1 /* bnx2x_main.c: Broadcom Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 * 9 * Maintained by: Eilon Greenstein <eilong@broadcom.com> 10 * Written by: Eliezer Tamir 11 * Based on code from Michael Chan's bnx2 driver 12 * UDP CSUM errata workaround by Arik Gendelman 13 * Slowpath and fastpath rework by Vladislav Zolotarov 14 * Statistics and Link management by Yitchak Gertner 15 * 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/kernel.h> 23 #include <linux/device.h> /* for dev_info() */ 24 #include <linux/timer.h> 25 #include <linux/errno.h> 26 #include <linux/ioport.h> 27 #include <linux/slab.h> 28 #include <linux/interrupt.h> 29 #include <linux/pci.h> 30 #include <linux/init.h> 31 #include <linux/netdevice.h> 32 #include <linux/etherdevice.h> 33 #include <linux/skbuff.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/bitops.h> 36 #include <linux/irq.h> 37 #include <linux/delay.h> 38 #include <asm/byteorder.h> 39 #include <linux/time.h> 40 #include <linux/ethtool.h> 41 #include <linux/mii.h> 42 #include <linux/if_vlan.h> 43 #include <net/ip.h> 44 #include <net/ipv6.h> 45 #include <net/tcp.h> 46 #include <net/checksum.h> 47 #include <net/ip6_checksum.h> 48 #include <linux/workqueue.h> 49 #include <linux/crc32.h> 50 #include <linux/crc32c.h> 51 #include <linux/prefetch.h> 52 #include <linux/zlib.h> 53 #include <linux/io.h> 54 #include <linux/semaphore.h> 55 #include <linux/stringify.h> 56 #include <linux/vmalloc.h> 57 58 #include "bnx2x.h" 59 #include "bnx2x_init.h" 60 #include "bnx2x_init_ops.h" 61 #include "bnx2x_cmn.h" 62 #include "bnx2x_vfpf.h" 63 #include "bnx2x_dcb.h" 64 #include "bnx2x_sp.h" 65 66 #include <linux/firmware.h> 67 #include "bnx2x_fw_file_hdr.h" 68 /* FW files */ 69 #define FW_FILE_VERSION \ 70 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ 71 __stringify(BCM_5710_FW_MINOR_VERSION) "." \ 72 __stringify(BCM_5710_FW_REVISION_VERSION) "." \ 73 __stringify(BCM_5710_FW_ENGINEERING_VERSION) 74 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" 75 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" 76 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" 77 78 #define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN) 79 80 /* Time in jiffies before concluding the transmitter is hung */ 81 #define TX_TIMEOUT (5*HZ) 82 83 static char version[] = 84 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver " 85 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 86 87 MODULE_AUTHOR("Eliezer Tamir"); 88 MODULE_DESCRIPTION("Broadcom NetXtreme II " 89 "BCM57710/57711/57711E/" 90 "57712/57712_MF/57800/57800_MF/57810/57810_MF/" 91 "57840/57840_MF Driver"); 92 MODULE_LICENSE("GPL"); 93 MODULE_VERSION(DRV_MODULE_VERSION); 94 MODULE_FIRMWARE(FW_FILE_NAME_E1); 95 MODULE_FIRMWARE(FW_FILE_NAME_E1H); 96 MODULE_FIRMWARE(FW_FILE_NAME_E2); 97 98 99 int num_queues; 100 module_param(num_queues, int, 0); 101 MODULE_PARM_DESC(num_queues, 102 " Set number of queues (default is as a number of CPUs)"); 103 104 static int disable_tpa; 105 module_param(disable_tpa, int, 0); 106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); 107 108 #define INT_MODE_INTx 1 109 #define INT_MODE_MSI 2 110 int int_mode; 111 module_param(int_mode, int, 0); 112 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " 113 "(1 INT#x; 2 MSI)"); 114 115 static int dropless_fc; 116 module_param(dropless_fc, int, 0); 117 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); 118 119 static int mrrs = -1; 120 module_param(mrrs, int, 0); 121 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); 122 123 static int debug; 124 module_param(debug, int, 0); 125 MODULE_PARM_DESC(debug, " Default debug msglevel"); 126 127 128 129 struct workqueue_struct *bnx2x_wq; 130 131 struct bnx2x_mac_vals { 132 u32 xmac_addr; 133 u32 xmac_val; 134 u32 emac_addr; 135 u32 emac_val; 136 u32 umac_addr; 137 u32 umac_val; 138 u32 bmac_addr; 139 u32 bmac_val[2]; 140 }; 141 142 enum bnx2x_board_type { 143 BCM57710 = 0, 144 BCM57711, 145 BCM57711E, 146 BCM57712, 147 BCM57712_MF, 148 BCM57712_VF, 149 BCM57800, 150 BCM57800_MF, 151 BCM57800_VF, 152 BCM57810, 153 BCM57810_MF, 154 BCM57810_VF, 155 BCM57840_4_10, 156 BCM57840_2_20, 157 BCM57840_MF, 158 BCM57840_VF, 159 BCM57811, 160 BCM57811_MF, 161 BCM57840_O, 162 BCM57840_MFO, 163 BCM57811_VF 164 }; 165 166 /* indexed by board_type, above */ 167 static struct { 168 char *name; 169 } board_info[] = { 170 [BCM57710] = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" }, 171 [BCM57711] = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" }, 172 [BCM57711E] = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" }, 173 [BCM57712] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" }, 174 [BCM57712_MF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" }, 175 [BCM57712_VF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" }, 176 [BCM57800] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" }, 177 [BCM57800_MF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" }, 178 [BCM57800_VF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" }, 179 [BCM57810] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" }, 180 [BCM57810_MF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" }, 181 [BCM57810_VF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" }, 182 [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" }, 183 [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" }, 184 [BCM57840_MF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" }, 185 [BCM57840_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }, 186 [BCM57811] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" }, 187 [BCM57811_MF] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" }, 188 [BCM57840_O] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" }, 189 [BCM57840_MFO] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" }, 190 [BCM57811_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" } 191 }; 192 193 #ifndef PCI_DEVICE_ID_NX2_57710 194 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 195 #endif 196 #ifndef PCI_DEVICE_ID_NX2_57711 197 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 198 #endif 199 #ifndef PCI_DEVICE_ID_NX2_57711E 200 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E 201 #endif 202 #ifndef PCI_DEVICE_ID_NX2_57712 203 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 204 #endif 205 #ifndef PCI_DEVICE_ID_NX2_57712_MF 206 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF 207 #endif 208 #ifndef PCI_DEVICE_ID_NX2_57712_VF 209 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF 210 #endif 211 #ifndef PCI_DEVICE_ID_NX2_57800 212 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 213 #endif 214 #ifndef PCI_DEVICE_ID_NX2_57800_MF 215 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF 216 #endif 217 #ifndef PCI_DEVICE_ID_NX2_57800_VF 218 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF 219 #endif 220 #ifndef PCI_DEVICE_ID_NX2_57810 221 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 222 #endif 223 #ifndef PCI_DEVICE_ID_NX2_57810_MF 224 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF 225 #endif 226 #ifndef PCI_DEVICE_ID_NX2_57840_O 227 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE 228 #endif 229 #ifndef PCI_DEVICE_ID_NX2_57810_VF 230 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF 231 #endif 232 #ifndef PCI_DEVICE_ID_NX2_57840_4_10 233 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 234 #endif 235 #ifndef PCI_DEVICE_ID_NX2_57840_2_20 236 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 237 #endif 238 #ifndef PCI_DEVICE_ID_NX2_57840_MFO 239 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE 240 #endif 241 #ifndef PCI_DEVICE_ID_NX2_57840_MF 242 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF 243 #endif 244 #ifndef PCI_DEVICE_ID_NX2_57840_VF 245 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF 246 #endif 247 #ifndef PCI_DEVICE_ID_NX2_57811 248 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 249 #endif 250 #ifndef PCI_DEVICE_ID_NX2_57811_MF 251 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF 252 #endif 253 #ifndef PCI_DEVICE_ID_NX2_57811_VF 254 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF 255 #endif 256 257 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = { 258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, 259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, 260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, 261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, 262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, 263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, 264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, 265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, 266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, 267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, 268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, 269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, 270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, 272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, 273 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, 274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 275 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 276 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, 277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, 278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, 279 { 0 } 280 }; 281 282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); 283 284 /* Global resources for unloading a previously loaded device */ 285 #define BNX2X_PREV_WAIT_NEEDED 1 286 static DEFINE_SEMAPHORE(bnx2x_prev_sem); 287 static LIST_HEAD(bnx2x_prev_list); 288 /**************************************************************************** 289 * General service functions 290 ****************************************************************************/ 291 292 static void __storm_memset_dma_mapping(struct bnx2x *bp, 293 u32 addr, dma_addr_t mapping) 294 { 295 REG_WR(bp, addr, U64_LO(mapping)); 296 REG_WR(bp, addr + 4, U64_HI(mapping)); 297 } 298 299 static void storm_memset_spq_addr(struct bnx2x *bp, 300 dma_addr_t mapping, u16 abs_fid) 301 { 302 u32 addr = XSEM_REG_FAST_MEMORY + 303 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); 304 305 __storm_memset_dma_mapping(bp, addr, mapping); 306 } 307 308 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 309 u16 pf_id) 310 { 311 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 312 pf_id); 313 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 314 pf_id); 315 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 316 pf_id); 317 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 318 pf_id); 319 } 320 321 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 322 u8 enable) 323 { 324 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 325 enable); 326 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 327 enable); 328 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 329 enable); 330 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 331 enable); 332 } 333 334 static void storm_memset_eq_data(struct bnx2x *bp, 335 struct event_ring_data *eq_data, 336 u16 pfid) 337 { 338 size_t size = sizeof(struct event_ring_data); 339 340 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); 341 342 __storm_memset_struct(bp, addr, size, (u32 *)eq_data); 343 } 344 345 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, 346 u16 pfid) 347 { 348 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); 349 REG_WR16(bp, addr, eq_prod); 350 } 351 352 /* used only at init 353 * locking is done by mcp 354 */ 355 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) 356 { 357 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 358 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); 359 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 360 PCICFG_VENDOR_ID_OFFSET); 361 } 362 363 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) 364 { 365 u32 val; 366 367 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 368 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); 369 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 370 PCICFG_VENDOR_ID_OFFSET); 371 372 return val; 373 } 374 375 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" 376 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" 377 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" 378 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" 379 #define DMAE_DP_DST_NONE "dst_addr [none]" 380 381 void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae, int msglvl) 382 { 383 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; 384 385 switch (dmae->opcode & DMAE_COMMAND_DST) { 386 case DMAE_CMD_DST_PCI: 387 if (src_type == DMAE_CMD_SRC_PCI) 388 DP(msglvl, "DMAE: opcode 0x%08x\n" 389 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 390 "comp_addr [%x:%08x], comp_val 0x%08x\n", 391 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 392 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 393 dmae->comp_addr_hi, dmae->comp_addr_lo, 394 dmae->comp_val); 395 else 396 DP(msglvl, "DMAE: opcode 0x%08x\n" 397 "src [%08x], len [%d*4], dst [%x:%08x]\n" 398 "comp_addr [%x:%08x], comp_val 0x%08x\n", 399 dmae->opcode, dmae->src_addr_lo >> 2, 400 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 401 dmae->comp_addr_hi, dmae->comp_addr_lo, 402 dmae->comp_val); 403 break; 404 case DMAE_CMD_DST_GRC: 405 if (src_type == DMAE_CMD_SRC_PCI) 406 DP(msglvl, "DMAE: opcode 0x%08x\n" 407 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 408 "comp_addr [%x:%08x], comp_val 0x%08x\n", 409 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 410 dmae->len, dmae->dst_addr_lo >> 2, 411 dmae->comp_addr_hi, dmae->comp_addr_lo, 412 dmae->comp_val); 413 else 414 DP(msglvl, "DMAE: opcode 0x%08x\n" 415 "src [%08x], len [%d*4], dst [%08x]\n" 416 "comp_addr [%x:%08x], comp_val 0x%08x\n", 417 dmae->opcode, dmae->src_addr_lo >> 2, 418 dmae->len, dmae->dst_addr_lo >> 2, 419 dmae->comp_addr_hi, dmae->comp_addr_lo, 420 dmae->comp_val); 421 break; 422 default: 423 if (src_type == DMAE_CMD_SRC_PCI) 424 DP(msglvl, "DMAE: opcode 0x%08x\n" 425 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 426 "comp_addr [%x:%08x] comp_val 0x%08x\n", 427 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 428 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 429 dmae->comp_val); 430 else 431 DP(msglvl, "DMAE: opcode 0x%08x\n" 432 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 433 "comp_addr [%x:%08x] comp_val 0x%08x\n", 434 dmae->opcode, dmae->src_addr_lo >> 2, 435 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 436 dmae->comp_val); 437 break; 438 } 439 } 440 441 /* copy command into DMAE command memory and set DMAE command go */ 442 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) 443 { 444 u32 cmd_offset; 445 int i; 446 447 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); 448 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { 449 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); 450 } 451 REG_WR(bp, dmae_reg_go_c[idx], 1); 452 } 453 454 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) 455 { 456 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 457 DMAE_CMD_C_ENABLE); 458 } 459 460 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) 461 { 462 return opcode & ~DMAE_CMD_SRC_RESET; 463 } 464 465 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 466 bool with_comp, u8 comp_type) 467 { 468 u32 opcode = 0; 469 470 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 471 (dst_type << DMAE_COMMAND_DST_SHIFT)); 472 473 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 474 475 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 476 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | 477 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); 478 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 479 480 #ifdef __BIG_ENDIAN 481 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 482 #else 483 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 484 #endif 485 if (with_comp) 486 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); 487 return opcode; 488 } 489 490 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, 491 struct dmae_command *dmae, 492 u8 src_type, u8 dst_type) 493 { 494 memset(dmae, 0, sizeof(struct dmae_command)); 495 496 /* set the opcode */ 497 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, 498 true, DMAE_COMP_PCI); 499 500 /* fill in the completion parameters */ 501 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); 502 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); 503 dmae->comp_val = DMAE_COMP_VAL; 504 } 505 506 /* issue a dmae command over the init-channel and wait for completion */ 507 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae) 508 { 509 u32 *wb_comp = bnx2x_sp(bp, wb_comp); 510 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; 511 int rc = 0; 512 513 /* 514 * Lock the dmae channel. Disable BHs to prevent a dead-lock 515 * as long as this code is called both from syscall context and 516 * from ndo_set_rx_mode() flow that may be called from BH. 517 */ 518 spin_lock_bh(&bp->dmae_lock); 519 520 /* reset completion */ 521 *wb_comp = 0; 522 523 /* post the command on the channel used for initializations */ 524 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); 525 526 /* wait for completion */ 527 udelay(5); 528 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 529 530 if (!cnt || 531 (bp->recovery_state != BNX2X_RECOVERY_DONE && 532 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 533 BNX2X_ERR("DMAE timeout!\n"); 534 rc = DMAE_TIMEOUT; 535 goto unlock; 536 } 537 cnt--; 538 udelay(50); 539 } 540 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 541 BNX2X_ERR("DMAE PCI error!\n"); 542 rc = DMAE_PCI_ERROR; 543 } 544 545 unlock: 546 spin_unlock_bh(&bp->dmae_lock); 547 return rc; 548 } 549 550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 551 u32 len32) 552 { 553 struct dmae_command dmae; 554 555 if (!bp->dmae_ready) { 556 u32 *data = bnx2x_sp(bp, wb_data[0]); 557 558 if (CHIP_IS_E1(bp)) 559 bnx2x_init_ind_wr(bp, dst_addr, data, len32); 560 else 561 bnx2x_init_str_wr(bp, dst_addr, data, len32); 562 return; 563 } 564 565 /* set opcode and fixed command fields */ 566 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 567 568 /* fill in addresses and len */ 569 dmae.src_addr_lo = U64_LO(dma_addr); 570 dmae.src_addr_hi = U64_HI(dma_addr); 571 dmae.dst_addr_lo = dst_addr >> 2; 572 dmae.dst_addr_hi = 0; 573 dmae.len = len32; 574 575 /* issue the command and wait for completion */ 576 bnx2x_issue_dmae_with_comp(bp, &dmae); 577 } 578 579 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) 580 { 581 struct dmae_command dmae; 582 583 if (!bp->dmae_ready) { 584 u32 *data = bnx2x_sp(bp, wb_data[0]); 585 int i; 586 587 if (CHIP_IS_E1(bp)) 588 for (i = 0; i < len32; i++) 589 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); 590 else 591 for (i = 0; i < len32; i++) 592 data[i] = REG_RD(bp, src_addr + i*4); 593 594 return; 595 } 596 597 /* set opcode and fixed command fields */ 598 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 599 600 /* fill in addresses and len */ 601 dmae.src_addr_lo = src_addr >> 2; 602 dmae.src_addr_hi = 0; 603 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); 604 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); 605 dmae.len = len32; 606 607 /* issue the command and wait for completion */ 608 bnx2x_issue_dmae_with_comp(bp, &dmae); 609 } 610 611 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, 612 u32 addr, u32 len) 613 { 614 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); 615 int offset = 0; 616 617 while (len > dmae_wr_max) { 618 bnx2x_write_dmae(bp, phys_addr + offset, 619 addr + offset, dmae_wr_max); 620 offset += dmae_wr_max * 4; 621 len -= dmae_wr_max; 622 } 623 624 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); 625 } 626 627 static int bnx2x_mc_assert(struct bnx2x *bp) 628 { 629 char last_idx; 630 int i, rc = 0; 631 u32 row0, row1, row2, row3; 632 633 /* XSTORM */ 634 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM + 635 XSTORM_ASSERT_LIST_INDEX_OFFSET); 636 if (last_idx) 637 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 638 639 /* print the asserts */ 640 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 641 642 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM + 643 XSTORM_ASSERT_LIST_OFFSET(i)); 644 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM + 645 XSTORM_ASSERT_LIST_OFFSET(i) + 4); 646 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM + 647 XSTORM_ASSERT_LIST_OFFSET(i) + 8); 648 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM + 649 XSTORM_ASSERT_LIST_OFFSET(i) + 12); 650 651 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 652 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 653 i, row3, row2, row1, row0); 654 rc++; 655 } else { 656 break; 657 } 658 } 659 660 /* TSTORM */ 661 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM + 662 TSTORM_ASSERT_LIST_INDEX_OFFSET); 663 if (last_idx) 664 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 665 666 /* print the asserts */ 667 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 668 669 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM + 670 TSTORM_ASSERT_LIST_OFFSET(i)); 671 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM + 672 TSTORM_ASSERT_LIST_OFFSET(i) + 4); 673 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM + 674 TSTORM_ASSERT_LIST_OFFSET(i) + 8); 675 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM + 676 TSTORM_ASSERT_LIST_OFFSET(i) + 12); 677 678 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 679 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 680 i, row3, row2, row1, row0); 681 rc++; 682 } else { 683 break; 684 } 685 } 686 687 /* CSTORM */ 688 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM + 689 CSTORM_ASSERT_LIST_INDEX_OFFSET); 690 if (last_idx) 691 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 692 693 /* print the asserts */ 694 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 695 696 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM + 697 CSTORM_ASSERT_LIST_OFFSET(i)); 698 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM + 699 CSTORM_ASSERT_LIST_OFFSET(i) + 4); 700 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM + 701 CSTORM_ASSERT_LIST_OFFSET(i) + 8); 702 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM + 703 CSTORM_ASSERT_LIST_OFFSET(i) + 12); 704 705 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 706 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 707 i, row3, row2, row1, row0); 708 rc++; 709 } else { 710 break; 711 } 712 } 713 714 /* USTORM */ 715 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM + 716 USTORM_ASSERT_LIST_INDEX_OFFSET); 717 if (last_idx) 718 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 719 720 /* print the asserts */ 721 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 722 723 row0 = REG_RD(bp, BAR_USTRORM_INTMEM + 724 USTORM_ASSERT_LIST_OFFSET(i)); 725 row1 = REG_RD(bp, BAR_USTRORM_INTMEM + 726 USTORM_ASSERT_LIST_OFFSET(i) + 4); 727 row2 = REG_RD(bp, BAR_USTRORM_INTMEM + 728 USTORM_ASSERT_LIST_OFFSET(i) + 8); 729 row3 = REG_RD(bp, BAR_USTRORM_INTMEM + 730 USTORM_ASSERT_LIST_OFFSET(i) + 12); 731 732 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 733 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 734 i, row3, row2, row1, row0); 735 rc++; 736 } else { 737 break; 738 } 739 } 740 741 return rc; 742 } 743 744 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) 745 { 746 u32 addr, val; 747 u32 mark, offset; 748 __be32 data[9]; 749 int word; 750 u32 trace_shmem_base; 751 if (BP_NOMCP(bp)) { 752 BNX2X_ERR("NO MCP - can not dump\n"); 753 return; 754 } 755 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", 756 (bp->common.bc_ver & 0xff0000) >> 16, 757 (bp->common.bc_ver & 0xff00) >> 8, 758 (bp->common.bc_ver & 0xff)); 759 760 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); 761 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) 762 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); 763 764 if (BP_PATH(bp) == 0) 765 trace_shmem_base = bp->common.shmem_base; 766 else 767 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); 768 addr = trace_shmem_base - 0x800; 769 770 /* validate TRCB signature */ 771 mark = REG_RD(bp, addr); 772 if (mark != MFW_TRACE_SIGNATURE) { 773 BNX2X_ERR("Trace buffer signature is missing."); 774 return ; 775 } 776 777 /* read cyclic buffer pointer */ 778 addr += 4; 779 mark = REG_RD(bp, addr); 780 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH) 781 + ((mark + 0x3) & ~0x3) - 0x08000000; 782 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); 783 784 printk("%s", lvl); 785 786 /* dump buffer after the mark */ 787 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) { 788 for (word = 0; word < 8; word++) 789 data[word] = htonl(REG_RD(bp, offset + 4*word)); 790 data[8] = 0x0; 791 pr_cont("%s", (char *)data); 792 } 793 794 /* dump buffer before the mark */ 795 for (offset = addr + 4; offset <= mark; offset += 0x8*4) { 796 for (word = 0; word < 8; word++) 797 data[word] = htonl(REG_RD(bp, offset + 4*word)); 798 data[8] = 0x0; 799 pr_cont("%s", (char *)data); 800 } 801 printk("%s" "end of fw dump\n", lvl); 802 } 803 804 static void bnx2x_fw_dump(struct bnx2x *bp) 805 { 806 bnx2x_fw_dump_lvl(bp, KERN_ERR); 807 } 808 809 static void bnx2x_hc_int_disable(struct bnx2x *bp) 810 { 811 int port = BP_PORT(bp); 812 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 813 u32 val = REG_RD(bp, addr); 814 815 /* in E1 we must use only PCI configuration space to disable 816 * MSI/MSIX capablility 817 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block 818 */ 819 if (CHIP_IS_E1(bp)) { 820 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on 821 * Use mask register to prevent from HC sending interrupts 822 * after we exit the function 823 */ 824 REG_WR(bp, HC_REG_INT_MASK + port*4, 0); 825 826 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 827 HC_CONFIG_0_REG_INT_LINE_EN_0 | 828 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 829 } else 830 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 831 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 832 HC_CONFIG_0_REG_INT_LINE_EN_0 | 833 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 834 835 DP(NETIF_MSG_IFDOWN, 836 "write %x to HC %d (addr 0x%x)\n", 837 val, port, addr); 838 839 /* flush all outstanding writes */ 840 mmiowb(); 841 842 REG_WR(bp, addr, val); 843 if (REG_RD(bp, addr) != val) 844 BNX2X_ERR("BUG! proper val not read from IGU!\n"); 845 } 846 847 static void bnx2x_igu_int_disable(struct bnx2x *bp) 848 { 849 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 850 851 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 852 IGU_PF_CONF_INT_LINE_EN | 853 IGU_PF_CONF_ATTN_BIT_EN); 854 855 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); 856 857 /* flush all outstanding writes */ 858 mmiowb(); 859 860 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 861 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) 862 BNX2X_ERR("BUG! proper val not read from IGU!\n"); 863 } 864 865 static void bnx2x_int_disable(struct bnx2x *bp) 866 { 867 if (bp->common.int_block == INT_BLOCK_HC) 868 bnx2x_hc_int_disable(bp); 869 else 870 bnx2x_igu_int_disable(bp); 871 } 872 873 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) 874 { 875 int i; 876 u16 j; 877 struct hc_sp_status_block_data sp_sb_data; 878 int func = BP_FUNC(bp); 879 #ifdef BNX2X_STOP_ON_ERROR 880 u16 start = 0, end = 0; 881 u8 cos; 882 #endif 883 if (disable_int) 884 bnx2x_int_disable(bp); 885 886 bp->stats_state = STATS_STATE_DISABLED; 887 bp->eth_stats.unrecoverable_error++; 888 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); 889 890 BNX2X_ERR("begin crash dump -----------------\n"); 891 892 /* Indices */ 893 /* Common */ 894 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", 895 bp->def_idx, bp->def_att_idx, bp->attn_state, 896 bp->spq_prod_idx, bp->stats_counter); 897 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", 898 bp->def_status_blk->atten_status_block.attn_bits, 899 bp->def_status_blk->atten_status_block.attn_bits_ack, 900 bp->def_status_blk->atten_status_block.status_block_id, 901 bp->def_status_blk->atten_status_block.attn_bits_index); 902 BNX2X_ERR(" def ("); 903 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) 904 pr_cont("0x%x%s", 905 bp->def_status_blk->sp_sb.index_values[i], 906 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); 907 908 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 909 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM + 910 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 911 i*sizeof(u32)); 912 913 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", 914 sp_sb_data.igu_sb_id, 915 sp_sb_data.igu_seg_id, 916 sp_sb_data.p_func.pf_id, 917 sp_sb_data.p_func.vnic_id, 918 sp_sb_data.p_func.vf_id, 919 sp_sb_data.p_func.vf_valid, 920 sp_sb_data.state); 921 922 923 for_each_eth_queue(bp, i) { 924 struct bnx2x_fastpath *fp = &bp->fp[i]; 925 int loop; 926 struct hc_status_block_data_e2 sb_data_e2; 927 struct hc_status_block_data_e1x sb_data_e1x; 928 struct hc_status_block_sm *hc_sm_p = 929 CHIP_IS_E1x(bp) ? 930 sb_data_e1x.common.state_machine : 931 sb_data_e2.common.state_machine; 932 struct hc_index_data *hc_index_p = 933 CHIP_IS_E1x(bp) ? 934 sb_data_e1x.index_data : 935 sb_data_e2.index_data; 936 u8 data_size, cos; 937 u32 *sb_data_p; 938 struct bnx2x_fp_txdata txdata; 939 940 /* Rx */ 941 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", 942 i, fp->rx_bd_prod, fp->rx_bd_cons, 943 fp->rx_comp_prod, 944 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); 945 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", 946 fp->rx_sge_prod, fp->last_max_sge, 947 le16_to_cpu(fp->fp_hc_idx)); 948 949 /* Tx */ 950 for_each_cos_in_tx_queue(fp, cos) 951 { 952 txdata = *fp->txdata_ptr[cos]; 953 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", 954 i, txdata.tx_pkt_prod, 955 txdata.tx_pkt_cons, txdata.tx_bd_prod, 956 txdata.tx_bd_cons, 957 le16_to_cpu(*txdata.tx_cons_sb)); 958 } 959 960 loop = CHIP_IS_E1x(bp) ? 961 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; 962 963 /* host sb data */ 964 965 if (IS_FCOE_FP(fp)) 966 continue; 967 968 BNX2X_ERR(" run indexes ("); 969 for (j = 0; j < HC_SB_MAX_SM; j++) 970 pr_cont("0x%x%s", 971 fp->sb_running_index[j], 972 (j == HC_SB_MAX_SM - 1) ? ")" : " "); 973 974 BNX2X_ERR(" indexes ("); 975 for (j = 0; j < loop; j++) 976 pr_cont("0x%x%s", 977 fp->sb_index_values[j], 978 (j == loop - 1) ? ")" : " "); 979 /* fw sb data */ 980 data_size = CHIP_IS_E1x(bp) ? 981 sizeof(struct hc_status_block_data_e1x) : 982 sizeof(struct hc_status_block_data_e2); 983 data_size /= sizeof(u32); 984 sb_data_p = CHIP_IS_E1x(bp) ? 985 (u32 *)&sb_data_e1x : 986 (u32 *)&sb_data_e2; 987 /* copy sb data in here */ 988 for (j = 0; j < data_size; j++) 989 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + 990 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + 991 j * sizeof(u32)); 992 993 if (!CHIP_IS_E1x(bp)) { 994 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 995 sb_data_e2.common.p_func.pf_id, 996 sb_data_e2.common.p_func.vf_id, 997 sb_data_e2.common.p_func.vf_valid, 998 sb_data_e2.common.p_func.vnic_id, 999 sb_data_e2.common.same_igu_sb_1b, 1000 sb_data_e2.common.state); 1001 } else { 1002 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1003 sb_data_e1x.common.p_func.pf_id, 1004 sb_data_e1x.common.p_func.vf_id, 1005 sb_data_e1x.common.p_func.vf_valid, 1006 sb_data_e1x.common.p_func.vnic_id, 1007 sb_data_e1x.common.same_igu_sb_1b, 1008 sb_data_e1x.common.state); 1009 } 1010 1011 /* SB_SMs data */ 1012 for (j = 0; j < HC_SB_MAX_SM; j++) { 1013 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", 1014 j, hc_sm_p[j].__flags, 1015 hc_sm_p[j].igu_sb_id, 1016 hc_sm_p[j].igu_seg_id, 1017 hc_sm_p[j].time_to_expire, 1018 hc_sm_p[j].timer_value); 1019 } 1020 1021 /* Indecies data */ 1022 for (j = 0; j < loop; j++) { 1023 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, 1024 hc_index_p[j].flags, 1025 hc_index_p[j].timeout); 1026 } 1027 } 1028 1029 #ifdef BNX2X_STOP_ON_ERROR 1030 1031 /* event queue */ 1032 for (i = 0; i < NUM_EQ_DESC; i++) { 1033 u32 *data = (u32 *)&bp->eq_ring[i].message.data; 1034 1035 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", 1036 i, bp->eq_ring[i].message.opcode, 1037 bp->eq_ring[i].message.error); 1038 BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]); 1039 } 1040 1041 /* Rings */ 1042 /* Rx */ 1043 for_each_valid_rx_queue(bp, i) { 1044 struct bnx2x_fastpath *fp = &bp->fp[i]; 1045 1046 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); 1047 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); 1048 for (j = start; j != end; j = RX_BD(j + 1)) { 1049 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; 1050 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; 1051 1052 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", 1053 i, j, rx_bd[1], rx_bd[0], sw_bd->data); 1054 } 1055 1056 start = RX_SGE(fp->rx_sge_prod); 1057 end = RX_SGE(fp->last_max_sge); 1058 for (j = start; j != end; j = RX_SGE(j + 1)) { 1059 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; 1060 struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; 1061 1062 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", 1063 i, j, rx_sge[1], rx_sge[0], sw_page->page); 1064 } 1065 1066 start = RCQ_BD(fp->rx_comp_cons - 10); 1067 end = RCQ_BD(fp->rx_comp_cons + 503); 1068 for (j = start; j != end; j = RCQ_BD(j + 1)) { 1069 u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; 1070 1071 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", 1072 i, j, cqe[0], cqe[1], cqe[2], cqe[3]); 1073 } 1074 } 1075 1076 /* Tx */ 1077 for_each_valid_tx_queue(bp, i) { 1078 struct bnx2x_fastpath *fp = &bp->fp[i]; 1079 for_each_cos_in_tx_queue(fp, cos) { 1080 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1081 1082 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); 1083 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); 1084 for (j = start; j != end; j = TX_BD(j + 1)) { 1085 struct sw_tx_bd *sw_bd = 1086 &txdata->tx_buf_ring[j]; 1087 1088 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", 1089 i, cos, j, sw_bd->skb, 1090 sw_bd->first_bd); 1091 } 1092 1093 start = TX_BD(txdata->tx_bd_cons - 10); 1094 end = TX_BD(txdata->tx_bd_cons + 254); 1095 for (j = start; j != end; j = TX_BD(j + 1)) { 1096 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; 1097 1098 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", 1099 i, cos, j, tx_bd[0], tx_bd[1], 1100 tx_bd[2], tx_bd[3]); 1101 } 1102 } 1103 } 1104 #endif 1105 bnx2x_fw_dump(bp); 1106 bnx2x_mc_assert(bp); 1107 BNX2X_ERR("end crash dump -----------------\n"); 1108 } 1109 1110 /* 1111 * FLR Support for E2 1112 * 1113 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW 1114 * initialization. 1115 */ 1116 #define FLR_WAIT_USEC 10000 /* 10 miliseconds */ 1117 #define FLR_WAIT_INTERVAL 50 /* usec */ 1118 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ 1119 1120 struct pbf_pN_buf_regs { 1121 int pN; 1122 u32 init_crd; 1123 u32 crd; 1124 u32 crd_freed; 1125 }; 1126 1127 struct pbf_pN_cmd_regs { 1128 int pN; 1129 u32 lines_occup; 1130 u32 lines_freed; 1131 }; 1132 1133 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, 1134 struct pbf_pN_buf_regs *regs, 1135 u32 poll_count) 1136 { 1137 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; 1138 u32 cur_cnt = poll_count; 1139 1140 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); 1141 crd = crd_start = REG_RD(bp, regs->crd); 1142 init_crd = REG_RD(bp, regs->init_crd); 1143 1144 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 1145 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); 1146 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 1147 1148 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < 1149 (init_crd - crd_start))) { 1150 if (cur_cnt--) { 1151 udelay(FLR_WAIT_INTERVAL); 1152 crd = REG_RD(bp, regs->crd); 1153 crd_freed = REG_RD(bp, regs->crd_freed); 1154 } else { 1155 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", 1156 regs->pN); 1157 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", 1158 regs->pN, crd); 1159 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", 1160 regs->pN, crd_freed); 1161 break; 1162 } 1163 } 1164 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", 1165 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1166 } 1167 1168 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, 1169 struct pbf_pN_cmd_regs *regs, 1170 u32 poll_count) 1171 { 1172 u32 occup, to_free, freed, freed_start; 1173 u32 cur_cnt = poll_count; 1174 1175 occup = to_free = REG_RD(bp, regs->lines_occup); 1176 freed = freed_start = REG_RD(bp, regs->lines_freed); 1177 1178 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 1179 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 1180 1181 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { 1182 if (cur_cnt--) { 1183 udelay(FLR_WAIT_INTERVAL); 1184 occup = REG_RD(bp, regs->lines_occup); 1185 freed = REG_RD(bp, regs->lines_freed); 1186 } else { 1187 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", 1188 regs->pN); 1189 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", 1190 regs->pN, occup); 1191 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", 1192 regs->pN, freed); 1193 break; 1194 } 1195 } 1196 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", 1197 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1198 } 1199 1200 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, 1201 u32 expected, u32 poll_count) 1202 { 1203 u32 cur_cnt = poll_count; 1204 u32 val; 1205 1206 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) 1207 udelay(FLR_WAIT_INTERVAL); 1208 1209 return val; 1210 } 1211 1212 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 1213 char *msg, u32 poll_cnt) 1214 { 1215 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); 1216 if (val != 0) { 1217 BNX2X_ERR("%s usage count=%d\n", msg, val); 1218 return 1; 1219 } 1220 return 0; 1221 } 1222 1223 /* Common routines with VF FLR cleanup */ 1224 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) 1225 { 1226 /* adjust polling timeout */ 1227 if (CHIP_REV_IS_EMUL(bp)) 1228 return FLR_POLL_CNT * 2000; 1229 1230 if (CHIP_REV_IS_FPGA(bp)) 1231 return FLR_POLL_CNT * 120; 1232 1233 return FLR_POLL_CNT; 1234 } 1235 1236 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) 1237 { 1238 struct pbf_pN_cmd_regs cmd_regs[] = { 1239 {0, (CHIP_IS_E3B0(bp)) ? 1240 PBF_REG_TQ_OCCUPANCY_Q0 : 1241 PBF_REG_P0_TQ_OCCUPANCY, 1242 (CHIP_IS_E3B0(bp)) ? 1243 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 1244 PBF_REG_P0_TQ_LINES_FREED_CNT}, 1245 {1, (CHIP_IS_E3B0(bp)) ? 1246 PBF_REG_TQ_OCCUPANCY_Q1 : 1247 PBF_REG_P1_TQ_OCCUPANCY, 1248 (CHIP_IS_E3B0(bp)) ? 1249 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 1250 PBF_REG_P1_TQ_LINES_FREED_CNT}, 1251 {4, (CHIP_IS_E3B0(bp)) ? 1252 PBF_REG_TQ_OCCUPANCY_LB_Q : 1253 PBF_REG_P4_TQ_OCCUPANCY, 1254 (CHIP_IS_E3B0(bp)) ? 1255 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 1256 PBF_REG_P4_TQ_LINES_FREED_CNT} 1257 }; 1258 1259 struct pbf_pN_buf_regs buf_regs[] = { 1260 {0, (CHIP_IS_E3B0(bp)) ? 1261 PBF_REG_INIT_CRD_Q0 : 1262 PBF_REG_P0_INIT_CRD , 1263 (CHIP_IS_E3B0(bp)) ? 1264 PBF_REG_CREDIT_Q0 : 1265 PBF_REG_P0_CREDIT, 1266 (CHIP_IS_E3B0(bp)) ? 1267 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 1268 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 1269 {1, (CHIP_IS_E3B0(bp)) ? 1270 PBF_REG_INIT_CRD_Q1 : 1271 PBF_REG_P1_INIT_CRD, 1272 (CHIP_IS_E3B0(bp)) ? 1273 PBF_REG_CREDIT_Q1 : 1274 PBF_REG_P1_CREDIT, 1275 (CHIP_IS_E3B0(bp)) ? 1276 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 1277 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 1278 {4, (CHIP_IS_E3B0(bp)) ? 1279 PBF_REG_INIT_CRD_LB_Q : 1280 PBF_REG_P4_INIT_CRD, 1281 (CHIP_IS_E3B0(bp)) ? 1282 PBF_REG_CREDIT_LB_Q : 1283 PBF_REG_P4_CREDIT, 1284 (CHIP_IS_E3B0(bp)) ? 1285 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 1286 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 1287 }; 1288 1289 int i; 1290 1291 /* Verify the command queues are flushed P0, P1, P4 */ 1292 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) 1293 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); 1294 1295 1296 /* Verify the transmission buffers are flushed P0, P1, P4 */ 1297 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) 1298 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); 1299 } 1300 1301 #define OP_GEN_PARAM(param) \ 1302 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 1303 1304 #define OP_GEN_TYPE(type) \ 1305 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 1306 1307 #define OP_GEN_AGG_VECT(index) \ 1308 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 1309 1310 1311 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) 1312 { 1313 u32 op_gen_command = 0; 1314 1315 u32 comp_addr = BAR_CSTRORM_INTMEM + 1316 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); 1317 int ret = 0; 1318 1319 if (REG_RD(bp, comp_addr)) { 1320 BNX2X_ERR("Cleanup complete was not 0 before sending\n"); 1321 return 1; 1322 } 1323 1324 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 1325 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 1326 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 1327 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 1328 1329 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); 1330 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); 1331 1332 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { 1333 BNX2X_ERR("FW final cleanup did not succeed\n"); 1334 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", 1335 (REG_RD(bp, comp_addr))); 1336 bnx2x_panic(); 1337 return 1; 1338 } 1339 /* Zero completion for nxt FLR */ 1340 REG_WR(bp, comp_addr, 0); 1341 1342 return ret; 1343 } 1344 1345 u8 bnx2x_is_pcie_pending(struct pci_dev *dev) 1346 { 1347 u16 status; 1348 1349 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 1350 return status & PCI_EXP_DEVSTA_TRPND; 1351 } 1352 1353 /* PF FLR specific routines 1354 */ 1355 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) 1356 { 1357 1358 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 1359 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1360 CFC_REG_NUM_LCIDS_INSIDE_PF, 1361 "CFC PF usage counter timed out", 1362 poll_cnt)) 1363 return 1; 1364 1365 1366 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 1367 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1368 DORQ_REG_PF_USAGE_CNT, 1369 "DQ PF usage counter timed out", 1370 poll_cnt)) 1371 return 1; 1372 1373 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 1374 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1375 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), 1376 "QM PF usage counter timed out", 1377 poll_cnt)) 1378 return 1; 1379 1380 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 1381 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1382 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), 1383 "Timers VNIC usage counter timed out", 1384 poll_cnt)) 1385 return 1; 1386 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1387 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), 1388 "Timers NUM_SCANS usage counter timed out", 1389 poll_cnt)) 1390 return 1; 1391 1392 /* Wait DMAE PF usage counter to zero */ 1393 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1394 dmae_reg_go_c[INIT_DMAE_C(bp)], 1395 "DMAE dommand register timed out", 1396 poll_cnt)) 1397 return 1; 1398 1399 return 0; 1400 } 1401 1402 static void bnx2x_hw_enable_status(struct bnx2x *bp) 1403 { 1404 u32 val; 1405 1406 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); 1407 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 1408 1409 val = REG_RD(bp, PBF_REG_DISABLE_PF); 1410 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); 1411 1412 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); 1413 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 1414 1415 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); 1416 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 1417 1418 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 1419 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 1420 1421 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 1422 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 1423 1424 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 1425 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 1426 1427 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1428 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", 1429 val); 1430 } 1431 1432 static int bnx2x_pf_flr_clnup(struct bnx2x *bp) 1433 { 1434 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 1435 1436 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); 1437 1438 /* Re-enable PF target read access */ 1439 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 1440 1441 /* Poll HW usage counters */ 1442 DP(BNX2X_MSG_SP, "Polling usage counters\n"); 1443 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) 1444 return -EBUSY; 1445 1446 /* Zero the igu 'trailing edge' and 'leading edge' */ 1447 1448 /* Send the FW cleanup command */ 1449 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) 1450 return -EBUSY; 1451 1452 /* ATC cleanup */ 1453 1454 /* Verify TX hw is flushed */ 1455 bnx2x_tx_hw_flushed(bp, poll_cnt); 1456 1457 /* Wait 100ms (not adjusted according to platform) */ 1458 msleep(100); 1459 1460 /* Verify no pending pci transactions */ 1461 if (bnx2x_is_pcie_pending(bp->pdev)) 1462 BNX2X_ERR("PCIE Transactions still pending\n"); 1463 1464 /* Debug */ 1465 bnx2x_hw_enable_status(bp); 1466 1467 /* 1468 * Master enable - Due to WB DMAE writes performed before this 1469 * register is re-initialized as part of the regular function init 1470 */ 1471 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 1472 1473 return 0; 1474 } 1475 1476 static void bnx2x_hc_int_enable(struct bnx2x *bp) 1477 { 1478 int port = BP_PORT(bp); 1479 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 1480 u32 val = REG_RD(bp, addr); 1481 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1482 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1483 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1484 1485 if (msix) { 1486 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1487 HC_CONFIG_0_REG_INT_LINE_EN_0); 1488 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1489 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1490 if (single_msix) 1491 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 1492 } else if (msi) { 1493 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 1494 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1495 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1496 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1497 } else { 1498 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1499 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1500 HC_CONFIG_0_REG_INT_LINE_EN_0 | 1501 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1502 1503 if (!CHIP_IS_E1(bp)) { 1504 DP(NETIF_MSG_IFUP, 1505 "write %x to HC %d (addr 0x%x)\n", val, port, addr); 1506 1507 REG_WR(bp, addr, val); 1508 1509 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 1510 } 1511 } 1512 1513 if (CHIP_IS_E1(bp)) 1514 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); 1515 1516 DP(NETIF_MSG_IFUP, 1517 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, 1518 (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1519 1520 REG_WR(bp, addr, val); 1521 /* 1522 * Ensure that HC_CONFIG is written before leading/trailing edge config 1523 */ 1524 mmiowb(); 1525 barrier(); 1526 1527 if (!CHIP_IS_E1(bp)) { 1528 /* init leading/trailing edge */ 1529 if (IS_MF(bp)) { 1530 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1531 if (bp->port.pmf) 1532 /* enable nig and gpio3 attention */ 1533 val |= 0x1100; 1534 } else 1535 val = 0xffff; 1536 1537 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 1538 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 1539 } 1540 1541 /* Make sure that interrupts are indeed enabled from here on */ 1542 mmiowb(); 1543 } 1544 1545 static void bnx2x_igu_int_enable(struct bnx2x *bp) 1546 { 1547 u32 val; 1548 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1549 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1550 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1551 1552 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 1553 1554 if (msix) { 1555 val &= ~(IGU_PF_CONF_INT_LINE_EN | 1556 IGU_PF_CONF_SINGLE_ISR_EN); 1557 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1558 IGU_PF_CONF_ATTN_BIT_EN); 1559 1560 if (single_msix) 1561 val |= IGU_PF_CONF_SINGLE_ISR_EN; 1562 } else if (msi) { 1563 val &= ~IGU_PF_CONF_INT_LINE_EN; 1564 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1565 IGU_PF_CONF_ATTN_BIT_EN | 1566 IGU_PF_CONF_SINGLE_ISR_EN); 1567 } else { 1568 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 1569 val |= (IGU_PF_CONF_INT_LINE_EN | 1570 IGU_PF_CONF_ATTN_BIT_EN | 1571 IGU_PF_CONF_SINGLE_ISR_EN); 1572 } 1573 1574 /* Clean previous status - need to configure igu prior to ack*/ 1575 if ((!msix) || single_msix) { 1576 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1577 bnx2x_ack_int(bp); 1578 } 1579 1580 val |= IGU_PF_CONF_FUNC_EN; 1581 1582 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", 1583 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1584 1585 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1586 1587 if (val & IGU_PF_CONF_INT_LINE_EN) 1588 pci_intx(bp->pdev, true); 1589 1590 barrier(); 1591 1592 /* init leading/trailing edge */ 1593 if (IS_MF(bp)) { 1594 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1595 if (bp->port.pmf) 1596 /* enable nig and gpio3 attention */ 1597 val |= 0x1100; 1598 } else 1599 val = 0xffff; 1600 1601 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 1602 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 1603 1604 /* Make sure that interrupts are indeed enabled from here on */ 1605 mmiowb(); 1606 } 1607 1608 void bnx2x_int_enable(struct bnx2x *bp) 1609 { 1610 if (bp->common.int_block == INT_BLOCK_HC) 1611 bnx2x_hc_int_enable(bp); 1612 else 1613 bnx2x_igu_int_enable(bp); 1614 } 1615 1616 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) 1617 { 1618 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 1619 int i, offset; 1620 1621 if (disable_hw) 1622 /* prevent the HW from sending interrupts */ 1623 bnx2x_int_disable(bp); 1624 1625 /* make sure all ISRs are done */ 1626 if (msix) { 1627 synchronize_irq(bp->msix_table[0].vector); 1628 offset = 1; 1629 if (CNIC_SUPPORT(bp)) 1630 offset++; 1631 for_each_eth_queue(bp, i) 1632 synchronize_irq(bp->msix_table[offset++].vector); 1633 } else 1634 synchronize_irq(bp->pdev->irq); 1635 1636 /* make sure sp_task is not running */ 1637 cancel_delayed_work(&bp->sp_task); 1638 cancel_delayed_work(&bp->period_task); 1639 flush_workqueue(bnx2x_wq); 1640 } 1641 1642 /* fast path */ 1643 1644 /* 1645 * General service functions 1646 */ 1647 1648 /* Return true if succeeded to acquire the lock */ 1649 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) 1650 { 1651 u32 lock_status; 1652 u32 resource_bit = (1 << resource); 1653 int func = BP_FUNC(bp); 1654 u32 hw_lock_control_reg; 1655 1656 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1657 "Trying to take a lock on resource %d\n", resource); 1658 1659 /* Validating that the resource is within range */ 1660 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1661 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1662 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1663 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1664 return false; 1665 } 1666 1667 if (func <= 5) 1668 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1669 else 1670 hw_lock_control_reg = 1671 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1672 1673 /* Try to acquire the lock */ 1674 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1675 lock_status = REG_RD(bp, hw_lock_control_reg); 1676 if (lock_status & resource_bit) 1677 return true; 1678 1679 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1680 "Failed to get a lock on resource %d\n", resource); 1681 return false; 1682 } 1683 1684 /** 1685 * bnx2x_get_leader_lock_resource - get the recovery leader resource id 1686 * 1687 * @bp: driver handle 1688 * 1689 * Returns the recovery leader resource id according to the engine this function 1690 * belongs to. Currently only only 2 engines is supported. 1691 */ 1692 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) 1693 { 1694 if (BP_PATH(bp)) 1695 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; 1696 else 1697 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; 1698 } 1699 1700 /** 1701 * bnx2x_trylock_leader_lock- try to acquire a leader lock. 1702 * 1703 * @bp: driver handle 1704 * 1705 * Tries to acquire a leader lock for current engine. 1706 */ 1707 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) 1708 { 1709 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1710 } 1711 1712 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); 1713 1714 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ 1715 static int bnx2x_schedule_sp_task(struct bnx2x *bp) 1716 { 1717 /* Set the interrupt occurred bit for the sp-task to recognize it 1718 * must ack the interrupt and transition according to the IGU 1719 * state machine. 1720 */ 1721 atomic_set(&bp->interrupt_occurred, 1); 1722 1723 /* The sp_task must execute only after this bit 1724 * is set, otherwise we will get out of sync and miss all 1725 * further interrupts. Hence, the barrier. 1726 */ 1727 smp_wmb(); 1728 1729 /* schedule sp_task to workqueue */ 1730 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); 1731 } 1732 1733 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) 1734 { 1735 struct bnx2x *bp = fp->bp; 1736 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1737 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1738 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; 1739 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 1740 1741 DP(BNX2X_MSG_SP, 1742 "fp %d cid %d got ramrod #%d state is %x type is %d\n", 1743 fp->index, cid, command, bp->state, 1744 rr_cqe->ramrod_cqe.ramrod_type); 1745 1746 /* If cid is within VF range, replace the slowpath object with the 1747 * one corresponding to this VF 1748 */ 1749 if (cid >= BNX2X_FIRST_VF_CID && 1750 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) 1751 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); 1752 1753 switch (command) { 1754 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 1755 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); 1756 drv_cmd = BNX2X_Q_CMD_UPDATE; 1757 break; 1758 1759 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 1760 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); 1761 drv_cmd = BNX2X_Q_CMD_SETUP; 1762 break; 1763 1764 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 1765 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 1766 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 1767 break; 1768 1769 case (RAMROD_CMD_ID_ETH_HALT): 1770 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); 1771 drv_cmd = BNX2X_Q_CMD_HALT; 1772 break; 1773 1774 case (RAMROD_CMD_ID_ETH_TERMINATE): 1775 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid); 1776 drv_cmd = BNX2X_Q_CMD_TERMINATE; 1777 break; 1778 1779 case (RAMROD_CMD_ID_ETH_EMPTY): 1780 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); 1781 drv_cmd = BNX2X_Q_CMD_EMPTY; 1782 break; 1783 1784 default: 1785 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", 1786 command, fp->index); 1787 return; 1788 } 1789 1790 if ((drv_cmd != BNX2X_Q_CMD_MAX) && 1791 q_obj->complete_cmd(bp, q_obj, drv_cmd)) 1792 /* q_obj->complete_cmd() failure means that this was 1793 * an unexpected completion. 1794 * 1795 * In this case we don't want to increase the bp->spq_left 1796 * because apparently we haven't sent this command the first 1797 * place. 1798 */ 1799 #ifdef BNX2X_STOP_ON_ERROR 1800 bnx2x_panic(); 1801 #else 1802 return; 1803 #endif 1804 /* SRIOV: reschedule any 'in_progress' operations */ 1805 bnx2x_iov_sp_event(bp, cid, true); 1806 1807 smp_mb__before_atomic_inc(); 1808 atomic_inc(&bp->cq_spq_left); 1809 /* push the change in bp->spq_left and towards the memory */ 1810 smp_mb__after_atomic_inc(); 1811 1812 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); 1813 1814 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 1815 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { 1816 /* if Q update ramrod is completed for last Q in AFEX vif set 1817 * flow, then ACK MCP at the end 1818 * 1819 * mark pending ACK to MCP bit. 1820 * prevent case that both bits are cleared. 1821 * At the end of load/unload driver checks that 1822 * sp_state is cleared, and this order prevents 1823 * races 1824 */ 1825 smp_mb__before_clear_bit(); 1826 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); 1827 wmb(); 1828 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 1829 smp_mb__after_clear_bit(); 1830 1831 /* schedule the sp task as mcp ack is required */ 1832 bnx2x_schedule_sp_task(bp); 1833 } 1834 1835 return; 1836 } 1837 1838 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) 1839 { 1840 struct bnx2x *bp = netdev_priv(dev_instance); 1841 u16 status = bnx2x_ack_int(bp); 1842 u16 mask; 1843 int i; 1844 u8 cos; 1845 1846 /* Return here if interrupt is shared and it's not for us */ 1847 if (unlikely(status == 0)) { 1848 DP(NETIF_MSG_INTR, "not our interrupt!\n"); 1849 return IRQ_NONE; 1850 } 1851 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); 1852 1853 #ifdef BNX2X_STOP_ON_ERROR 1854 if (unlikely(bp->panic)) 1855 return IRQ_HANDLED; 1856 #endif 1857 1858 for_each_eth_queue(bp, i) { 1859 struct bnx2x_fastpath *fp = &bp->fp[i]; 1860 1861 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); 1862 if (status & mask) { 1863 /* Handle Rx or Tx according to SB id */ 1864 prefetch(fp->rx_cons_sb); 1865 for_each_cos_in_tx_queue(fp, cos) 1866 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1867 prefetch(&fp->sb_running_index[SM_RX_ID]); 1868 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 1869 status &= ~mask; 1870 } 1871 } 1872 1873 if (CNIC_SUPPORT(bp)) { 1874 mask = 0x2; 1875 if (status & (mask | 0x1)) { 1876 struct cnic_ops *c_ops = NULL; 1877 1878 rcu_read_lock(); 1879 c_ops = rcu_dereference(bp->cnic_ops); 1880 if (c_ops && (bp->cnic_eth_dev.drv_state & 1881 CNIC_DRV_STATE_HANDLES_IRQ)) 1882 c_ops->cnic_handler(bp->cnic_data, NULL); 1883 rcu_read_unlock(); 1884 1885 status &= ~mask; 1886 } 1887 } 1888 1889 if (unlikely(status & 0x1)) { 1890 1891 /* schedule sp task to perform default status block work, ack 1892 * attentions and enable interrupts. 1893 */ 1894 bnx2x_schedule_sp_task(bp); 1895 1896 status &= ~0x1; 1897 if (!status) 1898 return IRQ_HANDLED; 1899 } 1900 1901 if (unlikely(status)) 1902 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", 1903 status); 1904 1905 return IRQ_HANDLED; 1906 } 1907 1908 /* Link */ 1909 1910 /* 1911 * General service functions 1912 */ 1913 1914 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) 1915 { 1916 u32 lock_status; 1917 u32 resource_bit = (1 << resource); 1918 int func = BP_FUNC(bp); 1919 u32 hw_lock_control_reg; 1920 int cnt; 1921 1922 /* Validating that the resource is within range */ 1923 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1924 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1925 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1926 return -EINVAL; 1927 } 1928 1929 if (func <= 5) { 1930 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1931 } else { 1932 hw_lock_control_reg = 1933 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1934 } 1935 1936 /* Validating that the resource is not already taken */ 1937 lock_status = REG_RD(bp, hw_lock_control_reg); 1938 if (lock_status & resource_bit) { 1939 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", 1940 lock_status, resource_bit); 1941 return -EEXIST; 1942 } 1943 1944 /* Try for 5 second every 5ms */ 1945 for (cnt = 0; cnt < 1000; cnt++) { 1946 /* Try to acquire the lock */ 1947 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1948 lock_status = REG_RD(bp, hw_lock_control_reg); 1949 if (lock_status & resource_bit) 1950 return 0; 1951 1952 msleep(5); 1953 } 1954 BNX2X_ERR("Timeout\n"); 1955 return -EAGAIN; 1956 } 1957 1958 int bnx2x_release_leader_lock(struct bnx2x *bp) 1959 { 1960 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1961 } 1962 1963 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) 1964 { 1965 u32 lock_status; 1966 u32 resource_bit = (1 << resource); 1967 int func = BP_FUNC(bp); 1968 u32 hw_lock_control_reg; 1969 1970 /* Validating that the resource is within range */ 1971 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1972 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1973 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1974 return -EINVAL; 1975 } 1976 1977 if (func <= 5) { 1978 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1979 } else { 1980 hw_lock_control_reg = 1981 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1982 } 1983 1984 /* Validating that the resource is currently taken */ 1985 lock_status = REG_RD(bp, hw_lock_control_reg); 1986 if (!(lock_status & resource_bit)) { 1987 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n", 1988 lock_status, resource_bit); 1989 return -EFAULT; 1990 } 1991 1992 REG_WR(bp, hw_lock_control_reg, resource_bit); 1993 return 0; 1994 } 1995 1996 1997 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) 1998 { 1999 /* The GPIO should be swapped if swap register is set and active */ 2000 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2001 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2002 int gpio_shift = gpio_num + 2003 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2004 u32 gpio_mask = (1 << gpio_shift); 2005 u32 gpio_reg; 2006 int value; 2007 2008 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2009 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2010 return -EINVAL; 2011 } 2012 2013 /* read GPIO value */ 2014 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2015 2016 /* get the requested pin value */ 2017 if ((gpio_reg & gpio_mask) == gpio_mask) 2018 value = 1; 2019 else 2020 value = 0; 2021 2022 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value); 2023 2024 return value; 2025 } 2026 2027 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2028 { 2029 /* The GPIO should be swapped if swap register is set and active */ 2030 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2031 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2032 int gpio_shift = gpio_num + 2033 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2034 u32 gpio_mask = (1 << gpio_shift); 2035 u32 gpio_reg; 2036 2037 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2038 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2039 return -EINVAL; 2040 } 2041 2042 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2043 /* read GPIO and mask except the float bits */ 2044 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2045 2046 switch (mode) { 2047 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2048 DP(NETIF_MSG_LINK, 2049 "Set GPIO %d (shift %d) -> output low\n", 2050 gpio_num, gpio_shift); 2051 /* clear FLOAT and set CLR */ 2052 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2053 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2054 break; 2055 2056 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2057 DP(NETIF_MSG_LINK, 2058 "Set GPIO %d (shift %d) -> output high\n", 2059 gpio_num, gpio_shift); 2060 /* clear FLOAT and set SET */ 2061 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2062 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2063 break; 2064 2065 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2066 DP(NETIF_MSG_LINK, 2067 "Set GPIO %d (shift %d) -> input\n", 2068 gpio_num, gpio_shift); 2069 /* set FLOAT */ 2070 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2071 break; 2072 2073 default: 2074 break; 2075 } 2076 2077 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2078 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2079 2080 return 0; 2081 } 2082 2083 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) 2084 { 2085 u32 gpio_reg = 0; 2086 int rc = 0; 2087 2088 /* Any port swapping should be handled by caller. */ 2089 2090 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2091 /* read GPIO and mask except the float bits */ 2092 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2093 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2094 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2095 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2096 2097 switch (mode) { 2098 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2099 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); 2100 /* set CLR */ 2101 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2102 break; 2103 2104 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2105 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); 2106 /* set SET */ 2107 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2108 break; 2109 2110 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2111 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); 2112 /* set FLOAT */ 2113 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2114 break; 2115 2116 default: 2117 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); 2118 rc = -EINVAL; 2119 break; 2120 } 2121 2122 if (rc == 0) 2123 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2124 2125 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2126 2127 return rc; 2128 } 2129 2130 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2131 { 2132 /* The GPIO should be swapped if swap register is set and active */ 2133 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2134 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2135 int gpio_shift = gpio_num + 2136 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2137 u32 gpio_mask = (1 << gpio_shift); 2138 u32 gpio_reg; 2139 2140 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2141 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2142 return -EINVAL; 2143 } 2144 2145 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2146 /* read GPIO int */ 2147 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); 2148 2149 switch (mode) { 2150 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2151 DP(NETIF_MSG_LINK, 2152 "Clear GPIO INT %d (shift %d) -> output low\n", 2153 gpio_num, gpio_shift); 2154 /* clear SET and set CLR */ 2155 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2156 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2157 break; 2158 2159 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2160 DP(NETIF_MSG_LINK, 2161 "Set GPIO INT %d (shift %d) -> output high\n", 2162 gpio_num, gpio_shift); 2163 /* clear CLR and set SET */ 2164 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2165 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2166 break; 2167 2168 default: 2169 break; 2170 } 2171 2172 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); 2173 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2174 2175 return 0; 2176 } 2177 2178 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) 2179 { 2180 u32 spio_reg; 2181 2182 /* Only 2 SPIOs are configurable */ 2183 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 2184 BNX2X_ERR("Invalid SPIO 0x%x\n", spio); 2185 return -EINVAL; 2186 } 2187 2188 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2189 /* read SPIO and mask except the float bits */ 2190 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 2191 2192 switch (mode) { 2193 case MISC_SPIO_OUTPUT_LOW: 2194 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); 2195 /* clear FLOAT and set CLR */ 2196 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2197 spio_reg |= (spio << MISC_SPIO_CLR_POS); 2198 break; 2199 2200 case MISC_SPIO_OUTPUT_HIGH: 2201 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); 2202 /* clear FLOAT and set SET */ 2203 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2204 spio_reg |= (spio << MISC_SPIO_SET_POS); 2205 break; 2206 2207 case MISC_SPIO_INPUT_HI_Z: 2208 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); 2209 /* set FLOAT */ 2210 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 2211 break; 2212 2213 default: 2214 break; 2215 } 2216 2217 REG_WR(bp, MISC_REG_SPIO, spio_reg); 2218 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2219 2220 return 0; 2221 } 2222 2223 void bnx2x_calc_fc_adv(struct bnx2x *bp) 2224 { 2225 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); 2226 switch (bp->link_vars.ieee_fc & 2227 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 2228 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 2229 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2230 ADVERTISED_Pause); 2231 break; 2232 2233 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 2234 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 2235 ADVERTISED_Pause); 2236 break; 2237 2238 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 2239 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 2240 break; 2241 2242 default: 2243 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2244 ADVERTISED_Pause); 2245 break; 2246 } 2247 } 2248 2249 static void bnx2x_set_requested_fc(struct bnx2x *bp) 2250 { 2251 /* Initialize link parameters structure variables 2252 * It is recommended to turn off RX FC for jumbo frames 2253 * for better performance 2254 */ 2255 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) 2256 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; 2257 else 2258 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; 2259 } 2260 2261 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) 2262 { 2263 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); 2264 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; 2265 2266 if (!BP_NOMCP(bp)) { 2267 bnx2x_set_requested_fc(bp); 2268 bnx2x_acquire_phy_lock(bp); 2269 2270 if (load_mode == LOAD_DIAG) { 2271 struct link_params *lp = &bp->link_params; 2272 lp->loopback_mode = LOOPBACK_XGXS; 2273 /* do PHY loopback at 10G speed, if possible */ 2274 if (lp->req_line_speed[cfx_idx] < SPEED_10000) { 2275 if (lp->speed_cap_mask[cfx_idx] & 2276 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) 2277 lp->req_line_speed[cfx_idx] = 2278 SPEED_10000; 2279 else 2280 lp->req_line_speed[cfx_idx] = 2281 SPEED_1000; 2282 } 2283 } 2284 2285 if (load_mode == LOAD_LOOPBACK_EXT) { 2286 struct link_params *lp = &bp->link_params; 2287 lp->loopback_mode = LOOPBACK_EXT; 2288 } 2289 2290 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2291 2292 bnx2x_release_phy_lock(bp); 2293 2294 bnx2x_calc_fc_adv(bp); 2295 2296 if (bp->link_vars.link_up) { 2297 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2298 bnx2x_link_report(bp); 2299 } 2300 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2301 bp->link_params.req_line_speed[cfx_idx] = req_line_speed; 2302 return rc; 2303 } 2304 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 2305 return -EINVAL; 2306 } 2307 2308 void bnx2x_link_set(struct bnx2x *bp) 2309 { 2310 if (!BP_NOMCP(bp)) { 2311 bnx2x_acquire_phy_lock(bp); 2312 bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2313 bnx2x_release_phy_lock(bp); 2314 2315 bnx2x_calc_fc_adv(bp); 2316 } else 2317 BNX2X_ERR("Bootcode is missing - can not set link\n"); 2318 } 2319 2320 static void bnx2x__link_reset(struct bnx2x *bp) 2321 { 2322 if (!BP_NOMCP(bp)) { 2323 bnx2x_acquire_phy_lock(bp); 2324 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); 2325 bnx2x_release_phy_lock(bp); 2326 } else 2327 BNX2X_ERR("Bootcode is missing - can not reset link\n"); 2328 } 2329 2330 void bnx2x_force_link_reset(struct bnx2x *bp) 2331 { 2332 bnx2x_acquire_phy_lock(bp); 2333 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); 2334 bnx2x_release_phy_lock(bp); 2335 } 2336 2337 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) 2338 { 2339 u8 rc = 0; 2340 2341 if (!BP_NOMCP(bp)) { 2342 bnx2x_acquire_phy_lock(bp); 2343 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, 2344 is_serdes); 2345 bnx2x_release_phy_lock(bp); 2346 } else 2347 BNX2X_ERR("Bootcode is missing - can not test link\n"); 2348 2349 return rc; 2350 } 2351 2352 2353 /* Calculates the sum of vn_min_rates. 2354 It's needed for further normalizing of the min_rates. 2355 Returns: 2356 sum of vn_min_rates. 2357 or 2358 0 - if all the min_rates are 0. 2359 In the later case fainess algorithm should be deactivated. 2360 If not all min_rates are zero then those that are zeroes will be set to 1. 2361 */ 2362 static void bnx2x_calc_vn_min(struct bnx2x *bp, 2363 struct cmng_init_input *input) 2364 { 2365 int all_zero = 1; 2366 int vn; 2367 2368 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2369 u32 vn_cfg = bp->mf_config[vn]; 2370 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 2371 FUNC_MF_CFG_MIN_BW_SHIFT) * 100; 2372 2373 /* Skip hidden vns */ 2374 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2375 vn_min_rate = 0; 2376 /* If min rate is zero - set it to 1 */ 2377 else if (!vn_min_rate) 2378 vn_min_rate = DEF_MIN_RATE; 2379 else 2380 all_zero = 0; 2381 2382 input->vnic_min_rate[vn] = vn_min_rate; 2383 } 2384 2385 /* if ETS or all min rates are zeros - disable fairness */ 2386 if (BNX2X_IS_ETS_ENABLED(bp)) { 2387 input->flags.cmng_enables &= 2388 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2389 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); 2390 } else if (all_zero) { 2391 input->flags.cmng_enables &= 2392 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2393 DP(NETIF_MSG_IFUP, 2394 "All MIN values are zeroes fairness will be disabled\n"); 2395 } else 2396 input->flags.cmng_enables |= 2397 CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2398 } 2399 2400 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, 2401 struct cmng_init_input *input) 2402 { 2403 u16 vn_max_rate; 2404 u32 vn_cfg = bp->mf_config[vn]; 2405 2406 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2407 vn_max_rate = 0; 2408 else { 2409 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); 2410 2411 if (IS_MF_SI(bp)) { 2412 /* maxCfg in percents of linkspeed */ 2413 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; 2414 } else /* SD modes */ 2415 /* maxCfg is absolute in 100Mb units */ 2416 vn_max_rate = maxCfg * 100; 2417 } 2418 2419 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 2420 2421 input->vnic_max_rate[vn] = vn_max_rate; 2422 } 2423 2424 2425 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) 2426 { 2427 if (CHIP_REV_IS_SLOW(bp)) 2428 return CMNG_FNS_NONE; 2429 if (IS_MF(bp)) 2430 return CMNG_FNS_MINMAX; 2431 2432 return CMNG_FNS_NONE; 2433 } 2434 2435 void bnx2x_read_mf_cfg(struct bnx2x *bp) 2436 { 2437 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); 2438 2439 if (BP_NOMCP(bp)) 2440 return; /* what should be the default bvalue in this case */ 2441 2442 /* For 2 port configuration the absolute function number formula 2443 * is: 2444 * abs_func = 2 * vn + BP_PORT + BP_PATH 2445 * 2446 * and there are 4 functions per port 2447 * 2448 * For 4 port configuration it is 2449 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH 2450 * 2451 * and there are 2 functions per port 2452 */ 2453 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2454 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); 2455 2456 if (func >= E1H_FUNC_MAX) 2457 break; 2458 2459 bp->mf_config[vn] = 2460 MF_CFG_RD(bp, func_mf_config[func].config); 2461 } 2462 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 2463 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); 2464 bp->flags |= MF_FUNC_DIS; 2465 } else { 2466 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); 2467 bp->flags &= ~MF_FUNC_DIS; 2468 } 2469 } 2470 2471 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) 2472 { 2473 struct cmng_init_input input; 2474 memset(&input, 0, sizeof(struct cmng_init_input)); 2475 2476 input.port_rate = bp->link_vars.line_speed; 2477 2478 if (cmng_type == CMNG_FNS_MINMAX) { 2479 int vn; 2480 2481 /* read mf conf from shmem */ 2482 if (read_cfg) 2483 bnx2x_read_mf_cfg(bp); 2484 2485 /* vn_weight_sum and enable fairness if not 0 */ 2486 bnx2x_calc_vn_min(bp, &input); 2487 2488 /* calculate and set min-max rate for each vn */ 2489 if (bp->port.pmf) 2490 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) 2491 bnx2x_calc_vn_max(bp, vn, &input); 2492 2493 /* always enable rate shaping and fairness */ 2494 input.flags.cmng_enables |= 2495 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 2496 2497 bnx2x_init_cmng(&input, &bp->cmng); 2498 return; 2499 } 2500 2501 /* rate shaping and fairness are disabled */ 2502 DP(NETIF_MSG_IFUP, 2503 "rate shaping and fairness are disabled\n"); 2504 } 2505 2506 static void storm_memset_cmng(struct bnx2x *bp, 2507 struct cmng_init *cmng, 2508 u8 port) 2509 { 2510 int vn; 2511 size_t size = sizeof(struct cmng_struct_per_port); 2512 2513 u32 addr = BAR_XSTRORM_INTMEM + 2514 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); 2515 2516 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); 2517 2518 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2519 int func = func_by_vn(bp, vn); 2520 2521 addr = BAR_XSTRORM_INTMEM + 2522 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); 2523 size = sizeof(struct rate_shaping_vars_per_vn); 2524 __storm_memset_struct(bp, addr, size, 2525 (u32 *)&cmng->vnic.vnic_max_rate[vn]); 2526 2527 addr = BAR_XSTRORM_INTMEM + 2528 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); 2529 size = sizeof(struct fairness_vars_per_vn); 2530 __storm_memset_struct(bp, addr, size, 2531 (u32 *)&cmng->vnic.vnic_min_rate[vn]); 2532 } 2533 } 2534 2535 /* This function is called upon link interrupt */ 2536 static void bnx2x_link_attn(struct bnx2x *bp) 2537 { 2538 /* Make sure that we are synced with the current statistics */ 2539 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2540 2541 bnx2x_link_update(&bp->link_params, &bp->link_vars); 2542 2543 if (bp->link_vars.link_up) { 2544 2545 /* dropless flow control */ 2546 if (!CHIP_IS_E1(bp) && bp->dropless_fc) { 2547 int port = BP_PORT(bp); 2548 u32 pause_enabled = 0; 2549 2550 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 2551 pause_enabled = 1; 2552 2553 REG_WR(bp, BAR_USTRORM_INTMEM + 2554 USTORM_ETH_PAUSE_ENABLED_OFFSET(port), 2555 pause_enabled); 2556 } 2557 2558 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { 2559 struct host_port_stats *pstats; 2560 2561 pstats = bnx2x_sp(bp, port_stats); 2562 /* reset old mac stats */ 2563 memset(&(pstats->mac_stx[0]), 0, 2564 sizeof(struct mac_stx)); 2565 } 2566 if (bp->state == BNX2X_STATE_OPEN) 2567 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2568 } 2569 2570 if (bp->link_vars.link_up && bp->link_vars.line_speed) { 2571 int cmng_fns = bnx2x_get_cmng_fns_mode(bp); 2572 2573 if (cmng_fns != CMNG_FNS_NONE) { 2574 bnx2x_cmng_fns_init(bp, false, cmng_fns); 2575 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 2576 } else 2577 /* rate shaping and fairness are disabled */ 2578 DP(NETIF_MSG_IFUP, 2579 "single function mode without fairness\n"); 2580 } 2581 2582 __bnx2x_link_report(bp); 2583 2584 if (IS_MF(bp)) 2585 bnx2x_link_sync_notify(bp); 2586 } 2587 2588 void bnx2x__link_status_update(struct bnx2x *bp) 2589 { 2590 if (bp->state != BNX2X_STATE_OPEN) 2591 return; 2592 2593 /* read updated dcb configuration */ 2594 if (IS_PF(bp)) { 2595 bnx2x_dcbx_pmf_update(bp); 2596 bnx2x_link_status_update(&bp->link_params, &bp->link_vars); 2597 if (bp->link_vars.link_up) 2598 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2599 else 2600 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2601 /* indicate link status */ 2602 bnx2x_link_report(bp); 2603 2604 } else { /* VF */ 2605 bp->port.supported[0] |= (SUPPORTED_10baseT_Half | 2606 SUPPORTED_10baseT_Full | 2607 SUPPORTED_100baseT_Half | 2608 SUPPORTED_100baseT_Full | 2609 SUPPORTED_1000baseT_Full | 2610 SUPPORTED_2500baseX_Full | 2611 SUPPORTED_10000baseT_Full | 2612 SUPPORTED_TP | 2613 SUPPORTED_FIBRE | 2614 SUPPORTED_Autoneg | 2615 SUPPORTED_Pause | 2616 SUPPORTED_Asym_Pause); 2617 bp->port.advertising[0] = bp->port.supported[0]; 2618 2619 bp->link_params.bp = bp; 2620 bp->link_params.port = BP_PORT(bp); 2621 bp->link_params.req_duplex[0] = DUPLEX_FULL; 2622 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; 2623 bp->link_params.req_line_speed[0] = SPEED_10000; 2624 bp->link_params.speed_cap_mask[0] = 0x7f0000; 2625 bp->link_params.switch_cfg = SWITCH_CFG_10G; 2626 bp->link_vars.mac_type = MAC_TYPE_BMAC; 2627 bp->link_vars.line_speed = SPEED_10000; 2628 bp->link_vars.link_status = 2629 (LINK_STATUS_LINK_UP | 2630 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 2631 bp->link_vars.link_up = 1; 2632 bp->link_vars.duplex = DUPLEX_FULL; 2633 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; 2634 __bnx2x_link_report(bp); 2635 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2636 } 2637 } 2638 2639 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, 2640 u16 vlan_val, u8 allowed_prio) 2641 { 2642 struct bnx2x_func_state_params func_params = {NULL}; 2643 struct bnx2x_func_afex_update_params *f_update_params = 2644 &func_params.params.afex_update; 2645 2646 func_params.f_obj = &bp->func_obj; 2647 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; 2648 2649 /* no need to wait for RAMROD completion, so don't 2650 * set RAMROD_COMP_WAIT flag 2651 */ 2652 2653 f_update_params->vif_id = vifid; 2654 f_update_params->afex_default_vlan = vlan_val; 2655 f_update_params->allowed_priorities = allowed_prio; 2656 2657 /* if ramrod can not be sent, response to MCP immediately */ 2658 if (bnx2x_func_state_change(bp, &func_params) < 0) 2659 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 2660 2661 return 0; 2662 } 2663 2664 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, 2665 u16 vif_index, u8 func_bit_map) 2666 { 2667 struct bnx2x_func_state_params func_params = {NULL}; 2668 struct bnx2x_func_afex_viflists_params *update_params = 2669 &func_params.params.afex_viflists; 2670 int rc; 2671 u32 drv_msg_code; 2672 2673 /* validate only LIST_SET and LIST_GET are received from switch */ 2674 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) 2675 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", 2676 cmd_type); 2677 2678 func_params.f_obj = &bp->func_obj; 2679 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; 2680 2681 /* set parameters according to cmd_type */ 2682 update_params->afex_vif_list_command = cmd_type; 2683 update_params->vif_list_index = vif_index; 2684 update_params->func_bit_map = 2685 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; 2686 update_params->func_to_clear = 0; 2687 drv_msg_code = 2688 (cmd_type == VIF_LIST_RULE_GET) ? 2689 DRV_MSG_CODE_AFEX_LISTGET_ACK : 2690 DRV_MSG_CODE_AFEX_LISTSET_ACK; 2691 2692 /* if ramrod can not be sent, respond to MCP immediately for 2693 * SET and GET requests (other are not triggered from MCP) 2694 */ 2695 rc = bnx2x_func_state_change(bp, &func_params); 2696 if (rc < 0) 2697 bnx2x_fw_command(bp, drv_msg_code, 0); 2698 2699 return 0; 2700 } 2701 2702 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) 2703 { 2704 struct afex_stats afex_stats; 2705 u32 func = BP_ABS_FUNC(bp); 2706 u32 mf_config; 2707 u16 vlan_val; 2708 u32 vlan_prio; 2709 u16 vif_id; 2710 u8 allowed_prio; 2711 u8 vlan_mode; 2712 u32 addr_to_write, vifid, addrs, stats_type, i; 2713 2714 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { 2715 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2716 DP(BNX2X_MSG_MCP, 2717 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); 2718 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); 2719 } 2720 2721 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { 2722 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2723 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); 2724 DP(BNX2X_MSG_MCP, 2725 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", 2726 vifid, addrs); 2727 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, 2728 addrs); 2729 } 2730 2731 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { 2732 addr_to_write = SHMEM2_RD(bp, 2733 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); 2734 stats_type = SHMEM2_RD(bp, 2735 afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2736 2737 DP(BNX2X_MSG_MCP, 2738 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", 2739 addr_to_write); 2740 2741 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); 2742 2743 /* write response to scratchpad, for MCP */ 2744 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) 2745 REG_WR(bp, addr_to_write + i*sizeof(u32), 2746 *(((u32 *)(&afex_stats))+i)); 2747 2748 /* send ack message to MCP */ 2749 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); 2750 } 2751 2752 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { 2753 mf_config = MF_CFG_RD(bp, func_mf_config[func].config); 2754 bp->mf_config[BP_VN(bp)] = mf_config; 2755 DP(BNX2X_MSG_MCP, 2756 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", 2757 mf_config); 2758 2759 /* if VIF_SET is "enabled" */ 2760 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { 2761 /* set rate limit directly to internal RAM */ 2762 struct cmng_init_input cmng_input; 2763 struct rate_shaping_vars_per_vn m_rs_vn; 2764 size_t size = sizeof(struct rate_shaping_vars_per_vn); 2765 u32 addr = BAR_XSTRORM_INTMEM + 2766 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); 2767 2768 bp->mf_config[BP_VN(bp)] = mf_config; 2769 2770 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); 2771 m_rs_vn.vn_counter.rate = 2772 cmng_input.vnic_max_rate[BP_VN(bp)]; 2773 m_rs_vn.vn_counter.quota = 2774 (m_rs_vn.vn_counter.rate * 2775 RS_PERIODIC_TIMEOUT_USEC) / 8; 2776 2777 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); 2778 2779 /* read relevant values from mf_cfg struct in shmem */ 2780 vif_id = 2781 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2782 FUNC_MF_CFG_E1HOV_TAG_MASK) >> 2783 FUNC_MF_CFG_E1HOV_TAG_SHIFT; 2784 vlan_val = 2785 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2786 FUNC_MF_CFG_AFEX_VLAN_MASK) >> 2787 FUNC_MF_CFG_AFEX_VLAN_SHIFT; 2788 vlan_prio = (mf_config & 2789 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 2790 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; 2791 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); 2792 vlan_mode = 2793 (MF_CFG_RD(bp, 2794 func_mf_config[func].afex_config) & 2795 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 2796 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; 2797 allowed_prio = 2798 (MF_CFG_RD(bp, 2799 func_mf_config[func].afex_config) & 2800 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 2801 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; 2802 2803 /* send ramrod to FW, return in case of failure */ 2804 if (bnx2x_afex_func_update(bp, vif_id, vlan_val, 2805 allowed_prio)) 2806 return; 2807 2808 bp->afex_def_vlan_tag = vlan_val; 2809 bp->afex_vlan_mode = vlan_mode; 2810 } else { 2811 /* notify link down because BP->flags is disabled */ 2812 bnx2x_link_report(bp); 2813 2814 /* send INVALID VIF ramrod to FW */ 2815 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); 2816 2817 /* Reset the default afex VLAN */ 2818 bp->afex_def_vlan_tag = -1; 2819 } 2820 } 2821 } 2822 2823 static void bnx2x_pmf_update(struct bnx2x *bp) 2824 { 2825 int port = BP_PORT(bp); 2826 u32 val; 2827 2828 bp->port.pmf = 1; 2829 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); 2830 2831 /* 2832 * We need the mb() to ensure the ordering between the writing to 2833 * bp->port.pmf here and reading it from the bnx2x_periodic_task(). 2834 */ 2835 smp_mb(); 2836 2837 /* queue a periodic task */ 2838 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2839 2840 bnx2x_dcbx_pmf_update(bp); 2841 2842 /* enable nig attention */ 2843 val = (0xff0f | (1 << (BP_VN(bp) + 4))); 2844 if (bp->common.int_block == INT_BLOCK_HC) { 2845 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 2846 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 2847 } else if (!CHIP_IS_E1x(bp)) { 2848 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 2849 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 2850 } 2851 2852 bnx2x_stats_handle(bp, STATS_EVENT_PMF); 2853 } 2854 2855 /* end of Link */ 2856 2857 /* slow path */ 2858 2859 /* 2860 * General service functions 2861 */ 2862 2863 /* send the MCP a request, block until there is a reply */ 2864 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) 2865 { 2866 int mb_idx = BP_FW_MB_IDX(bp); 2867 u32 seq; 2868 u32 rc = 0; 2869 u32 cnt = 1; 2870 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; 2871 2872 mutex_lock(&bp->fw_mb_mutex); 2873 seq = ++bp->fw_seq; 2874 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); 2875 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); 2876 2877 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", 2878 (command | seq), param); 2879 2880 do { 2881 /* let the FW do it's magic ... */ 2882 msleep(delay); 2883 2884 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); 2885 2886 /* Give the FW up to 5 second (500*10ms) */ 2887 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2888 2889 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", 2890 cnt*delay, rc, seq); 2891 2892 /* is this a reply to our command? */ 2893 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) 2894 rc &= FW_MSG_CODE_MASK; 2895 else { 2896 /* FW BUG! */ 2897 BNX2X_ERR("FW failed to respond!\n"); 2898 bnx2x_fw_dump(bp); 2899 rc = 0; 2900 } 2901 mutex_unlock(&bp->fw_mb_mutex); 2902 2903 return rc; 2904 } 2905 2906 2907 static void storm_memset_func_cfg(struct bnx2x *bp, 2908 struct tstorm_eth_function_common_config *tcfg, 2909 u16 abs_fid) 2910 { 2911 size_t size = sizeof(struct tstorm_eth_function_common_config); 2912 2913 u32 addr = BAR_TSTRORM_INTMEM + 2914 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); 2915 2916 __storm_memset_struct(bp, addr, size, (u32 *)tcfg); 2917 } 2918 2919 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) 2920 { 2921 if (CHIP_IS_E1x(bp)) { 2922 struct tstorm_eth_function_common_config tcfg = {0}; 2923 2924 storm_memset_func_cfg(bp, &tcfg, p->func_id); 2925 } 2926 2927 /* Enable the function in the FW */ 2928 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); 2929 storm_memset_func_en(bp, p->func_id, 1); 2930 2931 /* spq */ 2932 if (p->func_flgs & FUNC_FLG_SPQ) { 2933 storm_memset_spq_addr(bp, p->spq_map, p->func_id); 2934 REG_WR(bp, XSEM_REG_FAST_MEMORY + 2935 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); 2936 } 2937 } 2938 2939 /** 2940 * bnx2x_get_tx_only_flags - Return common flags 2941 * 2942 * @bp device handle 2943 * @fp queue handle 2944 * @zero_stats TRUE if statistics zeroing is needed 2945 * 2946 * Return the flags that are common for the Tx-only and not normal connections. 2947 */ 2948 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, 2949 struct bnx2x_fastpath *fp, 2950 bool zero_stats) 2951 { 2952 unsigned long flags = 0; 2953 2954 /* PF driver will always initialize the Queue to an ACTIVE state */ 2955 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); 2956 2957 /* tx only connections collect statistics (on the same index as the 2958 * parent connection). The statistics are zeroed when the parent 2959 * connection is initialized. 2960 */ 2961 2962 __set_bit(BNX2X_Q_FLG_STATS, &flags); 2963 if (zero_stats) 2964 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); 2965 2966 2967 #ifdef BNX2X_STOP_ON_ERROR 2968 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); 2969 #endif 2970 2971 return flags; 2972 } 2973 2974 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, 2975 struct bnx2x_fastpath *fp, 2976 bool leading) 2977 { 2978 unsigned long flags = 0; 2979 2980 /* calculate other queue flags */ 2981 if (IS_MF_SD(bp)) 2982 __set_bit(BNX2X_Q_FLG_OV, &flags); 2983 2984 if (IS_FCOE_FP(fp)) { 2985 __set_bit(BNX2X_Q_FLG_FCOE, &flags); 2986 /* For FCoE - force usage of default priority (for afex) */ 2987 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); 2988 } 2989 2990 if (!fp->disable_tpa) { 2991 __set_bit(BNX2X_Q_FLG_TPA, &flags); 2992 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); 2993 if (fp->mode == TPA_MODE_GRO) 2994 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); 2995 } 2996 2997 if (leading) { 2998 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); 2999 __set_bit(BNX2X_Q_FLG_MCAST, &flags); 3000 } 3001 3002 /* Always set HW VLAN stripping */ 3003 __set_bit(BNX2X_Q_FLG_VLAN, &flags); 3004 3005 /* configure silent vlan removal */ 3006 if (IS_MF_AFEX(bp)) 3007 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); 3008 3009 3010 return flags | bnx2x_get_common_flags(bp, fp, true); 3011 } 3012 3013 static void bnx2x_pf_q_prep_general(struct bnx2x *bp, 3014 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, 3015 u8 cos) 3016 { 3017 gen_init->stat_id = bnx2x_stats_id(fp); 3018 gen_init->spcl_id = fp->cl_id; 3019 3020 /* Always use mini-jumbo MTU for FCoE L2 ring */ 3021 if (IS_FCOE_FP(fp)) 3022 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 3023 else 3024 gen_init->mtu = bp->dev->mtu; 3025 3026 gen_init->cos = cos; 3027 } 3028 3029 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, 3030 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, 3031 struct bnx2x_rxq_setup_params *rxq_init) 3032 { 3033 u8 max_sge = 0; 3034 u16 sge_sz = 0; 3035 u16 tpa_agg_size = 0; 3036 3037 if (!fp->disable_tpa) { 3038 pause->sge_th_lo = SGE_TH_LO(bp); 3039 pause->sge_th_hi = SGE_TH_HI(bp); 3040 3041 /* validate SGE ring has enough to cross high threshold */ 3042 WARN_ON(bp->dropless_fc && 3043 pause->sge_th_hi + FW_PREFETCH_CNT > 3044 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); 3045 3046 tpa_agg_size = TPA_AGG_SIZE; 3047 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> 3048 SGE_PAGE_SHIFT; 3049 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 3050 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; 3051 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); 3052 } 3053 3054 /* pause - not for e1 */ 3055 if (!CHIP_IS_E1(bp)) { 3056 pause->bd_th_lo = BD_TH_LO(bp); 3057 pause->bd_th_hi = BD_TH_HI(bp); 3058 3059 pause->rcq_th_lo = RCQ_TH_LO(bp); 3060 pause->rcq_th_hi = RCQ_TH_HI(bp); 3061 /* 3062 * validate that rings have enough entries to cross 3063 * high thresholds 3064 */ 3065 WARN_ON(bp->dropless_fc && 3066 pause->bd_th_hi + FW_PREFETCH_CNT > 3067 bp->rx_ring_size); 3068 WARN_ON(bp->dropless_fc && 3069 pause->rcq_th_hi + FW_PREFETCH_CNT > 3070 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); 3071 3072 pause->pri_map = 1; 3073 } 3074 3075 /* rxq setup */ 3076 rxq_init->dscr_map = fp->rx_desc_mapping; 3077 rxq_init->sge_map = fp->rx_sge_mapping; 3078 rxq_init->rcq_map = fp->rx_comp_mapping; 3079 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; 3080 3081 /* This should be a maximum number of data bytes that may be 3082 * placed on the BD (not including paddings). 3083 */ 3084 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - 3085 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; 3086 3087 rxq_init->cl_qzone_id = fp->cl_qzone_id; 3088 rxq_init->tpa_agg_sz = tpa_agg_size; 3089 rxq_init->sge_buf_sz = sge_sz; 3090 rxq_init->max_sges_pkt = max_sge; 3091 rxq_init->rss_engine_id = BP_FUNC(bp); 3092 rxq_init->mcast_engine_id = BP_FUNC(bp); 3093 3094 /* Maximum number or simultaneous TPA aggregation for this Queue. 3095 * 3096 * For PF Clients it should be the maximum available number. 3097 * VF driver(s) may want to define it to a smaller value. 3098 */ 3099 rxq_init->max_tpa_queues = MAX_AGG_QS(bp); 3100 3101 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; 3102 rxq_init->fw_sb_id = fp->fw_sb_id; 3103 3104 if (IS_FCOE_FP(fp)) 3105 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; 3106 else 3107 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 3108 /* configure silent vlan removal 3109 * if multi function mode is afex, then mask default vlan 3110 */ 3111 if (IS_MF_AFEX(bp)) { 3112 rxq_init->silent_removal_value = bp->afex_def_vlan_tag; 3113 rxq_init->silent_removal_mask = VLAN_VID_MASK; 3114 } 3115 } 3116 3117 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, 3118 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, 3119 u8 cos) 3120 { 3121 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; 3122 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 3123 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 3124 txq_init->fw_sb_id = fp->fw_sb_id; 3125 3126 /* 3127 * set the tss leading client id for TX classfication == 3128 * leading RSS client id 3129 */ 3130 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); 3131 3132 if (IS_FCOE_FP(fp)) { 3133 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; 3134 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; 3135 } 3136 } 3137 3138 static void bnx2x_pf_init(struct bnx2x *bp) 3139 { 3140 struct bnx2x_func_init_params func_init = {0}; 3141 struct event_ring_data eq_data = { {0} }; 3142 u16 flags; 3143 3144 if (!CHIP_IS_E1x(bp)) { 3145 /* reset IGU PF statistics: MSIX + ATTN */ 3146 /* PF */ 3147 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3148 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3149 (CHIP_MODE_IS_4_PORT(bp) ? 3150 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3151 /* ATTN */ 3152 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3153 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3154 BNX2X_IGU_STAS_MSG_PF_CNT*4 + 3155 (CHIP_MODE_IS_4_PORT(bp) ? 3156 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3157 } 3158 3159 /* function setup flags */ 3160 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 3161 3162 /* This flag is relevant for E1x only. 3163 * E2 doesn't have a TPA configuration in a function level. 3164 */ 3165 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0; 3166 3167 func_init.func_flgs = flags; 3168 func_init.pf_id = BP_FUNC(bp); 3169 func_init.func_id = BP_FUNC(bp); 3170 func_init.spq_map = bp->spq_mapping; 3171 func_init.spq_prod = bp->spq_prod_idx; 3172 3173 bnx2x_func_init(bp, &func_init); 3174 3175 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); 3176 3177 /* 3178 * Congestion management values depend on the link rate 3179 * There is no active link so initial link rate is set to 10 Gbps. 3180 * When the link comes up The congestion management values are 3181 * re-calculated according to the actual link rate. 3182 */ 3183 bp->link_vars.line_speed = SPEED_10000; 3184 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); 3185 3186 /* Only the PMF sets the HW */ 3187 if (bp->port.pmf) 3188 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3189 3190 /* init Event Queue - PCI bus guarantees correct endianity*/ 3191 eq_data.base_addr.hi = U64_HI(bp->eq_mapping); 3192 eq_data.base_addr.lo = U64_LO(bp->eq_mapping); 3193 eq_data.producer = bp->eq_prod; 3194 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 3195 eq_data.sb_id = DEF_SB_ID; 3196 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); 3197 } 3198 3199 3200 static void bnx2x_e1h_disable(struct bnx2x *bp) 3201 { 3202 int port = BP_PORT(bp); 3203 3204 bnx2x_tx_disable(bp); 3205 3206 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 3207 } 3208 3209 static void bnx2x_e1h_enable(struct bnx2x *bp) 3210 { 3211 int port = BP_PORT(bp); 3212 3213 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1); 3214 3215 /* Tx queue should be only reenabled */ 3216 netif_tx_wake_all_queues(bp->dev); 3217 3218 /* 3219 * Should not call netif_carrier_on since it will be called if the link 3220 * is up when checking for link state 3221 */ 3222 } 3223 3224 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 3225 3226 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) 3227 { 3228 struct eth_stats_info *ether_stat = 3229 &bp->slowpath->drv_info_to_mcp.ether_stat; 3230 3231 strlcpy(ether_stat->version, DRV_MODULE_VERSION, 3232 ETH_STAT_INFO_VERSION_LEN); 3233 3234 bp->sp_objs[0].mac_obj.get_n_elements(bp, &bp->sp_objs[0].mac_obj, 3235 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 3236 ether_stat->mac_local); 3237 3238 ether_stat->mtu_size = bp->dev->mtu; 3239 3240 if (bp->dev->features & NETIF_F_RXCSUM) 3241 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 3242 if (bp->dev->features & NETIF_F_TSO) 3243 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 3244 ether_stat->feature_flags |= bp->common.boot_mode; 3245 3246 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; 3247 3248 ether_stat->txq_size = bp->tx_ring_size; 3249 ether_stat->rxq_size = bp->rx_ring_size; 3250 } 3251 3252 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) 3253 { 3254 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3255 struct fcoe_stats_info *fcoe_stat = 3256 &bp->slowpath->drv_info_to_mcp.fcoe_stat; 3257 3258 if (!CNIC_LOADED(bp)) 3259 return; 3260 3261 memcpy(fcoe_stat->mac_local + MAC_LEADING_ZERO_CNT, 3262 bp->fip_mac, ETH_ALEN); 3263 3264 fcoe_stat->qos_priority = 3265 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; 3266 3267 /* insert FCoE stats from ramrod response */ 3268 if (!NO_FCOE(bp)) { 3269 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = 3270 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3271 tstorm_queue_statistics; 3272 3273 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = 3274 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3275 xstorm_queue_statistics; 3276 3277 struct fcoe_statistics_params *fw_fcoe_stat = 3278 &bp->fw_stats_data->fcoe; 3279 3280 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, 3281 fcoe_stat->rx_bytes_lo, 3282 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); 3283 3284 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3285 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, 3286 fcoe_stat->rx_bytes_lo, 3287 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); 3288 3289 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3290 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, 3291 fcoe_stat->rx_bytes_lo, 3292 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); 3293 3294 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3295 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, 3296 fcoe_stat->rx_bytes_lo, 3297 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); 3298 3299 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3300 fcoe_stat->rx_frames_lo, 3301 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); 3302 3303 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3304 fcoe_stat->rx_frames_lo, 3305 fcoe_q_tstorm_stats->rcv_ucast_pkts); 3306 3307 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3308 fcoe_stat->rx_frames_lo, 3309 fcoe_q_tstorm_stats->rcv_bcast_pkts); 3310 3311 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3312 fcoe_stat->rx_frames_lo, 3313 fcoe_q_tstorm_stats->rcv_mcast_pkts); 3314 3315 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, 3316 fcoe_stat->tx_bytes_lo, 3317 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); 3318 3319 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3320 fcoe_q_xstorm_stats->ucast_bytes_sent.hi, 3321 fcoe_stat->tx_bytes_lo, 3322 fcoe_q_xstorm_stats->ucast_bytes_sent.lo); 3323 3324 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3325 fcoe_q_xstorm_stats->bcast_bytes_sent.hi, 3326 fcoe_stat->tx_bytes_lo, 3327 fcoe_q_xstorm_stats->bcast_bytes_sent.lo); 3328 3329 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3330 fcoe_q_xstorm_stats->mcast_bytes_sent.hi, 3331 fcoe_stat->tx_bytes_lo, 3332 fcoe_q_xstorm_stats->mcast_bytes_sent.lo); 3333 3334 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3335 fcoe_stat->tx_frames_lo, 3336 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); 3337 3338 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3339 fcoe_stat->tx_frames_lo, 3340 fcoe_q_xstorm_stats->ucast_pkts_sent); 3341 3342 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3343 fcoe_stat->tx_frames_lo, 3344 fcoe_q_xstorm_stats->bcast_pkts_sent); 3345 3346 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3347 fcoe_stat->tx_frames_lo, 3348 fcoe_q_xstorm_stats->mcast_pkts_sent); 3349 } 3350 3351 /* ask L5 driver to add data to the struct */ 3352 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); 3353 } 3354 3355 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) 3356 { 3357 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3358 struct iscsi_stats_info *iscsi_stat = 3359 &bp->slowpath->drv_info_to_mcp.iscsi_stat; 3360 3361 if (!CNIC_LOADED(bp)) 3362 return; 3363 3364 memcpy(iscsi_stat->mac_local + MAC_LEADING_ZERO_CNT, 3365 bp->cnic_eth_dev.iscsi_mac, ETH_ALEN); 3366 3367 iscsi_stat->qos_priority = 3368 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; 3369 3370 /* ask L5 driver to add data to the struct */ 3371 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); 3372 } 3373 3374 /* called due to MCP event (on pmf): 3375 * reread new bandwidth configuration 3376 * configure FW 3377 * notify others function about the change 3378 */ 3379 static void bnx2x_config_mf_bw(struct bnx2x *bp) 3380 { 3381 if (bp->link_vars.link_up) { 3382 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); 3383 bnx2x_link_sync_notify(bp); 3384 } 3385 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3386 } 3387 3388 static void bnx2x_set_mf_bw(struct bnx2x *bp) 3389 { 3390 bnx2x_config_mf_bw(bp); 3391 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 3392 } 3393 3394 static void bnx2x_handle_eee_event(struct bnx2x *bp) 3395 { 3396 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); 3397 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 3398 } 3399 3400 static void bnx2x_handle_drv_info_req(struct bnx2x *bp) 3401 { 3402 enum drv_info_opcode op_code; 3403 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); 3404 3405 /* if drv_info version supported by MFW doesn't match - send NACK */ 3406 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 3407 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3408 return; 3409 } 3410 3411 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 3412 DRV_INFO_CONTROL_OP_CODE_SHIFT; 3413 3414 memset(&bp->slowpath->drv_info_to_mcp, 0, 3415 sizeof(union drv_info_to_mcp)); 3416 3417 switch (op_code) { 3418 case ETH_STATS_OPCODE: 3419 bnx2x_drv_info_ether_stat(bp); 3420 break; 3421 case FCOE_STATS_OPCODE: 3422 bnx2x_drv_info_fcoe_stat(bp); 3423 break; 3424 case ISCSI_STATS_OPCODE: 3425 bnx2x_drv_info_iscsi_stat(bp); 3426 break; 3427 default: 3428 /* if op code isn't supported - send NACK */ 3429 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3430 return; 3431 } 3432 3433 /* if we got drv_info attn from MFW then these fields are defined in 3434 * shmem2 for sure 3435 */ 3436 SHMEM2_WR(bp, drv_info_host_addr_lo, 3437 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3438 SHMEM2_WR(bp, drv_info_host_addr_hi, 3439 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3440 3441 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); 3442 } 3443 3444 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event) 3445 { 3446 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event); 3447 3448 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 3449 3450 /* 3451 * This is the only place besides the function initialization 3452 * where the bp->flags can change so it is done without any 3453 * locks 3454 */ 3455 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 3456 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); 3457 bp->flags |= MF_FUNC_DIS; 3458 3459 bnx2x_e1h_disable(bp); 3460 } else { 3461 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); 3462 bp->flags &= ~MF_FUNC_DIS; 3463 3464 bnx2x_e1h_enable(bp); 3465 } 3466 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 3467 } 3468 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 3469 bnx2x_config_mf_bw(bp); 3470 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 3471 } 3472 3473 /* Report results to MCP */ 3474 if (dcc_event) 3475 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0); 3476 else 3477 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0); 3478 } 3479 3480 /* must be called under the spq lock */ 3481 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) 3482 { 3483 struct eth_spe *next_spe = bp->spq_prod_bd; 3484 3485 if (bp->spq_prod_bd == bp->spq_last_bd) { 3486 bp->spq_prod_bd = bp->spq; 3487 bp->spq_prod_idx = 0; 3488 DP(BNX2X_MSG_SP, "end of spq\n"); 3489 } else { 3490 bp->spq_prod_bd++; 3491 bp->spq_prod_idx++; 3492 } 3493 return next_spe; 3494 } 3495 3496 /* must be called under the spq lock */ 3497 static void bnx2x_sp_prod_update(struct bnx2x *bp) 3498 { 3499 int func = BP_FUNC(bp); 3500 3501 /* 3502 * Make sure that BD data is updated before writing the producer: 3503 * BD data is written to the memory, the producer is read from the 3504 * memory, thus we need a full memory barrier to ensure the ordering. 3505 */ 3506 mb(); 3507 3508 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), 3509 bp->spq_prod_idx); 3510 mmiowb(); 3511 } 3512 3513 /** 3514 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ 3515 * 3516 * @cmd: command to check 3517 * @cmd_type: command type 3518 */ 3519 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) 3520 { 3521 if ((cmd_type == NONE_CONNECTION_TYPE) || 3522 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 3523 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 3524 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 3525 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 3526 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 3527 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) 3528 return true; 3529 else 3530 return false; 3531 3532 } 3533 3534 3535 /** 3536 * bnx2x_sp_post - place a single command on an SP ring 3537 * 3538 * @bp: driver handle 3539 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 3540 * @cid: SW CID the command is related to 3541 * @data_hi: command private data address (high 32 bits) 3542 * @data_lo: command private data address (low 32 bits) 3543 * @cmd_type: command type (e.g. NONE, ETH) 3544 * 3545 * SP data is handled as if it's always an address pair, thus data fields are 3546 * not swapped to little endian in upper functions. Instead this function swaps 3547 * data as if it's two u32 fields. 3548 */ 3549 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 3550 u32 data_hi, u32 data_lo, int cmd_type) 3551 { 3552 struct eth_spe *spe; 3553 u16 type; 3554 bool common = bnx2x_is_contextless_ramrod(command, cmd_type); 3555 3556 #ifdef BNX2X_STOP_ON_ERROR 3557 if (unlikely(bp->panic)) { 3558 BNX2X_ERR("Can't post SP when there is panic\n"); 3559 return -EIO; 3560 } 3561 #endif 3562 3563 spin_lock_bh(&bp->spq_lock); 3564 3565 if (common) { 3566 if (!atomic_read(&bp->eq_spq_left)) { 3567 BNX2X_ERR("BUG! EQ ring full!\n"); 3568 spin_unlock_bh(&bp->spq_lock); 3569 bnx2x_panic(); 3570 return -EBUSY; 3571 } 3572 } else if (!atomic_read(&bp->cq_spq_left)) { 3573 BNX2X_ERR("BUG! SPQ ring full!\n"); 3574 spin_unlock_bh(&bp->spq_lock); 3575 bnx2x_panic(); 3576 return -EBUSY; 3577 } 3578 3579 spe = bnx2x_sp_get_next(bp); 3580 3581 /* CID needs port number to be encoded int it */ 3582 spe->hdr.conn_and_cmd_data = 3583 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | 3584 HW_CID(bp, cid)); 3585 3586 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; 3587 3588 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & 3589 SPE_HDR_FUNCTION_ID); 3590 3591 spe->hdr.type = cpu_to_le16(type); 3592 3593 spe->data.update_data_addr.hi = cpu_to_le32(data_hi); 3594 spe->data.update_data_addr.lo = cpu_to_le32(data_lo); 3595 3596 /* 3597 * It's ok if the actual decrement is issued towards the memory 3598 * somewhere between the spin_lock and spin_unlock. Thus no 3599 * more explict memory barrier is needed. 3600 */ 3601 if (common) 3602 atomic_dec(&bp->eq_spq_left); 3603 else 3604 atomic_dec(&bp->cq_spq_left); 3605 3606 3607 DP(BNX2X_MSG_SP, 3608 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", 3609 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), 3610 (u32)(U64_LO(bp->spq_mapping) + 3611 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, 3612 HW_CID(bp, cid), data_hi, data_lo, type, 3613 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); 3614 3615 bnx2x_sp_prod_update(bp); 3616 spin_unlock_bh(&bp->spq_lock); 3617 return 0; 3618 } 3619 3620 /* acquire split MCP access lock register */ 3621 static int bnx2x_acquire_alr(struct bnx2x *bp) 3622 { 3623 u32 j, val; 3624 int rc = 0; 3625 3626 might_sleep(); 3627 for (j = 0; j < 1000; j++) { 3628 val = (1UL << 31); 3629 REG_WR(bp, GRCBASE_MCP + 0x9c, val); 3630 val = REG_RD(bp, GRCBASE_MCP + 0x9c); 3631 if (val & (1L << 31)) 3632 break; 3633 3634 msleep(5); 3635 } 3636 if (!(val & (1L << 31))) { 3637 BNX2X_ERR("Cannot acquire MCP access lock register\n"); 3638 rc = -EBUSY; 3639 } 3640 3641 return rc; 3642 } 3643 3644 /* release split MCP access lock register */ 3645 static void bnx2x_release_alr(struct bnx2x *bp) 3646 { 3647 REG_WR(bp, GRCBASE_MCP + 0x9c, 0); 3648 } 3649 3650 #define BNX2X_DEF_SB_ATT_IDX 0x0001 3651 #define BNX2X_DEF_SB_IDX 0x0002 3652 3653 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) 3654 { 3655 struct host_sp_status_block *def_sb = bp->def_status_blk; 3656 u16 rc = 0; 3657 3658 barrier(); /* status block is written to by the chip */ 3659 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 3660 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; 3661 rc |= BNX2X_DEF_SB_ATT_IDX; 3662 } 3663 3664 if (bp->def_idx != def_sb->sp_sb.running_index) { 3665 bp->def_idx = def_sb->sp_sb.running_index; 3666 rc |= BNX2X_DEF_SB_IDX; 3667 } 3668 3669 /* Do not reorder: indecies reading should complete before handling */ 3670 barrier(); 3671 return rc; 3672 } 3673 3674 /* 3675 * slow path service functions 3676 */ 3677 3678 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) 3679 { 3680 int port = BP_PORT(bp); 3681 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 3682 MISC_REG_AEU_MASK_ATTN_FUNC_0; 3683 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 3684 NIG_REG_MASK_INTERRUPT_PORT0; 3685 u32 aeu_mask; 3686 u32 nig_mask = 0; 3687 u32 reg_addr; 3688 3689 if (bp->attn_state & asserted) 3690 BNX2X_ERR("IGU ERROR\n"); 3691 3692 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 3693 aeu_mask = REG_RD(bp, aeu_addr); 3694 3695 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", 3696 aeu_mask, asserted); 3697 aeu_mask &= ~(asserted & 0x3ff); 3698 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 3699 3700 REG_WR(bp, aeu_addr, aeu_mask); 3701 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 3702 3703 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 3704 bp->attn_state |= asserted; 3705 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 3706 3707 if (asserted & ATTN_HARD_WIRED_MASK) { 3708 if (asserted & ATTN_NIG_FOR_FUNC) { 3709 3710 bnx2x_acquire_phy_lock(bp); 3711 3712 /* save nig interrupt mask */ 3713 nig_mask = REG_RD(bp, nig_int_mask_addr); 3714 3715 /* If nig_mask is not set, no need to call the update 3716 * function. 3717 */ 3718 if (nig_mask) { 3719 REG_WR(bp, nig_int_mask_addr, 0); 3720 3721 bnx2x_link_attn(bp); 3722 } 3723 3724 /* handle unicore attn? */ 3725 } 3726 if (asserted & ATTN_SW_TIMER_4_FUNC) 3727 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); 3728 3729 if (asserted & GPIO_2_FUNC) 3730 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); 3731 3732 if (asserted & GPIO_3_FUNC) 3733 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); 3734 3735 if (asserted & GPIO_4_FUNC) 3736 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); 3737 3738 if (port == 0) { 3739 if (asserted & ATTN_GENERAL_ATTN_1) { 3740 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); 3741 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 3742 } 3743 if (asserted & ATTN_GENERAL_ATTN_2) { 3744 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); 3745 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 3746 } 3747 if (asserted & ATTN_GENERAL_ATTN_3) { 3748 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); 3749 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 3750 } 3751 } else { 3752 if (asserted & ATTN_GENERAL_ATTN_4) { 3753 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); 3754 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 3755 } 3756 if (asserted & ATTN_GENERAL_ATTN_5) { 3757 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); 3758 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 3759 } 3760 if (asserted & ATTN_GENERAL_ATTN_6) { 3761 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); 3762 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 3763 } 3764 } 3765 3766 } /* if hardwired */ 3767 3768 if (bp->common.int_block == INT_BLOCK_HC) 3769 reg_addr = (HC_REG_COMMAND_REG + port*32 + 3770 COMMAND_REG_ATTN_BITS_SET); 3771 else 3772 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 3773 3774 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, 3775 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 3776 REG_WR(bp, reg_addr, asserted); 3777 3778 /* now set back the mask */ 3779 if (asserted & ATTN_NIG_FOR_FUNC) { 3780 /* Verify that IGU ack through BAR was written before restoring 3781 * NIG mask. This loop should exit after 2-3 iterations max. 3782 */ 3783 if (bp->common.int_block != INT_BLOCK_HC) { 3784 u32 cnt = 0, igu_acked; 3785 do { 3786 igu_acked = REG_RD(bp, 3787 IGU_REG_ATTENTION_ACK_BITS); 3788 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 3789 (++cnt < MAX_IGU_ATTN_ACK_TO)); 3790 if (!igu_acked) 3791 DP(NETIF_MSG_HW, 3792 "Failed to verify IGU ack on time\n"); 3793 barrier(); 3794 } 3795 REG_WR(bp, nig_int_mask_addr, nig_mask); 3796 bnx2x_release_phy_lock(bp); 3797 } 3798 } 3799 3800 static void bnx2x_fan_failure(struct bnx2x *bp) 3801 { 3802 int port = BP_PORT(bp); 3803 u32 ext_phy_config; 3804 /* mark the failure */ 3805 ext_phy_config = 3806 SHMEM_RD(bp, 3807 dev_info.port_hw_config[port].external_phy_config); 3808 3809 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 3810 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 3811 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, 3812 ext_phy_config); 3813 3814 /* log the failure */ 3815 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" 3816 "Please contact OEM Support for assistance\n"); 3817 3818 /* 3819 * Schedule device reset (unload) 3820 * This is due to some boards consuming sufficient power when driver is 3821 * up to overheat if fan fails. 3822 */ 3823 smp_mb__before_clear_bit(); 3824 set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state); 3825 smp_mb__after_clear_bit(); 3826 schedule_delayed_work(&bp->sp_rtnl_task, 0); 3827 3828 } 3829 3830 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) 3831 { 3832 int port = BP_PORT(bp); 3833 int reg_offset; 3834 u32 val; 3835 3836 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 3837 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 3838 3839 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 3840 3841 val = REG_RD(bp, reg_offset); 3842 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 3843 REG_WR(bp, reg_offset, val); 3844 3845 BNX2X_ERR("SPIO5 hw attention\n"); 3846 3847 /* Fan failure attention */ 3848 bnx2x_hw_reset_phy(&bp->link_params); 3849 bnx2x_fan_failure(bp); 3850 } 3851 3852 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { 3853 bnx2x_acquire_phy_lock(bp); 3854 bnx2x_handle_module_detect_int(&bp->link_params); 3855 bnx2x_release_phy_lock(bp); 3856 } 3857 3858 if (attn & HW_INTERRUT_ASSERT_SET_0) { 3859 3860 val = REG_RD(bp, reg_offset); 3861 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 3862 REG_WR(bp, reg_offset, val); 3863 3864 BNX2X_ERR("FATAL HW block attention set0 0x%x\n", 3865 (u32)(attn & HW_INTERRUT_ASSERT_SET_0)); 3866 bnx2x_panic(); 3867 } 3868 } 3869 3870 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) 3871 { 3872 u32 val; 3873 3874 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 3875 3876 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); 3877 BNX2X_ERR("DB hw attention 0x%x\n", val); 3878 /* DORQ discard attention */ 3879 if (val & 0x2) 3880 BNX2X_ERR("FATAL error from DORQ\n"); 3881 } 3882 3883 if (attn & HW_INTERRUT_ASSERT_SET_1) { 3884 3885 int port = BP_PORT(bp); 3886 int reg_offset; 3887 3888 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 3889 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 3890 3891 val = REG_RD(bp, reg_offset); 3892 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 3893 REG_WR(bp, reg_offset, val); 3894 3895 BNX2X_ERR("FATAL HW block attention set1 0x%x\n", 3896 (u32)(attn & HW_INTERRUT_ASSERT_SET_1)); 3897 bnx2x_panic(); 3898 } 3899 } 3900 3901 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) 3902 { 3903 u32 val; 3904 3905 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 3906 3907 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); 3908 BNX2X_ERR("CFC hw attention 0x%x\n", val); 3909 /* CFC error attention */ 3910 if (val & 0x2) 3911 BNX2X_ERR("FATAL error from CFC\n"); 3912 } 3913 3914 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 3915 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); 3916 BNX2X_ERR("PXP hw attention-0 0x%x\n", val); 3917 /* RQ_USDMDP_FIFO_OVERFLOW */ 3918 if (val & 0x18000) 3919 BNX2X_ERR("FATAL error from PXP\n"); 3920 3921 if (!CHIP_IS_E1x(bp)) { 3922 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); 3923 BNX2X_ERR("PXP hw attention-1 0x%x\n", val); 3924 } 3925 } 3926 3927 if (attn & HW_INTERRUT_ASSERT_SET_2) { 3928 3929 int port = BP_PORT(bp); 3930 int reg_offset; 3931 3932 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 3933 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 3934 3935 val = REG_RD(bp, reg_offset); 3936 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 3937 REG_WR(bp, reg_offset, val); 3938 3939 BNX2X_ERR("FATAL HW block attention set2 0x%x\n", 3940 (u32)(attn & HW_INTERRUT_ASSERT_SET_2)); 3941 bnx2x_panic(); 3942 } 3943 } 3944 3945 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) 3946 { 3947 u32 val; 3948 3949 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 3950 3951 if (attn & BNX2X_PMF_LINK_ASSERT) { 3952 int func = BP_FUNC(bp); 3953 3954 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 3955 bnx2x_read_mf_cfg(bp); 3956 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, 3957 func_mf_config[BP_ABS_FUNC(bp)].config); 3958 val = SHMEM_RD(bp, 3959 func_mb[BP_FW_MB_IDX(bp)].drv_status); 3960 if (val & DRV_STATUS_DCC_EVENT_MASK) 3961 bnx2x_dcc_event(bp, 3962 (val & DRV_STATUS_DCC_EVENT_MASK)); 3963 3964 if (val & DRV_STATUS_SET_MF_BW) 3965 bnx2x_set_mf_bw(bp); 3966 3967 if (val & DRV_STATUS_DRV_INFO_REQ) 3968 bnx2x_handle_drv_info_req(bp); 3969 3970 if (val & DRV_STATUS_VF_DISABLED) 3971 bnx2x_vf_handle_flr_event(bp); 3972 3973 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) 3974 bnx2x_pmf_update(bp); 3975 3976 if (bp->port.pmf && 3977 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 3978 bp->dcbx_enabled > 0) 3979 /* start dcbx state machine */ 3980 bnx2x_dcbx_set_params(bp, 3981 BNX2X_DCBX_STATE_NEG_RECEIVED); 3982 if (val & DRV_STATUS_AFEX_EVENT_MASK) 3983 bnx2x_handle_afex_cmd(bp, 3984 val & DRV_STATUS_AFEX_EVENT_MASK); 3985 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 3986 bnx2x_handle_eee_event(bp); 3987 if (bp->link_vars.periodic_flags & 3988 PERIODIC_FLAGS_LINK_EVENT) { 3989 /* sync with link */ 3990 bnx2x_acquire_phy_lock(bp); 3991 bp->link_vars.periodic_flags &= 3992 ~PERIODIC_FLAGS_LINK_EVENT; 3993 bnx2x_release_phy_lock(bp); 3994 if (IS_MF(bp)) 3995 bnx2x_link_sync_notify(bp); 3996 bnx2x_link_report(bp); 3997 } 3998 /* Always call it here: bnx2x_link_report() will 3999 * prevent the link indication duplication. 4000 */ 4001 bnx2x__link_status_update(bp); 4002 } else if (attn & BNX2X_MC_ASSERT_BITS) { 4003 4004 BNX2X_ERR("MC assert!\n"); 4005 bnx2x_mc_assert(bp); 4006 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); 4007 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); 4008 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); 4009 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); 4010 bnx2x_panic(); 4011 4012 } else if (attn & BNX2X_MCP_ASSERT) { 4013 4014 BNX2X_ERR("MCP assert!\n"); 4015 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); 4016 bnx2x_fw_dump(bp); 4017 4018 } else 4019 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); 4020 } 4021 4022 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 4023 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); 4024 if (attn & BNX2X_GRC_TIMEOUT) { 4025 val = CHIP_IS_E1(bp) ? 0 : 4026 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); 4027 BNX2X_ERR("GRC time-out 0x%08x\n", val); 4028 } 4029 if (attn & BNX2X_GRC_RSV) { 4030 val = CHIP_IS_E1(bp) ? 0 : 4031 REG_RD(bp, MISC_REG_GRC_RSV_ATTN); 4032 BNX2X_ERR("GRC reserved 0x%08x\n", val); 4033 } 4034 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 4035 } 4036 } 4037 4038 /* 4039 * Bits map: 4040 * 0-7 - Engine0 load counter. 4041 * 8-15 - Engine1 load counter. 4042 * 16 - Engine0 RESET_IN_PROGRESS bit. 4043 * 17 - Engine1 RESET_IN_PROGRESS bit. 4044 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function 4045 * on the engine 4046 * 19 - Engine1 ONE_IS_LOADED. 4047 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 4048 * leader to complete (check for both RESET_IN_PROGRESS bits and not for 4049 * just the one belonging to its engine). 4050 * 4051 */ 4052 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 4053 4054 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff 4055 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 4056 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 4057 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 4058 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 4059 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 4060 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 4061 4062 /* 4063 * Set the GLOBAL_RESET bit. 4064 * 4065 * Should be run under rtnl lock 4066 */ 4067 void bnx2x_set_reset_global(struct bnx2x *bp) 4068 { 4069 u32 val; 4070 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4071 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4072 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); 4073 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4074 } 4075 4076 /* 4077 * Clear the GLOBAL_RESET bit. 4078 * 4079 * Should be run under rtnl lock 4080 */ 4081 static void bnx2x_clear_reset_global(struct bnx2x *bp) 4082 { 4083 u32 val; 4084 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4085 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4086 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); 4087 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4088 } 4089 4090 /* 4091 * Checks the GLOBAL_RESET bit. 4092 * 4093 * should be run under rtnl lock 4094 */ 4095 static bool bnx2x_reset_is_global(struct bnx2x *bp) 4096 { 4097 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4098 4099 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); 4100 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; 4101 } 4102 4103 /* 4104 * Clear RESET_IN_PROGRESS bit for the current engine. 4105 * 4106 * Should be run under rtnl lock 4107 */ 4108 static void bnx2x_set_reset_done(struct bnx2x *bp) 4109 { 4110 u32 val; 4111 u32 bit = BP_PATH(bp) ? 4112 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4113 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4114 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4115 4116 /* Clear the bit */ 4117 val &= ~bit; 4118 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4119 4120 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4121 } 4122 4123 /* 4124 * Set RESET_IN_PROGRESS for the current engine. 4125 * 4126 * should be run under rtnl lock 4127 */ 4128 void bnx2x_set_reset_in_progress(struct bnx2x *bp) 4129 { 4130 u32 val; 4131 u32 bit = BP_PATH(bp) ? 4132 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4133 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4134 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4135 4136 /* Set the bit */ 4137 val |= bit; 4138 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4139 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4140 } 4141 4142 /* 4143 * Checks the RESET_IN_PROGRESS bit for the given engine. 4144 * should be run under rtnl lock 4145 */ 4146 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) 4147 { 4148 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4149 u32 bit = engine ? 4150 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4151 4152 /* return false if bit is set */ 4153 return (val & bit) ? false : true; 4154 } 4155 4156 /* 4157 * set pf load for the current pf. 4158 * 4159 * should be run under rtnl lock 4160 */ 4161 void bnx2x_set_pf_load(struct bnx2x *bp) 4162 { 4163 u32 val1, val; 4164 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4165 BNX2X_PATH0_LOAD_CNT_MASK; 4166 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4167 BNX2X_PATH0_LOAD_CNT_SHIFT; 4168 4169 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4170 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4171 4172 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); 4173 4174 /* get the current counter value */ 4175 val1 = (val & mask) >> shift; 4176 4177 /* set bit of that PF */ 4178 val1 |= (1 << bp->pf_num); 4179 4180 /* clear the old value */ 4181 val &= ~mask; 4182 4183 /* set the new one */ 4184 val |= ((val1 << shift) & mask); 4185 4186 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4187 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4188 } 4189 4190 /** 4191 * bnx2x_clear_pf_load - clear pf load mark 4192 * 4193 * @bp: driver handle 4194 * 4195 * Should be run under rtnl lock. 4196 * Decrements the load counter for the current engine. Returns 4197 * whether other functions are still loaded 4198 */ 4199 bool bnx2x_clear_pf_load(struct bnx2x *bp) 4200 { 4201 u32 val1, val; 4202 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4203 BNX2X_PATH0_LOAD_CNT_MASK; 4204 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4205 BNX2X_PATH0_LOAD_CNT_SHIFT; 4206 4207 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4208 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4209 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); 4210 4211 /* get the current counter value */ 4212 val1 = (val & mask) >> shift; 4213 4214 /* clear bit of that PF */ 4215 val1 &= ~(1 << bp->pf_num); 4216 4217 /* clear the old value */ 4218 val &= ~mask; 4219 4220 /* set the new one */ 4221 val |= ((val1 << shift) & mask); 4222 4223 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4224 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4225 return val1 != 0; 4226 } 4227 4228 /* 4229 * Read the load status for the current engine. 4230 * 4231 * should be run under rtnl lock 4232 */ 4233 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) 4234 { 4235 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : 4236 BNX2X_PATH0_LOAD_CNT_MASK); 4237 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4238 BNX2X_PATH0_LOAD_CNT_SHIFT); 4239 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4240 4241 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); 4242 4243 val = (val & mask) >> shift; 4244 4245 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", 4246 engine, val); 4247 4248 return val != 0; 4249 } 4250 4251 static void _print_next_block(int idx, const char *blk) 4252 { 4253 pr_cont("%s%s", idx ? ", " : "", blk); 4254 } 4255 4256 static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num, 4257 bool print) 4258 { 4259 int i = 0; 4260 u32 cur_bit = 0; 4261 for (i = 0; sig; i++) { 4262 cur_bit = ((u32)0x1 << i); 4263 if (sig & cur_bit) { 4264 switch (cur_bit) { 4265 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 4266 if (print) 4267 _print_next_block(par_num++, "BRB"); 4268 break; 4269 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 4270 if (print) 4271 _print_next_block(par_num++, "PARSER"); 4272 break; 4273 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 4274 if (print) 4275 _print_next_block(par_num++, "TSDM"); 4276 break; 4277 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 4278 if (print) 4279 _print_next_block(par_num++, 4280 "SEARCHER"); 4281 break; 4282 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 4283 if (print) 4284 _print_next_block(par_num++, "TCM"); 4285 break; 4286 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 4287 if (print) 4288 _print_next_block(par_num++, "TSEMI"); 4289 break; 4290 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 4291 if (print) 4292 _print_next_block(par_num++, "XPB"); 4293 break; 4294 } 4295 4296 /* Clear the bit */ 4297 sig &= ~cur_bit; 4298 } 4299 } 4300 4301 return par_num; 4302 } 4303 4304 static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num, 4305 bool *global, bool print) 4306 { 4307 int i = 0; 4308 u32 cur_bit = 0; 4309 for (i = 0; sig; i++) { 4310 cur_bit = ((u32)0x1 << i); 4311 if (sig & cur_bit) { 4312 switch (cur_bit) { 4313 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 4314 if (print) 4315 _print_next_block(par_num++, "PBF"); 4316 break; 4317 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 4318 if (print) 4319 _print_next_block(par_num++, "QM"); 4320 break; 4321 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 4322 if (print) 4323 _print_next_block(par_num++, "TM"); 4324 break; 4325 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 4326 if (print) 4327 _print_next_block(par_num++, "XSDM"); 4328 break; 4329 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 4330 if (print) 4331 _print_next_block(par_num++, "XCM"); 4332 break; 4333 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 4334 if (print) 4335 _print_next_block(par_num++, "XSEMI"); 4336 break; 4337 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 4338 if (print) 4339 _print_next_block(par_num++, 4340 "DOORBELLQ"); 4341 break; 4342 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 4343 if (print) 4344 _print_next_block(par_num++, "NIG"); 4345 break; 4346 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 4347 if (print) 4348 _print_next_block(par_num++, 4349 "VAUX PCI CORE"); 4350 *global = true; 4351 break; 4352 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 4353 if (print) 4354 _print_next_block(par_num++, "DEBUG"); 4355 break; 4356 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 4357 if (print) 4358 _print_next_block(par_num++, "USDM"); 4359 break; 4360 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 4361 if (print) 4362 _print_next_block(par_num++, "UCM"); 4363 break; 4364 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 4365 if (print) 4366 _print_next_block(par_num++, "USEMI"); 4367 break; 4368 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 4369 if (print) 4370 _print_next_block(par_num++, "UPB"); 4371 break; 4372 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 4373 if (print) 4374 _print_next_block(par_num++, "CSDM"); 4375 break; 4376 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 4377 if (print) 4378 _print_next_block(par_num++, "CCM"); 4379 break; 4380 } 4381 4382 /* Clear the bit */ 4383 sig &= ~cur_bit; 4384 } 4385 } 4386 4387 return par_num; 4388 } 4389 4390 static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num, 4391 bool print) 4392 { 4393 int i = 0; 4394 u32 cur_bit = 0; 4395 for (i = 0; sig; i++) { 4396 cur_bit = ((u32)0x1 << i); 4397 if (sig & cur_bit) { 4398 switch (cur_bit) { 4399 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 4400 if (print) 4401 _print_next_block(par_num++, "CSEMI"); 4402 break; 4403 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 4404 if (print) 4405 _print_next_block(par_num++, "PXP"); 4406 break; 4407 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 4408 if (print) 4409 _print_next_block(par_num++, 4410 "PXPPCICLOCKCLIENT"); 4411 break; 4412 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 4413 if (print) 4414 _print_next_block(par_num++, "CFC"); 4415 break; 4416 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 4417 if (print) 4418 _print_next_block(par_num++, "CDU"); 4419 break; 4420 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 4421 if (print) 4422 _print_next_block(par_num++, "DMAE"); 4423 break; 4424 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 4425 if (print) 4426 _print_next_block(par_num++, "IGU"); 4427 break; 4428 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 4429 if (print) 4430 _print_next_block(par_num++, "MISC"); 4431 break; 4432 } 4433 4434 /* Clear the bit */ 4435 sig &= ~cur_bit; 4436 } 4437 } 4438 4439 return par_num; 4440 } 4441 4442 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num, 4443 bool *global, bool print) 4444 { 4445 int i = 0; 4446 u32 cur_bit = 0; 4447 for (i = 0; sig; i++) { 4448 cur_bit = ((u32)0x1 << i); 4449 if (sig & cur_bit) { 4450 switch (cur_bit) { 4451 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 4452 if (print) 4453 _print_next_block(par_num++, "MCP ROM"); 4454 *global = true; 4455 break; 4456 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 4457 if (print) 4458 _print_next_block(par_num++, 4459 "MCP UMP RX"); 4460 *global = true; 4461 break; 4462 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 4463 if (print) 4464 _print_next_block(par_num++, 4465 "MCP UMP TX"); 4466 *global = true; 4467 break; 4468 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 4469 if (print) 4470 _print_next_block(par_num++, 4471 "MCP SCPAD"); 4472 *global = true; 4473 break; 4474 } 4475 4476 /* Clear the bit */ 4477 sig &= ~cur_bit; 4478 } 4479 } 4480 4481 return par_num; 4482 } 4483 4484 static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num, 4485 bool print) 4486 { 4487 int i = 0; 4488 u32 cur_bit = 0; 4489 for (i = 0; sig; i++) { 4490 cur_bit = ((u32)0x1 << i); 4491 if (sig & cur_bit) { 4492 switch (cur_bit) { 4493 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 4494 if (print) 4495 _print_next_block(par_num++, "PGLUE_B"); 4496 break; 4497 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 4498 if (print) 4499 _print_next_block(par_num++, "ATC"); 4500 break; 4501 } 4502 4503 /* Clear the bit */ 4504 sig &= ~cur_bit; 4505 } 4506 } 4507 4508 return par_num; 4509 } 4510 4511 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, 4512 u32 *sig) 4513 { 4514 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 4515 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4516 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4517 (sig[3] & HW_PRTY_ASSERT_SET_3) || 4518 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 4519 int par_num = 0; 4520 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" 4521 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 4522 sig[0] & HW_PRTY_ASSERT_SET_0, 4523 sig[1] & HW_PRTY_ASSERT_SET_1, 4524 sig[2] & HW_PRTY_ASSERT_SET_2, 4525 sig[3] & HW_PRTY_ASSERT_SET_3, 4526 sig[4] & HW_PRTY_ASSERT_SET_4); 4527 if (print) 4528 netdev_err(bp->dev, 4529 "Parity errors detected in blocks: "); 4530 par_num = bnx2x_check_blocks_with_parity0( 4531 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print); 4532 par_num = bnx2x_check_blocks_with_parity1( 4533 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print); 4534 par_num = bnx2x_check_blocks_with_parity2( 4535 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print); 4536 par_num = bnx2x_check_blocks_with_parity3( 4537 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print); 4538 par_num = bnx2x_check_blocks_with_parity4( 4539 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print); 4540 4541 if (print) 4542 pr_cont("\n"); 4543 4544 return true; 4545 } else 4546 return false; 4547 } 4548 4549 /** 4550 * bnx2x_chk_parity_attn - checks for parity attentions. 4551 * 4552 * @bp: driver handle 4553 * @global: true if there was a global attention 4554 * @print: show parity attention in syslog 4555 */ 4556 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) 4557 { 4558 struct attn_route attn = { {0} }; 4559 int port = BP_PORT(bp); 4560 4561 attn.sig[0] = REG_RD(bp, 4562 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 4563 port*4); 4564 attn.sig[1] = REG_RD(bp, 4565 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + 4566 port*4); 4567 attn.sig[2] = REG_RD(bp, 4568 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + 4569 port*4); 4570 attn.sig[3] = REG_RD(bp, 4571 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + 4572 port*4); 4573 4574 if (!CHIP_IS_E1x(bp)) 4575 attn.sig[4] = REG_RD(bp, 4576 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + 4577 port*4); 4578 4579 return bnx2x_parity_attn(bp, global, print, attn.sig); 4580 } 4581 4582 4583 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) 4584 { 4585 u32 val; 4586 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 4587 4588 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 4589 BNX2X_ERR("PGLUE hw attention 0x%x\n", val); 4590 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 4591 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 4592 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 4593 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 4594 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 4595 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 4596 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 4597 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 4598 if (val & 4599 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 4600 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 4601 if (val & 4602 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 4603 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 4604 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 4605 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 4606 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 4607 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 4608 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 4609 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 4610 } 4611 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 4612 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); 4613 BNX2X_ERR("ATC hw attention 0x%x\n", val); 4614 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 4615 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 4616 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 4617 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 4618 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 4619 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 4620 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 4621 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 4622 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 4623 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 4624 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 4625 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 4626 } 4627 4628 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 4629 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 4630 BNX2X_ERR("FATAL parity attention set4 0x%x\n", 4631 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 4632 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 4633 } 4634 4635 } 4636 4637 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) 4638 { 4639 struct attn_route attn, *group_mask; 4640 int port = BP_PORT(bp); 4641 int index; 4642 u32 reg_addr; 4643 u32 val; 4644 u32 aeu_mask; 4645 bool global = false; 4646 4647 /* need to take HW lock because MCP or other port might also 4648 try to handle this event */ 4649 bnx2x_acquire_alr(bp); 4650 4651 if (bnx2x_chk_parity_attn(bp, &global, true)) { 4652 #ifndef BNX2X_STOP_ON_ERROR 4653 bp->recovery_state = BNX2X_RECOVERY_INIT; 4654 schedule_delayed_work(&bp->sp_rtnl_task, 0); 4655 /* Disable HW interrupts */ 4656 bnx2x_int_disable(bp); 4657 /* In case of parity errors don't handle attentions so that 4658 * other function would "see" parity errors. 4659 */ 4660 #else 4661 bnx2x_panic(); 4662 #endif 4663 bnx2x_release_alr(bp); 4664 return; 4665 } 4666 4667 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 4668 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 4669 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 4670 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 4671 if (!CHIP_IS_E1x(bp)) 4672 attn.sig[4] = 4673 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 4674 else 4675 attn.sig[4] = 0; 4676 4677 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", 4678 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 4679 4680 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 4681 if (deasserted & (1 << index)) { 4682 group_mask = &bp->attn_group[index]; 4683 4684 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", 4685 index, 4686 group_mask->sig[0], group_mask->sig[1], 4687 group_mask->sig[2], group_mask->sig[3], 4688 group_mask->sig[4]); 4689 4690 bnx2x_attn_int_deasserted4(bp, 4691 attn.sig[4] & group_mask->sig[4]); 4692 bnx2x_attn_int_deasserted3(bp, 4693 attn.sig[3] & group_mask->sig[3]); 4694 bnx2x_attn_int_deasserted1(bp, 4695 attn.sig[1] & group_mask->sig[1]); 4696 bnx2x_attn_int_deasserted2(bp, 4697 attn.sig[2] & group_mask->sig[2]); 4698 bnx2x_attn_int_deasserted0(bp, 4699 attn.sig[0] & group_mask->sig[0]); 4700 } 4701 } 4702 4703 bnx2x_release_alr(bp); 4704 4705 if (bp->common.int_block == INT_BLOCK_HC) 4706 reg_addr = (HC_REG_COMMAND_REG + port*32 + 4707 COMMAND_REG_ATTN_BITS_CLR); 4708 else 4709 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 4710 4711 val = ~deasserted; 4712 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, 4713 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 4714 REG_WR(bp, reg_addr, val); 4715 4716 if (~bp->attn_state & deasserted) 4717 BNX2X_ERR("IGU ERROR\n"); 4718 4719 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4720 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4721 4722 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4723 aeu_mask = REG_RD(bp, reg_addr); 4724 4725 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", 4726 aeu_mask, deasserted); 4727 aeu_mask |= (deasserted & 0x3ff); 4728 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 4729 4730 REG_WR(bp, reg_addr, aeu_mask); 4731 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4732 4733 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 4734 bp->attn_state &= ~deasserted; 4735 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 4736 } 4737 4738 static void bnx2x_attn_int(struct bnx2x *bp) 4739 { 4740 /* read local copy of bits */ 4741 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. 4742 attn_bits); 4743 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. 4744 attn_bits_ack); 4745 u32 attn_state = bp->attn_state; 4746 4747 /* look for changed bits */ 4748 u32 asserted = attn_bits & ~attn_ack & ~attn_state; 4749 u32 deasserted = ~attn_bits & attn_ack & attn_state; 4750 4751 DP(NETIF_MSG_HW, 4752 "attn_bits %x attn_ack %x asserted %x deasserted %x\n", 4753 attn_bits, attn_ack, asserted, deasserted); 4754 4755 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) 4756 BNX2X_ERR("BAD attention state\n"); 4757 4758 /* handle bits that were raised */ 4759 if (asserted) 4760 bnx2x_attn_int_asserted(bp, asserted); 4761 4762 if (deasserted) 4763 bnx2x_attn_int_deasserted(bp, deasserted); 4764 } 4765 4766 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, 4767 u16 index, u8 op, u8 update) 4768 { 4769 u32 igu_addr = bp->igu_base_addr; 4770 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 4771 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, 4772 igu_addr); 4773 } 4774 4775 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) 4776 { 4777 /* No memory barriers */ 4778 storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); 4779 mmiowb(); /* keep prod updates ordered */ 4780 } 4781 4782 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, 4783 union event_ring_elem *elem) 4784 { 4785 u8 err = elem->message.error; 4786 4787 if (!bp->cnic_eth_dev.starting_cid || 4788 (cid < bp->cnic_eth_dev.starting_cid && 4789 cid != bp->cnic_eth_dev.iscsi_l2_cid)) 4790 return 1; 4791 4792 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); 4793 4794 if (unlikely(err)) { 4795 4796 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", 4797 cid); 4798 bnx2x_panic_dump(bp, false); 4799 } 4800 bnx2x_cnic_cfc_comp(bp, cid, err); 4801 return 0; 4802 } 4803 4804 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) 4805 { 4806 struct bnx2x_mcast_ramrod_params rparam; 4807 int rc; 4808 4809 memset(&rparam, 0, sizeof(rparam)); 4810 4811 rparam.mcast_obj = &bp->mcast_obj; 4812 4813 netif_addr_lock_bh(bp->dev); 4814 4815 /* Clear pending state for the last command */ 4816 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); 4817 4818 /* If there are pending mcast commands - send them */ 4819 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { 4820 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 4821 if (rc < 0) 4822 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 4823 rc); 4824 } 4825 4826 netif_addr_unlock_bh(bp->dev); 4827 } 4828 4829 static void bnx2x_handle_classification_eqe(struct bnx2x *bp, 4830 union event_ring_elem *elem) 4831 { 4832 unsigned long ramrod_flags = 0; 4833 int rc = 0; 4834 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK; 4835 struct bnx2x_vlan_mac_obj *vlan_mac_obj; 4836 4837 /* Always push next commands out, don't wait here */ 4838 __set_bit(RAMROD_CONT, &ramrod_flags); 4839 4840 switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo) 4841 >> BNX2X_SWCID_SHIFT) { 4842 case BNX2X_FILTER_MAC_PENDING: 4843 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); 4844 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) 4845 vlan_mac_obj = &bp->iscsi_l2_mac_obj; 4846 else 4847 vlan_mac_obj = &bp->sp_objs[cid].mac_obj; 4848 4849 break; 4850 case BNX2X_FILTER_MCAST_PENDING: 4851 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); 4852 /* This is only relevant for 57710 where multicast MACs are 4853 * configured as unicast MACs using the same ramrod. 4854 */ 4855 bnx2x_handle_mcast_eqe(bp); 4856 return; 4857 default: 4858 BNX2X_ERR("Unsupported classification command: %d\n", 4859 elem->message.data.eth_event.echo); 4860 return; 4861 } 4862 4863 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); 4864 4865 if (rc < 0) 4866 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 4867 else if (rc > 0) 4868 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); 4869 4870 } 4871 4872 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); 4873 4874 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) 4875 { 4876 netif_addr_lock_bh(bp->dev); 4877 4878 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 4879 4880 /* Send rx_mode command again if was requested */ 4881 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) 4882 bnx2x_set_storm_rx_mode(bp); 4883 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, 4884 &bp->sp_state)) 4885 bnx2x_set_iscsi_eth_rx_mode(bp, true); 4886 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, 4887 &bp->sp_state)) 4888 bnx2x_set_iscsi_eth_rx_mode(bp, false); 4889 4890 netif_addr_unlock_bh(bp->dev); 4891 } 4892 4893 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, 4894 union event_ring_elem *elem) 4895 { 4896 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { 4897 DP(BNX2X_MSG_SP, 4898 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", 4899 elem->message.data.vif_list_event.func_bit_map); 4900 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, 4901 elem->message.data.vif_list_event.func_bit_map); 4902 } else if (elem->message.data.vif_list_event.echo == 4903 VIF_LIST_RULE_SET) { 4904 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); 4905 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); 4906 } 4907 } 4908 4909 /* called with rtnl_lock */ 4910 static void bnx2x_after_function_update(struct bnx2x *bp) 4911 { 4912 int q, rc; 4913 struct bnx2x_fastpath *fp; 4914 struct bnx2x_queue_state_params queue_params = {NULL}; 4915 struct bnx2x_queue_update_params *q_update_params = 4916 &queue_params.params.update; 4917 4918 /* Send Q update command with afex vlan removal values for all Qs */ 4919 queue_params.cmd = BNX2X_Q_CMD_UPDATE; 4920 4921 /* set silent vlan removal values according to vlan mode */ 4922 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 4923 &q_update_params->update_flags); 4924 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 4925 &q_update_params->update_flags); 4926 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 4927 4928 /* in access mode mark mask and value are 0 to strip all vlans */ 4929 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { 4930 q_update_params->silent_removal_value = 0; 4931 q_update_params->silent_removal_mask = 0; 4932 } else { 4933 q_update_params->silent_removal_value = 4934 (bp->afex_def_vlan_tag & VLAN_VID_MASK); 4935 q_update_params->silent_removal_mask = VLAN_VID_MASK; 4936 } 4937 4938 for_each_eth_queue(bp, q) { 4939 /* Set the appropriate Queue object */ 4940 fp = &bp->fp[q]; 4941 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 4942 4943 /* send the ramrod */ 4944 rc = bnx2x_queue_state_change(bp, &queue_params); 4945 if (rc < 0) 4946 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 4947 q); 4948 } 4949 4950 if (!NO_FCOE(bp)) { 4951 fp = &bp->fp[FCOE_IDX(bp)]; 4952 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 4953 4954 /* clear pending completion bit */ 4955 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 4956 4957 /* mark latest Q bit */ 4958 smp_mb__before_clear_bit(); 4959 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 4960 smp_mb__after_clear_bit(); 4961 4962 /* send Q update ramrod for FCoE Q */ 4963 rc = bnx2x_queue_state_change(bp, &queue_params); 4964 if (rc < 0) 4965 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 4966 q); 4967 } else { 4968 /* If no FCoE ring - ACK MCP now */ 4969 bnx2x_link_report(bp); 4970 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 4971 } 4972 } 4973 4974 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( 4975 struct bnx2x *bp, u32 cid) 4976 { 4977 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); 4978 4979 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) 4980 return &bnx2x_fcoe_sp_obj(bp, q_obj); 4981 else 4982 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; 4983 } 4984 4985 static void bnx2x_eq_int(struct bnx2x *bp) 4986 { 4987 u16 hw_cons, sw_cons, sw_prod; 4988 union event_ring_elem *elem; 4989 u8 echo; 4990 u32 cid; 4991 u8 opcode; 4992 int rc, spqe_cnt = 0; 4993 struct bnx2x_queue_sp_obj *q_obj; 4994 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; 4995 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; 4996 4997 hw_cons = le16_to_cpu(*bp->eq_cons_sb); 4998 4999 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. 5000 * when we get the the next-page we nned to adjust so the loop 5001 * condition below will be met. The next element is the size of a 5002 * regular element and hence incrementing by 1 5003 */ 5004 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) 5005 hw_cons++; 5006 5007 /* This function may never run in parallel with itself for a 5008 * specific bp, thus there is no need in "paired" read memory 5009 * barrier here. 5010 */ 5011 sw_cons = bp->eq_cons; 5012 sw_prod = bp->eq_prod; 5013 5014 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", 5015 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); 5016 5017 for (; sw_cons != hw_cons; 5018 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 5019 5020 elem = &bp->eq_ring[EQ_DESC(sw_cons)]; 5021 5022 rc = bnx2x_iov_eq_sp_event(bp, elem); 5023 if (!rc) { 5024 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", 5025 rc); 5026 goto next_spqe; 5027 } 5028 5029 /* elem CID originates from FW; actually LE */ 5030 cid = SW_CID((__force __le32) 5031 elem->message.data.cfc_del_event.cid); 5032 opcode = elem->message.opcode; 5033 5034 /* handle eq element */ 5035 switch (opcode) { 5036 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 5037 DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n"); 5038 bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event); 5039 continue; 5040 5041 case EVENT_RING_OPCODE_STAT_QUERY: 5042 DP(BNX2X_MSG_SP | BNX2X_MSG_STATS, 5043 "got statistics comp event %d\n", 5044 bp->stats_comp++); 5045 /* nothing to do with stats comp */ 5046 goto next_spqe; 5047 5048 case EVENT_RING_OPCODE_CFC_DEL: 5049 /* handle according to cid range */ 5050 /* 5051 * we may want to verify here that the bp state is 5052 * HALTING 5053 */ 5054 DP(BNX2X_MSG_SP, 5055 "got delete ramrod for MULTI[%d]\n", cid); 5056 5057 if (CNIC_LOADED(bp) && 5058 !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) 5059 goto next_spqe; 5060 5061 q_obj = bnx2x_cid_to_q_obj(bp, cid); 5062 5063 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) 5064 break; 5065 5066 5067 5068 goto next_spqe; 5069 5070 case EVENT_RING_OPCODE_STOP_TRAFFIC: 5071 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); 5072 if (f_obj->complete_cmd(bp, f_obj, 5073 BNX2X_F_CMD_TX_STOP)) 5074 break; 5075 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); 5076 goto next_spqe; 5077 5078 case EVENT_RING_OPCODE_START_TRAFFIC: 5079 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); 5080 if (f_obj->complete_cmd(bp, f_obj, 5081 BNX2X_F_CMD_TX_START)) 5082 break; 5083 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); 5084 goto next_spqe; 5085 5086 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 5087 echo = elem->message.data.function_update_event.echo; 5088 if (echo == SWITCH_UPDATE) { 5089 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5090 "got FUNC_SWITCH_UPDATE ramrod\n"); 5091 if (f_obj->complete_cmd( 5092 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) 5093 break; 5094 5095 } else { 5096 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, 5097 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 5098 f_obj->complete_cmd(bp, f_obj, 5099 BNX2X_F_CMD_AFEX_UPDATE); 5100 5101 /* We will perform the Queues update from 5102 * sp_rtnl task as all Queue SP operations 5103 * should run under rtnl_lock. 5104 */ 5105 smp_mb__before_clear_bit(); 5106 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, 5107 &bp->sp_rtnl_state); 5108 smp_mb__after_clear_bit(); 5109 5110 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5111 } 5112 5113 goto next_spqe; 5114 5115 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 5116 f_obj->complete_cmd(bp, f_obj, 5117 BNX2X_F_CMD_AFEX_VIFLISTS); 5118 bnx2x_after_afex_vif_lists(bp, elem); 5119 goto next_spqe; 5120 case EVENT_RING_OPCODE_FUNCTION_START: 5121 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5122 "got FUNC_START ramrod\n"); 5123 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) 5124 break; 5125 5126 goto next_spqe; 5127 5128 case EVENT_RING_OPCODE_FUNCTION_STOP: 5129 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5130 "got FUNC_STOP ramrod\n"); 5131 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) 5132 break; 5133 5134 goto next_spqe; 5135 } 5136 5137 switch (opcode | bp->state) { 5138 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5139 BNX2X_STATE_OPEN): 5140 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5141 BNX2X_STATE_OPENING_WAIT4_PORT): 5142 cid = elem->message.data.eth_event.echo & 5143 BNX2X_SWCID_MASK; 5144 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", 5145 cid); 5146 rss_raw->clear_pending(rss_raw); 5147 break; 5148 5149 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): 5150 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): 5151 case (EVENT_RING_OPCODE_SET_MAC | 5152 BNX2X_STATE_CLOSING_WAIT4_HALT): 5153 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5154 BNX2X_STATE_OPEN): 5155 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5156 BNX2X_STATE_DIAG): 5157 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5158 BNX2X_STATE_CLOSING_WAIT4_HALT): 5159 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n"); 5160 bnx2x_handle_classification_eqe(bp, elem); 5161 break; 5162 5163 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5164 BNX2X_STATE_OPEN): 5165 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5166 BNX2X_STATE_DIAG): 5167 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5168 BNX2X_STATE_CLOSING_WAIT4_HALT): 5169 DP(BNX2X_MSG_SP, "got mcast ramrod\n"); 5170 bnx2x_handle_mcast_eqe(bp); 5171 break; 5172 5173 case (EVENT_RING_OPCODE_FILTERS_RULES | 5174 BNX2X_STATE_OPEN): 5175 case (EVENT_RING_OPCODE_FILTERS_RULES | 5176 BNX2X_STATE_DIAG): 5177 case (EVENT_RING_OPCODE_FILTERS_RULES | 5178 BNX2X_STATE_CLOSING_WAIT4_HALT): 5179 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); 5180 bnx2x_handle_rx_mode_eqe(bp); 5181 break; 5182 default: 5183 /* unknown event log error and continue */ 5184 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", 5185 elem->message.opcode, bp->state); 5186 } 5187 next_spqe: 5188 spqe_cnt++; 5189 } /* for */ 5190 5191 smp_mb__before_atomic_inc(); 5192 atomic_add(spqe_cnt, &bp->eq_spq_left); 5193 5194 bp->eq_cons = sw_cons; 5195 bp->eq_prod = sw_prod; 5196 /* Make sure that above mem writes were issued towards the memory */ 5197 smp_wmb(); 5198 5199 /* update producer */ 5200 bnx2x_update_eq_prod(bp, bp->eq_prod); 5201 } 5202 5203 static void bnx2x_sp_task(struct work_struct *work) 5204 { 5205 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); 5206 5207 DP(BNX2X_MSG_SP, "sp task invoked\n"); 5208 5209 /* make sure the atomic interupt_occurred has been written */ 5210 smp_rmb(); 5211 if (atomic_read(&bp->interrupt_occurred)) { 5212 5213 /* what work needs to be performed? */ 5214 u16 status = bnx2x_update_dsb_idx(bp); 5215 5216 DP(BNX2X_MSG_SP, "status %x\n", status); 5217 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); 5218 atomic_set(&bp->interrupt_occurred, 0); 5219 5220 /* HW attentions */ 5221 if (status & BNX2X_DEF_SB_ATT_IDX) { 5222 bnx2x_attn_int(bp); 5223 status &= ~BNX2X_DEF_SB_ATT_IDX; 5224 } 5225 5226 /* SP events: STAT_QUERY and others */ 5227 if (status & BNX2X_DEF_SB_IDX) { 5228 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 5229 5230 if (FCOE_INIT(bp) && 5231 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 5232 /* Prevent local bottom-halves from running as 5233 * we are going to change the local NAPI list. 5234 */ 5235 local_bh_disable(); 5236 napi_schedule(&bnx2x_fcoe(bp, napi)); 5237 local_bh_enable(); 5238 } 5239 5240 /* Handle EQ completions */ 5241 bnx2x_eq_int(bp); 5242 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 5243 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); 5244 5245 status &= ~BNX2X_DEF_SB_IDX; 5246 } 5247 5248 /* if status is non zero then perhaps something went wrong */ 5249 if (unlikely(status)) 5250 DP(BNX2X_MSG_SP, 5251 "got an unknown interrupt! (status 0x%x)\n", status); 5252 5253 /* ack status block only if something was actually handled */ 5254 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 5255 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); 5256 5257 } 5258 5259 /* must be called after the EQ processing (since eq leads to sriov 5260 * ramrod completion flows). 5261 * This flow may have been scheduled by the arrival of a ramrod 5262 * completion, or by the sriov code rescheduling itself. 5263 */ 5264 bnx2x_iov_sp_task(bp); 5265 5266 /* afex - poll to check if VIFSET_ACK should be sent to MFW */ 5267 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, 5268 &bp->sp_state)) { 5269 bnx2x_link_report(bp); 5270 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5271 } 5272 } 5273 5274 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) 5275 { 5276 struct net_device *dev = dev_instance; 5277 struct bnx2x *bp = netdev_priv(dev); 5278 5279 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, 5280 IGU_INT_DISABLE, 0); 5281 5282 #ifdef BNX2X_STOP_ON_ERROR 5283 if (unlikely(bp->panic)) 5284 return IRQ_HANDLED; 5285 #endif 5286 5287 if (CNIC_LOADED(bp)) { 5288 struct cnic_ops *c_ops; 5289 5290 rcu_read_lock(); 5291 c_ops = rcu_dereference(bp->cnic_ops); 5292 if (c_ops) 5293 c_ops->cnic_handler(bp->cnic_data, NULL); 5294 rcu_read_unlock(); 5295 } 5296 5297 /* schedule sp task to perform default status block work, ack 5298 * attentions and enable interrupts. 5299 */ 5300 bnx2x_schedule_sp_task(bp); 5301 5302 return IRQ_HANDLED; 5303 } 5304 5305 /* end of slow path */ 5306 5307 5308 void bnx2x_drv_pulse(struct bnx2x *bp) 5309 { 5310 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, 5311 bp->fw_drv_pulse_wr_seq); 5312 } 5313 5314 static void bnx2x_timer(unsigned long data) 5315 { 5316 struct bnx2x *bp = (struct bnx2x *) data; 5317 5318 if (!netif_running(bp->dev)) 5319 return; 5320 5321 if (IS_PF(bp) && 5322 !BP_NOMCP(bp)) { 5323 int mb_idx = BP_FW_MB_IDX(bp); 5324 u32 drv_pulse; 5325 u32 mcp_pulse; 5326 5327 ++bp->fw_drv_pulse_wr_seq; 5328 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 5329 /* TBD - add SYSTEM_TIME */ 5330 drv_pulse = bp->fw_drv_pulse_wr_seq; 5331 bnx2x_drv_pulse(bp); 5332 5333 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & 5334 MCP_PULSE_SEQ_MASK); 5335 /* The delta between driver pulse and mcp response 5336 * should be 1 (before mcp response) or 0 (after mcp response) 5337 */ 5338 if ((drv_pulse != mcp_pulse) && 5339 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 5340 /* someone lost a heartbeat... */ 5341 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 5342 drv_pulse, mcp_pulse); 5343 } 5344 } 5345 5346 if (bp->state == BNX2X_STATE_OPEN) 5347 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); 5348 5349 /* sample pf vf bulletin board for new posts from pf */ 5350 if (IS_VF(bp)) 5351 bnx2x_sample_bulletin(bp); 5352 5353 mod_timer(&bp->timer, jiffies + bp->current_interval); 5354 } 5355 5356 /* end of Statistics */ 5357 5358 /* nic init */ 5359 5360 /* 5361 * nic init service functions 5362 */ 5363 5364 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) 5365 { 5366 u32 i; 5367 if (!(len%4) && !(addr%4)) 5368 for (i = 0; i < len; i += 4) 5369 REG_WR(bp, addr + i, fill); 5370 else 5371 for (i = 0; i < len; i++) 5372 REG_WR8(bp, addr + i, fill); 5373 5374 } 5375 5376 /* helper: writes FP SP data to FW - data_size in dwords */ 5377 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, 5378 int fw_sb_id, 5379 u32 *sb_data_p, 5380 u32 data_size) 5381 { 5382 int index; 5383 for (index = 0; index < data_size; index++) 5384 REG_WR(bp, BAR_CSTRORM_INTMEM + 5385 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 5386 sizeof(u32)*index, 5387 *(sb_data_p + index)); 5388 } 5389 5390 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) 5391 { 5392 u32 *sb_data_p; 5393 u32 data_size = 0; 5394 struct hc_status_block_data_e2 sb_data_e2; 5395 struct hc_status_block_data_e1x sb_data_e1x; 5396 5397 /* disable the function first */ 5398 if (!CHIP_IS_E1x(bp)) { 5399 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5400 sb_data_e2.common.state = SB_DISABLED; 5401 sb_data_e2.common.p_func.vf_valid = false; 5402 sb_data_p = (u32 *)&sb_data_e2; 5403 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5404 } else { 5405 memset(&sb_data_e1x, 0, 5406 sizeof(struct hc_status_block_data_e1x)); 5407 sb_data_e1x.common.state = SB_DISABLED; 5408 sb_data_e1x.common.p_func.vf_valid = false; 5409 sb_data_p = (u32 *)&sb_data_e1x; 5410 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5411 } 5412 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5413 5414 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5415 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, 5416 CSTORM_STATUS_BLOCK_SIZE); 5417 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5418 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, 5419 CSTORM_SYNC_BLOCK_SIZE); 5420 } 5421 5422 /* helper: writes SP SB data to FW */ 5423 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, 5424 struct hc_sp_status_block_data *sp_sb_data) 5425 { 5426 int func = BP_FUNC(bp); 5427 int i; 5428 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 5429 REG_WR(bp, BAR_CSTRORM_INTMEM + 5430 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 5431 i*sizeof(u32), 5432 *((u32 *)sp_sb_data + i)); 5433 } 5434 5435 static void bnx2x_zero_sp_sb(struct bnx2x *bp) 5436 { 5437 int func = BP_FUNC(bp); 5438 struct hc_sp_status_block_data sp_sb_data; 5439 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5440 5441 sp_sb_data.state = SB_DISABLED; 5442 sp_sb_data.p_func.vf_valid = false; 5443 5444 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5445 5446 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5447 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, 5448 CSTORM_SP_STATUS_BLOCK_SIZE); 5449 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5450 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, 5451 CSTORM_SP_SYNC_BLOCK_SIZE); 5452 5453 } 5454 5455 5456 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 5457 int igu_sb_id, int igu_seg_id) 5458 { 5459 hc_sm->igu_sb_id = igu_sb_id; 5460 hc_sm->igu_seg_id = igu_seg_id; 5461 hc_sm->timer_value = 0xFF; 5462 hc_sm->time_to_expire = 0xFFFFFFFF; 5463 } 5464 5465 5466 /* allocates state machine ids. */ 5467 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) 5468 { 5469 /* zero out state machine indices */ 5470 /* rx indices */ 5471 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5472 5473 /* tx indices */ 5474 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5475 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 5476 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 5477 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 5478 5479 /* map indices */ 5480 /* rx indices */ 5481 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 5482 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5483 5484 /* tx indices */ 5485 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 5486 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5487 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 5488 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5489 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 5490 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5491 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 5492 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5493 } 5494 5495 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 5496 u8 vf_valid, int fw_sb_id, int igu_sb_id) 5497 { 5498 int igu_seg_id; 5499 5500 struct hc_status_block_data_e2 sb_data_e2; 5501 struct hc_status_block_data_e1x sb_data_e1x; 5502 struct hc_status_block_sm *hc_sm_p; 5503 int data_size; 5504 u32 *sb_data_p; 5505 5506 if (CHIP_INT_MODE_IS_BC(bp)) 5507 igu_seg_id = HC_SEG_ACCESS_NORM; 5508 else 5509 igu_seg_id = IGU_SEG_ACCESS_NORM; 5510 5511 bnx2x_zero_fp_sb(bp, fw_sb_id); 5512 5513 if (!CHIP_IS_E1x(bp)) { 5514 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5515 sb_data_e2.common.state = SB_ENABLED; 5516 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); 5517 sb_data_e2.common.p_func.vf_id = vfid; 5518 sb_data_e2.common.p_func.vf_valid = vf_valid; 5519 sb_data_e2.common.p_func.vnic_id = BP_VN(bp); 5520 sb_data_e2.common.same_igu_sb_1b = true; 5521 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); 5522 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); 5523 hc_sm_p = sb_data_e2.common.state_machine; 5524 sb_data_p = (u32 *)&sb_data_e2; 5525 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5526 bnx2x_map_sb_state_machines(sb_data_e2.index_data); 5527 } else { 5528 memset(&sb_data_e1x, 0, 5529 sizeof(struct hc_status_block_data_e1x)); 5530 sb_data_e1x.common.state = SB_ENABLED; 5531 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); 5532 sb_data_e1x.common.p_func.vf_id = 0xff; 5533 sb_data_e1x.common.p_func.vf_valid = false; 5534 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); 5535 sb_data_e1x.common.same_igu_sb_1b = true; 5536 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); 5537 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); 5538 hc_sm_p = sb_data_e1x.common.state_machine; 5539 sb_data_p = (u32 *)&sb_data_e1x; 5540 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5541 bnx2x_map_sb_state_machines(sb_data_e1x.index_data); 5542 } 5543 5544 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], 5545 igu_sb_id, igu_seg_id); 5546 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], 5547 igu_sb_id, igu_seg_id); 5548 5549 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); 5550 5551 /* write indices to HW - PCI guarantees endianity of regpairs */ 5552 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5553 } 5554 5555 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, 5556 u16 tx_usec, u16 rx_usec) 5557 { 5558 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, 5559 false, rx_usec); 5560 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 5561 HC_INDEX_ETH_TX_CQ_CONS_COS0, false, 5562 tx_usec); 5563 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 5564 HC_INDEX_ETH_TX_CQ_CONS_COS1, false, 5565 tx_usec); 5566 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 5567 HC_INDEX_ETH_TX_CQ_CONS_COS2, false, 5568 tx_usec); 5569 } 5570 5571 static void bnx2x_init_def_sb(struct bnx2x *bp) 5572 { 5573 struct host_sp_status_block *def_sb = bp->def_status_blk; 5574 dma_addr_t mapping = bp->def_status_blk_mapping; 5575 int igu_sp_sb_index; 5576 int igu_seg_id; 5577 int port = BP_PORT(bp); 5578 int func = BP_FUNC(bp); 5579 int reg_offset, reg_offset_en5; 5580 u64 section; 5581 int index; 5582 struct hc_sp_status_block_data sp_sb_data; 5583 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5584 5585 if (CHIP_INT_MODE_IS_BC(bp)) { 5586 igu_sp_sb_index = DEF_SB_IGU_ID; 5587 igu_seg_id = HC_SEG_ACCESS_DEF; 5588 } else { 5589 igu_sp_sb_index = bp->igu_dsb_id; 5590 igu_seg_id = IGU_SEG_ACCESS_DEF; 5591 } 5592 5593 /* ATTN */ 5594 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 5595 atten_status_block); 5596 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 5597 5598 bp->attn_state = 0; 5599 5600 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 5601 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 5602 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 5603 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); 5604 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 5605 int sindex; 5606 /* take care of sig[0]..sig[4] */ 5607 for (sindex = 0; sindex < 4; sindex++) 5608 bp->attn_group[index].sig[sindex] = 5609 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); 5610 5611 if (!CHIP_IS_E1x(bp)) 5612 /* 5613 * enable5 is separate from the rest of the registers, 5614 * and therefore the address skip is 4 5615 * and not 16 between the different groups 5616 */ 5617 bp->attn_group[index].sig[4] = REG_RD(bp, 5618 reg_offset_en5 + 0x4*index); 5619 else 5620 bp->attn_group[index].sig[4] = 0; 5621 } 5622 5623 if (bp->common.int_block == INT_BLOCK_HC) { 5624 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : 5625 HC_REG_ATTN_MSG0_ADDR_L); 5626 5627 REG_WR(bp, reg_offset, U64_LO(section)); 5628 REG_WR(bp, reg_offset + 4, U64_HI(section)); 5629 } else if (!CHIP_IS_E1x(bp)) { 5630 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 5631 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 5632 } 5633 5634 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 5635 sp_sb); 5636 5637 bnx2x_zero_sp_sb(bp); 5638 5639 /* PCI guarantees endianity of regpairs */ 5640 sp_sb_data.state = SB_ENABLED; 5641 sp_sb_data.host_sb_addr.lo = U64_LO(section); 5642 sp_sb_data.host_sb_addr.hi = U64_HI(section); 5643 sp_sb_data.igu_sb_id = igu_sp_sb_index; 5644 sp_sb_data.igu_seg_id = igu_seg_id; 5645 sp_sb_data.p_func.pf_id = func; 5646 sp_sb_data.p_func.vnic_id = BP_VN(bp); 5647 sp_sb_data.p_func.vf_id = 0xff; 5648 5649 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5650 5651 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 5652 } 5653 5654 void bnx2x_update_coalesce(struct bnx2x *bp) 5655 { 5656 int i; 5657 5658 for_each_eth_queue(bp, i) 5659 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, 5660 bp->tx_ticks, bp->rx_ticks); 5661 } 5662 5663 static void bnx2x_init_sp_ring(struct bnx2x *bp) 5664 { 5665 spin_lock_init(&bp->spq_lock); 5666 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); 5667 5668 bp->spq_prod_idx = 0; 5669 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; 5670 bp->spq_prod_bd = bp->spq; 5671 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; 5672 } 5673 5674 static void bnx2x_init_eq_ring(struct bnx2x *bp) 5675 { 5676 int i; 5677 for (i = 1; i <= NUM_EQ_PAGES; i++) { 5678 union event_ring_elem *elem = 5679 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; 5680 5681 elem->next_page.addr.hi = 5682 cpu_to_le32(U64_HI(bp->eq_mapping + 5683 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); 5684 elem->next_page.addr.lo = 5685 cpu_to_le32(U64_LO(bp->eq_mapping + 5686 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); 5687 } 5688 bp->eq_cons = 0; 5689 bp->eq_prod = NUM_EQ_DESC; 5690 bp->eq_cons_sb = BNX2X_EQ_INDEX; 5691 /* we want a warning message before it gets rought... */ 5692 atomic_set(&bp->eq_spq_left, 5693 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); 5694 } 5695 5696 /* called with netif_addr_lock_bh() */ 5697 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, 5698 unsigned long rx_mode_flags, 5699 unsigned long rx_accept_flags, 5700 unsigned long tx_accept_flags, 5701 unsigned long ramrod_flags) 5702 { 5703 struct bnx2x_rx_mode_ramrod_params ramrod_param; 5704 int rc; 5705 5706 memset(&ramrod_param, 0, sizeof(ramrod_param)); 5707 5708 /* Prepare ramrod parameters */ 5709 ramrod_param.cid = 0; 5710 ramrod_param.cl_id = cl_id; 5711 ramrod_param.rx_mode_obj = &bp->rx_mode_obj; 5712 ramrod_param.func_id = BP_FUNC(bp); 5713 5714 ramrod_param.pstate = &bp->sp_state; 5715 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; 5716 5717 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); 5718 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); 5719 5720 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5721 5722 ramrod_param.ramrod_flags = ramrod_flags; 5723 ramrod_param.rx_mode_flags = rx_mode_flags; 5724 5725 ramrod_param.rx_accept_flags = rx_accept_flags; 5726 ramrod_param.tx_accept_flags = tx_accept_flags; 5727 5728 rc = bnx2x_config_rx_mode(bp, &ramrod_param); 5729 if (rc < 0) { 5730 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); 5731 return rc; 5732 } 5733 5734 return 0; 5735 } 5736 5737 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, 5738 unsigned long *rx_accept_flags, 5739 unsigned long *tx_accept_flags) 5740 { 5741 /* Clear the flags first */ 5742 *rx_accept_flags = 0; 5743 *tx_accept_flags = 0; 5744 5745 switch (rx_mode) { 5746 case BNX2X_RX_MODE_NONE: 5747 /* 5748 * 'drop all' supersedes any accept flags that may have been 5749 * passed to the function. 5750 */ 5751 break; 5752 case BNX2X_RX_MODE_NORMAL: 5753 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 5754 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); 5755 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 5756 5757 /* internal switching mode */ 5758 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 5759 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); 5760 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 5761 5762 break; 5763 case BNX2X_RX_MODE_ALLMULTI: 5764 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 5765 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 5766 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 5767 5768 /* internal switching mode */ 5769 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 5770 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 5771 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 5772 5773 break; 5774 case BNX2X_RX_MODE_PROMISC: 5775 /* According to deffinition of SI mode, iface in promisc mode 5776 * should receive matched and unmatched (in resolution of port) 5777 * unicast packets. 5778 */ 5779 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); 5780 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 5781 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 5782 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 5783 5784 /* internal switching mode */ 5785 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 5786 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 5787 5788 if (IS_MF_SI(bp)) 5789 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); 5790 else 5791 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 5792 5793 break; 5794 default: 5795 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); 5796 return -EINVAL; 5797 } 5798 5799 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 5800 if (bp->rx_mode != BNX2X_RX_MODE_NONE) { 5801 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 5802 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 5803 } 5804 5805 return 0; 5806 } 5807 5808 /* called with netif_addr_lock_bh() */ 5809 int bnx2x_set_storm_rx_mode(struct bnx2x *bp) 5810 { 5811 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 5812 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 5813 int rc; 5814 5815 if (!NO_FCOE(bp)) 5816 /* Configure rx_mode of FCoE Queue */ 5817 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); 5818 5819 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, 5820 &tx_accept_flags); 5821 if (rc) 5822 return rc; 5823 5824 __set_bit(RAMROD_RX, &ramrod_flags); 5825 __set_bit(RAMROD_TX, &ramrod_flags); 5826 5827 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, 5828 rx_accept_flags, tx_accept_flags, 5829 ramrod_flags); 5830 } 5831 5832 static void bnx2x_init_internal_common(struct bnx2x *bp) 5833 { 5834 int i; 5835 5836 if (IS_MF_SI(bp)) 5837 /* 5838 * In switch independent mode, the TSTORM needs to accept 5839 * packets that failed classification, since approximate match 5840 * mac addresses aren't written to NIG LLH 5841 */ 5842 REG_WR8(bp, BAR_TSTRORM_INTMEM + 5843 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2); 5844 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */ 5845 REG_WR8(bp, BAR_TSTRORM_INTMEM + 5846 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0); 5847 5848 /* Zero this manually as its initialization is 5849 currently missing in the initTool */ 5850 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) 5851 REG_WR(bp, BAR_USTRORM_INTMEM + 5852 USTORM_AGG_DATA_OFFSET + i * 4, 0); 5853 if (!CHIP_IS_E1x(bp)) { 5854 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, 5855 CHIP_INT_MODE_IS_BC(bp) ? 5856 HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 5857 } 5858 } 5859 5860 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) 5861 { 5862 switch (load_code) { 5863 case FW_MSG_CODE_DRV_LOAD_COMMON: 5864 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 5865 bnx2x_init_internal_common(bp); 5866 /* no break */ 5867 5868 case FW_MSG_CODE_DRV_LOAD_PORT: 5869 /* nothing to do */ 5870 /* no break */ 5871 5872 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 5873 /* internal memory per function is 5874 initialized inside bnx2x_pf_init */ 5875 break; 5876 5877 default: 5878 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); 5879 break; 5880 } 5881 } 5882 5883 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) 5884 { 5885 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); 5886 } 5887 5888 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) 5889 { 5890 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); 5891 } 5892 5893 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) 5894 { 5895 if (CHIP_IS_E1x(fp->bp)) 5896 return BP_L_ID(fp->bp) + fp->index; 5897 else /* We want Client ID to be the same as IGU SB ID for 57712 */ 5898 return bnx2x_fp_igu_sb_id(fp); 5899 } 5900 5901 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) 5902 { 5903 struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; 5904 u8 cos; 5905 unsigned long q_type = 0; 5906 u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; 5907 fp->rx_queue = fp_idx; 5908 fp->cid = fp_idx; 5909 fp->cl_id = bnx2x_fp_cl_id(fp); 5910 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); 5911 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); 5912 /* qZone id equals to FW (per path) client id */ 5913 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); 5914 5915 /* init shortcut */ 5916 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); 5917 5918 /* Setup SB indicies */ 5919 fp->rx_cons_sb = BNX2X_RX_SB_INDEX; 5920 5921 /* Configure Queue State object */ 5922 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 5923 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 5924 5925 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); 5926 5927 /* init tx data */ 5928 for_each_cos_in_tx_queue(fp, cos) { 5929 bnx2x_init_txdata(bp, fp->txdata_ptr[cos], 5930 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), 5931 FP_COS_TO_TXQ(fp, cos, bp), 5932 BNX2X_TX_SB_INDEX_BASE + cos, fp); 5933 cids[cos] = fp->txdata_ptr[cos]->cid; 5934 } 5935 5936 /* nothing more for vf to do here */ 5937 if (IS_VF(bp)) 5938 return; 5939 5940 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, 5941 fp->fw_sb_id, fp->igu_sb_id); 5942 bnx2x_update_fpsb_idx(fp); 5943 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, 5944 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 5945 bnx2x_sp_mapping(bp, q_rdata), q_type); 5946 5947 /** 5948 * Configure classification DBs: Always enable Tx switching 5949 */ 5950 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); 5951 5952 DP(NETIF_MSG_IFUP, 5953 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 5954 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 5955 fp->igu_sb_id); 5956 } 5957 5958 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) 5959 { 5960 int i; 5961 5962 for (i = 1; i <= NUM_TX_RINGS; i++) { 5963 struct eth_tx_next_bd *tx_next_bd = 5964 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; 5965 5966 tx_next_bd->addr_hi = 5967 cpu_to_le32(U64_HI(txdata->tx_desc_mapping + 5968 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 5969 tx_next_bd->addr_lo = 5970 cpu_to_le32(U64_LO(txdata->tx_desc_mapping + 5971 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 5972 } 5973 5974 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 5975 txdata->tx_db.data.zero_fill1 = 0; 5976 txdata->tx_db.data.prod = 0; 5977 5978 txdata->tx_pkt_prod = 0; 5979 txdata->tx_pkt_cons = 0; 5980 txdata->tx_bd_prod = 0; 5981 txdata->tx_bd_cons = 0; 5982 txdata->tx_pkt = 0; 5983 } 5984 5985 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) 5986 { 5987 int i; 5988 5989 for_each_tx_queue_cnic(bp, i) 5990 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); 5991 } 5992 static void bnx2x_init_tx_rings(struct bnx2x *bp) 5993 { 5994 int i; 5995 u8 cos; 5996 5997 for_each_eth_queue(bp, i) 5998 for_each_cos_in_tx_queue(&bp->fp[i], cos) 5999 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); 6000 } 6001 6002 void bnx2x_nic_init_cnic(struct bnx2x *bp) 6003 { 6004 if (!NO_FCOE(bp)) 6005 bnx2x_init_fcoe_fp(bp); 6006 6007 bnx2x_init_sb(bp, bp->cnic_sb_mapping, 6008 BNX2X_VF_ID_INVALID, false, 6009 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); 6010 6011 /* ensure status block indices were read */ 6012 rmb(); 6013 bnx2x_init_rx_rings_cnic(bp); 6014 bnx2x_init_tx_rings_cnic(bp); 6015 6016 /* flush all */ 6017 mb(); 6018 mmiowb(); 6019 } 6020 6021 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code) 6022 { 6023 int i; 6024 6025 for_each_eth_queue(bp, i) 6026 bnx2x_init_eth_fp(bp, i); 6027 6028 /* ensure status block indices were read */ 6029 rmb(); 6030 bnx2x_init_rx_rings(bp); 6031 bnx2x_init_tx_rings(bp); 6032 6033 if (IS_VF(bp)) 6034 return; 6035 6036 /* Initialize MOD_ABS interrupts */ 6037 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, 6038 bp->common.shmem_base, bp->common.shmem2_base, 6039 BP_PORT(bp)); 6040 6041 bnx2x_init_def_sb(bp); 6042 bnx2x_update_dsb_idx(bp); 6043 bnx2x_init_sp_ring(bp); 6044 bnx2x_init_eq_ring(bp); 6045 bnx2x_init_internal(bp, load_code); 6046 bnx2x_pf_init(bp); 6047 bnx2x_stats_init(bp); 6048 6049 /* flush all before enabling interrupts */ 6050 mb(); 6051 mmiowb(); 6052 6053 bnx2x_int_enable(bp); 6054 6055 /* Check for SPIO5 */ 6056 bnx2x_attn_int_deasserted0(bp, 6057 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & 6058 AEU_INPUTS_ATTN_BITS_SPIO5); 6059 } 6060 6061 /* end of nic init */ 6062 6063 /* 6064 * gzip service functions 6065 */ 6066 6067 static int bnx2x_gunzip_init(struct bnx2x *bp) 6068 { 6069 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, 6070 &bp->gunzip_mapping, GFP_KERNEL); 6071 if (bp->gunzip_buf == NULL) 6072 goto gunzip_nomem1; 6073 6074 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); 6075 if (bp->strm == NULL) 6076 goto gunzip_nomem2; 6077 6078 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); 6079 if (bp->strm->workspace == NULL) 6080 goto gunzip_nomem3; 6081 6082 return 0; 6083 6084 gunzip_nomem3: 6085 kfree(bp->strm); 6086 bp->strm = NULL; 6087 6088 gunzip_nomem2: 6089 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6090 bp->gunzip_mapping); 6091 bp->gunzip_buf = NULL; 6092 6093 gunzip_nomem1: 6094 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); 6095 return -ENOMEM; 6096 } 6097 6098 static void bnx2x_gunzip_end(struct bnx2x *bp) 6099 { 6100 if (bp->strm) { 6101 vfree(bp->strm->workspace); 6102 kfree(bp->strm); 6103 bp->strm = NULL; 6104 } 6105 6106 if (bp->gunzip_buf) { 6107 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6108 bp->gunzip_mapping); 6109 bp->gunzip_buf = NULL; 6110 } 6111 } 6112 6113 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) 6114 { 6115 int n, rc; 6116 6117 /* check gzip header */ 6118 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { 6119 BNX2X_ERR("Bad gzip header\n"); 6120 return -EINVAL; 6121 } 6122 6123 n = 10; 6124 6125 #define FNAME 0x8 6126 6127 if (zbuf[3] & FNAME) 6128 while ((zbuf[n++] != 0) && (n < len)); 6129 6130 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; 6131 bp->strm->avail_in = len - n; 6132 bp->strm->next_out = bp->gunzip_buf; 6133 bp->strm->avail_out = FW_BUF_SIZE; 6134 6135 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); 6136 if (rc != Z_OK) 6137 return rc; 6138 6139 rc = zlib_inflate(bp->strm, Z_FINISH); 6140 if ((rc != Z_OK) && (rc != Z_STREAM_END)) 6141 netdev_err(bp->dev, "Firmware decompression error: %s\n", 6142 bp->strm->msg); 6143 6144 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); 6145 if (bp->gunzip_outlen & 0x3) 6146 netdev_err(bp->dev, 6147 "Firmware decompression error: gunzip_outlen (%d) not aligned\n", 6148 bp->gunzip_outlen); 6149 bp->gunzip_outlen >>= 2; 6150 6151 zlib_inflateEnd(bp->strm); 6152 6153 if (rc == Z_STREAM_END) 6154 return 0; 6155 6156 return rc; 6157 } 6158 6159 /* nic load/unload */ 6160 6161 /* 6162 * General service functions 6163 */ 6164 6165 /* send a NIG loopback debug packet */ 6166 static void bnx2x_lb_pckt(struct bnx2x *bp) 6167 { 6168 u32 wb_write[3]; 6169 6170 /* Ethernet source and destination addresses */ 6171 wb_write[0] = 0x55555555; 6172 wb_write[1] = 0x55555555; 6173 wb_write[2] = 0x20; /* SOP */ 6174 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6175 6176 /* NON-IP protocol */ 6177 wb_write[0] = 0x09000000; 6178 wb_write[1] = 0x55555555; 6179 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 6180 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6181 } 6182 6183 /* some of the internal memories 6184 * are not directly readable from the driver 6185 * to test them we send debug packets 6186 */ 6187 static int bnx2x_int_mem_test(struct bnx2x *bp) 6188 { 6189 int factor; 6190 int count, i; 6191 u32 val = 0; 6192 6193 if (CHIP_REV_IS_FPGA(bp)) 6194 factor = 120; 6195 else if (CHIP_REV_IS_EMUL(bp)) 6196 factor = 200; 6197 else 6198 factor = 1; 6199 6200 /* Disable inputs of parser neighbor blocks */ 6201 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6202 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6203 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6204 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6205 6206 /* Write 0 to parser credits for CFC search request */ 6207 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6208 6209 /* send Ethernet packet */ 6210 bnx2x_lb_pckt(bp); 6211 6212 /* TODO do i reset NIG statistic? */ 6213 /* Wait until NIG register shows 1 packet of size 0x10 */ 6214 count = 1000 * factor; 6215 while (count) { 6216 6217 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6218 val = *bnx2x_sp(bp, wb_data[0]); 6219 if (val == 0x10) 6220 break; 6221 6222 msleep(10); 6223 count--; 6224 } 6225 if (val != 0x10) { 6226 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6227 return -1; 6228 } 6229 6230 /* Wait until PRS register shows 1 packet */ 6231 count = 1000 * factor; 6232 while (count) { 6233 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6234 if (val == 1) 6235 break; 6236 6237 msleep(10); 6238 count--; 6239 } 6240 if (val != 0x1) { 6241 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6242 return -2; 6243 } 6244 6245 /* Reset and init BRB, PRS */ 6246 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6247 msleep(50); 6248 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6249 msleep(50); 6250 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6251 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6252 6253 DP(NETIF_MSG_HW, "part2\n"); 6254 6255 /* Disable inputs of parser neighbor blocks */ 6256 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6257 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6258 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6259 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6260 6261 /* Write 0 to parser credits for CFC search request */ 6262 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6263 6264 /* send 10 Ethernet packets */ 6265 for (i = 0; i < 10; i++) 6266 bnx2x_lb_pckt(bp); 6267 6268 /* Wait until NIG register shows 10 + 1 6269 packets of size 11*0x10 = 0xb0 */ 6270 count = 1000 * factor; 6271 while (count) { 6272 6273 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6274 val = *bnx2x_sp(bp, wb_data[0]); 6275 if (val == 0xb0) 6276 break; 6277 6278 msleep(10); 6279 count--; 6280 } 6281 if (val != 0xb0) { 6282 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6283 return -3; 6284 } 6285 6286 /* Wait until PRS register shows 2 packets */ 6287 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6288 if (val != 2) 6289 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6290 6291 /* Write 1 to parser credits for CFC search request */ 6292 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 6293 6294 /* Wait until PRS register shows 3 packets */ 6295 msleep(10 * factor); 6296 /* Wait until NIG register shows 1 packet of size 0x10 */ 6297 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6298 if (val != 3) 6299 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6300 6301 /* clear NIG EOP FIFO */ 6302 for (i = 0; i < 11; i++) 6303 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); 6304 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); 6305 if (val != 1) { 6306 BNX2X_ERR("clear of NIG failed\n"); 6307 return -4; 6308 } 6309 6310 /* Reset and init BRB, PRS, NIG */ 6311 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6312 msleep(50); 6313 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6314 msleep(50); 6315 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6316 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6317 if (!CNIC_SUPPORT(bp)) 6318 /* set NIC mode */ 6319 REG_WR(bp, PRS_REG_NIC_MODE, 1); 6320 6321 /* Enable inputs of parser neighbor blocks */ 6322 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); 6323 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); 6324 REG_WR(bp, CFC_REG_DEBUG0, 0x0); 6325 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); 6326 6327 DP(NETIF_MSG_HW, "done\n"); 6328 6329 return 0; /* OK */ 6330 } 6331 6332 static void bnx2x_enable_blocks_attention(struct bnx2x *bp) 6333 { 6334 u32 val; 6335 6336 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6337 if (!CHIP_IS_E1x(bp)) 6338 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); 6339 else 6340 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); 6341 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6342 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 6343 /* 6344 * mask read length error interrupts in brb for parser 6345 * (parsing unit and 'checksum and crc' unit) 6346 * these errors are legal (PU reads fixed length and CAC can cause 6347 * read length error on truncated packets) 6348 */ 6349 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); 6350 REG_WR(bp, QM_REG_QM_INT_MASK, 0); 6351 REG_WR(bp, TM_REG_TM_INT_MASK, 0); 6352 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); 6353 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); 6354 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); 6355 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ 6356 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ 6357 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); 6358 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); 6359 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); 6360 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ 6361 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ 6362 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 6363 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); 6364 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); 6365 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); 6366 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ 6367 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ 6368 6369 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 6370 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 6371 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; 6372 if (!CHIP_IS_E1x(bp)) 6373 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 6374 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; 6375 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); 6376 6377 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); 6378 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); 6379 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); 6380 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ 6381 6382 if (!CHIP_IS_E1x(bp)) 6383 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 6384 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 6385 6386 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); 6387 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); 6388 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ 6389 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 6390 } 6391 6392 static void bnx2x_reset_common(struct bnx2x *bp) 6393 { 6394 u32 val = 0x1400; 6395 6396 /* reset_common */ 6397 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6398 0xd3ffff7f); 6399 6400 if (CHIP_IS_E3(bp)) { 6401 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6402 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6403 } 6404 6405 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); 6406 } 6407 6408 static void bnx2x_setup_dmae(struct bnx2x *bp) 6409 { 6410 bp->dmae_ready = 0; 6411 spin_lock_init(&bp->dmae_lock); 6412 } 6413 6414 static void bnx2x_init_pxp(struct bnx2x *bp) 6415 { 6416 u16 devctl; 6417 int r_order, w_order; 6418 6419 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); 6420 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); 6421 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6422 if (bp->mrrs == -1) 6423 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6424 else { 6425 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); 6426 r_order = bp->mrrs; 6427 } 6428 6429 bnx2x_init_pxp_arb(bp, r_order, w_order); 6430 } 6431 6432 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) 6433 { 6434 int is_required; 6435 u32 val; 6436 int port; 6437 6438 if (BP_NOMCP(bp)) 6439 return; 6440 6441 is_required = 0; 6442 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & 6443 SHARED_HW_CFG_FAN_FAILURE_MASK; 6444 6445 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) 6446 is_required = 1; 6447 6448 /* 6449 * The fan failure mechanism is usually related to the PHY type since 6450 * the power consumption of the board is affected by the PHY. Currently, 6451 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 6452 */ 6453 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) 6454 for (port = PORT_0; port < PORT_MAX; port++) { 6455 is_required |= 6456 bnx2x_fan_failure_det_req( 6457 bp, 6458 bp->common.shmem_base, 6459 bp->common.shmem2_base, 6460 port); 6461 } 6462 6463 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); 6464 6465 if (is_required == 0) 6466 return; 6467 6468 /* Fan failure is indicated by SPIO 5 */ 6469 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 6470 6471 /* set to active low mode */ 6472 val = REG_RD(bp, MISC_REG_SPIO_INT); 6473 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 6474 REG_WR(bp, MISC_REG_SPIO_INT, val); 6475 6476 /* enable interrupt to signal the IGU */ 6477 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 6478 val |= MISC_SPIO_SPIO5; 6479 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); 6480 } 6481 6482 void bnx2x_pf_disable(struct bnx2x *bp) 6483 { 6484 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 6485 val &= ~IGU_PF_CONF_FUNC_EN; 6486 6487 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 6488 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6489 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); 6490 } 6491 6492 static void bnx2x__common_init_phy(struct bnx2x *bp) 6493 { 6494 u32 shmem_base[2], shmem2_base[2]; 6495 /* Avoid common init in case MFW supports LFA */ 6496 if (SHMEM2_RD(bp, size) > 6497 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 6498 return; 6499 shmem_base[0] = bp->common.shmem_base; 6500 shmem2_base[0] = bp->common.shmem2_base; 6501 if (!CHIP_IS_E1x(bp)) { 6502 shmem_base[1] = 6503 SHMEM2_RD(bp, other_shmem_base_addr); 6504 shmem2_base[1] = 6505 SHMEM2_RD(bp, other_shmem2_base_addr); 6506 } 6507 bnx2x_acquire_phy_lock(bp); 6508 bnx2x_common_init_phy(bp, shmem_base, shmem2_base, 6509 bp->common.chip_id); 6510 bnx2x_release_phy_lock(bp); 6511 } 6512 6513 /** 6514 * bnx2x_init_hw_common - initialize the HW at the COMMON phase. 6515 * 6516 * @bp: driver handle 6517 */ 6518 static int bnx2x_init_hw_common(struct bnx2x *bp) 6519 { 6520 u32 val; 6521 6522 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); 6523 6524 /* 6525 * take the RESET lock to protect undi_unload flow from accessing 6526 * registers while we're resetting the chip 6527 */ 6528 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 6529 6530 bnx2x_reset_common(bp); 6531 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); 6532 6533 val = 0xfffc; 6534 if (CHIP_IS_E3(bp)) { 6535 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6536 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6537 } 6538 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); 6539 6540 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 6541 6542 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); 6543 6544 if (!CHIP_IS_E1x(bp)) { 6545 u8 abs_func_id; 6546 6547 /** 6548 * 4-port mode or 2-port mode we need to turn of master-enable 6549 * for everyone, after that, turn it back on for self. 6550 * so, we disregard multi-function or not, and always disable 6551 * for all functions on the given path, this means 0,2,4,6 for 6552 * path 0 and 1,3,5,7 for path 1 6553 */ 6554 for (abs_func_id = BP_PATH(bp); 6555 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { 6556 if (abs_func_id == BP_ABS_FUNC(bp)) { 6557 REG_WR(bp, 6558 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 6559 1); 6560 continue; 6561 } 6562 6563 bnx2x_pretend_func(bp, abs_func_id); 6564 /* clear pf enable */ 6565 bnx2x_pf_disable(bp); 6566 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 6567 } 6568 } 6569 6570 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); 6571 if (CHIP_IS_E1(bp)) { 6572 /* enable HW interrupt from PXP on USDM overflow 6573 bit 16 on INT_MASK_0 */ 6574 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6575 } 6576 6577 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); 6578 bnx2x_init_pxp(bp); 6579 6580 #ifdef __BIG_ENDIAN 6581 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1); 6582 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1); 6583 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 6584 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 6585 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 6586 /* make sure this value is 0 */ 6587 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); 6588 6589 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */ 6590 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1); 6591 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1); 6592 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1); 6593 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 6594 #endif 6595 6596 bnx2x_ilt_init_page_size(bp, INITOP_SET); 6597 6598 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) 6599 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 6600 6601 /* let the HW do it's magic ... */ 6602 msleep(100); 6603 /* finish PXP init */ 6604 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); 6605 if (val != 1) { 6606 BNX2X_ERR("PXP2 CFG failed\n"); 6607 return -EBUSY; 6608 } 6609 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); 6610 if (val != 1) { 6611 BNX2X_ERR("PXP2 RD_INIT failed\n"); 6612 return -EBUSY; 6613 } 6614 6615 /* Timers bug workaround E2 only. We need to set the entire ILT to 6616 * have entries with value "0" and valid bit on. 6617 * This needs to be done by the first PF that is loaded in a path 6618 * (i.e. common phase) 6619 */ 6620 if (!CHIP_IS_E1x(bp)) { 6621 /* In E2 there is a bug in the timers block that can cause function 6 / 7 6622 * (i.e. vnic3) to start even if it is marked as "scan-off". 6623 * This occurs when a different function (func2,3) is being marked 6624 * as "scan-off". Real-life scenario for example: if a driver is being 6625 * load-unloaded while func6,7 are down. This will cause the timer to access 6626 * the ilt, translate to a logical address and send a request to read/write. 6627 * Since the ilt for the function that is down is not valid, this will cause 6628 * a translation error which is unrecoverable. 6629 * The Workaround is intended to make sure that when this happens nothing fatal 6630 * will occur. The workaround: 6631 * 1. First PF driver which loads on a path will: 6632 * a. After taking the chip out of reset, by using pretend, 6633 * it will write "0" to the following registers of 6634 * the other vnics. 6635 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6636 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 6637 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 6638 * And for itself it will write '1' to 6639 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 6640 * dmae-operations (writing to pram for example.) 6641 * note: can be done for only function 6,7 but cleaner this 6642 * way. 6643 * b. Write zero+valid to the entire ILT. 6644 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 6645 * VNIC3 (of that port). The range allocated will be the 6646 * entire ILT. This is needed to prevent ILT range error. 6647 * 2. Any PF driver load flow: 6648 * a. ILT update with the physical addresses of the allocated 6649 * logical pages. 6650 * b. Wait 20msec. - note that this timeout is needed to make 6651 * sure there are no requests in one of the PXP internal 6652 * queues with "old" ILT addresses. 6653 * c. PF enable in the PGLC. 6654 * d. Clear the was_error of the PF in the PGLC. (could have 6655 * occurred while driver was down) 6656 * e. PF enable in the CFC (WEAK + STRONG) 6657 * f. Timers scan enable 6658 * 3. PF driver unload flow: 6659 * a. Clear the Timers scan_en. 6660 * b. Polling for scan_on=0 for that PF. 6661 * c. Clear the PF enable bit in the PXP. 6662 * d. Clear the PF enable in the CFC (WEAK + STRONG) 6663 * e. Write zero+valid to all ILT entries (The valid bit must 6664 * stay set) 6665 * f. If this is VNIC 3 of a port then also init 6666 * first_timers_ilt_entry to zero and last_timers_ilt_entry 6667 * to the last enrty in the ILT. 6668 * 6669 * Notes: 6670 * Currently the PF error in the PGLC is non recoverable. 6671 * In the future the there will be a recovery routine for this error. 6672 * Currently attention is masked. 6673 * Having an MCP lock on the load/unload process does not guarantee that 6674 * there is no Timer disable during Func6/7 enable. This is because the 6675 * Timers scan is currently being cleared by the MCP on FLR. 6676 * Step 2.d can be done only for PF6/7 and the driver can also check if 6677 * there is error before clearing it. But the flow above is simpler and 6678 * more general. 6679 * All ILT entries are written by zero+valid and not just PF6/7 6680 * ILT entries since in the future the ILT entries allocation for 6681 * PF-s might be dynamic. 6682 */ 6683 struct ilt_client_info ilt_cli; 6684 struct bnx2x_ilt ilt; 6685 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 6686 memset(&ilt, 0, sizeof(struct bnx2x_ilt)); 6687 6688 /* initialize dummy TM client */ 6689 ilt_cli.start = 0; 6690 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 6691 ilt_cli.client_num = ILT_CLIENT_TM; 6692 6693 /* Step 1: set zeroes to all ilt page entries with valid bit on 6694 * Step 2: set the timers first/last ilt entry to point 6695 * to the entire range to prevent ILT range error for 3rd/4th 6696 * vnic (this code assumes existence of the vnic) 6697 * 6698 * both steps performed by call to bnx2x_ilt_client_init_op() 6699 * with dummy TM client 6700 * 6701 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 6702 * and his brother are split registers 6703 */ 6704 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); 6705 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); 6706 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 6707 6708 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); 6709 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); 6710 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 6711 } 6712 6713 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); 6714 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); 6715 6716 if (!CHIP_IS_E1x(bp)) { 6717 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : 6718 (CHIP_REV_IS_FPGA(bp) ? 400 : 0); 6719 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); 6720 6721 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); 6722 6723 /* let the HW do it's magic ... */ 6724 do { 6725 msleep(200); 6726 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); 6727 } while (factor-- && (val != 1)); 6728 6729 if (val != 1) { 6730 BNX2X_ERR("ATC_INIT failed\n"); 6731 return -EBUSY; 6732 } 6733 } 6734 6735 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); 6736 6737 bnx2x_iov_init_dmae(bp); 6738 6739 /* clean the DMAE memory */ 6740 bp->dmae_ready = 1; 6741 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); 6742 6743 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); 6744 6745 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); 6746 6747 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); 6748 6749 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); 6750 6751 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); 6752 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); 6753 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); 6754 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); 6755 6756 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); 6757 6758 6759 /* QM queues pointers table */ 6760 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); 6761 6762 /* soft reset pulse */ 6763 REG_WR(bp, QM_REG_SOFT_RESET, 1); 6764 REG_WR(bp, QM_REG_SOFT_RESET, 0); 6765 6766 if (CNIC_SUPPORT(bp)) 6767 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); 6768 6769 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); 6770 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT); 6771 if (!CHIP_REV_IS_SLOW(bp)) 6772 /* enable hw interrupt from doorbell Q */ 6773 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6774 6775 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6776 6777 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6778 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); 6779 6780 if (!CHIP_IS_E1(bp)) 6781 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); 6782 6783 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { 6784 if (IS_MF_AFEX(bp)) { 6785 /* configure that VNTag and VLAN headers must be 6786 * received in afex mode 6787 */ 6788 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); 6789 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); 6790 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 6791 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 6792 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); 6793 } else { 6794 /* Bit-map indicating which L2 hdrs may appear 6795 * after the basic Ethernet header 6796 */ 6797 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 6798 bp->path_has_ovlan ? 7 : 6); 6799 } 6800 } 6801 6802 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); 6803 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); 6804 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); 6805 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); 6806 6807 if (!CHIP_IS_E1x(bp)) { 6808 /* reset VFC memories */ 6809 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 6810 VFC_MEMORIES_RST_REG_CAM_RST | 6811 VFC_MEMORIES_RST_REG_RAM_RST); 6812 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 6813 VFC_MEMORIES_RST_REG_CAM_RST | 6814 VFC_MEMORIES_RST_REG_RAM_RST); 6815 6816 msleep(20); 6817 } 6818 6819 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); 6820 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); 6821 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); 6822 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); 6823 6824 /* sync semi rtc */ 6825 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6826 0x80000000); 6827 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 6828 0x80000000); 6829 6830 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); 6831 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); 6832 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); 6833 6834 if (!CHIP_IS_E1x(bp)) { 6835 if (IS_MF_AFEX(bp)) { 6836 /* configure that VNTag and VLAN headers must be 6837 * sent in afex mode 6838 */ 6839 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); 6840 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); 6841 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 6842 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 6843 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); 6844 } else { 6845 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 6846 bp->path_has_ovlan ? 7 : 6); 6847 } 6848 } 6849 6850 REG_WR(bp, SRC_REG_SOFT_RST, 1); 6851 6852 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); 6853 6854 if (CNIC_SUPPORT(bp)) { 6855 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); 6856 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 6857 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); 6858 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); 6859 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); 6860 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 6861 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); 6862 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 6863 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); 6864 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); 6865 } 6866 REG_WR(bp, SRC_REG_SOFT_RST, 0); 6867 6868 if (sizeof(union cdu_context) != 1024) 6869 /* we currently assume that a context is 1024 bytes */ 6870 dev_alert(&bp->pdev->dev, 6871 "please adjust the size of cdu_context(%ld)\n", 6872 (long)sizeof(union cdu_context)); 6873 6874 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); 6875 val = (4 << 24) + (0 << 12) + 1024; 6876 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); 6877 6878 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); 6879 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); 6880 /* enable context validation interrupt from CFC */ 6881 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 6882 6883 /* set the thresholds to prevent CFC/CDU race */ 6884 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); 6885 6886 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); 6887 6888 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) 6889 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); 6890 6891 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); 6892 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); 6893 6894 /* Reset PCIE errors for debug */ 6895 REG_WR(bp, 0x2814, 0xffffffff); 6896 REG_WR(bp, 0x3820, 0xffffffff); 6897 6898 if (!CHIP_IS_E1x(bp)) { 6899 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 6900 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 6901 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 6902 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 6903 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 6904 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 6905 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 6906 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 6907 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 6908 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 6909 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 6910 } 6911 6912 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); 6913 if (!CHIP_IS_E1(bp)) { 6914 /* in E3 this done in per-port section */ 6915 if (!CHIP_IS_E3(bp)) 6916 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); 6917 } 6918 if (CHIP_IS_E1H(bp)) 6919 /* not applicable for E2 (and above ...) */ 6920 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); 6921 6922 if (CHIP_REV_IS_SLOW(bp)) 6923 msleep(200); 6924 6925 /* finish CFC init */ 6926 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); 6927 if (val != 1) { 6928 BNX2X_ERR("CFC LL_INIT failed\n"); 6929 return -EBUSY; 6930 } 6931 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); 6932 if (val != 1) { 6933 BNX2X_ERR("CFC AC_INIT failed\n"); 6934 return -EBUSY; 6935 } 6936 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 6937 if (val != 1) { 6938 BNX2X_ERR("CFC CAM_INIT failed\n"); 6939 return -EBUSY; 6940 } 6941 REG_WR(bp, CFC_REG_DEBUG0, 0); 6942 6943 if (CHIP_IS_E1(bp)) { 6944 /* read NIG statistic 6945 to see if this is our first up since powerup */ 6946 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6947 val = *bnx2x_sp(bp, wb_data[0]); 6948 6949 /* do internal memory self test */ 6950 if ((val == 0) && bnx2x_int_mem_test(bp)) { 6951 BNX2X_ERR("internal mem self test failed\n"); 6952 return -EBUSY; 6953 } 6954 } 6955 6956 bnx2x_setup_fan_failure_detection(bp); 6957 6958 /* clear PXP2 attentions */ 6959 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); 6960 6961 bnx2x_enable_blocks_attention(bp); 6962 bnx2x_enable_blocks_parity(bp); 6963 6964 if (!BP_NOMCP(bp)) { 6965 if (CHIP_IS_E1x(bp)) 6966 bnx2x__common_init_phy(bp); 6967 } else 6968 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 6969 6970 return 0; 6971 } 6972 6973 /** 6974 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. 6975 * 6976 * @bp: driver handle 6977 */ 6978 static int bnx2x_init_hw_common_chip(struct bnx2x *bp) 6979 { 6980 int rc = bnx2x_init_hw_common(bp); 6981 6982 if (rc) 6983 return rc; 6984 6985 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 6986 if (!BP_NOMCP(bp)) 6987 bnx2x__common_init_phy(bp); 6988 6989 return 0; 6990 } 6991 6992 static int bnx2x_init_hw_port(struct bnx2x *bp) 6993 { 6994 int port = BP_PORT(bp); 6995 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 6996 u32 low, high; 6997 u32 val; 6998 6999 7000 DP(NETIF_MSG_HW, "starting port init port %d\n", port); 7001 7002 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 7003 7004 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7005 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7006 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7007 7008 /* Timers bug workaround: disables the pf_master bit in pglue at 7009 * common phase, we need to enable it here before any dmae access are 7010 * attempted. Therefore we manually added the enable-master to the 7011 * port phase (it also happens in the function phase) 7012 */ 7013 if (!CHIP_IS_E1x(bp)) 7014 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7015 7016 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7017 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7018 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7019 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7020 7021 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7022 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7023 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7024 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7025 7026 /* QM cid (connection) count */ 7027 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); 7028 7029 if (CNIC_SUPPORT(bp)) { 7030 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7031 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); 7032 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 7033 } 7034 7035 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7036 7037 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7038 7039 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { 7040 7041 if (IS_MF(bp)) 7042 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); 7043 else if (bp->dev->mtu > 4096) { 7044 if (bp->flags & ONE_PORT_FLAG) 7045 low = 160; 7046 else { 7047 val = bp->dev->mtu; 7048 /* (24*1024 + val*4)/256 */ 7049 low = 96 + (val/64) + 7050 ((val % 64) ? 1 : 0); 7051 } 7052 } else 7053 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); 7054 high = low + 56; /* 14*1024/256 */ 7055 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 7056 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 7057 } 7058 7059 if (CHIP_MODE_IS_4_PORT(bp)) 7060 REG_WR(bp, (BP_PORT(bp) ? 7061 BRB1_REG_MAC_GUARANTIED_1 : 7062 BRB1_REG_MAC_GUARANTIED_0), 40); 7063 7064 7065 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7066 if (CHIP_IS_E3B0(bp)) { 7067 if (IS_MF_AFEX(bp)) { 7068 /* configure headers for AFEX mode */ 7069 REG_WR(bp, BP_PORT(bp) ? 7070 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7071 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 7072 REG_WR(bp, BP_PORT(bp) ? 7073 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 7074 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 7075 REG_WR(bp, BP_PORT(bp) ? 7076 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 7077 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 7078 } else { 7079 /* Ovlan exists only if we are in multi-function + 7080 * switch-dependent mode, in switch-independent there 7081 * is no ovlan headers 7082 */ 7083 REG_WR(bp, BP_PORT(bp) ? 7084 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7085 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 7086 (bp->path_has_ovlan ? 7 : 6)); 7087 } 7088 } 7089 7090 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7091 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7092 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7093 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7094 7095 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7096 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7097 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7098 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7099 7100 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7101 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7102 7103 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7104 7105 if (CHIP_IS_E1x(bp)) { 7106 /* configure PBF to work without PAUSE mtu 9000 */ 7107 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 7108 7109 /* update threshold */ 7110 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 7111 /* update init credit */ 7112 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 7113 7114 /* probe changes */ 7115 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); 7116 udelay(50); 7117 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); 7118 } 7119 7120 if (CNIC_SUPPORT(bp)) 7121 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7122 7123 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7124 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7125 7126 if (CHIP_IS_E1(bp)) { 7127 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7128 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7129 } 7130 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7131 7132 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7133 7134 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7135 /* init aeu_mask_attn_func_0/1: 7136 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 7137 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 7138 * bits 4-7 are used for "per vn group attention" */ 7139 val = IS_MF(bp) ? 0xF7 : 0x7; 7140 /* Enable DCBX attention for all but E1 */ 7141 val |= CHIP_IS_E1(bp) ? 0 : 0x10; 7142 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 7143 7144 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7145 7146 if (!CHIP_IS_E1x(bp)) { 7147 /* Bit-map indicating which L2 hdrs may appear after the 7148 * basic Ethernet header 7149 */ 7150 if (IS_MF_AFEX(bp)) 7151 REG_WR(bp, BP_PORT(bp) ? 7152 NIG_REG_P1_HDRS_AFTER_BASIC : 7153 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 7154 else 7155 REG_WR(bp, BP_PORT(bp) ? 7156 NIG_REG_P1_HDRS_AFTER_BASIC : 7157 NIG_REG_P0_HDRS_AFTER_BASIC, 7158 IS_MF_SD(bp) ? 7 : 6); 7159 7160 if (CHIP_IS_E3(bp)) 7161 REG_WR(bp, BP_PORT(bp) ? 7162 NIG_REG_LLH1_MF_MODE : 7163 NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7164 } 7165 if (!CHIP_IS_E3(bp)) 7166 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 7167 7168 if (!CHIP_IS_E1(bp)) { 7169 /* 0x2 disable mf_ov, 0x1 enable */ 7170 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 7171 (IS_MF_SD(bp) ? 0x1 : 0x2)); 7172 7173 if (!CHIP_IS_E1x(bp)) { 7174 val = 0; 7175 switch (bp->mf_mode) { 7176 case MULTI_FUNCTION_SD: 7177 val = 1; 7178 break; 7179 case MULTI_FUNCTION_SI: 7180 case MULTI_FUNCTION_AFEX: 7181 val = 2; 7182 break; 7183 } 7184 7185 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : 7186 NIG_REG_LLH0_CLS_TYPE), val); 7187 } 7188 { 7189 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 7190 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 7191 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 7192 } 7193 } 7194 7195 /* If SPIO5 is set to generate interrupts, enable it for this port */ 7196 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 7197 if (val & MISC_SPIO_SPIO5) { 7198 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 7199 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 7200 val = REG_RD(bp, reg_addr); 7201 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 7202 REG_WR(bp, reg_addr, val); 7203 } 7204 7205 return 0; 7206 } 7207 7208 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) 7209 { 7210 int reg; 7211 u32 wb_write[2]; 7212 7213 if (CHIP_IS_E1(bp)) 7214 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 7215 else 7216 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 7217 7218 wb_write[0] = ONCHIP_ADDR1(addr); 7219 wb_write[1] = ONCHIP_ADDR2(addr); 7220 REG_WR_DMAE(bp, reg, wb_write, 2); 7221 } 7222 7223 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) 7224 { 7225 u32 data, ctl, cnt = 100; 7226 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 7227 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 7228 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 7229 u32 sb_bit = 1 << (idu_sb_id%32); 7230 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 7231 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 7232 7233 /* Not supported in BC mode */ 7234 if (CHIP_INT_MODE_IS_BC(bp)) 7235 return; 7236 7237 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup 7238 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 7239 IGU_REGULAR_CLEANUP_SET | 7240 IGU_REGULAR_BCLEANUP; 7241 7242 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 7243 func_encode << IGU_CTRL_REG_FID_SHIFT | 7244 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 7245 7246 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7247 data, igu_addr_data); 7248 REG_WR(bp, igu_addr_data, data); 7249 mmiowb(); 7250 barrier(); 7251 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7252 ctl, igu_addr_ctl); 7253 REG_WR(bp, igu_addr_ctl, ctl); 7254 mmiowb(); 7255 barrier(); 7256 7257 /* wait for clean up to finish */ 7258 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) 7259 msleep(20); 7260 7261 7262 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { 7263 DP(NETIF_MSG_HW, 7264 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", 7265 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 7266 } 7267 } 7268 7269 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) 7270 { 7271 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); 7272 } 7273 7274 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) 7275 { 7276 u32 i, base = FUNC_ILT_BASE(func); 7277 for (i = base; i < base + ILT_PER_FUNC; i++) 7278 bnx2x_ilt_wr(bp, i, 0); 7279 } 7280 7281 7282 static void bnx2x_init_searcher(struct bnx2x *bp) 7283 { 7284 int port = BP_PORT(bp); 7285 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); 7286 /* T1 hash bits value determines the T1 number of entries */ 7287 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 7288 } 7289 7290 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) 7291 { 7292 int rc; 7293 struct bnx2x_func_state_params func_params = {NULL}; 7294 struct bnx2x_func_switch_update_params *switch_update_params = 7295 &func_params.params.switch_update; 7296 7297 /* Prepare parameters for function state transitions */ 7298 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 7299 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 7300 7301 func_params.f_obj = &bp->func_obj; 7302 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 7303 7304 /* Function parameters */ 7305 switch_update_params->suspend = suspend; 7306 7307 rc = bnx2x_func_state_change(bp, &func_params); 7308 7309 return rc; 7310 } 7311 7312 static int bnx2x_reset_nic_mode(struct bnx2x *bp) 7313 { 7314 int rc, i, port = BP_PORT(bp); 7315 int vlan_en = 0, mac_en[NUM_MACS]; 7316 7317 7318 /* Close input from network */ 7319 if (bp->mf_mode == SINGLE_FUNCTION) { 7320 bnx2x_set_rx_filter(&bp->link_params, 0); 7321 } else { 7322 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : 7323 NIG_REG_LLH0_FUNC_EN); 7324 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7325 NIG_REG_LLH0_FUNC_EN, 0); 7326 for (i = 0; i < NUM_MACS; i++) { 7327 mac_en[i] = REG_RD(bp, port ? 7328 (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7329 4 * i) : 7330 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 7331 4 * i)); 7332 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7333 4 * i) : 7334 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); 7335 } 7336 } 7337 7338 /* Close BMC to host */ 7339 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7340 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); 7341 7342 /* Suspend Tx switching to the PF. Completion of this ramrod 7343 * further guarantees that all the packets of that PF / child 7344 * VFs in BRB were processed by the Parser, so it is safe to 7345 * change the NIC_MODE register. 7346 */ 7347 rc = bnx2x_func_switch_update(bp, 1); 7348 if (rc) { 7349 BNX2X_ERR("Can't suspend tx-switching!\n"); 7350 return rc; 7351 } 7352 7353 /* Change NIC_MODE register */ 7354 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7355 7356 /* Open input from network */ 7357 if (bp->mf_mode == SINGLE_FUNCTION) { 7358 bnx2x_set_rx_filter(&bp->link_params, 1); 7359 } else { 7360 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7361 NIG_REG_LLH0_FUNC_EN, vlan_en); 7362 for (i = 0; i < NUM_MACS; i++) { 7363 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7364 4 * i) : 7365 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 7366 mac_en[i]); 7367 } 7368 } 7369 7370 /* Enable BMC to host */ 7371 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7372 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); 7373 7374 /* Resume Tx switching to the PF */ 7375 rc = bnx2x_func_switch_update(bp, 0); 7376 if (rc) { 7377 BNX2X_ERR("Can't resume tx-switching!\n"); 7378 return rc; 7379 } 7380 7381 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7382 return 0; 7383 } 7384 7385 int bnx2x_init_hw_func_cnic(struct bnx2x *bp) 7386 { 7387 int rc; 7388 7389 bnx2x_ilt_init_op_cnic(bp, INITOP_SET); 7390 7391 if (CONFIGURE_NIC_MODE(bp)) { 7392 /* Configrue searcher as part of function hw init */ 7393 bnx2x_init_searcher(bp); 7394 7395 /* Reset NIC mode */ 7396 rc = bnx2x_reset_nic_mode(bp); 7397 if (rc) 7398 BNX2X_ERR("Can't change NIC mode!\n"); 7399 return rc; 7400 } 7401 7402 return 0; 7403 } 7404 7405 static int bnx2x_init_hw_func(struct bnx2x *bp) 7406 { 7407 int port = BP_PORT(bp); 7408 int func = BP_FUNC(bp); 7409 int init_phase = PHASE_PF0 + func; 7410 struct bnx2x_ilt *ilt = BP_ILT(bp); 7411 u16 cdu_ilt_start; 7412 u32 addr, val; 7413 u32 main_mem_base, main_mem_size, main_mem_prty_clr; 7414 int i, main_mem_width, rc; 7415 7416 DP(NETIF_MSG_HW, "starting func init func %d\n", func); 7417 7418 /* FLR cleanup - hmmm */ 7419 if (!CHIP_IS_E1x(bp)) { 7420 rc = bnx2x_pf_flr_clnup(bp); 7421 if (rc) { 7422 bnx2x_fw_dump(bp); 7423 return rc; 7424 } 7425 } 7426 7427 /* set MSI reconfigure capability */ 7428 if (bp->common.int_block == INT_BLOCK_HC) { 7429 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 7430 val = REG_RD(bp, addr); 7431 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 7432 REG_WR(bp, addr, val); 7433 } 7434 7435 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7436 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7437 7438 ilt = BP_ILT(bp); 7439 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7440 7441 if (IS_SRIOV(bp)) 7442 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; 7443 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); 7444 7445 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes 7446 * those of the VFs, so start line should be reset 7447 */ 7448 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7449 for (i = 0; i < L2_ILT_LINES(bp); i++) { 7450 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; 7451 ilt->lines[cdu_ilt_start + i].page_mapping = 7452 bp->context[i].cxt_mapping; 7453 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; 7454 } 7455 7456 bnx2x_ilt_init_op(bp, INITOP_SET); 7457 7458 if (!CONFIGURE_NIC_MODE(bp)) { 7459 bnx2x_init_searcher(bp); 7460 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7461 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7462 } else { 7463 /* Set NIC mode */ 7464 REG_WR(bp, PRS_REG_NIC_MODE, 1); 7465 DP(NETIF_MSG_IFUP, "NIC MODE configrued\n"); 7466 7467 } 7468 7469 if (!CHIP_IS_E1x(bp)) { 7470 u32 pf_conf = IGU_PF_CONF_FUNC_EN; 7471 7472 /* Turn on a single ISR mode in IGU if driver is going to use 7473 * INT#x or MSI 7474 */ 7475 if (!(bp->flags & USING_MSIX_FLAG)) 7476 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 7477 /* 7478 * Timers workaround bug: function init part. 7479 * Need to wait 20msec after initializing ILT, 7480 * needed to make sure there are no requests in 7481 * one of the PXP internal queues with "old" ILT addresses 7482 */ 7483 msleep(20); 7484 /* 7485 * Master enable - Due to WB DMAE writes performed before this 7486 * register is re-initialized as part of the regular function 7487 * init 7488 */ 7489 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7490 /* Enable the function in IGU */ 7491 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); 7492 } 7493 7494 bp->dmae_ready = 1; 7495 7496 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7497 7498 if (!CHIP_IS_E1x(bp)) 7499 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 7500 7501 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7502 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7503 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7504 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7505 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7506 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7507 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7508 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7509 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7510 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7511 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7512 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7513 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7514 7515 if (!CHIP_IS_E1x(bp)) 7516 REG_WR(bp, QM_REG_PF_EN, 1); 7517 7518 if (!CHIP_IS_E1x(bp)) { 7519 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7520 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7521 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7522 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7523 } 7524 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7525 7526 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7527 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7528 7529 bnx2x_iov_init_dq(bp); 7530 7531 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7532 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7533 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7534 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7535 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7536 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7537 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7538 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7539 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7540 if (!CHIP_IS_E1x(bp)) 7541 REG_WR(bp, PBF_REG_DISABLE_PF, 0); 7542 7543 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7544 7545 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7546 7547 if (!CHIP_IS_E1x(bp)) 7548 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); 7549 7550 if (IS_MF(bp)) { 7551 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7552 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov); 7553 } 7554 7555 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7556 7557 /* HC init per function */ 7558 if (bp->common.int_block == INT_BLOCK_HC) { 7559 if (CHIP_IS_E1H(bp)) { 7560 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7561 7562 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7563 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7564 } 7565 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7566 7567 } else { 7568 int num_segs, sb_idx, prod_offset; 7569 7570 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7571 7572 if (!CHIP_IS_E1x(bp)) { 7573 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 7574 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 7575 } 7576 7577 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7578 7579 if (!CHIP_IS_E1x(bp)) { 7580 int dsb_idx = 0; 7581 /** 7582 * Producer memory: 7583 * E2 mode: address 0-135 match to the mapping memory; 7584 * 136 - PF0 default prod; 137 - PF1 default prod; 7585 * 138 - PF2 default prod; 139 - PF3 default prod; 7586 * 140 - PF0 attn prod; 141 - PF1 attn prod; 7587 * 142 - PF2 attn prod; 143 - PF3 attn prod; 7588 * 144-147 reserved. 7589 * 7590 * E1.5 mode - In backward compatible mode; 7591 * for non default SB; each even line in the memory 7592 * holds the U producer and each odd line hold 7593 * the C producer. The first 128 producers are for 7594 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 7595 * producers are for the DSB for each PF. 7596 * Each PF has five segments: (the order inside each 7597 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 7598 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 7599 * 144-147 attn prods; 7600 */ 7601 /* non-default-status-blocks */ 7602 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 7603 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 7604 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { 7605 prod_offset = (bp->igu_base_sb + sb_idx) * 7606 num_segs; 7607 7608 for (i = 0; i < num_segs; i++) { 7609 addr = IGU_REG_PROD_CONS_MEMORY + 7610 (prod_offset + i) * 4; 7611 REG_WR(bp, addr, 0); 7612 } 7613 /* send consumer update with value 0 */ 7614 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, 7615 USTORM_ID, 0, IGU_INT_NOP, 1); 7616 bnx2x_igu_clear_sb(bp, 7617 bp->igu_base_sb + sb_idx); 7618 } 7619 7620 /* default-status-blocks */ 7621 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 7622 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 7623 7624 if (CHIP_MODE_IS_4_PORT(bp)) 7625 dsb_idx = BP_FUNC(bp); 7626 else 7627 dsb_idx = BP_VN(bp); 7628 7629 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? 7630 IGU_BC_BASE_DSB_PROD + dsb_idx : 7631 IGU_NORM_BASE_DSB_PROD + dsb_idx); 7632 7633 /* 7634 * igu prods come in chunks of E1HVN_MAX (4) - 7635 * does not matters what is the current chip mode 7636 */ 7637 for (i = 0; i < (num_segs * E1HVN_MAX); 7638 i += E1HVN_MAX) { 7639 addr = IGU_REG_PROD_CONS_MEMORY + 7640 (prod_offset + i)*4; 7641 REG_WR(bp, addr, 0); 7642 } 7643 /* send consumer update with 0 */ 7644 if (CHIP_INT_MODE_IS_BC(bp)) { 7645 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7646 USTORM_ID, 0, IGU_INT_NOP, 1); 7647 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7648 CSTORM_ID, 0, IGU_INT_NOP, 1); 7649 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7650 XSTORM_ID, 0, IGU_INT_NOP, 1); 7651 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7652 TSTORM_ID, 0, IGU_INT_NOP, 1); 7653 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7654 ATTENTION_ID, 0, IGU_INT_NOP, 1); 7655 } else { 7656 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7657 USTORM_ID, 0, IGU_INT_NOP, 1); 7658 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7659 ATTENTION_ID, 0, IGU_INT_NOP, 1); 7660 } 7661 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); 7662 7663 /* !!! these should become driver const once 7664 rf-tool supports split-68 const */ 7665 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 7666 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 7667 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 7668 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 7669 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 7670 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 7671 } 7672 } 7673 7674 /* Reset PCIE errors for debug */ 7675 REG_WR(bp, 0x2114, 0xffffffff); 7676 REG_WR(bp, 0x2120, 0xffffffff); 7677 7678 if (CHIP_IS_E1x(bp)) { 7679 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 7680 main_mem_base = HC_REG_MAIN_MEMORY + 7681 BP_PORT(bp) * (main_mem_size * 4); 7682 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 7683 main_mem_width = 8; 7684 7685 val = REG_RD(bp, main_mem_prty_clr); 7686 if (val) 7687 DP(NETIF_MSG_HW, 7688 "Hmmm... Parity errors in HC block during function init (0x%x)!\n", 7689 val); 7690 7691 /* Clear "false" parity errors in MSI-X table */ 7692 for (i = main_mem_base; 7693 i < main_mem_base + main_mem_size * 4; 7694 i += main_mem_width) { 7695 bnx2x_read_dmae(bp, i, main_mem_width / 4); 7696 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), 7697 i, main_mem_width / 4); 7698 } 7699 /* Clear HC parity attention */ 7700 REG_RD(bp, main_mem_prty_clr); 7701 } 7702 7703 #ifdef BNX2X_STOP_ON_ERROR 7704 /* Enable STORMs SP logging */ 7705 REG_WR8(bp, BAR_USTRORM_INTMEM + 7706 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 7707 REG_WR8(bp, BAR_TSTRORM_INTMEM + 7708 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 7709 REG_WR8(bp, BAR_CSTRORM_INTMEM + 7710 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 7711 REG_WR8(bp, BAR_XSTRORM_INTMEM + 7712 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 7713 #endif 7714 7715 bnx2x_phy_probe(&bp->link_params); 7716 7717 return 0; 7718 } 7719 7720 7721 void bnx2x_free_mem_cnic(struct bnx2x *bp) 7722 { 7723 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); 7724 7725 if (!CHIP_IS_E1x(bp)) 7726 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, 7727 sizeof(struct host_hc_status_block_e2)); 7728 else 7729 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, 7730 sizeof(struct host_hc_status_block_e1x)); 7731 7732 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 7733 } 7734 7735 void bnx2x_free_mem(struct bnx2x *bp) 7736 { 7737 int i; 7738 7739 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, 7740 sizeof(struct host_sp_status_block)); 7741 7742 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 7743 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 7744 7745 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, 7746 sizeof(struct bnx2x_slowpath)); 7747 7748 for (i = 0; i < L2_ILT_LINES(bp); i++) 7749 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, 7750 bp->context[i].size); 7751 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); 7752 7753 BNX2X_FREE(bp->ilt->lines); 7754 7755 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); 7756 7757 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, 7758 BCM_PAGE_SIZE * NUM_EQ_PAGES); 7759 7760 bnx2x_iov_free_mem(bp); 7761 } 7762 7763 7764 int bnx2x_alloc_mem_cnic(struct bnx2x *bp) 7765 { 7766 if (!CHIP_IS_E1x(bp)) 7767 /* size = the status block + ramrod buffers */ 7768 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping, 7769 sizeof(struct host_hc_status_block_e2)); 7770 else 7771 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, 7772 &bp->cnic_sb_mapping, 7773 sizeof(struct 7774 host_hc_status_block_e1x)); 7775 7776 if (CONFIGURE_NIC_MODE(bp)) 7777 /* allocate searcher T2 table, as it wan't allocated before */ 7778 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ); 7779 7780 /* write address to which L5 should insert its values */ 7781 bp->cnic_eth_dev.addr_drv_info_to_mcp = 7782 &bp->slowpath->drv_info_to_mcp; 7783 7784 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) 7785 goto alloc_mem_err; 7786 7787 return 0; 7788 7789 alloc_mem_err: 7790 bnx2x_free_mem_cnic(bp); 7791 BNX2X_ERR("Can't allocate memory\n"); 7792 return -ENOMEM; 7793 } 7794 7795 int bnx2x_alloc_mem(struct bnx2x *bp) 7796 { 7797 int i, allocated, context_size; 7798 7799 if (!CONFIGURE_NIC_MODE(bp)) 7800 /* allocate searcher T2 table */ 7801 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ); 7802 7803 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping, 7804 sizeof(struct host_sp_status_block)); 7805 7806 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping, 7807 sizeof(struct bnx2x_slowpath)); 7808 7809 /* Allocate memory for CDU context: 7810 * This memory is allocated separately and not in the generic ILT 7811 * functions because CDU differs in few aspects: 7812 * 1. There are multiple entities allocating memory for context - 7813 * 'regular' driver, CNIC and SRIOV driver. Each separately controls 7814 * its own ILT lines. 7815 * 2. Since CDU page-size is not a single 4KB page (which is the case 7816 * for the other ILT clients), to be efficient we want to support 7817 * allocation of sub-page-size in the last entry. 7818 * 3. Context pointers are used by the driver to pass to FW / update 7819 * the context (for the other ILT clients the pointers are used just to 7820 * free the memory during unload). 7821 */ 7822 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); 7823 7824 for (i = 0, allocated = 0; allocated < context_size; i++) { 7825 bp->context[i].size = min(CDU_ILT_PAGE_SZ, 7826 (context_size - allocated)); 7827 BNX2X_PCI_ALLOC(bp->context[i].vcxt, 7828 &bp->context[i].cxt_mapping, 7829 bp->context[i].size); 7830 allocated += bp->context[i].size; 7831 } 7832 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES); 7833 7834 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) 7835 goto alloc_mem_err; 7836 7837 if (bnx2x_iov_alloc_mem(bp)) 7838 goto alloc_mem_err; 7839 7840 /* Slow path ring */ 7841 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE); 7842 7843 /* EQ */ 7844 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping, 7845 BCM_PAGE_SIZE * NUM_EQ_PAGES); 7846 7847 return 0; 7848 7849 alloc_mem_err: 7850 bnx2x_free_mem(bp); 7851 BNX2X_ERR("Can't allocate memory\n"); 7852 return -ENOMEM; 7853 } 7854 7855 /* 7856 * Init service functions 7857 */ 7858 7859 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 7860 struct bnx2x_vlan_mac_obj *obj, bool set, 7861 int mac_type, unsigned long *ramrod_flags) 7862 { 7863 int rc; 7864 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 7865 7866 memset(&ramrod_param, 0, sizeof(ramrod_param)); 7867 7868 /* Fill general parameters */ 7869 ramrod_param.vlan_mac_obj = obj; 7870 ramrod_param.ramrod_flags = *ramrod_flags; 7871 7872 /* Fill a user request section if needed */ 7873 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 7874 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 7875 7876 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 7877 7878 /* Set the command: ADD or DEL */ 7879 if (set) 7880 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 7881 else 7882 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 7883 } 7884 7885 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 7886 7887 if (rc == -EEXIST) { 7888 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 7889 /* do not treat adding same MAC as error */ 7890 rc = 0; 7891 } else if (rc < 0) 7892 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); 7893 7894 return rc; 7895 } 7896 7897 int bnx2x_del_all_macs(struct bnx2x *bp, 7898 struct bnx2x_vlan_mac_obj *mac_obj, 7899 int mac_type, bool wait_for_comp) 7900 { 7901 int rc; 7902 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 7903 7904 /* Wait for completion of requested */ 7905 if (wait_for_comp) 7906 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 7907 7908 /* Set the mac type of addresses we want to clear */ 7909 __set_bit(mac_type, &vlan_mac_flags); 7910 7911 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); 7912 if (rc < 0) 7913 BNX2X_ERR("Failed to delete MACs: %d\n", rc); 7914 7915 return rc; 7916 } 7917 7918 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) 7919 { 7920 unsigned long ramrod_flags = 0; 7921 7922 if (is_zero_ether_addr(bp->dev->dev_addr) && 7923 (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) { 7924 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN, 7925 "Ignoring Zero MAC for STORAGE SD mode\n"); 7926 return 0; 7927 } 7928 7929 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); 7930 7931 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 7932 /* Eth MAC is set on RSS leading client (fp[0]) */ 7933 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->sp_objs->mac_obj, 7934 set, BNX2X_ETH_MAC, &ramrod_flags); 7935 } 7936 7937 int bnx2x_setup_leading(struct bnx2x *bp) 7938 { 7939 return bnx2x_setup_queue(bp, &bp->fp[0], 1); 7940 } 7941 7942 /** 7943 * bnx2x_set_int_mode - configure interrupt mode 7944 * 7945 * @bp: driver handle 7946 * 7947 * In case of MSI-X it will also try to enable MSI-X. 7948 */ 7949 int bnx2x_set_int_mode(struct bnx2x *bp) 7950 { 7951 int rc = 0; 7952 7953 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) 7954 return -EINVAL; 7955 7956 switch (int_mode) { 7957 case BNX2X_INT_MODE_MSIX: 7958 /* attempt to enable msix */ 7959 rc = bnx2x_enable_msix(bp); 7960 7961 /* msix attained */ 7962 if (!rc) 7963 return 0; 7964 7965 /* vfs use only msix */ 7966 if (rc && IS_VF(bp)) 7967 return rc; 7968 7969 /* failed to enable multiple MSI-X */ 7970 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", 7971 bp->num_queues, 7972 1 + bp->num_cnic_queues); 7973 7974 /* falling through... */ 7975 case BNX2X_INT_MODE_MSI: 7976 bnx2x_enable_msi(bp); 7977 7978 /* falling through... */ 7979 case BNX2X_INT_MODE_INTX: 7980 bp->num_ethernet_queues = 1; 7981 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 7982 BNX2X_DEV_INFO("set number of queues to 1\n"); 7983 break; 7984 default: 7985 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); 7986 return -EINVAL; 7987 } 7988 return 0; 7989 } 7990 7991 /* must be called prior to any HW initializations */ 7992 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) 7993 { 7994 if (IS_SRIOV(bp)) 7995 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; 7996 return L2_ILT_LINES(bp); 7997 } 7998 7999 void bnx2x_ilt_set_info(struct bnx2x *bp) 8000 { 8001 struct ilt_client_info *ilt_client; 8002 struct bnx2x_ilt *ilt = BP_ILT(bp); 8003 u16 line = 0; 8004 8005 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); 8006 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); 8007 8008 /* CDU */ 8009 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 8010 ilt_client->client_num = ILT_CLIENT_CDU; 8011 ilt_client->page_size = CDU_ILT_PAGE_SZ; 8012 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 8013 ilt_client->start = line; 8014 line += bnx2x_cid_ilt_lines(bp); 8015 8016 if (CNIC_SUPPORT(bp)) 8017 line += CNIC_ILT_LINES; 8018 ilt_client->end = line - 1; 8019 8020 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8021 ilt_client->start, 8022 ilt_client->end, 8023 ilt_client->page_size, 8024 ilt_client->flags, 8025 ilog2(ilt_client->page_size >> 12)); 8026 8027 /* QM */ 8028 if (QM_INIT(bp->qm_cid_count)) { 8029 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 8030 ilt_client->client_num = ILT_CLIENT_QM; 8031 ilt_client->page_size = QM_ILT_PAGE_SZ; 8032 ilt_client->flags = 0; 8033 ilt_client->start = line; 8034 8035 /* 4 bytes for each cid */ 8036 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 8037 QM_ILT_PAGE_SZ); 8038 8039 ilt_client->end = line - 1; 8040 8041 DP(NETIF_MSG_IFUP, 8042 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8043 ilt_client->start, 8044 ilt_client->end, 8045 ilt_client->page_size, 8046 ilt_client->flags, 8047 ilog2(ilt_client->page_size >> 12)); 8048 8049 } 8050 8051 if (CNIC_SUPPORT(bp)) { 8052 /* SRC */ 8053 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 8054 ilt_client->client_num = ILT_CLIENT_SRC; 8055 ilt_client->page_size = SRC_ILT_PAGE_SZ; 8056 ilt_client->flags = 0; 8057 ilt_client->start = line; 8058 line += SRC_ILT_LINES; 8059 ilt_client->end = line - 1; 8060 8061 DP(NETIF_MSG_IFUP, 8062 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8063 ilt_client->start, 8064 ilt_client->end, 8065 ilt_client->page_size, 8066 ilt_client->flags, 8067 ilog2(ilt_client->page_size >> 12)); 8068 8069 /* TM */ 8070 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 8071 ilt_client->client_num = ILT_CLIENT_TM; 8072 ilt_client->page_size = TM_ILT_PAGE_SZ; 8073 ilt_client->flags = 0; 8074 ilt_client->start = line; 8075 line += TM_ILT_LINES; 8076 ilt_client->end = line - 1; 8077 8078 DP(NETIF_MSG_IFUP, 8079 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8080 ilt_client->start, 8081 ilt_client->end, 8082 ilt_client->page_size, 8083 ilt_client->flags, 8084 ilog2(ilt_client->page_size >> 12)); 8085 } 8086 8087 BUG_ON(line > ILT_MAX_LINES); 8088 } 8089 8090 /** 8091 * bnx2x_pf_q_prep_init - prepare INIT transition parameters 8092 * 8093 * @bp: driver handle 8094 * @fp: pointer to fastpath 8095 * @init_params: pointer to parameters structure 8096 * 8097 * parameters configured: 8098 * - HC configuration 8099 * - Queue's CDU context 8100 */ 8101 static void bnx2x_pf_q_prep_init(struct bnx2x *bp, 8102 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) 8103 { 8104 8105 u8 cos; 8106 int cxt_index, cxt_offset; 8107 8108 /* FCoE Queue uses Default SB, thus has no HC capabilities */ 8109 if (!IS_FCOE_FP(fp)) { 8110 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); 8111 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); 8112 8113 /* If HC is supporterd, enable host coalescing in the transition 8114 * to INIT state. 8115 */ 8116 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); 8117 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); 8118 8119 /* HC rate */ 8120 init_params->rx.hc_rate = bp->rx_ticks ? 8121 (1000000 / bp->rx_ticks) : 0; 8122 init_params->tx.hc_rate = bp->tx_ticks ? 8123 (1000000 / bp->tx_ticks) : 0; 8124 8125 /* FW SB ID */ 8126 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = 8127 fp->fw_sb_id; 8128 8129 /* 8130 * CQ index among the SB indices: FCoE clients uses the default 8131 * SB, therefore it's different. 8132 */ 8133 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 8134 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 8135 } 8136 8137 /* set maximum number of COSs supported by this queue */ 8138 init_params->max_cos = fp->max_cos; 8139 8140 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", 8141 fp->index, init_params->max_cos); 8142 8143 /* set the context pointers queue object */ 8144 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 8145 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; 8146 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * 8147 ILT_PAGE_CIDS); 8148 init_params->cxts[cos] = 8149 &bp->context[cxt_index].vcxt[cxt_offset].eth; 8150 } 8151 } 8152 8153 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8154 struct bnx2x_queue_state_params *q_params, 8155 struct bnx2x_queue_setup_tx_only_params *tx_only_params, 8156 int tx_index, bool leading) 8157 { 8158 memset(tx_only_params, 0, sizeof(*tx_only_params)); 8159 8160 /* Set the command */ 8161 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 8162 8163 /* Set tx-only QUEUE flags: don't zero statistics */ 8164 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); 8165 8166 /* choose the index of the cid to send the slow path on */ 8167 tx_only_params->cid_index = tx_index; 8168 8169 /* Set general TX_ONLY_SETUP parameters */ 8170 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); 8171 8172 /* Set Tx TX_ONLY_SETUP parameters */ 8173 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); 8174 8175 DP(NETIF_MSG_IFUP, 8176 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", 8177 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], 8178 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, 8179 tx_only_params->gen_params.spcl_id, tx_only_params->flags); 8180 8181 /* send the ramrod */ 8182 return bnx2x_queue_state_change(bp, q_params); 8183 } 8184 8185 8186 /** 8187 * bnx2x_setup_queue - setup queue 8188 * 8189 * @bp: driver handle 8190 * @fp: pointer to fastpath 8191 * @leading: is leading 8192 * 8193 * This function performs 2 steps in a Queue state machine 8194 * actually: 1) RESET->INIT 2) INIT->SETUP 8195 */ 8196 8197 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8198 bool leading) 8199 { 8200 struct bnx2x_queue_state_params q_params = {NULL}; 8201 struct bnx2x_queue_setup_params *setup_params = 8202 &q_params.params.setup; 8203 struct bnx2x_queue_setup_tx_only_params *tx_only_params = 8204 &q_params.params.tx_only; 8205 int rc; 8206 u8 tx_index; 8207 8208 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); 8209 8210 /* reset IGU state skip FCoE L2 queue */ 8211 if (!IS_FCOE_FP(fp)) 8212 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, 8213 IGU_INT_ENABLE, 0); 8214 8215 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8216 /* We want to wait for completion in this context */ 8217 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8218 8219 /* Prepare the INIT parameters */ 8220 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); 8221 8222 /* Set the command */ 8223 q_params.cmd = BNX2X_Q_CMD_INIT; 8224 8225 /* Change the state to INIT */ 8226 rc = bnx2x_queue_state_change(bp, &q_params); 8227 if (rc) { 8228 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); 8229 return rc; 8230 } 8231 8232 DP(NETIF_MSG_IFUP, "init complete\n"); 8233 8234 8235 /* Now move the Queue to the SETUP state... */ 8236 memset(setup_params, 0, sizeof(*setup_params)); 8237 8238 /* Set QUEUE flags */ 8239 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); 8240 8241 /* Set general SETUP parameters */ 8242 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, 8243 FIRST_TX_COS_INDEX); 8244 8245 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, 8246 &setup_params->rxq_params); 8247 8248 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, 8249 FIRST_TX_COS_INDEX); 8250 8251 /* Set the command */ 8252 q_params.cmd = BNX2X_Q_CMD_SETUP; 8253 8254 if (IS_FCOE_FP(fp)) 8255 bp->fcoe_init = true; 8256 8257 /* Change the state to SETUP */ 8258 rc = bnx2x_queue_state_change(bp, &q_params); 8259 if (rc) { 8260 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); 8261 return rc; 8262 } 8263 8264 /* loop through the relevant tx-only indices */ 8265 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8266 tx_index < fp->max_cos; 8267 tx_index++) { 8268 8269 /* prepare and send tx-only ramrod*/ 8270 rc = bnx2x_setup_tx_only(bp, fp, &q_params, 8271 tx_only_params, tx_index, leading); 8272 if (rc) { 8273 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", 8274 fp->index, tx_index); 8275 return rc; 8276 } 8277 } 8278 8279 return rc; 8280 } 8281 8282 static int bnx2x_stop_queue(struct bnx2x *bp, int index) 8283 { 8284 struct bnx2x_fastpath *fp = &bp->fp[index]; 8285 struct bnx2x_fp_txdata *txdata; 8286 struct bnx2x_queue_state_params q_params = {NULL}; 8287 int rc, tx_index; 8288 8289 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); 8290 8291 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8292 /* We want to wait for completion in this context */ 8293 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8294 8295 8296 /* close tx-only connections */ 8297 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8298 tx_index < fp->max_cos; 8299 tx_index++){ 8300 8301 /* ascertain this is a normal queue*/ 8302 txdata = fp->txdata_ptr[tx_index]; 8303 8304 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", 8305 txdata->txq_index); 8306 8307 /* send halt terminate on tx-only connection */ 8308 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8309 memset(&q_params.params.terminate, 0, 8310 sizeof(q_params.params.terminate)); 8311 q_params.params.terminate.cid_index = tx_index; 8312 8313 rc = bnx2x_queue_state_change(bp, &q_params); 8314 if (rc) 8315 return rc; 8316 8317 /* send halt terminate on tx-only connection */ 8318 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8319 memset(&q_params.params.cfc_del, 0, 8320 sizeof(q_params.params.cfc_del)); 8321 q_params.params.cfc_del.cid_index = tx_index; 8322 rc = bnx2x_queue_state_change(bp, &q_params); 8323 if (rc) 8324 return rc; 8325 } 8326 /* Stop the primary connection: */ 8327 /* ...halt the connection */ 8328 q_params.cmd = BNX2X_Q_CMD_HALT; 8329 rc = bnx2x_queue_state_change(bp, &q_params); 8330 if (rc) 8331 return rc; 8332 8333 /* ...terminate the connection */ 8334 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8335 memset(&q_params.params.terminate, 0, 8336 sizeof(q_params.params.terminate)); 8337 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 8338 rc = bnx2x_queue_state_change(bp, &q_params); 8339 if (rc) 8340 return rc; 8341 /* ...delete cfc entry */ 8342 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8343 memset(&q_params.params.cfc_del, 0, 8344 sizeof(q_params.params.cfc_del)); 8345 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 8346 return bnx2x_queue_state_change(bp, &q_params); 8347 } 8348 8349 8350 static void bnx2x_reset_func(struct bnx2x *bp) 8351 { 8352 int port = BP_PORT(bp); 8353 int func = BP_FUNC(bp); 8354 int i; 8355 8356 /* Disable the function in the FW */ 8357 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 8358 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 8359 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 8360 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 8361 8362 /* FP SBs */ 8363 for_each_eth_queue(bp, i) { 8364 struct bnx2x_fastpath *fp = &bp->fp[i]; 8365 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8366 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 8367 SB_DISABLED); 8368 } 8369 8370 if (CNIC_LOADED(bp)) 8371 /* CNIC SB */ 8372 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8373 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 8374 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); 8375 8376 /* SP SB */ 8377 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8378 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 8379 SB_DISABLED); 8380 8381 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) 8382 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 8383 0); 8384 8385 /* Configure IGU */ 8386 if (bp->common.int_block == INT_BLOCK_HC) { 8387 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8388 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8389 } else { 8390 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8391 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8392 } 8393 8394 if (CNIC_LOADED(bp)) { 8395 /* Disable Timer scan */ 8396 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 8397 /* 8398 * Wait for at least 10ms and up to 2 second for the timers 8399 * scan to complete 8400 */ 8401 for (i = 0; i < 200; i++) { 8402 msleep(10); 8403 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) 8404 break; 8405 } 8406 } 8407 /* Clear ILT */ 8408 bnx2x_clear_func_ilt(bp, func); 8409 8410 /* Timers workaround bug for E2: if this is vnic-3, 8411 * we need to set the entire ilt range for this timers. 8412 */ 8413 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { 8414 struct ilt_client_info ilt_cli; 8415 /* use dummy TM client */ 8416 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 8417 ilt_cli.start = 0; 8418 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 8419 ilt_cli.client_num = ILT_CLIENT_TM; 8420 8421 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); 8422 } 8423 8424 /* this assumes that reset_port() called before reset_func()*/ 8425 if (!CHIP_IS_E1x(bp)) 8426 bnx2x_pf_disable(bp); 8427 8428 bp->dmae_ready = 0; 8429 } 8430 8431 static void bnx2x_reset_port(struct bnx2x *bp) 8432 { 8433 int port = BP_PORT(bp); 8434 u32 val; 8435 8436 /* Reset physical Link */ 8437 bnx2x__link_reset(bp); 8438 8439 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 8440 8441 /* Do not rcv packets to BRB */ 8442 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 8443 /* Do not direct rcv packets that are not for MCP to the BRB */ 8444 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 8445 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 8446 8447 /* Configure AEU */ 8448 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 8449 8450 msleep(100); 8451 /* Check for BRB port occupancy */ 8452 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 8453 if (val) 8454 DP(NETIF_MSG_IFDOWN, 8455 "BRB1 is not empty %d blocks are occupied\n", val); 8456 8457 /* TODO: Close Doorbell port? */ 8458 } 8459 8460 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) 8461 { 8462 struct bnx2x_func_state_params func_params = {NULL}; 8463 8464 /* Prepare parameters for function state transitions */ 8465 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 8466 8467 func_params.f_obj = &bp->func_obj; 8468 func_params.cmd = BNX2X_F_CMD_HW_RESET; 8469 8470 func_params.params.hw_init.load_phase = load_code; 8471 8472 return bnx2x_func_state_change(bp, &func_params); 8473 } 8474 8475 static int bnx2x_func_stop(struct bnx2x *bp) 8476 { 8477 struct bnx2x_func_state_params func_params = {NULL}; 8478 int rc; 8479 8480 /* Prepare parameters for function state transitions */ 8481 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 8482 func_params.f_obj = &bp->func_obj; 8483 func_params.cmd = BNX2X_F_CMD_STOP; 8484 8485 /* 8486 * Try to stop the function the 'good way'. If fails (in case 8487 * of a parity error during bnx2x_chip_cleanup()) and we are 8488 * not in a debug mode, perform a state transaction in order to 8489 * enable further HW_RESET transaction. 8490 */ 8491 rc = bnx2x_func_state_change(bp, &func_params); 8492 if (rc) { 8493 #ifdef BNX2X_STOP_ON_ERROR 8494 return rc; 8495 #else 8496 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); 8497 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 8498 return bnx2x_func_state_change(bp, &func_params); 8499 #endif 8500 } 8501 8502 return 0; 8503 } 8504 8505 /** 8506 * bnx2x_send_unload_req - request unload mode from the MCP. 8507 * 8508 * @bp: driver handle 8509 * @unload_mode: requested function's unload mode 8510 * 8511 * Return unload mode returned by the MCP: COMMON, PORT or FUNC. 8512 */ 8513 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) 8514 { 8515 u32 reset_code = 0; 8516 int port = BP_PORT(bp); 8517 8518 /* Select the UNLOAD request mode */ 8519 if (unload_mode == UNLOAD_NORMAL) 8520 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 8521 8522 else if (bp->flags & NO_WOL_FLAG) 8523 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 8524 8525 else if (bp->wol) { 8526 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 8527 u8 *mac_addr = bp->dev->dev_addr; 8528 u32 val; 8529 u16 pmc; 8530 8531 /* The mac address is written to entries 1-4 to 8532 * preserve entry 0 which is used by the PMF 8533 */ 8534 u8 entry = (BP_VN(bp) + 1)*8; 8535 8536 val = (mac_addr[0] << 8) | mac_addr[1]; 8537 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); 8538 8539 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 8540 (mac_addr[4] << 8) | mac_addr[5]; 8541 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 8542 8543 /* Enable the PME and clear the status */ 8544 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc); 8545 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; 8546 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc); 8547 8548 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 8549 8550 } else 8551 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 8552 8553 /* Send the request to the MCP */ 8554 if (!BP_NOMCP(bp)) 8555 reset_code = bnx2x_fw_command(bp, reset_code, 0); 8556 else { 8557 int path = BP_PATH(bp); 8558 8559 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", 8560 path, load_count[path][0], load_count[path][1], 8561 load_count[path][2]); 8562 load_count[path][0]--; 8563 load_count[path][1 + port]--; 8564 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", 8565 path, load_count[path][0], load_count[path][1], 8566 load_count[path][2]); 8567 if (load_count[path][0] == 0) 8568 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; 8569 else if (load_count[path][1 + port] == 0) 8570 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; 8571 else 8572 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; 8573 } 8574 8575 return reset_code; 8576 } 8577 8578 /** 8579 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. 8580 * 8581 * @bp: driver handle 8582 * @keep_link: true iff link should be kept up 8583 */ 8584 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) 8585 { 8586 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 8587 8588 /* Report UNLOAD_DONE to MCP */ 8589 if (!BP_NOMCP(bp)) 8590 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 8591 } 8592 8593 static int bnx2x_func_wait_started(struct bnx2x *bp) 8594 { 8595 int tout = 50; 8596 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 8597 8598 if (!bp->port.pmf) 8599 return 0; 8600 8601 /* 8602 * (assumption: No Attention from MCP at this stage) 8603 * PMF probably in the middle of TXdisable/enable transaction 8604 * 1. Sync IRS for default SB 8605 * 2. Sync SP queue - this guarantes us that attention handling started 8606 * 3. Wait, that TXdisable/enable transaction completes 8607 * 8608 * 1+2 guranty that if DCBx attention was scheduled it already changed 8609 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy 8610 * received complettion for the transaction the state is TX_STOPPED. 8611 * State will return to STARTED after completion of TX_STOPPED-->STARTED 8612 * transaction. 8613 */ 8614 8615 /* make sure default SB ISR is done */ 8616 if (msix) 8617 synchronize_irq(bp->msix_table[0].vector); 8618 else 8619 synchronize_irq(bp->pdev->irq); 8620 8621 flush_workqueue(bnx2x_wq); 8622 8623 while (bnx2x_func_get_state(bp, &bp->func_obj) != 8624 BNX2X_F_STATE_STARTED && tout--) 8625 msleep(20); 8626 8627 if (bnx2x_func_get_state(bp, &bp->func_obj) != 8628 BNX2X_F_STATE_STARTED) { 8629 #ifdef BNX2X_STOP_ON_ERROR 8630 BNX2X_ERR("Wrong function state\n"); 8631 return -EBUSY; 8632 #else 8633 /* 8634 * Failed to complete the transaction in a "good way" 8635 * Force both transactions with CLR bit 8636 */ 8637 struct bnx2x_func_state_params func_params = {NULL}; 8638 8639 DP(NETIF_MSG_IFDOWN, 8640 "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n"); 8641 8642 func_params.f_obj = &bp->func_obj; 8643 __set_bit(RAMROD_DRV_CLR_ONLY, 8644 &func_params.ramrod_flags); 8645 8646 /* STARTED-->TX_ST0PPED */ 8647 func_params.cmd = BNX2X_F_CMD_TX_STOP; 8648 bnx2x_func_state_change(bp, &func_params); 8649 8650 /* TX_ST0PPED-->STARTED */ 8651 func_params.cmd = BNX2X_F_CMD_TX_START; 8652 return bnx2x_func_state_change(bp, &func_params); 8653 #endif 8654 } 8655 8656 return 0; 8657 } 8658 8659 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) 8660 { 8661 int port = BP_PORT(bp); 8662 int i, rc = 0; 8663 u8 cos; 8664 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 8665 u32 reset_code; 8666 8667 /* Wait until tx fastpath tasks complete */ 8668 for_each_tx_queue(bp, i) { 8669 struct bnx2x_fastpath *fp = &bp->fp[i]; 8670 8671 for_each_cos_in_tx_queue(fp, cos) 8672 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 8673 #ifdef BNX2X_STOP_ON_ERROR 8674 if (rc) 8675 return; 8676 #endif 8677 } 8678 8679 /* Give HW time to discard old tx messages */ 8680 usleep_range(1000, 2000); 8681 8682 /* Clean all ETH MACs */ 8683 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, 8684 false); 8685 if (rc < 0) 8686 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); 8687 8688 /* Clean up UC list */ 8689 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, 8690 true); 8691 if (rc < 0) 8692 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", 8693 rc); 8694 8695 /* Disable LLH */ 8696 if (!CHIP_IS_E1(bp)) 8697 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 8698 8699 /* Set "drop all" (stop Rx). 8700 * We need to take a netif_addr_lock() here in order to prevent 8701 * a race between the completion code and this code. 8702 */ 8703 netif_addr_lock_bh(bp->dev); 8704 /* Schedule the rx_mode command */ 8705 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 8706 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 8707 else 8708 bnx2x_set_storm_rx_mode(bp); 8709 8710 /* Cleanup multicast configuration */ 8711 rparam.mcast_obj = &bp->mcast_obj; 8712 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 8713 if (rc < 0) 8714 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); 8715 8716 netif_addr_unlock_bh(bp->dev); 8717 8718 bnx2x_iov_chip_cleanup(bp); 8719 8720 8721 /* 8722 * Send the UNLOAD_REQUEST to the MCP. This will return if 8723 * this function should perform FUNC, PORT or COMMON HW 8724 * reset. 8725 */ 8726 reset_code = bnx2x_send_unload_req(bp, unload_mode); 8727 8728 /* 8729 * (assumption: No Attention from MCP at this stage) 8730 * PMF probably in the middle of TXdisable/enable transaction 8731 */ 8732 rc = bnx2x_func_wait_started(bp); 8733 if (rc) { 8734 BNX2X_ERR("bnx2x_func_wait_started failed\n"); 8735 #ifdef BNX2X_STOP_ON_ERROR 8736 return; 8737 #endif 8738 } 8739 8740 /* Close multi and leading connections 8741 * Completions for ramrods are collected in a synchronous way 8742 */ 8743 for_each_eth_queue(bp, i) 8744 if (bnx2x_stop_queue(bp, i)) 8745 #ifdef BNX2X_STOP_ON_ERROR 8746 return; 8747 #else 8748 goto unload_error; 8749 #endif 8750 8751 if (CNIC_LOADED(bp)) { 8752 for_each_cnic_queue(bp, i) 8753 if (bnx2x_stop_queue(bp, i)) 8754 #ifdef BNX2X_STOP_ON_ERROR 8755 return; 8756 #else 8757 goto unload_error; 8758 #endif 8759 } 8760 8761 /* If SP settings didn't get completed so far - something 8762 * very wrong has happen. 8763 */ 8764 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) 8765 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); 8766 8767 #ifndef BNX2X_STOP_ON_ERROR 8768 unload_error: 8769 #endif 8770 rc = bnx2x_func_stop(bp); 8771 if (rc) { 8772 BNX2X_ERR("Function stop failed!\n"); 8773 #ifdef BNX2X_STOP_ON_ERROR 8774 return; 8775 #endif 8776 } 8777 8778 /* Disable HW interrupts, NAPI */ 8779 bnx2x_netif_stop(bp, 1); 8780 /* Delete all NAPI objects */ 8781 bnx2x_del_all_napi(bp); 8782 if (CNIC_LOADED(bp)) 8783 bnx2x_del_all_napi_cnic(bp); 8784 8785 /* Release IRQs */ 8786 bnx2x_free_irq(bp); 8787 8788 /* Reset the chip */ 8789 rc = bnx2x_reset_hw(bp, reset_code); 8790 if (rc) 8791 BNX2X_ERR("HW_RESET failed\n"); 8792 8793 8794 /* Report UNLOAD_DONE to MCP */ 8795 bnx2x_send_unload_done(bp, keep_link); 8796 } 8797 8798 void bnx2x_disable_close_the_gate(struct bnx2x *bp) 8799 { 8800 u32 val; 8801 8802 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); 8803 8804 if (CHIP_IS_E1(bp)) { 8805 int port = BP_PORT(bp); 8806 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8807 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8808 8809 val = REG_RD(bp, addr); 8810 val &= ~(0x300); 8811 REG_WR(bp, addr, val); 8812 } else { 8813 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); 8814 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 8815 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 8816 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); 8817 } 8818 } 8819 8820 /* Close gates #2, #3 and #4: */ 8821 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) 8822 { 8823 u32 val; 8824 8825 /* Gates #2 and #4a are closed/opened for "not E1" only */ 8826 if (!CHIP_IS_E1(bp)) { 8827 /* #4 */ 8828 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 8829 /* #2 */ 8830 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 8831 } 8832 8833 /* #3 */ 8834 if (CHIP_IS_E1x(bp)) { 8835 /* Prevent interrupts from HC on both ports */ 8836 val = REG_RD(bp, HC_REG_CONFIG_1); 8837 REG_WR(bp, HC_REG_CONFIG_1, 8838 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 8839 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 8840 8841 val = REG_RD(bp, HC_REG_CONFIG_0); 8842 REG_WR(bp, HC_REG_CONFIG_0, 8843 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 8844 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 8845 } else { 8846 /* Prevent incoming interrupts in IGU */ 8847 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 8848 8849 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, 8850 (!close) ? 8851 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 8852 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 8853 } 8854 8855 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", 8856 close ? "closing" : "opening"); 8857 mmiowb(); 8858 } 8859 8860 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ 8861 8862 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) 8863 { 8864 /* Do some magic... */ 8865 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 8866 *magic_val = val & SHARED_MF_CLP_MAGIC; 8867 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 8868 } 8869 8870 /** 8871 * bnx2x_clp_reset_done - restore the value of the `magic' bit. 8872 * 8873 * @bp: driver handle 8874 * @magic_val: old value of the `magic' bit. 8875 */ 8876 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) 8877 { 8878 /* Restore the `magic' bit value... */ 8879 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 8880 MF_CFG_WR(bp, shared_mf_config.clp_mb, 8881 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 8882 } 8883 8884 /** 8885 * bnx2x_reset_mcp_prep - prepare for MCP reset. 8886 * 8887 * @bp: driver handle 8888 * @magic_val: old value of 'magic' bit. 8889 * 8890 * Takes care of CLP configurations. 8891 */ 8892 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) 8893 { 8894 u32 shmem; 8895 u32 validity_offset; 8896 8897 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); 8898 8899 /* Set `magic' bit in order to save MF config */ 8900 if (!CHIP_IS_E1(bp)) 8901 bnx2x_clp_reset_prep(bp, magic_val); 8902 8903 /* Get shmem offset */ 8904 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 8905 validity_offset = 8906 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); 8907 8908 /* Clear validity map flags */ 8909 if (shmem > 0) 8910 REG_WR(bp, shmem + validity_offset, 0); 8911 } 8912 8913 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 8914 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 8915 8916 /** 8917 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT 8918 * 8919 * @bp: driver handle 8920 */ 8921 static void bnx2x_mcp_wait_one(struct bnx2x *bp) 8922 { 8923 /* special handling for emulation and FPGA, 8924 wait 10 times longer */ 8925 if (CHIP_REV_IS_SLOW(bp)) 8926 msleep(MCP_ONE_TIMEOUT*10); 8927 else 8928 msleep(MCP_ONE_TIMEOUT); 8929 } 8930 8931 /* 8932 * initializes bp->common.shmem_base and waits for validity signature to appear 8933 */ 8934 static int bnx2x_init_shmem(struct bnx2x *bp) 8935 { 8936 int cnt = 0; 8937 u32 val = 0; 8938 8939 do { 8940 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 8941 if (bp->common.shmem_base) { 8942 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); 8943 if (val & SHR_MEM_VALIDITY_MB) 8944 return 0; 8945 } 8946 8947 bnx2x_mcp_wait_one(bp); 8948 8949 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 8950 8951 BNX2X_ERR("BAD MCP validity signature\n"); 8952 8953 return -ENODEV; 8954 } 8955 8956 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) 8957 { 8958 int rc = bnx2x_init_shmem(bp); 8959 8960 /* Restore the `magic' bit value */ 8961 if (!CHIP_IS_E1(bp)) 8962 bnx2x_clp_reset_done(bp, magic_val); 8963 8964 return rc; 8965 } 8966 8967 static void bnx2x_pxp_prep(struct bnx2x *bp) 8968 { 8969 if (!CHIP_IS_E1(bp)) { 8970 REG_WR(bp, PXP2_REG_RD_START_INIT, 0); 8971 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); 8972 mmiowb(); 8973 } 8974 } 8975 8976 /* 8977 * Reset the whole chip except for: 8978 * - PCIE core 8979 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by 8980 * one reset bit) 8981 * - IGU 8982 * - MISC (including AEU) 8983 * - GRC 8984 * - RBCN, RBCP 8985 */ 8986 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) 8987 { 8988 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 8989 u32 global_bits2, stay_reset2; 8990 8991 /* 8992 * Bits that have to be set in reset_mask2 if we want to reset 'global' 8993 * (per chip) blocks. 8994 */ 8995 global_bits2 = 8996 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 8997 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 8998 8999 /* Don't reset the following blocks. 9000 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 9001 * reset, as in 4 port device they might still be owned 9002 * by the MCP (there is only one leader per path). 9003 */ 9004 not_reset_mask1 = 9005 MISC_REGISTERS_RESET_REG_1_RST_HC | 9006 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 9007 MISC_REGISTERS_RESET_REG_1_RST_PXP; 9008 9009 not_reset_mask2 = 9010 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 9011 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 9012 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 9013 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 9014 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 9015 MISC_REGISTERS_RESET_REG_2_RST_GRC | 9016 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 9017 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 9018 MISC_REGISTERS_RESET_REG_2_RST_ATC | 9019 MISC_REGISTERS_RESET_REG_2_PGLC | 9020 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 9021 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 9022 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 9023 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 9024 MISC_REGISTERS_RESET_REG_2_UMAC0 | 9025 MISC_REGISTERS_RESET_REG_2_UMAC1; 9026 9027 /* 9028 * Keep the following blocks in reset: 9029 * - all xxMACs are handled by the bnx2x_link code. 9030 */ 9031 stay_reset2 = 9032 MISC_REGISTERS_RESET_REG_2_XMAC | 9033 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 9034 9035 /* Full reset masks according to the chip */ 9036 reset_mask1 = 0xffffffff; 9037 9038 if (CHIP_IS_E1(bp)) 9039 reset_mask2 = 0xffff; 9040 else if (CHIP_IS_E1H(bp)) 9041 reset_mask2 = 0x1ffff; 9042 else if (CHIP_IS_E2(bp)) 9043 reset_mask2 = 0xfffff; 9044 else /* CHIP_IS_E3 */ 9045 reset_mask2 = 0x3ffffff; 9046 9047 /* Don't reset global blocks unless we need to */ 9048 if (!global) 9049 reset_mask2 &= ~global_bits2; 9050 9051 /* 9052 * In case of attention in the QM, we need to reset PXP 9053 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 9054 * because otherwise QM reset would release 'close the gates' shortly 9055 * before resetting the PXP, then the PSWRQ would send a write 9056 * request to PGLUE. Then when PXP is reset, PGLUE would try to 9057 * read the payload data from PSWWR, but PSWWR would not 9058 * respond. The write queue in PGLUE would stuck, dmae commands 9059 * would not return. Therefore it's important to reset the second 9060 * reset register (containing the 9061 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 9062 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 9063 * bit). 9064 */ 9065 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 9066 reset_mask2 & (~not_reset_mask2)); 9067 9068 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 9069 reset_mask1 & (~not_reset_mask1)); 9070 9071 barrier(); 9072 mmiowb(); 9073 9074 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 9075 reset_mask2 & (~stay_reset2)); 9076 9077 barrier(); 9078 mmiowb(); 9079 9080 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 9081 mmiowb(); 9082 } 9083 9084 /** 9085 * bnx2x_er_poll_igu_vq - poll for pending writes bit. 9086 * It should get cleared in no more than 1s. 9087 * 9088 * @bp: driver handle 9089 * 9090 * It should get cleared in no more than 1s. Returns 0 if 9091 * pending writes bit gets cleared. 9092 */ 9093 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) 9094 { 9095 u32 cnt = 1000; 9096 u32 pend_bits = 0; 9097 9098 do { 9099 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); 9100 9101 if (pend_bits == 0) 9102 break; 9103 9104 usleep_range(1000, 2000); 9105 } while (cnt-- > 0); 9106 9107 if (cnt <= 0) { 9108 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", 9109 pend_bits); 9110 return -EBUSY; 9111 } 9112 9113 return 0; 9114 } 9115 9116 static int bnx2x_process_kill(struct bnx2x *bp, bool global) 9117 { 9118 int cnt = 1000; 9119 u32 val = 0; 9120 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 9121 u32 tags_63_32 = 0; 9122 9123 /* Empty the Tetris buffer, wait for 1s */ 9124 do { 9125 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); 9126 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); 9127 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); 9128 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); 9129 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); 9130 if (CHIP_IS_E3(bp)) 9131 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); 9132 9133 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 9134 ((port_is_idle_0 & 0x1) == 0x1) && 9135 ((port_is_idle_1 & 0x1) == 0x1) && 9136 (pgl_exp_rom2 == 0xffffffff) && 9137 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) 9138 break; 9139 usleep_range(1000, 2000); 9140 } while (cnt-- > 0); 9141 9142 if (cnt <= 0) { 9143 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); 9144 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 9145 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, 9146 pgl_exp_rom2); 9147 return -EAGAIN; 9148 } 9149 9150 barrier(); 9151 9152 /* Close gates #2, #3 and #4 */ 9153 bnx2x_set_234_gates(bp, true); 9154 9155 /* Poll for IGU VQs for 57712 and newer chips */ 9156 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) 9157 return -EAGAIN; 9158 9159 9160 /* TBD: Indicate that "process kill" is in progress to MCP */ 9161 9162 /* Clear "unprepared" bit */ 9163 REG_WR(bp, MISC_REG_UNPREPARED, 0); 9164 barrier(); 9165 9166 /* Make sure all is written to the chip before the reset */ 9167 mmiowb(); 9168 9169 /* Wait for 1ms to empty GLUE and PCI-E core queues, 9170 * PSWHST, GRC and PSWRD Tetris buffer. 9171 */ 9172 usleep_range(1000, 2000); 9173 9174 /* Prepare to chip reset: */ 9175 /* MCP */ 9176 if (global) 9177 bnx2x_reset_mcp_prep(bp, &val); 9178 9179 /* PXP */ 9180 bnx2x_pxp_prep(bp); 9181 barrier(); 9182 9183 /* reset the chip */ 9184 bnx2x_process_kill_chip_reset(bp, global); 9185 barrier(); 9186 9187 /* Recover after reset: */ 9188 /* MCP */ 9189 if (global && bnx2x_reset_mcp_comp(bp, val)) 9190 return -EAGAIN; 9191 9192 /* TBD: Add resetting the NO_MCP mode DB here */ 9193 9194 /* Open the gates #2, #3 and #4 */ 9195 bnx2x_set_234_gates(bp, false); 9196 9197 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a 9198 * reset state, re-enable attentions. */ 9199 9200 return 0; 9201 } 9202 9203 static int bnx2x_leader_reset(struct bnx2x *bp) 9204 { 9205 int rc = 0; 9206 bool global = bnx2x_reset_is_global(bp); 9207 u32 load_code; 9208 9209 /* if not going to reset MCP - load "fake" driver to reset HW while 9210 * driver is owner of the HW 9211 */ 9212 if (!global && !BP_NOMCP(bp)) { 9213 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 9214 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 9215 if (!load_code) { 9216 BNX2X_ERR("MCP response failure, aborting\n"); 9217 rc = -EAGAIN; 9218 goto exit_leader_reset; 9219 } 9220 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 9221 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 9222 BNX2X_ERR("MCP unexpected resp, aborting\n"); 9223 rc = -EAGAIN; 9224 goto exit_leader_reset2; 9225 } 9226 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 9227 if (!load_code) { 9228 BNX2X_ERR("MCP response failure, aborting\n"); 9229 rc = -EAGAIN; 9230 goto exit_leader_reset2; 9231 } 9232 } 9233 9234 /* Try to recover after the failure */ 9235 if (bnx2x_process_kill(bp, global)) { 9236 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", 9237 BP_PATH(bp)); 9238 rc = -EAGAIN; 9239 goto exit_leader_reset2; 9240 } 9241 9242 /* 9243 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver 9244 * state. 9245 */ 9246 bnx2x_set_reset_done(bp); 9247 if (global) 9248 bnx2x_clear_reset_global(bp); 9249 9250 exit_leader_reset2: 9251 /* unload "fake driver" if it was loaded */ 9252 if (!global && !BP_NOMCP(bp)) { 9253 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 9254 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 9255 } 9256 exit_leader_reset: 9257 bp->is_leader = 0; 9258 bnx2x_release_leader_lock(bp); 9259 smp_mb(); 9260 return rc; 9261 } 9262 9263 static void bnx2x_recovery_failed(struct bnx2x *bp) 9264 { 9265 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); 9266 9267 /* Disconnect this device */ 9268 netif_device_detach(bp->dev); 9269 9270 /* 9271 * Block ifup for all function on this engine until "process kill" 9272 * or power cycle. 9273 */ 9274 bnx2x_set_reset_in_progress(bp); 9275 9276 /* Shut down the power */ 9277 bnx2x_set_power_state(bp, PCI_D3hot); 9278 9279 bp->recovery_state = BNX2X_RECOVERY_FAILED; 9280 9281 smp_mb(); 9282 } 9283 9284 /* 9285 * Assumption: runs under rtnl lock. This together with the fact 9286 * that it's called only from bnx2x_sp_rtnl() ensure that it 9287 * will never be called when netif_running(bp->dev) is false. 9288 */ 9289 static void bnx2x_parity_recover(struct bnx2x *bp) 9290 { 9291 bool global = false; 9292 u32 error_recovered, error_unrecovered; 9293 bool is_parity; 9294 9295 DP(NETIF_MSG_HW, "Handling parity\n"); 9296 while (1) { 9297 switch (bp->recovery_state) { 9298 case BNX2X_RECOVERY_INIT: 9299 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); 9300 is_parity = bnx2x_chk_parity_attn(bp, &global, false); 9301 WARN_ON(!is_parity); 9302 9303 /* Try to get a LEADER_LOCK HW lock */ 9304 if (bnx2x_trylock_leader_lock(bp)) { 9305 bnx2x_set_reset_in_progress(bp); 9306 /* 9307 * Check if there is a global attention and if 9308 * there was a global attention, set the global 9309 * reset bit. 9310 */ 9311 9312 if (global) 9313 bnx2x_set_reset_global(bp); 9314 9315 bp->is_leader = 1; 9316 } 9317 9318 /* Stop the driver */ 9319 /* If interface has been removed - break */ 9320 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) 9321 return; 9322 9323 bp->recovery_state = BNX2X_RECOVERY_WAIT; 9324 9325 /* Ensure "is_leader", MCP command sequence and 9326 * "recovery_state" update values are seen on other 9327 * CPUs. 9328 */ 9329 smp_mb(); 9330 break; 9331 9332 case BNX2X_RECOVERY_WAIT: 9333 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); 9334 if (bp->is_leader) { 9335 int other_engine = BP_PATH(bp) ? 0 : 1; 9336 bool other_load_status = 9337 bnx2x_get_load_status(bp, other_engine); 9338 bool load_status = 9339 bnx2x_get_load_status(bp, BP_PATH(bp)); 9340 global = bnx2x_reset_is_global(bp); 9341 9342 /* 9343 * In case of a parity in a global block, let 9344 * the first leader that performs a 9345 * leader_reset() reset the global blocks in 9346 * order to clear global attentions. Otherwise 9347 * the the gates will remain closed for that 9348 * engine. 9349 */ 9350 if (load_status || 9351 (global && other_load_status)) { 9352 /* Wait until all other functions get 9353 * down. 9354 */ 9355 schedule_delayed_work(&bp->sp_rtnl_task, 9356 HZ/10); 9357 return; 9358 } else { 9359 /* If all other functions got down - 9360 * try to bring the chip back to 9361 * normal. In any case it's an exit 9362 * point for a leader. 9363 */ 9364 if (bnx2x_leader_reset(bp)) { 9365 bnx2x_recovery_failed(bp); 9366 return; 9367 } 9368 9369 /* If we are here, means that the 9370 * leader has succeeded and doesn't 9371 * want to be a leader any more. Try 9372 * to continue as a none-leader. 9373 */ 9374 break; 9375 } 9376 } else { /* non-leader */ 9377 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { 9378 /* Try to get a LEADER_LOCK HW lock as 9379 * long as a former leader may have 9380 * been unloaded by the user or 9381 * released a leadership by another 9382 * reason. 9383 */ 9384 if (bnx2x_trylock_leader_lock(bp)) { 9385 /* I'm a leader now! Restart a 9386 * switch case. 9387 */ 9388 bp->is_leader = 1; 9389 break; 9390 } 9391 9392 schedule_delayed_work(&bp->sp_rtnl_task, 9393 HZ/10); 9394 return; 9395 9396 } else { 9397 /* 9398 * If there was a global attention, wait 9399 * for it to be cleared. 9400 */ 9401 if (bnx2x_reset_is_global(bp)) { 9402 schedule_delayed_work( 9403 &bp->sp_rtnl_task, 9404 HZ/10); 9405 return; 9406 } 9407 9408 error_recovered = 9409 bp->eth_stats.recoverable_error; 9410 error_unrecovered = 9411 bp->eth_stats.unrecoverable_error; 9412 bp->recovery_state = 9413 BNX2X_RECOVERY_NIC_LOADING; 9414 if (bnx2x_nic_load(bp, LOAD_NORMAL)) { 9415 error_unrecovered++; 9416 netdev_err(bp->dev, 9417 "Recovery failed. Power cycle needed\n"); 9418 /* Disconnect this device */ 9419 netif_device_detach(bp->dev); 9420 /* Shut down the power */ 9421 bnx2x_set_power_state( 9422 bp, PCI_D3hot); 9423 smp_mb(); 9424 } else { 9425 bp->recovery_state = 9426 BNX2X_RECOVERY_DONE; 9427 error_recovered++; 9428 smp_mb(); 9429 } 9430 bp->eth_stats.recoverable_error = 9431 error_recovered; 9432 bp->eth_stats.unrecoverable_error = 9433 error_unrecovered; 9434 9435 return; 9436 } 9437 } 9438 default: 9439 return; 9440 } 9441 } 9442 } 9443 9444 static int bnx2x_close(struct net_device *dev); 9445 9446 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is 9447 * scheduled on a general queue in order to prevent a dead lock. 9448 */ 9449 static void bnx2x_sp_rtnl_task(struct work_struct *work) 9450 { 9451 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); 9452 9453 rtnl_lock(); 9454 9455 if (!netif_running(bp->dev)) { 9456 rtnl_unlock(); 9457 return; 9458 } 9459 9460 /* if stop on error is defined no recovery flows should be executed */ 9461 #ifdef BNX2X_STOP_ON_ERROR 9462 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 9463 "you will need to reboot when done\n"); 9464 goto sp_rtnl_not_reset; 9465 #endif 9466 9467 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { 9468 /* 9469 * Clear all pending SP commands as we are going to reset the 9470 * function anyway. 9471 */ 9472 bp->sp_rtnl_state = 0; 9473 smp_mb(); 9474 9475 bnx2x_parity_recover(bp); 9476 9477 rtnl_unlock(); 9478 return; 9479 } 9480 9481 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { 9482 /* 9483 * Clear all pending SP commands as we are going to reset the 9484 * function anyway. 9485 */ 9486 bp->sp_rtnl_state = 0; 9487 smp_mb(); 9488 9489 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 9490 bnx2x_nic_load(bp, LOAD_NORMAL); 9491 9492 rtnl_unlock(); 9493 return; 9494 } 9495 #ifdef BNX2X_STOP_ON_ERROR 9496 sp_rtnl_not_reset: 9497 #endif 9498 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) 9499 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); 9500 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) 9501 bnx2x_after_function_update(bp); 9502 /* 9503 * in case of fan failure we need to reset id if the "stop on error" 9504 * debug flag is set, since we trying to prevent permanent overheating 9505 * damage 9506 */ 9507 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { 9508 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); 9509 netif_device_detach(bp->dev); 9510 bnx2x_close(bp->dev); 9511 rtnl_unlock(); 9512 return; 9513 } 9514 9515 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { 9516 DP(BNX2X_MSG_SP, 9517 "sending set mcast vf pf channel message from rtnl sp-task\n"); 9518 bnx2x_vfpf_set_mcast(bp->dev); 9519 } 9520 9521 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE, 9522 &bp->sp_rtnl_state)) { 9523 DP(BNX2X_MSG_SP, 9524 "sending set storm rx mode vf pf channel message from rtnl sp-task\n"); 9525 bnx2x_vfpf_storm_rx_mode(bp); 9526 } 9527 9528 /* work which needs rtnl lock not-taken (as it takes the lock itself and 9529 * can be called from other contexts as well) 9530 */ 9531 rtnl_unlock(); 9532 9533 /* enable SR-IOV if applicable */ 9534 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, 9535 &bp->sp_rtnl_state)) 9536 bnx2x_enable_sriov(bp); 9537 } 9538 9539 static void bnx2x_period_task(struct work_struct *work) 9540 { 9541 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); 9542 9543 if (!netif_running(bp->dev)) 9544 goto period_task_exit; 9545 9546 if (CHIP_REV_IS_SLOW(bp)) { 9547 BNX2X_ERR("period task called on emulation, ignoring\n"); 9548 goto period_task_exit; 9549 } 9550 9551 bnx2x_acquire_phy_lock(bp); 9552 /* 9553 * The barrier is needed to ensure the ordering between the writing to 9554 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and 9555 * the reading here. 9556 */ 9557 smp_mb(); 9558 if (bp->port.pmf) { 9559 bnx2x_period_func(&bp->link_params, &bp->link_vars); 9560 9561 /* Re-queue task in 1 sec */ 9562 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); 9563 } 9564 9565 bnx2x_release_phy_lock(bp); 9566 period_task_exit: 9567 return; 9568 } 9569 9570 /* 9571 * Init service functions 9572 */ 9573 9574 u32 bnx2x_get_pretend_reg(struct bnx2x *bp) 9575 { 9576 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; 9577 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; 9578 return base + (BP_ABS_FUNC(bp)) * stride; 9579 } 9580 9581 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, 9582 struct bnx2x_mac_vals *vals) 9583 { 9584 u32 val, base_addr, offset, mask, reset_reg; 9585 bool mac_stopped = false; 9586 u8 port = BP_PORT(bp); 9587 9588 /* reset addresses as they also mark which values were changed */ 9589 vals->bmac_addr = 0; 9590 vals->umac_addr = 0; 9591 vals->xmac_addr = 0; 9592 vals->emac_addr = 0; 9593 9594 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); 9595 9596 if (!CHIP_IS_E3(bp)) { 9597 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 9598 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 9599 if ((mask & reset_reg) && val) { 9600 u32 wb_data[2]; 9601 BNX2X_DEV_INFO("Disable bmac Rx\n"); 9602 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM 9603 : NIG_REG_INGRESS_BMAC0_MEM; 9604 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL 9605 : BIGMAC_REGISTER_BMAC_CONTROL; 9606 9607 /* 9608 * use rd/wr since we cannot use dmae. This is safe 9609 * since MCP won't access the bus due to the request 9610 * to unload, and no function on the path can be 9611 * loaded at this time. 9612 */ 9613 wb_data[0] = REG_RD(bp, base_addr + offset); 9614 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); 9615 vals->bmac_addr = base_addr + offset; 9616 vals->bmac_val[0] = wb_data[0]; 9617 vals->bmac_val[1] = wb_data[1]; 9618 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; 9619 REG_WR(bp, vals->bmac_addr, wb_data[0]); 9620 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); 9621 9622 } 9623 BNX2X_DEV_INFO("Disable emac Rx\n"); 9624 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; 9625 vals->emac_val = REG_RD(bp, vals->emac_addr); 9626 REG_WR(bp, vals->emac_addr, 0); 9627 mac_stopped = true; 9628 } else { 9629 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 9630 BNX2X_DEV_INFO("Disable xmac Rx\n"); 9631 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 9632 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); 9633 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 9634 val & ~(1 << 1)); 9635 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 9636 val | (1 << 1)); 9637 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 9638 vals->xmac_val = REG_RD(bp, vals->xmac_addr); 9639 REG_WR(bp, vals->xmac_addr, 0); 9640 mac_stopped = true; 9641 } 9642 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 9643 if (mask & reset_reg) { 9644 BNX2X_DEV_INFO("Disable umac Rx\n"); 9645 base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 9646 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 9647 vals->umac_val = REG_RD(bp, vals->umac_addr); 9648 REG_WR(bp, vals->umac_addr, 0); 9649 mac_stopped = true; 9650 } 9651 } 9652 9653 if (mac_stopped) 9654 msleep(20); 9655 9656 } 9657 9658 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 9659 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) 9660 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 9661 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 9662 9663 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc) 9664 { 9665 u16 rcq, bd; 9666 u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port)); 9667 9668 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; 9669 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; 9670 9671 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); 9672 REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg); 9673 9674 BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 9675 port, bd, rcq); 9676 } 9677 9678 static int bnx2x_prev_mcp_done(struct bnx2x *bp) 9679 { 9680 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 9681 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 9682 if (!rc) { 9683 BNX2X_ERR("MCP response failure, aborting\n"); 9684 return -EBUSY; 9685 } 9686 9687 return 0; 9688 } 9689 9690 static struct bnx2x_prev_path_list * 9691 bnx2x_prev_path_get_entry(struct bnx2x *bp) 9692 { 9693 struct bnx2x_prev_path_list *tmp_list; 9694 9695 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) 9696 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && 9697 bp->pdev->bus->number == tmp_list->bus && 9698 BP_PATH(bp) == tmp_list->path) 9699 return tmp_list; 9700 9701 return NULL; 9702 } 9703 9704 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) 9705 { 9706 struct bnx2x_prev_path_list *tmp_list; 9707 int rc = false; 9708 9709 if (down_trylock(&bnx2x_prev_sem)) 9710 return false; 9711 9712 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) { 9713 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && 9714 bp->pdev->bus->number == tmp_list->bus && 9715 BP_PATH(bp) == tmp_list->path) { 9716 rc = true; 9717 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", 9718 BP_PATH(bp)); 9719 break; 9720 } 9721 } 9722 9723 up(&bnx2x_prev_sem); 9724 9725 return rc; 9726 } 9727 9728 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) 9729 { 9730 struct bnx2x_prev_path_list *tmp_list; 9731 int rc; 9732 9733 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); 9734 if (!tmp_list) { 9735 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); 9736 return -ENOMEM; 9737 } 9738 9739 tmp_list->bus = bp->pdev->bus->number; 9740 tmp_list->slot = PCI_SLOT(bp->pdev->devfn); 9741 tmp_list->path = BP_PATH(bp); 9742 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; 9743 9744 rc = down_interruptible(&bnx2x_prev_sem); 9745 if (rc) { 9746 BNX2X_ERR("Received %d when tried to take lock\n", rc); 9747 kfree(tmp_list); 9748 } else { 9749 BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n", 9750 BP_PATH(bp)); 9751 list_add(&tmp_list->list, &bnx2x_prev_list); 9752 up(&bnx2x_prev_sem); 9753 } 9754 9755 return rc; 9756 } 9757 9758 static int bnx2x_do_flr(struct bnx2x *bp) 9759 { 9760 int i; 9761 u16 status; 9762 struct pci_dev *dev = bp->pdev; 9763 9764 9765 if (CHIP_IS_E1x(bp)) { 9766 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); 9767 return -EINVAL; 9768 } 9769 9770 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 9771 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 9772 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", 9773 bp->common.bc_ver); 9774 return -EINVAL; 9775 } 9776 9777 /* Wait for Transaction Pending bit clean */ 9778 for (i = 0; i < 4; i++) { 9779 if (i) 9780 msleep((1 << (i - 1)) * 100); 9781 9782 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 9783 if (!(status & PCI_EXP_DEVSTA_TRPND)) 9784 goto clear; 9785 } 9786 9787 dev_err(&dev->dev, 9788 "transaction is not cleared; proceeding with reset anyway\n"); 9789 9790 clear: 9791 9792 BNX2X_DEV_INFO("Initiating FLR\n"); 9793 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); 9794 9795 return 0; 9796 } 9797 9798 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) 9799 { 9800 int rc; 9801 9802 BNX2X_DEV_INFO("Uncommon unload Flow\n"); 9803 9804 /* Test if previous unload process was already finished for this path */ 9805 if (bnx2x_prev_is_path_marked(bp)) 9806 return bnx2x_prev_mcp_done(bp); 9807 9808 BNX2X_DEV_INFO("Path is unmarked\n"); 9809 9810 /* If function has FLR capabilities, and existing FW version matches 9811 * the one required, then FLR will be sufficient to clean any residue 9812 * left by previous driver 9813 */ 9814 rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION); 9815 9816 if (!rc) { 9817 /* fw version is good */ 9818 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); 9819 rc = bnx2x_do_flr(bp); 9820 } 9821 9822 if (!rc) { 9823 /* FLR was performed */ 9824 BNX2X_DEV_INFO("FLR successful\n"); 9825 return 0; 9826 } 9827 9828 BNX2X_DEV_INFO("Could not FLR\n"); 9829 9830 /* Close the MCP request, return failure*/ 9831 rc = bnx2x_prev_mcp_done(bp); 9832 if (!rc) 9833 rc = BNX2X_PREV_WAIT_NEEDED; 9834 9835 return rc; 9836 } 9837 9838 static int bnx2x_prev_unload_common(struct bnx2x *bp) 9839 { 9840 u32 reset_reg, tmp_reg = 0, rc; 9841 bool prev_undi = false; 9842 struct bnx2x_mac_vals mac_vals; 9843 9844 /* It is possible a previous function received 'common' answer, 9845 * but hasn't loaded yet, therefore creating a scenario of 9846 * multiple functions receiving 'common' on the same path. 9847 */ 9848 BNX2X_DEV_INFO("Common unload Flow\n"); 9849 9850 memset(&mac_vals, 0, sizeof(mac_vals)); 9851 9852 if (bnx2x_prev_is_path_marked(bp)) 9853 return bnx2x_prev_mcp_done(bp); 9854 9855 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); 9856 9857 /* Reset should be performed after BRB is emptied */ 9858 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 9859 u32 timer_count = 1000; 9860 9861 /* Close the MAC Rx to prevent BRB from filling up */ 9862 bnx2x_prev_unload_close_mac(bp, &mac_vals); 9863 9864 /* close LLH filters towards the BRB */ 9865 bnx2x_set_rx_filter(&bp->link_params, 0); 9866 9867 /* Check if the UNDI driver was previously loaded 9868 * UNDI driver initializes CID offset for normal bell to 0x7 9869 */ 9870 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 9871 tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST); 9872 if (tmp_reg == 0x7) { 9873 BNX2X_DEV_INFO("UNDI previously loaded\n"); 9874 prev_undi = true; 9875 /* clear the UNDI indication */ 9876 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); 9877 /* clear possible idle check errors */ 9878 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); 9879 } 9880 } 9881 /* wait until BRB is empty */ 9882 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 9883 while (timer_count) { 9884 u32 prev_brb = tmp_reg; 9885 9886 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 9887 if (!tmp_reg) 9888 break; 9889 9890 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); 9891 9892 /* reset timer as long as BRB actually gets emptied */ 9893 if (prev_brb > tmp_reg) 9894 timer_count = 1000; 9895 else 9896 timer_count--; 9897 9898 /* If UNDI resides in memory, manually increment it */ 9899 if (prev_undi) 9900 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1); 9901 9902 udelay(10); 9903 } 9904 9905 if (!timer_count) 9906 BNX2X_ERR("Failed to empty BRB, hope for the best\n"); 9907 9908 } 9909 9910 /* No packets are in the pipeline, path is ready for reset */ 9911 bnx2x_reset_common(bp); 9912 9913 if (mac_vals.xmac_addr) 9914 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); 9915 if (mac_vals.umac_addr) 9916 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val); 9917 if (mac_vals.emac_addr) 9918 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); 9919 if (mac_vals.bmac_addr) { 9920 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 9921 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 9922 } 9923 9924 rc = bnx2x_prev_mark_path(bp, prev_undi); 9925 if (rc) { 9926 bnx2x_prev_mcp_done(bp); 9927 return rc; 9928 } 9929 9930 return bnx2x_prev_mcp_done(bp); 9931 } 9932 9933 /* previous driver DMAE transaction may have occurred when pre-boot stage ended 9934 * and boot began, or when kdump kernel was loaded. Either case would invalidate 9935 * the addresses of the transaction, resulting in was-error bit set in the pci 9936 * causing all hw-to-host pcie transactions to timeout. If this happened we want 9937 * to clear the interrupt which detected this from the pglueb and the was done 9938 * bit 9939 */ 9940 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp) 9941 { 9942 if (!CHIP_IS_E1x(bp)) { 9943 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS); 9944 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 9945 DP(BNX2X_MSG_SP, 9946 "'was error' bit was found to be set in pglueb upon startup. Clearing\n"); 9947 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 9948 1 << BP_FUNC(bp)); 9949 } 9950 } 9951 } 9952 9953 static int bnx2x_prev_unload(struct bnx2x *bp) 9954 { 9955 int time_counter = 10; 9956 u32 rc, fw, hw_lock_reg, hw_lock_val; 9957 struct bnx2x_prev_path_list *prev_list; 9958 BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); 9959 9960 /* clear hw from errors which may have resulted from an interrupted 9961 * dmae transaction. 9962 */ 9963 bnx2x_prev_interrupted_dmae(bp); 9964 9965 /* Release previously held locks */ 9966 hw_lock_reg = (BP_FUNC(bp) <= 5) ? 9967 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : 9968 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); 9969 9970 hw_lock_val = (REG_RD(bp, hw_lock_reg)); 9971 if (hw_lock_val) { 9972 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 9973 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); 9974 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, 9975 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); 9976 } 9977 9978 BNX2X_DEV_INFO("Release Previously held hw lock\n"); 9979 REG_WR(bp, hw_lock_reg, 0xffffffff); 9980 } else 9981 BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); 9982 9983 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { 9984 BNX2X_DEV_INFO("Release previously held alr\n"); 9985 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); 9986 } 9987 9988 do { 9989 /* Lock MCP using an unload request */ 9990 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 9991 if (!fw) { 9992 BNX2X_ERR("MCP response failure, aborting\n"); 9993 rc = -EBUSY; 9994 break; 9995 } 9996 9997 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 9998 rc = bnx2x_prev_unload_common(bp); 9999 break; 10000 } 10001 10002 /* non-common reply from MCP night require looping */ 10003 rc = bnx2x_prev_unload_uncommon(bp); 10004 if (rc != BNX2X_PREV_WAIT_NEEDED) 10005 break; 10006 10007 msleep(20); 10008 } while (--time_counter); 10009 10010 if (!time_counter || rc) { 10011 BNX2X_ERR("Failed unloading previous driver, aborting\n"); 10012 rc = -EBUSY; 10013 } 10014 10015 /* Mark function if its port was used to boot from SAN */ 10016 prev_list = bnx2x_prev_path_get_entry(bp); 10017 if (prev_list && (prev_list->undi & (1 << BP_PORT(bp)))) 10018 bp->link_params.feature_config_flags |= 10019 FEATURE_CONFIG_BOOT_FROM_SAN; 10020 10021 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); 10022 10023 return rc; 10024 } 10025 10026 static void bnx2x_get_common_hwinfo(struct bnx2x *bp) 10027 { 10028 u32 val, val2, val3, val4, id, boot_mode; 10029 u16 pmc; 10030 10031 /* Get the chip revision id and number. */ 10032 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 10033 val = REG_RD(bp, MISC_REG_CHIP_NUM); 10034 id = ((val & 0xffff) << 16); 10035 val = REG_RD(bp, MISC_REG_CHIP_REV); 10036 id |= ((val & 0xf) << 12); 10037 val = REG_RD(bp, MISC_REG_CHIP_METAL); 10038 id |= ((val & 0xff) << 4); 10039 val = REG_RD(bp, MISC_REG_BOND_ID); 10040 id |= (val & 0xf); 10041 bp->common.chip_id = id; 10042 10043 /* force 57811 according to MISC register */ 10044 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 10045 if (CHIP_IS_57810(bp)) 10046 bp->common.chip_id = (CHIP_NUM_57811 << 16) | 10047 (bp->common.chip_id & 0x0000FFFF); 10048 else if (CHIP_IS_57810_MF(bp)) 10049 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | 10050 (bp->common.chip_id & 0x0000FFFF); 10051 bp->common.chip_id |= 0x1; 10052 } 10053 10054 /* Set doorbell size */ 10055 bp->db_size = (1 << BNX2X_DB_SHIFT); 10056 10057 if (!CHIP_IS_E1x(bp)) { 10058 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); 10059 if ((val & 1) == 0) 10060 val = REG_RD(bp, MISC_REG_PORT4MODE_EN); 10061 else 10062 val = (val >> 1) & 1; 10063 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : 10064 "2_PORT_MODE"); 10065 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : 10066 CHIP_2_PORT_MODE; 10067 10068 if (CHIP_MODE_IS_4_PORT(bp)) 10069 bp->pfid = (bp->pf_num >> 1); /* 0..3 */ 10070 else 10071 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ 10072 } else { 10073 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ 10074 bp->pfid = bp->pf_num; /* 0..7 */ 10075 } 10076 10077 BNX2X_DEV_INFO("pf_id: %x", bp->pfid); 10078 10079 bp->link_params.chip_id = bp->common.chip_id; 10080 BNX2X_DEV_INFO("chip ID is 0x%x\n", id); 10081 10082 val = (REG_RD(bp, 0x2874) & 0x55); 10083 if ((bp->common.chip_id & 0x1) || 10084 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { 10085 bp->flags |= ONE_PORT_FLAG; 10086 BNX2X_DEV_INFO("single port device\n"); 10087 } 10088 10089 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); 10090 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << 10091 (val & MCPR_NVM_CFG4_FLASH_SIZE)); 10092 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", 10093 bp->common.flash_size, bp->common.flash_size); 10094 10095 bnx2x_init_shmem(bp); 10096 10097 10098 10099 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? 10100 MISC_REG_GENERIC_CR_1 : 10101 MISC_REG_GENERIC_CR_0)); 10102 10103 bp->link_params.shmem_base = bp->common.shmem_base; 10104 bp->link_params.shmem2_base = bp->common.shmem2_base; 10105 if (SHMEM2_RD(bp, size) > 10106 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 10107 bp->link_params.lfa_base = 10108 REG_RD(bp, bp->common.shmem2_base + 10109 (u32)offsetof(struct shmem2_region, 10110 lfa_host_addr[BP_PORT(bp)])); 10111 else 10112 bp->link_params.lfa_base = 0; 10113 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", 10114 bp->common.shmem_base, bp->common.shmem2_base); 10115 10116 if (!bp->common.shmem_base) { 10117 BNX2X_DEV_INFO("MCP not active\n"); 10118 bp->flags |= NO_MCP_FLAG; 10119 return; 10120 } 10121 10122 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); 10123 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); 10124 10125 bp->link_params.hw_led_mode = ((bp->common.hw_config & 10126 SHARED_HW_CFG_LED_MODE_MASK) >> 10127 SHARED_HW_CFG_LED_MODE_SHIFT); 10128 10129 bp->link_params.feature_config_flags = 0; 10130 val = SHMEM_RD(bp, dev_info.shared_feature_config.config); 10131 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) 10132 bp->link_params.feature_config_flags |= 10133 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 10134 else 10135 bp->link_params.feature_config_flags &= 10136 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 10137 10138 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; 10139 bp->common.bc_ver = val; 10140 BNX2X_DEV_INFO("bc_ver %X\n", val); 10141 if (val < BNX2X_BC_VER) { 10142 /* for now only warn 10143 * later we might need to enforce this */ 10144 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", 10145 BNX2X_BC_VER, val); 10146 } 10147 bp->link_params.feature_config_flags |= 10148 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? 10149 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; 10150 10151 bp->link_params.feature_config_flags |= 10152 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? 10153 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; 10154 bp->link_params.feature_config_flags |= 10155 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? 10156 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; 10157 bp->link_params.feature_config_flags |= 10158 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? 10159 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; 10160 10161 bp->link_params.feature_config_flags |= 10162 (val >= REQ_BC_VER_4_MT_SUPPORTED) ? 10163 FEATURE_CONFIG_MT_SUPPORT : 0; 10164 10165 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? 10166 BC_SUPPORTS_PFC_STATS : 0; 10167 10168 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? 10169 BC_SUPPORTS_FCOE_FEATURES : 0; 10170 10171 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? 10172 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; 10173 boot_mode = SHMEM_RD(bp, 10174 dev_info.port_feature_config[BP_PORT(bp)].mba_config) & 10175 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; 10176 switch (boot_mode) { 10177 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: 10178 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; 10179 break; 10180 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: 10181 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; 10182 break; 10183 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: 10184 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; 10185 break; 10186 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: 10187 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; 10188 break; 10189 } 10190 10191 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc); 10192 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; 10193 10194 BNX2X_DEV_INFO("%sWoL capable\n", 10195 (bp->flags & NO_WOL_FLAG) ? "not " : ""); 10196 10197 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); 10198 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); 10199 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); 10200 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); 10201 10202 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", 10203 val, val2, val3, val4); 10204 } 10205 10206 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 10207 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 10208 10209 static int bnx2x_get_igu_cam_info(struct bnx2x *bp) 10210 { 10211 int pfid = BP_FUNC(bp); 10212 int igu_sb_id; 10213 u32 val; 10214 u8 fid, igu_sb_cnt = 0; 10215 10216 bp->igu_base_sb = 0xff; 10217 if (CHIP_INT_MODE_IS_BC(bp)) { 10218 int vn = BP_VN(bp); 10219 igu_sb_cnt = bp->igu_sb_cnt; 10220 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * 10221 FP_SB_MAX_E1x; 10222 10223 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + 10224 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); 10225 10226 return 0; 10227 } 10228 10229 /* IGU in normal mode - read CAM */ 10230 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 10231 igu_sb_id++) { 10232 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 10233 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 10234 continue; 10235 fid = IGU_FID(val); 10236 if ((fid & IGU_FID_ENCODE_IS_PF)) { 10237 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) 10238 continue; 10239 if (IGU_VEC(val) == 0) 10240 /* default status block */ 10241 bp->igu_dsb_id = igu_sb_id; 10242 else { 10243 if (bp->igu_base_sb == 0xff) 10244 bp->igu_base_sb = igu_sb_id; 10245 igu_sb_cnt++; 10246 } 10247 } 10248 } 10249 10250 #ifdef CONFIG_PCI_MSI 10251 /* Due to new PF resource allocation by MFW T7.4 and above, it's 10252 * optional that number of CAM entries will not be equal to the value 10253 * advertised in PCI. 10254 * Driver should use the minimal value of both as the actual status 10255 * block count 10256 */ 10257 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); 10258 #endif 10259 10260 if (igu_sb_cnt == 0) { 10261 BNX2X_ERR("CAM configuration error\n"); 10262 return -EINVAL; 10263 } 10264 10265 return 0; 10266 } 10267 10268 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) 10269 { 10270 int cfg_size = 0, idx, port = BP_PORT(bp); 10271 10272 /* Aggregation of supported attributes of all external phys */ 10273 bp->port.supported[0] = 0; 10274 bp->port.supported[1] = 0; 10275 switch (bp->link_params.num_phys) { 10276 case 1: 10277 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; 10278 cfg_size = 1; 10279 break; 10280 case 2: 10281 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; 10282 cfg_size = 1; 10283 break; 10284 case 3: 10285 if (bp->link_params.multi_phy_config & 10286 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 10287 bp->port.supported[1] = 10288 bp->link_params.phy[EXT_PHY1].supported; 10289 bp->port.supported[0] = 10290 bp->link_params.phy[EXT_PHY2].supported; 10291 } else { 10292 bp->port.supported[0] = 10293 bp->link_params.phy[EXT_PHY1].supported; 10294 bp->port.supported[1] = 10295 bp->link_params.phy[EXT_PHY2].supported; 10296 } 10297 cfg_size = 2; 10298 break; 10299 } 10300 10301 if (!(bp->port.supported[0] || bp->port.supported[1])) { 10302 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", 10303 SHMEM_RD(bp, 10304 dev_info.port_hw_config[port].external_phy_config), 10305 SHMEM_RD(bp, 10306 dev_info.port_hw_config[port].external_phy_config2)); 10307 return; 10308 } 10309 10310 if (CHIP_IS_E3(bp)) 10311 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); 10312 else { 10313 switch (switch_cfg) { 10314 case SWITCH_CFG_1G: 10315 bp->port.phy_addr = REG_RD( 10316 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 10317 break; 10318 case SWITCH_CFG_10G: 10319 bp->port.phy_addr = REG_RD( 10320 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 10321 break; 10322 default: 10323 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", 10324 bp->port.link_config[0]); 10325 return; 10326 } 10327 } 10328 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); 10329 /* mask what we support according to speed_cap_mask per configuration */ 10330 for (idx = 0; idx < cfg_size; idx++) { 10331 if (!(bp->link_params.speed_cap_mask[idx] & 10332 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) 10333 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; 10334 10335 if (!(bp->link_params.speed_cap_mask[idx] & 10336 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) 10337 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; 10338 10339 if (!(bp->link_params.speed_cap_mask[idx] & 10340 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) 10341 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; 10342 10343 if (!(bp->link_params.speed_cap_mask[idx] & 10344 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) 10345 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; 10346 10347 if (!(bp->link_params.speed_cap_mask[idx] & 10348 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) 10349 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | 10350 SUPPORTED_1000baseT_Full); 10351 10352 if (!(bp->link_params.speed_cap_mask[idx] & 10353 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) 10354 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; 10355 10356 if (!(bp->link_params.speed_cap_mask[idx] & 10357 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) 10358 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; 10359 10360 } 10361 10362 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], 10363 bp->port.supported[1]); 10364 } 10365 10366 static void bnx2x_link_settings_requested(struct bnx2x *bp) 10367 { 10368 u32 link_config, idx, cfg_size = 0; 10369 bp->port.advertising[0] = 0; 10370 bp->port.advertising[1] = 0; 10371 switch (bp->link_params.num_phys) { 10372 case 1: 10373 case 2: 10374 cfg_size = 1; 10375 break; 10376 case 3: 10377 cfg_size = 2; 10378 break; 10379 } 10380 for (idx = 0; idx < cfg_size; idx++) { 10381 bp->link_params.req_duplex[idx] = DUPLEX_FULL; 10382 link_config = bp->port.link_config[idx]; 10383 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 10384 case PORT_FEATURE_LINK_SPEED_AUTO: 10385 if (bp->port.supported[idx] & SUPPORTED_Autoneg) { 10386 bp->link_params.req_line_speed[idx] = 10387 SPEED_AUTO_NEG; 10388 bp->port.advertising[idx] |= 10389 bp->port.supported[idx]; 10390 if (bp->link_params.phy[EXT_PHY1].type == 10391 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 10392 bp->port.advertising[idx] |= 10393 (SUPPORTED_100baseT_Half | 10394 SUPPORTED_100baseT_Full); 10395 } else { 10396 /* force 10G, no AN */ 10397 bp->link_params.req_line_speed[idx] = 10398 SPEED_10000; 10399 bp->port.advertising[idx] |= 10400 (ADVERTISED_10000baseT_Full | 10401 ADVERTISED_FIBRE); 10402 continue; 10403 } 10404 break; 10405 10406 case PORT_FEATURE_LINK_SPEED_10M_FULL: 10407 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { 10408 bp->link_params.req_line_speed[idx] = 10409 SPEED_10; 10410 bp->port.advertising[idx] |= 10411 (ADVERTISED_10baseT_Full | 10412 ADVERTISED_TP); 10413 } else { 10414 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10415 link_config, 10416 bp->link_params.speed_cap_mask[idx]); 10417 return; 10418 } 10419 break; 10420 10421 case PORT_FEATURE_LINK_SPEED_10M_HALF: 10422 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { 10423 bp->link_params.req_line_speed[idx] = 10424 SPEED_10; 10425 bp->link_params.req_duplex[idx] = 10426 DUPLEX_HALF; 10427 bp->port.advertising[idx] |= 10428 (ADVERTISED_10baseT_Half | 10429 ADVERTISED_TP); 10430 } else { 10431 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10432 link_config, 10433 bp->link_params.speed_cap_mask[idx]); 10434 return; 10435 } 10436 break; 10437 10438 case PORT_FEATURE_LINK_SPEED_100M_FULL: 10439 if (bp->port.supported[idx] & 10440 SUPPORTED_100baseT_Full) { 10441 bp->link_params.req_line_speed[idx] = 10442 SPEED_100; 10443 bp->port.advertising[idx] |= 10444 (ADVERTISED_100baseT_Full | 10445 ADVERTISED_TP); 10446 } else { 10447 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10448 link_config, 10449 bp->link_params.speed_cap_mask[idx]); 10450 return; 10451 } 10452 break; 10453 10454 case PORT_FEATURE_LINK_SPEED_100M_HALF: 10455 if (bp->port.supported[idx] & 10456 SUPPORTED_100baseT_Half) { 10457 bp->link_params.req_line_speed[idx] = 10458 SPEED_100; 10459 bp->link_params.req_duplex[idx] = 10460 DUPLEX_HALF; 10461 bp->port.advertising[idx] |= 10462 (ADVERTISED_100baseT_Half | 10463 ADVERTISED_TP); 10464 } else { 10465 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10466 link_config, 10467 bp->link_params.speed_cap_mask[idx]); 10468 return; 10469 } 10470 break; 10471 10472 case PORT_FEATURE_LINK_SPEED_1G: 10473 if (bp->port.supported[idx] & 10474 SUPPORTED_1000baseT_Full) { 10475 bp->link_params.req_line_speed[idx] = 10476 SPEED_1000; 10477 bp->port.advertising[idx] |= 10478 (ADVERTISED_1000baseT_Full | 10479 ADVERTISED_TP); 10480 } else { 10481 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10482 link_config, 10483 bp->link_params.speed_cap_mask[idx]); 10484 return; 10485 } 10486 break; 10487 10488 case PORT_FEATURE_LINK_SPEED_2_5G: 10489 if (bp->port.supported[idx] & 10490 SUPPORTED_2500baseX_Full) { 10491 bp->link_params.req_line_speed[idx] = 10492 SPEED_2500; 10493 bp->port.advertising[idx] |= 10494 (ADVERTISED_2500baseX_Full | 10495 ADVERTISED_TP); 10496 } else { 10497 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10498 link_config, 10499 bp->link_params.speed_cap_mask[idx]); 10500 return; 10501 } 10502 break; 10503 10504 case PORT_FEATURE_LINK_SPEED_10G_CX4: 10505 if (bp->port.supported[idx] & 10506 SUPPORTED_10000baseT_Full) { 10507 bp->link_params.req_line_speed[idx] = 10508 SPEED_10000; 10509 bp->port.advertising[idx] |= 10510 (ADVERTISED_10000baseT_Full | 10511 ADVERTISED_FIBRE); 10512 } else { 10513 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10514 link_config, 10515 bp->link_params.speed_cap_mask[idx]); 10516 return; 10517 } 10518 break; 10519 case PORT_FEATURE_LINK_SPEED_20G: 10520 bp->link_params.req_line_speed[idx] = SPEED_20000; 10521 10522 break; 10523 default: 10524 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", 10525 link_config); 10526 bp->link_params.req_line_speed[idx] = 10527 SPEED_AUTO_NEG; 10528 bp->port.advertising[idx] = 10529 bp->port.supported[idx]; 10530 break; 10531 } 10532 10533 bp->link_params.req_flow_ctrl[idx] = (link_config & 10534 PORT_FEATURE_FLOW_CONTROL_MASK); 10535 if (bp->link_params.req_flow_ctrl[idx] == 10536 BNX2X_FLOW_CTRL_AUTO) { 10537 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) 10538 bp->link_params.req_flow_ctrl[idx] = 10539 BNX2X_FLOW_CTRL_NONE; 10540 else 10541 bnx2x_set_requested_fc(bp); 10542 } 10543 10544 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", 10545 bp->link_params.req_line_speed[idx], 10546 bp->link_params.req_duplex[idx], 10547 bp->link_params.req_flow_ctrl[idx], 10548 bp->port.advertising[idx]); 10549 } 10550 } 10551 10552 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) 10553 { 10554 __be16 mac_hi_be = cpu_to_be16(mac_hi); 10555 __be32 mac_lo_be = cpu_to_be32(mac_lo); 10556 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); 10557 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); 10558 } 10559 10560 static void bnx2x_get_port_hwinfo(struct bnx2x *bp) 10561 { 10562 int port = BP_PORT(bp); 10563 u32 config; 10564 u32 ext_phy_type, ext_phy_config, eee_mode; 10565 10566 bp->link_params.bp = bp; 10567 bp->link_params.port = port; 10568 10569 bp->link_params.lane_config = 10570 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); 10571 10572 bp->link_params.speed_cap_mask[0] = 10573 SHMEM_RD(bp, 10574 dev_info.port_hw_config[port].speed_capability_mask); 10575 bp->link_params.speed_cap_mask[1] = 10576 SHMEM_RD(bp, 10577 dev_info.port_hw_config[port].speed_capability_mask2); 10578 bp->port.link_config[0] = 10579 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); 10580 10581 bp->port.link_config[1] = 10582 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); 10583 10584 bp->link_params.multi_phy_config = 10585 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); 10586 /* If the device is capable of WoL, set the default state according 10587 * to the HW 10588 */ 10589 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); 10590 bp->wol = (!(bp->flags & NO_WOL_FLAG) && 10591 (config & PORT_FEATURE_WOL_ENABLED)); 10592 10593 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 10594 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) 10595 bp->flags |= NO_ISCSI_FLAG; 10596 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 10597 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) 10598 bp->flags |= NO_FCOE_FLAG; 10599 10600 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", 10601 bp->link_params.lane_config, 10602 bp->link_params.speed_cap_mask[0], 10603 bp->port.link_config[0]); 10604 10605 bp->link_params.switch_cfg = (bp->port.link_config[0] & 10606 PORT_FEATURE_CONNECTED_SWITCH_MASK); 10607 bnx2x_phy_probe(&bp->link_params); 10608 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); 10609 10610 bnx2x_link_settings_requested(bp); 10611 10612 /* 10613 * If connected directly, work with the internal PHY, otherwise, work 10614 * with the external PHY 10615 */ 10616 ext_phy_config = 10617 SHMEM_RD(bp, 10618 dev_info.port_hw_config[port].external_phy_config); 10619 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); 10620 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 10621 bp->mdio.prtad = bp->port.phy_addr; 10622 10623 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 10624 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 10625 bp->mdio.prtad = 10626 XGXS_EXT_PHY_ADDR(ext_phy_config); 10627 10628 /* Configure link feature according to nvram value */ 10629 eee_mode = (((SHMEM_RD(bp, dev_info. 10630 port_feature_config[port].eee_power_mode)) & 10631 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 10632 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 10633 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 10634 bp->link_params.eee_mode = EEE_MODE_ADV_LPI | 10635 EEE_MODE_ENABLE_LPI | 10636 EEE_MODE_OUTPUT_TIME; 10637 } else { 10638 bp->link_params.eee_mode = 0; 10639 } 10640 } 10641 10642 void bnx2x_get_iscsi_info(struct bnx2x *bp) 10643 { 10644 u32 no_flags = NO_ISCSI_FLAG; 10645 int port = BP_PORT(bp); 10646 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 10647 drv_lic_key[port].max_iscsi_conn); 10648 10649 if (!CNIC_SUPPORT(bp)) { 10650 bp->flags |= no_flags; 10651 return; 10652 } 10653 10654 /* Get the number of maximum allowed iSCSI connections */ 10655 bp->cnic_eth_dev.max_iscsi_conn = 10656 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> 10657 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; 10658 10659 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", 10660 bp->cnic_eth_dev.max_iscsi_conn); 10661 10662 /* 10663 * If maximum allowed number of connections is zero - 10664 * disable the feature. 10665 */ 10666 if (!bp->cnic_eth_dev.max_iscsi_conn) 10667 bp->flags |= no_flags; 10668 10669 } 10670 10671 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) 10672 { 10673 /* Port info */ 10674 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 10675 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); 10676 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 10677 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); 10678 10679 /* Node info */ 10680 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 10681 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); 10682 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 10683 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); 10684 } 10685 static void bnx2x_get_fcoe_info(struct bnx2x *bp) 10686 { 10687 int port = BP_PORT(bp); 10688 int func = BP_ABS_FUNC(bp); 10689 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 10690 drv_lic_key[port].max_fcoe_conn); 10691 10692 if (!CNIC_SUPPORT(bp)) { 10693 bp->flags |= NO_FCOE_FLAG; 10694 return; 10695 } 10696 10697 /* Get the number of maximum allowed FCoE connections */ 10698 bp->cnic_eth_dev.max_fcoe_conn = 10699 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> 10700 BNX2X_MAX_FCOE_INIT_CONN_SHIFT; 10701 10702 /* Read the WWN: */ 10703 if (!IS_MF(bp)) { 10704 /* Port info */ 10705 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 10706 SHMEM_RD(bp, 10707 dev_info.port_hw_config[port]. 10708 fcoe_wwn_port_name_upper); 10709 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 10710 SHMEM_RD(bp, 10711 dev_info.port_hw_config[port]. 10712 fcoe_wwn_port_name_lower); 10713 10714 /* Node info */ 10715 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 10716 SHMEM_RD(bp, 10717 dev_info.port_hw_config[port]. 10718 fcoe_wwn_node_name_upper); 10719 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 10720 SHMEM_RD(bp, 10721 dev_info.port_hw_config[port]. 10722 fcoe_wwn_node_name_lower); 10723 } else if (!IS_MF_SD(bp)) { 10724 /* 10725 * Read the WWN info only if the FCoE feature is enabled for 10726 * this function. 10727 */ 10728 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) 10729 bnx2x_get_ext_wwn_info(bp, func); 10730 10731 } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) { 10732 bnx2x_get_ext_wwn_info(bp, func); 10733 } 10734 10735 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); 10736 10737 /* 10738 * If maximum allowed number of connections is zero - 10739 * disable the feature. 10740 */ 10741 if (!bp->cnic_eth_dev.max_fcoe_conn) 10742 bp->flags |= NO_FCOE_FLAG; 10743 } 10744 10745 static void bnx2x_get_cnic_info(struct bnx2x *bp) 10746 { 10747 /* 10748 * iSCSI may be dynamically disabled but reading 10749 * info here we will decrease memory usage by driver 10750 * if the feature is disabled for good 10751 */ 10752 bnx2x_get_iscsi_info(bp); 10753 bnx2x_get_fcoe_info(bp); 10754 } 10755 10756 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) 10757 { 10758 u32 val, val2; 10759 int func = BP_ABS_FUNC(bp); 10760 int port = BP_PORT(bp); 10761 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; 10762 u8 *fip_mac = bp->fip_mac; 10763 10764 if (IS_MF(bp)) { 10765 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or 10766 * FCoE MAC then the appropriate feature should be disabled. 10767 * In non SD mode features configuration comes from struct 10768 * func_ext_config. 10769 */ 10770 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) { 10771 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); 10772 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 10773 val2 = MF_CFG_RD(bp, func_ext_config[func]. 10774 iscsi_mac_addr_upper); 10775 val = MF_CFG_RD(bp, func_ext_config[func]. 10776 iscsi_mac_addr_lower); 10777 bnx2x_set_mac_buf(iscsi_mac, val, val2); 10778 BNX2X_DEV_INFO 10779 ("Read iSCSI MAC: %pM\n", iscsi_mac); 10780 } else { 10781 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 10782 } 10783 10784 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 10785 val2 = MF_CFG_RD(bp, func_ext_config[func]. 10786 fcoe_mac_addr_upper); 10787 val = MF_CFG_RD(bp, func_ext_config[func]. 10788 fcoe_mac_addr_lower); 10789 bnx2x_set_mac_buf(fip_mac, val, val2); 10790 BNX2X_DEV_INFO 10791 ("Read FCoE L2 MAC: %pM\n", fip_mac); 10792 } else { 10793 bp->flags |= NO_FCOE_FLAG; 10794 } 10795 10796 bp->mf_ext_config = cfg; 10797 10798 } else { /* SD MODE */ 10799 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { 10800 /* use primary mac as iscsi mac */ 10801 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); 10802 10803 BNX2X_DEV_INFO("SD ISCSI MODE\n"); 10804 BNX2X_DEV_INFO 10805 ("Read iSCSI MAC: %pM\n", iscsi_mac); 10806 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { 10807 /* use primary mac as fip mac */ 10808 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); 10809 BNX2X_DEV_INFO("SD FCoE MODE\n"); 10810 BNX2X_DEV_INFO 10811 ("Read FIP MAC: %pM\n", fip_mac); 10812 } 10813 } 10814 10815 if (IS_MF_STORAGE_SD(bp)) 10816 /* Zero primary MAC configuration */ 10817 memset(bp->dev->dev_addr, 0, ETH_ALEN); 10818 10819 if (IS_MF_FCOE_AFEX(bp) || IS_MF_FCOE_SD(bp)) 10820 /* use FIP MAC as primary MAC */ 10821 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN); 10822 10823 } else { 10824 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 10825 iscsi_mac_upper); 10826 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 10827 iscsi_mac_lower); 10828 bnx2x_set_mac_buf(iscsi_mac, val, val2); 10829 10830 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 10831 fcoe_fip_mac_upper); 10832 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 10833 fcoe_fip_mac_lower); 10834 bnx2x_set_mac_buf(fip_mac, val, val2); 10835 } 10836 10837 /* Disable iSCSI OOO if MAC configuration is invalid. */ 10838 if (!is_valid_ether_addr(iscsi_mac)) { 10839 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 10840 memset(iscsi_mac, 0, ETH_ALEN); 10841 } 10842 10843 /* Disable FCoE if MAC configuration is invalid. */ 10844 if (!is_valid_ether_addr(fip_mac)) { 10845 bp->flags |= NO_FCOE_FLAG; 10846 memset(bp->fip_mac, 0, ETH_ALEN); 10847 } 10848 } 10849 10850 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) 10851 { 10852 u32 val, val2; 10853 int func = BP_ABS_FUNC(bp); 10854 int port = BP_PORT(bp); 10855 10856 /* Zero primary MAC configuration */ 10857 memset(bp->dev->dev_addr, 0, ETH_ALEN); 10858 10859 if (BP_NOMCP(bp)) { 10860 BNX2X_ERROR("warning: random MAC workaround active\n"); 10861 eth_hw_addr_random(bp->dev); 10862 } else if (IS_MF(bp)) { 10863 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 10864 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); 10865 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && 10866 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) 10867 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 10868 10869 if (CNIC_SUPPORT(bp)) 10870 bnx2x_get_cnic_mac_hwinfo(bp); 10871 } else { 10872 /* in SF read MACs from port configuration */ 10873 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 10874 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 10875 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 10876 10877 if (CNIC_SUPPORT(bp)) 10878 bnx2x_get_cnic_mac_hwinfo(bp); 10879 } 10880 10881 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); 10882 10883 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr)) 10884 dev_err(&bp->pdev->dev, 10885 "bad Ethernet MAC address configuration: %pM\n" 10886 "change it manually before bringing up the appropriate network interface\n", 10887 bp->dev->dev_addr); 10888 } 10889 10890 static bool bnx2x_get_dropless_info(struct bnx2x *bp) 10891 { 10892 int tmp; 10893 u32 cfg; 10894 10895 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { 10896 /* Take function: tmp = func */ 10897 tmp = BP_ABS_FUNC(bp); 10898 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); 10899 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); 10900 } else { 10901 /* Take port: tmp = port */ 10902 tmp = BP_PORT(bp); 10903 cfg = SHMEM_RD(bp, 10904 dev_info.port_hw_config[tmp].generic_features); 10905 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); 10906 } 10907 return cfg; 10908 } 10909 10910 static int bnx2x_get_hwinfo(struct bnx2x *bp) 10911 { 10912 int /*abs*/func = BP_ABS_FUNC(bp); 10913 int vn; 10914 u32 val = 0; 10915 int rc = 0; 10916 10917 bnx2x_get_common_hwinfo(bp); 10918 10919 /* 10920 * initialize IGU parameters 10921 */ 10922 if (CHIP_IS_E1x(bp)) { 10923 bp->common.int_block = INT_BLOCK_HC; 10924 10925 bp->igu_dsb_id = DEF_SB_IGU_ID; 10926 bp->igu_base_sb = 0; 10927 } else { 10928 bp->common.int_block = INT_BLOCK_IGU; 10929 10930 /* do not allow device reset during IGU info preocessing */ 10931 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 10932 10933 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 10934 10935 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 10936 int tout = 5000; 10937 10938 BNX2X_DEV_INFO("FORCING Normal Mode\n"); 10939 10940 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 10941 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); 10942 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); 10943 10944 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 10945 tout--; 10946 usleep_range(1000, 2000); 10947 } 10948 10949 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 10950 dev_err(&bp->pdev->dev, 10951 "FORCING Normal Mode failed!!!\n"); 10952 bnx2x_release_hw_lock(bp, 10953 HW_LOCK_RESOURCE_RESET); 10954 return -EPERM; 10955 } 10956 } 10957 10958 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 10959 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); 10960 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; 10961 } else 10962 BNX2X_DEV_INFO("IGU Normal Mode\n"); 10963 10964 rc = bnx2x_get_igu_cam_info(bp); 10965 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 10966 if (rc) 10967 return rc; 10968 } 10969 10970 /* 10971 * set base FW non-default (fast path) status block id, this value is 10972 * used to initialize the fw_sb_id saved on the fp/queue structure to 10973 * determine the id used by the FW. 10974 */ 10975 if (CHIP_IS_E1x(bp)) 10976 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); 10977 else /* 10978 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of 10979 * the same queue are indicated on the same IGU SB). So we prefer 10980 * FW and IGU SBs to be the same value. 10981 */ 10982 bp->base_fw_ndsb = bp->igu_base_sb; 10983 10984 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" 10985 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, 10986 bp->igu_sb_cnt, bp->base_fw_ndsb); 10987 10988 /* 10989 * Initialize MF configuration 10990 */ 10991 10992 bp->mf_ov = 0; 10993 bp->mf_mode = 0; 10994 vn = BP_VN(bp); 10995 10996 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { 10997 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", 10998 bp->common.shmem2_base, SHMEM2_RD(bp, size), 10999 (u32)offsetof(struct shmem2_region, mf_cfg_addr)); 11000 11001 if (SHMEM2_HAS(bp, mf_cfg_addr)) 11002 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); 11003 else 11004 bp->common.mf_cfg_base = bp->common.shmem_base + 11005 offsetof(struct shmem_region, func_mb) + 11006 E1H_FUNC_MAX * sizeof(struct drv_func_mb); 11007 /* 11008 * get mf configuration: 11009 * 1. existence of MF configuration 11010 * 2. MAC address must be legal (check only upper bytes) 11011 * for Switch-Independent mode; 11012 * OVLAN must be legal for Switch-Dependent mode 11013 * 3. SF_MODE configures specific MF mode 11014 */ 11015 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 11016 /* get mf configuration */ 11017 val = SHMEM_RD(bp, 11018 dev_info.shared_feature_config.config); 11019 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; 11020 11021 switch (val) { 11022 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 11023 val = MF_CFG_RD(bp, func_mf_config[func]. 11024 mac_upper); 11025 /* check for legal mac (upper bytes)*/ 11026 if (val != 0xffff) { 11027 bp->mf_mode = MULTI_FUNCTION_SI; 11028 bp->mf_config[vn] = MF_CFG_RD(bp, 11029 func_mf_config[func].config); 11030 } else 11031 BNX2X_DEV_INFO("illegal MAC address for SI\n"); 11032 break; 11033 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 11034 if ((!CHIP_IS_E1x(bp)) && 11035 (MF_CFG_RD(bp, func_mf_config[func]. 11036 mac_upper) != 0xffff) && 11037 (SHMEM2_HAS(bp, 11038 afex_driver_support))) { 11039 bp->mf_mode = MULTI_FUNCTION_AFEX; 11040 bp->mf_config[vn] = MF_CFG_RD(bp, 11041 func_mf_config[func].config); 11042 } else { 11043 BNX2X_DEV_INFO("can not configure afex mode\n"); 11044 } 11045 break; 11046 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 11047 /* get OV configuration */ 11048 val = MF_CFG_RD(bp, 11049 func_mf_config[FUNC_0].e1hov_tag); 11050 val &= FUNC_MF_CFG_E1HOV_TAG_MASK; 11051 11052 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 11053 bp->mf_mode = MULTI_FUNCTION_SD; 11054 bp->mf_config[vn] = MF_CFG_RD(bp, 11055 func_mf_config[func].config); 11056 } else 11057 BNX2X_DEV_INFO("illegal OV for SD\n"); 11058 break; 11059 default: 11060 /* Unknown configuration: reset mf_config */ 11061 bp->mf_config[vn] = 0; 11062 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); 11063 } 11064 } 11065 11066 BNX2X_DEV_INFO("%s function mode\n", 11067 IS_MF(bp) ? "multi" : "single"); 11068 11069 switch (bp->mf_mode) { 11070 case MULTI_FUNCTION_SD: 11071 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 11072 FUNC_MF_CFG_E1HOV_TAG_MASK; 11073 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 11074 bp->mf_ov = val; 11075 bp->path_has_ovlan = true; 11076 11077 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", 11078 func, bp->mf_ov, bp->mf_ov); 11079 } else { 11080 dev_err(&bp->pdev->dev, 11081 "No valid MF OV for func %d, aborting\n", 11082 func); 11083 return -EPERM; 11084 } 11085 break; 11086 case MULTI_FUNCTION_AFEX: 11087 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); 11088 break; 11089 case MULTI_FUNCTION_SI: 11090 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", 11091 func); 11092 break; 11093 default: 11094 if (vn) { 11095 dev_err(&bp->pdev->dev, 11096 "VN %d is in a single function mode, aborting\n", 11097 vn); 11098 return -EPERM; 11099 } 11100 break; 11101 } 11102 11103 /* check if other port on the path needs ovlan: 11104 * Since MF configuration is shared between ports 11105 * Possible mixed modes are only 11106 * {SF, SI} {SF, SD} {SD, SF} {SI, SF} 11107 */ 11108 if (CHIP_MODE_IS_4_PORT(bp) && 11109 !bp->path_has_ovlan && 11110 !IS_MF(bp) && 11111 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 11112 u8 other_port = !BP_PORT(bp); 11113 u8 other_func = BP_PATH(bp) + 2*other_port; 11114 val = MF_CFG_RD(bp, 11115 func_mf_config[other_func].e1hov_tag); 11116 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) 11117 bp->path_has_ovlan = true; 11118 } 11119 } 11120 11121 /* adjust igu_sb_cnt to MF for E1x */ 11122 if (CHIP_IS_E1x(bp) && IS_MF(bp)) 11123 bp->igu_sb_cnt /= E1HVN_MAX; 11124 11125 /* port info */ 11126 bnx2x_get_port_hwinfo(bp); 11127 11128 /* Get MAC addresses */ 11129 bnx2x_get_mac_hwinfo(bp); 11130 11131 bnx2x_get_cnic_info(bp); 11132 11133 return rc; 11134 } 11135 11136 static void bnx2x_read_fwinfo(struct bnx2x *bp) 11137 { 11138 int cnt, i, block_end, rodi; 11139 char vpd_start[BNX2X_VPD_LEN+1]; 11140 char str_id_reg[VENDOR_ID_LEN+1]; 11141 char str_id_cap[VENDOR_ID_LEN+1]; 11142 char *vpd_data; 11143 char *vpd_extended_data = NULL; 11144 u8 len; 11145 11146 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); 11147 memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); 11148 11149 if (cnt < BNX2X_VPD_LEN) 11150 goto out_not_found; 11151 11152 /* VPD RO tag should be first tag after identifier string, hence 11153 * we should be able to find it in first BNX2X_VPD_LEN chars 11154 */ 11155 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, 11156 PCI_VPD_LRDT_RO_DATA); 11157 if (i < 0) 11158 goto out_not_found; 11159 11160 block_end = i + PCI_VPD_LRDT_TAG_SIZE + 11161 pci_vpd_lrdt_size(&vpd_start[i]); 11162 11163 i += PCI_VPD_LRDT_TAG_SIZE; 11164 11165 if (block_end > BNX2X_VPD_LEN) { 11166 vpd_extended_data = kmalloc(block_end, GFP_KERNEL); 11167 if (vpd_extended_data == NULL) 11168 goto out_not_found; 11169 11170 /* read rest of vpd image into vpd_extended_data */ 11171 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); 11172 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, 11173 block_end - BNX2X_VPD_LEN, 11174 vpd_extended_data + BNX2X_VPD_LEN); 11175 if (cnt < (block_end - BNX2X_VPD_LEN)) 11176 goto out_not_found; 11177 vpd_data = vpd_extended_data; 11178 } else 11179 vpd_data = vpd_start; 11180 11181 /* now vpd_data holds full vpd content in both cases */ 11182 11183 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 11184 PCI_VPD_RO_KEYWORD_MFR_ID); 11185 if (rodi < 0) 11186 goto out_not_found; 11187 11188 len = pci_vpd_info_field_size(&vpd_data[rodi]); 11189 11190 if (len != VENDOR_ID_LEN) 11191 goto out_not_found; 11192 11193 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 11194 11195 /* vendor specific info */ 11196 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); 11197 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); 11198 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || 11199 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { 11200 11201 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 11202 PCI_VPD_RO_KEYWORD_VENDOR0); 11203 if (rodi >= 0) { 11204 len = pci_vpd_info_field_size(&vpd_data[rodi]); 11205 11206 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 11207 11208 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { 11209 memcpy(bp->fw_ver, &vpd_data[rodi], len); 11210 bp->fw_ver[len] = ' '; 11211 } 11212 } 11213 kfree(vpd_extended_data); 11214 return; 11215 } 11216 out_not_found: 11217 kfree(vpd_extended_data); 11218 return; 11219 } 11220 11221 static void bnx2x_set_modes_bitmap(struct bnx2x *bp) 11222 { 11223 u32 flags = 0; 11224 11225 if (CHIP_REV_IS_FPGA(bp)) 11226 SET_FLAGS(flags, MODE_FPGA); 11227 else if (CHIP_REV_IS_EMUL(bp)) 11228 SET_FLAGS(flags, MODE_EMUL); 11229 else 11230 SET_FLAGS(flags, MODE_ASIC); 11231 11232 if (CHIP_MODE_IS_4_PORT(bp)) 11233 SET_FLAGS(flags, MODE_PORT4); 11234 else 11235 SET_FLAGS(flags, MODE_PORT2); 11236 11237 if (CHIP_IS_E2(bp)) 11238 SET_FLAGS(flags, MODE_E2); 11239 else if (CHIP_IS_E3(bp)) { 11240 SET_FLAGS(flags, MODE_E3); 11241 if (CHIP_REV(bp) == CHIP_REV_Ax) 11242 SET_FLAGS(flags, MODE_E3_A0); 11243 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ 11244 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 11245 } 11246 11247 if (IS_MF(bp)) { 11248 SET_FLAGS(flags, MODE_MF); 11249 switch (bp->mf_mode) { 11250 case MULTI_FUNCTION_SD: 11251 SET_FLAGS(flags, MODE_MF_SD); 11252 break; 11253 case MULTI_FUNCTION_SI: 11254 SET_FLAGS(flags, MODE_MF_SI); 11255 break; 11256 case MULTI_FUNCTION_AFEX: 11257 SET_FLAGS(flags, MODE_MF_AFEX); 11258 break; 11259 } 11260 } else 11261 SET_FLAGS(flags, MODE_SF); 11262 11263 #if defined(__LITTLE_ENDIAN) 11264 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 11265 #else /*(__BIG_ENDIAN)*/ 11266 SET_FLAGS(flags, MODE_BIG_ENDIAN); 11267 #endif 11268 INIT_MODE_FLAGS(bp) = flags; 11269 } 11270 11271 static int bnx2x_init_bp(struct bnx2x *bp) 11272 { 11273 int func; 11274 int rc; 11275 11276 mutex_init(&bp->port.phy_mutex); 11277 mutex_init(&bp->fw_mb_mutex); 11278 spin_lock_init(&bp->stats_lock); 11279 11280 11281 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); 11282 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); 11283 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); 11284 if (IS_PF(bp)) { 11285 rc = bnx2x_get_hwinfo(bp); 11286 if (rc) 11287 return rc; 11288 } else { 11289 random_ether_addr(bp->dev->dev_addr); 11290 } 11291 11292 bnx2x_set_modes_bitmap(bp); 11293 11294 rc = bnx2x_alloc_mem_bp(bp); 11295 if (rc) 11296 return rc; 11297 11298 bnx2x_read_fwinfo(bp); 11299 11300 func = BP_FUNC(bp); 11301 11302 /* need to reset chip if undi was active */ 11303 if (IS_PF(bp) && !BP_NOMCP(bp)) { 11304 /* init fw_seq */ 11305 bp->fw_seq = 11306 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 11307 DRV_MSG_SEQ_NUMBER_MASK; 11308 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 11309 11310 bnx2x_prev_unload(bp); 11311 } 11312 11313 11314 if (CHIP_REV_IS_FPGA(bp)) 11315 dev_err(&bp->pdev->dev, "FPGA detected\n"); 11316 11317 if (BP_NOMCP(bp) && (func == 0)) 11318 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); 11319 11320 bp->disable_tpa = disable_tpa; 11321 bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp); 11322 11323 /* Set TPA flags */ 11324 if (bp->disable_tpa) { 11325 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); 11326 bp->dev->features &= ~NETIF_F_LRO; 11327 } else { 11328 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); 11329 bp->dev->features |= NETIF_F_LRO; 11330 } 11331 11332 if (CHIP_IS_E1(bp)) 11333 bp->dropless_fc = 0; 11334 else 11335 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); 11336 11337 bp->mrrs = mrrs; 11338 11339 bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL; 11340 if (IS_VF(bp)) 11341 bp->rx_ring_size = MAX_RX_AVAIL; 11342 11343 /* make sure that the numbers are in the right granularity */ 11344 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; 11345 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; 11346 11347 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; 11348 11349 init_timer(&bp->timer); 11350 bp->timer.expires = jiffies + bp->current_interval; 11351 bp->timer.data = (unsigned long) bp; 11352 bp->timer.function = bnx2x_timer; 11353 11354 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && 11355 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && 11356 SHMEM2_RD(bp, dcbx_lldp_params_offset) && 11357 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) { 11358 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); 11359 bnx2x_dcbx_init_params(bp); 11360 } else { 11361 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); 11362 } 11363 11364 if (CHIP_IS_E1x(bp)) 11365 bp->cnic_base_cl_id = FP_SB_MAX_E1x; 11366 else 11367 bp->cnic_base_cl_id = FP_SB_MAX_E2; 11368 11369 /* multiple tx priority */ 11370 if (IS_VF(bp)) 11371 bp->max_cos = 1; 11372 else if (CHIP_IS_E1x(bp)) 11373 bp->max_cos = BNX2X_MULTI_TX_COS_E1X; 11374 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) 11375 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; 11376 else if (CHIP_IS_E3B0(bp)) 11377 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; 11378 else 11379 BNX2X_ERR("unknown chip %x revision %x\n", 11380 CHIP_NUM(bp), CHIP_REV(bp)); 11381 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); 11382 11383 /* We need at least one default status block for slow-path events, 11384 * second status block for the L2 queue, and a third status block for 11385 * CNIC if supproted. 11386 */ 11387 if (CNIC_SUPPORT(bp)) 11388 bp->min_msix_vec_cnt = 3; 11389 else 11390 bp->min_msix_vec_cnt = 2; 11391 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); 11392 11393 return rc; 11394 } 11395 11396 11397 /**************************************************************************** 11398 * General service functions 11399 ****************************************************************************/ 11400 11401 /* 11402 * net_device service functions 11403 */ 11404 11405 static int bnx2x_open_epilog(struct bnx2x *bp) 11406 { 11407 /* Enable sriov via delayed work. This must be done via delayed work 11408 * because it causes the probe of the vf devices to be run, which invoke 11409 * register_netdevice which must have rtnl lock taken. As we are holding 11410 * the lock right now, that could only work if the probe would not take 11411 * the lock. However, as the probe of the vf may be called from other 11412 * contexts as well (such as passthrough to vm failes) it can't assume 11413 * the lock is being held for it. Using delayed work here allows the 11414 * probe code to simply take the lock (i.e. wait for it to be released 11415 * if it is being held). 11416 */ 11417 smp_mb__before_clear_bit(); 11418 set_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, &bp->sp_rtnl_state); 11419 smp_mb__after_clear_bit(); 11420 schedule_delayed_work(&bp->sp_rtnl_task, 0); 11421 11422 return 0; 11423 } 11424 11425 /* called with rtnl_lock */ 11426 static int bnx2x_open(struct net_device *dev) 11427 { 11428 struct bnx2x *bp = netdev_priv(dev); 11429 bool global = false; 11430 int other_engine = BP_PATH(bp) ? 0 : 1; 11431 bool other_load_status, load_status; 11432 int rc; 11433 11434 bp->stats_init = true; 11435 11436 netif_carrier_off(dev); 11437 11438 bnx2x_set_power_state(bp, PCI_D0); 11439 11440 /* If parity had happen during the unload, then attentions 11441 * and/or RECOVERY_IN_PROGRES may still be set. In this case we 11442 * want the first function loaded on the current engine to 11443 * complete the recovery. 11444 * Parity recovery is only relevant for PF driver. 11445 */ 11446 if (IS_PF(bp)) { 11447 other_load_status = bnx2x_get_load_status(bp, other_engine); 11448 load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); 11449 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || 11450 bnx2x_chk_parity_attn(bp, &global, true)) { 11451 do { 11452 /* If there are attentions and they are in a 11453 * global blocks, set the GLOBAL_RESET bit 11454 * regardless whether it will be this function 11455 * that will complete the recovery or not. 11456 */ 11457 if (global) 11458 bnx2x_set_reset_global(bp); 11459 11460 /* Only the first function on the current 11461 * engine should try to recover in open. In case 11462 * of attentions in global blocks only the first 11463 * in the chip should try to recover. 11464 */ 11465 if ((!load_status && 11466 (!global || !other_load_status)) && 11467 bnx2x_trylock_leader_lock(bp) && 11468 !bnx2x_leader_reset(bp)) { 11469 netdev_info(bp->dev, 11470 "Recovered in open\n"); 11471 break; 11472 } 11473 11474 /* recovery has failed... */ 11475 bnx2x_set_power_state(bp, PCI_D3hot); 11476 bp->recovery_state = BNX2X_RECOVERY_FAILED; 11477 11478 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" 11479 "If you still see this message after a few retries then power cycle is required.\n"); 11480 11481 return -EAGAIN; 11482 } while (0); 11483 } 11484 } 11485 11486 bp->recovery_state = BNX2X_RECOVERY_DONE; 11487 rc = bnx2x_nic_load(bp, LOAD_OPEN); 11488 if (rc) 11489 return rc; 11490 return bnx2x_open_epilog(bp); 11491 } 11492 11493 /* called with rtnl_lock */ 11494 static int bnx2x_close(struct net_device *dev) 11495 { 11496 struct bnx2x *bp = netdev_priv(dev); 11497 11498 /* Unload the driver, release IRQs */ 11499 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 11500 11501 /* Power off */ 11502 bnx2x_set_power_state(bp, PCI_D3hot); 11503 11504 return 0; 11505 } 11506 11507 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, 11508 struct bnx2x_mcast_ramrod_params *p) 11509 { 11510 int mc_count = netdev_mc_count(bp->dev); 11511 struct bnx2x_mcast_list_elem *mc_mac = 11512 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC); 11513 struct netdev_hw_addr *ha; 11514 11515 if (!mc_mac) 11516 return -ENOMEM; 11517 11518 INIT_LIST_HEAD(&p->mcast_list); 11519 11520 netdev_for_each_mc_addr(ha, bp->dev) { 11521 mc_mac->mac = bnx2x_mc_addr(ha); 11522 list_add_tail(&mc_mac->link, &p->mcast_list); 11523 mc_mac++; 11524 } 11525 11526 p->mcast_list_len = mc_count; 11527 11528 return 0; 11529 } 11530 11531 static void bnx2x_free_mcast_macs_list( 11532 struct bnx2x_mcast_ramrod_params *p) 11533 { 11534 struct bnx2x_mcast_list_elem *mc_mac = 11535 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem, 11536 link); 11537 11538 WARN_ON(!mc_mac); 11539 kfree(mc_mac); 11540 } 11541 11542 /** 11543 * bnx2x_set_uc_list - configure a new unicast MACs list. 11544 * 11545 * @bp: driver handle 11546 * 11547 * We will use zero (0) as a MAC type for these MACs. 11548 */ 11549 static int bnx2x_set_uc_list(struct bnx2x *bp) 11550 { 11551 int rc; 11552 struct net_device *dev = bp->dev; 11553 struct netdev_hw_addr *ha; 11554 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 11555 unsigned long ramrod_flags = 0; 11556 11557 /* First schedule a cleanup up of old configuration */ 11558 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); 11559 if (rc < 0) { 11560 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); 11561 return rc; 11562 } 11563 11564 netdev_for_each_uc_addr(ha, dev) { 11565 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, 11566 BNX2X_UC_LIST_MAC, &ramrod_flags); 11567 if (rc == -EEXIST) { 11568 DP(BNX2X_MSG_SP, 11569 "Failed to schedule ADD operations: %d\n", rc); 11570 /* do not treat adding same MAC as error */ 11571 rc = 0; 11572 11573 } else if (rc < 0) { 11574 11575 BNX2X_ERR("Failed to schedule ADD operations: %d\n", 11576 rc); 11577 return rc; 11578 } 11579 } 11580 11581 /* Execute the pending commands */ 11582 __set_bit(RAMROD_CONT, &ramrod_flags); 11583 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, 11584 BNX2X_UC_LIST_MAC, &ramrod_flags); 11585 } 11586 11587 static int bnx2x_set_mc_list(struct bnx2x *bp) 11588 { 11589 struct net_device *dev = bp->dev; 11590 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 11591 int rc = 0; 11592 11593 rparam.mcast_obj = &bp->mcast_obj; 11594 11595 /* first, clear all configured multicast MACs */ 11596 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 11597 if (rc < 0) { 11598 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); 11599 return rc; 11600 } 11601 11602 /* then, configure a new MACs list */ 11603 if (netdev_mc_count(dev)) { 11604 rc = bnx2x_init_mcast_macs_list(bp, &rparam); 11605 if (rc) { 11606 BNX2X_ERR("Failed to create multicast MACs list: %d\n", 11607 rc); 11608 return rc; 11609 } 11610 11611 /* Now add the new MACs */ 11612 rc = bnx2x_config_mcast(bp, &rparam, 11613 BNX2X_MCAST_CMD_ADD); 11614 if (rc < 0) 11615 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 11616 rc); 11617 11618 bnx2x_free_mcast_macs_list(&rparam); 11619 } 11620 11621 return rc; 11622 } 11623 11624 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ 11625 void bnx2x_set_rx_mode(struct net_device *dev) 11626 { 11627 struct bnx2x *bp = netdev_priv(dev); 11628 u32 rx_mode = BNX2X_RX_MODE_NORMAL; 11629 11630 if (bp->state != BNX2X_STATE_OPEN) { 11631 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); 11632 return; 11633 } 11634 11635 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); 11636 11637 if (dev->flags & IFF_PROMISC) 11638 rx_mode = BNX2X_RX_MODE_PROMISC; 11639 else if ((dev->flags & IFF_ALLMULTI) || 11640 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) && 11641 CHIP_IS_E1(bp))) 11642 rx_mode = BNX2X_RX_MODE_ALLMULTI; 11643 else { 11644 if (IS_PF(bp)) { 11645 /* some multicasts */ 11646 if (bnx2x_set_mc_list(bp) < 0) 11647 rx_mode = BNX2X_RX_MODE_ALLMULTI; 11648 11649 if (bnx2x_set_uc_list(bp) < 0) 11650 rx_mode = BNX2X_RX_MODE_PROMISC; 11651 } else { 11652 /* configuring mcast to a vf involves sleeping (when we 11653 * wait for the pf's response). Since this function is 11654 * called from non sleepable context we must schedule 11655 * a work item for this purpose 11656 */ 11657 smp_mb__before_clear_bit(); 11658 set_bit(BNX2X_SP_RTNL_VFPF_MCAST, 11659 &bp->sp_rtnl_state); 11660 smp_mb__after_clear_bit(); 11661 schedule_delayed_work(&bp->sp_rtnl_task, 0); 11662 } 11663 } 11664 11665 bp->rx_mode = rx_mode; 11666 /* handle ISCSI SD mode */ 11667 if (IS_MF_ISCSI_SD(bp)) 11668 bp->rx_mode = BNX2X_RX_MODE_NONE; 11669 11670 /* Schedule the rx_mode command */ 11671 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { 11672 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 11673 return; 11674 } 11675 11676 if (IS_PF(bp)) { 11677 bnx2x_set_storm_rx_mode(bp); 11678 } else { 11679 /* configuring rx mode to storms in a vf involves sleeping (when 11680 * we wait for the pf's response). Since this function is 11681 * called from non sleepable context we must schedule 11682 * a work item for this purpose 11683 */ 11684 smp_mb__before_clear_bit(); 11685 set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE, 11686 &bp->sp_rtnl_state); 11687 smp_mb__after_clear_bit(); 11688 schedule_delayed_work(&bp->sp_rtnl_task, 0); 11689 } 11690 } 11691 11692 /* called with rtnl_lock */ 11693 static int bnx2x_mdio_read(struct net_device *netdev, int prtad, 11694 int devad, u16 addr) 11695 { 11696 struct bnx2x *bp = netdev_priv(netdev); 11697 u16 value; 11698 int rc; 11699 11700 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", 11701 prtad, devad, addr); 11702 11703 /* The HW expects different devad if CL22 is used */ 11704 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 11705 11706 bnx2x_acquire_phy_lock(bp); 11707 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); 11708 bnx2x_release_phy_lock(bp); 11709 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); 11710 11711 if (!rc) 11712 rc = value; 11713 return rc; 11714 } 11715 11716 /* called with rtnl_lock */ 11717 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, 11718 u16 addr, u16 value) 11719 { 11720 struct bnx2x *bp = netdev_priv(netdev); 11721 int rc; 11722 11723 DP(NETIF_MSG_LINK, 11724 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", 11725 prtad, devad, addr, value); 11726 11727 /* The HW expects different devad if CL22 is used */ 11728 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 11729 11730 bnx2x_acquire_phy_lock(bp); 11731 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); 11732 bnx2x_release_phy_lock(bp); 11733 return rc; 11734 } 11735 11736 /* called with rtnl_lock */ 11737 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 11738 { 11739 struct bnx2x *bp = netdev_priv(dev); 11740 struct mii_ioctl_data *mdio = if_mii(ifr); 11741 11742 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", 11743 mdio->phy_id, mdio->reg_num, mdio->val_in); 11744 11745 if (!netif_running(dev)) 11746 return -EAGAIN; 11747 11748 return mdio_mii_ioctl(&bp->mdio, mdio, cmd); 11749 } 11750 11751 #ifdef CONFIG_NET_POLL_CONTROLLER 11752 static void poll_bnx2x(struct net_device *dev) 11753 { 11754 struct bnx2x *bp = netdev_priv(dev); 11755 int i; 11756 11757 for_each_eth_queue(bp, i) { 11758 struct bnx2x_fastpath *fp = &bp->fp[i]; 11759 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 11760 } 11761 } 11762 #endif 11763 11764 static int bnx2x_validate_addr(struct net_device *dev) 11765 { 11766 struct bnx2x *bp = netdev_priv(dev); 11767 11768 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) { 11769 BNX2X_ERR("Non-valid Ethernet address\n"); 11770 return -EADDRNOTAVAIL; 11771 } 11772 return 0; 11773 } 11774 11775 static const struct net_device_ops bnx2x_netdev_ops = { 11776 .ndo_open = bnx2x_open, 11777 .ndo_stop = bnx2x_close, 11778 .ndo_start_xmit = bnx2x_start_xmit, 11779 .ndo_select_queue = bnx2x_select_queue, 11780 .ndo_set_rx_mode = bnx2x_set_rx_mode, 11781 .ndo_set_mac_address = bnx2x_change_mac_addr, 11782 .ndo_validate_addr = bnx2x_validate_addr, 11783 .ndo_do_ioctl = bnx2x_ioctl, 11784 .ndo_change_mtu = bnx2x_change_mtu, 11785 .ndo_fix_features = bnx2x_fix_features, 11786 .ndo_set_features = bnx2x_set_features, 11787 .ndo_tx_timeout = bnx2x_tx_timeout, 11788 #ifdef CONFIG_NET_POLL_CONTROLLER 11789 .ndo_poll_controller = poll_bnx2x, 11790 #endif 11791 .ndo_setup_tc = bnx2x_setup_tc, 11792 #ifdef CONFIG_BNX2X_SRIOV 11793 .ndo_set_vf_mac = bnx2x_set_vf_mac, 11794 #endif 11795 #ifdef NETDEV_FCOE_WWNN 11796 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, 11797 #endif 11798 }; 11799 11800 static int bnx2x_set_coherency_mask(struct bnx2x *bp) 11801 { 11802 struct device *dev = &bp->pdev->dev; 11803 11804 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) { 11805 bp->flags |= USING_DAC_FLAG; 11806 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) { 11807 dev_err(dev, "dma_set_coherent_mask failed, aborting\n"); 11808 return -EIO; 11809 } 11810 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) { 11811 dev_err(dev, "System does not support DMA, aborting\n"); 11812 return -EIO; 11813 } 11814 11815 return 0; 11816 } 11817 11818 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, 11819 struct net_device *dev, unsigned long board_type) 11820 { 11821 int rc; 11822 u32 pci_cfg_dword; 11823 bool chip_is_e1x = (board_type == BCM57710 || 11824 board_type == BCM57711 || 11825 board_type == BCM57711E); 11826 11827 SET_NETDEV_DEV(dev, &pdev->dev); 11828 11829 bp->dev = dev; 11830 bp->pdev = pdev; 11831 11832 rc = pci_enable_device(pdev); 11833 if (rc) { 11834 dev_err(&bp->pdev->dev, 11835 "Cannot enable PCI device, aborting\n"); 11836 goto err_out; 11837 } 11838 11839 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 11840 dev_err(&bp->pdev->dev, 11841 "Cannot find PCI device base address, aborting\n"); 11842 rc = -ENODEV; 11843 goto err_out_disable; 11844 } 11845 11846 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { 11847 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); 11848 rc = -ENODEV; 11849 goto err_out_disable; 11850 } 11851 11852 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); 11853 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == 11854 PCICFG_REVESION_ID_ERROR_VAL) { 11855 pr_err("PCI device error, probably due to fan failure, aborting\n"); 11856 rc = -ENODEV; 11857 goto err_out_disable; 11858 } 11859 11860 if (atomic_read(&pdev->enable_cnt) == 1) { 11861 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 11862 if (rc) { 11863 dev_err(&bp->pdev->dev, 11864 "Cannot obtain PCI resources, aborting\n"); 11865 goto err_out_disable; 11866 } 11867 11868 pci_set_master(pdev); 11869 pci_save_state(pdev); 11870 } 11871 11872 if (IS_PF(bp)) { 11873 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM); 11874 if (bp->pm_cap == 0) { 11875 dev_err(&bp->pdev->dev, 11876 "Cannot find power management capability, aborting\n"); 11877 rc = -EIO; 11878 goto err_out_release; 11879 } 11880 } 11881 11882 if (!pci_is_pcie(pdev)) { 11883 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); 11884 rc = -EIO; 11885 goto err_out_release; 11886 } 11887 11888 rc = bnx2x_set_coherency_mask(bp); 11889 if (rc) 11890 goto err_out_release; 11891 11892 dev->mem_start = pci_resource_start(pdev, 0); 11893 dev->base_addr = dev->mem_start; 11894 dev->mem_end = pci_resource_end(pdev, 0); 11895 11896 dev->irq = pdev->irq; 11897 11898 bp->regview = pci_ioremap_bar(pdev, 0); 11899 if (!bp->regview) { 11900 dev_err(&bp->pdev->dev, 11901 "Cannot map register space, aborting\n"); 11902 rc = -ENOMEM; 11903 goto err_out_release; 11904 } 11905 11906 /* In E1/E1H use pci device function given by kernel. 11907 * In E2/E3 read physical function from ME register since these chips 11908 * support Physical Device Assignment where kernel BDF maybe arbitrary 11909 * (depending on hypervisor). 11910 */ 11911 if (chip_is_e1x) { 11912 bp->pf_num = PCI_FUNC(pdev->devfn); 11913 } else { 11914 /* chip is E2/3*/ 11915 pci_read_config_dword(bp->pdev, 11916 PCICFG_ME_REGISTER, &pci_cfg_dword); 11917 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> 11918 ME_REG_ABS_PF_NUM_SHIFT); 11919 } 11920 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); 11921 11922 bnx2x_set_power_state(bp, PCI_D0); 11923 11924 /* clean indirect addresses */ 11925 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 11926 PCICFG_VENDOR_ID_OFFSET); 11927 /* 11928 * Clean the following indirect addresses for all functions since it 11929 * is not used by the driver. 11930 */ 11931 if (IS_PF(bp)) { 11932 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); 11933 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); 11934 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); 11935 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); 11936 11937 if (chip_is_e1x) { 11938 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); 11939 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); 11940 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); 11941 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); 11942 } 11943 11944 /* Enable internal target-read (in case we are probed after PF 11945 * FLR). Must be done prior to any BAR read access. Only for 11946 * 57712 and up 11947 */ 11948 if (!chip_is_e1x) 11949 REG_WR(bp, 11950 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 11951 } 11952 11953 dev->watchdog_timeo = TX_TIMEOUT; 11954 11955 dev->netdev_ops = &bnx2x_netdev_ops; 11956 bnx2x_set_ethtool_ops(dev); 11957 11958 dev->priv_flags |= IFF_UNICAST_FLT; 11959 11960 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 11961 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 11962 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | 11963 NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX; 11964 11965 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 11966 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; 11967 11968 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX; 11969 if (bp->flags & USING_DAC_FLAG) 11970 dev->features |= NETIF_F_HIGHDMA; 11971 11972 /* Add Loopback capability to the device */ 11973 dev->hw_features |= NETIF_F_LOOPBACK; 11974 11975 #ifdef BCM_DCBNL 11976 dev->dcbnl_ops = &bnx2x_dcbnl_ops; 11977 #endif 11978 11979 /* get_port_hwinfo() will set prtad and mmds properly */ 11980 bp->mdio.prtad = MDIO_PRTAD_NONE; 11981 bp->mdio.mmds = 0; 11982 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; 11983 bp->mdio.dev = dev; 11984 bp->mdio.mdio_read = bnx2x_mdio_read; 11985 bp->mdio.mdio_write = bnx2x_mdio_write; 11986 11987 return 0; 11988 11989 err_out_release: 11990 if (atomic_read(&pdev->enable_cnt) == 1) 11991 pci_release_regions(pdev); 11992 11993 err_out_disable: 11994 pci_disable_device(pdev); 11995 pci_set_drvdata(pdev, NULL); 11996 11997 err_out: 11998 return rc; 11999 } 12000 12001 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, int *speed) 12002 { 12003 u32 val = 0; 12004 12005 pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val); 12006 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT; 12007 12008 /* return value of 1=2.5GHz 2=5GHz */ 12009 *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT; 12010 } 12011 12012 static int bnx2x_check_firmware(struct bnx2x *bp) 12013 { 12014 const struct firmware *firmware = bp->firmware; 12015 struct bnx2x_fw_file_hdr *fw_hdr; 12016 struct bnx2x_fw_file_section *sections; 12017 u32 offset, len, num_ops; 12018 __be16 *ops_offsets; 12019 int i; 12020 const u8 *fw_ver; 12021 12022 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { 12023 BNX2X_ERR("Wrong FW size\n"); 12024 return -EINVAL; 12025 } 12026 12027 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; 12028 sections = (struct bnx2x_fw_file_section *)fw_hdr; 12029 12030 /* Make sure none of the offsets and sizes make us read beyond 12031 * the end of the firmware data */ 12032 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { 12033 offset = be32_to_cpu(sections[i].offset); 12034 len = be32_to_cpu(sections[i].len); 12035 if (offset + len > firmware->size) { 12036 BNX2X_ERR("Section %d length is out of bounds\n", i); 12037 return -EINVAL; 12038 } 12039 } 12040 12041 /* Likewise for the init_ops offsets */ 12042 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); 12043 ops_offsets = (__force __be16 *)(firmware->data + offset); 12044 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); 12045 12046 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { 12047 if (be16_to_cpu(ops_offsets[i]) > num_ops) { 12048 BNX2X_ERR("Section offset %d is out of bounds\n", i); 12049 return -EINVAL; 12050 } 12051 } 12052 12053 /* Check FW version */ 12054 offset = be32_to_cpu(fw_hdr->fw_version.offset); 12055 fw_ver = firmware->data + offset; 12056 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || 12057 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || 12058 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || 12059 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { 12060 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", 12061 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], 12062 BCM_5710_FW_MAJOR_VERSION, 12063 BCM_5710_FW_MINOR_VERSION, 12064 BCM_5710_FW_REVISION_VERSION, 12065 BCM_5710_FW_ENGINEERING_VERSION); 12066 return -EINVAL; 12067 } 12068 12069 return 0; 12070 } 12071 12072 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 12073 { 12074 const __be32 *source = (const __be32 *)_source; 12075 u32 *target = (u32 *)_target; 12076 u32 i; 12077 12078 for (i = 0; i < n/4; i++) 12079 target[i] = be32_to_cpu(source[i]); 12080 } 12081 12082 /* 12083 Ops array is stored in the following format: 12084 {op(8bit), offset(24bit, big endian), data(32bit, big endian)} 12085 */ 12086 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) 12087 { 12088 const __be32 *source = (const __be32 *)_source; 12089 struct raw_op *target = (struct raw_op *)_target; 12090 u32 i, j, tmp; 12091 12092 for (i = 0, j = 0; i < n/8; i++, j += 2) { 12093 tmp = be32_to_cpu(source[j]); 12094 target[i].op = (tmp >> 24) & 0xff; 12095 target[i].offset = tmp & 0xffffff; 12096 target[i].raw_data = be32_to_cpu(source[j + 1]); 12097 } 12098 } 12099 12100 /* IRO array is stored in the following format: 12101 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } 12102 */ 12103 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) 12104 { 12105 const __be32 *source = (const __be32 *)_source; 12106 struct iro *target = (struct iro *)_target; 12107 u32 i, j, tmp; 12108 12109 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { 12110 target[i].base = be32_to_cpu(source[j]); 12111 j++; 12112 tmp = be32_to_cpu(source[j]); 12113 target[i].m1 = (tmp >> 16) & 0xffff; 12114 target[i].m2 = tmp & 0xffff; 12115 j++; 12116 tmp = be32_to_cpu(source[j]); 12117 target[i].m3 = (tmp >> 16) & 0xffff; 12118 target[i].size = tmp & 0xffff; 12119 j++; 12120 } 12121 } 12122 12123 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 12124 { 12125 const __be16 *source = (const __be16 *)_source; 12126 u16 *target = (u16 *)_target; 12127 u32 i; 12128 12129 for (i = 0; i < n/2; i++) 12130 target[i] = be16_to_cpu(source[i]); 12131 } 12132 12133 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ 12134 do { \ 12135 u32 len = be32_to_cpu(fw_hdr->arr.len); \ 12136 bp->arr = kmalloc(len, GFP_KERNEL); \ 12137 if (!bp->arr) \ 12138 goto lbl; \ 12139 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ 12140 (u8 *)bp->arr, len); \ 12141 } while (0) 12142 12143 static int bnx2x_init_firmware(struct bnx2x *bp) 12144 { 12145 const char *fw_file_name; 12146 struct bnx2x_fw_file_hdr *fw_hdr; 12147 int rc; 12148 12149 if (bp->firmware) 12150 return 0; 12151 12152 if (CHIP_IS_E1(bp)) 12153 fw_file_name = FW_FILE_NAME_E1; 12154 else if (CHIP_IS_E1H(bp)) 12155 fw_file_name = FW_FILE_NAME_E1H; 12156 else if (!CHIP_IS_E1x(bp)) 12157 fw_file_name = FW_FILE_NAME_E2; 12158 else { 12159 BNX2X_ERR("Unsupported chip revision\n"); 12160 return -EINVAL; 12161 } 12162 BNX2X_DEV_INFO("Loading %s\n", fw_file_name); 12163 12164 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); 12165 if (rc) { 12166 BNX2X_ERR("Can't load firmware file %s\n", 12167 fw_file_name); 12168 goto request_firmware_exit; 12169 } 12170 12171 rc = bnx2x_check_firmware(bp); 12172 if (rc) { 12173 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); 12174 goto request_firmware_exit; 12175 } 12176 12177 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; 12178 12179 /* Initialize the pointers to the init arrays */ 12180 /* Blob */ 12181 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); 12182 12183 /* Opcodes */ 12184 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); 12185 12186 /* Offsets */ 12187 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, 12188 be16_to_cpu_n); 12189 12190 /* STORMs firmware */ 12191 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12192 be32_to_cpu(fw_hdr->tsem_int_table_data.offset); 12193 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + 12194 be32_to_cpu(fw_hdr->tsem_pram_data.offset); 12195 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12196 be32_to_cpu(fw_hdr->usem_int_table_data.offset); 12197 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + 12198 be32_to_cpu(fw_hdr->usem_pram_data.offset); 12199 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12200 be32_to_cpu(fw_hdr->xsem_int_table_data.offset); 12201 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + 12202 be32_to_cpu(fw_hdr->xsem_pram_data.offset); 12203 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12204 be32_to_cpu(fw_hdr->csem_int_table_data.offset); 12205 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + 12206 be32_to_cpu(fw_hdr->csem_pram_data.offset); 12207 /* IRO */ 12208 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); 12209 12210 return 0; 12211 12212 iro_alloc_err: 12213 kfree(bp->init_ops_offsets); 12214 init_offsets_alloc_err: 12215 kfree(bp->init_ops); 12216 init_ops_alloc_err: 12217 kfree(bp->init_data); 12218 request_firmware_exit: 12219 release_firmware(bp->firmware); 12220 bp->firmware = NULL; 12221 12222 return rc; 12223 } 12224 12225 static void bnx2x_release_firmware(struct bnx2x *bp) 12226 { 12227 kfree(bp->init_ops_offsets); 12228 kfree(bp->init_ops); 12229 kfree(bp->init_data); 12230 release_firmware(bp->firmware); 12231 bp->firmware = NULL; 12232 } 12233 12234 12235 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { 12236 .init_hw_cmn_chip = bnx2x_init_hw_common_chip, 12237 .init_hw_cmn = bnx2x_init_hw_common, 12238 .init_hw_port = bnx2x_init_hw_port, 12239 .init_hw_func = bnx2x_init_hw_func, 12240 12241 .reset_hw_cmn = bnx2x_reset_common, 12242 .reset_hw_port = bnx2x_reset_port, 12243 .reset_hw_func = bnx2x_reset_func, 12244 12245 .gunzip_init = bnx2x_gunzip_init, 12246 .gunzip_end = bnx2x_gunzip_end, 12247 12248 .init_fw = bnx2x_init_firmware, 12249 .release_fw = bnx2x_release_firmware, 12250 }; 12251 12252 void bnx2x__init_func_obj(struct bnx2x *bp) 12253 { 12254 /* Prepare DMAE related driver resources */ 12255 bnx2x_setup_dmae(bp); 12256 12257 bnx2x_init_func_obj(bp, &bp->func_obj, 12258 bnx2x_sp(bp, func_rdata), 12259 bnx2x_sp_mapping(bp, func_rdata), 12260 bnx2x_sp(bp, func_afex_rdata), 12261 bnx2x_sp_mapping(bp, func_afex_rdata), 12262 &bnx2x_func_sp_drv); 12263 } 12264 12265 /* must be called after sriov-enable */ 12266 static int bnx2x_set_qm_cid_count(struct bnx2x *bp) 12267 { 12268 int cid_count = BNX2X_L2_MAX_CID(bp); 12269 12270 if (IS_SRIOV(bp)) 12271 cid_count += BNX2X_VF_CIDS; 12272 12273 if (CNIC_SUPPORT(bp)) 12274 cid_count += CNIC_CID_MAX; 12275 12276 return roundup(cid_count, QM_CID_ROUND); 12277 } 12278 12279 /** 12280 * bnx2x_get_num_none_def_sbs - return the number of none default SBs 12281 * 12282 * @dev: pci device 12283 * 12284 */ 12285 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, 12286 int cnic_cnt, bool is_vf) 12287 { 12288 int pos, index; 12289 u16 control = 0; 12290 12291 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 12292 12293 /* 12294 * If MSI-X is not supported - return number of SBs needed to support 12295 * one fast path queue: one FP queue + SB for CNIC 12296 */ 12297 if (!pos) { 12298 dev_info(&pdev->dev, "no msix capability found\n"); 12299 return 1 + cnic_cnt; 12300 } 12301 dev_info(&pdev->dev, "msix capability found\n"); 12302 12303 /* 12304 * The value in the PCI configuration space is the index of the last 12305 * entry, namely one less than the actual size of the table, which is 12306 * exactly what we want to return from this function: number of all SBs 12307 * without the default SB. 12308 * For VFs there is no default SB, then we return (index+1). 12309 */ 12310 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control); 12311 12312 index = control & PCI_MSIX_FLAGS_QSIZE; 12313 12314 return is_vf ? index + 1 : index; 12315 } 12316 12317 static int set_max_cos_est(int chip_id) 12318 { 12319 switch (chip_id) { 12320 case BCM57710: 12321 case BCM57711: 12322 case BCM57711E: 12323 return BNX2X_MULTI_TX_COS_E1X; 12324 case BCM57712: 12325 case BCM57712_MF: 12326 case BCM57712_VF: 12327 return BNX2X_MULTI_TX_COS_E2_E3A0; 12328 case BCM57800: 12329 case BCM57800_MF: 12330 case BCM57800_VF: 12331 case BCM57810: 12332 case BCM57810_MF: 12333 case BCM57840_4_10: 12334 case BCM57840_2_20: 12335 case BCM57840_O: 12336 case BCM57840_MFO: 12337 case BCM57810_VF: 12338 case BCM57840_MF: 12339 case BCM57840_VF: 12340 case BCM57811: 12341 case BCM57811_MF: 12342 case BCM57811_VF: 12343 return BNX2X_MULTI_TX_COS_E3B0; 12344 return 1; 12345 default: 12346 pr_err("Unknown board_type (%d), aborting\n", chip_id); 12347 return -ENODEV; 12348 } 12349 } 12350 12351 static int set_is_vf(int chip_id) 12352 { 12353 switch (chip_id) { 12354 case BCM57712_VF: 12355 case BCM57800_VF: 12356 case BCM57810_VF: 12357 case BCM57840_VF: 12358 case BCM57811_VF: 12359 return true; 12360 default: 12361 return false; 12362 } 12363 } 12364 12365 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); 12366 12367 static int bnx2x_init_one(struct pci_dev *pdev, 12368 const struct pci_device_id *ent) 12369 { 12370 struct net_device *dev = NULL; 12371 struct bnx2x *bp; 12372 int pcie_width, pcie_speed; 12373 int rc, max_non_def_sbs; 12374 int rx_count, tx_count, rss_count, doorbell_size; 12375 int max_cos_est; 12376 bool is_vf; 12377 int cnic_cnt; 12378 12379 /* An estimated maximum supported CoS number according to the chip 12380 * version. 12381 * We will try to roughly estimate the maximum number of CoSes this chip 12382 * may support in order to minimize the memory allocated for Tx 12383 * netdev_queue's. This number will be accurately calculated during the 12384 * initialization of bp->max_cos based on the chip versions AND chip 12385 * revision in the bnx2x_init_bp(). 12386 */ 12387 max_cos_est = set_max_cos_est(ent->driver_data); 12388 if (max_cos_est < 0) 12389 return max_cos_est; 12390 is_vf = set_is_vf(ent->driver_data); 12391 cnic_cnt = is_vf ? 0 : 1; 12392 12393 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf); 12394 12395 /* Maximum number of RSS queues: one IGU SB goes to CNIC */ 12396 rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt; 12397 12398 if (rss_count < 1) 12399 return -EINVAL; 12400 12401 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ 12402 rx_count = rss_count + cnic_cnt; 12403 12404 /* Maximum number of netdev Tx queues: 12405 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 12406 */ 12407 tx_count = rss_count * max_cos_est + cnic_cnt; 12408 12409 /* dev zeroed in init_etherdev */ 12410 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); 12411 if (!dev) 12412 return -ENOMEM; 12413 12414 bp = netdev_priv(dev); 12415 12416 bp->flags = 0; 12417 if (is_vf) 12418 bp->flags |= IS_VF_FLAG; 12419 12420 bp->igu_sb_cnt = max_non_def_sbs; 12421 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; 12422 bp->msg_enable = debug; 12423 bp->cnic_support = cnic_cnt; 12424 bp->cnic_probe = bnx2x_cnic_probe; 12425 12426 pci_set_drvdata(pdev, dev); 12427 12428 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); 12429 if (rc < 0) { 12430 free_netdev(dev); 12431 return rc; 12432 } 12433 12434 BNX2X_DEV_INFO("This is a %s function\n", 12435 IS_PF(bp) ? "physical" : "virtual"); 12436 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); 12437 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); 12438 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", 12439 tx_count, rx_count); 12440 12441 rc = bnx2x_init_bp(bp); 12442 if (rc) 12443 goto init_one_exit; 12444 12445 /* Map doorbells here as we need the real value of bp->max_cos which 12446 * is initialized in bnx2x_init_bp() to determine the number of 12447 * l2 connections. 12448 */ 12449 if (IS_VF(bp)) { 12450 bnx2x_vf_map_doorbells(bp); 12451 rc = bnx2x_vf_pci_alloc(bp); 12452 if (rc) 12453 goto init_one_exit; 12454 } else { 12455 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); 12456 if (doorbell_size > pci_resource_len(pdev, 2)) { 12457 dev_err(&bp->pdev->dev, 12458 "Cannot map doorbells, bar size too small, aborting\n"); 12459 rc = -ENOMEM; 12460 goto init_one_exit; 12461 } 12462 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2), 12463 doorbell_size); 12464 } 12465 if (!bp->doorbells) { 12466 dev_err(&bp->pdev->dev, 12467 "Cannot map doorbell space, aborting\n"); 12468 rc = -ENOMEM; 12469 goto init_one_exit; 12470 } 12471 12472 if (IS_VF(bp)) { 12473 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); 12474 if (rc) 12475 goto init_one_exit; 12476 } 12477 12478 /* Enable SRIOV if capability found in configuration space. 12479 * Once the generic SR-IOV framework makes it in from the 12480 * pci tree this will be revised, to allow dynamic control 12481 * over the number of VFs. Right now, change the num of vfs 12482 * param below to enable SR-IOV. 12483 */ 12484 rc = bnx2x_iov_init_one(bp, int_mode, 0/*num vfs*/); 12485 if (rc) 12486 goto init_one_exit; 12487 12488 /* calc qm_cid_count */ 12489 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); 12490 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); 12491 12492 /* disable FCOE L2 queue for E1x*/ 12493 if (CHIP_IS_E1x(bp)) 12494 bp->flags |= NO_FCOE_FLAG; 12495 12496 /* disable FCOE for 57840 device, until FW supports it */ 12497 switch (ent->driver_data) { 12498 case BCM57840_O: 12499 case BCM57840_4_10: 12500 case BCM57840_2_20: 12501 case BCM57840_MFO: 12502 case BCM57840_MF: 12503 bp->flags |= NO_FCOE_FLAG; 12504 } 12505 12506 /* Set bp->num_queues for MSI-X mode*/ 12507 bnx2x_set_num_queues(bp); 12508 12509 /* Configure interrupt mode: try to enable MSI-X/MSI if 12510 * needed. 12511 */ 12512 rc = bnx2x_set_int_mode(bp); 12513 if (rc) { 12514 dev_err(&pdev->dev, "Cannot set interrupts\n"); 12515 goto init_one_exit; 12516 } 12517 BNX2X_DEV_INFO("set interrupts successfully\n"); 12518 12519 /* register the net device */ 12520 rc = register_netdev(dev); 12521 if (rc) { 12522 dev_err(&pdev->dev, "Cannot register net device\n"); 12523 goto init_one_exit; 12524 } 12525 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); 12526 12527 12528 if (!NO_FCOE(bp)) { 12529 /* Add storage MAC address */ 12530 rtnl_lock(); 12531 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 12532 rtnl_unlock(); 12533 } 12534 12535 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed); 12536 BNX2X_DEV_INFO("got pcie width %d and speed %d\n", 12537 pcie_width, pcie_speed); 12538 12539 BNX2X_DEV_INFO( 12540 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n", 12541 board_info[ent->driver_data].name, 12542 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), 12543 pcie_width, 12544 ((!CHIP_IS_E2(bp) && pcie_speed == 2) || 12545 (CHIP_IS_E2(bp) && pcie_speed == 1)) ? 12546 "5GHz (Gen2)" : "2.5GHz", 12547 dev->base_addr, bp->pdev->irq, dev->dev_addr); 12548 12549 return 0; 12550 12551 init_one_exit: 12552 if (bp->regview) 12553 iounmap(bp->regview); 12554 12555 if (IS_PF(bp) && bp->doorbells) 12556 iounmap(bp->doorbells); 12557 12558 free_netdev(dev); 12559 12560 if (atomic_read(&pdev->enable_cnt) == 1) 12561 pci_release_regions(pdev); 12562 12563 pci_disable_device(pdev); 12564 pci_set_drvdata(pdev, NULL); 12565 12566 return rc; 12567 } 12568 12569 static void bnx2x_remove_one(struct pci_dev *pdev) 12570 { 12571 struct net_device *dev = pci_get_drvdata(pdev); 12572 struct bnx2x *bp; 12573 12574 if (!dev) { 12575 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 12576 return; 12577 } 12578 bp = netdev_priv(dev); 12579 12580 /* Delete storage MAC address */ 12581 if (!NO_FCOE(bp)) { 12582 rtnl_lock(); 12583 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 12584 rtnl_unlock(); 12585 } 12586 12587 #ifdef BCM_DCBNL 12588 /* Delete app tlvs from dcbnl */ 12589 bnx2x_dcbnl_update_applist(bp, true); 12590 #endif 12591 12592 unregister_netdev(dev); 12593 12594 /* Power on: we can't let PCI layer write to us while we are in D3 */ 12595 if (IS_PF(bp)) 12596 bnx2x_set_power_state(bp, PCI_D0); 12597 12598 /* Disable MSI/MSI-X */ 12599 bnx2x_disable_msi(bp); 12600 12601 /* Power off */ 12602 if (IS_PF(bp)) 12603 bnx2x_set_power_state(bp, PCI_D3hot); 12604 12605 /* Make sure RESET task is not scheduled before continuing */ 12606 cancel_delayed_work_sync(&bp->sp_rtnl_task); 12607 12608 bnx2x_iov_remove_one(bp); 12609 12610 /* send message via vfpf channel to release the resources of this vf */ 12611 if (IS_VF(bp)) 12612 bnx2x_vfpf_release(bp); 12613 12614 if (bp->regview) 12615 iounmap(bp->regview); 12616 12617 /* for vf doorbells are part of the regview and were unmapped along with 12618 * it. FW is only loaded by PF. 12619 */ 12620 if (IS_PF(bp)) { 12621 if (bp->doorbells) 12622 iounmap(bp->doorbells); 12623 12624 bnx2x_release_firmware(bp); 12625 } 12626 bnx2x_free_mem_bp(bp); 12627 12628 free_netdev(dev); 12629 12630 if (atomic_read(&pdev->enable_cnt) == 1) 12631 pci_release_regions(pdev); 12632 12633 pci_disable_device(pdev); 12634 pci_set_drvdata(pdev, NULL); 12635 } 12636 12637 static int bnx2x_eeh_nic_unload(struct bnx2x *bp) 12638 { 12639 int i; 12640 12641 bp->state = BNX2X_STATE_ERROR; 12642 12643 bp->rx_mode = BNX2X_RX_MODE_NONE; 12644 12645 if (CNIC_LOADED(bp)) 12646 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 12647 12648 /* Stop Tx */ 12649 bnx2x_tx_disable(bp); 12650 12651 bnx2x_netif_stop(bp, 0); 12652 /* Delete all NAPI objects */ 12653 bnx2x_del_all_napi(bp); 12654 if (CNIC_LOADED(bp)) 12655 bnx2x_del_all_napi_cnic(bp); 12656 12657 del_timer_sync(&bp->timer); 12658 12659 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 12660 12661 /* Release IRQs */ 12662 bnx2x_free_irq(bp); 12663 12664 /* Free SKBs, SGEs, TPA pool and driver internals */ 12665 bnx2x_free_skbs(bp); 12666 12667 for_each_rx_queue(bp, i) 12668 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 12669 12670 bnx2x_free_mem(bp); 12671 12672 bp->state = BNX2X_STATE_CLOSED; 12673 12674 netif_carrier_off(bp->dev); 12675 12676 return 0; 12677 } 12678 12679 static void bnx2x_eeh_recover(struct bnx2x *bp) 12680 { 12681 u32 val; 12682 12683 mutex_init(&bp->port.phy_mutex); 12684 12685 12686 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); 12687 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) 12688 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) 12689 BNX2X_ERR("BAD MCP validity signature\n"); 12690 } 12691 12692 /** 12693 * bnx2x_io_error_detected - called when PCI error is detected 12694 * @pdev: Pointer to PCI device 12695 * @state: The current pci connection state 12696 * 12697 * This function is called after a PCI bus error affecting 12698 * this device has been detected. 12699 */ 12700 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, 12701 pci_channel_state_t state) 12702 { 12703 struct net_device *dev = pci_get_drvdata(pdev); 12704 struct bnx2x *bp = netdev_priv(dev); 12705 12706 rtnl_lock(); 12707 12708 netif_device_detach(dev); 12709 12710 if (state == pci_channel_io_perm_failure) { 12711 rtnl_unlock(); 12712 return PCI_ERS_RESULT_DISCONNECT; 12713 } 12714 12715 if (netif_running(dev)) 12716 bnx2x_eeh_nic_unload(bp); 12717 12718 pci_disable_device(pdev); 12719 12720 rtnl_unlock(); 12721 12722 /* Request a slot reset */ 12723 return PCI_ERS_RESULT_NEED_RESET; 12724 } 12725 12726 /** 12727 * bnx2x_io_slot_reset - called after the PCI bus has been reset 12728 * @pdev: Pointer to PCI device 12729 * 12730 * Restart the card from scratch, as if from a cold-boot. 12731 */ 12732 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) 12733 { 12734 struct net_device *dev = pci_get_drvdata(pdev); 12735 struct bnx2x *bp = netdev_priv(dev); 12736 12737 rtnl_lock(); 12738 12739 if (pci_enable_device(pdev)) { 12740 dev_err(&pdev->dev, 12741 "Cannot re-enable PCI device after reset\n"); 12742 rtnl_unlock(); 12743 return PCI_ERS_RESULT_DISCONNECT; 12744 } 12745 12746 pci_set_master(pdev); 12747 pci_restore_state(pdev); 12748 12749 if (netif_running(dev)) 12750 bnx2x_set_power_state(bp, PCI_D0); 12751 12752 rtnl_unlock(); 12753 12754 return PCI_ERS_RESULT_RECOVERED; 12755 } 12756 12757 /** 12758 * bnx2x_io_resume - called when traffic can start flowing again 12759 * @pdev: Pointer to PCI device 12760 * 12761 * This callback is called when the error recovery driver tells us that 12762 * its OK to resume normal operation. 12763 */ 12764 static void bnx2x_io_resume(struct pci_dev *pdev) 12765 { 12766 struct net_device *dev = pci_get_drvdata(pdev); 12767 struct bnx2x *bp = netdev_priv(dev); 12768 12769 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 12770 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); 12771 return; 12772 } 12773 12774 rtnl_lock(); 12775 12776 bnx2x_eeh_recover(bp); 12777 12778 if (netif_running(dev)) 12779 bnx2x_nic_load(bp, LOAD_NORMAL); 12780 12781 netif_device_attach(dev); 12782 12783 rtnl_unlock(); 12784 } 12785 12786 static const struct pci_error_handlers bnx2x_err_handler = { 12787 .error_detected = bnx2x_io_error_detected, 12788 .slot_reset = bnx2x_io_slot_reset, 12789 .resume = bnx2x_io_resume, 12790 }; 12791 12792 static struct pci_driver bnx2x_pci_driver = { 12793 .name = DRV_MODULE_NAME, 12794 .id_table = bnx2x_pci_tbl, 12795 .probe = bnx2x_init_one, 12796 .remove = bnx2x_remove_one, 12797 .suspend = bnx2x_suspend, 12798 .resume = bnx2x_resume, 12799 .err_handler = &bnx2x_err_handler, 12800 }; 12801 12802 static int __init bnx2x_init(void) 12803 { 12804 int ret; 12805 12806 pr_info("%s", version); 12807 12808 bnx2x_wq = create_singlethread_workqueue("bnx2x"); 12809 if (bnx2x_wq == NULL) { 12810 pr_err("Cannot create workqueue\n"); 12811 return -ENOMEM; 12812 } 12813 12814 ret = pci_register_driver(&bnx2x_pci_driver); 12815 if (ret) { 12816 pr_err("Cannot register driver\n"); 12817 destroy_workqueue(bnx2x_wq); 12818 } 12819 return ret; 12820 } 12821 12822 static void __exit bnx2x_cleanup(void) 12823 { 12824 struct list_head *pos, *q; 12825 pci_unregister_driver(&bnx2x_pci_driver); 12826 12827 destroy_workqueue(bnx2x_wq); 12828 12829 /* Free globablly allocated resources */ 12830 list_for_each_safe(pos, q, &bnx2x_prev_list) { 12831 struct bnx2x_prev_path_list *tmp = 12832 list_entry(pos, struct bnx2x_prev_path_list, list); 12833 list_del(pos); 12834 kfree(tmp); 12835 } 12836 } 12837 12838 void bnx2x_notify_link_changed(struct bnx2x *bp) 12839 { 12840 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); 12841 } 12842 12843 module_init(bnx2x_init); 12844 module_exit(bnx2x_cleanup); 12845 12846 /** 12847 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). 12848 * 12849 * @bp: driver handle 12850 * @set: set or clear the CAM entry 12851 * 12852 * This function will wait until the ramdord completion returns. 12853 * Return 0 if success, -ENODEV if ramrod doesn't return. 12854 */ 12855 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) 12856 { 12857 unsigned long ramrod_flags = 0; 12858 12859 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12860 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, 12861 &bp->iscsi_l2_mac_obj, true, 12862 BNX2X_ISCSI_ETH_MAC, &ramrod_flags); 12863 } 12864 12865 /* count denotes the number of new completions we have seen */ 12866 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) 12867 { 12868 struct eth_spe *spe; 12869 int cxt_index, cxt_offset; 12870 12871 #ifdef BNX2X_STOP_ON_ERROR 12872 if (unlikely(bp->panic)) 12873 return; 12874 #endif 12875 12876 spin_lock_bh(&bp->spq_lock); 12877 BUG_ON(bp->cnic_spq_pending < count); 12878 bp->cnic_spq_pending -= count; 12879 12880 12881 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { 12882 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) 12883 & SPE_HDR_CONN_TYPE) >> 12884 SPE_HDR_CONN_TYPE_SHIFT; 12885 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) 12886 >> SPE_HDR_CMD_ID_SHIFT) & 0xff; 12887 12888 /* Set validation for iSCSI L2 client before sending SETUP 12889 * ramrod 12890 */ 12891 if (type == ETH_CONNECTION_TYPE) { 12892 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { 12893 cxt_index = BNX2X_ISCSI_ETH_CID(bp) / 12894 ILT_PAGE_CIDS; 12895 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - 12896 (cxt_index * ILT_PAGE_CIDS); 12897 bnx2x_set_ctx_validation(bp, 12898 &bp->context[cxt_index]. 12899 vcxt[cxt_offset].eth, 12900 BNX2X_ISCSI_ETH_CID(bp)); 12901 } 12902 } 12903 12904 /* 12905 * There may be not more than 8 L2, not more than 8 L5 SPEs 12906 * and in the air. We also check that number of outstanding 12907 * COMMON ramrods is not more than the EQ and SPQ can 12908 * accommodate. 12909 */ 12910 if (type == ETH_CONNECTION_TYPE) { 12911 if (!atomic_read(&bp->cq_spq_left)) 12912 break; 12913 else 12914 atomic_dec(&bp->cq_spq_left); 12915 } else if (type == NONE_CONNECTION_TYPE) { 12916 if (!atomic_read(&bp->eq_spq_left)) 12917 break; 12918 else 12919 atomic_dec(&bp->eq_spq_left); 12920 } else if ((type == ISCSI_CONNECTION_TYPE) || 12921 (type == FCOE_CONNECTION_TYPE)) { 12922 if (bp->cnic_spq_pending >= 12923 bp->cnic_eth_dev.max_kwqe_pending) 12924 break; 12925 else 12926 bp->cnic_spq_pending++; 12927 } else { 12928 BNX2X_ERR("Unknown SPE type: %d\n", type); 12929 bnx2x_panic(); 12930 break; 12931 } 12932 12933 spe = bnx2x_sp_get_next(bp); 12934 *spe = *bp->cnic_kwq_cons; 12935 12936 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", 12937 bp->cnic_spq_pending, bp->cnic_kwq_pending, count); 12938 12939 if (bp->cnic_kwq_cons == bp->cnic_kwq_last) 12940 bp->cnic_kwq_cons = bp->cnic_kwq; 12941 else 12942 bp->cnic_kwq_cons++; 12943 } 12944 bnx2x_sp_prod_update(bp); 12945 spin_unlock_bh(&bp->spq_lock); 12946 } 12947 12948 static int bnx2x_cnic_sp_queue(struct net_device *dev, 12949 struct kwqe_16 *kwqes[], u32 count) 12950 { 12951 struct bnx2x *bp = netdev_priv(dev); 12952 int i; 12953 12954 #ifdef BNX2X_STOP_ON_ERROR 12955 if (unlikely(bp->panic)) { 12956 BNX2X_ERR("Can't post to SP queue while panic\n"); 12957 return -EIO; 12958 } 12959 #endif 12960 12961 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && 12962 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 12963 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 12964 return -EAGAIN; 12965 } 12966 12967 spin_lock_bh(&bp->spq_lock); 12968 12969 for (i = 0; i < count; i++) { 12970 struct eth_spe *spe = (struct eth_spe *)kwqes[i]; 12971 12972 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) 12973 break; 12974 12975 *bp->cnic_kwq_prod = *spe; 12976 12977 bp->cnic_kwq_pending++; 12978 12979 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", 12980 spe->hdr.conn_and_cmd_data, spe->hdr.type, 12981 spe->data.update_data_addr.hi, 12982 spe->data.update_data_addr.lo, 12983 bp->cnic_kwq_pending); 12984 12985 if (bp->cnic_kwq_prod == bp->cnic_kwq_last) 12986 bp->cnic_kwq_prod = bp->cnic_kwq; 12987 else 12988 bp->cnic_kwq_prod++; 12989 } 12990 12991 spin_unlock_bh(&bp->spq_lock); 12992 12993 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) 12994 bnx2x_cnic_sp_post(bp, 0); 12995 12996 return i; 12997 } 12998 12999 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) 13000 { 13001 struct cnic_ops *c_ops; 13002 int rc = 0; 13003 13004 mutex_lock(&bp->cnic_mutex); 13005 c_ops = rcu_dereference_protected(bp->cnic_ops, 13006 lockdep_is_held(&bp->cnic_mutex)); 13007 if (c_ops) 13008 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 13009 mutex_unlock(&bp->cnic_mutex); 13010 13011 return rc; 13012 } 13013 13014 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) 13015 { 13016 struct cnic_ops *c_ops; 13017 int rc = 0; 13018 13019 rcu_read_lock(); 13020 c_ops = rcu_dereference(bp->cnic_ops); 13021 if (c_ops) 13022 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 13023 rcu_read_unlock(); 13024 13025 return rc; 13026 } 13027 13028 /* 13029 * for commands that have no data 13030 */ 13031 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) 13032 { 13033 struct cnic_ctl_info ctl = {0}; 13034 13035 ctl.cmd = cmd; 13036 13037 return bnx2x_cnic_ctl_send(bp, &ctl); 13038 } 13039 13040 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) 13041 { 13042 struct cnic_ctl_info ctl = {0}; 13043 13044 /* first we tell CNIC and only then we count this as a completion */ 13045 ctl.cmd = CNIC_CTL_COMPLETION_CMD; 13046 ctl.data.comp.cid = cid; 13047 ctl.data.comp.error = err; 13048 13049 bnx2x_cnic_ctl_send_bh(bp, &ctl); 13050 bnx2x_cnic_sp_post(bp, 0); 13051 } 13052 13053 13054 /* Called with netif_addr_lock_bh() taken. 13055 * Sets an rx_mode config for an iSCSI ETH client. 13056 * Doesn't block. 13057 * Completion should be checked outside. 13058 */ 13059 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) 13060 { 13061 unsigned long accept_flags = 0, ramrod_flags = 0; 13062 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 13063 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; 13064 13065 if (start) { 13066 /* Start accepting on iSCSI L2 ring. Accept all multicasts 13067 * because it's the only way for UIO Queue to accept 13068 * multicasts (in non-promiscuous mode only one Queue per 13069 * function will receive multicast packets (leading in our 13070 * case). 13071 */ 13072 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); 13073 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); 13074 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); 13075 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 13076 13077 /* Clear STOP_PENDING bit if START is requested */ 13078 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); 13079 13080 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; 13081 } else 13082 /* Clear START_PENDING bit if STOP is requested */ 13083 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); 13084 13085 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 13086 set_bit(sched_state, &bp->sp_state); 13087 else { 13088 __set_bit(RAMROD_RX, &ramrod_flags); 13089 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, 13090 ramrod_flags); 13091 } 13092 } 13093 13094 13095 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) 13096 { 13097 struct bnx2x *bp = netdev_priv(dev); 13098 int rc = 0; 13099 13100 switch (ctl->cmd) { 13101 case DRV_CTL_CTXTBL_WR_CMD: { 13102 u32 index = ctl->data.io.offset; 13103 dma_addr_t addr = ctl->data.io.dma_addr; 13104 13105 bnx2x_ilt_wr(bp, index, addr); 13106 break; 13107 } 13108 13109 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { 13110 int count = ctl->data.credit.credit_count; 13111 13112 bnx2x_cnic_sp_post(bp, count); 13113 break; 13114 } 13115 13116 /* rtnl_lock is held. */ 13117 case DRV_CTL_START_L2_CMD: { 13118 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13119 unsigned long sp_bits = 0; 13120 13121 /* Configure the iSCSI classification object */ 13122 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, 13123 cp->iscsi_l2_client_id, 13124 cp->iscsi_l2_cid, BP_FUNC(bp), 13125 bnx2x_sp(bp, mac_rdata), 13126 bnx2x_sp_mapping(bp, mac_rdata), 13127 BNX2X_FILTER_MAC_PENDING, 13128 &bp->sp_state, BNX2X_OBJ_TYPE_RX, 13129 &bp->macs_pool); 13130 13131 /* Set iSCSI MAC address */ 13132 rc = bnx2x_set_iscsi_eth_mac_addr(bp); 13133 if (rc) 13134 break; 13135 13136 mmiowb(); 13137 barrier(); 13138 13139 /* Start accepting on iSCSI L2 ring */ 13140 13141 netif_addr_lock_bh(dev); 13142 bnx2x_set_iscsi_eth_rx_mode(bp, true); 13143 netif_addr_unlock_bh(dev); 13144 13145 /* bits to wait on */ 13146 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 13147 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); 13148 13149 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 13150 BNX2X_ERR("rx_mode completion timed out!\n"); 13151 13152 break; 13153 } 13154 13155 /* rtnl_lock is held. */ 13156 case DRV_CTL_STOP_L2_CMD: { 13157 unsigned long sp_bits = 0; 13158 13159 /* Stop accepting on iSCSI L2 ring */ 13160 netif_addr_lock_bh(dev); 13161 bnx2x_set_iscsi_eth_rx_mode(bp, false); 13162 netif_addr_unlock_bh(dev); 13163 13164 /* bits to wait on */ 13165 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 13166 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); 13167 13168 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 13169 BNX2X_ERR("rx_mode completion timed out!\n"); 13170 13171 mmiowb(); 13172 barrier(); 13173 13174 /* Unset iSCSI L2 MAC */ 13175 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, 13176 BNX2X_ISCSI_ETH_MAC, true); 13177 break; 13178 } 13179 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { 13180 int count = ctl->data.credit.credit_count; 13181 13182 smp_mb__before_atomic_inc(); 13183 atomic_add(count, &bp->cq_spq_left); 13184 smp_mb__after_atomic_inc(); 13185 break; 13186 } 13187 case DRV_CTL_ULP_REGISTER_CMD: { 13188 int ulp_type = ctl->data.register_data.ulp_type; 13189 13190 if (CHIP_IS_E3(bp)) { 13191 int idx = BP_FW_MB_IDX(bp); 13192 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 13193 int path = BP_PATH(bp); 13194 int port = BP_PORT(bp); 13195 int i; 13196 u32 scratch_offset; 13197 u32 *host_addr; 13198 13199 /* first write capability to shmem2 */ 13200 if (ulp_type == CNIC_ULP_ISCSI) 13201 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 13202 else if (ulp_type == CNIC_ULP_FCOE) 13203 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 13204 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 13205 13206 if ((ulp_type != CNIC_ULP_FCOE) || 13207 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || 13208 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) 13209 break; 13210 13211 /* if reached here - should write fcoe capabilities */ 13212 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); 13213 if (!scratch_offset) 13214 break; 13215 scratch_offset += offsetof(struct glob_ncsi_oem_data, 13216 fcoe_features[path][port]); 13217 host_addr = (u32 *) &(ctl->data.register_data. 13218 fcoe_features); 13219 for (i = 0; i < sizeof(struct fcoe_capabilities); 13220 i += 4) 13221 REG_WR(bp, scratch_offset + i, 13222 *(host_addr + i/4)); 13223 } 13224 break; 13225 } 13226 13227 case DRV_CTL_ULP_UNREGISTER_CMD: { 13228 int ulp_type = ctl->data.ulp_type; 13229 13230 if (CHIP_IS_E3(bp)) { 13231 int idx = BP_FW_MB_IDX(bp); 13232 u32 cap; 13233 13234 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 13235 if (ulp_type == CNIC_ULP_ISCSI) 13236 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 13237 else if (ulp_type == CNIC_ULP_FCOE) 13238 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 13239 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 13240 } 13241 break; 13242 } 13243 13244 default: 13245 BNX2X_ERR("unknown command %x\n", ctl->cmd); 13246 rc = -EINVAL; 13247 } 13248 13249 return rc; 13250 } 13251 13252 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) 13253 { 13254 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13255 13256 if (bp->flags & USING_MSIX_FLAG) { 13257 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; 13258 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; 13259 cp->irq_arr[0].vector = bp->msix_table[1].vector; 13260 } else { 13261 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; 13262 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; 13263 } 13264 if (!CHIP_IS_E1x(bp)) 13265 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; 13266 else 13267 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; 13268 13269 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); 13270 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); 13271 cp->irq_arr[1].status_blk = bp->def_status_blk; 13272 cp->irq_arr[1].status_blk_num = DEF_SB_ID; 13273 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; 13274 13275 cp->num_irq = 2; 13276 } 13277 13278 void bnx2x_setup_cnic_info(struct bnx2x *bp) 13279 { 13280 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13281 13282 13283 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 13284 bnx2x_cid_ilt_lines(bp); 13285 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 13286 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 13287 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 13288 13289 if (NO_ISCSI_OOO(bp)) 13290 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 13291 } 13292 13293 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, 13294 void *data) 13295 { 13296 struct bnx2x *bp = netdev_priv(dev); 13297 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13298 int rc; 13299 13300 DP(NETIF_MSG_IFUP, "Register_cnic called\n"); 13301 13302 if (ops == NULL) { 13303 BNX2X_ERR("NULL ops received\n"); 13304 return -EINVAL; 13305 } 13306 13307 if (!CNIC_SUPPORT(bp)) { 13308 BNX2X_ERR("Can't register CNIC when not supported\n"); 13309 return -EOPNOTSUPP; 13310 } 13311 13312 if (!CNIC_LOADED(bp)) { 13313 rc = bnx2x_load_cnic(bp); 13314 if (rc) { 13315 BNX2X_ERR("CNIC-related load failed\n"); 13316 return rc; 13317 } 13318 13319 } 13320 13321 bp->cnic_enabled = true; 13322 13323 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); 13324 if (!bp->cnic_kwq) 13325 return -ENOMEM; 13326 13327 bp->cnic_kwq_cons = bp->cnic_kwq; 13328 bp->cnic_kwq_prod = bp->cnic_kwq; 13329 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; 13330 13331 bp->cnic_spq_pending = 0; 13332 bp->cnic_kwq_pending = 0; 13333 13334 bp->cnic_data = data; 13335 13336 cp->num_irq = 0; 13337 cp->drv_state |= CNIC_DRV_STATE_REGD; 13338 cp->iro_arr = bp->iro_arr; 13339 13340 bnx2x_setup_cnic_irq_info(bp); 13341 13342 rcu_assign_pointer(bp->cnic_ops, ops); 13343 13344 return 0; 13345 } 13346 13347 static int bnx2x_unregister_cnic(struct net_device *dev) 13348 { 13349 struct bnx2x *bp = netdev_priv(dev); 13350 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13351 13352 mutex_lock(&bp->cnic_mutex); 13353 cp->drv_state = 0; 13354 RCU_INIT_POINTER(bp->cnic_ops, NULL); 13355 mutex_unlock(&bp->cnic_mutex); 13356 synchronize_rcu(); 13357 kfree(bp->cnic_kwq); 13358 bp->cnic_kwq = NULL; 13359 13360 return 0; 13361 } 13362 13363 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) 13364 { 13365 struct bnx2x *bp = netdev_priv(dev); 13366 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13367 13368 /* If both iSCSI and FCoE are disabled - return NULL in 13369 * order to indicate CNIC that it should not try to work 13370 * with this device. 13371 */ 13372 if (NO_ISCSI(bp) && NO_FCOE(bp)) 13373 return NULL; 13374 13375 cp->drv_owner = THIS_MODULE; 13376 cp->chip_id = CHIP_ID(bp); 13377 cp->pdev = bp->pdev; 13378 cp->io_base = bp->regview; 13379 cp->io_base2 = bp->doorbells; 13380 cp->max_kwqe_pending = 8; 13381 cp->ctx_blk_size = CDU_ILT_PAGE_SZ; 13382 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 13383 bnx2x_cid_ilt_lines(bp); 13384 cp->ctx_tbl_len = CNIC_ILT_LINES; 13385 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 13386 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; 13387 cp->drv_ctl = bnx2x_drv_ctl; 13388 cp->drv_register_cnic = bnx2x_register_cnic; 13389 cp->drv_unregister_cnic = bnx2x_unregister_cnic; 13390 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 13391 cp->iscsi_l2_client_id = 13392 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 13393 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 13394 13395 if (NO_ISCSI_OOO(bp)) 13396 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 13397 13398 if (NO_ISCSI(bp)) 13399 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; 13400 13401 if (NO_FCOE(bp)) 13402 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; 13403 13404 BNX2X_DEV_INFO( 13405 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", 13406 cp->ctx_blk_size, 13407 cp->ctx_tbl_offset, 13408 cp->ctx_tbl_len, 13409 cp->starting_cid); 13410 return cp; 13411 } 13412 13413 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) 13414 { 13415 struct bnx2x *bp = fp->bp; 13416 u32 offset = BAR_USTRORM_INTMEM; 13417 13418 if (IS_VF(bp)) 13419 return bnx2x_vf_ustorm_prods_offset(bp, fp); 13420 else if (!CHIP_IS_E1x(bp)) 13421 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 13422 else 13423 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); 13424 13425 return offset; 13426 } 13427 13428 /* called only on E1H or E2. 13429 * When pretending to be PF, the pretend value is the function number 0...7 13430 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 13431 * combination 13432 */ 13433 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) 13434 { 13435 u32 pretend_reg; 13436 13437 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) 13438 return -1; 13439 13440 /* get my own pretend register */ 13441 pretend_reg = bnx2x_get_pretend_reg(bp); 13442 REG_WR(bp, pretend_reg, pretend_func_val); 13443 REG_RD(bp, pretend_reg); 13444 return 0; 13445 } 13446