1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 
63 #include "bnx2x.h"
64 #include "bnx2x_init.h"
65 #include "bnx2x_init_ops.h"
66 #include "bnx2x_cmn.h"
67 #include "bnx2x_vfpf.h"
68 #include "bnx2x_dcb.h"
69 #include "bnx2x_sp.h"
70 #include <linux/firmware.h>
71 #include "bnx2x_fw_file_hdr.h"
72 /* FW files */
73 #define FW_FILE_VERSION					\
74 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
75 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
76 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
77 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
78 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
80 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
81 
82 /* Time in jiffies before concluding the transmitter is hung */
83 #define TX_TIMEOUT		(5*HZ)
84 
85 static char version[] =
86 	"QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
87 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
88 
89 MODULE_AUTHOR("Eliezer Tamir");
90 MODULE_DESCRIPTION("QLogic "
91 		   "BCM57710/57711/57711E/"
92 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
93 		   "57840/57840_MF Driver");
94 MODULE_LICENSE("GPL");
95 MODULE_VERSION(DRV_MODULE_VERSION);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1);
97 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
98 MODULE_FIRMWARE(FW_FILE_NAME_E2);
99 
100 int bnx2x_num_queues;
101 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
102 MODULE_PARM_DESC(num_queues,
103 		 " Set number of queues (default is as a number of CPUs)");
104 
105 static int disable_tpa;
106 module_param(disable_tpa, int, S_IRUGO);
107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108 
109 static int int_mode;
110 module_param(int_mode, int, S_IRUGO);
111 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
112 				"(1 INT#x; 2 MSI)");
113 
114 static int dropless_fc;
115 module_param(dropless_fc, int, S_IRUGO);
116 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
117 
118 static int mrrs = -1;
119 module_param(mrrs, int, S_IRUGO);
120 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
121 
122 static int debug;
123 module_param(debug, int, S_IRUGO);
124 MODULE_PARM_DESC(debug, " Default debug msglevel");
125 
126 static struct workqueue_struct *bnx2x_wq;
127 struct workqueue_struct *bnx2x_iov_wq;
128 
129 struct bnx2x_mac_vals {
130 	u32 xmac_addr;
131 	u32 xmac_val;
132 	u32 emac_addr;
133 	u32 emac_val;
134 	u32 umac_addr[2];
135 	u32 umac_val[2];
136 	u32 bmac_addr;
137 	u32 bmac_val[2];
138 };
139 
140 enum bnx2x_board_type {
141 	BCM57710 = 0,
142 	BCM57711,
143 	BCM57711E,
144 	BCM57712,
145 	BCM57712_MF,
146 	BCM57712_VF,
147 	BCM57800,
148 	BCM57800_MF,
149 	BCM57800_VF,
150 	BCM57810,
151 	BCM57810_MF,
152 	BCM57810_VF,
153 	BCM57840_4_10,
154 	BCM57840_2_20,
155 	BCM57840_MF,
156 	BCM57840_VF,
157 	BCM57811,
158 	BCM57811_MF,
159 	BCM57840_O,
160 	BCM57840_MFO,
161 	BCM57811_VF
162 };
163 
164 /* indexed by board_type, above */
165 static struct {
166 	char *name;
167 } board_info[] = {
168 	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
169 	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
170 	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
171 	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
172 	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
173 	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
174 	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
175 	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
176 	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
177 	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
178 	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
179 	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
180 	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
181 	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
182 	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
183 	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
184 	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
185 	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
186 	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
187 	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
188 	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
189 };
190 
191 #ifndef PCI_DEVICE_ID_NX2_57710
192 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57711
195 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57711E
198 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712
201 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57712_MF
204 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57712_VF
207 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800
210 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57800_MF
213 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57800_VF
216 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57810
219 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57810_MF
222 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57840_O
225 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57810_VF
228 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
231 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
234 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
237 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_MF
240 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57840_VF
243 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811
246 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57811_MF
249 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
250 #endif
251 #ifndef PCI_DEVICE_ID_NX2_57811_VF
252 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
253 #endif
254 
255 static const struct pci_device_id bnx2x_pci_tbl[] = {
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
273 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
275 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
277 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
278 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
279 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
280 	{ 0 }
281 };
282 
283 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
284 
285 /* Global resources for unloading a previously loaded device */
286 #define BNX2X_PREV_WAIT_NEEDED 1
287 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
288 static LIST_HEAD(bnx2x_prev_list);
289 
290 /* Forward declaration */
291 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
292 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
293 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
294 
295 /****************************************************************************
296 * General service functions
297 ****************************************************************************/
298 
299 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
300 
301 static void __storm_memset_dma_mapping(struct bnx2x *bp,
302 				       u32 addr, dma_addr_t mapping)
303 {
304 	REG_WR(bp,  addr, U64_LO(mapping));
305 	REG_WR(bp,  addr + 4, U64_HI(mapping));
306 }
307 
308 static void storm_memset_spq_addr(struct bnx2x *bp,
309 				  dma_addr_t mapping, u16 abs_fid)
310 {
311 	u32 addr = XSEM_REG_FAST_MEMORY +
312 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
313 
314 	__storm_memset_dma_mapping(bp, addr, mapping);
315 }
316 
317 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
318 				  u16 pf_id)
319 {
320 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
321 		pf_id);
322 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
323 		pf_id);
324 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
325 		pf_id);
326 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
327 		pf_id);
328 }
329 
330 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
331 				 u8 enable)
332 {
333 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
334 		enable);
335 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
336 		enable);
337 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
338 		enable);
339 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
340 		enable);
341 }
342 
343 static void storm_memset_eq_data(struct bnx2x *bp,
344 				 struct event_ring_data *eq_data,
345 				u16 pfid)
346 {
347 	size_t size = sizeof(struct event_ring_data);
348 
349 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
350 
351 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
352 }
353 
354 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
355 				 u16 pfid)
356 {
357 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
358 	REG_WR16(bp, addr, eq_prod);
359 }
360 
361 /* used only at init
362  * locking is done by mcp
363  */
364 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
365 {
366 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
367 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
368 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
369 			       PCICFG_VENDOR_ID_OFFSET);
370 }
371 
372 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
373 {
374 	u32 val;
375 
376 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
377 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
378 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
379 			       PCICFG_VENDOR_ID_OFFSET);
380 
381 	return val;
382 }
383 
384 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
385 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
386 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
387 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
388 #define DMAE_DP_DST_NONE	"dst_addr [none]"
389 
390 static void bnx2x_dp_dmae(struct bnx2x *bp,
391 			  struct dmae_command *dmae, int msglvl)
392 {
393 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
394 	int i;
395 
396 	switch (dmae->opcode & DMAE_COMMAND_DST) {
397 	case DMAE_CMD_DST_PCI:
398 		if (src_type == DMAE_CMD_SRC_PCI)
399 			DP(msglvl, "DMAE: opcode 0x%08x\n"
400 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
401 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
402 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
403 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
404 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
405 			   dmae->comp_val);
406 		else
407 			DP(msglvl, "DMAE: opcode 0x%08x\n"
408 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
409 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
410 			   dmae->opcode, dmae->src_addr_lo >> 2,
411 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
412 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
413 			   dmae->comp_val);
414 		break;
415 	case DMAE_CMD_DST_GRC:
416 		if (src_type == DMAE_CMD_SRC_PCI)
417 			DP(msglvl, "DMAE: opcode 0x%08x\n"
418 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
419 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
420 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
421 			   dmae->len, dmae->dst_addr_lo >> 2,
422 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
423 			   dmae->comp_val);
424 		else
425 			DP(msglvl, "DMAE: opcode 0x%08x\n"
426 			   "src [%08x], len [%d*4], dst [%08x]\n"
427 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
428 			   dmae->opcode, dmae->src_addr_lo >> 2,
429 			   dmae->len, dmae->dst_addr_lo >> 2,
430 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
431 			   dmae->comp_val);
432 		break;
433 	default:
434 		if (src_type == DMAE_CMD_SRC_PCI)
435 			DP(msglvl, "DMAE: opcode 0x%08x\n"
436 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
437 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
438 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
439 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
440 			   dmae->comp_val);
441 		else
442 			DP(msglvl, "DMAE: opcode 0x%08x\n"
443 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
444 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
445 			   dmae->opcode, dmae->src_addr_lo >> 2,
446 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
447 			   dmae->comp_val);
448 		break;
449 	}
450 
451 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
452 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
453 		   i, *(((u32 *)dmae) + i));
454 }
455 
456 /* copy command into DMAE command memory and set DMAE command go */
457 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
458 {
459 	u32 cmd_offset;
460 	int i;
461 
462 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
463 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
464 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
465 	}
466 	REG_WR(bp, dmae_reg_go_c[idx], 1);
467 }
468 
469 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
470 {
471 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
472 			   DMAE_CMD_C_ENABLE);
473 }
474 
475 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
476 {
477 	return opcode & ~DMAE_CMD_SRC_RESET;
478 }
479 
480 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
481 			     bool with_comp, u8 comp_type)
482 {
483 	u32 opcode = 0;
484 
485 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
486 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
487 
488 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
489 
490 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
491 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
492 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
493 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
494 
495 #ifdef __BIG_ENDIAN
496 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
497 #else
498 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
499 #endif
500 	if (with_comp)
501 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
502 	return opcode;
503 }
504 
505 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
506 				      struct dmae_command *dmae,
507 				      u8 src_type, u8 dst_type)
508 {
509 	memset(dmae, 0, sizeof(struct dmae_command));
510 
511 	/* set the opcode */
512 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
513 					 true, DMAE_COMP_PCI);
514 
515 	/* fill in the completion parameters */
516 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
517 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
518 	dmae->comp_val = DMAE_COMP_VAL;
519 }
520 
521 /* issue a dmae command over the init-channel and wait for completion */
522 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
523 			       u32 *comp)
524 {
525 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
526 	int rc = 0;
527 
528 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
529 
530 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
531 	 * as long as this code is called both from syscall context and
532 	 * from ndo_set_rx_mode() flow that may be called from BH.
533 	 */
534 
535 	spin_lock_bh(&bp->dmae_lock);
536 
537 	/* reset completion */
538 	*comp = 0;
539 
540 	/* post the command on the channel used for initializations */
541 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
542 
543 	/* wait for completion */
544 	udelay(5);
545 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
546 
547 		if (!cnt ||
548 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
549 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
550 			BNX2X_ERR("DMAE timeout!\n");
551 			rc = DMAE_TIMEOUT;
552 			goto unlock;
553 		}
554 		cnt--;
555 		udelay(50);
556 	}
557 	if (*comp & DMAE_PCI_ERR_FLAG) {
558 		BNX2X_ERR("DMAE PCI error!\n");
559 		rc = DMAE_PCI_ERROR;
560 	}
561 
562 unlock:
563 
564 	spin_unlock_bh(&bp->dmae_lock);
565 
566 	return rc;
567 }
568 
569 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
570 		      u32 len32)
571 {
572 	int rc;
573 	struct dmae_command dmae;
574 
575 	if (!bp->dmae_ready) {
576 		u32 *data = bnx2x_sp(bp, wb_data[0]);
577 
578 		if (CHIP_IS_E1(bp))
579 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
580 		else
581 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
582 		return;
583 	}
584 
585 	/* set opcode and fixed command fields */
586 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
587 
588 	/* fill in addresses and len */
589 	dmae.src_addr_lo = U64_LO(dma_addr);
590 	dmae.src_addr_hi = U64_HI(dma_addr);
591 	dmae.dst_addr_lo = dst_addr >> 2;
592 	dmae.dst_addr_hi = 0;
593 	dmae.len = len32;
594 
595 	/* issue the command and wait for completion */
596 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
597 	if (rc) {
598 		BNX2X_ERR("DMAE returned failure %d\n", rc);
599 #ifdef BNX2X_STOP_ON_ERROR
600 		bnx2x_panic();
601 #endif
602 	}
603 }
604 
605 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
606 {
607 	int rc;
608 	struct dmae_command dmae;
609 
610 	if (!bp->dmae_ready) {
611 		u32 *data = bnx2x_sp(bp, wb_data[0]);
612 		int i;
613 
614 		if (CHIP_IS_E1(bp))
615 			for (i = 0; i < len32; i++)
616 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
617 		else
618 			for (i = 0; i < len32; i++)
619 				data[i] = REG_RD(bp, src_addr + i*4);
620 
621 		return;
622 	}
623 
624 	/* set opcode and fixed command fields */
625 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
626 
627 	/* fill in addresses and len */
628 	dmae.src_addr_lo = src_addr >> 2;
629 	dmae.src_addr_hi = 0;
630 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
631 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
632 	dmae.len = len32;
633 
634 	/* issue the command and wait for completion */
635 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
636 	if (rc) {
637 		BNX2X_ERR("DMAE returned failure %d\n", rc);
638 #ifdef BNX2X_STOP_ON_ERROR
639 		bnx2x_panic();
640 #endif
641 	}
642 }
643 
644 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
645 				      u32 addr, u32 len)
646 {
647 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
648 	int offset = 0;
649 
650 	while (len > dmae_wr_max) {
651 		bnx2x_write_dmae(bp, phys_addr + offset,
652 				 addr + offset, dmae_wr_max);
653 		offset += dmae_wr_max * 4;
654 		len -= dmae_wr_max;
655 	}
656 
657 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
658 }
659 
660 enum storms {
661 	   XSTORM,
662 	   TSTORM,
663 	   CSTORM,
664 	   USTORM,
665 	   MAX_STORMS
666 };
667 
668 #define STORMS_NUM 4
669 #define REGS_IN_ENTRY 4
670 
671 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
672 					      enum storms storm,
673 					      int entry)
674 {
675 	switch (storm) {
676 	case XSTORM:
677 		return XSTORM_ASSERT_LIST_OFFSET(entry);
678 	case TSTORM:
679 		return TSTORM_ASSERT_LIST_OFFSET(entry);
680 	case CSTORM:
681 		return CSTORM_ASSERT_LIST_OFFSET(entry);
682 	case USTORM:
683 		return USTORM_ASSERT_LIST_OFFSET(entry);
684 	case MAX_STORMS:
685 	default:
686 		BNX2X_ERR("unknown storm\n");
687 	}
688 	return -EINVAL;
689 }
690 
691 static int bnx2x_mc_assert(struct bnx2x *bp)
692 {
693 	char last_idx;
694 	int i, j, rc = 0;
695 	enum storms storm;
696 	u32 regs[REGS_IN_ENTRY];
697 	u32 bar_storm_intmem[STORMS_NUM] = {
698 		BAR_XSTRORM_INTMEM,
699 		BAR_TSTRORM_INTMEM,
700 		BAR_CSTRORM_INTMEM,
701 		BAR_USTRORM_INTMEM
702 	};
703 	u32 storm_assert_list_index[STORMS_NUM] = {
704 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
705 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
706 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
707 		USTORM_ASSERT_LIST_INDEX_OFFSET
708 	};
709 	char *storms_string[STORMS_NUM] = {
710 		"XSTORM",
711 		"TSTORM",
712 		"CSTORM",
713 		"USTORM"
714 	};
715 
716 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
717 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
718 				   storm_assert_list_index[storm]);
719 		if (last_idx)
720 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
721 				  storms_string[storm], last_idx);
722 
723 		/* print the asserts */
724 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
725 			/* read a single assert entry */
726 			for (j = 0; j < REGS_IN_ENTRY; j++)
727 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
728 					  bnx2x_get_assert_list_entry(bp,
729 								      storm,
730 								      i) +
731 					  sizeof(u32) * j);
732 
733 			/* log entry if it contains a valid assert */
734 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
735 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
736 					  storms_string[storm], i, regs[3],
737 					  regs[2], regs[1], regs[0]);
738 				rc++;
739 			} else {
740 				break;
741 			}
742 		}
743 	}
744 
745 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
746 		  CHIP_IS_E1(bp) ? "everest1" :
747 		  CHIP_IS_E1H(bp) ? "everest1h" :
748 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
749 		  BCM_5710_FW_MAJOR_VERSION,
750 		  BCM_5710_FW_MINOR_VERSION,
751 		  BCM_5710_FW_REVISION_VERSION);
752 
753 	return rc;
754 }
755 
756 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
757 #define SCRATCH_BUFFER_SIZE(bp)	\
758 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
759 
760 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
761 {
762 	u32 addr, val;
763 	u32 mark, offset;
764 	__be32 data[9];
765 	int word;
766 	u32 trace_shmem_base;
767 	if (BP_NOMCP(bp)) {
768 		BNX2X_ERR("NO MCP - can not dump\n");
769 		return;
770 	}
771 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
772 		(bp->common.bc_ver & 0xff0000) >> 16,
773 		(bp->common.bc_ver & 0xff00) >> 8,
774 		(bp->common.bc_ver & 0xff));
775 
776 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
777 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
778 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
779 
780 	if (BP_PATH(bp) == 0)
781 		trace_shmem_base = bp->common.shmem_base;
782 	else
783 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
784 
785 	/* sanity */
786 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
787 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
788 				SCRATCH_BUFFER_SIZE(bp)) {
789 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
790 			  trace_shmem_base);
791 		return;
792 	}
793 
794 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
795 
796 	/* validate TRCB signature */
797 	mark = REG_RD(bp, addr);
798 	if (mark != MFW_TRACE_SIGNATURE) {
799 		BNX2X_ERR("Trace buffer signature is missing.");
800 		return ;
801 	}
802 
803 	/* read cyclic buffer pointer */
804 	addr += 4;
805 	mark = REG_RD(bp, addr);
806 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
807 	if (mark >= trace_shmem_base || mark < addr + 4) {
808 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
809 		return;
810 	}
811 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
812 
813 	printk("%s", lvl);
814 
815 	/* dump buffer after the mark */
816 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
817 		for (word = 0; word < 8; word++)
818 			data[word] = htonl(REG_RD(bp, offset + 4*word));
819 		data[8] = 0x0;
820 		pr_cont("%s", (char *)data);
821 	}
822 
823 	/* dump buffer before the mark */
824 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
825 		for (word = 0; word < 8; word++)
826 			data[word] = htonl(REG_RD(bp, offset + 4*word));
827 		data[8] = 0x0;
828 		pr_cont("%s", (char *)data);
829 	}
830 	printk("%s" "end of fw dump\n", lvl);
831 }
832 
833 static void bnx2x_fw_dump(struct bnx2x *bp)
834 {
835 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
836 }
837 
838 static void bnx2x_hc_int_disable(struct bnx2x *bp)
839 {
840 	int port = BP_PORT(bp);
841 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
842 	u32 val = REG_RD(bp, addr);
843 
844 	/* in E1 we must use only PCI configuration space to disable
845 	 * MSI/MSIX capability
846 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
847 	 */
848 	if (CHIP_IS_E1(bp)) {
849 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
850 		 * Use mask register to prevent from HC sending interrupts
851 		 * after we exit the function
852 		 */
853 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
854 
855 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
856 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
857 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
858 	} else
859 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
860 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
861 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
862 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
863 
864 	DP(NETIF_MSG_IFDOWN,
865 	   "write %x to HC %d (addr 0x%x)\n",
866 	   val, port, addr);
867 
868 	/* flush all outstanding writes */
869 	mmiowb();
870 
871 	REG_WR(bp, addr, val);
872 	if (REG_RD(bp, addr) != val)
873 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
874 }
875 
876 static void bnx2x_igu_int_disable(struct bnx2x *bp)
877 {
878 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
879 
880 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
881 		 IGU_PF_CONF_INT_LINE_EN |
882 		 IGU_PF_CONF_ATTN_BIT_EN);
883 
884 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
885 
886 	/* flush all outstanding writes */
887 	mmiowb();
888 
889 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
890 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
891 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
892 }
893 
894 static void bnx2x_int_disable(struct bnx2x *bp)
895 {
896 	if (bp->common.int_block == INT_BLOCK_HC)
897 		bnx2x_hc_int_disable(bp);
898 	else
899 		bnx2x_igu_int_disable(bp);
900 }
901 
902 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
903 {
904 	int i;
905 	u16 j;
906 	struct hc_sp_status_block_data sp_sb_data;
907 	int func = BP_FUNC(bp);
908 #ifdef BNX2X_STOP_ON_ERROR
909 	u16 start = 0, end = 0;
910 	u8 cos;
911 #endif
912 	if (IS_PF(bp) && disable_int)
913 		bnx2x_int_disable(bp);
914 
915 	bp->stats_state = STATS_STATE_DISABLED;
916 	bp->eth_stats.unrecoverable_error++;
917 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
918 
919 	BNX2X_ERR("begin crash dump -----------------\n");
920 
921 	/* Indices */
922 	/* Common */
923 	if (IS_PF(bp)) {
924 		struct host_sp_status_block *def_sb = bp->def_status_blk;
925 		int data_size, cstorm_offset;
926 
927 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
928 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
929 			  bp->spq_prod_idx, bp->stats_counter);
930 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
931 			  def_sb->atten_status_block.attn_bits,
932 			  def_sb->atten_status_block.attn_bits_ack,
933 			  def_sb->atten_status_block.status_block_id,
934 			  def_sb->atten_status_block.attn_bits_index);
935 		BNX2X_ERR("     def (");
936 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
937 			pr_cont("0x%x%s",
938 				def_sb->sp_sb.index_values[i],
939 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
940 
941 		data_size = sizeof(struct hc_sp_status_block_data) /
942 			    sizeof(u32);
943 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
944 		for (i = 0; i < data_size; i++)
945 			*((u32 *)&sp_sb_data + i) =
946 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
947 					   i * sizeof(u32));
948 
949 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
950 			sp_sb_data.igu_sb_id,
951 			sp_sb_data.igu_seg_id,
952 			sp_sb_data.p_func.pf_id,
953 			sp_sb_data.p_func.vnic_id,
954 			sp_sb_data.p_func.vf_id,
955 			sp_sb_data.p_func.vf_valid,
956 			sp_sb_data.state);
957 	}
958 
959 	for_each_eth_queue(bp, i) {
960 		struct bnx2x_fastpath *fp = &bp->fp[i];
961 		int loop;
962 		struct hc_status_block_data_e2 sb_data_e2;
963 		struct hc_status_block_data_e1x sb_data_e1x;
964 		struct hc_status_block_sm  *hc_sm_p =
965 			CHIP_IS_E1x(bp) ?
966 			sb_data_e1x.common.state_machine :
967 			sb_data_e2.common.state_machine;
968 		struct hc_index_data *hc_index_p =
969 			CHIP_IS_E1x(bp) ?
970 			sb_data_e1x.index_data :
971 			sb_data_e2.index_data;
972 		u8 data_size, cos;
973 		u32 *sb_data_p;
974 		struct bnx2x_fp_txdata txdata;
975 
976 		if (!bp->fp)
977 			break;
978 
979 		if (!fp->rx_cons_sb)
980 			continue;
981 
982 		/* Rx */
983 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
984 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
985 			  fp->rx_comp_prod,
986 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
987 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
988 			  fp->rx_sge_prod, fp->last_max_sge,
989 			  le16_to_cpu(fp->fp_hc_idx));
990 
991 		/* Tx */
992 		for_each_cos_in_tx_queue(fp, cos)
993 		{
994 			if (!fp->txdata_ptr[cos])
995 				break;
996 
997 			txdata = *fp->txdata_ptr[cos];
998 
999 			if (!txdata.tx_cons_sb)
1000 				continue;
1001 
1002 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1003 				  i, txdata.tx_pkt_prod,
1004 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1005 				  txdata.tx_bd_cons,
1006 				  le16_to_cpu(*txdata.tx_cons_sb));
1007 		}
1008 
1009 		loop = CHIP_IS_E1x(bp) ?
1010 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1011 
1012 		/* host sb data */
1013 
1014 		if (IS_FCOE_FP(fp))
1015 			continue;
1016 
1017 		BNX2X_ERR("     run indexes (");
1018 		for (j = 0; j < HC_SB_MAX_SM; j++)
1019 			pr_cont("0x%x%s",
1020 			       fp->sb_running_index[j],
1021 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1022 
1023 		BNX2X_ERR("     indexes (");
1024 		for (j = 0; j < loop; j++)
1025 			pr_cont("0x%x%s",
1026 			       fp->sb_index_values[j],
1027 			       (j == loop - 1) ? ")" : " ");
1028 
1029 		/* VF cannot access FW refelection for status block */
1030 		if (IS_VF(bp))
1031 			continue;
1032 
1033 		/* fw sb data */
1034 		data_size = CHIP_IS_E1x(bp) ?
1035 			sizeof(struct hc_status_block_data_e1x) :
1036 			sizeof(struct hc_status_block_data_e2);
1037 		data_size /= sizeof(u32);
1038 		sb_data_p = CHIP_IS_E1x(bp) ?
1039 			(u32 *)&sb_data_e1x :
1040 			(u32 *)&sb_data_e2;
1041 		/* copy sb data in here */
1042 		for (j = 0; j < data_size; j++)
1043 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1044 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1045 				j * sizeof(u32));
1046 
1047 		if (!CHIP_IS_E1x(bp)) {
1048 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1049 				sb_data_e2.common.p_func.pf_id,
1050 				sb_data_e2.common.p_func.vf_id,
1051 				sb_data_e2.common.p_func.vf_valid,
1052 				sb_data_e2.common.p_func.vnic_id,
1053 				sb_data_e2.common.same_igu_sb_1b,
1054 				sb_data_e2.common.state);
1055 		} else {
1056 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1057 				sb_data_e1x.common.p_func.pf_id,
1058 				sb_data_e1x.common.p_func.vf_id,
1059 				sb_data_e1x.common.p_func.vf_valid,
1060 				sb_data_e1x.common.p_func.vnic_id,
1061 				sb_data_e1x.common.same_igu_sb_1b,
1062 				sb_data_e1x.common.state);
1063 		}
1064 
1065 		/* SB_SMs data */
1066 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1067 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1068 				j, hc_sm_p[j].__flags,
1069 				hc_sm_p[j].igu_sb_id,
1070 				hc_sm_p[j].igu_seg_id,
1071 				hc_sm_p[j].time_to_expire,
1072 				hc_sm_p[j].timer_value);
1073 		}
1074 
1075 		/* Indices data */
1076 		for (j = 0; j < loop; j++) {
1077 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1078 			       hc_index_p[j].flags,
1079 			       hc_index_p[j].timeout);
1080 		}
1081 	}
1082 
1083 #ifdef BNX2X_STOP_ON_ERROR
1084 	if (IS_PF(bp)) {
1085 		/* event queue */
1086 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1087 		for (i = 0; i < NUM_EQ_DESC; i++) {
1088 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1089 
1090 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1091 				  i, bp->eq_ring[i].message.opcode,
1092 				  bp->eq_ring[i].message.error);
1093 			BNX2X_ERR("data: %x %x %x\n",
1094 				  data[0], data[1], data[2]);
1095 		}
1096 	}
1097 
1098 	/* Rings */
1099 	/* Rx */
1100 	for_each_valid_rx_queue(bp, i) {
1101 		struct bnx2x_fastpath *fp = &bp->fp[i];
1102 
1103 		if (!bp->fp)
1104 			break;
1105 
1106 		if (!fp->rx_cons_sb)
1107 			continue;
1108 
1109 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1110 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1111 		for (j = start; j != end; j = RX_BD(j + 1)) {
1112 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1113 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1114 
1115 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1116 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1117 		}
1118 
1119 		start = RX_SGE(fp->rx_sge_prod);
1120 		end = RX_SGE(fp->last_max_sge);
1121 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1122 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1123 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1124 
1125 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1126 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1127 		}
1128 
1129 		start = RCQ_BD(fp->rx_comp_cons - 10);
1130 		end = RCQ_BD(fp->rx_comp_cons + 503);
1131 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1132 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1133 
1134 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1135 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1136 		}
1137 	}
1138 
1139 	/* Tx */
1140 	for_each_valid_tx_queue(bp, i) {
1141 		struct bnx2x_fastpath *fp = &bp->fp[i];
1142 
1143 		if (!bp->fp)
1144 			break;
1145 
1146 		for_each_cos_in_tx_queue(fp, cos) {
1147 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1148 
1149 			if (!fp->txdata_ptr[cos])
1150 				break;
1151 
1152 			if (!txdata->tx_cons_sb)
1153 				continue;
1154 
1155 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1156 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1157 			for (j = start; j != end; j = TX_BD(j + 1)) {
1158 				struct sw_tx_bd *sw_bd =
1159 					&txdata->tx_buf_ring[j];
1160 
1161 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1162 					  i, cos, j, sw_bd->skb,
1163 					  sw_bd->first_bd);
1164 			}
1165 
1166 			start = TX_BD(txdata->tx_bd_cons - 10);
1167 			end = TX_BD(txdata->tx_bd_cons + 254);
1168 			for (j = start; j != end; j = TX_BD(j + 1)) {
1169 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1170 
1171 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1172 					  i, cos, j, tx_bd[0], tx_bd[1],
1173 					  tx_bd[2], tx_bd[3]);
1174 			}
1175 		}
1176 	}
1177 #endif
1178 	if (IS_PF(bp)) {
1179 		bnx2x_fw_dump(bp);
1180 		bnx2x_mc_assert(bp);
1181 	}
1182 	BNX2X_ERR("end crash dump -----------------\n");
1183 }
1184 
1185 /*
1186  * FLR Support for E2
1187  *
1188  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1189  * initialization.
1190  */
1191 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1192 #define FLR_WAIT_INTERVAL	50	/* usec */
1193 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1194 
1195 struct pbf_pN_buf_regs {
1196 	int pN;
1197 	u32 init_crd;
1198 	u32 crd;
1199 	u32 crd_freed;
1200 };
1201 
1202 struct pbf_pN_cmd_regs {
1203 	int pN;
1204 	u32 lines_occup;
1205 	u32 lines_freed;
1206 };
1207 
1208 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1209 				     struct pbf_pN_buf_regs *regs,
1210 				     u32 poll_count)
1211 {
1212 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1213 	u32 cur_cnt = poll_count;
1214 
1215 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1216 	crd = crd_start = REG_RD(bp, regs->crd);
1217 	init_crd = REG_RD(bp, regs->init_crd);
1218 
1219 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1220 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1221 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1222 
1223 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1224 	       (init_crd - crd_start))) {
1225 		if (cur_cnt--) {
1226 			udelay(FLR_WAIT_INTERVAL);
1227 			crd = REG_RD(bp, regs->crd);
1228 			crd_freed = REG_RD(bp, regs->crd_freed);
1229 		} else {
1230 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1231 			   regs->pN);
1232 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1233 			   regs->pN, crd);
1234 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1235 			   regs->pN, crd_freed);
1236 			break;
1237 		}
1238 	}
1239 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1240 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1241 }
1242 
1243 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1244 				     struct pbf_pN_cmd_regs *regs,
1245 				     u32 poll_count)
1246 {
1247 	u32 occup, to_free, freed, freed_start;
1248 	u32 cur_cnt = poll_count;
1249 
1250 	occup = to_free = REG_RD(bp, regs->lines_occup);
1251 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1252 
1253 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1254 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1255 
1256 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1257 		if (cur_cnt--) {
1258 			udelay(FLR_WAIT_INTERVAL);
1259 			occup = REG_RD(bp, regs->lines_occup);
1260 			freed = REG_RD(bp, regs->lines_freed);
1261 		} else {
1262 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1263 			   regs->pN);
1264 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1265 			   regs->pN, occup);
1266 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1267 			   regs->pN, freed);
1268 			break;
1269 		}
1270 	}
1271 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1272 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1273 }
1274 
1275 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1276 				    u32 expected, u32 poll_count)
1277 {
1278 	u32 cur_cnt = poll_count;
1279 	u32 val;
1280 
1281 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1282 		udelay(FLR_WAIT_INTERVAL);
1283 
1284 	return val;
1285 }
1286 
1287 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1288 				    char *msg, u32 poll_cnt)
1289 {
1290 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1291 	if (val != 0) {
1292 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1293 		return 1;
1294 	}
1295 	return 0;
1296 }
1297 
1298 /* Common routines with VF FLR cleanup */
1299 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1300 {
1301 	/* adjust polling timeout */
1302 	if (CHIP_REV_IS_EMUL(bp))
1303 		return FLR_POLL_CNT * 2000;
1304 
1305 	if (CHIP_REV_IS_FPGA(bp))
1306 		return FLR_POLL_CNT * 120;
1307 
1308 	return FLR_POLL_CNT;
1309 }
1310 
1311 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1312 {
1313 	struct pbf_pN_cmd_regs cmd_regs[] = {
1314 		{0, (CHIP_IS_E3B0(bp)) ?
1315 			PBF_REG_TQ_OCCUPANCY_Q0 :
1316 			PBF_REG_P0_TQ_OCCUPANCY,
1317 		    (CHIP_IS_E3B0(bp)) ?
1318 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1319 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1320 		{1, (CHIP_IS_E3B0(bp)) ?
1321 			PBF_REG_TQ_OCCUPANCY_Q1 :
1322 			PBF_REG_P1_TQ_OCCUPANCY,
1323 		    (CHIP_IS_E3B0(bp)) ?
1324 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1325 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1326 		{4, (CHIP_IS_E3B0(bp)) ?
1327 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1328 			PBF_REG_P4_TQ_OCCUPANCY,
1329 		    (CHIP_IS_E3B0(bp)) ?
1330 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1331 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1332 	};
1333 
1334 	struct pbf_pN_buf_regs buf_regs[] = {
1335 		{0, (CHIP_IS_E3B0(bp)) ?
1336 			PBF_REG_INIT_CRD_Q0 :
1337 			PBF_REG_P0_INIT_CRD ,
1338 		    (CHIP_IS_E3B0(bp)) ?
1339 			PBF_REG_CREDIT_Q0 :
1340 			PBF_REG_P0_CREDIT,
1341 		    (CHIP_IS_E3B0(bp)) ?
1342 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1343 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1344 		{1, (CHIP_IS_E3B0(bp)) ?
1345 			PBF_REG_INIT_CRD_Q1 :
1346 			PBF_REG_P1_INIT_CRD,
1347 		    (CHIP_IS_E3B0(bp)) ?
1348 			PBF_REG_CREDIT_Q1 :
1349 			PBF_REG_P1_CREDIT,
1350 		    (CHIP_IS_E3B0(bp)) ?
1351 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1352 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1353 		{4, (CHIP_IS_E3B0(bp)) ?
1354 			PBF_REG_INIT_CRD_LB_Q :
1355 			PBF_REG_P4_INIT_CRD,
1356 		    (CHIP_IS_E3B0(bp)) ?
1357 			PBF_REG_CREDIT_LB_Q :
1358 			PBF_REG_P4_CREDIT,
1359 		    (CHIP_IS_E3B0(bp)) ?
1360 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1361 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1362 	};
1363 
1364 	int i;
1365 
1366 	/* Verify the command queues are flushed P0, P1, P4 */
1367 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1368 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1369 
1370 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1371 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1372 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1373 }
1374 
1375 #define OP_GEN_PARAM(param) \
1376 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1377 
1378 #define OP_GEN_TYPE(type) \
1379 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1380 
1381 #define OP_GEN_AGG_VECT(index) \
1382 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1383 
1384 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1385 {
1386 	u32 op_gen_command = 0;
1387 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1388 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1389 	int ret = 0;
1390 
1391 	if (REG_RD(bp, comp_addr)) {
1392 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1393 		return 1;
1394 	}
1395 
1396 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1397 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1398 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1399 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1400 
1401 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1402 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1403 
1404 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1405 		BNX2X_ERR("FW final cleanup did not succeed\n");
1406 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1407 		   (REG_RD(bp, comp_addr)));
1408 		bnx2x_panic();
1409 		return 1;
1410 	}
1411 	/* Zero completion for next FLR */
1412 	REG_WR(bp, comp_addr, 0);
1413 
1414 	return ret;
1415 }
1416 
1417 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1418 {
1419 	u16 status;
1420 
1421 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1422 	return status & PCI_EXP_DEVSTA_TRPND;
1423 }
1424 
1425 /* PF FLR specific routines
1426 */
1427 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1428 {
1429 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1430 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1431 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1432 			"CFC PF usage counter timed out",
1433 			poll_cnt))
1434 		return 1;
1435 
1436 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1437 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1438 			DORQ_REG_PF_USAGE_CNT,
1439 			"DQ PF usage counter timed out",
1440 			poll_cnt))
1441 		return 1;
1442 
1443 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1444 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1445 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1446 			"QM PF usage counter timed out",
1447 			poll_cnt))
1448 		return 1;
1449 
1450 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1451 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1452 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1453 			"Timers VNIC usage counter timed out",
1454 			poll_cnt))
1455 		return 1;
1456 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1457 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1458 			"Timers NUM_SCANS usage counter timed out",
1459 			poll_cnt))
1460 		return 1;
1461 
1462 	/* Wait DMAE PF usage counter to zero */
1463 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1464 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1465 			"DMAE command register timed out",
1466 			poll_cnt))
1467 		return 1;
1468 
1469 	return 0;
1470 }
1471 
1472 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1473 {
1474 	u32 val;
1475 
1476 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1477 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1478 
1479 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1480 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1481 
1482 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1483 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1484 
1485 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1486 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1487 
1488 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1489 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1490 
1491 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1492 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1493 
1494 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1495 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1496 
1497 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1498 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1499 	   val);
1500 }
1501 
1502 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1503 {
1504 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1505 
1506 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1507 
1508 	/* Re-enable PF target read access */
1509 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1510 
1511 	/* Poll HW usage counters */
1512 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1513 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1514 		return -EBUSY;
1515 
1516 	/* Zero the igu 'trailing edge' and 'leading edge' */
1517 
1518 	/* Send the FW cleanup command */
1519 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1520 		return -EBUSY;
1521 
1522 	/* ATC cleanup */
1523 
1524 	/* Verify TX hw is flushed */
1525 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1526 
1527 	/* Wait 100ms (not adjusted according to platform) */
1528 	msleep(100);
1529 
1530 	/* Verify no pending pci transactions */
1531 	if (bnx2x_is_pcie_pending(bp->pdev))
1532 		BNX2X_ERR("PCIE Transactions still pending\n");
1533 
1534 	/* Debug */
1535 	bnx2x_hw_enable_status(bp);
1536 
1537 	/*
1538 	 * Master enable - Due to WB DMAE writes performed before this
1539 	 * register is re-initialized as part of the regular function init
1540 	 */
1541 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1542 
1543 	return 0;
1544 }
1545 
1546 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1547 {
1548 	int port = BP_PORT(bp);
1549 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1550 	u32 val = REG_RD(bp, addr);
1551 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1552 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1553 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1554 
1555 	if (msix) {
1556 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1557 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1558 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1559 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1560 		if (single_msix)
1561 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1562 	} else if (msi) {
1563 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1564 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1565 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1566 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1567 	} else {
1568 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1569 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1570 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1571 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1572 
1573 		if (!CHIP_IS_E1(bp)) {
1574 			DP(NETIF_MSG_IFUP,
1575 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1576 
1577 			REG_WR(bp, addr, val);
1578 
1579 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1580 		}
1581 	}
1582 
1583 	if (CHIP_IS_E1(bp))
1584 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1585 
1586 	DP(NETIF_MSG_IFUP,
1587 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1588 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589 
1590 	REG_WR(bp, addr, val);
1591 	/*
1592 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1593 	 */
1594 	mmiowb();
1595 	barrier();
1596 
1597 	if (!CHIP_IS_E1(bp)) {
1598 		/* init leading/trailing edge */
1599 		if (IS_MF(bp)) {
1600 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1601 			if (bp->port.pmf)
1602 				/* enable nig and gpio3 attention */
1603 				val |= 0x1100;
1604 		} else
1605 			val = 0xffff;
1606 
1607 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1608 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1609 	}
1610 
1611 	/* Make sure that interrupts are indeed enabled from here on */
1612 	mmiowb();
1613 }
1614 
1615 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1616 {
1617 	u32 val;
1618 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1619 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1620 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1621 
1622 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1623 
1624 	if (msix) {
1625 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1626 			 IGU_PF_CONF_SINGLE_ISR_EN);
1627 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1628 			IGU_PF_CONF_ATTN_BIT_EN);
1629 
1630 		if (single_msix)
1631 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1632 	} else if (msi) {
1633 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1634 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1635 			IGU_PF_CONF_ATTN_BIT_EN |
1636 			IGU_PF_CONF_SINGLE_ISR_EN);
1637 	} else {
1638 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1639 		val |= (IGU_PF_CONF_INT_LINE_EN |
1640 			IGU_PF_CONF_ATTN_BIT_EN |
1641 			IGU_PF_CONF_SINGLE_ISR_EN);
1642 	}
1643 
1644 	/* Clean previous status - need to configure igu prior to ack*/
1645 	if ((!msix) || single_msix) {
1646 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1647 		bnx2x_ack_int(bp);
1648 	}
1649 
1650 	val |= IGU_PF_CONF_FUNC_EN;
1651 
1652 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1653 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1654 
1655 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1656 
1657 	if (val & IGU_PF_CONF_INT_LINE_EN)
1658 		pci_intx(bp->pdev, true);
1659 
1660 	barrier();
1661 
1662 	/* init leading/trailing edge */
1663 	if (IS_MF(bp)) {
1664 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1665 		if (bp->port.pmf)
1666 			/* enable nig and gpio3 attention */
1667 			val |= 0x1100;
1668 	} else
1669 		val = 0xffff;
1670 
1671 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1672 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1673 
1674 	/* Make sure that interrupts are indeed enabled from here on */
1675 	mmiowb();
1676 }
1677 
1678 void bnx2x_int_enable(struct bnx2x *bp)
1679 {
1680 	if (bp->common.int_block == INT_BLOCK_HC)
1681 		bnx2x_hc_int_enable(bp);
1682 	else
1683 		bnx2x_igu_int_enable(bp);
1684 }
1685 
1686 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1687 {
1688 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1689 	int i, offset;
1690 
1691 	if (disable_hw)
1692 		/* prevent the HW from sending interrupts */
1693 		bnx2x_int_disable(bp);
1694 
1695 	/* make sure all ISRs are done */
1696 	if (msix) {
1697 		synchronize_irq(bp->msix_table[0].vector);
1698 		offset = 1;
1699 		if (CNIC_SUPPORT(bp))
1700 			offset++;
1701 		for_each_eth_queue(bp, i)
1702 			synchronize_irq(bp->msix_table[offset++].vector);
1703 	} else
1704 		synchronize_irq(bp->pdev->irq);
1705 
1706 	/* make sure sp_task is not running */
1707 	cancel_delayed_work(&bp->sp_task);
1708 	cancel_delayed_work(&bp->period_task);
1709 	flush_workqueue(bnx2x_wq);
1710 }
1711 
1712 /* fast path */
1713 
1714 /*
1715  * General service functions
1716  */
1717 
1718 /* Return true if succeeded to acquire the lock */
1719 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1720 {
1721 	u32 lock_status;
1722 	u32 resource_bit = (1 << resource);
1723 	int func = BP_FUNC(bp);
1724 	u32 hw_lock_control_reg;
1725 
1726 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1727 	   "Trying to take a lock on resource %d\n", resource);
1728 
1729 	/* Validating that the resource is within range */
1730 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1731 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1732 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1733 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1734 		return false;
1735 	}
1736 
1737 	if (func <= 5)
1738 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1739 	else
1740 		hw_lock_control_reg =
1741 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1742 
1743 	/* Try to acquire the lock */
1744 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1745 	lock_status = REG_RD(bp, hw_lock_control_reg);
1746 	if (lock_status & resource_bit)
1747 		return true;
1748 
1749 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1750 	   "Failed to get a lock on resource %d\n", resource);
1751 	return false;
1752 }
1753 
1754 /**
1755  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1756  *
1757  * @bp:	driver handle
1758  *
1759  * Returns the recovery leader resource id according to the engine this function
1760  * belongs to. Currently only only 2 engines is supported.
1761  */
1762 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1763 {
1764 	if (BP_PATH(bp))
1765 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1766 	else
1767 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1768 }
1769 
1770 /**
1771  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1772  *
1773  * @bp: driver handle
1774  *
1775  * Tries to acquire a leader lock for current engine.
1776  */
1777 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1778 {
1779 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1780 }
1781 
1782 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1783 
1784 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1785 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1786 {
1787 	/* Set the interrupt occurred bit for the sp-task to recognize it
1788 	 * must ack the interrupt and transition according to the IGU
1789 	 * state machine.
1790 	 */
1791 	atomic_set(&bp->interrupt_occurred, 1);
1792 
1793 	/* The sp_task must execute only after this bit
1794 	 * is set, otherwise we will get out of sync and miss all
1795 	 * further interrupts. Hence, the barrier.
1796 	 */
1797 	smp_wmb();
1798 
1799 	/* schedule sp_task to workqueue */
1800 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1801 }
1802 
1803 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1804 {
1805 	struct bnx2x *bp = fp->bp;
1806 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1807 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1808 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1809 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1810 
1811 	DP(BNX2X_MSG_SP,
1812 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1813 	   fp->index, cid, command, bp->state,
1814 	   rr_cqe->ramrod_cqe.ramrod_type);
1815 
1816 	/* If cid is within VF range, replace the slowpath object with the
1817 	 * one corresponding to this VF
1818 	 */
1819 	if (cid >= BNX2X_FIRST_VF_CID  &&
1820 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1821 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1822 
1823 	switch (command) {
1824 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1825 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1826 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1827 		break;
1828 
1829 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1830 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1831 		drv_cmd = BNX2X_Q_CMD_SETUP;
1832 		break;
1833 
1834 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1835 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1836 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1837 		break;
1838 
1839 	case (RAMROD_CMD_ID_ETH_HALT):
1840 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1841 		drv_cmd = BNX2X_Q_CMD_HALT;
1842 		break;
1843 
1844 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1845 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1846 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1847 		break;
1848 
1849 	case (RAMROD_CMD_ID_ETH_EMPTY):
1850 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1851 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1852 		break;
1853 
1854 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1855 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1856 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1857 		break;
1858 
1859 	default:
1860 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1861 			  command, fp->index);
1862 		return;
1863 	}
1864 
1865 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1866 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1867 		/* q_obj->complete_cmd() failure means that this was
1868 		 * an unexpected completion.
1869 		 *
1870 		 * In this case we don't want to increase the bp->spq_left
1871 		 * because apparently we haven't sent this command the first
1872 		 * place.
1873 		 */
1874 #ifdef BNX2X_STOP_ON_ERROR
1875 		bnx2x_panic();
1876 #else
1877 		return;
1878 #endif
1879 
1880 	smp_mb__before_atomic();
1881 	atomic_inc(&bp->cq_spq_left);
1882 	/* push the change in bp->spq_left and towards the memory */
1883 	smp_mb__after_atomic();
1884 
1885 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1886 
1887 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1888 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1889 		/* if Q update ramrod is completed for last Q in AFEX vif set
1890 		 * flow, then ACK MCP at the end
1891 		 *
1892 		 * mark pending ACK to MCP bit.
1893 		 * prevent case that both bits are cleared.
1894 		 * At the end of load/unload driver checks that
1895 		 * sp_state is cleared, and this order prevents
1896 		 * races
1897 		 */
1898 		smp_mb__before_atomic();
1899 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1900 		wmb();
1901 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1902 		smp_mb__after_atomic();
1903 
1904 		/* schedule the sp task as mcp ack is required */
1905 		bnx2x_schedule_sp_task(bp);
1906 	}
1907 
1908 	return;
1909 }
1910 
1911 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1912 {
1913 	struct bnx2x *bp = netdev_priv(dev_instance);
1914 	u16 status = bnx2x_ack_int(bp);
1915 	u16 mask;
1916 	int i;
1917 	u8 cos;
1918 
1919 	/* Return here if interrupt is shared and it's not for us */
1920 	if (unlikely(status == 0)) {
1921 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1922 		return IRQ_NONE;
1923 	}
1924 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1925 
1926 #ifdef BNX2X_STOP_ON_ERROR
1927 	if (unlikely(bp->panic))
1928 		return IRQ_HANDLED;
1929 #endif
1930 
1931 	for_each_eth_queue(bp, i) {
1932 		struct bnx2x_fastpath *fp = &bp->fp[i];
1933 
1934 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1935 		if (status & mask) {
1936 			/* Handle Rx or Tx according to SB id */
1937 			for_each_cos_in_tx_queue(fp, cos)
1938 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1939 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1940 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1941 			status &= ~mask;
1942 		}
1943 	}
1944 
1945 	if (CNIC_SUPPORT(bp)) {
1946 		mask = 0x2;
1947 		if (status & (mask | 0x1)) {
1948 			struct cnic_ops *c_ops = NULL;
1949 
1950 			rcu_read_lock();
1951 			c_ops = rcu_dereference(bp->cnic_ops);
1952 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1953 				      CNIC_DRV_STATE_HANDLES_IRQ))
1954 				c_ops->cnic_handler(bp->cnic_data, NULL);
1955 			rcu_read_unlock();
1956 
1957 			status &= ~mask;
1958 		}
1959 	}
1960 
1961 	if (unlikely(status & 0x1)) {
1962 
1963 		/* schedule sp task to perform default status block work, ack
1964 		 * attentions and enable interrupts.
1965 		 */
1966 		bnx2x_schedule_sp_task(bp);
1967 
1968 		status &= ~0x1;
1969 		if (!status)
1970 			return IRQ_HANDLED;
1971 	}
1972 
1973 	if (unlikely(status))
1974 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1975 		   status);
1976 
1977 	return IRQ_HANDLED;
1978 }
1979 
1980 /* Link */
1981 
1982 /*
1983  * General service functions
1984  */
1985 
1986 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1987 {
1988 	u32 lock_status;
1989 	u32 resource_bit = (1 << resource);
1990 	int func = BP_FUNC(bp);
1991 	u32 hw_lock_control_reg;
1992 	int cnt;
1993 
1994 	/* Validating that the resource is within range */
1995 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1996 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1997 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1998 		return -EINVAL;
1999 	}
2000 
2001 	if (func <= 5) {
2002 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2003 	} else {
2004 		hw_lock_control_reg =
2005 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2006 	}
2007 
2008 	/* Validating that the resource is not already taken */
2009 	lock_status = REG_RD(bp, hw_lock_control_reg);
2010 	if (lock_status & resource_bit) {
2011 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2012 		   lock_status, resource_bit);
2013 		return -EEXIST;
2014 	}
2015 
2016 	/* Try for 5 second every 5ms */
2017 	for (cnt = 0; cnt < 1000; cnt++) {
2018 		/* Try to acquire the lock */
2019 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2020 		lock_status = REG_RD(bp, hw_lock_control_reg);
2021 		if (lock_status & resource_bit)
2022 			return 0;
2023 
2024 		usleep_range(5000, 10000);
2025 	}
2026 	BNX2X_ERR("Timeout\n");
2027 	return -EAGAIN;
2028 }
2029 
2030 int bnx2x_release_leader_lock(struct bnx2x *bp)
2031 {
2032 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2033 }
2034 
2035 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2036 {
2037 	u32 lock_status;
2038 	u32 resource_bit = (1 << resource);
2039 	int func = BP_FUNC(bp);
2040 	u32 hw_lock_control_reg;
2041 
2042 	/* Validating that the resource is within range */
2043 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2044 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2045 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2046 		return -EINVAL;
2047 	}
2048 
2049 	if (func <= 5) {
2050 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2051 	} else {
2052 		hw_lock_control_reg =
2053 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2054 	}
2055 
2056 	/* Validating that the resource is currently taken */
2057 	lock_status = REG_RD(bp, hw_lock_control_reg);
2058 	if (!(lock_status & resource_bit)) {
2059 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2060 			  lock_status, resource_bit);
2061 		return -EFAULT;
2062 	}
2063 
2064 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2065 	return 0;
2066 }
2067 
2068 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2069 {
2070 	/* The GPIO should be swapped if swap register is set and active */
2071 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2072 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2073 	int gpio_shift = gpio_num +
2074 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2075 	u32 gpio_mask = (1 << gpio_shift);
2076 	u32 gpio_reg;
2077 	int value;
2078 
2079 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2080 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2081 		return -EINVAL;
2082 	}
2083 
2084 	/* read GPIO value */
2085 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2086 
2087 	/* get the requested pin value */
2088 	if ((gpio_reg & gpio_mask) == gpio_mask)
2089 		value = 1;
2090 	else
2091 		value = 0;
2092 
2093 	return value;
2094 }
2095 
2096 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2097 {
2098 	/* The GPIO should be swapped if swap register is set and active */
2099 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2100 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2101 	int gpio_shift = gpio_num +
2102 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2103 	u32 gpio_mask = (1 << gpio_shift);
2104 	u32 gpio_reg;
2105 
2106 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2107 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2108 		return -EINVAL;
2109 	}
2110 
2111 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2112 	/* read GPIO and mask except the float bits */
2113 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2114 
2115 	switch (mode) {
2116 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2117 		DP(NETIF_MSG_LINK,
2118 		   "Set GPIO %d (shift %d) -> output low\n",
2119 		   gpio_num, gpio_shift);
2120 		/* clear FLOAT and set CLR */
2121 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2122 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2123 		break;
2124 
2125 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2126 		DP(NETIF_MSG_LINK,
2127 		   "Set GPIO %d (shift %d) -> output high\n",
2128 		   gpio_num, gpio_shift);
2129 		/* clear FLOAT and set SET */
2130 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2131 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2132 		break;
2133 
2134 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2135 		DP(NETIF_MSG_LINK,
2136 		   "Set GPIO %d (shift %d) -> input\n",
2137 		   gpio_num, gpio_shift);
2138 		/* set FLOAT */
2139 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2140 		break;
2141 
2142 	default:
2143 		break;
2144 	}
2145 
2146 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2147 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2148 
2149 	return 0;
2150 }
2151 
2152 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2153 {
2154 	u32 gpio_reg = 0;
2155 	int rc = 0;
2156 
2157 	/* Any port swapping should be handled by caller. */
2158 
2159 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2160 	/* read GPIO and mask except the float bits */
2161 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2162 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2163 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2164 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2165 
2166 	switch (mode) {
2167 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2168 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2169 		/* set CLR */
2170 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2171 		break;
2172 
2173 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2174 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2175 		/* set SET */
2176 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2177 		break;
2178 
2179 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2180 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2181 		/* set FLOAT */
2182 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2183 		break;
2184 
2185 	default:
2186 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2187 		rc = -EINVAL;
2188 		break;
2189 	}
2190 
2191 	if (rc == 0)
2192 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2193 
2194 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2195 
2196 	return rc;
2197 }
2198 
2199 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2200 {
2201 	/* The GPIO should be swapped if swap register is set and active */
2202 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2203 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2204 	int gpio_shift = gpio_num +
2205 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2206 	u32 gpio_mask = (1 << gpio_shift);
2207 	u32 gpio_reg;
2208 
2209 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2210 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2211 		return -EINVAL;
2212 	}
2213 
2214 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2215 	/* read GPIO int */
2216 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2217 
2218 	switch (mode) {
2219 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2220 		DP(NETIF_MSG_LINK,
2221 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2222 		   gpio_num, gpio_shift);
2223 		/* clear SET and set CLR */
2224 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2225 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2226 		break;
2227 
2228 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2229 		DP(NETIF_MSG_LINK,
2230 		   "Set GPIO INT %d (shift %d) -> output high\n",
2231 		   gpio_num, gpio_shift);
2232 		/* clear CLR and set SET */
2233 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2234 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2235 		break;
2236 
2237 	default:
2238 		break;
2239 	}
2240 
2241 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2242 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2243 
2244 	return 0;
2245 }
2246 
2247 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2248 {
2249 	u32 spio_reg;
2250 
2251 	/* Only 2 SPIOs are configurable */
2252 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2253 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2254 		return -EINVAL;
2255 	}
2256 
2257 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2258 	/* read SPIO and mask except the float bits */
2259 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2260 
2261 	switch (mode) {
2262 	case MISC_SPIO_OUTPUT_LOW:
2263 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2264 		/* clear FLOAT and set CLR */
2265 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2266 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2267 		break;
2268 
2269 	case MISC_SPIO_OUTPUT_HIGH:
2270 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2271 		/* clear FLOAT and set SET */
2272 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2273 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2274 		break;
2275 
2276 	case MISC_SPIO_INPUT_HI_Z:
2277 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2278 		/* set FLOAT */
2279 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2280 		break;
2281 
2282 	default:
2283 		break;
2284 	}
2285 
2286 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2287 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2288 
2289 	return 0;
2290 }
2291 
2292 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2293 {
2294 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2295 
2296 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2297 					   ADVERTISED_Pause);
2298 	switch (bp->link_vars.ieee_fc &
2299 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2300 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2301 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2302 						  ADVERTISED_Pause);
2303 		break;
2304 
2305 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2306 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2307 		break;
2308 
2309 	default:
2310 		break;
2311 	}
2312 }
2313 
2314 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2315 {
2316 	/* Initialize link parameters structure variables
2317 	 * It is recommended to turn off RX FC for jumbo frames
2318 	 *  for better performance
2319 	 */
2320 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2321 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2322 	else
2323 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2324 }
2325 
2326 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2327 {
2328 	u32 pause_enabled = 0;
2329 
2330 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2331 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2332 			pause_enabled = 1;
2333 
2334 		REG_WR(bp, BAR_USTRORM_INTMEM +
2335 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2336 		       pause_enabled);
2337 	}
2338 
2339 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2340 	   pause_enabled ? "enabled" : "disabled");
2341 }
2342 
2343 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2344 {
2345 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2346 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2347 
2348 	if (!BP_NOMCP(bp)) {
2349 		bnx2x_set_requested_fc(bp);
2350 		bnx2x_acquire_phy_lock(bp);
2351 
2352 		if (load_mode == LOAD_DIAG) {
2353 			struct link_params *lp = &bp->link_params;
2354 			lp->loopback_mode = LOOPBACK_XGXS;
2355 			/* Prefer doing PHY loopback at highest speed */
2356 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2357 				if (lp->speed_cap_mask[cfx_idx] &
2358 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2359 					lp->req_line_speed[cfx_idx] =
2360 					SPEED_20000;
2361 				else if (lp->speed_cap_mask[cfx_idx] &
2362 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2363 						lp->req_line_speed[cfx_idx] =
2364 						SPEED_10000;
2365 				else
2366 					lp->req_line_speed[cfx_idx] =
2367 					SPEED_1000;
2368 			}
2369 		}
2370 
2371 		if (load_mode == LOAD_LOOPBACK_EXT) {
2372 			struct link_params *lp = &bp->link_params;
2373 			lp->loopback_mode = LOOPBACK_EXT;
2374 		}
2375 
2376 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2377 
2378 		bnx2x_release_phy_lock(bp);
2379 
2380 		bnx2x_init_dropless_fc(bp);
2381 
2382 		bnx2x_calc_fc_adv(bp);
2383 
2384 		if (bp->link_vars.link_up) {
2385 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2386 			bnx2x_link_report(bp);
2387 		}
2388 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2389 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2390 		return rc;
2391 	}
2392 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2393 	return -EINVAL;
2394 }
2395 
2396 void bnx2x_link_set(struct bnx2x *bp)
2397 {
2398 	if (!BP_NOMCP(bp)) {
2399 		bnx2x_acquire_phy_lock(bp);
2400 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2401 		bnx2x_release_phy_lock(bp);
2402 
2403 		bnx2x_init_dropless_fc(bp);
2404 
2405 		bnx2x_calc_fc_adv(bp);
2406 	} else
2407 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2408 }
2409 
2410 static void bnx2x__link_reset(struct bnx2x *bp)
2411 {
2412 	if (!BP_NOMCP(bp)) {
2413 		bnx2x_acquire_phy_lock(bp);
2414 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2415 		bnx2x_release_phy_lock(bp);
2416 	} else
2417 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2418 }
2419 
2420 void bnx2x_force_link_reset(struct bnx2x *bp)
2421 {
2422 	bnx2x_acquire_phy_lock(bp);
2423 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2424 	bnx2x_release_phy_lock(bp);
2425 }
2426 
2427 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2428 {
2429 	u8 rc = 0;
2430 
2431 	if (!BP_NOMCP(bp)) {
2432 		bnx2x_acquire_phy_lock(bp);
2433 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2434 				     is_serdes);
2435 		bnx2x_release_phy_lock(bp);
2436 	} else
2437 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2438 
2439 	return rc;
2440 }
2441 
2442 /* Calculates the sum of vn_min_rates.
2443    It's needed for further normalizing of the min_rates.
2444    Returns:
2445      sum of vn_min_rates.
2446        or
2447      0 - if all the min_rates are 0.
2448      In the later case fairness algorithm should be deactivated.
2449      If not all min_rates are zero then those that are zeroes will be set to 1.
2450  */
2451 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2452 				      struct cmng_init_input *input)
2453 {
2454 	int all_zero = 1;
2455 	int vn;
2456 
2457 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2458 		u32 vn_cfg = bp->mf_config[vn];
2459 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2460 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2461 
2462 		/* Skip hidden vns */
2463 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2464 			vn_min_rate = 0;
2465 		/* If min rate is zero - set it to 1 */
2466 		else if (!vn_min_rate)
2467 			vn_min_rate = DEF_MIN_RATE;
2468 		else
2469 			all_zero = 0;
2470 
2471 		input->vnic_min_rate[vn] = vn_min_rate;
2472 	}
2473 
2474 	/* if ETS or all min rates are zeros - disable fairness */
2475 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2476 		input->flags.cmng_enables &=
2477 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2478 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2479 	} else if (all_zero) {
2480 		input->flags.cmng_enables &=
2481 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482 		DP(NETIF_MSG_IFUP,
2483 		   "All MIN values are zeroes fairness will be disabled\n");
2484 	} else
2485 		input->flags.cmng_enables |=
2486 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2487 }
2488 
2489 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2490 				    struct cmng_init_input *input)
2491 {
2492 	u16 vn_max_rate;
2493 	u32 vn_cfg = bp->mf_config[vn];
2494 
2495 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2496 		vn_max_rate = 0;
2497 	else {
2498 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2499 
2500 		if (IS_MF_PERCENT_BW(bp)) {
2501 			/* maxCfg in percents of linkspeed */
2502 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2503 		} else /* SD modes */
2504 			/* maxCfg is absolute in 100Mb units */
2505 			vn_max_rate = maxCfg * 100;
2506 	}
2507 
2508 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2509 
2510 	input->vnic_max_rate[vn] = vn_max_rate;
2511 }
2512 
2513 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2514 {
2515 	if (CHIP_REV_IS_SLOW(bp))
2516 		return CMNG_FNS_NONE;
2517 	if (IS_MF(bp))
2518 		return CMNG_FNS_MINMAX;
2519 
2520 	return CMNG_FNS_NONE;
2521 }
2522 
2523 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2524 {
2525 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2526 
2527 	if (BP_NOMCP(bp))
2528 		return; /* what should be the default value in this case */
2529 
2530 	/* For 2 port configuration the absolute function number formula
2531 	 * is:
2532 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2533 	 *
2534 	 *      and there are 4 functions per port
2535 	 *
2536 	 * For 4 port configuration it is
2537 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2538 	 *
2539 	 *      and there are 2 functions per port
2540 	 */
2541 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2542 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2543 
2544 		if (func >= E1H_FUNC_MAX)
2545 			break;
2546 
2547 		bp->mf_config[vn] =
2548 			MF_CFG_RD(bp, func_mf_config[func].config);
2549 	}
2550 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2551 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2552 		bp->flags |= MF_FUNC_DIS;
2553 	} else {
2554 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2555 		bp->flags &= ~MF_FUNC_DIS;
2556 	}
2557 }
2558 
2559 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2560 {
2561 	struct cmng_init_input input;
2562 	memset(&input, 0, sizeof(struct cmng_init_input));
2563 
2564 	input.port_rate = bp->link_vars.line_speed;
2565 
2566 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2567 		int vn;
2568 
2569 		/* read mf conf from shmem */
2570 		if (read_cfg)
2571 			bnx2x_read_mf_cfg(bp);
2572 
2573 		/* vn_weight_sum and enable fairness if not 0 */
2574 		bnx2x_calc_vn_min(bp, &input);
2575 
2576 		/* calculate and set min-max rate for each vn */
2577 		if (bp->port.pmf)
2578 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2579 				bnx2x_calc_vn_max(bp, vn, &input);
2580 
2581 		/* always enable rate shaping and fairness */
2582 		input.flags.cmng_enables |=
2583 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2584 
2585 		bnx2x_init_cmng(&input, &bp->cmng);
2586 		return;
2587 	}
2588 
2589 	/* rate shaping and fairness are disabled */
2590 	DP(NETIF_MSG_IFUP,
2591 	   "rate shaping and fairness are disabled\n");
2592 }
2593 
2594 static void storm_memset_cmng(struct bnx2x *bp,
2595 			      struct cmng_init *cmng,
2596 			      u8 port)
2597 {
2598 	int vn;
2599 	size_t size = sizeof(struct cmng_struct_per_port);
2600 
2601 	u32 addr = BAR_XSTRORM_INTMEM +
2602 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2603 
2604 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2605 
2606 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2607 		int func = func_by_vn(bp, vn);
2608 
2609 		addr = BAR_XSTRORM_INTMEM +
2610 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2611 		size = sizeof(struct rate_shaping_vars_per_vn);
2612 		__storm_memset_struct(bp, addr, size,
2613 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2614 
2615 		addr = BAR_XSTRORM_INTMEM +
2616 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2617 		size = sizeof(struct fairness_vars_per_vn);
2618 		__storm_memset_struct(bp, addr, size,
2619 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2620 	}
2621 }
2622 
2623 /* init cmng mode in HW according to local configuration */
2624 void bnx2x_set_local_cmng(struct bnx2x *bp)
2625 {
2626 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2627 
2628 	if (cmng_fns != CMNG_FNS_NONE) {
2629 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2630 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2631 	} else {
2632 		/* rate shaping and fairness are disabled */
2633 		DP(NETIF_MSG_IFUP,
2634 		   "single function mode without fairness\n");
2635 	}
2636 }
2637 
2638 /* This function is called upon link interrupt */
2639 static void bnx2x_link_attn(struct bnx2x *bp)
2640 {
2641 	/* Make sure that we are synced with the current statistics */
2642 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2643 
2644 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2645 
2646 	bnx2x_init_dropless_fc(bp);
2647 
2648 	if (bp->link_vars.link_up) {
2649 
2650 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2651 			struct host_port_stats *pstats;
2652 
2653 			pstats = bnx2x_sp(bp, port_stats);
2654 			/* reset old mac stats */
2655 			memset(&(pstats->mac_stx[0]), 0,
2656 			       sizeof(struct mac_stx));
2657 		}
2658 		if (bp->state == BNX2X_STATE_OPEN)
2659 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2660 	}
2661 
2662 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2663 		bnx2x_set_local_cmng(bp);
2664 
2665 	__bnx2x_link_report(bp);
2666 
2667 	if (IS_MF(bp))
2668 		bnx2x_link_sync_notify(bp);
2669 }
2670 
2671 void bnx2x__link_status_update(struct bnx2x *bp)
2672 {
2673 	if (bp->state != BNX2X_STATE_OPEN)
2674 		return;
2675 
2676 	/* read updated dcb configuration */
2677 	if (IS_PF(bp)) {
2678 		bnx2x_dcbx_pmf_update(bp);
2679 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2680 		if (bp->link_vars.link_up)
2681 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2682 		else
2683 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2684 			/* indicate link status */
2685 		bnx2x_link_report(bp);
2686 
2687 	} else { /* VF */
2688 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2689 					  SUPPORTED_10baseT_Full |
2690 					  SUPPORTED_100baseT_Half |
2691 					  SUPPORTED_100baseT_Full |
2692 					  SUPPORTED_1000baseT_Full |
2693 					  SUPPORTED_2500baseX_Full |
2694 					  SUPPORTED_10000baseT_Full |
2695 					  SUPPORTED_TP |
2696 					  SUPPORTED_FIBRE |
2697 					  SUPPORTED_Autoneg |
2698 					  SUPPORTED_Pause |
2699 					  SUPPORTED_Asym_Pause);
2700 		bp->port.advertising[0] = bp->port.supported[0];
2701 
2702 		bp->link_params.bp = bp;
2703 		bp->link_params.port = BP_PORT(bp);
2704 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2705 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2706 		bp->link_params.req_line_speed[0] = SPEED_10000;
2707 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2708 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2709 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2710 		bp->link_vars.line_speed = SPEED_10000;
2711 		bp->link_vars.link_status =
2712 			(LINK_STATUS_LINK_UP |
2713 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2714 		bp->link_vars.link_up = 1;
2715 		bp->link_vars.duplex = DUPLEX_FULL;
2716 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2717 		__bnx2x_link_report(bp);
2718 
2719 		bnx2x_sample_bulletin(bp);
2720 
2721 		/* if bulletin board did not have an update for link status
2722 		 * __bnx2x_link_report will report current status
2723 		 * but it will NOT duplicate report in case of already reported
2724 		 * during sampling bulletin board.
2725 		 */
2726 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2727 	}
2728 }
2729 
2730 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2731 				  u16 vlan_val, u8 allowed_prio)
2732 {
2733 	struct bnx2x_func_state_params func_params = {NULL};
2734 	struct bnx2x_func_afex_update_params *f_update_params =
2735 		&func_params.params.afex_update;
2736 
2737 	func_params.f_obj = &bp->func_obj;
2738 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2739 
2740 	/* no need to wait for RAMROD completion, so don't
2741 	 * set RAMROD_COMP_WAIT flag
2742 	 */
2743 
2744 	f_update_params->vif_id = vifid;
2745 	f_update_params->afex_default_vlan = vlan_val;
2746 	f_update_params->allowed_priorities = allowed_prio;
2747 
2748 	/* if ramrod can not be sent, response to MCP immediately */
2749 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2750 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2751 
2752 	return 0;
2753 }
2754 
2755 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2756 					  u16 vif_index, u8 func_bit_map)
2757 {
2758 	struct bnx2x_func_state_params func_params = {NULL};
2759 	struct bnx2x_func_afex_viflists_params *update_params =
2760 		&func_params.params.afex_viflists;
2761 	int rc;
2762 	u32 drv_msg_code;
2763 
2764 	/* validate only LIST_SET and LIST_GET are received from switch */
2765 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2766 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2767 			  cmd_type);
2768 
2769 	func_params.f_obj = &bp->func_obj;
2770 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2771 
2772 	/* set parameters according to cmd_type */
2773 	update_params->afex_vif_list_command = cmd_type;
2774 	update_params->vif_list_index = vif_index;
2775 	update_params->func_bit_map =
2776 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2777 	update_params->func_to_clear = 0;
2778 	drv_msg_code =
2779 		(cmd_type == VIF_LIST_RULE_GET) ?
2780 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2781 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2782 
2783 	/* if ramrod can not be sent, respond to MCP immediately for
2784 	 * SET and GET requests (other are not triggered from MCP)
2785 	 */
2786 	rc = bnx2x_func_state_change(bp, &func_params);
2787 	if (rc < 0)
2788 		bnx2x_fw_command(bp, drv_msg_code, 0);
2789 
2790 	return 0;
2791 }
2792 
2793 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2794 {
2795 	struct afex_stats afex_stats;
2796 	u32 func = BP_ABS_FUNC(bp);
2797 	u32 mf_config;
2798 	u16 vlan_val;
2799 	u32 vlan_prio;
2800 	u16 vif_id;
2801 	u8 allowed_prio;
2802 	u8 vlan_mode;
2803 	u32 addr_to_write, vifid, addrs, stats_type, i;
2804 
2805 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2806 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2807 		DP(BNX2X_MSG_MCP,
2808 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2809 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2810 	}
2811 
2812 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2813 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2814 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2815 		DP(BNX2X_MSG_MCP,
2816 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2817 		   vifid, addrs);
2818 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2819 					       addrs);
2820 	}
2821 
2822 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2823 		addr_to_write = SHMEM2_RD(bp,
2824 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2825 		stats_type = SHMEM2_RD(bp,
2826 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2827 
2828 		DP(BNX2X_MSG_MCP,
2829 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2830 		   addr_to_write);
2831 
2832 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2833 
2834 		/* write response to scratchpad, for MCP */
2835 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2836 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2837 			       *(((u32 *)(&afex_stats))+i));
2838 
2839 		/* send ack message to MCP */
2840 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2841 	}
2842 
2843 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2844 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2845 		bp->mf_config[BP_VN(bp)] = mf_config;
2846 		DP(BNX2X_MSG_MCP,
2847 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2848 		   mf_config);
2849 
2850 		/* if VIF_SET is "enabled" */
2851 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2852 			/* set rate limit directly to internal RAM */
2853 			struct cmng_init_input cmng_input;
2854 			struct rate_shaping_vars_per_vn m_rs_vn;
2855 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2856 			u32 addr = BAR_XSTRORM_INTMEM +
2857 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2858 
2859 			bp->mf_config[BP_VN(bp)] = mf_config;
2860 
2861 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2862 			m_rs_vn.vn_counter.rate =
2863 				cmng_input.vnic_max_rate[BP_VN(bp)];
2864 			m_rs_vn.vn_counter.quota =
2865 				(m_rs_vn.vn_counter.rate *
2866 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2867 
2868 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2869 
2870 			/* read relevant values from mf_cfg struct in shmem */
2871 			vif_id =
2872 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2873 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2874 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2875 			vlan_val =
2876 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2877 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2878 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2879 			vlan_prio = (mf_config &
2880 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2881 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2882 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2883 			vlan_mode =
2884 				(MF_CFG_RD(bp,
2885 					   func_mf_config[func].afex_config) &
2886 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2887 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2888 			allowed_prio =
2889 				(MF_CFG_RD(bp,
2890 					   func_mf_config[func].afex_config) &
2891 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2892 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2893 
2894 			/* send ramrod to FW, return in case of failure */
2895 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2896 						   allowed_prio))
2897 				return;
2898 
2899 			bp->afex_def_vlan_tag = vlan_val;
2900 			bp->afex_vlan_mode = vlan_mode;
2901 		} else {
2902 			/* notify link down because BP->flags is disabled */
2903 			bnx2x_link_report(bp);
2904 
2905 			/* send INVALID VIF ramrod to FW */
2906 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2907 
2908 			/* Reset the default afex VLAN */
2909 			bp->afex_def_vlan_tag = -1;
2910 		}
2911 	}
2912 }
2913 
2914 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2915 {
2916 	struct bnx2x_func_switch_update_params *switch_update_params;
2917 	struct bnx2x_func_state_params func_params;
2918 
2919 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2920 	switch_update_params = &func_params.params.switch_update;
2921 	func_params.f_obj = &bp->func_obj;
2922 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2923 
2924 	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2925 		int func = BP_ABS_FUNC(bp);
2926 		u32 val;
2927 
2928 		/* Re-learn the S-tag from shmem */
2929 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2930 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2931 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2932 			bp->mf_ov = val;
2933 		} else {
2934 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2935 			goto fail;
2936 		}
2937 
2938 		/* Configure new S-tag in LLH */
2939 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2940 		       bp->mf_ov);
2941 
2942 		/* Send Ramrod to update FW of change */
2943 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2944 			  &switch_update_params->changes);
2945 		switch_update_params->vlan = bp->mf_ov;
2946 
2947 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2948 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2949 				  bp->mf_ov);
2950 			goto fail;
2951 		} else {
2952 			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2953 			   bp->mf_ov);
2954 		}
2955 	} else {
2956 		goto fail;
2957 	}
2958 
2959 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2960 	return;
2961 fail:
2962 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2963 }
2964 
2965 static void bnx2x_pmf_update(struct bnx2x *bp)
2966 {
2967 	int port = BP_PORT(bp);
2968 	u32 val;
2969 
2970 	bp->port.pmf = 1;
2971 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2972 
2973 	/*
2974 	 * We need the mb() to ensure the ordering between the writing to
2975 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2976 	 */
2977 	smp_mb();
2978 
2979 	/* queue a periodic task */
2980 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2981 
2982 	bnx2x_dcbx_pmf_update(bp);
2983 
2984 	/* enable nig attention */
2985 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2986 	if (bp->common.int_block == INT_BLOCK_HC) {
2987 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2988 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2989 	} else if (!CHIP_IS_E1x(bp)) {
2990 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2991 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2992 	}
2993 
2994 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2995 }
2996 
2997 /* end of Link */
2998 
2999 /* slow path */
3000 
3001 /*
3002  * General service functions
3003  */
3004 
3005 /* send the MCP a request, block until there is a reply */
3006 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3007 {
3008 	int mb_idx = BP_FW_MB_IDX(bp);
3009 	u32 seq;
3010 	u32 rc = 0;
3011 	u32 cnt = 1;
3012 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3013 
3014 	mutex_lock(&bp->fw_mb_mutex);
3015 	seq = ++bp->fw_seq;
3016 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3017 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3018 
3019 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3020 			(command | seq), param);
3021 
3022 	do {
3023 		/* let the FW do it's magic ... */
3024 		msleep(delay);
3025 
3026 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3027 
3028 		/* Give the FW up to 5 second (500*10ms) */
3029 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3030 
3031 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3032 	   cnt*delay, rc, seq);
3033 
3034 	/* is this a reply to our command? */
3035 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3036 		rc &= FW_MSG_CODE_MASK;
3037 	else {
3038 		/* FW BUG! */
3039 		BNX2X_ERR("FW failed to respond!\n");
3040 		bnx2x_fw_dump(bp);
3041 		rc = 0;
3042 	}
3043 	mutex_unlock(&bp->fw_mb_mutex);
3044 
3045 	return rc;
3046 }
3047 
3048 static void storm_memset_func_cfg(struct bnx2x *bp,
3049 				 struct tstorm_eth_function_common_config *tcfg,
3050 				 u16 abs_fid)
3051 {
3052 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3053 
3054 	u32 addr = BAR_TSTRORM_INTMEM +
3055 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3056 
3057 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3058 }
3059 
3060 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3061 {
3062 	if (CHIP_IS_E1x(bp)) {
3063 		struct tstorm_eth_function_common_config tcfg = {0};
3064 
3065 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3066 	}
3067 
3068 	/* Enable the function in the FW */
3069 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3070 	storm_memset_func_en(bp, p->func_id, 1);
3071 
3072 	/* spq */
3073 	if (p->spq_active) {
3074 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3075 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3076 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3077 	}
3078 }
3079 
3080 /**
3081  * bnx2x_get_common_flags - Return common flags
3082  *
3083  * @bp		device handle
3084  * @fp		queue handle
3085  * @zero_stats	TRUE if statistics zeroing is needed
3086  *
3087  * Return the flags that are common for the Tx-only and not normal connections.
3088  */
3089 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3090 					    struct bnx2x_fastpath *fp,
3091 					    bool zero_stats)
3092 {
3093 	unsigned long flags = 0;
3094 
3095 	/* PF driver will always initialize the Queue to an ACTIVE state */
3096 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3097 
3098 	/* tx only connections collect statistics (on the same index as the
3099 	 * parent connection). The statistics are zeroed when the parent
3100 	 * connection is initialized.
3101 	 */
3102 
3103 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3104 	if (zero_stats)
3105 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3106 
3107 	if (bp->flags & TX_SWITCHING)
3108 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3109 
3110 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3111 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3112 
3113 #ifdef BNX2X_STOP_ON_ERROR
3114 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3115 #endif
3116 
3117 	return flags;
3118 }
3119 
3120 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3121 				       struct bnx2x_fastpath *fp,
3122 				       bool leading)
3123 {
3124 	unsigned long flags = 0;
3125 
3126 	/* calculate other queue flags */
3127 	if (IS_MF_SD(bp))
3128 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3129 
3130 	if (IS_FCOE_FP(fp)) {
3131 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3132 		/* For FCoE - force usage of default priority (for afex) */
3133 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3134 	}
3135 
3136 	if (fp->mode != TPA_MODE_DISABLED) {
3137 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3138 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3139 		if (fp->mode == TPA_MODE_GRO)
3140 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3141 	}
3142 
3143 	if (leading) {
3144 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3145 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3146 	}
3147 
3148 	/* Always set HW VLAN stripping */
3149 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3150 
3151 	/* configure silent vlan removal */
3152 	if (IS_MF_AFEX(bp))
3153 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3154 
3155 	return flags | bnx2x_get_common_flags(bp, fp, true);
3156 }
3157 
3158 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3159 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3160 	u8 cos)
3161 {
3162 	gen_init->stat_id = bnx2x_stats_id(fp);
3163 	gen_init->spcl_id = fp->cl_id;
3164 
3165 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3166 	if (IS_FCOE_FP(fp))
3167 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3168 	else
3169 		gen_init->mtu = bp->dev->mtu;
3170 
3171 	gen_init->cos = cos;
3172 
3173 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3174 }
3175 
3176 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3177 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3178 	struct bnx2x_rxq_setup_params *rxq_init)
3179 {
3180 	u8 max_sge = 0;
3181 	u16 sge_sz = 0;
3182 	u16 tpa_agg_size = 0;
3183 
3184 	if (fp->mode != TPA_MODE_DISABLED) {
3185 		pause->sge_th_lo = SGE_TH_LO(bp);
3186 		pause->sge_th_hi = SGE_TH_HI(bp);
3187 
3188 		/* validate SGE ring has enough to cross high threshold */
3189 		WARN_ON(bp->dropless_fc &&
3190 				pause->sge_th_hi + FW_PREFETCH_CNT >
3191 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3192 
3193 		tpa_agg_size = TPA_AGG_SIZE;
3194 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3195 			SGE_PAGE_SHIFT;
3196 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3197 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3198 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3199 	}
3200 
3201 	/* pause - not for e1 */
3202 	if (!CHIP_IS_E1(bp)) {
3203 		pause->bd_th_lo = BD_TH_LO(bp);
3204 		pause->bd_th_hi = BD_TH_HI(bp);
3205 
3206 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3207 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3208 		/*
3209 		 * validate that rings have enough entries to cross
3210 		 * high thresholds
3211 		 */
3212 		WARN_ON(bp->dropless_fc &&
3213 				pause->bd_th_hi + FW_PREFETCH_CNT >
3214 				bp->rx_ring_size);
3215 		WARN_ON(bp->dropless_fc &&
3216 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3217 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3218 
3219 		pause->pri_map = 1;
3220 	}
3221 
3222 	/* rxq setup */
3223 	rxq_init->dscr_map = fp->rx_desc_mapping;
3224 	rxq_init->sge_map = fp->rx_sge_mapping;
3225 	rxq_init->rcq_map = fp->rx_comp_mapping;
3226 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3227 
3228 	/* This should be a maximum number of data bytes that may be
3229 	 * placed on the BD (not including paddings).
3230 	 */
3231 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3232 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3233 
3234 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3235 	rxq_init->tpa_agg_sz = tpa_agg_size;
3236 	rxq_init->sge_buf_sz = sge_sz;
3237 	rxq_init->max_sges_pkt = max_sge;
3238 	rxq_init->rss_engine_id = BP_FUNC(bp);
3239 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3240 
3241 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3242 	 *
3243 	 * For PF Clients it should be the maximum available number.
3244 	 * VF driver(s) may want to define it to a smaller value.
3245 	 */
3246 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3247 
3248 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3249 	rxq_init->fw_sb_id = fp->fw_sb_id;
3250 
3251 	if (IS_FCOE_FP(fp))
3252 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3253 	else
3254 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3255 	/* configure silent vlan removal
3256 	 * if multi function mode is afex, then mask default vlan
3257 	 */
3258 	if (IS_MF_AFEX(bp)) {
3259 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3260 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3261 	}
3262 }
3263 
3264 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3265 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3266 	u8 cos)
3267 {
3268 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3269 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3270 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3271 	txq_init->fw_sb_id = fp->fw_sb_id;
3272 
3273 	/*
3274 	 * set the tss leading client id for TX classification ==
3275 	 * leading RSS client id
3276 	 */
3277 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3278 
3279 	if (IS_FCOE_FP(fp)) {
3280 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3281 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3282 	}
3283 }
3284 
3285 static void bnx2x_pf_init(struct bnx2x *bp)
3286 {
3287 	struct bnx2x_func_init_params func_init = {0};
3288 	struct event_ring_data eq_data = { {0} };
3289 
3290 	if (!CHIP_IS_E1x(bp)) {
3291 		/* reset IGU PF statistics: MSIX + ATTN */
3292 		/* PF */
3293 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3294 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3295 			   (CHIP_MODE_IS_4_PORT(bp) ?
3296 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3297 		/* ATTN */
3298 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3299 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3300 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3301 			   (CHIP_MODE_IS_4_PORT(bp) ?
3302 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3303 	}
3304 
3305 	func_init.spq_active = true;
3306 	func_init.pf_id = BP_FUNC(bp);
3307 	func_init.func_id = BP_FUNC(bp);
3308 	func_init.spq_map = bp->spq_mapping;
3309 	func_init.spq_prod = bp->spq_prod_idx;
3310 
3311 	bnx2x_func_init(bp, &func_init);
3312 
3313 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3314 
3315 	/*
3316 	 * Congestion management values depend on the link rate
3317 	 * There is no active link so initial link rate is set to 10 Gbps.
3318 	 * When the link comes up The congestion management values are
3319 	 * re-calculated according to the actual link rate.
3320 	 */
3321 	bp->link_vars.line_speed = SPEED_10000;
3322 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3323 
3324 	/* Only the PMF sets the HW */
3325 	if (bp->port.pmf)
3326 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3327 
3328 	/* init Event Queue - PCI bus guarantees correct endianity*/
3329 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3330 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3331 	eq_data.producer = bp->eq_prod;
3332 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3333 	eq_data.sb_id = DEF_SB_ID;
3334 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3335 }
3336 
3337 static void bnx2x_e1h_disable(struct bnx2x *bp)
3338 {
3339 	int port = BP_PORT(bp);
3340 
3341 	bnx2x_tx_disable(bp);
3342 
3343 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3344 }
3345 
3346 static void bnx2x_e1h_enable(struct bnx2x *bp)
3347 {
3348 	int port = BP_PORT(bp);
3349 
3350 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3351 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3352 
3353 	/* Tx queue should be only re-enabled */
3354 	netif_tx_wake_all_queues(bp->dev);
3355 
3356 	/*
3357 	 * Should not call netif_carrier_on since it will be called if the link
3358 	 * is up when checking for link state
3359 	 */
3360 }
3361 
3362 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3363 
3364 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3365 {
3366 	struct eth_stats_info *ether_stat =
3367 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3368 	struct bnx2x_vlan_mac_obj *mac_obj =
3369 		&bp->sp_objs->mac_obj;
3370 	int i;
3371 
3372 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3373 		ETH_STAT_INFO_VERSION_LEN);
3374 
3375 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3376 	 * mac_local field in ether_stat struct. The base address is offset by 2
3377 	 * bytes to account for the field being 8 bytes but a mac address is
3378 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3379 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3380 	 * allocated by the ether_stat struct, so the macs will land in their
3381 	 * proper positions.
3382 	 */
3383 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3384 		memset(ether_stat->mac_local + i, 0,
3385 		       sizeof(ether_stat->mac_local[0]));
3386 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3387 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3388 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3389 				ETH_ALEN);
3390 	ether_stat->mtu_size = bp->dev->mtu;
3391 	if (bp->dev->features & NETIF_F_RXCSUM)
3392 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3393 	if (bp->dev->features & NETIF_F_TSO)
3394 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3395 	ether_stat->feature_flags |= bp->common.boot_mode;
3396 
3397 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3398 
3399 	ether_stat->txq_size = bp->tx_ring_size;
3400 	ether_stat->rxq_size = bp->rx_ring_size;
3401 
3402 #ifdef CONFIG_BNX2X_SRIOV
3403 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3404 #endif
3405 }
3406 
3407 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3408 {
3409 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3410 	struct fcoe_stats_info *fcoe_stat =
3411 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3412 
3413 	if (!CNIC_LOADED(bp))
3414 		return;
3415 
3416 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3417 
3418 	fcoe_stat->qos_priority =
3419 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3420 
3421 	/* insert FCoE stats from ramrod response */
3422 	if (!NO_FCOE(bp)) {
3423 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3424 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3425 			tstorm_queue_statistics;
3426 
3427 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3428 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3429 			xstorm_queue_statistics;
3430 
3431 		struct fcoe_statistics_params *fw_fcoe_stat =
3432 			&bp->fw_stats_data->fcoe;
3433 
3434 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3435 			  fcoe_stat->rx_bytes_lo,
3436 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3437 
3438 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3439 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3440 			  fcoe_stat->rx_bytes_lo,
3441 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3442 
3443 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3444 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3445 			  fcoe_stat->rx_bytes_lo,
3446 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3447 
3448 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3449 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3450 			  fcoe_stat->rx_bytes_lo,
3451 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3452 
3453 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3454 			  fcoe_stat->rx_frames_lo,
3455 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3456 
3457 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3458 			  fcoe_stat->rx_frames_lo,
3459 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3460 
3461 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462 			  fcoe_stat->rx_frames_lo,
3463 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3464 
3465 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466 			  fcoe_stat->rx_frames_lo,
3467 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3468 
3469 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3470 			  fcoe_stat->tx_bytes_lo,
3471 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3472 
3473 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3474 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3475 			  fcoe_stat->tx_bytes_lo,
3476 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3477 
3478 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3479 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3480 			  fcoe_stat->tx_bytes_lo,
3481 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3482 
3483 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3484 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3485 			  fcoe_stat->tx_bytes_lo,
3486 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3487 
3488 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3489 			  fcoe_stat->tx_frames_lo,
3490 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3491 
3492 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3493 			  fcoe_stat->tx_frames_lo,
3494 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3495 
3496 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497 			  fcoe_stat->tx_frames_lo,
3498 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3499 
3500 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501 			  fcoe_stat->tx_frames_lo,
3502 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3503 	}
3504 
3505 	/* ask L5 driver to add data to the struct */
3506 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3507 }
3508 
3509 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3510 {
3511 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3512 	struct iscsi_stats_info *iscsi_stat =
3513 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3514 
3515 	if (!CNIC_LOADED(bp))
3516 		return;
3517 
3518 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3519 	       ETH_ALEN);
3520 
3521 	iscsi_stat->qos_priority =
3522 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3523 
3524 	/* ask L5 driver to add data to the struct */
3525 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3526 }
3527 
3528 /* called due to MCP event (on pmf):
3529  *	reread new bandwidth configuration
3530  *	configure FW
3531  *	notify others function about the change
3532  */
3533 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3534 {
3535 	if (bp->link_vars.link_up) {
3536 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3537 		bnx2x_link_sync_notify(bp);
3538 	}
3539 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3540 }
3541 
3542 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3543 {
3544 	bnx2x_config_mf_bw(bp);
3545 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3546 }
3547 
3548 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3549 {
3550 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3551 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3552 }
3553 
3554 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3555 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3556 
3557 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3558 {
3559 	enum drv_info_opcode op_code;
3560 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3561 	bool release = false;
3562 	int wait;
3563 
3564 	/* if drv_info version supported by MFW doesn't match - send NACK */
3565 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3566 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3567 		return;
3568 	}
3569 
3570 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3571 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3572 
3573 	/* Must prevent other flows from accessing drv_info_to_mcp */
3574 	mutex_lock(&bp->drv_info_mutex);
3575 
3576 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3577 	       sizeof(union drv_info_to_mcp));
3578 
3579 	switch (op_code) {
3580 	case ETH_STATS_OPCODE:
3581 		bnx2x_drv_info_ether_stat(bp);
3582 		break;
3583 	case FCOE_STATS_OPCODE:
3584 		bnx2x_drv_info_fcoe_stat(bp);
3585 		break;
3586 	case ISCSI_STATS_OPCODE:
3587 		bnx2x_drv_info_iscsi_stat(bp);
3588 		break;
3589 	default:
3590 		/* if op code isn't supported - send NACK */
3591 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3592 		goto out;
3593 	}
3594 
3595 	/* if we got drv_info attn from MFW then these fields are defined in
3596 	 * shmem2 for sure
3597 	 */
3598 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3599 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3600 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3601 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3602 
3603 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3604 
3605 	/* Since possible management wants both this and get_driver_version
3606 	 * need to wait until management notifies us it finished utilizing
3607 	 * the buffer.
3608 	 */
3609 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3610 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3611 	} else if (!bp->drv_info_mng_owner) {
3612 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3613 
3614 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3615 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3616 
3617 			/* Management is done; need to clear indication */
3618 			if (indication & bit) {
3619 				SHMEM2_WR(bp, mfw_drv_indication,
3620 					  indication & ~bit);
3621 				release = true;
3622 				break;
3623 			}
3624 
3625 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3626 		}
3627 	}
3628 	if (!release) {
3629 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3630 		bp->drv_info_mng_owner = true;
3631 	}
3632 
3633 out:
3634 	mutex_unlock(&bp->drv_info_mutex);
3635 }
3636 
3637 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3638 {
3639 	u8 vals[4];
3640 	int i = 0;
3641 
3642 	if (bnx2x_format) {
3643 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3644 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3645 		if (i > 0)
3646 			vals[0] -= '0';
3647 	} else {
3648 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3649 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3650 	}
3651 
3652 	while (i < 4)
3653 		vals[i++] = 0;
3654 
3655 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3656 }
3657 
3658 void bnx2x_update_mng_version(struct bnx2x *bp)
3659 {
3660 	u32 iscsiver = DRV_VER_NOT_LOADED;
3661 	u32 fcoever = DRV_VER_NOT_LOADED;
3662 	u32 ethver = DRV_VER_NOT_LOADED;
3663 	int idx = BP_FW_MB_IDX(bp);
3664 	u8 *version;
3665 
3666 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3667 		return;
3668 
3669 	mutex_lock(&bp->drv_info_mutex);
3670 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3671 	if (bp->drv_info_mng_owner)
3672 		goto out;
3673 
3674 	if (bp->state != BNX2X_STATE_OPEN)
3675 		goto out;
3676 
3677 	/* Parse ethernet driver version */
3678 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3679 	if (!CNIC_LOADED(bp))
3680 		goto out;
3681 
3682 	/* Try getting storage driver version via cnic */
3683 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3684 	       sizeof(union drv_info_to_mcp));
3685 	bnx2x_drv_info_iscsi_stat(bp);
3686 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3687 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3688 
3689 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3690 	       sizeof(union drv_info_to_mcp));
3691 	bnx2x_drv_info_fcoe_stat(bp);
3692 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3693 	fcoever = bnx2x_update_mng_version_utility(version, false);
3694 
3695 out:
3696 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3697 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3698 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3699 
3700 	mutex_unlock(&bp->drv_info_mutex);
3701 
3702 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3703 	   ethver, iscsiver, fcoever);
3704 }
3705 
3706 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3707 {
3708 	u32 drv_ver;
3709 	u32 valid_dump;
3710 
3711 	if (!SHMEM2_HAS(bp, drv_info))
3712 		return;
3713 
3714 	/* Update Driver load time, possibly broken in y2038 */
3715 	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3716 
3717 	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3718 	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3719 
3720 	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3721 
3722 	/* Check & notify On-Chip dump. */
3723 	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3724 
3725 	if (valid_dump & FIRST_DUMP_VALID)
3726 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3727 
3728 	if (valid_dump & SECOND_DUMP_VALID)
3729 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3730 }
3731 
3732 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3733 {
3734 	u32 cmd_ok, cmd_fail;
3735 
3736 	/* sanity */
3737 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3738 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3739 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3740 		return;
3741 	}
3742 
3743 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3744 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3745 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3746 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3747 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3748 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3749 	}
3750 
3751 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3752 
3753 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3754 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3755 		/* This is the only place besides the function initialization
3756 		 * where the bp->flags can change so it is done without any
3757 		 * locks
3758 		 */
3759 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3760 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3761 			bp->flags |= MF_FUNC_DIS;
3762 
3763 			bnx2x_e1h_disable(bp);
3764 		} else {
3765 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3766 			bp->flags &= ~MF_FUNC_DIS;
3767 
3768 			bnx2x_e1h_enable(bp);
3769 		}
3770 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3771 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3772 	}
3773 
3774 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3775 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3776 		bnx2x_config_mf_bw(bp);
3777 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3778 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3779 	}
3780 
3781 	/* Report results to MCP */
3782 	if (event)
3783 		bnx2x_fw_command(bp, cmd_fail, 0);
3784 	else
3785 		bnx2x_fw_command(bp, cmd_ok, 0);
3786 }
3787 
3788 /* must be called under the spq lock */
3789 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3790 {
3791 	struct eth_spe *next_spe = bp->spq_prod_bd;
3792 
3793 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3794 		bp->spq_prod_bd = bp->spq;
3795 		bp->spq_prod_idx = 0;
3796 		DP(BNX2X_MSG_SP, "end of spq\n");
3797 	} else {
3798 		bp->spq_prod_bd++;
3799 		bp->spq_prod_idx++;
3800 	}
3801 	return next_spe;
3802 }
3803 
3804 /* must be called under the spq lock */
3805 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3806 {
3807 	int func = BP_FUNC(bp);
3808 
3809 	/*
3810 	 * Make sure that BD data is updated before writing the producer:
3811 	 * BD data is written to the memory, the producer is read from the
3812 	 * memory, thus we need a full memory barrier to ensure the ordering.
3813 	 */
3814 	mb();
3815 
3816 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3817 		 bp->spq_prod_idx);
3818 	mmiowb();
3819 }
3820 
3821 /**
3822  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3823  *
3824  * @cmd:	command to check
3825  * @cmd_type:	command type
3826  */
3827 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3828 {
3829 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3830 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3831 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3832 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3833 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3834 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3835 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3836 		return true;
3837 	else
3838 		return false;
3839 }
3840 
3841 /**
3842  * bnx2x_sp_post - place a single command on an SP ring
3843  *
3844  * @bp:		driver handle
3845  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3846  * @cid:	SW CID the command is related to
3847  * @data_hi:	command private data address (high 32 bits)
3848  * @data_lo:	command private data address (low 32 bits)
3849  * @cmd_type:	command type (e.g. NONE, ETH)
3850  *
3851  * SP data is handled as if it's always an address pair, thus data fields are
3852  * not swapped to little endian in upper functions. Instead this function swaps
3853  * data as if it's two u32 fields.
3854  */
3855 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3856 		  u32 data_hi, u32 data_lo, int cmd_type)
3857 {
3858 	struct eth_spe *spe;
3859 	u16 type;
3860 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3861 
3862 #ifdef BNX2X_STOP_ON_ERROR
3863 	if (unlikely(bp->panic)) {
3864 		BNX2X_ERR("Can't post SP when there is panic\n");
3865 		return -EIO;
3866 	}
3867 #endif
3868 
3869 	spin_lock_bh(&bp->spq_lock);
3870 
3871 	if (common) {
3872 		if (!atomic_read(&bp->eq_spq_left)) {
3873 			BNX2X_ERR("BUG! EQ ring full!\n");
3874 			spin_unlock_bh(&bp->spq_lock);
3875 			bnx2x_panic();
3876 			return -EBUSY;
3877 		}
3878 	} else if (!atomic_read(&bp->cq_spq_left)) {
3879 			BNX2X_ERR("BUG! SPQ ring full!\n");
3880 			spin_unlock_bh(&bp->spq_lock);
3881 			bnx2x_panic();
3882 			return -EBUSY;
3883 	}
3884 
3885 	spe = bnx2x_sp_get_next(bp);
3886 
3887 	/* CID needs port number to be encoded int it */
3888 	spe->hdr.conn_and_cmd_data =
3889 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3890 				    HW_CID(bp, cid));
3891 
3892 	/* In some cases, type may already contain the func-id
3893 	 * mainly in SRIOV related use cases, so we add it here only
3894 	 * if it's not already set.
3895 	 */
3896 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3897 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3898 			SPE_HDR_CONN_TYPE;
3899 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3900 			 SPE_HDR_FUNCTION_ID);
3901 	} else {
3902 		type = cmd_type;
3903 	}
3904 
3905 	spe->hdr.type = cpu_to_le16(type);
3906 
3907 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3908 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3909 
3910 	/*
3911 	 * It's ok if the actual decrement is issued towards the memory
3912 	 * somewhere between the spin_lock and spin_unlock. Thus no
3913 	 * more explicit memory barrier is needed.
3914 	 */
3915 	if (common)
3916 		atomic_dec(&bp->eq_spq_left);
3917 	else
3918 		atomic_dec(&bp->cq_spq_left);
3919 
3920 	DP(BNX2X_MSG_SP,
3921 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3922 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3923 	   (u32)(U64_LO(bp->spq_mapping) +
3924 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3925 	   HW_CID(bp, cid), data_hi, data_lo, type,
3926 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3927 
3928 	bnx2x_sp_prod_update(bp);
3929 	spin_unlock_bh(&bp->spq_lock);
3930 	return 0;
3931 }
3932 
3933 /* acquire split MCP access lock register */
3934 static int bnx2x_acquire_alr(struct bnx2x *bp)
3935 {
3936 	u32 j, val;
3937 	int rc = 0;
3938 
3939 	might_sleep();
3940 	for (j = 0; j < 1000; j++) {
3941 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3942 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3943 		if (val & MCPR_ACCESS_LOCK_LOCK)
3944 			break;
3945 
3946 		usleep_range(5000, 10000);
3947 	}
3948 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3949 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3950 		rc = -EBUSY;
3951 	}
3952 
3953 	return rc;
3954 }
3955 
3956 /* release split MCP access lock register */
3957 static void bnx2x_release_alr(struct bnx2x *bp)
3958 {
3959 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3960 }
3961 
3962 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3963 #define BNX2X_DEF_SB_IDX	0x0002
3964 
3965 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3966 {
3967 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3968 	u16 rc = 0;
3969 
3970 	barrier(); /* status block is written to by the chip */
3971 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3972 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3973 		rc |= BNX2X_DEF_SB_ATT_IDX;
3974 	}
3975 
3976 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3977 		bp->def_idx = def_sb->sp_sb.running_index;
3978 		rc |= BNX2X_DEF_SB_IDX;
3979 	}
3980 
3981 	/* Do not reorder: indices reading should complete before handling */
3982 	barrier();
3983 	return rc;
3984 }
3985 
3986 /*
3987  * slow path service functions
3988  */
3989 
3990 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3991 {
3992 	int port = BP_PORT(bp);
3993 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3994 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3995 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3996 				       NIG_REG_MASK_INTERRUPT_PORT0;
3997 	u32 aeu_mask;
3998 	u32 nig_mask = 0;
3999 	u32 reg_addr;
4000 
4001 	if (bp->attn_state & asserted)
4002 		BNX2X_ERR("IGU ERROR\n");
4003 
4004 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4005 	aeu_mask = REG_RD(bp, aeu_addr);
4006 
4007 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4008 	   aeu_mask, asserted);
4009 	aeu_mask &= ~(asserted & 0x3ff);
4010 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4011 
4012 	REG_WR(bp, aeu_addr, aeu_mask);
4013 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4014 
4015 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4016 	bp->attn_state |= asserted;
4017 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4018 
4019 	if (asserted & ATTN_HARD_WIRED_MASK) {
4020 		if (asserted & ATTN_NIG_FOR_FUNC) {
4021 
4022 			bnx2x_acquire_phy_lock(bp);
4023 
4024 			/* save nig interrupt mask */
4025 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4026 
4027 			/* If nig_mask is not set, no need to call the update
4028 			 * function.
4029 			 */
4030 			if (nig_mask) {
4031 				REG_WR(bp, nig_int_mask_addr, 0);
4032 
4033 				bnx2x_link_attn(bp);
4034 			}
4035 
4036 			/* handle unicore attn? */
4037 		}
4038 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4039 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4040 
4041 		if (asserted & GPIO_2_FUNC)
4042 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4043 
4044 		if (asserted & GPIO_3_FUNC)
4045 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4046 
4047 		if (asserted & GPIO_4_FUNC)
4048 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4049 
4050 		if (port == 0) {
4051 			if (asserted & ATTN_GENERAL_ATTN_1) {
4052 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4053 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4054 			}
4055 			if (asserted & ATTN_GENERAL_ATTN_2) {
4056 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4057 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4058 			}
4059 			if (asserted & ATTN_GENERAL_ATTN_3) {
4060 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4061 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4062 			}
4063 		} else {
4064 			if (asserted & ATTN_GENERAL_ATTN_4) {
4065 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4066 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4067 			}
4068 			if (asserted & ATTN_GENERAL_ATTN_5) {
4069 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4070 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4071 			}
4072 			if (asserted & ATTN_GENERAL_ATTN_6) {
4073 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4074 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4075 			}
4076 		}
4077 
4078 	} /* if hardwired */
4079 
4080 	if (bp->common.int_block == INT_BLOCK_HC)
4081 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4082 			    COMMAND_REG_ATTN_BITS_SET);
4083 	else
4084 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4085 
4086 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4087 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4088 	REG_WR(bp, reg_addr, asserted);
4089 
4090 	/* now set back the mask */
4091 	if (asserted & ATTN_NIG_FOR_FUNC) {
4092 		/* Verify that IGU ack through BAR was written before restoring
4093 		 * NIG mask. This loop should exit after 2-3 iterations max.
4094 		 */
4095 		if (bp->common.int_block != INT_BLOCK_HC) {
4096 			u32 cnt = 0, igu_acked;
4097 			do {
4098 				igu_acked = REG_RD(bp,
4099 						   IGU_REG_ATTENTION_ACK_BITS);
4100 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4101 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4102 			if (!igu_acked)
4103 				DP(NETIF_MSG_HW,
4104 				   "Failed to verify IGU ack on time\n");
4105 			barrier();
4106 		}
4107 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4108 		bnx2x_release_phy_lock(bp);
4109 	}
4110 }
4111 
4112 static void bnx2x_fan_failure(struct bnx2x *bp)
4113 {
4114 	int port = BP_PORT(bp);
4115 	u32 ext_phy_config;
4116 	/* mark the failure */
4117 	ext_phy_config =
4118 		SHMEM_RD(bp,
4119 			 dev_info.port_hw_config[port].external_phy_config);
4120 
4121 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4122 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4123 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4124 		 ext_phy_config);
4125 
4126 	/* log the failure */
4127 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4128 			    "Please contact OEM Support for assistance\n");
4129 
4130 	/* Schedule device reset (unload)
4131 	 * This is due to some boards consuming sufficient power when driver is
4132 	 * up to overheat if fan fails.
4133 	 */
4134 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4135 }
4136 
4137 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4138 {
4139 	int port = BP_PORT(bp);
4140 	int reg_offset;
4141 	u32 val;
4142 
4143 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4144 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4145 
4146 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4147 
4148 		val = REG_RD(bp, reg_offset);
4149 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4150 		REG_WR(bp, reg_offset, val);
4151 
4152 		BNX2X_ERR("SPIO5 hw attention\n");
4153 
4154 		/* Fan failure attention */
4155 		bnx2x_hw_reset_phy(&bp->link_params);
4156 		bnx2x_fan_failure(bp);
4157 	}
4158 
4159 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4160 		bnx2x_acquire_phy_lock(bp);
4161 		bnx2x_handle_module_detect_int(&bp->link_params);
4162 		bnx2x_release_phy_lock(bp);
4163 	}
4164 
4165 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
4166 
4167 		val = REG_RD(bp, reg_offset);
4168 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4169 		REG_WR(bp, reg_offset, val);
4170 
4171 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4172 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4173 		bnx2x_panic();
4174 	}
4175 }
4176 
4177 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4178 {
4179 	u32 val;
4180 
4181 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4182 
4183 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4184 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4185 		/* DORQ discard attention */
4186 		if (val & 0x2)
4187 			BNX2X_ERR("FATAL error from DORQ\n");
4188 	}
4189 
4190 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
4191 
4192 		int port = BP_PORT(bp);
4193 		int reg_offset;
4194 
4195 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4196 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4197 
4198 		val = REG_RD(bp, reg_offset);
4199 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4200 		REG_WR(bp, reg_offset, val);
4201 
4202 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4203 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4204 		bnx2x_panic();
4205 	}
4206 }
4207 
4208 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4209 {
4210 	u32 val;
4211 
4212 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4213 
4214 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4215 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4216 		/* CFC error attention */
4217 		if (val & 0x2)
4218 			BNX2X_ERR("FATAL error from CFC\n");
4219 	}
4220 
4221 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4222 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4223 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4224 		/* RQ_USDMDP_FIFO_OVERFLOW */
4225 		if (val & 0x18000)
4226 			BNX2X_ERR("FATAL error from PXP\n");
4227 
4228 		if (!CHIP_IS_E1x(bp)) {
4229 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4230 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4231 		}
4232 	}
4233 
4234 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
4235 
4236 		int port = BP_PORT(bp);
4237 		int reg_offset;
4238 
4239 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4240 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4241 
4242 		val = REG_RD(bp, reg_offset);
4243 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4244 		REG_WR(bp, reg_offset, val);
4245 
4246 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4247 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4248 		bnx2x_panic();
4249 	}
4250 }
4251 
4252 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4253 {
4254 	u32 val;
4255 
4256 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4257 
4258 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4259 			int func = BP_FUNC(bp);
4260 
4261 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4262 			bnx2x_read_mf_cfg(bp);
4263 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4264 					func_mf_config[BP_ABS_FUNC(bp)].config);
4265 			val = SHMEM_RD(bp,
4266 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4267 
4268 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4269 				   DRV_STATUS_OEM_EVENT_MASK))
4270 				bnx2x_oem_event(bp,
4271 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4272 						DRV_STATUS_OEM_EVENT_MASK)));
4273 
4274 			if (val & DRV_STATUS_SET_MF_BW)
4275 				bnx2x_set_mf_bw(bp);
4276 
4277 			if (val & DRV_STATUS_DRV_INFO_REQ)
4278 				bnx2x_handle_drv_info_req(bp);
4279 
4280 			if (val & DRV_STATUS_VF_DISABLED)
4281 				bnx2x_schedule_iov_task(bp,
4282 							BNX2X_IOV_HANDLE_FLR);
4283 
4284 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4285 				bnx2x_pmf_update(bp);
4286 
4287 			if (bp->port.pmf &&
4288 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4289 				bp->dcbx_enabled > 0)
4290 				/* start dcbx state machine */
4291 				bnx2x_dcbx_set_params(bp,
4292 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4293 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4294 				bnx2x_handle_afex_cmd(bp,
4295 					val & DRV_STATUS_AFEX_EVENT_MASK);
4296 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4297 				bnx2x_handle_eee_event(bp);
4298 
4299 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4300 				bnx2x_handle_update_svid_cmd(bp);
4301 
4302 			if (bp->link_vars.periodic_flags &
4303 			    PERIODIC_FLAGS_LINK_EVENT) {
4304 				/*  sync with link */
4305 				bnx2x_acquire_phy_lock(bp);
4306 				bp->link_vars.periodic_flags &=
4307 					~PERIODIC_FLAGS_LINK_EVENT;
4308 				bnx2x_release_phy_lock(bp);
4309 				if (IS_MF(bp))
4310 					bnx2x_link_sync_notify(bp);
4311 				bnx2x_link_report(bp);
4312 			}
4313 			/* Always call it here: bnx2x_link_report() will
4314 			 * prevent the link indication duplication.
4315 			 */
4316 			bnx2x__link_status_update(bp);
4317 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4318 
4319 			BNX2X_ERR("MC assert!\n");
4320 			bnx2x_mc_assert(bp);
4321 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4322 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4323 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4324 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4325 			bnx2x_panic();
4326 
4327 		} else if (attn & BNX2X_MCP_ASSERT) {
4328 
4329 			BNX2X_ERR("MCP assert!\n");
4330 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4331 			bnx2x_fw_dump(bp);
4332 
4333 		} else
4334 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4335 	}
4336 
4337 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4338 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4339 		if (attn & BNX2X_GRC_TIMEOUT) {
4340 			val = CHIP_IS_E1(bp) ? 0 :
4341 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4342 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4343 		}
4344 		if (attn & BNX2X_GRC_RSV) {
4345 			val = CHIP_IS_E1(bp) ? 0 :
4346 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4347 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4348 		}
4349 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4350 	}
4351 }
4352 
4353 /*
4354  * Bits map:
4355  * 0-7   - Engine0 load counter.
4356  * 8-15  - Engine1 load counter.
4357  * 16    - Engine0 RESET_IN_PROGRESS bit.
4358  * 17    - Engine1 RESET_IN_PROGRESS bit.
4359  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4360  *         on the engine
4361  * 19    - Engine1 ONE_IS_LOADED.
4362  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4363  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4364  *         just the one belonging to its engine).
4365  *
4366  */
4367 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4368 
4369 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4370 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4371 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4372 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4373 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4374 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4375 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4376 
4377 /*
4378  * Set the GLOBAL_RESET bit.
4379  *
4380  * Should be run under rtnl lock
4381  */
4382 void bnx2x_set_reset_global(struct bnx2x *bp)
4383 {
4384 	u32 val;
4385 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4386 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4387 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4388 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4389 }
4390 
4391 /*
4392  * Clear the GLOBAL_RESET bit.
4393  *
4394  * Should be run under rtnl lock
4395  */
4396 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4397 {
4398 	u32 val;
4399 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4400 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4401 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4402 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4403 }
4404 
4405 /*
4406  * Checks the GLOBAL_RESET bit.
4407  *
4408  * should be run under rtnl lock
4409  */
4410 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4411 {
4412 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4413 
4414 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4415 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4416 }
4417 
4418 /*
4419  * Clear RESET_IN_PROGRESS bit for the current engine.
4420  *
4421  * Should be run under rtnl lock
4422  */
4423 static void bnx2x_set_reset_done(struct bnx2x *bp)
4424 {
4425 	u32 val;
4426 	u32 bit = BP_PATH(bp) ?
4427 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4428 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4429 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4430 
4431 	/* Clear the bit */
4432 	val &= ~bit;
4433 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4434 
4435 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4436 }
4437 
4438 /*
4439  * Set RESET_IN_PROGRESS for the current engine.
4440  *
4441  * should be run under rtnl lock
4442  */
4443 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4444 {
4445 	u32 val;
4446 	u32 bit = BP_PATH(bp) ?
4447 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4448 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4449 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4450 
4451 	/* Set the bit */
4452 	val |= bit;
4453 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4454 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4455 }
4456 
4457 /*
4458  * Checks the RESET_IN_PROGRESS bit for the given engine.
4459  * should be run under rtnl lock
4460  */
4461 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4462 {
4463 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4464 	u32 bit = engine ?
4465 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4466 
4467 	/* return false if bit is set */
4468 	return (val & bit) ? false : true;
4469 }
4470 
4471 /*
4472  * set pf load for the current pf.
4473  *
4474  * should be run under rtnl lock
4475  */
4476 void bnx2x_set_pf_load(struct bnx2x *bp)
4477 {
4478 	u32 val1, val;
4479 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4480 			     BNX2X_PATH0_LOAD_CNT_MASK;
4481 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4482 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4483 
4484 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4485 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4486 
4487 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4488 
4489 	/* get the current counter value */
4490 	val1 = (val & mask) >> shift;
4491 
4492 	/* set bit of that PF */
4493 	val1 |= (1 << bp->pf_num);
4494 
4495 	/* clear the old value */
4496 	val &= ~mask;
4497 
4498 	/* set the new one */
4499 	val |= ((val1 << shift) & mask);
4500 
4501 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4502 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4503 }
4504 
4505 /**
4506  * bnx2x_clear_pf_load - clear pf load mark
4507  *
4508  * @bp:		driver handle
4509  *
4510  * Should be run under rtnl lock.
4511  * Decrements the load counter for the current engine. Returns
4512  * whether other functions are still loaded
4513  */
4514 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4515 {
4516 	u32 val1, val;
4517 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4518 			     BNX2X_PATH0_LOAD_CNT_MASK;
4519 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4520 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4521 
4522 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4523 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4524 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4525 
4526 	/* get the current counter value */
4527 	val1 = (val & mask) >> shift;
4528 
4529 	/* clear bit of that PF */
4530 	val1 &= ~(1 << bp->pf_num);
4531 
4532 	/* clear the old value */
4533 	val &= ~mask;
4534 
4535 	/* set the new one */
4536 	val |= ((val1 << shift) & mask);
4537 
4538 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4539 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4540 	return val1 != 0;
4541 }
4542 
4543 /*
4544  * Read the load status for the current engine.
4545  *
4546  * should be run under rtnl lock
4547  */
4548 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4549 {
4550 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4551 			     BNX2X_PATH0_LOAD_CNT_MASK);
4552 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4553 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4554 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4555 
4556 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4557 
4558 	val = (val & mask) >> shift;
4559 
4560 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4561 	   engine, val);
4562 
4563 	return val != 0;
4564 }
4565 
4566 static void _print_parity(struct bnx2x *bp, u32 reg)
4567 {
4568 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4569 }
4570 
4571 static void _print_next_block(int idx, const char *blk)
4572 {
4573 	pr_cont("%s%s", idx ? ", " : "", blk);
4574 }
4575 
4576 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4577 					    int *par_num, bool print)
4578 {
4579 	u32 cur_bit;
4580 	bool res;
4581 	int i;
4582 
4583 	res = false;
4584 
4585 	for (i = 0; sig; i++) {
4586 		cur_bit = (0x1UL << i);
4587 		if (sig & cur_bit) {
4588 			res |= true; /* Each bit is real error! */
4589 
4590 			if (print) {
4591 				switch (cur_bit) {
4592 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4593 					_print_next_block((*par_num)++, "BRB");
4594 					_print_parity(bp,
4595 						      BRB1_REG_BRB1_PRTY_STS);
4596 					break;
4597 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4598 					_print_next_block((*par_num)++,
4599 							  "PARSER");
4600 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4601 					break;
4602 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4603 					_print_next_block((*par_num)++, "TSDM");
4604 					_print_parity(bp,
4605 						      TSDM_REG_TSDM_PRTY_STS);
4606 					break;
4607 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4608 					_print_next_block((*par_num)++,
4609 							  "SEARCHER");
4610 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4611 					break;
4612 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4613 					_print_next_block((*par_num)++, "TCM");
4614 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4615 					break;
4616 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4617 					_print_next_block((*par_num)++,
4618 							  "TSEMI");
4619 					_print_parity(bp,
4620 						      TSEM_REG_TSEM_PRTY_STS_0);
4621 					_print_parity(bp,
4622 						      TSEM_REG_TSEM_PRTY_STS_1);
4623 					break;
4624 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4625 					_print_next_block((*par_num)++, "XPB");
4626 					_print_parity(bp, GRCBASE_XPB +
4627 							  PB_REG_PB_PRTY_STS);
4628 					break;
4629 				}
4630 			}
4631 
4632 			/* Clear the bit */
4633 			sig &= ~cur_bit;
4634 		}
4635 	}
4636 
4637 	return res;
4638 }
4639 
4640 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4641 					    int *par_num, bool *global,
4642 					    bool print)
4643 {
4644 	u32 cur_bit;
4645 	bool res;
4646 	int i;
4647 
4648 	res = false;
4649 
4650 	for (i = 0; sig; i++) {
4651 		cur_bit = (0x1UL << i);
4652 		if (sig & cur_bit) {
4653 			res |= true; /* Each bit is real error! */
4654 			switch (cur_bit) {
4655 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4656 				if (print) {
4657 					_print_next_block((*par_num)++, "PBF");
4658 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4659 				}
4660 				break;
4661 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4662 				if (print) {
4663 					_print_next_block((*par_num)++, "QM");
4664 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4665 				}
4666 				break;
4667 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4668 				if (print) {
4669 					_print_next_block((*par_num)++, "TM");
4670 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4671 				}
4672 				break;
4673 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4674 				if (print) {
4675 					_print_next_block((*par_num)++, "XSDM");
4676 					_print_parity(bp,
4677 						      XSDM_REG_XSDM_PRTY_STS);
4678 				}
4679 				break;
4680 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4681 				if (print) {
4682 					_print_next_block((*par_num)++, "XCM");
4683 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4684 				}
4685 				break;
4686 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4687 				if (print) {
4688 					_print_next_block((*par_num)++,
4689 							  "XSEMI");
4690 					_print_parity(bp,
4691 						      XSEM_REG_XSEM_PRTY_STS_0);
4692 					_print_parity(bp,
4693 						      XSEM_REG_XSEM_PRTY_STS_1);
4694 				}
4695 				break;
4696 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4697 				if (print) {
4698 					_print_next_block((*par_num)++,
4699 							  "DOORBELLQ");
4700 					_print_parity(bp,
4701 						      DORQ_REG_DORQ_PRTY_STS);
4702 				}
4703 				break;
4704 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4705 				if (print) {
4706 					_print_next_block((*par_num)++, "NIG");
4707 					if (CHIP_IS_E1x(bp)) {
4708 						_print_parity(bp,
4709 							NIG_REG_NIG_PRTY_STS);
4710 					} else {
4711 						_print_parity(bp,
4712 							NIG_REG_NIG_PRTY_STS_0);
4713 						_print_parity(bp,
4714 							NIG_REG_NIG_PRTY_STS_1);
4715 					}
4716 				}
4717 				break;
4718 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4719 				if (print)
4720 					_print_next_block((*par_num)++,
4721 							  "VAUX PCI CORE");
4722 				*global = true;
4723 				break;
4724 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4725 				if (print) {
4726 					_print_next_block((*par_num)++,
4727 							  "DEBUG");
4728 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4729 				}
4730 				break;
4731 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4732 				if (print) {
4733 					_print_next_block((*par_num)++, "USDM");
4734 					_print_parity(bp,
4735 						      USDM_REG_USDM_PRTY_STS);
4736 				}
4737 				break;
4738 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4739 				if (print) {
4740 					_print_next_block((*par_num)++, "UCM");
4741 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4742 				}
4743 				break;
4744 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4745 				if (print) {
4746 					_print_next_block((*par_num)++,
4747 							  "USEMI");
4748 					_print_parity(bp,
4749 						      USEM_REG_USEM_PRTY_STS_0);
4750 					_print_parity(bp,
4751 						      USEM_REG_USEM_PRTY_STS_1);
4752 				}
4753 				break;
4754 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4755 				if (print) {
4756 					_print_next_block((*par_num)++, "UPB");
4757 					_print_parity(bp, GRCBASE_UPB +
4758 							  PB_REG_PB_PRTY_STS);
4759 				}
4760 				break;
4761 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4762 				if (print) {
4763 					_print_next_block((*par_num)++, "CSDM");
4764 					_print_parity(bp,
4765 						      CSDM_REG_CSDM_PRTY_STS);
4766 				}
4767 				break;
4768 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4769 				if (print) {
4770 					_print_next_block((*par_num)++, "CCM");
4771 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4772 				}
4773 				break;
4774 			}
4775 
4776 			/* Clear the bit */
4777 			sig &= ~cur_bit;
4778 		}
4779 	}
4780 
4781 	return res;
4782 }
4783 
4784 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4785 					    int *par_num, bool print)
4786 {
4787 	u32 cur_bit;
4788 	bool res;
4789 	int i;
4790 
4791 	res = false;
4792 
4793 	for (i = 0; sig; i++) {
4794 		cur_bit = (0x1UL << i);
4795 		if (sig & cur_bit) {
4796 			res = true; /* Each bit is real error! */
4797 			if (print) {
4798 				switch (cur_bit) {
4799 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4800 					_print_next_block((*par_num)++,
4801 							  "CSEMI");
4802 					_print_parity(bp,
4803 						      CSEM_REG_CSEM_PRTY_STS_0);
4804 					_print_parity(bp,
4805 						      CSEM_REG_CSEM_PRTY_STS_1);
4806 					break;
4807 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4808 					_print_next_block((*par_num)++, "PXP");
4809 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4810 					_print_parity(bp,
4811 						      PXP2_REG_PXP2_PRTY_STS_0);
4812 					_print_parity(bp,
4813 						      PXP2_REG_PXP2_PRTY_STS_1);
4814 					break;
4815 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4816 					_print_next_block((*par_num)++,
4817 							  "PXPPCICLOCKCLIENT");
4818 					break;
4819 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4820 					_print_next_block((*par_num)++, "CFC");
4821 					_print_parity(bp,
4822 						      CFC_REG_CFC_PRTY_STS);
4823 					break;
4824 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4825 					_print_next_block((*par_num)++, "CDU");
4826 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4827 					break;
4828 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4829 					_print_next_block((*par_num)++, "DMAE");
4830 					_print_parity(bp,
4831 						      DMAE_REG_DMAE_PRTY_STS);
4832 					break;
4833 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4834 					_print_next_block((*par_num)++, "IGU");
4835 					if (CHIP_IS_E1x(bp))
4836 						_print_parity(bp,
4837 							HC_REG_HC_PRTY_STS);
4838 					else
4839 						_print_parity(bp,
4840 							IGU_REG_IGU_PRTY_STS);
4841 					break;
4842 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4843 					_print_next_block((*par_num)++, "MISC");
4844 					_print_parity(bp,
4845 						      MISC_REG_MISC_PRTY_STS);
4846 					break;
4847 				}
4848 			}
4849 
4850 			/* Clear the bit */
4851 			sig &= ~cur_bit;
4852 		}
4853 	}
4854 
4855 	return res;
4856 }
4857 
4858 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4859 					    int *par_num, bool *global,
4860 					    bool print)
4861 {
4862 	bool res = false;
4863 	u32 cur_bit;
4864 	int i;
4865 
4866 	for (i = 0; sig; i++) {
4867 		cur_bit = (0x1UL << i);
4868 		if (sig & cur_bit) {
4869 			switch (cur_bit) {
4870 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4871 				if (print)
4872 					_print_next_block((*par_num)++,
4873 							  "MCP ROM");
4874 				*global = true;
4875 				res = true;
4876 				break;
4877 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4878 				if (print)
4879 					_print_next_block((*par_num)++,
4880 							  "MCP UMP RX");
4881 				*global = true;
4882 				res = true;
4883 				break;
4884 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4885 				if (print)
4886 					_print_next_block((*par_num)++,
4887 							  "MCP UMP TX");
4888 				*global = true;
4889 				res = true;
4890 				break;
4891 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4892 				(*par_num)++;
4893 				/* clear latched SCPAD PATIRY from MCP */
4894 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4895 				       1UL << 10);
4896 				break;
4897 			}
4898 
4899 			/* Clear the bit */
4900 			sig &= ~cur_bit;
4901 		}
4902 	}
4903 
4904 	return res;
4905 }
4906 
4907 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4908 					    int *par_num, bool print)
4909 {
4910 	u32 cur_bit;
4911 	bool res;
4912 	int i;
4913 
4914 	res = false;
4915 
4916 	for (i = 0; sig; i++) {
4917 		cur_bit = (0x1UL << i);
4918 		if (sig & cur_bit) {
4919 			res = true; /* Each bit is real error! */
4920 			if (print) {
4921 				switch (cur_bit) {
4922 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4923 					_print_next_block((*par_num)++,
4924 							  "PGLUE_B");
4925 					_print_parity(bp,
4926 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4927 					break;
4928 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4929 					_print_next_block((*par_num)++, "ATC");
4930 					_print_parity(bp,
4931 						      ATC_REG_ATC_PRTY_STS);
4932 					break;
4933 				}
4934 			}
4935 			/* Clear the bit */
4936 			sig &= ~cur_bit;
4937 		}
4938 	}
4939 
4940 	return res;
4941 }
4942 
4943 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4944 			      u32 *sig)
4945 {
4946 	bool res = false;
4947 
4948 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4949 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4950 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4951 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4952 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4953 		int par_num = 0;
4954 
4955 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4956 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4957 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4958 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4959 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4960 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4961 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4962 		if (print) {
4963 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4964 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4965 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4966 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4967 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4968 				netdev_err(bp->dev,
4969 					   "Parity errors detected in blocks: ");
4970 			} else {
4971 				print = false;
4972 			}
4973 		}
4974 		res |= bnx2x_check_blocks_with_parity0(bp,
4975 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4976 		res |= bnx2x_check_blocks_with_parity1(bp,
4977 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4978 		res |= bnx2x_check_blocks_with_parity2(bp,
4979 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4980 		res |= bnx2x_check_blocks_with_parity3(bp,
4981 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4982 		res |= bnx2x_check_blocks_with_parity4(bp,
4983 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4984 
4985 		if (print)
4986 			pr_cont("\n");
4987 	}
4988 
4989 	return res;
4990 }
4991 
4992 /**
4993  * bnx2x_chk_parity_attn - checks for parity attentions.
4994  *
4995  * @bp:		driver handle
4996  * @global:	true if there was a global attention
4997  * @print:	show parity attention in syslog
4998  */
4999 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5000 {
5001 	struct attn_route attn = { {0} };
5002 	int port = BP_PORT(bp);
5003 
5004 	attn.sig[0] = REG_RD(bp,
5005 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5006 			     port*4);
5007 	attn.sig[1] = REG_RD(bp,
5008 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5009 			     port*4);
5010 	attn.sig[2] = REG_RD(bp,
5011 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5012 			     port*4);
5013 	attn.sig[3] = REG_RD(bp,
5014 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5015 			     port*4);
5016 	/* Since MCP attentions can't be disabled inside the block, we need to
5017 	 * read AEU registers to see whether they're currently disabled
5018 	 */
5019 	attn.sig[3] &= ((REG_RD(bp,
5020 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5021 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5022 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5023 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5024 
5025 	if (!CHIP_IS_E1x(bp))
5026 		attn.sig[4] = REG_RD(bp,
5027 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5028 				     port*4);
5029 
5030 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5031 }
5032 
5033 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5034 {
5035 	u32 val;
5036 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5037 
5038 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5039 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5040 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5041 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5042 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5043 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5044 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5045 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5046 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5047 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5048 		if (val &
5049 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5050 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5051 		if (val &
5052 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5053 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5054 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5055 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5056 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5057 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5058 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5059 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5060 	}
5061 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5062 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5063 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5064 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5065 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5066 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5067 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5068 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5069 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5070 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5071 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5072 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5073 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5074 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5075 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5076 	}
5077 
5078 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5079 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5080 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5081 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5082 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5083 	}
5084 }
5085 
5086 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5087 {
5088 	struct attn_route attn, *group_mask;
5089 	int port = BP_PORT(bp);
5090 	int index;
5091 	u32 reg_addr;
5092 	u32 val;
5093 	u32 aeu_mask;
5094 	bool global = false;
5095 
5096 	/* need to take HW lock because MCP or other port might also
5097 	   try to handle this event */
5098 	bnx2x_acquire_alr(bp);
5099 
5100 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5101 #ifndef BNX2X_STOP_ON_ERROR
5102 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5103 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5104 		/* Disable HW interrupts */
5105 		bnx2x_int_disable(bp);
5106 		/* In case of parity errors don't handle attentions so that
5107 		 * other function would "see" parity errors.
5108 		 */
5109 #else
5110 		bnx2x_panic();
5111 #endif
5112 		bnx2x_release_alr(bp);
5113 		return;
5114 	}
5115 
5116 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5117 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5118 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5119 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5120 	if (!CHIP_IS_E1x(bp))
5121 		attn.sig[4] =
5122 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5123 	else
5124 		attn.sig[4] = 0;
5125 
5126 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5127 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5128 
5129 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5130 		if (deasserted & (1 << index)) {
5131 			group_mask = &bp->attn_group[index];
5132 
5133 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5134 			   index,
5135 			   group_mask->sig[0], group_mask->sig[1],
5136 			   group_mask->sig[2], group_mask->sig[3],
5137 			   group_mask->sig[4]);
5138 
5139 			bnx2x_attn_int_deasserted4(bp,
5140 					attn.sig[4] & group_mask->sig[4]);
5141 			bnx2x_attn_int_deasserted3(bp,
5142 					attn.sig[3] & group_mask->sig[3]);
5143 			bnx2x_attn_int_deasserted1(bp,
5144 					attn.sig[1] & group_mask->sig[1]);
5145 			bnx2x_attn_int_deasserted2(bp,
5146 					attn.sig[2] & group_mask->sig[2]);
5147 			bnx2x_attn_int_deasserted0(bp,
5148 					attn.sig[0] & group_mask->sig[0]);
5149 		}
5150 	}
5151 
5152 	bnx2x_release_alr(bp);
5153 
5154 	if (bp->common.int_block == INT_BLOCK_HC)
5155 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5156 			    COMMAND_REG_ATTN_BITS_CLR);
5157 	else
5158 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5159 
5160 	val = ~deasserted;
5161 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5162 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5163 	REG_WR(bp, reg_addr, val);
5164 
5165 	if (~bp->attn_state & deasserted)
5166 		BNX2X_ERR("IGU ERROR\n");
5167 
5168 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5169 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5170 
5171 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5172 	aeu_mask = REG_RD(bp, reg_addr);
5173 
5174 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5175 	   aeu_mask, deasserted);
5176 	aeu_mask |= (deasserted & 0x3ff);
5177 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5178 
5179 	REG_WR(bp, reg_addr, aeu_mask);
5180 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5181 
5182 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5183 	bp->attn_state &= ~deasserted;
5184 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5185 }
5186 
5187 static void bnx2x_attn_int(struct bnx2x *bp)
5188 {
5189 	/* read local copy of bits */
5190 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5191 								attn_bits);
5192 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5193 								attn_bits_ack);
5194 	u32 attn_state = bp->attn_state;
5195 
5196 	/* look for changed bits */
5197 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5198 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5199 
5200 	DP(NETIF_MSG_HW,
5201 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5202 	   attn_bits, attn_ack, asserted, deasserted);
5203 
5204 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5205 		BNX2X_ERR("BAD attention state\n");
5206 
5207 	/* handle bits that were raised */
5208 	if (asserted)
5209 		bnx2x_attn_int_asserted(bp, asserted);
5210 
5211 	if (deasserted)
5212 		bnx2x_attn_int_deasserted(bp, deasserted);
5213 }
5214 
5215 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5216 		      u16 index, u8 op, u8 update)
5217 {
5218 	u32 igu_addr = bp->igu_base_addr;
5219 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5220 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5221 			     igu_addr);
5222 }
5223 
5224 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5225 {
5226 	/* No memory barriers */
5227 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5228 	mmiowb(); /* keep prod updates ordered */
5229 }
5230 
5231 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5232 				      union event_ring_elem *elem)
5233 {
5234 	u8 err = elem->message.error;
5235 
5236 	if (!bp->cnic_eth_dev.starting_cid  ||
5237 	    (cid < bp->cnic_eth_dev.starting_cid &&
5238 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5239 		return 1;
5240 
5241 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5242 
5243 	if (unlikely(err)) {
5244 
5245 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5246 			  cid);
5247 		bnx2x_panic_dump(bp, false);
5248 	}
5249 	bnx2x_cnic_cfc_comp(bp, cid, err);
5250 	return 0;
5251 }
5252 
5253 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5254 {
5255 	struct bnx2x_mcast_ramrod_params rparam;
5256 	int rc;
5257 
5258 	memset(&rparam, 0, sizeof(rparam));
5259 
5260 	rparam.mcast_obj = &bp->mcast_obj;
5261 
5262 	netif_addr_lock_bh(bp->dev);
5263 
5264 	/* Clear pending state for the last command */
5265 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5266 
5267 	/* If there are pending mcast commands - send them */
5268 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5269 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5270 		if (rc < 0)
5271 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5272 				  rc);
5273 	}
5274 
5275 	netif_addr_unlock_bh(bp->dev);
5276 }
5277 
5278 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5279 					    union event_ring_elem *elem)
5280 {
5281 	unsigned long ramrod_flags = 0;
5282 	int rc = 0;
5283 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5284 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5285 
5286 	/* Always push next commands out, don't wait here */
5287 	__set_bit(RAMROD_CONT, &ramrod_flags);
5288 
5289 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5290 			    >> BNX2X_SWCID_SHIFT) {
5291 	case BNX2X_FILTER_MAC_PENDING:
5292 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5293 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5294 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5295 		else
5296 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5297 
5298 		break;
5299 	case BNX2X_FILTER_VLAN_PENDING:
5300 		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5301 		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5302 		break;
5303 	case BNX2X_FILTER_MCAST_PENDING:
5304 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5305 		/* This is only relevant for 57710 where multicast MACs are
5306 		 * configured as unicast MACs using the same ramrod.
5307 		 */
5308 		bnx2x_handle_mcast_eqe(bp);
5309 		return;
5310 	default:
5311 		BNX2X_ERR("Unsupported classification command: %d\n",
5312 			  elem->message.data.eth_event.echo);
5313 		return;
5314 	}
5315 
5316 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5317 
5318 	if (rc < 0)
5319 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5320 	else if (rc > 0)
5321 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5322 }
5323 
5324 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5325 
5326 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5327 {
5328 	netif_addr_lock_bh(bp->dev);
5329 
5330 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5331 
5332 	/* Send rx_mode command again if was requested */
5333 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5334 		bnx2x_set_storm_rx_mode(bp);
5335 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5336 				    &bp->sp_state))
5337 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5338 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5339 				    &bp->sp_state))
5340 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5341 
5342 	netif_addr_unlock_bh(bp->dev);
5343 }
5344 
5345 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5346 					      union event_ring_elem *elem)
5347 {
5348 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5349 		DP(BNX2X_MSG_SP,
5350 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5351 		   elem->message.data.vif_list_event.func_bit_map);
5352 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5353 			elem->message.data.vif_list_event.func_bit_map);
5354 	} else if (elem->message.data.vif_list_event.echo ==
5355 		   VIF_LIST_RULE_SET) {
5356 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5357 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5358 	}
5359 }
5360 
5361 /* called with rtnl_lock */
5362 static void bnx2x_after_function_update(struct bnx2x *bp)
5363 {
5364 	int q, rc;
5365 	struct bnx2x_fastpath *fp;
5366 	struct bnx2x_queue_state_params queue_params = {NULL};
5367 	struct bnx2x_queue_update_params *q_update_params =
5368 		&queue_params.params.update;
5369 
5370 	/* Send Q update command with afex vlan removal values for all Qs */
5371 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5372 
5373 	/* set silent vlan removal values according to vlan mode */
5374 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5375 		  &q_update_params->update_flags);
5376 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5377 		  &q_update_params->update_flags);
5378 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5379 
5380 	/* in access mode mark mask and value are 0 to strip all vlans */
5381 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5382 		q_update_params->silent_removal_value = 0;
5383 		q_update_params->silent_removal_mask = 0;
5384 	} else {
5385 		q_update_params->silent_removal_value =
5386 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5387 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5388 	}
5389 
5390 	for_each_eth_queue(bp, q) {
5391 		/* Set the appropriate Queue object */
5392 		fp = &bp->fp[q];
5393 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5394 
5395 		/* send the ramrod */
5396 		rc = bnx2x_queue_state_change(bp, &queue_params);
5397 		if (rc < 0)
5398 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5399 				  q);
5400 	}
5401 
5402 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5403 		fp = &bp->fp[FCOE_IDX(bp)];
5404 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5405 
5406 		/* clear pending completion bit */
5407 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5408 
5409 		/* mark latest Q bit */
5410 		smp_mb__before_atomic();
5411 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5412 		smp_mb__after_atomic();
5413 
5414 		/* send Q update ramrod for FCoE Q */
5415 		rc = bnx2x_queue_state_change(bp, &queue_params);
5416 		if (rc < 0)
5417 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5418 				  q);
5419 	} else {
5420 		/* If no FCoE ring - ACK MCP now */
5421 		bnx2x_link_report(bp);
5422 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5423 	}
5424 }
5425 
5426 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5427 	struct bnx2x *bp, u32 cid)
5428 {
5429 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5430 
5431 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5432 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5433 	else
5434 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5435 }
5436 
5437 static void bnx2x_eq_int(struct bnx2x *bp)
5438 {
5439 	u16 hw_cons, sw_cons, sw_prod;
5440 	union event_ring_elem *elem;
5441 	u8 echo;
5442 	u32 cid;
5443 	u8 opcode;
5444 	int rc, spqe_cnt = 0;
5445 	struct bnx2x_queue_sp_obj *q_obj;
5446 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5447 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5448 
5449 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5450 
5451 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5452 	 * when we get the next-page we need to adjust so the loop
5453 	 * condition below will be met. The next element is the size of a
5454 	 * regular element and hence incrementing by 1
5455 	 */
5456 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5457 		hw_cons++;
5458 
5459 	/* This function may never run in parallel with itself for a
5460 	 * specific bp, thus there is no need in "paired" read memory
5461 	 * barrier here.
5462 	 */
5463 	sw_cons = bp->eq_cons;
5464 	sw_prod = bp->eq_prod;
5465 
5466 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5467 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5468 
5469 	for (; sw_cons != hw_cons;
5470 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5471 
5472 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5473 
5474 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5475 		if (!rc) {
5476 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5477 			   rc);
5478 			goto next_spqe;
5479 		}
5480 
5481 		/* elem CID originates from FW; actually LE */
5482 		cid = SW_CID((__force __le32)
5483 			     elem->message.data.cfc_del_event.cid);
5484 		opcode = elem->message.opcode;
5485 
5486 		/* handle eq element */
5487 		switch (opcode) {
5488 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5489 			bnx2x_vf_mbx_schedule(bp,
5490 					      &elem->message.data.vf_pf_event);
5491 			continue;
5492 
5493 		case EVENT_RING_OPCODE_STAT_QUERY:
5494 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5495 			       "got statistics comp event %d\n",
5496 			       bp->stats_comp++);
5497 			/* nothing to do with stats comp */
5498 			goto next_spqe;
5499 
5500 		case EVENT_RING_OPCODE_CFC_DEL:
5501 			/* handle according to cid range */
5502 			/*
5503 			 * we may want to verify here that the bp state is
5504 			 * HALTING
5505 			 */
5506 			DP(BNX2X_MSG_SP,
5507 			   "got delete ramrod for MULTI[%d]\n", cid);
5508 
5509 			if (CNIC_LOADED(bp) &&
5510 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5511 				goto next_spqe;
5512 
5513 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5514 
5515 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5516 				break;
5517 
5518 			goto next_spqe;
5519 
5520 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5521 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5522 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5523 			if (f_obj->complete_cmd(bp, f_obj,
5524 						BNX2X_F_CMD_TX_STOP))
5525 				break;
5526 			goto next_spqe;
5527 
5528 		case EVENT_RING_OPCODE_START_TRAFFIC:
5529 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5530 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5531 			if (f_obj->complete_cmd(bp, f_obj,
5532 						BNX2X_F_CMD_TX_START))
5533 				break;
5534 			goto next_spqe;
5535 
5536 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5537 			echo = elem->message.data.function_update_event.echo;
5538 			if (echo == SWITCH_UPDATE) {
5539 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5540 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5541 				if (f_obj->complete_cmd(
5542 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5543 					break;
5544 
5545 			} else {
5546 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5547 
5548 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5549 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5550 				f_obj->complete_cmd(bp, f_obj,
5551 						    BNX2X_F_CMD_AFEX_UPDATE);
5552 
5553 				/* We will perform the Queues update from
5554 				 * sp_rtnl task as all Queue SP operations
5555 				 * should run under rtnl_lock.
5556 				 */
5557 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5558 			}
5559 
5560 			goto next_spqe;
5561 
5562 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5563 			f_obj->complete_cmd(bp, f_obj,
5564 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5565 			bnx2x_after_afex_vif_lists(bp, elem);
5566 			goto next_spqe;
5567 		case EVENT_RING_OPCODE_FUNCTION_START:
5568 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5569 			   "got FUNC_START ramrod\n");
5570 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5571 				break;
5572 
5573 			goto next_spqe;
5574 
5575 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5576 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5577 			   "got FUNC_STOP ramrod\n");
5578 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5579 				break;
5580 
5581 			goto next_spqe;
5582 
5583 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5584 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5585 			   "got set_timesync ramrod completion\n");
5586 			if (f_obj->complete_cmd(bp, f_obj,
5587 						BNX2X_F_CMD_SET_TIMESYNC))
5588 				break;
5589 			goto next_spqe;
5590 		}
5591 
5592 		switch (opcode | bp->state) {
5593 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5594 		      BNX2X_STATE_OPEN):
5595 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5596 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5597 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5598 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5599 			cid = elem->message.data.eth_event.echo &
5600 				BNX2X_SWCID_MASK;
5601 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5602 			   cid);
5603 			rss_raw->clear_pending(rss_raw);
5604 			break;
5605 
5606 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5607 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5608 		case (EVENT_RING_OPCODE_SET_MAC |
5609 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5610 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5611 		      BNX2X_STATE_OPEN):
5612 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5613 		      BNX2X_STATE_DIAG):
5614 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5615 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5616 			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5617 			bnx2x_handle_classification_eqe(bp, elem);
5618 			break;
5619 
5620 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5621 		      BNX2X_STATE_OPEN):
5622 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5623 		      BNX2X_STATE_DIAG):
5624 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5625 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5626 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5627 			bnx2x_handle_mcast_eqe(bp);
5628 			break;
5629 
5630 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5631 		      BNX2X_STATE_OPEN):
5632 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5633 		      BNX2X_STATE_DIAG):
5634 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5635 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5636 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5637 			bnx2x_handle_rx_mode_eqe(bp);
5638 			break;
5639 		default:
5640 			/* unknown event log error and continue */
5641 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5642 				  elem->message.opcode, bp->state);
5643 		}
5644 next_spqe:
5645 		spqe_cnt++;
5646 	} /* for */
5647 
5648 	smp_mb__before_atomic();
5649 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5650 
5651 	bp->eq_cons = sw_cons;
5652 	bp->eq_prod = sw_prod;
5653 	/* Make sure that above mem writes were issued towards the memory */
5654 	smp_wmb();
5655 
5656 	/* update producer */
5657 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5658 }
5659 
5660 static void bnx2x_sp_task(struct work_struct *work)
5661 {
5662 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5663 
5664 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5665 
5666 	/* make sure the atomic interrupt_occurred has been written */
5667 	smp_rmb();
5668 	if (atomic_read(&bp->interrupt_occurred)) {
5669 
5670 		/* what work needs to be performed? */
5671 		u16 status = bnx2x_update_dsb_idx(bp);
5672 
5673 		DP(BNX2X_MSG_SP, "status %x\n", status);
5674 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5675 		atomic_set(&bp->interrupt_occurred, 0);
5676 
5677 		/* HW attentions */
5678 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5679 			bnx2x_attn_int(bp);
5680 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5681 		}
5682 
5683 		/* SP events: STAT_QUERY and others */
5684 		if (status & BNX2X_DEF_SB_IDX) {
5685 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5686 
5687 		if (FCOE_INIT(bp) &&
5688 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5689 				/* Prevent local bottom-halves from running as
5690 				 * we are going to change the local NAPI list.
5691 				 */
5692 				local_bh_disable();
5693 				napi_schedule(&bnx2x_fcoe(bp, napi));
5694 				local_bh_enable();
5695 			}
5696 
5697 			/* Handle EQ completions */
5698 			bnx2x_eq_int(bp);
5699 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5700 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5701 
5702 			status &= ~BNX2X_DEF_SB_IDX;
5703 		}
5704 
5705 		/* if status is non zero then perhaps something went wrong */
5706 		if (unlikely(status))
5707 			DP(BNX2X_MSG_SP,
5708 			   "got an unknown interrupt! (status 0x%x)\n", status);
5709 
5710 		/* ack status block only if something was actually handled */
5711 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5712 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5713 	}
5714 
5715 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5716 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5717 			       &bp->sp_state)) {
5718 		bnx2x_link_report(bp);
5719 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5720 	}
5721 }
5722 
5723 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5724 {
5725 	struct net_device *dev = dev_instance;
5726 	struct bnx2x *bp = netdev_priv(dev);
5727 
5728 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5729 		     IGU_INT_DISABLE, 0);
5730 
5731 #ifdef BNX2X_STOP_ON_ERROR
5732 	if (unlikely(bp->panic))
5733 		return IRQ_HANDLED;
5734 #endif
5735 
5736 	if (CNIC_LOADED(bp)) {
5737 		struct cnic_ops *c_ops;
5738 
5739 		rcu_read_lock();
5740 		c_ops = rcu_dereference(bp->cnic_ops);
5741 		if (c_ops)
5742 			c_ops->cnic_handler(bp->cnic_data, NULL);
5743 		rcu_read_unlock();
5744 	}
5745 
5746 	/* schedule sp task to perform default status block work, ack
5747 	 * attentions and enable interrupts.
5748 	 */
5749 	bnx2x_schedule_sp_task(bp);
5750 
5751 	return IRQ_HANDLED;
5752 }
5753 
5754 /* end of slow path */
5755 
5756 void bnx2x_drv_pulse(struct bnx2x *bp)
5757 {
5758 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5759 		 bp->fw_drv_pulse_wr_seq);
5760 }
5761 
5762 static void bnx2x_timer(unsigned long data)
5763 {
5764 	struct bnx2x *bp = (struct bnx2x *) data;
5765 
5766 	if (!netif_running(bp->dev))
5767 		return;
5768 
5769 	if (IS_PF(bp) &&
5770 	    !BP_NOMCP(bp)) {
5771 		int mb_idx = BP_FW_MB_IDX(bp);
5772 		u16 drv_pulse;
5773 		u16 mcp_pulse;
5774 
5775 		++bp->fw_drv_pulse_wr_seq;
5776 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5777 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5778 		bnx2x_drv_pulse(bp);
5779 
5780 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5781 			     MCP_PULSE_SEQ_MASK);
5782 		/* The delta between driver pulse and mcp response
5783 		 * should not get too big. If the MFW is more than 5 pulses
5784 		 * behind, we should worry about it enough to generate an error
5785 		 * log.
5786 		 */
5787 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5788 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5789 				  drv_pulse, mcp_pulse);
5790 	}
5791 
5792 	if (bp->state == BNX2X_STATE_OPEN)
5793 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5794 
5795 	/* sample pf vf bulletin board for new posts from pf */
5796 	if (IS_VF(bp))
5797 		bnx2x_timer_sriov(bp);
5798 
5799 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5800 }
5801 
5802 /* end of Statistics */
5803 
5804 /* nic init */
5805 
5806 /*
5807  * nic init service functions
5808  */
5809 
5810 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5811 {
5812 	u32 i;
5813 	if (!(len%4) && !(addr%4))
5814 		for (i = 0; i < len; i += 4)
5815 			REG_WR(bp, addr + i, fill);
5816 	else
5817 		for (i = 0; i < len; i++)
5818 			REG_WR8(bp, addr + i, fill);
5819 }
5820 
5821 /* helper: writes FP SP data to FW - data_size in dwords */
5822 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5823 				int fw_sb_id,
5824 				u32 *sb_data_p,
5825 				u32 data_size)
5826 {
5827 	int index;
5828 	for (index = 0; index < data_size; index++)
5829 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5830 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5831 			sizeof(u32)*index,
5832 			*(sb_data_p + index));
5833 }
5834 
5835 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5836 {
5837 	u32 *sb_data_p;
5838 	u32 data_size = 0;
5839 	struct hc_status_block_data_e2 sb_data_e2;
5840 	struct hc_status_block_data_e1x sb_data_e1x;
5841 
5842 	/* disable the function first */
5843 	if (!CHIP_IS_E1x(bp)) {
5844 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5845 		sb_data_e2.common.state = SB_DISABLED;
5846 		sb_data_e2.common.p_func.vf_valid = false;
5847 		sb_data_p = (u32 *)&sb_data_e2;
5848 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5849 	} else {
5850 		memset(&sb_data_e1x, 0,
5851 		       sizeof(struct hc_status_block_data_e1x));
5852 		sb_data_e1x.common.state = SB_DISABLED;
5853 		sb_data_e1x.common.p_func.vf_valid = false;
5854 		sb_data_p = (u32 *)&sb_data_e1x;
5855 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5856 	}
5857 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5858 
5859 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5860 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5861 			CSTORM_STATUS_BLOCK_SIZE);
5862 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5863 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5864 			CSTORM_SYNC_BLOCK_SIZE);
5865 }
5866 
5867 /* helper:  writes SP SB data to FW */
5868 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5869 		struct hc_sp_status_block_data *sp_sb_data)
5870 {
5871 	int func = BP_FUNC(bp);
5872 	int i;
5873 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5874 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5875 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5876 			i*sizeof(u32),
5877 			*((u32 *)sp_sb_data + i));
5878 }
5879 
5880 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5881 {
5882 	int func = BP_FUNC(bp);
5883 	struct hc_sp_status_block_data sp_sb_data;
5884 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5885 
5886 	sp_sb_data.state = SB_DISABLED;
5887 	sp_sb_data.p_func.vf_valid = false;
5888 
5889 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5890 
5891 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5892 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5893 			CSTORM_SP_STATUS_BLOCK_SIZE);
5894 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5895 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5896 			CSTORM_SP_SYNC_BLOCK_SIZE);
5897 }
5898 
5899 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5900 					   int igu_sb_id, int igu_seg_id)
5901 {
5902 	hc_sm->igu_sb_id = igu_sb_id;
5903 	hc_sm->igu_seg_id = igu_seg_id;
5904 	hc_sm->timer_value = 0xFF;
5905 	hc_sm->time_to_expire = 0xFFFFFFFF;
5906 }
5907 
5908 /* allocates state machine ids. */
5909 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5910 {
5911 	/* zero out state machine indices */
5912 	/* rx indices */
5913 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5914 
5915 	/* tx indices */
5916 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5917 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5918 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5919 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5920 
5921 	/* map indices */
5922 	/* rx indices */
5923 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5924 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5925 
5926 	/* tx indices */
5927 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5928 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5929 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5930 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5931 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5932 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5933 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5934 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5935 }
5936 
5937 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5938 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5939 {
5940 	int igu_seg_id;
5941 
5942 	struct hc_status_block_data_e2 sb_data_e2;
5943 	struct hc_status_block_data_e1x sb_data_e1x;
5944 	struct hc_status_block_sm  *hc_sm_p;
5945 	int data_size;
5946 	u32 *sb_data_p;
5947 
5948 	if (CHIP_INT_MODE_IS_BC(bp))
5949 		igu_seg_id = HC_SEG_ACCESS_NORM;
5950 	else
5951 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5952 
5953 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5954 
5955 	if (!CHIP_IS_E1x(bp)) {
5956 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5957 		sb_data_e2.common.state = SB_ENABLED;
5958 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5959 		sb_data_e2.common.p_func.vf_id = vfid;
5960 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5961 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5962 		sb_data_e2.common.same_igu_sb_1b = true;
5963 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5964 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5965 		hc_sm_p = sb_data_e2.common.state_machine;
5966 		sb_data_p = (u32 *)&sb_data_e2;
5967 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5968 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5969 	} else {
5970 		memset(&sb_data_e1x, 0,
5971 		       sizeof(struct hc_status_block_data_e1x));
5972 		sb_data_e1x.common.state = SB_ENABLED;
5973 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5974 		sb_data_e1x.common.p_func.vf_id = 0xff;
5975 		sb_data_e1x.common.p_func.vf_valid = false;
5976 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5977 		sb_data_e1x.common.same_igu_sb_1b = true;
5978 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5979 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5980 		hc_sm_p = sb_data_e1x.common.state_machine;
5981 		sb_data_p = (u32 *)&sb_data_e1x;
5982 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5983 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5984 	}
5985 
5986 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5987 				       igu_sb_id, igu_seg_id);
5988 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5989 				       igu_sb_id, igu_seg_id);
5990 
5991 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5992 
5993 	/* write indices to HW - PCI guarantees endianity of regpairs */
5994 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5995 }
5996 
5997 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5998 				     u16 tx_usec, u16 rx_usec)
5999 {
6000 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6001 				    false, rx_usec);
6002 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6003 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6004 				       tx_usec);
6005 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6006 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6007 				       tx_usec);
6008 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6009 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6010 				       tx_usec);
6011 }
6012 
6013 static void bnx2x_init_def_sb(struct bnx2x *bp)
6014 {
6015 	struct host_sp_status_block *def_sb = bp->def_status_blk;
6016 	dma_addr_t mapping = bp->def_status_blk_mapping;
6017 	int igu_sp_sb_index;
6018 	int igu_seg_id;
6019 	int port = BP_PORT(bp);
6020 	int func = BP_FUNC(bp);
6021 	int reg_offset, reg_offset_en5;
6022 	u64 section;
6023 	int index;
6024 	struct hc_sp_status_block_data sp_sb_data;
6025 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6026 
6027 	if (CHIP_INT_MODE_IS_BC(bp)) {
6028 		igu_sp_sb_index = DEF_SB_IGU_ID;
6029 		igu_seg_id = HC_SEG_ACCESS_DEF;
6030 	} else {
6031 		igu_sp_sb_index = bp->igu_dsb_id;
6032 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6033 	}
6034 
6035 	/* ATTN */
6036 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6037 					    atten_status_block);
6038 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6039 
6040 	bp->attn_state = 0;
6041 
6042 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6043 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6044 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6045 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6046 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6047 		int sindex;
6048 		/* take care of sig[0]..sig[4] */
6049 		for (sindex = 0; sindex < 4; sindex++)
6050 			bp->attn_group[index].sig[sindex] =
6051 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6052 
6053 		if (!CHIP_IS_E1x(bp))
6054 			/*
6055 			 * enable5 is separate from the rest of the registers,
6056 			 * and therefore the address skip is 4
6057 			 * and not 16 between the different groups
6058 			 */
6059 			bp->attn_group[index].sig[4] = REG_RD(bp,
6060 					reg_offset_en5 + 0x4*index);
6061 		else
6062 			bp->attn_group[index].sig[4] = 0;
6063 	}
6064 
6065 	if (bp->common.int_block == INT_BLOCK_HC) {
6066 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6067 				     HC_REG_ATTN_MSG0_ADDR_L);
6068 
6069 		REG_WR(bp, reg_offset, U64_LO(section));
6070 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6071 	} else if (!CHIP_IS_E1x(bp)) {
6072 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6073 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6074 	}
6075 
6076 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6077 					    sp_sb);
6078 
6079 	bnx2x_zero_sp_sb(bp);
6080 
6081 	/* PCI guarantees endianity of regpairs */
6082 	sp_sb_data.state		= SB_ENABLED;
6083 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6084 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6085 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6086 	sp_sb_data.igu_seg_id		= igu_seg_id;
6087 	sp_sb_data.p_func.pf_id		= func;
6088 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6089 	sp_sb_data.p_func.vf_id		= 0xff;
6090 
6091 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6092 
6093 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6094 }
6095 
6096 void bnx2x_update_coalesce(struct bnx2x *bp)
6097 {
6098 	int i;
6099 
6100 	for_each_eth_queue(bp, i)
6101 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6102 					 bp->tx_ticks, bp->rx_ticks);
6103 }
6104 
6105 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6106 {
6107 	spin_lock_init(&bp->spq_lock);
6108 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6109 
6110 	bp->spq_prod_idx = 0;
6111 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6112 	bp->spq_prod_bd = bp->spq;
6113 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6114 }
6115 
6116 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6117 {
6118 	int i;
6119 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6120 		union event_ring_elem *elem =
6121 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6122 
6123 		elem->next_page.addr.hi =
6124 			cpu_to_le32(U64_HI(bp->eq_mapping +
6125 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6126 		elem->next_page.addr.lo =
6127 			cpu_to_le32(U64_LO(bp->eq_mapping +
6128 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6129 	}
6130 	bp->eq_cons = 0;
6131 	bp->eq_prod = NUM_EQ_DESC;
6132 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6133 	/* we want a warning message before it gets wrought... */
6134 	atomic_set(&bp->eq_spq_left,
6135 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6136 }
6137 
6138 /* called with netif_addr_lock_bh() */
6139 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6140 			       unsigned long rx_mode_flags,
6141 			       unsigned long rx_accept_flags,
6142 			       unsigned long tx_accept_flags,
6143 			       unsigned long ramrod_flags)
6144 {
6145 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6146 	int rc;
6147 
6148 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6149 
6150 	/* Prepare ramrod parameters */
6151 	ramrod_param.cid = 0;
6152 	ramrod_param.cl_id = cl_id;
6153 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6154 	ramrod_param.func_id = BP_FUNC(bp);
6155 
6156 	ramrod_param.pstate = &bp->sp_state;
6157 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6158 
6159 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6160 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6161 
6162 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6163 
6164 	ramrod_param.ramrod_flags = ramrod_flags;
6165 	ramrod_param.rx_mode_flags = rx_mode_flags;
6166 
6167 	ramrod_param.rx_accept_flags = rx_accept_flags;
6168 	ramrod_param.tx_accept_flags = tx_accept_flags;
6169 
6170 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6171 	if (rc < 0) {
6172 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6173 		return rc;
6174 	}
6175 
6176 	return 0;
6177 }
6178 
6179 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6180 				   unsigned long *rx_accept_flags,
6181 				   unsigned long *tx_accept_flags)
6182 {
6183 	/* Clear the flags first */
6184 	*rx_accept_flags = 0;
6185 	*tx_accept_flags = 0;
6186 
6187 	switch (rx_mode) {
6188 	case BNX2X_RX_MODE_NONE:
6189 		/*
6190 		 * 'drop all' supersedes any accept flags that may have been
6191 		 * passed to the function.
6192 		 */
6193 		break;
6194 	case BNX2X_RX_MODE_NORMAL:
6195 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6196 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6197 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6198 
6199 		/* internal switching mode */
6200 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6201 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6202 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6203 
6204 		if (bp->accept_any_vlan) {
6205 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6206 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6207 		}
6208 
6209 		break;
6210 	case BNX2X_RX_MODE_ALLMULTI:
6211 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6212 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6213 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6214 
6215 		/* internal switching mode */
6216 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6217 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6218 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6219 
6220 		if (bp->accept_any_vlan) {
6221 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6222 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6223 		}
6224 
6225 		break;
6226 	case BNX2X_RX_MODE_PROMISC:
6227 		/* According to definition of SI mode, iface in promisc mode
6228 		 * should receive matched and unmatched (in resolution of port)
6229 		 * unicast packets.
6230 		 */
6231 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6232 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6233 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6234 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6235 
6236 		/* internal switching mode */
6237 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6238 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6239 
6240 		if (IS_MF_SI(bp))
6241 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6242 		else
6243 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6244 
6245 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6246 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6247 
6248 		break;
6249 	default:
6250 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6251 		return -EINVAL;
6252 	}
6253 
6254 	return 0;
6255 }
6256 
6257 /* called with netif_addr_lock_bh() */
6258 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6259 {
6260 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6261 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6262 	int rc;
6263 
6264 	if (!NO_FCOE(bp))
6265 		/* Configure rx_mode of FCoE Queue */
6266 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6267 
6268 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6269 				     &tx_accept_flags);
6270 	if (rc)
6271 		return rc;
6272 
6273 	__set_bit(RAMROD_RX, &ramrod_flags);
6274 	__set_bit(RAMROD_TX, &ramrod_flags);
6275 
6276 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6277 				   rx_accept_flags, tx_accept_flags,
6278 				   ramrod_flags);
6279 }
6280 
6281 static void bnx2x_init_internal_common(struct bnx2x *bp)
6282 {
6283 	int i;
6284 
6285 	/* Zero this manually as its initialization is
6286 	   currently missing in the initTool */
6287 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6288 		REG_WR(bp, BAR_USTRORM_INTMEM +
6289 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6290 	if (!CHIP_IS_E1x(bp)) {
6291 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6292 			CHIP_INT_MODE_IS_BC(bp) ?
6293 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6294 	}
6295 }
6296 
6297 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6298 {
6299 	switch (load_code) {
6300 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6301 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6302 		bnx2x_init_internal_common(bp);
6303 		/* no break */
6304 
6305 	case FW_MSG_CODE_DRV_LOAD_PORT:
6306 		/* nothing to do */
6307 		/* no break */
6308 
6309 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6310 		/* internal memory per function is
6311 		   initialized inside bnx2x_pf_init */
6312 		break;
6313 
6314 	default:
6315 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6316 		break;
6317 	}
6318 }
6319 
6320 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6321 {
6322 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6323 }
6324 
6325 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6326 {
6327 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6328 }
6329 
6330 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6331 {
6332 	if (CHIP_IS_E1x(fp->bp))
6333 		return BP_L_ID(fp->bp) + fp->index;
6334 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6335 		return bnx2x_fp_igu_sb_id(fp);
6336 }
6337 
6338 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6339 {
6340 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6341 	u8 cos;
6342 	unsigned long q_type = 0;
6343 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6344 	fp->rx_queue = fp_idx;
6345 	fp->cid = fp_idx;
6346 	fp->cl_id = bnx2x_fp_cl_id(fp);
6347 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6348 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6349 	/* qZone id equals to FW (per path) client id */
6350 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6351 
6352 	/* init shortcut */
6353 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6354 
6355 	/* Setup SB indices */
6356 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6357 
6358 	/* Configure Queue State object */
6359 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6360 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6361 
6362 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6363 
6364 	/* init tx data */
6365 	for_each_cos_in_tx_queue(fp, cos) {
6366 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6367 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6368 				  FP_COS_TO_TXQ(fp, cos, bp),
6369 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6370 		cids[cos] = fp->txdata_ptr[cos]->cid;
6371 	}
6372 
6373 	/* nothing more for vf to do here */
6374 	if (IS_VF(bp))
6375 		return;
6376 
6377 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6378 		      fp->fw_sb_id, fp->igu_sb_id);
6379 	bnx2x_update_fpsb_idx(fp);
6380 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6381 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6382 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6383 
6384 	/**
6385 	 * Configure classification DBs: Always enable Tx switching
6386 	 */
6387 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6388 
6389 	DP(NETIF_MSG_IFUP,
6390 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6391 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6392 	   fp->igu_sb_id);
6393 }
6394 
6395 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6396 {
6397 	int i;
6398 
6399 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6400 		struct eth_tx_next_bd *tx_next_bd =
6401 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6402 
6403 		tx_next_bd->addr_hi =
6404 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6405 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6406 		tx_next_bd->addr_lo =
6407 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6408 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6409 	}
6410 
6411 	*txdata->tx_cons_sb = cpu_to_le16(0);
6412 
6413 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6414 	txdata->tx_db.data.zero_fill1 = 0;
6415 	txdata->tx_db.data.prod = 0;
6416 
6417 	txdata->tx_pkt_prod = 0;
6418 	txdata->tx_pkt_cons = 0;
6419 	txdata->tx_bd_prod = 0;
6420 	txdata->tx_bd_cons = 0;
6421 	txdata->tx_pkt = 0;
6422 }
6423 
6424 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6425 {
6426 	int i;
6427 
6428 	for_each_tx_queue_cnic(bp, i)
6429 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6430 }
6431 
6432 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6433 {
6434 	int i;
6435 	u8 cos;
6436 
6437 	for_each_eth_queue(bp, i)
6438 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6439 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6440 }
6441 
6442 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6443 {
6444 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6445 	unsigned long q_type = 0;
6446 
6447 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6448 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6449 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6450 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6451 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6452 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6453 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6454 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6455 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6456 			  fp);
6457 
6458 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6459 
6460 	/* qZone id equals to FW (per path) client id */
6461 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6462 	/* init shortcut */
6463 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6464 		bnx2x_rx_ustorm_prods_offset(fp);
6465 
6466 	/* Configure Queue State object */
6467 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6468 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6469 
6470 	/* No multi-CoS for FCoE L2 client */
6471 	BUG_ON(fp->max_cos != 1);
6472 
6473 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6474 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6475 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6476 
6477 	DP(NETIF_MSG_IFUP,
6478 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6479 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6480 	   fp->igu_sb_id);
6481 }
6482 
6483 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6484 {
6485 	if (!NO_FCOE(bp))
6486 		bnx2x_init_fcoe_fp(bp);
6487 
6488 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6489 		      BNX2X_VF_ID_INVALID, false,
6490 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6491 
6492 	/* ensure status block indices were read */
6493 	rmb();
6494 	bnx2x_init_rx_rings_cnic(bp);
6495 	bnx2x_init_tx_rings_cnic(bp);
6496 
6497 	/* flush all */
6498 	mb();
6499 	mmiowb();
6500 }
6501 
6502 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6503 {
6504 	int i;
6505 
6506 	/* Setup NIC internals and enable interrupts */
6507 	for_each_eth_queue(bp, i)
6508 		bnx2x_init_eth_fp(bp, i);
6509 
6510 	/* ensure status block indices were read */
6511 	rmb();
6512 	bnx2x_init_rx_rings(bp);
6513 	bnx2x_init_tx_rings(bp);
6514 
6515 	if (IS_PF(bp)) {
6516 		/* Initialize MOD_ABS interrupts */
6517 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6518 				       bp->common.shmem_base,
6519 				       bp->common.shmem2_base, BP_PORT(bp));
6520 
6521 		/* initialize the default status block and sp ring */
6522 		bnx2x_init_def_sb(bp);
6523 		bnx2x_update_dsb_idx(bp);
6524 		bnx2x_init_sp_ring(bp);
6525 	} else {
6526 		bnx2x_memset_stats(bp);
6527 	}
6528 }
6529 
6530 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6531 {
6532 	bnx2x_init_eq_ring(bp);
6533 	bnx2x_init_internal(bp, load_code);
6534 	bnx2x_pf_init(bp);
6535 	bnx2x_stats_init(bp);
6536 
6537 	/* flush all before enabling interrupts */
6538 	mb();
6539 	mmiowb();
6540 
6541 	bnx2x_int_enable(bp);
6542 
6543 	/* Check for SPIO5 */
6544 	bnx2x_attn_int_deasserted0(bp,
6545 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6546 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6547 }
6548 
6549 /* gzip service functions */
6550 static int bnx2x_gunzip_init(struct bnx2x *bp)
6551 {
6552 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6553 					    &bp->gunzip_mapping, GFP_KERNEL);
6554 	if (bp->gunzip_buf  == NULL)
6555 		goto gunzip_nomem1;
6556 
6557 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6558 	if (bp->strm  == NULL)
6559 		goto gunzip_nomem2;
6560 
6561 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6562 	if (bp->strm->workspace == NULL)
6563 		goto gunzip_nomem3;
6564 
6565 	return 0;
6566 
6567 gunzip_nomem3:
6568 	kfree(bp->strm);
6569 	bp->strm = NULL;
6570 
6571 gunzip_nomem2:
6572 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6573 			  bp->gunzip_mapping);
6574 	bp->gunzip_buf = NULL;
6575 
6576 gunzip_nomem1:
6577 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6578 	return -ENOMEM;
6579 }
6580 
6581 static void bnx2x_gunzip_end(struct bnx2x *bp)
6582 {
6583 	if (bp->strm) {
6584 		vfree(bp->strm->workspace);
6585 		kfree(bp->strm);
6586 		bp->strm = NULL;
6587 	}
6588 
6589 	if (bp->gunzip_buf) {
6590 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6591 				  bp->gunzip_mapping);
6592 		bp->gunzip_buf = NULL;
6593 	}
6594 }
6595 
6596 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6597 {
6598 	int n, rc;
6599 
6600 	/* check gzip header */
6601 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6602 		BNX2X_ERR("Bad gzip header\n");
6603 		return -EINVAL;
6604 	}
6605 
6606 	n = 10;
6607 
6608 #define FNAME				0x8
6609 
6610 	if (zbuf[3] & FNAME)
6611 		while ((zbuf[n++] != 0) && (n < len));
6612 
6613 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6614 	bp->strm->avail_in = len - n;
6615 	bp->strm->next_out = bp->gunzip_buf;
6616 	bp->strm->avail_out = FW_BUF_SIZE;
6617 
6618 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6619 	if (rc != Z_OK)
6620 		return rc;
6621 
6622 	rc = zlib_inflate(bp->strm, Z_FINISH);
6623 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6624 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6625 			   bp->strm->msg);
6626 
6627 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6628 	if (bp->gunzip_outlen & 0x3)
6629 		netdev_err(bp->dev,
6630 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6631 				bp->gunzip_outlen);
6632 	bp->gunzip_outlen >>= 2;
6633 
6634 	zlib_inflateEnd(bp->strm);
6635 
6636 	if (rc == Z_STREAM_END)
6637 		return 0;
6638 
6639 	return rc;
6640 }
6641 
6642 /* nic load/unload */
6643 
6644 /*
6645  * General service functions
6646  */
6647 
6648 /* send a NIG loopback debug packet */
6649 static void bnx2x_lb_pckt(struct bnx2x *bp)
6650 {
6651 	u32 wb_write[3];
6652 
6653 	/* Ethernet source and destination addresses */
6654 	wb_write[0] = 0x55555555;
6655 	wb_write[1] = 0x55555555;
6656 	wb_write[2] = 0x20;		/* SOP */
6657 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6658 
6659 	/* NON-IP protocol */
6660 	wb_write[0] = 0x09000000;
6661 	wb_write[1] = 0x55555555;
6662 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6663 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6664 }
6665 
6666 /* some of the internal memories
6667  * are not directly readable from the driver
6668  * to test them we send debug packets
6669  */
6670 static int bnx2x_int_mem_test(struct bnx2x *bp)
6671 {
6672 	int factor;
6673 	int count, i;
6674 	u32 val = 0;
6675 
6676 	if (CHIP_REV_IS_FPGA(bp))
6677 		factor = 120;
6678 	else if (CHIP_REV_IS_EMUL(bp))
6679 		factor = 200;
6680 	else
6681 		factor = 1;
6682 
6683 	/* Disable inputs of parser neighbor blocks */
6684 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6685 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6686 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6687 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6688 
6689 	/*  Write 0 to parser credits for CFC search request */
6690 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6691 
6692 	/* send Ethernet packet */
6693 	bnx2x_lb_pckt(bp);
6694 
6695 	/* TODO do i reset NIG statistic? */
6696 	/* Wait until NIG register shows 1 packet of size 0x10 */
6697 	count = 1000 * factor;
6698 	while (count) {
6699 
6700 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6701 		val = *bnx2x_sp(bp, wb_data[0]);
6702 		if (val == 0x10)
6703 			break;
6704 
6705 		usleep_range(10000, 20000);
6706 		count--;
6707 	}
6708 	if (val != 0x10) {
6709 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6710 		return -1;
6711 	}
6712 
6713 	/* Wait until PRS register shows 1 packet */
6714 	count = 1000 * factor;
6715 	while (count) {
6716 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6717 		if (val == 1)
6718 			break;
6719 
6720 		usleep_range(10000, 20000);
6721 		count--;
6722 	}
6723 	if (val != 0x1) {
6724 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6725 		return -2;
6726 	}
6727 
6728 	/* Reset and init BRB, PRS */
6729 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6730 	msleep(50);
6731 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6732 	msleep(50);
6733 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6734 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6735 
6736 	DP(NETIF_MSG_HW, "part2\n");
6737 
6738 	/* Disable inputs of parser neighbor blocks */
6739 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6740 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6741 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6742 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6743 
6744 	/* Write 0 to parser credits for CFC search request */
6745 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6746 
6747 	/* send 10 Ethernet packets */
6748 	for (i = 0; i < 10; i++)
6749 		bnx2x_lb_pckt(bp);
6750 
6751 	/* Wait until NIG register shows 10 + 1
6752 	   packets of size 11*0x10 = 0xb0 */
6753 	count = 1000 * factor;
6754 	while (count) {
6755 
6756 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6757 		val = *bnx2x_sp(bp, wb_data[0]);
6758 		if (val == 0xb0)
6759 			break;
6760 
6761 		usleep_range(10000, 20000);
6762 		count--;
6763 	}
6764 	if (val != 0xb0) {
6765 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6766 		return -3;
6767 	}
6768 
6769 	/* Wait until PRS register shows 2 packets */
6770 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6771 	if (val != 2)
6772 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6773 
6774 	/* Write 1 to parser credits for CFC search request */
6775 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6776 
6777 	/* Wait until PRS register shows 3 packets */
6778 	msleep(10 * factor);
6779 	/* Wait until NIG register shows 1 packet of size 0x10 */
6780 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6781 	if (val != 3)
6782 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6783 
6784 	/* clear NIG EOP FIFO */
6785 	for (i = 0; i < 11; i++)
6786 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6787 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6788 	if (val != 1) {
6789 		BNX2X_ERR("clear of NIG failed\n");
6790 		return -4;
6791 	}
6792 
6793 	/* Reset and init BRB, PRS, NIG */
6794 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6795 	msleep(50);
6796 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6797 	msleep(50);
6798 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6799 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6800 	if (!CNIC_SUPPORT(bp))
6801 		/* set NIC mode */
6802 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6803 
6804 	/* Enable inputs of parser neighbor blocks */
6805 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6806 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6807 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6808 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6809 
6810 	DP(NETIF_MSG_HW, "done\n");
6811 
6812 	return 0; /* OK */
6813 }
6814 
6815 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6816 {
6817 	u32 val;
6818 
6819 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6820 	if (!CHIP_IS_E1x(bp))
6821 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6822 	else
6823 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6824 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6825 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6826 	/*
6827 	 * mask read length error interrupts in brb for parser
6828 	 * (parsing unit and 'checksum and crc' unit)
6829 	 * these errors are legal (PU reads fixed length and CAC can cause
6830 	 * read length error on truncated packets)
6831 	 */
6832 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6833 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6834 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6835 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6836 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6837 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6838 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6839 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6840 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6841 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6842 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6843 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6844 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6845 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6846 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6847 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6848 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6849 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6850 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6851 
6852 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6853 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6854 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6855 	if (!CHIP_IS_E1x(bp))
6856 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6857 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6858 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6859 
6860 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6861 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6862 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6863 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6864 
6865 	if (!CHIP_IS_E1x(bp))
6866 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6867 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6868 
6869 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6870 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6871 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6872 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6873 }
6874 
6875 static void bnx2x_reset_common(struct bnx2x *bp)
6876 {
6877 	u32 val = 0x1400;
6878 
6879 	/* reset_common */
6880 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6881 	       0xd3ffff7f);
6882 
6883 	if (CHIP_IS_E3(bp)) {
6884 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6885 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6886 	}
6887 
6888 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6889 }
6890 
6891 static void bnx2x_setup_dmae(struct bnx2x *bp)
6892 {
6893 	bp->dmae_ready = 0;
6894 	spin_lock_init(&bp->dmae_lock);
6895 }
6896 
6897 static void bnx2x_init_pxp(struct bnx2x *bp)
6898 {
6899 	u16 devctl;
6900 	int r_order, w_order;
6901 
6902 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6903 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6904 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6905 	if (bp->mrrs == -1)
6906 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6907 	else {
6908 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6909 		r_order = bp->mrrs;
6910 	}
6911 
6912 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6913 }
6914 
6915 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6916 {
6917 	int is_required;
6918 	u32 val;
6919 	int port;
6920 
6921 	if (BP_NOMCP(bp))
6922 		return;
6923 
6924 	is_required = 0;
6925 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6926 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6927 
6928 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6929 		is_required = 1;
6930 
6931 	/*
6932 	 * The fan failure mechanism is usually related to the PHY type since
6933 	 * the power consumption of the board is affected by the PHY. Currently,
6934 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6935 	 */
6936 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6937 		for (port = PORT_0; port < PORT_MAX; port++) {
6938 			is_required |=
6939 				bnx2x_fan_failure_det_req(
6940 					bp,
6941 					bp->common.shmem_base,
6942 					bp->common.shmem2_base,
6943 					port);
6944 		}
6945 
6946 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6947 
6948 	if (is_required == 0)
6949 		return;
6950 
6951 	/* Fan failure is indicated by SPIO 5 */
6952 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6953 
6954 	/* set to active low mode */
6955 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6956 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6957 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6958 
6959 	/* enable interrupt to signal the IGU */
6960 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6961 	val |= MISC_SPIO_SPIO5;
6962 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6963 }
6964 
6965 void bnx2x_pf_disable(struct bnx2x *bp)
6966 {
6967 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6968 	val &= ~IGU_PF_CONF_FUNC_EN;
6969 
6970 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6971 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6972 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6973 }
6974 
6975 static void bnx2x__common_init_phy(struct bnx2x *bp)
6976 {
6977 	u32 shmem_base[2], shmem2_base[2];
6978 	/* Avoid common init in case MFW supports LFA */
6979 	if (SHMEM2_RD(bp, size) >
6980 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6981 		return;
6982 	shmem_base[0] =  bp->common.shmem_base;
6983 	shmem2_base[0] = bp->common.shmem2_base;
6984 	if (!CHIP_IS_E1x(bp)) {
6985 		shmem_base[1] =
6986 			SHMEM2_RD(bp, other_shmem_base_addr);
6987 		shmem2_base[1] =
6988 			SHMEM2_RD(bp, other_shmem2_base_addr);
6989 	}
6990 	bnx2x_acquire_phy_lock(bp);
6991 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6992 			      bp->common.chip_id);
6993 	bnx2x_release_phy_lock(bp);
6994 }
6995 
6996 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6997 {
6998 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6999 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7000 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7001 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7002 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7003 
7004 	/* make sure this value is 0 */
7005 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7006 
7007 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7008 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7009 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7010 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7011 }
7012 
7013 static void bnx2x_set_endianity(struct bnx2x *bp)
7014 {
7015 #ifdef __BIG_ENDIAN
7016 	bnx2x_config_endianity(bp, 1);
7017 #else
7018 	bnx2x_config_endianity(bp, 0);
7019 #endif
7020 }
7021 
7022 static void bnx2x_reset_endianity(struct bnx2x *bp)
7023 {
7024 	bnx2x_config_endianity(bp, 0);
7025 }
7026 
7027 /**
7028  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7029  *
7030  * @bp:		driver handle
7031  */
7032 static int bnx2x_init_hw_common(struct bnx2x *bp)
7033 {
7034 	u32 val;
7035 
7036 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7037 
7038 	/*
7039 	 * take the RESET lock to protect undi_unload flow from accessing
7040 	 * registers while we're resetting the chip
7041 	 */
7042 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7043 
7044 	bnx2x_reset_common(bp);
7045 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7046 
7047 	val = 0xfffc;
7048 	if (CHIP_IS_E3(bp)) {
7049 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7050 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7051 	}
7052 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7053 
7054 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7055 
7056 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7057 
7058 	if (!CHIP_IS_E1x(bp)) {
7059 		u8 abs_func_id;
7060 
7061 		/**
7062 		 * 4-port mode or 2-port mode we need to turn of master-enable
7063 		 * for everyone, after that, turn it back on for self.
7064 		 * so, we disregard multi-function or not, and always disable
7065 		 * for all functions on the given path, this means 0,2,4,6 for
7066 		 * path 0 and 1,3,5,7 for path 1
7067 		 */
7068 		for (abs_func_id = BP_PATH(bp);
7069 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7070 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7071 				REG_WR(bp,
7072 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7073 				    1);
7074 				continue;
7075 			}
7076 
7077 			bnx2x_pretend_func(bp, abs_func_id);
7078 			/* clear pf enable */
7079 			bnx2x_pf_disable(bp);
7080 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7081 		}
7082 	}
7083 
7084 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7085 	if (CHIP_IS_E1(bp)) {
7086 		/* enable HW interrupt from PXP on USDM overflow
7087 		   bit 16 on INT_MASK_0 */
7088 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7089 	}
7090 
7091 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7092 	bnx2x_init_pxp(bp);
7093 	bnx2x_set_endianity(bp);
7094 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7095 
7096 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7097 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7098 
7099 	/* let the HW do it's magic ... */
7100 	msleep(100);
7101 	/* finish PXP init */
7102 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7103 	if (val != 1) {
7104 		BNX2X_ERR("PXP2 CFG failed\n");
7105 		return -EBUSY;
7106 	}
7107 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7108 	if (val != 1) {
7109 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7110 		return -EBUSY;
7111 	}
7112 
7113 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7114 	 * have entries with value "0" and valid bit on.
7115 	 * This needs to be done by the first PF that is loaded in a path
7116 	 * (i.e. common phase)
7117 	 */
7118 	if (!CHIP_IS_E1x(bp)) {
7119 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7120  * (i.e. vnic3) to start even if it is marked as "scan-off".
7121  * This occurs when a different function (func2,3) is being marked
7122  * as "scan-off". Real-life scenario for example: if a driver is being
7123  * load-unloaded while func6,7 are down. This will cause the timer to access
7124  * the ilt, translate to a logical address and send a request to read/write.
7125  * Since the ilt for the function that is down is not valid, this will cause
7126  * a translation error which is unrecoverable.
7127  * The Workaround is intended to make sure that when this happens nothing fatal
7128  * will occur. The workaround:
7129  *	1.  First PF driver which loads on a path will:
7130  *		a.  After taking the chip out of reset, by using pretend,
7131  *		    it will write "0" to the following registers of
7132  *		    the other vnics.
7133  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7134  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7135  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7136  *		    And for itself it will write '1' to
7137  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7138  *		    dmae-operations (writing to pram for example.)
7139  *		    note: can be done for only function 6,7 but cleaner this
7140  *			  way.
7141  *		b.  Write zero+valid to the entire ILT.
7142  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7143  *		    VNIC3 (of that port). The range allocated will be the
7144  *		    entire ILT. This is needed to prevent  ILT range error.
7145  *	2.  Any PF driver load flow:
7146  *		a.  ILT update with the physical addresses of the allocated
7147  *		    logical pages.
7148  *		b.  Wait 20msec. - note that this timeout is needed to make
7149  *		    sure there are no requests in one of the PXP internal
7150  *		    queues with "old" ILT addresses.
7151  *		c.  PF enable in the PGLC.
7152  *		d.  Clear the was_error of the PF in the PGLC. (could have
7153  *		    occurred while driver was down)
7154  *		e.  PF enable in the CFC (WEAK + STRONG)
7155  *		f.  Timers scan enable
7156  *	3.  PF driver unload flow:
7157  *		a.  Clear the Timers scan_en.
7158  *		b.  Polling for scan_on=0 for that PF.
7159  *		c.  Clear the PF enable bit in the PXP.
7160  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7161  *		e.  Write zero+valid to all ILT entries (The valid bit must
7162  *		    stay set)
7163  *		f.  If this is VNIC 3 of a port then also init
7164  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7165  *		    to the last entry in the ILT.
7166  *
7167  *	Notes:
7168  *	Currently the PF error in the PGLC is non recoverable.
7169  *	In the future the there will be a recovery routine for this error.
7170  *	Currently attention is masked.
7171  *	Having an MCP lock on the load/unload process does not guarantee that
7172  *	there is no Timer disable during Func6/7 enable. This is because the
7173  *	Timers scan is currently being cleared by the MCP on FLR.
7174  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7175  *	there is error before clearing it. But the flow above is simpler and
7176  *	more general.
7177  *	All ILT entries are written by zero+valid and not just PF6/7
7178  *	ILT entries since in the future the ILT entries allocation for
7179  *	PF-s might be dynamic.
7180  */
7181 		struct ilt_client_info ilt_cli;
7182 		struct bnx2x_ilt ilt;
7183 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7184 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7185 
7186 		/* initialize dummy TM client */
7187 		ilt_cli.start = 0;
7188 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7189 		ilt_cli.client_num = ILT_CLIENT_TM;
7190 
7191 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7192 		 * Step 2: set the timers first/last ilt entry to point
7193 		 * to the entire range to prevent ILT range error for 3rd/4th
7194 		 * vnic	(this code assumes existence of the vnic)
7195 		 *
7196 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7197 		 * with dummy TM client
7198 		 *
7199 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7200 		 * and his brother are split registers
7201 		 */
7202 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7203 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7204 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7205 
7206 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7207 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7208 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7209 	}
7210 
7211 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7212 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7213 
7214 	if (!CHIP_IS_E1x(bp)) {
7215 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7216 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7217 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7218 
7219 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7220 
7221 		/* let the HW do it's magic ... */
7222 		do {
7223 			msleep(200);
7224 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7225 		} while (factor-- && (val != 1));
7226 
7227 		if (val != 1) {
7228 			BNX2X_ERR("ATC_INIT failed\n");
7229 			return -EBUSY;
7230 		}
7231 	}
7232 
7233 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7234 
7235 	bnx2x_iov_init_dmae(bp);
7236 
7237 	/* clean the DMAE memory */
7238 	bp->dmae_ready = 1;
7239 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7240 
7241 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7242 
7243 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7244 
7245 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7246 
7247 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7248 
7249 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7250 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7251 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7252 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7253 
7254 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7255 
7256 	/* QM queues pointers table */
7257 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7258 
7259 	/* soft reset pulse */
7260 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7261 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7262 
7263 	if (CNIC_SUPPORT(bp))
7264 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7265 
7266 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7267 
7268 	if (!CHIP_REV_IS_SLOW(bp))
7269 		/* enable hw interrupt from doorbell Q */
7270 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7271 
7272 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7273 
7274 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7275 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7276 
7277 	if (!CHIP_IS_E1(bp))
7278 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7279 
7280 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7281 		if (IS_MF_AFEX(bp)) {
7282 			/* configure that VNTag and VLAN headers must be
7283 			 * received in afex mode
7284 			 */
7285 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7286 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7287 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7288 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7289 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7290 		} else {
7291 			/* Bit-map indicating which L2 hdrs may appear
7292 			 * after the basic Ethernet header
7293 			 */
7294 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7295 			       bp->path_has_ovlan ? 7 : 6);
7296 		}
7297 	}
7298 
7299 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7300 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7301 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7302 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7303 
7304 	if (!CHIP_IS_E1x(bp)) {
7305 		/* reset VFC memories */
7306 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7307 			   VFC_MEMORIES_RST_REG_CAM_RST |
7308 			   VFC_MEMORIES_RST_REG_RAM_RST);
7309 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7310 			   VFC_MEMORIES_RST_REG_CAM_RST |
7311 			   VFC_MEMORIES_RST_REG_RAM_RST);
7312 
7313 		msleep(20);
7314 	}
7315 
7316 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7317 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7318 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7319 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7320 
7321 	/* sync semi rtc */
7322 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7323 	       0x80000000);
7324 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7325 	       0x80000000);
7326 
7327 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7328 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7329 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7330 
7331 	if (!CHIP_IS_E1x(bp)) {
7332 		if (IS_MF_AFEX(bp)) {
7333 			/* configure that VNTag and VLAN headers must be
7334 			 * sent in afex mode
7335 			 */
7336 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7337 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7338 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7339 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7340 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7341 		} else {
7342 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7343 			       bp->path_has_ovlan ? 7 : 6);
7344 		}
7345 	}
7346 
7347 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7348 
7349 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7350 
7351 	if (CNIC_SUPPORT(bp)) {
7352 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7353 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7354 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7355 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7356 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7357 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7358 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7359 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7360 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7361 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7362 	}
7363 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7364 
7365 	if (sizeof(union cdu_context) != 1024)
7366 		/* we currently assume that a context is 1024 bytes */
7367 		dev_alert(&bp->pdev->dev,
7368 			  "please adjust the size of cdu_context(%ld)\n",
7369 			  (long)sizeof(union cdu_context));
7370 
7371 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7372 	val = (4 << 24) + (0 << 12) + 1024;
7373 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7374 
7375 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7376 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7377 	/* enable context validation interrupt from CFC */
7378 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7379 
7380 	/* set the thresholds to prevent CFC/CDU race */
7381 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7382 
7383 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7384 
7385 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7386 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7387 
7388 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7389 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7390 
7391 	/* Reset PCIE errors for debug */
7392 	REG_WR(bp, 0x2814, 0xffffffff);
7393 	REG_WR(bp, 0x3820, 0xffffffff);
7394 
7395 	if (!CHIP_IS_E1x(bp)) {
7396 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7397 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7398 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7399 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7400 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7401 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7402 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7403 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7404 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7405 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7406 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7407 	}
7408 
7409 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7410 	if (!CHIP_IS_E1(bp)) {
7411 		/* in E3 this done in per-port section */
7412 		if (!CHIP_IS_E3(bp))
7413 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7414 	}
7415 	if (CHIP_IS_E1H(bp))
7416 		/* not applicable for E2 (and above ...) */
7417 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7418 
7419 	if (CHIP_REV_IS_SLOW(bp))
7420 		msleep(200);
7421 
7422 	/* finish CFC init */
7423 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7424 	if (val != 1) {
7425 		BNX2X_ERR("CFC LL_INIT failed\n");
7426 		return -EBUSY;
7427 	}
7428 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7429 	if (val != 1) {
7430 		BNX2X_ERR("CFC AC_INIT failed\n");
7431 		return -EBUSY;
7432 	}
7433 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7434 	if (val != 1) {
7435 		BNX2X_ERR("CFC CAM_INIT failed\n");
7436 		return -EBUSY;
7437 	}
7438 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7439 
7440 	if (CHIP_IS_E1(bp)) {
7441 		/* read NIG statistic
7442 		   to see if this is our first up since powerup */
7443 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7444 		val = *bnx2x_sp(bp, wb_data[0]);
7445 
7446 		/* do internal memory self test */
7447 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7448 			BNX2X_ERR("internal mem self test failed\n");
7449 			return -EBUSY;
7450 		}
7451 	}
7452 
7453 	bnx2x_setup_fan_failure_detection(bp);
7454 
7455 	/* clear PXP2 attentions */
7456 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7457 
7458 	bnx2x_enable_blocks_attention(bp);
7459 	bnx2x_enable_blocks_parity(bp);
7460 
7461 	if (!BP_NOMCP(bp)) {
7462 		if (CHIP_IS_E1x(bp))
7463 			bnx2x__common_init_phy(bp);
7464 	} else
7465 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7466 
7467 	if (SHMEM2_HAS(bp, netproc_fw_ver))
7468 		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7469 
7470 	return 0;
7471 }
7472 
7473 /**
7474  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7475  *
7476  * @bp:		driver handle
7477  */
7478 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7479 {
7480 	int rc = bnx2x_init_hw_common(bp);
7481 
7482 	if (rc)
7483 		return rc;
7484 
7485 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7486 	if (!BP_NOMCP(bp))
7487 		bnx2x__common_init_phy(bp);
7488 
7489 	return 0;
7490 }
7491 
7492 static int bnx2x_init_hw_port(struct bnx2x *bp)
7493 {
7494 	int port = BP_PORT(bp);
7495 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7496 	u32 low, high;
7497 	u32 val, reg;
7498 
7499 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7500 
7501 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7502 
7503 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7504 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7505 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7506 
7507 	/* Timers bug workaround: disables the pf_master bit in pglue at
7508 	 * common phase, we need to enable it here before any dmae access are
7509 	 * attempted. Therefore we manually added the enable-master to the
7510 	 * port phase (it also happens in the function phase)
7511 	 */
7512 	if (!CHIP_IS_E1x(bp))
7513 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7514 
7515 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7516 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7517 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7518 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7519 
7520 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7521 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7522 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7523 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7524 
7525 	/* QM cid (connection) count */
7526 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7527 
7528 	if (CNIC_SUPPORT(bp)) {
7529 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7530 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7531 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7532 	}
7533 
7534 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7535 
7536 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7537 
7538 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7539 
7540 		if (IS_MF(bp))
7541 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7542 		else if (bp->dev->mtu > 4096) {
7543 			if (bp->flags & ONE_PORT_FLAG)
7544 				low = 160;
7545 			else {
7546 				val = bp->dev->mtu;
7547 				/* (24*1024 + val*4)/256 */
7548 				low = 96 + (val/64) +
7549 						((val % 64) ? 1 : 0);
7550 			}
7551 		} else
7552 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7553 		high = low + 56;	/* 14*1024/256 */
7554 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7555 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7556 	}
7557 
7558 	if (CHIP_MODE_IS_4_PORT(bp))
7559 		REG_WR(bp, (BP_PORT(bp) ?
7560 			    BRB1_REG_MAC_GUARANTIED_1 :
7561 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7562 
7563 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7564 	if (CHIP_IS_E3B0(bp)) {
7565 		if (IS_MF_AFEX(bp)) {
7566 			/* configure headers for AFEX mode */
7567 			REG_WR(bp, BP_PORT(bp) ?
7568 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7569 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7570 			REG_WR(bp, BP_PORT(bp) ?
7571 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7572 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7573 			REG_WR(bp, BP_PORT(bp) ?
7574 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7575 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7576 		} else {
7577 			/* Ovlan exists only if we are in multi-function +
7578 			 * switch-dependent mode, in switch-independent there
7579 			 * is no ovlan headers
7580 			 */
7581 			REG_WR(bp, BP_PORT(bp) ?
7582 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7583 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7584 			       (bp->path_has_ovlan ? 7 : 6));
7585 		}
7586 	}
7587 
7588 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7589 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7590 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7591 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7592 
7593 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7594 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7595 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7596 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7597 
7598 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7599 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7600 
7601 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7602 
7603 	if (CHIP_IS_E1x(bp)) {
7604 		/* configure PBF to work without PAUSE mtu 9000 */
7605 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7606 
7607 		/* update threshold */
7608 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7609 		/* update init credit */
7610 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7611 
7612 		/* probe changes */
7613 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7614 		udelay(50);
7615 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7616 	}
7617 
7618 	if (CNIC_SUPPORT(bp))
7619 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7620 
7621 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7622 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7623 
7624 	if (CHIP_IS_E1(bp)) {
7625 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7626 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7627 	}
7628 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7629 
7630 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7631 
7632 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7633 	/* init aeu_mask_attn_func_0/1:
7634 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7635 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7636 	 *             bits 4-7 are used for "per vn group attention" */
7637 	val = IS_MF(bp) ? 0xF7 : 0x7;
7638 	/* Enable DCBX attention for all but E1 */
7639 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7640 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7641 
7642 	/* SCPAD_PARITY should NOT trigger close the gates */
7643 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7644 	REG_WR(bp, reg,
7645 	       REG_RD(bp, reg) &
7646 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7647 
7648 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7649 	REG_WR(bp, reg,
7650 	       REG_RD(bp, reg) &
7651 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7652 
7653 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7654 
7655 	if (!CHIP_IS_E1x(bp)) {
7656 		/* Bit-map indicating which L2 hdrs may appear after the
7657 		 * basic Ethernet header
7658 		 */
7659 		if (IS_MF_AFEX(bp))
7660 			REG_WR(bp, BP_PORT(bp) ?
7661 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7662 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7663 		else
7664 			REG_WR(bp, BP_PORT(bp) ?
7665 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7666 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7667 			       IS_MF_SD(bp) ? 7 : 6);
7668 
7669 		if (CHIP_IS_E3(bp))
7670 			REG_WR(bp, BP_PORT(bp) ?
7671 				   NIG_REG_LLH1_MF_MODE :
7672 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7673 	}
7674 	if (!CHIP_IS_E3(bp))
7675 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7676 
7677 	if (!CHIP_IS_E1(bp)) {
7678 		/* 0x2 disable mf_ov, 0x1 enable */
7679 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7680 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7681 
7682 		if (!CHIP_IS_E1x(bp)) {
7683 			val = 0;
7684 			switch (bp->mf_mode) {
7685 			case MULTI_FUNCTION_SD:
7686 				val = 1;
7687 				break;
7688 			case MULTI_FUNCTION_SI:
7689 			case MULTI_FUNCTION_AFEX:
7690 				val = 2;
7691 				break;
7692 			}
7693 
7694 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7695 						  NIG_REG_LLH0_CLS_TYPE), val);
7696 		}
7697 		{
7698 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7699 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7700 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7701 		}
7702 	}
7703 
7704 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7705 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7706 	if (val & MISC_SPIO_SPIO5) {
7707 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7708 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7709 		val = REG_RD(bp, reg_addr);
7710 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7711 		REG_WR(bp, reg_addr, val);
7712 	}
7713 
7714 	return 0;
7715 }
7716 
7717 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7718 {
7719 	int reg;
7720 	u32 wb_write[2];
7721 
7722 	if (CHIP_IS_E1(bp))
7723 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7724 	else
7725 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7726 
7727 	wb_write[0] = ONCHIP_ADDR1(addr);
7728 	wb_write[1] = ONCHIP_ADDR2(addr);
7729 	REG_WR_DMAE(bp, reg, wb_write, 2);
7730 }
7731 
7732 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7733 {
7734 	u32 data, ctl, cnt = 100;
7735 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7736 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7737 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7738 	u32 sb_bit =  1 << (idu_sb_id%32);
7739 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7740 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7741 
7742 	/* Not supported in BC mode */
7743 	if (CHIP_INT_MODE_IS_BC(bp))
7744 		return;
7745 
7746 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7747 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7748 		IGU_REGULAR_CLEANUP_SET				|
7749 		IGU_REGULAR_BCLEANUP;
7750 
7751 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7752 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7753 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7754 
7755 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7756 			 data, igu_addr_data);
7757 	REG_WR(bp, igu_addr_data, data);
7758 	mmiowb();
7759 	barrier();
7760 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7761 			  ctl, igu_addr_ctl);
7762 	REG_WR(bp, igu_addr_ctl, ctl);
7763 	mmiowb();
7764 	barrier();
7765 
7766 	/* wait for clean up to finish */
7767 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7768 		msleep(20);
7769 
7770 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7771 		DP(NETIF_MSG_HW,
7772 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7773 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7774 	}
7775 }
7776 
7777 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7778 {
7779 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7780 }
7781 
7782 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7783 {
7784 	u32 i, base = FUNC_ILT_BASE(func);
7785 	for (i = base; i < base + ILT_PER_FUNC; i++)
7786 		bnx2x_ilt_wr(bp, i, 0);
7787 }
7788 
7789 static void bnx2x_init_searcher(struct bnx2x *bp)
7790 {
7791 	int port = BP_PORT(bp);
7792 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7793 	/* T1 hash bits value determines the T1 number of entries */
7794 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7795 }
7796 
7797 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7798 {
7799 	int rc;
7800 	struct bnx2x_func_state_params func_params = {NULL};
7801 	struct bnx2x_func_switch_update_params *switch_update_params =
7802 		&func_params.params.switch_update;
7803 
7804 	/* Prepare parameters for function state transitions */
7805 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7806 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7807 
7808 	func_params.f_obj = &bp->func_obj;
7809 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7810 
7811 	/* Function parameters */
7812 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7813 		  &switch_update_params->changes);
7814 	if (suspend)
7815 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7816 			  &switch_update_params->changes);
7817 
7818 	rc = bnx2x_func_state_change(bp, &func_params);
7819 
7820 	return rc;
7821 }
7822 
7823 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7824 {
7825 	int rc, i, port = BP_PORT(bp);
7826 	int vlan_en = 0, mac_en[NUM_MACS];
7827 
7828 	/* Close input from network */
7829 	if (bp->mf_mode == SINGLE_FUNCTION) {
7830 		bnx2x_set_rx_filter(&bp->link_params, 0);
7831 	} else {
7832 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7833 				   NIG_REG_LLH0_FUNC_EN);
7834 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7835 			  NIG_REG_LLH0_FUNC_EN, 0);
7836 		for (i = 0; i < NUM_MACS; i++) {
7837 			mac_en[i] = REG_RD(bp, port ?
7838 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7839 					      4 * i) :
7840 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7841 					      4 * i));
7842 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7843 					      4 * i) :
7844 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7845 		}
7846 	}
7847 
7848 	/* Close BMC to host */
7849 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7850 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7851 
7852 	/* Suspend Tx switching to the PF. Completion of this ramrod
7853 	 * further guarantees that all the packets of that PF / child
7854 	 * VFs in BRB were processed by the Parser, so it is safe to
7855 	 * change the NIC_MODE register.
7856 	 */
7857 	rc = bnx2x_func_switch_update(bp, 1);
7858 	if (rc) {
7859 		BNX2X_ERR("Can't suspend tx-switching!\n");
7860 		return rc;
7861 	}
7862 
7863 	/* Change NIC_MODE register */
7864 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7865 
7866 	/* Open input from network */
7867 	if (bp->mf_mode == SINGLE_FUNCTION) {
7868 		bnx2x_set_rx_filter(&bp->link_params, 1);
7869 	} else {
7870 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7871 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7872 		for (i = 0; i < NUM_MACS; i++) {
7873 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7874 					      4 * i) :
7875 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7876 				  mac_en[i]);
7877 		}
7878 	}
7879 
7880 	/* Enable BMC to host */
7881 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7882 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7883 
7884 	/* Resume Tx switching to the PF */
7885 	rc = bnx2x_func_switch_update(bp, 0);
7886 	if (rc) {
7887 		BNX2X_ERR("Can't resume tx-switching!\n");
7888 		return rc;
7889 	}
7890 
7891 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7892 	return 0;
7893 }
7894 
7895 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7896 {
7897 	int rc;
7898 
7899 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7900 
7901 	if (CONFIGURE_NIC_MODE(bp)) {
7902 		/* Configure searcher as part of function hw init */
7903 		bnx2x_init_searcher(bp);
7904 
7905 		/* Reset NIC mode */
7906 		rc = bnx2x_reset_nic_mode(bp);
7907 		if (rc)
7908 			BNX2X_ERR("Can't change NIC mode!\n");
7909 		return rc;
7910 	}
7911 
7912 	return 0;
7913 }
7914 
7915 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7916  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7917  * the addresses of the transaction, resulting in was-error bit set in the pci
7918  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7919  * to clear the interrupt which detected this from the pglueb and the was done
7920  * bit
7921  */
7922 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7923 {
7924 	if (!CHIP_IS_E1x(bp))
7925 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7926 		       1 << BP_ABS_FUNC(bp));
7927 }
7928 
7929 static int bnx2x_init_hw_func(struct bnx2x *bp)
7930 {
7931 	int port = BP_PORT(bp);
7932 	int func = BP_FUNC(bp);
7933 	int init_phase = PHASE_PF0 + func;
7934 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7935 	u16 cdu_ilt_start;
7936 	u32 addr, val;
7937 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7938 	int i, main_mem_width, rc;
7939 
7940 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7941 
7942 	/* FLR cleanup - hmmm */
7943 	if (!CHIP_IS_E1x(bp)) {
7944 		rc = bnx2x_pf_flr_clnup(bp);
7945 		if (rc) {
7946 			bnx2x_fw_dump(bp);
7947 			return rc;
7948 		}
7949 	}
7950 
7951 	/* set MSI reconfigure capability */
7952 	if (bp->common.int_block == INT_BLOCK_HC) {
7953 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7954 		val = REG_RD(bp, addr);
7955 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7956 		REG_WR(bp, addr, val);
7957 	}
7958 
7959 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7960 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7961 
7962 	ilt = BP_ILT(bp);
7963 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7964 
7965 	if (IS_SRIOV(bp))
7966 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7967 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7968 
7969 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7970 	 * those of the VFs, so start line should be reset
7971 	 */
7972 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7973 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7974 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7975 		ilt->lines[cdu_ilt_start + i].page_mapping =
7976 			bp->context[i].cxt_mapping;
7977 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7978 	}
7979 
7980 	bnx2x_ilt_init_op(bp, INITOP_SET);
7981 
7982 	if (!CONFIGURE_NIC_MODE(bp)) {
7983 		bnx2x_init_searcher(bp);
7984 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7985 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7986 	} else {
7987 		/* Set NIC mode */
7988 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7989 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7990 	}
7991 
7992 	if (!CHIP_IS_E1x(bp)) {
7993 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7994 
7995 		/* Turn on a single ISR mode in IGU if driver is going to use
7996 		 * INT#x or MSI
7997 		 */
7998 		if (!(bp->flags & USING_MSIX_FLAG))
7999 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8000 		/*
8001 		 * Timers workaround bug: function init part.
8002 		 * Need to wait 20msec after initializing ILT,
8003 		 * needed to make sure there are no requests in
8004 		 * one of the PXP internal queues with "old" ILT addresses
8005 		 */
8006 		msleep(20);
8007 		/*
8008 		 * Master enable - Due to WB DMAE writes performed before this
8009 		 * register is re-initialized as part of the regular function
8010 		 * init
8011 		 */
8012 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8013 		/* Enable the function in IGU */
8014 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8015 	}
8016 
8017 	bp->dmae_ready = 1;
8018 
8019 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8020 
8021 	bnx2x_clean_pglue_errors(bp);
8022 
8023 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8024 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8025 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8026 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8027 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8028 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8029 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8030 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8031 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8032 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8033 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8034 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8035 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8036 
8037 	if (!CHIP_IS_E1x(bp))
8038 		REG_WR(bp, QM_REG_PF_EN, 1);
8039 
8040 	if (!CHIP_IS_E1x(bp)) {
8041 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8042 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8043 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8044 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8045 	}
8046 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8047 
8048 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8049 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8050 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8051 
8052 	bnx2x_iov_init_dq(bp);
8053 
8054 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8055 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8056 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8057 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8058 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8059 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8060 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8061 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8062 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8063 	if (!CHIP_IS_E1x(bp))
8064 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8065 
8066 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8067 
8068 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8069 
8070 	if (!CHIP_IS_E1x(bp))
8071 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8072 
8073 	if (IS_MF(bp)) {
8074 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8075 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8076 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8077 			       bp->mf_ov);
8078 		}
8079 	}
8080 
8081 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8082 
8083 	/* HC init per function */
8084 	if (bp->common.int_block == INT_BLOCK_HC) {
8085 		if (CHIP_IS_E1H(bp)) {
8086 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8087 
8088 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8089 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8090 		}
8091 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8092 
8093 	} else {
8094 		int num_segs, sb_idx, prod_offset;
8095 
8096 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8097 
8098 		if (!CHIP_IS_E1x(bp)) {
8099 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8100 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8101 		}
8102 
8103 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8104 
8105 		if (!CHIP_IS_E1x(bp)) {
8106 			int dsb_idx = 0;
8107 			/**
8108 			 * Producer memory:
8109 			 * E2 mode: address 0-135 match to the mapping memory;
8110 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8111 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8112 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8113 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8114 			 * 144-147 reserved.
8115 			 *
8116 			 * E1.5 mode - In backward compatible mode;
8117 			 * for non default SB; each even line in the memory
8118 			 * holds the U producer and each odd line hold
8119 			 * the C producer. The first 128 producers are for
8120 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8121 			 * producers are for the DSB for each PF.
8122 			 * Each PF has five segments: (the order inside each
8123 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8124 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8125 			 * 144-147 attn prods;
8126 			 */
8127 			/* non-default-status-blocks */
8128 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8129 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8130 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8131 				prod_offset = (bp->igu_base_sb + sb_idx) *
8132 					num_segs;
8133 
8134 				for (i = 0; i < num_segs; i++) {
8135 					addr = IGU_REG_PROD_CONS_MEMORY +
8136 							(prod_offset + i) * 4;
8137 					REG_WR(bp, addr, 0);
8138 				}
8139 				/* send consumer update with value 0 */
8140 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8141 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8142 				bnx2x_igu_clear_sb(bp,
8143 						   bp->igu_base_sb + sb_idx);
8144 			}
8145 
8146 			/* default-status-blocks */
8147 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8148 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8149 
8150 			if (CHIP_MODE_IS_4_PORT(bp))
8151 				dsb_idx = BP_FUNC(bp);
8152 			else
8153 				dsb_idx = BP_VN(bp);
8154 
8155 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8156 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8157 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8158 
8159 			/*
8160 			 * igu prods come in chunks of E1HVN_MAX (4) -
8161 			 * does not matters what is the current chip mode
8162 			 */
8163 			for (i = 0; i < (num_segs * E1HVN_MAX);
8164 			     i += E1HVN_MAX) {
8165 				addr = IGU_REG_PROD_CONS_MEMORY +
8166 							(prod_offset + i)*4;
8167 				REG_WR(bp, addr, 0);
8168 			}
8169 			/* send consumer update with 0 */
8170 			if (CHIP_INT_MODE_IS_BC(bp)) {
8171 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8172 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8173 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8174 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8175 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8176 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8177 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8178 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8179 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8180 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8181 			} else {
8182 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8183 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8184 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8185 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8186 			}
8187 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8188 
8189 			/* !!! These should become driver const once
8190 			   rf-tool supports split-68 const */
8191 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8192 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8193 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8194 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8195 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8196 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8197 		}
8198 	}
8199 
8200 	/* Reset PCIE errors for debug */
8201 	REG_WR(bp, 0x2114, 0xffffffff);
8202 	REG_WR(bp, 0x2120, 0xffffffff);
8203 
8204 	if (CHIP_IS_E1x(bp)) {
8205 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8206 		main_mem_base = HC_REG_MAIN_MEMORY +
8207 				BP_PORT(bp) * (main_mem_size * 4);
8208 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8209 		main_mem_width = 8;
8210 
8211 		val = REG_RD(bp, main_mem_prty_clr);
8212 		if (val)
8213 			DP(NETIF_MSG_HW,
8214 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8215 			   val);
8216 
8217 		/* Clear "false" parity errors in MSI-X table */
8218 		for (i = main_mem_base;
8219 		     i < main_mem_base + main_mem_size * 4;
8220 		     i += main_mem_width) {
8221 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8222 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8223 					 i, main_mem_width / 4);
8224 		}
8225 		/* Clear HC parity attention */
8226 		REG_RD(bp, main_mem_prty_clr);
8227 	}
8228 
8229 #ifdef BNX2X_STOP_ON_ERROR
8230 	/* Enable STORMs SP logging */
8231 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8232 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8233 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8234 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8235 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8236 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8237 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8238 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8239 #endif
8240 
8241 	bnx2x_phy_probe(&bp->link_params);
8242 
8243 	return 0;
8244 }
8245 
8246 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8247 {
8248 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8249 
8250 	if (!CHIP_IS_E1x(bp))
8251 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8252 			       sizeof(struct host_hc_status_block_e2));
8253 	else
8254 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8255 			       sizeof(struct host_hc_status_block_e1x));
8256 
8257 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8258 }
8259 
8260 void bnx2x_free_mem(struct bnx2x *bp)
8261 {
8262 	int i;
8263 
8264 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8265 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8266 
8267 	if (IS_VF(bp))
8268 		return;
8269 
8270 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8271 		       sizeof(struct host_sp_status_block));
8272 
8273 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8274 		       sizeof(struct bnx2x_slowpath));
8275 
8276 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8277 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8278 			       bp->context[i].size);
8279 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8280 
8281 	BNX2X_FREE(bp->ilt->lines);
8282 
8283 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8284 
8285 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8286 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8287 
8288 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8289 
8290 	bnx2x_iov_free_mem(bp);
8291 }
8292 
8293 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8294 {
8295 	if (!CHIP_IS_E1x(bp)) {
8296 		/* size = the status block + ramrod buffers */
8297 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8298 						    sizeof(struct host_hc_status_block_e2));
8299 		if (!bp->cnic_sb.e2_sb)
8300 			goto alloc_mem_err;
8301 	} else {
8302 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8303 						     sizeof(struct host_hc_status_block_e1x));
8304 		if (!bp->cnic_sb.e1x_sb)
8305 			goto alloc_mem_err;
8306 	}
8307 
8308 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8309 		/* allocate searcher T2 table, as it wasn't allocated before */
8310 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8311 		if (!bp->t2)
8312 			goto alloc_mem_err;
8313 	}
8314 
8315 	/* write address to which L5 should insert its values */
8316 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8317 		&bp->slowpath->drv_info_to_mcp;
8318 
8319 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8320 		goto alloc_mem_err;
8321 
8322 	return 0;
8323 
8324 alloc_mem_err:
8325 	bnx2x_free_mem_cnic(bp);
8326 	BNX2X_ERR("Can't allocate memory\n");
8327 	return -ENOMEM;
8328 }
8329 
8330 int bnx2x_alloc_mem(struct bnx2x *bp)
8331 {
8332 	int i, allocated, context_size;
8333 
8334 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8335 		/* allocate searcher T2 table */
8336 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8337 		if (!bp->t2)
8338 			goto alloc_mem_err;
8339 	}
8340 
8341 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8342 					     sizeof(struct host_sp_status_block));
8343 	if (!bp->def_status_blk)
8344 		goto alloc_mem_err;
8345 
8346 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8347 				       sizeof(struct bnx2x_slowpath));
8348 	if (!bp->slowpath)
8349 		goto alloc_mem_err;
8350 
8351 	/* Allocate memory for CDU context:
8352 	 * This memory is allocated separately and not in the generic ILT
8353 	 * functions because CDU differs in few aspects:
8354 	 * 1. There are multiple entities allocating memory for context -
8355 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8356 	 * its own ILT lines.
8357 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8358 	 * for the other ILT clients), to be efficient we want to support
8359 	 * allocation of sub-page-size in the last entry.
8360 	 * 3. Context pointers are used by the driver to pass to FW / update
8361 	 * the context (for the other ILT clients the pointers are used just to
8362 	 * free the memory during unload).
8363 	 */
8364 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8365 
8366 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8367 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8368 					  (context_size - allocated));
8369 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8370 						      bp->context[i].size);
8371 		if (!bp->context[i].vcxt)
8372 			goto alloc_mem_err;
8373 		allocated += bp->context[i].size;
8374 	}
8375 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8376 				 GFP_KERNEL);
8377 	if (!bp->ilt->lines)
8378 		goto alloc_mem_err;
8379 
8380 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8381 		goto alloc_mem_err;
8382 
8383 	if (bnx2x_iov_alloc_mem(bp))
8384 		goto alloc_mem_err;
8385 
8386 	/* Slow path ring */
8387 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8388 	if (!bp->spq)
8389 		goto alloc_mem_err;
8390 
8391 	/* EQ */
8392 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8393 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8394 	if (!bp->eq_ring)
8395 		goto alloc_mem_err;
8396 
8397 	return 0;
8398 
8399 alloc_mem_err:
8400 	bnx2x_free_mem(bp);
8401 	BNX2X_ERR("Can't allocate memory\n");
8402 	return -ENOMEM;
8403 }
8404 
8405 /*
8406  * Init service functions
8407  */
8408 
8409 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8410 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8411 		      int mac_type, unsigned long *ramrod_flags)
8412 {
8413 	int rc;
8414 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8415 
8416 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8417 
8418 	/* Fill general parameters */
8419 	ramrod_param.vlan_mac_obj = obj;
8420 	ramrod_param.ramrod_flags = *ramrod_flags;
8421 
8422 	/* Fill a user request section if needed */
8423 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8424 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8425 
8426 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8427 
8428 		/* Set the command: ADD or DEL */
8429 		if (set)
8430 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8431 		else
8432 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8433 	}
8434 
8435 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8436 
8437 	if (rc == -EEXIST) {
8438 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8439 		/* do not treat adding same MAC as error */
8440 		rc = 0;
8441 	} else if (rc < 0)
8442 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8443 
8444 	return rc;
8445 }
8446 
8447 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8448 		       struct bnx2x_vlan_mac_obj *obj, bool set,
8449 		       unsigned long *ramrod_flags)
8450 {
8451 	int rc;
8452 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8453 
8454 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8455 
8456 	/* Fill general parameters */
8457 	ramrod_param.vlan_mac_obj = obj;
8458 	ramrod_param.ramrod_flags = *ramrod_flags;
8459 
8460 	/* Fill a user request section if needed */
8461 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8462 		ramrod_param.user_req.u.vlan.vlan = vlan;
8463 		/* Set the command: ADD or DEL */
8464 		if (set)
8465 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8466 		else
8467 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8468 	}
8469 
8470 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8471 
8472 	if (rc == -EEXIST) {
8473 		/* Do not treat adding same vlan as error. */
8474 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8475 		rc = 0;
8476 	} else if (rc < 0) {
8477 		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8478 	}
8479 
8480 	return rc;
8481 }
8482 
8483 int bnx2x_del_all_macs(struct bnx2x *bp,
8484 		       struct bnx2x_vlan_mac_obj *mac_obj,
8485 		       int mac_type, bool wait_for_comp)
8486 {
8487 	int rc;
8488 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8489 
8490 	/* Wait for completion of requested */
8491 	if (wait_for_comp)
8492 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8493 
8494 	/* Set the mac type of addresses we want to clear */
8495 	__set_bit(mac_type, &vlan_mac_flags);
8496 
8497 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8498 	if (rc < 0)
8499 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8500 
8501 	return rc;
8502 }
8503 
8504 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8505 {
8506 	if (IS_PF(bp)) {
8507 		unsigned long ramrod_flags = 0;
8508 
8509 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8510 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8511 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8512 					 &bp->sp_objs->mac_obj, set,
8513 					 BNX2X_ETH_MAC, &ramrod_flags);
8514 	} else { /* vf */
8515 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8516 					     bp->fp->index, set);
8517 	}
8518 }
8519 
8520 int bnx2x_setup_leading(struct bnx2x *bp)
8521 {
8522 	if (IS_PF(bp))
8523 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8524 	else /* VF */
8525 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8526 }
8527 
8528 /**
8529  * bnx2x_set_int_mode - configure interrupt mode
8530  *
8531  * @bp:		driver handle
8532  *
8533  * In case of MSI-X it will also try to enable MSI-X.
8534  */
8535 int bnx2x_set_int_mode(struct bnx2x *bp)
8536 {
8537 	int rc = 0;
8538 
8539 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8540 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8541 		return -EINVAL;
8542 	}
8543 
8544 	switch (int_mode) {
8545 	case BNX2X_INT_MODE_MSIX:
8546 		/* attempt to enable msix */
8547 		rc = bnx2x_enable_msix(bp);
8548 
8549 		/* msix attained */
8550 		if (!rc)
8551 			return 0;
8552 
8553 		/* vfs use only msix */
8554 		if (rc && IS_VF(bp))
8555 			return rc;
8556 
8557 		/* failed to enable multiple MSI-X */
8558 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8559 			       bp->num_queues,
8560 			       1 + bp->num_cnic_queues);
8561 
8562 		/* falling through... */
8563 	case BNX2X_INT_MODE_MSI:
8564 		bnx2x_enable_msi(bp);
8565 
8566 		/* falling through... */
8567 	case BNX2X_INT_MODE_INTX:
8568 		bp->num_ethernet_queues = 1;
8569 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8570 		BNX2X_DEV_INFO("set number of queues to 1\n");
8571 		break;
8572 	default:
8573 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8574 		return -EINVAL;
8575 	}
8576 	return 0;
8577 }
8578 
8579 /* must be called prior to any HW initializations */
8580 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8581 {
8582 	if (IS_SRIOV(bp))
8583 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8584 	return L2_ILT_LINES(bp);
8585 }
8586 
8587 void bnx2x_ilt_set_info(struct bnx2x *bp)
8588 {
8589 	struct ilt_client_info *ilt_client;
8590 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8591 	u16 line = 0;
8592 
8593 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8594 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8595 
8596 	/* CDU */
8597 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8598 	ilt_client->client_num = ILT_CLIENT_CDU;
8599 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8600 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8601 	ilt_client->start = line;
8602 	line += bnx2x_cid_ilt_lines(bp);
8603 
8604 	if (CNIC_SUPPORT(bp))
8605 		line += CNIC_ILT_LINES;
8606 	ilt_client->end = line - 1;
8607 
8608 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8609 	   ilt_client->start,
8610 	   ilt_client->end,
8611 	   ilt_client->page_size,
8612 	   ilt_client->flags,
8613 	   ilog2(ilt_client->page_size >> 12));
8614 
8615 	/* QM */
8616 	if (QM_INIT(bp->qm_cid_count)) {
8617 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8618 		ilt_client->client_num = ILT_CLIENT_QM;
8619 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8620 		ilt_client->flags = 0;
8621 		ilt_client->start = line;
8622 
8623 		/* 4 bytes for each cid */
8624 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8625 							 QM_ILT_PAGE_SZ);
8626 
8627 		ilt_client->end = line - 1;
8628 
8629 		DP(NETIF_MSG_IFUP,
8630 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8631 		   ilt_client->start,
8632 		   ilt_client->end,
8633 		   ilt_client->page_size,
8634 		   ilt_client->flags,
8635 		   ilog2(ilt_client->page_size >> 12));
8636 	}
8637 
8638 	if (CNIC_SUPPORT(bp)) {
8639 		/* SRC */
8640 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8641 		ilt_client->client_num = ILT_CLIENT_SRC;
8642 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8643 		ilt_client->flags = 0;
8644 		ilt_client->start = line;
8645 		line += SRC_ILT_LINES;
8646 		ilt_client->end = line - 1;
8647 
8648 		DP(NETIF_MSG_IFUP,
8649 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8650 		   ilt_client->start,
8651 		   ilt_client->end,
8652 		   ilt_client->page_size,
8653 		   ilt_client->flags,
8654 		   ilog2(ilt_client->page_size >> 12));
8655 
8656 		/* TM */
8657 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8658 		ilt_client->client_num = ILT_CLIENT_TM;
8659 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8660 		ilt_client->flags = 0;
8661 		ilt_client->start = line;
8662 		line += TM_ILT_LINES;
8663 		ilt_client->end = line - 1;
8664 
8665 		DP(NETIF_MSG_IFUP,
8666 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8667 		   ilt_client->start,
8668 		   ilt_client->end,
8669 		   ilt_client->page_size,
8670 		   ilt_client->flags,
8671 		   ilog2(ilt_client->page_size >> 12));
8672 	}
8673 
8674 	BUG_ON(line > ILT_MAX_LINES);
8675 }
8676 
8677 /**
8678  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8679  *
8680  * @bp:			driver handle
8681  * @fp:			pointer to fastpath
8682  * @init_params:	pointer to parameters structure
8683  *
8684  * parameters configured:
8685  *      - HC configuration
8686  *      - Queue's CDU context
8687  */
8688 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8689 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8690 {
8691 	u8 cos;
8692 	int cxt_index, cxt_offset;
8693 
8694 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8695 	if (!IS_FCOE_FP(fp)) {
8696 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8697 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8698 
8699 		/* If HC is supported, enable host coalescing in the transition
8700 		 * to INIT state.
8701 		 */
8702 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8703 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8704 
8705 		/* HC rate */
8706 		init_params->rx.hc_rate = bp->rx_ticks ?
8707 			(1000000 / bp->rx_ticks) : 0;
8708 		init_params->tx.hc_rate = bp->tx_ticks ?
8709 			(1000000 / bp->tx_ticks) : 0;
8710 
8711 		/* FW SB ID */
8712 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8713 			fp->fw_sb_id;
8714 
8715 		/*
8716 		 * CQ index among the SB indices: FCoE clients uses the default
8717 		 * SB, therefore it's different.
8718 		 */
8719 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8720 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8721 	}
8722 
8723 	/* set maximum number of COSs supported by this queue */
8724 	init_params->max_cos = fp->max_cos;
8725 
8726 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8727 	    fp->index, init_params->max_cos);
8728 
8729 	/* set the context pointers queue object */
8730 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8731 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8732 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8733 				ILT_PAGE_CIDS);
8734 		init_params->cxts[cos] =
8735 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8736 	}
8737 }
8738 
8739 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8740 			struct bnx2x_queue_state_params *q_params,
8741 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8742 			int tx_index, bool leading)
8743 {
8744 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8745 
8746 	/* Set the command */
8747 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8748 
8749 	/* Set tx-only QUEUE flags: don't zero statistics */
8750 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8751 
8752 	/* choose the index of the cid to send the slow path on */
8753 	tx_only_params->cid_index = tx_index;
8754 
8755 	/* Set general TX_ONLY_SETUP parameters */
8756 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8757 
8758 	/* Set Tx TX_ONLY_SETUP parameters */
8759 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8760 
8761 	DP(NETIF_MSG_IFUP,
8762 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8763 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8764 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8765 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8766 
8767 	/* send the ramrod */
8768 	return bnx2x_queue_state_change(bp, q_params);
8769 }
8770 
8771 /**
8772  * bnx2x_setup_queue - setup queue
8773  *
8774  * @bp:		driver handle
8775  * @fp:		pointer to fastpath
8776  * @leading:	is leading
8777  *
8778  * This function performs 2 steps in a Queue state machine
8779  *      actually: 1) RESET->INIT 2) INIT->SETUP
8780  */
8781 
8782 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8783 		       bool leading)
8784 {
8785 	struct bnx2x_queue_state_params q_params = {NULL};
8786 	struct bnx2x_queue_setup_params *setup_params =
8787 						&q_params.params.setup;
8788 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8789 						&q_params.params.tx_only;
8790 	int rc;
8791 	u8 tx_index;
8792 
8793 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8794 
8795 	/* reset IGU state skip FCoE L2 queue */
8796 	if (!IS_FCOE_FP(fp))
8797 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8798 			     IGU_INT_ENABLE, 0);
8799 
8800 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8801 	/* We want to wait for completion in this context */
8802 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8803 
8804 	/* Prepare the INIT parameters */
8805 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8806 
8807 	/* Set the command */
8808 	q_params.cmd = BNX2X_Q_CMD_INIT;
8809 
8810 	/* Change the state to INIT */
8811 	rc = bnx2x_queue_state_change(bp, &q_params);
8812 	if (rc) {
8813 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8814 		return rc;
8815 	}
8816 
8817 	DP(NETIF_MSG_IFUP, "init complete\n");
8818 
8819 	/* Now move the Queue to the SETUP state... */
8820 	memset(setup_params, 0, sizeof(*setup_params));
8821 
8822 	/* Set QUEUE flags */
8823 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8824 
8825 	/* Set general SETUP parameters */
8826 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8827 				FIRST_TX_COS_INDEX);
8828 
8829 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8830 			    &setup_params->rxq_params);
8831 
8832 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8833 			   FIRST_TX_COS_INDEX);
8834 
8835 	/* Set the command */
8836 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8837 
8838 	if (IS_FCOE_FP(fp))
8839 		bp->fcoe_init = true;
8840 
8841 	/* Change the state to SETUP */
8842 	rc = bnx2x_queue_state_change(bp, &q_params);
8843 	if (rc) {
8844 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8845 		return rc;
8846 	}
8847 
8848 	/* loop through the relevant tx-only indices */
8849 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8850 	      tx_index < fp->max_cos;
8851 	      tx_index++) {
8852 
8853 		/* prepare and send tx-only ramrod*/
8854 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8855 					  tx_only_params, tx_index, leading);
8856 		if (rc) {
8857 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8858 				  fp->index, tx_index);
8859 			return rc;
8860 		}
8861 	}
8862 
8863 	return rc;
8864 }
8865 
8866 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8867 {
8868 	struct bnx2x_fastpath *fp = &bp->fp[index];
8869 	struct bnx2x_fp_txdata *txdata;
8870 	struct bnx2x_queue_state_params q_params = {NULL};
8871 	int rc, tx_index;
8872 
8873 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8874 
8875 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8876 	/* We want to wait for completion in this context */
8877 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8878 
8879 	/* close tx-only connections */
8880 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8881 	     tx_index < fp->max_cos;
8882 	     tx_index++){
8883 
8884 		/* ascertain this is a normal queue*/
8885 		txdata = fp->txdata_ptr[tx_index];
8886 
8887 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8888 							txdata->txq_index);
8889 
8890 		/* send halt terminate on tx-only connection */
8891 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8892 		memset(&q_params.params.terminate, 0,
8893 		       sizeof(q_params.params.terminate));
8894 		q_params.params.terminate.cid_index = tx_index;
8895 
8896 		rc = bnx2x_queue_state_change(bp, &q_params);
8897 		if (rc)
8898 			return rc;
8899 
8900 		/* send halt terminate on tx-only connection */
8901 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8902 		memset(&q_params.params.cfc_del, 0,
8903 		       sizeof(q_params.params.cfc_del));
8904 		q_params.params.cfc_del.cid_index = tx_index;
8905 		rc = bnx2x_queue_state_change(bp, &q_params);
8906 		if (rc)
8907 			return rc;
8908 	}
8909 	/* Stop the primary connection: */
8910 	/* ...halt the connection */
8911 	q_params.cmd = BNX2X_Q_CMD_HALT;
8912 	rc = bnx2x_queue_state_change(bp, &q_params);
8913 	if (rc)
8914 		return rc;
8915 
8916 	/* ...terminate the connection */
8917 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8918 	memset(&q_params.params.terminate, 0,
8919 	       sizeof(q_params.params.terminate));
8920 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8921 	rc = bnx2x_queue_state_change(bp, &q_params);
8922 	if (rc)
8923 		return rc;
8924 	/* ...delete cfc entry */
8925 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8926 	memset(&q_params.params.cfc_del, 0,
8927 	       sizeof(q_params.params.cfc_del));
8928 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8929 	return bnx2x_queue_state_change(bp, &q_params);
8930 }
8931 
8932 static void bnx2x_reset_func(struct bnx2x *bp)
8933 {
8934 	int port = BP_PORT(bp);
8935 	int func = BP_FUNC(bp);
8936 	int i;
8937 
8938 	/* Disable the function in the FW */
8939 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8940 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8941 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8942 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8943 
8944 	/* FP SBs */
8945 	for_each_eth_queue(bp, i) {
8946 		struct bnx2x_fastpath *fp = &bp->fp[i];
8947 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8948 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8949 			   SB_DISABLED);
8950 	}
8951 
8952 	if (CNIC_LOADED(bp))
8953 		/* CNIC SB */
8954 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8955 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8956 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8957 
8958 	/* SP SB */
8959 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8960 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8961 		SB_DISABLED);
8962 
8963 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8964 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8965 		       0);
8966 
8967 	/* Configure IGU */
8968 	if (bp->common.int_block == INT_BLOCK_HC) {
8969 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8970 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8971 	} else {
8972 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8973 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8974 	}
8975 
8976 	if (CNIC_LOADED(bp)) {
8977 		/* Disable Timer scan */
8978 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8979 		/*
8980 		 * Wait for at least 10ms and up to 2 second for the timers
8981 		 * scan to complete
8982 		 */
8983 		for (i = 0; i < 200; i++) {
8984 			usleep_range(10000, 20000);
8985 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8986 				break;
8987 		}
8988 	}
8989 	/* Clear ILT */
8990 	bnx2x_clear_func_ilt(bp, func);
8991 
8992 	/* Timers workaround bug for E2: if this is vnic-3,
8993 	 * we need to set the entire ilt range for this timers.
8994 	 */
8995 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8996 		struct ilt_client_info ilt_cli;
8997 		/* use dummy TM client */
8998 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8999 		ilt_cli.start = 0;
9000 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9001 		ilt_cli.client_num = ILT_CLIENT_TM;
9002 
9003 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9004 	}
9005 
9006 	/* this assumes that reset_port() called before reset_func()*/
9007 	if (!CHIP_IS_E1x(bp))
9008 		bnx2x_pf_disable(bp);
9009 
9010 	bp->dmae_ready = 0;
9011 }
9012 
9013 static void bnx2x_reset_port(struct bnx2x *bp)
9014 {
9015 	int port = BP_PORT(bp);
9016 	u32 val;
9017 
9018 	/* Reset physical Link */
9019 	bnx2x__link_reset(bp);
9020 
9021 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9022 
9023 	/* Do not rcv packets to BRB */
9024 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9025 	/* Do not direct rcv packets that are not for MCP to the BRB */
9026 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9027 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9028 
9029 	/* Configure AEU */
9030 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9031 
9032 	msleep(100);
9033 	/* Check for BRB port occupancy */
9034 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9035 	if (val)
9036 		DP(NETIF_MSG_IFDOWN,
9037 		   "BRB1 is not empty  %d blocks are occupied\n", val);
9038 
9039 	/* TODO: Close Doorbell port? */
9040 }
9041 
9042 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9043 {
9044 	struct bnx2x_func_state_params func_params = {NULL};
9045 
9046 	/* Prepare parameters for function state transitions */
9047 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9048 
9049 	func_params.f_obj = &bp->func_obj;
9050 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9051 
9052 	func_params.params.hw_init.load_phase = load_code;
9053 
9054 	return bnx2x_func_state_change(bp, &func_params);
9055 }
9056 
9057 static int bnx2x_func_stop(struct bnx2x *bp)
9058 {
9059 	struct bnx2x_func_state_params func_params = {NULL};
9060 	int rc;
9061 
9062 	/* Prepare parameters for function state transitions */
9063 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9064 	func_params.f_obj = &bp->func_obj;
9065 	func_params.cmd = BNX2X_F_CMD_STOP;
9066 
9067 	/*
9068 	 * Try to stop the function the 'good way'. If fails (in case
9069 	 * of a parity error during bnx2x_chip_cleanup()) and we are
9070 	 * not in a debug mode, perform a state transaction in order to
9071 	 * enable further HW_RESET transaction.
9072 	 */
9073 	rc = bnx2x_func_state_change(bp, &func_params);
9074 	if (rc) {
9075 #ifdef BNX2X_STOP_ON_ERROR
9076 		return rc;
9077 #else
9078 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9079 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9080 		return bnx2x_func_state_change(bp, &func_params);
9081 #endif
9082 	}
9083 
9084 	return 0;
9085 }
9086 
9087 /**
9088  * bnx2x_send_unload_req - request unload mode from the MCP.
9089  *
9090  * @bp:			driver handle
9091  * @unload_mode:	requested function's unload mode
9092  *
9093  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9094  */
9095 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9096 {
9097 	u32 reset_code = 0;
9098 	int port = BP_PORT(bp);
9099 
9100 	/* Select the UNLOAD request mode */
9101 	if (unload_mode == UNLOAD_NORMAL)
9102 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9103 
9104 	else if (bp->flags & NO_WOL_FLAG)
9105 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9106 
9107 	else if (bp->wol) {
9108 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9109 		u8 *mac_addr = bp->dev->dev_addr;
9110 		struct pci_dev *pdev = bp->pdev;
9111 		u32 val;
9112 		u16 pmc;
9113 
9114 		/* The mac address is written to entries 1-4 to
9115 		 * preserve entry 0 which is used by the PMF
9116 		 */
9117 		u8 entry = (BP_VN(bp) + 1)*8;
9118 
9119 		val = (mac_addr[0] << 8) | mac_addr[1];
9120 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9121 
9122 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9123 		      (mac_addr[4] << 8) | mac_addr[5];
9124 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9125 
9126 		/* Enable the PME and clear the status */
9127 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9128 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9129 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9130 
9131 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9132 
9133 	} else
9134 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9135 
9136 	/* Send the request to the MCP */
9137 	if (!BP_NOMCP(bp))
9138 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9139 	else {
9140 		int path = BP_PATH(bp);
9141 
9142 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9143 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9144 		   bnx2x_load_count[path][2]);
9145 		bnx2x_load_count[path][0]--;
9146 		bnx2x_load_count[path][1 + port]--;
9147 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9148 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9149 		   bnx2x_load_count[path][2]);
9150 		if (bnx2x_load_count[path][0] == 0)
9151 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9152 		else if (bnx2x_load_count[path][1 + port] == 0)
9153 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9154 		else
9155 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9156 	}
9157 
9158 	return reset_code;
9159 }
9160 
9161 /**
9162  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9163  *
9164  * @bp:		driver handle
9165  * @keep_link:		true iff link should be kept up
9166  */
9167 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9168 {
9169 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9170 
9171 	/* Report UNLOAD_DONE to MCP */
9172 	if (!BP_NOMCP(bp))
9173 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9174 }
9175 
9176 static int bnx2x_func_wait_started(struct bnx2x *bp)
9177 {
9178 	int tout = 50;
9179 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9180 
9181 	if (!bp->port.pmf)
9182 		return 0;
9183 
9184 	/*
9185 	 * (assumption: No Attention from MCP at this stage)
9186 	 * PMF probably in the middle of TX disable/enable transaction
9187 	 * 1. Sync IRS for default SB
9188 	 * 2. Sync SP queue - this guarantees us that attention handling started
9189 	 * 3. Wait, that TX disable/enable transaction completes
9190 	 *
9191 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9192 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9193 	 * received completion for the transaction the state is TX_STOPPED.
9194 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9195 	 * transaction.
9196 	 */
9197 
9198 	/* make sure default SB ISR is done */
9199 	if (msix)
9200 		synchronize_irq(bp->msix_table[0].vector);
9201 	else
9202 		synchronize_irq(bp->pdev->irq);
9203 
9204 	flush_workqueue(bnx2x_wq);
9205 	flush_workqueue(bnx2x_iov_wq);
9206 
9207 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9208 				BNX2X_F_STATE_STARTED && tout--)
9209 		msleep(20);
9210 
9211 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9212 						BNX2X_F_STATE_STARTED) {
9213 #ifdef BNX2X_STOP_ON_ERROR
9214 		BNX2X_ERR("Wrong function state\n");
9215 		return -EBUSY;
9216 #else
9217 		/*
9218 		 * Failed to complete the transaction in a "good way"
9219 		 * Force both transactions with CLR bit
9220 		 */
9221 		struct bnx2x_func_state_params func_params = {NULL};
9222 
9223 		DP(NETIF_MSG_IFDOWN,
9224 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9225 
9226 		func_params.f_obj = &bp->func_obj;
9227 		__set_bit(RAMROD_DRV_CLR_ONLY,
9228 					&func_params.ramrod_flags);
9229 
9230 		/* STARTED-->TX_ST0PPED */
9231 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9232 		bnx2x_func_state_change(bp, &func_params);
9233 
9234 		/* TX_ST0PPED-->STARTED */
9235 		func_params.cmd = BNX2X_F_CMD_TX_START;
9236 		return bnx2x_func_state_change(bp, &func_params);
9237 #endif
9238 	}
9239 
9240 	return 0;
9241 }
9242 
9243 static void bnx2x_disable_ptp(struct bnx2x *bp)
9244 {
9245 	int port = BP_PORT(bp);
9246 
9247 	/* Disable sending PTP packets to host */
9248 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9249 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9250 
9251 	/* Reset PTP event detection rules */
9252 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9253 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9254 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9255 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9256 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9257 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9258 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9259 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9260 
9261 	/* Disable the PTP feature */
9262 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9263 	       NIG_REG_P0_PTP_EN, 0x0);
9264 }
9265 
9266 /* Called during unload, to stop PTP-related stuff */
9267 static void bnx2x_stop_ptp(struct bnx2x *bp)
9268 {
9269 	/* Cancel PTP work queue. Should be done after the Tx queues are
9270 	 * drained to prevent additional scheduling.
9271 	 */
9272 	cancel_work_sync(&bp->ptp_task);
9273 
9274 	if (bp->ptp_tx_skb) {
9275 		dev_kfree_skb_any(bp->ptp_tx_skb);
9276 		bp->ptp_tx_skb = NULL;
9277 	}
9278 
9279 	/* Disable PTP in HW */
9280 	bnx2x_disable_ptp(bp);
9281 
9282 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9283 }
9284 
9285 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9286 {
9287 	int port = BP_PORT(bp);
9288 	int i, rc = 0;
9289 	u8 cos;
9290 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9291 	u32 reset_code;
9292 
9293 	/* Wait until tx fastpath tasks complete */
9294 	for_each_tx_queue(bp, i) {
9295 		struct bnx2x_fastpath *fp = &bp->fp[i];
9296 
9297 		for_each_cos_in_tx_queue(fp, cos)
9298 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9299 #ifdef BNX2X_STOP_ON_ERROR
9300 		if (rc)
9301 			return;
9302 #endif
9303 	}
9304 
9305 	/* Give HW time to discard old tx messages */
9306 	usleep_range(1000, 2000);
9307 
9308 	/* Clean all ETH MACs */
9309 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9310 				false);
9311 	if (rc < 0)
9312 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9313 
9314 	/* Clean up UC list  */
9315 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9316 				true);
9317 	if (rc < 0)
9318 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9319 			  rc);
9320 
9321 	/* Disable LLH */
9322 	if (!CHIP_IS_E1(bp))
9323 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9324 
9325 	/* Set "drop all" (stop Rx).
9326 	 * We need to take a netif_addr_lock() here in order to prevent
9327 	 * a race between the completion code and this code.
9328 	 */
9329 	netif_addr_lock_bh(bp->dev);
9330 	/* Schedule the rx_mode command */
9331 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9332 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9333 	else
9334 		bnx2x_set_storm_rx_mode(bp);
9335 
9336 	/* Cleanup multicast configuration */
9337 	rparam.mcast_obj = &bp->mcast_obj;
9338 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9339 	if (rc < 0)
9340 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9341 
9342 	netif_addr_unlock_bh(bp->dev);
9343 
9344 	bnx2x_iov_chip_cleanup(bp);
9345 
9346 	/*
9347 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9348 	 * this function should perform FUNC, PORT or COMMON HW
9349 	 * reset.
9350 	 */
9351 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9352 
9353 	/*
9354 	 * (assumption: No Attention from MCP at this stage)
9355 	 * PMF probably in the middle of TX disable/enable transaction
9356 	 */
9357 	rc = bnx2x_func_wait_started(bp);
9358 	if (rc) {
9359 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9360 #ifdef BNX2X_STOP_ON_ERROR
9361 		return;
9362 #endif
9363 	}
9364 
9365 	/* Close multi and leading connections
9366 	 * Completions for ramrods are collected in a synchronous way
9367 	 */
9368 	for_each_eth_queue(bp, i)
9369 		if (bnx2x_stop_queue(bp, i))
9370 #ifdef BNX2X_STOP_ON_ERROR
9371 			return;
9372 #else
9373 			goto unload_error;
9374 #endif
9375 
9376 	if (CNIC_LOADED(bp)) {
9377 		for_each_cnic_queue(bp, i)
9378 			if (bnx2x_stop_queue(bp, i))
9379 #ifdef BNX2X_STOP_ON_ERROR
9380 				return;
9381 #else
9382 				goto unload_error;
9383 #endif
9384 	}
9385 
9386 	/* If SP settings didn't get completed so far - something
9387 	 * very wrong has happen.
9388 	 */
9389 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9390 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9391 
9392 #ifndef BNX2X_STOP_ON_ERROR
9393 unload_error:
9394 #endif
9395 	rc = bnx2x_func_stop(bp);
9396 	if (rc) {
9397 		BNX2X_ERR("Function stop failed!\n");
9398 #ifdef BNX2X_STOP_ON_ERROR
9399 		return;
9400 #endif
9401 	}
9402 
9403 	/* stop_ptp should be after the Tx queues are drained to prevent
9404 	 * scheduling to the cancelled PTP work queue. It should also be after
9405 	 * function stop ramrod is sent, since as part of this ramrod FW access
9406 	 * PTP registers.
9407 	 */
9408 	if (bp->flags & PTP_SUPPORTED)
9409 		bnx2x_stop_ptp(bp);
9410 
9411 	/* Disable HW interrupts, NAPI */
9412 	bnx2x_netif_stop(bp, 1);
9413 	/* Delete all NAPI objects */
9414 	bnx2x_del_all_napi(bp);
9415 	if (CNIC_LOADED(bp))
9416 		bnx2x_del_all_napi_cnic(bp);
9417 
9418 	/* Release IRQs */
9419 	bnx2x_free_irq(bp);
9420 
9421 	/* Reset the chip */
9422 	rc = bnx2x_reset_hw(bp, reset_code);
9423 	if (rc)
9424 		BNX2X_ERR("HW_RESET failed\n");
9425 
9426 	/* Report UNLOAD_DONE to MCP */
9427 	bnx2x_send_unload_done(bp, keep_link);
9428 }
9429 
9430 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9431 {
9432 	u32 val;
9433 
9434 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9435 
9436 	if (CHIP_IS_E1(bp)) {
9437 		int port = BP_PORT(bp);
9438 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9439 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9440 
9441 		val = REG_RD(bp, addr);
9442 		val &= ~(0x300);
9443 		REG_WR(bp, addr, val);
9444 	} else {
9445 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9446 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9447 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9448 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9449 	}
9450 }
9451 
9452 /* Close gates #2, #3 and #4: */
9453 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9454 {
9455 	u32 val;
9456 
9457 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9458 	if (!CHIP_IS_E1(bp)) {
9459 		/* #4 */
9460 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9461 		/* #2 */
9462 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9463 	}
9464 
9465 	/* #3 */
9466 	if (CHIP_IS_E1x(bp)) {
9467 		/* Prevent interrupts from HC on both ports */
9468 		val = REG_RD(bp, HC_REG_CONFIG_1);
9469 		REG_WR(bp, HC_REG_CONFIG_1,
9470 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9471 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9472 
9473 		val = REG_RD(bp, HC_REG_CONFIG_0);
9474 		REG_WR(bp, HC_REG_CONFIG_0,
9475 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9476 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9477 	} else {
9478 		/* Prevent incoming interrupts in IGU */
9479 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9480 
9481 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9482 		       (!close) ?
9483 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9484 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9485 	}
9486 
9487 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9488 		close ? "closing" : "opening");
9489 	mmiowb();
9490 }
9491 
9492 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9493 
9494 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9495 {
9496 	/* Do some magic... */
9497 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9498 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9499 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9500 }
9501 
9502 /**
9503  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9504  *
9505  * @bp:		driver handle
9506  * @magic_val:	old value of the `magic' bit.
9507  */
9508 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9509 {
9510 	/* Restore the `magic' bit value... */
9511 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9512 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9513 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9514 }
9515 
9516 /**
9517  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9518  *
9519  * @bp:		driver handle
9520  * @magic_val:	old value of 'magic' bit.
9521  *
9522  * Takes care of CLP configurations.
9523  */
9524 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9525 {
9526 	u32 shmem;
9527 	u32 validity_offset;
9528 
9529 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9530 
9531 	/* Set `magic' bit in order to save MF config */
9532 	if (!CHIP_IS_E1(bp))
9533 		bnx2x_clp_reset_prep(bp, magic_val);
9534 
9535 	/* Get shmem offset */
9536 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9537 	validity_offset =
9538 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9539 
9540 	/* Clear validity map flags */
9541 	if (shmem > 0)
9542 		REG_WR(bp, shmem + validity_offset, 0);
9543 }
9544 
9545 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9546 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9547 
9548 /**
9549  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9550  *
9551  * @bp:	driver handle
9552  */
9553 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9554 {
9555 	/* special handling for emulation and FPGA,
9556 	   wait 10 times longer */
9557 	if (CHIP_REV_IS_SLOW(bp))
9558 		msleep(MCP_ONE_TIMEOUT*10);
9559 	else
9560 		msleep(MCP_ONE_TIMEOUT);
9561 }
9562 
9563 /*
9564  * initializes bp->common.shmem_base and waits for validity signature to appear
9565  */
9566 static int bnx2x_init_shmem(struct bnx2x *bp)
9567 {
9568 	int cnt = 0;
9569 	u32 val = 0;
9570 
9571 	do {
9572 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9573 		if (bp->common.shmem_base) {
9574 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9575 			if (val & SHR_MEM_VALIDITY_MB)
9576 				return 0;
9577 		}
9578 
9579 		bnx2x_mcp_wait_one(bp);
9580 
9581 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9582 
9583 	BNX2X_ERR("BAD MCP validity signature\n");
9584 
9585 	return -ENODEV;
9586 }
9587 
9588 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9589 {
9590 	int rc = bnx2x_init_shmem(bp);
9591 
9592 	/* Restore the `magic' bit value */
9593 	if (!CHIP_IS_E1(bp))
9594 		bnx2x_clp_reset_done(bp, magic_val);
9595 
9596 	return rc;
9597 }
9598 
9599 static void bnx2x_pxp_prep(struct bnx2x *bp)
9600 {
9601 	if (!CHIP_IS_E1(bp)) {
9602 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9603 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9604 		mmiowb();
9605 	}
9606 }
9607 
9608 /*
9609  * Reset the whole chip except for:
9610  *      - PCIE core
9611  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9612  *              one reset bit)
9613  *      - IGU
9614  *      - MISC (including AEU)
9615  *      - GRC
9616  *      - RBCN, RBCP
9617  */
9618 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9619 {
9620 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9621 	u32 global_bits2, stay_reset2;
9622 
9623 	/*
9624 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9625 	 * (per chip) blocks.
9626 	 */
9627 	global_bits2 =
9628 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9629 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9630 
9631 	/* Don't reset the following blocks.
9632 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9633 	 *            reset, as in 4 port device they might still be owned
9634 	 *            by the MCP (there is only one leader per path).
9635 	 */
9636 	not_reset_mask1 =
9637 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9638 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9639 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9640 
9641 	not_reset_mask2 =
9642 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9643 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9644 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9645 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9646 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9647 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9648 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9649 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9650 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9651 		MISC_REGISTERS_RESET_REG_2_PGLC |
9652 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9653 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9654 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9655 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9656 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9657 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9658 
9659 	/*
9660 	 * Keep the following blocks in reset:
9661 	 *  - all xxMACs are handled by the bnx2x_link code.
9662 	 */
9663 	stay_reset2 =
9664 		MISC_REGISTERS_RESET_REG_2_XMAC |
9665 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9666 
9667 	/* Full reset masks according to the chip */
9668 	reset_mask1 = 0xffffffff;
9669 
9670 	if (CHIP_IS_E1(bp))
9671 		reset_mask2 = 0xffff;
9672 	else if (CHIP_IS_E1H(bp))
9673 		reset_mask2 = 0x1ffff;
9674 	else if (CHIP_IS_E2(bp))
9675 		reset_mask2 = 0xfffff;
9676 	else /* CHIP_IS_E3 */
9677 		reset_mask2 = 0x3ffffff;
9678 
9679 	/* Don't reset global blocks unless we need to */
9680 	if (!global)
9681 		reset_mask2 &= ~global_bits2;
9682 
9683 	/*
9684 	 * In case of attention in the QM, we need to reset PXP
9685 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9686 	 * because otherwise QM reset would release 'close the gates' shortly
9687 	 * before resetting the PXP, then the PSWRQ would send a write
9688 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9689 	 * read the payload data from PSWWR, but PSWWR would not
9690 	 * respond. The write queue in PGLUE would stuck, dmae commands
9691 	 * would not return. Therefore it's important to reset the second
9692 	 * reset register (containing the
9693 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9694 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9695 	 * bit).
9696 	 */
9697 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9698 	       reset_mask2 & (~not_reset_mask2));
9699 
9700 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9701 	       reset_mask1 & (~not_reset_mask1));
9702 
9703 	barrier();
9704 	mmiowb();
9705 
9706 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9707 	       reset_mask2 & (~stay_reset2));
9708 
9709 	barrier();
9710 	mmiowb();
9711 
9712 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9713 	mmiowb();
9714 }
9715 
9716 /**
9717  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9718  * It should get cleared in no more than 1s.
9719  *
9720  * @bp:	driver handle
9721  *
9722  * It should get cleared in no more than 1s. Returns 0 if
9723  * pending writes bit gets cleared.
9724  */
9725 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9726 {
9727 	u32 cnt = 1000;
9728 	u32 pend_bits = 0;
9729 
9730 	do {
9731 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9732 
9733 		if (pend_bits == 0)
9734 			break;
9735 
9736 		usleep_range(1000, 2000);
9737 	} while (cnt-- > 0);
9738 
9739 	if (cnt <= 0) {
9740 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9741 			  pend_bits);
9742 		return -EBUSY;
9743 	}
9744 
9745 	return 0;
9746 }
9747 
9748 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9749 {
9750 	int cnt = 1000;
9751 	u32 val = 0;
9752 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9753 	u32 tags_63_32 = 0;
9754 
9755 	/* Empty the Tetris buffer, wait for 1s */
9756 	do {
9757 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9758 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9759 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9760 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9761 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9762 		if (CHIP_IS_E3(bp))
9763 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9764 
9765 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9766 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9767 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9768 		    (pgl_exp_rom2 == 0xffffffff) &&
9769 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9770 			break;
9771 		usleep_range(1000, 2000);
9772 	} while (cnt-- > 0);
9773 
9774 	if (cnt <= 0) {
9775 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9776 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9777 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9778 			  pgl_exp_rom2);
9779 		return -EAGAIN;
9780 	}
9781 
9782 	barrier();
9783 
9784 	/* Close gates #2, #3 and #4 */
9785 	bnx2x_set_234_gates(bp, true);
9786 
9787 	/* Poll for IGU VQs for 57712 and newer chips */
9788 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9789 		return -EAGAIN;
9790 
9791 	/* TBD: Indicate that "process kill" is in progress to MCP */
9792 
9793 	/* Clear "unprepared" bit */
9794 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9795 	barrier();
9796 
9797 	/* Make sure all is written to the chip before the reset */
9798 	mmiowb();
9799 
9800 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9801 	 * PSWHST, GRC and PSWRD Tetris buffer.
9802 	 */
9803 	usleep_range(1000, 2000);
9804 
9805 	/* Prepare to chip reset: */
9806 	/* MCP */
9807 	if (global)
9808 		bnx2x_reset_mcp_prep(bp, &val);
9809 
9810 	/* PXP */
9811 	bnx2x_pxp_prep(bp);
9812 	barrier();
9813 
9814 	/* reset the chip */
9815 	bnx2x_process_kill_chip_reset(bp, global);
9816 	barrier();
9817 
9818 	/* clear errors in PGB */
9819 	if (!CHIP_IS_E1x(bp))
9820 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9821 
9822 	/* Recover after reset: */
9823 	/* MCP */
9824 	if (global && bnx2x_reset_mcp_comp(bp, val))
9825 		return -EAGAIN;
9826 
9827 	/* TBD: Add resetting the NO_MCP mode DB here */
9828 
9829 	/* Open the gates #2, #3 and #4 */
9830 	bnx2x_set_234_gates(bp, false);
9831 
9832 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9833 	 * reset state, re-enable attentions. */
9834 
9835 	return 0;
9836 }
9837 
9838 static int bnx2x_leader_reset(struct bnx2x *bp)
9839 {
9840 	int rc = 0;
9841 	bool global = bnx2x_reset_is_global(bp);
9842 	u32 load_code;
9843 
9844 	/* if not going to reset MCP - load "fake" driver to reset HW while
9845 	 * driver is owner of the HW
9846 	 */
9847 	if (!global && !BP_NOMCP(bp)) {
9848 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9849 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9850 		if (!load_code) {
9851 			BNX2X_ERR("MCP response failure, aborting\n");
9852 			rc = -EAGAIN;
9853 			goto exit_leader_reset;
9854 		}
9855 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9856 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9857 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9858 			rc = -EAGAIN;
9859 			goto exit_leader_reset2;
9860 		}
9861 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9862 		if (!load_code) {
9863 			BNX2X_ERR("MCP response failure, aborting\n");
9864 			rc = -EAGAIN;
9865 			goto exit_leader_reset2;
9866 		}
9867 	}
9868 
9869 	/* Try to recover after the failure */
9870 	if (bnx2x_process_kill(bp, global)) {
9871 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9872 			  BP_PATH(bp));
9873 		rc = -EAGAIN;
9874 		goto exit_leader_reset2;
9875 	}
9876 
9877 	/*
9878 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9879 	 * state.
9880 	 */
9881 	bnx2x_set_reset_done(bp);
9882 	if (global)
9883 		bnx2x_clear_reset_global(bp);
9884 
9885 exit_leader_reset2:
9886 	/* unload "fake driver" if it was loaded */
9887 	if (!global && !BP_NOMCP(bp)) {
9888 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9889 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9890 	}
9891 exit_leader_reset:
9892 	bp->is_leader = 0;
9893 	bnx2x_release_leader_lock(bp);
9894 	smp_mb();
9895 	return rc;
9896 }
9897 
9898 static void bnx2x_recovery_failed(struct bnx2x *bp)
9899 {
9900 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9901 
9902 	/* Disconnect this device */
9903 	netif_device_detach(bp->dev);
9904 
9905 	/*
9906 	 * Block ifup for all function on this engine until "process kill"
9907 	 * or power cycle.
9908 	 */
9909 	bnx2x_set_reset_in_progress(bp);
9910 
9911 	/* Shut down the power */
9912 	bnx2x_set_power_state(bp, PCI_D3hot);
9913 
9914 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9915 
9916 	smp_mb();
9917 }
9918 
9919 /*
9920  * Assumption: runs under rtnl lock. This together with the fact
9921  * that it's called only from bnx2x_sp_rtnl() ensure that it
9922  * will never be called when netif_running(bp->dev) is false.
9923  */
9924 static void bnx2x_parity_recover(struct bnx2x *bp)
9925 {
9926 	bool global = false;
9927 	u32 error_recovered, error_unrecovered;
9928 	bool is_parity;
9929 
9930 	DP(NETIF_MSG_HW, "Handling parity\n");
9931 	while (1) {
9932 		switch (bp->recovery_state) {
9933 		case BNX2X_RECOVERY_INIT:
9934 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9935 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9936 			WARN_ON(!is_parity);
9937 
9938 			/* Try to get a LEADER_LOCK HW lock */
9939 			if (bnx2x_trylock_leader_lock(bp)) {
9940 				bnx2x_set_reset_in_progress(bp);
9941 				/*
9942 				 * Check if there is a global attention and if
9943 				 * there was a global attention, set the global
9944 				 * reset bit.
9945 				 */
9946 
9947 				if (global)
9948 					bnx2x_set_reset_global(bp);
9949 
9950 				bp->is_leader = 1;
9951 			}
9952 
9953 			/* Stop the driver */
9954 			/* If interface has been removed - break */
9955 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9956 				return;
9957 
9958 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9959 
9960 			/* Ensure "is_leader", MCP command sequence and
9961 			 * "recovery_state" update values are seen on other
9962 			 * CPUs.
9963 			 */
9964 			smp_mb();
9965 			break;
9966 
9967 		case BNX2X_RECOVERY_WAIT:
9968 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9969 			if (bp->is_leader) {
9970 				int other_engine = BP_PATH(bp) ? 0 : 1;
9971 				bool other_load_status =
9972 					bnx2x_get_load_status(bp, other_engine);
9973 				bool load_status =
9974 					bnx2x_get_load_status(bp, BP_PATH(bp));
9975 				global = bnx2x_reset_is_global(bp);
9976 
9977 				/*
9978 				 * In case of a parity in a global block, let
9979 				 * the first leader that performs a
9980 				 * leader_reset() reset the global blocks in
9981 				 * order to clear global attentions. Otherwise
9982 				 * the gates will remain closed for that
9983 				 * engine.
9984 				 */
9985 				if (load_status ||
9986 				    (global && other_load_status)) {
9987 					/* Wait until all other functions get
9988 					 * down.
9989 					 */
9990 					schedule_delayed_work(&bp->sp_rtnl_task,
9991 								HZ/10);
9992 					return;
9993 				} else {
9994 					/* If all other functions got down -
9995 					 * try to bring the chip back to
9996 					 * normal. In any case it's an exit
9997 					 * point for a leader.
9998 					 */
9999 					if (bnx2x_leader_reset(bp)) {
10000 						bnx2x_recovery_failed(bp);
10001 						return;
10002 					}
10003 
10004 					/* If we are here, means that the
10005 					 * leader has succeeded and doesn't
10006 					 * want to be a leader any more. Try
10007 					 * to continue as a none-leader.
10008 					 */
10009 					break;
10010 				}
10011 			} else { /* non-leader */
10012 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10013 					/* Try to get a LEADER_LOCK HW lock as
10014 					 * long as a former leader may have
10015 					 * been unloaded by the user or
10016 					 * released a leadership by another
10017 					 * reason.
10018 					 */
10019 					if (bnx2x_trylock_leader_lock(bp)) {
10020 						/* I'm a leader now! Restart a
10021 						 * switch case.
10022 						 */
10023 						bp->is_leader = 1;
10024 						break;
10025 					}
10026 
10027 					schedule_delayed_work(&bp->sp_rtnl_task,
10028 								HZ/10);
10029 					return;
10030 
10031 				} else {
10032 					/*
10033 					 * If there was a global attention, wait
10034 					 * for it to be cleared.
10035 					 */
10036 					if (bnx2x_reset_is_global(bp)) {
10037 						schedule_delayed_work(
10038 							&bp->sp_rtnl_task,
10039 							HZ/10);
10040 						return;
10041 					}
10042 
10043 					error_recovered =
10044 					  bp->eth_stats.recoverable_error;
10045 					error_unrecovered =
10046 					  bp->eth_stats.unrecoverable_error;
10047 					bp->recovery_state =
10048 						BNX2X_RECOVERY_NIC_LOADING;
10049 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10050 						error_unrecovered++;
10051 						netdev_err(bp->dev,
10052 							   "Recovery failed. Power cycle needed\n");
10053 						/* Disconnect this device */
10054 						netif_device_detach(bp->dev);
10055 						/* Shut down the power */
10056 						bnx2x_set_power_state(
10057 							bp, PCI_D3hot);
10058 						smp_mb();
10059 					} else {
10060 						bp->recovery_state =
10061 							BNX2X_RECOVERY_DONE;
10062 						error_recovered++;
10063 						smp_mb();
10064 					}
10065 					bp->eth_stats.recoverable_error =
10066 						error_recovered;
10067 					bp->eth_stats.unrecoverable_error =
10068 						error_unrecovered;
10069 
10070 					return;
10071 				}
10072 			}
10073 		default:
10074 			return;
10075 		}
10076 	}
10077 }
10078 
10079 #ifdef CONFIG_BNX2X_VXLAN
10080 static int bnx2x_vxlan_port_update(struct bnx2x *bp, u16 port)
10081 {
10082 	struct bnx2x_func_switch_update_params *switch_update_params;
10083 	struct bnx2x_func_state_params func_params = {NULL};
10084 	int rc;
10085 
10086 	switch_update_params = &func_params.params.switch_update;
10087 
10088 	/* Prepare parameters for function state transitions */
10089 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10090 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10091 
10092 	func_params.f_obj = &bp->func_obj;
10093 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10094 
10095 	/* Function parameters */
10096 	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10097 		  &switch_update_params->changes);
10098 	switch_update_params->vxlan_dst_port = port;
10099 	rc = bnx2x_func_state_change(bp, &func_params);
10100 	if (rc)
10101 		BNX2X_ERR("failed to change vxlan dst port to %d (rc = 0x%x)\n",
10102 			  port, rc);
10103 	return rc;
10104 }
10105 
10106 static void __bnx2x_add_vxlan_port(struct bnx2x *bp, u16 port)
10107 {
10108 	if (!netif_running(bp->dev))
10109 		return;
10110 
10111 	if (bp->vxlan_dst_port_count && bp->vxlan_dst_port == port) {
10112 		bp->vxlan_dst_port_count++;
10113 		return;
10114 	}
10115 
10116 	if (bp->vxlan_dst_port_count || !IS_PF(bp)) {
10117 		DP(BNX2X_MSG_SP, "Vxlan destination port limit reached\n");
10118 		return;
10119 	}
10120 
10121 	bp->vxlan_dst_port = port;
10122 	bp->vxlan_dst_port_count = 1;
10123 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_ADD_VXLAN_PORT, 0);
10124 }
10125 
10126 static void bnx2x_add_vxlan_port(struct net_device *netdev,
10127 				 sa_family_t sa_family, __be16 port)
10128 {
10129 	struct bnx2x *bp = netdev_priv(netdev);
10130 	u16 t_port = ntohs(port);
10131 
10132 	__bnx2x_add_vxlan_port(bp, t_port);
10133 }
10134 
10135 static void __bnx2x_del_vxlan_port(struct bnx2x *bp, u16 port)
10136 {
10137 	if (!bp->vxlan_dst_port_count || bp->vxlan_dst_port != port ||
10138 	    !IS_PF(bp)) {
10139 		DP(BNX2X_MSG_SP, "Invalid vxlan port\n");
10140 		return;
10141 	}
10142 	bp->vxlan_dst_port_count--;
10143 	if (bp->vxlan_dst_port_count)
10144 		return;
10145 
10146 	if (netif_running(bp->dev)) {
10147 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_DEL_VXLAN_PORT, 0);
10148 	} else {
10149 		bp->vxlan_dst_port = 0;
10150 		netdev_info(bp->dev, "Deleted vxlan dest port %d", port);
10151 	}
10152 }
10153 
10154 static void bnx2x_del_vxlan_port(struct net_device *netdev,
10155 				 sa_family_t sa_family, __be16 port)
10156 {
10157 	struct bnx2x *bp = netdev_priv(netdev);
10158 	u16 t_port = ntohs(port);
10159 
10160 	__bnx2x_del_vxlan_port(bp, t_port);
10161 }
10162 #endif
10163 
10164 static int bnx2x_close(struct net_device *dev);
10165 
10166 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10167  * scheduled on a general queue in order to prevent a dead lock.
10168  */
10169 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10170 {
10171 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10172 #ifdef CONFIG_BNX2X_VXLAN
10173 	u16 port;
10174 #endif
10175 
10176 	rtnl_lock();
10177 
10178 	if (!netif_running(bp->dev)) {
10179 		rtnl_unlock();
10180 		return;
10181 	}
10182 
10183 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10184 #ifdef BNX2X_STOP_ON_ERROR
10185 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10186 			  "you will need to reboot when done\n");
10187 		goto sp_rtnl_not_reset;
10188 #endif
10189 		/*
10190 		 * Clear all pending SP commands as we are going to reset the
10191 		 * function anyway.
10192 		 */
10193 		bp->sp_rtnl_state = 0;
10194 		smp_mb();
10195 
10196 		bnx2x_parity_recover(bp);
10197 
10198 		rtnl_unlock();
10199 		return;
10200 	}
10201 
10202 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10203 #ifdef BNX2X_STOP_ON_ERROR
10204 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10205 			  "you will need to reboot when done\n");
10206 		goto sp_rtnl_not_reset;
10207 #endif
10208 
10209 		/*
10210 		 * Clear all pending SP commands as we are going to reset the
10211 		 * function anyway.
10212 		 */
10213 		bp->sp_rtnl_state = 0;
10214 		smp_mb();
10215 
10216 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10217 		bnx2x_nic_load(bp, LOAD_NORMAL);
10218 
10219 		rtnl_unlock();
10220 		return;
10221 	}
10222 #ifdef BNX2X_STOP_ON_ERROR
10223 sp_rtnl_not_reset:
10224 #endif
10225 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10226 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10227 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10228 		bnx2x_after_function_update(bp);
10229 	/*
10230 	 * in case of fan failure we need to reset id if the "stop on error"
10231 	 * debug flag is set, since we trying to prevent permanent overheating
10232 	 * damage
10233 	 */
10234 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10235 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10236 		netif_device_detach(bp->dev);
10237 		bnx2x_close(bp->dev);
10238 		rtnl_unlock();
10239 		return;
10240 	}
10241 
10242 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10243 		DP(BNX2X_MSG_SP,
10244 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10245 		bnx2x_vfpf_set_mcast(bp->dev);
10246 	}
10247 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10248 			       &bp->sp_rtnl_state)){
10249 		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10250 			bnx2x_tx_disable(bp);
10251 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10252 		}
10253 	}
10254 
10255 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10256 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10257 		bnx2x_set_rx_mode_inner(bp);
10258 	}
10259 
10260 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10261 			       &bp->sp_rtnl_state))
10262 		bnx2x_pf_set_vfs_vlan(bp);
10263 
10264 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10265 		bnx2x_dcbx_stop_hw_tx(bp);
10266 		bnx2x_dcbx_resume_hw_tx(bp);
10267 	}
10268 
10269 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10270 			       &bp->sp_rtnl_state))
10271 		bnx2x_update_mng_version(bp);
10272 
10273 #ifdef CONFIG_BNX2X_VXLAN
10274 	port = bp->vxlan_dst_port;
10275 	if (test_and_clear_bit(BNX2X_SP_RTNL_ADD_VXLAN_PORT,
10276 			       &bp->sp_rtnl_state)) {
10277 		if (!bnx2x_vxlan_port_update(bp, port))
10278 			netdev_info(bp->dev, "Added vxlan dest port %d", port);
10279 		else
10280 			bp->vxlan_dst_port = 0;
10281 	}
10282 
10283 	if (test_and_clear_bit(BNX2X_SP_RTNL_DEL_VXLAN_PORT,
10284 			       &bp->sp_rtnl_state)) {
10285 		if (!bnx2x_vxlan_port_update(bp, 0)) {
10286 			netdev_info(bp->dev,
10287 				    "Deleted vxlan dest port %d", port);
10288 			bp->vxlan_dst_port = 0;
10289 			vxlan_get_rx_port(bp->dev);
10290 		}
10291 	}
10292 #endif
10293 
10294 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10295 	 * can be called from other contexts as well)
10296 	 */
10297 	rtnl_unlock();
10298 
10299 	/* enable SR-IOV if applicable */
10300 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10301 					       &bp->sp_rtnl_state)) {
10302 		bnx2x_disable_sriov(bp);
10303 		bnx2x_enable_sriov(bp);
10304 	}
10305 }
10306 
10307 static void bnx2x_period_task(struct work_struct *work)
10308 {
10309 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10310 
10311 	if (!netif_running(bp->dev))
10312 		goto period_task_exit;
10313 
10314 	if (CHIP_REV_IS_SLOW(bp)) {
10315 		BNX2X_ERR("period task called on emulation, ignoring\n");
10316 		goto period_task_exit;
10317 	}
10318 
10319 	bnx2x_acquire_phy_lock(bp);
10320 	/*
10321 	 * The barrier is needed to ensure the ordering between the writing to
10322 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10323 	 * the reading here.
10324 	 */
10325 	smp_mb();
10326 	if (bp->port.pmf) {
10327 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10328 
10329 		/* Re-queue task in 1 sec */
10330 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10331 	}
10332 
10333 	bnx2x_release_phy_lock(bp);
10334 period_task_exit:
10335 	return;
10336 }
10337 
10338 /*
10339  * Init service functions
10340  */
10341 
10342 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10343 {
10344 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10345 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10346 	return base + (BP_ABS_FUNC(bp)) * stride;
10347 }
10348 
10349 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10350 					 u8 port, u32 reset_reg,
10351 					 struct bnx2x_mac_vals *vals)
10352 {
10353 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10354 	u32 base_addr;
10355 
10356 	if (!(mask & reset_reg))
10357 		return false;
10358 
10359 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10360 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10361 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10362 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10363 	REG_WR(bp, vals->umac_addr[port], 0);
10364 
10365 	return true;
10366 }
10367 
10368 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10369 					struct bnx2x_mac_vals *vals)
10370 {
10371 	u32 val, base_addr, offset, mask, reset_reg;
10372 	bool mac_stopped = false;
10373 	u8 port = BP_PORT(bp);
10374 
10375 	/* reset addresses as they also mark which values were changed */
10376 	memset(vals, 0, sizeof(*vals));
10377 
10378 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10379 
10380 	if (!CHIP_IS_E3(bp)) {
10381 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10382 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10383 		if ((mask & reset_reg) && val) {
10384 			u32 wb_data[2];
10385 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10386 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10387 						: NIG_REG_INGRESS_BMAC0_MEM;
10388 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10389 						: BIGMAC_REGISTER_BMAC_CONTROL;
10390 
10391 			/*
10392 			 * use rd/wr since we cannot use dmae. This is safe
10393 			 * since MCP won't access the bus due to the request
10394 			 * to unload, and no function on the path can be
10395 			 * loaded at this time.
10396 			 */
10397 			wb_data[0] = REG_RD(bp, base_addr + offset);
10398 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10399 			vals->bmac_addr = base_addr + offset;
10400 			vals->bmac_val[0] = wb_data[0];
10401 			vals->bmac_val[1] = wb_data[1];
10402 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10403 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10404 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10405 		}
10406 		BNX2X_DEV_INFO("Disable emac Rx\n");
10407 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10408 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10409 		REG_WR(bp, vals->emac_addr, 0);
10410 		mac_stopped = true;
10411 	} else {
10412 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10413 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10414 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10415 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10416 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10417 			       val & ~(1 << 1));
10418 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10419 			       val | (1 << 1));
10420 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10421 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10422 			REG_WR(bp, vals->xmac_addr, 0);
10423 			mac_stopped = true;
10424 		}
10425 
10426 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10427 							    reset_reg, vals);
10428 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10429 							    reset_reg, vals);
10430 	}
10431 
10432 	if (mac_stopped)
10433 		msleep(20);
10434 }
10435 
10436 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10437 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10438 					0x1848 + ((f) << 4))
10439 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10440 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10441 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10442 
10443 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10444 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10445 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10446 
10447 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10448 {
10449 	/* UNDI marks its presence in DORQ -
10450 	 * it initializes CID offset for normal bell to 0x7
10451 	 */
10452 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10453 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10454 		return false;
10455 
10456 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10457 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10458 		return true;
10459 	}
10460 
10461 	return false;
10462 }
10463 
10464 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10465 {
10466 	u16 rcq, bd;
10467 	u32 addr, tmp_reg;
10468 
10469 	if (BP_FUNC(bp) < 2)
10470 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10471 	else
10472 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10473 
10474 	tmp_reg = REG_RD(bp, addr);
10475 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10476 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10477 
10478 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10479 	REG_WR(bp, addr, tmp_reg);
10480 
10481 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10482 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10483 }
10484 
10485 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10486 {
10487 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10488 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10489 	if (!rc) {
10490 		BNX2X_ERR("MCP response failure, aborting\n");
10491 		return -EBUSY;
10492 	}
10493 
10494 	return 0;
10495 }
10496 
10497 static struct bnx2x_prev_path_list *
10498 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10499 {
10500 	struct bnx2x_prev_path_list *tmp_list;
10501 
10502 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10503 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10504 		    bp->pdev->bus->number == tmp_list->bus &&
10505 		    BP_PATH(bp) == tmp_list->path)
10506 			return tmp_list;
10507 
10508 	return NULL;
10509 }
10510 
10511 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10512 {
10513 	struct bnx2x_prev_path_list *tmp_list;
10514 	int rc;
10515 
10516 	rc = down_interruptible(&bnx2x_prev_sem);
10517 	if (rc) {
10518 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10519 		return rc;
10520 	}
10521 
10522 	tmp_list = bnx2x_prev_path_get_entry(bp);
10523 	if (tmp_list) {
10524 		tmp_list->aer = 1;
10525 		rc = 0;
10526 	} else {
10527 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10528 			  BP_PATH(bp));
10529 	}
10530 
10531 	up(&bnx2x_prev_sem);
10532 
10533 	return rc;
10534 }
10535 
10536 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10537 {
10538 	struct bnx2x_prev_path_list *tmp_list;
10539 	bool rc = false;
10540 
10541 	if (down_trylock(&bnx2x_prev_sem))
10542 		return false;
10543 
10544 	tmp_list = bnx2x_prev_path_get_entry(bp);
10545 	if (tmp_list) {
10546 		if (tmp_list->aer) {
10547 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10548 			   BP_PATH(bp));
10549 		} else {
10550 			rc = true;
10551 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10552 				       BP_PATH(bp));
10553 		}
10554 	}
10555 
10556 	up(&bnx2x_prev_sem);
10557 
10558 	return rc;
10559 }
10560 
10561 bool bnx2x_port_after_undi(struct bnx2x *bp)
10562 {
10563 	struct bnx2x_prev_path_list *entry;
10564 	bool val;
10565 
10566 	down(&bnx2x_prev_sem);
10567 
10568 	entry = bnx2x_prev_path_get_entry(bp);
10569 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10570 
10571 	up(&bnx2x_prev_sem);
10572 
10573 	return val;
10574 }
10575 
10576 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10577 {
10578 	struct bnx2x_prev_path_list *tmp_list;
10579 	int rc;
10580 
10581 	rc = down_interruptible(&bnx2x_prev_sem);
10582 	if (rc) {
10583 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10584 		return rc;
10585 	}
10586 
10587 	/* Check whether the entry for this path already exists */
10588 	tmp_list = bnx2x_prev_path_get_entry(bp);
10589 	if (tmp_list) {
10590 		if (!tmp_list->aer) {
10591 			BNX2X_ERR("Re-Marking the path.\n");
10592 		} else {
10593 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10594 			   BP_PATH(bp));
10595 			tmp_list->aer = 0;
10596 		}
10597 		up(&bnx2x_prev_sem);
10598 		return 0;
10599 	}
10600 	up(&bnx2x_prev_sem);
10601 
10602 	/* Create an entry for this path and add it */
10603 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10604 	if (!tmp_list) {
10605 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10606 		return -ENOMEM;
10607 	}
10608 
10609 	tmp_list->bus = bp->pdev->bus->number;
10610 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10611 	tmp_list->path = BP_PATH(bp);
10612 	tmp_list->aer = 0;
10613 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10614 
10615 	rc = down_interruptible(&bnx2x_prev_sem);
10616 	if (rc) {
10617 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10618 		kfree(tmp_list);
10619 	} else {
10620 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10621 		   BP_PATH(bp));
10622 		list_add(&tmp_list->list, &bnx2x_prev_list);
10623 		up(&bnx2x_prev_sem);
10624 	}
10625 
10626 	return rc;
10627 }
10628 
10629 static int bnx2x_do_flr(struct bnx2x *bp)
10630 {
10631 	struct pci_dev *dev = bp->pdev;
10632 
10633 	if (CHIP_IS_E1x(bp)) {
10634 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10635 		return -EINVAL;
10636 	}
10637 
10638 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10639 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10640 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10641 			  bp->common.bc_ver);
10642 		return -EINVAL;
10643 	}
10644 
10645 	if (!pci_wait_for_pending_transaction(dev))
10646 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10647 
10648 	BNX2X_DEV_INFO("Initiating FLR\n");
10649 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10650 
10651 	return 0;
10652 }
10653 
10654 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10655 {
10656 	int rc;
10657 
10658 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10659 
10660 	/* Test if previous unload process was already finished for this path */
10661 	if (bnx2x_prev_is_path_marked(bp))
10662 		return bnx2x_prev_mcp_done(bp);
10663 
10664 	BNX2X_DEV_INFO("Path is unmarked\n");
10665 
10666 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10667 	if (bnx2x_prev_is_after_undi(bp))
10668 		goto out;
10669 
10670 	/* If function has FLR capabilities, and existing FW version matches
10671 	 * the one required, then FLR will be sufficient to clean any residue
10672 	 * left by previous driver
10673 	 */
10674 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10675 
10676 	if (!rc) {
10677 		/* fw version is good */
10678 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10679 		rc = bnx2x_do_flr(bp);
10680 	}
10681 
10682 	if (!rc) {
10683 		/* FLR was performed */
10684 		BNX2X_DEV_INFO("FLR successful\n");
10685 		return 0;
10686 	}
10687 
10688 	BNX2X_DEV_INFO("Could not FLR\n");
10689 
10690 out:
10691 	/* Close the MCP request, return failure*/
10692 	rc = bnx2x_prev_mcp_done(bp);
10693 	if (!rc)
10694 		rc = BNX2X_PREV_WAIT_NEEDED;
10695 
10696 	return rc;
10697 }
10698 
10699 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10700 {
10701 	u32 reset_reg, tmp_reg = 0, rc;
10702 	bool prev_undi = false;
10703 	struct bnx2x_mac_vals mac_vals;
10704 
10705 	/* It is possible a previous function received 'common' answer,
10706 	 * but hasn't loaded yet, therefore creating a scenario of
10707 	 * multiple functions receiving 'common' on the same path.
10708 	 */
10709 	BNX2X_DEV_INFO("Common unload Flow\n");
10710 
10711 	memset(&mac_vals, 0, sizeof(mac_vals));
10712 
10713 	if (bnx2x_prev_is_path_marked(bp))
10714 		return bnx2x_prev_mcp_done(bp);
10715 
10716 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10717 
10718 	/* Reset should be performed after BRB is emptied */
10719 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10720 		u32 timer_count = 1000;
10721 
10722 		/* Close the MAC Rx to prevent BRB from filling up */
10723 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10724 
10725 		/* close LLH filters for both ports towards the BRB */
10726 		bnx2x_set_rx_filter(&bp->link_params, 0);
10727 		bp->link_params.port ^= 1;
10728 		bnx2x_set_rx_filter(&bp->link_params, 0);
10729 		bp->link_params.port ^= 1;
10730 
10731 		/* Check if the UNDI driver was previously loaded */
10732 		if (bnx2x_prev_is_after_undi(bp)) {
10733 			prev_undi = true;
10734 			/* clear the UNDI indication */
10735 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10736 			/* clear possible idle check errors */
10737 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10738 		}
10739 		if (!CHIP_IS_E1x(bp))
10740 			/* block FW from writing to host */
10741 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10742 
10743 		/* wait until BRB is empty */
10744 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10745 		while (timer_count) {
10746 			u32 prev_brb = tmp_reg;
10747 
10748 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10749 			if (!tmp_reg)
10750 				break;
10751 
10752 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10753 
10754 			/* reset timer as long as BRB actually gets emptied */
10755 			if (prev_brb > tmp_reg)
10756 				timer_count = 1000;
10757 			else
10758 				timer_count--;
10759 
10760 			/* If UNDI resides in memory, manually increment it */
10761 			if (prev_undi)
10762 				bnx2x_prev_unload_undi_inc(bp, 1);
10763 
10764 			udelay(10);
10765 		}
10766 
10767 		if (!timer_count)
10768 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10769 	}
10770 
10771 	/* No packets are in the pipeline, path is ready for reset */
10772 	bnx2x_reset_common(bp);
10773 
10774 	if (mac_vals.xmac_addr)
10775 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10776 	if (mac_vals.umac_addr[0])
10777 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10778 	if (mac_vals.umac_addr[1])
10779 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10780 	if (mac_vals.emac_addr)
10781 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10782 	if (mac_vals.bmac_addr) {
10783 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10784 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10785 	}
10786 
10787 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10788 	if (rc) {
10789 		bnx2x_prev_mcp_done(bp);
10790 		return rc;
10791 	}
10792 
10793 	return bnx2x_prev_mcp_done(bp);
10794 }
10795 
10796 static int bnx2x_prev_unload(struct bnx2x *bp)
10797 {
10798 	int time_counter = 10;
10799 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10800 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10801 
10802 	/* clear hw from errors which may have resulted from an interrupted
10803 	 * dmae transaction.
10804 	 */
10805 	bnx2x_clean_pglue_errors(bp);
10806 
10807 	/* Release previously held locks */
10808 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10809 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10810 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10811 
10812 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10813 	if (hw_lock_val) {
10814 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10815 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10816 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10817 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10818 		}
10819 
10820 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10821 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10822 	} else
10823 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10824 
10825 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10826 		BNX2X_DEV_INFO("Release previously held alr\n");
10827 		bnx2x_release_alr(bp);
10828 	}
10829 
10830 	do {
10831 		int aer = 0;
10832 		/* Lock MCP using an unload request */
10833 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10834 		if (!fw) {
10835 			BNX2X_ERR("MCP response failure, aborting\n");
10836 			rc = -EBUSY;
10837 			break;
10838 		}
10839 
10840 		rc = down_interruptible(&bnx2x_prev_sem);
10841 		if (rc) {
10842 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10843 				  rc);
10844 		} else {
10845 			/* If Path is marked by EEH, ignore unload status */
10846 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10847 				 bnx2x_prev_path_get_entry(bp)->aer);
10848 			up(&bnx2x_prev_sem);
10849 		}
10850 
10851 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10852 			rc = bnx2x_prev_unload_common(bp);
10853 			break;
10854 		}
10855 
10856 		/* non-common reply from MCP might require looping */
10857 		rc = bnx2x_prev_unload_uncommon(bp);
10858 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10859 			break;
10860 
10861 		msleep(20);
10862 	} while (--time_counter);
10863 
10864 	if (!time_counter || rc) {
10865 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10866 		rc = -EPROBE_DEFER;
10867 	}
10868 
10869 	/* Mark function if its port was used to boot from SAN */
10870 	if (bnx2x_port_after_undi(bp))
10871 		bp->link_params.feature_config_flags |=
10872 			FEATURE_CONFIG_BOOT_FROM_SAN;
10873 
10874 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10875 
10876 	return rc;
10877 }
10878 
10879 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10880 {
10881 	u32 val, val2, val3, val4, id, boot_mode;
10882 	u16 pmc;
10883 
10884 	/* Get the chip revision id and number. */
10885 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10886 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10887 	id = ((val & 0xffff) << 16);
10888 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10889 	id |= ((val & 0xf) << 12);
10890 
10891 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10892 	 * the configuration space (so we need to reg_rd)
10893 	 */
10894 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10895 	id |= (((val >> 24) & 0xf) << 4);
10896 	val = REG_RD(bp, MISC_REG_BOND_ID);
10897 	id |= (val & 0xf);
10898 	bp->common.chip_id = id;
10899 
10900 	/* force 57811 according to MISC register */
10901 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10902 		if (CHIP_IS_57810(bp))
10903 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10904 				(bp->common.chip_id & 0x0000FFFF);
10905 		else if (CHIP_IS_57810_MF(bp))
10906 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10907 				(bp->common.chip_id & 0x0000FFFF);
10908 		bp->common.chip_id |= 0x1;
10909 	}
10910 
10911 	/* Set doorbell size */
10912 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10913 
10914 	if (!CHIP_IS_E1x(bp)) {
10915 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10916 		if ((val & 1) == 0)
10917 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10918 		else
10919 			val = (val >> 1) & 1;
10920 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10921 						       "2_PORT_MODE");
10922 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10923 						 CHIP_2_PORT_MODE;
10924 
10925 		if (CHIP_MODE_IS_4_PORT(bp))
10926 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10927 		else
10928 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10929 	} else {
10930 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10931 		bp->pfid = bp->pf_num;			/* 0..7 */
10932 	}
10933 
10934 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10935 
10936 	bp->link_params.chip_id = bp->common.chip_id;
10937 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10938 
10939 	val = (REG_RD(bp, 0x2874) & 0x55);
10940 	if ((bp->common.chip_id & 0x1) ||
10941 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10942 		bp->flags |= ONE_PORT_FLAG;
10943 		BNX2X_DEV_INFO("single port device\n");
10944 	}
10945 
10946 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10947 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10948 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10949 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10950 		       bp->common.flash_size, bp->common.flash_size);
10951 
10952 	bnx2x_init_shmem(bp);
10953 
10954 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10955 					MISC_REG_GENERIC_CR_1 :
10956 					MISC_REG_GENERIC_CR_0));
10957 
10958 	bp->link_params.shmem_base = bp->common.shmem_base;
10959 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10960 	if (SHMEM2_RD(bp, size) >
10961 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10962 		bp->link_params.lfa_base =
10963 		REG_RD(bp, bp->common.shmem2_base +
10964 		       (u32)offsetof(struct shmem2_region,
10965 				     lfa_host_addr[BP_PORT(bp)]));
10966 	else
10967 		bp->link_params.lfa_base = 0;
10968 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10969 		       bp->common.shmem_base, bp->common.shmem2_base);
10970 
10971 	if (!bp->common.shmem_base) {
10972 		BNX2X_DEV_INFO("MCP not active\n");
10973 		bp->flags |= NO_MCP_FLAG;
10974 		return;
10975 	}
10976 
10977 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10978 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10979 
10980 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10981 					SHARED_HW_CFG_LED_MODE_MASK) >>
10982 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10983 
10984 	bp->link_params.feature_config_flags = 0;
10985 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10986 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10987 		bp->link_params.feature_config_flags |=
10988 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10989 	else
10990 		bp->link_params.feature_config_flags &=
10991 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10992 
10993 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10994 	bp->common.bc_ver = val;
10995 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10996 	if (val < BNX2X_BC_VER) {
10997 		/* for now only warn
10998 		 * later we might need to enforce this */
10999 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11000 			  BNX2X_BC_VER, val);
11001 	}
11002 	bp->link_params.feature_config_flags |=
11003 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11004 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11005 
11006 	bp->link_params.feature_config_flags |=
11007 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11008 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11009 	bp->link_params.feature_config_flags |=
11010 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11011 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11012 	bp->link_params.feature_config_flags |=
11013 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11014 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11015 
11016 	bp->link_params.feature_config_flags |=
11017 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11018 		FEATURE_CONFIG_MT_SUPPORT : 0;
11019 
11020 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11021 			BC_SUPPORTS_PFC_STATS : 0;
11022 
11023 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11024 			BC_SUPPORTS_FCOE_FEATURES : 0;
11025 
11026 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11027 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11028 
11029 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11030 			BC_SUPPORTS_RMMOD_CMD : 0;
11031 
11032 	boot_mode = SHMEM_RD(bp,
11033 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11034 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11035 	switch (boot_mode) {
11036 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11037 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11038 		break;
11039 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11040 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11041 		break;
11042 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11043 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11044 		break;
11045 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11046 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11047 		break;
11048 	}
11049 
11050 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11051 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11052 
11053 	BNX2X_DEV_INFO("%sWoL capable\n",
11054 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11055 
11056 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11057 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11058 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11059 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11060 
11061 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11062 		 val, val2, val3, val4);
11063 }
11064 
11065 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11066 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11067 
11068 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11069 {
11070 	int pfid = BP_FUNC(bp);
11071 	int igu_sb_id;
11072 	u32 val;
11073 	u8 fid, igu_sb_cnt = 0;
11074 
11075 	bp->igu_base_sb = 0xff;
11076 	if (CHIP_INT_MODE_IS_BC(bp)) {
11077 		int vn = BP_VN(bp);
11078 		igu_sb_cnt = bp->igu_sb_cnt;
11079 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11080 			FP_SB_MAX_E1x;
11081 
11082 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11083 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11084 
11085 		return 0;
11086 	}
11087 
11088 	/* IGU in normal mode - read CAM */
11089 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11090 	     igu_sb_id++) {
11091 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11092 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11093 			continue;
11094 		fid = IGU_FID(val);
11095 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11096 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11097 				continue;
11098 			if (IGU_VEC(val) == 0)
11099 				/* default status block */
11100 				bp->igu_dsb_id = igu_sb_id;
11101 			else {
11102 				if (bp->igu_base_sb == 0xff)
11103 					bp->igu_base_sb = igu_sb_id;
11104 				igu_sb_cnt++;
11105 			}
11106 		}
11107 	}
11108 
11109 #ifdef CONFIG_PCI_MSI
11110 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11111 	 * optional that number of CAM entries will not be equal to the value
11112 	 * advertised in PCI.
11113 	 * Driver should use the minimal value of both as the actual status
11114 	 * block count
11115 	 */
11116 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11117 #endif
11118 
11119 	if (igu_sb_cnt == 0) {
11120 		BNX2X_ERR("CAM configuration error\n");
11121 		return -EINVAL;
11122 	}
11123 
11124 	return 0;
11125 }
11126 
11127 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11128 {
11129 	int cfg_size = 0, idx, port = BP_PORT(bp);
11130 
11131 	/* Aggregation of supported attributes of all external phys */
11132 	bp->port.supported[0] = 0;
11133 	bp->port.supported[1] = 0;
11134 	switch (bp->link_params.num_phys) {
11135 	case 1:
11136 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11137 		cfg_size = 1;
11138 		break;
11139 	case 2:
11140 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11141 		cfg_size = 1;
11142 		break;
11143 	case 3:
11144 		if (bp->link_params.multi_phy_config &
11145 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11146 			bp->port.supported[1] =
11147 				bp->link_params.phy[EXT_PHY1].supported;
11148 			bp->port.supported[0] =
11149 				bp->link_params.phy[EXT_PHY2].supported;
11150 		} else {
11151 			bp->port.supported[0] =
11152 				bp->link_params.phy[EXT_PHY1].supported;
11153 			bp->port.supported[1] =
11154 				bp->link_params.phy[EXT_PHY2].supported;
11155 		}
11156 		cfg_size = 2;
11157 		break;
11158 	}
11159 
11160 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11161 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11162 			   SHMEM_RD(bp,
11163 			   dev_info.port_hw_config[port].external_phy_config),
11164 			   SHMEM_RD(bp,
11165 			   dev_info.port_hw_config[port].external_phy_config2));
11166 			return;
11167 	}
11168 
11169 	if (CHIP_IS_E3(bp))
11170 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11171 	else {
11172 		switch (switch_cfg) {
11173 		case SWITCH_CFG_1G:
11174 			bp->port.phy_addr = REG_RD(
11175 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11176 			break;
11177 		case SWITCH_CFG_10G:
11178 			bp->port.phy_addr = REG_RD(
11179 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11180 			break;
11181 		default:
11182 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11183 				  bp->port.link_config[0]);
11184 			return;
11185 		}
11186 	}
11187 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11188 	/* mask what we support according to speed_cap_mask per configuration */
11189 	for (idx = 0; idx < cfg_size; idx++) {
11190 		if (!(bp->link_params.speed_cap_mask[idx] &
11191 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11192 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11193 
11194 		if (!(bp->link_params.speed_cap_mask[idx] &
11195 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11196 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11197 
11198 		if (!(bp->link_params.speed_cap_mask[idx] &
11199 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11200 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11201 
11202 		if (!(bp->link_params.speed_cap_mask[idx] &
11203 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11204 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11205 
11206 		if (!(bp->link_params.speed_cap_mask[idx] &
11207 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11208 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11209 						     SUPPORTED_1000baseT_Full);
11210 
11211 		if (!(bp->link_params.speed_cap_mask[idx] &
11212 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11213 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11214 
11215 		if (!(bp->link_params.speed_cap_mask[idx] &
11216 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11217 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11218 
11219 		if (!(bp->link_params.speed_cap_mask[idx] &
11220 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11221 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11222 	}
11223 
11224 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11225 		       bp->port.supported[1]);
11226 }
11227 
11228 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11229 {
11230 	u32 link_config, idx, cfg_size = 0;
11231 	bp->port.advertising[0] = 0;
11232 	bp->port.advertising[1] = 0;
11233 	switch (bp->link_params.num_phys) {
11234 	case 1:
11235 	case 2:
11236 		cfg_size = 1;
11237 		break;
11238 	case 3:
11239 		cfg_size = 2;
11240 		break;
11241 	}
11242 	for (idx = 0; idx < cfg_size; idx++) {
11243 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11244 		link_config = bp->port.link_config[idx];
11245 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11246 		case PORT_FEATURE_LINK_SPEED_AUTO:
11247 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11248 				bp->link_params.req_line_speed[idx] =
11249 					SPEED_AUTO_NEG;
11250 				bp->port.advertising[idx] |=
11251 					bp->port.supported[idx];
11252 				if (bp->link_params.phy[EXT_PHY1].type ==
11253 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11254 					bp->port.advertising[idx] |=
11255 					(SUPPORTED_100baseT_Half |
11256 					 SUPPORTED_100baseT_Full);
11257 			} else {
11258 				/* force 10G, no AN */
11259 				bp->link_params.req_line_speed[idx] =
11260 					SPEED_10000;
11261 				bp->port.advertising[idx] |=
11262 					(ADVERTISED_10000baseT_Full |
11263 					 ADVERTISED_FIBRE);
11264 				continue;
11265 			}
11266 			break;
11267 
11268 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11269 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11270 				bp->link_params.req_line_speed[idx] =
11271 					SPEED_10;
11272 				bp->port.advertising[idx] |=
11273 					(ADVERTISED_10baseT_Full |
11274 					 ADVERTISED_TP);
11275 			} else {
11276 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11277 					    link_config,
11278 				    bp->link_params.speed_cap_mask[idx]);
11279 				return;
11280 			}
11281 			break;
11282 
11283 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11284 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11285 				bp->link_params.req_line_speed[idx] =
11286 					SPEED_10;
11287 				bp->link_params.req_duplex[idx] =
11288 					DUPLEX_HALF;
11289 				bp->port.advertising[idx] |=
11290 					(ADVERTISED_10baseT_Half |
11291 					 ADVERTISED_TP);
11292 			} else {
11293 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11294 					    link_config,
11295 					  bp->link_params.speed_cap_mask[idx]);
11296 				return;
11297 			}
11298 			break;
11299 
11300 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11301 			if (bp->port.supported[idx] &
11302 			    SUPPORTED_100baseT_Full) {
11303 				bp->link_params.req_line_speed[idx] =
11304 					SPEED_100;
11305 				bp->port.advertising[idx] |=
11306 					(ADVERTISED_100baseT_Full |
11307 					 ADVERTISED_TP);
11308 			} else {
11309 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11310 					    link_config,
11311 					  bp->link_params.speed_cap_mask[idx]);
11312 				return;
11313 			}
11314 			break;
11315 
11316 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11317 			if (bp->port.supported[idx] &
11318 			    SUPPORTED_100baseT_Half) {
11319 				bp->link_params.req_line_speed[idx] =
11320 								SPEED_100;
11321 				bp->link_params.req_duplex[idx] =
11322 								DUPLEX_HALF;
11323 				bp->port.advertising[idx] |=
11324 					(ADVERTISED_100baseT_Half |
11325 					 ADVERTISED_TP);
11326 			} else {
11327 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11328 				    link_config,
11329 				    bp->link_params.speed_cap_mask[idx]);
11330 				return;
11331 			}
11332 			break;
11333 
11334 		case PORT_FEATURE_LINK_SPEED_1G:
11335 			if (bp->port.supported[idx] &
11336 			    SUPPORTED_1000baseT_Full) {
11337 				bp->link_params.req_line_speed[idx] =
11338 					SPEED_1000;
11339 				bp->port.advertising[idx] |=
11340 					(ADVERTISED_1000baseT_Full |
11341 					 ADVERTISED_TP);
11342 			} else if (bp->port.supported[idx] &
11343 				   SUPPORTED_1000baseKX_Full) {
11344 				bp->link_params.req_line_speed[idx] =
11345 					SPEED_1000;
11346 				bp->port.advertising[idx] |=
11347 					ADVERTISED_1000baseKX_Full;
11348 			} else {
11349 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11350 				    link_config,
11351 				    bp->link_params.speed_cap_mask[idx]);
11352 				return;
11353 			}
11354 			break;
11355 
11356 		case PORT_FEATURE_LINK_SPEED_2_5G:
11357 			if (bp->port.supported[idx] &
11358 			    SUPPORTED_2500baseX_Full) {
11359 				bp->link_params.req_line_speed[idx] =
11360 					SPEED_2500;
11361 				bp->port.advertising[idx] |=
11362 					(ADVERTISED_2500baseX_Full |
11363 						ADVERTISED_TP);
11364 			} else {
11365 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11366 				    link_config,
11367 				    bp->link_params.speed_cap_mask[idx]);
11368 				return;
11369 			}
11370 			break;
11371 
11372 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11373 			if (bp->port.supported[idx] &
11374 			    SUPPORTED_10000baseT_Full) {
11375 				bp->link_params.req_line_speed[idx] =
11376 					SPEED_10000;
11377 				bp->port.advertising[idx] |=
11378 					(ADVERTISED_10000baseT_Full |
11379 						ADVERTISED_FIBRE);
11380 			} else if (bp->port.supported[idx] &
11381 				   SUPPORTED_10000baseKR_Full) {
11382 				bp->link_params.req_line_speed[idx] =
11383 					SPEED_10000;
11384 				bp->port.advertising[idx] |=
11385 					(ADVERTISED_10000baseKR_Full |
11386 						ADVERTISED_FIBRE);
11387 			} else {
11388 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11389 				    link_config,
11390 				    bp->link_params.speed_cap_mask[idx]);
11391 				return;
11392 			}
11393 			break;
11394 		case PORT_FEATURE_LINK_SPEED_20G:
11395 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11396 
11397 			break;
11398 		default:
11399 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11400 				  link_config);
11401 				bp->link_params.req_line_speed[idx] =
11402 							SPEED_AUTO_NEG;
11403 				bp->port.advertising[idx] =
11404 						bp->port.supported[idx];
11405 			break;
11406 		}
11407 
11408 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11409 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11410 		if (bp->link_params.req_flow_ctrl[idx] ==
11411 		    BNX2X_FLOW_CTRL_AUTO) {
11412 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11413 				bp->link_params.req_flow_ctrl[idx] =
11414 							BNX2X_FLOW_CTRL_NONE;
11415 			else
11416 				bnx2x_set_requested_fc(bp);
11417 		}
11418 
11419 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11420 			       bp->link_params.req_line_speed[idx],
11421 			       bp->link_params.req_duplex[idx],
11422 			       bp->link_params.req_flow_ctrl[idx],
11423 			       bp->port.advertising[idx]);
11424 	}
11425 }
11426 
11427 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11428 {
11429 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11430 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11431 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11432 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11433 }
11434 
11435 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11436 {
11437 	int port = BP_PORT(bp);
11438 	u32 config;
11439 	u32 ext_phy_type, ext_phy_config, eee_mode;
11440 
11441 	bp->link_params.bp = bp;
11442 	bp->link_params.port = port;
11443 
11444 	bp->link_params.lane_config =
11445 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11446 
11447 	bp->link_params.speed_cap_mask[0] =
11448 		SHMEM_RD(bp,
11449 			 dev_info.port_hw_config[port].speed_capability_mask) &
11450 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11451 	bp->link_params.speed_cap_mask[1] =
11452 		SHMEM_RD(bp,
11453 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11454 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11455 	bp->port.link_config[0] =
11456 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11457 
11458 	bp->port.link_config[1] =
11459 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11460 
11461 	bp->link_params.multi_phy_config =
11462 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11463 	/* If the device is capable of WoL, set the default state according
11464 	 * to the HW
11465 	 */
11466 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11467 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11468 		   (config & PORT_FEATURE_WOL_ENABLED));
11469 
11470 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11471 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11472 		bp->flags |= NO_ISCSI_FLAG;
11473 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11474 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11475 		bp->flags |= NO_FCOE_FLAG;
11476 
11477 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11478 		       bp->link_params.lane_config,
11479 		       bp->link_params.speed_cap_mask[0],
11480 		       bp->port.link_config[0]);
11481 
11482 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11483 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11484 	bnx2x_phy_probe(&bp->link_params);
11485 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11486 
11487 	bnx2x_link_settings_requested(bp);
11488 
11489 	/*
11490 	 * If connected directly, work with the internal PHY, otherwise, work
11491 	 * with the external PHY
11492 	 */
11493 	ext_phy_config =
11494 		SHMEM_RD(bp,
11495 			 dev_info.port_hw_config[port].external_phy_config);
11496 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11497 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11498 		bp->mdio.prtad = bp->port.phy_addr;
11499 
11500 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11501 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11502 		bp->mdio.prtad =
11503 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11504 
11505 	/* Configure link feature according to nvram value */
11506 	eee_mode = (((SHMEM_RD(bp, dev_info.
11507 		      port_feature_config[port].eee_power_mode)) &
11508 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11509 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11510 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11511 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11512 					   EEE_MODE_ENABLE_LPI |
11513 					   EEE_MODE_OUTPUT_TIME;
11514 	} else {
11515 		bp->link_params.eee_mode = 0;
11516 	}
11517 }
11518 
11519 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11520 {
11521 	u32 no_flags = NO_ISCSI_FLAG;
11522 	int port = BP_PORT(bp);
11523 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11524 				drv_lic_key[port].max_iscsi_conn);
11525 
11526 	if (!CNIC_SUPPORT(bp)) {
11527 		bp->flags |= no_flags;
11528 		return;
11529 	}
11530 
11531 	/* Get the number of maximum allowed iSCSI connections */
11532 	bp->cnic_eth_dev.max_iscsi_conn =
11533 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11534 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11535 
11536 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11537 		       bp->cnic_eth_dev.max_iscsi_conn);
11538 
11539 	/*
11540 	 * If maximum allowed number of connections is zero -
11541 	 * disable the feature.
11542 	 */
11543 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11544 		bp->flags |= no_flags;
11545 }
11546 
11547 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11548 {
11549 	/* Port info */
11550 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11551 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11552 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11553 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11554 
11555 	/* Node info */
11556 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11557 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11558 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11559 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11560 }
11561 
11562 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11563 {
11564 	u8 count = 0;
11565 
11566 	if (IS_MF(bp)) {
11567 		u8 fid;
11568 
11569 		/* iterate over absolute function ids for this path: */
11570 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11571 			if (IS_MF_SD(bp)) {
11572 				u32 cfg = MF_CFG_RD(bp,
11573 						    func_mf_config[fid].config);
11574 
11575 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11576 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11577 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11578 					count++;
11579 			} else {
11580 				u32 cfg = MF_CFG_RD(bp,
11581 						    func_ext_config[fid].
11582 								      func_cfg);
11583 
11584 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11585 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11586 					count++;
11587 			}
11588 		}
11589 	} else { /* SF */
11590 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11591 
11592 		for (port = 0; port < port_cnt; port++) {
11593 			u32 lic = SHMEM_RD(bp,
11594 					   drv_lic_key[port].max_fcoe_conn) ^
11595 				  FW_ENCODE_32BIT_PATTERN;
11596 			if (lic)
11597 				count++;
11598 		}
11599 	}
11600 
11601 	return count;
11602 }
11603 
11604 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11605 {
11606 	int port = BP_PORT(bp);
11607 	int func = BP_ABS_FUNC(bp);
11608 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11609 				drv_lic_key[port].max_fcoe_conn);
11610 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11611 
11612 	if (!CNIC_SUPPORT(bp)) {
11613 		bp->flags |= NO_FCOE_FLAG;
11614 		return;
11615 	}
11616 
11617 	/* Get the number of maximum allowed FCoE connections */
11618 	bp->cnic_eth_dev.max_fcoe_conn =
11619 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11620 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11621 
11622 	/* Calculate the number of maximum allowed FCoE tasks */
11623 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11624 
11625 	/* check if FCoE resources must be shared between different functions */
11626 	if (num_fcoe_func)
11627 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11628 
11629 	/* Read the WWN: */
11630 	if (!IS_MF(bp)) {
11631 		/* Port info */
11632 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11633 			SHMEM_RD(bp,
11634 				 dev_info.port_hw_config[port].
11635 				 fcoe_wwn_port_name_upper);
11636 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11637 			SHMEM_RD(bp,
11638 				 dev_info.port_hw_config[port].
11639 				 fcoe_wwn_port_name_lower);
11640 
11641 		/* Node info */
11642 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11643 			SHMEM_RD(bp,
11644 				 dev_info.port_hw_config[port].
11645 				 fcoe_wwn_node_name_upper);
11646 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11647 			SHMEM_RD(bp,
11648 				 dev_info.port_hw_config[port].
11649 				 fcoe_wwn_node_name_lower);
11650 	} else if (!IS_MF_SD(bp)) {
11651 		/* Read the WWN info only if the FCoE feature is enabled for
11652 		 * this function.
11653 		 */
11654 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11655 			bnx2x_get_ext_wwn_info(bp, func);
11656 	} else {
11657 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11658 			bnx2x_get_ext_wwn_info(bp, func);
11659 	}
11660 
11661 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11662 
11663 	/*
11664 	 * If maximum allowed number of connections is zero -
11665 	 * disable the feature.
11666 	 */
11667 	if (!bp->cnic_eth_dev.max_fcoe_conn)
11668 		bp->flags |= NO_FCOE_FLAG;
11669 }
11670 
11671 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11672 {
11673 	/*
11674 	 * iSCSI may be dynamically disabled but reading
11675 	 * info here we will decrease memory usage by driver
11676 	 * if the feature is disabled for good
11677 	 */
11678 	bnx2x_get_iscsi_info(bp);
11679 	bnx2x_get_fcoe_info(bp);
11680 }
11681 
11682 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11683 {
11684 	u32 val, val2;
11685 	int func = BP_ABS_FUNC(bp);
11686 	int port = BP_PORT(bp);
11687 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11688 	u8 *fip_mac = bp->fip_mac;
11689 
11690 	if (IS_MF(bp)) {
11691 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11692 		 * FCoE MAC then the appropriate feature should be disabled.
11693 		 * In non SD mode features configuration comes from struct
11694 		 * func_ext_config.
11695 		 */
11696 		if (!IS_MF_SD(bp)) {
11697 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11698 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11699 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11700 						 iscsi_mac_addr_upper);
11701 				val = MF_CFG_RD(bp, func_ext_config[func].
11702 						iscsi_mac_addr_lower);
11703 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11704 				BNX2X_DEV_INFO
11705 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11706 			} else {
11707 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11708 			}
11709 
11710 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11711 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11712 						 fcoe_mac_addr_upper);
11713 				val = MF_CFG_RD(bp, func_ext_config[func].
11714 						fcoe_mac_addr_lower);
11715 				bnx2x_set_mac_buf(fip_mac, val, val2);
11716 				BNX2X_DEV_INFO
11717 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11718 			} else {
11719 				bp->flags |= NO_FCOE_FLAG;
11720 			}
11721 
11722 			bp->mf_ext_config = cfg;
11723 
11724 		} else { /* SD MODE */
11725 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11726 				/* use primary mac as iscsi mac */
11727 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11728 
11729 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11730 				BNX2X_DEV_INFO
11731 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11732 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11733 				/* use primary mac as fip mac */
11734 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11735 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11736 				BNX2X_DEV_INFO
11737 					("Read FIP MAC: %pM\n", fip_mac);
11738 			}
11739 		}
11740 
11741 		/* If this is a storage-only interface, use SAN mac as
11742 		 * primary MAC. Notice that for SD this is already the case,
11743 		 * as the SAN mac was copied from the primary MAC.
11744 		 */
11745 		if (IS_MF_FCOE_AFEX(bp))
11746 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11747 	} else {
11748 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11749 				iscsi_mac_upper);
11750 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11751 			       iscsi_mac_lower);
11752 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11753 
11754 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11755 				fcoe_fip_mac_upper);
11756 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11757 			       fcoe_fip_mac_lower);
11758 		bnx2x_set_mac_buf(fip_mac, val, val2);
11759 	}
11760 
11761 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11762 	if (!is_valid_ether_addr(iscsi_mac)) {
11763 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11764 		eth_zero_addr(iscsi_mac);
11765 	}
11766 
11767 	/* Disable FCoE if MAC configuration is invalid. */
11768 	if (!is_valid_ether_addr(fip_mac)) {
11769 		bp->flags |= NO_FCOE_FLAG;
11770 		eth_zero_addr(bp->fip_mac);
11771 	}
11772 }
11773 
11774 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11775 {
11776 	u32 val, val2;
11777 	int func = BP_ABS_FUNC(bp);
11778 	int port = BP_PORT(bp);
11779 
11780 	/* Zero primary MAC configuration */
11781 	eth_zero_addr(bp->dev->dev_addr);
11782 
11783 	if (BP_NOMCP(bp)) {
11784 		BNX2X_ERROR("warning: random MAC workaround active\n");
11785 		eth_hw_addr_random(bp->dev);
11786 	} else if (IS_MF(bp)) {
11787 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11788 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11789 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11790 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11791 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11792 
11793 		if (CNIC_SUPPORT(bp))
11794 			bnx2x_get_cnic_mac_hwinfo(bp);
11795 	} else {
11796 		/* in SF read MACs from port configuration */
11797 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11798 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11799 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11800 
11801 		if (CNIC_SUPPORT(bp))
11802 			bnx2x_get_cnic_mac_hwinfo(bp);
11803 	}
11804 
11805 	if (!BP_NOMCP(bp)) {
11806 		/* Read physical port identifier from shmem */
11807 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11808 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11809 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11810 		bp->flags |= HAS_PHYS_PORT_ID;
11811 	}
11812 
11813 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11814 
11815 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11816 		dev_err(&bp->pdev->dev,
11817 			"bad Ethernet MAC address configuration: %pM\n"
11818 			"change it manually before bringing up the appropriate network interface\n",
11819 			bp->dev->dev_addr);
11820 }
11821 
11822 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11823 {
11824 	int tmp;
11825 	u32 cfg;
11826 
11827 	if (IS_VF(bp))
11828 		return false;
11829 
11830 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11831 		/* Take function: tmp = func */
11832 		tmp = BP_ABS_FUNC(bp);
11833 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11834 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11835 	} else {
11836 		/* Take port: tmp = port */
11837 		tmp = BP_PORT(bp);
11838 		cfg = SHMEM_RD(bp,
11839 			       dev_info.port_hw_config[tmp].generic_features);
11840 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11841 	}
11842 	return cfg;
11843 }
11844 
11845 static void validate_set_si_mode(struct bnx2x *bp)
11846 {
11847 	u8 func = BP_ABS_FUNC(bp);
11848 	u32 val;
11849 
11850 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11851 
11852 	/* check for legal mac (upper bytes) */
11853 	if (val != 0xffff) {
11854 		bp->mf_mode = MULTI_FUNCTION_SI;
11855 		bp->mf_config[BP_VN(bp)] =
11856 			MF_CFG_RD(bp, func_mf_config[func].config);
11857 	} else
11858 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11859 }
11860 
11861 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11862 {
11863 	int /*abs*/func = BP_ABS_FUNC(bp);
11864 	int vn, mfw_vn;
11865 	u32 val = 0, val2 = 0;
11866 	int rc = 0;
11867 
11868 	/* Validate that chip access is feasible */
11869 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11870 		dev_err(&bp->pdev->dev,
11871 			"Chip read returns all Fs. Preventing probe from continuing\n");
11872 		return -EINVAL;
11873 	}
11874 
11875 	bnx2x_get_common_hwinfo(bp);
11876 
11877 	/*
11878 	 * initialize IGU parameters
11879 	 */
11880 	if (CHIP_IS_E1x(bp)) {
11881 		bp->common.int_block = INT_BLOCK_HC;
11882 
11883 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11884 		bp->igu_base_sb = 0;
11885 	} else {
11886 		bp->common.int_block = INT_BLOCK_IGU;
11887 
11888 		/* do not allow device reset during IGU info processing */
11889 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11890 
11891 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11892 
11893 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11894 			int tout = 5000;
11895 
11896 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11897 
11898 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11899 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11900 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11901 
11902 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11903 				tout--;
11904 				usleep_range(1000, 2000);
11905 			}
11906 
11907 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11908 				dev_err(&bp->pdev->dev,
11909 					"FORCING Normal Mode failed!!!\n");
11910 				bnx2x_release_hw_lock(bp,
11911 						      HW_LOCK_RESOURCE_RESET);
11912 				return -EPERM;
11913 			}
11914 		}
11915 
11916 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11917 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11918 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11919 		} else
11920 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11921 
11922 		rc = bnx2x_get_igu_cam_info(bp);
11923 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11924 		if (rc)
11925 			return rc;
11926 	}
11927 
11928 	/*
11929 	 * set base FW non-default (fast path) status block id, this value is
11930 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11931 	 * determine the id used by the FW.
11932 	 */
11933 	if (CHIP_IS_E1x(bp))
11934 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11935 	else /*
11936 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11937 	      * the same queue are indicated on the same IGU SB). So we prefer
11938 	      * FW and IGU SBs to be the same value.
11939 	      */
11940 		bp->base_fw_ndsb = bp->igu_base_sb;
11941 
11942 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11943 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11944 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11945 
11946 	/*
11947 	 * Initialize MF configuration
11948 	 */
11949 
11950 	bp->mf_ov = 0;
11951 	bp->mf_mode = 0;
11952 	bp->mf_sub_mode = 0;
11953 	vn = BP_VN(bp);
11954 	mfw_vn = BP_FW_MB_IDX(bp);
11955 
11956 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11957 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11958 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11959 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11960 
11961 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11962 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11963 		else
11964 			bp->common.mf_cfg_base = bp->common.shmem_base +
11965 				offsetof(struct shmem_region, func_mb) +
11966 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11967 		/*
11968 		 * get mf configuration:
11969 		 * 1. Existence of MF configuration
11970 		 * 2. MAC address must be legal (check only upper bytes)
11971 		 *    for  Switch-Independent mode;
11972 		 *    OVLAN must be legal for Switch-Dependent mode
11973 		 * 3. SF_MODE configures specific MF mode
11974 		 */
11975 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11976 			/* get mf configuration */
11977 			val = SHMEM_RD(bp,
11978 				       dev_info.shared_feature_config.config);
11979 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11980 
11981 			switch (val) {
11982 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11983 				validate_set_si_mode(bp);
11984 				break;
11985 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11986 				if ((!CHIP_IS_E1x(bp)) &&
11987 				    (MF_CFG_RD(bp, func_mf_config[func].
11988 					       mac_upper) != 0xffff) &&
11989 				    (SHMEM2_HAS(bp,
11990 						afex_driver_support))) {
11991 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11992 					bp->mf_config[vn] = MF_CFG_RD(bp,
11993 						func_mf_config[func].config);
11994 				} else {
11995 					BNX2X_DEV_INFO("can not configure afex mode\n");
11996 				}
11997 				break;
11998 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11999 				/* get OV configuration */
12000 				val = MF_CFG_RD(bp,
12001 					func_mf_config[FUNC_0].e1hov_tag);
12002 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12003 
12004 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12005 					bp->mf_mode = MULTI_FUNCTION_SD;
12006 					bp->mf_config[vn] = MF_CFG_RD(bp,
12007 						func_mf_config[func].config);
12008 				} else
12009 					BNX2X_DEV_INFO("illegal OV for SD\n");
12010 				break;
12011 			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12012 				bp->mf_mode = MULTI_FUNCTION_SD;
12013 				bp->mf_sub_mode = SUB_MF_MODE_BD;
12014 				bp->mf_config[vn] =
12015 					MF_CFG_RD(bp,
12016 						  func_mf_config[func].config);
12017 
12018 				if (SHMEM2_HAS(bp, mtu_size)) {
12019 					int mtu_idx = BP_FW_MB_IDX(bp);
12020 					u16 mtu_size;
12021 					u32 mtu;
12022 
12023 					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12024 					mtu_size = (u16)mtu;
12025 					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12026 					   mtu_size, mtu);
12027 
12028 					/* if valid: update device mtu */
12029 					if (((mtu_size + ETH_HLEN) >=
12030 					     ETH_MIN_PACKET_SIZE) &&
12031 					    (mtu_size <=
12032 					     ETH_MAX_JUMBO_PACKET_SIZE))
12033 						bp->dev->mtu = mtu_size;
12034 				}
12035 				break;
12036 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12037 				bp->mf_mode = MULTI_FUNCTION_SD;
12038 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12039 				bp->mf_config[vn] =
12040 					MF_CFG_RD(bp,
12041 						  func_mf_config[func].config);
12042 				break;
12043 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12044 				bp->mf_config[vn] = 0;
12045 				break;
12046 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12047 				val2 = SHMEM_RD(bp,
12048 					dev_info.shared_hw_config.config_3);
12049 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12050 				switch (val2) {
12051 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12052 					validate_set_si_mode(bp);
12053 					bp->mf_sub_mode =
12054 							SUB_MF_MODE_NPAR1_DOT_5;
12055 					break;
12056 				default:
12057 					/* Unknown configuration */
12058 					bp->mf_config[vn] = 0;
12059 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12060 						       val);
12061 				}
12062 				break;
12063 			default:
12064 				/* Unknown configuration: reset mf_config */
12065 				bp->mf_config[vn] = 0;
12066 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12067 			}
12068 		}
12069 
12070 		BNX2X_DEV_INFO("%s function mode\n",
12071 			       IS_MF(bp) ? "multi" : "single");
12072 
12073 		switch (bp->mf_mode) {
12074 		case MULTI_FUNCTION_SD:
12075 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12076 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12077 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12078 				bp->mf_ov = val;
12079 				bp->path_has_ovlan = true;
12080 
12081 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12082 					       func, bp->mf_ov, bp->mf_ov);
12083 			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12084 				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12085 				dev_err(&bp->pdev->dev,
12086 					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12087 					func);
12088 				bp->path_has_ovlan = true;
12089 			} else {
12090 				dev_err(&bp->pdev->dev,
12091 					"No valid MF OV for func %d, aborting\n",
12092 					func);
12093 				return -EPERM;
12094 			}
12095 			break;
12096 		case MULTI_FUNCTION_AFEX:
12097 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12098 			break;
12099 		case MULTI_FUNCTION_SI:
12100 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12101 				       func);
12102 			break;
12103 		default:
12104 			if (vn) {
12105 				dev_err(&bp->pdev->dev,
12106 					"VN %d is in a single function mode, aborting\n",
12107 					vn);
12108 				return -EPERM;
12109 			}
12110 			break;
12111 		}
12112 
12113 		/* check if other port on the path needs ovlan:
12114 		 * Since MF configuration is shared between ports
12115 		 * Possible mixed modes are only
12116 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12117 		 */
12118 		if (CHIP_MODE_IS_4_PORT(bp) &&
12119 		    !bp->path_has_ovlan &&
12120 		    !IS_MF(bp) &&
12121 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12122 			u8 other_port = !BP_PORT(bp);
12123 			u8 other_func = BP_PATH(bp) + 2*other_port;
12124 			val = MF_CFG_RD(bp,
12125 					func_mf_config[other_func].e1hov_tag);
12126 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12127 				bp->path_has_ovlan = true;
12128 		}
12129 	}
12130 
12131 	/* adjust igu_sb_cnt to MF for E1H */
12132 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12133 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12134 
12135 	/* port info */
12136 	bnx2x_get_port_hwinfo(bp);
12137 
12138 	/* Get MAC addresses */
12139 	bnx2x_get_mac_hwinfo(bp);
12140 
12141 	bnx2x_get_cnic_info(bp);
12142 
12143 	return rc;
12144 }
12145 
12146 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12147 {
12148 	int cnt, i, block_end, rodi;
12149 	char vpd_start[BNX2X_VPD_LEN+1];
12150 	char str_id_reg[VENDOR_ID_LEN+1];
12151 	char str_id_cap[VENDOR_ID_LEN+1];
12152 	char *vpd_data;
12153 	char *vpd_extended_data = NULL;
12154 	u8 len;
12155 
12156 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12157 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12158 
12159 	if (cnt < BNX2X_VPD_LEN)
12160 		goto out_not_found;
12161 
12162 	/* VPD RO tag should be first tag after identifier string, hence
12163 	 * we should be able to find it in first BNX2X_VPD_LEN chars
12164 	 */
12165 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12166 			     PCI_VPD_LRDT_RO_DATA);
12167 	if (i < 0)
12168 		goto out_not_found;
12169 
12170 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12171 		    pci_vpd_lrdt_size(&vpd_start[i]);
12172 
12173 	i += PCI_VPD_LRDT_TAG_SIZE;
12174 
12175 	if (block_end > BNX2X_VPD_LEN) {
12176 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12177 		if (vpd_extended_data  == NULL)
12178 			goto out_not_found;
12179 
12180 		/* read rest of vpd image into vpd_extended_data */
12181 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12182 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12183 				   block_end - BNX2X_VPD_LEN,
12184 				   vpd_extended_data + BNX2X_VPD_LEN);
12185 		if (cnt < (block_end - BNX2X_VPD_LEN))
12186 			goto out_not_found;
12187 		vpd_data = vpd_extended_data;
12188 	} else
12189 		vpd_data = vpd_start;
12190 
12191 	/* now vpd_data holds full vpd content in both cases */
12192 
12193 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12194 				   PCI_VPD_RO_KEYWORD_MFR_ID);
12195 	if (rodi < 0)
12196 		goto out_not_found;
12197 
12198 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
12199 
12200 	if (len != VENDOR_ID_LEN)
12201 		goto out_not_found;
12202 
12203 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12204 
12205 	/* vendor specific info */
12206 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12207 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12208 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12209 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12210 
12211 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12212 						PCI_VPD_RO_KEYWORD_VENDOR0);
12213 		if (rodi >= 0) {
12214 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
12215 
12216 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12217 
12218 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12219 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
12220 				bp->fw_ver[len] = ' ';
12221 			}
12222 		}
12223 		kfree(vpd_extended_data);
12224 		return;
12225 	}
12226 out_not_found:
12227 	kfree(vpd_extended_data);
12228 	return;
12229 }
12230 
12231 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12232 {
12233 	u32 flags = 0;
12234 
12235 	if (CHIP_REV_IS_FPGA(bp))
12236 		SET_FLAGS(flags, MODE_FPGA);
12237 	else if (CHIP_REV_IS_EMUL(bp))
12238 		SET_FLAGS(flags, MODE_EMUL);
12239 	else
12240 		SET_FLAGS(flags, MODE_ASIC);
12241 
12242 	if (CHIP_MODE_IS_4_PORT(bp))
12243 		SET_FLAGS(flags, MODE_PORT4);
12244 	else
12245 		SET_FLAGS(flags, MODE_PORT2);
12246 
12247 	if (CHIP_IS_E2(bp))
12248 		SET_FLAGS(flags, MODE_E2);
12249 	else if (CHIP_IS_E3(bp)) {
12250 		SET_FLAGS(flags, MODE_E3);
12251 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12252 			SET_FLAGS(flags, MODE_E3_A0);
12253 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12254 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12255 	}
12256 
12257 	if (IS_MF(bp)) {
12258 		SET_FLAGS(flags, MODE_MF);
12259 		switch (bp->mf_mode) {
12260 		case MULTI_FUNCTION_SD:
12261 			SET_FLAGS(flags, MODE_MF_SD);
12262 			break;
12263 		case MULTI_FUNCTION_SI:
12264 			SET_FLAGS(flags, MODE_MF_SI);
12265 			break;
12266 		case MULTI_FUNCTION_AFEX:
12267 			SET_FLAGS(flags, MODE_MF_AFEX);
12268 			break;
12269 		}
12270 	} else
12271 		SET_FLAGS(flags, MODE_SF);
12272 
12273 #if defined(__LITTLE_ENDIAN)
12274 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12275 #else /*(__BIG_ENDIAN)*/
12276 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12277 #endif
12278 	INIT_MODE_FLAGS(bp) = flags;
12279 }
12280 
12281 static int bnx2x_init_bp(struct bnx2x *bp)
12282 {
12283 	int func;
12284 	int rc;
12285 
12286 	mutex_init(&bp->port.phy_mutex);
12287 	mutex_init(&bp->fw_mb_mutex);
12288 	mutex_init(&bp->drv_info_mutex);
12289 	sema_init(&bp->stats_lock, 1);
12290 	bp->drv_info_mng_owner = false;
12291 	INIT_LIST_HEAD(&bp->vlan_reg);
12292 
12293 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12294 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12295 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12296 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12297 	if (IS_PF(bp)) {
12298 		rc = bnx2x_get_hwinfo(bp);
12299 		if (rc)
12300 			return rc;
12301 	} else {
12302 		eth_zero_addr(bp->dev->dev_addr);
12303 	}
12304 
12305 	bnx2x_set_modes_bitmap(bp);
12306 
12307 	rc = bnx2x_alloc_mem_bp(bp);
12308 	if (rc)
12309 		return rc;
12310 
12311 	bnx2x_read_fwinfo(bp);
12312 
12313 	func = BP_FUNC(bp);
12314 
12315 	/* need to reset chip if undi was active */
12316 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12317 		/* init fw_seq */
12318 		bp->fw_seq =
12319 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12320 							DRV_MSG_SEQ_NUMBER_MASK;
12321 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12322 
12323 		rc = bnx2x_prev_unload(bp);
12324 		if (rc) {
12325 			bnx2x_free_mem_bp(bp);
12326 			return rc;
12327 		}
12328 	}
12329 
12330 	if (CHIP_REV_IS_FPGA(bp))
12331 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12332 
12333 	if (BP_NOMCP(bp) && (func == 0))
12334 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12335 
12336 	bp->disable_tpa = disable_tpa;
12337 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12338 	/* Reduce memory usage in kdump environment by disabling TPA */
12339 	bp->disable_tpa |= is_kdump_kernel();
12340 
12341 	/* Set TPA flags */
12342 	if (bp->disable_tpa) {
12343 		bp->dev->hw_features &= ~NETIF_F_LRO;
12344 		bp->dev->features &= ~NETIF_F_LRO;
12345 	}
12346 
12347 	if (CHIP_IS_E1(bp))
12348 		bp->dropless_fc = 0;
12349 	else
12350 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12351 
12352 	bp->mrrs = mrrs;
12353 
12354 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12355 	if (IS_VF(bp))
12356 		bp->rx_ring_size = MAX_RX_AVAIL;
12357 
12358 	/* make sure that the numbers are in the right granularity */
12359 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12360 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12361 
12362 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12363 
12364 	init_timer(&bp->timer);
12365 	bp->timer.expires = jiffies + bp->current_interval;
12366 	bp->timer.data = (unsigned long) bp;
12367 	bp->timer.function = bnx2x_timer;
12368 
12369 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12370 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12371 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12372 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
12373 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12374 		bnx2x_dcbx_init_params(bp);
12375 	} else {
12376 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12377 	}
12378 
12379 	if (CHIP_IS_E1x(bp))
12380 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12381 	else
12382 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12383 
12384 	/* multiple tx priority */
12385 	if (IS_VF(bp))
12386 		bp->max_cos = 1;
12387 	else if (CHIP_IS_E1x(bp))
12388 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12389 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12390 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12391 	else if (CHIP_IS_E3B0(bp))
12392 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12393 	else
12394 		BNX2X_ERR("unknown chip %x revision %x\n",
12395 			  CHIP_NUM(bp), CHIP_REV(bp));
12396 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12397 
12398 	/* We need at least one default status block for slow-path events,
12399 	 * second status block for the L2 queue, and a third status block for
12400 	 * CNIC if supported.
12401 	 */
12402 	if (IS_VF(bp))
12403 		bp->min_msix_vec_cnt = 1;
12404 	else if (CNIC_SUPPORT(bp))
12405 		bp->min_msix_vec_cnt = 3;
12406 	else /* PF w/o cnic */
12407 		bp->min_msix_vec_cnt = 2;
12408 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12409 
12410 	bp->dump_preset_idx = 1;
12411 
12412 	if (CHIP_IS_E3B0(bp))
12413 		bp->flags |= PTP_SUPPORTED;
12414 
12415 	return rc;
12416 }
12417 
12418 /****************************************************************************
12419 * General service functions
12420 ****************************************************************************/
12421 
12422 /*
12423  * net_device service functions
12424  */
12425 
12426 /* called with rtnl_lock */
12427 static int bnx2x_open(struct net_device *dev)
12428 {
12429 	struct bnx2x *bp = netdev_priv(dev);
12430 	int rc;
12431 
12432 	bp->stats_init = true;
12433 
12434 	netif_carrier_off(dev);
12435 
12436 	bnx2x_set_power_state(bp, PCI_D0);
12437 
12438 	/* If parity had happen during the unload, then attentions
12439 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12440 	 * want the first function loaded on the current engine to
12441 	 * complete the recovery.
12442 	 * Parity recovery is only relevant for PF driver.
12443 	 */
12444 	if (IS_PF(bp)) {
12445 		int other_engine = BP_PATH(bp) ? 0 : 1;
12446 		bool other_load_status, load_status;
12447 		bool global = false;
12448 
12449 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12450 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12451 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12452 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12453 			do {
12454 				/* If there are attentions and they are in a
12455 				 * global blocks, set the GLOBAL_RESET bit
12456 				 * regardless whether it will be this function
12457 				 * that will complete the recovery or not.
12458 				 */
12459 				if (global)
12460 					bnx2x_set_reset_global(bp);
12461 
12462 				/* Only the first function on the current
12463 				 * engine should try to recover in open. In case
12464 				 * of attentions in global blocks only the first
12465 				 * in the chip should try to recover.
12466 				 */
12467 				if ((!load_status &&
12468 				     (!global || !other_load_status)) &&
12469 				      bnx2x_trylock_leader_lock(bp) &&
12470 				      !bnx2x_leader_reset(bp)) {
12471 					netdev_info(bp->dev,
12472 						    "Recovered in open\n");
12473 					break;
12474 				}
12475 
12476 				/* recovery has failed... */
12477 				bnx2x_set_power_state(bp, PCI_D3hot);
12478 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12479 
12480 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12481 					  "If you still see this message after a few retries then power cycle is required.\n");
12482 
12483 				return -EAGAIN;
12484 			} while (0);
12485 		}
12486 	}
12487 
12488 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12489 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12490 	if (rc)
12491 		return rc;
12492 
12493 #ifdef CONFIG_BNX2X_VXLAN
12494 	if (IS_PF(bp))
12495 		vxlan_get_rx_port(dev);
12496 #endif
12497 
12498 	return 0;
12499 }
12500 
12501 /* called with rtnl_lock */
12502 static int bnx2x_close(struct net_device *dev)
12503 {
12504 	struct bnx2x *bp = netdev_priv(dev);
12505 
12506 	/* Unload the driver, release IRQs */
12507 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12508 
12509 	return 0;
12510 }
12511 
12512 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12513 				      struct bnx2x_mcast_ramrod_params *p)
12514 {
12515 	int mc_count = netdev_mc_count(bp->dev);
12516 	struct bnx2x_mcast_list_elem *mc_mac =
12517 		kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12518 	struct netdev_hw_addr *ha;
12519 
12520 	if (!mc_mac)
12521 		return -ENOMEM;
12522 
12523 	INIT_LIST_HEAD(&p->mcast_list);
12524 
12525 	netdev_for_each_mc_addr(ha, bp->dev) {
12526 		mc_mac->mac = bnx2x_mc_addr(ha);
12527 		list_add_tail(&mc_mac->link, &p->mcast_list);
12528 		mc_mac++;
12529 	}
12530 
12531 	p->mcast_list_len = mc_count;
12532 
12533 	return 0;
12534 }
12535 
12536 static void bnx2x_free_mcast_macs_list(
12537 	struct bnx2x_mcast_ramrod_params *p)
12538 {
12539 	struct bnx2x_mcast_list_elem *mc_mac =
12540 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12541 				 link);
12542 
12543 	WARN_ON(!mc_mac);
12544 	kfree(mc_mac);
12545 }
12546 
12547 /**
12548  * bnx2x_set_uc_list - configure a new unicast MACs list.
12549  *
12550  * @bp: driver handle
12551  *
12552  * We will use zero (0) as a MAC type for these MACs.
12553  */
12554 static int bnx2x_set_uc_list(struct bnx2x *bp)
12555 {
12556 	int rc;
12557 	struct net_device *dev = bp->dev;
12558 	struct netdev_hw_addr *ha;
12559 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12560 	unsigned long ramrod_flags = 0;
12561 
12562 	/* First schedule a cleanup up of old configuration */
12563 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12564 	if (rc < 0) {
12565 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12566 		return rc;
12567 	}
12568 
12569 	netdev_for_each_uc_addr(ha, dev) {
12570 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12571 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12572 		if (rc == -EEXIST) {
12573 			DP(BNX2X_MSG_SP,
12574 			   "Failed to schedule ADD operations: %d\n", rc);
12575 			/* do not treat adding same MAC as error */
12576 			rc = 0;
12577 
12578 		} else if (rc < 0) {
12579 
12580 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12581 				  rc);
12582 			return rc;
12583 		}
12584 	}
12585 
12586 	/* Execute the pending commands */
12587 	__set_bit(RAMROD_CONT, &ramrod_flags);
12588 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12589 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12590 }
12591 
12592 static int bnx2x_set_mc_list(struct bnx2x *bp)
12593 {
12594 	struct net_device *dev = bp->dev;
12595 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12596 	int rc = 0;
12597 
12598 	rparam.mcast_obj = &bp->mcast_obj;
12599 
12600 	/* first, clear all configured multicast MACs */
12601 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12602 	if (rc < 0) {
12603 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12604 		return rc;
12605 	}
12606 
12607 	/* then, configure a new MACs list */
12608 	if (netdev_mc_count(dev)) {
12609 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12610 		if (rc) {
12611 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12612 				  rc);
12613 			return rc;
12614 		}
12615 
12616 		/* Now add the new MACs */
12617 		rc = bnx2x_config_mcast(bp, &rparam,
12618 					BNX2X_MCAST_CMD_ADD);
12619 		if (rc < 0)
12620 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12621 				  rc);
12622 
12623 		bnx2x_free_mcast_macs_list(&rparam);
12624 	}
12625 
12626 	return rc;
12627 }
12628 
12629 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12630 static void bnx2x_set_rx_mode(struct net_device *dev)
12631 {
12632 	struct bnx2x *bp = netdev_priv(dev);
12633 
12634 	if (bp->state != BNX2X_STATE_OPEN) {
12635 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12636 		return;
12637 	} else {
12638 		/* Schedule an SP task to handle rest of change */
12639 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12640 				       NETIF_MSG_IFUP);
12641 	}
12642 }
12643 
12644 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12645 {
12646 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12647 
12648 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12649 
12650 	netif_addr_lock_bh(bp->dev);
12651 
12652 	if (bp->dev->flags & IFF_PROMISC) {
12653 		rx_mode = BNX2X_RX_MODE_PROMISC;
12654 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12655 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12656 		    CHIP_IS_E1(bp))) {
12657 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12658 	} else {
12659 		if (IS_PF(bp)) {
12660 			/* some multicasts */
12661 			if (bnx2x_set_mc_list(bp) < 0)
12662 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12663 
12664 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12665 			netif_addr_unlock_bh(bp->dev);
12666 			if (bnx2x_set_uc_list(bp) < 0)
12667 				rx_mode = BNX2X_RX_MODE_PROMISC;
12668 			netif_addr_lock_bh(bp->dev);
12669 		} else {
12670 			/* configuring mcast to a vf involves sleeping (when we
12671 			 * wait for the pf's response).
12672 			 */
12673 			bnx2x_schedule_sp_rtnl(bp,
12674 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12675 		}
12676 	}
12677 
12678 	bp->rx_mode = rx_mode;
12679 	/* handle ISCSI SD mode */
12680 	if (IS_MF_ISCSI_ONLY(bp))
12681 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12682 
12683 	/* Schedule the rx_mode command */
12684 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12685 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12686 		netif_addr_unlock_bh(bp->dev);
12687 		return;
12688 	}
12689 
12690 	if (IS_PF(bp)) {
12691 		bnx2x_set_storm_rx_mode(bp);
12692 		netif_addr_unlock_bh(bp->dev);
12693 	} else {
12694 		/* VF will need to request the PF to make this change, and so
12695 		 * the VF needs to release the bottom-half lock prior to the
12696 		 * request (as it will likely require sleep on the VF side)
12697 		 */
12698 		netif_addr_unlock_bh(bp->dev);
12699 		bnx2x_vfpf_storm_rx_mode(bp);
12700 	}
12701 }
12702 
12703 /* called with rtnl_lock */
12704 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12705 			   int devad, u16 addr)
12706 {
12707 	struct bnx2x *bp = netdev_priv(netdev);
12708 	u16 value;
12709 	int rc;
12710 
12711 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12712 	   prtad, devad, addr);
12713 
12714 	/* The HW expects different devad if CL22 is used */
12715 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12716 
12717 	bnx2x_acquire_phy_lock(bp);
12718 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12719 	bnx2x_release_phy_lock(bp);
12720 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12721 
12722 	if (!rc)
12723 		rc = value;
12724 	return rc;
12725 }
12726 
12727 /* called with rtnl_lock */
12728 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12729 			    u16 addr, u16 value)
12730 {
12731 	struct bnx2x *bp = netdev_priv(netdev);
12732 	int rc;
12733 
12734 	DP(NETIF_MSG_LINK,
12735 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12736 	   prtad, devad, addr, value);
12737 
12738 	/* The HW expects different devad if CL22 is used */
12739 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12740 
12741 	bnx2x_acquire_phy_lock(bp);
12742 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12743 	bnx2x_release_phy_lock(bp);
12744 	return rc;
12745 }
12746 
12747 /* called with rtnl_lock */
12748 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12749 {
12750 	struct bnx2x *bp = netdev_priv(dev);
12751 	struct mii_ioctl_data *mdio = if_mii(ifr);
12752 
12753 	if (!netif_running(dev))
12754 		return -EAGAIN;
12755 
12756 	switch (cmd) {
12757 	case SIOCSHWTSTAMP:
12758 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12759 	default:
12760 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12761 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12762 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12763 	}
12764 }
12765 
12766 #ifdef CONFIG_NET_POLL_CONTROLLER
12767 static void poll_bnx2x(struct net_device *dev)
12768 {
12769 	struct bnx2x *bp = netdev_priv(dev);
12770 	int i;
12771 
12772 	for_each_eth_queue(bp, i) {
12773 		struct bnx2x_fastpath *fp = &bp->fp[i];
12774 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12775 	}
12776 }
12777 #endif
12778 
12779 static int bnx2x_validate_addr(struct net_device *dev)
12780 {
12781 	struct bnx2x *bp = netdev_priv(dev);
12782 
12783 	/* query the bulletin board for mac address configured by the PF */
12784 	if (IS_VF(bp))
12785 		bnx2x_sample_bulletin(bp);
12786 
12787 	if (!is_valid_ether_addr(dev->dev_addr)) {
12788 		BNX2X_ERR("Non-valid Ethernet address\n");
12789 		return -EADDRNOTAVAIL;
12790 	}
12791 	return 0;
12792 }
12793 
12794 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12795 				  struct netdev_phys_item_id *ppid)
12796 {
12797 	struct bnx2x *bp = netdev_priv(netdev);
12798 
12799 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12800 		return -EOPNOTSUPP;
12801 
12802 	ppid->id_len = sizeof(bp->phys_port_id);
12803 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12804 
12805 	return 0;
12806 }
12807 
12808 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12809 					      struct net_device *dev,
12810 					      netdev_features_t features)
12811 {
12812 	features = vlan_features_check(skb, features);
12813 	return vxlan_features_check(skb, features);
12814 }
12815 
12816 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12817 {
12818 	int rc;
12819 
12820 	if (IS_PF(bp)) {
12821 		unsigned long ramrod_flags = 0;
12822 
12823 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12824 		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12825 					add, &ramrod_flags);
12826 	} else {
12827 		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12828 	}
12829 
12830 	return rc;
12831 }
12832 
12833 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12834 {
12835 	struct bnx2x_vlan_entry *vlan;
12836 	int rc = 0;
12837 
12838 	if (!bp->vlan_cnt) {
12839 		DP(NETIF_MSG_IFUP, "No need to re-configure vlan filters\n");
12840 		return 0;
12841 	}
12842 
12843 	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12844 		/* Prepare for cleanup in case of errors */
12845 		if (rc) {
12846 			vlan->hw = false;
12847 			continue;
12848 		}
12849 
12850 		if (!vlan->hw)
12851 			continue;
12852 
12853 		DP(NETIF_MSG_IFUP, "Re-configuring vlan 0x%04x\n", vlan->vid);
12854 
12855 		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12856 		if (rc) {
12857 			BNX2X_ERR("Unable to configure VLAN %d\n", vlan->vid);
12858 			vlan->hw = false;
12859 			rc = -EINVAL;
12860 			continue;
12861 		}
12862 	}
12863 
12864 	return rc;
12865 }
12866 
12867 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12868 {
12869 	struct bnx2x *bp = netdev_priv(dev);
12870 	struct bnx2x_vlan_entry *vlan;
12871 	bool hw = false;
12872 	int rc = 0;
12873 
12874 	if (!netif_running(bp->dev)) {
12875 		DP(NETIF_MSG_IFUP,
12876 		   "Ignoring VLAN configuration the interface is down\n");
12877 		return -EFAULT;
12878 	}
12879 
12880 	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12881 
12882 	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12883 	if (!vlan)
12884 		return -ENOMEM;
12885 
12886 	bp->vlan_cnt++;
12887 	if (bp->vlan_cnt > bp->vlan_credit && !bp->accept_any_vlan) {
12888 		DP(NETIF_MSG_IFUP, "Accept all VLAN raised\n");
12889 		bp->accept_any_vlan = true;
12890 		if (IS_PF(bp))
12891 			bnx2x_set_rx_mode_inner(bp);
12892 		else
12893 			bnx2x_vfpf_storm_rx_mode(bp);
12894 	} else if (bp->vlan_cnt <= bp->vlan_credit) {
12895 		rc = __bnx2x_vlan_configure_vid(bp, vid, true);
12896 		hw = true;
12897 	}
12898 
12899 	vlan->vid = vid;
12900 	vlan->hw = hw;
12901 
12902 	if (!rc) {
12903 		list_add(&vlan->link, &bp->vlan_reg);
12904 	} else {
12905 		bp->vlan_cnt--;
12906 		kfree(vlan);
12907 	}
12908 
12909 	DP(NETIF_MSG_IFUP, "Adding VLAN result %d\n", rc);
12910 
12911 	return rc;
12912 }
12913 
12914 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12915 {
12916 	struct bnx2x *bp = netdev_priv(dev);
12917 	struct bnx2x_vlan_entry *vlan;
12918 	int rc = 0;
12919 
12920 	if (!netif_running(bp->dev)) {
12921 		DP(NETIF_MSG_IFUP,
12922 		   "Ignoring VLAN configuration the interface is down\n");
12923 		return -EFAULT;
12924 	}
12925 
12926 	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12927 
12928 	if (!bp->vlan_cnt) {
12929 		BNX2X_ERR("Unable to kill VLAN %d\n", vid);
12930 		return -EINVAL;
12931 	}
12932 
12933 	list_for_each_entry(vlan, &bp->vlan_reg, link)
12934 		if (vlan->vid == vid)
12935 			break;
12936 
12937 	if (vlan->vid != vid) {
12938 		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12939 		return -EINVAL;
12940 	}
12941 
12942 	if (vlan->hw)
12943 		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12944 
12945 	list_del(&vlan->link);
12946 	kfree(vlan);
12947 
12948 	bp->vlan_cnt--;
12949 
12950 	if (bp->vlan_cnt <= bp->vlan_credit && bp->accept_any_vlan) {
12951 		/* Configure all non-configured entries */
12952 		list_for_each_entry(vlan, &bp->vlan_reg, link) {
12953 			if (vlan->hw)
12954 				continue;
12955 
12956 			rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12957 			if (rc) {
12958 				BNX2X_ERR("Unable to config VLAN %d\n",
12959 					  vlan->vid);
12960 				continue;
12961 			}
12962 			DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n",
12963 			   vlan->vid);
12964 			vlan->hw = true;
12965 		}
12966 		DP(NETIF_MSG_IFUP, "Accept all VLAN Removed\n");
12967 		bp->accept_any_vlan = false;
12968 		if (IS_PF(bp))
12969 			bnx2x_set_rx_mode_inner(bp);
12970 		else
12971 			bnx2x_vfpf_storm_rx_mode(bp);
12972 	}
12973 
12974 	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
12975 
12976 	return rc;
12977 }
12978 
12979 static const struct net_device_ops bnx2x_netdev_ops = {
12980 	.ndo_open		= bnx2x_open,
12981 	.ndo_stop		= bnx2x_close,
12982 	.ndo_start_xmit		= bnx2x_start_xmit,
12983 	.ndo_select_queue	= bnx2x_select_queue,
12984 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12985 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12986 	.ndo_validate_addr	= bnx2x_validate_addr,
12987 	.ndo_do_ioctl		= bnx2x_ioctl,
12988 	.ndo_change_mtu		= bnx2x_change_mtu,
12989 	.ndo_fix_features	= bnx2x_fix_features,
12990 	.ndo_set_features	= bnx2x_set_features,
12991 	.ndo_tx_timeout		= bnx2x_tx_timeout,
12992 	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
12993 	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
12994 #ifdef CONFIG_NET_POLL_CONTROLLER
12995 	.ndo_poll_controller	= poll_bnx2x,
12996 #endif
12997 	.ndo_setup_tc		= bnx2x_setup_tc,
12998 #ifdef CONFIG_BNX2X_SRIOV
12999 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13000 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13001 	.ndo_get_vf_config	= bnx2x_get_vf_config,
13002 #endif
13003 #ifdef NETDEV_FCOE_WWNN
13004 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13005 #endif
13006 
13007 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13008 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13009 	.ndo_features_check	= bnx2x_features_check,
13010 #ifdef CONFIG_BNX2X_VXLAN
13011 	.ndo_add_vxlan_port	= bnx2x_add_vxlan_port,
13012 	.ndo_del_vxlan_port	= bnx2x_del_vxlan_port,
13013 #endif
13014 };
13015 
13016 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13017 {
13018 	struct device *dev = &bp->pdev->dev;
13019 
13020 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13021 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13022 		dev_err(dev, "System does not support DMA, aborting\n");
13023 		return -EIO;
13024 	}
13025 
13026 	return 0;
13027 }
13028 
13029 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13030 {
13031 	if (bp->flags & AER_ENABLED) {
13032 		pci_disable_pcie_error_reporting(bp->pdev);
13033 		bp->flags &= ~AER_ENABLED;
13034 	}
13035 }
13036 
13037 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13038 			  struct net_device *dev, unsigned long board_type)
13039 {
13040 	int rc;
13041 	u32 pci_cfg_dword;
13042 	bool chip_is_e1x = (board_type == BCM57710 ||
13043 			    board_type == BCM57711 ||
13044 			    board_type == BCM57711E);
13045 
13046 	SET_NETDEV_DEV(dev, &pdev->dev);
13047 
13048 	bp->dev = dev;
13049 	bp->pdev = pdev;
13050 
13051 	rc = pci_enable_device(pdev);
13052 	if (rc) {
13053 		dev_err(&bp->pdev->dev,
13054 			"Cannot enable PCI device, aborting\n");
13055 		goto err_out;
13056 	}
13057 
13058 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13059 		dev_err(&bp->pdev->dev,
13060 			"Cannot find PCI device base address, aborting\n");
13061 		rc = -ENODEV;
13062 		goto err_out_disable;
13063 	}
13064 
13065 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13066 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13067 		rc = -ENODEV;
13068 		goto err_out_disable;
13069 	}
13070 
13071 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13072 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13073 	    PCICFG_REVESION_ID_ERROR_VAL) {
13074 		pr_err("PCI device error, probably due to fan failure, aborting\n");
13075 		rc = -ENODEV;
13076 		goto err_out_disable;
13077 	}
13078 
13079 	if (atomic_read(&pdev->enable_cnt) == 1) {
13080 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13081 		if (rc) {
13082 			dev_err(&bp->pdev->dev,
13083 				"Cannot obtain PCI resources, aborting\n");
13084 			goto err_out_disable;
13085 		}
13086 
13087 		pci_set_master(pdev);
13088 		pci_save_state(pdev);
13089 	}
13090 
13091 	if (IS_PF(bp)) {
13092 		if (!pdev->pm_cap) {
13093 			dev_err(&bp->pdev->dev,
13094 				"Cannot find power management capability, aborting\n");
13095 			rc = -EIO;
13096 			goto err_out_release;
13097 		}
13098 	}
13099 
13100 	if (!pci_is_pcie(pdev)) {
13101 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13102 		rc = -EIO;
13103 		goto err_out_release;
13104 	}
13105 
13106 	rc = bnx2x_set_coherency_mask(bp);
13107 	if (rc)
13108 		goto err_out_release;
13109 
13110 	dev->mem_start = pci_resource_start(pdev, 0);
13111 	dev->base_addr = dev->mem_start;
13112 	dev->mem_end = pci_resource_end(pdev, 0);
13113 
13114 	dev->irq = pdev->irq;
13115 
13116 	bp->regview = pci_ioremap_bar(pdev, 0);
13117 	if (!bp->regview) {
13118 		dev_err(&bp->pdev->dev,
13119 			"Cannot map register space, aborting\n");
13120 		rc = -ENOMEM;
13121 		goto err_out_release;
13122 	}
13123 
13124 	/* In E1/E1H use pci device function given by kernel.
13125 	 * In E2/E3 read physical function from ME register since these chips
13126 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13127 	 * (depending on hypervisor).
13128 	 */
13129 	if (chip_is_e1x) {
13130 		bp->pf_num = PCI_FUNC(pdev->devfn);
13131 	} else {
13132 		/* chip is E2/3*/
13133 		pci_read_config_dword(bp->pdev,
13134 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13135 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13136 				  ME_REG_ABS_PF_NUM_SHIFT);
13137 	}
13138 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13139 
13140 	/* clean indirect addresses */
13141 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13142 			       PCICFG_VENDOR_ID_OFFSET);
13143 
13144 	/* Set PCIe reset type to fundamental for EEH recovery */
13145 	pdev->needs_freset = 1;
13146 
13147 	/* AER (Advanced Error reporting) configuration */
13148 	rc = pci_enable_pcie_error_reporting(pdev);
13149 	if (!rc)
13150 		bp->flags |= AER_ENABLED;
13151 	else
13152 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13153 
13154 	/*
13155 	 * Clean the following indirect addresses for all functions since it
13156 	 * is not used by the driver.
13157 	 */
13158 	if (IS_PF(bp)) {
13159 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13160 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13161 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13162 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13163 
13164 		if (chip_is_e1x) {
13165 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13166 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13167 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13168 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13169 		}
13170 
13171 		/* Enable internal target-read (in case we are probed after PF
13172 		 * FLR). Must be done prior to any BAR read access. Only for
13173 		 * 57712 and up
13174 		 */
13175 		if (!chip_is_e1x)
13176 			REG_WR(bp,
13177 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13178 	}
13179 
13180 	dev->watchdog_timeo = TX_TIMEOUT;
13181 
13182 	dev->netdev_ops = &bnx2x_netdev_ops;
13183 	bnx2x_set_ethtool_ops(bp, dev);
13184 
13185 	dev->priv_flags |= IFF_UNICAST_FLT;
13186 
13187 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13188 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13189 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
13190 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13191 	if (!chip_is_e1x) {
13192 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
13193 				    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
13194 		dev->hw_enc_features =
13195 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13196 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13197 			NETIF_F_GSO_IPIP |
13198 			NETIF_F_GSO_SIT |
13199 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
13200 	}
13201 
13202 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13203 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13204 
13205 	/* VF with OLD Hypervisor or old PF do not support filtering */
13206 	if (IS_PF(bp)) {
13207 		if (chip_is_e1x)
13208 			bp->accept_any_vlan = true;
13209 		else
13210 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13211 #ifdef CONFIG_BNX2X_SRIOV
13212 	} else if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13213 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13214 #endif
13215 	}
13216 
13217 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13218 	dev->features |= NETIF_F_HIGHDMA;
13219 
13220 	/* Add Loopback capability to the device */
13221 	dev->hw_features |= NETIF_F_LOOPBACK;
13222 
13223 #ifdef BCM_DCBNL
13224 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13225 #endif
13226 
13227 	/* get_port_hwinfo() will set prtad and mmds properly */
13228 	bp->mdio.prtad = MDIO_PRTAD_NONE;
13229 	bp->mdio.mmds = 0;
13230 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13231 	bp->mdio.dev = dev;
13232 	bp->mdio.mdio_read = bnx2x_mdio_read;
13233 	bp->mdio.mdio_write = bnx2x_mdio_write;
13234 
13235 	return 0;
13236 
13237 err_out_release:
13238 	if (atomic_read(&pdev->enable_cnt) == 1)
13239 		pci_release_regions(pdev);
13240 
13241 err_out_disable:
13242 	pci_disable_device(pdev);
13243 
13244 err_out:
13245 	return rc;
13246 }
13247 
13248 static int bnx2x_check_firmware(struct bnx2x *bp)
13249 {
13250 	const struct firmware *firmware = bp->firmware;
13251 	struct bnx2x_fw_file_hdr *fw_hdr;
13252 	struct bnx2x_fw_file_section *sections;
13253 	u32 offset, len, num_ops;
13254 	__be16 *ops_offsets;
13255 	int i;
13256 	const u8 *fw_ver;
13257 
13258 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13259 		BNX2X_ERR("Wrong FW size\n");
13260 		return -EINVAL;
13261 	}
13262 
13263 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13264 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13265 
13266 	/* Make sure none of the offsets and sizes make us read beyond
13267 	 * the end of the firmware data */
13268 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13269 		offset = be32_to_cpu(sections[i].offset);
13270 		len = be32_to_cpu(sections[i].len);
13271 		if (offset + len > firmware->size) {
13272 			BNX2X_ERR("Section %d length is out of bounds\n", i);
13273 			return -EINVAL;
13274 		}
13275 	}
13276 
13277 	/* Likewise for the init_ops offsets */
13278 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13279 	ops_offsets = (__force __be16 *)(firmware->data + offset);
13280 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13281 
13282 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13283 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13284 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13285 			return -EINVAL;
13286 		}
13287 	}
13288 
13289 	/* Check FW version */
13290 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13291 	fw_ver = firmware->data + offset;
13292 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13293 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13294 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13295 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13296 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13297 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13298 		       BCM_5710_FW_MAJOR_VERSION,
13299 		       BCM_5710_FW_MINOR_VERSION,
13300 		       BCM_5710_FW_REVISION_VERSION,
13301 		       BCM_5710_FW_ENGINEERING_VERSION);
13302 		return -EINVAL;
13303 	}
13304 
13305 	return 0;
13306 }
13307 
13308 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13309 {
13310 	const __be32 *source = (const __be32 *)_source;
13311 	u32 *target = (u32 *)_target;
13312 	u32 i;
13313 
13314 	for (i = 0; i < n/4; i++)
13315 		target[i] = be32_to_cpu(source[i]);
13316 }
13317 
13318 /*
13319    Ops array is stored in the following format:
13320    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13321  */
13322 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13323 {
13324 	const __be32 *source = (const __be32 *)_source;
13325 	struct raw_op *target = (struct raw_op *)_target;
13326 	u32 i, j, tmp;
13327 
13328 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13329 		tmp = be32_to_cpu(source[j]);
13330 		target[i].op = (tmp >> 24) & 0xff;
13331 		target[i].offset = tmp & 0xffffff;
13332 		target[i].raw_data = be32_to_cpu(source[j + 1]);
13333 	}
13334 }
13335 
13336 /* IRO array is stored in the following format:
13337  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13338  */
13339 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13340 {
13341 	const __be32 *source = (const __be32 *)_source;
13342 	struct iro *target = (struct iro *)_target;
13343 	u32 i, j, tmp;
13344 
13345 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13346 		target[i].base = be32_to_cpu(source[j]);
13347 		j++;
13348 		tmp = be32_to_cpu(source[j]);
13349 		target[i].m1 = (tmp >> 16) & 0xffff;
13350 		target[i].m2 = tmp & 0xffff;
13351 		j++;
13352 		tmp = be32_to_cpu(source[j]);
13353 		target[i].m3 = (tmp >> 16) & 0xffff;
13354 		target[i].size = tmp & 0xffff;
13355 		j++;
13356 	}
13357 }
13358 
13359 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13360 {
13361 	const __be16 *source = (const __be16 *)_source;
13362 	u16 *target = (u16 *)_target;
13363 	u32 i;
13364 
13365 	for (i = 0; i < n/2; i++)
13366 		target[i] = be16_to_cpu(source[i]);
13367 }
13368 
13369 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13370 do {									\
13371 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13372 	bp->arr = kmalloc(len, GFP_KERNEL);				\
13373 	if (!bp->arr)							\
13374 		goto lbl;						\
13375 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13376 	     (u8 *)bp->arr, len);					\
13377 } while (0)
13378 
13379 static int bnx2x_init_firmware(struct bnx2x *bp)
13380 {
13381 	const char *fw_file_name;
13382 	struct bnx2x_fw_file_hdr *fw_hdr;
13383 	int rc;
13384 
13385 	if (bp->firmware)
13386 		return 0;
13387 
13388 	if (CHIP_IS_E1(bp))
13389 		fw_file_name = FW_FILE_NAME_E1;
13390 	else if (CHIP_IS_E1H(bp))
13391 		fw_file_name = FW_FILE_NAME_E1H;
13392 	else if (!CHIP_IS_E1x(bp))
13393 		fw_file_name = FW_FILE_NAME_E2;
13394 	else {
13395 		BNX2X_ERR("Unsupported chip revision\n");
13396 		return -EINVAL;
13397 	}
13398 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13399 
13400 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13401 	if (rc) {
13402 		BNX2X_ERR("Can't load firmware file %s\n",
13403 			  fw_file_name);
13404 		goto request_firmware_exit;
13405 	}
13406 
13407 	rc = bnx2x_check_firmware(bp);
13408 	if (rc) {
13409 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13410 		goto request_firmware_exit;
13411 	}
13412 
13413 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13414 
13415 	/* Initialize the pointers to the init arrays */
13416 	/* Blob */
13417 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13418 
13419 	/* Opcodes */
13420 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13421 
13422 	/* Offsets */
13423 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13424 			    be16_to_cpu_n);
13425 
13426 	/* STORMs firmware */
13427 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13428 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13429 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13430 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13431 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13432 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13433 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13434 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13435 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13436 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13437 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13438 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13439 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13440 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13441 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13442 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13443 	/* IRO */
13444 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13445 
13446 	return 0;
13447 
13448 iro_alloc_err:
13449 	kfree(bp->init_ops_offsets);
13450 init_offsets_alloc_err:
13451 	kfree(bp->init_ops);
13452 init_ops_alloc_err:
13453 	kfree(bp->init_data);
13454 request_firmware_exit:
13455 	release_firmware(bp->firmware);
13456 	bp->firmware = NULL;
13457 
13458 	return rc;
13459 }
13460 
13461 static void bnx2x_release_firmware(struct bnx2x *bp)
13462 {
13463 	kfree(bp->init_ops_offsets);
13464 	kfree(bp->init_ops);
13465 	kfree(bp->init_data);
13466 	release_firmware(bp->firmware);
13467 	bp->firmware = NULL;
13468 }
13469 
13470 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13471 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13472 	.init_hw_cmn      = bnx2x_init_hw_common,
13473 	.init_hw_port     = bnx2x_init_hw_port,
13474 	.init_hw_func     = bnx2x_init_hw_func,
13475 
13476 	.reset_hw_cmn     = bnx2x_reset_common,
13477 	.reset_hw_port    = bnx2x_reset_port,
13478 	.reset_hw_func    = bnx2x_reset_func,
13479 
13480 	.gunzip_init      = bnx2x_gunzip_init,
13481 	.gunzip_end       = bnx2x_gunzip_end,
13482 
13483 	.init_fw          = bnx2x_init_firmware,
13484 	.release_fw       = bnx2x_release_firmware,
13485 };
13486 
13487 void bnx2x__init_func_obj(struct bnx2x *bp)
13488 {
13489 	/* Prepare DMAE related driver resources */
13490 	bnx2x_setup_dmae(bp);
13491 
13492 	bnx2x_init_func_obj(bp, &bp->func_obj,
13493 			    bnx2x_sp(bp, func_rdata),
13494 			    bnx2x_sp_mapping(bp, func_rdata),
13495 			    bnx2x_sp(bp, func_afex_rdata),
13496 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13497 			    &bnx2x_func_sp_drv);
13498 }
13499 
13500 /* must be called after sriov-enable */
13501 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13502 {
13503 	int cid_count = BNX2X_L2_MAX_CID(bp);
13504 
13505 	if (IS_SRIOV(bp))
13506 		cid_count += BNX2X_VF_CIDS;
13507 
13508 	if (CNIC_SUPPORT(bp))
13509 		cid_count += CNIC_CID_MAX;
13510 
13511 	return roundup(cid_count, QM_CID_ROUND);
13512 }
13513 
13514 /**
13515  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13516  *
13517  * @dev:	pci device
13518  *
13519  */
13520 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13521 {
13522 	int index;
13523 	u16 control = 0;
13524 
13525 	/*
13526 	 * If MSI-X is not supported - return number of SBs needed to support
13527 	 * one fast path queue: one FP queue + SB for CNIC
13528 	 */
13529 	if (!pdev->msix_cap) {
13530 		dev_info(&pdev->dev, "no msix capability found\n");
13531 		return 1 + cnic_cnt;
13532 	}
13533 	dev_info(&pdev->dev, "msix capability found\n");
13534 
13535 	/*
13536 	 * The value in the PCI configuration space is the index of the last
13537 	 * entry, namely one less than the actual size of the table, which is
13538 	 * exactly what we want to return from this function: number of all SBs
13539 	 * without the default SB.
13540 	 * For VFs there is no default SB, then we return (index+1).
13541 	 */
13542 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13543 
13544 	index = control & PCI_MSIX_FLAGS_QSIZE;
13545 
13546 	return index;
13547 }
13548 
13549 static int set_max_cos_est(int chip_id)
13550 {
13551 	switch (chip_id) {
13552 	case BCM57710:
13553 	case BCM57711:
13554 	case BCM57711E:
13555 		return BNX2X_MULTI_TX_COS_E1X;
13556 	case BCM57712:
13557 	case BCM57712_MF:
13558 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13559 	case BCM57800:
13560 	case BCM57800_MF:
13561 	case BCM57810:
13562 	case BCM57810_MF:
13563 	case BCM57840_4_10:
13564 	case BCM57840_2_20:
13565 	case BCM57840_O:
13566 	case BCM57840_MFO:
13567 	case BCM57840_MF:
13568 	case BCM57811:
13569 	case BCM57811_MF:
13570 		return BNX2X_MULTI_TX_COS_E3B0;
13571 	case BCM57712_VF:
13572 	case BCM57800_VF:
13573 	case BCM57810_VF:
13574 	case BCM57840_VF:
13575 	case BCM57811_VF:
13576 		return 1;
13577 	default:
13578 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13579 		return -ENODEV;
13580 	}
13581 }
13582 
13583 static int set_is_vf(int chip_id)
13584 {
13585 	switch (chip_id) {
13586 	case BCM57712_VF:
13587 	case BCM57800_VF:
13588 	case BCM57810_VF:
13589 	case BCM57840_VF:
13590 	case BCM57811_VF:
13591 		return true;
13592 	default:
13593 		return false;
13594 	}
13595 }
13596 
13597 /* nig_tsgen registers relative address */
13598 #define tsgen_ctrl 0x0
13599 #define tsgen_freecount 0x10
13600 #define tsgen_synctime_t0 0x20
13601 #define tsgen_offset_t0 0x28
13602 #define tsgen_drift_t0 0x30
13603 #define tsgen_synctime_t1 0x58
13604 #define tsgen_offset_t1 0x60
13605 #define tsgen_drift_t1 0x68
13606 
13607 /* FW workaround for setting drift */
13608 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13609 					  int best_val, int best_period)
13610 {
13611 	struct bnx2x_func_state_params func_params = {NULL};
13612 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13613 		&func_params.params.set_timesync;
13614 
13615 	/* Prepare parameters for function state transitions */
13616 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13617 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13618 
13619 	func_params.f_obj = &bp->func_obj;
13620 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13621 
13622 	/* Function parameters */
13623 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13624 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13625 	set_timesync_params->add_sub_drift_adjust_value =
13626 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13627 	set_timesync_params->drift_adjust_value = best_val;
13628 	set_timesync_params->drift_adjust_period = best_period;
13629 
13630 	return bnx2x_func_state_change(bp, &func_params);
13631 }
13632 
13633 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13634 {
13635 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13636 	int rc;
13637 	int drift_dir = 1;
13638 	int val, period, period1, period2, dif, dif1, dif2;
13639 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13640 
13641 	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13642 
13643 	if (!netif_running(bp->dev)) {
13644 		DP(BNX2X_MSG_PTP,
13645 		   "PTP adjfreq called while the interface is down\n");
13646 		return -EFAULT;
13647 	}
13648 
13649 	if (ppb < 0) {
13650 		ppb = -ppb;
13651 		drift_dir = 0;
13652 	}
13653 
13654 	if (ppb == 0) {
13655 		best_val = 1;
13656 		best_period = 0x1FFFFFF;
13657 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13658 		best_val = 31;
13659 		best_period = 1;
13660 	} else {
13661 		/* Changed not to allow val = 8, 16, 24 as these values
13662 		 * are not supported in workaround.
13663 		 */
13664 		for (val = 0; val <= 31; val++) {
13665 			if ((val & 0x7) == 0)
13666 				continue;
13667 			period1 = val * 1000000 / ppb;
13668 			period2 = period1 + 1;
13669 			if (period1 != 0)
13670 				dif1 = ppb - (val * 1000000 / period1);
13671 			else
13672 				dif1 = BNX2X_MAX_PHC_DRIFT;
13673 			if (dif1 < 0)
13674 				dif1 = -dif1;
13675 			dif2 = ppb - (val * 1000000 / period2);
13676 			if (dif2 < 0)
13677 				dif2 = -dif2;
13678 			dif = (dif1 < dif2) ? dif1 : dif2;
13679 			period = (dif1 < dif2) ? period1 : period2;
13680 			if (dif < best_dif) {
13681 				best_dif = dif;
13682 				best_val = val;
13683 				best_period = period;
13684 			}
13685 		}
13686 	}
13687 
13688 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13689 					    best_period);
13690 	if (rc) {
13691 		BNX2X_ERR("Failed to set drift\n");
13692 		return -EFAULT;
13693 	}
13694 
13695 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13696 	   best_period);
13697 
13698 	return 0;
13699 }
13700 
13701 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13702 {
13703 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13704 
13705 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13706 
13707 	timecounter_adjtime(&bp->timecounter, delta);
13708 
13709 	return 0;
13710 }
13711 
13712 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13713 {
13714 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13715 	u64 ns;
13716 
13717 	ns = timecounter_read(&bp->timecounter);
13718 
13719 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13720 
13721 	*ts = ns_to_timespec64(ns);
13722 
13723 	return 0;
13724 }
13725 
13726 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13727 			     const struct timespec64 *ts)
13728 {
13729 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13730 	u64 ns;
13731 
13732 	ns = timespec64_to_ns(ts);
13733 
13734 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13735 
13736 	/* Re-init the timecounter */
13737 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13738 
13739 	return 0;
13740 }
13741 
13742 /* Enable (or disable) ancillary features of the phc subsystem */
13743 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13744 			    struct ptp_clock_request *rq, int on)
13745 {
13746 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13747 
13748 	BNX2X_ERR("PHC ancillary features are not supported\n");
13749 	return -ENOTSUPP;
13750 }
13751 
13752 static void bnx2x_register_phc(struct bnx2x *bp)
13753 {
13754 	/* Fill the ptp_clock_info struct and register PTP clock*/
13755 	bp->ptp_clock_info.owner = THIS_MODULE;
13756 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13757 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13758 	bp->ptp_clock_info.n_alarm = 0;
13759 	bp->ptp_clock_info.n_ext_ts = 0;
13760 	bp->ptp_clock_info.n_per_out = 0;
13761 	bp->ptp_clock_info.pps = 0;
13762 	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13763 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13764 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13765 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13766 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13767 
13768 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13769 	if (IS_ERR(bp->ptp_clock)) {
13770 		bp->ptp_clock = NULL;
13771 		BNX2X_ERR("PTP clock registeration failed\n");
13772 	}
13773 }
13774 
13775 static int bnx2x_init_one(struct pci_dev *pdev,
13776 				    const struct pci_device_id *ent)
13777 {
13778 	struct net_device *dev = NULL;
13779 	struct bnx2x *bp;
13780 	enum pcie_link_width pcie_width;
13781 	enum pci_bus_speed pcie_speed;
13782 	int rc, max_non_def_sbs;
13783 	int rx_count, tx_count, rss_count, doorbell_size;
13784 	int max_cos_est;
13785 	bool is_vf;
13786 	int cnic_cnt;
13787 
13788 	/* Management FW 'remembers' living interfaces. Allow it some time
13789 	 * to forget previously living interfaces, allowing a proper re-load.
13790 	 */
13791 	if (is_kdump_kernel()) {
13792 		ktime_t now = ktime_get_boottime();
13793 		ktime_t fw_ready_time = ktime_set(5, 0);
13794 
13795 		if (ktime_before(now, fw_ready_time))
13796 			msleep(ktime_ms_delta(fw_ready_time, now));
13797 	}
13798 
13799 	/* An estimated maximum supported CoS number according to the chip
13800 	 * version.
13801 	 * We will try to roughly estimate the maximum number of CoSes this chip
13802 	 * may support in order to minimize the memory allocated for Tx
13803 	 * netdev_queue's. This number will be accurately calculated during the
13804 	 * initialization of bp->max_cos based on the chip versions AND chip
13805 	 * revision in the bnx2x_init_bp().
13806 	 */
13807 	max_cos_est = set_max_cos_est(ent->driver_data);
13808 	if (max_cos_est < 0)
13809 		return max_cos_est;
13810 	is_vf = set_is_vf(ent->driver_data);
13811 	cnic_cnt = is_vf ? 0 : 1;
13812 
13813 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13814 
13815 	/* add another SB for VF as it has no default SB */
13816 	max_non_def_sbs += is_vf ? 1 : 0;
13817 
13818 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13819 	rss_count = max_non_def_sbs - cnic_cnt;
13820 
13821 	if (rss_count < 1)
13822 		return -EINVAL;
13823 
13824 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13825 	rx_count = rss_count + cnic_cnt;
13826 
13827 	/* Maximum number of netdev Tx queues:
13828 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13829 	 */
13830 	tx_count = rss_count * max_cos_est + cnic_cnt;
13831 
13832 	/* dev zeroed in init_etherdev */
13833 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13834 	if (!dev)
13835 		return -ENOMEM;
13836 
13837 	bp = netdev_priv(dev);
13838 
13839 	bp->flags = 0;
13840 	if (is_vf)
13841 		bp->flags |= IS_VF_FLAG;
13842 
13843 	bp->igu_sb_cnt = max_non_def_sbs;
13844 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13845 	bp->msg_enable = debug;
13846 	bp->cnic_support = cnic_cnt;
13847 	bp->cnic_probe = bnx2x_cnic_probe;
13848 
13849 	pci_set_drvdata(pdev, dev);
13850 
13851 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13852 	if (rc < 0) {
13853 		free_netdev(dev);
13854 		return rc;
13855 	}
13856 
13857 	BNX2X_DEV_INFO("This is a %s function\n",
13858 		       IS_PF(bp) ? "physical" : "virtual");
13859 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13860 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13861 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13862 		       tx_count, rx_count);
13863 
13864 	rc = bnx2x_init_bp(bp);
13865 	if (rc)
13866 		goto init_one_exit;
13867 
13868 	/* Map doorbells here as we need the real value of bp->max_cos which
13869 	 * is initialized in bnx2x_init_bp() to determine the number of
13870 	 * l2 connections.
13871 	 */
13872 	if (IS_VF(bp)) {
13873 		bp->doorbells = bnx2x_vf_doorbells(bp);
13874 		rc = bnx2x_vf_pci_alloc(bp);
13875 		if (rc)
13876 			goto init_one_exit;
13877 	} else {
13878 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13879 		if (doorbell_size > pci_resource_len(pdev, 2)) {
13880 			dev_err(&bp->pdev->dev,
13881 				"Cannot map doorbells, bar size too small, aborting\n");
13882 			rc = -ENOMEM;
13883 			goto init_one_exit;
13884 		}
13885 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13886 						doorbell_size);
13887 	}
13888 	if (!bp->doorbells) {
13889 		dev_err(&bp->pdev->dev,
13890 			"Cannot map doorbell space, aborting\n");
13891 		rc = -ENOMEM;
13892 		goto init_one_exit;
13893 	}
13894 
13895 	if (IS_VF(bp)) {
13896 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13897 		if (rc)
13898 			goto init_one_exit;
13899 	}
13900 
13901 	/* Enable SRIOV if capability found in configuration space */
13902 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13903 	if (rc)
13904 		goto init_one_exit;
13905 
13906 	/* calc qm_cid_count */
13907 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13908 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13909 
13910 	/* disable FCOE L2 queue for E1x*/
13911 	if (CHIP_IS_E1x(bp))
13912 		bp->flags |= NO_FCOE_FLAG;
13913 
13914 	/* Set bp->num_queues for MSI-X mode*/
13915 	bnx2x_set_num_queues(bp);
13916 
13917 	/* Configure interrupt mode: try to enable MSI-X/MSI if
13918 	 * needed.
13919 	 */
13920 	rc = bnx2x_set_int_mode(bp);
13921 	if (rc) {
13922 		dev_err(&pdev->dev, "Cannot set interrupts\n");
13923 		goto init_one_exit;
13924 	}
13925 	BNX2X_DEV_INFO("set interrupts successfully\n");
13926 
13927 	/* register the net device */
13928 	rc = register_netdev(dev);
13929 	if (rc) {
13930 		dev_err(&pdev->dev, "Cannot register net device\n");
13931 		goto init_one_exit;
13932 	}
13933 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13934 
13935 	if (!NO_FCOE(bp)) {
13936 		/* Add storage MAC address */
13937 		rtnl_lock();
13938 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13939 		rtnl_unlock();
13940 	}
13941 	if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13942 	    pcie_speed == PCI_SPEED_UNKNOWN ||
13943 	    pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13944 		BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13945 	else
13946 		BNX2X_DEV_INFO(
13947 		       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13948 		       board_info[ent->driver_data].name,
13949 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13950 		       pcie_width,
13951 		       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13952 		       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13953 		       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13954 		       "Unknown",
13955 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13956 
13957 	bnx2x_register_phc(bp);
13958 
13959 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
13960 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
13961 
13962 	return 0;
13963 
13964 init_one_exit:
13965 	bnx2x_disable_pcie_error_reporting(bp);
13966 
13967 	if (bp->regview)
13968 		iounmap(bp->regview);
13969 
13970 	if (IS_PF(bp) && bp->doorbells)
13971 		iounmap(bp->doorbells);
13972 
13973 	free_netdev(dev);
13974 
13975 	if (atomic_read(&pdev->enable_cnt) == 1)
13976 		pci_release_regions(pdev);
13977 
13978 	pci_disable_device(pdev);
13979 
13980 	return rc;
13981 }
13982 
13983 static void __bnx2x_remove(struct pci_dev *pdev,
13984 			   struct net_device *dev,
13985 			   struct bnx2x *bp,
13986 			   bool remove_netdev)
13987 {
13988 	if (bp->ptp_clock) {
13989 		ptp_clock_unregister(bp->ptp_clock);
13990 		bp->ptp_clock = NULL;
13991 	}
13992 
13993 	/* Delete storage MAC address */
13994 	if (!NO_FCOE(bp)) {
13995 		rtnl_lock();
13996 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13997 		rtnl_unlock();
13998 	}
13999 
14000 #ifdef BCM_DCBNL
14001 	/* Delete app tlvs from dcbnl */
14002 	bnx2x_dcbnl_update_applist(bp, true);
14003 #endif
14004 
14005 	if (IS_PF(bp) &&
14006 	    !BP_NOMCP(bp) &&
14007 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14008 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14009 
14010 	/* Close the interface - either directly or implicitly */
14011 	if (remove_netdev) {
14012 		unregister_netdev(dev);
14013 	} else {
14014 		rtnl_lock();
14015 		dev_close(dev);
14016 		rtnl_unlock();
14017 	}
14018 
14019 	bnx2x_iov_remove_one(bp);
14020 
14021 	/* Power on: we can't let PCI layer write to us while we are in D3 */
14022 	if (IS_PF(bp)) {
14023 		bnx2x_set_power_state(bp, PCI_D0);
14024 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14025 
14026 		/* Set endianity registers to reset values in case next driver
14027 		 * boots in different endianty environment.
14028 		 */
14029 		bnx2x_reset_endianity(bp);
14030 	}
14031 
14032 	/* Disable MSI/MSI-X */
14033 	bnx2x_disable_msi(bp);
14034 
14035 	/* Power off */
14036 	if (IS_PF(bp))
14037 		bnx2x_set_power_state(bp, PCI_D3hot);
14038 
14039 	/* Make sure RESET task is not scheduled before continuing */
14040 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14041 
14042 	/* send message via vfpf channel to release the resources of this vf */
14043 	if (IS_VF(bp))
14044 		bnx2x_vfpf_release(bp);
14045 
14046 	/* Assumes no further PCIe PM changes will occur */
14047 	if (system_state == SYSTEM_POWER_OFF) {
14048 		pci_wake_from_d3(pdev, bp->wol);
14049 		pci_set_power_state(pdev, PCI_D3hot);
14050 	}
14051 
14052 	bnx2x_disable_pcie_error_reporting(bp);
14053 	if (remove_netdev) {
14054 		if (bp->regview)
14055 			iounmap(bp->regview);
14056 
14057 		/* For vfs, doorbells are part of the regview and were unmapped
14058 		 * along with it. FW is only loaded by PF.
14059 		 */
14060 		if (IS_PF(bp)) {
14061 			if (bp->doorbells)
14062 				iounmap(bp->doorbells);
14063 
14064 			bnx2x_release_firmware(bp);
14065 		} else {
14066 			bnx2x_vf_pci_dealloc(bp);
14067 		}
14068 		bnx2x_free_mem_bp(bp);
14069 
14070 		free_netdev(dev);
14071 
14072 		if (atomic_read(&pdev->enable_cnt) == 1)
14073 			pci_release_regions(pdev);
14074 
14075 		pci_disable_device(pdev);
14076 	}
14077 }
14078 
14079 static void bnx2x_remove_one(struct pci_dev *pdev)
14080 {
14081 	struct net_device *dev = pci_get_drvdata(pdev);
14082 	struct bnx2x *bp;
14083 
14084 	if (!dev) {
14085 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14086 		return;
14087 	}
14088 	bp = netdev_priv(dev);
14089 
14090 	__bnx2x_remove(pdev, dev, bp, true);
14091 }
14092 
14093 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14094 {
14095 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14096 
14097 	bp->rx_mode = BNX2X_RX_MODE_NONE;
14098 
14099 	if (CNIC_LOADED(bp))
14100 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14101 
14102 	/* Stop Tx */
14103 	bnx2x_tx_disable(bp);
14104 	/* Delete all NAPI objects */
14105 	bnx2x_del_all_napi(bp);
14106 	if (CNIC_LOADED(bp))
14107 		bnx2x_del_all_napi_cnic(bp);
14108 	netdev_reset_tc(bp->dev);
14109 
14110 	del_timer_sync(&bp->timer);
14111 	cancel_delayed_work_sync(&bp->sp_task);
14112 	cancel_delayed_work_sync(&bp->period_task);
14113 
14114 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14115 		bp->stats_state = STATS_STATE_DISABLED;
14116 		up(&bp->stats_lock);
14117 	}
14118 
14119 	bnx2x_save_statistics(bp);
14120 
14121 	netif_carrier_off(bp->dev);
14122 
14123 	return 0;
14124 }
14125 
14126 /**
14127  * bnx2x_io_error_detected - called when PCI error is detected
14128  * @pdev: Pointer to PCI device
14129  * @state: The current pci connection state
14130  *
14131  * This function is called after a PCI bus error affecting
14132  * this device has been detected.
14133  */
14134 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14135 						pci_channel_state_t state)
14136 {
14137 	struct net_device *dev = pci_get_drvdata(pdev);
14138 	struct bnx2x *bp = netdev_priv(dev);
14139 
14140 	rtnl_lock();
14141 
14142 	BNX2X_ERR("IO error detected\n");
14143 
14144 	netif_device_detach(dev);
14145 
14146 	if (state == pci_channel_io_perm_failure) {
14147 		rtnl_unlock();
14148 		return PCI_ERS_RESULT_DISCONNECT;
14149 	}
14150 
14151 	if (netif_running(dev))
14152 		bnx2x_eeh_nic_unload(bp);
14153 
14154 	bnx2x_prev_path_mark_eeh(bp);
14155 
14156 	pci_disable_device(pdev);
14157 
14158 	rtnl_unlock();
14159 
14160 	/* Request a slot reset */
14161 	return PCI_ERS_RESULT_NEED_RESET;
14162 }
14163 
14164 /**
14165  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14166  * @pdev: Pointer to PCI device
14167  *
14168  * Restart the card from scratch, as if from a cold-boot.
14169  */
14170 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14171 {
14172 	struct net_device *dev = pci_get_drvdata(pdev);
14173 	struct bnx2x *bp = netdev_priv(dev);
14174 	int i;
14175 
14176 	rtnl_lock();
14177 	BNX2X_ERR("IO slot reset initializing...\n");
14178 	if (pci_enable_device(pdev)) {
14179 		dev_err(&pdev->dev,
14180 			"Cannot re-enable PCI device after reset\n");
14181 		rtnl_unlock();
14182 		return PCI_ERS_RESULT_DISCONNECT;
14183 	}
14184 
14185 	pci_set_master(pdev);
14186 	pci_restore_state(pdev);
14187 	pci_save_state(pdev);
14188 
14189 	if (netif_running(dev))
14190 		bnx2x_set_power_state(bp, PCI_D0);
14191 
14192 	if (netif_running(dev)) {
14193 		BNX2X_ERR("IO slot reset --> driver unload\n");
14194 
14195 		/* MCP should have been reset; Need to wait for validity */
14196 		bnx2x_init_shmem(bp);
14197 
14198 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14199 			u32 v;
14200 
14201 			v = SHMEM2_RD(bp,
14202 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14203 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14204 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14205 		}
14206 		bnx2x_drain_tx_queues(bp);
14207 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14208 		bnx2x_netif_stop(bp, 1);
14209 		bnx2x_free_irq(bp);
14210 
14211 		/* Report UNLOAD_DONE to MCP */
14212 		bnx2x_send_unload_done(bp, true);
14213 
14214 		bp->sp_state = 0;
14215 		bp->port.pmf = 0;
14216 
14217 		bnx2x_prev_unload(bp);
14218 
14219 		/* We should have reseted the engine, so It's fair to
14220 		 * assume the FW will no longer write to the bnx2x driver.
14221 		 */
14222 		bnx2x_squeeze_objects(bp);
14223 		bnx2x_free_skbs(bp);
14224 		for_each_rx_queue(bp, i)
14225 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14226 		bnx2x_free_fp_mem(bp);
14227 		bnx2x_free_mem(bp);
14228 
14229 		bp->state = BNX2X_STATE_CLOSED;
14230 	}
14231 
14232 	rtnl_unlock();
14233 
14234 	/* If AER, perform cleanup of the PCIe registers */
14235 	if (bp->flags & AER_ENABLED) {
14236 		if (pci_cleanup_aer_uncorrect_error_status(pdev))
14237 			BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
14238 		else
14239 			DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
14240 	}
14241 
14242 	return PCI_ERS_RESULT_RECOVERED;
14243 }
14244 
14245 /**
14246  * bnx2x_io_resume - called when traffic can start flowing again
14247  * @pdev: Pointer to PCI device
14248  *
14249  * This callback is called when the error recovery driver tells us that
14250  * its OK to resume normal operation.
14251  */
14252 static void bnx2x_io_resume(struct pci_dev *pdev)
14253 {
14254 	struct net_device *dev = pci_get_drvdata(pdev);
14255 	struct bnx2x *bp = netdev_priv(dev);
14256 
14257 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14258 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14259 		return;
14260 	}
14261 
14262 	rtnl_lock();
14263 
14264 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14265 							DRV_MSG_SEQ_NUMBER_MASK;
14266 
14267 	if (netif_running(dev))
14268 		bnx2x_nic_load(bp, LOAD_NORMAL);
14269 
14270 	netif_device_attach(dev);
14271 
14272 	rtnl_unlock();
14273 }
14274 
14275 static const struct pci_error_handlers bnx2x_err_handler = {
14276 	.error_detected = bnx2x_io_error_detected,
14277 	.slot_reset     = bnx2x_io_slot_reset,
14278 	.resume         = bnx2x_io_resume,
14279 };
14280 
14281 static void bnx2x_shutdown(struct pci_dev *pdev)
14282 {
14283 	struct net_device *dev = pci_get_drvdata(pdev);
14284 	struct bnx2x *bp;
14285 
14286 	if (!dev)
14287 		return;
14288 
14289 	bp = netdev_priv(dev);
14290 	if (!bp)
14291 		return;
14292 
14293 	rtnl_lock();
14294 	netif_device_detach(dev);
14295 	rtnl_unlock();
14296 
14297 	/* Don't remove the netdevice, as there are scenarios which will cause
14298 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14299 	 * rootfs is mounted from SAN.
14300 	 */
14301 	__bnx2x_remove(pdev, dev, bp, false);
14302 }
14303 
14304 static struct pci_driver bnx2x_pci_driver = {
14305 	.name        = DRV_MODULE_NAME,
14306 	.id_table    = bnx2x_pci_tbl,
14307 	.probe       = bnx2x_init_one,
14308 	.remove      = bnx2x_remove_one,
14309 	.suspend     = bnx2x_suspend,
14310 	.resume      = bnx2x_resume,
14311 	.err_handler = &bnx2x_err_handler,
14312 #ifdef CONFIG_BNX2X_SRIOV
14313 	.sriov_configure = bnx2x_sriov_configure,
14314 #endif
14315 	.shutdown    = bnx2x_shutdown,
14316 };
14317 
14318 static int __init bnx2x_init(void)
14319 {
14320 	int ret;
14321 
14322 	pr_info("%s", version);
14323 
14324 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14325 	if (bnx2x_wq == NULL) {
14326 		pr_err("Cannot create workqueue\n");
14327 		return -ENOMEM;
14328 	}
14329 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14330 	if (!bnx2x_iov_wq) {
14331 		pr_err("Cannot create iov workqueue\n");
14332 		destroy_workqueue(bnx2x_wq);
14333 		return -ENOMEM;
14334 	}
14335 
14336 	ret = pci_register_driver(&bnx2x_pci_driver);
14337 	if (ret) {
14338 		pr_err("Cannot register driver\n");
14339 		destroy_workqueue(bnx2x_wq);
14340 		destroy_workqueue(bnx2x_iov_wq);
14341 	}
14342 	return ret;
14343 }
14344 
14345 static void __exit bnx2x_cleanup(void)
14346 {
14347 	struct list_head *pos, *q;
14348 
14349 	pci_unregister_driver(&bnx2x_pci_driver);
14350 
14351 	destroy_workqueue(bnx2x_wq);
14352 	destroy_workqueue(bnx2x_iov_wq);
14353 
14354 	/* Free globally allocated resources */
14355 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14356 		struct bnx2x_prev_path_list *tmp =
14357 			list_entry(pos, struct bnx2x_prev_path_list, list);
14358 		list_del(pos);
14359 		kfree(tmp);
14360 	}
14361 }
14362 
14363 void bnx2x_notify_link_changed(struct bnx2x *bp)
14364 {
14365 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14366 }
14367 
14368 module_init(bnx2x_init);
14369 module_exit(bnx2x_cleanup);
14370 
14371 /**
14372  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14373  *
14374  * @bp:		driver handle
14375  * @set:	set or clear the CAM entry
14376  *
14377  * This function will wait until the ramrod completion returns.
14378  * Return 0 if success, -ENODEV if ramrod doesn't return.
14379  */
14380 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14381 {
14382 	unsigned long ramrod_flags = 0;
14383 
14384 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14385 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14386 				 &bp->iscsi_l2_mac_obj, true,
14387 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14388 }
14389 
14390 /* count denotes the number of new completions we have seen */
14391 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14392 {
14393 	struct eth_spe *spe;
14394 	int cxt_index, cxt_offset;
14395 
14396 #ifdef BNX2X_STOP_ON_ERROR
14397 	if (unlikely(bp->panic))
14398 		return;
14399 #endif
14400 
14401 	spin_lock_bh(&bp->spq_lock);
14402 	BUG_ON(bp->cnic_spq_pending < count);
14403 	bp->cnic_spq_pending -= count;
14404 
14405 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14406 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14407 				& SPE_HDR_CONN_TYPE) >>
14408 				SPE_HDR_CONN_TYPE_SHIFT;
14409 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14410 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14411 
14412 		/* Set validation for iSCSI L2 client before sending SETUP
14413 		 *  ramrod
14414 		 */
14415 		if (type == ETH_CONNECTION_TYPE) {
14416 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14417 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14418 					ILT_PAGE_CIDS;
14419 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14420 					(cxt_index * ILT_PAGE_CIDS);
14421 				bnx2x_set_ctx_validation(bp,
14422 					&bp->context[cxt_index].
14423 							 vcxt[cxt_offset].eth,
14424 					BNX2X_ISCSI_ETH_CID(bp));
14425 			}
14426 		}
14427 
14428 		/*
14429 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14430 		 * and in the air. We also check that number of outstanding
14431 		 * COMMON ramrods is not more than the EQ and SPQ can
14432 		 * accommodate.
14433 		 */
14434 		if (type == ETH_CONNECTION_TYPE) {
14435 			if (!atomic_read(&bp->cq_spq_left))
14436 				break;
14437 			else
14438 				atomic_dec(&bp->cq_spq_left);
14439 		} else if (type == NONE_CONNECTION_TYPE) {
14440 			if (!atomic_read(&bp->eq_spq_left))
14441 				break;
14442 			else
14443 				atomic_dec(&bp->eq_spq_left);
14444 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14445 			   (type == FCOE_CONNECTION_TYPE)) {
14446 			if (bp->cnic_spq_pending >=
14447 			    bp->cnic_eth_dev.max_kwqe_pending)
14448 				break;
14449 			else
14450 				bp->cnic_spq_pending++;
14451 		} else {
14452 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14453 			bnx2x_panic();
14454 			break;
14455 		}
14456 
14457 		spe = bnx2x_sp_get_next(bp);
14458 		*spe = *bp->cnic_kwq_cons;
14459 
14460 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14461 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14462 
14463 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14464 			bp->cnic_kwq_cons = bp->cnic_kwq;
14465 		else
14466 			bp->cnic_kwq_cons++;
14467 	}
14468 	bnx2x_sp_prod_update(bp);
14469 	spin_unlock_bh(&bp->spq_lock);
14470 }
14471 
14472 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14473 			       struct kwqe_16 *kwqes[], u32 count)
14474 {
14475 	struct bnx2x *bp = netdev_priv(dev);
14476 	int i;
14477 
14478 #ifdef BNX2X_STOP_ON_ERROR
14479 	if (unlikely(bp->panic)) {
14480 		BNX2X_ERR("Can't post to SP queue while panic\n");
14481 		return -EIO;
14482 	}
14483 #endif
14484 
14485 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14486 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14487 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14488 		return -EAGAIN;
14489 	}
14490 
14491 	spin_lock_bh(&bp->spq_lock);
14492 
14493 	for (i = 0; i < count; i++) {
14494 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14495 
14496 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14497 			break;
14498 
14499 		*bp->cnic_kwq_prod = *spe;
14500 
14501 		bp->cnic_kwq_pending++;
14502 
14503 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14504 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14505 		   spe->data.update_data_addr.hi,
14506 		   spe->data.update_data_addr.lo,
14507 		   bp->cnic_kwq_pending);
14508 
14509 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14510 			bp->cnic_kwq_prod = bp->cnic_kwq;
14511 		else
14512 			bp->cnic_kwq_prod++;
14513 	}
14514 
14515 	spin_unlock_bh(&bp->spq_lock);
14516 
14517 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14518 		bnx2x_cnic_sp_post(bp, 0);
14519 
14520 	return i;
14521 }
14522 
14523 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14524 {
14525 	struct cnic_ops *c_ops;
14526 	int rc = 0;
14527 
14528 	mutex_lock(&bp->cnic_mutex);
14529 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14530 					  lockdep_is_held(&bp->cnic_mutex));
14531 	if (c_ops)
14532 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14533 	mutex_unlock(&bp->cnic_mutex);
14534 
14535 	return rc;
14536 }
14537 
14538 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14539 {
14540 	struct cnic_ops *c_ops;
14541 	int rc = 0;
14542 
14543 	rcu_read_lock();
14544 	c_ops = rcu_dereference(bp->cnic_ops);
14545 	if (c_ops)
14546 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14547 	rcu_read_unlock();
14548 
14549 	return rc;
14550 }
14551 
14552 /*
14553  * for commands that have no data
14554  */
14555 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14556 {
14557 	struct cnic_ctl_info ctl = {0};
14558 
14559 	ctl.cmd = cmd;
14560 
14561 	return bnx2x_cnic_ctl_send(bp, &ctl);
14562 }
14563 
14564 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14565 {
14566 	struct cnic_ctl_info ctl = {0};
14567 
14568 	/* first we tell CNIC and only then we count this as a completion */
14569 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14570 	ctl.data.comp.cid = cid;
14571 	ctl.data.comp.error = err;
14572 
14573 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14574 	bnx2x_cnic_sp_post(bp, 0);
14575 }
14576 
14577 /* Called with netif_addr_lock_bh() taken.
14578  * Sets an rx_mode config for an iSCSI ETH client.
14579  * Doesn't block.
14580  * Completion should be checked outside.
14581  */
14582 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14583 {
14584 	unsigned long accept_flags = 0, ramrod_flags = 0;
14585 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14586 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14587 
14588 	if (start) {
14589 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14590 		 * because it's the only way for UIO Queue to accept
14591 		 * multicasts (in non-promiscuous mode only one Queue per
14592 		 * function will receive multicast packets (leading in our
14593 		 * case).
14594 		 */
14595 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14596 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14597 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14598 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14599 
14600 		/* Clear STOP_PENDING bit if START is requested */
14601 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14602 
14603 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14604 	} else
14605 		/* Clear START_PENDING bit if STOP is requested */
14606 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14607 
14608 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14609 		set_bit(sched_state, &bp->sp_state);
14610 	else {
14611 		__set_bit(RAMROD_RX, &ramrod_flags);
14612 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14613 				    ramrod_flags);
14614 	}
14615 }
14616 
14617 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14618 {
14619 	struct bnx2x *bp = netdev_priv(dev);
14620 	int rc = 0;
14621 
14622 	switch (ctl->cmd) {
14623 	case DRV_CTL_CTXTBL_WR_CMD: {
14624 		u32 index = ctl->data.io.offset;
14625 		dma_addr_t addr = ctl->data.io.dma_addr;
14626 
14627 		bnx2x_ilt_wr(bp, index, addr);
14628 		break;
14629 	}
14630 
14631 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14632 		int count = ctl->data.credit.credit_count;
14633 
14634 		bnx2x_cnic_sp_post(bp, count);
14635 		break;
14636 	}
14637 
14638 	/* rtnl_lock is held.  */
14639 	case DRV_CTL_START_L2_CMD: {
14640 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14641 		unsigned long sp_bits = 0;
14642 
14643 		/* Configure the iSCSI classification object */
14644 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14645 				   cp->iscsi_l2_client_id,
14646 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14647 				   bnx2x_sp(bp, mac_rdata),
14648 				   bnx2x_sp_mapping(bp, mac_rdata),
14649 				   BNX2X_FILTER_MAC_PENDING,
14650 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14651 				   &bp->macs_pool);
14652 
14653 		/* Set iSCSI MAC address */
14654 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14655 		if (rc)
14656 			break;
14657 
14658 		mmiowb();
14659 		barrier();
14660 
14661 		/* Start accepting on iSCSI L2 ring */
14662 
14663 		netif_addr_lock_bh(dev);
14664 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14665 		netif_addr_unlock_bh(dev);
14666 
14667 		/* bits to wait on */
14668 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14669 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14670 
14671 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14672 			BNX2X_ERR("rx_mode completion timed out!\n");
14673 
14674 		break;
14675 	}
14676 
14677 	/* rtnl_lock is held.  */
14678 	case DRV_CTL_STOP_L2_CMD: {
14679 		unsigned long sp_bits = 0;
14680 
14681 		/* Stop accepting on iSCSI L2 ring */
14682 		netif_addr_lock_bh(dev);
14683 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14684 		netif_addr_unlock_bh(dev);
14685 
14686 		/* bits to wait on */
14687 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14688 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14689 
14690 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14691 			BNX2X_ERR("rx_mode completion timed out!\n");
14692 
14693 		mmiowb();
14694 		barrier();
14695 
14696 		/* Unset iSCSI L2 MAC */
14697 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14698 					BNX2X_ISCSI_ETH_MAC, true);
14699 		break;
14700 	}
14701 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14702 		int count = ctl->data.credit.credit_count;
14703 
14704 		smp_mb__before_atomic();
14705 		atomic_add(count, &bp->cq_spq_left);
14706 		smp_mb__after_atomic();
14707 		break;
14708 	}
14709 	case DRV_CTL_ULP_REGISTER_CMD: {
14710 		int ulp_type = ctl->data.register_data.ulp_type;
14711 
14712 		if (CHIP_IS_E3(bp)) {
14713 			int idx = BP_FW_MB_IDX(bp);
14714 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14715 			int path = BP_PATH(bp);
14716 			int port = BP_PORT(bp);
14717 			int i;
14718 			u32 scratch_offset;
14719 			u32 *host_addr;
14720 
14721 			/* first write capability to shmem2 */
14722 			if (ulp_type == CNIC_ULP_ISCSI)
14723 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14724 			else if (ulp_type == CNIC_ULP_FCOE)
14725 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14726 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14727 
14728 			if ((ulp_type != CNIC_ULP_FCOE) ||
14729 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14730 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14731 				break;
14732 
14733 			/* if reached here - should write fcoe capabilities */
14734 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14735 			if (!scratch_offset)
14736 				break;
14737 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14738 						   fcoe_features[path][port]);
14739 			host_addr = (u32 *) &(ctl->data.register_data.
14740 					      fcoe_features);
14741 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14742 			     i += 4)
14743 				REG_WR(bp, scratch_offset + i,
14744 				       *(host_addr + i/4));
14745 		}
14746 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14747 		break;
14748 	}
14749 
14750 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14751 		int ulp_type = ctl->data.ulp_type;
14752 
14753 		if (CHIP_IS_E3(bp)) {
14754 			int idx = BP_FW_MB_IDX(bp);
14755 			u32 cap;
14756 
14757 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14758 			if (ulp_type == CNIC_ULP_ISCSI)
14759 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14760 			else if (ulp_type == CNIC_ULP_FCOE)
14761 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14762 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14763 		}
14764 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14765 		break;
14766 	}
14767 
14768 	default:
14769 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14770 		rc = -EINVAL;
14771 	}
14772 
14773 	/* For storage-only interfaces, change driver state */
14774 	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14775 		switch (ctl->drv_state) {
14776 		case DRV_NOP:
14777 			break;
14778 		case DRV_ACTIVE:
14779 			bnx2x_set_os_driver_state(bp,
14780 						  OS_DRIVER_STATE_ACTIVE);
14781 			break;
14782 		case DRV_INACTIVE:
14783 			bnx2x_set_os_driver_state(bp,
14784 						  OS_DRIVER_STATE_DISABLED);
14785 			break;
14786 		case DRV_UNLOADED:
14787 			bnx2x_set_os_driver_state(bp,
14788 						  OS_DRIVER_STATE_NOT_LOADED);
14789 			break;
14790 		default:
14791 		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14792 		}
14793 	}
14794 
14795 	return rc;
14796 }
14797 
14798 static int bnx2x_get_fc_npiv(struct net_device *dev,
14799 			     struct cnic_fc_npiv_tbl *cnic_tbl)
14800 {
14801 	struct bnx2x *bp = netdev_priv(dev);
14802 	struct bdn_fc_npiv_tbl *tbl = NULL;
14803 	u32 offset, entries;
14804 	int rc = -EINVAL;
14805 	int i;
14806 
14807 	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14808 		goto out;
14809 
14810 	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14811 
14812 	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14813 	if (!tbl) {
14814 		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14815 		goto out;
14816 	}
14817 
14818 	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14819 	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14820 
14821 	/* Read the table contents from nvram */
14822 	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14823 		BNX2X_ERR("Failed to read FC-NPIV table\n");
14824 		goto out;
14825 	}
14826 
14827 	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14828 	 * the number of entries back to cpu endianness.
14829 	 */
14830 	entries = tbl->fc_npiv_cfg.num_of_npiv;
14831 	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14832 	tbl->fc_npiv_cfg.num_of_npiv = entries;
14833 
14834 	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14835 		DP(BNX2X_MSG_MCP,
14836 		   "No FC-NPIV table [valid, simply not present]\n");
14837 		goto out;
14838 	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14839 		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14840 			  tbl->fc_npiv_cfg.num_of_npiv);
14841 		goto out;
14842 	} else {
14843 		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14844 		   tbl->fc_npiv_cfg.num_of_npiv);
14845 	}
14846 
14847 	/* Copy the data into cnic-provided struct */
14848 	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14849 	for (i = 0; i < cnic_tbl->count; i++) {
14850 		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14851 		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14852 	}
14853 
14854 	rc = 0;
14855 out:
14856 	kfree(tbl);
14857 	return rc;
14858 }
14859 
14860 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14861 {
14862 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14863 
14864 	if (bp->flags & USING_MSIX_FLAG) {
14865 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14866 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14867 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14868 	} else {
14869 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14870 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14871 	}
14872 	if (!CHIP_IS_E1x(bp))
14873 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14874 	else
14875 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14876 
14877 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14878 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14879 	cp->irq_arr[1].status_blk = bp->def_status_blk;
14880 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14881 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14882 
14883 	cp->num_irq = 2;
14884 }
14885 
14886 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14887 {
14888 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14889 
14890 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14891 			     bnx2x_cid_ilt_lines(bp);
14892 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14893 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14894 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14895 
14896 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14897 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14898 	   cp->iscsi_l2_cid);
14899 
14900 	if (NO_ISCSI_OOO(bp))
14901 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14902 }
14903 
14904 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14905 			       void *data)
14906 {
14907 	struct bnx2x *bp = netdev_priv(dev);
14908 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14909 	int rc;
14910 
14911 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14912 
14913 	if (ops == NULL) {
14914 		BNX2X_ERR("NULL ops received\n");
14915 		return -EINVAL;
14916 	}
14917 
14918 	if (!CNIC_SUPPORT(bp)) {
14919 		BNX2X_ERR("Can't register CNIC when not supported\n");
14920 		return -EOPNOTSUPP;
14921 	}
14922 
14923 	if (!CNIC_LOADED(bp)) {
14924 		rc = bnx2x_load_cnic(bp);
14925 		if (rc) {
14926 			BNX2X_ERR("CNIC-related load failed\n");
14927 			return rc;
14928 		}
14929 	}
14930 
14931 	bp->cnic_enabled = true;
14932 
14933 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14934 	if (!bp->cnic_kwq)
14935 		return -ENOMEM;
14936 
14937 	bp->cnic_kwq_cons = bp->cnic_kwq;
14938 	bp->cnic_kwq_prod = bp->cnic_kwq;
14939 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14940 
14941 	bp->cnic_spq_pending = 0;
14942 	bp->cnic_kwq_pending = 0;
14943 
14944 	bp->cnic_data = data;
14945 
14946 	cp->num_irq = 0;
14947 	cp->drv_state |= CNIC_DRV_STATE_REGD;
14948 	cp->iro_arr = bp->iro_arr;
14949 
14950 	bnx2x_setup_cnic_irq_info(bp);
14951 
14952 	rcu_assign_pointer(bp->cnic_ops, ops);
14953 
14954 	/* Schedule driver to read CNIC driver versions */
14955 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14956 
14957 	return 0;
14958 }
14959 
14960 static int bnx2x_unregister_cnic(struct net_device *dev)
14961 {
14962 	struct bnx2x *bp = netdev_priv(dev);
14963 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14964 
14965 	mutex_lock(&bp->cnic_mutex);
14966 	cp->drv_state = 0;
14967 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
14968 	mutex_unlock(&bp->cnic_mutex);
14969 	synchronize_rcu();
14970 	bp->cnic_enabled = false;
14971 	kfree(bp->cnic_kwq);
14972 	bp->cnic_kwq = NULL;
14973 
14974 	return 0;
14975 }
14976 
14977 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14978 {
14979 	struct bnx2x *bp = netdev_priv(dev);
14980 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14981 
14982 	/* If both iSCSI and FCoE are disabled - return NULL in
14983 	 * order to indicate CNIC that it should not try to work
14984 	 * with this device.
14985 	 */
14986 	if (NO_ISCSI(bp) && NO_FCOE(bp))
14987 		return NULL;
14988 
14989 	cp->drv_owner = THIS_MODULE;
14990 	cp->chip_id = CHIP_ID(bp);
14991 	cp->pdev = bp->pdev;
14992 	cp->io_base = bp->regview;
14993 	cp->io_base2 = bp->doorbells;
14994 	cp->max_kwqe_pending = 8;
14995 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14996 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14997 			     bnx2x_cid_ilt_lines(bp);
14998 	cp->ctx_tbl_len = CNIC_ILT_LINES;
14999 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15000 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15001 	cp->drv_ctl = bnx2x_drv_ctl;
15002 	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15003 	cp->drv_register_cnic = bnx2x_register_cnic;
15004 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15005 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15006 	cp->iscsi_l2_client_id =
15007 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15008 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15009 
15010 	if (NO_ISCSI_OOO(bp))
15011 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15012 
15013 	if (NO_ISCSI(bp))
15014 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15015 
15016 	if (NO_FCOE(bp))
15017 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15018 
15019 	BNX2X_DEV_INFO(
15020 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15021 	   cp->ctx_blk_size,
15022 	   cp->ctx_tbl_offset,
15023 	   cp->ctx_tbl_len,
15024 	   cp->starting_cid);
15025 	return cp;
15026 }
15027 
15028 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15029 {
15030 	struct bnx2x *bp = fp->bp;
15031 	u32 offset = BAR_USTRORM_INTMEM;
15032 
15033 	if (IS_VF(bp))
15034 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15035 	else if (!CHIP_IS_E1x(bp))
15036 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15037 	else
15038 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15039 
15040 	return offset;
15041 }
15042 
15043 /* called only on E1H or E2.
15044  * When pretending to be PF, the pretend value is the function number 0...7
15045  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15046  * combination
15047  */
15048 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15049 {
15050 	u32 pretend_reg;
15051 
15052 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15053 		return -1;
15054 
15055 	/* get my own pretend register */
15056 	pretend_reg = bnx2x_get_pretend_reg(bp);
15057 	REG_WR(bp, pretend_reg, pretend_func_val);
15058 	REG_RD(bp, pretend_reg);
15059 	return 0;
15060 }
15061 
15062 static void bnx2x_ptp_task(struct work_struct *work)
15063 {
15064 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15065 	int port = BP_PORT(bp);
15066 	u32 val_seq;
15067 	u64 timestamp, ns;
15068 	struct skb_shared_hwtstamps shhwtstamps;
15069 
15070 	/* Read Tx timestamp registers */
15071 	val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15072 			 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15073 	if (val_seq & 0x10000) {
15074 		/* There is a valid timestamp value */
15075 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15076 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15077 		timestamp <<= 32;
15078 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15079 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15080 		/* Reset timestamp register to allow new timestamp */
15081 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15082 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15083 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15084 
15085 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15086 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15087 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15088 		dev_kfree_skb_any(bp->ptp_tx_skb);
15089 		bp->ptp_tx_skb = NULL;
15090 
15091 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15092 		   timestamp, ns);
15093 	} else {
15094 		DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15095 		/* Reschedule to keep checking for a valid timestamp value */
15096 		schedule_work(&bp->ptp_task);
15097 	}
15098 }
15099 
15100 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15101 {
15102 	int port = BP_PORT(bp);
15103 	u64 timestamp, ns;
15104 
15105 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15106 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15107 	timestamp <<= 32;
15108 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15109 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15110 
15111 	/* Reset timestamp register to allow new timestamp */
15112 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15113 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15114 
15115 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15116 
15117 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15118 
15119 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15120 	   timestamp, ns);
15121 }
15122 
15123 /* Read the PHC */
15124 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15125 {
15126 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15127 	int port = BP_PORT(bp);
15128 	u32 wb_data[2];
15129 	u64 phc_cycles;
15130 
15131 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15132 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15133 	phc_cycles = wb_data[1];
15134 	phc_cycles = (phc_cycles << 32) + wb_data[0];
15135 
15136 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15137 
15138 	return phc_cycles;
15139 }
15140 
15141 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15142 {
15143 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15144 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15145 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15146 	bp->cyclecounter.shift = 1;
15147 	bp->cyclecounter.mult = 1;
15148 }
15149 
15150 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15151 {
15152 	struct bnx2x_func_state_params func_params = {NULL};
15153 	struct bnx2x_func_set_timesync_params *set_timesync_params =
15154 		&func_params.params.set_timesync;
15155 
15156 	/* Prepare parameters for function state transitions */
15157 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15158 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15159 
15160 	func_params.f_obj = &bp->func_obj;
15161 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15162 
15163 	/* Function parameters */
15164 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15165 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15166 
15167 	return bnx2x_func_state_change(bp, &func_params);
15168 }
15169 
15170 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15171 {
15172 	struct bnx2x_queue_state_params q_params;
15173 	int rc, i;
15174 
15175 	/* send queue update ramrod to enable PTP packets */
15176 	memset(&q_params, 0, sizeof(q_params));
15177 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15178 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15179 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15180 		  &q_params.params.update.update_flags);
15181 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15182 		  &q_params.params.update.update_flags);
15183 
15184 	/* send the ramrod on all the queues of the PF */
15185 	for_each_eth_queue(bp, i) {
15186 		struct bnx2x_fastpath *fp = &bp->fp[i];
15187 
15188 		/* Set the appropriate Queue object */
15189 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15190 
15191 		/* Update the Queue state */
15192 		rc = bnx2x_queue_state_change(bp, &q_params);
15193 		if (rc) {
15194 			BNX2X_ERR("Failed to enable PTP packets\n");
15195 			return rc;
15196 		}
15197 	}
15198 
15199 	return 0;
15200 }
15201 
15202 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15203 {
15204 	int port = BP_PORT(bp);
15205 	int rc;
15206 
15207 	if (!bp->hwtstamp_ioctl_called)
15208 		return 0;
15209 
15210 	switch (bp->tx_type) {
15211 	case HWTSTAMP_TX_ON:
15212 		bp->flags |= TX_TIMESTAMPING_EN;
15213 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15214 		       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15215 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15216 		       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15217 		break;
15218 	case HWTSTAMP_TX_ONESTEP_SYNC:
15219 		BNX2X_ERR("One-step timestamping is not supported\n");
15220 		return -ERANGE;
15221 	}
15222 
15223 	switch (bp->rx_filter) {
15224 	case HWTSTAMP_FILTER_NONE:
15225 		break;
15226 	case HWTSTAMP_FILTER_ALL:
15227 	case HWTSTAMP_FILTER_SOME:
15228 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15229 		break;
15230 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15231 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15232 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15233 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15234 		/* Initialize PTP detection for UDP/IPv4 events */
15235 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15236 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15237 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15238 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15239 		break;
15240 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15241 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15242 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15243 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15244 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15245 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15246 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15247 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15248 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15249 		break;
15250 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15251 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15252 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15253 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15254 		/* Initialize PTP detection L2 events */
15255 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15256 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15257 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15258 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15259 
15260 		break;
15261 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15262 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15263 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15264 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15265 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15266 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15267 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15268 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15269 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15270 		break;
15271 	}
15272 
15273 	/* Indicate to FW that this PF expects recorded PTP packets */
15274 	rc = bnx2x_enable_ptp_packets(bp);
15275 	if (rc)
15276 		return rc;
15277 
15278 	/* Enable sending PTP packets to host */
15279 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15280 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15281 
15282 	return 0;
15283 }
15284 
15285 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15286 {
15287 	struct hwtstamp_config config;
15288 	int rc;
15289 
15290 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15291 
15292 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15293 		return -EFAULT;
15294 
15295 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15296 	   config.tx_type, config.rx_filter);
15297 
15298 	if (config.flags) {
15299 		BNX2X_ERR("config.flags is reserved for future use\n");
15300 		return -EINVAL;
15301 	}
15302 
15303 	bp->hwtstamp_ioctl_called = 1;
15304 	bp->tx_type = config.tx_type;
15305 	bp->rx_filter = config.rx_filter;
15306 
15307 	rc = bnx2x_configure_ptp_filters(bp);
15308 	if (rc)
15309 		return rc;
15310 
15311 	config.rx_filter = bp->rx_filter;
15312 
15313 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15314 		-EFAULT : 0;
15315 }
15316 
15317 /* Configures HW for PTP */
15318 static int bnx2x_configure_ptp(struct bnx2x *bp)
15319 {
15320 	int rc, port = BP_PORT(bp);
15321 	u32 wb_data[2];
15322 
15323 	/* Reset PTP event detection rules - will be configured in the IOCTL */
15324 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15325 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15326 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15327 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15328 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15329 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15330 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15331 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15332 
15333 	/* Disable PTP packets to host - will be configured in the IOCTL*/
15334 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15335 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15336 
15337 	/* Enable the PTP feature */
15338 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15339 	       NIG_REG_P0_PTP_EN, 0x3F);
15340 
15341 	/* Enable the free-running counter */
15342 	wb_data[0] = 0;
15343 	wb_data[1] = 0;
15344 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15345 
15346 	/* Reset drift register (offset register is not reset) */
15347 	rc = bnx2x_send_reset_timesync_ramrod(bp);
15348 	if (rc) {
15349 		BNX2X_ERR("Failed to reset PHC drift register\n");
15350 		return -EFAULT;
15351 	}
15352 
15353 	/* Reset possibly old timestamps */
15354 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15355 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15356 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15357 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15358 
15359 	return 0;
15360 }
15361 
15362 /* Called during load, to initialize PTP-related stuff */
15363 void bnx2x_init_ptp(struct bnx2x *bp)
15364 {
15365 	int rc;
15366 
15367 	/* Configure PTP in HW */
15368 	rc = bnx2x_configure_ptp(bp);
15369 	if (rc) {
15370 		BNX2X_ERR("Stopping PTP initialization\n");
15371 		return;
15372 	}
15373 
15374 	/* Init work queue for Tx timestamping */
15375 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15376 
15377 	/* Init cyclecounter and timecounter. This is done only in the first
15378 	 * load. If done in every load, PTP application will fail when doing
15379 	 * unload / load (e.g. MTU change) while it is running.
15380 	 */
15381 	if (!bp->timecounter_init_done) {
15382 		bnx2x_init_cyclecounter(bp);
15383 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15384 				 ktime_to_ns(ktime_get_real()));
15385 		bp->timecounter_init_done = 1;
15386 	}
15387 
15388 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15389 }
15390