1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2011 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/kernel.h>
21 #include <linux/device.h>  /* for dev_info() */
22 #include <linux/timer.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/pci.h>
28 #include <linux/init.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/bitops.h>
34 #include <linux/irq.h>
35 #include <linux/delay.h>
36 #include <asm/byteorder.h>
37 #include <linux/time.h>
38 #include <linux/ethtool.h>
39 #include <linux/mii.h>
40 #include <linux/if_vlan.h>
41 #include <net/ip.h>
42 #include <net/ipv6.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <linux/workqueue.h>
47 #include <linux/crc32.h>
48 #include <linux/crc32c.h>
49 #include <linux/prefetch.h>
50 #include <linux/zlib.h>
51 #include <linux/io.h>
52 #include <linux/stringify.h>
53 #include <linux/vmalloc.h>
54 
55 #include "bnx2x.h"
56 #include "bnx2x_init.h"
57 #include "bnx2x_init_ops.h"
58 #include "bnx2x_cmn.h"
59 #include "bnx2x_dcb.h"
60 #include "bnx2x_sp.h"
61 
62 #include <linux/firmware.h>
63 #include "bnx2x_fw_file_hdr.h"
64 /* FW files */
65 #define FW_FILE_VERSION					\
66 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
67 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
68 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
69 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
70 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
71 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
72 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
73 
74 /* Time in jiffies before concluding the transmitter is hung */
75 #define TX_TIMEOUT		(5*HZ)
76 
77 static char version[] __devinitdata =
78 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
79 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
80 
81 MODULE_AUTHOR("Eliezer Tamir");
82 MODULE_DESCRIPTION("Broadcom NetXtreme II "
83 		   "BCM57710/57711/57711E/"
84 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
85 		   "57840/57840_MF Driver");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_MODULE_VERSION);
88 MODULE_FIRMWARE(FW_FILE_NAME_E1);
89 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
90 MODULE_FIRMWARE(FW_FILE_NAME_E2);
91 
92 static int multi_mode = 1;
93 module_param(multi_mode, int, 0);
94 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
95 			     "(0 Disable; 1 Enable (default))");
96 
97 int num_queues;
98 module_param(num_queues, int, 0);
99 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
100 				" (default is as a number of CPUs)");
101 
102 static int disable_tpa;
103 module_param(disable_tpa, int, 0);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105 
106 #define INT_MODE_INTx			1
107 #define INT_MODE_MSI			2
108 static int int_mode;
109 module_param(int_mode, int, 0);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111 				"(1 INT#x; 2 MSI)");
112 
113 static int dropless_fc;
114 module_param(dropless_fc, int, 0);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116 
117 static int poll;
118 module_param(poll, int, 0);
119 MODULE_PARM_DESC(poll, " Use polling (for debug)");
120 
121 static int mrrs = -1;
122 module_param(mrrs, int, 0);
123 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
124 
125 static int debug;
126 module_param(debug, int, 0);
127 MODULE_PARM_DESC(debug, " Default debug msglevel");
128 
129 
130 
131 struct workqueue_struct *bnx2x_wq;
132 
133 enum bnx2x_board_type {
134 	BCM57710 = 0,
135 	BCM57711,
136 	BCM57711E,
137 	BCM57712,
138 	BCM57712_MF,
139 	BCM57800,
140 	BCM57800_MF,
141 	BCM57810,
142 	BCM57810_MF,
143 	BCM57840,
144 	BCM57840_MF
145 };
146 
147 /* indexed by board_type, above */
148 static struct {
149 	char *name;
150 } board_info[] __devinitdata = {
151 	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
152 	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
153 	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
154 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
155 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
156 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
157 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
158 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
159 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
160 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
161 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
162 						"Ethernet Multi Function"}
163 };
164 
165 #ifndef PCI_DEVICE_ID_NX2_57710
166 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
167 #endif
168 #ifndef PCI_DEVICE_ID_NX2_57711
169 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
170 #endif
171 #ifndef PCI_DEVICE_ID_NX2_57711E
172 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57712
175 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57712_MF
178 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57800
181 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57800_MF
184 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57810
187 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57810_MF
190 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57840
193 #define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57840_MF
196 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
197 #endif
198 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
199 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
200 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
201 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
202 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
203 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
204 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
205 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
206 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
207 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
208 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
209 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
210 	{ 0 }
211 };
212 
213 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
214 
215 /****************************************************************************
216 * General service functions
217 ****************************************************************************/
218 
219 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
220 				       u32 addr, dma_addr_t mapping)
221 {
222 	REG_WR(bp,  addr, U64_LO(mapping));
223 	REG_WR(bp,  addr + 4, U64_HI(mapping));
224 }
225 
226 static inline void storm_memset_spq_addr(struct bnx2x *bp,
227 					 dma_addr_t mapping, u16 abs_fid)
228 {
229 	u32 addr = XSEM_REG_FAST_MEMORY +
230 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
231 
232 	__storm_memset_dma_mapping(bp, addr, mapping);
233 }
234 
235 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
236 					 u16 pf_id)
237 {
238 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
239 		pf_id);
240 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
241 		pf_id);
242 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
243 		pf_id);
244 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
245 		pf_id);
246 }
247 
248 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
249 					u8 enable)
250 {
251 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
252 		enable);
253 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
254 		enable);
255 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
256 		enable);
257 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
258 		enable);
259 }
260 
261 static inline void storm_memset_eq_data(struct bnx2x *bp,
262 				struct event_ring_data *eq_data,
263 				u16 pfid)
264 {
265 	size_t size = sizeof(struct event_ring_data);
266 
267 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
268 
269 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
270 }
271 
272 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
273 					u16 pfid)
274 {
275 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
276 	REG_WR16(bp, addr, eq_prod);
277 }
278 
279 /* used only at init
280  * locking is done by mcp
281  */
282 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
283 {
284 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
285 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
286 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
287 			       PCICFG_VENDOR_ID_OFFSET);
288 }
289 
290 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
291 {
292 	u32 val;
293 
294 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
295 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
296 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
297 			       PCICFG_VENDOR_ID_OFFSET);
298 
299 	return val;
300 }
301 
302 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
303 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
304 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
305 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
306 #define DMAE_DP_DST_NONE	"dst_addr [none]"
307 
308 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
309 			  int msglvl)
310 {
311 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
312 
313 	switch (dmae->opcode & DMAE_COMMAND_DST) {
314 	case DMAE_CMD_DST_PCI:
315 		if (src_type == DMAE_CMD_SRC_PCI)
316 			DP(msglvl, "DMAE: opcode 0x%08x\n"
317 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
318 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
319 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
320 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
321 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
322 			   dmae->comp_val);
323 		else
324 			DP(msglvl, "DMAE: opcode 0x%08x\n"
325 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
326 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
327 			   dmae->opcode, dmae->src_addr_lo >> 2,
328 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
329 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
330 			   dmae->comp_val);
331 		break;
332 	case DMAE_CMD_DST_GRC:
333 		if (src_type == DMAE_CMD_SRC_PCI)
334 			DP(msglvl, "DMAE: opcode 0x%08x\n"
335 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
336 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
337 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
338 			   dmae->len, dmae->dst_addr_lo >> 2,
339 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
340 			   dmae->comp_val);
341 		else
342 			DP(msglvl, "DMAE: opcode 0x%08x\n"
343 			   "src [%08x], len [%d*4], dst [%08x]\n"
344 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
345 			   dmae->opcode, dmae->src_addr_lo >> 2,
346 			   dmae->len, dmae->dst_addr_lo >> 2,
347 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
348 			   dmae->comp_val);
349 		break;
350 	default:
351 		if (src_type == DMAE_CMD_SRC_PCI)
352 			DP(msglvl, "DMAE: opcode 0x%08x\n"
353 			   DP_LEVEL "src_addr [%x:%08x]  len [%d * 4]  "
354 				    "dst_addr [none]\n"
355 			   DP_LEVEL "comp_addr [%x:%08x]  comp_val 0x%08x\n",
356 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
357 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
358 			   dmae->comp_val);
359 		else
360 			DP(msglvl, "DMAE: opcode 0x%08x\n"
361 			   DP_LEVEL "src_addr [%08x]  len [%d * 4]  "
362 				    "dst_addr [none]\n"
363 			   DP_LEVEL "comp_addr [%x:%08x]  comp_val 0x%08x\n",
364 			   dmae->opcode, dmae->src_addr_lo >> 2,
365 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
366 			   dmae->comp_val);
367 		break;
368 	}
369 
370 }
371 
372 /* copy command into DMAE command memory and set DMAE command go */
373 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
374 {
375 	u32 cmd_offset;
376 	int i;
377 
378 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
379 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
380 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
381 
382 		DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
383 		   idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
384 	}
385 	REG_WR(bp, dmae_reg_go_c[idx], 1);
386 }
387 
388 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
389 {
390 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
391 			   DMAE_CMD_C_ENABLE);
392 }
393 
394 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
395 {
396 	return opcode & ~DMAE_CMD_SRC_RESET;
397 }
398 
399 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
400 			     bool with_comp, u8 comp_type)
401 {
402 	u32 opcode = 0;
403 
404 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
405 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
406 
407 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
408 
409 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
410 	opcode |= ((BP_E1HVN(bp) << DMAE_CMD_E1HVN_SHIFT) |
411 		   (BP_E1HVN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
412 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
413 
414 #ifdef __BIG_ENDIAN
415 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
416 #else
417 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
418 #endif
419 	if (with_comp)
420 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
421 	return opcode;
422 }
423 
424 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
425 				      struct dmae_command *dmae,
426 				      u8 src_type, u8 dst_type)
427 {
428 	memset(dmae, 0, sizeof(struct dmae_command));
429 
430 	/* set the opcode */
431 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
432 					 true, DMAE_COMP_PCI);
433 
434 	/* fill in the completion parameters */
435 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
436 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
437 	dmae->comp_val = DMAE_COMP_VAL;
438 }
439 
440 /* issue a dmae command over the init-channel and wailt for completion */
441 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
442 				      struct dmae_command *dmae)
443 {
444 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
445 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
446 	int rc = 0;
447 
448 	DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
449 	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
450 	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
451 
452 	/*
453 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
454 	 * as long as this code is called both from syscall context and
455 	 * from ndo_set_rx_mode() flow that may be called from BH.
456 	 */
457 	spin_lock_bh(&bp->dmae_lock);
458 
459 	/* reset completion */
460 	*wb_comp = 0;
461 
462 	/* post the command on the channel used for initializations */
463 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
464 
465 	/* wait for completion */
466 	udelay(5);
467 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
468 		DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
469 
470 		if (!cnt) {
471 			BNX2X_ERR("DMAE timeout!\n");
472 			rc = DMAE_TIMEOUT;
473 			goto unlock;
474 		}
475 		cnt--;
476 		udelay(50);
477 	}
478 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
479 		BNX2X_ERR("DMAE PCI error!\n");
480 		rc = DMAE_PCI_ERROR;
481 	}
482 
483 	DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
484 	   bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
485 	   bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
486 
487 unlock:
488 	spin_unlock_bh(&bp->dmae_lock);
489 	return rc;
490 }
491 
492 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
493 		      u32 len32)
494 {
495 	struct dmae_command dmae;
496 
497 	if (!bp->dmae_ready) {
498 		u32 *data = bnx2x_sp(bp, wb_data[0]);
499 
500 		DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x  len32 %d)"
501 		   "  using indirect\n", dst_addr, len32);
502 		bnx2x_init_ind_wr(bp, dst_addr, data, len32);
503 		return;
504 	}
505 
506 	/* set opcode and fixed command fields */
507 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
508 
509 	/* fill in addresses and len */
510 	dmae.src_addr_lo = U64_LO(dma_addr);
511 	dmae.src_addr_hi = U64_HI(dma_addr);
512 	dmae.dst_addr_lo = dst_addr >> 2;
513 	dmae.dst_addr_hi = 0;
514 	dmae.len = len32;
515 
516 	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
517 
518 	/* issue the command and wait for completion */
519 	bnx2x_issue_dmae_with_comp(bp, &dmae);
520 }
521 
522 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
523 {
524 	struct dmae_command dmae;
525 
526 	if (!bp->dmae_ready) {
527 		u32 *data = bnx2x_sp(bp, wb_data[0]);
528 		int i;
529 
530 		DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x  len32 %d)"
531 		   "  using indirect\n", src_addr, len32);
532 		for (i = 0; i < len32; i++)
533 			data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
534 		return;
535 	}
536 
537 	/* set opcode and fixed command fields */
538 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
539 
540 	/* fill in addresses and len */
541 	dmae.src_addr_lo = src_addr >> 2;
542 	dmae.src_addr_hi = 0;
543 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
544 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
545 	dmae.len = len32;
546 
547 	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
548 
549 	/* issue the command and wait for completion */
550 	bnx2x_issue_dmae_with_comp(bp, &dmae);
551 }
552 
553 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
554 				      u32 addr, u32 len)
555 {
556 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
557 	int offset = 0;
558 
559 	while (len > dmae_wr_max) {
560 		bnx2x_write_dmae(bp, phys_addr + offset,
561 				 addr + offset, dmae_wr_max);
562 		offset += dmae_wr_max * 4;
563 		len -= dmae_wr_max;
564 	}
565 
566 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
567 }
568 
569 /* used only for slowpath so not inlined */
570 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
571 {
572 	u32 wb_write[2];
573 
574 	wb_write[0] = val_hi;
575 	wb_write[1] = val_lo;
576 	REG_WR_DMAE(bp, reg, wb_write, 2);
577 }
578 
579 #ifdef USE_WB_RD
580 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
581 {
582 	u32 wb_data[2];
583 
584 	REG_RD_DMAE(bp, reg, wb_data, 2);
585 
586 	return HILO_U64(wb_data[0], wb_data[1]);
587 }
588 #endif
589 
590 static int bnx2x_mc_assert(struct bnx2x *bp)
591 {
592 	char last_idx;
593 	int i, rc = 0;
594 	u32 row0, row1, row2, row3;
595 
596 	/* XSTORM */
597 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
598 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
599 	if (last_idx)
600 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
601 
602 	/* print the asserts */
603 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
604 
605 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
606 			      XSTORM_ASSERT_LIST_OFFSET(i));
607 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
608 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
609 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
610 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
611 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
612 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
613 
614 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
615 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
616 				  " 0x%08x 0x%08x 0x%08x\n",
617 				  i, row3, row2, row1, row0);
618 			rc++;
619 		} else {
620 			break;
621 		}
622 	}
623 
624 	/* TSTORM */
625 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
626 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
627 	if (last_idx)
628 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
629 
630 	/* print the asserts */
631 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
632 
633 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
634 			      TSTORM_ASSERT_LIST_OFFSET(i));
635 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
636 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
637 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
638 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
639 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
640 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
641 
642 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
643 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
644 				  " 0x%08x 0x%08x 0x%08x\n",
645 				  i, row3, row2, row1, row0);
646 			rc++;
647 		} else {
648 			break;
649 		}
650 	}
651 
652 	/* CSTORM */
653 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
654 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
655 	if (last_idx)
656 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
657 
658 	/* print the asserts */
659 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
660 
661 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
662 			      CSTORM_ASSERT_LIST_OFFSET(i));
663 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
664 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
665 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
666 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
667 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
668 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
669 
670 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
671 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
672 				  " 0x%08x 0x%08x 0x%08x\n",
673 				  i, row3, row2, row1, row0);
674 			rc++;
675 		} else {
676 			break;
677 		}
678 	}
679 
680 	/* USTORM */
681 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
682 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
683 	if (last_idx)
684 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
685 
686 	/* print the asserts */
687 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
688 
689 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
690 			      USTORM_ASSERT_LIST_OFFSET(i));
691 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
692 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
693 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
694 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
695 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
696 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
697 
698 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
699 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
700 				  " 0x%08x 0x%08x 0x%08x\n",
701 				  i, row3, row2, row1, row0);
702 			rc++;
703 		} else {
704 			break;
705 		}
706 	}
707 
708 	return rc;
709 }
710 
711 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
712 {
713 	u32 addr, val;
714 	u32 mark, offset;
715 	__be32 data[9];
716 	int word;
717 	u32 trace_shmem_base;
718 	if (BP_NOMCP(bp)) {
719 		BNX2X_ERR("NO MCP - can not dump\n");
720 		return;
721 	}
722 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
723 		(bp->common.bc_ver & 0xff0000) >> 16,
724 		(bp->common.bc_ver & 0xff00) >> 8,
725 		(bp->common.bc_ver & 0xff));
726 
727 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
728 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
729 		printk("%s" "MCP PC at 0x%x\n", lvl, val);
730 
731 	if (BP_PATH(bp) == 0)
732 		trace_shmem_base = bp->common.shmem_base;
733 	else
734 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
735 	addr = trace_shmem_base - 0x0800 + 4;
736 	mark = REG_RD(bp, addr);
737 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
738 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
739 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
740 
741 	printk("%s", lvl);
742 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
743 		for (word = 0; word < 8; word++)
744 			data[word] = htonl(REG_RD(bp, offset + 4*word));
745 		data[8] = 0x0;
746 		pr_cont("%s", (char *)data);
747 	}
748 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
749 		for (word = 0; word < 8; word++)
750 			data[word] = htonl(REG_RD(bp, offset + 4*word));
751 		data[8] = 0x0;
752 		pr_cont("%s", (char *)data);
753 	}
754 	printk("%s" "end of fw dump\n", lvl);
755 }
756 
757 static inline void bnx2x_fw_dump(struct bnx2x *bp)
758 {
759 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
760 }
761 
762 void bnx2x_panic_dump(struct bnx2x *bp)
763 {
764 	int i;
765 	u16 j;
766 	struct hc_sp_status_block_data sp_sb_data;
767 	int func = BP_FUNC(bp);
768 #ifdef BNX2X_STOP_ON_ERROR
769 	u16 start = 0, end = 0;
770 	u8 cos;
771 #endif
772 
773 	bp->stats_state = STATS_STATE_DISABLED;
774 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
775 
776 	BNX2X_ERR("begin crash dump -----------------\n");
777 
778 	/* Indices */
779 	/* Common */
780 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)"
781 		  "  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
782 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
783 		  bp->spq_prod_idx, bp->stats_counter);
784 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
785 		  bp->def_status_blk->atten_status_block.attn_bits,
786 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
787 		  bp->def_status_blk->atten_status_block.status_block_id,
788 		  bp->def_status_blk->atten_status_block.attn_bits_index);
789 	BNX2X_ERR("     def (");
790 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
791 		pr_cont("0x%x%s",
792 		       bp->def_status_blk->sp_sb.index_values[i],
793 		       (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
794 
795 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
796 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
797 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
798 			i*sizeof(u32));
799 
800 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) "
801 			 "pf_id(0x%x)  vnic_id(0x%x)  "
802 			 "vf_id(0x%x)  vf_valid (0x%x) "
803 			 "state(0x%x)\n",
804 	       sp_sb_data.igu_sb_id,
805 	       sp_sb_data.igu_seg_id,
806 	       sp_sb_data.p_func.pf_id,
807 	       sp_sb_data.p_func.vnic_id,
808 	       sp_sb_data.p_func.vf_id,
809 	       sp_sb_data.p_func.vf_valid,
810 	       sp_sb_data.state);
811 
812 
813 	for_each_eth_queue(bp, i) {
814 		struct bnx2x_fastpath *fp = &bp->fp[i];
815 		int loop;
816 		struct hc_status_block_data_e2 sb_data_e2;
817 		struct hc_status_block_data_e1x sb_data_e1x;
818 		struct hc_status_block_sm  *hc_sm_p =
819 			CHIP_IS_E1x(bp) ?
820 			sb_data_e1x.common.state_machine :
821 			sb_data_e2.common.state_machine;
822 		struct hc_index_data *hc_index_p =
823 			CHIP_IS_E1x(bp) ?
824 			sb_data_e1x.index_data :
825 			sb_data_e2.index_data;
826 		u8 data_size, cos;
827 		u32 *sb_data_p;
828 		struct bnx2x_fp_txdata txdata;
829 
830 		/* Rx */
831 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)"
832 			  "  rx_comp_prod(0x%x)"
833 			  "  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
834 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
835 			  fp->rx_comp_prod,
836 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
837 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)"
838 			  "  fp_hc_idx(0x%x)\n",
839 			  fp->rx_sge_prod, fp->last_max_sge,
840 			  le16_to_cpu(fp->fp_hc_idx));
841 
842 		/* Tx */
843 		for_each_cos_in_tx_queue(fp, cos)
844 		{
845 			txdata = fp->txdata[cos];
846 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)"
847 				  "  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)"
848 				  "  *tx_cons_sb(0x%x)\n",
849 				  i, txdata.tx_pkt_prod,
850 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
851 				  txdata.tx_bd_cons,
852 				  le16_to_cpu(*txdata.tx_cons_sb));
853 		}
854 
855 		loop = CHIP_IS_E1x(bp) ?
856 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
857 
858 		/* host sb data */
859 
860 #ifdef BCM_CNIC
861 		if (IS_FCOE_FP(fp))
862 			continue;
863 #endif
864 		BNX2X_ERR("     run indexes (");
865 		for (j = 0; j < HC_SB_MAX_SM; j++)
866 			pr_cont("0x%x%s",
867 			       fp->sb_running_index[j],
868 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
869 
870 		BNX2X_ERR("     indexes (");
871 		for (j = 0; j < loop; j++)
872 			pr_cont("0x%x%s",
873 			       fp->sb_index_values[j],
874 			       (j == loop - 1) ? ")" : " ");
875 		/* fw sb data */
876 		data_size = CHIP_IS_E1x(bp) ?
877 			sizeof(struct hc_status_block_data_e1x) :
878 			sizeof(struct hc_status_block_data_e2);
879 		data_size /= sizeof(u32);
880 		sb_data_p = CHIP_IS_E1x(bp) ?
881 			(u32 *)&sb_data_e1x :
882 			(u32 *)&sb_data_e2;
883 		/* copy sb data in here */
884 		for (j = 0; j < data_size; j++)
885 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
886 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
887 				j * sizeof(u32));
888 
889 		if (!CHIP_IS_E1x(bp)) {
890 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
891 				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
892 				"state(0x%x)\n",
893 				sb_data_e2.common.p_func.pf_id,
894 				sb_data_e2.common.p_func.vf_id,
895 				sb_data_e2.common.p_func.vf_valid,
896 				sb_data_e2.common.p_func.vnic_id,
897 				sb_data_e2.common.same_igu_sb_1b,
898 				sb_data_e2.common.state);
899 		} else {
900 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) "
901 				"vnic_id(0x%x)  same_igu_sb_1b(0x%x) "
902 				"state(0x%x)\n",
903 				sb_data_e1x.common.p_func.pf_id,
904 				sb_data_e1x.common.p_func.vf_id,
905 				sb_data_e1x.common.p_func.vf_valid,
906 				sb_data_e1x.common.p_func.vnic_id,
907 				sb_data_e1x.common.same_igu_sb_1b,
908 				sb_data_e1x.common.state);
909 		}
910 
911 		/* SB_SMs data */
912 		for (j = 0; j < HC_SB_MAX_SM; j++) {
913 			pr_cont("SM[%d] __flags (0x%x) "
914 			       "igu_sb_id (0x%x)  igu_seg_id(0x%x) "
915 			       "time_to_expire (0x%x) "
916 			       "timer_value(0x%x)\n", j,
917 			       hc_sm_p[j].__flags,
918 			       hc_sm_p[j].igu_sb_id,
919 			       hc_sm_p[j].igu_seg_id,
920 			       hc_sm_p[j].time_to_expire,
921 			       hc_sm_p[j].timer_value);
922 		}
923 
924 		/* Indecies data */
925 		for (j = 0; j < loop; j++) {
926 			pr_cont("INDEX[%d] flags (0x%x) "
927 					 "timeout (0x%x)\n", j,
928 			       hc_index_p[j].flags,
929 			       hc_index_p[j].timeout);
930 		}
931 	}
932 
933 #ifdef BNX2X_STOP_ON_ERROR
934 	/* Rings */
935 	/* Rx */
936 	for_each_rx_queue(bp, i) {
937 		struct bnx2x_fastpath *fp = &bp->fp[i];
938 
939 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
940 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
941 		for (j = start; j != end; j = RX_BD(j + 1)) {
942 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
943 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
944 
945 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
946 				  i, j, rx_bd[1], rx_bd[0], sw_bd->skb);
947 		}
948 
949 		start = RX_SGE(fp->rx_sge_prod);
950 		end = RX_SGE(fp->last_max_sge);
951 		for (j = start; j != end; j = RX_SGE(j + 1)) {
952 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
953 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
954 
955 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
956 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
957 		}
958 
959 		start = RCQ_BD(fp->rx_comp_cons - 10);
960 		end = RCQ_BD(fp->rx_comp_cons + 503);
961 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
962 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
963 
964 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
965 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
966 		}
967 	}
968 
969 	/* Tx */
970 	for_each_tx_queue(bp, i) {
971 		struct bnx2x_fastpath *fp = &bp->fp[i];
972 		for_each_cos_in_tx_queue(fp, cos) {
973 			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
974 
975 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
976 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
977 			for (j = start; j != end; j = TX_BD(j + 1)) {
978 				struct sw_tx_bd *sw_bd =
979 					&txdata->tx_buf_ring[j];
980 
981 				BNX2X_ERR("fp%d: txdata %d, "
982 					  "packet[%x]=[%p,%x]\n",
983 					  i, cos, j, sw_bd->skb,
984 					  sw_bd->first_bd);
985 			}
986 
987 			start = TX_BD(txdata->tx_bd_cons - 10);
988 			end = TX_BD(txdata->tx_bd_cons + 254);
989 			for (j = start; j != end; j = TX_BD(j + 1)) {
990 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
991 
992 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
993 					  "[%x:%x:%x:%x]\n",
994 					  i, cos, j, tx_bd[0], tx_bd[1],
995 					  tx_bd[2], tx_bd[3]);
996 			}
997 		}
998 	}
999 #endif
1000 	bnx2x_fw_dump(bp);
1001 	bnx2x_mc_assert(bp);
1002 	BNX2X_ERR("end crash dump -----------------\n");
1003 }
1004 
1005 /*
1006  * FLR Support for E2
1007  *
1008  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1009  * initialization.
1010  */
1011 #define FLR_WAIT_USEC		10000	/* 10 miliseconds */
1012 #define FLR_WAIT_INTERAVAL	50	/* usec */
1013 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
1014 
1015 struct pbf_pN_buf_regs {
1016 	int pN;
1017 	u32 init_crd;
1018 	u32 crd;
1019 	u32 crd_freed;
1020 };
1021 
1022 struct pbf_pN_cmd_regs {
1023 	int pN;
1024 	u32 lines_occup;
1025 	u32 lines_freed;
1026 };
1027 
1028 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1029 				     struct pbf_pN_buf_regs *regs,
1030 				     u32 poll_count)
1031 {
1032 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1033 	u32 cur_cnt = poll_count;
1034 
1035 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1036 	crd = crd_start = REG_RD(bp, regs->crd);
1037 	init_crd = REG_RD(bp, regs->init_crd);
1038 
1039 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1040 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1041 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1042 
1043 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1044 	       (init_crd - crd_start))) {
1045 		if (cur_cnt--) {
1046 			udelay(FLR_WAIT_INTERAVAL);
1047 			crd = REG_RD(bp, regs->crd);
1048 			crd_freed = REG_RD(bp, regs->crd_freed);
1049 		} else {
1050 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1051 			   regs->pN);
1052 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1053 			   regs->pN, crd);
1054 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1055 			   regs->pN, crd_freed);
1056 			break;
1057 		}
1058 	}
1059 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1060 	   poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1061 }
1062 
1063 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1064 				     struct pbf_pN_cmd_regs *regs,
1065 				     u32 poll_count)
1066 {
1067 	u32 occup, to_free, freed, freed_start;
1068 	u32 cur_cnt = poll_count;
1069 
1070 	occup = to_free = REG_RD(bp, regs->lines_occup);
1071 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1072 
1073 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1074 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1075 
1076 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1077 		if (cur_cnt--) {
1078 			udelay(FLR_WAIT_INTERAVAL);
1079 			occup = REG_RD(bp, regs->lines_occup);
1080 			freed = REG_RD(bp, regs->lines_freed);
1081 		} else {
1082 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1083 			   regs->pN);
1084 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1085 			   regs->pN, occup);
1086 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1087 			   regs->pN, freed);
1088 			break;
1089 		}
1090 	}
1091 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1092 	   poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1093 }
1094 
1095 static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1096 				     u32 expected, u32 poll_count)
1097 {
1098 	u32 cur_cnt = poll_count;
1099 	u32 val;
1100 
1101 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1102 		udelay(FLR_WAIT_INTERAVAL);
1103 
1104 	return val;
1105 }
1106 
1107 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1108 						  char *msg, u32 poll_cnt)
1109 {
1110 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1111 	if (val != 0) {
1112 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1113 		return 1;
1114 	}
1115 	return 0;
1116 }
1117 
1118 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1119 {
1120 	/* adjust polling timeout */
1121 	if (CHIP_REV_IS_EMUL(bp))
1122 		return FLR_POLL_CNT * 2000;
1123 
1124 	if (CHIP_REV_IS_FPGA(bp))
1125 		return FLR_POLL_CNT * 120;
1126 
1127 	return FLR_POLL_CNT;
1128 }
1129 
1130 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1131 {
1132 	struct pbf_pN_cmd_regs cmd_regs[] = {
1133 		{0, (CHIP_IS_E3B0(bp)) ?
1134 			PBF_REG_TQ_OCCUPANCY_Q0 :
1135 			PBF_REG_P0_TQ_OCCUPANCY,
1136 		    (CHIP_IS_E3B0(bp)) ?
1137 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1138 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1139 		{1, (CHIP_IS_E3B0(bp)) ?
1140 			PBF_REG_TQ_OCCUPANCY_Q1 :
1141 			PBF_REG_P1_TQ_OCCUPANCY,
1142 		    (CHIP_IS_E3B0(bp)) ?
1143 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1144 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1145 		{4, (CHIP_IS_E3B0(bp)) ?
1146 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1147 			PBF_REG_P4_TQ_OCCUPANCY,
1148 		    (CHIP_IS_E3B0(bp)) ?
1149 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1150 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1151 	};
1152 
1153 	struct pbf_pN_buf_regs buf_regs[] = {
1154 		{0, (CHIP_IS_E3B0(bp)) ?
1155 			PBF_REG_INIT_CRD_Q0 :
1156 			PBF_REG_P0_INIT_CRD ,
1157 		    (CHIP_IS_E3B0(bp)) ?
1158 			PBF_REG_CREDIT_Q0 :
1159 			PBF_REG_P0_CREDIT,
1160 		    (CHIP_IS_E3B0(bp)) ?
1161 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1162 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1163 		{1, (CHIP_IS_E3B0(bp)) ?
1164 			PBF_REG_INIT_CRD_Q1 :
1165 			PBF_REG_P1_INIT_CRD,
1166 		    (CHIP_IS_E3B0(bp)) ?
1167 			PBF_REG_CREDIT_Q1 :
1168 			PBF_REG_P1_CREDIT,
1169 		    (CHIP_IS_E3B0(bp)) ?
1170 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1171 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1172 		{4, (CHIP_IS_E3B0(bp)) ?
1173 			PBF_REG_INIT_CRD_LB_Q :
1174 			PBF_REG_P4_INIT_CRD,
1175 		    (CHIP_IS_E3B0(bp)) ?
1176 			PBF_REG_CREDIT_LB_Q :
1177 			PBF_REG_P4_CREDIT,
1178 		    (CHIP_IS_E3B0(bp)) ?
1179 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1180 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1181 	};
1182 
1183 	int i;
1184 
1185 	/* Verify the command queues are flushed P0, P1, P4 */
1186 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1187 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1188 
1189 
1190 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1191 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1192 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1193 }
1194 
1195 #define OP_GEN_PARAM(param) \
1196 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1197 
1198 #define OP_GEN_TYPE(type) \
1199 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1200 
1201 #define OP_GEN_AGG_VECT(index) \
1202 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1203 
1204 
1205 static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1206 					 u32 poll_cnt)
1207 {
1208 	struct sdm_op_gen op_gen = {0};
1209 
1210 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1211 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1212 	int ret = 0;
1213 
1214 	if (REG_RD(bp, comp_addr)) {
1215 		BNX2X_ERR("Cleanup complete is not 0\n");
1216 		return 1;
1217 	}
1218 
1219 	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1220 	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1221 	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1222 	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1223 
1224 	DP(BNX2X_MSG_SP, "FW Final cleanup\n");
1225 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1226 
1227 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1228 		BNX2X_ERR("FW final cleanup did not succeed\n");
1229 		ret = 1;
1230 	}
1231 	/* Zero completion for nxt FLR */
1232 	REG_WR(bp, comp_addr, 0);
1233 
1234 	return ret;
1235 }
1236 
1237 static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1238 {
1239 	int pos;
1240 	u16 status;
1241 
1242 	pos = pci_pcie_cap(dev);
1243 	if (!pos)
1244 		return false;
1245 
1246 	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1247 	return status & PCI_EXP_DEVSTA_TRPND;
1248 }
1249 
1250 /* PF FLR specific routines
1251 */
1252 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1253 {
1254 
1255 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1256 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1257 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1258 			"CFC PF usage counter timed out",
1259 			poll_cnt))
1260 		return 1;
1261 
1262 
1263 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1264 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1265 			DORQ_REG_PF_USAGE_CNT,
1266 			"DQ PF usage counter timed out",
1267 			poll_cnt))
1268 		return 1;
1269 
1270 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1271 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1272 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1273 			"QM PF usage counter timed out",
1274 			poll_cnt))
1275 		return 1;
1276 
1277 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1278 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1279 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1280 			"Timers VNIC usage counter timed out",
1281 			poll_cnt))
1282 		return 1;
1283 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1284 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1285 			"Timers NUM_SCANS usage counter timed out",
1286 			poll_cnt))
1287 		return 1;
1288 
1289 	/* Wait DMAE PF usage counter to zero */
1290 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1291 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1292 			"DMAE dommand register timed out",
1293 			poll_cnt))
1294 		return 1;
1295 
1296 	return 0;
1297 }
1298 
1299 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1300 {
1301 	u32 val;
1302 
1303 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1304 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1305 
1306 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1307 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1308 
1309 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1310 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1311 
1312 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1313 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1314 
1315 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1316 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1317 
1318 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1319 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1320 
1321 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1322 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1323 
1324 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1325 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1326 	   val);
1327 }
1328 
1329 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1330 {
1331 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1332 
1333 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1334 
1335 	/* Re-enable PF target read access */
1336 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1337 
1338 	/* Poll HW usage counters */
1339 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1340 		return -EBUSY;
1341 
1342 	/* Zero the igu 'trailing edge' and 'leading edge' */
1343 
1344 	/* Send the FW cleanup command */
1345 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1346 		return -EBUSY;
1347 
1348 	/* ATC cleanup */
1349 
1350 	/* Verify TX hw is flushed */
1351 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1352 
1353 	/* Wait 100ms (not adjusted according to platform) */
1354 	msleep(100);
1355 
1356 	/* Verify no pending pci transactions */
1357 	if (bnx2x_is_pcie_pending(bp->pdev))
1358 		BNX2X_ERR("PCIE Transactions still pending\n");
1359 
1360 	/* Debug */
1361 	bnx2x_hw_enable_status(bp);
1362 
1363 	/*
1364 	 * Master enable - Due to WB DMAE writes performed before this
1365 	 * register is re-initialized as part of the regular function init
1366 	 */
1367 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1368 
1369 	return 0;
1370 }
1371 
1372 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1373 {
1374 	int port = BP_PORT(bp);
1375 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1376 	u32 val = REG_RD(bp, addr);
1377 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1378 	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1379 
1380 	if (msix) {
1381 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1382 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1383 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1384 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1385 	} else if (msi) {
1386 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1387 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1388 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1389 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1390 	} else {
1391 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1392 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1393 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1394 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1395 
1396 		if (!CHIP_IS_E1(bp)) {
1397 			DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1398 			   val, port, addr);
1399 
1400 			REG_WR(bp, addr, val);
1401 
1402 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1403 		}
1404 	}
1405 
1406 	if (CHIP_IS_E1(bp))
1407 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1408 
1409 	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)  mode %s\n",
1410 	   val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1411 
1412 	REG_WR(bp, addr, val);
1413 	/*
1414 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1415 	 */
1416 	mmiowb();
1417 	barrier();
1418 
1419 	if (!CHIP_IS_E1(bp)) {
1420 		/* init leading/trailing edge */
1421 		if (IS_MF(bp)) {
1422 			val = (0xee0f | (1 << (BP_E1HVN(bp) + 4)));
1423 			if (bp->port.pmf)
1424 				/* enable nig and gpio3 attention */
1425 				val |= 0x1100;
1426 		} else
1427 			val = 0xffff;
1428 
1429 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1430 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1431 	}
1432 
1433 	/* Make sure that interrupts are indeed enabled from here on */
1434 	mmiowb();
1435 }
1436 
1437 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1438 {
1439 	u32 val;
1440 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1441 	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1442 
1443 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1444 
1445 	if (msix) {
1446 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1447 			 IGU_PF_CONF_SINGLE_ISR_EN);
1448 		val |= (IGU_PF_CONF_FUNC_EN |
1449 			IGU_PF_CONF_MSI_MSIX_EN |
1450 			IGU_PF_CONF_ATTN_BIT_EN);
1451 	} else if (msi) {
1452 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1453 		val |= (IGU_PF_CONF_FUNC_EN |
1454 			IGU_PF_CONF_MSI_MSIX_EN |
1455 			IGU_PF_CONF_ATTN_BIT_EN |
1456 			IGU_PF_CONF_SINGLE_ISR_EN);
1457 	} else {
1458 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1459 		val |= (IGU_PF_CONF_FUNC_EN |
1460 			IGU_PF_CONF_INT_LINE_EN |
1461 			IGU_PF_CONF_ATTN_BIT_EN |
1462 			IGU_PF_CONF_SINGLE_ISR_EN);
1463 	}
1464 
1465 	DP(NETIF_MSG_INTR, "write 0x%x to IGU  mode %s\n",
1466 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1467 
1468 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1469 
1470 	barrier();
1471 
1472 	/* init leading/trailing edge */
1473 	if (IS_MF(bp)) {
1474 		val = (0xee0f | (1 << (BP_E1HVN(bp) + 4)));
1475 		if (bp->port.pmf)
1476 			/* enable nig and gpio3 attention */
1477 			val |= 0x1100;
1478 	} else
1479 		val = 0xffff;
1480 
1481 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1482 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1483 
1484 	/* Make sure that interrupts are indeed enabled from here on */
1485 	mmiowb();
1486 }
1487 
1488 void bnx2x_int_enable(struct bnx2x *bp)
1489 {
1490 	if (bp->common.int_block == INT_BLOCK_HC)
1491 		bnx2x_hc_int_enable(bp);
1492 	else
1493 		bnx2x_igu_int_enable(bp);
1494 }
1495 
1496 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1497 {
1498 	int port = BP_PORT(bp);
1499 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1500 	u32 val = REG_RD(bp, addr);
1501 
1502 	/*
1503 	 * in E1 we must use only PCI configuration space to disable
1504 	 * MSI/MSIX capablility
1505 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1506 	 */
1507 	if (CHIP_IS_E1(bp)) {
1508 		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1509 		 *  Use mask register to prevent from HC sending interrupts
1510 		 *  after we exit the function
1511 		 */
1512 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1513 
1514 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1515 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1516 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1517 	} else
1518 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1519 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1520 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1521 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1522 
1523 	DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1524 	   val, port, addr);
1525 
1526 	/* flush all outstanding writes */
1527 	mmiowb();
1528 
1529 	REG_WR(bp, addr, val);
1530 	if (REG_RD(bp, addr) != val)
1531 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1532 }
1533 
1534 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1535 {
1536 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1537 
1538 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1539 		 IGU_PF_CONF_INT_LINE_EN |
1540 		 IGU_PF_CONF_ATTN_BIT_EN);
1541 
1542 	DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1543 
1544 	/* flush all outstanding writes */
1545 	mmiowb();
1546 
1547 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1548 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1549 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1550 }
1551 
1552 void bnx2x_int_disable(struct bnx2x *bp)
1553 {
1554 	if (bp->common.int_block == INT_BLOCK_HC)
1555 		bnx2x_hc_int_disable(bp);
1556 	else
1557 		bnx2x_igu_int_disable(bp);
1558 }
1559 
1560 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1561 {
1562 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1563 	int i, offset;
1564 
1565 	if (disable_hw)
1566 		/* prevent the HW from sending interrupts */
1567 		bnx2x_int_disable(bp);
1568 
1569 	/* make sure all ISRs are done */
1570 	if (msix) {
1571 		synchronize_irq(bp->msix_table[0].vector);
1572 		offset = 1;
1573 #ifdef BCM_CNIC
1574 		offset++;
1575 #endif
1576 		for_each_eth_queue(bp, i)
1577 			synchronize_irq(bp->msix_table[offset++].vector);
1578 	} else
1579 		synchronize_irq(bp->pdev->irq);
1580 
1581 	/* make sure sp_task is not running */
1582 	cancel_delayed_work(&bp->sp_task);
1583 	cancel_delayed_work(&bp->period_task);
1584 	flush_workqueue(bnx2x_wq);
1585 }
1586 
1587 /* fast path */
1588 
1589 /*
1590  * General service functions
1591  */
1592 
1593 /* Return true if succeeded to acquire the lock */
1594 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1595 {
1596 	u32 lock_status;
1597 	u32 resource_bit = (1 << resource);
1598 	int func = BP_FUNC(bp);
1599 	u32 hw_lock_control_reg;
1600 
1601 	DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1602 
1603 	/* Validating that the resource is within range */
1604 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1605 		DP(NETIF_MSG_HW,
1606 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1607 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1608 		return false;
1609 	}
1610 
1611 	if (func <= 5)
1612 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1613 	else
1614 		hw_lock_control_reg =
1615 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1616 
1617 	/* Try to acquire the lock */
1618 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1619 	lock_status = REG_RD(bp, hw_lock_control_reg);
1620 	if (lock_status & resource_bit)
1621 		return true;
1622 
1623 	DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1624 	return false;
1625 }
1626 
1627 /**
1628  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1629  *
1630  * @bp:	driver handle
1631  *
1632  * Returns the recovery leader resource id according to the engine this function
1633  * belongs to. Currently only only 2 engines is supported.
1634  */
1635 static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1636 {
1637 	if (BP_PATH(bp))
1638 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1639 	else
1640 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1641 }
1642 
1643 /**
1644  * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1645  *
1646  * @bp: driver handle
1647  *
1648  * Tries to aquire a leader lock for cuurent engine.
1649  */
1650 static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1651 {
1652 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1653 }
1654 
1655 #ifdef BCM_CNIC
1656 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1657 #endif
1658 
1659 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1660 {
1661 	struct bnx2x *bp = fp->bp;
1662 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1663 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1664 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1665 	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1666 
1667 	DP(BNX2X_MSG_SP,
1668 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1669 	   fp->index, cid, command, bp->state,
1670 	   rr_cqe->ramrod_cqe.ramrod_type);
1671 
1672 	switch (command) {
1673 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1674 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1675 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1676 		break;
1677 
1678 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1679 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1680 		drv_cmd = BNX2X_Q_CMD_SETUP;
1681 		break;
1682 
1683 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1684 		DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1685 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1686 		break;
1687 
1688 	case (RAMROD_CMD_ID_ETH_HALT):
1689 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1690 		drv_cmd = BNX2X_Q_CMD_HALT;
1691 		break;
1692 
1693 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1694 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1695 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1696 		break;
1697 
1698 	case (RAMROD_CMD_ID_ETH_EMPTY):
1699 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1700 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1701 		break;
1702 
1703 	default:
1704 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1705 			  command, fp->index);
1706 		return;
1707 	}
1708 
1709 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1710 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1711 		/* q_obj->complete_cmd() failure means that this was
1712 		 * an unexpected completion.
1713 		 *
1714 		 * In this case we don't want to increase the bp->spq_left
1715 		 * because apparently we haven't sent this command the first
1716 		 * place.
1717 		 */
1718 #ifdef BNX2X_STOP_ON_ERROR
1719 		bnx2x_panic();
1720 #else
1721 		return;
1722 #endif
1723 
1724 	smp_mb__before_atomic_inc();
1725 	atomic_inc(&bp->cq_spq_left);
1726 	/* push the change in bp->spq_left and towards the memory */
1727 	smp_mb__after_atomic_inc();
1728 
1729 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1730 
1731 	return;
1732 }
1733 
1734 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1735 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1736 {
1737 	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1738 
1739 	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1740 				 start);
1741 }
1742 
1743 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1744 {
1745 	struct bnx2x *bp = netdev_priv(dev_instance);
1746 	u16 status = bnx2x_ack_int(bp);
1747 	u16 mask;
1748 	int i;
1749 	u8 cos;
1750 
1751 	/* Return here if interrupt is shared and it's not for us */
1752 	if (unlikely(status == 0)) {
1753 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1754 		return IRQ_NONE;
1755 	}
1756 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1757 
1758 #ifdef BNX2X_STOP_ON_ERROR
1759 	if (unlikely(bp->panic))
1760 		return IRQ_HANDLED;
1761 #endif
1762 
1763 	for_each_eth_queue(bp, i) {
1764 		struct bnx2x_fastpath *fp = &bp->fp[i];
1765 
1766 		mask = 0x2 << (fp->index + CNIC_PRESENT);
1767 		if (status & mask) {
1768 			/* Handle Rx or Tx according to SB id */
1769 			prefetch(fp->rx_cons_sb);
1770 			for_each_cos_in_tx_queue(fp, cos)
1771 				prefetch(fp->txdata[cos].tx_cons_sb);
1772 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1773 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1774 			status &= ~mask;
1775 		}
1776 	}
1777 
1778 #ifdef BCM_CNIC
1779 	mask = 0x2;
1780 	if (status & (mask | 0x1)) {
1781 		struct cnic_ops *c_ops = NULL;
1782 
1783 		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1784 			rcu_read_lock();
1785 			c_ops = rcu_dereference(bp->cnic_ops);
1786 			if (c_ops)
1787 				c_ops->cnic_handler(bp->cnic_data, NULL);
1788 			rcu_read_unlock();
1789 		}
1790 
1791 		status &= ~mask;
1792 	}
1793 #endif
1794 
1795 	if (unlikely(status & 0x1)) {
1796 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1797 
1798 		status &= ~0x1;
1799 		if (!status)
1800 			return IRQ_HANDLED;
1801 	}
1802 
1803 	if (unlikely(status))
1804 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1805 		   status);
1806 
1807 	return IRQ_HANDLED;
1808 }
1809 
1810 /* Link */
1811 
1812 /*
1813  * General service functions
1814  */
1815 
1816 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1817 {
1818 	u32 lock_status;
1819 	u32 resource_bit = (1 << resource);
1820 	int func = BP_FUNC(bp);
1821 	u32 hw_lock_control_reg;
1822 	int cnt;
1823 
1824 	/* Validating that the resource is within range */
1825 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1826 		DP(NETIF_MSG_HW,
1827 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1828 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1829 		return -EINVAL;
1830 	}
1831 
1832 	if (func <= 5) {
1833 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1834 	} else {
1835 		hw_lock_control_reg =
1836 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1837 	}
1838 
1839 	/* Validating that the resource is not already taken */
1840 	lock_status = REG_RD(bp, hw_lock_control_reg);
1841 	if (lock_status & resource_bit) {
1842 		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1843 		   lock_status, resource_bit);
1844 		return -EEXIST;
1845 	}
1846 
1847 	/* Try for 5 second every 5ms */
1848 	for (cnt = 0; cnt < 1000; cnt++) {
1849 		/* Try to acquire the lock */
1850 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1851 		lock_status = REG_RD(bp, hw_lock_control_reg);
1852 		if (lock_status & resource_bit)
1853 			return 0;
1854 
1855 		msleep(5);
1856 	}
1857 	DP(NETIF_MSG_HW, "Timeout\n");
1858 	return -EAGAIN;
1859 }
1860 
1861 int bnx2x_release_leader_lock(struct bnx2x *bp)
1862 {
1863 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1864 }
1865 
1866 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1867 {
1868 	u32 lock_status;
1869 	u32 resource_bit = (1 << resource);
1870 	int func = BP_FUNC(bp);
1871 	u32 hw_lock_control_reg;
1872 
1873 	DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1874 
1875 	/* Validating that the resource is within range */
1876 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1877 		DP(NETIF_MSG_HW,
1878 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1879 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1880 		return -EINVAL;
1881 	}
1882 
1883 	if (func <= 5) {
1884 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1885 	} else {
1886 		hw_lock_control_reg =
1887 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1888 	}
1889 
1890 	/* Validating that the resource is currently taken */
1891 	lock_status = REG_RD(bp, hw_lock_control_reg);
1892 	if (!(lock_status & resource_bit)) {
1893 		DP(NETIF_MSG_HW, "lock_status 0x%x  resource_bit 0x%x\n",
1894 		   lock_status, resource_bit);
1895 		return -EFAULT;
1896 	}
1897 
1898 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1899 	return 0;
1900 }
1901 
1902 
1903 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1904 {
1905 	/* The GPIO should be swapped if swap register is set and active */
1906 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1907 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1908 	int gpio_shift = gpio_num +
1909 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1910 	u32 gpio_mask = (1 << gpio_shift);
1911 	u32 gpio_reg;
1912 	int value;
1913 
1914 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1915 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1916 		return -EINVAL;
1917 	}
1918 
1919 	/* read GPIO value */
1920 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1921 
1922 	/* get the requested pin value */
1923 	if ((gpio_reg & gpio_mask) == gpio_mask)
1924 		value = 1;
1925 	else
1926 		value = 0;
1927 
1928 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1929 
1930 	return value;
1931 }
1932 
1933 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1934 {
1935 	/* The GPIO should be swapped if swap register is set and active */
1936 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1937 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1938 	int gpio_shift = gpio_num +
1939 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1940 	u32 gpio_mask = (1 << gpio_shift);
1941 	u32 gpio_reg;
1942 
1943 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1944 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1945 		return -EINVAL;
1946 	}
1947 
1948 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1949 	/* read GPIO and mask except the float bits */
1950 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1951 
1952 	switch (mode) {
1953 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1954 		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1955 		   gpio_num, gpio_shift);
1956 		/* clear FLOAT and set CLR */
1957 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1958 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1959 		break;
1960 
1961 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1962 		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1963 		   gpio_num, gpio_shift);
1964 		/* clear FLOAT and set SET */
1965 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1966 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1967 		break;
1968 
1969 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1970 		DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1971 		   gpio_num, gpio_shift);
1972 		/* set FLOAT */
1973 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1974 		break;
1975 
1976 	default:
1977 		break;
1978 	}
1979 
1980 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1981 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1982 
1983 	return 0;
1984 }
1985 
1986 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1987 {
1988 	u32 gpio_reg = 0;
1989 	int rc = 0;
1990 
1991 	/* Any port swapping should be handled by caller. */
1992 
1993 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1994 	/* read GPIO and mask except the float bits */
1995 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1996 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1997 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1998 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1999 
2000 	switch (mode) {
2001 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2002 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2003 		/* set CLR */
2004 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2005 		break;
2006 
2007 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2008 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2009 		/* set SET */
2010 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2011 		break;
2012 
2013 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2014 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2015 		/* set FLOAT */
2016 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2017 		break;
2018 
2019 	default:
2020 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2021 		rc = -EINVAL;
2022 		break;
2023 	}
2024 
2025 	if (rc == 0)
2026 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2027 
2028 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2029 
2030 	return rc;
2031 }
2032 
2033 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2034 {
2035 	/* The GPIO should be swapped if swap register is set and active */
2036 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2037 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2038 	int gpio_shift = gpio_num +
2039 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2040 	u32 gpio_mask = (1 << gpio_shift);
2041 	u32 gpio_reg;
2042 
2043 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2044 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2045 		return -EINVAL;
2046 	}
2047 
2048 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2049 	/* read GPIO int */
2050 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2051 
2052 	switch (mode) {
2053 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2054 		DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2055 				   "output low\n", gpio_num, gpio_shift);
2056 		/* clear SET and set CLR */
2057 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2058 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2059 		break;
2060 
2061 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2062 		DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2063 				   "output high\n", gpio_num, gpio_shift);
2064 		/* clear CLR and set SET */
2065 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2066 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2067 		break;
2068 
2069 	default:
2070 		break;
2071 	}
2072 
2073 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2074 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2075 
2076 	return 0;
2077 }
2078 
2079 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2080 {
2081 	u32 spio_mask = (1 << spio_num);
2082 	u32 spio_reg;
2083 
2084 	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2085 	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2086 		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2087 		return -EINVAL;
2088 	}
2089 
2090 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2091 	/* read SPIO and mask except the float bits */
2092 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2093 
2094 	switch (mode) {
2095 	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2096 		DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2097 		/* clear FLOAT and set CLR */
2098 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2099 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2100 		break;
2101 
2102 	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2103 		DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2104 		/* clear FLOAT and set SET */
2105 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2106 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2107 		break;
2108 
2109 	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2110 		DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2111 		/* set FLOAT */
2112 		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2113 		break;
2114 
2115 	default:
2116 		break;
2117 	}
2118 
2119 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2120 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2121 
2122 	return 0;
2123 }
2124 
2125 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2126 {
2127 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2128 	switch (bp->link_vars.ieee_fc &
2129 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2130 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2131 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2132 						   ADVERTISED_Pause);
2133 		break;
2134 
2135 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2136 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2137 						  ADVERTISED_Pause);
2138 		break;
2139 
2140 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2141 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2142 		break;
2143 
2144 	default:
2145 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2146 						   ADVERTISED_Pause);
2147 		break;
2148 	}
2149 }
2150 
2151 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2152 {
2153 	if (!BP_NOMCP(bp)) {
2154 		u8 rc;
2155 		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2156 		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2157 		/*
2158 		 * Initialize link parameters structure variables
2159 		 * It is recommended to turn off RX FC for jumbo frames
2160 		 * for better performance
2161 		 */
2162 		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2163 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2164 		else
2165 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2166 
2167 		bnx2x_acquire_phy_lock(bp);
2168 
2169 		if (load_mode == LOAD_DIAG) {
2170 			struct link_params *lp = &bp->link_params;
2171 			lp->loopback_mode = LOOPBACK_XGXS;
2172 			/* do PHY loopback at 10G speed, if possible */
2173 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2174 				if (lp->speed_cap_mask[cfx_idx] &
2175 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2176 					lp->req_line_speed[cfx_idx] =
2177 					SPEED_10000;
2178 				else
2179 					lp->req_line_speed[cfx_idx] =
2180 					SPEED_1000;
2181 			}
2182 		}
2183 
2184 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2185 
2186 		bnx2x_release_phy_lock(bp);
2187 
2188 		bnx2x_calc_fc_adv(bp);
2189 
2190 		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2191 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2192 			bnx2x_link_report(bp);
2193 		} else
2194 			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2195 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2196 		return rc;
2197 	}
2198 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2199 	return -EINVAL;
2200 }
2201 
2202 void bnx2x_link_set(struct bnx2x *bp)
2203 {
2204 	if (!BP_NOMCP(bp)) {
2205 		bnx2x_acquire_phy_lock(bp);
2206 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2207 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2208 		bnx2x_release_phy_lock(bp);
2209 
2210 		bnx2x_calc_fc_adv(bp);
2211 	} else
2212 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2213 }
2214 
2215 static void bnx2x__link_reset(struct bnx2x *bp)
2216 {
2217 	if (!BP_NOMCP(bp)) {
2218 		bnx2x_acquire_phy_lock(bp);
2219 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2220 		bnx2x_release_phy_lock(bp);
2221 	} else
2222 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2223 }
2224 
2225 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2226 {
2227 	u8 rc = 0;
2228 
2229 	if (!BP_NOMCP(bp)) {
2230 		bnx2x_acquire_phy_lock(bp);
2231 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2232 				     is_serdes);
2233 		bnx2x_release_phy_lock(bp);
2234 	} else
2235 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2236 
2237 	return rc;
2238 }
2239 
2240 static void bnx2x_init_port_minmax(struct bnx2x *bp)
2241 {
2242 	u32 r_param = bp->link_vars.line_speed / 8;
2243 	u32 fair_periodic_timeout_usec;
2244 	u32 t_fair;
2245 
2246 	memset(&(bp->cmng.rs_vars), 0,
2247 	       sizeof(struct rate_shaping_vars_per_port));
2248 	memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2249 
2250 	/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2251 	bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2252 
2253 	/* this is the threshold below which no timer arming will occur
2254 	   1.25 coefficient is for the threshold to be a little bigger
2255 	   than the real time, to compensate for timer in-accuracy */
2256 	bp->cmng.rs_vars.rs_threshold =
2257 				(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2258 
2259 	/* resolution of fairness timer */
2260 	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2261 	/* for 10G it is 1000usec. for 1G it is 10000usec. */
2262 	t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2263 
2264 	/* this is the threshold below which we won't arm the timer anymore */
2265 	bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2266 
2267 	/* we multiply by 1e3/8 to get bytes/msec.
2268 	   We don't want the credits to pass a credit
2269 	   of the t_fair*FAIR_MEM (algorithm resolution) */
2270 	bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2271 	/* since each tick is 4 usec */
2272 	bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2273 }
2274 
2275 /* Calculates the sum of vn_min_rates.
2276    It's needed for further normalizing of the min_rates.
2277    Returns:
2278      sum of vn_min_rates.
2279        or
2280      0 - if all the min_rates are 0.
2281      In the later case fainess algorithm should be deactivated.
2282      If not all min_rates are zero then those that are zeroes will be set to 1.
2283  */
2284 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2285 {
2286 	int all_zero = 1;
2287 	int vn;
2288 
2289 	bp->vn_weight_sum = 0;
2290 	for (vn = VN_0; vn < E1HVN_MAX; vn++) {
2291 		u32 vn_cfg = bp->mf_config[vn];
2292 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2293 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2294 
2295 		/* Skip hidden vns */
2296 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2297 			continue;
2298 
2299 		/* If min rate is zero - set it to 1 */
2300 		if (!vn_min_rate)
2301 			vn_min_rate = DEF_MIN_RATE;
2302 		else
2303 			all_zero = 0;
2304 
2305 		bp->vn_weight_sum += vn_min_rate;
2306 	}
2307 
2308 	/* if ETS or all min rates are zeros - disable fairness */
2309 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2310 		bp->cmng.flags.cmng_enables &=
2311 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2312 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2313 	} else if (all_zero) {
2314 		bp->cmng.flags.cmng_enables &=
2315 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2316 		DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2317 		   "  fairness will be disabled\n");
2318 	} else
2319 		bp->cmng.flags.cmng_enables |=
2320 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2321 }
2322 
2323 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2324 {
2325 	struct rate_shaping_vars_per_vn m_rs_vn;
2326 	struct fairness_vars_per_vn m_fair_vn;
2327 	u32 vn_cfg = bp->mf_config[vn];
2328 	int func = 2*vn + BP_PORT(bp);
2329 	u16 vn_min_rate, vn_max_rate;
2330 	int i;
2331 
2332 	/* If function is hidden - set min and max to zeroes */
2333 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2334 		vn_min_rate = 0;
2335 		vn_max_rate = 0;
2336 
2337 	} else {
2338 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2339 
2340 		vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2341 				FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2342 		/* If fairness is enabled (not all min rates are zeroes) and
2343 		   if current min rate is zero - set it to 1.
2344 		   This is a requirement of the algorithm. */
2345 		if (bp->vn_weight_sum && (vn_min_rate == 0))
2346 			vn_min_rate = DEF_MIN_RATE;
2347 
2348 		if (IS_MF_SI(bp))
2349 			/* maxCfg in percents of linkspeed */
2350 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2351 		else
2352 			/* maxCfg is absolute in 100Mb units */
2353 			vn_max_rate = maxCfg * 100;
2354 	}
2355 
2356 	DP(NETIF_MSG_IFUP,
2357 	   "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
2358 	   func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2359 
2360 	memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2361 	memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2362 
2363 	/* global vn counter - maximal Mbps for this vn */
2364 	m_rs_vn.vn_counter.rate = vn_max_rate;
2365 
2366 	/* quota - number of bytes transmitted in this period */
2367 	m_rs_vn.vn_counter.quota =
2368 				(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2369 
2370 	if (bp->vn_weight_sum) {
2371 		/* credit for each period of the fairness algorithm:
2372 		   number of bytes in T_FAIR (the vn share the port rate).
2373 		   vn_weight_sum should not be larger than 10000, thus
2374 		   T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2375 		   than zero */
2376 		m_fair_vn.vn_credit_delta =
2377 			max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2378 						   (8 * bp->vn_weight_sum))),
2379 			      (bp->cmng.fair_vars.fair_threshold +
2380 							MIN_ABOVE_THRESH));
2381 		DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2382 		   m_fair_vn.vn_credit_delta);
2383 	}
2384 
2385 	/* Store it to internal memory */
2386 	for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2387 		REG_WR(bp, BAR_XSTRORM_INTMEM +
2388 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2389 		       ((u32 *)(&m_rs_vn))[i]);
2390 
2391 	for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2392 		REG_WR(bp, BAR_XSTRORM_INTMEM +
2393 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2394 		       ((u32 *)(&m_fair_vn))[i]);
2395 }
2396 
2397 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2398 {
2399 	if (CHIP_REV_IS_SLOW(bp))
2400 		return CMNG_FNS_NONE;
2401 	if (IS_MF(bp))
2402 		return CMNG_FNS_MINMAX;
2403 
2404 	return CMNG_FNS_NONE;
2405 }
2406 
2407 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2408 {
2409 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2410 
2411 	if (BP_NOMCP(bp))
2412 		return; /* what should be the default bvalue in this case */
2413 
2414 	/* For 2 port configuration the absolute function number formula
2415 	 * is:
2416 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2417 	 *
2418 	 *      and there are 4 functions per port
2419 	 *
2420 	 * For 4 port configuration it is
2421 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2422 	 *
2423 	 *      and there are 2 functions per port
2424 	 */
2425 	for (vn = VN_0; vn < E1HVN_MAX; vn++) {
2426 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2427 
2428 		if (func >= E1H_FUNC_MAX)
2429 			break;
2430 
2431 		bp->mf_config[vn] =
2432 			MF_CFG_RD(bp, func_mf_config[func].config);
2433 	}
2434 }
2435 
2436 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2437 {
2438 
2439 	if (cmng_type == CMNG_FNS_MINMAX) {
2440 		int vn;
2441 
2442 		/* clear cmng_enables */
2443 		bp->cmng.flags.cmng_enables = 0;
2444 
2445 		/* read mf conf from shmem */
2446 		if (read_cfg)
2447 			bnx2x_read_mf_cfg(bp);
2448 
2449 		/* Init rate shaping and fairness contexts */
2450 		bnx2x_init_port_minmax(bp);
2451 
2452 		/* vn_weight_sum and enable fairness if not 0 */
2453 		bnx2x_calc_vn_weight_sum(bp);
2454 
2455 		/* calculate and set min-max rate for each vn */
2456 		if (bp->port.pmf)
2457 			for (vn = VN_0; vn < E1HVN_MAX; vn++)
2458 				bnx2x_init_vn_minmax(bp, vn);
2459 
2460 		/* always enable rate shaping and fairness */
2461 		bp->cmng.flags.cmng_enables |=
2462 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2463 		if (!bp->vn_weight_sum)
2464 			DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2465 				   "  fairness will be disabled\n");
2466 		return;
2467 	}
2468 
2469 	/* rate shaping and fairness are disabled */
2470 	DP(NETIF_MSG_IFUP,
2471 	   "rate shaping and fairness are disabled\n");
2472 }
2473 
2474 static inline void bnx2x_link_sync_notify(struct bnx2x *bp)
2475 {
2476 	int port = BP_PORT(bp);
2477 	int func;
2478 	int vn;
2479 
2480 	/* Set the attention towards other drivers on the same port */
2481 	for (vn = VN_0; vn < E1HVN_MAX; vn++) {
2482 		if (vn == BP_E1HVN(bp))
2483 			continue;
2484 
2485 		func = ((vn << 1) | port);
2486 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_0 +
2487 		       (LINK_SYNC_ATTENTION_BIT_FUNC_0 + func)*4, 1);
2488 	}
2489 }
2490 
2491 /* This function is called upon link interrupt */
2492 static void bnx2x_link_attn(struct bnx2x *bp)
2493 {
2494 	/* Make sure that we are synced with the current statistics */
2495 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2496 
2497 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2498 
2499 	if (bp->link_vars.link_up) {
2500 
2501 		/* dropless flow control */
2502 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2503 			int port = BP_PORT(bp);
2504 			u32 pause_enabled = 0;
2505 
2506 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2507 				pause_enabled = 1;
2508 
2509 			REG_WR(bp, BAR_USTRORM_INTMEM +
2510 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2511 			       pause_enabled);
2512 		}
2513 
2514 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2515 			struct host_port_stats *pstats;
2516 
2517 			pstats = bnx2x_sp(bp, port_stats);
2518 			/* reset old mac stats */
2519 			memset(&(pstats->mac_stx[0]), 0,
2520 			       sizeof(struct mac_stx));
2521 		}
2522 		if (bp->state == BNX2X_STATE_OPEN)
2523 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2524 	}
2525 
2526 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2527 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2528 
2529 		if (cmng_fns != CMNG_FNS_NONE) {
2530 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2531 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2532 		} else
2533 			/* rate shaping and fairness are disabled */
2534 			DP(NETIF_MSG_IFUP,
2535 			   "single function mode without fairness\n");
2536 	}
2537 
2538 	__bnx2x_link_report(bp);
2539 
2540 	if (IS_MF(bp))
2541 		bnx2x_link_sync_notify(bp);
2542 }
2543 
2544 void bnx2x__link_status_update(struct bnx2x *bp)
2545 {
2546 	if (bp->state != BNX2X_STATE_OPEN)
2547 		return;
2548 
2549 	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2550 
2551 	if (bp->link_vars.link_up)
2552 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2553 	else
2554 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2555 
2556 	/* indicate link status */
2557 	bnx2x_link_report(bp);
2558 }
2559 
2560 static void bnx2x_pmf_update(struct bnx2x *bp)
2561 {
2562 	int port = BP_PORT(bp);
2563 	u32 val;
2564 
2565 	bp->port.pmf = 1;
2566 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2567 
2568 	/*
2569 	 * We need the mb() to ensure the ordering between the writing to
2570 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2571 	 */
2572 	smp_mb();
2573 
2574 	/* queue a periodic task */
2575 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2576 
2577 	bnx2x_dcbx_pmf_update(bp);
2578 
2579 	/* enable nig attention */
2580 	val = (0xff0f | (1 << (BP_E1HVN(bp) + 4)));
2581 	if (bp->common.int_block == INT_BLOCK_HC) {
2582 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2583 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2584 	} else if (!CHIP_IS_E1x(bp)) {
2585 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2586 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2587 	}
2588 
2589 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2590 }
2591 
2592 /* end of Link */
2593 
2594 /* slow path */
2595 
2596 /*
2597  * General service functions
2598  */
2599 
2600 /* send the MCP a request, block until there is a reply */
2601 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2602 {
2603 	int mb_idx = BP_FW_MB_IDX(bp);
2604 	u32 seq;
2605 	u32 rc = 0;
2606 	u32 cnt = 1;
2607 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2608 
2609 	mutex_lock(&bp->fw_mb_mutex);
2610 	seq = ++bp->fw_seq;
2611 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2612 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2613 
2614 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2615 			(command | seq), param);
2616 
2617 	do {
2618 		/* let the FW do it's magic ... */
2619 		msleep(delay);
2620 
2621 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2622 
2623 		/* Give the FW up to 5 second (500*10ms) */
2624 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2625 
2626 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2627 	   cnt*delay, rc, seq);
2628 
2629 	/* is this a reply to our command? */
2630 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2631 		rc &= FW_MSG_CODE_MASK;
2632 	else {
2633 		/* FW BUG! */
2634 		BNX2X_ERR("FW failed to respond!\n");
2635 		bnx2x_fw_dump(bp);
2636 		rc = 0;
2637 	}
2638 	mutex_unlock(&bp->fw_mb_mutex);
2639 
2640 	return rc;
2641 }
2642 
2643 static u8 stat_counter_valid(struct bnx2x *bp, struct bnx2x_fastpath *fp)
2644 {
2645 #ifdef BCM_CNIC
2646 	/* Statistics are not supported for CNIC Clients at the moment */
2647 	if (IS_FCOE_FP(fp))
2648 		return false;
2649 #endif
2650 	return true;
2651 }
2652 
2653 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2654 {
2655 	if (CHIP_IS_E1x(bp)) {
2656 		struct tstorm_eth_function_common_config tcfg = {0};
2657 
2658 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2659 	}
2660 
2661 	/* Enable the function in the FW */
2662 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2663 	storm_memset_func_en(bp, p->func_id, 1);
2664 
2665 	/* spq */
2666 	if (p->func_flgs & FUNC_FLG_SPQ) {
2667 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2668 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2669 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2670 	}
2671 }
2672 
2673 /**
2674  * bnx2x_get_tx_only_flags - Return common flags
2675  *
2676  * @bp		device handle
2677  * @fp		queue handle
2678  * @zero_stats	TRUE if statistics zeroing is needed
2679  *
2680  * Return the flags that are common for the Tx-only and not normal connections.
2681  */
2682 static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2683 						   struct bnx2x_fastpath *fp,
2684 						   bool zero_stats)
2685 {
2686 	unsigned long flags = 0;
2687 
2688 	/* PF driver will always initialize the Queue to an ACTIVE state */
2689 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2690 
2691 	/* tx only connections collect statistics (on the same index as the
2692 	 *  parent connection). The statistics are zeroed when the parent
2693 	 *  connection is initialized.
2694 	 */
2695 	if (stat_counter_valid(bp, fp)) {
2696 		__set_bit(BNX2X_Q_FLG_STATS, &flags);
2697 		if (zero_stats)
2698 			__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2699 	}
2700 
2701 	return flags;
2702 }
2703 
2704 static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2705 					      struct bnx2x_fastpath *fp,
2706 					      bool leading)
2707 {
2708 	unsigned long flags = 0;
2709 
2710 	/* calculate other queue flags */
2711 	if (IS_MF_SD(bp))
2712 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2713 
2714 	if (IS_FCOE_FP(fp))
2715 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2716 
2717 	if (!fp->disable_tpa) {
2718 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2719 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2720 	}
2721 
2722 	if (leading) {
2723 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2724 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2725 	}
2726 
2727 	/* Always set HW VLAN stripping */
2728 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2729 
2730 
2731 	return flags | bnx2x_get_common_flags(bp, fp, true);
2732 }
2733 
2734 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2735 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2736 	u8 cos)
2737 {
2738 	gen_init->stat_id = bnx2x_stats_id(fp);
2739 	gen_init->spcl_id = fp->cl_id;
2740 
2741 	/* Always use mini-jumbo MTU for FCoE L2 ring */
2742 	if (IS_FCOE_FP(fp))
2743 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2744 	else
2745 		gen_init->mtu = bp->dev->mtu;
2746 
2747 	gen_init->cos = cos;
2748 }
2749 
2750 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2751 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2752 	struct bnx2x_rxq_setup_params *rxq_init)
2753 {
2754 	u8 max_sge = 0;
2755 	u16 sge_sz = 0;
2756 	u16 tpa_agg_size = 0;
2757 
2758 	if (!fp->disable_tpa) {
2759 		pause->sge_th_hi = 250;
2760 		pause->sge_th_lo = 150;
2761 		tpa_agg_size = min_t(u32,
2762 			(min_t(u32, 8, MAX_SKB_FRAGS) *
2763 			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2764 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2765 			SGE_PAGE_SHIFT;
2766 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2767 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2768 		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2769 				    0xffff);
2770 	}
2771 
2772 	/* pause - not for e1 */
2773 	if (!CHIP_IS_E1(bp)) {
2774 		pause->bd_th_hi = 350;
2775 		pause->bd_th_lo = 250;
2776 		pause->rcq_th_hi = 350;
2777 		pause->rcq_th_lo = 250;
2778 
2779 		pause->pri_map = 1;
2780 	}
2781 
2782 	/* rxq setup */
2783 	rxq_init->dscr_map = fp->rx_desc_mapping;
2784 	rxq_init->sge_map = fp->rx_sge_mapping;
2785 	rxq_init->rcq_map = fp->rx_comp_mapping;
2786 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2787 
2788 	/* This should be a maximum number of data bytes that may be
2789 	 * placed on the BD (not including paddings).
2790 	 */
2791 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN -
2792 		IP_HEADER_ALIGNMENT_PADDING;
2793 
2794 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2795 	rxq_init->tpa_agg_sz = tpa_agg_size;
2796 	rxq_init->sge_buf_sz = sge_sz;
2797 	rxq_init->max_sges_pkt = max_sge;
2798 	rxq_init->rss_engine_id = BP_FUNC(bp);
2799 
2800 	/* Maximum number or simultaneous TPA aggregation for this Queue.
2801 	 *
2802 	 * For PF Clients it should be the maximum avaliable number.
2803 	 * VF driver(s) may want to define it to a smaller value.
2804 	 */
2805 	rxq_init->max_tpa_queues =
2806 		(CHIP_IS_E1(bp) ? ETH_MAX_AGGREGATION_QUEUES_E1 :
2807 		ETH_MAX_AGGREGATION_QUEUES_E1H_E2);
2808 
2809 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2810 	rxq_init->fw_sb_id = fp->fw_sb_id;
2811 
2812 	if (IS_FCOE_FP(fp))
2813 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2814 	else
2815 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2816 }
2817 
2818 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2819 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2820 	u8 cos)
2821 {
2822 	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2823 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2824 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2825 	txq_init->fw_sb_id = fp->fw_sb_id;
2826 
2827 	/*
2828 	 * set the tss leading client id for TX classfication ==
2829 	 * leading RSS client id
2830 	 */
2831 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2832 
2833 	if (IS_FCOE_FP(fp)) {
2834 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2835 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2836 	}
2837 }
2838 
2839 static void bnx2x_pf_init(struct bnx2x *bp)
2840 {
2841 	struct bnx2x_func_init_params func_init = {0};
2842 	struct event_ring_data eq_data = { {0} };
2843 	u16 flags;
2844 
2845 	if (!CHIP_IS_E1x(bp)) {
2846 		/* reset IGU PF statistics: MSIX + ATTN */
2847 		/* PF */
2848 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2849 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2850 			   (CHIP_MODE_IS_4_PORT(bp) ?
2851 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2852 		/* ATTN */
2853 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2854 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2855 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2856 			   (CHIP_MODE_IS_4_PORT(bp) ?
2857 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2858 	}
2859 
2860 	/* function setup flags */
2861 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2862 
2863 	/* This flag is relevant for E1x only.
2864 	 * E2 doesn't have a TPA configuration in a function level.
2865 	 */
2866 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2867 
2868 	func_init.func_flgs = flags;
2869 	func_init.pf_id = BP_FUNC(bp);
2870 	func_init.func_id = BP_FUNC(bp);
2871 	func_init.spq_map = bp->spq_mapping;
2872 	func_init.spq_prod = bp->spq_prod_idx;
2873 
2874 	bnx2x_func_init(bp, &func_init);
2875 
2876 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2877 
2878 	/*
2879 	 * Congestion management values depend on the link rate
2880 	 * There is no active link so initial link rate is set to 10 Gbps.
2881 	 * When the link comes up The congestion management values are
2882 	 * re-calculated according to the actual link rate.
2883 	 */
2884 	bp->link_vars.line_speed = SPEED_10000;
2885 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2886 
2887 	/* Only the PMF sets the HW */
2888 	if (bp->port.pmf)
2889 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2890 
2891 	/* init Event Queue */
2892 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2893 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2894 	eq_data.producer = bp->eq_prod;
2895 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2896 	eq_data.sb_id = DEF_SB_ID;
2897 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2898 }
2899 
2900 
2901 static void bnx2x_e1h_disable(struct bnx2x *bp)
2902 {
2903 	int port = BP_PORT(bp);
2904 
2905 	bnx2x_tx_disable(bp);
2906 
2907 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2908 }
2909 
2910 static void bnx2x_e1h_enable(struct bnx2x *bp)
2911 {
2912 	int port = BP_PORT(bp);
2913 
2914 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2915 
2916 	/* Tx queue should be only reenabled */
2917 	netif_tx_wake_all_queues(bp->dev);
2918 
2919 	/*
2920 	 * Should not call netif_carrier_on since it will be called if the link
2921 	 * is up when checking for link state
2922 	 */
2923 }
2924 
2925 /* called due to MCP event (on pmf):
2926  *	reread new bandwidth configuration
2927  *	configure FW
2928  *	notify others function about the change
2929  */
2930 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
2931 {
2932 	if (bp->link_vars.link_up) {
2933 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
2934 		bnx2x_link_sync_notify(bp);
2935 	}
2936 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2937 }
2938 
2939 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
2940 {
2941 	bnx2x_config_mf_bw(bp);
2942 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
2943 }
2944 
2945 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
2946 {
2947 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
2948 
2949 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
2950 
2951 		/*
2952 		 * This is the only place besides the function initialization
2953 		 * where the bp->flags can change so it is done without any
2954 		 * locks
2955 		 */
2956 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2957 			DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
2958 			bp->flags |= MF_FUNC_DIS;
2959 
2960 			bnx2x_e1h_disable(bp);
2961 		} else {
2962 			DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2963 			bp->flags &= ~MF_FUNC_DIS;
2964 
2965 			bnx2x_e1h_enable(bp);
2966 		}
2967 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
2968 	}
2969 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
2970 		bnx2x_config_mf_bw(bp);
2971 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
2972 	}
2973 
2974 	/* Report results to MCP */
2975 	if (dcc_event)
2976 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
2977 	else
2978 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
2979 }
2980 
2981 /* must be called under the spq lock */
2982 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
2983 {
2984 	struct eth_spe *next_spe = bp->spq_prod_bd;
2985 
2986 	if (bp->spq_prod_bd == bp->spq_last_bd) {
2987 		bp->spq_prod_bd = bp->spq;
2988 		bp->spq_prod_idx = 0;
2989 		DP(NETIF_MSG_TIMER, "end of spq\n");
2990 	} else {
2991 		bp->spq_prod_bd++;
2992 		bp->spq_prod_idx++;
2993 	}
2994 	return next_spe;
2995 }
2996 
2997 /* must be called under the spq lock */
2998 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
2999 {
3000 	int func = BP_FUNC(bp);
3001 
3002 	/*
3003 	 * Make sure that BD data is updated before writing the producer:
3004 	 * BD data is written to the memory, the producer is read from the
3005 	 * memory, thus we need a full memory barrier to ensure the ordering.
3006 	 */
3007 	mb();
3008 
3009 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3010 		 bp->spq_prod_idx);
3011 	mmiowb();
3012 }
3013 
3014 /**
3015  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3016  *
3017  * @cmd:	command to check
3018  * @cmd_type:	command type
3019  */
3020 static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3021 {
3022 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3023 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3024 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3025 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3026 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3027 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3028 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3029 		return true;
3030 	else
3031 		return false;
3032 
3033 }
3034 
3035 
3036 /**
3037  * bnx2x_sp_post - place a single command on an SP ring
3038  *
3039  * @bp:		driver handle
3040  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3041  * @cid:	SW CID the command is related to
3042  * @data_hi:	command private data address (high 32 bits)
3043  * @data_lo:	command private data address (low 32 bits)
3044  * @cmd_type:	command type (e.g. NONE, ETH)
3045  *
3046  * SP data is handled as if it's always an address pair, thus data fields are
3047  * not swapped to little endian in upper functions. Instead this function swaps
3048  * data as if it's two u32 fields.
3049  */
3050 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3051 		  u32 data_hi, u32 data_lo, int cmd_type)
3052 {
3053 	struct eth_spe *spe;
3054 	u16 type;
3055 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3056 
3057 #ifdef BNX2X_STOP_ON_ERROR
3058 	if (unlikely(bp->panic))
3059 		return -EIO;
3060 #endif
3061 
3062 	spin_lock_bh(&bp->spq_lock);
3063 
3064 	if (common) {
3065 		if (!atomic_read(&bp->eq_spq_left)) {
3066 			BNX2X_ERR("BUG! EQ ring full!\n");
3067 			spin_unlock_bh(&bp->spq_lock);
3068 			bnx2x_panic();
3069 			return -EBUSY;
3070 		}
3071 	} else if (!atomic_read(&bp->cq_spq_left)) {
3072 			BNX2X_ERR("BUG! SPQ ring full!\n");
3073 			spin_unlock_bh(&bp->spq_lock);
3074 			bnx2x_panic();
3075 			return -EBUSY;
3076 	}
3077 
3078 	spe = bnx2x_sp_get_next(bp);
3079 
3080 	/* CID needs port number to be encoded int it */
3081 	spe->hdr.conn_and_cmd_data =
3082 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3083 				    HW_CID(bp, cid));
3084 
3085 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3086 
3087 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3088 		 SPE_HDR_FUNCTION_ID);
3089 
3090 	spe->hdr.type = cpu_to_le16(type);
3091 
3092 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3093 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3094 
3095 	/*
3096 	 * It's ok if the actual decrement is issued towards the memory
3097 	 * somewhere between the spin_lock and spin_unlock. Thus no
3098 	 * more explict memory barrier is needed.
3099 	 */
3100 	if (common)
3101 		atomic_dec(&bp->eq_spq_left);
3102 	else
3103 		atomic_dec(&bp->cq_spq_left);
3104 
3105 
3106 	DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3107 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) "
3108 	   "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3109 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3110 	   (u32)(U64_LO(bp->spq_mapping) +
3111 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3112 	   HW_CID(bp, cid), data_hi, data_lo, type,
3113 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3114 
3115 	bnx2x_sp_prod_update(bp);
3116 	spin_unlock_bh(&bp->spq_lock);
3117 	return 0;
3118 }
3119 
3120 /* acquire split MCP access lock register */
3121 static int bnx2x_acquire_alr(struct bnx2x *bp)
3122 {
3123 	u32 j, val;
3124 	int rc = 0;
3125 
3126 	might_sleep();
3127 	for (j = 0; j < 1000; j++) {
3128 		val = (1UL << 31);
3129 		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3130 		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3131 		if (val & (1L << 31))
3132 			break;
3133 
3134 		msleep(5);
3135 	}
3136 	if (!(val & (1L << 31))) {
3137 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3138 		rc = -EBUSY;
3139 	}
3140 
3141 	return rc;
3142 }
3143 
3144 /* release split MCP access lock register */
3145 static void bnx2x_release_alr(struct bnx2x *bp)
3146 {
3147 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3148 }
3149 
3150 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3151 #define BNX2X_DEF_SB_IDX	0x0002
3152 
3153 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3154 {
3155 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3156 	u16 rc = 0;
3157 
3158 	barrier(); /* status block is written to by the chip */
3159 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3160 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3161 		rc |= BNX2X_DEF_SB_ATT_IDX;
3162 	}
3163 
3164 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3165 		bp->def_idx = def_sb->sp_sb.running_index;
3166 		rc |= BNX2X_DEF_SB_IDX;
3167 	}
3168 
3169 	/* Do not reorder: indecies reading should complete before handling */
3170 	barrier();
3171 	return rc;
3172 }
3173 
3174 /*
3175  * slow path service functions
3176  */
3177 
3178 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3179 {
3180 	int port = BP_PORT(bp);
3181 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3182 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3183 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3184 				       NIG_REG_MASK_INTERRUPT_PORT0;
3185 	u32 aeu_mask;
3186 	u32 nig_mask = 0;
3187 	u32 reg_addr;
3188 
3189 	if (bp->attn_state & asserted)
3190 		BNX2X_ERR("IGU ERROR\n");
3191 
3192 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3193 	aeu_mask = REG_RD(bp, aeu_addr);
3194 
3195 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3196 	   aeu_mask, asserted);
3197 	aeu_mask &= ~(asserted & 0x3ff);
3198 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3199 
3200 	REG_WR(bp, aeu_addr, aeu_mask);
3201 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3202 
3203 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3204 	bp->attn_state |= asserted;
3205 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3206 
3207 	if (asserted & ATTN_HARD_WIRED_MASK) {
3208 		if (asserted & ATTN_NIG_FOR_FUNC) {
3209 
3210 			bnx2x_acquire_phy_lock(bp);
3211 
3212 			/* save nig interrupt mask */
3213 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3214 
3215 			/* If nig_mask is not set, no need to call the update
3216 			 * function.
3217 			 */
3218 			if (nig_mask) {
3219 				REG_WR(bp, nig_int_mask_addr, 0);
3220 
3221 				bnx2x_link_attn(bp);
3222 			}
3223 
3224 			/* handle unicore attn? */
3225 		}
3226 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3227 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3228 
3229 		if (asserted & GPIO_2_FUNC)
3230 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3231 
3232 		if (asserted & GPIO_3_FUNC)
3233 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3234 
3235 		if (asserted & GPIO_4_FUNC)
3236 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3237 
3238 		if (port == 0) {
3239 			if (asserted & ATTN_GENERAL_ATTN_1) {
3240 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3241 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3242 			}
3243 			if (asserted & ATTN_GENERAL_ATTN_2) {
3244 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3245 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3246 			}
3247 			if (asserted & ATTN_GENERAL_ATTN_3) {
3248 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3249 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3250 			}
3251 		} else {
3252 			if (asserted & ATTN_GENERAL_ATTN_4) {
3253 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3254 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3255 			}
3256 			if (asserted & ATTN_GENERAL_ATTN_5) {
3257 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3258 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3259 			}
3260 			if (asserted & ATTN_GENERAL_ATTN_6) {
3261 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3262 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3263 			}
3264 		}
3265 
3266 	} /* if hardwired */
3267 
3268 	if (bp->common.int_block == INT_BLOCK_HC)
3269 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3270 			    COMMAND_REG_ATTN_BITS_SET);
3271 	else
3272 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3273 
3274 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3275 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3276 	REG_WR(bp, reg_addr, asserted);
3277 
3278 	/* now set back the mask */
3279 	if (asserted & ATTN_NIG_FOR_FUNC) {
3280 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3281 		bnx2x_release_phy_lock(bp);
3282 	}
3283 }
3284 
3285 static inline void bnx2x_fan_failure(struct bnx2x *bp)
3286 {
3287 	int port = BP_PORT(bp);
3288 	u32 ext_phy_config;
3289 	/* mark the failure */
3290 	ext_phy_config =
3291 		SHMEM_RD(bp,
3292 			 dev_info.port_hw_config[port].external_phy_config);
3293 
3294 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3295 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3296 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3297 		 ext_phy_config);
3298 
3299 	/* log the failure */
3300 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3301 	       " the driver to shutdown the card to prevent permanent"
3302 	       " damage.  Please contact OEM Support for assistance\n");
3303 }
3304 
3305 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3306 {
3307 	int port = BP_PORT(bp);
3308 	int reg_offset;
3309 	u32 val;
3310 
3311 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3312 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3313 
3314 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3315 
3316 		val = REG_RD(bp, reg_offset);
3317 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3318 		REG_WR(bp, reg_offset, val);
3319 
3320 		BNX2X_ERR("SPIO5 hw attention\n");
3321 
3322 		/* Fan failure attention */
3323 		bnx2x_hw_reset_phy(&bp->link_params);
3324 		bnx2x_fan_failure(bp);
3325 	}
3326 
3327 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3328 		bnx2x_acquire_phy_lock(bp);
3329 		bnx2x_handle_module_detect_int(&bp->link_params);
3330 		bnx2x_release_phy_lock(bp);
3331 	}
3332 
3333 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3334 
3335 		val = REG_RD(bp, reg_offset);
3336 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3337 		REG_WR(bp, reg_offset, val);
3338 
3339 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3340 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3341 		bnx2x_panic();
3342 	}
3343 }
3344 
3345 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3346 {
3347 	u32 val;
3348 
3349 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3350 
3351 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3352 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3353 		/* DORQ discard attention */
3354 		if (val & 0x2)
3355 			BNX2X_ERR("FATAL error from DORQ\n");
3356 	}
3357 
3358 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3359 
3360 		int port = BP_PORT(bp);
3361 		int reg_offset;
3362 
3363 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3364 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3365 
3366 		val = REG_RD(bp, reg_offset);
3367 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3368 		REG_WR(bp, reg_offset, val);
3369 
3370 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3371 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3372 		bnx2x_panic();
3373 	}
3374 }
3375 
3376 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3377 {
3378 	u32 val;
3379 
3380 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3381 
3382 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3383 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3384 		/* CFC error attention */
3385 		if (val & 0x2)
3386 			BNX2X_ERR("FATAL error from CFC\n");
3387 	}
3388 
3389 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3390 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3391 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3392 		/* RQ_USDMDP_FIFO_OVERFLOW */
3393 		if (val & 0x18000)
3394 			BNX2X_ERR("FATAL error from PXP\n");
3395 
3396 		if (!CHIP_IS_E1x(bp)) {
3397 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3398 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3399 		}
3400 	}
3401 
3402 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3403 
3404 		int port = BP_PORT(bp);
3405 		int reg_offset;
3406 
3407 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3408 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3409 
3410 		val = REG_RD(bp, reg_offset);
3411 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3412 		REG_WR(bp, reg_offset, val);
3413 
3414 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3415 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3416 		bnx2x_panic();
3417 	}
3418 }
3419 
3420 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3421 {
3422 	u32 val;
3423 
3424 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3425 
3426 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3427 			int func = BP_FUNC(bp);
3428 
3429 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3430 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3431 					func_mf_config[BP_ABS_FUNC(bp)].config);
3432 			val = SHMEM_RD(bp,
3433 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3434 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3435 				bnx2x_dcc_event(bp,
3436 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3437 
3438 			if (val & DRV_STATUS_SET_MF_BW)
3439 				bnx2x_set_mf_bw(bp);
3440 
3441 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3442 				bnx2x_pmf_update(bp);
3443 
3444 			if (bp->port.pmf &&
3445 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3446 				bp->dcbx_enabled > 0)
3447 				/* start dcbx state machine */
3448 				bnx2x_dcbx_set_params(bp,
3449 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3450 			if (bp->link_vars.periodic_flags &
3451 			    PERIODIC_FLAGS_LINK_EVENT) {
3452 				/*  sync with link */
3453 				bnx2x_acquire_phy_lock(bp);
3454 				bp->link_vars.periodic_flags &=
3455 					~PERIODIC_FLAGS_LINK_EVENT;
3456 				bnx2x_release_phy_lock(bp);
3457 				if (IS_MF(bp))
3458 					bnx2x_link_sync_notify(bp);
3459 				bnx2x_link_report(bp);
3460 			}
3461 			/* Always call it here: bnx2x_link_report() will
3462 			 * prevent the link indication duplication.
3463 			 */
3464 			bnx2x__link_status_update(bp);
3465 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3466 
3467 			BNX2X_ERR("MC assert!\n");
3468 			bnx2x_mc_assert(bp);
3469 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3470 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3471 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3472 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3473 			bnx2x_panic();
3474 
3475 		} else if (attn & BNX2X_MCP_ASSERT) {
3476 
3477 			BNX2X_ERR("MCP assert!\n");
3478 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3479 			bnx2x_fw_dump(bp);
3480 
3481 		} else
3482 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3483 	}
3484 
3485 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3486 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3487 		if (attn & BNX2X_GRC_TIMEOUT) {
3488 			val = CHIP_IS_E1(bp) ? 0 :
3489 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3490 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3491 		}
3492 		if (attn & BNX2X_GRC_RSV) {
3493 			val = CHIP_IS_E1(bp) ? 0 :
3494 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3495 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3496 		}
3497 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3498 	}
3499 }
3500 
3501 /*
3502  * Bits map:
3503  * 0-7   - Engine0 load counter.
3504  * 8-15  - Engine1 load counter.
3505  * 16    - Engine0 RESET_IN_PROGRESS bit.
3506  * 17    - Engine1 RESET_IN_PROGRESS bit.
3507  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3508  *         on the engine
3509  * 19    - Engine1 ONE_IS_LOADED.
3510  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3511  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3512  *         just the one belonging to its engine).
3513  *
3514  */
3515 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3516 
3517 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3518 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3519 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3520 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3521 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3522 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3523 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
3524 
3525 /*
3526  * Set the GLOBAL_RESET bit.
3527  *
3528  * Should be run under rtnl lock
3529  */
3530 void bnx2x_set_reset_global(struct bnx2x *bp)
3531 {
3532 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3533 
3534 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3535 	barrier();
3536 	mmiowb();
3537 }
3538 
3539 /*
3540  * Clear the GLOBAL_RESET bit.
3541  *
3542  * Should be run under rtnl lock
3543  */
3544 static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3545 {
3546 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3547 
3548 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3549 	barrier();
3550 	mmiowb();
3551 }
3552 
3553 /*
3554  * Checks the GLOBAL_RESET bit.
3555  *
3556  * should be run under rtnl lock
3557  */
3558 static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3559 {
3560 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3561 
3562 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3563 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3564 }
3565 
3566 /*
3567  * Clear RESET_IN_PROGRESS bit for the current engine.
3568  *
3569  * Should be run under rtnl lock
3570  */
3571 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3572 {
3573 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3574 	u32 bit = BP_PATH(bp) ?
3575 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3576 
3577 	/* Clear the bit */
3578 	val &= ~bit;
3579 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3580 	barrier();
3581 	mmiowb();
3582 }
3583 
3584 /*
3585  * Set RESET_IN_PROGRESS for the current engine.
3586  *
3587  * should be run under rtnl lock
3588  */
3589 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3590 {
3591 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3592 	u32 bit = BP_PATH(bp) ?
3593 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3594 
3595 	/* Set the bit */
3596 	val |= bit;
3597 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3598 	barrier();
3599 	mmiowb();
3600 }
3601 
3602 /*
3603  * Checks the RESET_IN_PROGRESS bit for the given engine.
3604  * should be run under rtnl lock
3605  */
3606 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3607 {
3608 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3609 	u32 bit = engine ?
3610 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3611 
3612 	/* return false if bit is set */
3613 	return (val & bit) ? false : true;
3614 }
3615 
3616 /*
3617  * Increment the load counter for the current engine.
3618  *
3619  * should be run under rtnl lock
3620  */
3621 void bnx2x_inc_load_cnt(struct bnx2x *bp)
3622 {
3623 	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3624 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3625 			     BNX2X_PATH0_LOAD_CNT_MASK;
3626 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3627 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3628 
3629 	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3630 
3631 	/* get the current counter value */
3632 	val1 = (val & mask) >> shift;
3633 
3634 	/* increment... */
3635 	val1++;
3636 
3637 	/* clear the old value */
3638 	val &= ~mask;
3639 
3640 	/* set the new one */
3641 	val |= ((val1 << shift) & mask);
3642 
3643 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3644 	barrier();
3645 	mmiowb();
3646 }
3647 
3648 /**
3649  * bnx2x_dec_load_cnt - decrement the load counter
3650  *
3651  * @bp:		driver handle
3652  *
3653  * Should be run under rtnl lock.
3654  * Decrements the load counter for the current engine. Returns
3655  * the new counter value.
3656  */
3657 u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3658 {
3659 	u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3660 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3661 			     BNX2X_PATH0_LOAD_CNT_MASK;
3662 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3663 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3664 
3665 	DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3666 
3667 	/* get the current counter value */
3668 	val1 = (val & mask) >> shift;
3669 
3670 	/* decrement... */
3671 	val1--;
3672 
3673 	/* clear the old value */
3674 	val &= ~mask;
3675 
3676 	/* set the new one */
3677 	val |= ((val1 << shift) & mask);
3678 
3679 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3680 	barrier();
3681 	mmiowb();
3682 
3683 	return val1;
3684 }
3685 
3686 /*
3687  * Read the load counter for the current engine.
3688  *
3689  * should be run under rtnl lock
3690  */
3691 static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
3692 {
3693 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3694 			     BNX2X_PATH0_LOAD_CNT_MASK);
3695 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3696 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
3697 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3698 
3699 	DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3700 
3701 	val = (val & mask) >> shift;
3702 
3703 	DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
3704 
3705 	return val;
3706 }
3707 
3708 /*
3709  * Reset the load counter for the current engine.
3710  *
3711  * should be run under rtnl lock
3712  */
3713 static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3714 {
3715 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3716 	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3717 			     BNX2X_PATH0_LOAD_CNT_MASK);
3718 
3719 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3720 }
3721 
3722 static inline void _print_next_block(int idx, const char *blk)
3723 {
3724 	if (idx)
3725 		pr_cont(", ");
3726 	pr_cont("%s", blk);
3727 }
3728 
3729 static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3730 						  bool print)
3731 {
3732 	int i = 0;
3733 	u32 cur_bit = 0;
3734 	for (i = 0; sig; i++) {
3735 		cur_bit = ((u32)0x1 << i);
3736 		if (sig & cur_bit) {
3737 			switch (cur_bit) {
3738 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3739 				if (print)
3740 					_print_next_block(par_num++, "BRB");
3741 				break;
3742 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3743 				if (print)
3744 					_print_next_block(par_num++, "PARSER");
3745 				break;
3746 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3747 				if (print)
3748 					_print_next_block(par_num++, "TSDM");
3749 				break;
3750 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3751 				if (print)
3752 					_print_next_block(par_num++,
3753 							  "SEARCHER");
3754 				break;
3755 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3756 				if (print)
3757 					_print_next_block(par_num++, "TCM");
3758 				break;
3759 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3760 				if (print)
3761 					_print_next_block(par_num++, "TSEMI");
3762 				break;
3763 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3764 				if (print)
3765 					_print_next_block(par_num++, "XPB");
3766 				break;
3767 			}
3768 
3769 			/* Clear the bit */
3770 			sig &= ~cur_bit;
3771 		}
3772 	}
3773 
3774 	return par_num;
3775 }
3776 
3777 static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3778 						  bool *global, bool print)
3779 {
3780 	int i = 0;
3781 	u32 cur_bit = 0;
3782 	for (i = 0; sig; i++) {
3783 		cur_bit = ((u32)0x1 << i);
3784 		if (sig & cur_bit) {
3785 			switch (cur_bit) {
3786 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3787 				if (print)
3788 					_print_next_block(par_num++, "PBF");
3789 				break;
3790 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3791 				if (print)
3792 					_print_next_block(par_num++, "QM");
3793 				break;
3794 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3795 				if (print)
3796 					_print_next_block(par_num++, "TM");
3797 				break;
3798 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3799 				if (print)
3800 					_print_next_block(par_num++, "XSDM");
3801 				break;
3802 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3803 				if (print)
3804 					_print_next_block(par_num++, "XCM");
3805 				break;
3806 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3807 				if (print)
3808 					_print_next_block(par_num++, "XSEMI");
3809 				break;
3810 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3811 				if (print)
3812 					_print_next_block(par_num++,
3813 							  "DOORBELLQ");
3814 				break;
3815 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3816 				if (print)
3817 					_print_next_block(par_num++, "NIG");
3818 				break;
3819 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3820 				if (print)
3821 					_print_next_block(par_num++,
3822 							  "VAUX PCI CORE");
3823 				*global = true;
3824 				break;
3825 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3826 				if (print)
3827 					_print_next_block(par_num++, "DEBUG");
3828 				break;
3829 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3830 				if (print)
3831 					_print_next_block(par_num++, "USDM");
3832 				break;
3833 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3834 				if (print)
3835 					_print_next_block(par_num++, "UCM");
3836 				break;
3837 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3838 				if (print)
3839 					_print_next_block(par_num++, "USEMI");
3840 				break;
3841 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3842 				if (print)
3843 					_print_next_block(par_num++, "UPB");
3844 				break;
3845 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3846 				if (print)
3847 					_print_next_block(par_num++, "CSDM");
3848 				break;
3849 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3850 				if (print)
3851 					_print_next_block(par_num++, "CCM");
3852 				break;
3853 			}
3854 
3855 			/* Clear the bit */
3856 			sig &= ~cur_bit;
3857 		}
3858 	}
3859 
3860 	return par_num;
3861 }
3862 
3863 static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
3864 						  bool print)
3865 {
3866 	int i = 0;
3867 	u32 cur_bit = 0;
3868 	for (i = 0; sig; i++) {
3869 		cur_bit = ((u32)0x1 << i);
3870 		if (sig & cur_bit) {
3871 			switch (cur_bit) {
3872 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3873 				if (print)
3874 					_print_next_block(par_num++, "CSEMI");
3875 				break;
3876 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3877 				if (print)
3878 					_print_next_block(par_num++, "PXP");
3879 				break;
3880 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3881 				if (print)
3882 					_print_next_block(par_num++,
3883 					"PXPPCICLOCKCLIENT");
3884 				break;
3885 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3886 				if (print)
3887 					_print_next_block(par_num++, "CFC");
3888 				break;
3889 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3890 				if (print)
3891 					_print_next_block(par_num++, "CDU");
3892 				break;
3893 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3894 				if (print)
3895 					_print_next_block(par_num++, "DMAE");
3896 				break;
3897 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3898 				if (print)
3899 					_print_next_block(par_num++, "IGU");
3900 				break;
3901 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3902 				if (print)
3903 					_print_next_block(par_num++, "MISC");
3904 				break;
3905 			}
3906 
3907 			/* Clear the bit */
3908 			sig &= ~cur_bit;
3909 		}
3910 	}
3911 
3912 	return par_num;
3913 }
3914 
3915 static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
3916 						  bool *global, bool print)
3917 {
3918 	int i = 0;
3919 	u32 cur_bit = 0;
3920 	for (i = 0; sig; i++) {
3921 		cur_bit = ((u32)0x1 << i);
3922 		if (sig & cur_bit) {
3923 			switch (cur_bit) {
3924 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3925 				if (print)
3926 					_print_next_block(par_num++, "MCP ROM");
3927 				*global = true;
3928 				break;
3929 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3930 				if (print)
3931 					_print_next_block(par_num++,
3932 							  "MCP UMP RX");
3933 				*global = true;
3934 				break;
3935 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3936 				if (print)
3937 					_print_next_block(par_num++,
3938 							  "MCP UMP TX");
3939 				*global = true;
3940 				break;
3941 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3942 				if (print)
3943 					_print_next_block(par_num++,
3944 							  "MCP SCPAD");
3945 				*global = true;
3946 				break;
3947 			}
3948 
3949 			/* Clear the bit */
3950 			sig &= ~cur_bit;
3951 		}
3952 	}
3953 
3954 	return par_num;
3955 }
3956 
3957 static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
3958 						  bool print)
3959 {
3960 	int i = 0;
3961 	u32 cur_bit = 0;
3962 	for (i = 0; sig; i++) {
3963 		cur_bit = ((u32)0x1 << i);
3964 		if (sig & cur_bit) {
3965 			switch (cur_bit) {
3966 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3967 				if (print)
3968 					_print_next_block(par_num++, "PGLUE_B");
3969 				break;
3970 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3971 				if (print)
3972 					_print_next_block(par_num++, "ATC");
3973 				break;
3974 			}
3975 
3976 			/* Clear the bit */
3977 			sig &= ~cur_bit;
3978 		}
3979 	}
3980 
3981 	return par_num;
3982 }
3983 
3984 static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
3985 				     u32 *sig)
3986 {
3987 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3988 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3989 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3990 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3991 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3992 		int par_num = 0;
3993 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
3994 			"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
3995 			"[4]:0x%08x\n",
3996 			  sig[0] & HW_PRTY_ASSERT_SET_0,
3997 			  sig[1] & HW_PRTY_ASSERT_SET_1,
3998 			  sig[2] & HW_PRTY_ASSERT_SET_2,
3999 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4000 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4001 		if (print)
4002 			netdev_err(bp->dev,
4003 				   "Parity errors detected in blocks: ");
4004 		par_num = bnx2x_check_blocks_with_parity0(
4005 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4006 		par_num = bnx2x_check_blocks_with_parity1(
4007 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4008 		par_num = bnx2x_check_blocks_with_parity2(
4009 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4010 		par_num = bnx2x_check_blocks_with_parity3(
4011 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4012 		par_num = bnx2x_check_blocks_with_parity4(
4013 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4014 
4015 		if (print)
4016 			pr_cont("\n");
4017 
4018 		return true;
4019 	} else
4020 		return false;
4021 }
4022 
4023 /**
4024  * bnx2x_chk_parity_attn - checks for parity attentions.
4025  *
4026  * @bp:		driver handle
4027  * @global:	true if there was a global attention
4028  * @print:	show parity attention in syslog
4029  */
4030 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4031 {
4032 	struct attn_route attn = { {0} };
4033 	int port = BP_PORT(bp);
4034 
4035 	attn.sig[0] = REG_RD(bp,
4036 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4037 			     port*4);
4038 	attn.sig[1] = REG_RD(bp,
4039 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4040 			     port*4);
4041 	attn.sig[2] = REG_RD(bp,
4042 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4043 			     port*4);
4044 	attn.sig[3] = REG_RD(bp,
4045 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4046 			     port*4);
4047 
4048 	if (!CHIP_IS_E1x(bp))
4049 		attn.sig[4] = REG_RD(bp,
4050 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4051 				     port*4);
4052 
4053 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4054 }
4055 
4056 
4057 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4058 {
4059 	u32 val;
4060 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4061 
4062 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4063 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4064 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4065 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4066 				  "ADDRESS_ERROR\n");
4067 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4068 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4069 				  "INCORRECT_RCV_BEHAVIOR\n");
4070 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4071 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4072 				  "WAS_ERROR_ATTN\n");
4073 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4074 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4075 				  "VF_LENGTH_VIOLATION_ATTN\n");
4076 		if (val &
4077 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4078 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4079 				  "VF_GRC_SPACE_VIOLATION_ATTN\n");
4080 		if (val &
4081 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4082 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4083 				  "VF_MSIX_BAR_VIOLATION_ATTN\n");
4084 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4085 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4086 				  "TCPL_ERROR_ATTN\n");
4087 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4088 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4089 				  "TCPL_IN_TWO_RCBS_ATTN\n");
4090 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4091 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4092 				  "CSSNOOP_FIFO_OVERFLOW\n");
4093 	}
4094 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4095 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4096 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4097 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4098 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4099 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4100 			BNX2X_ERR("ATC_ATC_INT_STS_REG"
4101 				  "_ATC_TCPL_TO_NOT_PEND\n");
4102 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4103 			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4104 				  "ATC_GPA_MULTIPLE_HITS\n");
4105 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4106 			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4107 				  "ATC_RCPL_TO_EMPTY_CNT\n");
4108 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4109 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4110 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4111 			BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4112 				  "ATC_IREQ_LESS_THAN_STU\n");
4113 	}
4114 
4115 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4116 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4117 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4118 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4119 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4120 	}
4121 
4122 }
4123 
4124 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4125 {
4126 	struct attn_route attn, *group_mask;
4127 	int port = BP_PORT(bp);
4128 	int index;
4129 	u32 reg_addr;
4130 	u32 val;
4131 	u32 aeu_mask;
4132 	bool global = false;
4133 
4134 	/* need to take HW lock because MCP or other port might also
4135 	   try to handle this event */
4136 	bnx2x_acquire_alr(bp);
4137 
4138 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4139 #ifndef BNX2X_STOP_ON_ERROR
4140 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4141 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4142 		/* Disable HW interrupts */
4143 		bnx2x_int_disable(bp);
4144 		/* In case of parity errors don't handle attentions so that
4145 		 * other function would "see" parity errors.
4146 		 */
4147 #else
4148 		bnx2x_panic();
4149 #endif
4150 		bnx2x_release_alr(bp);
4151 		return;
4152 	}
4153 
4154 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4155 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4156 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4157 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4158 	if (!CHIP_IS_E1x(bp))
4159 		attn.sig[4] =
4160 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4161 	else
4162 		attn.sig[4] = 0;
4163 
4164 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4165 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4166 
4167 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4168 		if (deasserted & (1 << index)) {
4169 			group_mask = &bp->attn_group[index];
4170 
4171 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4172 					 "%08x %08x %08x\n",
4173 			   index,
4174 			   group_mask->sig[0], group_mask->sig[1],
4175 			   group_mask->sig[2], group_mask->sig[3],
4176 			   group_mask->sig[4]);
4177 
4178 			bnx2x_attn_int_deasserted4(bp,
4179 					attn.sig[4] & group_mask->sig[4]);
4180 			bnx2x_attn_int_deasserted3(bp,
4181 					attn.sig[3] & group_mask->sig[3]);
4182 			bnx2x_attn_int_deasserted1(bp,
4183 					attn.sig[1] & group_mask->sig[1]);
4184 			bnx2x_attn_int_deasserted2(bp,
4185 					attn.sig[2] & group_mask->sig[2]);
4186 			bnx2x_attn_int_deasserted0(bp,
4187 					attn.sig[0] & group_mask->sig[0]);
4188 		}
4189 	}
4190 
4191 	bnx2x_release_alr(bp);
4192 
4193 	if (bp->common.int_block == INT_BLOCK_HC)
4194 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4195 			    COMMAND_REG_ATTN_BITS_CLR);
4196 	else
4197 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4198 
4199 	val = ~deasserted;
4200 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4201 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4202 	REG_WR(bp, reg_addr, val);
4203 
4204 	if (~bp->attn_state & deasserted)
4205 		BNX2X_ERR("IGU ERROR\n");
4206 
4207 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4208 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4209 
4210 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4211 	aeu_mask = REG_RD(bp, reg_addr);
4212 
4213 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4214 	   aeu_mask, deasserted);
4215 	aeu_mask |= (deasserted & 0x3ff);
4216 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4217 
4218 	REG_WR(bp, reg_addr, aeu_mask);
4219 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4220 
4221 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4222 	bp->attn_state &= ~deasserted;
4223 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4224 }
4225 
4226 static void bnx2x_attn_int(struct bnx2x *bp)
4227 {
4228 	/* read local copy of bits */
4229 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4230 								attn_bits);
4231 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4232 								attn_bits_ack);
4233 	u32 attn_state = bp->attn_state;
4234 
4235 	/* look for changed bits */
4236 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4237 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4238 
4239 	DP(NETIF_MSG_HW,
4240 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4241 	   attn_bits, attn_ack, asserted, deasserted);
4242 
4243 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4244 		BNX2X_ERR("BAD attention state\n");
4245 
4246 	/* handle bits that were raised */
4247 	if (asserted)
4248 		bnx2x_attn_int_asserted(bp, asserted);
4249 
4250 	if (deasserted)
4251 		bnx2x_attn_int_deasserted(bp, deasserted);
4252 }
4253 
4254 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4255 		      u16 index, u8 op, u8 update)
4256 {
4257 	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4258 
4259 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4260 			     igu_addr);
4261 }
4262 
4263 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4264 {
4265 	/* No memory barriers */
4266 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4267 	mmiowb(); /* keep prod updates ordered */
4268 }
4269 
4270 #ifdef BCM_CNIC
4271 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4272 				      union event_ring_elem *elem)
4273 {
4274 	u8 err = elem->message.error;
4275 
4276 	if (!bp->cnic_eth_dev.starting_cid  ||
4277 	    (cid < bp->cnic_eth_dev.starting_cid &&
4278 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4279 		return 1;
4280 
4281 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4282 
4283 	if (unlikely(err)) {
4284 
4285 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4286 			  cid);
4287 		bnx2x_panic_dump(bp);
4288 	}
4289 	bnx2x_cnic_cfc_comp(bp, cid, err);
4290 	return 0;
4291 }
4292 #endif
4293 
4294 static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4295 {
4296 	struct bnx2x_mcast_ramrod_params rparam;
4297 	int rc;
4298 
4299 	memset(&rparam, 0, sizeof(rparam));
4300 
4301 	rparam.mcast_obj = &bp->mcast_obj;
4302 
4303 	netif_addr_lock_bh(bp->dev);
4304 
4305 	/* Clear pending state for the last command */
4306 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4307 
4308 	/* If there are pending mcast commands - send them */
4309 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4310 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4311 		if (rc < 0)
4312 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4313 				  rc);
4314 	}
4315 
4316 	netif_addr_unlock_bh(bp->dev);
4317 }
4318 
4319 static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4320 						   union event_ring_elem *elem)
4321 {
4322 	unsigned long ramrod_flags = 0;
4323 	int rc = 0;
4324 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4325 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4326 
4327 	/* Always push next commands out, don't wait here */
4328 	__set_bit(RAMROD_CONT, &ramrod_flags);
4329 
4330 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4331 	case BNX2X_FILTER_MAC_PENDING:
4332 #ifdef BCM_CNIC
4333 		if (cid == BNX2X_ISCSI_ETH_CID)
4334 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4335 		else
4336 #endif
4337 			vlan_mac_obj = &bp->fp[cid].mac_obj;
4338 
4339 		break;
4340 		vlan_mac_obj = &bp->fp[cid].mac_obj;
4341 
4342 	case BNX2X_FILTER_MCAST_PENDING:
4343 		/* This is only relevant for 57710 where multicast MACs are
4344 		 * configured as unicast MACs using the same ramrod.
4345 		 */
4346 		bnx2x_handle_mcast_eqe(bp);
4347 		return;
4348 	default:
4349 		BNX2X_ERR("Unsupported classification command: %d\n",
4350 			  elem->message.data.eth_event.echo);
4351 		return;
4352 	}
4353 
4354 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4355 
4356 	if (rc < 0)
4357 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4358 	else if (rc > 0)
4359 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4360 
4361 }
4362 
4363 #ifdef BCM_CNIC
4364 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4365 #endif
4366 
4367 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4368 {
4369 	netif_addr_lock_bh(bp->dev);
4370 
4371 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4372 
4373 	/* Send rx_mode command again if was requested */
4374 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4375 		bnx2x_set_storm_rx_mode(bp);
4376 #ifdef BCM_CNIC
4377 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4378 				    &bp->sp_state))
4379 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4380 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4381 				    &bp->sp_state))
4382 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4383 #endif
4384 
4385 	netif_addr_unlock_bh(bp->dev);
4386 }
4387 
4388 static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4389 	struct bnx2x *bp, u32 cid)
4390 {
4391 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d", cid);
4392 #ifdef BCM_CNIC
4393 	if (cid == BNX2X_FCOE_ETH_CID)
4394 		return &bnx2x_fcoe(bp, q_obj);
4395 	else
4396 #endif
4397 		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4398 }
4399 
4400 static void bnx2x_eq_int(struct bnx2x *bp)
4401 {
4402 	u16 hw_cons, sw_cons, sw_prod;
4403 	union event_ring_elem *elem;
4404 	u32 cid;
4405 	u8 opcode;
4406 	int spqe_cnt = 0;
4407 	struct bnx2x_queue_sp_obj *q_obj;
4408 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4409 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4410 
4411 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4412 
4413 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4414 	 * when we get the the next-page we nned to adjust so the loop
4415 	 * condition below will be met. The next element is the size of a
4416 	 * regular element and hence incrementing by 1
4417 	 */
4418 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4419 		hw_cons++;
4420 
4421 	/* This function may never run in parallel with itself for a
4422 	 * specific bp, thus there is no need in "paired" read memory
4423 	 * barrier here.
4424 	 */
4425 	sw_cons = bp->eq_cons;
4426 	sw_prod = bp->eq_prod;
4427 
4428 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4429 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4430 
4431 	for (; sw_cons != hw_cons;
4432 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4433 
4434 
4435 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4436 
4437 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4438 		opcode = elem->message.opcode;
4439 
4440 
4441 		/* handle eq element */
4442 		switch (opcode) {
4443 		case EVENT_RING_OPCODE_STAT_QUERY:
4444 			DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4445 			   bp->stats_comp++);
4446 			/* nothing to do with stats comp */
4447 			goto next_spqe;
4448 
4449 		case EVENT_RING_OPCODE_CFC_DEL:
4450 			/* handle according to cid range */
4451 			/*
4452 			 * we may want to verify here that the bp state is
4453 			 * HALTING
4454 			 */
4455 			DP(BNX2X_MSG_SP,
4456 			   "got delete ramrod for MULTI[%d]\n", cid);
4457 #ifdef BCM_CNIC
4458 			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4459 				goto next_spqe;
4460 #endif
4461 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4462 
4463 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4464 				break;
4465 
4466 
4467 
4468 			goto next_spqe;
4469 
4470 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4471 			DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4472 			if (f_obj->complete_cmd(bp, f_obj,
4473 						BNX2X_F_CMD_TX_STOP))
4474 				break;
4475 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4476 			goto next_spqe;
4477 
4478 		case EVENT_RING_OPCODE_START_TRAFFIC:
4479 			DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4480 			if (f_obj->complete_cmd(bp, f_obj,
4481 						BNX2X_F_CMD_TX_START))
4482 				break;
4483 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4484 			goto next_spqe;
4485 		case EVENT_RING_OPCODE_FUNCTION_START:
4486 			DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4487 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4488 				break;
4489 
4490 			goto next_spqe;
4491 
4492 		case EVENT_RING_OPCODE_FUNCTION_STOP:
4493 			DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4494 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4495 				break;
4496 
4497 			goto next_spqe;
4498 		}
4499 
4500 		switch (opcode | bp->state) {
4501 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4502 		      BNX2X_STATE_OPEN):
4503 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4504 		      BNX2X_STATE_OPENING_WAIT4_PORT):
4505 			cid = elem->message.data.eth_event.echo &
4506 				BNX2X_SWCID_MASK;
4507 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4508 			   cid);
4509 			rss_raw->clear_pending(rss_raw);
4510 			break;
4511 
4512 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4513 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4514 		case (EVENT_RING_OPCODE_SET_MAC |
4515 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4516 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4517 		      BNX2X_STATE_OPEN):
4518 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4519 		      BNX2X_STATE_DIAG):
4520 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4521 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4522 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4523 			bnx2x_handle_classification_eqe(bp, elem);
4524 			break;
4525 
4526 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4527 		      BNX2X_STATE_OPEN):
4528 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4529 		      BNX2X_STATE_DIAG):
4530 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4531 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4532 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4533 			bnx2x_handle_mcast_eqe(bp);
4534 			break;
4535 
4536 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4537 		      BNX2X_STATE_OPEN):
4538 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4539 		      BNX2X_STATE_DIAG):
4540 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4541 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4542 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4543 			bnx2x_handle_rx_mode_eqe(bp);
4544 			break;
4545 		default:
4546 			/* unknown event log error and continue */
4547 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4548 				  elem->message.opcode, bp->state);
4549 		}
4550 next_spqe:
4551 		spqe_cnt++;
4552 	} /* for */
4553 
4554 	smp_mb__before_atomic_inc();
4555 	atomic_add(spqe_cnt, &bp->eq_spq_left);
4556 
4557 	bp->eq_cons = sw_cons;
4558 	bp->eq_prod = sw_prod;
4559 	/* Make sure that above mem writes were issued towards the memory */
4560 	smp_wmb();
4561 
4562 	/* update producer */
4563 	bnx2x_update_eq_prod(bp, bp->eq_prod);
4564 }
4565 
4566 static void bnx2x_sp_task(struct work_struct *work)
4567 {
4568 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4569 	u16 status;
4570 
4571 	status = bnx2x_update_dsb_idx(bp);
4572 /*	if (status == 0)				     */
4573 /*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4574 
4575 	DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4576 
4577 	/* HW attentions */
4578 	if (status & BNX2X_DEF_SB_ATT_IDX) {
4579 		bnx2x_attn_int(bp);
4580 		status &= ~BNX2X_DEF_SB_ATT_IDX;
4581 	}
4582 
4583 	/* SP events: STAT_QUERY and others */
4584 	if (status & BNX2X_DEF_SB_IDX) {
4585 #ifdef BCM_CNIC
4586 		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4587 
4588 		if ((!NO_FCOE(bp)) &&
4589 			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4590 			/*
4591 			 * Prevent local bottom-halves from running as
4592 			 * we are going to change the local NAPI list.
4593 			 */
4594 			local_bh_disable();
4595 			napi_schedule(&bnx2x_fcoe(bp, napi));
4596 			local_bh_enable();
4597 		}
4598 #endif
4599 		/* Handle EQ completions */
4600 		bnx2x_eq_int(bp);
4601 
4602 		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4603 			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4604 
4605 		status &= ~BNX2X_DEF_SB_IDX;
4606 	}
4607 
4608 	if (unlikely(status))
4609 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4610 		   status);
4611 
4612 	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4613 	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4614 }
4615 
4616 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4617 {
4618 	struct net_device *dev = dev_instance;
4619 	struct bnx2x *bp = netdev_priv(dev);
4620 
4621 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4622 		     IGU_INT_DISABLE, 0);
4623 
4624 #ifdef BNX2X_STOP_ON_ERROR
4625 	if (unlikely(bp->panic))
4626 		return IRQ_HANDLED;
4627 #endif
4628 
4629 #ifdef BCM_CNIC
4630 	{
4631 		struct cnic_ops *c_ops;
4632 
4633 		rcu_read_lock();
4634 		c_ops = rcu_dereference(bp->cnic_ops);
4635 		if (c_ops)
4636 			c_ops->cnic_handler(bp->cnic_data, NULL);
4637 		rcu_read_unlock();
4638 	}
4639 #endif
4640 	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4641 
4642 	return IRQ_HANDLED;
4643 }
4644 
4645 /* end of slow path */
4646 
4647 
4648 void bnx2x_drv_pulse(struct bnx2x *bp)
4649 {
4650 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4651 		 bp->fw_drv_pulse_wr_seq);
4652 }
4653 
4654 
4655 static void bnx2x_timer(unsigned long data)
4656 {
4657 	u8 cos;
4658 	struct bnx2x *bp = (struct bnx2x *) data;
4659 
4660 	if (!netif_running(bp->dev))
4661 		return;
4662 
4663 	if (poll) {
4664 		struct bnx2x_fastpath *fp = &bp->fp[0];
4665 
4666 		for_each_cos_in_tx_queue(fp, cos)
4667 			bnx2x_tx_int(bp, &fp->txdata[cos]);
4668 		bnx2x_rx_int(fp, 1000);
4669 	}
4670 
4671 	if (!BP_NOMCP(bp)) {
4672 		int mb_idx = BP_FW_MB_IDX(bp);
4673 		u32 drv_pulse;
4674 		u32 mcp_pulse;
4675 
4676 		++bp->fw_drv_pulse_wr_seq;
4677 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4678 		/* TBD - add SYSTEM_TIME */
4679 		drv_pulse = bp->fw_drv_pulse_wr_seq;
4680 		bnx2x_drv_pulse(bp);
4681 
4682 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4683 			     MCP_PULSE_SEQ_MASK);
4684 		/* The delta between driver pulse and mcp response
4685 		 * should be 1 (before mcp response) or 0 (after mcp response)
4686 		 */
4687 		if ((drv_pulse != mcp_pulse) &&
4688 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4689 			/* someone lost a heartbeat... */
4690 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4691 				  drv_pulse, mcp_pulse);
4692 		}
4693 	}
4694 
4695 	if (bp->state == BNX2X_STATE_OPEN)
4696 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4697 
4698 	mod_timer(&bp->timer, jiffies + bp->current_interval);
4699 }
4700 
4701 /* end of Statistics */
4702 
4703 /* nic init */
4704 
4705 /*
4706  * nic init service functions
4707  */
4708 
4709 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4710 {
4711 	u32 i;
4712 	if (!(len%4) && !(addr%4))
4713 		for (i = 0; i < len; i += 4)
4714 			REG_WR(bp, addr + i, fill);
4715 	else
4716 		for (i = 0; i < len; i++)
4717 			REG_WR8(bp, addr + i, fill);
4718 
4719 }
4720 
4721 /* helper: writes FP SP data to FW - data_size in dwords */
4722 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4723 				       int fw_sb_id,
4724 				       u32 *sb_data_p,
4725 				       u32 data_size)
4726 {
4727 	int index;
4728 	for (index = 0; index < data_size; index++)
4729 		REG_WR(bp, BAR_CSTRORM_INTMEM +
4730 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4731 			sizeof(u32)*index,
4732 			*(sb_data_p + index));
4733 }
4734 
4735 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4736 {
4737 	u32 *sb_data_p;
4738 	u32 data_size = 0;
4739 	struct hc_status_block_data_e2 sb_data_e2;
4740 	struct hc_status_block_data_e1x sb_data_e1x;
4741 
4742 	/* disable the function first */
4743 	if (!CHIP_IS_E1x(bp)) {
4744 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4745 		sb_data_e2.common.state = SB_DISABLED;
4746 		sb_data_e2.common.p_func.vf_valid = false;
4747 		sb_data_p = (u32 *)&sb_data_e2;
4748 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4749 	} else {
4750 		memset(&sb_data_e1x, 0,
4751 		       sizeof(struct hc_status_block_data_e1x));
4752 		sb_data_e1x.common.state = SB_DISABLED;
4753 		sb_data_e1x.common.p_func.vf_valid = false;
4754 		sb_data_p = (u32 *)&sb_data_e1x;
4755 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4756 	}
4757 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4758 
4759 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4760 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4761 			CSTORM_STATUS_BLOCK_SIZE);
4762 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4763 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4764 			CSTORM_SYNC_BLOCK_SIZE);
4765 }
4766 
4767 /* helper:  writes SP SB data to FW */
4768 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4769 		struct hc_sp_status_block_data *sp_sb_data)
4770 {
4771 	int func = BP_FUNC(bp);
4772 	int i;
4773 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4774 		REG_WR(bp, BAR_CSTRORM_INTMEM +
4775 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4776 			i*sizeof(u32),
4777 			*((u32 *)sp_sb_data + i));
4778 }
4779 
4780 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4781 {
4782 	int func = BP_FUNC(bp);
4783 	struct hc_sp_status_block_data sp_sb_data;
4784 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4785 
4786 	sp_sb_data.state = SB_DISABLED;
4787 	sp_sb_data.p_func.vf_valid = false;
4788 
4789 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4790 
4791 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4792 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4793 			CSTORM_SP_STATUS_BLOCK_SIZE);
4794 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4795 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4796 			CSTORM_SP_SYNC_BLOCK_SIZE);
4797 
4798 }
4799 
4800 
4801 static inline
4802 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4803 					   int igu_sb_id, int igu_seg_id)
4804 {
4805 	hc_sm->igu_sb_id = igu_sb_id;
4806 	hc_sm->igu_seg_id = igu_seg_id;
4807 	hc_sm->timer_value = 0xFF;
4808 	hc_sm->time_to_expire = 0xFFFFFFFF;
4809 }
4810 
4811 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
4812 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
4813 {
4814 	int igu_seg_id;
4815 
4816 	struct hc_status_block_data_e2 sb_data_e2;
4817 	struct hc_status_block_data_e1x sb_data_e1x;
4818 	struct hc_status_block_sm  *hc_sm_p;
4819 	int data_size;
4820 	u32 *sb_data_p;
4821 
4822 	if (CHIP_INT_MODE_IS_BC(bp))
4823 		igu_seg_id = HC_SEG_ACCESS_NORM;
4824 	else
4825 		igu_seg_id = IGU_SEG_ACCESS_NORM;
4826 
4827 	bnx2x_zero_fp_sb(bp, fw_sb_id);
4828 
4829 	if (!CHIP_IS_E1x(bp)) {
4830 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4831 		sb_data_e2.common.state = SB_ENABLED;
4832 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
4833 		sb_data_e2.common.p_func.vf_id = vfid;
4834 		sb_data_e2.common.p_func.vf_valid = vf_valid;
4835 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
4836 		sb_data_e2.common.same_igu_sb_1b = true;
4837 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
4838 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
4839 		hc_sm_p = sb_data_e2.common.state_machine;
4840 		sb_data_p = (u32 *)&sb_data_e2;
4841 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4842 	} else {
4843 		memset(&sb_data_e1x, 0,
4844 		       sizeof(struct hc_status_block_data_e1x));
4845 		sb_data_e1x.common.state = SB_ENABLED;
4846 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
4847 		sb_data_e1x.common.p_func.vf_id = 0xff;
4848 		sb_data_e1x.common.p_func.vf_valid = false;
4849 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
4850 		sb_data_e1x.common.same_igu_sb_1b = true;
4851 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
4852 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
4853 		hc_sm_p = sb_data_e1x.common.state_machine;
4854 		sb_data_p = (u32 *)&sb_data_e1x;
4855 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4856 	}
4857 
4858 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
4859 				       igu_sb_id, igu_seg_id);
4860 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
4861 				       igu_sb_id, igu_seg_id);
4862 
4863 	DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
4864 
4865 	/* write indecies to HW */
4866 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4867 }
4868 
4869 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
4870 				     u16 tx_usec, u16 rx_usec)
4871 {
4872 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
4873 				    false, rx_usec);
4874 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4875 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
4876 				       tx_usec);
4877 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4878 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
4879 				       tx_usec);
4880 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4881 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
4882 				       tx_usec);
4883 }
4884 
4885 static void bnx2x_init_def_sb(struct bnx2x *bp)
4886 {
4887 	struct host_sp_status_block *def_sb = bp->def_status_blk;
4888 	dma_addr_t mapping = bp->def_status_blk_mapping;
4889 	int igu_sp_sb_index;
4890 	int igu_seg_id;
4891 	int port = BP_PORT(bp);
4892 	int func = BP_FUNC(bp);
4893 	int reg_offset;
4894 	u64 section;
4895 	int index;
4896 	struct hc_sp_status_block_data sp_sb_data;
4897 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4898 
4899 	if (CHIP_INT_MODE_IS_BC(bp)) {
4900 		igu_sp_sb_index = DEF_SB_IGU_ID;
4901 		igu_seg_id = HC_SEG_ACCESS_DEF;
4902 	} else {
4903 		igu_sp_sb_index = bp->igu_dsb_id;
4904 		igu_seg_id = IGU_SEG_ACCESS_DEF;
4905 	}
4906 
4907 	/* ATTN */
4908 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4909 					    atten_status_block);
4910 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
4911 
4912 	bp->attn_state = 0;
4913 
4914 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4915 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4916 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4917 		int sindex;
4918 		/* take care of sig[0]..sig[4] */
4919 		for (sindex = 0; sindex < 4; sindex++)
4920 			bp->attn_group[index].sig[sindex] =
4921 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
4922 
4923 		if (!CHIP_IS_E1x(bp))
4924 			/*
4925 			 * enable5 is separate from the rest of the registers,
4926 			 * and therefore the address skip is 4
4927 			 * and not 16 between the different groups
4928 			 */
4929 			bp->attn_group[index].sig[4] = REG_RD(bp,
4930 					reg_offset + 0x10 + 0x4*index);
4931 		else
4932 			bp->attn_group[index].sig[4] = 0;
4933 	}
4934 
4935 	if (bp->common.int_block == INT_BLOCK_HC) {
4936 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
4937 				     HC_REG_ATTN_MSG0_ADDR_L);
4938 
4939 		REG_WR(bp, reg_offset, U64_LO(section));
4940 		REG_WR(bp, reg_offset + 4, U64_HI(section));
4941 	} else if (!CHIP_IS_E1x(bp)) {
4942 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
4943 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
4944 	}
4945 
4946 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4947 					    sp_sb);
4948 
4949 	bnx2x_zero_sp_sb(bp);
4950 
4951 	sp_sb_data.state		= SB_ENABLED;
4952 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
4953 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
4954 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
4955 	sp_sb_data.igu_seg_id		= igu_seg_id;
4956 	sp_sb_data.p_func.pf_id		= func;
4957 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
4958 	sp_sb_data.p_func.vf_id		= 0xff;
4959 
4960 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4961 
4962 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
4963 }
4964 
4965 void bnx2x_update_coalesce(struct bnx2x *bp)
4966 {
4967 	int i;
4968 
4969 	for_each_eth_queue(bp, i)
4970 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
4971 					 bp->tx_ticks, bp->rx_ticks);
4972 }
4973 
4974 static void bnx2x_init_sp_ring(struct bnx2x *bp)
4975 {
4976 	spin_lock_init(&bp->spq_lock);
4977 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
4978 
4979 	bp->spq_prod_idx = 0;
4980 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
4981 	bp->spq_prod_bd = bp->spq;
4982 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
4983 }
4984 
4985 static void bnx2x_init_eq_ring(struct bnx2x *bp)
4986 {
4987 	int i;
4988 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
4989 		union event_ring_elem *elem =
4990 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
4991 
4992 		elem->next_page.addr.hi =
4993 			cpu_to_le32(U64_HI(bp->eq_mapping +
4994 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
4995 		elem->next_page.addr.lo =
4996 			cpu_to_le32(U64_LO(bp->eq_mapping +
4997 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
4998 	}
4999 	bp->eq_cons = 0;
5000 	bp->eq_prod = NUM_EQ_DESC;
5001 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5002 	/* we want a warning message before it gets rought... */
5003 	atomic_set(&bp->eq_spq_left,
5004 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5005 }
5006 
5007 
5008 /* called with netif_addr_lock_bh() */
5009 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5010 			 unsigned long rx_mode_flags,
5011 			 unsigned long rx_accept_flags,
5012 			 unsigned long tx_accept_flags,
5013 			 unsigned long ramrod_flags)
5014 {
5015 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5016 	int rc;
5017 
5018 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5019 
5020 	/* Prepare ramrod parameters */
5021 	ramrod_param.cid = 0;
5022 	ramrod_param.cl_id = cl_id;
5023 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5024 	ramrod_param.func_id = BP_FUNC(bp);
5025 
5026 	ramrod_param.pstate = &bp->sp_state;
5027 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5028 
5029 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5030 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5031 
5032 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5033 
5034 	ramrod_param.ramrod_flags = ramrod_flags;
5035 	ramrod_param.rx_mode_flags = rx_mode_flags;
5036 
5037 	ramrod_param.rx_accept_flags = rx_accept_flags;
5038 	ramrod_param.tx_accept_flags = tx_accept_flags;
5039 
5040 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5041 	if (rc < 0) {
5042 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5043 		return;
5044 	}
5045 }
5046 
5047 /* called with netif_addr_lock_bh() */
5048 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5049 {
5050 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5051 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5052 
5053 #ifdef BCM_CNIC
5054 	if (!NO_FCOE(bp))
5055 
5056 		/* Configure rx_mode of FCoE Queue */
5057 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5058 #endif
5059 
5060 	switch (bp->rx_mode) {
5061 	case BNX2X_RX_MODE_NONE:
5062 		/*
5063 		 * 'drop all' supersedes any accept flags that may have been
5064 		 * passed to the function.
5065 		 */
5066 		break;
5067 	case BNX2X_RX_MODE_NORMAL:
5068 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5069 		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5070 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5071 
5072 		/* internal switching mode */
5073 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5074 		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5075 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5076 
5077 		break;
5078 	case BNX2X_RX_MODE_ALLMULTI:
5079 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5080 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5081 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5082 
5083 		/* internal switching mode */
5084 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5085 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5086 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5087 
5088 		break;
5089 	case BNX2X_RX_MODE_PROMISC:
5090 		/* According to deffinition of SI mode, iface in promisc mode
5091 		 * should receive matched and unmatched (in resolution of port)
5092 		 * unicast packets.
5093 		 */
5094 		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5095 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5096 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5097 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5098 
5099 		/* internal switching mode */
5100 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5101 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5102 
5103 		if (IS_MF_SI(bp))
5104 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5105 		else
5106 			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5107 
5108 		break;
5109 	default:
5110 		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5111 		return;
5112 	}
5113 
5114 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5115 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5116 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5117 	}
5118 
5119 	__set_bit(RAMROD_RX, &ramrod_flags);
5120 	__set_bit(RAMROD_TX, &ramrod_flags);
5121 
5122 	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5123 			    tx_accept_flags, ramrod_flags);
5124 }
5125 
5126 static void bnx2x_init_internal_common(struct bnx2x *bp)
5127 {
5128 	int i;
5129 
5130 	if (IS_MF_SI(bp))
5131 		/*
5132 		 * In switch independent mode, the TSTORM needs to accept
5133 		 * packets that failed classification, since approximate match
5134 		 * mac addresses aren't written to NIG LLH
5135 		 */
5136 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5137 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5138 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5139 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5140 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5141 
5142 	/* Zero this manually as its initialization is
5143 	   currently missing in the initTool */
5144 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5145 		REG_WR(bp, BAR_USTRORM_INTMEM +
5146 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5147 	if (!CHIP_IS_E1x(bp)) {
5148 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5149 			CHIP_INT_MODE_IS_BC(bp) ?
5150 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5151 	}
5152 }
5153 
5154 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5155 {
5156 	switch (load_code) {
5157 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5158 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5159 		bnx2x_init_internal_common(bp);
5160 		/* no break */
5161 
5162 	case FW_MSG_CODE_DRV_LOAD_PORT:
5163 		/* nothing to do */
5164 		/* no break */
5165 
5166 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5167 		/* internal memory per function is
5168 		   initialized inside bnx2x_pf_init */
5169 		break;
5170 
5171 	default:
5172 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5173 		break;
5174 	}
5175 }
5176 
5177 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5178 {
5179 	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5180 }
5181 
5182 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5183 {
5184 	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5185 }
5186 
5187 static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5188 {
5189 	if (CHIP_IS_E1x(fp->bp))
5190 		return BP_L_ID(fp->bp) + fp->index;
5191 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5192 		return bnx2x_fp_igu_sb_id(fp);
5193 }
5194 
5195 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5196 {
5197 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5198 	u8 cos;
5199 	unsigned long q_type = 0;
5200 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5201 
5202 	fp->cid = fp_idx;
5203 	fp->cl_id = bnx2x_fp_cl_id(fp);
5204 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5205 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5206 	/* qZone id equals to FW (per path) client id */
5207 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5208 
5209 	/* init shortcut */
5210 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5211 	/* Setup SB indicies */
5212 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5213 
5214 	/* Configure Queue State object */
5215 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5216 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5217 
5218 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5219 
5220 	/* init tx data */
5221 	for_each_cos_in_tx_queue(fp, cos) {
5222 		bnx2x_init_txdata(bp, &fp->txdata[cos],
5223 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5224 				  FP_COS_TO_TXQ(fp, cos),
5225 				  BNX2X_TX_SB_INDEX_BASE + cos);
5226 		cids[cos] = fp->txdata[cos].cid;
5227 	}
5228 
5229 	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5230 			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5231 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5232 
5233 	/**
5234 	 * Configure classification DBs: Always enable Tx switching
5235 	 */
5236 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5237 
5238 	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  "
5239 				   "cl_id %d  fw_sb %d  igu_sb %d\n",
5240 		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5241 		   fp->igu_sb_id);
5242 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5243 		      fp->fw_sb_id, fp->igu_sb_id);
5244 
5245 	bnx2x_update_fpsb_idx(fp);
5246 }
5247 
5248 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5249 {
5250 	int i;
5251 
5252 	for_each_eth_queue(bp, i)
5253 		bnx2x_init_eth_fp(bp, i);
5254 #ifdef BCM_CNIC
5255 	if (!NO_FCOE(bp))
5256 		bnx2x_init_fcoe_fp(bp);
5257 
5258 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5259 		      BNX2X_VF_ID_INVALID, false,
5260 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5261 
5262 #endif
5263 
5264 	/* Initialize MOD_ABS interrupts */
5265 	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5266 			       bp->common.shmem_base, bp->common.shmem2_base,
5267 			       BP_PORT(bp));
5268 	/* ensure status block indices were read */
5269 	rmb();
5270 
5271 	bnx2x_init_def_sb(bp);
5272 	bnx2x_update_dsb_idx(bp);
5273 	bnx2x_init_rx_rings(bp);
5274 	bnx2x_init_tx_rings(bp);
5275 	bnx2x_init_sp_ring(bp);
5276 	bnx2x_init_eq_ring(bp);
5277 	bnx2x_init_internal(bp, load_code);
5278 	bnx2x_pf_init(bp);
5279 	bnx2x_stats_init(bp);
5280 
5281 	/* flush all before enabling interrupts */
5282 	mb();
5283 	mmiowb();
5284 
5285 	bnx2x_int_enable(bp);
5286 
5287 	/* Check for SPIO5 */
5288 	bnx2x_attn_int_deasserted0(bp,
5289 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5290 				   AEU_INPUTS_ATTN_BITS_SPIO5);
5291 }
5292 
5293 /* end of nic init */
5294 
5295 /*
5296  * gzip service functions
5297  */
5298 
5299 static int bnx2x_gunzip_init(struct bnx2x *bp)
5300 {
5301 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5302 					    &bp->gunzip_mapping, GFP_KERNEL);
5303 	if (bp->gunzip_buf  == NULL)
5304 		goto gunzip_nomem1;
5305 
5306 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5307 	if (bp->strm  == NULL)
5308 		goto gunzip_nomem2;
5309 
5310 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5311 	if (bp->strm->workspace == NULL)
5312 		goto gunzip_nomem3;
5313 
5314 	return 0;
5315 
5316 gunzip_nomem3:
5317 	kfree(bp->strm);
5318 	bp->strm = NULL;
5319 
5320 gunzip_nomem2:
5321 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5322 			  bp->gunzip_mapping);
5323 	bp->gunzip_buf = NULL;
5324 
5325 gunzip_nomem1:
5326 	netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5327 	       " un-compression\n");
5328 	return -ENOMEM;
5329 }
5330 
5331 static void bnx2x_gunzip_end(struct bnx2x *bp)
5332 {
5333 	if (bp->strm) {
5334 		vfree(bp->strm->workspace);
5335 		kfree(bp->strm);
5336 		bp->strm = NULL;
5337 	}
5338 
5339 	if (bp->gunzip_buf) {
5340 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5341 				  bp->gunzip_mapping);
5342 		bp->gunzip_buf = NULL;
5343 	}
5344 }
5345 
5346 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5347 {
5348 	int n, rc;
5349 
5350 	/* check gzip header */
5351 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5352 		BNX2X_ERR("Bad gzip header\n");
5353 		return -EINVAL;
5354 	}
5355 
5356 	n = 10;
5357 
5358 #define FNAME				0x8
5359 
5360 	if (zbuf[3] & FNAME)
5361 		while ((zbuf[n++] != 0) && (n < len));
5362 
5363 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5364 	bp->strm->avail_in = len - n;
5365 	bp->strm->next_out = bp->gunzip_buf;
5366 	bp->strm->avail_out = FW_BUF_SIZE;
5367 
5368 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5369 	if (rc != Z_OK)
5370 		return rc;
5371 
5372 	rc = zlib_inflate(bp->strm, Z_FINISH);
5373 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5374 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5375 			   bp->strm->msg);
5376 
5377 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5378 	if (bp->gunzip_outlen & 0x3)
5379 		netdev_err(bp->dev, "Firmware decompression error:"
5380 				    " gunzip_outlen (%d) not aligned\n",
5381 				bp->gunzip_outlen);
5382 	bp->gunzip_outlen >>= 2;
5383 
5384 	zlib_inflateEnd(bp->strm);
5385 
5386 	if (rc == Z_STREAM_END)
5387 		return 0;
5388 
5389 	return rc;
5390 }
5391 
5392 /* nic load/unload */
5393 
5394 /*
5395  * General service functions
5396  */
5397 
5398 /* send a NIG loopback debug packet */
5399 static void bnx2x_lb_pckt(struct bnx2x *bp)
5400 {
5401 	u32 wb_write[3];
5402 
5403 	/* Ethernet source and destination addresses */
5404 	wb_write[0] = 0x55555555;
5405 	wb_write[1] = 0x55555555;
5406 	wb_write[2] = 0x20;		/* SOP */
5407 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5408 
5409 	/* NON-IP protocol */
5410 	wb_write[0] = 0x09000000;
5411 	wb_write[1] = 0x55555555;
5412 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5413 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5414 }
5415 
5416 /* some of the internal memories
5417  * are not directly readable from the driver
5418  * to test them we send debug packets
5419  */
5420 static int bnx2x_int_mem_test(struct bnx2x *bp)
5421 {
5422 	int factor;
5423 	int count, i;
5424 	u32 val = 0;
5425 
5426 	if (CHIP_REV_IS_FPGA(bp))
5427 		factor = 120;
5428 	else if (CHIP_REV_IS_EMUL(bp))
5429 		factor = 200;
5430 	else
5431 		factor = 1;
5432 
5433 	/* Disable inputs of parser neighbor blocks */
5434 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5435 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5436 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5437 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5438 
5439 	/*  Write 0 to parser credits for CFC search request */
5440 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5441 
5442 	/* send Ethernet packet */
5443 	bnx2x_lb_pckt(bp);
5444 
5445 	/* TODO do i reset NIG statistic? */
5446 	/* Wait until NIG register shows 1 packet of size 0x10 */
5447 	count = 1000 * factor;
5448 	while (count) {
5449 
5450 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5451 		val = *bnx2x_sp(bp, wb_data[0]);
5452 		if (val == 0x10)
5453 			break;
5454 
5455 		msleep(10);
5456 		count--;
5457 	}
5458 	if (val != 0x10) {
5459 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5460 		return -1;
5461 	}
5462 
5463 	/* Wait until PRS register shows 1 packet */
5464 	count = 1000 * factor;
5465 	while (count) {
5466 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5467 		if (val == 1)
5468 			break;
5469 
5470 		msleep(10);
5471 		count--;
5472 	}
5473 	if (val != 0x1) {
5474 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5475 		return -2;
5476 	}
5477 
5478 	/* Reset and init BRB, PRS */
5479 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5480 	msleep(50);
5481 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5482 	msleep(50);
5483 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5484 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5485 
5486 	DP(NETIF_MSG_HW, "part2\n");
5487 
5488 	/* Disable inputs of parser neighbor blocks */
5489 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5490 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5491 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5492 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5493 
5494 	/* Write 0 to parser credits for CFC search request */
5495 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5496 
5497 	/* send 10 Ethernet packets */
5498 	for (i = 0; i < 10; i++)
5499 		bnx2x_lb_pckt(bp);
5500 
5501 	/* Wait until NIG register shows 10 + 1
5502 	   packets of size 11*0x10 = 0xb0 */
5503 	count = 1000 * factor;
5504 	while (count) {
5505 
5506 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5507 		val = *bnx2x_sp(bp, wb_data[0]);
5508 		if (val == 0xb0)
5509 			break;
5510 
5511 		msleep(10);
5512 		count--;
5513 	}
5514 	if (val != 0xb0) {
5515 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5516 		return -3;
5517 	}
5518 
5519 	/* Wait until PRS register shows 2 packets */
5520 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5521 	if (val != 2)
5522 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5523 
5524 	/* Write 1 to parser credits for CFC search request */
5525 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5526 
5527 	/* Wait until PRS register shows 3 packets */
5528 	msleep(10 * factor);
5529 	/* Wait until NIG register shows 1 packet of size 0x10 */
5530 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5531 	if (val != 3)
5532 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5533 
5534 	/* clear NIG EOP FIFO */
5535 	for (i = 0; i < 11; i++)
5536 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5537 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5538 	if (val != 1) {
5539 		BNX2X_ERR("clear of NIG failed\n");
5540 		return -4;
5541 	}
5542 
5543 	/* Reset and init BRB, PRS, NIG */
5544 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5545 	msleep(50);
5546 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5547 	msleep(50);
5548 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5549 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5550 #ifndef BCM_CNIC
5551 	/* set NIC mode */
5552 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
5553 #endif
5554 
5555 	/* Enable inputs of parser neighbor blocks */
5556 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5557 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5558 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5559 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5560 
5561 	DP(NETIF_MSG_HW, "done\n");
5562 
5563 	return 0; /* OK */
5564 }
5565 
5566 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5567 {
5568 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5569 	if (!CHIP_IS_E1x(bp))
5570 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5571 	else
5572 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5573 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5574 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5575 	/*
5576 	 * mask read length error interrupts in brb for parser
5577 	 * (parsing unit and 'checksum and crc' unit)
5578 	 * these errors are legal (PU reads fixed length and CAC can cause
5579 	 * read length error on truncated packets)
5580 	 */
5581 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5582 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5583 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5584 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5585 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5586 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5587 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5588 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5589 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5590 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5591 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5592 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5593 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5594 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5595 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5596 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5597 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5598 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5599 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5600 
5601 	if (CHIP_REV_IS_FPGA(bp))
5602 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5603 	else if (!CHIP_IS_E1x(bp))
5604 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5605 			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5606 				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5607 				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5608 				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5609 				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5610 	else
5611 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5612 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5613 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5614 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5615 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5616 
5617 	if (!CHIP_IS_E1x(bp))
5618 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5619 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5620 
5621 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5622 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5623 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5624 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
5625 }
5626 
5627 static void bnx2x_reset_common(struct bnx2x *bp)
5628 {
5629 	u32 val = 0x1400;
5630 
5631 	/* reset_common */
5632 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5633 	       0xd3ffff7f);
5634 
5635 	if (CHIP_IS_E3(bp)) {
5636 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5637 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5638 	}
5639 
5640 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5641 }
5642 
5643 static void bnx2x_setup_dmae(struct bnx2x *bp)
5644 {
5645 	bp->dmae_ready = 0;
5646 	spin_lock_init(&bp->dmae_lock);
5647 }
5648 
5649 static void bnx2x_init_pxp(struct bnx2x *bp)
5650 {
5651 	u16 devctl;
5652 	int r_order, w_order;
5653 
5654 	pci_read_config_word(bp->pdev,
5655 			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5656 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5657 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5658 	if (bp->mrrs == -1)
5659 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5660 	else {
5661 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5662 		r_order = bp->mrrs;
5663 	}
5664 
5665 	bnx2x_init_pxp_arb(bp, r_order, w_order);
5666 }
5667 
5668 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5669 {
5670 	int is_required;
5671 	u32 val;
5672 	int port;
5673 
5674 	if (BP_NOMCP(bp))
5675 		return;
5676 
5677 	is_required = 0;
5678 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5679 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
5680 
5681 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5682 		is_required = 1;
5683 
5684 	/*
5685 	 * The fan failure mechanism is usually related to the PHY type since
5686 	 * the power consumption of the board is affected by the PHY. Currently,
5687 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5688 	 */
5689 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5690 		for (port = PORT_0; port < PORT_MAX; port++) {
5691 			is_required |=
5692 				bnx2x_fan_failure_det_req(
5693 					bp,
5694 					bp->common.shmem_base,
5695 					bp->common.shmem2_base,
5696 					port);
5697 		}
5698 
5699 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5700 
5701 	if (is_required == 0)
5702 		return;
5703 
5704 	/* Fan failure is indicated by SPIO 5 */
5705 	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5706 		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
5707 
5708 	/* set to active low mode */
5709 	val = REG_RD(bp, MISC_REG_SPIO_INT);
5710 	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5711 					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5712 	REG_WR(bp, MISC_REG_SPIO_INT, val);
5713 
5714 	/* enable interrupt to signal the IGU */
5715 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5716 	val |= (1 << MISC_REGISTERS_SPIO_5);
5717 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5718 }
5719 
5720 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5721 {
5722 	u32 offset = 0;
5723 
5724 	if (CHIP_IS_E1(bp))
5725 		return;
5726 	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5727 		return;
5728 
5729 	switch (BP_ABS_FUNC(bp)) {
5730 	case 0:
5731 		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5732 		break;
5733 	case 1:
5734 		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5735 		break;
5736 	case 2:
5737 		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5738 		break;
5739 	case 3:
5740 		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5741 		break;
5742 	case 4:
5743 		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5744 		break;
5745 	case 5:
5746 		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5747 		break;
5748 	case 6:
5749 		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5750 		break;
5751 	case 7:
5752 		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5753 		break;
5754 	default:
5755 		return;
5756 	}
5757 
5758 	REG_WR(bp, offset, pretend_func_num);
5759 	REG_RD(bp, offset);
5760 	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5761 }
5762 
5763 void bnx2x_pf_disable(struct bnx2x *bp)
5764 {
5765 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5766 	val &= ~IGU_PF_CONF_FUNC_EN;
5767 
5768 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5769 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5770 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5771 }
5772 
5773 static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5774 {
5775 	u32 shmem_base[2], shmem2_base[2];
5776 	shmem_base[0] =  bp->common.shmem_base;
5777 	shmem2_base[0] = bp->common.shmem2_base;
5778 	if (!CHIP_IS_E1x(bp)) {
5779 		shmem_base[1] =
5780 			SHMEM2_RD(bp, other_shmem_base_addr);
5781 		shmem2_base[1] =
5782 			SHMEM2_RD(bp, other_shmem2_base_addr);
5783 	}
5784 	bnx2x_acquire_phy_lock(bp);
5785 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5786 			      bp->common.chip_id);
5787 	bnx2x_release_phy_lock(bp);
5788 }
5789 
5790 /**
5791  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5792  *
5793  * @bp:		driver handle
5794  */
5795 static int bnx2x_init_hw_common(struct bnx2x *bp)
5796 {
5797 	u32 val;
5798 
5799 	DP(BNX2X_MSG_MCP, "starting common init  func %d\n", BP_ABS_FUNC(bp));
5800 
5801 	bnx2x_reset_common(bp);
5802 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
5803 
5804 	val = 0xfffc;
5805 	if (CHIP_IS_E3(bp)) {
5806 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5807 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5808 	}
5809 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
5810 
5811 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
5812 
5813 	if (!CHIP_IS_E1x(bp)) {
5814 		u8 abs_func_id;
5815 
5816 		/**
5817 		 * 4-port mode or 2-port mode we need to turn of master-enable
5818 		 * for everyone, after that, turn it back on for self.
5819 		 * so, we disregard multi-function or not, and always disable
5820 		 * for all functions on the given path, this means 0,2,4,6 for
5821 		 * path 0 and 1,3,5,7 for path 1
5822 		 */
5823 		for (abs_func_id = BP_PATH(bp);
5824 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
5825 			if (abs_func_id == BP_ABS_FUNC(bp)) {
5826 				REG_WR(bp,
5827 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
5828 				    1);
5829 				continue;
5830 			}
5831 
5832 			bnx2x_pretend_func(bp, abs_func_id);
5833 			/* clear pf enable */
5834 			bnx2x_pf_disable(bp);
5835 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
5836 		}
5837 	}
5838 
5839 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
5840 	if (CHIP_IS_E1(bp)) {
5841 		/* enable HW interrupt from PXP on USDM overflow
5842 		   bit 16 on INT_MASK_0 */
5843 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5844 	}
5845 
5846 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
5847 	bnx2x_init_pxp(bp);
5848 
5849 #ifdef __BIG_ENDIAN
5850 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
5851 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
5852 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
5853 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
5854 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
5855 	/* make sure this value is 0 */
5856 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
5857 
5858 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
5859 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
5860 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
5861 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
5862 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
5863 #endif
5864 
5865 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
5866 
5867 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
5868 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
5869 
5870 	/* let the HW do it's magic ... */
5871 	msleep(100);
5872 	/* finish PXP init */
5873 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
5874 	if (val != 1) {
5875 		BNX2X_ERR("PXP2 CFG failed\n");
5876 		return -EBUSY;
5877 	}
5878 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
5879 	if (val != 1) {
5880 		BNX2X_ERR("PXP2 RD_INIT failed\n");
5881 		return -EBUSY;
5882 	}
5883 
5884 	/* Timers bug workaround E2 only. We need to set the entire ILT to
5885 	 * have entries with value "0" and valid bit on.
5886 	 * This needs to be done by the first PF that is loaded in a path
5887 	 * (i.e. common phase)
5888 	 */
5889 	if (!CHIP_IS_E1x(bp)) {
5890 /* In E2 there is a bug in the timers block that can cause function 6 / 7
5891  * (i.e. vnic3) to start even if it is marked as "scan-off".
5892  * This occurs when a different function (func2,3) is being marked
5893  * as "scan-off". Real-life scenario for example: if a driver is being
5894  * load-unloaded while func6,7 are down. This will cause the timer to access
5895  * the ilt, translate to a logical address and send a request to read/write.
5896  * Since the ilt for the function that is down is not valid, this will cause
5897  * a translation error which is unrecoverable.
5898  * The Workaround is intended to make sure that when this happens nothing fatal
5899  * will occur. The workaround:
5900  *	1.  First PF driver which loads on a path will:
5901  *		a.  After taking the chip out of reset, by using pretend,
5902  *		    it will write "0" to the following registers of
5903  *		    the other vnics.
5904  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5905  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
5906  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
5907  *		    And for itself it will write '1' to
5908  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
5909  *		    dmae-operations (writing to pram for example.)
5910  *		    note: can be done for only function 6,7 but cleaner this
5911  *			  way.
5912  *		b.  Write zero+valid to the entire ILT.
5913  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
5914  *		    VNIC3 (of that port). The range allocated will be the
5915  *		    entire ILT. This is needed to prevent  ILT range error.
5916  *	2.  Any PF driver load flow:
5917  *		a.  ILT update with the physical addresses of the allocated
5918  *		    logical pages.
5919  *		b.  Wait 20msec. - note that this timeout is needed to make
5920  *		    sure there are no requests in one of the PXP internal
5921  *		    queues with "old" ILT addresses.
5922  *		c.  PF enable in the PGLC.
5923  *		d.  Clear the was_error of the PF in the PGLC. (could have
5924  *		    occured while driver was down)
5925  *		e.  PF enable in the CFC (WEAK + STRONG)
5926  *		f.  Timers scan enable
5927  *	3.  PF driver unload flow:
5928  *		a.  Clear the Timers scan_en.
5929  *		b.  Polling for scan_on=0 for that PF.
5930  *		c.  Clear the PF enable bit in the PXP.
5931  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
5932  *		e.  Write zero+valid to all ILT entries (The valid bit must
5933  *		    stay set)
5934  *		f.  If this is VNIC 3 of a port then also init
5935  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
5936  *		    to the last enrty in the ILT.
5937  *
5938  *	Notes:
5939  *	Currently the PF error in the PGLC is non recoverable.
5940  *	In the future the there will be a recovery routine for this error.
5941  *	Currently attention is masked.
5942  *	Having an MCP lock on the load/unload process does not guarantee that
5943  *	there is no Timer disable during Func6/7 enable. This is because the
5944  *	Timers scan is currently being cleared by the MCP on FLR.
5945  *	Step 2.d can be done only for PF6/7 and the driver can also check if
5946  *	there is error before clearing it. But the flow above is simpler and
5947  *	more general.
5948  *	All ILT entries are written by zero+valid and not just PF6/7
5949  *	ILT entries since in the future the ILT entries allocation for
5950  *	PF-s might be dynamic.
5951  */
5952 		struct ilt_client_info ilt_cli;
5953 		struct bnx2x_ilt ilt;
5954 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
5955 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
5956 
5957 		/* initialize dummy TM client */
5958 		ilt_cli.start = 0;
5959 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
5960 		ilt_cli.client_num = ILT_CLIENT_TM;
5961 
5962 		/* Step 1: set zeroes to all ilt page entries with valid bit on
5963 		 * Step 2: set the timers first/last ilt entry to point
5964 		 * to the entire range to prevent ILT range error for 3rd/4th
5965 		 * vnic	(this code assumes existance of the vnic)
5966 		 *
5967 		 * both steps performed by call to bnx2x_ilt_client_init_op()
5968 		 * with dummy TM client
5969 		 *
5970 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
5971 		 * and his brother are split registers
5972 		 */
5973 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
5974 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
5975 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
5976 
5977 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
5978 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
5979 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
5980 	}
5981 
5982 
5983 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
5984 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
5985 
5986 	if (!CHIP_IS_E1x(bp)) {
5987 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
5988 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
5989 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
5990 
5991 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
5992 
5993 		/* let the HW do it's magic ... */
5994 		do {
5995 			msleep(200);
5996 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
5997 		} while (factor-- && (val != 1));
5998 
5999 		if (val != 1) {
6000 			BNX2X_ERR("ATC_INIT failed\n");
6001 			return -EBUSY;
6002 		}
6003 	}
6004 
6005 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6006 
6007 	/* clean the DMAE memory */
6008 	bp->dmae_ready = 1;
6009 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6010 
6011 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6012 
6013 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6014 
6015 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6016 
6017 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6018 
6019 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6020 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6021 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6022 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6023 
6024 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6025 
6026 
6027 	/* QM queues pointers table */
6028 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6029 
6030 	/* soft reset pulse */
6031 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6032 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6033 
6034 #ifdef BCM_CNIC
6035 	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6036 #endif
6037 
6038 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6039 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6040 	if (!CHIP_REV_IS_SLOW(bp))
6041 		/* enable hw interrupt from doorbell Q */
6042 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6043 
6044 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6045 
6046 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6047 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6048 
6049 	if (!CHIP_IS_E1(bp))
6050 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6051 
6052 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6053 		/* Bit-map indicating which L2 hdrs may appear
6054 		 * after the basic Ethernet header
6055 		 */
6056 		REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6057 		       bp->path_has_ovlan ? 7 : 6);
6058 
6059 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6060 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6061 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6062 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6063 
6064 	if (!CHIP_IS_E1x(bp)) {
6065 		/* reset VFC memories */
6066 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6067 			   VFC_MEMORIES_RST_REG_CAM_RST |
6068 			   VFC_MEMORIES_RST_REG_RAM_RST);
6069 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6070 			   VFC_MEMORIES_RST_REG_CAM_RST |
6071 			   VFC_MEMORIES_RST_REG_RAM_RST);
6072 
6073 		msleep(20);
6074 	}
6075 
6076 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6077 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6078 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6079 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6080 
6081 	/* sync semi rtc */
6082 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6083 	       0x80000000);
6084 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6085 	       0x80000000);
6086 
6087 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6088 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6089 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6090 
6091 	if (!CHIP_IS_E1x(bp))
6092 		REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6093 		       bp->path_has_ovlan ? 7 : 6);
6094 
6095 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6096 
6097 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6098 
6099 #ifdef BCM_CNIC
6100 	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6101 	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6102 	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6103 	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6104 	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6105 	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6106 	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6107 	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6108 	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6109 	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6110 #endif
6111 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6112 
6113 	if (sizeof(union cdu_context) != 1024)
6114 		/* we currently assume that a context is 1024 bytes */
6115 		dev_alert(&bp->pdev->dev, "please adjust the size "
6116 					  "of cdu_context(%ld)\n",
6117 			 (long)sizeof(union cdu_context));
6118 
6119 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6120 	val = (4 << 24) + (0 << 12) + 1024;
6121 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6122 
6123 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6124 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6125 	/* enable context validation interrupt from CFC */
6126 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6127 
6128 	/* set the thresholds to prevent CFC/CDU race */
6129 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6130 
6131 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6132 
6133 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6134 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6135 
6136 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6137 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6138 
6139 	/* Reset PCIE errors for debug */
6140 	REG_WR(bp, 0x2814, 0xffffffff);
6141 	REG_WR(bp, 0x3820, 0xffffffff);
6142 
6143 	if (!CHIP_IS_E1x(bp)) {
6144 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6145 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6146 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6147 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6148 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6149 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6150 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6151 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6152 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6153 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6154 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6155 	}
6156 
6157 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6158 	if (!CHIP_IS_E1(bp)) {
6159 		/* in E3 this done in per-port section */
6160 		if (!CHIP_IS_E3(bp))
6161 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6162 	}
6163 	if (CHIP_IS_E1H(bp))
6164 		/* not applicable for E2 (and above ...) */
6165 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6166 
6167 	if (CHIP_REV_IS_SLOW(bp))
6168 		msleep(200);
6169 
6170 	/* finish CFC init */
6171 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6172 	if (val != 1) {
6173 		BNX2X_ERR("CFC LL_INIT failed\n");
6174 		return -EBUSY;
6175 	}
6176 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6177 	if (val != 1) {
6178 		BNX2X_ERR("CFC AC_INIT failed\n");
6179 		return -EBUSY;
6180 	}
6181 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6182 	if (val != 1) {
6183 		BNX2X_ERR("CFC CAM_INIT failed\n");
6184 		return -EBUSY;
6185 	}
6186 	REG_WR(bp, CFC_REG_DEBUG0, 0);
6187 
6188 	if (CHIP_IS_E1(bp)) {
6189 		/* read NIG statistic
6190 		   to see if this is our first up since powerup */
6191 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6192 		val = *bnx2x_sp(bp, wb_data[0]);
6193 
6194 		/* do internal memory self test */
6195 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6196 			BNX2X_ERR("internal mem self test failed\n");
6197 			return -EBUSY;
6198 		}
6199 	}
6200 
6201 	bnx2x_setup_fan_failure_detection(bp);
6202 
6203 	/* clear PXP2 attentions */
6204 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6205 
6206 	bnx2x_enable_blocks_attention(bp);
6207 	bnx2x_enable_blocks_parity(bp);
6208 
6209 	if (!BP_NOMCP(bp)) {
6210 		if (CHIP_IS_E1x(bp))
6211 			bnx2x__common_init_phy(bp);
6212 	} else
6213 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6214 
6215 	return 0;
6216 }
6217 
6218 /**
6219  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6220  *
6221  * @bp:		driver handle
6222  */
6223 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6224 {
6225 	int rc = bnx2x_init_hw_common(bp);
6226 
6227 	if (rc)
6228 		return rc;
6229 
6230 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6231 	if (!BP_NOMCP(bp))
6232 		bnx2x__common_init_phy(bp);
6233 
6234 	return 0;
6235 }
6236 
6237 static int bnx2x_init_hw_port(struct bnx2x *bp)
6238 {
6239 	int port = BP_PORT(bp);
6240 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6241 	u32 low, high;
6242 	u32 val;
6243 
6244 	bnx2x__link_reset(bp);
6245 
6246 	DP(BNX2X_MSG_MCP, "starting port init  port %d\n", port);
6247 
6248 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6249 
6250 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6251 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6252 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6253 
6254 	/* Timers bug workaround: disables the pf_master bit in pglue at
6255 	 * common phase, we need to enable it here before any dmae access are
6256 	 * attempted. Therefore we manually added the enable-master to the
6257 	 * port phase (it also happens in the function phase)
6258 	 */
6259 	if (!CHIP_IS_E1x(bp))
6260 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6261 
6262 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6263 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6264 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6265 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6266 
6267 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6268 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6269 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6270 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6271 
6272 	/* QM cid (connection) count */
6273 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6274 
6275 #ifdef BCM_CNIC
6276 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6277 	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6278 	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6279 #endif
6280 
6281 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6282 
6283 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6284 		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6285 
6286 		if (IS_MF(bp))
6287 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6288 		else if (bp->dev->mtu > 4096) {
6289 			if (bp->flags & ONE_PORT_FLAG)
6290 				low = 160;
6291 			else {
6292 				val = bp->dev->mtu;
6293 				/* (24*1024 + val*4)/256 */
6294 				low = 96 + (val/64) +
6295 						((val % 64) ? 1 : 0);
6296 			}
6297 		} else
6298 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6299 		high = low + 56;	/* 14*1024/256 */
6300 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6301 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6302 	}
6303 
6304 	if (CHIP_MODE_IS_4_PORT(bp))
6305 		REG_WR(bp, (BP_PORT(bp) ?
6306 			    BRB1_REG_MAC_GUARANTIED_1 :
6307 			    BRB1_REG_MAC_GUARANTIED_0), 40);
6308 
6309 
6310 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6311 	if (CHIP_IS_E3B0(bp))
6312 		/* Ovlan exists only if we are in multi-function +
6313 		 * switch-dependent mode, in switch-independent there
6314 		 * is no ovlan headers
6315 		 */
6316 		REG_WR(bp, BP_PORT(bp) ?
6317 		       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6318 		       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6319 		       (bp->path_has_ovlan ? 7 : 6));
6320 
6321 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6322 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6323 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6324 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6325 
6326 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6327 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6328 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6329 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6330 
6331 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6332 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6333 
6334 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6335 
6336 	if (CHIP_IS_E1x(bp)) {
6337 		/* configure PBF to work without PAUSE mtu 9000 */
6338 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6339 
6340 		/* update threshold */
6341 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6342 		/* update init credit */
6343 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6344 
6345 		/* probe changes */
6346 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6347 		udelay(50);
6348 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6349 	}
6350 
6351 #ifdef BCM_CNIC
6352 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6353 #endif
6354 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6355 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6356 
6357 	if (CHIP_IS_E1(bp)) {
6358 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6359 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6360 	}
6361 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6362 
6363 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6364 
6365 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6366 	/* init aeu_mask_attn_func_0/1:
6367 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6368 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6369 	 *             bits 4-7 are used for "per vn group attention" */
6370 	val = IS_MF(bp) ? 0xF7 : 0x7;
6371 	/* Enable DCBX attention for all but E1 */
6372 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6373 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6374 
6375 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6376 
6377 	if (!CHIP_IS_E1x(bp)) {
6378 		/* Bit-map indicating which L2 hdrs may appear after the
6379 		 * basic Ethernet header
6380 		 */
6381 		REG_WR(bp, BP_PORT(bp) ?
6382 			   NIG_REG_P1_HDRS_AFTER_BASIC :
6383 			   NIG_REG_P0_HDRS_AFTER_BASIC,
6384 			   IS_MF_SD(bp) ? 7 : 6);
6385 
6386 		if (CHIP_IS_E3(bp))
6387 			REG_WR(bp, BP_PORT(bp) ?
6388 				   NIG_REG_LLH1_MF_MODE :
6389 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6390 	}
6391 	if (!CHIP_IS_E3(bp))
6392 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6393 
6394 	if (!CHIP_IS_E1(bp)) {
6395 		/* 0x2 disable mf_ov, 0x1 enable */
6396 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6397 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6398 
6399 		if (!CHIP_IS_E1x(bp)) {
6400 			val = 0;
6401 			switch (bp->mf_mode) {
6402 			case MULTI_FUNCTION_SD:
6403 				val = 1;
6404 				break;
6405 			case MULTI_FUNCTION_SI:
6406 				val = 2;
6407 				break;
6408 			}
6409 
6410 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6411 						  NIG_REG_LLH0_CLS_TYPE), val);
6412 		}
6413 		{
6414 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6415 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6416 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6417 		}
6418 	}
6419 
6420 
6421 	/* If SPIO5 is set to generate interrupts, enable it for this port */
6422 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6423 	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6424 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6425 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6426 		val = REG_RD(bp, reg_addr);
6427 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6428 		REG_WR(bp, reg_addr, val);
6429 	}
6430 
6431 	return 0;
6432 }
6433 
6434 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6435 {
6436 	int reg;
6437 
6438 	if (CHIP_IS_E1(bp))
6439 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6440 	else
6441 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6442 
6443 	bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6444 }
6445 
6446 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6447 {
6448 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6449 }
6450 
6451 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6452 {
6453 	u32 i, base = FUNC_ILT_BASE(func);
6454 	for (i = base; i < base + ILT_PER_FUNC; i++)
6455 		bnx2x_ilt_wr(bp, i, 0);
6456 }
6457 
6458 static int bnx2x_init_hw_func(struct bnx2x *bp)
6459 {
6460 	int port = BP_PORT(bp);
6461 	int func = BP_FUNC(bp);
6462 	int init_phase = PHASE_PF0 + func;
6463 	struct bnx2x_ilt *ilt = BP_ILT(bp);
6464 	u16 cdu_ilt_start;
6465 	u32 addr, val;
6466 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6467 	int i, main_mem_width;
6468 
6469 	DP(BNX2X_MSG_MCP, "starting func init  func %d\n", func);
6470 
6471 	/* FLR cleanup - hmmm */
6472 	if (!CHIP_IS_E1x(bp))
6473 		bnx2x_pf_flr_clnup(bp);
6474 
6475 	/* set MSI reconfigure capability */
6476 	if (bp->common.int_block == INT_BLOCK_HC) {
6477 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6478 		val = REG_RD(bp, addr);
6479 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6480 		REG_WR(bp, addr, val);
6481 	}
6482 
6483 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6484 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6485 
6486 	ilt = BP_ILT(bp);
6487 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6488 
6489 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
6490 		ilt->lines[cdu_ilt_start + i].page =
6491 			bp->context.vcxt + (ILT_PAGE_CIDS * i);
6492 		ilt->lines[cdu_ilt_start + i].page_mapping =
6493 			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6494 		/* cdu ilt pages are allocated manually so there's no need to
6495 		set the size */
6496 	}
6497 	bnx2x_ilt_init_op(bp, INITOP_SET);
6498 
6499 #ifdef BCM_CNIC
6500 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6501 
6502 	/* T1 hash bits value determines the T1 number of entries */
6503 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6504 #endif
6505 
6506 #ifndef BCM_CNIC
6507 	/* set NIC mode */
6508 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6509 #endif  /* BCM_CNIC */
6510 
6511 	if (!CHIP_IS_E1x(bp)) {
6512 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6513 
6514 		/* Turn on a single ISR mode in IGU if driver is going to use
6515 		 * INT#x or MSI
6516 		 */
6517 		if (!(bp->flags & USING_MSIX_FLAG))
6518 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6519 		/*
6520 		 * Timers workaround bug: function init part.
6521 		 * Need to wait 20msec after initializing ILT,
6522 		 * needed to make sure there are no requests in
6523 		 * one of the PXP internal queues with "old" ILT addresses
6524 		 */
6525 		msleep(20);
6526 		/*
6527 		 * Master enable - Due to WB DMAE writes performed before this
6528 		 * register is re-initialized as part of the regular function
6529 		 * init
6530 		 */
6531 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6532 		/* Enable the function in IGU */
6533 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6534 	}
6535 
6536 	bp->dmae_ready = 1;
6537 
6538 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6539 
6540 	if (!CHIP_IS_E1x(bp))
6541 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6542 
6543 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6544 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6545 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6546 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6547 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6548 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6549 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6550 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6551 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6552 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6553 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6554 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6555 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6556 
6557 	if (!CHIP_IS_E1x(bp))
6558 		REG_WR(bp, QM_REG_PF_EN, 1);
6559 
6560 	if (!CHIP_IS_E1x(bp)) {
6561 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6562 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6563 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6564 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6565 	}
6566 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6567 
6568 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6569 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6570 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6571 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6572 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6573 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6574 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6575 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6576 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6577 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6578 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6579 	if (!CHIP_IS_E1x(bp))
6580 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6581 
6582 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6583 
6584 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6585 
6586 	if (!CHIP_IS_E1x(bp))
6587 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6588 
6589 	if (IS_MF(bp)) {
6590 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6591 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6592 	}
6593 
6594 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6595 
6596 	/* HC init per function */
6597 	if (bp->common.int_block == INT_BLOCK_HC) {
6598 		if (CHIP_IS_E1H(bp)) {
6599 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6600 
6601 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6602 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6603 		}
6604 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
6605 
6606 	} else {
6607 		int num_segs, sb_idx, prod_offset;
6608 
6609 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6610 
6611 		if (!CHIP_IS_E1x(bp)) {
6612 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6613 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6614 		}
6615 
6616 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6617 
6618 		if (!CHIP_IS_E1x(bp)) {
6619 			int dsb_idx = 0;
6620 			/**
6621 			 * Producer memory:
6622 			 * E2 mode: address 0-135 match to the mapping memory;
6623 			 * 136 - PF0 default prod; 137 - PF1 default prod;
6624 			 * 138 - PF2 default prod; 139 - PF3 default prod;
6625 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
6626 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
6627 			 * 144-147 reserved.
6628 			 *
6629 			 * E1.5 mode - In backward compatible mode;
6630 			 * for non default SB; each even line in the memory
6631 			 * holds the U producer and each odd line hold
6632 			 * the C producer. The first 128 producers are for
6633 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6634 			 * producers are for the DSB for each PF.
6635 			 * Each PF has five segments: (the order inside each
6636 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6637 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6638 			 * 144-147 attn prods;
6639 			 */
6640 			/* non-default-status-blocks */
6641 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6642 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6643 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6644 				prod_offset = (bp->igu_base_sb + sb_idx) *
6645 					num_segs;
6646 
6647 				for (i = 0; i < num_segs; i++) {
6648 					addr = IGU_REG_PROD_CONS_MEMORY +
6649 							(prod_offset + i) * 4;
6650 					REG_WR(bp, addr, 0);
6651 				}
6652 				/* send consumer update with value 0 */
6653 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6654 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6655 				bnx2x_igu_clear_sb(bp,
6656 						   bp->igu_base_sb + sb_idx);
6657 			}
6658 
6659 			/* default-status-blocks */
6660 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6661 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6662 
6663 			if (CHIP_MODE_IS_4_PORT(bp))
6664 				dsb_idx = BP_FUNC(bp);
6665 			else
6666 				dsb_idx = BP_E1HVN(bp);
6667 
6668 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6669 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
6670 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
6671 
6672 			for (i = 0; i < (num_segs * E1HVN_MAX);
6673 			     i += E1HVN_MAX) {
6674 				addr = IGU_REG_PROD_CONS_MEMORY +
6675 							(prod_offset + i)*4;
6676 				REG_WR(bp, addr, 0);
6677 			}
6678 			/* send consumer update with 0 */
6679 			if (CHIP_INT_MODE_IS_BC(bp)) {
6680 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6681 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6682 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6683 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
6684 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6685 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
6686 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6687 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
6688 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6689 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6690 			} else {
6691 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6692 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6693 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6694 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6695 			}
6696 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6697 
6698 			/* !!! these should become driver const once
6699 			   rf-tool supports split-68 const */
6700 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6701 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6702 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6703 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6704 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6705 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6706 		}
6707 	}
6708 
6709 	/* Reset PCIE errors for debug */
6710 	REG_WR(bp, 0x2114, 0xffffffff);
6711 	REG_WR(bp, 0x2120, 0xffffffff);
6712 
6713 	if (CHIP_IS_E1x(bp)) {
6714 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6715 		main_mem_base = HC_REG_MAIN_MEMORY +
6716 				BP_PORT(bp) * (main_mem_size * 4);
6717 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6718 		main_mem_width = 8;
6719 
6720 		val = REG_RD(bp, main_mem_prty_clr);
6721 		if (val)
6722 			DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6723 					  "block during "
6724 					  "function init (0x%x)!\n", val);
6725 
6726 		/* Clear "false" parity errors in MSI-X table */
6727 		for (i = main_mem_base;
6728 		     i < main_mem_base + main_mem_size * 4;
6729 		     i += main_mem_width) {
6730 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
6731 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6732 					 i, main_mem_width / 4);
6733 		}
6734 		/* Clear HC parity attention */
6735 		REG_RD(bp, main_mem_prty_clr);
6736 	}
6737 
6738 #ifdef BNX2X_STOP_ON_ERROR
6739 	/* Enable STORMs SP logging */
6740 	REG_WR8(bp, BAR_USTRORM_INTMEM +
6741 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6742 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
6743 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6744 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
6745 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6746 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
6747 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6748 #endif
6749 
6750 	bnx2x_phy_probe(&bp->link_params);
6751 
6752 	return 0;
6753 }
6754 
6755 
6756 void bnx2x_free_mem(struct bnx2x *bp)
6757 {
6758 	/* fastpath */
6759 	bnx2x_free_fp_mem(bp);
6760 	/* end of fastpath */
6761 
6762 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6763 		       sizeof(struct host_sp_status_block));
6764 
6765 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6766 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6767 
6768 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6769 		       sizeof(struct bnx2x_slowpath));
6770 
6771 	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6772 		       bp->context.size);
6773 
6774 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
6775 
6776 	BNX2X_FREE(bp->ilt->lines);
6777 
6778 #ifdef BCM_CNIC
6779 	if (!CHIP_IS_E1x(bp))
6780 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
6781 			       sizeof(struct host_hc_status_block_e2));
6782 	else
6783 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
6784 			       sizeof(struct host_hc_status_block_e1x));
6785 
6786 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
6787 #endif
6788 
6789 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
6790 
6791 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
6792 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
6793 }
6794 
6795 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
6796 {
6797 	int num_groups;
6798 
6799 	/* number of eth_queues */
6800 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp);
6801 
6802 	/* Total number of FW statistics requests =
6803 	 * 1 for port stats + 1 for PF stats + num_eth_queues */
6804 	bp->fw_stats_num = 2 + num_queue_stats;
6805 
6806 
6807 	/* Request is built from stats_query_header and an array of
6808 	 * stats_query_cmd_group each of which contains
6809 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
6810 	 * configured in the stats_query_header.
6811 	 */
6812 	num_groups = (2 + num_queue_stats) / STATS_QUERY_CMD_COUNT +
6813 		(((2 + num_queue_stats) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
6814 
6815 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
6816 			num_groups * sizeof(struct stats_query_cmd_group);
6817 
6818 	/* Data for statistics requests + stats_conter
6819 	 *
6820 	 * stats_counter holds per-STORM counters that are incremented
6821 	 * when STORM has finished with the current request.
6822 	 */
6823 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
6824 		sizeof(struct per_pf_stats) +
6825 		sizeof(struct per_queue_stats) * num_queue_stats +
6826 		sizeof(struct stats_counter);
6827 
6828 	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
6829 			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6830 
6831 	/* Set shortcuts */
6832 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
6833 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
6834 
6835 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
6836 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
6837 
6838 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
6839 				   bp->fw_stats_req_sz;
6840 	return 0;
6841 
6842 alloc_mem_err:
6843 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6844 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6845 	return -ENOMEM;
6846 }
6847 
6848 
6849 int bnx2x_alloc_mem(struct bnx2x *bp)
6850 {
6851 #ifdef BCM_CNIC
6852 	if (!CHIP_IS_E1x(bp))
6853 		/* size = the status block + ramrod buffers */
6854 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
6855 				sizeof(struct host_hc_status_block_e2));
6856 	else
6857 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
6858 				sizeof(struct host_hc_status_block_e1x));
6859 
6860 	/* allocate searcher T2 table */
6861 	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
6862 #endif
6863 
6864 
6865 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
6866 			sizeof(struct host_sp_status_block));
6867 
6868 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
6869 			sizeof(struct bnx2x_slowpath));
6870 
6871 	/* Allocated memory for FW statistics  */
6872 	if (bnx2x_alloc_fw_stats_mem(bp))
6873 		goto alloc_mem_err;
6874 
6875 	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
6876 
6877 	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
6878 			bp->context.size);
6879 
6880 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
6881 
6882 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
6883 		goto alloc_mem_err;
6884 
6885 	/* Slow path ring */
6886 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
6887 
6888 	/* EQ */
6889 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
6890 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
6891 
6892 
6893 	/* fastpath */
6894 	/* need to be done at the end, since it's self adjusting to amount
6895 	 * of memory available for RSS queues
6896 	 */
6897 	if (bnx2x_alloc_fp_mem(bp))
6898 		goto alloc_mem_err;
6899 	return 0;
6900 
6901 alloc_mem_err:
6902 	bnx2x_free_mem(bp);
6903 	return -ENOMEM;
6904 }
6905 
6906 /*
6907  * Init service functions
6908  */
6909 
6910 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
6911 		      struct bnx2x_vlan_mac_obj *obj, bool set,
6912 		      int mac_type, unsigned long *ramrod_flags)
6913 {
6914 	int rc;
6915 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
6916 
6917 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6918 
6919 	/* Fill general parameters */
6920 	ramrod_param.vlan_mac_obj = obj;
6921 	ramrod_param.ramrod_flags = *ramrod_flags;
6922 
6923 	/* Fill a user request section if needed */
6924 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
6925 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
6926 
6927 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6928 
6929 		/* Set the command: ADD or DEL */
6930 		if (set)
6931 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
6932 		else
6933 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
6934 	}
6935 
6936 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
6937 	if (rc < 0)
6938 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
6939 	return rc;
6940 }
6941 
6942 int bnx2x_del_all_macs(struct bnx2x *bp,
6943 		       struct bnx2x_vlan_mac_obj *mac_obj,
6944 		       int mac_type, bool wait_for_comp)
6945 {
6946 	int rc;
6947 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
6948 
6949 	/* Wait for completion of requested */
6950 	if (wait_for_comp)
6951 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6952 
6953 	/* Set the mac type of addresses we want to clear */
6954 	__set_bit(mac_type, &vlan_mac_flags);
6955 
6956 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
6957 	if (rc < 0)
6958 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
6959 
6960 	return rc;
6961 }
6962 
6963 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
6964 {
6965 	unsigned long ramrod_flags = 0;
6966 
6967 	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
6968 
6969 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6970 	/* Eth MAC is set on RSS leading client (fp[0]) */
6971 	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
6972 				 BNX2X_ETH_MAC, &ramrod_flags);
6973 }
6974 
6975 int bnx2x_setup_leading(struct bnx2x *bp)
6976 {
6977 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
6978 }
6979 
6980 /**
6981  * bnx2x_set_int_mode - configure interrupt mode
6982  *
6983  * @bp:		driver handle
6984  *
6985  * In case of MSI-X it will also try to enable MSI-X.
6986  */
6987 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
6988 {
6989 	switch (int_mode) {
6990 	case INT_MODE_MSI:
6991 		bnx2x_enable_msi(bp);
6992 		/* falling through... */
6993 	case INT_MODE_INTx:
6994 		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
6995 		DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
6996 		break;
6997 	default:
6998 		/* Set number of queues according to bp->multi_mode value */
6999 		bnx2x_set_num_queues(bp);
7000 
7001 		DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7002 		   bp->num_queues);
7003 
7004 		/* if we can't use MSI-X we only need one fp,
7005 		 * so try to enable MSI-X with the requested number of fp's
7006 		 * and fallback to MSI or legacy INTx with one fp
7007 		 */
7008 		if (bnx2x_enable_msix(bp)) {
7009 			/* failed to enable MSI-X */
7010 			if (bp->multi_mode)
7011 				DP(NETIF_MSG_IFUP,
7012 					  "Multi requested but failed to "
7013 					  "enable MSI-X (%d), "
7014 					  "set number of queues to %d\n",
7015 				   bp->num_queues,
7016 				   1 + NON_ETH_CONTEXT_USE);
7017 			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7018 
7019 			/* Try to enable MSI */
7020 			if (!(bp->flags & DISABLE_MSI_FLAG))
7021 				bnx2x_enable_msi(bp);
7022 		}
7023 		break;
7024 	}
7025 }
7026 
7027 /* must be called prioir to any HW initializations */
7028 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7029 {
7030 	return L2_ILT_LINES(bp);
7031 }
7032 
7033 void bnx2x_ilt_set_info(struct bnx2x *bp)
7034 {
7035 	struct ilt_client_info *ilt_client;
7036 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7037 	u16 line = 0;
7038 
7039 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7040 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7041 
7042 	/* CDU */
7043 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7044 	ilt_client->client_num = ILT_CLIENT_CDU;
7045 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7046 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7047 	ilt_client->start = line;
7048 	line += bnx2x_cid_ilt_lines(bp);
7049 #ifdef BCM_CNIC
7050 	line += CNIC_ILT_LINES;
7051 #endif
7052 	ilt_client->end = line - 1;
7053 
7054 	DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7055 					 "flags 0x%x, hw psz %d\n",
7056 	   ilt_client->start,
7057 	   ilt_client->end,
7058 	   ilt_client->page_size,
7059 	   ilt_client->flags,
7060 	   ilog2(ilt_client->page_size >> 12));
7061 
7062 	/* QM */
7063 	if (QM_INIT(bp->qm_cid_count)) {
7064 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7065 		ilt_client->client_num = ILT_CLIENT_QM;
7066 		ilt_client->page_size = QM_ILT_PAGE_SZ;
7067 		ilt_client->flags = 0;
7068 		ilt_client->start = line;
7069 
7070 		/* 4 bytes for each cid */
7071 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7072 							 QM_ILT_PAGE_SZ);
7073 
7074 		ilt_client->end = line - 1;
7075 
7076 		DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7077 						 "flags 0x%x, hw psz %d\n",
7078 		   ilt_client->start,
7079 		   ilt_client->end,
7080 		   ilt_client->page_size,
7081 		   ilt_client->flags,
7082 		   ilog2(ilt_client->page_size >> 12));
7083 
7084 	}
7085 	/* SRC */
7086 	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7087 #ifdef BCM_CNIC
7088 	ilt_client->client_num = ILT_CLIENT_SRC;
7089 	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7090 	ilt_client->flags = 0;
7091 	ilt_client->start = line;
7092 	line += SRC_ILT_LINES;
7093 	ilt_client->end = line - 1;
7094 
7095 	DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7096 					 "flags 0x%x, hw psz %d\n",
7097 	   ilt_client->start,
7098 	   ilt_client->end,
7099 	   ilt_client->page_size,
7100 	   ilt_client->flags,
7101 	   ilog2(ilt_client->page_size >> 12));
7102 
7103 #else
7104 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7105 #endif
7106 
7107 	/* TM */
7108 	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7109 #ifdef BCM_CNIC
7110 	ilt_client->client_num = ILT_CLIENT_TM;
7111 	ilt_client->page_size = TM_ILT_PAGE_SZ;
7112 	ilt_client->flags = 0;
7113 	ilt_client->start = line;
7114 	line += TM_ILT_LINES;
7115 	ilt_client->end = line - 1;
7116 
7117 	DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7118 					 "flags 0x%x, hw psz %d\n",
7119 	   ilt_client->start,
7120 	   ilt_client->end,
7121 	   ilt_client->page_size,
7122 	   ilt_client->flags,
7123 	   ilog2(ilt_client->page_size >> 12));
7124 
7125 #else
7126 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7127 #endif
7128 	BUG_ON(line > ILT_MAX_LINES);
7129 }
7130 
7131 /**
7132  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7133  *
7134  * @bp:			driver handle
7135  * @fp:			pointer to fastpath
7136  * @init_params:	pointer to parameters structure
7137  *
7138  * parameters configured:
7139  *      - HC configuration
7140  *      - Queue's CDU context
7141  */
7142 static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7143 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7144 {
7145 
7146 	u8 cos;
7147 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7148 	if (!IS_FCOE_FP(fp)) {
7149 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7150 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7151 
7152 		/* If HC is supporterd, enable host coalescing in the transition
7153 		 * to INIT state.
7154 		 */
7155 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7156 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7157 
7158 		/* HC rate */
7159 		init_params->rx.hc_rate = bp->rx_ticks ?
7160 			(1000000 / bp->rx_ticks) : 0;
7161 		init_params->tx.hc_rate = bp->tx_ticks ?
7162 			(1000000 / bp->tx_ticks) : 0;
7163 
7164 		/* FW SB ID */
7165 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7166 			fp->fw_sb_id;
7167 
7168 		/*
7169 		 * CQ index among the SB indices: FCoE clients uses the default
7170 		 * SB, therefore it's different.
7171 		 */
7172 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7173 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7174 	}
7175 
7176 	/* set maximum number of COSs supported by this queue */
7177 	init_params->max_cos = fp->max_cos;
7178 
7179 	DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d",
7180 	    fp->index, init_params->max_cos);
7181 
7182 	/* set the context pointers queue object */
7183 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7184 		init_params->cxts[cos] =
7185 			&bp->context.vcxt[fp->txdata[cos].cid].eth;
7186 }
7187 
7188 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7189 			struct bnx2x_queue_state_params *q_params,
7190 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7191 			int tx_index, bool leading)
7192 {
7193 	memset(tx_only_params, 0, sizeof(*tx_only_params));
7194 
7195 	/* Set the command */
7196 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7197 
7198 	/* Set tx-only QUEUE flags: don't zero statistics */
7199 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7200 
7201 	/* choose the index of the cid to send the slow path on */
7202 	tx_only_params->cid_index = tx_index;
7203 
7204 	/* Set general TX_ONLY_SETUP parameters */
7205 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7206 
7207 	/* Set Tx TX_ONLY_SETUP parameters */
7208 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7209 
7210 	DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7211 			 "cos %d, primary cid %d, cid %d, "
7212 			 "client id %d, sp-client id %d, flags %lx",
7213 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7214 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7215 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7216 
7217 	/* send the ramrod */
7218 	return bnx2x_queue_state_change(bp, q_params);
7219 }
7220 
7221 
7222 /**
7223  * bnx2x_setup_queue - setup queue
7224  *
7225  * @bp:		driver handle
7226  * @fp:		pointer to fastpath
7227  * @leading:	is leading
7228  *
7229  * This function performs 2 steps in a Queue state machine
7230  *      actually: 1) RESET->INIT 2) INIT->SETUP
7231  */
7232 
7233 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7234 		       bool leading)
7235 {
7236 	struct bnx2x_queue_state_params q_params = {0};
7237 	struct bnx2x_queue_setup_params *setup_params =
7238 						&q_params.params.setup;
7239 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7240 						&q_params.params.tx_only;
7241 	int rc;
7242 	u8 tx_index;
7243 
7244 	DP(BNX2X_MSG_SP, "setting up queue %d", fp->index);
7245 
7246 	/* reset IGU state skip FCoE L2 queue */
7247 	if (!IS_FCOE_FP(fp))
7248 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7249 			     IGU_INT_ENABLE, 0);
7250 
7251 	q_params.q_obj = &fp->q_obj;
7252 	/* We want to wait for completion in this context */
7253 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7254 
7255 	/* Prepare the INIT parameters */
7256 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7257 
7258 	/* Set the command */
7259 	q_params.cmd = BNX2X_Q_CMD_INIT;
7260 
7261 	/* Change the state to INIT */
7262 	rc = bnx2x_queue_state_change(bp, &q_params);
7263 	if (rc) {
7264 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7265 		return rc;
7266 	}
7267 
7268 	DP(BNX2X_MSG_SP, "init complete");
7269 
7270 
7271 	/* Now move the Queue to the SETUP state... */
7272 	memset(setup_params, 0, sizeof(*setup_params));
7273 
7274 	/* Set QUEUE flags */
7275 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7276 
7277 	/* Set general SETUP parameters */
7278 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7279 				FIRST_TX_COS_INDEX);
7280 
7281 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7282 			    &setup_params->rxq_params);
7283 
7284 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7285 			   FIRST_TX_COS_INDEX);
7286 
7287 	/* Set the command */
7288 	q_params.cmd = BNX2X_Q_CMD_SETUP;
7289 
7290 	/* Change the state to SETUP */
7291 	rc = bnx2x_queue_state_change(bp, &q_params);
7292 	if (rc) {
7293 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7294 		return rc;
7295 	}
7296 
7297 	/* loop through the relevant tx-only indices */
7298 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7299 	      tx_index < fp->max_cos;
7300 	      tx_index++) {
7301 
7302 		/* prepare and send tx-only ramrod*/
7303 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7304 					  tx_only_params, tx_index, leading);
7305 		if (rc) {
7306 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7307 				  fp->index, tx_index);
7308 			return rc;
7309 		}
7310 	}
7311 
7312 	return rc;
7313 }
7314 
7315 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7316 {
7317 	struct bnx2x_fastpath *fp = &bp->fp[index];
7318 	struct bnx2x_fp_txdata *txdata;
7319 	struct bnx2x_queue_state_params q_params = {0};
7320 	int rc, tx_index;
7321 
7322 	DP(BNX2X_MSG_SP, "stopping queue %d cid %d", index, fp->cid);
7323 
7324 	q_params.q_obj = &fp->q_obj;
7325 	/* We want to wait for completion in this context */
7326 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7327 
7328 
7329 	/* close tx-only connections */
7330 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7331 	     tx_index < fp->max_cos;
7332 	     tx_index++){
7333 
7334 		/* ascertain this is a normal queue*/
7335 		txdata = &fp->txdata[tx_index];
7336 
7337 		DP(BNX2X_MSG_SP, "stopping tx-only queue %d",
7338 							txdata->txq_index);
7339 
7340 		/* send halt terminate on tx-only connection */
7341 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7342 		memset(&q_params.params.terminate, 0,
7343 		       sizeof(q_params.params.terminate));
7344 		q_params.params.terminate.cid_index = tx_index;
7345 
7346 		rc = bnx2x_queue_state_change(bp, &q_params);
7347 		if (rc)
7348 			return rc;
7349 
7350 		/* send halt terminate on tx-only connection */
7351 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7352 		memset(&q_params.params.cfc_del, 0,
7353 		       sizeof(q_params.params.cfc_del));
7354 		q_params.params.cfc_del.cid_index = tx_index;
7355 		rc = bnx2x_queue_state_change(bp, &q_params);
7356 		if (rc)
7357 			return rc;
7358 	}
7359 	/* Stop the primary connection: */
7360 	/* ...halt the connection */
7361 	q_params.cmd = BNX2X_Q_CMD_HALT;
7362 	rc = bnx2x_queue_state_change(bp, &q_params);
7363 	if (rc)
7364 		return rc;
7365 
7366 	/* ...terminate the connection */
7367 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7368 	memset(&q_params.params.terminate, 0,
7369 	       sizeof(q_params.params.terminate));
7370 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7371 	rc = bnx2x_queue_state_change(bp, &q_params);
7372 	if (rc)
7373 		return rc;
7374 	/* ...delete cfc entry */
7375 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7376 	memset(&q_params.params.cfc_del, 0,
7377 	       sizeof(q_params.params.cfc_del));
7378 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7379 	return bnx2x_queue_state_change(bp, &q_params);
7380 }
7381 
7382 
7383 static void bnx2x_reset_func(struct bnx2x *bp)
7384 {
7385 	int port = BP_PORT(bp);
7386 	int func = BP_FUNC(bp);
7387 	int i;
7388 
7389 	/* Disable the function in the FW */
7390 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7391 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7392 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7393 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7394 
7395 	/* FP SBs */
7396 	for_each_eth_queue(bp, i) {
7397 		struct bnx2x_fastpath *fp = &bp->fp[i];
7398 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
7399 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7400 			   SB_DISABLED);
7401 	}
7402 
7403 #ifdef BCM_CNIC
7404 	/* CNIC SB */
7405 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7406 		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7407 		SB_DISABLED);
7408 #endif
7409 	/* SP SB */
7410 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7411 		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7412 		   SB_DISABLED);
7413 
7414 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7415 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7416 		       0);
7417 
7418 	/* Configure IGU */
7419 	if (bp->common.int_block == INT_BLOCK_HC) {
7420 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7421 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7422 	} else {
7423 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7424 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7425 	}
7426 
7427 #ifdef BCM_CNIC
7428 	/* Disable Timer scan */
7429 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7430 	/*
7431 	 * Wait for at least 10ms and up to 2 second for the timers scan to
7432 	 * complete
7433 	 */
7434 	for (i = 0; i < 200; i++) {
7435 		msleep(10);
7436 		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7437 			break;
7438 	}
7439 #endif
7440 	/* Clear ILT */
7441 	bnx2x_clear_func_ilt(bp, func);
7442 
7443 	/* Timers workaround bug for E2: if this is vnic-3,
7444 	 * we need to set the entire ilt range for this timers.
7445 	 */
7446 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7447 		struct ilt_client_info ilt_cli;
7448 		/* use dummy TM client */
7449 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7450 		ilt_cli.start = 0;
7451 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7452 		ilt_cli.client_num = ILT_CLIENT_TM;
7453 
7454 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7455 	}
7456 
7457 	/* this assumes that reset_port() called before reset_func()*/
7458 	if (!CHIP_IS_E1x(bp))
7459 		bnx2x_pf_disable(bp);
7460 
7461 	bp->dmae_ready = 0;
7462 }
7463 
7464 static void bnx2x_reset_port(struct bnx2x *bp)
7465 {
7466 	int port = BP_PORT(bp);
7467 	u32 val;
7468 
7469 	/* Reset physical Link */
7470 	bnx2x__link_reset(bp);
7471 
7472 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7473 
7474 	/* Do not rcv packets to BRB */
7475 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7476 	/* Do not direct rcv packets that are not for MCP to the BRB */
7477 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7478 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7479 
7480 	/* Configure AEU */
7481 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7482 
7483 	msleep(100);
7484 	/* Check for BRB port occupancy */
7485 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7486 	if (val)
7487 		DP(NETIF_MSG_IFDOWN,
7488 		   "BRB1 is not empty  %d blocks are occupied\n", val);
7489 
7490 	/* TODO: Close Doorbell port? */
7491 }
7492 
7493 static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7494 {
7495 	struct bnx2x_func_state_params func_params = {0};
7496 
7497 	/* Prepare parameters for function state transitions */
7498 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7499 
7500 	func_params.f_obj = &bp->func_obj;
7501 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
7502 
7503 	func_params.params.hw_init.load_phase = load_code;
7504 
7505 	return bnx2x_func_state_change(bp, &func_params);
7506 }
7507 
7508 static inline int bnx2x_func_stop(struct bnx2x *bp)
7509 {
7510 	struct bnx2x_func_state_params func_params = {0};
7511 	int rc;
7512 
7513 	/* Prepare parameters for function state transitions */
7514 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7515 	func_params.f_obj = &bp->func_obj;
7516 	func_params.cmd = BNX2X_F_CMD_STOP;
7517 
7518 	/*
7519 	 * Try to stop the function the 'good way'. If fails (in case
7520 	 * of a parity error during bnx2x_chip_cleanup()) and we are
7521 	 * not in a debug mode, perform a state transaction in order to
7522 	 * enable further HW_RESET transaction.
7523 	 */
7524 	rc = bnx2x_func_state_change(bp, &func_params);
7525 	if (rc) {
7526 #ifdef BNX2X_STOP_ON_ERROR
7527 		return rc;
7528 #else
7529 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7530 			  "transaction\n");
7531 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7532 		return bnx2x_func_state_change(bp, &func_params);
7533 #endif
7534 	}
7535 
7536 	return 0;
7537 }
7538 
7539 /**
7540  * bnx2x_send_unload_req - request unload mode from the MCP.
7541  *
7542  * @bp:			driver handle
7543  * @unload_mode:	requested function's unload mode
7544  *
7545  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7546  */
7547 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7548 {
7549 	u32 reset_code = 0;
7550 	int port = BP_PORT(bp);
7551 
7552 	/* Select the UNLOAD request mode */
7553 	if (unload_mode == UNLOAD_NORMAL)
7554 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7555 
7556 	else if (bp->flags & NO_WOL_FLAG)
7557 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7558 
7559 	else if (bp->wol) {
7560 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7561 		u8 *mac_addr = bp->dev->dev_addr;
7562 		u32 val;
7563 		/* The mac address is written to entries 1-4 to
7564 		   preserve entry 0 which is used by the PMF */
7565 		u8 entry = (BP_E1HVN(bp) + 1)*8;
7566 
7567 		val = (mac_addr[0] << 8) | mac_addr[1];
7568 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7569 
7570 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7571 		      (mac_addr[4] << 8) | mac_addr[5];
7572 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7573 
7574 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7575 
7576 	} else
7577 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7578 
7579 	/* Send the request to the MCP */
7580 	if (!BP_NOMCP(bp))
7581 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
7582 	else {
7583 		int path = BP_PATH(bp);
7584 
7585 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      "
7586 				     "%d, %d, %d\n",
7587 		   path, load_count[path][0], load_count[path][1],
7588 		   load_count[path][2]);
7589 		load_count[path][0]--;
7590 		load_count[path][1 + port]--;
7591 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  "
7592 				     "%d, %d, %d\n",
7593 		   path, load_count[path][0], load_count[path][1],
7594 		   load_count[path][2]);
7595 		if (load_count[path][0] == 0)
7596 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7597 		else if (load_count[path][1 + port] == 0)
7598 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7599 		else
7600 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7601 	}
7602 
7603 	return reset_code;
7604 }
7605 
7606 /**
7607  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7608  *
7609  * @bp:		driver handle
7610  */
7611 void bnx2x_send_unload_done(struct bnx2x *bp)
7612 {
7613 	/* Report UNLOAD_DONE to MCP */
7614 	if (!BP_NOMCP(bp))
7615 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7616 }
7617 
7618 static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7619 {
7620 	int tout = 50;
7621 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7622 
7623 	if (!bp->port.pmf)
7624 		return 0;
7625 
7626 	/*
7627 	 * (assumption: No Attention from MCP at this stage)
7628 	 * PMF probably in the middle of TXdisable/enable transaction
7629 	 * 1. Sync IRS for default SB
7630 	 * 2. Sync SP queue - this guarantes us that attention handling started
7631 	 * 3. Wait, that TXdisable/enable transaction completes
7632 	 *
7633 	 * 1+2 guranty that if DCBx attention was scheduled it already changed
7634 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7635 	 * received complettion for the transaction the state is TX_STOPPED.
7636 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7637 	 * transaction.
7638 	 */
7639 
7640 	/* make sure default SB ISR is done */
7641 	if (msix)
7642 		synchronize_irq(bp->msix_table[0].vector);
7643 	else
7644 		synchronize_irq(bp->pdev->irq);
7645 
7646 	flush_workqueue(bnx2x_wq);
7647 
7648 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7649 				BNX2X_F_STATE_STARTED && tout--)
7650 		msleep(20);
7651 
7652 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7653 						BNX2X_F_STATE_STARTED) {
7654 #ifdef BNX2X_STOP_ON_ERROR
7655 		return -EBUSY;
7656 #else
7657 		/*
7658 		 * Failed to complete the transaction in a "good way"
7659 		 * Force both transactions with CLR bit
7660 		 */
7661 		struct bnx2x_func_state_params func_params = {0};
7662 
7663 		DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7664 			  "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7665 
7666 		func_params.f_obj = &bp->func_obj;
7667 		__set_bit(RAMROD_DRV_CLR_ONLY,
7668 					&func_params.ramrod_flags);
7669 
7670 		/* STARTED-->TX_ST0PPED */
7671 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
7672 		bnx2x_func_state_change(bp, &func_params);
7673 
7674 		/* TX_ST0PPED-->STARTED */
7675 		func_params.cmd = BNX2X_F_CMD_TX_START;
7676 		return bnx2x_func_state_change(bp, &func_params);
7677 #endif
7678 	}
7679 
7680 	return 0;
7681 }
7682 
7683 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7684 {
7685 	int port = BP_PORT(bp);
7686 	int i, rc = 0;
7687 	u8 cos;
7688 	struct bnx2x_mcast_ramrod_params rparam = {0};
7689 	u32 reset_code;
7690 
7691 	/* Wait until tx fastpath tasks complete */
7692 	for_each_tx_queue(bp, i) {
7693 		struct bnx2x_fastpath *fp = &bp->fp[i];
7694 
7695 		for_each_cos_in_tx_queue(fp, cos)
7696 			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7697 #ifdef BNX2X_STOP_ON_ERROR
7698 		if (rc)
7699 			return;
7700 #endif
7701 	}
7702 
7703 	/* Give HW time to discard old tx messages */
7704 	usleep_range(1000, 1000);
7705 
7706 	/* Clean all ETH MACs */
7707 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7708 	if (rc < 0)
7709 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7710 
7711 	/* Clean up UC list  */
7712 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7713 				true);
7714 	if (rc < 0)
7715 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7716 			  "%d\n", rc);
7717 
7718 	/* Disable LLH */
7719 	if (!CHIP_IS_E1(bp))
7720 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7721 
7722 	/* Set "drop all" (stop Rx).
7723 	 * We need to take a netif_addr_lock() here in order to prevent
7724 	 * a race between the completion code and this code.
7725 	 */
7726 	netif_addr_lock_bh(bp->dev);
7727 	/* Schedule the rx_mode command */
7728 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7729 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7730 	else
7731 		bnx2x_set_storm_rx_mode(bp);
7732 
7733 	/* Cleanup multicast configuration */
7734 	rparam.mcast_obj = &bp->mcast_obj;
7735 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7736 	if (rc < 0)
7737 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7738 
7739 	netif_addr_unlock_bh(bp->dev);
7740 
7741 
7742 
7743 	/*
7744 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
7745 	 * this function should perform FUNC, PORT or COMMON HW
7746 	 * reset.
7747 	 */
7748 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
7749 
7750 	/*
7751 	 * (assumption: No Attention from MCP at this stage)
7752 	 * PMF probably in the middle of TXdisable/enable transaction
7753 	 */
7754 	rc = bnx2x_func_wait_started(bp);
7755 	if (rc) {
7756 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
7757 #ifdef BNX2X_STOP_ON_ERROR
7758 		return;
7759 #endif
7760 	}
7761 
7762 	/* Close multi and leading connections
7763 	 * Completions for ramrods are collected in a synchronous way
7764 	 */
7765 	for_each_queue(bp, i)
7766 		if (bnx2x_stop_queue(bp, i))
7767 #ifdef BNX2X_STOP_ON_ERROR
7768 			return;
7769 #else
7770 			goto unload_error;
7771 #endif
7772 	/* If SP settings didn't get completed so far - something
7773 	 * very wrong has happen.
7774 	 */
7775 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
7776 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
7777 
7778 #ifndef BNX2X_STOP_ON_ERROR
7779 unload_error:
7780 #endif
7781 	rc = bnx2x_func_stop(bp);
7782 	if (rc) {
7783 		BNX2X_ERR("Function stop failed!\n");
7784 #ifdef BNX2X_STOP_ON_ERROR
7785 		return;
7786 #endif
7787 	}
7788 
7789 	/* Disable HW interrupts, NAPI */
7790 	bnx2x_netif_stop(bp, 1);
7791 
7792 	/* Release IRQs */
7793 	bnx2x_free_irq(bp);
7794 
7795 	/* Reset the chip */
7796 	rc = bnx2x_reset_hw(bp, reset_code);
7797 	if (rc)
7798 		BNX2X_ERR("HW_RESET failed\n");
7799 
7800 
7801 	/* Report UNLOAD_DONE to MCP */
7802 	bnx2x_send_unload_done(bp);
7803 }
7804 
7805 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
7806 {
7807 	u32 val;
7808 
7809 	DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
7810 
7811 	if (CHIP_IS_E1(bp)) {
7812 		int port = BP_PORT(bp);
7813 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7814 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
7815 
7816 		val = REG_RD(bp, addr);
7817 		val &= ~(0x300);
7818 		REG_WR(bp, addr, val);
7819 	} else {
7820 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
7821 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
7822 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
7823 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
7824 	}
7825 }
7826 
7827 /* Close gates #2, #3 and #4: */
7828 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
7829 {
7830 	u32 val;
7831 
7832 	/* Gates #2 and #4a are closed/opened for "not E1" only */
7833 	if (!CHIP_IS_E1(bp)) {
7834 		/* #4 */
7835 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
7836 		/* #2 */
7837 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
7838 	}
7839 
7840 	/* #3 */
7841 	if (CHIP_IS_E1x(bp)) {
7842 		/* Prevent interrupts from HC on both ports */
7843 		val = REG_RD(bp, HC_REG_CONFIG_1);
7844 		REG_WR(bp, HC_REG_CONFIG_1,
7845 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
7846 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
7847 
7848 		val = REG_RD(bp, HC_REG_CONFIG_0);
7849 		REG_WR(bp, HC_REG_CONFIG_0,
7850 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
7851 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
7852 	} else {
7853 		/* Prevent incomming interrupts in IGU */
7854 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
7855 
7856 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
7857 		       (!close) ?
7858 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
7859 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
7860 	}
7861 
7862 	DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
7863 		close ? "closing" : "opening");
7864 	mmiowb();
7865 }
7866 
7867 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
7868 
7869 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
7870 {
7871 	/* Do some magic... */
7872 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
7873 	*magic_val = val & SHARED_MF_CLP_MAGIC;
7874 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
7875 }
7876 
7877 /**
7878  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
7879  *
7880  * @bp:		driver handle
7881  * @magic_val:	old value of the `magic' bit.
7882  */
7883 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
7884 {
7885 	/* Restore the `magic' bit value... */
7886 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
7887 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
7888 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
7889 }
7890 
7891 /**
7892  * bnx2x_reset_mcp_prep - prepare for MCP reset.
7893  *
7894  * @bp:		driver handle
7895  * @magic_val:	old value of 'magic' bit.
7896  *
7897  * Takes care of CLP configurations.
7898  */
7899 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
7900 {
7901 	u32 shmem;
7902 	u32 validity_offset;
7903 
7904 	DP(NETIF_MSG_HW, "Starting\n");
7905 
7906 	/* Set `magic' bit in order to save MF config */
7907 	if (!CHIP_IS_E1(bp))
7908 		bnx2x_clp_reset_prep(bp, magic_val);
7909 
7910 	/* Get shmem offset */
7911 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
7912 	validity_offset = offsetof(struct shmem_region, validity_map[0]);
7913 
7914 	/* Clear validity map flags */
7915 	if (shmem > 0)
7916 		REG_WR(bp, shmem + validity_offset, 0);
7917 }
7918 
7919 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
7920 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
7921 
7922 /**
7923  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
7924  *
7925  * @bp:	driver handle
7926  */
7927 static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
7928 {
7929 	/* special handling for emulation and FPGA,
7930 	   wait 10 times longer */
7931 	if (CHIP_REV_IS_SLOW(bp))
7932 		msleep(MCP_ONE_TIMEOUT*10);
7933 	else
7934 		msleep(MCP_ONE_TIMEOUT);
7935 }
7936 
7937 /*
7938  * initializes bp->common.shmem_base and waits for validity signature to appear
7939  */
7940 static int bnx2x_init_shmem(struct bnx2x *bp)
7941 {
7942 	int cnt = 0;
7943 	u32 val = 0;
7944 
7945 	do {
7946 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
7947 		if (bp->common.shmem_base) {
7948 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
7949 			if (val & SHR_MEM_VALIDITY_MB)
7950 				return 0;
7951 		}
7952 
7953 		bnx2x_mcp_wait_one(bp);
7954 
7955 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
7956 
7957 	BNX2X_ERR("BAD MCP validity signature\n");
7958 
7959 	return -ENODEV;
7960 }
7961 
7962 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
7963 {
7964 	int rc = bnx2x_init_shmem(bp);
7965 
7966 	/* Restore the `magic' bit value */
7967 	if (!CHIP_IS_E1(bp))
7968 		bnx2x_clp_reset_done(bp, magic_val);
7969 
7970 	return rc;
7971 }
7972 
7973 static void bnx2x_pxp_prep(struct bnx2x *bp)
7974 {
7975 	if (!CHIP_IS_E1(bp)) {
7976 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
7977 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
7978 		mmiowb();
7979 	}
7980 }
7981 
7982 /*
7983  * Reset the whole chip except for:
7984  *      - PCIE core
7985  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
7986  *              one reset bit)
7987  *      - IGU
7988  *      - MISC (including AEU)
7989  *      - GRC
7990  *      - RBCN, RBCP
7991  */
7992 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
7993 {
7994 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
7995 	u32 global_bits2, stay_reset2;
7996 
7997 	/*
7998 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
7999 	 * (per chip) blocks.
8000 	 */
8001 	global_bits2 =
8002 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8003 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8004 
8005 	/* Don't reset the following blocks */
8006 	not_reset_mask1 =
8007 		MISC_REGISTERS_RESET_REG_1_RST_HC |
8008 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8009 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8010 
8011 	not_reset_mask2 =
8012 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8013 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8014 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8015 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8016 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8017 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8018 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8019 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8020 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8021 		MISC_REGISTERS_RESET_REG_2_PGLC;
8022 
8023 	/*
8024 	 * Keep the following blocks in reset:
8025 	 *  - all xxMACs are handled by the bnx2x_link code.
8026 	 */
8027 	stay_reset2 =
8028 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8029 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8030 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8031 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8032 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8033 		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8034 		MISC_REGISTERS_RESET_REG_2_XMAC |
8035 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8036 
8037 	/* Full reset masks according to the chip */
8038 	reset_mask1 = 0xffffffff;
8039 
8040 	if (CHIP_IS_E1(bp))
8041 		reset_mask2 = 0xffff;
8042 	else if (CHIP_IS_E1H(bp))
8043 		reset_mask2 = 0x1ffff;
8044 	else if (CHIP_IS_E2(bp))
8045 		reset_mask2 = 0xfffff;
8046 	else /* CHIP_IS_E3 */
8047 		reset_mask2 = 0x3ffffff;
8048 
8049 	/* Don't reset global blocks unless we need to */
8050 	if (!global)
8051 		reset_mask2 &= ~global_bits2;
8052 
8053 	/*
8054 	 * In case of attention in the QM, we need to reset PXP
8055 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8056 	 * because otherwise QM reset would release 'close the gates' shortly
8057 	 * before resetting the PXP, then the PSWRQ would send a write
8058 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8059 	 * read the payload data from PSWWR, but PSWWR would not
8060 	 * respond. The write queue in PGLUE would stuck, dmae commands
8061 	 * would not return. Therefore it's important to reset the second
8062 	 * reset register (containing the
8063 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8064 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8065 	 * bit).
8066 	 */
8067 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8068 	       reset_mask2 & (~not_reset_mask2));
8069 
8070 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8071 	       reset_mask1 & (~not_reset_mask1));
8072 
8073 	barrier();
8074 	mmiowb();
8075 
8076 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8077 	       reset_mask2 & (~stay_reset2));
8078 
8079 	barrier();
8080 	mmiowb();
8081 
8082 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8083 	mmiowb();
8084 }
8085 
8086 /**
8087  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8088  * It should get cleared in no more than 1s.
8089  *
8090  * @bp:	driver handle
8091  *
8092  * It should get cleared in no more than 1s. Returns 0 if
8093  * pending writes bit gets cleared.
8094  */
8095 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8096 {
8097 	u32 cnt = 1000;
8098 	u32 pend_bits = 0;
8099 
8100 	do {
8101 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8102 
8103 		if (pend_bits == 0)
8104 			break;
8105 
8106 		usleep_range(1000, 1000);
8107 	} while (cnt-- > 0);
8108 
8109 	if (cnt <= 0) {
8110 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8111 			  pend_bits);
8112 		return -EBUSY;
8113 	}
8114 
8115 	return 0;
8116 }
8117 
8118 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8119 {
8120 	int cnt = 1000;
8121 	u32 val = 0;
8122 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8123 
8124 
8125 	/* Empty the Tetris buffer, wait for 1s */
8126 	do {
8127 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8128 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8129 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8130 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8131 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8132 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8133 		    ((port_is_idle_0 & 0x1) == 0x1) &&
8134 		    ((port_is_idle_1 & 0x1) == 0x1) &&
8135 		    (pgl_exp_rom2 == 0xffffffff))
8136 			break;
8137 		usleep_range(1000, 1000);
8138 	} while (cnt-- > 0);
8139 
8140 	if (cnt <= 0) {
8141 		DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8142 			  " are still"
8143 			  " outstanding read requests after 1s!\n");
8144 		DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8145 			  " port_is_idle_0=0x%08x,"
8146 			  " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8147 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8148 			  pgl_exp_rom2);
8149 		return -EAGAIN;
8150 	}
8151 
8152 	barrier();
8153 
8154 	/* Close gates #2, #3 and #4 */
8155 	bnx2x_set_234_gates(bp, true);
8156 
8157 	/* Poll for IGU VQs for 57712 and newer chips */
8158 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8159 		return -EAGAIN;
8160 
8161 
8162 	/* TBD: Indicate that "process kill" is in progress to MCP */
8163 
8164 	/* Clear "unprepared" bit */
8165 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8166 	barrier();
8167 
8168 	/* Make sure all is written to the chip before the reset */
8169 	mmiowb();
8170 
8171 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8172 	 * PSWHST, GRC and PSWRD Tetris buffer.
8173 	 */
8174 	usleep_range(1000, 1000);
8175 
8176 	/* Prepare to chip reset: */
8177 	/* MCP */
8178 	if (global)
8179 		bnx2x_reset_mcp_prep(bp, &val);
8180 
8181 	/* PXP */
8182 	bnx2x_pxp_prep(bp);
8183 	barrier();
8184 
8185 	/* reset the chip */
8186 	bnx2x_process_kill_chip_reset(bp, global);
8187 	barrier();
8188 
8189 	/* Recover after reset: */
8190 	/* MCP */
8191 	if (global && bnx2x_reset_mcp_comp(bp, val))
8192 		return -EAGAIN;
8193 
8194 	/* TBD: Add resetting the NO_MCP mode DB here */
8195 
8196 	/* PXP */
8197 	bnx2x_pxp_prep(bp);
8198 
8199 	/* Open the gates #2, #3 and #4 */
8200 	bnx2x_set_234_gates(bp, false);
8201 
8202 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8203 	 * reset state, re-enable attentions. */
8204 
8205 	return 0;
8206 }
8207 
8208 int bnx2x_leader_reset(struct bnx2x *bp)
8209 {
8210 	int rc = 0;
8211 	bool global = bnx2x_reset_is_global(bp);
8212 
8213 	/* Try to recover after the failure */
8214 	if (bnx2x_process_kill(bp, global)) {
8215 		netdev_err(bp->dev, "Something bad had happen on engine %d! "
8216 				    "Aii!\n", BP_PATH(bp));
8217 		rc = -EAGAIN;
8218 		goto exit_leader_reset;
8219 	}
8220 
8221 	/*
8222 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8223 	 * state.
8224 	 */
8225 	bnx2x_set_reset_done(bp);
8226 	if (global)
8227 		bnx2x_clear_reset_global(bp);
8228 
8229 exit_leader_reset:
8230 	bp->is_leader = 0;
8231 	bnx2x_release_leader_lock(bp);
8232 	smp_mb();
8233 	return rc;
8234 }
8235 
8236 static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8237 {
8238 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8239 
8240 	/* Disconnect this device */
8241 	netif_device_detach(bp->dev);
8242 
8243 	/*
8244 	 * Block ifup for all function on this engine until "process kill"
8245 	 * or power cycle.
8246 	 */
8247 	bnx2x_set_reset_in_progress(bp);
8248 
8249 	/* Shut down the power */
8250 	bnx2x_set_power_state(bp, PCI_D3hot);
8251 
8252 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8253 
8254 	smp_mb();
8255 }
8256 
8257 /*
8258  * Assumption: runs under rtnl lock. This together with the fact
8259  * that it's called only from bnx2x_sp_rtnl() ensure that it
8260  * will never be called when netif_running(bp->dev) is false.
8261  */
8262 static void bnx2x_parity_recover(struct bnx2x *bp)
8263 {
8264 	bool global = false;
8265 
8266 	DP(NETIF_MSG_HW, "Handling parity\n");
8267 	while (1) {
8268 		switch (bp->recovery_state) {
8269 		case BNX2X_RECOVERY_INIT:
8270 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8271 			bnx2x_chk_parity_attn(bp, &global, false);
8272 
8273 			/* Try to get a LEADER_LOCK HW lock */
8274 			if (bnx2x_trylock_leader_lock(bp)) {
8275 				bnx2x_set_reset_in_progress(bp);
8276 				/*
8277 				 * Check if there is a global attention and if
8278 				 * there was a global attention, set the global
8279 				 * reset bit.
8280 				 */
8281 
8282 				if (global)
8283 					bnx2x_set_reset_global(bp);
8284 
8285 				bp->is_leader = 1;
8286 			}
8287 
8288 			/* Stop the driver */
8289 			/* If interface has been removed - break */
8290 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8291 				return;
8292 
8293 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8294 
8295 			/*
8296 			 * Reset MCP command sequence number and MCP mail box
8297 			 * sequence as we are going to reset the MCP.
8298 			 */
8299 			if (global) {
8300 				bp->fw_seq = 0;
8301 				bp->fw_drv_pulse_wr_seq = 0;
8302 			}
8303 
8304 			/* Ensure "is_leader", MCP command sequence and
8305 			 * "recovery_state" update values are seen on other
8306 			 * CPUs.
8307 			 */
8308 			smp_mb();
8309 			break;
8310 
8311 		case BNX2X_RECOVERY_WAIT:
8312 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8313 			if (bp->is_leader) {
8314 				int other_engine = BP_PATH(bp) ? 0 : 1;
8315 				u32 other_load_counter =
8316 					bnx2x_get_load_cnt(bp, other_engine);
8317 				u32 load_counter =
8318 					bnx2x_get_load_cnt(bp, BP_PATH(bp));
8319 				global = bnx2x_reset_is_global(bp);
8320 
8321 				/*
8322 				 * In case of a parity in a global block, let
8323 				 * the first leader that performs a
8324 				 * leader_reset() reset the global blocks in
8325 				 * order to clear global attentions. Otherwise
8326 				 * the the gates will remain closed for that
8327 				 * engine.
8328 				 */
8329 				if (load_counter ||
8330 				    (global && other_load_counter)) {
8331 					/* Wait until all other functions get
8332 					 * down.
8333 					 */
8334 					schedule_delayed_work(&bp->sp_rtnl_task,
8335 								HZ/10);
8336 					return;
8337 				} else {
8338 					/* If all other functions got down -
8339 					 * try to bring the chip back to
8340 					 * normal. In any case it's an exit
8341 					 * point for a leader.
8342 					 */
8343 					if (bnx2x_leader_reset(bp)) {
8344 						bnx2x_recovery_failed(bp);
8345 						return;
8346 					}
8347 
8348 					/* If we are here, means that the
8349 					 * leader has succeeded and doesn't
8350 					 * want to be a leader any more. Try
8351 					 * to continue as a none-leader.
8352 					 */
8353 					break;
8354 				}
8355 			} else { /* non-leader */
8356 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8357 					/* Try to get a LEADER_LOCK HW lock as
8358 					 * long as a former leader may have
8359 					 * been unloaded by the user or
8360 					 * released a leadership by another
8361 					 * reason.
8362 					 */
8363 					if (bnx2x_trylock_leader_lock(bp)) {
8364 						/* I'm a leader now! Restart a
8365 						 * switch case.
8366 						 */
8367 						bp->is_leader = 1;
8368 						break;
8369 					}
8370 
8371 					schedule_delayed_work(&bp->sp_rtnl_task,
8372 								HZ/10);
8373 					return;
8374 
8375 				} else {
8376 					/*
8377 					 * If there was a global attention, wait
8378 					 * for it to be cleared.
8379 					 */
8380 					if (bnx2x_reset_is_global(bp)) {
8381 						schedule_delayed_work(
8382 							&bp->sp_rtnl_task,
8383 							HZ/10);
8384 						return;
8385 					}
8386 
8387 					if (bnx2x_nic_load(bp, LOAD_NORMAL))
8388 						bnx2x_recovery_failed(bp);
8389 					else {
8390 						bp->recovery_state =
8391 							BNX2X_RECOVERY_DONE;
8392 						smp_mb();
8393 					}
8394 
8395 					return;
8396 				}
8397 			}
8398 		default:
8399 			return;
8400 		}
8401 	}
8402 }
8403 
8404 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8405  * scheduled on a general queue in order to prevent a dead lock.
8406  */
8407 static void bnx2x_sp_rtnl_task(struct work_struct *work)
8408 {
8409 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8410 
8411 	rtnl_lock();
8412 
8413 	if (!netif_running(bp->dev))
8414 		goto sp_rtnl_exit;
8415 
8416 	/* if stop on error is defined no recovery flows should be executed */
8417 #ifdef BNX2X_STOP_ON_ERROR
8418 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8419 		  "so reset not done to allow debug dump,\n"
8420 		  "you will need to reboot when done\n");
8421 	goto sp_rtnl_not_reset;
8422 #endif
8423 
8424 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8425 		/*
8426 		 * Clear all pending SP commands as we are going to reset the
8427 		 * function anyway.
8428 		 */
8429 		bp->sp_rtnl_state = 0;
8430 		smp_mb();
8431 
8432 		bnx2x_parity_recover(bp);
8433 
8434 		goto sp_rtnl_exit;
8435 	}
8436 
8437 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8438 		/*
8439 		 * Clear all pending SP commands as we are going to reset the
8440 		 * function anyway.
8441 		 */
8442 		bp->sp_rtnl_state = 0;
8443 		smp_mb();
8444 
8445 		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8446 		bnx2x_nic_load(bp, LOAD_NORMAL);
8447 
8448 		goto sp_rtnl_exit;
8449 	}
8450 #ifdef BNX2X_STOP_ON_ERROR
8451 sp_rtnl_not_reset:
8452 #endif
8453 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8454 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8455 
8456 sp_rtnl_exit:
8457 	rtnl_unlock();
8458 }
8459 
8460 /* end of nic load/unload */
8461 
8462 static void bnx2x_period_task(struct work_struct *work)
8463 {
8464 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8465 
8466 	if (!netif_running(bp->dev))
8467 		goto period_task_exit;
8468 
8469 	if (CHIP_REV_IS_SLOW(bp)) {
8470 		BNX2X_ERR("period task called on emulation, ignoring\n");
8471 		goto period_task_exit;
8472 	}
8473 
8474 	bnx2x_acquire_phy_lock(bp);
8475 	/*
8476 	 * The barrier is needed to ensure the ordering between the writing to
8477 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8478 	 * the reading here.
8479 	 */
8480 	smp_mb();
8481 	if (bp->port.pmf) {
8482 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
8483 
8484 		/* Re-queue task in 1 sec */
8485 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8486 	}
8487 
8488 	bnx2x_release_phy_lock(bp);
8489 period_task_exit:
8490 	return;
8491 }
8492 
8493 /*
8494  * Init service functions
8495  */
8496 
8497 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8498 {
8499 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8500 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8501 	return base + (BP_ABS_FUNC(bp)) * stride;
8502 }
8503 
8504 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8505 {
8506 	u32 reg = bnx2x_get_pretend_reg(bp);
8507 
8508 	/* Flush all outstanding writes */
8509 	mmiowb();
8510 
8511 	/* Pretend to be function 0 */
8512 	REG_WR(bp, reg, 0);
8513 	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
8514 
8515 	/* From now we are in the "like-E1" mode */
8516 	bnx2x_int_disable(bp);
8517 
8518 	/* Flush all outstanding writes */
8519 	mmiowb();
8520 
8521 	/* Restore the original function */
8522 	REG_WR(bp, reg, BP_ABS_FUNC(bp));
8523 	REG_RD(bp, reg);
8524 }
8525 
8526 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8527 {
8528 	if (CHIP_IS_E1(bp))
8529 		bnx2x_int_disable(bp);
8530 	else
8531 		bnx2x_undi_int_disable_e1h(bp);
8532 }
8533 
8534 static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8535 {
8536 	u32 val;
8537 
8538 	/* Check if there is any driver already loaded */
8539 	val = REG_RD(bp, MISC_REG_UNPREPARED);
8540 	if (val == 0x1) {
8541 		/* Check if it is the UNDI driver
8542 		 * UNDI driver initializes CID offset for normal bell to 0x7
8543 		 */
8544 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_UNDI);
8545 		val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8546 		if (val == 0x7) {
8547 			u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8548 			/* save our pf_num */
8549 			int orig_pf_num = bp->pf_num;
8550 			int port;
8551 			u32 swap_en, swap_val, value;
8552 
8553 			/* clear the UNDI indication */
8554 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8555 
8556 			BNX2X_DEV_INFO("UNDI is active! reset device\n");
8557 
8558 			/* try unload UNDI on port 0 */
8559 			bp->pf_num = 0;
8560 			bp->fw_seq =
8561 			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8562 				DRV_MSG_SEQ_NUMBER_MASK);
8563 			reset_code = bnx2x_fw_command(bp, reset_code, 0);
8564 
8565 			/* if UNDI is loaded on the other port */
8566 			if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8567 
8568 				/* send "DONE" for previous unload */
8569 				bnx2x_fw_command(bp,
8570 						 DRV_MSG_CODE_UNLOAD_DONE, 0);
8571 
8572 				/* unload UNDI on port 1 */
8573 				bp->pf_num = 1;
8574 				bp->fw_seq =
8575 			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8576 					DRV_MSG_SEQ_NUMBER_MASK);
8577 				reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8578 
8579 				bnx2x_fw_command(bp, reset_code, 0);
8580 			}
8581 
8582 			/* now it's safe to release the lock */
8583 			bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_UNDI);
8584 
8585 			bnx2x_undi_int_disable(bp);
8586 			port = BP_PORT(bp);
8587 
8588 			/* close input traffic and wait for it */
8589 			/* Do not rcv packets to BRB */
8590 			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8591 					   NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8592 			/* Do not direct rcv packets that are not for MCP to
8593 			 * the BRB */
8594 			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8595 					   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8596 			/* clear AEU */
8597 			REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8598 					   MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8599 			msleep(10);
8600 
8601 			/* save NIG port swap info */
8602 			swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8603 			swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8604 			/* reset device */
8605 			REG_WR(bp,
8606 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8607 			       0xd3ffffff);
8608 
8609 			value = 0x1400;
8610 			if (CHIP_IS_E3(bp)) {
8611 				value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8612 				value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8613 			}
8614 
8615 			REG_WR(bp,
8616 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8617 			       value);
8618 
8619 			/* take the NIG out of reset and restore swap values */
8620 			REG_WR(bp,
8621 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8622 			       MISC_REGISTERS_RESET_REG_1_RST_NIG);
8623 			REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8624 			REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8625 
8626 			/* send unload done to the MCP */
8627 			bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8628 
8629 			/* restore our func and fw_seq */
8630 			bp->pf_num = orig_pf_num;
8631 			bp->fw_seq =
8632 			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8633 				DRV_MSG_SEQ_NUMBER_MASK);
8634 		} else
8635 			bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_UNDI);
8636 	}
8637 }
8638 
8639 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8640 {
8641 	u32 val, val2, val3, val4, id;
8642 	u16 pmc;
8643 
8644 	/* Get the chip revision id and number. */
8645 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8646 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
8647 	id = ((val & 0xffff) << 16);
8648 	val = REG_RD(bp, MISC_REG_CHIP_REV);
8649 	id |= ((val & 0xf) << 12);
8650 	val = REG_RD(bp, MISC_REG_CHIP_METAL);
8651 	id |= ((val & 0xff) << 4);
8652 	val = REG_RD(bp, MISC_REG_BOND_ID);
8653 	id |= (val & 0xf);
8654 	bp->common.chip_id = id;
8655 
8656 	/* Set doorbell size */
8657 	bp->db_size = (1 << BNX2X_DB_SHIFT);
8658 
8659 	if (!CHIP_IS_E1x(bp)) {
8660 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8661 		if ((val & 1) == 0)
8662 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8663 		else
8664 			val = (val >> 1) & 1;
8665 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8666 						       "2_PORT_MODE");
8667 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8668 						 CHIP_2_PORT_MODE;
8669 
8670 		if (CHIP_MODE_IS_4_PORT(bp))
8671 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
8672 		else
8673 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
8674 	} else {
8675 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8676 		bp->pfid = bp->pf_num;			/* 0..7 */
8677 	}
8678 
8679 	bp->link_params.chip_id = bp->common.chip_id;
8680 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8681 
8682 	val = (REG_RD(bp, 0x2874) & 0x55);
8683 	if ((bp->common.chip_id & 0x1) ||
8684 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8685 		bp->flags |= ONE_PORT_FLAG;
8686 		BNX2X_DEV_INFO("single port device\n");
8687 	}
8688 
8689 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8690 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8691 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8692 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8693 		       bp->common.flash_size, bp->common.flash_size);
8694 
8695 	bnx2x_init_shmem(bp);
8696 
8697 
8698 
8699 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8700 					MISC_REG_GENERIC_CR_1 :
8701 					MISC_REG_GENERIC_CR_0));
8702 
8703 	bp->link_params.shmem_base = bp->common.shmem_base;
8704 	bp->link_params.shmem2_base = bp->common.shmem2_base;
8705 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
8706 		       bp->common.shmem_base, bp->common.shmem2_base);
8707 
8708 	if (!bp->common.shmem_base) {
8709 		BNX2X_DEV_INFO("MCP not active\n");
8710 		bp->flags |= NO_MCP_FLAG;
8711 		return;
8712 	}
8713 
8714 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8715 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8716 
8717 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
8718 					SHARED_HW_CFG_LED_MODE_MASK) >>
8719 				       SHARED_HW_CFG_LED_MODE_SHIFT);
8720 
8721 	bp->link_params.feature_config_flags = 0;
8722 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8723 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8724 		bp->link_params.feature_config_flags |=
8725 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8726 	else
8727 		bp->link_params.feature_config_flags &=
8728 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8729 
8730 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
8731 	bp->common.bc_ver = val;
8732 	BNX2X_DEV_INFO("bc_ver %X\n", val);
8733 	if (val < BNX2X_BC_VER) {
8734 		/* for now only warn
8735 		 * later we might need to enforce this */
8736 		BNX2X_ERR("This driver needs bc_ver %X but found %X, "
8737 			  "please upgrade BC\n", BNX2X_BC_VER, val);
8738 	}
8739 	bp->link_params.feature_config_flags |=
8740 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8741 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
8742 
8743 	bp->link_params.feature_config_flags |=
8744 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8745 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8746 
8747 	bp->link_params.feature_config_flags |=
8748 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8749 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8750 
8751 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
8752 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
8753 
8754 	BNX2X_DEV_INFO("%sWoL capable\n",
8755 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
8756 
8757 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
8758 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
8759 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
8760 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
8761 
8762 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
8763 		 val, val2, val3, val4);
8764 }
8765 
8766 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8767 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8768 
8769 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
8770 {
8771 	int pfid = BP_FUNC(bp);
8772 	int vn = BP_E1HVN(bp);
8773 	int igu_sb_id;
8774 	u32 val;
8775 	u8 fid, igu_sb_cnt = 0;
8776 
8777 	bp->igu_base_sb = 0xff;
8778 	if (CHIP_INT_MODE_IS_BC(bp)) {
8779 		igu_sb_cnt = bp->igu_sb_cnt;
8780 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
8781 			FP_SB_MAX_E1x;
8782 
8783 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
8784 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
8785 
8786 		return;
8787 	}
8788 
8789 	/* IGU in normal mode - read CAM */
8790 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
8791 	     igu_sb_id++) {
8792 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8793 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
8794 			continue;
8795 		fid = IGU_FID(val);
8796 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
8797 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
8798 				continue;
8799 			if (IGU_VEC(val) == 0)
8800 				/* default status block */
8801 				bp->igu_dsb_id = igu_sb_id;
8802 			else {
8803 				if (bp->igu_base_sb == 0xff)
8804 					bp->igu_base_sb = igu_sb_id;
8805 				igu_sb_cnt++;
8806 			}
8807 		}
8808 	}
8809 
8810 #ifdef CONFIG_PCI_MSI
8811 	/*
8812 	 * It's expected that number of CAM entries for this functions is equal
8813 	 * to the number evaluated based on the MSI-X table size. We want a
8814 	 * harsh warning if these values are different!
8815 	 */
8816 	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
8817 #endif
8818 
8819 	if (igu_sb_cnt == 0)
8820 		BNX2X_ERR("CAM configuration error\n");
8821 }
8822 
8823 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
8824 						    u32 switch_cfg)
8825 {
8826 	int cfg_size = 0, idx, port = BP_PORT(bp);
8827 
8828 	/* Aggregation of supported attributes of all external phys */
8829 	bp->port.supported[0] = 0;
8830 	bp->port.supported[1] = 0;
8831 	switch (bp->link_params.num_phys) {
8832 	case 1:
8833 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
8834 		cfg_size = 1;
8835 		break;
8836 	case 2:
8837 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
8838 		cfg_size = 1;
8839 		break;
8840 	case 3:
8841 		if (bp->link_params.multi_phy_config &
8842 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8843 			bp->port.supported[1] =
8844 				bp->link_params.phy[EXT_PHY1].supported;
8845 			bp->port.supported[0] =
8846 				bp->link_params.phy[EXT_PHY2].supported;
8847 		} else {
8848 			bp->port.supported[0] =
8849 				bp->link_params.phy[EXT_PHY1].supported;
8850 			bp->port.supported[1] =
8851 				bp->link_params.phy[EXT_PHY2].supported;
8852 		}
8853 		cfg_size = 2;
8854 		break;
8855 	}
8856 
8857 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
8858 		BNX2X_ERR("NVRAM config error. BAD phy config."
8859 			  "PHY1 config 0x%x, PHY2 config 0x%x\n",
8860 			   SHMEM_RD(bp,
8861 			   dev_info.port_hw_config[port].external_phy_config),
8862 			   SHMEM_RD(bp,
8863 			   dev_info.port_hw_config[port].external_phy_config2));
8864 			return;
8865 	}
8866 
8867 	if (CHIP_IS_E3(bp))
8868 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
8869 	else {
8870 		switch (switch_cfg) {
8871 		case SWITCH_CFG_1G:
8872 			bp->port.phy_addr = REG_RD(
8873 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
8874 			break;
8875 		case SWITCH_CFG_10G:
8876 			bp->port.phy_addr = REG_RD(
8877 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
8878 			break;
8879 		default:
8880 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
8881 				  bp->port.link_config[0]);
8882 			return;
8883 		}
8884 	}
8885 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
8886 	/* mask what we support according to speed_cap_mask per configuration */
8887 	for (idx = 0; idx < cfg_size; idx++) {
8888 		if (!(bp->link_params.speed_cap_mask[idx] &
8889 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
8890 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
8891 
8892 		if (!(bp->link_params.speed_cap_mask[idx] &
8893 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
8894 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
8895 
8896 		if (!(bp->link_params.speed_cap_mask[idx] &
8897 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
8898 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
8899 
8900 		if (!(bp->link_params.speed_cap_mask[idx] &
8901 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
8902 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
8903 
8904 		if (!(bp->link_params.speed_cap_mask[idx] &
8905 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
8906 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
8907 						     SUPPORTED_1000baseT_Full);
8908 
8909 		if (!(bp->link_params.speed_cap_mask[idx] &
8910 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
8911 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
8912 
8913 		if (!(bp->link_params.speed_cap_mask[idx] &
8914 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
8915 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
8916 
8917 	}
8918 
8919 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
8920 		       bp->port.supported[1]);
8921 }
8922 
8923 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
8924 {
8925 	u32 link_config, idx, cfg_size = 0;
8926 	bp->port.advertising[0] = 0;
8927 	bp->port.advertising[1] = 0;
8928 	switch (bp->link_params.num_phys) {
8929 	case 1:
8930 	case 2:
8931 		cfg_size = 1;
8932 		break;
8933 	case 3:
8934 		cfg_size = 2;
8935 		break;
8936 	}
8937 	for (idx = 0; idx < cfg_size; idx++) {
8938 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
8939 		link_config = bp->port.link_config[idx];
8940 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8941 		case PORT_FEATURE_LINK_SPEED_AUTO:
8942 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
8943 				bp->link_params.req_line_speed[idx] =
8944 					SPEED_AUTO_NEG;
8945 				bp->port.advertising[idx] |=
8946 					bp->port.supported[idx];
8947 			} else {
8948 				/* force 10G, no AN */
8949 				bp->link_params.req_line_speed[idx] =
8950 					SPEED_10000;
8951 				bp->port.advertising[idx] |=
8952 					(ADVERTISED_10000baseT_Full |
8953 					 ADVERTISED_FIBRE);
8954 				continue;
8955 			}
8956 			break;
8957 
8958 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
8959 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
8960 				bp->link_params.req_line_speed[idx] =
8961 					SPEED_10;
8962 				bp->port.advertising[idx] |=
8963 					(ADVERTISED_10baseT_Full |
8964 					 ADVERTISED_TP);
8965 			} else {
8966 				BNX2X_ERR("NVRAM config error. "
8967 					    "Invalid link_config 0x%x"
8968 					    "  speed_cap_mask 0x%x\n",
8969 					    link_config,
8970 				    bp->link_params.speed_cap_mask[idx]);
8971 				return;
8972 			}
8973 			break;
8974 
8975 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
8976 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
8977 				bp->link_params.req_line_speed[idx] =
8978 					SPEED_10;
8979 				bp->link_params.req_duplex[idx] =
8980 					DUPLEX_HALF;
8981 				bp->port.advertising[idx] |=
8982 					(ADVERTISED_10baseT_Half |
8983 					 ADVERTISED_TP);
8984 			} else {
8985 				BNX2X_ERR("NVRAM config error. "
8986 					    "Invalid link_config 0x%x"
8987 					    "  speed_cap_mask 0x%x\n",
8988 					    link_config,
8989 					  bp->link_params.speed_cap_mask[idx]);
8990 				return;
8991 			}
8992 			break;
8993 
8994 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
8995 			if (bp->port.supported[idx] &
8996 			    SUPPORTED_100baseT_Full) {
8997 				bp->link_params.req_line_speed[idx] =
8998 					SPEED_100;
8999 				bp->port.advertising[idx] |=
9000 					(ADVERTISED_100baseT_Full |
9001 					 ADVERTISED_TP);
9002 			} else {
9003 				BNX2X_ERR("NVRAM config error. "
9004 					    "Invalid link_config 0x%x"
9005 					    "  speed_cap_mask 0x%x\n",
9006 					    link_config,
9007 					  bp->link_params.speed_cap_mask[idx]);
9008 				return;
9009 			}
9010 			break;
9011 
9012 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
9013 			if (bp->port.supported[idx] &
9014 			    SUPPORTED_100baseT_Half) {
9015 				bp->link_params.req_line_speed[idx] =
9016 								SPEED_100;
9017 				bp->link_params.req_duplex[idx] =
9018 								DUPLEX_HALF;
9019 				bp->port.advertising[idx] |=
9020 					(ADVERTISED_100baseT_Half |
9021 					 ADVERTISED_TP);
9022 			} else {
9023 				BNX2X_ERR("NVRAM config error. "
9024 				    "Invalid link_config 0x%x"
9025 				    "  speed_cap_mask 0x%x\n",
9026 				    link_config,
9027 				    bp->link_params.speed_cap_mask[idx]);
9028 				return;
9029 			}
9030 			break;
9031 
9032 		case PORT_FEATURE_LINK_SPEED_1G:
9033 			if (bp->port.supported[idx] &
9034 			    SUPPORTED_1000baseT_Full) {
9035 				bp->link_params.req_line_speed[idx] =
9036 					SPEED_1000;
9037 				bp->port.advertising[idx] |=
9038 					(ADVERTISED_1000baseT_Full |
9039 					 ADVERTISED_TP);
9040 			} else {
9041 				BNX2X_ERR("NVRAM config error. "
9042 				    "Invalid link_config 0x%x"
9043 				    "  speed_cap_mask 0x%x\n",
9044 				    link_config,
9045 				    bp->link_params.speed_cap_mask[idx]);
9046 				return;
9047 			}
9048 			break;
9049 
9050 		case PORT_FEATURE_LINK_SPEED_2_5G:
9051 			if (bp->port.supported[idx] &
9052 			    SUPPORTED_2500baseX_Full) {
9053 				bp->link_params.req_line_speed[idx] =
9054 					SPEED_2500;
9055 				bp->port.advertising[idx] |=
9056 					(ADVERTISED_2500baseX_Full |
9057 						ADVERTISED_TP);
9058 			} else {
9059 				BNX2X_ERR("NVRAM config error. "
9060 				    "Invalid link_config 0x%x"
9061 				    "  speed_cap_mask 0x%x\n",
9062 				    link_config,
9063 				    bp->link_params.speed_cap_mask[idx]);
9064 				return;
9065 			}
9066 			break;
9067 
9068 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
9069 			if (bp->port.supported[idx] &
9070 			    SUPPORTED_10000baseT_Full) {
9071 				bp->link_params.req_line_speed[idx] =
9072 					SPEED_10000;
9073 				bp->port.advertising[idx] |=
9074 					(ADVERTISED_10000baseT_Full |
9075 						ADVERTISED_FIBRE);
9076 			} else {
9077 				BNX2X_ERR("NVRAM config error. "
9078 				    "Invalid link_config 0x%x"
9079 				    "  speed_cap_mask 0x%x\n",
9080 				    link_config,
9081 				    bp->link_params.speed_cap_mask[idx]);
9082 				return;
9083 			}
9084 			break;
9085 		case PORT_FEATURE_LINK_SPEED_20G:
9086 			bp->link_params.req_line_speed[idx] = SPEED_20000;
9087 
9088 			break;
9089 		default:
9090 			BNX2X_ERR("NVRAM config error. "
9091 				  "BAD link speed link_config 0x%x\n",
9092 				  link_config);
9093 				bp->link_params.req_line_speed[idx] =
9094 							SPEED_AUTO_NEG;
9095 				bp->port.advertising[idx] =
9096 						bp->port.supported[idx];
9097 			break;
9098 		}
9099 
9100 		bp->link_params.req_flow_ctrl[idx] = (link_config &
9101 					 PORT_FEATURE_FLOW_CONTROL_MASK);
9102 		if ((bp->link_params.req_flow_ctrl[idx] ==
9103 		     BNX2X_FLOW_CTRL_AUTO) &&
9104 		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9105 			bp->link_params.req_flow_ctrl[idx] =
9106 				BNX2X_FLOW_CTRL_NONE;
9107 		}
9108 
9109 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl"
9110 			       " 0x%x advertising 0x%x\n",
9111 			       bp->link_params.req_line_speed[idx],
9112 			       bp->link_params.req_duplex[idx],
9113 			       bp->link_params.req_flow_ctrl[idx],
9114 			       bp->port.advertising[idx]);
9115 	}
9116 }
9117 
9118 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9119 {
9120 	mac_hi = cpu_to_be16(mac_hi);
9121 	mac_lo = cpu_to_be32(mac_lo);
9122 	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9123 	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9124 }
9125 
9126 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9127 {
9128 	int port = BP_PORT(bp);
9129 	u32 config;
9130 	u32 ext_phy_type, ext_phy_config;
9131 
9132 	bp->link_params.bp = bp;
9133 	bp->link_params.port = port;
9134 
9135 	bp->link_params.lane_config =
9136 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9137 
9138 	bp->link_params.speed_cap_mask[0] =
9139 		SHMEM_RD(bp,
9140 			 dev_info.port_hw_config[port].speed_capability_mask);
9141 	bp->link_params.speed_cap_mask[1] =
9142 		SHMEM_RD(bp,
9143 			 dev_info.port_hw_config[port].speed_capability_mask2);
9144 	bp->port.link_config[0] =
9145 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9146 
9147 	bp->port.link_config[1] =
9148 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9149 
9150 	bp->link_params.multi_phy_config =
9151 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9152 	/* If the device is capable of WoL, set the default state according
9153 	 * to the HW
9154 	 */
9155 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9156 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9157 		   (config & PORT_FEATURE_WOL_ENABLED));
9158 
9159 	BNX2X_DEV_INFO("lane_config 0x%08x  "
9160 		       "speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
9161 		       bp->link_params.lane_config,
9162 		       bp->link_params.speed_cap_mask[0],
9163 		       bp->port.link_config[0]);
9164 
9165 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
9166 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
9167 	bnx2x_phy_probe(&bp->link_params);
9168 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9169 
9170 	bnx2x_link_settings_requested(bp);
9171 
9172 	/*
9173 	 * If connected directly, work with the internal PHY, otherwise, work
9174 	 * with the external PHY
9175 	 */
9176 	ext_phy_config =
9177 		SHMEM_RD(bp,
9178 			 dev_info.port_hw_config[port].external_phy_config);
9179 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9180 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9181 		bp->mdio.prtad = bp->port.phy_addr;
9182 
9183 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9184 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9185 		bp->mdio.prtad =
9186 			XGXS_EXT_PHY_ADDR(ext_phy_config);
9187 
9188 	/*
9189 	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9190 	 * In MF mode, it is set to cover self test cases
9191 	 */
9192 	if (IS_MF(bp))
9193 		bp->port.need_hw_lock = 1;
9194 	else
9195 		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9196 							bp->common.shmem_base,
9197 							bp->common.shmem2_base);
9198 }
9199 
9200 #ifdef BCM_CNIC
9201 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9202 {
9203 	int port = BP_PORT(bp);
9204 	int func = BP_ABS_FUNC(bp);
9205 
9206 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9207 				drv_lic_key[port].max_iscsi_conn);
9208 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9209 				drv_lic_key[port].max_fcoe_conn);
9210 
9211 	/* Get the number of maximum allowed iSCSI and FCoE connections */
9212 	bp->cnic_eth_dev.max_iscsi_conn =
9213 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9214 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9215 
9216 	bp->cnic_eth_dev.max_fcoe_conn =
9217 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9218 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9219 
9220 	/* Read the WWN: */
9221 	if (!IS_MF(bp)) {
9222 		/* Port info */
9223 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9224 			SHMEM_RD(bp,
9225 				dev_info.port_hw_config[port].
9226 				 fcoe_wwn_port_name_upper);
9227 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9228 			SHMEM_RD(bp,
9229 				dev_info.port_hw_config[port].
9230 				 fcoe_wwn_port_name_lower);
9231 
9232 		/* Node info */
9233 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9234 			SHMEM_RD(bp,
9235 				dev_info.port_hw_config[port].
9236 				 fcoe_wwn_node_name_upper);
9237 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9238 			SHMEM_RD(bp,
9239 				dev_info.port_hw_config[port].
9240 				 fcoe_wwn_node_name_lower);
9241 	} else if (!IS_MF_SD(bp)) {
9242 		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9243 
9244 		/*
9245 		 * Read the WWN info only if the FCoE feature is enabled for
9246 		 * this function.
9247 		 */
9248 		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9249 			/* Port info */
9250 			bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9251 				MF_CFG_RD(bp, func_ext_config[func].
9252 						fcoe_wwn_port_name_upper);
9253 			bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9254 				MF_CFG_RD(bp, func_ext_config[func].
9255 						fcoe_wwn_port_name_lower);
9256 
9257 			/* Node info */
9258 			bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9259 				MF_CFG_RD(bp, func_ext_config[func].
9260 						fcoe_wwn_node_name_upper);
9261 			bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9262 				MF_CFG_RD(bp, func_ext_config[func].
9263 						fcoe_wwn_node_name_lower);
9264 		}
9265 	}
9266 
9267 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x max_fcoe_conn 0x%x\n",
9268 		       bp->cnic_eth_dev.max_iscsi_conn,
9269 		       bp->cnic_eth_dev.max_fcoe_conn);
9270 
9271 	/*
9272 	 * If maximum allowed number of connections is zero -
9273 	 * disable the feature.
9274 	 */
9275 	if (!bp->cnic_eth_dev.max_iscsi_conn)
9276 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9277 
9278 	if (!bp->cnic_eth_dev.max_fcoe_conn)
9279 		bp->flags |= NO_FCOE_FLAG;
9280 }
9281 #endif
9282 
9283 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9284 {
9285 	u32 val, val2;
9286 	int func = BP_ABS_FUNC(bp);
9287 	int port = BP_PORT(bp);
9288 #ifdef BCM_CNIC
9289 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9290 	u8 *fip_mac = bp->fip_mac;
9291 #endif
9292 
9293 	/* Zero primary MAC configuration */
9294 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
9295 
9296 	if (BP_NOMCP(bp)) {
9297 		BNX2X_ERROR("warning: random MAC workaround active\n");
9298 		random_ether_addr(bp->dev->dev_addr);
9299 	} else if (IS_MF(bp)) {
9300 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9301 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9302 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9303 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9304 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9305 
9306 #ifdef BCM_CNIC
9307 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9308 		 * FCoE MAC then the appropriate feature should be disabled.
9309 		 */
9310 		if (IS_MF_SI(bp)) {
9311 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9312 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9313 				val2 = MF_CFG_RD(bp, func_ext_config[func].
9314 						     iscsi_mac_addr_upper);
9315 				val = MF_CFG_RD(bp, func_ext_config[func].
9316 						    iscsi_mac_addr_lower);
9317 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
9318 				BNX2X_DEV_INFO("Read iSCSI MAC: "
9319 					       BNX2X_MAC_FMT"\n",
9320 					       BNX2X_MAC_PRN_LIST(iscsi_mac));
9321 			} else
9322 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9323 
9324 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9325 				val2 = MF_CFG_RD(bp, func_ext_config[func].
9326 						     fcoe_mac_addr_upper);
9327 				val = MF_CFG_RD(bp, func_ext_config[func].
9328 						    fcoe_mac_addr_lower);
9329 				bnx2x_set_mac_buf(fip_mac, val, val2);
9330 				BNX2X_DEV_INFO("Read FCoE L2 MAC to "
9331 					       BNX2X_MAC_FMT"\n",
9332 					       BNX2X_MAC_PRN_LIST(fip_mac));
9333 
9334 			} else
9335 				bp->flags |= NO_FCOE_FLAG;
9336 		}
9337 #endif
9338 	} else {
9339 		/* in SF read MACs from port configuration */
9340 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9341 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9342 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9343 
9344 #ifdef BCM_CNIC
9345 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9346 				    iscsi_mac_upper);
9347 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9348 				   iscsi_mac_lower);
9349 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
9350 
9351 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9352 				    fcoe_fip_mac_upper);
9353 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9354 				   fcoe_fip_mac_lower);
9355 		bnx2x_set_mac_buf(fip_mac, val, val2);
9356 #endif
9357 	}
9358 
9359 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9360 	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9361 
9362 #ifdef BCM_CNIC
9363 	/* Set the FCoE MAC in MF_SD mode */
9364 	if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9365 		memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9366 
9367 	/* Disable iSCSI if MAC configuration is
9368 	 * invalid.
9369 	 */
9370 	if (!is_valid_ether_addr(iscsi_mac)) {
9371 		bp->flags |= NO_ISCSI_FLAG;
9372 		memset(iscsi_mac, 0, ETH_ALEN);
9373 	}
9374 
9375 	/* Disable FCoE if MAC configuration is
9376 	 * invalid.
9377 	 */
9378 	if (!is_valid_ether_addr(fip_mac)) {
9379 		bp->flags |= NO_FCOE_FLAG;
9380 		memset(bp->fip_mac, 0, ETH_ALEN);
9381 	}
9382 #endif
9383 
9384 	if (!is_valid_ether_addr(bp->dev->dev_addr))
9385 		dev_err(&bp->pdev->dev,
9386 			"bad Ethernet MAC address configuration: "
9387 			BNX2X_MAC_FMT", change it manually before bringing up "
9388 			"the appropriate network interface\n",
9389 			BNX2X_MAC_PRN_LIST(bp->dev->dev_addr));
9390 }
9391 
9392 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9393 {
9394 	int /*abs*/func = BP_ABS_FUNC(bp);
9395 	int vn;
9396 	u32 val = 0;
9397 	int rc = 0;
9398 
9399 	bnx2x_get_common_hwinfo(bp);
9400 
9401 	/*
9402 	 * initialize IGU parameters
9403 	 */
9404 	if (CHIP_IS_E1x(bp)) {
9405 		bp->common.int_block = INT_BLOCK_HC;
9406 
9407 		bp->igu_dsb_id = DEF_SB_IGU_ID;
9408 		bp->igu_base_sb = 0;
9409 	} else {
9410 		bp->common.int_block = INT_BLOCK_IGU;
9411 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9412 
9413 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9414 			int tout = 5000;
9415 
9416 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
9417 
9418 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9419 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9420 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9421 
9422 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9423 				tout--;
9424 				usleep_range(1000, 1000);
9425 			}
9426 
9427 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9428 				dev_err(&bp->pdev->dev,
9429 					"FORCING Normal Mode failed!!!\n");
9430 				return -EPERM;
9431 			}
9432 		}
9433 
9434 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9435 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9436 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9437 		} else
9438 			BNX2X_DEV_INFO("IGU Normal Mode\n");
9439 
9440 		bnx2x_get_igu_cam_info(bp);
9441 
9442 	}
9443 
9444 	/*
9445 	 * set base FW non-default (fast path) status block id, this value is
9446 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
9447 	 * determine the id used by the FW.
9448 	 */
9449 	if (CHIP_IS_E1x(bp))
9450 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9451 	else /*
9452 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9453 	      * the same queue are indicated on the same IGU SB). So we prefer
9454 	      * FW and IGU SBs to be the same value.
9455 	      */
9456 		bp->base_fw_ndsb = bp->igu_base_sb;
9457 
9458 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
9459 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9460 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
9461 
9462 	/*
9463 	 * Initialize MF configuration
9464 	 */
9465 
9466 	bp->mf_ov = 0;
9467 	bp->mf_mode = 0;
9468 	vn = BP_E1HVN(bp);
9469 
9470 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9471 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9472 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
9473 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9474 
9475 		if (SHMEM2_HAS(bp, mf_cfg_addr))
9476 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9477 		else
9478 			bp->common.mf_cfg_base = bp->common.shmem_base +
9479 				offsetof(struct shmem_region, func_mb) +
9480 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9481 		/*
9482 		 * get mf configuration:
9483 		 * 1. existence of MF configuration
9484 		 * 2. MAC address must be legal (check only upper bytes)
9485 		 *    for  Switch-Independent mode;
9486 		 *    OVLAN must be legal for Switch-Dependent mode
9487 		 * 3. SF_MODE configures specific MF mode
9488 		 */
9489 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9490 			/* get mf configuration */
9491 			val = SHMEM_RD(bp,
9492 				       dev_info.shared_feature_config.config);
9493 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9494 
9495 			switch (val) {
9496 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9497 				val = MF_CFG_RD(bp, func_mf_config[func].
9498 						mac_upper);
9499 				/* check for legal mac (upper bytes)*/
9500 				if (val != 0xffff) {
9501 					bp->mf_mode = MULTI_FUNCTION_SI;
9502 					bp->mf_config[vn] = MF_CFG_RD(bp,
9503 						   func_mf_config[func].config);
9504 				} else
9505 					BNX2X_DEV_INFO("illegal MAC address "
9506 						       "for SI\n");
9507 				break;
9508 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9509 				/* get OV configuration */
9510 				val = MF_CFG_RD(bp,
9511 					func_mf_config[FUNC_0].e1hov_tag);
9512 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9513 
9514 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9515 					bp->mf_mode = MULTI_FUNCTION_SD;
9516 					bp->mf_config[vn] = MF_CFG_RD(bp,
9517 						func_mf_config[func].config);
9518 				} else
9519 					BNX2X_DEV_INFO("illegal OV for SD\n");
9520 				break;
9521 			default:
9522 				/* Unknown configuration: reset mf_config */
9523 				bp->mf_config[vn] = 0;
9524 				BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9525 			}
9526 		}
9527 
9528 		BNX2X_DEV_INFO("%s function mode\n",
9529 			       IS_MF(bp) ? "multi" : "single");
9530 
9531 		switch (bp->mf_mode) {
9532 		case MULTI_FUNCTION_SD:
9533 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9534 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
9535 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9536 				bp->mf_ov = val;
9537 				bp->path_has_ovlan = true;
9538 
9539 				BNX2X_DEV_INFO("MF OV for func %d is %d "
9540 					       "(0x%04x)\n", func, bp->mf_ov,
9541 					       bp->mf_ov);
9542 			} else {
9543 				dev_err(&bp->pdev->dev,
9544 					"No valid MF OV for func %d, "
9545 					"aborting\n", func);
9546 				return -EPERM;
9547 			}
9548 			break;
9549 		case MULTI_FUNCTION_SI:
9550 			BNX2X_DEV_INFO("func %d is in MF "
9551 				       "switch-independent mode\n", func);
9552 			break;
9553 		default:
9554 			if (vn) {
9555 				dev_err(&bp->pdev->dev,
9556 					"VN %d is in a single function mode, "
9557 					"aborting\n", vn);
9558 				return -EPERM;
9559 			}
9560 			break;
9561 		}
9562 
9563 		/* check if other port on the path needs ovlan:
9564 		 * Since MF configuration is shared between ports
9565 		 * Possible mixed modes are only
9566 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9567 		 */
9568 		if (CHIP_MODE_IS_4_PORT(bp) &&
9569 		    !bp->path_has_ovlan &&
9570 		    !IS_MF(bp) &&
9571 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9572 			u8 other_port = !BP_PORT(bp);
9573 			u8 other_func = BP_PATH(bp) + 2*other_port;
9574 			val = MF_CFG_RD(bp,
9575 					func_mf_config[other_func].e1hov_tag);
9576 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9577 				bp->path_has_ovlan = true;
9578 		}
9579 	}
9580 
9581 	/* adjust igu_sb_cnt to MF for E1x */
9582 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
9583 		bp->igu_sb_cnt /= E1HVN_MAX;
9584 
9585 	/* port info */
9586 	bnx2x_get_port_hwinfo(bp);
9587 
9588 	if (!BP_NOMCP(bp)) {
9589 		bp->fw_seq =
9590 			(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
9591 			 DRV_MSG_SEQ_NUMBER_MASK);
9592 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
9593 	}
9594 
9595 	/* Get MAC addresses */
9596 	bnx2x_get_mac_hwinfo(bp);
9597 
9598 #ifdef BCM_CNIC
9599 	bnx2x_get_cnic_info(bp);
9600 #endif
9601 
9602 	/* Get current FW pulse sequence */
9603 	if (!BP_NOMCP(bp)) {
9604 		int mb_idx = BP_FW_MB_IDX(bp);
9605 
9606 		bp->fw_drv_pulse_wr_seq =
9607 				(SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
9608 				 DRV_PULSE_SEQ_MASK);
9609 		BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
9610 	}
9611 
9612 	return rc;
9613 }
9614 
9615 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9616 {
9617 	int cnt, i, block_end, rodi;
9618 	char vpd_data[BNX2X_VPD_LEN+1];
9619 	char str_id_reg[VENDOR_ID_LEN+1];
9620 	char str_id_cap[VENDOR_ID_LEN+1];
9621 	u8 len;
9622 
9623 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_data);
9624 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9625 
9626 	if (cnt < BNX2X_VPD_LEN)
9627 		goto out_not_found;
9628 
9629 	i = pci_vpd_find_tag(vpd_data, 0, BNX2X_VPD_LEN,
9630 			     PCI_VPD_LRDT_RO_DATA);
9631 	if (i < 0)
9632 		goto out_not_found;
9633 
9634 
9635 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9636 		    pci_vpd_lrdt_size(&vpd_data[i]);
9637 
9638 	i += PCI_VPD_LRDT_TAG_SIZE;
9639 
9640 	if (block_end > BNX2X_VPD_LEN)
9641 		goto out_not_found;
9642 
9643 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9644 				   PCI_VPD_RO_KEYWORD_MFR_ID);
9645 	if (rodi < 0)
9646 		goto out_not_found;
9647 
9648 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
9649 
9650 	if (len != VENDOR_ID_LEN)
9651 		goto out_not_found;
9652 
9653 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9654 
9655 	/* vendor specific info */
9656 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
9657 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
9658 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
9659 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
9660 
9661 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9662 						PCI_VPD_RO_KEYWORD_VENDOR0);
9663 		if (rodi >= 0) {
9664 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
9665 
9666 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9667 
9668 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
9669 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
9670 				bp->fw_ver[len] = ' ';
9671 			}
9672 		}
9673 		return;
9674 	}
9675 out_not_found:
9676 	return;
9677 }
9678 
9679 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
9680 {
9681 	u32 flags = 0;
9682 
9683 	if (CHIP_REV_IS_FPGA(bp))
9684 		SET_FLAGS(flags, MODE_FPGA);
9685 	else if (CHIP_REV_IS_EMUL(bp))
9686 		SET_FLAGS(flags, MODE_EMUL);
9687 	else
9688 		SET_FLAGS(flags, MODE_ASIC);
9689 
9690 	if (CHIP_MODE_IS_4_PORT(bp))
9691 		SET_FLAGS(flags, MODE_PORT4);
9692 	else
9693 		SET_FLAGS(flags, MODE_PORT2);
9694 
9695 	if (CHIP_IS_E2(bp))
9696 		SET_FLAGS(flags, MODE_E2);
9697 	else if (CHIP_IS_E3(bp)) {
9698 		SET_FLAGS(flags, MODE_E3);
9699 		if (CHIP_REV(bp) == CHIP_REV_Ax)
9700 			SET_FLAGS(flags, MODE_E3_A0);
9701 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
9702 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
9703 	}
9704 
9705 	if (IS_MF(bp)) {
9706 		SET_FLAGS(flags, MODE_MF);
9707 		switch (bp->mf_mode) {
9708 		case MULTI_FUNCTION_SD:
9709 			SET_FLAGS(flags, MODE_MF_SD);
9710 			break;
9711 		case MULTI_FUNCTION_SI:
9712 			SET_FLAGS(flags, MODE_MF_SI);
9713 			break;
9714 		}
9715 	} else
9716 		SET_FLAGS(flags, MODE_SF);
9717 
9718 #if defined(__LITTLE_ENDIAN)
9719 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
9720 #else /*(__BIG_ENDIAN)*/
9721 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
9722 #endif
9723 	INIT_MODE_FLAGS(bp) = flags;
9724 }
9725 
9726 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
9727 {
9728 	int func;
9729 	int timer_interval;
9730 	int rc;
9731 
9732 	mutex_init(&bp->port.phy_mutex);
9733 	mutex_init(&bp->fw_mb_mutex);
9734 	spin_lock_init(&bp->stats_lock);
9735 #ifdef BCM_CNIC
9736 	mutex_init(&bp->cnic_mutex);
9737 #endif
9738 
9739 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
9740 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
9741 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
9742 	rc = bnx2x_get_hwinfo(bp);
9743 	if (rc)
9744 		return rc;
9745 
9746 	bnx2x_set_modes_bitmap(bp);
9747 
9748 	rc = bnx2x_alloc_mem_bp(bp);
9749 	if (rc)
9750 		return rc;
9751 
9752 	bnx2x_read_fwinfo(bp);
9753 
9754 	func = BP_FUNC(bp);
9755 
9756 	/* need to reset chip if undi was active */
9757 	if (!BP_NOMCP(bp))
9758 		bnx2x_undi_unload(bp);
9759 
9760 	if (CHIP_REV_IS_FPGA(bp))
9761 		dev_err(&bp->pdev->dev, "FPGA detected\n");
9762 
9763 	if (BP_NOMCP(bp) && (func == 0))
9764 		dev_err(&bp->pdev->dev, "MCP disabled, "
9765 					"must load devices in order!\n");
9766 
9767 	bp->multi_mode = multi_mode;
9768 
9769 	/* Set TPA flags */
9770 	if (disable_tpa) {
9771 		bp->flags &= ~TPA_ENABLE_FLAG;
9772 		bp->dev->features &= ~NETIF_F_LRO;
9773 	} else {
9774 		bp->flags |= TPA_ENABLE_FLAG;
9775 		bp->dev->features |= NETIF_F_LRO;
9776 	}
9777 	bp->disable_tpa = disable_tpa;
9778 
9779 	if (CHIP_IS_E1(bp))
9780 		bp->dropless_fc = 0;
9781 	else
9782 		bp->dropless_fc = dropless_fc;
9783 
9784 	bp->mrrs = mrrs;
9785 
9786 	bp->tx_ring_size = MAX_TX_AVAIL;
9787 
9788 	/* make sure that the numbers are in the right granularity */
9789 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
9790 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
9791 
9792 	timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
9793 	bp->current_interval = (poll ? poll : timer_interval);
9794 
9795 	init_timer(&bp->timer);
9796 	bp->timer.expires = jiffies + bp->current_interval;
9797 	bp->timer.data = (unsigned long) bp;
9798 	bp->timer.function = bnx2x_timer;
9799 
9800 	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
9801 	bnx2x_dcbx_init_params(bp);
9802 
9803 #ifdef BCM_CNIC
9804 	if (CHIP_IS_E1x(bp))
9805 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
9806 	else
9807 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
9808 #endif
9809 
9810 	/* multiple tx priority */
9811 	if (CHIP_IS_E1x(bp))
9812 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
9813 	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
9814 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
9815 	if (CHIP_IS_E3B0(bp))
9816 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
9817 
9818 	return rc;
9819 }
9820 
9821 
9822 /****************************************************************************
9823 * General service functions
9824 ****************************************************************************/
9825 
9826 /*
9827  * net_device service functions
9828  */
9829 
9830 /* called with rtnl_lock */
9831 static int bnx2x_open(struct net_device *dev)
9832 {
9833 	struct bnx2x *bp = netdev_priv(dev);
9834 	bool global = false;
9835 	int other_engine = BP_PATH(bp) ? 0 : 1;
9836 	u32 other_load_counter, load_counter;
9837 
9838 	netif_carrier_off(dev);
9839 
9840 	bnx2x_set_power_state(bp, PCI_D0);
9841 
9842 	other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
9843 	load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
9844 
9845 	/*
9846 	 * If parity had happen during the unload, then attentions
9847 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
9848 	 * want the first function loaded on the current engine to
9849 	 * complete the recovery.
9850 	 */
9851 	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
9852 	    bnx2x_chk_parity_attn(bp, &global, true))
9853 		do {
9854 			/*
9855 			 * If there are attentions and they are in a global
9856 			 * blocks, set the GLOBAL_RESET bit regardless whether
9857 			 * it will be this function that will complete the
9858 			 * recovery or not.
9859 			 */
9860 			if (global)
9861 				bnx2x_set_reset_global(bp);
9862 
9863 			/*
9864 			 * Only the first function on the current engine should
9865 			 * try to recover in open. In case of attentions in
9866 			 * global blocks only the first in the chip should try
9867 			 * to recover.
9868 			 */
9869 			if ((!load_counter &&
9870 			     (!global || !other_load_counter)) &&
9871 			    bnx2x_trylock_leader_lock(bp) &&
9872 			    !bnx2x_leader_reset(bp)) {
9873 				netdev_info(bp->dev, "Recovered in open\n");
9874 				break;
9875 			}
9876 
9877 			/* recovery has failed... */
9878 			bnx2x_set_power_state(bp, PCI_D3hot);
9879 			bp->recovery_state = BNX2X_RECOVERY_FAILED;
9880 
9881 			netdev_err(bp->dev, "Recovery flow hasn't been properly"
9882 			" completed yet. Try again later. If u still see this"
9883 			" message after a few retries then power cycle is"
9884 			" required.\n");
9885 
9886 			return -EAGAIN;
9887 		} while (0);
9888 
9889 	bp->recovery_state = BNX2X_RECOVERY_DONE;
9890 	return bnx2x_nic_load(bp, LOAD_OPEN);
9891 }
9892 
9893 /* called with rtnl_lock */
9894 static int bnx2x_close(struct net_device *dev)
9895 {
9896 	struct bnx2x *bp = netdev_priv(dev);
9897 
9898 	/* Unload the driver, release IRQs */
9899 	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
9900 
9901 	/* Power off */
9902 	bnx2x_set_power_state(bp, PCI_D3hot);
9903 
9904 	return 0;
9905 }
9906 
9907 static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
9908 					 struct bnx2x_mcast_ramrod_params *p)
9909 {
9910 	int mc_count = netdev_mc_count(bp->dev);
9911 	struct bnx2x_mcast_list_elem *mc_mac =
9912 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
9913 	struct netdev_hw_addr *ha;
9914 
9915 	if (!mc_mac)
9916 		return -ENOMEM;
9917 
9918 	INIT_LIST_HEAD(&p->mcast_list);
9919 
9920 	netdev_for_each_mc_addr(ha, bp->dev) {
9921 		mc_mac->mac = bnx2x_mc_addr(ha);
9922 		list_add_tail(&mc_mac->link, &p->mcast_list);
9923 		mc_mac++;
9924 	}
9925 
9926 	p->mcast_list_len = mc_count;
9927 
9928 	return 0;
9929 }
9930 
9931 static inline void bnx2x_free_mcast_macs_list(
9932 	struct bnx2x_mcast_ramrod_params *p)
9933 {
9934 	struct bnx2x_mcast_list_elem *mc_mac =
9935 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
9936 				 link);
9937 
9938 	WARN_ON(!mc_mac);
9939 	kfree(mc_mac);
9940 }
9941 
9942 /**
9943  * bnx2x_set_uc_list - configure a new unicast MACs list.
9944  *
9945  * @bp: driver handle
9946  *
9947  * We will use zero (0) as a MAC type for these MACs.
9948  */
9949 static inline int bnx2x_set_uc_list(struct bnx2x *bp)
9950 {
9951 	int rc;
9952 	struct net_device *dev = bp->dev;
9953 	struct netdev_hw_addr *ha;
9954 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
9955 	unsigned long ramrod_flags = 0;
9956 
9957 	/* First schedule a cleanup up of old configuration */
9958 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
9959 	if (rc < 0) {
9960 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
9961 		return rc;
9962 	}
9963 
9964 	netdev_for_each_uc_addr(ha, dev) {
9965 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
9966 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
9967 		if (rc < 0) {
9968 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
9969 				  rc);
9970 			return rc;
9971 		}
9972 	}
9973 
9974 	/* Execute the pending commands */
9975 	__set_bit(RAMROD_CONT, &ramrod_flags);
9976 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
9977 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
9978 }
9979 
9980 static inline int bnx2x_set_mc_list(struct bnx2x *bp)
9981 {
9982 	struct net_device *dev = bp->dev;
9983 	struct bnx2x_mcast_ramrod_params rparam = {0};
9984 	int rc = 0;
9985 
9986 	rparam.mcast_obj = &bp->mcast_obj;
9987 
9988 	/* first, clear all configured multicast MACs */
9989 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9990 	if (rc < 0) {
9991 		BNX2X_ERR("Failed to clear multicast "
9992 			  "configuration: %d\n", rc);
9993 		return rc;
9994 	}
9995 
9996 	/* then, configure a new MACs list */
9997 	if (netdev_mc_count(dev)) {
9998 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
9999 		if (rc) {
10000 			BNX2X_ERR("Failed to create multicast MACs "
10001 				  "list: %d\n", rc);
10002 			return rc;
10003 		}
10004 
10005 		/* Now add the new MACs */
10006 		rc = bnx2x_config_mcast(bp, &rparam,
10007 					BNX2X_MCAST_CMD_ADD);
10008 		if (rc < 0)
10009 			BNX2X_ERR("Failed to set a new multicast "
10010 				  "configuration: %d\n", rc);
10011 
10012 		bnx2x_free_mcast_macs_list(&rparam);
10013 	}
10014 
10015 	return rc;
10016 }
10017 
10018 
10019 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10020 void bnx2x_set_rx_mode(struct net_device *dev)
10021 {
10022 	struct bnx2x *bp = netdev_priv(dev);
10023 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10024 
10025 	if (bp->state != BNX2X_STATE_OPEN) {
10026 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10027 		return;
10028 	}
10029 
10030 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10031 
10032 	if (dev->flags & IFF_PROMISC)
10033 		rx_mode = BNX2X_RX_MODE_PROMISC;
10034 	else if ((dev->flags & IFF_ALLMULTI) ||
10035 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10036 		  CHIP_IS_E1(bp)))
10037 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
10038 	else {
10039 		/* some multicasts */
10040 		if (bnx2x_set_mc_list(bp) < 0)
10041 			rx_mode = BNX2X_RX_MODE_ALLMULTI;
10042 
10043 		if (bnx2x_set_uc_list(bp) < 0)
10044 			rx_mode = BNX2X_RX_MODE_PROMISC;
10045 	}
10046 
10047 	bp->rx_mode = rx_mode;
10048 
10049 	/* Schedule the rx_mode command */
10050 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10051 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10052 		return;
10053 	}
10054 
10055 	bnx2x_set_storm_rx_mode(bp);
10056 }
10057 
10058 /* called with rtnl_lock */
10059 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10060 			   int devad, u16 addr)
10061 {
10062 	struct bnx2x *bp = netdev_priv(netdev);
10063 	u16 value;
10064 	int rc;
10065 
10066 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10067 	   prtad, devad, addr);
10068 
10069 	/* The HW expects different devad if CL22 is used */
10070 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10071 
10072 	bnx2x_acquire_phy_lock(bp);
10073 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10074 	bnx2x_release_phy_lock(bp);
10075 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10076 
10077 	if (!rc)
10078 		rc = value;
10079 	return rc;
10080 }
10081 
10082 /* called with rtnl_lock */
10083 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10084 			    u16 addr, u16 value)
10085 {
10086 	struct bnx2x *bp = netdev_priv(netdev);
10087 	int rc;
10088 
10089 	DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10090 			   " value 0x%x\n", prtad, devad, addr, value);
10091 
10092 	/* The HW expects different devad if CL22 is used */
10093 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10094 
10095 	bnx2x_acquire_phy_lock(bp);
10096 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10097 	bnx2x_release_phy_lock(bp);
10098 	return rc;
10099 }
10100 
10101 /* called with rtnl_lock */
10102 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10103 {
10104 	struct bnx2x *bp = netdev_priv(dev);
10105 	struct mii_ioctl_data *mdio = if_mii(ifr);
10106 
10107 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10108 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
10109 
10110 	if (!netif_running(dev))
10111 		return -EAGAIN;
10112 
10113 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10114 }
10115 
10116 #ifdef CONFIG_NET_POLL_CONTROLLER
10117 static void poll_bnx2x(struct net_device *dev)
10118 {
10119 	struct bnx2x *bp = netdev_priv(dev);
10120 
10121 	disable_irq(bp->pdev->irq);
10122 	bnx2x_interrupt(bp->pdev->irq, dev);
10123 	enable_irq(bp->pdev->irq);
10124 }
10125 #endif
10126 
10127 static const struct net_device_ops bnx2x_netdev_ops = {
10128 	.ndo_open		= bnx2x_open,
10129 	.ndo_stop		= bnx2x_close,
10130 	.ndo_start_xmit		= bnx2x_start_xmit,
10131 	.ndo_select_queue	= bnx2x_select_queue,
10132 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
10133 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
10134 	.ndo_validate_addr	= eth_validate_addr,
10135 	.ndo_do_ioctl		= bnx2x_ioctl,
10136 	.ndo_change_mtu		= bnx2x_change_mtu,
10137 	.ndo_fix_features	= bnx2x_fix_features,
10138 	.ndo_set_features	= bnx2x_set_features,
10139 	.ndo_tx_timeout		= bnx2x_tx_timeout,
10140 #ifdef CONFIG_NET_POLL_CONTROLLER
10141 	.ndo_poll_controller	= poll_bnx2x,
10142 #endif
10143 	.ndo_setup_tc		= bnx2x_setup_tc,
10144 
10145 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10146 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
10147 #endif
10148 };
10149 
10150 static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10151 {
10152 	struct device *dev = &bp->pdev->dev;
10153 
10154 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10155 		bp->flags |= USING_DAC_FLAG;
10156 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10157 			dev_err(dev, "dma_set_coherent_mask failed, "
10158 				     "aborting\n");
10159 			return -EIO;
10160 		}
10161 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10162 		dev_err(dev, "System does not support DMA, aborting\n");
10163 		return -EIO;
10164 	}
10165 
10166 	return 0;
10167 }
10168 
10169 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10170 				    struct net_device *dev,
10171 				    unsigned long board_type)
10172 {
10173 	struct bnx2x *bp;
10174 	int rc;
10175 
10176 	SET_NETDEV_DEV(dev, &pdev->dev);
10177 	bp = netdev_priv(dev);
10178 
10179 	bp->dev = dev;
10180 	bp->pdev = pdev;
10181 	bp->flags = 0;
10182 	bp->pf_num = PCI_FUNC(pdev->devfn);
10183 
10184 	rc = pci_enable_device(pdev);
10185 	if (rc) {
10186 		dev_err(&bp->pdev->dev,
10187 			"Cannot enable PCI device, aborting\n");
10188 		goto err_out;
10189 	}
10190 
10191 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10192 		dev_err(&bp->pdev->dev,
10193 			"Cannot find PCI device base address, aborting\n");
10194 		rc = -ENODEV;
10195 		goto err_out_disable;
10196 	}
10197 
10198 	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10199 		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10200 		       " base address, aborting\n");
10201 		rc = -ENODEV;
10202 		goto err_out_disable;
10203 	}
10204 
10205 	if (atomic_read(&pdev->enable_cnt) == 1) {
10206 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10207 		if (rc) {
10208 			dev_err(&bp->pdev->dev,
10209 				"Cannot obtain PCI resources, aborting\n");
10210 			goto err_out_disable;
10211 		}
10212 
10213 		pci_set_master(pdev);
10214 		pci_save_state(pdev);
10215 	}
10216 
10217 	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10218 	if (bp->pm_cap == 0) {
10219 		dev_err(&bp->pdev->dev,
10220 			"Cannot find power management capability, aborting\n");
10221 		rc = -EIO;
10222 		goto err_out_release;
10223 	}
10224 
10225 	if (!pci_is_pcie(pdev)) {
10226 		dev_err(&bp->pdev->dev,	"Not PCI Express, aborting\n");
10227 		rc = -EIO;
10228 		goto err_out_release;
10229 	}
10230 
10231 	rc = bnx2x_set_coherency_mask(bp);
10232 	if (rc)
10233 		goto err_out_release;
10234 
10235 	dev->mem_start = pci_resource_start(pdev, 0);
10236 	dev->base_addr = dev->mem_start;
10237 	dev->mem_end = pci_resource_end(pdev, 0);
10238 
10239 	dev->irq = pdev->irq;
10240 
10241 	bp->regview = pci_ioremap_bar(pdev, 0);
10242 	if (!bp->regview) {
10243 		dev_err(&bp->pdev->dev,
10244 			"Cannot map register space, aborting\n");
10245 		rc = -ENOMEM;
10246 		goto err_out_release;
10247 	}
10248 
10249 	bnx2x_set_power_state(bp, PCI_D0);
10250 
10251 	/* clean indirect addresses */
10252 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10253 			       PCICFG_VENDOR_ID_OFFSET);
10254 	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0 + BP_PORT(bp)*16, 0);
10255 	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0 + BP_PORT(bp)*16, 0);
10256 	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0 + BP_PORT(bp)*16, 0);
10257 	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0 + BP_PORT(bp)*16, 0);
10258 
10259 	/*
10260 	 * Enable internal target-read (in case we are probed after PF FLR).
10261 	 * Must be done prior to any BAR read access. Only for 57712 and up
10262 	 */
10263 	if (board_type != BCM57710 &&
10264 	    board_type != BCM57711 &&
10265 	    board_type != BCM57711E)
10266 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10267 
10268 	/* Reset the load counter */
10269 	bnx2x_clear_load_cnt(bp);
10270 
10271 	dev->watchdog_timeo = TX_TIMEOUT;
10272 
10273 	dev->netdev_ops = &bnx2x_netdev_ops;
10274 	bnx2x_set_ethtool_ops(dev);
10275 
10276 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10277 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
10278 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_HW_VLAN_TX;
10279 
10280 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10281 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10282 
10283 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10284 	if (bp->flags & USING_DAC_FLAG)
10285 		dev->features |= NETIF_F_HIGHDMA;
10286 
10287 	/* Add Loopback capability to the device */
10288 	dev->hw_features |= NETIF_F_LOOPBACK;
10289 
10290 #ifdef BCM_DCBNL
10291 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10292 #endif
10293 
10294 	/* get_port_hwinfo() will set prtad and mmds properly */
10295 	bp->mdio.prtad = MDIO_PRTAD_NONE;
10296 	bp->mdio.mmds = 0;
10297 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10298 	bp->mdio.dev = dev;
10299 	bp->mdio.mdio_read = bnx2x_mdio_read;
10300 	bp->mdio.mdio_write = bnx2x_mdio_write;
10301 
10302 	return 0;
10303 
10304 err_out_release:
10305 	if (atomic_read(&pdev->enable_cnt) == 1)
10306 		pci_release_regions(pdev);
10307 
10308 err_out_disable:
10309 	pci_disable_device(pdev);
10310 	pci_set_drvdata(pdev, NULL);
10311 
10312 err_out:
10313 	return rc;
10314 }
10315 
10316 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10317 						 int *width, int *speed)
10318 {
10319 	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10320 
10321 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10322 
10323 	/* return value of 1=2.5GHz 2=5GHz */
10324 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10325 }
10326 
10327 static int bnx2x_check_firmware(struct bnx2x *bp)
10328 {
10329 	const struct firmware *firmware = bp->firmware;
10330 	struct bnx2x_fw_file_hdr *fw_hdr;
10331 	struct bnx2x_fw_file_section *sections;
10332 	u32 offset, len, num_ops;
10333 	u16 *ops_offsets;
10334 	int i;
10335 	const u8 *fw_ver;
10336 
10337 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10338 		return -EINVAL;
10339 
10340 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10341 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
10342 
10343 	/* Make sure none of the offsets and sizes make us read beyond
10344 	 * the end of the firmware data */
10345 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10346 		offset = be32_to_cpu(sections[i].offset);
10347 		len = be32_to_cpu(sections[i].len);
10348 		if (offset + len > firmware->size) {
10349 			dev_err(&bp->pdev->dev,
10350 				"Section %d length is out of bounds\n", i);
10351 			return -EINVAL;
10352 		}
10353 	}
10354 
10355 	/* Likewise for the init_ops offsets */
10356 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10357 	ops_offsets = (u16 *)(firmware->data + offset);
10358 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10359 
10360 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10361 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10362 			dev_err(&bp->pdev->dev,
10363 				"Section offset %d is out of bounds\n", i);
10364 			return -EINVAL;
10365 		}
10366 	}
10367 
10368 	/* Check FW version */
10369 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
10370 	fw_ver = firmware->data + offset;
10371 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10372 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10373 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10374 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10375 		dev_err(&bp->pdev->dev,
10376 			"Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10377 		       fw_ver[0], fw_ver[1], fw_ver[2],
10378 		       fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10379 		       BCM_5710_FW_MINOR_VERSION,
10380 		       BCM_5710_FW_REVISION_VERSION,
10381 		       BCM_5710_FW_ENGINEERING_VERSION);
10382 		return -EINVAL;
10383 	}
10384 
10385 	return 0;
10386 }
10387 
10388 static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10389 {
10390 	const __be32 *source = (const __be32 *)_source;
10391 	u32 *target = (u32 *)_target;
10392 	u32 i;
10393 
10394 	for (i = 0; i < n/4; i++)
10395 		target[i] = be32_to_cpu(source[i]);
10396 }
10397 
10398 /*
10399    Ops array is stored in the following format:
10400    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10401  */
10402 static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10403 {
10404 	const __be32 *source = (const __be32 *)_source;
10405 	struct raw_op *target = (struct raw_op *)_target;
10406 	u32 i, j, tmp;
10407 
10408 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
10409 		tmp = be32_to_cpu(source[j]);
10410 		target[i].op = (tmp >> 24) & 0xff;
10411 		target[i].offset = tmp & 0xffffff;
10412 		target[i].raw_data = be32_to_cpu(source[j + 1]);
10413 	}
10414 }
10415 
10416 /**
10417  * IRO array is stored in the following format:
10418  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10419  */
10420 static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10421 {
10422 	const __be32 *source = (const __be32 *)_source;
10423 	struct iro *target = (struct iro *)_target;
10424 	u32 i, j, tmp;
10425 
10426 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10427 		target[i].base = be32_to_cpu(source[j]);
10428 		j++;
10429 		tmp = be32_to_cpu(source[j]);
10430 		target[i].m1 = (tmp >> 16) & 0xffff;
10431 		target[i].m2 = tmp & 0xffff;
10432 		j++;
10433 		tmp = be32_to_cpu(source[j]);
10434 		target[i].m3 = (tmp >> 16) & 0xffff;
10435 		target[i].size = tmp & 0xffff;
10436 		j++;
10437 	}
10438 }
10439 
10440 static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10441 {
10442 	const __be16 *source = (const __be16 *)_source;
10443 	u16 *target = (u16 *)_target;
10444 	u32 i;
10445 
10446 	for (i = 0; i < n/2; i++)
10447 		target[i] = be16_to_cpu(source[i]);
10448 }
10449 
10450 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
10451 do {									\
10452 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
10453 	bp->arr = kmalloc(len, GFP_KERNEL);				\
10454 	if (!bp->arr) {							\
10455 		pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10456 		goto lbl;						\
10457 	}								\
10458 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
10459 	     (u8 *)bp->arr, len);					\
10460 } while (0)
10461 
10462 int bnx2x_init_firmware(struct bnx2x *bp)
10463 {
10464 	const char *fw_file_name;
10465 	struct bnx2x_fw_file_hdr *fw_hdr;
10466 	int rc;
10467 
10468 	if (CHIP_IS_E1(bp))
10469 		fw_file_name = FW_FILE_NAME_E1;
10470 	else if (CHIP_IS_E1H(bp))
10471 		fw_file_name = FW_FILE_NAME_E1H;
10472 	else if (!CHIP_IS_E1x(bp))
10473 		fw_file_name = FW_FILE_NAME_E2;
10474 	else {
10475 		BNX2X_ERR("Unsupported chip revision\n");
10476 		return -EINVAL;
10477 	}
10478 
10479 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10480 
10481 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
10482 	if (rc) {
10483 		BNX2X_ERR("Can't load firmware file %s\n", fw_file_name);
10484 		goto request_firmware_exit;
10485 	}
10486 
10487 	rc = bnx2x_check_firmware(bp);
10488 	if (rc) {
10489 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10490 		goto request_firmware_exit;
10491 	}
10492 
10493 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10494 
10495 	/* Initialize the pointers to the init arrays */
10496 	/* Blob */
10497 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10498 
10499 	/* Opcodes */
10500 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10501 
10502 	/* Offsets */
10503 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10504 			    be16_to_cpu_n);
10505 
10506 	/* STORMs firmware */
10507 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10508 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10509 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
10510 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10511 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10512 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10513 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
10514 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
10515 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10516 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10517 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
10518 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10519 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10520 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10521 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
10522 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
10523 	/* IRO */
10524 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10525 
10526 	return 0;
10527 
10528 iro_alloc_err:
10529 	kfree(bp->init_ops_offsets);
10530 init_offsets_alloc_err:
10531 	kfree(bp->init_ops);
10532 init_ops_alloc_err:
10533 	kfree(bp->init_data);
10534 request_firmware_exit:
10535 	release_firmware(bp->firmware);
10536 
10537 	return rc;
10538 }
10539 
10540 static void bnx2x_release_firmware(struct bnx2x *bp)
10541 {
10542 	kfree(bp->init_ops_offsets);
10543 	kfree(bp->init_ops);
10544 	kfree(bp->init_data);
10545 	release_firmware(bp->firmware);
10546 }
10547 
10548 
10549 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10550 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10551 	.init_hw_cmn      = bnx2x_init_hw_common,
10552 	.init_hw_port     = bnx2x_init_hw_port,
10553 	.init_hw_func     = bnx2x_init_hw_func,
10554 
10555 	.reset_hw_cmn     = bnx2x_reset_common,
10556 	.reset_hw_port    = bnx2x_reset_port,
10557 	.reset_hw_func    = bnx2x_reset_func,
10558 
10559 	.gunzip_init      = bnx2x_gunzip_init,
10560 	.gunzip_end       = bnx2x_gunzip_end,
10561 
10562 	.init_fw          = bnx2x_init_firmware,
10563 	.release_fw       = bnx2x_release_firmware,
10564 };
10565 
10566 void bnx2x__init_func_obj(struct bnx2x *bp)
10567 {
10568 	/* Prepare DMAE related driver resources */
10569 	bnx2x_setup_dmae(bp);
10570 
10571 	bnx2x_init_func_obj(bp, &bp->func_obj,
10572 			    bnx2x_sp(bp, func_rdata),
10573 			    bnx2x_sp_mapping(bp, func_rdata),
10574 			    &bnx2x_func_sp_drv);
10575 }
10576 
10577 /* must be called after sriov-enable */
10578 static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10579 {
10580 	int cid_count = BNX2X_L2_CID_COUNT(bp);
10581 
10582 #ifdef BCM_CNIC
10583 	cid_count += CNIC_CID_MAX;
10584 #endif
10585 	return roundup(cid_count, QM_CID_ROUND);
10586 }
10587 
10588 /**
10589  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10590  *
10591  * @dev:	pci device
10592  *
10593  */
10594 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
10595 {
10596 	int pos;
10597 	u16 control;
10598 
10599 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
10600 
10601 	/*
10602 	 * If MSI-X is not supported - return number of SBs needed to support
10603 	 * one fast path queue: one FP queue + SB for CNIC
10604 	 */
10605 	if (!pos)
10606 		return 1 + CNIC_PRESENT;
10607 
10608 	/*
10609 	 * The value in the PCI configuration space is the index of the last
10610 	 * entry, namely one less than the actual size of the table, which is
10611 	 * exactly what we want to return from this function: number of all SBs
10612 	 * without the default SB.
10613 	 */
10614 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
10615 	return control & PCI_MSIX_FLAGS_QSIZE;
10616 }
10617 
10618 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
10619 				    const struct pci_device_id *ent)
10620 {
10621 	struct net_device *dev = NULL;
10622 	struct bnx2x *bp;
10623 	int pcie_width, pcie_speed;
10624 	int rc, max_non_def_sbs;
10625 	int rx_count, tx_count, rss_count;
10626 	/*
10627 	 * An estimated maximum supported CoS number according to the chip
10628 	 * version.
10629 	 * We will try to roughly estimate the maximum number of CoSes this chip
10630 	 * may support in order to minimize the memory allocated for Tx
10631 	 * netdev_queue's. This number will be accurately calculated during the
10632 	 * initialization of bp->max_cos based on the chip versions AND chip
10633 	 * revision in the bnx2x_init_bp().
10634 	 */
10635 	u8 max_cos_est = 0;
10636 
10637 	switch (ent->driver_data) {
10638 	case BCM57710:
10639 	case BCM57711:
10640 	case BCM57711E:
10641 		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
10642 		break;
10643 
10644 	case BCM57712:
10645 	case BCM57712_MF:
10646 		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
10647 		break;
10648 
10649 	case BCM57800:
10650 	case BCM57800_MF:
10651 	case BCM57810:
10652 	case BCM57810_MF:
10653 	case BCM57840:
10654 	case BCM57840_MF:
10655 		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
10656 		break;
10657 
10658 	default:
10659 		pr_err("Unknown board_type (%ld), aborting\n",
10660 			   ent->driver_data);
10661 		return -ENODEV;
10662 	}
10663 
10664 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
10665 
10666 	/* !!! FIXME !!!
10667 	 * Do not allow the maximum SB count to grow above 16
10668 	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
10669 	 * We will use the FP_SB_MAX_E1x macro for this matter.
10670 	 */
10671 	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
10672 
10673 	WARN_ON(!max_non_def_sbs);
10674 
10675 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
10676 	rss_count = max_non_def_sbs - CNIC_PRESENT;
10677 
10678 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
10679 	rx_count = rss_count + FCOE_PRESENT;
10680 
10681 	/*
10682 	 * Maximum number of netdev Tx queues:
10683 	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
10684 	 */
10685 	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
10686 
10687 	/* dev zeroed in init_etherdev */
10688 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
10689 	if (!dev) {
10690 		dev_err(&pdev->dev, "Cannot allocate net device\n");
10691 		return -ENOMEM;
10692 	}
10693 
10694 	bp = netdev_priv(dev);
10695 
10696 	DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
10697 			  tx_count, rx_count);
10698 
10699 	bp->igu_sb_cnt = max_non_def_sbs;
10700 	bp->msg_enable = debug;
10701 	pci_set_drvdata(pdev, dev);
10702 
10703 	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
10704 	if (rc < 0) {
10705 		free_netdev(dev);
10706 		return rc;
10707 	}
10708 
10709 	DP(NETIF_MSG_DRV, "max_non_def_sbs %d", max_non_def_sbs);
10710 
10711 	rc = bnx2x_init_bp(bp);
10712 	if (rc)
10713 		goto init_one_exit;
10714 
10715 	/*
10716 	 * Map doorbels here as we need the real value of bp->max_cos which
10717 	 * is initialized in bnx2x_init_bp().
10718 	 */
10719 	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
10720 					min_t(u64, BNX2X_DB_SIZE(bp),
10721 					      pci_resource_len(pdev, 2)));
10722 	if (!bp->doorbells) {
10723 		dev_err(&bp->pdev->dev,
10724 			"Cannot map doorbell space, aborting\n");
10725 		rc = -ENOMEM;
10726 		goto init_one_exit;
10727 	}
10728 
10729 	/* calc qm_cid_count */
10730 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
10731 
10732 #ifdef BCM_CNIC
10733 	/* disable FCOE L2 queue for E1x and E3*/
10734 	if (CHIP_IS_E1x(bp) || CHIP_IS_E3(bp))
10735 		bp->flags |= NO_FCOE_FLAG;
10736 
10737 #endif
10738 
10739 	/* Configure interrupt mode: try to enable MSI-X/MSI if
10740 	 * needed, set bp->num_queues appropriately.
10741 	 */
10742 	bnx2x_set_int_mode(bp);
10743 
10744 	/* Add all NAPI objects */
10745 	bnx2x_add_all_napi(bp);
10746 
10747 	rc = register_netdev(dev);
10748 	if (rc) {
10749 		dev_err(&pdev->dev, "Cannot register net device\n");
10750 		goto init_one_exit;
10751 	}
10752 
10753 #ifdef BCM_CNIC
10754 	if (!NO_FCOE(bp)) {
10755 		/* Add storage MAC address */
10756 		rtnl_lock();
10757 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
10758 		rtnl_unlock();
10759 	}
10760 #endif
10761 
10762 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
10763 
10764 	netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx,"
10765 	       " IRQ %d, ", board_info[ent->driver_data].name,
10766 	       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
10767 	       pcie_width,
10768 	       ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
10769 		 (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
10770 						"5GHz (Gen2)" : "2.5GHz",
10771 	       dev->base_addr, bp->pdev->irq);
10772 	pr_cont("node addr %pM\n", dev->dev_addr);
10773 
10774 	return 0;
10775 
10776 init_one_exit:
10777 	if (bp->regview)
10778 		iounmap(bp->regview);
10779 
10780 	if (bp->doorbells)
10781 		iounmap(bp->doorbells);
10782 
10783 	free_netdev(dev);
10784 
10785 	if (atomic_read(&pdev->enable_cnt) == 1)
10786 		pci_release_regions(pdev);
10787 
10788 	pci_disable_device(pdev);
10789 	pci_set_drvdata(pdev, NULL);
10790 
10791 	return rc;
10792 }
10793 
10794 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
10795 {
10796 	struct net_device *dev = pci_get_drvdata(pdev);
10797 	struct bnx2x *bp;
10798 
10799 	if (!dev) {
10800 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
10801 		return;
10802 	}
10803 	bp = netdev_priv(dev);
10804 
10805 #ifdef BCM_CNIC
10806 	/* Delete storage MAC address */
10807 	if (!NO_FCOE(bp)) {
10808 		rtnl_lock();
10809 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
10810 		rtnl_unlock();
10811 	}
10812 #endif
10813 
10814 #ifdef BCM_DCBNL
10815 	/* Delete app tlvs from dcbnl */
10816 	bnx2x_dcbnl_update_applist(bp, true);
10817 #endif
10818 
10819 	unregister_netdev(dev);
10820 
10821 	/* Delete all NAPI objects */
10822 	bnx2x_del_all_napi(bp);
10823 
10824 	/* Power on: we can't let PCI layer write to us while we are in D3 */
10825 	bnx2x_set_power_state(bp, PCI_D0);
10826 
10827 	/* Disable MSI/MSI-X */
10828 	bnx2x_disable_msi(bp);
10829 
10830 	/* Power off */
10831 	bnx2x_set_power_state(bp, PCI_D3hot);
10832 
10833 	/* Make sure RESET task is not scheduled before continuing */
10834 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
10835 
10836 	if (bp->regview)
10837 		iounmap(bp->regview);
10838 
10839 	if (bp->doorbells)
10840 		iounmap(bp->doorbells);
10841 
10842 	bnx2x_free_mem_bp(bp);
10843 
10844 	free_netdev(dev);
10845 
10846 	if (atomic_read(&pdev->enable_cnt) == 1)
10847 		pci_release_regions(pdev);
10848 
10849 	pci_disable_device(pdev);
10850 	pci_set_drvdata(pdev, NULL);
10851 }
10852 
10853 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
10854 {
10855 	int i;
10856 
10857 	bp->state = BNX2X_STATE_ERROR;
10858 
10859 	bp->rx_mode = BNX2X_RX_MODE_NONE;
10860 
10861 #ifdef BCM_CNIC
10862 	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
10863 #endif
10864 	/* Stop Tx */
10865 	bnx2x_tx_disable(bp);
10866 
10867 	bnx2x_netif_stop(bp, 0);
10868 
10869 	del_timer_sync(&bp->timer);
10870 
10871 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
10872 
10873 	/* Release IRQs */
10874 	bnx2x_free_irq(bp);
10875 
10876 	/* Free SKBs, SGEs, TPA pool and driver internals */
10877 	bnx2x_free_skbs(bp);
10878 
10879 	for_each_rx_queue(bp, i)
10880 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
10881 
10882 	bnx2x_free_mem(bp);
10883 
10884 	bp->state = BNX2X_STATE_CLOSED;
10885 
10886 	netif_carrier_off(bp->dev);
10887 
10888 	return 0;
10889 }
10890 
10891 static void bnx2x_eeh_recover(struct bnx2x *bp)
10892 {
10893 	u32 val;
10894 
10895 	mutex_init(&bp->port.phy_mutex);
10896 
10897 	bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
10898 	bp->link_params.shmem_base = bp->common.shmem_base;
10899 	BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
10900 
10901 	if (!bp->common.shmem_base ||
10902 	    (bp->common.shmem_base < 0xA0000) ||
10903 	    (bp->common.shmem_base >= 0xC0000)) {
10904 		BNX2X_DEV_INFO("MCP not active\n");
10905 		bp->flags |= NO_MCP_FLAG;
10906 		return;
10907 	}
10908 
10909 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
10910 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
10911 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
10912 		BNX2X_ERR("BAD MCP validity signature\n");
10913 
10914 	if (!BP_NOMCP(bp)) {
10915 		bp->fw_seq =
10916 		    (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10917 		    DRV_MSG_SEQ_NUMBER_MASK);
10918 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10919 	}
10920 }
10921 
10922 /**
10923  * bnx2x_io_error_detected - called when PCI error is detected
10924  * @pdev: Pointer to PCI device
10925  * @state: The current pci connection state
10926  *
10927  * This function is called after a PCI bus error affecting
10928  * this device has been detected.
10929  */
10930 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
10931 						pci_channel_state_t state)
10932 {
10933 	struct net_device *dev = pci_get_drvdata(pdev);
10934 	struct bnx2x *bp = netdev_priv(dev);
10935 
10936 	rtnl_lock();
10937 
10938 	netif_device_detach(dev);
10939 
10940 	if (state == pci_channel_io_perm_failure) {
10941 		rtnl_unlock();
10942 		return PCI_ERS_RESULT_DISCONNECT;
10943 	}
10944 
10945 	if (netif_running(dev))
10946 		bnx2x_eeh_nic_unload(bp);
10947 
10948 	pci_disable_device(pdev);
10949 
10950 	rtnl_unlock();
10951 
10952 	/* Request a slot reset */
10953 	return PCI_ERS_RESULT_NEED_RESET;
10954 }
10955 
10956 /**
10957  * bnx2x_io_slot_reset - called after the PCI bus has been reset
10958  * @pdev: Pointer to PCI device
10959  *
10960  * Restart the card from scratch, as if from a cold-boot.
10961  */
10962 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
10963 {
10964 	struct net_device *dev = pci_get_drvdata(pdev);
10965 	struct bnx2x *bp = netdev_priv(dev);
10966 
10967 	rtnl_lock();
10968 
10969 	if (pci_enable_device(pdev)) {
10970 		dev_err(&pdev->dev,
10971 			"Cannot re-enable PCI device after reset\n");
10972 		rtnl_unlock();
10973 		return PCI_ERS_RESULT_DISCONNECT;
10974 	}
10975 
10976 	pci_set_master(pdev);
10977 	pci_restore_state(pdev);
10978 
10979 	if (netif_running(dev))
10980 		bnx2x_set_power_state(bp, PCI_D0);
10981 
10982 	rtnl_unlock();
10983 
10984 	return PCI_ERS_RESULT_RECOVERED;
10985 }
10986 
10987 /**
10988  * bnx2x_io_resume - called when traffic can start flowing again
10989  * @pdev: Pointer to PCI device
10990  *
10991  * This callback is called when the error recovery driver tells us that
10992  * its OK to resume normal operation.
10993  */
10994 static void bnx2x_io_resume(struct pci_dev *pdev)
10995 {
10996 	struct net_device *dev = pci_get_drvdata(pdev);
10997 	struct bnx2x *bp = netdev_priv(dev);
10998 
10999 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11000 		netdev_err(bp->dev, "Handling parity error recovery. "
11001 				    "Try again later\n");
11002 		return;
11003 	}
11004 
11005 	rtnl_lock();
11006 
11007 	bnx2x_eeh_recover(bp);
11008 
11009 	if (netif_running(dev))
11010 		bnx2x_nic_load(bp, LOAD_NORMAL);
11011 
11012 	netif_device_attach(dev);
11013 
11014 	rtnl_unlock();
11015 }
11016 
11017 static struct pci_error_handlers bnx2x_err_handler = {
11018 	.error_detected = bnx2x_io_error_detected,
11019 	.slot_reset     = bnx2x_io_slot_reset,
11020 	.resume         = bnx2x_io_resume,
11021 };
11022 
11023 static struct pci_driver bnx2x_pci_driver = {
11024 	.name        = DRV_MODULE_NAME,
11025 	.id_table    = bnx2x_pci_tbl,
11026 	.probe       = bnx2x_init_one,
11027 	.remove      = __devexit_p(bnx2x_remove_one),
11028 	.suspend     = bnx2x_suspend,
11029 	.resume      = bnx2x_resume,
11030 	.err_handler = &bnx2x_err_handler,
11031 };
11032 
11033 static int __init bnx2x_init(void)
11034 {
11035 	int ret;
11036 
11037 	pr_info("%s", version);
11038 
11039 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
11040 	if (bnx2x_wq == NULL) {
11041 		pr_err("Cannot create workqueue\n");
11042 		return -ENOMEM;
11043 	}
11044 
11045 	ret = pci_register_driver(&bnx2x_pci_driver);
11046 	if (ret) {
11047 		pr_err("Cannot register driver\n");
11048 		destroy_workqueue(bnx2x_wq);
11049 	}
11050 	return ret;
11051 }
11052 
11053 static void __exit bnx2x_cleanup(void)
11054 {
11055 	pci_unregister_driver(&bnx2x_pci_driver);
11056 
11057 	destroy_workqueue(bnx2x_wq);
11058 }
11059 
11060 void bnx2x_notify_link_changed(struct bnx2x *bp)
11061 {
11062 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11063 }
11064 
11065 module_init(bnx2x_init);
11066 module_exit(bnx2x_cleanup);
11067 
11068 #ifdef BCM_CNIC
11069 /**
11070  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11071  *
11072  * @bp:		driver handle
11073  * @set:	set or clear the CAM entry
11074  *
11075  * This function will wait until the ramdord completion returns.
11076  * Return 0 if success, -ENODEV if ramrod doesn't return.
11077  */
11078 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11079 {
11080 	unsigned long ramrod_flags = 0;
11081 
11082 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11083 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11084 				 &bp->iscsi_l2_mac_obj, true,
11085 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11086 }
11087 
11088 /* count denotes the number of new completions we have seen */
11089 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11090 {
11091 	struct eth_spe *spe;
11092 
11093 #ifdef BNX2X_STOP_ON_ERROR
11094 	if (unlikely(bp->panic))
11095 		return;
11096 #endif
11097 
11098 	spin_lock_bh(&bp->spq_lock);
11099 	BUG_ON(bp->cnic_spq_pending < count);
11100 	bp->cnic_spq_pending -= count;
11101 
11102 
11103 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11104 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11105 				& SPE_HDR_CONN_TYPE) >>
11106 				SPE_HDR_CONN_TYPE_SHIFT;
11107 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11108 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11109 
11110 		/* Set validation for iSCSI L2 client before sending SETUP
11111 		 *  ramrod
11112 		 */
11113 		if (type == ETH_CONNECTION_TYPE) {
11114 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11115 				bnx2x_set_ctx_validation(bp, &bp->context.
11116 					vcxt[BNX2X_ISCSI_ETH_CID].eth,
11117 					BNX2X_ISCSI_ETH_CID);
11118 		}
11119 
11120 		/*
11121 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
11122 		 * and in the air. We also check that number of outstanding
11123 		 * COMMON ramrods is not more than the EQ and SPQ can
11124 		 * accommodate.
11125 		 */
11126 		if (type == ETH_CONNECTION_TYPE) {
11127 			if (!atomic_read(&bp->cq_spq_left))
11128 				break;
11129 			else
11130 				atomic_dec(&bp->cq_spq_left);
11131 		} else if (type == NONE_CONNECTION_TYPE) {
11132 			if (!atomic_read(&bp->eq_spq_left))
11133 				break;
11134 			else
11135 				atomic_dec(&bp->eq_spq_left);
11136 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
11137 			   (type == FCOE_CONNECTION_TYPE)) {
11138 			if (bp->cnic_spq_pending >=
11139 			    bp->cnic_eth_dev.max_kwqe_pending)
11140 				break;
11141 			else
11142 				bp->cnic_spq_pending++;
11143 		} else {
11144 			BNX2X_ERR("Unknown SPE type: %d\n", type);
11145 			bnx2x_panic();
11146 			break;
11147 		}
11148 
11149 		spe = bnx2x_sp_get_next(bp);
11150 		*spe = *bp->cnic_kwq_cons;
11151 
11152 		DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11153 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11154 
11155 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11156 			bp->cnic_kwq_cons = bp->cnic_kwq;
11157 		else
11158 			bp->cnic_kwq_cons++;
11159 	}
11160 	bnx2x_sp_prod_update(bp);
11161 	spin_unlock_bh(&bp->spq_lock);
11162 }
11163 
11164 static int bnx2x_cnic_sp_queue(struct net_device *dev,
11165 			       struct kwqe_16 *kwqes[], u32 count)
11166 {
11167 	struct bnx2x *bp = netdev_priv(dev);
11168 	int i;
11169 
11170 #ifdef BNX2X_STOP_ON_ERROR
11171 	if (unlikely(bp->panic))
11172 		return -EIO;
11173 #endif
11174 
11175 	spin_lock_bh(&bp->spq_lock);
11176 
11177 	for (i = 0; i < count; i++) {
11178 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11179 
11180 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11181 			break;
11182 
11183 		*bp->cnic_kwq_prod = *spe;
11184 
11185 		bp->cnic_kwq_pending++;
11186 
11187 		DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11188 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
11189 		   spe->data.update_data_addr.hi,
11190 		   spe->data.update_data_addr.lo,
11191 		   bp->cnic_kwq_pending);
11192 
11193 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11194 			bp->cnic_kwq_prod = bp->cnic_kwq;
11195 		else
11196 			bp->cnic_kwq_prod++;
11197 	}
11198 
11199 	spin_unlock_bh(&bp->spq_lock);
11200 
11201 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11202 		bnx2x_cnic_sp_post(bp, 0);
11203 
11204 	return i;
11205 }
11206 
11207 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11208 {
11209 	struct cnic_ops *c_ops;
11210 	int rc = 0;
11211 
11212 	mutex_lock(&bp->cnic_mutex);
11213 	c_ops = rcu_dereference_protected(bp->cnic_ops,
11214 					  lockdep_is_held(&bp->cnic_mutex));
11215 	if (c_ops)
11216 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11217 	mutex_unlock(&bp->cnic_mutex);
11218 
11219 	return rc;
11220 }
11221 
11222 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11223 {
11224 	struct cnic_ops *c_ops;
11225 	int rc = 0;
11226 
11227 	rcu_read_lock();
11228 	c_ops = rcu_dereference(bp->cnic_ops);
11229 	if (c_ops)
11230 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11231 	rcu_read_unlock();
11232 
11233 	return rc;
11234 }
11235 
11236 /*
11237  * for commands that have no data
11238  */
11239 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11240 {
11241 	struct cnic_ctl_info ctl = {0};
11242 
11243 	ctl.cmd = cmd;
11244 
11245 	return bnx2x_cnic_ctl_send(bp, &ctl);
11246 }
11247 
11248 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11249 {
11250 	struct cnic_ctl_info ctl = {0};
11251 
11252 	/* first we tell CNIC and only then we count this as a completion */
11253 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11254 	ctl.data.comp.cid = cid;
11255 	ctl.data.comp.error = err;
11256 
11257 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
11258 	bnx2x_cnic_sp_post(bp, 0);
11259 }
11260 
11261 
11262 /* Called with netif_addr_lock_bh() taken.
11263  * Sets an rx_mode config for an iSCSI ETH client.
11264  * Doesn't block.
11265  * Completion should be checked outside.
11266  */
11267 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11268 {
11269 	unsigned long accept_flags = 0, ramrod_flags = 0;
11270 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11271 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11272 
11273 	if (start) {
11274 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
11275 		 * because it's the only way for UIO Queue to accept
11276 		 * multicasts (in non-promiscuous mode only one Queue per
11277 		 * function will receive multicast packets (leading in our
11278 		 * case).
11279 		 */
11280 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11281 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11282 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11283 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11284 
11285 		/* Clear STOP_PENDING bit if START is requested */
11286 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11287 
11288 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11289 	} else
11290 		/* Clear START_PENDING bit if STOP is requested */
11291 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11292 
11293 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11294 		set_bit(sched_state, &bp->sp_state);
11295 	else {
11296 		__set_bit(RAMROD_RX, &ramrod_flags);
11297 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11298 				    ramrod_flags);
11299 	}
11300 }
11301 
11302 
11303 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11304 {
11305 	struct bnx2x *bp = netdev_priv(dev);
11306 	int rc = 0;
11307 
11308 	switch (ctl->cmd) {
11309 	case DRV_CTL_CTXTBL_WR_CMD: {
11310 		u32 index = ctl->data.io.offset;
11311 		dma_addr_t addr = ctl->data.io.dma_addr;
11312 
11313 		bnx2x_ilt_wr(bp, index, addr);
11314 		break;
11315 	}
11316 
11317 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11318 		int count = ctl->data.credit.credit_count;
11319 
11320 		bnx2x_cnic_sp_post(bp, count);
11321 		break;
11322 	}
11323 
11324 	/* rtnl_lock is held.  */
11325 	case DRV_CTL_START_L2_CMD: {
11326 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11327 		unsigned long sp_bits = 0;
11328 
11329 		/* Configure the iSCSI classification object */
11330 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11331 				   cp->iscsi_l2_client_id,
11332 				   cp->iscsi_l2_cid, BP_FUNC(bp),
11333 				   bnx2x_sp(bp, mac_rdata),
11334 				   bnx2x_sp_mapping(bp, mac_rdata),
11335 				   BNX2X_FILTER_MAC_PENDING,
11336 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11337 				   &bp->macs_pool);
11338 
11339 		/* Set iSCSI MAC address */
11340 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11341 		if (rc)
11342 			break;
11343 
11344 		mmiowb();
11345 		barrier();
11346 
11347 		/* Start accepting on iSCSI L2 ring */
11348 
11349 		netif_addr_lock_bh(dev);
11350 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
11351 		netif_addr_unlock_bh(dev);
11352 
11353 		/* bits to wait on */
11354 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11355 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11356 
11357 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11358 			BNX2X_ERR("rx_mode completion timed out!\n");
11359 
11360 		break;
11361 	}
11362 
11363 	/* rtnl_lock is held.  */
11364 	case DRV_CTL_STOP_L2_CMD: {
11365 		unsigned long sp_bits = 0;
11366 
11367 		/* Stop accepting on iSCSI L2 ring */
11368 		netif_addr_lock_bh(dev);
11369 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
11370 		netif_addr_unlock_bh(dev);
11371 
11372 		/* bits to wait on */
11373 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11374 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11375 
11376 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11377 			BNX2X_ERR("rx_mode completion timed out!\n");
11378 
11379 		mmiowb();
11380 		barrier();
11381 
11382 		/* Unset iSCSI L2 MAC */
11383 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11384 					BNX2X_ISCSI_ETH_MAC, true);
11385 		break;
11386 	}
11387 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11388 		int count = ctl->data.credit.credit_count;
11389 
11390 		smp_mb__before_atomic_inc();
11391 		atomic_add(count, &bp->cq_spq_left);
11392 		smp_mb__after_atomic_inc();
11393 		break;
11394 	}
11395 
11396 	default:
11397 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
11398 		rc = -EINVAL;
11399 	}
11400 
11401 	return rc;
11402 }
11403 
11404 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11405 {
11406 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11407 
11408 	if (bp->flags & USING_MSIX_FLAG) {
11409 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11410 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11411 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
11412 	} else {
11413 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11414 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11415 	}
11416 	if (!CHIP_IS_E1x(bp))
11417 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11418 	else
11419 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11420 
11421 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
11422 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11423 	cp->irq_arr[1].status_blk = bp->def_status_blk;
11424 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11425 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11426 
11427 	cp->num_irq = 2;
11428 }
11429 
11430 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11431 			       void *data)
11432 {
11433 	struct bnx2x *bp = netdev_priv(dev);
11434 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11435 
11436 	if (ops == NULL)
11437 		return -EINVAL;
11438 
11439 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11440 	if (!bp->cnic_kwq)
11441 		return -ENOMEM;
11442 
11443 	bp->cnic_kwq_cons = bp->cnic_kwq;
11444 	bp->cnic_kwq_prod = bp->cnic_kwq;
11445 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11446 
11447 	bp->cnic_spq_pending = 0;
11448 	bp->cnic_kwq_pending = 0;
11449 
11450 	bp->cnic_data = data;
11451 
11452 	cp->num_irq = 0;
11453 	cp->drv_state |= CNIC_DRV_STATE_REGD;
11454 	cp->iro_arr = bp->iro_arr;
11455 
11456 	bnx2x_setup_cnic_irq_info(bp);
11457 
11458 	rcu_assign_pointer(bp->cnic_ops, ops);
11459 
11460 	return 0;
11461 }
11462 
11463 static int bnx2x_unregister_cnic(struct net_device *dev)
11464 {
11465 	struct bnx2x *bp = netdev_priv(dev);
11466 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11467 
11468 	mutex_lock(&bp->cnic_mutex);
11469 	cp->drv_state = 0;
11470 	rcu_assign_pointer(bp->cnic_ops, NULL);
11471 	mutex_unlock(&bp->cnic_mutex);
11472 	synchronize_rcu();
11473 	kfree(bp->cnic_kwq);
11474 	bp->cnic_kwq = NULL;
11475 
11476 	return 0;
11477 }
11478 
11479 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11480 {
11481 	struct bnx2x *bp = netdev_priv(dev);
11482 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11483 
11484 	/* If both iSCSI and FCoE are disabled - return NULL in
11485 	 * order to indicate CNIC that it should not try to work
11486 	 * with this device.
11487 	 */
11488 	if (NO_ISCSI(bp) && NO_FCOE(bp))
11489 		return NULL;
11490 
11491 	cp->drv_owner = THIS_MODULE;
11492 	cp->chip_id = CHIP_ID(bp);
11493 	cp->pdev = bp->pdev;
11494 	cp->io_base = bp->regview;
11495 	cp->io_base2 = bp->doorbells;
11496 	cp->max_kwqe_pending = 8;
11497 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11498 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11499 			     bnx2x_cid_ilt_lines(bp);
11500 	cp->ctx_tbl_len = CNIC_ILT_LINES;
11501 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11502 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11503 	cp->drv_ctl = bnx2x_drv_ctl;
11504 	cp->drv_register_cnic = bnx2x_register_cnic;
11505 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11506 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11507 	cp->iscsi_l2_client_id =
11508 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11509 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11510 
11511 	if (NO_ISCSI_OOO(bp))
11512 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11513 
11514 	if (NO_ISCSI(bp))
11515 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11516 
11517 	if (NO_FCOE(bp))
11518 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11519 
11520 	DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
11521 			 "starting cid %d\n",
11522 	   cp->ctx_blk_size,
11523 	   cp->ctx_tbl_offset,
11524 	   cp->ctx_tbl_len,
11525 	   cp->starting_cid);
11526 	return cp;
11527 }
11528 EXPORT_SYMBOL(bnx2x_cnic_probe);
11529 
11530 #endif /* BCM_CNIC */
11531 
11532