
13293 
13294 /**
13295  * bnx2x_io_error_detected - called when PCI error is detected
13296  * @pdev: Pointer to PCI device
13297  * @state: The current pci connection state
13298  *
13299  * This function is called after a PCI bus error affecting
13300  * this device has been detected.
13301  */
13302 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13303 						pci_channel_state_t state)
13304 {
13305 	struct net_device *dev = pci_get_drvdata(pdev);
13306 	struct bnx2x *bp = netdev_priv(dev);
13307 
13308 	rtnl_lock();
13309 
13310 	BNX2X_ERR("IO error detected\n");
13311 
13312 	netif_device_detach(dev);
13313 
13314 	if (state == pci_channel_io_perm_failure) {
13315 		rtnl_unlock();
13316 		return PCI_ERS_RESULT_DISCONNECT;
13317 	}
13318 
13319 	if (netif_running(dev))
13320 		bnx2x_eeh_nic_unload(bp);
13321 
13322 	bnx2x_prev_path_mark_eeh(bp);
13323 
13324 	pci_disable_device(pdev);
13325 
13326 	rtnl_unlock();
13327 
13328 	/* Request a slot reset */
13329 	return PCI_ERS_RESULT_NEED_RESET;
13330 }
13331 
13332 /**
13333  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13334  * @pdev: Pointer to PCI device
13335  *
13336  * Restart the card from scratch, as if from a cold-boot.
13337  */
13338 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13339 {
13340 	struct net_device *dev = pci_get_drvdata(pdev);
13341 	struct bnx2x *bp = netdev_priv(dev);
13342 	int i;
13343 
13344 	rtnl_lock();
13345 	BNX2X_ERR("IO slot reset initializing...\n");
13346 	if (pci_enable_device(pdev)) {
13347 		dev_err(&pdev->dev,
13348 			"Cannot re-enable PCI device after reset\n");
13349 		rtnl_unlock();
13350 		return PCI_ERS_RESULT_DISCONNECT;
13351 	}
13352 
13353 	pci_set_master(pdev);
13354 	pci_restore_state(pdev);
13355 	pci_save_state(pdev);
13356 
13357 	if (netif_running(dev))
13358 		bnx2x_set_power_state(bp, PCI_D0);
13359 
13360 	if (netif_running(dev)) {
13361 		BNX2X_ERR("IO slot reset --> driver unload\n");
13362 
13363 		/* MCP should have been reset; Need to wait for validity */
13364 		bnx2x_init_shmem(bp);
13365 
13366 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13367 			u32 v;
13368 
13369 			v = SHMEM2_RD(bp,
13370 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13371 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13372 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13373 		}
13374 		bnx2x_drain_tx_queues(bp);
13375 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13376 		bnx2x_netif_stop(bp, 1);
13377 		bnx2x_free_irq(bp);
13378 
13379 		/* Report UNLOAD_DONE to MCP */
13380 		bnx2x_send_unload_done(bp, true);
13381 
13382 		bp->sp_state = 0;
13383 		bp->port.pmf = 0;
13384 
13385 		bnx2x_prev_unload(bp);
13386 
13387 		/* We should have reseted the engine, so It's fair to
13388 		 * assume the FW will no longer write to the bnx2x driver.
13389 		 */
13390 		bnx2x_squeeze_objects(bp);
13391 		bnx2x_free_skbs(bp);
13392 		for_each_rx_queue(bp, i)
13393 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13394 		bnx2x_free_fp_mem(bp);
13395 		bnx2x_free_mem(bp);
13396 
13397 		bp->state = BNX2X_STATE_CLOSED;
13398 	}
13399 
13400 	rtnl_unlock();
13401 
13402 	/* If AER, perform cleanup of the PCIe registers */
13403 	if (bp->flags & AER_ENABLED) {
13404 		if (pci_cleanup_aer_uncorrect_error_status(pdev))
13405 			BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13406 		else
13407 			DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13408 	}
13409 
13410 	return PCI_ERS_RESULT_RECOVERED;
13411 }
13412 
13413 /**
13414  * bnx2x_io_resume - called when traffic can start flowing again
13415  * @pdev: Pointer to PCI device
13416  *
13417  * This callback is called when the error recovery driver tells us that
13418  * its OK to resume normal operation.
13419  */
13420 static void bnx2x_io_resume(struct pci_dev *pdev)
13421 {
13422 	struct net_device *dev = pci_get_drvdata(pdev);
13423 	struct bnx2x *bp = netdev_priv(dev);
13424 
13425 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13426 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13427 		return;
13428 	}
13429 
13430 	rtnl_lock();
13431 
13432 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13433 							DRV_MSG_SEQ_NUMBER_MASK;
13434 
13435 	if (netif_running(dev))
13436 		bnx2x_nic_load(bp, LOAD_NORMAL);
13437 
13438 	netif_device_attach(dev);
13439 
13440 	rtnl_unlock();
13441 }
13442 
13443 static const struct pci_error_handlers bnx2x_err_handler = {
13444 	.error_detected = bnx2x_io_error_detected,
13445 	.slot_reset     = bnx2x_io_slot_reset,
13446 	.resume         = bnx2x_io_resume,
13447 };
13448 
13449 static void bnx2x_shutdown(struct pci_dev *pdev)
13450 {
13451 	struct net_device *dev = pci_get_drvdata(pdev);
13452 	struct bnx2x *bp;
13453 
13454 	if (!dev)
13455 		return;
13456 
13457 	bp = netdev_priv(dev);
13458 	if (!bp)
13459 		return;
13460 
13461 	rtnl_lock();
13462 	netif_device_detach(dev);
13463 	rtnl_unlock();
13464 
13465 	/* Don't remove the netdevice, as there are scenarios which will cause
13466 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13467 	 * rootfs is mounted from SAN.
13468 	 */
13469 	__bnx2x_remove(pdev, dev, bp, false);
13470 }
13471 
13472 static struct pci_driver bnx2x_pci_driver = {
13473 	.name        = DRV_MODULE_NAME,
13474 	.id_table    = bnx2x_pci_tbl,
13475 	.probe       = bnx2x_init_one,
13476 	.remove      = bnx2x_remove_one,
13477 	.suspend     = bnx2x_suspend,
13478 	.resume      = bnx2x_resume,
13479 	.err_handler = &bnx2x_err_handler,
13480 #ifdef CONFIG_BNX2X_SRIOV
13481 	.sriov_configure = bnx2x_sriov_configure,
13482 #endif
13483 	.shutdown    = bnx2x_shutdown,
13484 };
13485 
13486 static int __init bnx2x_init(void)
13487 {
13488 	int ret;
13489 
13490 	pr_info("%s", version);
13491 
13492 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13493 	if (bnx2x_wq == NULL) {
13494 		pr_err("Cannot create workqueue\n");
13495 		return -ENOMEM;
13496 	}
13497 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13498 	if (!bnx2x_iov_wq) {
13499 		pr_err("Cannot create iov workqueue\n");
13500 		destroy_workqueue(bnx2x_wq);
13501 		return -ENOMEM;
13502 	}
13503 
13504 	ret = pci_register_driver(&bnx2x_pci_driver);
13505 	if (ret) {
13506 		pr_err("Cannot register driver\n");
13507 		destroy_workqueue(bnx2x_wq);
13508 		destroy_workqueue(bnx2x_iov_wq);
13509 	}
13510 	return ret;
13511 }
13512 
13513 static void __exit bnx2x_cleanup(void)
13514 {
13515 	struct list_head *pos, *q;
13516 
13517 	pci_unregister_driver(&bnx2x_pci_driver);
13518 
13519 	destroy_workqueue(bnx2x_wq);
13520 	destroy_workqueue(bnx2x_iov_wq);
13521 
13522 	/* Free globally allocated resources */
13523 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13524 		struct bnx2x_prev_path_list *tmp =
13525 			list_entry(pos, struct bnx2x_prev_path_list, list);
13526 		list_del(pos);
13527 		kfree(tmp);
13528 	}
13529 }
13530 
13531 void bnx2x_notify_link_changed(struct bnx2x *bp)
13532 {
13533 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13534 }
13535 
13536 module_init(bnx2x_init);
13537 module_exit(bnx2x_cleanup);
13538 
13539 /**
13540  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13541  *
13542  * @bp:		driver handle
13543  * @set:	set or clear the CAM entry
13544  *
13545  * This function will wait until the ramrod completion returns.
13546  * Return 0 if success, -ENODEV if ramrod doesn't return.
13547  */
13548 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13549 {
13550 	unsigned long ramrod_flags = 0;
13551 
13552 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13553 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13554 				 &bp->iscsi_l2_mac_obj, true,
13555 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13556 }
13557 
13558 /* count denotes the number of new completions we have seen */
13559 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13560 {
13561 	struct eth_spe *spe;
13562 	int cxt_index, cxt_offset;
13563 
13564 #ifdef BNX2X_STOP_ON_ERROR
13565 	if (unlikely(bp->panic))
13566 		return;
13567 #endif
13568 
13569 	spin_lock_bh(&bp->spq_lock);
13570 	BUG_ON(bp->cnic_spq_pending < count);
13571 	bp->cnic_spq_pending -= count;
13572 
13573 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13574 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13575 				& SPE_HDR_CONN_TYPE) >>
13576 				SPE_HDR_CONN_TYPE_SHIFT;
13577 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13578 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13579 
13580 		/* Set validation for iSCSI L2 client before sending SETUP
13581 		 *  ramrod
13582 		 */
13583 		if (type == ETH_CONNECTION_TYPE) {
13584 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13585 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13586 					ILT_PAGE_CIDS;
13587 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13588 					(cxt_index * ILT_PAGE_CIDS);
13589 				bnx2x_set_ctx_validation(bp,
13590 					&bp->context[cxt_index].
13591 							 vcxt[cxt_offset].eth,
13592 					BNX2X_ISCSI_ETH_CID(bp));
13593 			}
13594 		}
13595 
13596 		/*
13597 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13598 		 * and in the air. We also check that number of outstanding
13599 		 * COMMON ramrods is not more than the EQ and SPQ can
13600 		 * accommodate.
13601 		 */
13602 		if (type == ETH_CONNECTION_TYPE) {
13603 			if (!atomic_read(&bp->cq_spq_left))
13604 				break;
13605 			else
13606 				atomic_dec(&bp->cq_spq_left);
13607 		} else if (type == NONE_CONNECTION_TYPE) {
13608 			if (!atomic_read(&bp->eq_spq_left))
13609 				break;
13610 			else
13611 				atomic_dec(&bp->eq_spq_left);
13612 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13613 			   (type == FCOE_CONNECTION_TYPE)) {
13614 			if (bp->cnic_spq_pending >=
13615 			    bp->cnic_eth_dev.max_kwqe_pending)
13616 				break;
13617 			else
13618 				bp->cnic_spq_pending++;
13619 		} else {
13620 			BNX2X_ERR("Unknown SPE type: %d\n", type);
13621 			bnx2x_panic();
13622 			break;
13623 		}
13624 
13625 		spe = bnx2x_sp_get_next(bp);
13626 		*spe = *bp->cnic_kwq_cons;
13627 
13628 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13629 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13630 
13631 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13632 			bp->cnic_kwq_cons = bp->cnic_kwq;
13633 		else
13634 			bp->cnic_kwq_cons++;
13635 	}
13636 	bnx2x_sp_prod_update(bp);
13637 	spin_unlock_bh(&bp->spq_lock);
13638 }
13639 
13640 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13641 			       struct kwqe_16 *kwqes[], u32 count)
13642 {
13643 	struct bnx2x *bp = netdev_priv(dev);
13644 	int i;
13645 
13646 #ifdef BNX2X_STOP_ON_ERROR
13647 	if (unlikely(bp->panic)) {
13648 		BNX2X_ERR("Can't post to SP queue while panic\n");
13649 		return -EIO;
13650 	}
13651 #endif
13652 
13653 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13654 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13655 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
13656 		return -EAGAIN;
13657 	}
13658 
13659 	spin_lock_bh(&bp->spq_lock);
13660 
13661 	for (i = 0; i < count; i++) {
13662 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13663 
13664 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13665 			break;
13666 
13667 		*bp->cnic_kwq_prod = *spe;
13668 
13669 		bp->cnic_kwq_pending++;
13670 
13671 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13672 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
13673 		   spe->data.update_data_addr.hi,
13674 		   spe->data.update_data_addr.lo,
13675 		   bp->cnic_kwq_pending);
13676 
13677 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13678 			bp->cnic_kwq_prod = bp->cnic_kwq;
13679 		else
13680 			bp->cnic_kwq_prod++;
13681 	}
13682 
13683 	spin_unlock_bh(&bp->spq_lock);
13684 
13685 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13686 		bnx2x_cnic_sp_post(bp, 0);
13687 
13688 	return i;
13689 }
13690 
13691 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13692 {
13693 	struct cnic_ops *c_ops;
13694 	int rc = 0;
13695 
13696 	mutex_lock(&bp->cnic_mutex);
13697 	c_ops = rcu_dereference_protected(bp->cnic_ops,
13698 					  lockdep_is_held(&bp->cnic_mutex));
13699 	if (c_ops)
13700 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13701 	mutex_unlock(&bp->cnic_mutex);
13702 
13703 	return rc;
13704 }
13705 
13706 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13707 {
13708 	struct cnic_ops *c_ops;
13709 	int rc = 0;
13710 
13711 	rcu_read_lock();
13712 	c_ops = rcu_dereference(bp->cnic_ops);
13713 	if (c_ops)
13714 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13715 	rcu_read_unlock();
13716 
13717 	return rc;
13718 }
13719 
13720 /*
13721  * for commands that have no data
13722  */
13723 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13724 {
13725 	struct cnic_ctl_info ctl = {0};
13726 
13727 	ctl.cmd = cmd;
13728 
13729 	return bnx2x_cnic_ctl_send(bp, &ctl);
13730 }
13731 
13732 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13733 {
13734 	struct cnic_ctl_info ctl = {0};
13735 
13736 	/* first we tell CNIC and only then we count this as a completion */
13737 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13738 	ctl.data.comp.cid = cid;
13739 	ctl.data.comp.error = err;
13740 
13741 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
13742 	bnx2x_cnic_sp_post(bp, 0);
13743 }
13744 
13745 /* Called with netif_addr_lock_bh() taken.
13746  * Sets an rx_mode config for an iSCSI ETH client.
13747  * Doesn't block.
13748  * Completion should be checked outside.
13749  */
13750 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13751 {
13752 	unsigned long accept_flags = 0, ramrod_flags = 0;
13753 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13754 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13755 
13756 	if (start) {
13757 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
13758 		 * because it's the only way for UIO Queue to accept
13759 		 * multicasts (in non-promiscuous mode only one Queue per
13760 		 * function will receive multicast packets (leading in our
13761 		 * case).
13762 		 */
13763 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13764 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13765 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13766 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13767 
13768 		/* Clear STOP_PENDING bit if START is requested */
13769 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13770 
13771 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13772 	} else
13773 		/* Clear START_PENDING bit if STOP is requested */
13774 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13775 
13776 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13777 		set_bit(sched_state, &bp->sp_state);
13778 	else {
13779 		__set_bit(RAMROD_RX, &ramrod_flags);
13780 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13781 				    ramrod_flags);
13782 	}
13783 }
13784 
13785 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13786 {
13787 	struct bnx2x *bp = netdev_priv(dev);
13788 	int rc = 0;
13789 
13790 	switch (ctl->cmd) {
13791 	case DRV_CTL_CTXTBL_WR_CMD: {
13792 		u32 index = ctl->data.io.offset;
13793 		dma_addr_t addr = ctl->data.io.dma_addr;
13794 
13795 		bnx2x_ilt_wr(bp, index, addr);
13796 		break;
13797 	}
13798 
13799 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13800 		int count = ctl->data.credit.credit_count;
13801 
13802 		bnx2x_cnic_sp_post(bp, count);
13803 		break;
13804 	}
13805 
13806 	/* rtnl_lock is held.  */
13807 	case DRV_CTL_START_L2_CMD: {
13808 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13809 		unsigned long sp_bits = 0;
13810 
13811 		/* Configure the iSCSI classification object */
13812 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13813 				   cp->iscsi_l2_client_id,
13814 				   cp->iscsi_l2_cid, BP_FUNC(bp),
13815 				   bnx2x_sp(bp, mac_rdata),
13816 				   bnx2x_sp_mapping(bp, mac_rdata),
13817 				   BNX2X_FILTER_MAC_PENDING,
13818 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13819 				   &bp->macs_pool);
13820 
13821 		/* Set iSCSI MAC address */
13822 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13823 		if (rc)
13824 			break;
13825 
13826 		mmiowb();
13827 		barrier();
13828 
13829 		/* Start accepting on iSCSI L2 ring */
13830 
13831 		netif_addr_lock_bh(dev);
13832 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
13833 		netif_addr_unlock_bh(dev);
13834 
13835 		/* bits to wait on */
13836 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13837 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13838 
13839 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13840 			BNX2X_ERR("rx_mode completion timed out!\n");
13841 
13842 		break;
13843 	}
13844 
13845 	/* rtnl_lock is held.  */
13846 	case DRV_CTL_STOP_L2_CMD: {
13847 		unsigned long sp_bits = 0;
13848 
13849 		/* Stop accepting on iSCSI L2 ring */
13850 		netif_addr_lock_bh(dev);
13851 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
13852 		netif_addr_unlock_bh(dev);
13853 
13854 		/* bits to wait on */
13855 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13856 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13857 
13858 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13859 			BNX2X_ERR("rx_mode completion timed out!\n");
13860 
13861 		mmiowb();
13862 		barrier();
13863 
13864 		/* Unset iSCSI L2 MAC */
13865 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13866 					BNX2X_ISCSI_ETH_MAC, true);
13867 		break;
13868 	}
13869 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13870 		int count = ctl->data.credit.credit_count;
13871 
13872 		smp_mb__before_atomic_inc();
13873 		atomic_add(count, &bp->cq_spq_left);
13874 		smp_mb__after_atomic_inc();
13875 		break;
13876 	}
13877 	case DRV_CTL_ULP_REGISTER_CMD: {
13878 		int ulp_type = ctl->data.register_data.ulp_type;
13879 
13880 		if (CHIP_IS_E3(bp)) {
13881 			int idx = BP_FW_MB_IDX(bp);
13882 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13883 			int path = BP_PATH(bp);
13884 			int port = BP_PORT(bp);
13885 			int i;
13886 			u32 scratch_offset;
13887 			u32 *host_addr;
13888 
13889 			/* first write capability to shmem2 */
13890 			if (ulp_type == CNIC_ULP_ISCSI)
13891 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13892 			else if (ulp_type == CNIC_ULP_FCOE)
13893 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13894 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13895 
13896 			if ((ulp_type != CNIC_ULP_FCOE) ||
13897 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13898 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13899 				break;
13900 
13901 			/* if reached here - should write fcoe capabilities */
13902 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13903 			if (!scratch_offset)
13904 				break;
13905 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
13906 						   fcoe_features[path][port]);
13907 			host_addr = (u32 *) &(ctl->data.register_data.
13908 					      fcoe_features);
13909 			for (i = 0; i < sizeof(struct fcoe_capabilities);
13910 			     i += 4)
13911 				REG_WR(bp, scratch_offset + i,
13912 				       *(host_addr + i/4));
13913 		}
13914 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
13915 		break;
13916 	}
13917 
13918 	case DRV_CTL_ULP_UNREGISTER_CMD: {
13919 		int ulp_type = ctl->data.ulp_type;
13920 
13921 		if (CHIP_IS_E3(bp)) {
13922 			int idx = BP_FW_MB_IDX(bp);
13923 			u32 cap;
13924 
13925 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13926 			if (ulp_type == CNIC_ULP_ISCSI)
13927 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13928 			else if (ulp_type == CNIC_ULP_FCOE)
13929 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13930 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13931 		}
13932 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
13933 		break;
13934 	}
13935 
13936 	default:
13937 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
13938 		rc = -EINVAL;
13939 	}
13940 
13941 	return rc;
13942 }
13943 
13944 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13945 {
13946 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13947 
13948 	if (bp->flags & USING_MSIX_FLAG) {
13949 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13950 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13951 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
13952 	} else {
13953 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13954 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13955 	}
13956 	if (!CHIP_IS_E1x(bp))
13957 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13958 	else
13959 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13960 
13961 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13962 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13963 	cp->irq_arr[1].status_blk = bp->def_status_blk;
13964 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13965 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13966 
13967 	cp->num_irq = 2;
13968 }
13969 
13970 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13971 {
13972 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13973 
13974 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13975 			     bnx2x_cid_ilt_lines(bp);
13976 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13977 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13978 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13979 
13980 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
13981 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
13982 	   cp->iscsi_l2_cid);
13983 
13984 	if (NO_ISCSI_OOO(bp))
13985 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13986 }
13987 
13988 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13989 			       void *data)
13990 {
13991 	struct bnx2x *bp = netdev_priv(dev);
13992 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13993 	int rc;
13994 
13995 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13996 
13997 	if (ops == NULL) {
13998 		BNX2X_ERR("NULL ops received\n");
13999 		return -EINVAL;
14000 	}
14001 
14002 	if (!CNIC_SUPPORT(bp)) {
14003 		BNX2X_ERR("Can't register CNIC when not supported\n");
14004 		return -EOPNOTSUPP;
14005 	}
14006 
14007 	if (!CNIC_LOADED(bp)) {
14008 		rc = bnx2x_load_cnic(bp);
14009 		if (rc) {
14010 			BNX2X_ERR("CNIC-related load failed\n");
14011 			return rc;
14012 		}
14013 	}
14014 
14015 	bp->cnic_enabled = true;
14016 
14017 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14018 	if (!bp->cnic_kwq)
14019 		return -ENOMEM;
14020 
14021 	bp->cnic_kwq_cons = bp->cnic_kwq;
14022 	bp->cnic_kwq_prod = bp->cnic_kwq;
14023 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14024 
14025 	bp->cnic_spq_pending = 0;
14026 	bp->cnic_kwq_pending = 0;
14027 
14028 	bp->cnic_data = data;
14029 
14030 	cp->num_irq = 0;
14031 	cp->drv_state |= CNIC_DRV_STATE_REGD;
14032 	cp->iro_arr = bp->iro_arr;
14033 
14034 	bnx2x_setup_cnic_irq_info(bp);
14035 
14036 	rcu_assign_pointer(bp->cnic_ops, ops);
14037 
14038 	/* Schedule driver to read CNIC driver versions */
14039 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14040 
14041 	return 0;
14042 }
14043 
14044 static int bnx2x_unregister_cnic(struct net_device *dev)
14045 {
14046 	struct bnx2x *bp = netdev_priv(dev);
14047 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14048 
14049 	mutex_lock(&bp->cnic_mutex);
14050 	cp->drv_state = 0;
14051 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
14052 	mutex_unlock(&bp->cnic_mutex);
14053 	synchronize_rcu();
14054 	bp->cnic_enabled = false;
14055 	kfree(bp->cnic_kwq);
14056 	bp->cnic_kwq = NULL;
14057 
14058 	return 0;
14059 }
14060 
14061 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14062 {
14063 	struct bnx2x *bp = netdev_priv(dev);
14064 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14065 
14066 	/* If both iSCSI and FCoE are disabled - return NULL in
14067 	 * order to indicate CNIC that it should not try to work
14068 	 * with this device.
14069 	 */
14070 	if (NO_ISCSI(bp) && NO_FCOE(bp))
14071 		return NULL;
14072 
14073 	cp->drv_owner = THIS_MODULE;
14074 	cp->chip_id = CHIP_ID(bp);
14075 	cp->pdev = bp->pdev;
14076 	cp->io_base = bp->regview;
14077 	cp->io_base2 = bp->doorbells;
14078 	cp->max_kwqe_pending = 8;
14079 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14080 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14081 			     bnx2x_cid_ilt_lines(bp);
14082 	cp->ctx_tbl_len = CNIC_ILT_LINES;
14083 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14084 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14085 	cp->drv_ctl = bnx2x_drv_ctl;
14086 	cp->drv_register_cnic = bnx2x_register_cnic;
14087 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14088 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14089 	cp->iscsi_l2_client_id =
14090 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14091 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14092 
14093 	if (NO_ISCSI_OOO(bp))
14094 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14095 
14096 	if (NO_ISCSI(bp))
14097 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14098 
14099 	if (NO_FCOE(bp))
14100 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14101 
14102 	BNX2X_DEV_INFO(
14103 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14104 	   cp->ctx_blk_size,
14105 	   cp->ctx_tbl_offset,
14106 	   cp->ctx_tbl_len,
14107 	   cp->starting_cid);
14108 	return cp;
14109 }
14110 
14111 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14112 {
14113 	struct bnx2x *bp = fp->bp;
14114 	u32 offset = BAR_USTRORM_INTMEM;
14115 
14116 	if (IS_VF(bp))
14117 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
14118 	else if (!CHIP_IS_E1x(bp))
14119 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14120 	else
14121 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14122 
14123 	return offset;
14124 }
14125 
14126 /* called only on E1H or E2.
14127  * When pretending to be PF, the pretend value is the function number 0...7
14128  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14129  * combination
14130  */
14131 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14132 {
14133 	u32 pretend_reg;
14134 
14135 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14136 		return -1;
14137 
14138 	/* get my own pretend register */
14139 	pretend_reg = bnx2x_get_pretend_reg(bp);
14140 	REG_WR(bp, pretend_reg, pretend_func_val);
14141 	REG_RD(bp, pretend_reg);
14142 	return 0;
14143 }
14144