1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65 
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION					\
70 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
72 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
73 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77 
78 #define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN)
79 
80 /* Time in jiffies before concluding the transmitter is hung */
81 #define TX_TIMEOUT		(5*HZ)
82 
83 static char version[] =
84 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
85 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
86 
87 MODULE_AUTHOR("Eliezer Tamir");
88 MODULE_DESCRIPTION("Broadcom NetXtreme II "
89 		   "BCM57710/57711/57711E/"
90 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
91 		   "57840/57840_MF Driver");
92 MODULE_LICENSE("GPL");
93 MODULE_VERSION(DRV_MODULE_VERSION);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
96 MODULE_FIRMWARE(FW_FILE_NAME_E2);
97 
98 
99 int num_queues;
100 module_param(num_queues, int, 0);
101 MODULE_PARM_DESC(num_queues,
102 		 " Set number of queues (default is as a number of CPUs)");
103 
104 static int disable_tpa;
105 module_param(disable_tpa, int, 0);
106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
107 
108 #define INT_MODE_INTx			1
109 #define INT_MODE_MSI			2
110 int int_mode;
111 module_param(int_mode, int, 0);
112 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
113 				"(1 INT#x; 2 MSI)");
114 
115 static int dropless_fc;
116 module_param(dropless_fc, int, 0);
117 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
118 
119 static int mrrs = -1;
120 module_param(mrrs, int, 0);
121 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
122 
123 static int debug;
124 module_param(debug, int, 0);
125 MODULE_PARM_DESC(debug, " Default debug msglevel");
126 
127 
128 
129 struct workqueue_struct *bnx2x_wq;
130 
131 struct bnx2x_mac_vals {
132 	u32 xmac_addr;
133 	u32 xmac_val;
134 	u32 emac_addr;
135 	u32 emac_val;
136 	u32 umac_addr;
137 	u32 umac_val;
138 	u32 bmac_addr;
139 	u32 bmac_val[2];
140 };
141 
142 enum bnx2x_board_type {
143 	BCM57710 = 0,
144 	BCM57711,
145 	BCM57711E,
146 	BCM57712,
147 	BCM57712_MF,
148 	BCM57712_VF,
149 	BCM57800,
150 	BCM57800_MF,
151 	BCM57800_VF,
152 	BCM57810,
153 	BCM57810_MF,
154 	BCM57810_VF,
155 	BCM57840_4_10,
156 	BCM57840_2_20,
157 	BCM57840_MF,
158 	BCM57840_VF,
159 	BCM57811,
160 	BCM57811_MF,
161 	BCM57840_O,
162 	BCM57840_MFO,
163 	BCM57811_VF
164 };
165 
166 /* indexed by board_type, above */
167 static struct {
168 	char *name;
169 } board_info[] = {
170 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
171 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
172 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
173 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
174 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
175 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
176 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
177 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
178 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
179 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
180 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
181 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
182 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
183 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
184 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
185 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
186 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
187 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
188 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
189 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
190 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
191 };
192 
193 #ifndef PCI_DEVICE_ID_NX2_57710
194 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57711
197 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57711E
200 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712
203 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57712_MF
206 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57712_VF
209 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800
212 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57800_MF
215 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57800_VF
218 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57810
221 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57810_MF
224 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57840_O
227 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57810_VF
230 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
233 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
236 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
239 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57840_MF
242 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57840_VF
245 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811
248 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
249 #endif
250 #ifndef PCI_DEVICE_ID_NX2_57811_MF
251 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
252 #endif
253 #ifndef PCI_DEVICE_ID_NX2_57811_VF
254 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
255 #endif
256 
257 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
273 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
274 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
275 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
277 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
278 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
279 	{ 0 }
280 };
281 
282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
283 
284 /* Global resources for unloading a previously loaded device */
285 #define BNX2X_PREV_WAIT_NEEDED 1
286 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
287 static LIST_HEAD(bnx2x_prev_list);
288 /****************************************************************************
289 * General service functions
290 ****************************************************************************/
291 
292 static void __storm_memset_dma_mapping(struct bnx2x *bp,
293 				       u32 addr, dma_addr_t mapping)
294 {
295 	REG_WR(bp,  addr, U64_LO(mapping));
296 	REG_WR(bp,  addr + 4, U64_HI(mapping));
297 }
298 
299 static void storm_memset_spq_addr(struct bnx2x *bp,
300 				  dma_addr_t mapping, u16 abs_fid)
301 {
302 	u32 addr = XSEM_REG_FAST_MEMORY +
303 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
304 
305 	__storm_memset_dma_mapping(bp, addr, mapping);
306 }
307 
308 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
309 				  u16 pf_id)
310 {
311 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
312 		pf_id);
313 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
314 		pf_id);
315 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
316 		pf_id);
317 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
318 		pf_id);
319 }
320 
321 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
322 				 u8 enable)
323 {
324 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
325 		enable);
326 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
327 		enable);
328 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
329 		enable);
330 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
331 		enable);
332 }
333 
334 static void storm_memset_eq_data(struct bnx2x *bp,
335 				 struct event_ring_data *eq_data,
336 				u16 pfid)
337 {
338 	size_t size = sizeof(struct event_ring_data);
339 
340 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
341 
342 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
343 }
344 
345 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
346 				 u16 pfid)
347 {
348 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
349 	REG_WR16(bp, addr, eq_prod);
350 }
351 
352 /* used only at init
353  * locking is done by mcp
354  */
355 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
356 {
357 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
358 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
359 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
360 			       PCICFG_VENDOR_ID_OFFSET);
361 }
362 
363 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
364 {
365 	u32 val;
366 
367 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
368 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
369 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
370 			       PCICFG_VENDOR_ID_OFFSET);
371 
372 	return val;
373 }
374 
375 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
376 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
377 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
378 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
379 #define DMAE_DP_DST_NONE	"dst_addr [none]"
380 
381 void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae, int msglvl)
382 {
383 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
384 
385 	switch (dmae->opcode & DMAE_COMMAND_DST) {
386 	case DMAE_CMD_DST_PCI:
387 		if (src_type == DMAE_CMD_SRC_PCI)
388 			DP(msglvl, "DMAE: opcode 0x%08x\n"
389 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
390 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
391 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
392 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
393 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
394 			   dmae->comp_val);
395 		else
396 			DP(msglvl, "DMAE: opcode 0x%08x\n"
397 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
398 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
399 			   dmae->opcode, dmae->src_addr_lo >> 2,
400 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
401 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
402 			   dmae->comp_val);
403 		break;
404 	case DMAE_CMD_DST_GRC:
405 		if (src_type == DMAE_CMD_SRC_PCI)
406 			DP(msglvl, "DMAE: opcode 0x%08x\n"
407 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
408 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
409 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
410 			   dmae->len, dmae->dst_addr_lo >> 2,
411 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
412 			   dmae->comp_val);
413 		else
414 			DP(msglvl, "DMAE: opcode 0x%08x\n"
415 			   "src [%08x], len [%d*4], dst [%08x]\n"
416 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
417 			   dmae->opcode, dmae->src_addr_lo >> 2,
418 			   dmae->len, dmae->dst_addr_lo >> 2,
419 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
420 			   dmae->comp_val);
421 		break;
422 	default:
423 		if (src_type == DMAE_CMD_SRC_PCI)
424 			DP(msglvl, "DMAE: opcode 0x%08x\n"
425 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
426 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
427 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
428 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
429 			   dmae->comp_val);
430 		else
431 			DP(msglvl, "DMAE: opcode 0x%08x\n"
432 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
433 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
434 			   dmae->opcode, dmae->src_addr_lo >> 2,
435 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
436 			   dmae->comp_val);
437 		break;
438 	}
439 }
440 
441 /* copy command into DMAE command memory and set DMAE command go */
442 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
443 {
444 	u32 cmd_offset;
445 	int i;
446 
447 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
448 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
449 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
450 	}
451 	REG_WR(bp, dmae_reg_go_c[idx], 1);
452 }
453 
454 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
455 {
456 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
457 			   DMAE_CMD_C_ENABLE);
458 }
459 
460 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
461 {
462 	return opcode & ~DMAE_CMD_SRC_RESET;
463 }
464 
465 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
466 			     bool with_comp, u8 comp_type)
467 {
468 	u32 opcode = 0;
469 
470 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
471 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
472 
473 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
474 
475 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
476 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
477 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
478 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
479 
480 #ifdef __BIG_ENDIAN
481 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
482 #else
483 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
484 #endif
485 	if (with_comp)
486 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
487 	return opcode;
488 }
489 
490 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
491 				      struct dmae_command *dmae,
492 				      u8 src_type, u8 dst_type)
493 {
494 	memset(dmae, 0, sizeof(struct dmae_command));
495 
496 	/* set the opcode */
497 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
498 					 true, DMAE_COMP_PCI);
499 
500 	/* fill in the completion parameters */
501 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
502 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
503 	dmae->comp_val = DMAE_COMP_VAL;
504 }
505 
506 /* issue a dmae command over the init-channel and wait for completion */
507 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
508 {
509 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
510 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
511 	int rc = 0;
512 
513 	/*
514 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
515 	 * as long as this code is called both from syscall context and
516 	 * from ndo_set_rx_mode() flow that may be called from BH.
517 	 */
518 	spin_lock_bh(&bp->dmae_lock);
519 
520 	/* reset completion */
521 	*wb_comp = 0;
522 
523 	/* post the command on the channel used for initializations */
524 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525 
526 	/* wait for completion */
527 	udelay(5);
528 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529 
530 		if (!cnt ||
531 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533 			BNX2X_ERR("DMAE timeout!\n");
534 			rc = DMAE_TIMEOUT;
535 			goto unlock;
536 		}
537 		cnt--;
538 		udelay(50);
539 	}
540 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
541 		BNX2X_ERR("DMAE PCI error!\n");
542 		rc = DMAE_PCI_ERROR;
543 	}
544 
545 unlock:
546 	spin_unlock_bh(&bp->dmae_lock);
547 	return rc;
548 }
549 
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551 		      u32 len32)
552 {
553 	struct dmae_command dmae;
554 
555 	if (!bp->dmae_ready) {
556 		u32 *data = bnx2x_sp(bp, wb_data[0]);
557 
558 		if (CHIP_IS_E1(bp))
559 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
560 		else
561 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
562 		return;
563 	}
564 
565 	/* set opcode and fixed command fields */
566 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
567 
568 	/* fill in addresses and len */
569 	dmae.src_addr_lo = U64_LO(dma_addr);
570 	dmae.src_addr_hi = U64_HI(dma_addr);
571 	dmae.dst_addr_lo = dst_addr >> 2;
572 	dmae.dst_addr_hi = 0;
573 	dmae.len = len32;
574 
575 	/* issue the command and wait for completion */
576 	bnx2x_issue_dmae_with_comp(bp, &dmae);
577 }
578 
579 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
580 {
581 	struct dmae_command dmae;
582 
583 	if (!bp->dmae_ready) {
584 		u32 *data = bnx2x_sp(bp, wb_data[0]);
585 		int i;
586 
587 		if (CHIP_IS_E1(bp))
588 			for (i = 0; i < len32; i++)
589 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
590 		else
591 			for (i = 0; i < len32; i++)
592 				data[i] = REG_RD(bp, src_addr + i*4);
593 
594 		return;
595 	}
596 
597 	/* set opcode and fixed command fields */
598 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
599 
600 	/* fill in addresses and len */
601 	dmae.src_addr_lo = src_addr >> 2;
602 	dmae.src_addr_hi = 0;
603 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
604 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
605 	dmae.len = len32;
606 
607 	/* issue the command and wait for completion */
608 	bnx2x_issue_dmae_with_comp(bp, &dmae);
609 }
610 
611 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
612 				      u32 addr, u32 len)
613 {
614 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
615 	int offset = 0;
616 
617 	while (len > dmae_wr_max) {
618 		bnx2x_write_dmae(bp, phys_addr + offset,
619 				 addr + offset, dmae_wr_max);
620 		offset += dmae_wr_max * 4;
621 		len -= dmae_wr_max;
622 	}
623 
624 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
625 }
626 
627 static int bnx2x_mc_assert(struct bnx2x *bp)
628 {
629 	char last_idx;
630 	int i, rc = 0;
631 	u32 row0, row1, row2, row3;
632 
633 	/* XSTORM */
634 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
635 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
636 	if (last_idx)
637 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
638 
639 	/* print the asserts */
640 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
641 
642 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
643 			      XSTORM_ASSERT_LIST_OFFSET(i));
644 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
645 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
646 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
647 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
648 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
649 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
650 
651 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
652 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
653 				  i, row3, row2, row1, row0);
654 			rc++;
655 		} else {
656 			break;
657 		}
658 	}
659 
660 	/* TSTORM */
661 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
662 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
663 	if (last_idx)
664 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
665 
666 	/* print the asserts */
667 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
668 
669 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
670 			      TSTORM_ASSERT_LIST_OFFSET(i));
671 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
672 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
673 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
674 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
675 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
676 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
677 
678 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
679 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
680 				  i, row3, row2, row1, row0);
681 			rc++;
682 		} else {
683 			break;
684 		}
685 	}
686 
687 	/* CSTORM */
688 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
689 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
690 	if (last_idx)
691 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
692 
693 	/* print the asserts */
694 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
695 
696 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
697 			      CSTORM_ASSERT_LIST_OFFSET(i));
698 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
699 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
700 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
701 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
702 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
703 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
704 
705 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
706 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
707 				  i, row3, row2, row1, row0);
708 			rc++;
709 		} else {
710 			break;
711 		}
712 	}
713 
714 	/* USTORM */
715 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
716 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
717 	if (last_idx)
718 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
719 
720 	/* print the asserts */
721 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
722 
723 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
724 			      USTORM_ASSERT_LIST_OFFSET(i));
725 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
726 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
727 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
728 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
729 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
730 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
731 
732 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
733 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
734 				  i, row3, row2, row1, row0);
735 			rc++;
736 		} else {
737 			break;
738 		}
739 	}
740 
741 	return rc;
742 }
743 
744 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
745 {
746 	u32 addr, val;
747 	u32 mark, offset;
748 	__be32 data[9];
749 	int word;
750 	u32 trace_shmem_base;
751 	if (BP_NOMCP(bp)) {
752 		BNX2X_ERR("NO MCP - can not dump\n");
753 		return;
754 	}
755 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
756 		(bp->common.bc_ver & 0xff0000) >> 16,
757 		(bp->common.bc_ver & 0xff00) >> 8,
758 		(bp->common.bc_ver & 0xff));
759 
760 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
761 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
762 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
763 
764 	if (BP_PATH(bp) == 0)
765 		trace_shmem_base = bp->common.shmem_base;
766 	else
767 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
768 	addr = trace_shmem_base - 0x800;
769 
770 	/* validate TRCB signature */
771 	mark = REG_RD(bp, addr);
772 	if (mark != MFW_TRACE_SIGNATURE) {
773 		BNX2X_ERR("Trace buffer signature is missing.");
774 		return ;
775 	}
776 
777 	/* read cyclic buffer pointer */
778 	addr += 4;
779 	mark = REG_RD(bp, addr);
780 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
781 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
782 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
783 
784 	printk("%s", lvl);
785 
786 	/* dump buffer after the mark */
787 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
788 		for (word = 0; word < 8; word++)
789 			data[word] = htonl(REG_RD(bp, offset + 4*word));
790 		data[8] = 0x0;
791 		pr_cont("%s", (char *)data);
792 	}
793 
794 	/* dump buffer before the mark */
795 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
796 		for (word = 0; word < 8; word++)
797 			data[word] = htonl(REG_RD(bp, offset + 4*word));
798 		data[8] = 0x0;
799 		pr_cont("%s", (char *)data);
800 	}
801 	printk("%s" "end of fw dump\n", lvl);
802 }
803 
804 static void bnx2x_fw_dump(struct bnx2x *bp)
805 {
806 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
807 }
808 
809 static void bnx2x_hc_int_disable(struct bnx2x *bp)
810 {
811 	int port = BP_PORT(bp);
812 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
813 	u32 val = REG_RD(bp, addr);
814 
815 	/* in E1 we must use only PCI configuration space to disable
816 	 * MSI/MSIX capablility
817 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
818 	 */
819 	if (CHIP_IS_E1(bp)) {
820 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
821 		 * Use mask register to prevent from HC sending interrupts
822 		 * after we exit the function
823 		 */
824 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
825 
826 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
827 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
828 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
829 	} else
830 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
831 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
832 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
833 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
834 
835 	DP(NETIF_MSG_IFDOWN,
836 	   "write %x to HC %d (addr 0x%x)\n",
837 	   val, port, addr);
838 
839 	/* flush all outstanding writes */
840 	mmiowb();
841 
842 	REG_WR(bp, addr, val);
843 	if (REG_RD(bp, addr) != val)
844 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
845 }
846 
847 static void bnx2x_igu_int_disable(struct bnx2x *bp)
848 {
849 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
850 
851 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
852 		 IGU_PF_CONF_INT_LINE_EN |
853 		 IGU_PF_CONF_ATTN_BIT_EN);
854 
855 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
856 
857 	/* flush all outstanding writes */
858 	mmiowb();
859 
860 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
861 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
862 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
863 }
864 
865 static void bnx2x_int_disable(struct bnx2x *bp)
866 {
867 	if (bp->common.int_block == INT_BLOCK_HC)
868 		bnx2x_hc_int_disable(bp);
869 	else
870 		bnx2x_igu_int_disable(bp);
871 }
872 
873 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
874 {
875 	int i;
876 	u16 j;
877 	struct hc_sp_status_block_data sp_sb_data;
878 	int func = BP_FUNC(bp);
879 #ifdef BNX2X_STOP_ON_ERROR
880 	u16 start = 0, end = 0;
881 	u8 cos;
882 #endif
883 	if (disable_int)
884 		bnx2x_int_disable(bp);
885 
886 	bp->stats_state = STATS_STATE_DISABLED;
887 	bp->eth_stats.unrecoverable_error++;
888 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
889 
890 	BNX2X_ERR("begin crash dump -----------------\n");
891 
892 	/* Indices */
893 	/* Common */
894 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
895 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
896 		  bp->spq_prod_idx, bp->stats_counter);
897 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
898 		  bp->def_status_blk->atten_status_block.attn_bits,
899 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
900 		  bp->def_status_blk->atten_status_block.status_block_id,
901 		  bp->def_status_blk->atten_status_block.attn_bits_index);
902 	BNX2X_ERR("     def (");
903 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
904 		pr_cont("0x%x%s",
905 			bp->def_status_blk->sp_sb.index_values[i],
906 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
907 
908 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
909 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
910 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
911 			i*sizeof(u32));
912 
913 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
914 	       sp_sb_data.igu_sb_id,
915 	       sp_sb_data.igu_seg_id,
916 	       sp_sb_data.p_func.pf_id,
917 	       sp_sb_data.p_func.vnic_id,
918 	       sp_sb_data.p_func.vf_id,
919 	       sp_sb_data.p_func.vf_valid,
920 	       sp_sb_data.state);
921 
922 
923 	for_each_eth_queue(bp, i) {
924 		struct bnx2x_fastpath *fp = &bp->fp[i];
925 		int loop;
926 		struct hc_status_block_data_e2 sb_data_e2;
927 		struct hc_status_block_data_e1x sb_data_e1x;
928 		struct hc_status_block_sm  *hc_sm_p =
929 			CHIP_IS_E1x(bp) ?
930 			sb_data_e1x.common.state_machine :
931 			sb_data_e2.common.state_machine;
932 		struct hc_index_data *hc_index_p =
933 			CHIP_IS_E1x(bp) ?
934 			sb_data_e1x.index_data :
935 			sb_data_e2.index_data;
936 		u8 data_size, cos;
937 		u32 *sb_data_p;
938 		struct bnx2x_fp_txdata txdata;
939 
940 		/* Rx */
941 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
942 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
943 			  fp->rx_comp_prod,
944 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
945 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
946 			  fp->rx_sge_prod, fp->last_max_sge,
947 			  le16_to_cpu(fp->fp_hc_idx));
948 
949 		/* Tx */
950 		for_each_cos_in_tx_queue(fp, cos)
951 		{
952 			txdata = *fp->txdata_ptr[cos];
953 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
954 				  i, txdata.tx_pkt_prod,
955 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
956 				  txdata.tx_bd_cons,
957 				  le16_to_cpu(*txdata.tx_cons_sb));
958 		}
959 
960 		loop = CHIP_IS_E1x(bp) ?
961 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
962 
963 		/* host sb data */
964 
965 		if (IS_FCOE_FP(fp))
966 			continue;
967 
968 		BNX2X_ERR("     run indexes (");
969 		for (j = 0; j < HC_SB_MAX_SM; j++)
970 			pr_cont("0x%x%s",
971 			       fp->sb_running_index[j],
972 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
973 
974 		BNX2X_ERR("     indexes (");
975 		for (j = 0; j < loop; j++)
976 			pr_cont("0x%x%s",
977 			       fp->sb_index_values[j],
978 			       (j == loop - 1) ? ")" : " ");
979 		/* fw sb data */
980 		data_size = CHIP_IS_E1x(bp) ?
981 			sizeof(struct hc_status_block_data_e1x) :
982 			sizeof(struct hc_status_block_data_e2);
983 		data_size /= sizeof(u32);
984 		sb_data_p = CHIP_IS_E1x(bp) ?
985 			(u32 *)&sb_data_e1x :
986 			(u32 *)&sb_data_e2;
987 		/* copy sb data in here */
988 		for (j = 0; j < data_size; j++)
989 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
990 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
991 				j * sizeof(u32));
992 
993 		if (!CHIP_IS_E1x(bp)) {
994 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
995 				sb_data_e2.common.p_func.pf_id,
996 				sb_data_e2.common.p_func.vf_id,
997 				sb_data_e2.common.p_func.vf_valid,
998 				sb_data_e2.common.p_func.vnic_id,
999 				sb_data_e2.common.same_igu_sb_1b,
1000 				sb_data_e2.common.state);
1001 		} else {
1002 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1003 				sb_data_e1x.common.p_func.pf_id,
1004 				sb_data_e1x.common.p_func.vf_id,
1005 				sb_data_e1x.common.p_func.vf_valid,
1006 				sb_data_e1x.common.p_func.vnic_id,
1007 				sb_data_e1x.common.same_igu_sb_1b,
1008 				sb_data_e1x.common.state);
1009 		}
1010 
1011 		/* SB_SMs data */
1012 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1013 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1014 				j, hc_sm_p[j].__flags,
1015 				hc_sm_p[j].igu_sb_id,
1016 				hc_sm_p[j].igu_seg_id,
1017 				hc_sm_p[j].time_to_expire,
1018 				hc_sm_p[j].timer_value);
1019 		}
1020 
1021 		/* Indecies data */
1022 		for (j = 0; j < loop; j++) {
1023 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1024 			       hc_index_p[j].flags,
1025 			       hc_index_p[j].timeout);
1026 		}
1027 	}
1028 
1029 #ifdef BNX2X_STOP_ON_ERROR
1030 
1031 	/* event queue */
1032 	for (i = 0; i < NUM_EQ_DESC; i++) {
1033 		u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1034 
1035 		BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1036 			  i, bp->eq_ring[i].message.opcode,
1037 			  bp->eq_ring[i].message.error);
1038 		BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1039 	}
1040 
1041 	/* Rings */
1042 	/* Rx */
1043 	for_each_valid_rx_queue(bp, i) {
1044 		struct bnx2x_fastpath *fp = &bp->fp[i];
1045 
1046 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1047 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1048 		for (j = start; j != end; j = RX_BD(j + 1)) {
1049 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1050 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1051 
1052 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1053 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1054 		}
1055 
1056 		start = RX_SGE(fp->rx_sge_prod);
1057 		end = RX_SGE(fp->last_max_sge);
1058 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1059 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1060 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1061 
1062 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1063 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1064 		}
1065 
1066 		start = RCQ_BD(fp->rx_comp_cons - 10);
1067 		end = RCQ_BD(fp->rx_comp_cons + 503);
1068 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1069 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1070 
1071 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1072 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1073 		}
1074 	}
1075 
1076 	/* Tx */
1077 	for_each_valid_tx_queue(bp, i) {
1078 		struct bnx2x_fastpath *fp = &bp->fp[i];
1079 		for_each_cos_in_tx_queue(fp, cos) {
1080 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1081 
1082 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1083 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1084 			for (j = start; j != end; j = TX_BD(j + 1)) {
1085 				struct sw_tx_bd *sw_bd =
1086 					&txdata->tx_buf_ring[j];
1087 
1088 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1089 					  i, cos, j, sw_bd->skb,
1090 					  sw_bd->first_bd);
1091 			}
1092 
1093 			start = TX_BD(txdata->tx_bd_cons - 10);
1094 			end = TX_BD(txdata->tx_bd_cons + 254);
1095 			for (j = start; j != end; j = TX_BD(j + 1)) {
1096 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1097 
1098 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1099 					  i, cos, j, tx_bd[0], tx_bd[1],
1100 					  tx_bd[2], tx_bd[3]);
1101 			}
1102 		}
1103 	}
1104 #endif
1105 	bnx2x_fw_dump(bp);
1106 	bnx2x_mc_assert(bp);
1107 	BNX2X_ERR("end crash dump -----------------\n");
1108 }
1109 
1110 /*
1111  * FLR Support for E2
1112  *
1113  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1114  * initialization.
1115  */
1116 #define FLR_WAIT_USEC		10000	/* 10 miliseconds */
1117 #define FLR_WAIT_INTERVAL	50	/* usec */
1118 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1119 
1120 struct pbf_pN_buf_regs {
1121 	int pN;
1122 	u32 init_crd;
1123 	u32 crd;
1124 	u32 crd_freed;
1125 };
1126 
1127 struct pbf_pN_cmd_regs {
1128 	int pN;
1129 	u32 lines_occup;
1130 	u32 lines_freed;
1131 };
1132 
1133 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1134 				     struct pbf_pN_buf_regs *regs,
1135 				     u32 poll_count)
1136 {
1137 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1138 	u32 cur_cnt = poll_count;
1139 
1140 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1141 	crd = crd_start = REG_RD(bp, regs->crd);
1142 	init_crd = REG_RD(bp, regs->init_crd);
1143 
1144 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1145 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1146 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1147 
1148 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1149 	       (init_crd - crd_start))) {
1150 		if (cur_cnt--) {
1151 			udelay(FLR_WAIT_INTERVAL);
1152 			crd = REG_RD(bp, regs->crd);
1153 			crd_freed = REG_RD(bp, regs->crd_freed);
1154 		} else {
1155 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1156 			   regs->pN);
1157 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1158 			   regs->pN, crd);
1159 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1160 			   regs->pN, crd_freed);
1161 			break;
1162 		}
1163 	}
1164 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1165 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1166 }
1167 
1168 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1169 				     struct pbf_pN_cmd_regs *regs,
1170 				     u32 poll_count)
1171 {
1172 	u32 occup, to_free, freed, freed_start;
1173 	u32 cur_cnt = poll_count;
1174 
1175 	occup = to_free = REG_RD(bp, regs->lines_occup);
1176 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1177 
1178 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1179 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1180 
1181 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1182 		if (cur_cnt--) {
1183 			udelay(FLR_WAIT_INTERVAL);
1184 			occup = REG_RD(bp, regs->lines_occup);
1185 			freed = REG_RD(bp, regs->lines_freed);
1186 		} else {
1187 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1188 			   regs->pN);
1189 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1190 			   regs->pN, occup);
1191 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1192 			   regs->pN, freed);
1193 			break;
1194 		}
1195 	}
1196 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1197 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1198 }
1199 
1200 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1201 				    u32 expected, u32 poll_count)
1202 {
1203 	u32 cur_cnt = poll_count;
1204 	u32 val;
1205 
1206 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1207 		udelay(FLR_WAIT_INTERVAL);
1208 
1209 	return val;
1210 }
1211 
1212 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1213 				    char *msg, u32 poll_cnt)
1214 {
1215 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1216 	if (val != 0) {
1217 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1218 		return 1;
1219 	}
1220 	return 0;
1221 }
1222 
1223 /* Common routines with VF FLR cleanup */
1224 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1225 {
1226 	/* adjust polling timeout */
1227 	if (CHIP_REV_IS_EMUL(bp))
1228 		return FLR_POLL_CNT * 2000;
1229 
1230 	if (CHIP_REV_IS_FPGA(bp))
1231 		return FLR_POLL_CNT * 120;
1232 
1233 	return FLR_POLL_CNT;
1234 }
1235 
1236 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1237 {
1238 	struct pbf_pN_cmd_regs cmd_regs[] = {
1239 		{0, (CHIP_IS_E3B0(bp)) ?
1240 			PBF_REG_TQ_OCCUPANCY_Q0 :
1241 			PBF_REG_P0_TQ_OCCUPANCY,
1242 		    (CHIP_IS_E3B0(bp)) ?
1243 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1244 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1245 		{1, (CHIP_IS_E3B0(bp)) ?
1246 			PBF_REG_TQ_OCCUPANCY_Q1 :
1247 			PBF_REG_P1_TQ_OCCUPANCY,
1248 		    (CHIP_IS_E3B0(bp)) ?
1249 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1250 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1251 		{4, (CHIP_IS_E3B0(bp)) ?
1252 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1253 			PBF_REG_P4_TQ_OCCUPANCY,
1254 		    (CHIP_IS_E3B0(bp)) ?
1255 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1256 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1257 	};
1258 
1259 	struct pbf_pN_buf_regs buf_regs[] = {
1260 		{0, (CHIP_IS_E3B0(bp)) ?
1261 			PBF_REG_INIT_CRD_Q0 :
1262 			PBF_REG_P0_INIT_CRD ,
1263 		    (CHIP_IS_E3B0(bp)) ?
1264 			PBF_REG_CREDIT_Q0 :
1265 			PBF_REG_P0_CREDIT,
1266 		    (CHIP_IS_E3B0(bp)) ?
1267 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1268 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1269 		{1, (CHIP_IS_E3B0(bp)) ?
1270 			PBF_REG_INIT_CRD_Q1 :
1271 			PBF_REG_P1_INIT_CRD,
1272 		    (CHIP_IS_E3B0(bp)) ?
1273 			PBF_REG_CREDIT_Q1 :
1274 			PBF_REG_P1_CREDIT,
1275 		    (CHIP_IS_E3B0(bp)) ?
1276 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1277 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1278 		{4, (CHIP_IS_E3B0(bp)) ?
1279 			PBF_REG_INIT_CRD_LB_Q :
1280 			PBF_REG_P4_INIT_CRD,
1281 		    (CHIP_IS_E3B0(bp)) ?
1282 			PBF_REG_CREDIT_LB_Q :
1283 			PBF_REG_P4_CREDIT,
1284 		    (CHIP_IS_E3B0(bp)) ?
1285 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1286 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1287 	};
1288 
1289 	int i;
1290 
1291 	/* Verify the command queues are flushed P0, P1, P4 */
1292 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1293 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1294 
1295 
1296 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1297 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1298 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1299 }
1300 
1301 #define OP_GEN_PARAM(param) \
1302 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1303 
1304 #define OP_GEN_TYPE(type) \
1305 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1306 
1307 #define OP_GEN_AGG_VECT(index) \
1308 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1309 
1310 
1311 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1312 {
1313 	u32 op_gen_command = 0;
1314 
1315 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1316 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1317 	int ret = 0;
1318 
1319 	if (REG_RD(bp, comp_addr)) {
1320 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1321 		return 1;
1322 	}
1323 
1324 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1325 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1326 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1327 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1328 
1329 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1330 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1331 
1332 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1333 		BNX2X_ERR("FW final cleanup did not succeed\n");
1334 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1335 		   (REG_RD(bp, comp_addr)));
1336 		bnx2x_panic();
1337 		return 1;
1338 	}
1339 	/* Zero completion for nxt FLR */
1340 	REG_WR(bp, comp_addr, 0);
1341 
1342 	return ret;
1343 }
1344 
1345 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1346 {
1347 	u16 status;
1348 
1349 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1350 	return status & PCI_EXP_DEVSTA_TRPND;
1351 }
1352 
1353 /* PF FLR specific routines
1354 */
1355 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1356 {
1357 
1358 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1359 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1360 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1361 			"CFC PF usage counter timed out",
1362 			poll_cnt))
1363 		return 1;
1364 
1365 
1366 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1367 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1368 			DORQ_REG_PF_USAGE_CNT,
1369 			"DQ PF usage counter timed out",
1370 			poll_cnt))
1371 		return 1;
1372 
1373 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1374 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1375 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1376 			"QM PF usage counter timed out",
1377 			poll_cnt))
1378 		return 1;
1379 
1380 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1381 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1382 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1383 			"Timers VNIC usage counter timed out",
1384 			poll_cnt))
1385 		return 1;
1386 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1388 			"Timers NUM_SCANS usage counter timed out",
1389 			poll_cnt))
1390 		return 1;
1391 
1392 	/* Wait DMAE PF usage counter to zero */
1393 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1394 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1395 			"DMAE dommand register timed out",
1396 			poll_cnt))
1397 		return 1;
1398 
1399 	return 0;
1400 }
1401 
1402 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1403 {
1404 	u32 val;
1405 
1406 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1407 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1408 
1409 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1410 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1411 
1412 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1413 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1414 
1415 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1416 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1417 
1418 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1419 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1420 
1421 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1422 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1423 
1424 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1425 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1426 
1427 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1428 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1429 	   val);
1430 }
1431 
1432 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1433 {
1434 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1435 
1436 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1437 
1438 	/* Re-enable PF target read access */
1439 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1440 
1441 	/* Poll HW usage counters */
1442 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1443 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1444 		return -EBUSY;
1445 
1446 	/* Zero the igu 'trailing edge' and 'leading edge' */
1447 
1448 	/* Send the FW cleanup command */
1449 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1450 		return -EBUSY;
1451 
1452 	/* ATC cleanup */
1453 
1454 	/* Verify TX hw is flushed */
1455 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1456 
1457 	/* Wait 100ms (not adjusted according to platform) */
1458 	msleep(100);
1459 
1460 	/* Verify no pending pci transactions */
1461 	if (bnx2x_is_pcie_pending(bp->pdev))
1462 		BNX2X_ERR("PCIE Transactions still pending\n");
1463 
1464 	/* Debug */
1465 	bnx2x_hw_enable_status(bp);
1466 
1467 	/*
1468 	 * Master enable - Due to WB DMAE writes performed before this
1469 	 * register is re-initialized as part of the regular function init
1470 	 */
1471 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1472 
1473 	return 0;
1474 }
1475 
1476 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1477 {
1478 	int port = BP_PORT(bp);
1479 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1480 	u32 val = REG_RD(bp, addr);
1481 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1482 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1483 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1484 
1485 	if (msix) {
1486 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1487 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1488 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1489 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1490 		if (single_msix)
1491 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1492 	} else if (msi) {
1493 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1494 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1495 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1496 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1497 	} else {
1498 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1499 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1500 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1501 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1502 
1503 		if (!CHIP_IS_E1(bp)) {
1504 			DP(NETIF_MSG_IFUP,
1505 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1506 
1507 			REG_WR(bp, addr, val);
1508 
1509 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1510 		}
1511 	}
1512 
1513 	if (CHIP_IS_E1(bp))
1514 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1515 
1516 	DP(NETIF_MSG_IFUP,
1517 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1518 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1519 
1520 	REG_WR(bp, addr, val);
1521 	/*
1522 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1523 	 */
1524 	mmiowb();
1525 	barrier();
1526 
1527 	if (!CHIP_IS_E1(bp)) {
1528 		/* init leading/trailing edge */
1529 		if (IS_MF(bp)) {
1530 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1531 			if (bp->port.pmf)
1532 				/* enable nig and gpio3 attention */
1533 				val |= 0x1100;
1534 		} else
1535 			val = 0xffff;
1536 
1537 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1538 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1539 	}
1540 
1541 	/* Make sure that interrupts are indeed enabled from here on */
1542 	mmiowb();
1543 }
1544 
1545 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1546 {
1547 	u32 val;
1548 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1549 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1550 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1551 
1552 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1553 
1554 	if (msix) {
1555 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1556 			 IGU_PF_CONF_SINGLE_ISR_EN);
1557 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1558 			IGU_PF_CONF_ATTN_BIT_EN);
1559 
1560 		if (single_msix)
1561 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1562 	} else if (msi) {
1563 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1564 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1565 			IGU_PF_CONF_ATTN_BIT_EN |
1566 			IGU_PF_CONF_SINGLE_ISR_EN);
1567 	} else {
1568 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1569 		val |= (IGU_PF_CONF_INT_LINE_EN |
1570 			IGU_PF_CONF_ATTN_BIT_EN |
1571 			IGU_PF_CONF_SINGLE_ISR_EN);
1572 	}
1573 
1574 	/* Clean previous status - need to configure igu prior to ack*/
1575 	if ((!msix) || single_msix) {
1576 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1577 		bnx2x_ack_int(bp);
1578 	}
1579 
1580 	val |= IGU_PF_CONF_FUNC_EN;
1581 
1582 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1583 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1584 
1585 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1586 
1587 	if (val & IGU_PF_CONF_INT_LINE_EN)
1588 		pci_intx(bp->pdev, true);
1589 
1590 	barrier();
1591 
1592 	/* init leading/trailing edge */
1593 	if (IS_MF(bp)) {
1594 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1595 		if (bp->port.pmf)
1596 			/* enable nig and gpio3 attention */
1597 			val |= 0x1100;
1598 	} else
1599 		val = 0xffff;
1600 
1601 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1602 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1603 
1604 	/* Make sure that interrupts are indeed enabled from here on */
1605 	mmiowb();
1606 }
1607 
1608 void bnx2x_int_enable(struct bnx2x *bp)
1609 {
1610 	if (bp->common.int_block == INT_BLOCK_HC)
1611 		bnx2x_hc_int_enable(bp);
1612 	else
1613 		bnx2x_igu_int_enable(bp);
1614 }
1615 
1616 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1617 {
1618 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1619 	int i, offset;
1620 
1621 	if (disable_hw)
1622 		/* prevent the HW from sending interrupts */
1623 		bnx2x_int_disable(bp);
1624 
1625 	/* make sure all ISRs are done */
1626 	if (msix) {
1627 		synchronize_irq(bp->msix_table[0].vector);
1628 		offset = 1;
1629 		if (CNIC_SUPPORT(bp))
1630 			offset++;
1631 		for_each_eth_queue(bp, i)
1632 			synchronize_irq(bp->msix_table[offset++].vector);
1633 	} else
1634 		synchronize_irq(bp->pdev->irq);
1635 
1636 	/* make sure sp_task is not running */
1637 	cancel_delayed_work(&bp->sp_task);
1638 	cancel_delayed_work(&bp->period_task);
1639 	flush_workqueue(bnx2x_wq);
1640 }
1641 
1642 /* fast path */
1643 
1644 /*
1645  * General service functions
1646  */
1647 
1648 /* Return true if succeeded to acquire the lock */
1649 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1650 {
1651 	u32 lock_status;
1652 	u32 resource_bit = (1 << resource);
1653 	int func = BP_FUNC(bp);
1654 	u32 hw_lock_control_reg;
1655 
1656 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1657 	   "Trying to take a lock on resource %d\n", resource);
1658 
1659 	/* Validating that the resource is within range */
1660 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1661 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1662 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1663 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1664 		return false;
1665 	}
1666 
1667 	if (func <= 5)
1668 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1669 	else
1670 		hw_lock_control_reg =
1671 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1672 
1673 	/* Try to acquire the lock */
1674 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1675 	lock_status = REG_RD(bp, hw_lock_control_reg);
1676 	if (lock_status & resource_bit)
1677 		return true;
1678 
1679 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1680 	   "Failed to get a lock on resource %d\n", resource);
1681 	return false;
1682 }
1683 
1684 /**
1685  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1686  *
1687  * @bp:	driver handle
1688  *
1689  * Returns the recovery leader resource id according to the engine this function
1690  * belongs to. Currently only only 2 engines is supported.
1691  */
1692 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1693 {
1694 	if (BP_PATH(bp))
1695 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1696 	else
1697 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1698 }
1699 
1700 /**
1701  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1702  *
1703  * @bp: driver handle
1704  *
1705  * Tries to acquire a leader lock for current engine.
1706  */
1707 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1708 {
1709 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1710 }
1711 
1712 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1713 
1714 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1715 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1716 {
1717 	/* Set the interrupt occurred bit for the sp-task to recognize it
1718 	 * must ack the interrupt and transition according to the IGU
1719 	 * state machine.
1720 	 */
1721 	atomic_set(&bp->interrupt_occurred, 1);
1722 
1723 	/* The sp_task must execute only after this bit
1724 	 * is set, otherwise we will get out of sync and miss all
1725 	 * further interrupts. Hence, the barrier.
1726 	 */
1727 	smp_wmb();
1728 
1729 	/* schedule sp_task to workqueue */
1730 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1731 }
1732 
1733 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1734 {
1735 	struct bnx2x *bp = fp->bp;
1736 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1737 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1738 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1739 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1740 
1741 	DP(BNX2X_MSG_SP,
1742 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1743 	   fp->index, cid, command, bp->state,
1744 	   rr_cqe->ramrod_cqe.ramrod_type);
1745 
1746 	/* If cid is within VF range, replace the slowpath object with the
1747 	 * one corresponding to this VF
1748 	 */
1749 	if (cid >= BNX2X_FIRST_VF_CID  &&
1750 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1751 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1752 
1753 	switch (command) {
1754 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1755 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1756 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1757 		break;
1758 
1759 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1760 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1761 		drv_cmd = BNX2X_Q_CMD_SETUP;
1762 		break;
1763 
1764 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1765 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1766 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1767 		break;
1768 
1769 	case (RAMROD_CMD_ID_ETH_HALT):
1770 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1771 		drv_cmd = BNX2X_Q_CMD_HALT;
1772 		break;
1773 
1774 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1775 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1776 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1777 		break;
1778 
1779 	case (RAMROD_CMD_ID_ETH_EMPTY):
1780 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1781 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1782 		break;
1783 
1784 	default:
1785 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1786 			  command, fp->index);
1787 		return;
1788 	}
1789 
1790 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1791 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1792 		/* q_obj->complete_cmd() failure means that this was
1793 		 * an unexpected completion.
1794 		 *
1795 		 * In this case we don't want to increase the bp->spq_left
1796 		 * because apparently we haven't sent this command the first
1797 		 * place.
1798 		 */
1799 #ifdef BNX2X_STOP_ON_ERROR
1800 		bnx2x_panic();
1801 #else
1802 		return;
1803 #endif
1804 	/* SRIOV: reschedule any 'in_progress' operations */
1805 	bnx2x_iov_sp_event(bp, cid, true);
1806 
1807 	smp_mb__before_atomic_inc();
1808 	atomic_inc(&bp->cq_spq_left);
1809 	/* push the change in bp->spq_left and towards the memory */
1810 	smp_mb__after_atomic_inc();
1811 
1812 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1813 
1814 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1815 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1816 		/* if Q update ramrod is completed for last Q in AFEX vif set
1817 		 * flow, then ACK MCP at the end
1818 		 *
1819 		 * mark pending ACK to MCP bit.
1820 		 * prevent case that both bits are cleared.
1821 		 * At the end of load/unload driver checks that
1822 		 * sp_state is cleared, and this order prevents
1823 		 * races
1824 		 */
1825 		smp_mb__before_clear_bit();
1826 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1827 		wmb();
1828 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1829 		smp_mb__after_clear_bit();
1830 
1831 		/* schedule the sp task as mcp ack is required */
1832 		bnx2x_schedule_sp_task(bp);
1833 	}
1834 
1835 	return;
1836 }
1837 
1838 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1839 {
1840 	struct bnx2x *bp = netdev_priv(dev_instance);
1841 	u16 status = bnx2x_ack_int(bp);
1842 	u16 mask;
1843 	int i;
1844 	u8 cos;
1845 
1846 	/* Return here if interrupt is shared and it's not for us */
1847 	if (unlikely(status == 0)) {
1848 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1849 		return IRQ_NONE;
1850 	}
1851 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1852 
1853 #ifdef BNX2X_STOP_ON_ERROR
1854 	if (unlikely(bp->panic))
1855 		return IRQ_HANDLED;
1856 #endif
1857 
1858 	for_each_eth_queue(bp, i) {
1859 		struct bnx2x_fastpath *fp = &bp->fp[i];
1860 
1861 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1862 		if (status & mask) {
1863 			/* Handle Rx or Tx according to SB id */
1864 			prefetch(fp->rx_cons_sb);
1865 			for_each_cos_in_tx_queue(fp, cos)
1866 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1867 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1868 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1869 			status &= ~mask;
1870 		}
1871 	}
1872 
1873 	if (CNIC_SUPPORT(bp)) {
1874 		mask = 0x2;
1875 		if (status & (mask | 0x1)) {
1876 			struct cnic_ops *c_ops = NULL;
1877 
1878 			rcu_read_lock();
1879 			c_ops = rcu_dereference(bp->cnic_ops);
1880 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1881 				      CNIC_DRV_STATE_HANDLES_IRQ))
1882 				c_ops->cnic_handler(bp->cnic_data, NULL);
1883 			rcu_read_unlock();
1884 
1885 			status &= ~mask;
1886 		}
1887 	}
1888 
1889 	if (unlikely(status & 0x1)) {
1890 
1891 		/* schedule sp task to perform default status block work, ack
1892 		 * attentions and enable interrupts.
1893 		 */
1894 		bnx2x_schedule_sp_task(bp);
1895 
1896 		status &= ~0x1;
1897 		if (!status)
1898 			return IRQ_HANDLED;
1899 	}
1900 
1901 	if (unlikely(status))
1902 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1903 		   status);
1904 
1905 	return IRQ_HANDLED;
1906 }
1907 
1908 /* Link */
1909 
1910 /*
1911  * General service functions
1912  */
1913 
1914 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1915 {
1916 	u32 lock_status;
1917 	u32 resource_bit = (1 << resource);
1918 	int func = BP_FUNC(bp);
1919 	u32 hw_lock_control_reg;
1920 	int cnt;
1921 
1922 	/* Validating that the resource is within range */
1923 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1924 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1925 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1926 		return -EINVAL;
1927 	}
1928 
1929 	if (func <= 5) {
1930 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1931 	} else {
1932 		hw_lock_control_reg =
1933 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1934 	}
1935 
1936 	/* Validating that the resource is not already taken */
1937 	lock_status = REG_RD(bp, hw_lock_control_reg);
1938 	if (lock_status & resource_bit) {
1939 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1940 		   lock_status, resource_bit);
1941 		return -EEXIST;
1942 	}
1943 
1944 	/* Try for 5 second every 5ms */
1945 	for (cnt = 0; cnt < 1000; cnt++) {
1946 		/* Try to acquire the lock */
1947 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1948 		lock_status = REG_RD(bp, hw_lock_control_reg);
1949 		if (lock_status & resource_bit)
1950 			return 0;
1951 
1952 		msleep(5);
1953 	}
1954 	BNX2X_ERR("Timeout\n");
1955 	return -EAGAIN;
1956 }
1957 
1958 int bnx2x_release_leader_lock(struct bnx2x *bp)
1959 {
1960 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1961 }
1962 
1963 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1964 {
1965 	u32 lock_status;
1966 	u32 resource_bit = (1 << resource);
1967 	int func = BP_FUNC(bp);
1968 	u32 hw_lock_control_reg;
1969 
1970 	/* Validating that the resource is within range */
1971 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1972 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1973 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1974 		return -EINVAL;
1975 	}
1976 
1977 	if (func <= 5) {
1978 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1979 	} else {
1980 		hw_lock_control_reg =
1981 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1982 	}
1983 
1984 	/* Validating that the resource is currently taken */
1985 	lock_status = REG_RD(bp, hw_lock_control_reg);
1986 	if (!(lock_status & resource_bit)) {
1987 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1988 		   lock_status, resource_bit);
1989 		return -EFAULT;
1990 	}
1991 
1992 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1993 	return 0;
1994 }
1995 
1996 
1997 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1998 {
1999 	/* The GPIO should be swapped if swap register is set and active */
2000 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2001 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2002 	int gpio_shift = gpio_num +
2003 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2004 	u32 gpio_mask = (1 << gpio_shift);
2005 	u32 gpio_reg;
2006 	int value;
2007 
2008 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2009 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2010 		return -EINVAL;
2011 	}
2012 
2013 	/* read GPIO value */
2014 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2015 
2016 	/* get the requested pin value */
2017 	if ((gpio_reg & gpio_mask) == gpio_mask)
2018 		value = 1;
2019 	else
2020 		value = 0;
2021 
2022 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2023 
2024 	return value;
2025 }
2026 
2027 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2028 {
2029 	/* The GPIO should be swapped if swap register is set and active */
2030 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2031 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2032 	int gpio_shift = gpio_num +
2033 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2034 	u32 gpio_mask = (1 << gpio_shift);
2035 	u32 gpio_reg;
2036 
2037 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2038 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2039 		return -EINVAL;
2040 	}
2041 
2042 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2043 	/* read GPIO and mask except the float bits */
2044 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2045 
2046 	switch (mode) {
2047 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2048 		DP(NETIF_MSG_LINK,
2049 		   "Set GPIO %d (shift %d) -> output low\n",
2050 		   gpio_num, gpio_shift);
2051 		/* clear FLOAT and set CLR */
2052 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2053 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2054 		break;
2055 
2056 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2057 		DP(NETIF_MSG_LINK,
2058 		   "Set GPIO %d (shift %d) -> output high\n",
2059 		   gpio_num, gpio_shift);
2060 		/* clear FLOAT and set SET */
2061 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2062 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2063 		break;
2064 
2065 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2066 		DP(NETIF_MSG_LINK,
2067 		   "Set GPIO %d (shift %d) -> input\n",
2068 		   gpio_num, gpio_shift);
2069 		/* set FLOAT */
2070 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2071 		break;
2072 
2073 	default:
2074 		break;
2075 	}
2076 
2077 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2078 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2079 
2080 	return 0;
2081 }
2082 
2083 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2084 {
2085 	u32 gpio_reg = 0;
2086 	int rc = 0;
2087 
2088 	/* Any port swapping should be handled by caller. */
2089 
2090 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2091 	/* read GPIO and mask except the float bits */
2092 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2093 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2094 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2095 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2096 
2097 	switch (mode) {
2098 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2099 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2100 		/* set CLR */
2101 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2102 		break;
2103 
2104 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2105 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2106 		/* set SET */
2107 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2108 		break;
2109 
2110 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2111 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2112 		/* set FLOAT */
2113 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2114 		break;
2115 
2116 	default:
2117 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2118 		rc = -EINVAL;
2119 		break;
2120 	}
2121 
2122 	if (rc == 0)
2123 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2124 
2125 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2126 
2127 	return rc;
2128 }
2129 
2130 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2131 {
2132 	/* The GPIO should be swapped if swap register is set and active */
2133 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2134 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2135 	int gpio_shift = gpio_num +
2136 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2137 	u32 gpio_mask = (1 << gpio_shift);
2138 	u32 gpio_reg;
2139 
2140 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2141 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2142 		return -EINVAL;
2143 	}
2144 
2145 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2146 	/* read GPIO int */
2147 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2148 
2149 	switch (mode) {
2150 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2151 		DP(NETIF_MSG_LINK,
2152 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2153 		   gpio_num, gpio_shift);
2154 		/* clear SET and set CLR */
2155 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2156 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2157 		break;
2158 
2159 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2160 		DP(NETIF_MSG_LINK,
2161 		   "Set GPIO INT %d (shift %d) -> output high\n",
2162 		   gpio_num, gpio_shift);
2163 		/* clear CLR and set SET */
2164 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2165 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2166 		break;
2167 
2168 	default:
2169 		break;
2170 	}
2171 
2172 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2173 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2174 
2175 	return 0;
2176 }
2177 
2178 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2179 {
2180 	u32 spio_reg;
2181 
2182 	/* Only 2 SPIOs are configurable */
2183 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2184 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2185 		return -EINVAL;
2186 	}
2187 
2188 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2189 	/* read SPIO and mask except the float bits */
2190 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2191 
2192 	switch (mode) {
2193 	case MISC_SPIO_OUTPUT_LOW:
2194 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2195 		/* clear FLOAT and set CLR */
2196 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2197 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2198 		break;
2199 
2200 	case MISC_SPIO_OUTPUT_HIGH:
2201 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2202 		/* clear FLOAT and set SET */
2203 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2204 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2205 		break;
2206 
2207 	case MISC_SPIO_INPUT_HI_Z:
2208 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2209 		/* set FLOAT */
2210 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2211 		break;
2212 
2213 	default:
2214 		break;
2215 	}
2216 
2217 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2218 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2219 
2220 	return 0;
2221 }
2222 
2223 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2224 {
2225 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2226 	switch (bp->link_vars.ieee_fc &
2227 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2228 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2229 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2230 						   ADVERTISED_Pause);
2231 		break;
2232 
2233 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2234 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2235 						  ADVERTISED_Pause);
2236 		break;
2237 
2238 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2239 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2240 		break;
2241 
2242 	default:
2243 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2244 						   ADVERTISED_Pause);
2245 		break;
2246 	}
2247 }
2248 
2249 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2250 {
2251 	/* Initialize link parameters structure variables
2252 	 * It is recommended to turn off RX FC for jumbo frames
2253 	 *  for better performance
2254 	 */
2255 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2256 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2257 	else
2258 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2259 }
2260 
2261 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2262 {
2263 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2264 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2265 
2266 	if (!BP_NOMCP(bp)) {
2267 		bnx2x_set_requested_fc(bp);
2268 		bnx2x_acquire_phy_lock(bp);
2269 
2270 		if (load_mode == LOAD_DIAG) {
2271 			struct link_params *lp = &bp->link_params;
2272 			lp->loopback_mode = LOOPBACK_XGXS;
2273 			/* do PHY loopback at 10G speed, if possible */
2274 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2275 				if (lp->speed_cap_mask[cfx_idx] &
2276 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2277 					lp->req_line_speed[cfx_idx] =
2278 					SPEED_10000;
2279 				else
2280 					lp->req_line_speed[cfx_idx] =
2281 					SPEED_1000;
2282 			}
2283 		}
2284 
2285 		if (load_mode == LOAD_LOOPBACK_EXT) {
2286 			struct link_params *lp = &bp->link_params;
2287 			lp->loopback_mode = LOOPBACK_EXT;
2288 		}
2289 
2290 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2291 
2292 		bnx2x_release_phy_lock(bp);
2293 
2294 		bnx2x_calc_fc_adv(bp);
2295 
2296 		if (bp->link_vars.link_up) {
2297 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2298 			bnx2x_link_report(bp);
2299 		}
2300 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2301 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2302 		return rc;
2303 	}
2304 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2305 	return -EINVAL;
2306 }
2307 
2308 void bnx2x_link_set(struct bnx2x *bp)
2309 {
2310 	if (!BP_NOMCP(bp)) {
2311 		bnx2x_acquire_phy_lock(bp);
2312 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2313 		bnx2x_release_phy_lock(bp);
2314 
2315 		bnx2x_calc_fc_adv(bp);
2316 	} else
2317 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2318 }
2319 
2320 static void bnx2x__link_reset(struct bnx2x *bp)
2321 {
2322 	if (!BP_NOMCP(bp)) {
2323 		bnx2x_acquire_phy_lock(bp);
2324 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2325 		bnx2x_release_phy_lock(bp);
2326 	} else
2327 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2328 }
2329 
2330 void bnx2x_force_link_reset(struct bnx2x *bp)
2331 {
2332 	bnx2x_acquire_phy_lock(bp);
2333 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2334 	bnx2x_release_phy_lock(bp);
2335 }
2336 
2337 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2338 {
2339 	u8 rc = 0;
2340 
2341 	if (!BP_NOMCP(bp)) {
2342 		bnx2x_acquire_phy_lock(bp);
2343 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2344 				     is_serdes);
2345 		bnx2x_release_phy_lock(bp);
2346 	} else
2347 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2348 
2349 	return rc;
2350 }
2351 
2352 
2353 /* Calculates the sum of vn_min_rates.
2354    It's needed for further normalizing of the min_rates.
2355    Returns:
2356      sum of vn_min_rates.
2357        or
2358      0 - if all the min_rates are 0.
2359      In the later case fainess algorithm should be deactivated.
2360      If not all min_rates are zero then those that are zeroes will be set to 1.
2361  */
2362 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2363 				      struct cmng_init_input *input)
2364 {
2365 	int all_zero = 1;
2366 	int vn;
2367 
2368 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2369 		u32 vn_cfg = bp->mf_config[vn];
2370 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2371 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2372 
2373 		/* Skip hidden vns */
2374 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2375 			vn_min_rate = 0;
2376 		/* If min rate is zero - set it to 1 */
2377 		else if (!vn_min_rate)
2378 			vn_min_rate = DEF_MIN_RATE;
2379 		else
2380 			all_zero = 0;
2381 
2382 		input->vnic_min_rate[vn] = vn_min_rate;
2383 	}
2384 
2385 	/* if ETS or all min rates are zeros - disable fairness */
2386 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2387 		input->flags.cmng_enables &=
2388 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2389 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2390 	} else if (all_zero) {
2391 		input->flags.cmng_enables &=
2392 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2393 		DP(NETIF_MSG_IFUP,
2394 		   "All MIN values are zeroes fairness will be disabled\n");
2395 	} else
2396 		input->flags.cmng_enables |=
2397 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2398 }
2399 
2400 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2401 				    struct cmng_init_input *input)
2402 {
2403 	u16 vn_max_rate;
2404 	u32 vn_cfg = bp->mf_config[vn];
2405 
2406 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2407 		vn_max_rate = 0;
2408 	else {
2409 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2410 
2411 		if (IS_MF_SI(bp)) {
2412 			/* maxCfg in percents of linkspeed */
2413 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2414 		} else /* SD modes */
2415 			/* maxCfg is absolute in 100Mb units */
2416 			vn_max_rate = maxCfg * 100;
2417 	}
2418 
2419 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2420 
2421 	input->vnic_max_rate[vn] = vn_max_rate;
2422 }
2423 
2424 
2425 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2426 {
2427 	if (CHIP_REV_IS_SLOW(bp))
2428 		return CMNG_FNS_NONE;
2429 	if (IS_MF(bp))
2430 		return CMNG_FNS_MINMAX;
2431 
2432 	return CMNG_FNS_NONE;
2433 }
2434 
2435 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2436 {
2437 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2438 
2439 	if (BP_NOMCP(bp))
2440 		return; /* what should be the default bvalue in this case */
2441 
2442 	/* For 2 port configuration the absolute function number formula
2443 	 * is:
2444 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2445 	 *
2446 	 *      and there are 4 functions per port
2447 	 *
2448 	 * For 4 port configuration it is
2449 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2450 	 *
2451 	 *      and there are 2 functions per port
2452 	 */
2453 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2454 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2455 
2456 		if (func >= E1H_FUNC_MAX)
2457 			break;
2458 
2459 		bp->mf_config[vn] =
2460 			MF_CFG_RD(bp, func_mf_config[func].config);
2461 	}
2462 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2463 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2464 		bp->flags |= MF_FUNC_DIS;
2465 	} else {
2466 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2467 		bp->flags &= ~MF_FUNC_DIS;
2468 	}
2469 }
2470 
2471 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2472 {
2473 	struct cmng_init_input input;
2474 	memset(&input, 0, sizeof(struct cmng_init_input));
2475 
2476 	input.port_rate = bp->link_vars.line_speed;
2477 
2478 	if (cmng_type == CMNG_FNS_MINMAX) {
2479 		int vn;
2480 
2481 		/* read mf conf from shmem */
2482 		if (read_cfg)
2483 			bnx2x_read_mf_cfg(bp);
2484 
2485 		/* vn_weight_sum and enable fairness if not 0 */
2486 		bnx2x_calc_vn_min(bp, &input);
2487 
2488 		/* calculate and set min-max rate for each vn */
2489 		if (bp->port.pmf)
2490 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2491 				bnx2x_calc_vn_max(bp, vn, &input);
2492 
2493 		/* always enable rate shaping and fairness */
2494 		input.flags.cmng_enables |=
2495 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2496 
2497 		bnx2x_init_cmng(&input, &bp->cmng);
2498 		return;
2499 	}
2500 
2501 	/* rate shaping and fairness are disabled */
2502 	DP(NETIF_MSG_IFUP,
2503 	   "rate shaping and fairness are disabled\n");
2504 }
2505 
2506 static void storm_memset_cmng(struct bnx2x *bp,
2507 			      struct cmng_init *cmng,
2508 			      u8 port)
2509 {
2510 	int vn;
2511 	size_t size = sizeof(struct cmng_struct_per_port);
2512 
2513 	u32 addr = BAR_XSTRORM_INTMEM +
2514 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2515 
2516 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2517 
2518 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2519 		int func = func_by_vn(bp, vn);
2520 
2521 		addr = BAR_XSTRORM_INTMEM +
2522 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2523 		size = sizeof(struct rate_shaping_vars_per_vn);
2524 		__storm_memset_struct(bp, addr, size,
2525 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2526 
2527 		addr = BAR_XSTRORM_INTMEM +
2528 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2529 		size = sizeof(struct fairness_vars_per_vn);
2530 		__storm_memset_struct(bp, addr, size,
2531 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2532 	}
2533 }
2534 
2535 /* This function is called upon link interrupt */
2536 static void bnx2x_link_attn(struct bnx2x *bp)
2537 {
2538 	/* Make sure that we are synced with the current statistics */
2539 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2540 
2541 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2542 
2543 	if (bp->link_vars.link_up) {
2544 
2545 		/* dropless flow control */
2546 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2547 			int port = BP_PORT(bp);
2548 			u32 pause_enabled = 0;
2549 
2550 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2551 				pause_enabled = 1;
2552 
2553 			REG_WR(bp, BAR_USTRORM_INTMEM +
2554 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2555 			       pause_enabled);
2556 		}
2557 
2558 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2559 			struct host_port_stats *pstats;
2560 
2561 			pstats = bnx2x_sp(bp, port_stats);
2562 			/* reset old mac stats */
2563 			memset(&(pstats->mac_stx[0]), 0,
2564 			       sizeof(struct mac_stx));
2565 		}
2566 		if (bp->state == BNX2X_STATE_OPEN)
2567 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2568 	}
2569 
2570 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2571 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2572 
2573 		if (cmng_fns != CMNG_FNS_NONE) {
2574 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2575 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2576 		} else
2577 			/* rate shaping and fairness are disabled */
2578 			DP(NETIF_MSG_IFUP,
2579 			   "single function mode without fairness\n");
2580 	}
2581 
2582 	__bnx2x_link_report(bp);
2583 
2584 	if (IS_MF(bp))
2585 		bnx2x_link_sync_notify(bp);
2586 }
2587 
2588 void bnx2x__link_status_update(struct bnx2x *bp)
2589 {
2590 	if (bp->state != BNX2X_STATE_OPEN)
2591 		return;
2592 
2593 	/* read updated dcb configuration */
2594 	if (IS_PF(bp)) {
2595 		bnx2x_dcbx_pmf_update(bp);
2596 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2597 		if (bp->link_vars.link_up)
2598 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2599 		else
2600 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2601 			/* indicate link status */
2602 		bnx2x_link_report(bp);
2603 
2604 	} else { /* VF */
2605 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2606 					  SUPPORTED_10baseT_Full |
2607 					  SUPPORTED_100baseT_Half |
2608 					  SUPPORTED_100baseT_Full |
2609 					  SUPPORTED_1000baseT_Full |
2610 					  SUPPORTED_2500baseX_Full |
2611 					  SUPPORTED_10000baseT_Full |
2612 					  SUPPORTED_TP |
2613 					  SUPPORTED_FIBRE |
2614 					  SUPPORTED_Autoneg |
2615 					  SUPPORTED_Pause |
2616 					  SUPPORTED_Asym_Pause);
2617 		bp->port.advertising[0] = bp->port.supported[0];
2618 
2619 		bp->link_params.bp = bp;
2620 		bp->link_params.port = BP_PORT(bp);
2621 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2622 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2623 		bp->link_params.req_line_speed[0] = SPEED_10000;
2624 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2625 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2626 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2627 		bp->link_vars.line_speed = SPEED_10000;
2628 		bp->link_vars.link_status =
2629 			(LINK_STATUS_LINK_UP |
2630 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2631 		bp->link_vars.link_up = 1;
2632 		bp->link_vars.duplex = DUPLEX_FULL;
2633 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2634 		__bnx2x_link_report(bp);
2635 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2636 	}
2637 }
2638 
2639 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2640 				  u16 vlan_val, u8 allowed_prio)
2641 {
2642 	struct bnx2x_func_state_params func_params = {NULL};
2643 	struct bnx2x_func_afex_update_params *f_update_params =
2644 		&func_params.params.afex_update;
2645 
2646 	func_params.f_obj = &bp->func_obj;
2647 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2648 
2649 	/* no need to wait for RAMROD completion, so don't
2650 	 * set RAMROD_COMP_WAIT flag
2651 	 */
2652 
2653 	f_update_params->vif_id = vifid;
2654 	f_update_params->afex_default_vlan = vlan_val;
2655 	f_update_params->allowed_priorities = allowed_prio;
2656 
2657 	/* if ramrod can not be sent, response to MCP immediately */
2658 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2659 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2660 
2661 	return 0;
2662 }
2663 
2664 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2665 					  u16 vif_index, u8 func_bit_map)
2666 {
2667 	struct bnx2x_func_state_params func_params = {NULL};
2668 	struct bnx2x_func_afex_viflists_params *update_params =
2669 		&func_params.params.afex_viflists;
2670 	int rc;
2671 	u32 drv_msg_code;
2672 
2673 	/* validate only LIST_SET and LIST_GET are received from switch */
2674 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2675 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2676 			  cmd_type);
2677 
2678 	func_params.f_obj = &bp->func_obj;
2679 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2680 
2681 	/* set parameters according to cmd_type */
2682 	update_params->afex_vif_list_command = cmd_type;
2683 	update_params->vif_list_index = vif_index;
2684 	update_params->func_bit_map =
2685 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2686 	update_params->func_to_clear = 0;
2687 	drv_msg_code =
2688 		(cmd_type == VIF_LIST_RULE_GET) ?
2689 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2690 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2691 
2692 	/* if ramrod can not be sent, respond to MCP immediately for
2693 	 * SET and GET requests (other are not triggered from MCP)
2694 	 */
2695 	rc = bnx2x_func_state_change(bp, &func_params);
2696 	if (rc < 0)
2697 		bnx2x_fw_command(bp, drv_msg_code, 0);
2698 
2699 	return 0;
2700 }
2701 
2702 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2703 {
2704 	struct afex_stats afex_stats;
2705 	u32 func = BP_ABS_FUNC(bp);
2706 	u32 mf_config;
2707 	u16 vlan_val;
2708 	u32 vlan_prio;
2709 	u16 vif_id;
2710 	u8 allowed_prio;
2711 	u8 vlan_mode;
2712 	u32 addr_to_write, vifid, addrs, stats_type, i;
2713 
2714 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2715 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2716 		DP(BNX2X_MSG_MCP,
2717 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2718 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2719 	}
2720 
2721 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2722 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2723 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2724 		DP(BNX2X_MSG_MCP,
2725 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2726 		   vifid, addrs);
2727 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2728 					       addrs);
2729 	}
2730 
2731 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2732 		addr_to_write = SHMEM2_RD(bp,
2733 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2734 		stats_type = SHMEM2_RD(bp,
2735 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2736 
2737 		DP(BNX2X_MSG_MCP,
2738 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2739 		   addr_to_write);
2740 
2741 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2742 
2743 		/* write response to scratchpad, for MCP */
2744 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2745 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2746 			       *(((u32 *)(&afex_stats))+i));
2747 
2748 		/* send ack message to MCP */
2749 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2750 	}
2751 
2752 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2753 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2754 		bp->mf_config[BP_VN(bp)] = mf_config;
2755 		DP(BNX2X_MSG_MCP,
2756 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2757 		   mf_config);
2758 
2759 		/* if VIF_SET is "enabled" */
2760 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2761 			/* set rate limit directly to internal RAM */
2762 			struct cmng_init_input cmng_input;
2763 			struct rate_shaping_vars_per_vn m_rs_vn;
2764 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2765 			u32 addr = BAR_XSTRORM_INTMEM +
2766 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2767 
2768 			bp->mf_config[BP_VN(bp)] = mf_config;
2769 
2770 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2771 			m_rs_vn.vn_counter.rate =
2772 				cmng_input.vnic_max_rate[BP_VN(bp)];
2773 			m_rs_vn.vn_counter.quota =
2774 				(m_rs_vn.vn_counter.rate *
2775 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2776 
2777 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2778 
2779 			/* read relevant values from mf_cfg struct in shmem */
2780 			vif_id =
2781 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2782 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2783 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2784 			vlan_val =
2785 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2786 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2787 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2788 			vlan_prio = (mf_config &
2789 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2790 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2791 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2792 			vlan_mode =
2793 				(MF_CFG_RD(bp,
2794 					   func_mf_config[func].afex_config) &
2795 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2796 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2797 			allowed_prio =
2798 				(MF_CFG_RD(bp,
2799 					   func_mf_config[func].afex_config) &
2800 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2801 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2802 
2803 			/* send ramrod to FW, return in case of failure */
2804 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2805 						   allowed_prio))
2806 				return;
2807 
2808 			bp->afex_def_vlan_tag = vlan_val;
2809 			bp->afex_vlan_mode = vlan_mode;
2810 		} else {
2811 			/* notify link down because BP->flags is disabled */
2812 			bnx2x_link_report(bp);
2813 
2814 			/* send INVALID VIF ramrod to FW */
2815 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2816 
2817 			/* Reset the default afex VLAN */
2818 			bp->afex_def_vlan_tag = -1;
2819 		}
2820 	}
2821 }
2822 
2823 static void bnx2x_pmf_update(struct bnx2x *bp)
2824 {
2825 	int port = BP_PORT(bp);
2826 	u32 val;
2827 
2828 	bp->port.pmf = 1;
2829 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2830 
2831 	/*
2832 	 * We need the mb() to ensure the ordering between the writing to
2833 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2834 	 */
2835 	smp_mb();
2836 
2837 	/* queue a periodic task */
2838 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2839 
2840 	bnx2x_dcbx_pmf_update(bp);
2841 
2842 	/* enable nig attention */
2843 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2844 	if (bp->common.int_block == INT_BLOCK_HC) {
2845 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2846 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2847 	} else if (!CHIP_IS_E1x(bp)) {
2848 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2849 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2850 	}
2851 
2852 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2853 }
2854 
2855 /* end of Link */
2856 
2857 /* slow path */
2858 
2859 /*
2860  * General service functions
2861  */
2862 
2863 /* send the MCP a request, block until there is a reply */
2864 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2865 {
2866 	int mb_idx = BP_FW_MB_IDX(bp);
2867 	u32 seq;
2868 	u32 rc = 0;
2869 	u32 cnt = 1;
2870 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2871 
2872 	mutex_lock(&bp->fw_mb_mutex);
2873 	seq = ++bp->fw_seq;
2874 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2875 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2876 
2877 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2878 			(command | seq), param);
2879 
2880 	do {
2881 		/* let the FW do it's magic ... */
2882 		msleep(delay);
2883 
2884 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2885 
2886 		/* Give the FW up to 5 second (500*10ms) */
2887 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2888 
2889 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2890 	   cnt*delay, rc, seq);
2891 
2892 	/* is this a reply to our command? */
2893 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2894 		rc &= FW_MSG_CODE_MASK;
2895 	else {
2896 		/* FW BUG! */
2897 		BNX2X_ERR("FW failed to respond!\n");
2898 		bnx2x_fw_dump(bp);
2899 		rc = 0;
2900 	}
2901 	mutex_unlock(&bp->fw_mb_mutex);
2902 
2903 	return rc;
2904 }
2905 
2906 
2907 static void storm_memset_func_cfg(struct bnx2x *bp,
2908 				 struct tstorm_eth_function_common_config *tcfg,
2909 				 u16 abs_fid)
2910 {
2911 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2912 
2913 	u32 addr = BAR_TSTRORM_INTMEM +
2914 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2915 
2916 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2917 }
2918 
2919 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2920 {
2921 	if (CHIP_IS_E1x(bp)) {
2922 		struct tstorm_eth_function_common_config tcfg = {0};
2923 
2924 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2925 	}
2926 
2927 	/* Enable the function in the FW */
2928 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2929 	storm_memset_func_en(bp, p->func_id, 1);
2930 
2931 	/* spq */
2932 	if (p->func_flgs & FUNC_FLG_SPQ) {
2933 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2934 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2935 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2936 	}
2937 }
2938 
2939 /**
2940  * bnx2x_get_tx_only_flags - Return common flags
2941  *
2942  * @bp		device handle
2943  * @fp		queue handle
2944  * @zero_stats	TRUE if statistics zeroing is needed
2945  *
2946  * Return the flags that are common for the Tx-only and not normal connections.
2947  */
2948 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2949 					    struct bnx2x_fastpath *fp,
2950 					    bool zero_stats)
2951 {
2952 	unsigned long flags = 0;
2953 
2954 	/* PF driver will always initialize the Queue to an ACTIVE state */
2955 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2956 
2957 	/* tx only connections collect statistics (on the same index as the
2958 	 *  parent connection). The statistics are zeroed when the parent
2959 	 *  connection is initialized.
2960 	 */
2961 
2962 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2963 	if (zero_stats)
2964 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2965 
2966 
2967 #ifdef BNX2X_STOP_ON_ERROR
2968 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2969 #endif
2970 
2971 	return flags;
2972 }
2973 
2974 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2975 				       struct bnx2x_fastpath *fp,
2976 				       bool leading)
2977 {
2978 	unsigned long flags = 0;
2979 
2980 	/* calculate other queue flags */
2981 	if (IS_MF_SD(bp))
2982 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2983 
2984 	if (IS_FCOE_FP(fp)) {
2985 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2986 		/* For FCoE - force usage of default priority (for afex) */
2987 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2988 	}
2989 
2990 	if (!fp->disable_tpa) {
2991 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2992 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2993 		if (fp->mode == TPA_MODE_GRO)
2994 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2995 	}
2996 
2997 	if (leading) {
2998 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2999 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3000 	}
3001 
3002 	/* Always set HW VLAN stripping */
3003 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3004 
3005 	/* configure silent vlan removal */
3006 	if (IS_MF_AFEX(bp))
3007 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3008 
3009 
3010 	return flags | bnx2x_get_common_flags(bp, fp, true);
3011 }
3012 
3013 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3014 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3015 	u8 cos)
3016 {
3017 	gen_init->stat_id = bnx2x_stats_id(fp);
3018 	gen_init->spcl_id = fp->cl_id;
3019 
3020 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3021 	if (IS_FCOE_FP(fp))
3022 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3023 	else
3024 		gen_init->mtu = bp->dev->mtu;
3025 
3026 	gen_init->cos = cos;
3027 }
3028 
3029 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3030 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3031 	struct bnx2x_rxq_setup_params *rxq_init)
3032 {
3033 	u8 max_sge = 0;
3034 	u16 sge_sz = 0;
3035 	u16 tpa_agg_size = 0;
3036 
3037 	if (!fp->disable_tpa) {
3038 		pause->sge_th_lo = SGE_TH_LO(bp);
3039 		pause->sge_th_hi = SGE_TH_HI(bp);
3040 
3041 		/* validate SGE ring has enough to cross high threshold */
3042 		WARN_ON(bp->dropless_fc &&
3043 				pause->sge_th_hi + FW_PREFETCH_CNT >
3044 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3045 
3046 		tpa_agg_size = TPA_AGG_SIZE;
3047 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3048 			SGE_PAGE_SHIFT;
3049 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3050 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3051 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3052 	}
3053 
3054 	/* pause - not for e1 */
3055 	if (!CHIP_IS_E1(bp)) {
3056 		pause->bd_th_lo = BD_TH_LO(bp);
3057 		pause->bd_th_hi = BD_TH_HI(bp);
3058 
3059 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3060 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3061 		/*
3062 		 * validate that rings have enough entries to cross
3063 		 * high thresholds
3064 		 */
3065 		WARN_ON(bp->dropless_fc &&
3066 				pause->bd_th_hi + FW_PREFETCH_CNT >
3067 				bp->rx_ring_size);
3068 		WARN_ON(bp->dropless_fc &&
3069 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3070 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3071 
3072 		pause->pri_map = 1;
3073 	}
3074 
3075 	/* rxq setup */
3076 	rxq_init->dscr_map = fp->rx_desc_mapping;
3077 	rxq_init->sge_map = fp->rx_sge_mapping;
3078 	rxq_init->rcq_map = fp->rx_comp_mapping;
3079 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3080 
3081 	/* This should be a maximum number of data bytes that may be
3082 	 * placed on the BD (not including paddings).
3083 	 */
3084 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3085 		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
3086 
3087 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3088 	rxq_init->tpa_agg_sz = tpa_agg_size;
3089 	rxq_init->sge_buf_sz = sge_sz;
3090 	rxq_init->max_sges_pkt = max_sge;
3091 	rxq_init->rss_engine_id = BP_FUNC(bp);
3092 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3093 
3094 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3095 	 *
3096 	 * For PF Clients it should be the maximum available number.
3097 	 * VF driver(s) may want to define it to a smaller value.
3098 	 */
3099 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3100 
3101 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3102 	rxq_init->fw_sb_id = fp->fw_sb_id;
3103 
3104 	if (IS_FCOE_FP(fp))
3105 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3106 	else
3107 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3108 	/* configure silent vlan removal
3109 	 * if multi function mode is afex, then mask default vlan
3110 	 */
3111 	if (IS_MF_AFEX(bp)) {
3112 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3113 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3114 	}
3115 }
3116 
3117 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3118 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3119 	u8 cos)
3120 {
3121 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3122 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3123 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3124 	txq_init->fw_sb_id = fp->fw_sb_id;
3125 
3126 	/*
3127 	 * set the tss leading client id for TX classfication ==
3128 	 * leading RSS client id
3129 	 */
3130 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3131 
3132 	if (IS_FCOE_FP(fp)) {
3133 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3134 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3135 	}
3136 }
3137 
3138 static void bnx2x_pf_init(struct bnx2x *bp)
3139 {
3140 	struct bnx2x_func_init_params func_init = {0};
3141 	struct event_ring_data eq_data = { {0} };
3142 	u16 flags;
3143 
3144 	if (!CHIP_IS_E1x(bp)) {
3145 		/* reset IGU PF statistics: MSIX + ATTN */
3146 		/* PF */
3147 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3148 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3149 			   (CHIP_MODE_IS_4_PORT(bp) ?
3150 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3151 		/* ATTN */
3152 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3153 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3154 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3155 			   (CHIP_MODE_IS_4_PORT(bp) ?
3156 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3157 	}
3158 
3159 	/* function setup flags */
3160 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3161 
3162 	/* This flag is relevant for E1x only.
3163 	 * E2 doesn't have a TPA configuration in a function level.
3164 	 */
3165 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3166 
3167 	func_init.func_flgs = flags;
3168 	func_init.pf_id = BP_FUNC(bp);
3169 	func_init.func_id = BP_FUNC(bp);
3170 	func_init.spq_map = bp->spq_mapping;
3171 	func_init.spq_prod = bp->spq_prod_idx;
3172 
3173 	bnx2x_func_init(bp, &func_init);
3174 
3175 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3176 
3177 	/*
3178 	 * Congestion management values depend on the link rate
3179 	 * There is no active link so initial link rate is set to 10 Gbps.
3180 	 * When the link comes up The congestion management values are
3181 	 * re-calculated according to the actual link rate.
3182 	 */
3183 	bp->link_vars.line_speed = SPEED_10000;
3184 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3185 
3186 	/* Only the PMF sets the HW */
3187 	if (bp->port.pmf)
3188 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3189 
3190 	/* init Event Queue - PCI bus guarantees correct endianity*/
3191 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3192 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3193 	eq_data.producer = bp->eq_prod;
3194 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3195 	eq_data.sb_id = DEF_SB_ID;
3196 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3197 }
3198 
3199 
3200 static void bnx2x_e1h_disable(struct bnx2x *bp)
3201 {
3202 	int port = BP_PORT(bp);
3203 
3204 	bnx2x_tx_disable(bp);
3205 
3206 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3207 }
3208 
3209 static void bnx2x_e1h_enable(struct bnx2x *bp)
3210 {
3211 	int port = BP_PORT(bp);
3212 
3213 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3214 
3215 	/* Tx queue should be only reenabled */
3216 	netif_tx_wake_all_queues(bp->dev);
3217 
3218 	/*
3219 	 * Should not call netif_carrier_on since it will be called if the link
3220 	 * is up when checking for link state
3221 	 */
3222 }
3223 
3224 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3225 
3226 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3227 {
3228 	struct eth_stats_info *ether_stat =
3229 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3230 
3231 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3232 		ETH_STAT_INFO_VERSION_LEN);
3233 
3234 	bp->sp_objs[0].mac_obj.get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3235 					DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3236 					ether_stat->mac_local);
3237 
3238 	ether_stat->mtu_size = bp->dev->mtu;
3239 
3240 	if (bp->dev->features & NETIF_F_RXCSUM)
3241 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3242 	if (bp->dev->features & NETIF_F_TSO)
3243 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3244 	ether_stat->feature_flags |= bp->common.boot_mode;
3245 
3246 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3247 
3248 	ether_stat->txq_size = bp->tx_ring_size;
3249 	ether_stat->rxq_size = bp->rx_ring_size;
3250 }
3251 
3252 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3253 {
3254 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3255 	struct fcoe_stats_info *fcoe_stat =
3256 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3257 
3258 	if (!CNIC_LOADED(bp))
3259 		return;
3260 
3261 	memcpy(fcoe_stat->mac_local + MAC_LEADING_ZERO_CNT,
3262 	       bp->fip_mac, ETH_ALEN);
3263 
3264 	fcoe_stat->qos_priority =
3265 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3266 
3267 	/* insert FCoE stats from ramrod response */
3268 	if (!NO_FCOE(bp)) {
3269 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3270 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3271 			tstorm_queue_statistics;
3272 
3273 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3274 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3275 			xstorm_queue_statistics;
3276 
3277 		struct fcoe_statistics_params *fw_fcoe_stat =
3278 			&bp->fw_stats_data->fcoe;
3279 
3280 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3281 			  fcoe_stat->rx_bytes_lo,
3282 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3283 
3284 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3285 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3286 			  fcoe_stat->rx_bytes_lo,
3287 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3288 
3289 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3290 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3291 			  fcoe_stat->rx_bytes_lo,
3292 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3293 
3294 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3295 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3296 			  fcoe_stat->rx_bytes_lo,
3297 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3298 
3299 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3300 			  fcoe_stat->rx_frames_lo,
3301 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3302 
3303 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3304 			  fcoe_stat->rx_frames_lo,
3305 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3306 
3307 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3308 			  fcoe_stat->rx_frames_lo,
3309 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3310 
3311 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3312 			  fcoe_stat->rx_frames_lo,
3313 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3314 
3315 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3316 			  fcoe_stat->tx_bytes_lo,
3317 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3318 
3319 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3320 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3321 			  fcoe_stat->tx_bytes_lo,
3322 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3323 
3324 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3325 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3326 			  fcoe_stat->tx_bytes_lo,
3327 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3328 
3329 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3330 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3331 			  fcoe_stat->tx_bytes_lo,
3332 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3333 
3334 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3335 			  fcoe_stat->tx_frames_lo,
3336 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3337 
3338 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3339 			  fcoe_stat->tx_frames_lo,
3340 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3341 
3342 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3343 			  fcoe_stat->tx_frames_lo,
3344 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3345 
3346 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3347 			  fcoe_stat->tx_frames_lo,
3348 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3349 	}
3350 
3351 	/* ask L5 driver to add data to the struct */
3352 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3353 }
3354 
3355 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3356 {
3357 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3358 	struct iscsi_stats_info *iscsi_stat =
3359 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3360 
3361 	if (!CNIC_LOADED(bp))
3362 		return;
3363 
3364 	memcpy(iscsi_stat->mac_local + MAC_LEADING_ZERO_CNT,
3365 	       bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3366 
3367 	iscsi_stat->qos_priority =
3368 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3369 
3370 	/* ask L5 driver to add data to the struct */
3371 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3372 }
3373 
3374 /* called due to MCP event (on pmf):
3375  *	reread new bandwidth configuration
3376  *	configure FW
3377  *	notify others function about the change
3378  */
3379 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3380 {
3381 	if (bp->link_vars.link_up) {
3382 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3383 		bnx2x_link_sync_notify(bp);
3384 	}
3385 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3386 }
3387 
3388 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3389 {
3390 	bnx2x_config_mf_bw(bp);
3391 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3392 }
3393 
3394 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3395 {
3396 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3397 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3398 }
3399 
3400 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3401 {
3402 	enum drv_info_opcode op_code;
3403 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3404 
3405 	/* if drv_info version supported by MFW doesn't match - send NACK */
3406 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3407 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3408 		return;
3409 	}
3410 
3411 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3412 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3413 
3414 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3415 	       sizeof(union drv_info_to_mcp));
3416 
3417 	switch (op_code) {
3418 	case ETH_STATS_OPCODE:
3419 		bnx2x_drv_info_ether_stat(bp);
3420 		break;
3421 	case FCOE_STATS_OPCODE:
3422 		bnx2x_drv_info_fcoe_stat(bp);
3423 		break;
3424 	case ISCSI_STATS_OPCODE:
3425 		bnx2x_drv_info_iscsi_stat(bp);
3426 		break;
3427 	default:
3428 		/* if op code isn't supported - send NACK */
3429 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3430 		return;
3431 	}
3432 
3433 	/* if we got drv_info attn from MFW then these fields are defined in
3434 	 * shmem2 for sure
3435 	 */
3436 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3437 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3438 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3439 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3440 
3441 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3442 }
3443 
3444 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3445 {
3446 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3447 
3448 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3449 
3450 		/*
3451 		 * This is the only place besides the function initialization
3452 		 * where the bp->flags can change so it is done without any
3453 		 * locks
3454 		 */
3455 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3456 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3457 			bp->flags |= MF_FUNC_DIS;
3458 
3459 			bnx2x_e1h_disable(bp);
3460 		} else {
3461 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3462 			bp->flags &= ~MF_FUNC_DIS;
3463 
3464 			bnx2x_e1h_enable(bp);
3465 		}
3466 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3467 	}
3468 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3469 		bnx2x_config_mf_bw(bp);
3470 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3471 	}
3472 
3473 	/* Report results to MCP */
3474 	if (dcc_event)
3475 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3476 	else
3477 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3478 }
3479 
3480 /* must be called under the spq lock */
3481 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3482 {
3483 	struct eth_spe *next_spe = bp->spq_prod_bd;
3484 
3485 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3486 		bp->spq_prod_bd = bp->spq;
3487 		bp->spq_prod_idx = 0;
3488 		DP(BNX2X_MSG_SP, "end of spq\n");
3489 	} else {
3490 		bp->spq_prod_bd++;
3491 		bp->spq_prod_idx++;
3492 	}
3493 	return next_spe;
3494 }
3495 
3496 /* must be called under the spq lock */
3497 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3498 {
3499 	int func = BP_FUNC(bp);
3500 
3501 	/*
3502 	 * Make sure that BD data is updated before writing the producer:
3503 	 * BD data is written to the memory, the producer is read from the
3504 	 * memory, thus we need a full memory barrier to ensure the ordering.
3505 	 */
3506 	mb();
3507 
3508 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3509 		 bp->spq_prod_idx);
3510 	mmiowb();
3511 }
3512 
3513 /**
3514  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3515  *
3516  * @cmd:	command to check
3517  * @cmd_type:	command type
3518  */
3519 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3520 {
3521 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3522 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3523 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3524 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3525 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3526 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3527 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3528 		return true;
3529 	else
3530 		return false;
3531 
3532 }
3533 
3534 
3535 /**
3536  * bnx2x_sp_post - place a single command on an SP ring
3537  *
3538  * @bp:		driver handle
3539  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3540  * @cid:	SW CID the command is related to
3541  * @data_hi:	command private data address (high 32 bits)
3542  * @data_lo:	command private data address (low 32 bits)
3543  * @cmd_type:	command type (e.g. NONE, ETH)
3544  *
3545  * SP data is handled as if it's always an address pair, thus data fields are
3546  * not swapped to little endian in upper functions. Instead this function swaps
3547  * data as if it's two u32 fields.
3548  */
3549 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3550 		  u32 data_hi, u32 data_lo, int cmd_type)
3551 {
3552 	struct eth_spe *spe;
3553 	u16 type;
3554 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3555 
3556 #ifdef BNX2X_STOP_ON_ERROR
3557 	if (unlikely(bp->panic)) {
3558 		BNX2X_ERR("Can't post SP when there is panic\n");
3559 		return -EIO;
3560 	}
3561 #endif
3562 
3563 	spin_lock_bh(&bp->spq_lock);
3564 
3565 	if (common) {
3566 		if (!atomic_read(&bp->eq_spq_left)) {
3567 			BNX2X_ERR("BUG! EQ ring full!\n");
3568 			spin_unlock_bh(&bp->spq_lock);
3569 			bnx2x_panic();
3570 			return -EBUSY;
3571 		}
3572 	} else if (!atomic_read(&bp->cq_spq_left)) {
3573 			BNX2X_ERR("BUG! SPQ ring full!\n");
3574 			spin_unlock_bh(&bp->spq_lock);
3575 			bnx2x_panic();
3576 			return -EBUSY;
3577 	}
3578 
3579 	spe = bnx2x_sp_get_next(bp);
3580 
3581 	/* CID needs port number to be encoded int it */
3582 	spe->hdr.conn_and_cmd_data =
3583 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3584 				    HW_CID(bp, cid));
3585 
3586 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3587 
3588 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3589 		 SPE_HDR_FUNCTION_ID);
3590 
3591 	spe->hdr.type = cpu_to_le16(type);
3592 
3593 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3594 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3595 
3596 	/*
3597 	 * It's ok if the actual decrement is issued towards the memory
3598 	 * somewhere between the spin_lock and spin_unlock. Thus no
3599 	 * more explict memory barrier is needed.
3600 	 */
3601 	if (common)
3602 		atomic_dec(&bp->eq_spq_left);
3603 	else
3604 		atomic_dec(&bp->cq_spq_left);
3605 
3606 
3607 	DP(BNX2X_MSG_SP,
3608 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3609 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3610 	   (u32)(U64_LO(bp->spq_mapping) +
3611 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3612 	   HW_CID(bp, cid), data_hi, data_lo, type,
3613 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3614 
3615 	bnx2x_sp_prod_update(bp);
3616 	spin_unlock_bh(&bp->spq_lock);
3617 	return 0;
3618 }
3619 
3620 /* acquire split MCP access lock register */
3621 static int bnx2x_acquire_alr(struct bnx2x *bp)
3622 {
3623 	u32 j, val;
3624 	int rc = 0;
3625 
3626 	might_sleep();
3627 	for (j = 0; j < 1000; j++) {
3628 		val = (1UL << 31);
3629 		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3630 		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3631 		if (val & (1L << 31))
3632 			break;
3633 
3634 		msleep(5);
3635 	}
3636 	if (!(val & (1L << 31))) {
3637 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3638 		rc = -EBUSY;
3639 	}
3640 
3641 	return rc;
3642 }
3643 
3644 /* release split MCP access lock register */
3645 static void bnx2x_release_alr(struct bnx2x *bp)
3646 {
3647 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3648 }
3649 
3650 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3651 #define BNX2X_DEF_SB_IDX	0x0002
3652 
3653 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3654 {
3655 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3656 	u16 rc = 0;
3657 
3658 	barrier(); /* status block is written to by the chip */
3659 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3660 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3661 		rc |= BNX2X_DEF_SB_ATT_IDX;
3662 	}
3663 
3664 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3665 		bp->def_idx = def_sb->sp_sb.running_index;
3666 		rc |= BNX2X_DEF_SB_IDX;
3667 	}
3668 
3669 	/* Do not reorder: indecies reading should complete before handling */
3670 	barrier();
3671 	return rc;
3672 }
3673 
3674 /*
3675  * slow path service functions
3676  */
3677 
3678 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3679 {
3680 	int port = BP_PORT(bp);
3681 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3682 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3683 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3684 				       NIG_REG_MASK_INTERRUPT_PORT0;
3685 	u32 aeu_mask;
3686 	u32 nig_mask = 0;
3687 	u32 reg_addr;
3688 
3689 	if (bp->attn_state & asserted)
3690 		BNX2X_ERR("IGU ERROR\n");
3691 
3692 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3693 	aeu_mask = REG_RD(bp, aeu_addr);
3694 
3695 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3696 	   aeu_mask, asserted);
3697 	aeu_mask &= ~(asserted & 0x3ff);
3698 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3699 
3700 	REG_WR(bp, aeu_addr, aeu_mask);
3701 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3702 
3703 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3704 	bp->attn_state |= asserted;
3705 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3706 
3707 	if (asserted & ATTN_HARD_WIRED_MASK) {
3708 		if (asserted & ATTN_NIG_FOR_FUNC) {
3709 
3710 			bnx2x_acquire_phy_lock(bp);
3711 
3712 			/* save nig interrupt mask */
3713 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3714 
3715 			/* If nig_mask is not set, no need to call the update
3716 			 * function.
3717 			 */
3718 			if (nig_mask) {
3719 				REG_WR(bp, nig_int_mask_addr, 0);
3720 
3721 				bnx2x_link_attn(bp);
3722 			}
3723 
3724 			/* handle unicore attn? */
3725 		}
3726 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3727 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3728 
3729 		if (asserted & GPIO_2_FUNC)
3730 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3731 
3732 		if (asserted & GPIO_3_FUNC)
3733 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3734 
3735 		if (asserted & GPIO_4_FUNC)
3736 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3737 
3738 		if (port == 0) {
3739 			if (asserted & ATTN_GENERAL_ATTN_1) {
3740 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3741 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3742 			}
3743 			if (asserted & ATTN_GENERAL_ATTN_2) {
3744 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3745 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3746 			}
3747 			if (asserted & ATTN_GENERAL_ATTN_3) {
3748 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3749 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3750 			}
3751 		} else {
3752 			if (asserted & ATTN_GENERAL_ATTN_4) {
3753 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3754 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3755 			}
3756 			if (asserted & ATTN_GENERAL_ATTN_5) {
3757 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3758 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3759 			}
3760 			if (asserted & ATTN_GENERAL_ATTN_6) {
3761 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3762 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3763 			}
3764 		}
3765 
3766 	} /* if hardwired */
3767 
3768 	if (bp->common.int_block == INT_BLOCK_HC)
3769 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3770 			    COMMAND_REG_ATTN_BITS_SET);
3771 	else
3772 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3773 
3774 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3775 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3776 	REG_WR(bp, reg_addr, asserted);
3777 
3778 	/* now set back the mask */
3779 	if (asserted & ATTN_NIG_FOR_FUNC) {
3780 		/* Verify that IGU ack through BAR was written before restoring
3781 		 * NIG mask. This loop should exit after 2-3 iterations max.
3782 		 */
3783 		if (bp->common.int_block != INT_BLOCK_HC) {
3784 			u32 cnt = 0, igu_acked;
3785 			do {
3786 				igu_acked = REG_RD(bp,
3787 						   IGU_REG_ATTENTION_ACK_BITS);
3788 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3789 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3790 			if (!igu_acked)
3791 				DP(NETIF_MSG_HW,
3792 				   "Failed to verify IGU ack on time\n");
3793 			barrier();
3794 		}
3795 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3796 		bnx2x_release_phy_lock(bp);
3797 	}
3798 }
3799 
3800 static void bnx2x_fan_failure(struct bnx2x *bp)
3801 {
3802 	int port = BP_PORT(bp);
3803 	u32 ext_phy_config;
3804 	/* mark the failure */
3805 	ext_phy_config =
3806 		SHMEM_RD(bp,
3807 			 dev_info.port_hw_config[port].external_phy_config);
3808 
3809 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3810 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3811 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3812 		 ext_phy_config);
3813 
3814 	/* log the failure */
3815 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3816 			    "Please contact OEM Support for assistance\n");
3817 
3818 	/*
3819 	 * Schedule device reset (unload)
3820 	 * This is due to some boards consuming sufficient power when driver is
3821 	 * up to overheat if fan fails.
3822 	 */
3823 	smp_mb__before_clear_bit();
3824 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3825 	smp_mb__after_clear_bit();
3826 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3827 
3828 }
3829 
3830 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3831 {
3832 	int port = BP_PORT(bp);
3833 	int reg_offset;
3834 	u32 val;
3835 
3836 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3837 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3838 
3839 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3840 
3841 		val = REG_RD(bp, reg_offset);
3842 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3843 		REG_WR(bp, reg_offset, val);
3844 
3845 		BNX2X_ERR("SPIO5 hw attention\n");
3846 
3847 		/* Fan failure attention */
3848 		bnx2x_hw_reset_phy(&bp->link_params);
3849 		bnx2x_fan_failure(bp);
3850 	}
3851 
3852 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3853 		bnx2x_acquire_phy_lock(bp);
3854 		bnx2x_handle_module_detect_int(&bp->link_params);
3855 		bnx2x_release_phy_lock(bp);
3856 	}
3857 
3858 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3859 
3860 		val = REG_RD(bp, reg_offset);
3861 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3862 		REG_WR(bp, reg_offset, val);
3863 
3864 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3865 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3866 		bnx2x_panic();
3867 	}
3868 }
3869 
3870 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3871 {
3872 	u32 val;
3873 
3874 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3875 
3876 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3877 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3878 		/* DORQ discard attention */
3879 		if (val & 0x2)
3880 			BNX2X_ERR("FATAL error from DORQ\n");
3881 	}
3882 
3883 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3884 
3885 		int port = BP_PORT(bp);
3886 		int reg_offset;
3887 
3888 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3889 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3890 
3891 		val = REG_RD(bp, reg_offset);
3892 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3893 		REG_WR(bp, reg_offset, val);
3894 
3895 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3896 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3897 		bnx2x_panic();
3898 	}
3899 }
3900 
3901 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3902 {
3903 	u32 val;
3904 
3905 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3906 
3907 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3908 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3909 		/* CFC error attention */
3910 		if (val & 0x2)
3911 			BNX2X_ERR("FATAL error from CFC\n");
3912 	}
3913 
3914 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3915 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3916 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3917 		/* RQ_USDMDP_FIFO_OVERFLOW */
3918 		if (val & 0x18000)
3919 			BNX2X_ERR("FATAL error from PXP\n");
3920 
3921 		if (!CHIP_IS_E1x(bp)) {
3922 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3923 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3924 		}
3925 	}
3926 
3927 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3928 
3929 		int port = BP_PORT(bp);
3930 		int reg_offset;
3931 
3932 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3933 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3934 
3935 		val = REG_RD(bp, reg_offset);
3936 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3937 		REG_WR(bp, reg_offset, val);
3938 
3939 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3940 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3941 		bnx2x_panic();
3942 	}
3943 }
3944 
3945 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3946 {
3947 	u32 val;
3948 
3949 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3950 
3951 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3952 			int func = BP_FUNC(bp);
3953 
3954 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3955 			bnx2x_read_mf_cfg(bp);
3956 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3957 					func_mf_config[BP_ABS_FUNC(bp)].config);
3958 			val = SHMEM_RD(bp,
3959 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3960 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3961 				bnx2x_dcc_event(bp,
3962 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3963 
3964 			if (val & DRV_STATUS_SET_MF_BW)
3965 				bnx2x_set_mf_bw(bp);
3966 
3967 			if (val & DRV_STATUS_DRV_INFO_REQ)
3968 				bnx2x_handle_drv_info_req(bp);
3969 
3970 			if (val & DRV_STATUS_VF_DISABLED)
3971 				bnx2x_vf_handle_flr_event(bp);
3972 
3973 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3974 				bnx2x_pmf_update(bp);
3975 
3976 			if (bp->port.pmf &&
3977 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3978 				bp->dcbx_enabled > 0)
3979 				/* start dcbx state machine */
3980 				bnx2x_dcbx_set_params(bp,
3981 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3982 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
3983 				bnx2x_handle_afex_cmd(bp,
3984 					val & DRV_STATUS_AFEX_EVENT_MASK);
3985 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3986 				bnx2x_handle_eee_event(bp);
3987 			if (bp->link_vars.periodic_flags &
3988 			    PERIODIC_FLAGS_LINK_EVENT) {
3989 				/*  sync with link */
3990 				bnx2x_acquire_phy_lock(bp);
3991 				bp->link_vars.periodic_flags &=
3992 					~PERIODIC_FLAGS_LINK_EVENT;
3993 				bnx2x_release_phy_lock(bp);
3994 				if (IS_MF(bp))
3995 					bnx2x_link_sync_notify(bp);
3996 				bnx2x_link_report(bp);
3997 			}
3998 			/* Always call it here: bnx2x_link_report() will
3999 			 * prevent the link indication duplication.
4000 			 */
4001 			bnx2x__link_status_update(bp);
4002 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4003 
4004 			BNX2X_ERR("MC assert!\n");
4005 			bnx2x_mc_assert(bp);
4006 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4007 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4008 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4009 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4010 			bnx2x_panic();
4011 
4012 		} else if (attn & BNX2X_MCP_ASSERT) {
4013 
4014 			BNX2X_ERR("MCP assert!\n");
4015 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4016 			bnx2x_fw_dump(bp);
4017 
4018 		} else
4019 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4020 	}
4021 
4022 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4023 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4024 		if (attn & BNX2X_GRC_TIMEOUT) {
4025 			val = CHIP_IS_E1(bp) ? 0 :
4026 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4027 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4028 		}
4029 		if (attn & BNX2X_GRC_RSV) {
4030 			val = CHIP_IS_E1(bp) ? 0 :
4031 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4032 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4033 		}
4034 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4035 	}
4036 }
4037 
4038 /*
4039  * Bits map:
4040  * 0-7   - Engine0 load counter.
4041  * 8-15  - Engine1 load counter.
4042  * 16    - Engine0 RESET_IN_PROGRESS bit.
4043  * 17    - Engine1 RESET_IN_PROGRESS bit.
4044  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4045  *         on the engine
4046  * 19    - Engine1 ONE_IS_LOADED.
4047  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4048  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4049  *         just the one belonging to its engine).
4050  *
4051  */
4052 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4053 
4054 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4055 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4056 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4057 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4058 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4059 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4060 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4061 
4062 /*
4063  * Set the GLOBAL_RESET bit.
4064  *
4065  * Should be run under rtnl lock
4066  */
4067 void bnx2x_set_reset_global(struct bnx2x *bp)
4068 {
4069 	u32 val;
4070 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4071 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4072 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4073 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4074 }
4075 
4076 /*
4077  * Clear the GLOBAL_RESET bit.
4078  *
4079  * Should be run under rtnl lock
4080  */
4081 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4082 {
4083 	u32 val;
4084 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4085 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4086 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4087 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4088 }
4089 
4090 /*
4091  * Checks the GLOBAL_RESET bit.
4092  *
4093  * should be run under rtnl lock
4094  */
4095 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4096 {
4097 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4098 
4099 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4100 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4101 }
4102 
4103 /*
4104  * Clear RESET_IN_PROGRESS bit for the current engine.
4105  *
4106  * Should be run under rtnl lock
4107  */
4108 static void bnx2x_set_reset_done(struct bnx2x *bp)
4109 {
4110 	u32 val;
4111 	u32 bit = BP_PATH(bp) ?
4112 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4113 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4114 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4115 
4116 	/* Clear the bit */
4117 	val &= ~bit;
4118 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4119 
4120 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4121 }
4122 
4123 /*
4124  * Set RESET_IN_PROGRESS for the current engine.
4125  *
4126  * should be run under rtnl lock
4127  */
4128 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4129 {
4130 	u32 val;
4131 	u32 bit = BP_PATH(bp) ?
4132 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4133 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4134 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4135 
4136 	/* Set the bit */
4137 	val |= bit;
4138 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4139 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4140 }
4141 
4142 /*
4143  * Checks the RESET_IN_PROGRESS bit for the given engine.
4144  * should be run under rtnl lock
4145  */
4146 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4147 {
4148 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4149 	u32 bit = engine ?
4150 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4151 
4152 	/* return false if bit is set */
4153 	return (val & bit) ? false : true;
4154 }
4155 
4156 /*
4157  * set pf load for the current pf.
4158  *
4159  * should be run under rtnl lock
4160  */
4161 void bnx2x_set_pf_load(struct bnx2x *bp)
4162 {
4163 	u32 val1, val;
4164 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4165 			     BNX2X_PATH0_LOAD_CNT_MASK;
4166 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4167 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4168 
4169 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4170 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4171 
4172 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4173 
4174 	/* get the current counter value */
4175 	val1 = (val & mask) >> shift;
4176 
4177 	/* set bit of that PF */
4178 	val1 |= (1 << bp->pf_num);
4179 
4180 	/* clear the old value */
4181 	val &= ~mask;
4182 
4183 	/* set the new one */
4184 	val |= ((val1 << shift) & mask);
4185 
4186 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4187 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4188 }
4189 
4190 /**
4191  * bnx2x_clear_pf_load - clear pf load mark
4192  *
4193  * @bp:		driver handle
4194  *
4195  * Should be run under rtnl lock.
4196  * Decrements the load counter for the current engine. Returns
4197  * whether other functions are still loaded
4198  */
4199 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4200 {
4201 	u32 val1, val;
4202 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4203 			     BNX2X_PATH0_LOAD_CNT_MASK;
4204 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4205 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4206 
4207 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4208 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4209 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4210 
4211 	/* get the current counter value */
4212 	val1 = (val & mask) >> shift;
4213 
4214 	/* clear bit of that PF */
4215 	val1 &= ~(1 << bp->pf_num);
4216 
4217 	/* clear the old value */
4218 	val &= ~mask;
4219 
4220 	/* set the new one */
4221 	val |= ((val1 << shift) & mask);
4222 
4223 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4224 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4225 	return val1 != 0;
4226 }
4227 
4228 /*
4229  * Read the load status for the current engine.
4230  *
4231  * should be run under rtnl lock
4232  */
4233 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4234 {
4235 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4236 			     BNX2X_PATH0_LOAD_CNT_MASK);
4237 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4238 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4239 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4240 
4241 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4242 
4243 	val = (val & mask) >> shift;
4244 
4245 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4246 	   engine, val);
4247 
4248 	return val != 0;
4249 }
4250 
4251 static void _print_next_block(int idx, const char *blk)
4252 {
4253 	pr_cont("%s%s", idx ? ", " : "", blk);
4254 }
4255 
4256 static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
4257 					   bool print)
4258 {
4259 	int i = 0;
4260 	u32 cur_bit = 0;
4261 	for (i = 0; sig; i++) {
4262 		cur_bit = ((u32)0x1 << i);
4263 		if (sig & cur_bit) {
4264 			switch (cur_bit) {
4265 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4266 				if (print)
4267 					_print_next_block(par_num++, "BRB");
4268 				break;
4269 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4270 				if (print)
4271 					_print_next_block(par_num++, "PARSER");
4272 				break;
4273 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4274 				if (print)
4275 					_print_next_block(par_num++, "TSDM");
4276 				break;
4277 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4278 				if (print)
4279 					_print_next_block(par_num++,
4280 							  "SEARCHER");
4281 				break;
4282 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4283 				if (print)
4284 					_print_next_block(par_num++, "TCM");
4285 				break;
4286 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4287 				if (print)
4288 					_print_next_block(par_num++, "TSEMI");
4289 				break;
4290 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4291 				if (print)
4292 					_print_next_block(par_num++, "XPB");
4293 				break;
4294 			}
4295 
4296 			/* Clear the bit */
4297 			sig &= ~cur_bit;
4298 		}
4299 	}
4300 
4301 	return par_num;
4302 }
4303 
4304 static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
4305 					   bool *global, bool print)
4306 {
4307 	int i = 0;
4308 	u32 cur_bit = 0;
4309 	for (i = 0; sig; i++) {
4310 		cur_bit = ((u32)0x1 << i);
4311 		if (sig & cur_bit) {
4312 			switch (cur_bit) {
4313 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4314 				if (print)
4315 					_print_next_block(par_num++, "PBF");
4316 				break;
4317 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4318 				if (print)
4319 					_print_next_block(par_num++, "QM");
4320 				break;
4321 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4322 				if (print)
4323 					_print_next_block(par_num++, "TM");
4324 				break;
4325 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4326 				if (print)
4327 					_print_next_block(par_num++, "XSDM");
4328 				break;
4329 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4330 				if (print)
4331 					_print_next_block(par_num++, "XCM");
4332 				break;
4333 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4334 				if (print)
4335 					_print_next_block(par_num++, "XSEMI");
4336 				break;
4337 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4338 				if (print)
4339 					_print_next_block(par_num++,
4340 							  "DOORBELLQ");
4341 				break;
4342 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4343 				if (print)
4344 					_print_next_block(par_num++, "NIG");
4345 				break;
4346 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4347 				if (print)
4348 					_print_next_block(par_num++,
4349 							  "VAUX PCI CORE");
4350 				*global = true;
4351 				break;
4352 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4353 				if (print)
4354 					_print_next_block(par_num++, "DEBUG");
4355 				break;
4356 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4357 				if (print)
4358 					_print_next_block(par_num++, "USDM");
4359 				break;
4360 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4361 				if (print)
4362 					_print_next_block(par_num++, "UCM");
4363 				break;
4364 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4365 				if (print)
4366 					_print_next_block(par_num++, "USEMI");
4367 				break;
4368 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4369 				if (print)
4370 					_print_next_block(par_num++, "UPB");
4371 				break;
4372 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4373 				if (print)
4374 					_print_next_block(par_num++, "CSDM");
4375 				break;
4376 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4377 				if (print)
4378 					_print_next_block(par_num++, "CCM");
4379 				break;
4380 			}
4381 
4382 			/* Clear the bit */
4383 			sig &= ~cur_bit;
4384 		}
4385 	}
4386 
4387 	return par_num;
4388 }
4389 
4390 static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4391 					   bool print)
4392 {
4393 	int i = 0;
4394 	u32 cur_bit = 0;
4395 	for (i = 0; sig; i++) {
4396 		cur_bit = ((u32)0x1 << i);
4397 		if (sig & cur_bit) {
4398 			switch (cur_bit) {
4399 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4400 				if (print)
4401 					_print_next_block(par_num++, "CSEMI");
4402 				break;
4403 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4404 				if (print)
4405 					_print_next_block(par_num++, "PXP");
4406 				break;
4407 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4408 				if (print)
4409 					_print_next_block(par_num++,
4410 					"PXPPCICLOCKCLIENT");
4411 				break;
4412 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4413 				if (print)
4414 					_print_next_block(par_num++, "CFC");
4415 				break;
4416 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4417 				if (print)
4418 					_print_next_block(par_num++, "CDU");
4419 				break;
4420 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4421 				if (print)
4422 					_print_next_block(par_num++, "DMAE");
4423 				break;
4424 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4425 				if (print)
4426 					_print_next_block(par_num++, "IGU");
4427 				break;
4428 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4429 				if (print)
4430 					_print_next_block(par_num++, "MISC");
4431 				break;
4432 			}
4433 
4434 			/* Clear the bit */
4435 			sig &= ~cur_bit;
4436 		}
4437 	}
4438 
4439 	return par_num;
4440 }
4441 
4442 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4443 					   bool *global, bool print)
4444 {
4445 	int i = 0;
4446 	u32 cur_bit = 0;
4447 	for (i = 0; sig; i++) {
4448 		cur_bit = ((u32)0x1 << i);
4449 		if (sig & cur_bit) {
4450 			switch (cur_bit) {
4451 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4452 				if (print)
4453 					_print_next_block(par_num++, "MCP ROM");
4454 				*global = true;
4455 				break;
4456 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4457 				if (print)
4458 					_print_next_block(par_num++,
4459 							  "MCP UMP RX");
4460 				*global = true;
4461 				break;
4462 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4463 				if (print)
4464 					_print_next_block(par_num++,
4465 							  "MCP UMP TX");
4466 				*global = true;
4467 				break;
4468 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4469 				if (print)
4470 					_print_next_block(par_num++,
4471 							  "MCP SCPAD");
4472 				*global = true;
4473 				break;
4474 			}
4475 
4476 			/* Clear the bit */
4477 			sig &= ~cur_bit;
4478 		}
4479 	}
4480 
4481 	return par_num;
4482 }
4483 
4484 static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4485 					   bool print)
4486 {
4487 	int i = 0;
4488 	u32 cur_bit = 0;
4489 	for (i = 0; sig; i++) {
4490 		cur_bit = ((u32)0x1 << i);
4491 		if (sig & cur_bit) {
4492 			switch (cur_bit) {
4493 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4494 				if (print)
4495 					_print_next_block(par_num++, "PGLUE_B");
4496 				break;
4497 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4498 				if (print)
4499 					_print_next_block(par_num++, "ATC");
4500 				break;
4501 			}
4502 
4503 			/* Clear the bit */
4504 			sig &= ~cur_bit;
4505 		}
4506 	}
4507 
4508 	return par_num;
4509 }
4510 
4511 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4512 			      u32 *sig)
4513 {
4514 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4515 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4516 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4517 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4518 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4519 		int par_num = 0;
4520 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4521 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4522 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4523 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4524 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4525 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4526 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4527 		if (print)
4528 			netdev_err(bp->dev,
4529 				   "Parity errors detected in blocks: ");
4530 		par_num = bnx2x_check_blocks_with_parity0(
4531 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4532 		par_num = bnx2x_check_blocks_with_parity1(
4533 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4534 		par_num = bnx2x_check_blocks_with_parity2(
4535 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4536 		par_num = bnx2x_check_blocks_with_parity3(
4537 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4538 		par_num = bnx2x_check_blocks_with_parity4(
4539 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4540 
4541 		if (print)
4542 			pr_cont("\n");
4543 
4544 		return true;
4545 	} else
4546 		return false;
4547 }
4548 
4549 /**
4550  * bnx2x_chk_parity_attn - checks for parity attentions.
4551  *
4552  * @bp:		driver handle
4553  * @global:	true if there was a global attention
4554  * @print:	show parity attention in syslog
4555  */
4556 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4557 {
4558 	struct attn_route attn = { {0} };
4559 	int port = BP_PORT(bp);
4560 
4561 	attn.sig[0] = REG_RD(bp,
4562 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4563 			     port*4);
4564 	attn.sig[1] = REG_RD(bp,
4565 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4566 			     port*4);
4567 	attn.sig[2] = REG_RD(bp,
4568 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4569 			     port*4);
4570 	attn.sig[3] = REG_RD(bp,
4571 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4572 			     port*4);
4573 
4574 	if (!CHIP_IS_E1x(bp))
4575 		attn.sig[4] = REG_RD(bp,
4576 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4577 				     port*4);
4578 
4579 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4580 }
4581 
4582 
4583 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4584 {
4585 	u32 val;
4586 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4587 
4588 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4589 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4590 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4591 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4592 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4593 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4594 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4595 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4596 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4597 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4598 		if (val &
4599 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4600 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4601 		if (val &
4602 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4603 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4604 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4605 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4606 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4607 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4608 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4609 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4610 	}
4611 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4612 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4613 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4614 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4615 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4616 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4617 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4618 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4619 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4620 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4621 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4622 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4623 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4624 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4625 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4626 	}
4627 
4628 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4629 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4630 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4631 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4632 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4633 	}
4634 
4635 }
4636 
4637 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4638 {
4639 	struct attn_route attn, *group_mask;
4640 	int port = BP_PORT(bp);
4641 	int index;
4642 	u32 reg_addr;
4643 	u32 val;
4644 	u32 aeu_mask;
4645 	bool global = false;
4646 
4647 	/* need to take HW lock because MCP or other port might also
4648 	   try to handle this event */
4649 	bnx2x_acquire_alr(bp);
4650 
4651 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4652 #ifndef BNX2X_STOP_ON_ERROR
4653 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4654 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4655 		/* Disable HW interrupts */
4656 		bnx2x_int_disable(bp);
4657 		/* In case of parity errors don't handle attentions so that
4658 		 * other function would "see" parity errors.
4659 		 */
4660 #else
4661 		bnx2x_panic();
4662 #endif
4663 		bnx2x_release_alr(bp);
4664 		return;
4665 	}
4666 
4667 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4668 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4669 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4670 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4671 	if (!CHIP_IS_E1x(bp))
4672 		attn.sig[4] =
4673 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4674 	else
4675 		attn.sig[4] = 0;
4676 
4677 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4678 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4679 
4680 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4681 		if (deasserted & (1 << index)) {
4682 			group_mask = &bp->attn_group[index];
4683 
4684 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4685 			   index,
4686 			   group_mask->sig[0], group_mask->sig[1],
4687 			   group_mask->sig[2], group_mask->sig[3],
4688 			   group_mask->sig[4]);
4689 
4690 			bnx2x_attn_int_deasserted4(bp,
4691 					attn.sig[4] & group_mask->sig[4]);
4692 			bnx2x_attn_int_deasserted3(bp,
4693 					attn.sig[3] & group_mask->sig[3]);
4694 			bnx2x_attn_int_deasserted1(bp,
4695 					attn.sig[1] & group_mask->sig[1]);
4696 			bnx2x_attn_int_deasserted2(bp,
4697 					attn.sig[2] & group_mask->sig[2]);
4698 			bnx2x_attn_int_deasserted0(bp,
4699 					attn.sig[0] & group_mask->sig[0]);
4700 		}
4701 	}
4702 
4703 	bnx2x_release_alr(bp);
4704 
4705 	if (bp->common.int_block == INT_BLOCK_HC)
4706 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4707 			    COMMAND_REG_ATTN_BITS_CLR);
4708 	else
4709 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4710 
4711 	val = ~deasserted;
4712 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4713 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4714 	REG_WR(bp, reg_addr, val);
4715 
4716 	if (~bp->attn_state & deasserted)
4717 		BNX2X_ERR("IGU ERROR\n");
4718 
4719 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4720 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4721 
4722 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4723 	aeu_mask = REG_RD(bp, reg_addr);
4724 
4725 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4726 	   aeu_mask, deasserted);
4727 	aeu_mask |= (deasserted & 0x3ff);
4728 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4729 
4730 	REG_WR(bp, reg_addr, aeu_mask);
4731 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4732 
4733 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4734 	bp->attn_state &= ~deasserted;
4735 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4736 }
4737 
4738 static void bnx2x_attn_int(struct bnx2x *bp)
4739 {
4740 	/* read local copy of bits */
4741 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4742 								attn_bits);
4743 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4744 								attn_bits_ack);
4745 	u32 attn_state = bp->attn_state;
4746 
4747 	/* look for changed bits */
4748 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4749 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4750 
4751 	DP(NETIF_MSG_HW,
4752 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4753 	   attn_bits, attn_ack, asserted, deasserted);
4754 
4755 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4756 		BNX2X_ERR("BAD attention state\n");
4757 
4758 	/* handle bits that were raised */
4759 	if (asserted)
4760 		bnx2x_attn_int_asserted(bp, asserted);
4761 
4762 	if (deasserted)
4763 		bnx2x_attn_int_deasserted(bp, deasserted);
4764 }
4765 
4766 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4767 		      u16 index, u8 op, u8 update)
4768 {
4769 	u32 igu_addr = bp->igu_base_addr;
4770 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4771 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4772 			     igu_addr);
4773 }
4774 
4775 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4776 {
4777 	/* No memory barriers */
4778 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4779 	mmiowb(); /* keep prod updates ordered */
4780 }
4781 
4782 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4783 				      union event_ring_elem *elem)
4784 {
4785 	u8 err = elem->message.error;
4786 
4787 	if (!bp->cnic_eth_dev.starting_cid  ||
4788 	    (cid < bp->cnic_eth_dev.starting_cid &&
4789 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4790 		return 1;
4791 
4792 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4793 
4794 	if (unlikely(err)) {
4795 
4796 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4797 			  cid);
4798 		bnx2x_panic_dump(bp, false);
4799 	}
4800 	bnx2x_cnic_cfc_comp(bp, cid, err);
4801 	return 0;
4802 }
4803 
4804 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4805 {
4806 	struct bnx2x_mcast_ramrod_params rparam;
4807 	int rc;
4808 
4809 	memset(&rparam, 0, sizeof(rparam));
4810 
4811 	rparam.mcast_obj = &bp->mcast_obj;
4812 
4813 	netif_addr_lock_bh(bp->dev);
4814 
4815 	/* Clear pending state for the last command */
4816 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4817 
4818 	/* If there are pending mcast commands - send them */
4819 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4820 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4821 		if (rc < 0)
4822 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4823 				  rc);
4824 	}
4825 
4826 	netif_addr_unlock_bh(bp->dev);
4827 }
4828 
4829 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4830 					    union event_ring_elem *elem)
4831 {
4832 	unsigned long ramrod_flags = 0;
4833 	int rc = 0;
4834 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4835 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4836 
4837 	/* Always push next commands out, don't wait here */
4838 	__set_bit(RAMROD_CONT, &ramrod_flags);
4839 
4840 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4841 			    >> BNX2X_SWCID_SHIFT) {
4842 	case BNX2X_FILTER_MAC_PENDING:
4843 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4844 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4845 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4846 		else
4847 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4848 
4849 		break;
4850 	case BNX2X_FILTER_MCAST_PENDING:
4851 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4852 		/* This is only relevant for 57710 where multicast MACs are
4853 		 * configured as unicast MACs using the same ramrod.
4854 		 */
4855 		bnx2x_handle_mcast_eqe(bp);
4856 		return;
4857 	default:
4858 		BNX2X_ERR("Unsupported classification command: %d\n",
4859 			  elem->message.data.eth_event.echo);
4860 		return;
4861 	}
4862 
4863 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4864 
4865 	if (rc < 0)
4866 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4867 	else if (rc > 0)
4868 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4869 
4870 }
4871 
4872 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4873 
4874 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4875 {
4876 	netif_addr_lock_bh(bp->dev);
4877 
4878 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4879 
4880 	/* Send rx_mode command again if was requested */
4881 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4882 		bnx2x_set_storm_rx_mode(bp);
4883 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4884 				    &bp->sp_state))
4885 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4886 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4887 				    &bp->sp_state))
4888 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4889 
4890 	netif_addr_unlock_bh(bp->dev);
4891 }
4892 
4893 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
4894 					      union event_ring_elem *elem)
4895 {
4896 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
4897 		DP(BNX2X_MSG_SP,
4898 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
4899 		   elem->message.data.vif_list_event.func_bit_map);
4900 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
4901 			elem->message.data.vif_list_event.func_bit_map);
4902 	} else if (elem->message.data.vif_list_event.echo ==
4903 		   VIF_LIST_RULE_SET) {
4904 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
4905 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
4906 	}
4907 }
4908 
4909 /* called with rtnl_lock */
4910 static void bnx2x_after_function_update(struct bnx2x *bp)
4911 {
4912 	int q, rc;
4913 	struct bnx2x_fastpath *fp;
4914 	struct bnx2x_queue_state_params queue_params = {NULL};
4915 	struct bnx2x_queue_update_params *q_update_params =
4916 		&queue_params.params.update;
4917 
4918 	/* Send Q update command with afex vlan removal values for all Qs */
4919 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
4920 
4921 	/* set silent vlan removal values according to vlan mode */
4922 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4923 		  &q_update_params->update_flags);
4924 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
4925 		  &q_update_params->update_flags);
4926 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4927 
4928 	/* in access mode mark mask and value are 0 to strip all vlans */
4929 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
4930 		q_update_params->silent_removal_value = 0;
4931 		q_update_params->silent_removal_mask = 0;
4932 	} else {
4933 		q_update_params->silent_removal_value =
4934 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
4935 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
4936 	}
4937 
4938 	for_each_eth_queue(bp, q) {
4939 		/* Set the appropriate Queue object */
4940 		fp = &bp->fp[q];
4941 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4942 
4943 		/* send the ramrod */
4944 		rc = bnx2x_queue_state_change(bp, &queue_params);
4945 		if (rc < 0)
4946 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4947 				  q);
4948 	}
4949 
4950 	if (!NO_FCOE(bp)) {
4951 		fp = &bp->fp[FCOE_IDX(bp)];
4952 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4953 
4954 		/* clear pending completion bit */
4955 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4956 
4957 		/* mark latest Q bit */
4958 		smp_mb__before_clear_bit();
4959 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
4960 		smp_mb__after_clear_bit();
4961 
4962 		/* send Q update ramrod for FCoE Q */
4963 		rc = bnx2x_queue_state_change(bp, &queue_params);
4964 		if (rc < 0)
4965 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4966 				  q);
4967 	} else {
4968 		/* If no FCoE ring - ACK MCP now */
4969 		bnx2x_link_report(bp);
4970 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4971 	}
4972 }
4973 
4974 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4975 	struct bnx2x *bp, u32 cid)
4976 {
4977 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4978 
4979 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
4980 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
4981 	else
4982 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
4983 }
4984 
4985 static void bnx2x_eq_int(struct bnx2x *bp)
4986 {
4987 	u16 hw_cons, sw_cons, sw_prod;
4988 	union event_ring_elem *elem;
4989 	u8 echo;
4990 	u32 cid;
4991 	u8 opcode;
4992 	int rc, spqe_cnt = 0;
4993 	struct bnx2x_queue_sp_obj *q_obj;
4994 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4995 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4996 
4997 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4998 
4999 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5000 	 * when we get the the next-page we nned to adjust so the loop
5001 	 * condition below will be met. The next element is the size of a
5002 	 * regular element and hence incrementing by 1
5003 	 */
5004 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5005 		hw_cons++;
5006 
5007 	/* This function may never run in parallel with itself for a
5008 	 * specific bp, thus there is no need in "paired" read memory
5009 	 * barrier here.
5010 	 */
5011 	sw_cons = bp->eq_cons;
5012 	sw_prod = bp->eq_prod;
5013 
5014 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5015 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5016 
5017 	for (; sw_cons != hw_cons;
5018 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5019 
5020 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5021 
5022 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5023 		if (!rc) {
5024 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5025 			   rc);
5026 			goto next_spqe;
5027 		}
5028 
5029 		/* elem CID originates from FW; actually LE */
5030 		cid = SW_CID((__force __le32)
5031 			     elem->message.data.cfc_del_event.cid);
5032 		opcode = elem->message.opcode;
5033 
5034 		/* handle eq element */
5035 		switch (opcode) {
5036 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5037 			DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5038 			bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5039 			continue;
5040 
5041 		case EVENT_RING_OPCODE_STAT_QUERY:
5042 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5043 			   "got statistics comp event %d\n",
5044 			   bp->stats_comp++);
5045 			/* nothing to do with stats comp */
5046 			goto next_spqe;
5047 
5048 		case EVENT_RING_OPCODE_CFC_DEL:
5049 			/* handle according to cid range */
5050 			/*
5051 			 * we may want to verify here that the bp state is
5052 			 * HALTING
5053 			 */
5054 			DP(BNX2X_MSG_SP,
5055 			   "got delete ramrod for MULTI[%d]\n", cid);
5056 
5057 			if (CNIC_LOADED(bp) &&
5058 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5059 				goto next_spqe;
5060 
5061 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5062 
5063 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5064 				break;
5065 
5066 
5067 
5068 			goto next_spqe;
5069 
5070 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5071 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5072 			if (f_obj->complete_cmd(bp, f_obj,
5073 						BNX2X_F_CMD_TX_STOP))
5074 				break;
5075 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5076 			goto next_spqe;
5077 
5078 		case EVENT_RING_OPCODE_START_TRAFFIC:
5079 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5080 			if (f_obj->complete_cmd(bp, f_obj,
5081 						BNX2X_F_CMD_TX_START))
5082 				break;
5083 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5084 			goto next_spqe;
5085 
5086 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5087 			echo = elem->message.data.function_update_event.echo;
5088 			if (echo == SWITCH_UPDATE) {
5089 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5090 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5091 				if (f_obj->complete_cmd(
5092 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5093 					break;
5094 
5095 			} else {
5096 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5097 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5098 				f_obj->complete_cmd(bp, f_obj,
5099 						    BNX2X_F_CMD_AFEX_UPDATE);
5100 
5101 				/* We will perform the Queues update from
5102 				 * sp_rtnl task as all Queue SP operations
5103 				 * should run under rtnl_lock.
5104 				 */
5105 				smp_mb__before_clear_bit();
5106 				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5107 					&bp->sp_rtnl_state);
5108 				smp_mb__after_clear_bit();
5109 
5110 				schedule_delayed_work(&bp->sp_rtnl_task, 0);
5111 			}
5112 
5113 			goto next_spqe;
5114 
5115 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5116 			f_obj->complete_cmd(bp, f_obj,
5117 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5118 			bnx2x_after_afex_vif_lists(bp, elem);
5119 			goto next_spqe;
5120 		case EVENT_RING_OPCODE_FUNCTION_START:
5121 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5122 			   "got FUNC_START ramrod\n");
5123 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5124 				break;
5125 
5126 			goto next_spqe;
5127 
5128 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5129 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5130 			   "got FUNC_STOP ramrod\n");
5131 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5132 				break;
5133 
5134 			goto next_spqe;
5135 		}
5136 
5137 		switch (opcode | bp->state) {
5138 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5139 		      BNX2X_STATE_OPEN):
5140 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5141 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5142 			cid = elem->message.data.eth_event.echo &
5143 				BNX2X_SWCID_MASK;
5144 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5145 			   cid);
5146 			rss_raw->clear_pending(rss_raw);
5147 			break;
5148 
5149 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5150 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5151 		case (EVENT_RING_OPCODE_SET_MAC |
5152 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5153 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5154 		      BNX2X_STATE_OPEN):
5155 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5156 		      BNX2X_STATE_DIAG):
5157 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5158 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5159 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5160 			bnx2x_handle_classification_eqe(bp, elem);
5161 			break;
5162 
5163 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5164 		      BNX2X_STATE_OPEN):
5165 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5166 		      BNX2X_STATE_DIAG):
5167 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5168 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5169 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5170 			bnx2x_handle_mcast_eqe(bp);
5171 			break;
5172 
5173 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5174 		      BNX2X_STATE_OPEN):
5175 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5176 		      BNX2X_STATE_DIAG):
5177 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5178 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5179 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5180 			bnx2x_handle_rx_mode_eqe(bp);
5181 			break;
5182 		default:
5183 			/* unknown event log error and continue */
5184 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5185 				  elem->message.opcode, bp->state);
5186 		}
5187 next_spqe:
5188 		spqe_cnt++;
5189 	} /* for */
5190 
5191 	smp_mb__before_atomic_inc();
5192 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5193 
5194 	bp->eq_cons = sw_cons;
5195 	bp->eq_prod = sw_prod;
5196 	/* Make sure that above mem writes were issued towards the memory */
5197 	smp_wmb();
5198 
5199 	/* update producer */
5200 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5201 }
5202 
5203 static void bnx2x_sp_task(struct work_struct *work)
5204 {
5205 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5206 
5207 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5208 
5209 	/* make sure the atomic interupt_occurred has been written */
5210 	smp_rmb();
5211 	if (atomic_read(&bp->interrupt_occurred)) {
5212 
5213 		/* what work needs to be performed? */
5214 		u16 status = bnx2x_update_dsb_idx(bp);
5215 
5216 		DP(BNX2X_MSG_SP, "status %x\n", status);
5217 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5218 		atomic_set(&bp->interrupt_occurred, 0);
5219 
5220 		/* HW attentions */
5221 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5222 			bnx2x_attn_int(bp);
5223 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5224 		}
5225 
5226 		/* SP events: STAT_QUERY and others */
5227 		if (status & BNX2X_DEF_SB_IDX) {
5228 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5229 
5230 		if (FCOE_INIT(bp) &&
5231 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5232 				/* Prevent local bottom-halves from running as
5233 				 * we are going to change the local NAPI list.
5234 				 */
5235 				local_bh_disable();
5236 				napi_schedule(&bnx2x_fcoe(bp, napi));
5237 				local_bh_enable();
5238 			}
5239 
5240 			/* Handle EQ completions */
5241 			bnx2x_eq_int(bp);
5242 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5243 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5244 
5245 			status &= ~BNX2X_DEF_SB_IDX;
5246 		}
5247 
5248 		/* if status is non zero then perhaps something went wrong */
5249 		if (unlikely(status))
5250 			DP(BNX2X_MSG_SP,
5251 			   "got an unknown interrupt! (status 0x%x)\n", status);
5252 
5253 		/* ack status block only if something was actually handled */
5254 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5255 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5256 
5257 	}
5258 
5259 	/* must be called after the EQ processing (since eq leads to sriov
5260 	 * ramrod completion flows).
5261 	 * This flow may have been scheduled by the arrival of a ramrod
5262 	 * completion, or by the sriov code rescheduling itself.
5263 	 */
5264 	bnx2x_iov_sp_task(bp);
5265 
5266 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5267 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5268 			       &bp->sp_state)) {
5269 		bnx2x_link_report(bp);
5270 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5271 	}
5272 }
5273 
5274 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5275 {
5276 	struct net_device *dev = dev_instance;
5277 	struct bnx2x *bp = netdev_priv(dev);
5278 
5279 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5280 		     IGU_INT_DISABLE, 0);
5281 
5282 #ifdef BNX2X_STOP_ON_ERROR
5283 	if (unlikely(bp->panic))
5284 		return IRQ_HANDLED;
5285 #endif
5286 
5287 	if (CNIC_LOADED(bp)) {
5288 		struct cnic_ops *c_ops;
5289 
5290 		rcu_read_lock();
5291 		c_ops = rcu_dereference(bp->cnic_ops);
5292 		if (c_ops)
5293 			c_ops->cnic_handler(bp->cnic_data, NULL);
5294 		rcu_read_unlock();
5295 	}
5296 
5297 	/* schedule sp task to perform default status block work, ack
5298 	 * attentions and enable interrupts.
5299 	 */
5300 	bnx2x_schedule_sp_task(bp);
5301 
5302 	return IRQ_HANDLED;
5303 }
5304 
5305 /* end of slow path */
5306 
5307 
5308 void bnx2x_drv_pulse(struct bnx2x *bp)
5309 {
5310 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5311 		 bp->fw_drv_pulse_wr_seq);
5312 }
5313 
5314 static void bnx2x_timer(unsigned long data)
5315 {
5316 	struct bnx2x *bp = (struct bnx2x *) data;
5317 
5318 	if (!netif_running(bp->dev))
5319 		return;
5320 
5321 	if (IS_PF(bp) &&
5322 	    !BP_NOMCP(bp)) {
5323 		int mb_idx = BP_FW_MB_IDX(bp);
5324 		u32 drv_pulse;
5325 		u32 mcp_pulse;
5326 
5327 		++bp->fw_drv_pulse_wr_seq;
5328 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5329 		/* TBD - add SYSTEM_TIME */
5330 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5331 		bnx2x_drv_pulse(bp);
5332 
5333 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5334 			     MCP_PULSE_SEQ_MASK);
5335 		/* The delta between driver pulse and mcp response
5336 		 * should be 1 (before mcp response) or 0 (after mcp response)
5337 		 */
5338 		if ((drv_pulse != mcp_pulse) &&
5339 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5340 			/* someone lost a heartbeat... */
5341 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5342 				  drv_pulse, mcp_pulse);
5343 		}
5344 	}
5345 
5346 	if (bp->state == BNX2X_STATE_OPEN)
5347 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5348 
5349 	/* sample pf vf bulletin board for new posts from pf */
5350 	if (IS_VF(bp))
5351 		bnx2x_sample_bulletin(bp);
5352 
5353 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5354 }
5355 
5356 /* end of Statistics */
5357 
5358 /* nic init */
5359 
5360 /*
5361  * nic init service functions
5362  */
5363 
5364 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5365 {
5366 	u32 i;
5367 	if (!(len%4) && !(addr%4))
5368 		for (i = 0; i < len; i += 4)
5369 			REG_WR(bp, addr + i, fill);
5370 	else
5371 		for (i = 0; i < len; i++)
5372 			REG_WR8(bp, addr + i, fill);
5373 
5374 }
5375 
5376 /* helper: writes FP SP data to FW - data_size in dwords */
5377 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5378 				int fw_sb_id,
5379 				u32 *sb_data_p,
5380 				u32 data_size)
5381 {
5382 	int index;
5383 	for (index = 0; index < data_size; index++)
5384 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5385 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5386 			sizeof(u32)*index,
5387 			*(sb_data_p + index));
5388 }
5389 
5390 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5391 {
5392 	u32 *sb_data_p;
5393 	u32 data_size = 0;
5394 	struct hc_status_block_data_e2 sb_data_e2;
5395 	struct hc_status_block_data_e1x sb_data_e1x;
5396 
5397 	/* disable the function first */
5398 	if (!CHIP_IS_E1x(bp)) {
5399 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5400 		sb_data_e2.common.state = SB_DISABLED;
5401 		sb_data_e2.common.p_func.vf_valid = false;
5402 		sb_data_p = (u32 *)&sb_data_e2;
5403 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5404 	} else {
5405 		memset(&sb_data_e1x, 0,
5406 		       sizeof(struct hc_status_block_data_e1x));
5407 		sb_data_e1x.common.state = SB_DISABLED;
5408 		sb_data_e1x.common.p_func.vf_valid = false;
5409 		sb_data_p = (u32 *)&sb_data_e1x;
5410 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5411 	}
5412 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5413 
5414 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5415 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5416 			CSTORM_STATUS_BLOCK_SIZE);
5417 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5418 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5419 			CSTORM_SYNC_BLOCK_SIZE);
5420 }
5421 
5422 /* helper:  writes SP SB data to FW */
5423 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5424 		struct hc_sp_status_block_data *sp_sb_data)
5425 {
5426 	int func = BP_FUNC(bp);
5427 	int i;
5428 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5429 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5430 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5431 			i*sizeof(u32),
5432 			*((u32 *)sp_sb_data + i));
5433 }
5434 
5435 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5436 {
5437 	int func = BP_FUNC(bp);
5438 	struct hc_sp_status_block_data sp_sb_data;
5439 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5440 
5441 	sp_sb_data.state = SB_DISABLED;
5442 	sp_sb_data.p_func.vf_valid = false;
5443 
5444 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5445 
5446 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5447 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5448 			CSTORM_SP_STATUS_BLOCK_SIZE);
5449 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5450 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5451 			CSTORM_SP_SYNC_BLOCK_SIZE);
5452 
5453 }
5454 
5455 
5456 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5457 					   int igu_sb_id, int igu_seg_id)
5458 {
5459 	hc_sm->igu_sb_id = igu_sb_id;
5460 	hc_sm->igu_seg_id = igu_seg_id;
5461 	hc_sm->timer_value = 0xFF;
5462 	hc_sm->time_to_expire = 0xFFFFFFFF;
5463 }
5464 
5465 
5466 /* allocates state machine ids. */
5467 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5468 {
5469 	/* zero out state machine indices */
5470 	/* rx indices */
5471 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5472 
5473 	/* tx indices */
5474 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5475 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5476 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5477 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5478 
5479 	/* map indices */
5480 	/* rx indices */
5481 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5482 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5483 
5484 	/* tx indices */
5485 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5486 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5487 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5488 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5489 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5490 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5491 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5492 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5493 }
5494 
5495 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5496 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5497 {
5498 	int igu_seg_id;
5499 
5500 	struct hc_status_block_data_e2 sb_data_e2;
5501 	struct hc_status_block_data_e1x sb_data_e1x;
5502 	struct hc_status_block_sm  *hc_sm_p;
5503 	int data_size;
5504 	u32 *sb_data_p;
5505 
5506 	if (CHIP_INT_MODE_IS_BC(bp))
5507 		igu_seg_id = HC_SEG_ACCESS_NORM;
5508 	else
5509 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5510 
5511 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5512 
5513 	if (!CHIP_IS_E1x(bp)) {
5514 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5515 		sb_data_e2.common.state = SB_ENABLED;
5516 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5517 		sb_data_e2.common.p_func.vf_id = vfid;
5518 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5519 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5520 		sb_data_e2.common.same_igu_sb_1b = true;
5521 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5522 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5523 		hc_sm_p = sb_data_e2.common.state_machine;
5524 		sb_data_p = (u32 *)&sb_data_e2;
5525 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5526 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5527 	} else {
5528 		memset(&sb_data_e1x, 0,
5529 		       sizeof(struct hc_status_block_data_e1x));
5530 		sb_data_e1x.common.state = SB_ENABLED;
5531 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5532 		sb_data_e1x.common.p_func.vf_id = 0xff;
5533 		sb_data_e1x.common.p_func.vf_valid = false;
5534 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5535 		sb_data_e1x.common.same_igu_sb_1b = true;
5536 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5537 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5538 		hc_sm_p = sb_data_e1x.common.state_machine;
5539 		sb_data_p = (u32 *)&sb_data_e1x;
5540 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5541 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5542 	}
5543 
5544 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5545 				       igu_sb_id, igu_seg_id);
5546 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5547 				       igu_sb_id, igu_seg_id);
5548 
5549 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5550 
5551 	/* write indices to HW - PCI guarantees endianity of regpairs */
5552 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5553 }
5554 
5555 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5556 				     u16 tx_usec, u16 rx_usec)
5557 {
5558 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5559 				    false, rx_usec);
5560 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5561 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5562 				       tx_usec);
5563 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5564 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5565 				       tx_usec);
5566 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5567 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5568 				       tx_usec);
5569 }
5570 
5571 static void bnx2x_init_def_sb(struct bnx2x *bp)
5572 {
5573 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5574 	dma_addr_t mapping = bp->def_status_blk_mapping;
5575 	int igu_sp_sb_index;
5576 	int igu_seg_id;
5577 	int port = BP_PORT(bp);
5578 	int func = BP_FUNC(bp);
5579 	int reg_offset, reg_offset_en5;
5580 	u64 section;
5581 	int index;
5582 	struct hc_sp_status_block_data sp_sb_data;
5583 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5584 
5585 	if (CHIP_INT_MODE_IS_BC(bp)) {
5586 		igu_sp_sb_index = DEF_SB_IGU_ID;
5587 		igu_seg_id = HC_SEG_ACCESS_DEF;
5588 	} else {
5589 		igu_sp_sb_index = bp->igu_dsb_id;
5590 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5591 	}
5592 
5593 	/* ATTN */
5594 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5595 					    atten_status_block);
5596 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5597 
5598 	bp->attn_state = 0;
5599 
5600 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5601 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5602 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5603 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5604 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5605 		int sindex;
5606 		/* take care of sig[0]..sig[4] */
5607 		for (sindex = 0; sindex < 4; sindex++)
5608 			bp->attn_group[index].sig[sindex] =
5609 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5610 
5611 		if (!CHIP_IS_E1x(bp))
5612 			/*
5613 			 * enable5 is separate from the rest of the registers,
5614 			 * and therefore the address skip is 4
5615 			 * and not 16 between the different groups
5616 			 */
5617 			bp->attn_group[index].sig[4] = REG_RD(bp,
5618 					reg_offset_en5 + 0x4*index);
5619 		else
5620 			bp->attn_group[index].sig[4] = 0;
5621 	}
5622 
5623 	if (bp->common.int_block == INT_BLOCK_HC) {
5624 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5625 				     HC_REG_ATTN_MSG0_ADDR_L);
5626 
5627 		REG_WR(bp, reg_offset, U64_LO(section));
5628 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5629 	} else if (!CHIP_IS_E1x(bp)) {
5630 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5631 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5632 	}
5633 
5634 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5635 					    sp_sb);
5636 
5637 	bnx2x_zero_sp_sb(bp);
5638 
5639 	/* PCI guarantees endianity of regpairs */
5640 	sp_sb_data.state		= SB_ENABLED;
5641 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5642 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5643 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5644 	sp_sb_data.igu_seg_id		= igu_seg_id;
5645 	sp_sb_data.p_func.pf_id		= func;
5646 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5647 	sp_sb_data.p_func.vf_id		= 0xff;
5648 
5649 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5650 
5651 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5652 }
5653 
5654 void bnx2x_update_coalesce(struct bnx2x *bp)
5655 {
5656 	int i;
5657 
5658 	for_each_eth_queue(bp, i)
5659 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5660 					 bp->tx_ticks, bp->rx_ticks);
5661 }
5662 
5663 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5664 {
5665 	spin_lock_init(&bp->spq_lock);
5666 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5667 
5668 	bp->spq_prod_idx = 0;
5669 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5670 	bp->spq_prod_bd = bp->spq;
5671 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5672 }
5673 
5674 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5675 {
5676 	int i;
5677 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5678 		union event_ring_elem *elem =
5679 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5680 
5681 		elem->next_page.addr.hi =
5682 			cpu_to_le32(U64_HI(bp->eq_mapping +
5683 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5684 		elem->next_page.addr.lo =
5685 			cpu_to_le32(U64_LO(bp->eq_mapping +
5686 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5687 	}
5688 	bp->eq_cons = 0;
5689 	bp->eq_prod = NUM_EQ_DESC;
5690 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5691 	/* we want a warning message before it gets rought... */
5692 	atomic_set(&bp->eq_spq_left,
5693 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5694 }
5695 
5696 /* called with netif_addr_lock_bh() */
5697 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5698 			unsigned long rx_mode_flags,
5699 			unsigned long rx_accept_flags,
5700 			unsigned long tx_accept_flags,
5701 			unsigned long ramrod_flags)
5702 {
5703 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5704 	int rc;
5705 
5706 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5707 
5708 	/* Prepare ramrod parameters */
5709 	ramrod_param.cid = 0;
5710 	ramrod_param.cl_id = cl_id;
5711 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5712 	ramrod_param.func_id = BP_FUNC(bp);
5713 
5714 	ramrod_param.pstate = &bp->sp_state;
5715 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5716 
5717 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5718 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5719 
5720 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5721 
5722 	ramrod_param.ramrod_flags = ramrod_flags;
5723 	ramrod_param.rx_mode_flags = rx_mode_flags;
5724 
5725 	ramrod_param.rx_accept_flags = rx_accept_flags;
5726 	ramrod_param.tx_accept_flags = tx_accept_flags;
5727 
5728 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5729 	if (rc < 0) {
5730 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5731 		return rc;
5732 	}
5733 
5734 	return 0;
5735 }
5736 
5737 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5738 				   unsigned long *rx_accept_flags,
5739 				   unsigned long *tx_accept_flags)
5740 {
5741 	/* Clear the flags first */
5742 	*rx_accept_flags = 0;
5743 	*tx_accept_flags = 0;
5744 
5745 	switch (rx_mode) {
5746 	case BNX2X_RX_MODE_NONE:
5747 		/*
5748 		 * 'drop all' supersedes any accept flags that may have been
5749 		 * passed to the function.
5750 		 */
5751 		break;
5752 	case BNX2X_RX_MODE_NORMAL:
5753 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5754 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5755 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5756 
5757 		/* internal switching mode */
5758 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5759 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5760 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5761 
5762 		break;
5763 	case BNX2X_RX_MODE_ALLMULTI:
5764 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5765 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5766 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5767 
5768 		/* internal switching mode */
5769 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5770 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5771 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5772 
5773 		break;
5774 	case BNX2X_RX_MODE_PROMISC:
5775 		/* According to deffinition of SI mode, iface in promisc mode
5776 		 * should receive matched and unmatched (in resolution of port)
5777 		 * unicast packets.
5778 		 */
5779 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5780 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5781 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5782 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5783 
5784 		/* internal switching mode */
5785 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5786 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5787 
5788 		if (IS_MF_SI(bp))
5789 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5790 		else
5791 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5792 
5793 		break;
5794 	default:
5795 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5796 		return -EINVAL;
5797 	}
5798 
5799 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5800 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5801 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5802 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5803 	}
5804 
5805 	return 0;
5806 }
5807 
5808 /* called with netif_addr_lock_bh() */
5809 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5810 {
5811 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5812 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5813 	int rc;
5814 
5815 	if (!NO_FCOE(bp))
5816 		/* Configure rx_mode of FCoE Queue */
5817 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5818 
5819 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5820 				     &tx_accept_flags);
5821 	if (rc)
5822 		return rc;
5823 
5824 	__set_bit(RAMROD_RX, &ramrod_flags);
5825 	__set_bit(RAMROD_TX, &ramrod_flags);
5826 
5827 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5828 				   rx_accept_flags, tx_accept_flags,
5829 				   ramrod_flags);
5830 }
5831 
5832 static void bnx2x_init_internal_common(struct bnx2x *bp)
5833 {
5834 	int i;
5835 
5836 	if (IS_MF_SI(bp))
5837 		/*
5838 		 * In switch independent mode, the TSTORM needs to accept
5839 		 * packets that failed classification, since approximate match
5840 		 * mac addresses aren't written to NIG LLH
5841 		 */
5842 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5843 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5844 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5845 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5846 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5847 
5848 	/* Zero this manually as its initialization is
5849 	   currently missing in the initTool */
5850 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5851 		REG_WR(bp, BAR_USTRORM_INTMEM +
5852 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5853 	if (!CHIP_IS_E1x(bp)) {
5854 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5855 			CHIP_INT_MODE_IS_BC(bp) ?
5856 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5857 	}
5858 }
5859 
5860 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5861 {
5862 	switch (load_code) {
5863 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5864 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5865 		bnx2x_init_internal_common(bp);
5866 		/* no break */
5867 
5868 	case FW_MSG_CODE_DRV_LOAD_PORT:
5869 		/* nothing to do */
5870 		/* no break */
5871 
5872 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5873 		/* internal memory per function is
5874 		   initialized inside bnx2x_pf_init */
5875 		break;
5876 
5877 	default:
5878 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5879 		break;
5880 	}
5881 }
5882 
5883 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5884 {
5885 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5886 }
5887 
5888 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5889 {
5890 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
5891 }
5892 
5893 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5894 {
5895 	if (CHIP_IS_E1x(fp->bp))
5896 		return BP_L_ID(fp->bp) + fp->index;
5897 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5898 		return bnx2x_fp_igu_sb_id(fp);
5899 }
5900 
5901 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5902 {
5903 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5904 	u8 cos;
5905 	unsigned long q_type = 0;
5906 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5907 	fp->rx_queue = fp_idx;
5908 	fp->cid = fp_idx;
5909 	fp->cl_id = bnx2x_fp_cl_id(fp);
5910 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5911 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5912 	/* qZone id equals to FW (per path) client id */
5913 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5914 
5915 	/* init shortcut */
5916 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5917 
5918 	/* Setup SB indicies */
5919 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5920 
5921 	/* Configure Queue State object */
5922 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5923 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5924 
5925 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5926 
5927 	/* init tx data */
5928 	for_each_cos_in_tx_queue(fp, cos) {
5929 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
5930 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
5931 				  FP_COS_TO_TXQ(fp, cos, bp),
5932 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
5933 		cids[cos] = fp->txdata_ptr[cos]->cid;
5934 	}
5935 
5936 	/* nothing more for vf to do here */
5937 	if (IS_VF(bp))
5938 		return;
5939 
5940 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5941 		      fp->fw_sb_id, fp->igu_sb_id);
5942 	bnx2x_update_fpsb_idx(fp);
5943 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
5944 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5945 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5946 
5947 	/**
5948 	 * Configure classification DBs: Always enable Tx switching
5949 	 */
5950 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5951 
5952 	DP(NETIF_MSG_IFUP,
5953 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5954 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5955 	   fp->igu_sb_id);
5956 }
5957 
5958 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
5959 {
5960 	int i;
5961 
5962 	for (i = 1; i <= NUM_TX_RINGS; i++) {
5963 		struct eth_tx_next_bd *tx_next_bd =
5964 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
5965 
5966 		tx_next_bd->addr_hi =
5967 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
5968 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5969 		tx_next_bd->addr_lo =
5970 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
5971 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5972 	}
5973 
5974 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
5975 	txdata->tx_db.data.zero_fill1 = 0;
5976 	txdata->tx_db.data.prod = 0;
5977 
5978 	txdata->tx_pkt_prod = 0;
5979 	txdata->tx_pkt_cons = 0;
5980 	txdata->tx_bd_prod = 0;
5981 	txdata->tx_bd_cons = 0;
5982 	txdata->tx_pkt = 0;
5983 }
5984 
5985 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
5986 {
5987 	int i;
5988 
5989 	for_each_tx_queue_cnic(bp, i)
5990 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
5991 }
5992 static void bnx2x_init_tx_rings(struct bnx2x *bp)
5993 {
5994 	int i;
5995 	u8 cos;
5996 
5997 	for_each_eth_queue(bp, i)
5998 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
5999 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6000 }
6001 
6002 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6003 {
6004 	if (!NO_FCOE(bp))
6005 		bnx2x_init_fcoe_fp(bp);
6006 
6007 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6008 		      BNX2X_VF_ID_INVALID, false,
6009 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6010 
6011 	/* ensure status block indices were read */
6012 	rmb();
6013 	bnx2x_init_rx_rings_cnic(bp);
6014 	bnx2x_init_tx_rings_cnic(bp);
6015 
6016 	/* flush all */
6017 	mb();
6018 	mmiowb();
6019 }
6020 
6021 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
6022 {
6023 	int i;
6024 
6025 	for_each_eth_queue(bp, i)
6026 		bnx2x_init_eth_fp(bp, i);
6027 
6028 	/* ensure status block indices were read */
6029 	rmb();
6030 	bnx2x_init_rx_rings(bp);
6031 	bnx2x_init_tx_rings(bp);
6032 
6033 	if (IS_VF(bp))
6034 		return;
6035 
6036 	/* Initialize MOD_ABS interrupts */
6037 	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6038 			       bp->common.shmem_base, bp->common.shmem2_base,
6039 			       BP_PORT(bp));
6040 
6041 	bnx2x_init_def_sb(bp);
6042 	bnx2x_update_dsb_idx(bp);
6043 	bnx2x_init_sp_ring(bp);
6044 	bnx2x_init_eq_ring(bp);
6045 	bnx2x_init_internal(bp, load_code);
6046 	bnx2x_pf_init(bp);
6047 	bnx2x_stats_init(bp);
6048 
6049 	/* flush all before enabling interrupts */
6050 	mb();
6051 	mmiowb();
6052 
6053 	bnx2x_int_enable(bp);
6054 
6055 	/* Check for SPIO5 */
6056 	bnx2x_attn_int_deasserted0(bp,
6057 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6058 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6059 }
6060 
6061 /* end of nic init */
6062 
6063 /*
6064  * gzip service functions
6065  */
6066 
6067 static int bnx2x_gunzip_init(struct bnx2x *bp)
6068 {
6069 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6070 					    &bp->gunzip_mapping, GFP_KERNEL);
6071 	if (bp->gunzip_buf  == NULL)
6072 		goto gunzip_nomem1;
6073 
6074 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6075 	if (bp->strm  == NULL)
6076 		goto gunzip_nomem2;
6077 
6078 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6079 	if (bp->strm->workspace == NULL)
6080 		goto gunzip_nomem3;
6081 
6082 	return 0;
6083 
6084 gunzip_nomem3:
6085 	kfree(bp->strm);
6086 	bp->strm = NULL;
6087 
6088 gunzip_nomem2:
6089 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6090 			  bp->gunzip_mapping);
6091 	bp->gunzip_buf = NULL;
6092 
6093 gunzip_nomem1:
6094 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6095 	return -ENOMEM;
6096 }
6097 
6098 static void bnx2x_gunzip_end(struct bnx2x *bp)
6099 {
6100 	if (bp->strm) {
6101 		vfree(bp->strm->workspace);
6102 		kfree(bp->strm);
6103 		bp->strm = NULL;
6104 	}
6105 
6106 	if (bp->gunzip_buf) {
6107 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6108 				  bp->gunzip_mapping);
6109 		bp->gunzip_buf = NULL;
6110 	}
6111 }
6112 
6113 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6114 {
6115 	int n, rc;
6116 
6117 	/* check gzip header */
6118 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6119 		BNX2X_ERR("Bad gzip header\n");
6120 		return -EINVAL;
6121 	}
6122 
6123 	n = 10;
6124 
6125 #define FNAME				0x8
6126 
6127 	if (zbuf[3] & FNAME)
6128 		while ((zbuf[n++] != 0) && (n < len));
6129 
6130 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6131 	bp->strm->avail_in = len - n;
6132 	bp->strm->next_out = bp->gunzip_buf;
6133 	bp->strm->avail_out = FW_BUF_SIZE;
6134 
6135 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6136 	if (rc != Z_OK)
6137 		return rc;
6138 
6139 	rc = zlib_inflate(bp->strm, Z_FINISH);
6140 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6141 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6142 			   bp->strm->msg);
6143 
6144 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6145 	if (bp->gunzip_outlen & 0x3)
6146 		netdev_err(bp->dev,
6147 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6148 				bp->gunzip_outlen);
6149 	bp->gunzip_outlen >>= 2;
6150 
6151 	zlib_inflateEnd(bp->strm);
6152 
6153 	if (rc == Z_STREAM_END)
6154 		return 0;
6155 
6156 	return rc;
6157 }
6158 
6159 /* nic load/unload */
6160 
6161 /*
6162  * General service functions
6163  */
6164 
6165 /* send a NIG loopback debug packet */
6166 static void bnx2x_lb_pckt(struct bnx2x *bp)
6167 {
6168 	u32 wb_write[3];
6169 
6170 	/* Ethernet source and destination addresses */
6171 	wb_write[0] = 0x55555555;
6172 	wb_write[1] = 0x55555555;
6173 	wb_write[2] = 0x20;		/* SOP */
6174 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6175 
6176 	/* NON-IP protocol */
6177 	wb_write[0] = 0x09000000;
6178 	wb_write[1] = 0x55555555;
6179 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6180 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6181 }
6182 
6183 /* some of the internal memories
6184  * are not directly readable from the driver
6185  * to test them we send debug packets
6186  */
6187 static int bnx2x_int_mem_test(struct bnx2x *bp)
6188 {
6189 	int factor;
6190 	int count, i;
6191 	u32 val = 0;
6192 
6193 	if (CHIP_REV_IS_FPGA(bp))
6194 		factor = 120;
6195 	else if (CHIP_REV_IS_EMUL(bp))
6196 		factor = 200;
6197 	else
6198 		factor = 1;
6199 
6200 	/* Disable inputs of parser neighbor blocks */
6201 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6202 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6203 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6204 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6205 
6206 	/*  Write 0 to parser credits for CFC search request */
6207 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6208 
6209 	/* send Ethernet packet */
6210 	bnx2x_lb_pckt(bp);
6211 
6212 	/* TODO do i reset NIG statistic? */
6213 	/* Wait until NIG register shows 1 packet of size 0x10 */
6214 	count = 1000 * factor;
6215 	while (count) {
6216 
6217 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6218 		val = *bnx2x_sp(bp, wb_data[0]);
6219 		if (val == 0x10)
6220 			break;
6221 
6222 		msleep(10);
6223 		count--;
6224 	}
6225 	if (val != 0x10) {
6226 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6227 		return -1;
6228 	}
6229 
6230 	/* Wait until PRS register shows 1 packet */
6231 	count = 1000 * factor;
6232 	while (count) {
6233 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6234 		if (val == 1)
6235 			break;
6236 
6237 		msleep(10);
6238 		count--;
6239 	}
6240 	if (val != 0x1) {
6241 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6242 		return -2;
6243 	}
6244 
6245 	/* Reset and init BRB, PRS */
6246 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6247 	msleep(50);
6248 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6249 	msleep(50);
6250 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6251 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6252 
6253 	DP(NETIF_MSG_HW, "part2\n");
6254 
6255 	/* Disable inputs of parser neighbor blocks */
6256 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6257 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6258 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6259 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6260 
6261 	/* Write 0 to parser credits for CFC search request */
6262 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6263 
6264 	/* send 10 Ethernet packets */
6265 	for (i = 0; i < 10; i++)
6266 		bnx2x_lb_pckt(bp);
6267 
6268 	/* Wait until NIG register shows 10 + 1
6269 	   packets of size 11*0x10 = 0xb0 */
6270 	count = 1000 * factor;
6271 	while (count) {
6272 
6273 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6274 		val = *bnx2x_sp(bp, wb_data[0]);
6275 		if (val == 0xb0)
6276 			break;
6277 
6278 		msleep(10);
6279 		count--;
6280 	}
6281 	if (val != 0xb0) {
6282 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6283 		return -3;
6284 	}
6285 
6286 	/* Wait until PRS register shows 2 packets */
6287 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6288 	if (val != 2)
6289 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6290 
6291 	/* Write 1 to parser credits for CFC search request */
6292 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6293 
6294 	/* Wait until PRS register shows 3 packets */
6295 	msleep(10 * factor);
6296 	/* Wait until NIG register shows 1 packet of size 0x10 */
6297 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6298 	if (val != 3)
6299 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6300 
6301 	/* clear NIG EOP FIFO */
6302 	for (i = 0; i < 11; i++)
6303 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6304 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6305 	if (val != 1) {
6306 		BNX2X_ERR("clear of NIG failed\n");
6307 		return -4;
6308 	}
6309 
6310 	/* Reset and init BRB, PRS, NIG */
6311 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6312 	msleep(50);
6313 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6314 	msleep(50);
6315 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6316 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6317 	if (!CNIC_SUPPORT(bp))
6318 		/* set NIC mode */
6319 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6320 
6321 	/* Enable inputs of parser neighbor blocks */
6322 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6323 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6324 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6325 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6326 
6327 	DP(NETIF_MSG_HW, "done\n");
6328 
6329 	return 0; /* OK */
6330 }
6331 
6332 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6333 {
6334 	u32 val;
6335 
6336 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6337 	if (!CHIP_IS_E1x(bp))
6338 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6339 	else
6340 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6341 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6342 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6343 	/*
6344 	 * mask read length error interrupts in brb for parser
6345 	 * (parsing unit and 'checksum and crc' unit)
6346 	 * these errors are legal (PU reads fixed length and CAC can cause
6347 	 * read length error on truncated packets)
6348 	 */
6349 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6350 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6351 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6352 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6353 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6354 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6355 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6356 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6357 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6358 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6359 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6360 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6361 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6362 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6363 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6364 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6365 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6366 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6367 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6368 
6369 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6370 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6371 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6372 	if (!CHIP_IS_E1x(bp))
6373 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6374 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6375 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6376 
6377 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6378 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6379 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6380 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6381 
6382 	if (!CHIP_IS_E1x(bp))
6383 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6384 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6385 
6386 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6387 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6388 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6389 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6390 }
6391 
6392 static void bnx2x_reset_common(struct bnx2x *bp)
6393 {
6394 	u32 val = 0x1400;
6395 
6396 	/* reset_common */
6397 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6398 	       0xd3ffff7f);
6399 
6400 	if (CHIP_IS_E3(bp)) {
6401 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6402 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6403 	}
6404 
6405 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6406 }
6407 
6408 static void bnx2x_setup_dmae(struct bnx2x *bp)
6409 {
6410 	bp->dmae_ready = 0;
6411 	spin_lock_init(&bp->dmae_lock);
6412 }
6413 
6414 static void bnx2x_init_pxp(struct bnx2x *bp)
6415 {
6416 	u16 devctl;
6417 	int r_order, w_order;
6418 
6419 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6420 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6421 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6422 	if (bp->mrrs == -1)
6423 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6424 	else {
6425 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6426 		r_order = bp->mrrs;
6427 	}
6428 
6429 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6430 }
6431 
6432 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6433 {
6434 	int is_required;
6435 	u32 val;
6436 	int port;
6437 
6438 	if (BP_NOMCP(bp))
6439 		return;
6440 
6441 	is_required = 0;
6442 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6443 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6444 
6445 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6446 		is_required = 1;
6447 
6448 	/*
6449 	 * The fan failure mechanism is usually related to the PHY type since
6450 	 * the power consumption of the board is affected by the PHY. Currently,
6451 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6452 	 */
6453 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6454 		for (port = PORT_0; port < PORT_MAX; port++) {
6455 			is_required |=
6456 				bnx2x_fan_failure_det_req(
6457 					bp,
6458 					bp->common.shmem_base,
6459 					bp->common.shmem2_base,
6460 					port);
6461 		}
6462 
6463 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6464 
6465 	if (is_required == 0)
6466 		return;
6467 
6468 	/* Fan failure is indicated by SPIO 5 */
6469 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6470 
6471 	/* set to active low mode */
6472 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6473 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6474 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6475 
6476 	/* enable interrupt to signal the IGU */
6477 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6478 	val |= MISC_SPIO_SPIO5;
6479 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6480 }
6481 
6482 void bnx2x_pf_disable(struct bnx2x *bp)
6483 {
6484 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6485 	val &= ~IGU_PF_CONF_FUNC_EN;
6486 
6487 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6488 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6489 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6490 }
6491 
6492 static void bnx2x__common_init_phy(struct bnx2x *bp)
6493 {
6494 	u32 shmem_base[2], shmem2_base[2];
6495 	/* Avoid common init in case MFW supports LFA */
6496 	if (SHMEM2_RD(bp, size) >
6497 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6498 		return;
6499 	shmem_base[0] =  bp->common.shmem_base;
6500 	shmem2_base[0] = bp->common.shmem2_base;
6501 	if (!CHIP_IS_E1x(bp)) {
6502 		shmem_base[1] =
6503 			SHMEM2_RD(bp, other_shmem_base_addr);
6504 		shmem2_base[1] =
6505 			SHMEM2_RD(bp, other_shmem2_base_addr);
6506 	}
6507 	bnx2x_acquire_phy_lock(bp);
6508 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6509 			      bp->common.chip_id);
6510 	bnx2x_release_phy_lock(bp);
6511 }
6512 
6513 /**
6514  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6515  *
6516  * @bp:		driver handle
6517  */
6518 static int bnx2x_init_hw_common(struct bnx2x *bp)
6519 {
6520 	u32 val;
6521 
6522 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6523 
6524 	/*
6525 	 * take the RESET lock to protect undi_unload flow from accessing
6526 	 * registers while we're resetting the chip
6527 	 */
6528 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6529 
6530 	bnx2x_reset_common(bp);
6531 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6532 
6533 	val = 0xfffc;
6534 	if (CHIP_IS_E3(bp)) {
6535 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6536 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6537 	}
6538 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6539 
6540 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6541 
6542 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6543 
6544 	if (!CHIP_IS_E1x(bp)) {
6545 		u8 abs_func_id;
6546 
6547 		/**
6548 		 * 4-port mode or 2-port mode we need to turn of master-enable
6549 		 * for everyone, after that, turn it back on for self.
6550 		 * so, we disregard multi-function or not, and always disable
6551 		 * for all functions on the given path, this means 0,2,4,6 for
6552 		 * path 0 and 1,3,5,7 for path 1
6553 		 */
6554 		for (abs_func_id = BP_PATH(bp);
6555 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6556 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6557 				REG_WR(bp,
6558 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6559 				    1);
6560 				continue;
6561 			}
6562 
6563 			bnx2x_pretend_func(bp, abs_func_id);
6564 			/* clear pf enable */
6565 			bnx2x_pf_disable(bp);
6566 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6567 		}
6568 	}
6569 
6570 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6571 	if (CHIP_IS_E1(bp)) {
6572 		/* enable HW interrupt from PXP on USDM overflow
6573 		   bit 16 on INT_MASK_0 */
6574 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6575 	}
6576 
6577 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6578 	bnx2x_init_pxp(bp);
6579 
6580 #ifdef __BIG_ENDIAN
6581 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6582 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6583 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6584 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6585 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6586 	/* make sure this value is 0 */
6587 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6588 
6589 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6590 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6591 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6592 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6593 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6594 #endif
6595 
6596 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6597 
6598 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6599 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6600 
6601 	/* let the HW do it's magic ... */
6602 	msleep(100);
6603 	/* finish PXP init */
6604 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6605 	if (val != 1) {
6606 		BNX2X_ERR("PXP2 CFG failed\n");
6607 		return -EBUSY;
6608 	}
6609 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6610 	if (val != 1) {
6611 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6612 		return -EBUSY;
6613 	}
6614 
6615 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6616 	 * have entries with value "0" and valid bit on.
6617 	 * This needs to be done by the first PF that is loaded in a path
6618 	 * (i.e. common phase)
6619 	 */
6620 	if (!CHIP_IS_E1x(bp)) {
6621 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6622  * (i.e. vnic3) to start even if it is marked as "scan-off".
6623  * This occurs when a different function (func2,3) is being marked
6624  * as "scan-off". Real-life scenario for example: if a driver is being
6625  * load-unloaded while func6,7 are down. This will cause the timer to access
6626  * the ilt, translate to a logical address and send a request to read/write.
6627  * Since the ilt for the function that is down is not valid, this will cause
6628  * a translation error which is unrecoverable.
6629  * The Workaround is intended to make sure that when this happens nothing fatal
6630  * will occur. The workaround:
6631  *	1.  First PF driver which loads on a path will:
6632  *		a.  After taking the chip out of reset, by using pretend,
6633  *		    it will write "0" to the following registers of
6634  *		    the other vnics.
6635  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6636  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6637  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6638  *		    And for itself it will write '1' to
6639  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6640  *		    dmae-operations (writing to pram for example.)
6641  *		    note: can be done for only function 6,7 but cleaner this
6642  *			  way.
6643  *		b.  Write zero+valid to the entire ILT.
6644  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6645  *		    VNIC3 (of that port). The range allocated will be the
6646  *		    entire ILT. This is needed to prevent  ILT range error.
6647  *	2.  Any PF driver load flow:
6648  *		a.  ILT update with the physical addresses of the allocated
6649  *		    logical pages.
6650  *		b.  Wait 20msec. - note that this timeout is needed to make
6651  *		    sure there are no requests in one of the PXP internal
6652  *		    queues with "old" ILT addresses.
6653  *		c.  PF enable in the PGLC.
6654  *		d.  Clear the was_error of the PF in the PGLC. (could have
6655  *		    occurred while driver was down)
6656  *		e.  PF enable in the CFC (WEAK + STRONG)
6657  *		f.  Timers scan enable
6658  *	3.  PF driver unload flow:
6659  *		a.  Clear the Timers scan_en.
6660  *		b.  Polling for scan_on=0 for that PF.
6661  *		c.  Clear the PF enable bit in the PXP.
6662  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6663  *		e.  Write zero+valid to all ILT entries (The valid bit must
6664  *		    stay set)
6665  *		f.  If this is VNIC 3 of a port then also init
6666  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6667  *		    to the last enrty in the ILT.
6668  *
6669  *	Notes:
6670  *	Currently the PF error in the PGLC is non recoverable.
6671  *	In the future the there will be a recovery routine for this error.
6672  *	Currently attention is masked.
6673  *	Having an MCP lock on the load/unload process does not guarantee that
6674  *	there is no Timer disable during Func6/7 enable. This is because the
6675  *	Timers scan is currently being cleared by the MCP on FLR.
6676  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6677  *	there is error before clearing it. But the flow above is simpler and
6678  *	more general.
6679  *	All ILT entries are written by zero+valid and not just PF6/7
6680  *	ILT entries since in the future the ILT entries allocation for
6681  *	PF-s might be dynamic.
6682  */
6683 		struct ilt_client_info ilt_cli;
6684 		struct bnx2x_ilt ilt;
6685 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6686 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6687 
6688 		/* initialize dummy TM client */
6689 		ilt_cli.start = 0;
6690 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6691 		ilt_cli.client_num = ILT_CLIENT_TM;
6692 
6693 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6694 		 * Step 2: set the timers first/last ilt entry to point
6695 		 * to the entire range to prevent ILT range error for 3rd/4th
6696 		 * vnic	(this code assumes existence of the vnic)
6697 		 *
6698 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6699 		 * with dummy TM client
6700 		 *
6701 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6702 		 * and his brother are split registers
6703 		 */
6704 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6705 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6706 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6707 
6708 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6709 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6710 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6711 	}
6712 
6713 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6714 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6715 
6716 	if (!CHIP_IS_E1x(bp)) {
6717 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6718 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6719 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6720 
6721 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6722 
6723 		/* let the HW do it's magic ... */
6724 		do {
6725 			msleep(200);
6726 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6727 		} while (factor-- && (val != 1));
6728 
6729 		if (val != 1) {
6730 			BNX2X_ERR("ATC_INIT failed\n");
6731 			return -EBUSY;
6732 		}
6733 	}
6734 
6735 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6736 
6737 	bnx2x_iov_init_dmae(bp);
6738 
6739 	/* clean the DMAE memory */
6740 	bp->dmae_ready = 1;
6741 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6742 
6743 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6744 
6745 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6746 
6747 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6748 
6749 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6750 
6751 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6752 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6753 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6754 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6755 
6756 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6757 
6758 
6759 	/* QM queues pointers table */
6760 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6761 
6762 	/* soft reset pulse */
6763 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6764 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6765 
6766 	if (CNIC_SUPPORT(bp))
6767 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6768 
6769 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6770 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6771 	if (!CHIP_REV_IS_SLOW(bp))
6772 		/* enable hw interrupt from doorbell Q */
6773 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6774 
6775 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6776 
6777 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6778 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6779 
6780 	if (!CHIP_IS_E1(bp))
6781 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6782 
6783 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6784 		if (IS_MF_AFEX(bp)) {
6785 			/* configure that VNTag and VLAN headers must be
6786 			 * received in afex mode
6787 			 */
6788 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6789 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6790 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6791 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6792 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6793 		} else {
6794 			/* Bit-map indicating which L2 hdrs may appear
6795 			 * after the basic Ethernet header
6796 			 */
6797 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6798 			       bp->path_has_ovlan ? 7 : 6);
6799 		}
6800 	}
6801 
6802 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6803 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6804 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6805 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6806 
6807 	if (!CHIP_IS_E1x(bp)) {
6808 		/* reset VFC memories */
6809 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6810 			   VFC_MEMORIES_RST_REG_CAM_RST |
6811 			   VFC_MEMORIES_RST_REG_RAM_RST);
6812 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6813 			   VFC_MEMORIES_RST_REG_CAM_RST |
6814 			   VFC_MEMORIES_RST_REG_RAM_RST);
6815 
6816 		msleep(20);
6817 	}
6818 
6819 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6820 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6821 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6822 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6823 
6824 	/* sync semi rtc */
6825 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6826 	       0x80000000);
6827 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6828 	       0x80000000);
6829 
6830 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6831 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6832 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6833 
6834 	if (!CHIP_IS_E1x(bp)) {
6835 		if (IS_MF_AFEX(bp)) {
6836 			/* configure that VNTag and VLAN headers must be
6837 			 * sent in afex mode
6838 			 */
6839 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6840 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6841 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6842 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6843 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6844 		} else {
6845 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6846 			       bp->path_has_ovlan ? 7 : 6);
6847 		}
6848 	}
6849 
6850 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6851 
6852 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6853 
6854 	if (CNIC_SUPPORT(bp)) {
6855 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6856 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6857 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6858 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6859 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6860 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6861 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6862 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6863 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6864 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6865 	}
6866 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6867 
6868 	if (sizeof(union cdu_context) != 1024)
6869 		/* we currently assume that a context is 1024 bytes */
6870 		dev_alert(&bp->pdev->dev,
6871 			  "please adjust the size of cdu_context(%ld)\n",
6872 			  (long)sizeof(union cdu_context));
6873 
6874 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6875 	val = (4 << 24) + (0 << 12) + 1024;
6876 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6877 
6878 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6879 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6880 	/* enable context validation interrupt from CFC */
6881 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6882 
6883 	/* set the thresholds to prevent CFC/CDU race */
6884 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6885 
6886 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6887 
6888 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6889 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6890 
6891 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6892 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6893 
6894 	/* Reset PCIE errors for debug */
6895 	REG_WR(bp, 0x2814, 0xffffffff);
6896 	REG_WR(bp, 0x3820, 0xffffffff);
6897 
6898 	if (!CHIP_IS_E1x(bp)) {
6899 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6900 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6901 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6902 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6903 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6904 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6905 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6906 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6907 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6908 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6909 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6910 	}
6911 
6912 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6913 	if (!CHIP_IS_E1(bp)) {
6914 		/* in E3 this done in per-port section */
6915 		if (!CHIP_IS_E3(bp))
6916 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6917 	}
6918 	if (CHIP_IS_E1H(bp))
6919 		/* not applicable for E2 (and above ...) */
6920 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6921 
6922 	if (CHIP_REV_IS_SLOW(bp))
6923 		msleep(200);
6924 
6925 	/* finish CFC init */
6926 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6927 	if (val != 1) {
6928 		BNX2X_ERR("CFC LL_INIT failed\n");
6929 		return -EBUSY;
6930 	}
6931 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6932 	if (val != 1) {
6933 		BNX2X_ERR("CFC AC_INIT failed\n");
6934 		return -EBUSY;
6935 	}
6936 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6937 	if (val != 1) {
6938 		BNX2X_ERR("CFC CAM_INIT failed\n");
6939 		return -EBUSY;
6940 	}
6941 	REG_WR(bp, CFC_REG_DEBUG0, 0);
6942 
6943 	if (CHIP_IS_E1(bp)) {
6944 		/* read NIG statistic
6945 		   to see if this is our first up since powerup */
6946 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6947 		val = *bnx2x_sp(bp, wb_data[0]);
6948 
6949 		/* do internal memory self test */
6950 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6951 			BNX2X_ERR("internal mem self test failed\n");
6952 			return -EBUSY;
6953 		}
6954 	}
6955 
6956 	bnx2x_setup_fan_failure_detection(bp);
6957 
6958 	/* clear PXP2 attentions */
6959 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6960 
6961 	bnx2x_enable_blocks_attention(bp);
6962 	bnx2x_enable_blocks_parity(bp);
6963 
6964 	if (!BP_NOMCP(bp)) {
6965 		if (CHIP_IS_E1x(bp))
6966 			bnx2x__common_init_phy(bp);
6967 	} else
6968 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6969 
6970 	return 0;
6971 }
6972 
6973 /**
6974  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6975  *
6976  * @bp:		driver handle
6977  */
6978 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6979 {
6980 	int rc = bnx2x_init_hw_common(bp);
6981 
6982 	if (rc)
6983 		return rc;
6984 
6985 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6986 	if (!BP_NOMCP(bp))
6987 		bnx2x__common_init_phy(bp);
6988 
6989 	return 0;
6990 }
6991 
6992 static int bnx2x_init_hw_port(struct bnx2x *bp)
6993 {
6994 	int port = BP_PORT(bp);
6995 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6996 	u32 low, high;
6997 	u32 val;
6998 
6999 
7000 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7001 
7002 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7003 
7004 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7005 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7006 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7007 
7008 	/* Timers bug workaround: disables the pf_master bit in pglue at
7009 	 * common phase, we need to enable it here before any dmae access are
7010 	 * attempted. Therefore we manually added the enable-master to the
7011 	 * port phase (it also happens in the function phase)
7012 	 */
7013 	if (!CHIP_IS_E1x(bp))
7014 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7015 
7016 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7017 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7018 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7019 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7020 
7021 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7022 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7023 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7024 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7025 
7026 	/* QM cid (connection) count */
7027 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7028 
7029 	if (CNIC_SUPPORT(bp)) {
7030 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7031 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7032 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7033 	}
7034 
7035 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7036 
7037 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7038 
7039 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7040 
7041 		if (IS_MF(bp))
7042 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7043 		else if (bp->dev->mtu > 4096) {
7044 			if (bp->flags & ONE_PORT_FLAG)
7045 				low = 160;
7046 			else {
7047 				val = bp->dev->mtu;
7048 				/* (24*1024 + val*4)/256 */
7049 				low = 96 + (val/64) +
7050 						((val % 64) ? 1 : 0);
7051 			}
7052 		} else
7053 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7054 		high = low + 56;	/* 14*1024/256 */
7055 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7056 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7057 	}
7058 
7059 	if (CHIP_MODE_IS_4_PORT(bp))
7060 		REG_WR(bp, (BP_PORT(bp) ?
7061 			    BRB1_REG_MAC_GUARANTIED_1 :
7062 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7063 
7064 
7065 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7066 	if (CHIP_IS_E3B0(bp)) {
7067 		if (IS_MF_AFEX(bp)) {
7068 			/* configure headers for AFEX mode */
7069 			REG_WR(bp, BP_PORT(bp) ?
7070 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7071 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7072 			REG_WR(bp, BP_PORT(bp) ?
7073 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7074 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7075 			REG_WR(bp, BP_PORT(bp) ?
7076 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7077 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7078 		} else {
7079 			/* Ovlan exists only if we are in multi-function +
7080 			 * switch-dependent mode, in switch-independent there
7081 			 * is no ovlan headers
7082 			 */
7083 			REG_WR(bp, BP_PORT(bp) ?
7084 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7085 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7086 			       (bp->path_has_ovlan ? 7 : 6));
7087 		}
7088 	}
7089 
7090 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7091 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7092 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7093 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7094 
7095 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7096 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7097 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7098 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7099 
7100 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7101 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7102 
7103 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7104 
7105 	if (CHIP_IS_E1x(bp)) {
7106 		/* configure PBF to work without PAUSE mtu 9000 */
7107 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7108 
7109 		/* update threshold */
7110 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7111 		/* update init credit */
7112 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7113 
7114 		/* probe changes */
7115 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7116 		udelay(50);
7117 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7118 	}
7119 
7120 	if (CNIC_SUPPORT(bp))
7121 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7122 
7123 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7124 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7125 
7126 	if (CHIP_IS_E1(bp)) {
7127 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7128 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7129 	}
7130 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7131 
7132 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7133 
7134 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7135 	/* init aeu_mask_attn_func_0/1:
7136 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
7137 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
7138 	 *             bits 4-7 are used for "per vn group attention" */
7139 	val = IS_MF(bp) ? 0xF7 : 0x7;
7140 	/* Enable DCBX attention for all but E1 */
7141 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7142 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7143 
7144 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7145 
7146 	if (!CHIP_IS_E1x(bp)) {
7147 		/* Bit-map indicating which L2 hdrs may appear after the
7148 		 * basic Ethernet header
7149 		 */
7150 		if (IS_MF_AFEX(bp))
7151 			REG_WR(bp, BP_PORT(bp) ?
7152 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7153 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7154 		else
7155 			REG_WR(bp, BP_PORT(bp) ?
7156 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7157 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7158 			       IS_MF_SD(bp) ? 7 : 6);
7159 
7160 		if (CHIP_IS_E3(bp))
7161 			REG_WR(bp, BP_PORT(bp) ?
7162 				   NIG_REG_LLH1_MF_MODE :
7163 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7164 	}
7165 	if (!CHIP_IS_E3(bp))
7166 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7167 
7168 	if (!CHIP_IS_E1(bp)) {
7169 		/* 0x2 disable mf_ov, 0x1 enable */
7170 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7171 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7172 
7173 		if (!CHIP_IS_E1x(bp)) {
7174 			val = 0;
7175 			switch (bp->mf_mode) {
7176 			case MULTI_FUNCTION_SD:
7177 				val = 1;
7178 				break;
7179 			case MULTI_FUNCTION_SI:
7180 			case MULTI_FUNCTION_AFEX:
7181 				val = 2;
7182 				break;
7183 			}
7184 
7185 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7186 						  NIG_REG_LLH0_CLS_TYPE), val);
7187 		}
7188 		{
7189 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7190 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7191 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7192 		}
7193 	}
7194 
7195 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7196 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7197 	if (val & MISC_SPIO_SPIO5) {
7198 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7199 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7200 		val = REG_RD(bp, reg_addr);
7201 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7202 		REG_WR(bp, reg_addr, val);
7203 	}
7204 
7205 	return 0;
7206 }
7207 
7208 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7209 {
7210 	int reg;
7211 	u32 wb_write[2];
7212 
7213 	if (CHIP_IS_E1(bp))
7214 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7215 	else
7216 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7217 
7218 	wb_write[0] = ONCHIP_ADDR1(addr);
7219 	wb_write[1] = ONCHIP_ADDR2(addr);
7220 	REG_WR_DMAE(bp, reg, wb_write, 2);
7221 }
7222 
7223 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7224 {
7225 	u32 data, ctl, cnt = 100;
7226 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7227 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7228 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7229 	u32 sb_bit =  1 << (idu_sb_id%32);
7230 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7231 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7232 
7233 	/* Not supported in BC mode */
7234 	if (CHIP_INT_MODE_IS_BC(bp))
7235 		return;
7236 
7237 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7238 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7239 		IGU_REGULAR_CLEANUP_SET				|
7240 		IGU_REGULAR_BCLEANUP;
7241 
7242 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7243 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7244 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7245 
7246 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7247 			 data, igu_addr_data);
7248 	REG_WR(bp, igu_addr_data, data);
7249 	mmiowb();
7250 	barrier();
7251 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7252 			  ctl, igu_addr_ctl);
7253 	REG_WR(bp, igu_addr_ctl, ctl);
7254 	mmiowb();
7255 	barrier();
7256 
7257 	/* wait for clean up to finish */
7258 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7259 		msleep(20);
7260 
7261 
7262 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7263 		DP(NETIF_MSG_HW,
7264 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7265 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7266 	}
7267 }
7268 
7269 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7270 {
7271 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7272 }
7273 
7274 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7275 {
7276 	u32 i, base = FUNC_ILT_BASE(func);
7277 	for (i = base; i < base + ILT_PER_FUNC; i++)
7278 		bnx2x_ilt_wr(bp, i, 0);
7279 }
7280 
7281 
7282 static void bnx2x_init_searcher(struct bnx2x *bp)
7283 {
7284 	int port = BP_PORT(bp);
7285 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7286 	/* T1 hash bits value determines the T1 number of entries */
7287 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7288 }
7289 
7290 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7291 {
7292 	int rc;
7293 	struct bnx2x_func_state_params func_params = {NULL};
7294 	struct bnx2x_func_switch_update_params *switch_update_params =
7295 		&func_params.params.switch_update;
7296 
7297 	/* Prepare parameters for function state transitions */
7298 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7299 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7300 
7301 	func_params.f_obj = &bp->func_obj;
7302 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7303 
7304 	/* Function parameters */
7305 	switch_update_params->suspend = suspend;
7306 
7307 	rc = bnx2x_func_state_change(bp, &func_params);
7308 
7309 	return rc;
7310 }
7311 
7312 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7313 {
7314 	int rc, i, port = BP_PORT(bp);
7315 	int vlan_en = 0, mac_en[NUM_MACS];
7316 
7317 
7318 	/* Close input from network */
7319 	if (bp->mf_mode == SINGLE_FUNCTION) {
7320 		bnx2x_set_rx_filter(&bp->link_params, 0);
7321 	} else {
7322 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7323 				   NIG_REG_LLH0_FUNC_EN);
7324 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7325 			  NIG_REG_LLH0_FUNC_EN, 0);
7326 		for (i = 0; i < NUM_MACS; i++) {
7327 			mac_en[i] = REG_RD(bp, port ?
7328 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7329 					      4 * i) :
7330 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7331 					      4 * i));
7332 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7333 					      4 * i) :
7334 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7335 		}
7336 	}
7337 
7338 	/* Close BMC to host */
7339 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7340 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7341 
7342 	/* Suspend Tx switching to the PF. Completion of this ramrod
7343 	 * further guarantees that all the packets of that PF / child
7344 	 * VFs in BRB were processed by the Parser, so it is safe to
7345 	 * change the NIC_MODE register.
7346 	 */
7347 	rc = bnx2x_func_switch_update(bp, 1);
7348 	if (rc) {
7349 		BNX2X_ERR("Can't suspend tx-switching!\n");
7350 		return rc;
7351 	}
7352 
7353 	/* Change NIC_MODE register */
7354 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7355 
7356 	/* Open input from network */
7357 	if (bp->mf_mode == SINGLE_FUNCTION) {
7358 		bnx2x_set_rx_filter(&bp->link_params, 1);
7359 	} else {
7360 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7361 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7362 		for (i = 0; i < NUM_MACS; i++) {
7363 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7364 					      4 * i) :
7365 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7366 				  mac_en[i]);
7367 		}
7368 	}
7369 
7370 	/* Enable BMC to host */
7371 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7372 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7373 
7374 	/* Resume Tx switching to the PF */
7375 	rc = bnx2x_func_switch_update(bp, 0);
7376 	if (rc) {
7377 		BNX2X_ERR("Can't resume tx-switching!\n");
7378 		return rc;
7379 	}
7380 
7381 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7382 	return 0;
7383 }
7384 
7385 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7386 {
7387 	int rc;
7388 
7389 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7390 
7391 	if (CONFIGURE_NIC_MODE(bp)) {
7392 		/* Configrue searcher as part of function hw init */
7393 		bnx2x_init_searcher(bp);
7394 
7395 		/* Reset NIC mode */
7396 		rc = bnx2x_reset_nic_mode(bp);
7397 		if (rc)
7398 			BNX2X_ERR("Can't change NIC mode!\n");
7399 		return rc;
7400 	}
7401 
7402 	return 0;
7403 }
7404 
7405 static int bnx2x_init_hw_func(struct bnx2x *bp)
7406 {
7407 	int port = BP_PORT(bp);
7408 	int func = BP_FUNC(bp);
7409 	int init_phase = PHASE_PF0 + func;
7410 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7411 	u16 cdu_ilt_start;
7412 	u32 addr, val;
7413 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7414 	int i, main_mem_width, rc;
7415 
7416 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7417 
7418 	/* FLR cleanup - hmmm */
7419 	if (!CHIP_IS_E1x(bp)) {
7420 		rc = bnx2x_pf_flr_clnup(bp);
7421 		if (rc) {
7422 			bnx2x_fw_dump(bp);
7423 			return rc;
7424 		}
7425 	}
7426 
7427 	/* set MSI reconfigure capability */
7428 	if (bp->common.int_block == INT_BLOCK_HC) {
7429 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7430 		val = REG_RD(bp, addr);
7431 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7432 		REG_WR(bp, addr, val);
7433 	}
7434 
7435 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7436 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7437 
7438 	ilt = BP_ILT(bp);
7439 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7440 
7441 	if (IS_SRIOV(bp))
7442 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7443 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7444 
7445 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7446 	 * those of the VFs, so start line should be reset
7447 	 */
7448 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7449 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7450 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7451 		ilt->lines[cdu_ilt_start + i].page_mapping =
7452 			bp->context[i].cxt_mapping;
7453 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7454 	}
7455 
7456 	bnx2x_ilt_init_op(bp, INITOP_SET);
7457 
7458 	if (!CONFIGURE_NIC_MODE(bp)) {
7459 		bnx2x_init_searcher(bp);
7460 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7461 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7462 	} else {
7463 		/* Set NIC mode */
7464 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7465 		DP(NETIF_MSG_IFUP, "NIC MODE configrued\n");
7466 
7467 	}
7468 
7469 	if (!CHIP_IS_E1x(bp)) {
7470 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7471 
7472 		/* Turn on a single ISR mode in IGU if driver is going to use
7473 		 * INT#x or MSI
7474 		 */
7475 		if (!(bp->flags & USING_MSIX_FLAG))
7476 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7477 		/*
7478 		 * Timers workaround bug: function init part.
7479 		 * Need to wait 20msec after initializing ILT,
7480 		 * needed to make sure there are no requests in
7481 		 * one of the PXP internal queues with "old" ILT addresses
7482 		 */
7483 		msleep(20);
7484 		/*
7485 		 * Master enable - Due to WB DMAE writes performed before this
7486 		 * register is re-initialized as part of the regular function
7487 		 * init
7488 		 */
7489 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7490 		/* Enable the function in IGU */
7491 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7492 	}
7493 
7494 	bp->dmae_ready = 1;
7495 
7496 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7497 
7498 	if (!CHIP_IS_E1x(bp))
7499 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7500 
7501 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7502 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7503 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7504 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7505 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7506 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7507 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7508 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7509 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7510 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7511 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7512 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7513 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7514 
7515 	if (!CHIP_IS_E1x(bp))
7516 		REG_WR(bp, QM_REG_PF_EN, 1);
7517 
7518 	if (!CHIP_IS_E1x(bp)) {
7519 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7520 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7521 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7522 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7523 	}
7524 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7525 
7526 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7527 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7528 
7529 	bnx2x_iov_init_dq(bp);
7530 
7531 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7532 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7533 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7534 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7535 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7536 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7537 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7538 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7539 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7540 	if (!CHIP_IS_E1x(bp))
7541 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7542 
7543 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7544 
7545 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7546 
7547 	if (!CHIP_IS_E1x(bp))
7548 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7549 
7550 	if (IS_MF(bp)) {
7551 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7552 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7553 	}
7554 
7555 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7556 
7557 	/* HC init per function */
7558 	if (bp->common.int_block == INT_BLOCK_HC) {
7559 		if (CHIP_IS_E1H(bp)) {
7560 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7561 
7562 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7563 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7564 		}
7565 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7566 
7567 	} else {
7568 		int num_segs, sb_idx, prod_offset;
7569 
7570 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7571 
7572 		if (!CHIP_IS_E1x(bp)) {
7573 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7574 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7575 		}
7576 
7577 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7578 
7579 		if (!CHIP_IS_E1x(bp)) {
7580 			int dsb_idx = 0;
7581 			/**
7582 			 * Producer memory:
7583 			 * E2 mode: address 0-135 match to the mapping memory;
7584 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7585 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7586 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7587 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7588 			 * 144-147 reserved.
7589 			 *
7590 			 * E1.5 mode - In backward compatible mode;
7591 			 * for non default SB; each even line in the memory
7592 			 * holds the U producer and each odd line hold
7593 			 * the C producer. The first 128 producers are for
7594 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7595 			 * producers are for the DSB for each PF.
7596 			 * Each PF has five segments: (the order inside each
7597 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7598 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7599 			 * 144-147 attn prods;
7600 			 */
7601 			/* non-default-status-blocks */
7602 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7603 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7604 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7605 				prod_offset = (bp->igu_base_sb + sb_idx) *
7606 					num_segs;
7607 
7608 				for (i = 0; i < num_segs; i++) {
7609 					addr = IGU_REG_PROD_CONS_MEMORY +
7610 							(prod_offset + i) * 4;
7611 					REG_WR(bp, addr, 0);
7612 				}
7613 				/* send consumer update with value 0 */
7614 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7615 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7616 				bnx2x_igu_clear_sb(bp,
7617 						   bp->igu_base_sb + sb_idx);
7618 			}
7619 
7620 			/* default-status-blocks */
7621 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7622 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7623 
7624 			if (CHIP_MODE_IS_4_PORT(bp))
7625 				dsb_idx = BP_FUNC(bp);
7626 			else
7627 				dsb_idx = BP_VN(bp);
7628 
7629 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7630 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7631 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7632 
7633 			/*
7634 			 * igu prods come in chunks of E1HVN_MAX (4) -
7635 			 * does not matters what is the current chip mode
7636 			 */
7637 			for (i = 0; i < (num_segs * E1HVN_MAX);
7638 			     i += E1HVN_MAX) {
7639 				addr = IGU_REG_PROD_CONS_MEMORY +
7640 							(prod_offset + i)*4;
7641 				REG_WR(bp, addr, 0);
7642 			}
7643 			/* send consumer update with 0 */
7644 			if (CHIP_INT_MODE_IS_BC(bp)) {
7645 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7646 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7647 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7648 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7649 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7650 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7651 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7652 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7653 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7654 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7655 			} else {
7656 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7657 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7658 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7659 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7660 			}
7661 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7662 
7663 			/* !!! these should become driver const once
7664 			   rf-tool supports split-68 const */
7665 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7666 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7667 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7668 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7669 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7670 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7671 		}
7672 	}
7673 
7674 	/* Reset PCIE errors for debug */
7675 	REG_WR(bp, 0x2114, 0xffffffff);
7676 	REG_WR(bp, 0x2120, 0xffffffff);
7677 
7678 	if (CHIP_IS_E1x(bp)) {
7679 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7680 		main_mem_base = HC_REG_MAIN_MEMORY +
7681 				BP_PORT(bp) * (main_mem_size * 4);
7682 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7683 		main_mem_width = 8;
7684 
7685 		val = REG_RD(bp, main_mem_prty_clr);
7686 		if (val)
7687 			DP(NETIF_MSG_HW,
7688 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7689 			   val);
7690 
7691 		/* Clear "false" parity errors in MSI-X table */
7692 		for (i = main_mem_base;
7693 		     i < main_mem_base + main_mem_size * 4;
7694 		     i += main_mem_width) {
7695 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7696 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7697 					 i, main_mem_width / 4);
7698 		}
7699 		/* Clear HC parity attention */
7700 		REG_RD(bp, main_mem_prty_clr);
7701 	}
7702 
7703 #ifdef BNX2X_STOP_ON_ERROR
7704 	/* Enable STORMs SP logging */
7705 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7706 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7707 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7708 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7709 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7710 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7711 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7712 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7713 #endif
7714 
7715 	bnx2x_phy_probe(&bp->link_params);
7716 
7717 	return 0;
7718 }
7719 
7720 
7721 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7722 {
7723 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7724 
7725 	if (!CHIP_IS_E1x(bp))
7726 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7727 			       sizeof(struct host_hc_status_block_e2));
7728 	else
7729 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7730 			       sizeof(struct host_hc_status_block_e1x));
7731 
7732 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7733 }
7734 
7735 void bnx2x_free_mem(struct bnx2x *bp)
7736 {
7737 	int i;
7738 
7739 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7740 		       sizeof(struct host_sp_status_block));
7741 
7742 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7743 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7744 
7745 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7746 		       sizeof(struct bnx2x_slowpath));
7747 
7748 	for (i = 0; i < L2_ILT_LINES(bp); i++)
7749 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7750 			       bp->context[i].size);
7751 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7752 
7753 	BNX2X_FREE(bp->ilt->lines);
7754 
7755 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7756 
7757 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7758 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7759 
7760 	bnx2x_iov_free_mem(bp);
7761 }
7762 
7763 
7764 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7765 {
7766 	if (!CHIP_IS_E1x(bp))
7767 		/* size = the status block + ramrod buffers */
7768 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7769 				sizeof(struct host_hc_status_block_e2));
7770 	else
7771 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7772 				&bp->cnic_sb_mapping,
7773 				sizeof(struct
7774 				       host_hc_status_block_e1x));
7775 
7776 	if (CONFIGURE_NIC_MODE(bp))
7777 		/* allocate searcher T2 table, as it wan't allocated before */
7778 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7779 
7780 	/* write address to which L5 should insert its values */
7781 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
7782 		&bp->slowpath->drv_info_to_mcp;
7783 
7784 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7785 		goto alloc_mem_err;
7786 
7787 	return 0;
7788 
7789 alloc_mem_err:
7790 	bnx2x_free_mem_cnic(bp);
7791 	BNX2X_ERR("Can't allocate memory\n");
7792 	return -ENOMEM;
7793 }
7794 
7795 int bnx2x_alloc_mem(struct bnx2x *bp)
7796 {
7797 	int i, allocated, context_size;
7798 
7799 	if (!CONFIGURE_NIC_MODE(bp))
7800 		/* allocate searcher T2 table */
7801 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7802 
7803 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7804 			sizeof(struct host_sp_status_block));
7805 
7806 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7807 			sizeof(struct bnx2x_slowpath));
7808 
7809 	/* Allocate memory for CDU context:
7810 	 * This memory is allocated separately and not in the generic ILT
7811 	 * functions because CDU differs in few aspects:
7812 	 * 1. There are multiple entities allocating memory for context -
7813 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7814 	 * its own ILT lines.
7815 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
7816 	 * for the other ILT clients), to be efficient we want to support
7817 	 * allocation of sub-page-size in the last entry.
7818 	 * 3. Context pointers are used by the driver to pass to FW / update
7819 	 * the context (for the other ILT clients the pointers are used just to
7820 	 * free the memory during unload).
7821 	 */
7822 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7823 
7824 	for (i = 0, allocated = 0; allocated < context_size; i++) {
7825 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7826 					  (context_size - allocated));
7827 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7828 				&bp->context[i].cxt_mapping,
7829 				bp->context[i].size);
7830 		allocated += bp->context[i].size;
7831 	}
7832 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7833 
7834 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7835 		goto alloc_mem_err;
7836 
7837 	if (bnx2x_iov_alloc_mem(bp))
7838 		goto alloc_mem_err;
7839 
7840 	/* Slow path ring */
7841 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7842 
7843 	/* EQ */
7844 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7845 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7846 
7847 	return 0;
7848 
7849 alloc_mem_err:
7850 	bnx2x_free_mem(bp);
7851 	BNX2X_ERR("Can't allocate memory\n");
7852 	return -ENOMEM;
7853 }
7854 
7855 /*
7856  * Init service functions
7857  */
7858 
7859 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7860 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7861 		      int mac_type, unsigned long *ramrod_flags)
7862 {
7863 	int rc;
7864 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7865 
7866 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7867 
7868 	/* Fill general parameters */
7869 	ramrod_param.vlan_mac_obj = obj;
7870 	ramrod_param.ramrod_flags = *ramrod_flags;
7871 
7872 	/* Fill a user request section if needed */
7873 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7874 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7875 
7876 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7877 
7878 		/* Set the command: ADD or DEL */
7879 		if (set)
7880 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7881 		else
7882 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7883 	}
7884 
7885 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7886 
7887 	if (rc == -EEXIST) {
7888 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7889 		/* do not treat adding same MAC as error */
7890 		rc = 0;
7891 	} else if (rc < 0)
7892 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7893 
7894 	return rc;
7895 }
7896 
7897 int bnx2x_del_all_macs(struct bnx2x *bp,
7898 		       struct bnx2x_vlan_mac_obj *mac_obj,
7899 		       int mac_type, bool wait_for_comp)
7900 {
7901 	int rc;
7902 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7903 
7904 	/* Wait for completion of requested */
7905 	if (wait_for_comp)
7906 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7907 
7908 	/* Set the mac type of addresses we want to clear */
7909 	__set_bit(mac_type, &vlan_mac_flags);
7910 
7911 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7912 	if (rc < 0)
7913 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7914 
7915 	return rc;
7916 }
7917 
7918 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7919 {
7920 	unsigned long ramrod_flags = 0;
7921 
7922 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
7923 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
7924 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7925 		   "Ignoring Zero MAC for STORAGE SD mode\n");
7926 		return 0;
7927 	}
7928 
7929 	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7930 
7931 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7932 	/* Eth MAC is set on RSS leading client (fp[0]) */
7933 	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->sp_objs->mac_obj,
7934 				 set, BNX2X_ETH_MAC, &ramrod_flags);
7935 }
7936 
7937 int bnx2x_setup_leading(struct bnx2x *bp)
7938 {
7939 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7940 }
7941 
7942 /**
7943  * bnx2x_set_int_mode - configure interrupt mode
7944  *
7945  * @bp:		driver handle
7946  *
7947  * In case of MSI-X it will also try to enable MSI-X.
7948  */
7949 int bnx2x_set_int_mode(struct bnx2x *bp)
7950 {
7951 	int rc = 0;
7952 
7953 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX)
7954 		return -EINVAL;
7955 
7956 	switch (int_mode) {
7957 	case BNX2X_INT_MODE_MSIX:
7958 		/* attempt to enable msix */
7959 		rc = bnx2x_enable_msix(bp);
7960 
7961 		/* msix attained */
7962 		if (!rc)
7963 			return 0;
7964 
7965 		/* vfs use only msix */
7966 		if (rc && IS_VF(bp))
7967 			return rc;
7968 
7969 		/* failed to enable multiple MSI-X */
7970 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
7971 			       bp->num_queues,
7972 			       1 + bp->num_cnic_queues);
7973 
7974 		/* falling through... */
7975 	case BNX2X_INT_MODE_MSI:
7976 		bnx2x_enable_msi(bp);
7977 
7978 		/* falling through... */
7979 	case BNX2X_INT_MODE_INTX:
7980 		bp->num_ethernet_queues = 1;
7981 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
7982 		BNX2X_DEV_INFO("set number of queues to 1\n");
7983 		break;
7984 	default:
7985 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
7986 		return -EINVAL;
7987 	}
7988 	return 0;
7989 }
7990 
7991 /* must be called prior to any HW initializations */
7992 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7993 {
7994 	if (IS_SRIOV(bp))
7995 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
7996 	return L2_ILT_LINES(bp);
7997 }
7998 
7999 void bnx2x_ilt_set_info(struct bnx2x *bp)
8000 {
8001 	struct ilt_client_info *ilt_client;
8002 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8003 	u16 line = 0;
8004 
8005 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8006 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8007 
8008 	/* CDU */
8009 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8010 	ilt_client->client_num = ILT_CLIENT_CDU;
8011 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8012 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8013 	ilt_client->start = line;
8014 	line += bnx2x_cid_ilt_lines(bp);
8015 
8016 	if (CNIC_SUPPORT(bp))
8017 		line += CNIC_ILT_LINES;
8018 	ilt_client->end = line - 1;
8019 
8020 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8021 	   ilt_client->start,
8022 	   ilt_client->end,
8023 	   ilt_client->page_size,
8024 	   ilt_client->flags,
8025 	   ilog2(ilt_client->page_size >> 12));
8026 
8027 	/* QM */
8028 	if (QM_INIT(bp->qm_cid_count)) {
8029 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8030 		ilt_client->client_num = ILT_CLIENT_QM;
8031 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8032 		ilt_client->flags = 0;
8033 		ilt_client->start = line;
8034 
8035 		/* 4 bytes for each cid */
8036 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8037 							 QM_ILT_PAGE_SZ);
8038 
8039 		ilt_client->end = line - 1;
8040 
8041 		DP(NETIF_MSG_IFUP,
8042 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8043 		   ilt_client->start,
8044 		   ilt_client->end,
8045 		   ilt_client->page_size,
8046 		   ilt_client->flags,
8047 		   ilog2(ilt_client->page_size >> 12));
8048 
8049 	}
8050 
8051 	if (CNIC_SUPPORT(bp)) {
8052 		/* SRC */
8053 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8054 		ilt_client->client_num = ILT_CLIENT_SRC;
8055 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8056 		ilt_client->flags = 0;
8057 		ilt_client->start = line;
8058 		line += SRC_ILT_LINES;
8059 		ilt_client->end = line - 1;
8060 
8061 		DP(NETIF_MSG_IFUP,
8062 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8063 		   ilt_client->start,
8064 		   ilt_client->end,
8065 		   ilt_client->page_size,
8066 		   ilt_client->flags,
8067 		   ilog2(ilt_client->page_size >> 12));
8068 
8069 		/* TM */
8070 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8071 		ilt_client->client_num = ILT_CLIENT_TM;
8072 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8073 		ilt_client->flags = 0;
8074 		ilt_client->start = line;
8075 		line += TM_ILT_LINES;
8076 		ilt_client->end = line - 1;
8077 
8078 		DP(NETIF_MSG_IFUP,
8079 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8080 		   ilt_client->start,
8081 		   ilt_client->end,
8082 		   ilt_client->page_size,
8083 		   ilt_client->flags,
8084 		   ilog2(ilt_client->page_size >> 12));
8085 	}
8086 
8087 	BUG_ON(line > ILT_MAX_LINES);
8088 }
8089 
8090 /**
8091  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8092  *
8093  * @bp:			driver handle
8094  * @fp:			pointer to fastpath
8095  * @init_params:	pointer to parameters structure
8096  *
8097  * parameters configured:
8098  *      - HC configuration
8099  *      - Queue's CDU context
8100  */
8101 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8102 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8103 {
8104 
8105 	u8 cos;
8106 	int cxt_index, cxt_offset;
8107 
8108 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8109 	if (!IS_FCOE_FP(fp)) {
8110 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8111 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8112 
8113 		/* If HC is supporterd, enable host coalescing in the transition
8114 		 * to INIT state.
8115 		 */
8116 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8117 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8118 
8119 		/* HC rate */
8120 		init_params->rx.hc_rate = bp->rx_ticks ?
8121 			(1000000 / bp->rx_ticks) : 0;
8122 		init_params->tx.hc_rate = bp->tx_ticks ?
8123 			(1000000 / bp->tx_ticks) : 0;
8124 
8125 		/* FW SB ID */
8126 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8127 			fp->fw_sb_id;
8128 
8129 		/*
8130 		 * CQ index among the SB indices: FCoE clients uses the default
8131 		 * SB, therefore it's different.
8132 		 */
8133 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8134 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8135 	}
8136 
8137 	/* set maximum number of COSs supported by this queue */
8138 	init_params->max_cos = fp->max_cos;
8139 
8140 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8141 	    fp->index, init_params->max_cos);
8142 
8143 	/* set the context pointers queue object */
8144 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8145 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8146 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8147 				ILT_PAGE_CIDS);
8148 		init_params->cxts[cos] =
8149 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8150 	}
8151 }
8152 
8153 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8154 			struct bnx2x_queue_state_params *q_params,
8155 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8156 			int tx_index, bool leading)
8157 {
8158 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8159 
8160 	/* Set the command */
8161 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8162 
8163 	/* Set tx-only QUEUE flags: don't zero statistics */
8164 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8165 
8166 	/* choose the index of the cid to send the slow path on */
8167 	tx_only_params->cid_index = tx_index;
8168 
8169 	/* Set general TX_ONLY_SETUP parameters */
8170 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8171 
8172 	/* Set Tx TX_ONLY_SETUP parameters */
8173 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8174 
8175 	DP(NETIF_MSG_IFUP,
8176 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8177 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8178 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8179 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8180 
8181 	/* send the ramrod */
8182 	return bnx2x_queue_state_change(bp, q_params);
8183 }
8184 
8185 
8186 /**
8187  * bnx2x_setup_queue - setup queue
8188  *
8189  * @bp:		driver handle
8190  * @fp:		pointer to fastpath
8191  * @leading:	is leading
8192  *
8193  * This function performs 2 steps in a Queue state machine
8194  *      actually: 1) RESET->INIT 2) INIT->SETUP
8195  */
8196 
8197 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8198 		       bool leading)
8199 {
8200 	struct bnx2x_queue_state_params q_params = {NULL};
8201 	struct bnx2x_queue_setup_params *setup_params =
8202 						&q_params.params.setup;
8203 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8204 						&q_params.params.tx_only;
8205 	int rc;
8206 	u8 tx_index;
8207 
8208 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8209 
8210 	/* reset IGU state skip FCoE L2 queue */
8211 	if (!IS_FCOE_FP(fp))
8212 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8213 			     IGU_INT_ENABLE, 0);
8214 
8215 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8216 	/* We want to wait for completion in this context */
8217 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8218 
8219 	/* Prepare the INIT parameters */
8220 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8221 
8222 	/* Set the command */
8223 	q_params.cmd = BNX2X_Q_CMD_INIT;
8224 
8225 	/* Change the state to INIT */
8226 	rc = bnx2x_queue_state_change(bp, &q_params);
8227 	if (rc) {
8228 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8229 		return rc;
8230 	}
8231 
8232 	DP(NETIF_MSG_IFUP, "init complete\n");
8233 
8234 
8235 	/* Now move the Queue to the SETUP state... */
8236 	memset(setup_params, 0, sizeof(*setup_params));
8237 
8238 	/* Set QUEUE flags */
8239 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8240 
8241 	/* Set general SETUP parameters */
8242 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8243 				FIRST_TX_COS_INDEX);
8244 
8245 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8246 			    &setup_params->rxq_params);
8247 
8248 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8249 			   FIRST_TX_COS_INDEX);
8250 
8251 	/* Set the command */
8252 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8253 
8254 	if (IS_FCOE_FP(fp))
8255 		bp->fcoe_init = true;
8256 
8257 	/* Change the state to SETUP */
8258 	rc = bnx2x_queue_state_change(bp, &q_params);
8259 	if (rc) {
8260 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8261 		return rc;
8262 	}
8263 
8264 	/* loop through the relevant tx-only indices */
8265 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8266 	      tx_index < fp->max_cos;
8267 	      tx_index++) {
8268 
8269 		/* prepare and send tx-only ramrod*/
8270 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8271 					  tx_only_params, tx_index, leading);
8272 		if (rc) {
8273 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8274 				  fp->index, tx_index);
8275 			return rc;
8276 		}
8277 	}
8278 
8279 	return rc;
8280 }
8281 
8282 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8283 {
8284 	struct bnx2x_fastpath *fp = &bp->fp[index];
8285 	struct bnx2x_fp_txdata *txdata;
8286 	struct bnx2x_queue_state_params q_params = {NULL};
8287 	int rc, tx_index;
8288 
8289 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8290 
8291 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8292 	/* We want to wait for completion in this context */
8293 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8294 
8295 
8296 	/* close tx-only connections */
8297 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8298 	     tx_index < fp->max_cos;
8299 	     tx_index++){
8300 
8301 		/* ascertain this is a normal queue*/
8302 		txdata = fp->txdata_ptr[tx_index];
8303 
8304 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8305 							txdata->txq_index);
8306 
8307 		/* send halt terminate on tx-only connection */
8308 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8309 		memset(&q_params.params.terminate, 0,
8310 		       sizeof(q_params.params.terminate));
8311 		q_params.params.terminate.cid_index = tx_index;
8312 
8313 		rc = bnx2x_queue_state_change(bp, &q_params);
8314 		if (rc)
8315 			return rc;
8316 
8317 		/* send halt terminate on tx-only connection */
8318 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8319 		memset(&q_params.params.cfc_del, 0,
8320 		       sizeof(q_params.params.cfc_del));
8321 		q_params.params.cfc_del.cid_index = tx_index;
8322 		rc = bnx2x_queue_state_change(bp, &q_params);
8323 		if (rc)
8324 			return rc;
8325 	}
8326 	/* Stop the primary connection: */
8327 	/* ...halt the connection */
8328 	q_params.cmd = BNX2X_Q_CMD_HALT;
8329 	rc = bnx2x_queue_state_change(bp, &q_params);
8330 	if (rc)
8331 		return rc;
8332 
8333 	/* ...terminate the connection */
8334 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8335 	memset(&q_params.params.terminate, 0,
8336 	       sizeof(q_params.params.terminate));
8337 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8338 	rc = bnx2x_queue_state_change(bp, &q_params);
8339 	if (rc)
8340 		return rc;
8341 	/* ...delete cfc entry */
8342 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8343 	memset(&q_params.params.cfc_del, 0,
8344 	       sizeof(q_params.params.cfc_del));
8345 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8346 	return bnx2x_queue_state_change(bp, &q_params);
8347 }
8348 
8349 
8350 static void bnx2x_reset_func(struct bnx2x *bp)
8351 {
8352 	int port = BP_PORT(bp);
8353 	int func = BP_FUNC(bp);
8354 	int i;
8355 
8356 	/* Disable the function in the FW */
8357 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8358 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8359 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8360 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8361 
8362 	/* FP SBs */
8363 	for_each_eth_queue(bp, i) {
8364 		struct bnx2x_fastpath *fp = &bp->fp[i];
8365 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8366 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8367 			   SB_DISABLED);
8368 	}
8369 
8370 	if (CNIC_LOADED(bp))
8371 		/* CNIC SB */
8372 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8373 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8374 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8375 
8376 	/* SP SB */
8377 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8378 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8379 		SB_DISABLED);
8380 
8381 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8382 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8383 		       0);
8384 
8385 	/* Configure IGU */
8386 	if (bp->common.int_block == INT_BLOCK_HC) {
8387 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8388 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8389 	} else {
8390 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8391 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8392 	}
8393 
8394 	if (CNIC_LOADED(bp)) {
8395 		/* Disable Timer scan */
8396 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8397 		/*
8398 		 * Wait for at least 10ms and up to 2 second for the timers
8399 		 * scan to complete
8400 		 */
8401 		for (i = 0; i < 200; i++) {
8402 			msleep(10);
8403 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8404 				break;
8405 		}
8406 	}
8407 	/* Clear ILT */
8408 	bnx2x_clear_func_ilt(bp, func);
8409 
8410 	/* Timers workaround bug for E2: if this is vnic-3,
8411 	 * we need to set the entire ilt range for this timers.
8412 	 */
8413 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8414 		struct ilt_client_info ilt_cli;
8415 		/* use dummy TM client */
8416 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8417 		ilt_cli.start = 0;
8418 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8419 		ilt_cli.client_num = ILT_CLIENT_TM;
8420 
8421 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8422 	}
8423 
8424 	/* this assumes that reset_port() called before reset_func()*/
8425 	if (!CHIP_IS_E1x(bp))
8426 		bnx2x_pf_disable(bp);
8427 
8428 	bp->dmae_ready = 0;
8429 }
8430 
8431 static void bnx2x_reset_port(struct bnx2x *bp)
8432 {
8433 	int port = BP_PORT(bp);
8434 	u32 val;
8435 
8436 	/* Reset physical Link */
8437 	bnx2x__link_reset(bp);
8438 
8439 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8440 
8441 	/* Do not rcv packets to BRB */
8442 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8443 	/* Do not direct rcv packets that are not for MCP to the BRB */
8444 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8445 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8446 
8447 	/* Configure AEU */
8448 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8449 
8450 	msleep(100);
8451 	/* Check for BRB port occupancy */
8452 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8453 	if (val)
8454 		DP(NETIF_MSG_IFDOWN,
8455 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8456 
8457 	/* TODO: Close Doorbell port? */
8458 }
8459 
8460 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8461 {
8462 	struct bnx2x_func_state_params func_params = {NULL};
8463 
8464 	/* Prepare parameters for function state transitions */
8465 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8466 
8467 	func_params.f_obj = &bp->func_obj;
8468 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8469 
8470 	func_params.params.hw_init.load_phase = load_code;
8471 
8472 	return bnx2x_func_state_change(bp, &func_params);
8473 }
8474 
8475 static int bnx2x_func_stop(struct bnx2x *bp)
8476 {
8477 	struct bnx2x_func_state_params func_params = {NULL};
8478 	int rc;
8479 
8480 	/* Prepare parameters for function state transitions */
8481 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8482 	func_params.f_obj = &bp->func_obj;
8483 	func_params.cmd = BNX2X_F_CMD_STOP;
8484 
8485 	/*
8486 	 * Try to stop the function the 'good way'. If fails (in case
8487 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8488 	 * not in a debug mode, perform a state transaction in order to
8489 	 * enable further HW_RESET transaction.
8490 	 */
8491 	rc = bnx2x_func_state_change(bp, &func_params);
8492 	if (rc) {
8493 #ifdef BNX2X_STOP_ON_ERROR
8494 		return rc;
8495 #else
8496 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8497 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8498 		return bnx2x_func_state_change(bp, &func_params);
8499 #endif
8500 	}
8501 
8502 	return 0;
8503 }
8504 
8505 /**
8506  * bnx2x_send_unload_req - request unload mode from the MCP.
8507  *
8508  * @bp:			driver handle
8509  * @unload_mode:	requested function's unload mode
8510  *
8511  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8512  */
8513 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8514 {
8515 	u32 reset_code = 0;
8516 	int port = BP_PORT(bp);
8517 
8518 	/* Select the UNLOAD request mode */
8519 	if (unload_mode == UNLOAD_NORMAL)
8520 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8521 
8522 	else if (bp->flags & NO_WOL_FLAG)
8523 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8524 
8525 	else if (bp->wol) {
8526 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8527 		u8 *mac_addr = bp->dev->dev_addr;
8528 		u32 val;
8529 		u16 pmc;
8530 
8531 		/* The mac address is written to entries 1-4 to
8532 		 * preserve entry 0 which is used by the PMF
8533 		 */
8534 		u8 entry = (BP_VN(bp) + 1)*8;
8535 
8536 		val = (mac_addr[0] << 8) | mac_addr[1];
8537 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8538 
8539 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8540 		      (mac_addr[4] << 8) | mac_addr[5];
8541 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8542 
8543 		/* Enable the PME and clear the status */
8544 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8545 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8546 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8547 
8548 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8549 
8550 	} else
8551 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8552 
8553 	/* Send the request to the MCP */
8554 	if (!BP_NOMCP(bp))
8555 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8556 	else {
8557 		int path = BP_PATH(bp);
8558 
8559 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8560 		   path, load_count[path][0], load_count[path][1],
8561 		   load_count[path][2]);
8562 		load_count[path][0]--;
8563 		load_count[path][1 + port]--;
8564 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8565 		   path, load_count[path][0], load_count[path][1],
8566 		   load_count[path][2]);
8567 		if (load_count[path][0] == 0)
8568 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8569 		else if (load_count[path][1 + port] == 0)
8570 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8571 		else
8572 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8573 	}
8574 
8575 	return reset_code;
8576 }
8577 
8578 /**
8579  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8580  *
8581  * @bp:		driver handle
8582  * @keep_link:		true iff link should be kept up
8583  */
8584 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8585 {
8586 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8587 
8588 	/* Report UNLOAD_DONE to MCP */
8589 	if (!BP_NOMCP(bp))
8590 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8591 }
8592 
8593 static int bnx2x_func_wait_started(struct bnx2x *bp)
8594 {
8595 	int tout = 50;
8596 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8597 
8598 	if (!bp->port.pmf)
8599 		return 0;
8600 
8601 	/*
8602 	 * (assumption: No Attention from MCP at this stage)
8603 	 * PMF probably in the middle of TXdisable/enable transaction
8604 	 * 1. Sync IRS for default SB
8605 	 * 2. Sync SP queue - this guarantes us that attention handling started
8606 	 * 3. Wait, that TXdisable/enable transaction completes
8607 	 *
8608 	 * 1+2 guranty that if DCBx attention was scheduled it already changed
8609 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
8610 	 * received complettion for the transaction the state is TX_STOPPED.
8611 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8612 	 * transaction.
8613 	 */
8614 
8615 	/* make sure default SB ISR is done */
8616 	if (msix)
8617 		synchronize_irq(bp->msix_table[0].vector);
8618 	else
8619 		synchronize_irq(bp->pdev->irq);
8620 
8621 	flush_workqueue(bnx2x_wq);
8622 
8623 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8624 				BNX2X_F_STATE_STARTED && tout--)
8625 		msleep(20);
8626 
8627 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8628 						BNX2X_F_STATE_STARTED) {
8629 #ifdef BNX2X_STOP_ON_ERROR
8630 		BNX2X_ERR("Wrong function state\n");
8631 		return -EBUSY;
8632 #else
8633 		/*
8634 		 * Failed to complete the transaction in a "good way"
8635 		 * Force both transactions with CLR bit
8636 		 */
8637 		struct bnx2x_func_state_params func_params = {NULL};
8638 
8639 		DP(NETIF_MSG_IFDOWN,
8640 		   "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8641 
8642 		func_params.f_obj = &bp->func_obj;
8643 		__set_bit(RAMROD_DRV_CLR_ONLY,
8644 					&func_params.ramrod_flags);
8645 
8646 		/* STARTED-->TX_ST0PPED */
8647 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8648 		bnx2x_func_state_change(bp, &func_params);
8649 
8650 		/* TX_ST0PPED-->STARTED */
8651 		func_params.cmd = BNX2X_F_CMD_TX_START;
8652 		return bnx2x_func_state_change(bp, &func_params);
8653 #endif
8654 	}
8655 
8656 	return 0;
8657 }
8658 
8659 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8660 {
8661 	int port = BP_PORT(bp);
8662 	int i, rc = 0;
8663 	u8 cos;
8664 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8665 	u32 reset_code;
8666 
8667 	/* Wait until tx fastpath tasks complete */
8668 	for_each_tx_queue(bp, i) {
8669 		struct bnx2x_fastpath *fp = &bp->fp[i];
8670 
8671 		for_each_cos_in_tx_queue(fp, cos)
8672 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8673 #ifdef BNX2X_STOP_ON_ERROR
8674 		if (rc)
8675 			return;
8676 #endif
8677 	}
8678 
8679 	/* Give HW time to discard old tx messages */
8680 	usleep_range(1000, 2000);
8681 
8682 	/* Clean all ETH MACs */
8683 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8684 				false);
8685 	if (rc < 0)
8686 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8687 
8688 	/* Clean up UC list  */
8689 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8690 				true);
8691 	if (rc < 0)
8692 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8693 			  rc);
8694 
8695 	/* Disable LLH */
8696 	if (!CHIP_IS_E1(bp))
8697 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8698 
8699 	/* Set "drop all" (stop Rx).
8700 	 * We need to take a netif_addr_lock() here in order to prevent
8701 	 * a race between the completion code and this code.
8702 	 */
8703 	netif_addr_lock_bh(bp->dev);
8704 	/* Schedule the rx_mode command */
8705 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8706 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8707 	else
8708 		bnx2x_set_storm_rx_mode(bp);
8709 
8710 	/* Cleanup multicast configuration */
8711 	rparam.mcast_obj = &bp->mcast_obj;
8712 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8713 	if (rc < 0)
8714 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8715 
8716 	netif_addr_unlock_bh(bp->dev);
8717 
8718 	bnx2x_iov_chip_cleanup(bp);
8719 
8720 
8721 	/*
8722 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8723 	 * this function should perform FUNC, PORT or COMMON HW
8724 	 * reset.
8725 	 */
8726 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8727 
8728 	/*
8729 	 * (assumption: No Attention from MCP at this stage)
8730 	 * PMF probably in the middle of TXdisable/enable transaction
8731 	 */
8732 	rc = bnx2x_func_wait_started(bp);
8733 	if (rc) {
8734 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8735 #ifdef BNX2X_STOP_ON_ERROR
8736 		return;
8737 #endif
8738 	}
8739 
8740 	/* Close multi and leading connections
8741 	 * Completions for ramrods are collected in a synchronous way
8742 	 */
8743 	for_each_eth_queue(bp, i)
8744 		if (bnx2x_stop_queue(bp, i))
8745 #ifdef BNX2X_STOP_ON_ERROR
8746 			return;
8747 #else
8748 			goto unload_error;
8749 #endif
8750 
8751 	if (CNIC_LOADED(bp)) {
8752 		for_each_cnic_queue(bp, i)
8753 			if (bnx2x_stop_queue(bp, i))
8754 #ifdef BNX2X_STOP_ON_ERROR
8755 				return;
8756 #else
8757 				goto unload_error;
8758 #endif
8759 	}
8760 
8761 	/* If SP settings didn't get completed so far - something
8762 	 * very wrong has happen.
8763 	 */
8764 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8765 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8766 
8767 #ifndef BNX2X_STOP_ON_ERROR
8768 unload_error:
8769 #endif
8770 	rc = bnx2x_func_stop(bp);
8771 	if (rc) {
8772 		BNX2X_ERR("Function stop failed!\n");
8773 #ifdef BNX2X_STOP_ON_ERROR
8774 		return;
8775 #endif
8776 	}
8777 
8778 	/* Disable HW interrupts, NAPI */
8779 	bnx2x_netif_stop(bp, 1);
8780 	/* Delete all NAPI objects */
8781 	bnx2x_del_all_napi(bp);
8782 	if (CNIC_LOADED(bp))
8783 		bnx2x_del_all_napi_cnic(bp);
8784 
8785 	/* Release IRQs */
8786 	bnx2x_free_irq(bp);
8787 
8788 	/* Reset the chip */
8789 	rc = bnx2x_reset_hw(bp, reset_code);
8790 	if (rc)
8791 		BNX2X_ERR("HW_RESET failed\n");
8792 
8793 
8794 	/* Report UNLOAD_DONE to MCP */
8795 	bnx2x_send_unload_done(bp, keep_link);
8796 }
8797 
8798 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8799 {
8800 	u32 val;
8801 
8802 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8803 
8804 	if (CHIP_IS_E1(bp)) {
8805 		int port = BP_PORT(bp);
8806 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8807 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8808 
8809 		val = REG_RD(bp, addr);
8810 		val &= ~(0x300);
8811 		REG_WR(bp, addr, val);
8812 	} else {
8813 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8814 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8815 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8816 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8817 	}
8818 }
8819 
8820 /* Close gates #2, #3 and #4: */
8821 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8822 {
8823 	u32 val;
8824 
8825 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8826 	if (!CHIP_IS_E1(bp)) {
8827 		/* #4 */
8828 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8829 		/* #2 */
8830 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8831 	}
8832 
8833 	/* #3 */
8834 	if (CHIP_IS_E1x(bp)) {
8835 		/* Prevent interrupts from HC on both ports */
8836 		val = REG_RD(bp, HC_REG_CONFIG_1);
8837 		REG_WR(bp, HC_REG_CONFIG_1,
8838 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8839 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8840 
8841 		val = REG_RD(bp, HC_REG_CONFIG_0);
8842 		REG_WR(bp, HC_REG_CONFIG_0,
8843 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8844 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8845 	} else {
8846 		/* Prevent incoming interrupts in IGU */
8847 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8848 
8849 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8850 		       (!close) ?
8851 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8852 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8853 	}
8854 
8855 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8856 		close ? "closing" : "opening");
8857 	mmiowb();
8858 }
8859 
8860 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8861 
8862 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8863 {
8864 	/* Do some magic... */
8865 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8866 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8867 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8868 }
8869 
8870 /**
8871  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8872  *
8873  * @bp:		driver handle
8874  * @magic_val:	old value of the `magic' bit.
8875  */
8876 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8877 {
8878 	/* Restore the `magic' bit value... */
8879 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8880 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8881 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8882 }
8883 
8884 /**
8885  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8886  *
8887  * @bp:		driver handle
8888  * @magic_val:	old value of 'magic' bit.
8889  *
8890  * Takes care of CLP configurations.
8891  */
8892 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8893 {
8894 	u32 shmem;
8895 	u32 validity_offset;
8896 
8897 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8898 
8899 	/* Set `magic' bit in order to save MF config */
8900 	if (!CHIP_IS_E1(bp))
8901 		bnx2x_clp_reset_prep(bp, magic_val);
8902 
8903 	/* Get shmem offset */
8904 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8905 	validity_offset =
8906 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
8907 
8908 	/* Clear validity map flags */
8909 	if (shmem > 0)
8910 		REG_WR(bp, shmem + validity_offset, 0);
8911 }
8912 
8913 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8914 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8915 
8916 /**
8917  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8918  *
8919  * @bp:	driver handle
8920  */
8921 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
8922 {
8923 	/* special handling for emulation and FPGA,
8924 	   wait 10 times longer */
8925 	if (CHIP_REV_IS_SLOW(bp))
8926 		msleep(MCP_ONE_TIMEOUT*10);
8927 	else
8928 		msleep(MCP_ONE_TIMEOUT);
8929 }
8930 
8931 /*
8932  * initializes bp->common.shmem_base and waits for validity signature to appear
8933  */
8934 static int bnx2x_init_shmem(struct bnx2x *bp)
8935 {
8936 	int cnt = 0;
8937 	u32 val = 0;
8938 
8939 	do {
8940 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8941 		if (bp->common.shmem_base) {
8942 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8943 			if (val & SHR_MEM_VALIDITY_MB)
8944 				return 0;
8945 		}
8946 
8947 		bnx2x_mcp_wait_one(bp);
8948 
8949 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8950 
8951 	BNX2X_ERR("BAD MCP validity signature\n");
8952 
8953 	return -ENODEV;
8954 }
8955 
8956 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8957 {
8958 	int rc = bnx2x_init_shmem(bp);
8959 
8960 	/* Restore the `magic' bit value */
8961 	if (!CHIP_IS_E1(bp))
8962 		bnx2x_clp_reset_done(bp, magic_val);
8963 
8964 	return rc;
8965 }
8966 
8967 static void bnx2x_pxp_prep(struct bnx2x *bp)
8968 {
8969 	if (!CHIP_IS_E1(bp)) {
8970 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8971 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8972 		mmiowb();
8973 	}
8974 }
8975 
8976 /*
8977  * Reset the whole chip except for:
8978  *      - PCIE core
8979  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8980  *              one reset bit)
8981  *      - IGU
8982  *      - MISC (including AEU)
8983  *      - GRC
8984  *      - RBCN, RBCP
8985  */
8986 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8987 {
8988 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8989 	u32 global_bits2, stay_reset2;
8990 
8991 	/*
8992 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8993 	 * (per chip) blocks.
8994 	 */
8995 	global_bits2 =
8996 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8997 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8998 
8999 	/* Don't reset the following blocks.
9000 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9001 	 *            reset, as in 4 port device they might still be owned
9002 	 *            by the MCP (there is only one leader per path).
9003 	 */
9004 	not_reset_mask1 =
9005 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9006 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9007 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9008 
9009 	not_reset_mask2 =
9010 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9011 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9012 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9013 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9014 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9015 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9016 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9017 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9018 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9019 		MISC_REGISTERS_RESET_REG_2_PGLC |
9020 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9021 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9022 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9023 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9024 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9025 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9026 
9027 	/*
9028 	 * Keep the following blocks in reset:
9029 	 *  - all xxMACs are handled by the bnx2x_link code.
9030 	 */
9031 	stay_reset2 =
9032 		MISC_REGISTERS_RESET_REG_2_XMAC |
9033 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9034 
9035 	/* Full reset masks according to the chip */
9036 	reset_mask1 = 0xffffffff;
9037 
9038 	if (CHIP_IS_E1(bp))
9039 		reset_mask2 = 0xffff;
9040 	else if (CHIP_IS_E1H(bp))
9041 		reset_mask2 = 0x1ffff;
9042 	else if (CHIP_IS_E2(bp))
9043 		reset_mask2 = 0xfffff;
9044 	else /* CHIP_IS_E3 */
9045 		reset_mask2 = 0x3ffffff;
9046 
9047 	/* Don't reset global blocks unless we need to */
9048 	if (!global)
9049 		reset_mask2 &= ~global_bits2;
9050 
9051 	/*
9052 	 * In case of attention in the QM, we need to reset PXP
9053 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9054 	 * because otherwise QM reset would release 'close the gates' shortly
9055 	 * before resetting the PXP, then the PSWRQ would send a write
9056 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9057 	 * read the payload data from PSWWR, but PSWWR would not
9058 	 * respond. The write queue in PGLUE would stuck, dmae commands
9059 	 * would not return. Therefore it's important to reset the second
9060 	 * reset register (containing the
9061 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9062 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9063 	 * bit).
9064 	 */
9065 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9066 	       reset_mask2 & (~not_reset_mask2));
9067 
9068 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9069 	       reset_mask1 & (~not_reset_mask1));
9070 
9071 	barrier();
9072 	mmiowb();
9073 
9074 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9075 	       reset_mask2 & (~stay_reset2));
9076 
9077 	barrier();
9078 	mmiowb();
9079 
9080 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9081 	mmiowb();
9082 }
9083 
9084 /**
9085  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9086  * It should get cleared in no more than 1s.
9087  *
9088  * @bp:	driver handle
9089  *
9090  * It should get cleared in no more than 1s. Returns 0 if
9091  * pending writes bit gets cleared.
9092  */
9093 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9094 {
9095 	u32 cnt = 1000;
9096 	u32 pend_bits = 0;
9097 
9098 	do {
9099 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9100 
9101 		if (pend_bits == 0)
9102 			break;
9103 
9104 		usleep_range(1000, 2000);
9105 	} while (cnt-- > 0);
9106 
9107 	if (cnt <= 0) {
9108 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9109 			  pend_bits);
9110 		return -EBUSY;
9111 	}
9112 
9113 	return 0;
9114 }
9115 
9116 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9117 {
9118 	int cnt = 1000;
9119 	u32 val = 0;
9120 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9121 	u32 tags_63_32 = 0;
9122 
9123 	/* Empty the Tetris buffer, wait for 1s */
9124 	do {
9125 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9126 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9127 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9128 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9129 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9130 		if (CHIP_IS_E3(bp))
9131 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9132 
9133 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9134 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9135 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9136 		    (pgl_exp_rom2 == 0xffffffff) &&
9137 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9138 			break;
9139 		usleep_range(1000, 2000);
9140 	} while (cnt-- > 0);
9141 
9142 	if (cnt <= 0) {
9143 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9144 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9145 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9146 			  pgl_exp_rom2);
9147 		return -EAGAIN;
9148 	}
9149 
9150 	barrier();
9151 
9152 	/* Close gates #2, #3 and #4 */
9153 	bnx2x_set_234_gates(bp, true);
9154 
9155 	/* Poll for IGU VQs for 57712 and newer chips */
9156 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9157 		return -EAGAIN;
9158 
9159 
9160 	/* TBD: Indicate that "process kill" is in progress to MCP */
9161 
9162 	/* Clear "unprepared" bit */
9163 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9164 	barrier();
9165 
9166 	/* Make sure all is written to the chip before the reset */
9167 	mmiowb();
9168 
9169 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9170 	 * PSWHST, GRC and PSWRD Tetris buffer.
9171 	 */
9172 	usleep_range(1000, 2000);
9173 
9174 	/* Prepare to chip reset: */
9175 	/* MCP */
9176 	if (global)
9177 		bnx2x_reset_mcp_prep(bp, &val);
9178 
9179 	/* PXP */
9180 	bnx2x_pxp_prep(bp);
9181 	barrier();
9182 
9183 	/* reset the chip */
9184 	bnx2x_process_kill_chip_reset(bp, global);
9185 	barrier();
9186 
9187 	/* Recover after reset: */
9188 	/* MCP */
9189 	if (global && bnx2x_reset_mcp_comp(bp, val))
9190 		return -EAGAIN;
9191 
9192 	/* TBD: Add resetting the NO_MCP mode DB here */
9193 
9194 	/* Open the gates #2, #3 and #4 */
9195 	bnx2x_set_234_gates(bp, false);
9196 
9197 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9198 	 * reset state, re-enable attentions. */
9199 
9200 	return 0;
9201 }
9202 
9203 static int bnx2x_leader_reset(struct bnx2x *bp)
9204 {
9205 	int rc = 0;
9206 	bool global = bnx2x_reset_is_global(bp);
9207 	u32 load_code;
9208 
9209 	/* if not going to reset MCP - load "fake" driver to reset HW while
9210 	 * driver is owner of the HW
9211 	 */
9212 	if (!global && !BP_NOMCP(bp)) {
9213 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9214 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9215 		if (!load_code) {
9216 			BNX2X_ERR("MCP response failure, aborting\n");
9217 			rc = -EAGAIN;
9218 			goto exit_leader_reset;
9219 		}
9220 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9221 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9222 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9223 			rc = -EAGAIN;
9224 			goto exit_leader_reset2;
9225 		}
9226 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9227 		if (!load_code) {
9228 			BNX2X_ERR("MCP response failure, aborting\n");
9229 			rc = -EAGAIN;
9230 			goto exit_leader_reset2;
9231 		}
9232 	}
9233 
9234 	/* Try to recover after the failure */
9235 	if (bnx2x_process_kill(bp, global)) {
9236 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9237 			  BP_PATH(bp));
9238 		rc = -EAGAIN;
9239 		goto exit_leader_reset2;
9240 	}
9241 
9242 	/*
9243 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9244 	 * state.
9245 	 */
9246 	bnx2x_set_reset_done(bp);
9247 	if (global)
9248 		bnx2x_clear_reset_global(bp);
9249 
9250 exit_leader_reset2:
9251 	/* unload "fake driver" if it was loaded */
9252 	if (!global && !BP_NOMCP(bp)) {
9253 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9254 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9255 	}
9256 exit_leader_reset:
9257 	bp->is_leader = 0;
9258 	bnx2x_release_leader_lock(bp);
9259 	smp_mb();
9260 	return rc;
9261 }
9262 
9263 static void bnx2x_recovery_failed(struct bnx2x *bp)
9264 {
9265 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9266 
9267 	/* Disconnect this device */
9268 	netif_device_detach(bp->dev);
9269 
9270 	/*
9271 	 * Block ifup for all function on this engine until "process kill"
9272 	 * or power cycle.
9273 	 */
9274 	bnx2x_set_reset_in_progress(bp);
9275 
9276 	/* Shut down the power */
9277 	bnx2x_set_power_state(bp, PCI_D3hot);
9278 
9279 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9280 
9281 	smp_mb();
9282 }
9283 
9284 /*
9285  * Assumption: runs under rtnl lock. This together with the fact
9286  * that it's called only from bnx2x_sp_rtnl() ensure that it
9287  * will never be called when netif_running(bp->dev) is false.
9288  */
9289 static void bnx2x_parity_recover(struct bnx2x *bp)
9290 {
9291 	bool global = false;
9292 	u32 error_recovered, error_unrecovered;
9293 	bool is_parity;
9294 
9295 	DP(NETIF_MSG_HW, "Handling parity\n");
9296 	while (1) {
9297 		switch (bp->recovery_state) {
9298 		case BNX2X_RECOVERY_INIT:
9299 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9300 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9301 			WARN_ON(!is_parity);
9302 
9303 			/* Try to get a LEADER_LOCK HW lock */
9304 			if (bnx2x_trylock_leader_lock(bp)) {
9305 				bnx2x_set_reset_in_progress(bp);
9306 				/*
9307 				 * Check if there is a global attention and if
9308 				 * there was a global attention, set the global
9309 				 * reset bit.
9310 				 */
9311 
9312 				if (global)
9313 					bnx2x_set_reset_global(bp);
9314 
9315 				bp->is_leader = 1;
9316 			}
9317 
9318 			/* Stop the driver */
9319 			/* If interface has been removed - break */
9320 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9321 				return;
9322 
9323 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9324 
9325 			/* Ensure "is_leader", MCP command sequence and
9326 			 * "recovery_state" update values are seen on other
9327 			 * CPUs.
9328 			 */
9329 			smp_mb();
9330 			break;
9331 
9332 		case BNX2X_RECOVERY_WAIT:
9333 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9334 			if (bp->is_leader) {
9335 				int other_engine = BP_PATH(bp) ? 0 : 1;
9336 				bool other_load_status =
9337 					bnx2x_get_load_status(bp, other_engine);
9338 				bool load_status =
9339 					bnx2x_get_load_status(bp, BP_PATH(bp));
9340 				global = bnx2x_reset_is_global(bp);
9341 
9342 				/*
9343 				 * In case of a parity in a global block, let
9344 				 * the first leader that performs a
9345 				 * leader_reset() reset the global blocks in
9346 				 * order to clear global attentions. Otherwise
9347 				 * the the gates will remain closed for that
9348 				 * engine.
9349 				 */
9350 				if (load_status ||
9351 				    (global && other_load_status)) {
9352 					/* Wait until all other functions get
9353 					 * down.
9354 					 */
9355 					schedule_delayed_work(&bp->sp_rtnl_task,
9356 								HZ/10);
9357 					return;
9358 				} else {
9359 					/* If all other functions got down -
9360 					 * try to bring the chip back to
9361 					 * normal. In any case it's an exit
9362 					 * point for a leader.
9363 					 */
9364 					if (bnx2x_leader_reset(bp)) {
9365 						bnx2x_recovery_failed(bp);
9366 						return;
9367 					}
9368 
9369 					/* If we are here, means that the
9370 					 * leader has succeeded and doesn't
9371 					 * want to be a leader any more. Try
9372 					 * to continue as a none-leader.
9373 					 */
9374 					break;
9375 				}
9376 			} else { /* non-leader */
9377 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9378 					/* Try to get a LEADER_LOCK HW lock as
9379 					 * long as a former leader may have
9380 					 * been unloaded by the user or
9381 					 * released a leadership by another
9382 					 * reason.
9383 					 */
9384 					if (bnx2x_trylock_leader_lock(bp)) {
9385 						/* I'm a leader now! Restart a
9386 						 * switch case.
9387 						 */
9388 						bp->is_leader = 1;
9389 						break;
9390 					}
9391 
9392 					schedule_delayed_work(&bp->sp_rtnl_task,
9393 								HZ/10);
9394 					return;
9395 
9396 				} else {
9397 					/*
9398 					 * If there was a global attention, wait
9399 					 * for it to be cleared.
9400 					 */
9401 					if (bnx2x_reset_is_global(bp)) {
9402 						schedule_delayed_work(
9403 							&bp->sp_rtnl_task,
9404 							HZ/10);
9405 						return;
9406 					}
9407 
9408 					error_recovered =
9409 					  bp->eth_stats.recoverable_error;
9410 					error_unrecovered =
9411 					  bp->eth_stats.unrecoverable_error;
9412 					bp->recovery_state =
9413 						BNX2X_RECOVERY_NIC_LOADING;
9414 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9415 						error_unrecovered++;
9416 						netdev_err(bp->dev,
9417 							   "Recovery failed. Power cycle needed\n");
9418 						/* Disconnect this device */
9419 						netif_device_detach(bp->dev);
9420 						/* Shut down the power */
9421 						bnx2x_set_power_state(
9422 							bp, PCI_D3hot);
9423 						smp_mb();
9424 					} else {
9425 						bp->recovery_state =
9426 							BNX2X_RECOVERY_DONE;
9427 						error_recovered++;
9428 						smp_mb();
9429 					}
9430 					bp->eth_stats.recoverable_error =
9431 						error_recovered;
9432 					bp->eth_stats.unrecoverable_error =
9433 						error_unrecovered;
9434 
9435 					return;
9436 				}
9437 			}
9438 		default:
9439 			return;
9440 		}
9441 	}
9442 }
9443 
9444 static int bnx2x_close(struct net_device *dev);
9445 
9446 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9447  * scheduled on a general queue in order to prevent a dead lock.
9448  */
9449 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9450 {
9451 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9452 
9453 	rtnl_lock();
9454 
9455 	if (!netif_running(bp->dev)) {
9456 		rtnl_unlock();
9457 		return;
9458 	}
9459 
9460 	/* if stop on error is defined no recovery flows should be executed */
9461 #ifdef BNX2X_STOP_ON_ERROR
9462 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9463 		  "you will need to reboot when done\n");
9464 	goto sp_rtnl_not_reset;
9465 #endif
9466 
9467 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9468 		/*
9469 		 * Clear all pending SP commands as we are going to reset the
9470 		 * function anyway.
9471 		 */
9472 		bp->sp_rtnl_state = 0;
9473 		smp_mb();
9474 
9475 		bnx2x_parity_recover(bp);
9476 
9477 		rtnl_unlock();
9478 		return;
9479 	}
9480 
9481 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9482 		/*
9483 		 * Clear all pending SP commands as we are going to reset the
9484 		 * function anyway.
9485 		 */
9486 		bp->sp_rtnl_state = 0;
9487 		smp_mb();
9488 
9489 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9490 		bnx2x_nic_load(bp, LOAD_NORMAL);
9491 
9492 		rtnl_unlock();
9493 		return;
9494 	}
9495 #ifdef BNX2X_STOP_ON_ERROR
9496 sp_rtnl_not_reset:
9497 #endif
9498 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9499 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9500 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9501 		bnx2x_after_function_update(bp);
9502 	/*
9503 	 * in case of fan failure we need to reset id if the "stop on error"
9504 	 * debug flag is set, since we trying to prevent permanent overheating
9505 	 * damage
9506 	 */
9507 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9508 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9509 		netif_device_detach(bp->dev);
9510 		bnx2x_close(bp->dev);
9511 		rtnl_unlock();
9512 		return;
9513 	}
9514 
9515 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9516 		DP(BNX2X_MSG_SP,
9517 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
9518 		bnx2x_vfpf_set_mcast(bp->dev);
9519 	}
9520 
9521 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
9522 			       &bp->sp_rtnl_state)) {
9523 		DP(BNX2X_MSG_SP,
9524 		   "sending set storm rx mode vf pf channel message from rtnl sp-task\n");
9525 		bnx2x_vfpf_storm_rx_mode(bp);
9526 	}
9527 
9528 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
9529 	 * can be called from other contexts as well)
9530 	 */
9531 	rtnl_unlock();
9532 
9533 	/* enable SR-IOV if applicable */
9534 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9535 					       &bp->sp_rtnl_state))
9536 		bnx2x_enable_sriov(bp);
9537 }
9538 
9539 static void bnx2x_period_task(struct work_struct *work)
9540 {
9541 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9542 
9543 	if (!netif_running(bp->dev))
9544 		goto period_task_exit;
9545 
9546 	if (CHIP_REV_IS_SLOW(bp)) {
9547 		BNX2X_ERR("period task called on emulation, ignoring\n");
9548 		goto period_task_exit;
9549 	}
9550 
9551 	bnx2x_acquire_phy_lock(bp);
9552 	/*
9553 	 * The barrier is needed to ensure the ordering between the writing to
9554 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9555 	 * the reading here.
9556 	 */
9557 	smp_mb();
9558 	if (bp->port.pmf) {
9559 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9560 
9561 		/* Re-queue task in 1 sec */
9562 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9563 	}
9564 
9565 	bnx2x_release_phy_lock(bp);
9566 period_task_exit:
9567 	return;
9568 }
9569 
9570 /*
9571  * Init service functions
9572  */
9573 
9574 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9575 {
9576 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9577 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9578 	return base + (BP_ABS_FUNC(bp)) * stride;
9579 }
9580 
9581 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9582 					struct bnx2x_mac_vals *vals)
9583 {
9584 	u32 val, base_addr, offset, mask, reset_reg;
9585 	bool mac_stopped = false;
9586 	u8 port = BP_PORT(bp);
9587 
9588 	/* reset addresses as they also mark which values were changed */
9589 	vals->bmac_addr = 0;
9590 	vals->umac_addr = 0;
9591 	vals->xmac_addr = 0;
9592 	vals->emac_addr = 0;
9593 
9594 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9595 
9596 	if (!CHIP_IS_E3(bp)) {
9597 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9598 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9599 		if ((mask & reset_reg) && val) {
9600 			u32 wb_data[2];
9601 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9602 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9603 						: NIG_REG_INGRESS_BMAC0_MEM;
9604 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9605 						: BIGMAC_REGISTER_BMAC_CONTROL;
9606 
9607 			/*
9608 			 * use rd/wr since we cannot use dmae. This is safe
9609 			 * since MCP won't access the bus due to the request
9610 			 * to unload, and no function on the path can be
9611 			 * loaded at this time.
9612 			 */
9613 			wb_data[0] = REG_RD(bp, base_addr + offset);
9614 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9615 			vals->bmac_addr = base_addr + offset;
9616 			vals->bmac_val[0] = wb_data[0];
9617 			vals->bmac_val[1] = wb_data[1];
9618 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9619 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
9620 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9621 
9622 		}
9623 		BNX2X_DEV_INFO("Disable emac Rx\n");
9624 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9625 		vals->emac_val = REG_RD(bp, vals->emac_addr);
9626 		REG_WR(bp, vals->emac_addr, 0);
9627 		mac_stopped = true;
9628 	} else {
9629 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9630 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9631 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9632 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9633 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9634 			       val & ~(1 << 1));
9635 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9636 			       val | (1 << 1));
9637 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9638 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9639 			REG_WR(bp, vals->xmac_addr, 0);
9640 			mac_stopped = true;
9641 		}
9642 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9643 		if (mask & reset_reg) {
9644 			BNX2X_DEV_INFO("Disable umac Rx\n");
9645 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9646 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9647 			vals->umac_val = REG_RD(bp, vals->umac_addr);
9648 			REG_WR(bp, vals->umac_addr, 0);
9649 			mac_stopped = true;
9650 		}
9651 	}
9652 
9653 	if (mac_stopped)
9654 		msleep(20);
9655 
9656 }
9657 
9658 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9659 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9660 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9661 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9662 
9663 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9664 {
9665 	u16 rcq, bd;
9666 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9667 
9668 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9669 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9670 
9671 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9672 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9673 
9674 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9675 		       port, bd, rcq);
9676 }
9677 
9678 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9679 {
9680 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9681 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9682 	if (!rc) {
9683 		BNX2X_ERR("MCP response failure, aborting\n");
9684 		return -EBUSY;
9685 	}
9686 
9687 	return 0;
9688 }
9689 
9690 static struct bnx2x_prev_path_list *
9691 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
9692 {
9693 	struct bnx2x_prev_path_list *tmp_list;
9694 
9695 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9696 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9697 		    bp->pdev->bus->number == tmp_list->bus &&
9698 		    BP_PATH(bp) == tmp_list->path)
9699 			return tmp_list;
9700 
9701 	return NULL;
9702 }
9703 
9704 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9705 {
9706 	struct bnx2x_prev_path_list *tmp_list;
9707 	int rc = false;
9708 
9709 	if (down_trylock(&bnx2x_prev_sem))
9710 		return false;
9711 
9712 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
9713 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9714 		    bp->pdev->bus->number == tmp_list->bus &&
9715 		    BP_PATH(bp) == tmp_list->path) {
9716 			rc = true;
9717 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9718 				       BP_PATH(bp));
9719 			break;
9720 		}
9721 	}
9722 
9723 	up(&bnx2x_prev_sem);
9724 
9725 	return rc;
9726 }
9727 
9728 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9729 {
9730 	struct bnx2x_prev_path_list *tmp_list;
9731 	int rc;
9732 
9733 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9734 	if (!tmp_list) {
9735 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9736 		return -ENOMEM;
9737 	}
9738 
9739 	tmp_list->bus = bp->pdev->bus->number;
9740 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9741 	tmp_list->path = BP_PATH(bp);
9742 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9743 
9744 	rc = down_interruptible(&bnx2x_prev_sem);
9745 	if (rc) {
9746 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9747 		kfree(tmp_list);
9748 	} else {
9749 		BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
9750 				BP_PATH(bp));
9751 		list_add(&tmp_list->list, &bnx2x_prev_list);
9752 		up(&bnx2x_prev_sem);
9753 	}
9754 
9755 	return rc;
9756 }
9757 
9758 static int bnx2x_do_flr(struct bnx2x *bp)
9759 {
9760 	int i;
9761 	u16 status;
9762 	struct pci_dev *dev = bp->pdev;
9763 
9764 
9765 	if (CHIP_IS_E1x(bp)) {
9766 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9767 		return -EINVAL;
9768 	}
9769 
9770 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9771 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9772 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9773 			  bp->common.bc_ver);
9774 		return -EINVAL;
9775 	}
9776 
9777 	/* Wait for Transaction Pending bit clean */
9778 	for (i = 0; i < 4; i++) {
9779 		if (i)
9780 			msleep((1 << (i - 1)) * 100);
9781 
9782 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9783 		if (!(status & PCI_EXP_DEVSTA_TRPND))
9784 			goto clear;
9785 	}
9786 
9787 	dev_err(&dev->dev,
9788 		"transaction is not cleared; proceeding with reset anyway\n");
9789 
9790 clear:
9791 
9792 	BNX2X_DEV_INFO("Initiating FLR\n");
9793 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9794 
9795 	return 0;
9796 }
9797 
9798 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9799 {
9800 	int rc;
9801 
9802 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
9803 
9804 	/* Test if previous unload process was already finished for this path */
9805 	if (bnx2x_prev_is_path_marked(bp))
9806 		return bnx2x_prev_mcp_done(bp);
9807 
9808 	BNX2X_DEV_INFO("Path is unmarked\n");
9809 
9810 	/* If function has FLR capabilities, and existing FW version matches
9811 	 * the one required, then FLR will be sufficient to clean any residue
9812 	 * left by previous driver
9813 	 */
9814 	rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9815 
9816 	if (!rc) {
9817 		/* fw version is good */
9818 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9819 		rc = bnx2x_do_flr(bp);
9820 	}
9821 
9822 	if (!rc) {
9823 		/* FLR was performed */
9824 		BNX2X_DEV_INFO("FLR successful\n");
9825 		return 0;
9826 	}
9827 
9828 	BNX2X_DEV_INFO("Could not FLR\n");
9829 
9830 	/* Close the MCP request, return failure*/
9831 	rc = bnx2x_prev_mcp_done(bp);
9832 	if (!rc)
9833 		rc = BNX2X_PREV_WAIT_NEEDED;
9834 
9835 	return rc;
9836 }
9837 
9838 static int bnx2x_prev_unload_common(struct bnx2x *bp)
9839 {
9840 	u32 reset_reg, tmp_reg = 0, rc;
9841 	bool prev_undi = false;
9842 	struct bnx2x_mac_vals mac_vals;
9843 
9844 	/* It is possible a previous function received 'common' answer,
9845 	 * but hasn't loaded yet, therefore creating a scenario of
9846 	 * multiple functions receiving 'common' on the same path.
9847 	 */
9848 	BNX2X_DEV_INFO("Common unload Flow\n");
9849 
9850 	memset(&mac_vals, 0, sizeof(mac_vals));
9851 
9852 	if (bnx2x_prev_is_path_marked(bp))
9853 		return bnx2x_prev_mcp_done(bp);
9854 
9855 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9856 
9857 	/* Reset should be performed after BRB is emptied */
9858 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9859 		u32 timer_count = 1000;
9860 
9861 		/* Close the MAC Rx to prevent BRB from filling up */
9862 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
9863 
9864 		/* close LLH filters towards the BRB */
9865 		bnx2x_set_rx_filter(&bp->link_params, 0);
9866 
9867 		/* Check if the UNDI driver was previously loaded
9868 		 * UNDI driver initializes CID offset for normal bell to 0x7
9869 		 */
9870 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9871 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9872 			if (tmp_reg == 0x7) {
9873 				BNX2X_DEV_INFO("UNDI previously loaded\n");
9874 				prev_undi = true;
9875 				/* clear the UNDI indication */
9876 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9877 				/* clear possible idle check errors */
9878 				REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
9879 			}
9880 		}
9881 		/* wait until BRB is empty */
9882 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9883 		while (timer_count) {
9884 			u32 prev_brb = tmp_reg;
9885 
9886 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9887 			if (!tmp_reg)
9888 				break;
9889 
9890 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9891 
9892 			/* reset timer as long as BRB actually gets emptied */
9893 			if (prev_brb > tmp_reg)
9894 				timer_count = 1000;
9895 			else
9896 				timer_count--;
9897 
9898 			/* If UNDI resides in memory, manually increment it */
9899 			if (prev_undi)
9900 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9901 
9902 			udelay(10);
9903 		}
9904 
9905 		if (!timer_count)
9906 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9907 
9908 	}
9909 
9910 	/* No packets are in the pipeline, path is ready for reset */
9911 	bnx2x_reset_common(bp);
9912 
9913 	if (mac_vals.xmac_addr)
9914 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
9915 	if (mac_vals.umac_addr)
9916 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
9917 	if (mac_vals.emac_addr)
9918 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
9919 	if (mac_vals.bmac_addr) {
9920 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9921 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9922 	}
9923 
9924 	rc = bnx2x_prev_mark_path(bp, prev_undi);
9925 	if (rc) {
9926 		bnx2x_prev_mcp_done(bp);
9927 		return rc;
9928 	}
9929 
9930 	return bnx2x_prev_mcp_done(bp);
9931 }
9932 
9933 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
9934  * and boot began, or when kdump kernel was loaded. Either case would invalidate
9935  * the addresses of the transaction, resulting in was-error bit set in the pci
9936  * causing all hw-to-host pcie transactions to timeout. If this happened we want
9937  * to clear the interrupt which detected this from the pglueb and the was done
9938  * bit
9939  */
9940 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
9941 {
9942 	if (!CHIP_IS_E1x(bp)) {
9943 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
9944 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9945 			DP(BNX2X_MSG_SP,
9946 			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
9947 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9948 			       1 << BP_FUNC(bp));
9949 		}
9950 	}
9951 }
9952 
9953 static int bnx2x_prev_unload(struct bnx2x *bp)
9954 {
9955 	int time_counter = 10;
9956 	u32 rc, fw, hw_lock_reg, hw_lock_val;
9957 	struct bnx2x_prev_path_list *prev_list;
9958 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
9959 
9960 	/* clear hw from errors which may have resulted from an interrupted
9961 	 * dmae transaction.
9962 	 */
9963 	bnx2x_prev_interrupted_dmae(bp);
9964 
9965 	/* Release previously held locks */
9966 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
9967 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
9968 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
9969 
9970 	hw_lock_val = (REG_RD(bp, hw_lock_reg));
9971 	if (hw_lock_val) {
9972 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9973 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
9974 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
9975 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
9976 		}
9977 
9978 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
9979 		REG_WR(bp, hw_lock_reg, 0xffffffff);
9980 	} else
9981 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
9982 
9983 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
9984 		BNX2X_DEV_INFO("Release previously held alr\n");
9985 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
9986 	}
9987 
9988 	do {
9989 		/* Lock MCP using an unload request */
9990 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9991 		if (!fw) {
9992 			BNX2X_ERR("MCP response failure, aborting\n");
9993 			rc = -EBUSY;
9994 			break;
9995 		}
9996 
9997 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9998 			rc = bnx2x_prev_unload_common(bp);
9999 			break;
10000 		}
10001 
10002 		/* non-common reply from MCP night require looping */
10003 		rc = bnx2x_prev_unload_uncommon(bp);
10004 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10005 			break;
10006 
10007 		msleep(20);
10008 	} while (--time_counter);
10009 
10010 	if (!time_counter || rc) {
10011 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
10012 		rc = -EBUSY;
10013 	}
10014 
10015 	/* Mark function if its port was used to boot from SAN */
10016 	prev_list = bnx2x_prev_path_get_entry(bp);
10017 	if (prev_list && (prev_list->undi & (1 << BP_PORT(bp))))
10018 		bp->link_params.feature_config_flags |=
10019 			FEATURE_CONFIG_BOOT_FROM_SAN;
10020 
10021 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10022 
10023 	return rc;
10024 }
10025 
10026 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10027 {
10028 	u32 val, val2, val3, val4, id, boot_mode;
10029 	u16 pmc;
10030 
10031 	/* Get the chip revision id and number. */
10032 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10033 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10034 	id = ((val & 0xffff) << 16);
10035 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10036 	id |= ((val & 0xf) << 12);
10037 	val = REG_RD(bp, MISC_REG_CHIP_METAL);
10038 	id |= ((val & 0xff) << 4);
10039 	val = REG_RD(bp, MISC_REG_BOND_ID);
10040 	id |= (val & 0xf);
10041 	bp->common.chip_id = id;
10042 
10043 	/* force 57811 according to MISC register */
10044 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10045 		if (CHIP_IS_57810(bp))
10046 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10047 				(bp->common.chip_id & 0x0000FFFF);
10048 		else if (CHIP_IS_57810_MF(bp))
10049 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10050 				(bp->common.chip_id & 0x0000FFFF);
10051 		bp->common.chip_id |= 0x1;
10052 	}
10053 
10054 	/* Set doorbell size */
10055 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10056 
10057 	if (!CHIP_IS_E1x(bp)) {
10058 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10059 		if ((val & 1) == 0)
10060 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10061 		else
10062 			val = (val >> 1) & 1;
10063 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10064 						       "2_PORT_MODE");
10065 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10066 						 CHIP_2_PORT_MODE;
10067 
10068 		if (CHIP_MODE_IS_4_PORT(bp))
10069 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10070 		else
10071 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10072 	} else {
10073 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10074 		bp->pfid = bp->pf_num;			/* 0..7 */
10075 	}
10076 
10077 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10078 
10079 	bp->link_params.chip_id = bp->common.chip_id;
10080 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10081 
10082 	val = (REG_RD(bp, 0x2874) & 0x55);
10083 	if ((bp->common.chip_id & 0x1) ||
10084 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10085 		bp->flags |= ONE_PORT_FLAG;
10086 		BNX2X_DEV_INFO("single port device\n");
10087 	}
10088 
10089 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10090 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10091 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10092 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10093 		       bp->common.flash_size, bp->common.flash_size);
10094 
10095 	bnx2x_init_shmem(bp);
10096 
10097 
10098 
10099 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10100 					MISC_REG_GENERIC_CR_1 :
10101 					MISC_REG_GENERIC_CR_0));
10102 
10103 	bp->link_params.shmem_base = bp->common.shmem_base;
10104 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10105 	if (SHMEM2_RD(bp, size) >
10106 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10107 		bp->link_params.lfa_base =
10108 		REG_RD(bp, bp->common.shmem2_base +
10109 		       (u32)offsetof(struct shmem2_region,
10110 				     lfa_host_addr[BP_PORT(bp)]));
10111 	else
10112 		bp->link_params.lfa_base = 0;
10113 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10114 		       bp->common.shmem_base, bp->common.shmem2_base);
10115 
10116 	if (!bp->common.shmem_base) {
10117 		BNX2X_DEV_INFO("MCP not active\n");
10118 		bp->flags |= NO_MCP_FLAG;
10119 		return;
10120 	}
10121 
10122 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10123 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10124 
10125 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10126 					SHARED_HW_CFG_LED_MODE_MASK) >>
10127 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10128 
10129 	bp->link_params.feature_config_flags = 0;
10130 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10131 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10132 		bp->link_params.feature_config_flags |=
10133 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10134 	else
10135 		bp->link_params.feature_config_flags &=
10136 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10137 
10138 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10139 	bp->common.bc_ver = val;
10140 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10141 	if (val < BNX2X_BC_VER) {
10142 		/* for now only warn
10143 		 * later we might need to enforce this */
10144 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10145 			  BNX2X_BC_VER, val);
10146 	}
10147 	bp->link_params.feature_config_flags |=
10148 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10149 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10150 
10151 	bp->link_params.feature_config_flags |=
10152 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10153 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10154 	bp->link_params.feature_config_flags |=
10155 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10156 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10157 	bp->link_params.feature_config_flags |=
10158 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10159 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10160 
10161 	bp->link_params.feature_config_flags |=
10162 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10163 		FEATURE_CONFIG_MT_SUPPORT : 0;
10164 
10165 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10166 			BC_SUPPORTS_PFC_STATS : 0;
10167 
10168 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10169 			BC_SUPPORTS_FCOE_FEATURES : 0;
10170 
10171 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10172 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10173 	boot_mode = SHMEM_RD(bp,
10174 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10175 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10176 	switch (boot_mode) {
10177 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10178 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10179 		break;
10180 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10181 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10182 		break;
10183 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10184 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10185 		break;
10186 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10187 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10188 		break;
10189 	}
10190 
10191 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10192 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10193 
10194 	BNX2X_DEV_INFO("%sWoL capable\n",
10195 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10196 
10197 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10198 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10199 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10200 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10201 
10202 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10203 		 val, val2, val3, val4);
10204 }
10205 
10206 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10207 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10208 
10209 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10210 {
10211 	int pfid = BP_FUNC(bp);
10212 	int igu_sb_id;
10213 	u32 val;
10214 	u8 fid, igu_sb_cnt = 0;
10215 
10216 	bp->igu_base_sb = 0xff;
10217 	if (CHIP_INT_MODE_IS_BC(bp)) {
10218 		int vn = BP_VN(bp);
10219 		igu_sb_cnt = bp->igu_sb_cnt;
10220 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10221 			FP_SB_MAX_E1x;
10222 
10223 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10224 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10225 
10226 		return 0;
10227 	}
10228 
10229 	/* IGU in normal mode - read CAM */
10230 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10231 	     igu_sb_id++) {
10232 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10233 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10234 			continue;
10235 		fid = IGU_FID(val);
10236 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10237 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10238 				continue;
10239 			if (IGU_VEC(val) == 0)
10240 				/* default status block */
10241 				bp->igu_dsb_id = igu_sb_id;
10242 			else {
10243 				if (bp->igu_base_sb == 0xff)
10244 					bp->igu_base_sb = igu_sb_id;
10245 				igu_sb_cnt++;
10246 			}
10247 		}
10248 	}
10249 
10250 #ifdef CONFIG_PCI_MSI
10251 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10252 	 * optional that number of CAM entries will not be equal to the value
10253 	 * advertised in PCI.
10254 	 * Driver should use the minimal value of both as the actual status
10255 	 * block count
10256 	 */
10257 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10258 #endif
10259 
10260 	if (igu_sb_cnt == 0) {
10261 		BNX2X_ERR("CAM configuration error\n");
10262 		return -EINVAL;
10263 	}
10264 
10265 	return 0;
10266 }
10267 
10268 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10269 {
10270 	int cfg_size = 0, idx, port = BP_PORT(bp);
10271 
10272 	/* Aggregation of supported attributes of all external phys */
10273 	bp->port.supported[0] = 0;
10274 	bp->port.supported[1] = 0;
10275 	switch (bp->link_params.num_phys) {
10276 	case 1:
10277 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10278 		cfg_size = 1;
10279 		break;
10280 	case 2:
10281 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10282 		cfg_size = 1;
10283 		break;
10284 	case 3:
10285 		if (bp->link_params.multi_phy_config &
10286 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10287 			bp->port.supported[1] =
10288 				bp->link_params.phy[EXT_PHY1].supported;
10289 			bp->port.supported[0] =
10290 				bp->link_params.phy[EXT_PHY2].supported;
10291 		} else {
10292 			bp->port.supported[0] =
10293 				bp->link_params.phy[EXT_PHY1].supported;
10294 			bp->port.supported[1] =
10295 				bp->link_params.phy[EXT_PHY2].supported;
10296 		}
10297 		cfg_size = 2;
10298 		break;
10299 	}
10300 
10301 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10302 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10303 			   SHMEM_RD(bp,
10304 			   dev_info.port_hw_config[port].external_phy_config),
10305 			   SHMEM_RD(bp,
10306 			   dev_info.port_hw_config[port].external_phy_config2));
10307 			return;
10308 	}
10309 
10310 	if (CHIP_IS_E3(bp))
10311 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10312 	else {
10313 		switch (switch_cfg) {
10314 		case SWITCH_CFG_1G:
10315 			bp->port.phy_addr = REG_RD(
10316 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10317 			break;
10318 		case SWITCH_CFG_10G:
10319 			bp->port.phy_addr = REG_RD(
10320 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10321 			break;
10322 		default:
10323 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10324 				  bp->port.link_config[0]);
10325 			return;
10326 		}
10327 	}
10328 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10329 	/* mask what we support according to speed_cap_mask per configuration */
10330 	for (idx = 0; idx < cfg_size; idx++) {
10331 		if (!(bp->link_params.speed_cap_mask[idx] &
10332 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10333 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10334 
10335 		if (!(bp->link_params.speed_cap_mask[idx] &
10336 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10337 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10338 
10339 		if (!(bp->link_params.speed_cap_mask[idx] &
10340 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10341 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10342 
10343 		if (!(bp->link_params.speed_cap_mask[idx] &
10344 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10345 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10346 
10347 		if (!(bp->link_params.speed_cap_mask[idx] &
10348 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10349 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10350 						     SUPPORTED_1000baseT_Full);
10351 
10352 		if (!(bp->link_params.speed_cap_mask[idx] &
10353 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10354 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10355 
10356 		if (!(bp->link_params.speed_cap_mask[idx] &
10357 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10358 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10359 
10360 	}
10361 
10362 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10363 		       bp->port.supported[1]);
10364 }
10365 
10366 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10367 {
10368 	u32 link_config, idx, cfg_size = 0;
10369 	bp->port.advertising[0] = 0;
10370 	bp->port.advertising[1] = 0;
10371 	switch (bp->link_params.num_phys) {
10372 	case 1:
10373 	case 2:
10374 		cfg_size = 1;
10375 		break;
10376 	case 3:
10377 		cfg_size = 2;
10378 		break;
10379 	}
10380 	for (idx = 0; idx < cfg_size; idx++) {
10381 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10382 		link_config = bp->port.link_config[idx];
10383 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10384 		case PORT_FEATURE_LINK_SPEED_AUTO:
10385 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10386 				bp->link_params.req_line_speed[idx] =
10387 					SPEED_AUTO_NEG;
10388 				bp->port.advertising[idx] |=
10389 					bp->port.supported[idx];
10390 				if (bp->link_params.phy[EXT_PHY1].type ==
10391 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10392 					bp->port.advertising[idx] |=
10393 					(SUPPORTED_100baseT_Half |
10394 					 SUPPORTED_100baseT_Full);
10395 			} else {
10396 				/* force 10G, no AN */
10397 				bp->link_params.req_line_speed[idx] =
10398 					SPEED_10000;
10399 				bp->port.advertising[idx] |=
10400 					(ADVERTISED_10000baseT_Full |
10401 					 ADVERTISED_FIBRE);
10402 				continue;
10403 			}
10404 			break;
10405 
10406 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10407 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10408 				bp->link_params.req_line_speed[idx] =
10409 					SPEED_10;
10410 				bp->port.advertising[idx] |=
10411 					(ADVERTISED_10baseT_Full |
10412 					 ADVERTISED_TP);
10413 			} else {
10414 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10415 					    link_config,
10416 				    bp->link_params.speed_cap_mask[idx]);
10417 				return;
10418 			}
10419 			break;
10420 
10421 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10422 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10423 				bp->link_params.req_line_speed[idx] =
10424 					SPEED_10;
10425 				bp->link_params.req_duplex[idx] =
10426 					DUPLEX_HALF;
10427 				bp->port.advertising[idx] |=
10428 					(ADVERTISED_10baseT_Half |
10429 					 ADVERTISED_TP);
10430 			} else {
10431 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10432 					    link_config,
10433 					  bp->link_params.speed_cap_mask[idx]);
10434 				return;
10435 			}
10436 			break;
10437 
10438 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10439 			if (bp->port.supported[idx] &
10440 			    SUPPORTED_100baseT_Full) {
10441 				bp->link_params.req_line_speed[idx] =
10442 					SPEED_100;
10443 				bp->port.advertising[idx] |=
10444 					(ADVERTISED_100baseT_Full |
10445 					 ADVERTISED_TP);
10446 			} else {
10447 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10448 					    link_config,
10449 					  bp->link_params.speed_cap_mask[idx]);
10450 				return;
10451 			}
10452 			break;
10453 
10454 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10455 			if (bp->port.supported[idx] &
10456 			    SUPPORTED_100baseT_Half) {
10457 				bp->link_params.req_line_speed[idx] =
10458 								SPEED_100;
10459 				bp->link_params.req_duplex[idx] =
10460 								DUPLEX_HALF;
10461 				bp->port.advertising[idx] |=
10462 					(ADVERTISED_100baseT_Half |
10463 					 ADVERTISED_TP);
10464 			} else {
10465 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10466 				    link_config,
10467 				    bp->link_params.speed_cap_mask[idx]);
10468 				return;
10469 			}
10470 			break;
10471 
10472 		case PORT_FEATURE_LINK_SPEED_1G:
10473 			if (bp->port.supported[idx] &
10474 			    SUPPORTED_1000baseT_Full) {
10475 				bp->link_params.req_line_speed[idx] =
10476 					SPEED_1000;
10477 				bp->port.advertising[idx] |=
10478 					(ADVERTISED_1000baseT_Full |
10479 					 ADVERTISED_TP);
10480 			} else {
10481 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10482 				    link_config,
10483 				    bp->link_params.speed_cap_mask[idx]);
10484 				return;
10485 			}
10486 			break;
10487 
10488 		case PORT_FEATURE_LINK_SPEED_2_5G:
10489 			if (bp->port.supported[idx] &
10490 			    SUPPORTED_2500baseX_Full) {
10491 				bp->link_params.req_line_speed[idx] =
10492 					SPEED_2500;
10493 				bp->port.advertising[idx] |=
10494 					(ADVERTISED_2500baseX_Full |
10495 						ADVERTISED_TP);
10496 			} else {
10497 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10498 				    link_config,
10499 				    bp->link_params.speed_cap_mask[idx]);
10500 				return;
10501 			}
10502 			break;
10503 
10504 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10505 			if (bp->port.supported[idx] &
10506 			    SUPPORTED_10000baseT_Full) {
10507 				bp->link_params.req_line_speed[idx] =
10508 					SPEED_10000;
10509 				bp->port.advertising[idx] |=
10510 					(ADVERTISED_10000baseT_Full |
10511 						ADVERTISED_FIBRE);
10512 			} else {
10513 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10514 				    link_config,
10515 				    bp->link_params.speed_cap_mask[idx]);
10516 				return;
10517 			}
10518 			break;
10519 		case PORT_FEATURE_LINK_SPEED_20G:
10520 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10521 
10522 			break;
10523 		default:
10524 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10525 				  link_config);
10526 				bp->link_params.req_line_speed[idx] =
10527 							SPEED_AUTO_NEG;
10528 				bp->port.advertising[idx] =
10529 						bp->port.supported[idx];
10530 			break;
10531 		}
10532 
10533 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10534 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10535 		if (bp->link_params.req_flow_ctrl[idx] ==
10536 		    BNX2X_FLOW_CTRL_AUTO) {
10537 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10538 				bp->link_params.req_flow_ctrl[idx] =
10539 							BNX2X_FLOW_CTRL_NONE;
10540 			else
10541 				bnx2x_set_requested_fc(bp);
10542 		}
10543 
10544 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10545 			       bp->link_params.req_line_speed[idx],
10546 			       bp->link_params.req_duplex[idx],
10547 			       bp->link_params.req_flow_ctrl[idx],
10548 			       bp->port.advertising[idx]);
10549 	}
10550 }
10551 
10552 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10553 {
10554 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
10555 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
10556 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10557 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10558 }
10559 
10560 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10561 {
10562 	int port = BP_PORT(bp);
10563 	u32 config;
10564 	u32 ext_phy_type, ext_phy_config, eee_mode;
10565 
10566 	bp->link_params.bp = bp;
10567 	bp->link_params.port = port;
10568 
10569 	bp->link_params.lane_config =
10570 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10571 
10572 	bp->link_params.speed_cap_mask[0] =
10573 		SHMEM_RD(bp,
10574 			 dev_info.port_hw_config[port].speed_capability_mask);
10575 	bp->link_params.speed_cap_mask[1] =
10576 		SHMEM_RD(bp,
10577 			 dev_info.port_hw_config[port].speed_capability_mask2);
10578 	bp->port.link_config[0] =
10579 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10580 
10581 	bp->port.link_config[1] =
10582 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10583 
10584 	bp->link_params.multi_phy_config =
10585 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10586 	/* If the device is capable of WoL, set the default state according
10587 	 * to the HW
10588 	 */
10589 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10590 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10591 		   (config & PORT_FEATURE_WOL_ENABLED));
10592 
10593 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10594 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10595 		bp->flags |= NO_ISCSI_FLAG;
10596 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10597 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10598 		bp->flags |= NO_FCOE_FLAG;
10599 
10600 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10601 		       bp->link_params.lane_config,
10602 		       bp->link_params.speed_cap_mask[0],
10603 		       bp->port.link_config[0]);
10604 
10605 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10606 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10607 	bnx2x_phy_probe(&bp->link_params);
10608 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10609 
10610 	bnx2x_link_settings_requested(bp);
10611 
10612 	/*
10613 	 * If connected directly, work with the internal PHY, otherwise, work
10614 	 * with the external PHY
10615 	 */
10616 	ext_phy_config =
10617 		SHMEM_RD(bp,
10618 			 dev_info.port_hw_config[port].external_phy_config);
10619 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10620 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10621 		bp->mdio.prtad = bp->port.phy_addr;
10622 
10623 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10624 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10625 		bp->mdio.prtad =
10626 			XGXS_EXT_PHY_ADDR(ext_phy_config);
10627 
10628 	/* Configure link feature according to nvram value */
10629 	eee_mode = (((SHMEM_RD(bp, dev_info.
10630 		      port_feature_config[port].eee_power_mode)) &
10631 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10632 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10633 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10634 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10635 					   EEE_MODE_ENABLE_LPI |
10636 					   EEE_MODE_OUTPUT_TIME;
10637 	} else {
10638 		bp->link_params.eee_mode = 0;
10639 	}
10640 }
10641 
10642 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10643 {
10644 	u32 no_flags = NO_ISCSI_FLAG;
10645 	int port = BP_PORT(bp);
10646 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10647 				drv_lic_key[port].max_iscsi_conn);
10648 
10649 	if (!CNIC_SUPPORT(bp)) {
10650 		bp->flags |= no_flags;
10651 		return;
10652 	}
10653 
10654 	/* Get the number of maximum allowed iSCSI connections */
10655 	bp->cnic_eth_dev.max_iscsi_conn =
10656 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10657 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10658 
10659 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10660 		       bp->cnic_eth_dev.max_iscsi_conn);
10661 
10662 	/*
10663 	 * If maximum allowed number of connections is zero -
10664 	 * disable the feature.
10665 	 */
10666 	if (!bp->cnic_eth_dev.max_iscsi_conn)
10667 		bp->flags |= no_flags;
10668 
10669 }
10670 
10671 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10672 {
10673 	/* Port info */
10674 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10675 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10676 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10677 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10678 
10679 	/* Node info */
10680 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10681 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10682 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10683 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10684 }
10685 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10686 {
10687 	int port = BP_PORT(bp);
10688 	int func = BP_ABS_FUNC(bp);
10689 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10690 				drv_lic_key[port].max_fcoe_conn);
10691 
10692 	if (!CNIC_SUPPORT(bp)) {
10693 		bp->flags |= NO_FCOE_FLAG;
10694 		return;
10695 	}
10696 
10697 	/* Get the number of maximum allowed FCoE connections */
10698 	bp->cnic_eth_dev.max_fcoe_conn =
10699 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10700 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10701 
10702 	/* Read the WWN: */
10703 	if (!IS_MF(bp)) {
10704 		/* Port info */
10705 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10706 			SHMEM_RD(bp,
10707 				 dev_info.port_hw_config[port].
10708 				 fcoe_wwn_port_name_upper);
10709 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10710 			SHMEM_RD(bp,
10711 				 dev_info.port_hw_config[port].
10712 				 fcoe_wwn_port_name_lower);
10713 
10714 		/* Node info */
10715 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10716 			SHMEM_RD(bp,
10717 				 dev_info.port_hw_config[port].
10718 				 fcoe_wwn_node_name_upper);
10719 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10720 			SHMEM_RD(bp,
10721 				 dev_info.port_hw_config[port].
10722 				 fcoe_wwn_node_name_lower);
10723 	} else if (!IS_MF_SD(bp)) {
10724 		/*
10725 		 * Read the WWN info only if the FCoE feature is enabled for
10726 		 * this function.
10727 		 */
10728 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10729 			bnx2x_get_ext_wwn_info(bp, func);
10730 
10731 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10732 		bnx2x_get_ext_wwn_info(bp, func);
10733 	}
10734 
10735 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10736 
10737 	/*
10738 	 * If maximum allowed number of connections is zero -
10739 	 * disable the feature.
10740 	 */
10741 	if (!bp->cnic_eth_dev.max_fcoe_conn)
10742 		bp->flags |= NO_FCOE_FLAG;
10743 }
10744 
10745 static void bnx2x_get_cnic_info(struct bnx2x *bp)
10746 {
10747 	/*
10748 	 * iSCSI may be dynamically disabled but reading
10749 	 * info here we will decrease memory usage by driver
10750 	 * if the feature is disabled for good
10751 	 */
10752 	bnx2x_get_iscsi_info(bp);
10753 	bnx2x_get_fcoe_info(bp);
10754 }
10755 
10756 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
10757 {
10758 	u32 val, val2;
10759 	int func = BP_ABS_FUNC(bp);
10760 	int port = BP_PORT(bp);
10761 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10762 	u8 *fip_mac = bp->fip_mac;
10763 
10764 	if (IS_MF(bp)) {
10765 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
10766 		 * FCoE MAC then the appropriate feature should be disabled.
10767 		 * In non SD mode features configuration comes from struct
10768 		 * func_ext_config.
10769 		 */
10770 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
10771 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10772 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
10773 				val2 = MF_CFG_RD(bp, func_ext_config[func].
10774 						 iscsi_mac_addr_upper);
10775 				val = MF_CFG_RD(bp, func_ext_config[func].
10776 						iscsi_mac_addr_lower);
10777 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
10778 				BNX2X_DEV_INFO
10779 					("Read iSCSI MAC: %pM\n", iscsi_mac);
10780 			} else {
10781 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10782 			}
10783 
10784 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
10785 				val2 = MF_CFG_RD(bp, func_ext_config[func].
10786 						 fcoe_mac_addr_upper);
10787 				val = MF_CFG_RD(bp, func_ext_config[func].
10788 						fcoe_mac_addr_lower);
10789 				bnx2x_set_mac_buf(fip_mac, val, val2);
10790 				BNX2X_DEV_INFO
10791 					("Read FCoE L2 MAC: %pM\n", fip_mac);
10792 			} else {
10793 				bp->flags |= NO_FCOE_FLAG;
10794 			}
10795 
10796 			bp->mf_ext_config = cfg;
10797 
10798 		} else { /* SD MODE */
10799 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
10800 				/* use primary mac as iscsi mac */
10801 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
10802 
10803 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
10804 				BNX2X_DEV_INFO
10805 					("Read iSCSI MAC: %pM\n", iscsi_mac);
10806 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
10807 				/* use primary mac as fip mac */
10808 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
10809 				BNX2X_DEV_INFO("SD FCoE MODE\n");
10810 				BNX2X_DEV_INFO
10811 					("Read FIP MAC: %pM\n", fip_mac);
10812 			}
10813 		}
10814 
10815 		if (IS_MF_STORAGE_SD(bp))
10816 			/* Zero primary MAC configuration */
10817 			memset(bp->dev->dev_addr, 0, ETH_ALEN);
10818 
10819 		if (IS_MF_FCOE_AFEX(bp) || IS_MF_FCOE_SD(bp))
10820 			/* use FIP MAC as primary MAC */
10821 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
10822 
10823 	} else {
10824 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10825 				iscsi_mac_upper);
10826 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10827 			       iscsi_mac_lower);
10828 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
10829 
10830 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10831 				fcoe_fip_mac_upper);
10832 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10833 			       fcoe_fip_mac_lower);
10834 		bnx2x_set_mac_buf(fip_mac, val, val2);
10835 	}
10836 
10837 	/* Disable iSCSI OOO if MAC configuration is invalid. */
10838 	if (!is_valid_ether_addr(iscsi_mac)) {
10839 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10840 		memset(iscsi_mac, 0, ETH_ALEN);
10841 	}
10842 
10843 	/* Disable FCoE if MAC configuration is invalid. */
10844 	if (!is_valid_ether_addr(fip_mac)) {
10845 		bp->flags |= NO_FCOE_FLAG;
10846 		memset(bp->fip_mac, 0, ETH_ALEN);
10847 	}
10848 }
10849 
10850 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
10851 {
10852 	u32 val, val2;
10853 	int func = BP_ABS_FUNC(bp);
10854 	int port = BP_PORT(bp);
10855 
10856 	/* Zero primary MAC configuration */
10857 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
10858 
10859 	if (BP_NOMCP(bp)) {
10860 		BNX2X_ERROR("warning: random MAC workaround active\n");
10861 		eth_hw_addr_random(bp->dev);
10862 	} else if (IS_MF(bp)) {
10863 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
10864 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
10865 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
10866 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
10867 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10868 
10869 		if (CNIC_SUPPORT(bp))
10870 			bnx2x_get_cnic_mac_hwinfo(bp);
10871 	} else {
10872 		/* in SF read MACs from port configuration */
10873 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
10874 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
10875 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10876 
10877 		if (CNIC_SUPPORT(bp))
10878 			bnx2x_get_cnic_mac_hwinfo(bp);
10879 	}
10880 
10881 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
10882 
10883 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10884 		dev_err(&bp->pdev->dev,
10885 			"bad Ethernet MAC address configuration: %pM\n"
10886 			"change it manually before bringing up the appropriate network interface\n",
10887 			bp->dev->dev_addr);
10888 }
10889 
10890 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
10891 {
10892 	int tmp;
10893 	u32 cfg;
10894 
10895 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
10896 		/* Take function: tmp = func */
10897 		tmp = BP_ABS_FUNC(bp);
10898 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
10899 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
10900 	} else {
10901 		/* Take port: tmp = port */
10902 		tmp = BP_PORT(bp);
10903 		cfg = SHMEM_RD(bp,
10904 			       dev_info.port_hw_config[tmp].generic_features);
10905 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
10906 	}
10907 	return cfg;
10908 }
10909 
10910 static int bnx2x_get_hwinfo(struct bnx2x *bp)
10911 {
10912 	int /*abs*/func = BP_ABS_FUNC(bp);
10913 	int vn;
10914 	u32 val = 0;
10915 	int rc = 0;
10916 
10917 	bnx2x_get_common_hwinfo(bp);
10918 
10919 	/*
10920 	 * initialize IGU parameters
10921 	 */
10922 	if (CHIP_IS_E1x(bp)) {
10923 		bp->common.int_block = INT_BLOCK_HC;
10924 
10925 		bp->igu_dsb_id = DEF_SB_IGU_ID;
10926 		bp->igu_base_sb = 0;
10927 	} else {
10928 		bp->common.int_block = INT_BLOCK_IGU;
10929 
10930 		/* do not allow device reset during IGU info preocessing */
10931 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10932 
10933 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
10934 
10935 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10936 			int tout = 5000;
10937 
10938 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
10939 
10940 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
10941 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
10942 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
10943 
10944 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10945 				tout--;
10946 				usleep_range(1000, 2000);
10947 			}
10948 
10949 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10950 				dev_err(&bp->pdev->dev,
10951 					"FORCING Normal Mode failed!!!\n");
10952 				bnx2x_release_hw_lock(bp,
10953 						      HW_LOCK_RESOURCE_RESET);
10954 				return -EPERM;
10955 			}
10956 		}
10957 
10958 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10959 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
10960 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
10961 		} else
10962 			BNX2X_DEV_INFO("IGU Normal Mode\n");
10963 
10964 		rc = bnx2x_get_igu_cam_info(bp);
10965 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10966 		if (rc)
10967 			return rc;
10968 	}
10969 
10970 	/*
10971 	 * set base FW non-default (fast path) status block id, this value is
10972 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
10973 	 * determine the id used by the FW.
10974 	 */
10975 	if (CHIP_IS_E1x(bp))
10976 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
10977 	else /*
10978 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
10979 	      * the same queue are indicated on the same IGU SB). So we prefer
10980 	      * FW and IGU SBs to be the same value.
10981 	      */
10982 		bp->base_fw_ndsb = bp->igu_base_sb;
10983 
10984 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
10985 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
10986 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
10987 
10988 	/*
10989 	 * Initialize MF configuration
10990 	 */
10991 
10992 	bp->mf_ov = 0;
10993 	bp->mf_mode = 0;
10994 	vn = BP_VN(bp);
10995 
10996 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
10997 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
10998 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
10999 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11000 
11001 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11002 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11003 		else
11004 			bp->common.mf_cfg_base = bp->common.shmem_base +
11005 				offsetof(struct shmem_region, func_mb) +
11006 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11007 		/*
11008 		 * get mf configuration:
11009 		 * 1. existence of MF configuration
11010 		 * 2. MAC address must be legal (check only upper bytes)
11011 		 *    for  Switch-Independent mode;
11012 		 *    OVLAN must be legal for Switch-Dependent mode
11013 		 * 3. SF_MODE configures specific MF mode
11014 		 */
11015 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11016 			/* get mf configuration */
11017 			val = SHMEM_RD(bp,
11018 				       dev_info.shared_feature_config.config);
11019 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11020 
11021 			switch (val) {
11022 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11023 				val = MF_CFG_RD(bp, func_mf_config[func].
11024 						mac_upper);
11025 				/* check for legal mac (upper bytes)*/
11026 				if (val != 0xffff) {
11027 					bp->mf_mode = MULTI_FUNCTION_SI;
11028 					bp->mf_config[vn] = MF_CFG_RD(bp,
11029 						   func_mf_config[func].config);
11030 				} else
11031 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
11032 				break;
11033 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11034 				if ((!CHIP_IS_E1x(bp)) &&
11035 				    (MF_CFG_RD(bp, func_mf_config[func].
11036 					       mac_upper) != 0xffff) &&
11037 				    (SHMEM2_HAS(bp,
11038 						afex_driver_support))) {
11039 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11040 					bp->mf_config[vn] = MF_CFG_RD(bp,
11041 						func_mf_config[func].config);
11042 				} else {
11043 					BNX2X_DEV_INFO("can not configure afex mode\n");
11044 				}
11045 				break;
11046 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11047 				/* get OV configuration */
11048 				val = MF_CFG_RD(bp,
11049 					func_mf_config[FUNC_0].e1hov_tag);
11050 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11051 
11052 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11053 					bp->mf_mode = MULTI_FUNCTION_SD;
11054 					bp->mf_config[vn] = MF_CFG_RD(bp,
11055 						func_mf_config[func].config);
11056 				} else
11057 					BNX2X_DEV_INFO("illegal OV for SD\n");
11058 				break;
11059 			default:
11060 				/* Unknown configuration: reset mf_config */
11061 				bp->mf_config[vn] = 0;
11062 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11063 			}
11064 		}
11065 
11066 		BNX2X_DEV_INFO("%s function mode\n",
11067 			       IS_MF(bp) ? "multi" : "single");
11068 
11069 		switch (bp->mf_mode) {
11070 		case MULTI_FUNCTION_SD:
11071 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11072 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11073 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11074 				bp->mf_ov = val;
11075 				bp->path_has_ovlan = true;
11076 
11077 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11078 					       func, bp->mf_ov, bp->mf_ov);
11079 			} else {
11080 				dev_err(&bp->pdev->dev,
11081 					"No valid MF OV for func %d, aborting\n",
11082 					func);
11083 				return -EPERM;
11084 			}
11085 			break;
11086 		case MULTI_FUNCTION_AFEX:
11087 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11088 			break;
11089 		case MULTI_FUNCTION_SI:
11090 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11091 				       func);
11092 			break;
11093 		default:
11094 			if (vn) {
11095 				dev_err(&bp->pdev->dev,
11096 					"VN %d is in a single function mode, aborting\n",
11097 					vn);
11098 				return -EPERM;
11099 			}
11100 			break;
11101 		}
11102 
11103 		/* check if other port on the path needs ovlan:
11104 		 * Since MF configuration is shared between ports
11105 		 * Possible mixed modes are only
11106 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11107 		 */
11108 		if (CHIP_MODE_IS_4_PORT(bp) &&
11109 		    !bp->path_has_ovlan &&
11110 		    !IS_MF(bp) &&
11111 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11112 			u8 other_port = !BP_PORT(bp);
11113 			u8 other_func = BP_PATH(bp) + 2*other_port;
11114 			val = MF_CFG_RD(bp,
11115 					func_mf_config[other_func].e1hov_tag);
11116 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11117 				bp->path_has_ovlan = true;
11118 		}
11119 	}
11120 
11121 	/* adjust igu_sb_cnt to MF for E1x */
11122 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
11123 		bp->igu_sb_cnt /= E1HVN_MAX;
11124 
11125 	/* port info */
11126 	bnx2x_get_port_hwinfo(bp);
11127 
11128 	/* Get MAC addresses */
11129 	bnx2x_get_mac_hwinfo(bp);
11130 
11131 	bnx2x_get_cnic_info(bp);
11132 
11133 	return rc;
11134 }
11135 
11136 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11137 {
11138 	int cnt, i, block_end, rodi;
11139 	char vpd_start[BNX2X_VPD_LEN+1];
11140 	char str_id_reg[VENDOR_ID_LEN+1];
11141 	char str_id_cap[VENDOR_ID_LEN+1];
11142 	char *vpd_data;
11143 	char *vpd_extended_data = NULL;
11144 	u8 len;
11145 
11146 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11147 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11148 
11149 	if (cnt < BNX2X_VPD_LEN)
11150 		goto out_not_found;
11151 
11152 	/* VPD RO tag should be first tag after identifier string, hence
11153 	 * we should be able to find it in first BNX2X_VPD_LEN chars
11154 	 */
11155 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11156 			     PCI_VPD_LRDT_RO_DATA);
11157 	if (i < 0)
11158 		goto out_not_found;
11159 
11160 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11161 		    pci_vpd_lrdt_size(&vpd_start[i]);
11162 
11163 	i += PCI_VPD_LRDT_TAG_SIZE;
11164 
11165 	if (block_end > BNX2X_VPD_LEN) {
11166 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11167 		if (vpd_extended_data  == NULL)
11168 			goto out_not_found;
11169 
11170 		/* read rest of vpd image into vpd_extended_data */
11171 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11172 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11173 				   block_end - BNX2X_VPD_LEN,
11174 				   vpd_extended_data + BNX2X_VPD_LEN);
11175 		if (cnt < (block_end - BNX2X_VPD_LEN))
11176 			goto out_not_found;
11177 		vpd_data = vpd_extended_data;
11178 	} else
11179 		vpd_data = vpd_start;
11180 
11181 	/* now vpd_data holds full vpd content in both cases */
11182 
11183 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11184 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11185 	if (rodi < 0)
11186 		goto out_not_found;
11187 
11188 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11189 
11190 	if (len != VENDOR_ID_LEN)
11191 		goto out_not_found;
11192 
11193 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11194 
11195 	/* vendor specific info */
11196 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11197 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11198 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11199 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11200 
11201 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11202 						PCI_VPD_RO_KEYWORD_VENDOR0);
11203 		if (rodi >= 0) {
11204 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11205 
11206 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11207 
11208 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11209 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11210 				bp->fw_ver[len] = ' ';
11211 			}
11212 		}
11213 		kfree(vpd_extended_data);
11214 		return;
11215 	}
11216 out_not_found:
11217 	kfree(vpd_extended_data);
11218 	return;
11219 }
11220 
11221 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11222 {
11223 	u32 flags = 0;
11224 
11225 	if (CHIP_REV_IS_FPGA(bp))
11226 		SET_FLAGS(flags, MODE_FPGA);
11227 	else if (CHIP_REV_IS_EMUL(bp))
11228 		SET_FLAGS(flags, MODE_EMUL);
11229 	else
11230 		SET_FLAGS(flags, MODE_ASIC);
11231 
11232 	if (CHIP_MODE_IS_4_PORT(bp))
11233 		SET_FLAGS(flags, MODE_PORT4);
11234 	else
11235 		SET_FLAGS(flags, MODE_PORT2);
11236 
11237 	if (CHIP_IS_E2(bp))
11238 		SET_FLAGS(flags, MODE_E2);
11239 	else if (CHIP_IS_E3(bp)) {
11240 		SET_FLAGS(flags, MODE_E3);
11241 		if (CHIP_REV(bp) == CHIP_REV_Ax)
11242 			SET_FLAGS(flags, MODE_E3_A0);
11243 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11244 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11245 	}
11246 
11247 	if (IS_MF(bp)) {
11248 		SET_FLAGS(flags, MODE_MF);
11249 		switch (bp->mf_mode) {
11250 		case MULTI_FUNCTION_SD:
11251 			SET_FLAGS(flags, MODE_MF_SD);
11252 			break;
11253 		case MULTI_FUNCTION_SI:
11254 			SET_FLAGS(flags, MODE_MF_SI);
11255 			break;
11256 		case MULTI_FUNCTION_AFEX:
11257 			SET_FLAGS(flags, MODE_MF_AFEX);
11258 			break;
11259 		}
11260 	} else
11261 		SET_FLAGS(flags, MODE_SF);
11262 
11263 #if defined(__LITTLE_ENDIAN)
11264 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11265 #else /*(__BIG_ENDIAN)*/
11266 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11267 #endif
11268 	INIT_MODE_FLAGS(bp) = flags;
11269 }
11270 
11271 static int bnx2x_init_bp(struct bnx2x *bp)
11272 {
11273 	int func;
11274 	int rc;
11275 
11276 	mutex_init(&bp->port.phy_mutex);
11277 	mutex_init(&bp->fw_mb_mutex);
11278 	spin_lock_init(&bp->stats_lock);
11279 
11280 
11281 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11282 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11283 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11284 	if (IS_PF(bp)) {
11285 		rc = bnx2x_get_hwinfo(bp);
11286 		if (rc)
11287 			return rc;
11288 	} else {
11289 		random_ether_addr(bp->dev->dev_addr);
11290 	}
11291 
11292 	bnx2x_set_modes_bitmap(bp);
11293 
11294 	rc = bnx2x_alloc_mem_bp(bp);
11295 	if (rc)
11296 		return rc;
11297 
11298 	bnx2x_read_fwinfo(bp);
11299 
11300 	func = BP_FUNC(bp);
11301 
11302 	/* need to reset chip if undi was active */
11303 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
11304 		/* init fw_seq */
11305 		bp->fw_seq =
11306 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11307 							DRV_MSG_SEQ_NUMBER_MASK;
11308 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11309 
11310 		bnx2x_prev_unload(bp);
11311 	}
11312 
11313 
11314 	if (CHIP_REV_IS_FPGA(bp))
11315 		dev_err(&bp->pdev->dev, "FPGA detected\n");
11316 
11317 	if (BP_NOMCP(bp) && (func == 0))
11318 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11319 
11320 	bp->disable_tpa = disable_tpa;
11321 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11322 
11323 	/* Set TPA flags */
11324 	if (bp->disable_tpa) {
11325 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11326 		bp->dev->features &= ~NETIF_F_LRO;
11327 	} else {
11328 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11329 		bp->dev->features |= NETIF_F_LRO;
11330 	}
11331 
11332 	if (CHIP_IS_E1(bp))
11333 		bp->dropless_fc = 0;
11334 	else
11335 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11336 
11337 	bp->mrrs = mrrs;
11338 
11339 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11340 	if (IS_VF(bp))
11341 		bp->rx_ring_size = MAX_RX_AVAIL;
11342 
11343 	/* make sure that the numbers are in the right granularity */
11344 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11345 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11346 
11347 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11348 
11349 	init_timer(&bp->timer);
11350 	bp->timer.expires = jiffies + bp->current_interval;
11351 	bp->timer.data = (unsigned long) bp;
11352 	bp->timer.function = bnx2x_timer;
11353 
11354 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11355 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11356 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11357 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11358 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11359 		bnx2x_dcbx_init_params(bp);
11360 	} else {
11361 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11362 	}
11363 
11364 	if (CHIP_IS_E1x(bp))
11365 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11366 	else
11367 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11368 
11369 	/* multiple tx priority */
11370 	if (IS_VF(bp))
11371 		bp->max_cos = 1;
11372 	else if (CHIP_IS_E1x(bp))
11373 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11374 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11375 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11376 	else if (CHIP_IS_E3B0(bp))
11377 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11378 	else
11379 		BNX2X_ERR("unknown chip %x revision %x\n",
11380 			  CHIP_NUM(bp), CHIP_REV(bp));
11381 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11382 
11383 	/* We need at least one default status block for slow-path events,
11384 	 * second status block for the L2 queue, and a third status block for
11385 	 * CNIC if supproted.
11386 	 */
11387 	if (CNIC_SUPPORT(bp))
11388 		bp->min_msix_vec_cnt = 3;
11389 	else
11390 		bp->min_msix_vec_cnt = 2;
11391 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11392 
11393 	return rc;
11394 }
11395 
11396 
11397 /****************************************************************************
11398 * General service functions
11399 ****************************************************************************/
11400 
11401 /*
11402  * net_device service functions
11403  */
11404 
11405 static int bnx2x_open_epilog(struct bnx2x *bp)
11406 {
11407 	/* Enable sriov via delayed work. This must be done via delayed work
11408 	 * because it causes the probe of the vf devices to be run, which invoke
11409 	 * register_netdevice which must have rtnl lock taken. As we are holding
11410 	 * the lock right now, that could only work if the probe would not take
11411 	 * the lock. However, as the probe of the vf may be called from other
11412 	 * contexts as well (such as passthrough to vm failes) it can't assume
11413 	 * the lock is being held for it. Using delayed work here allows the
11414 	 * probe code to simply take the lock (i.e. wait for it to be released
11415 	 * if it is being held).
11416 	 */
11417 	smp_mb__before_clear_bit();
11418 	set_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, &bp->sp_rtnl_state);
11419 	smp_mb__after_clear_bit();
11420 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
11421 
11422 	return 0;
11423 }
11424 
11425 /* called with rtnl_lock */
11426 static int bnx2x_open(struct net_device *dev)
11427 {
11428 	struct bnx2x *bp = netdev_priv(dev);
11429 	bool global = false;
11430 	int other_engine = BP_PATH(bp) ? 0 : 1;
11431 	bool other_load_status, load_status;
11432 	int rc;
11433 
11434 	bp->stats_init = true;
11435 
11436 	netif_carrier_off(dev);
11437 
11438 	bnx2x_set_power_state(bp, PCI_D0);
11439 
11440 	/* If parity had happen during the unload, then attentions
11441 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11442 	 * want the first function loaded on the current engine to
11443 	 * complete the recovery.
11444 	 * Parity recovery is only relevant for PF driver.
11445 	 */
11446 	if (IS_PF(bp)) {
11447 		other_load_status = bnx2x_get_load_status(bp, other_engine);
11448 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11449 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11450 		    bnx2x_chk_parity_attn(bp, &global, true)) {
11451 			do {
11452 				/* If there are attentions and they are in a
11453 				 * global blocks, set the GLOBAL_RESET bit
11454 				 * regardless whether it will be this function
11455 				 * that will complete the recovery or not.
11456 				 */
11457 				if (global)
11458 					bnx2x_set_reset_global(bp);
11459 
11460 				/* Only the first function on the current
11461 				 * engine should try to recover in open. In case
11462 				 * of attentions in global blocks only the first
11463 				 * in the chip should try to recover.
11464 				 */
11465 				if ((!load_status &&
11466 				     (!global || !other_load_status)) &&
11467 				      bnx2x_trylock_leader_lock(bp) &&
11468 				      !bnx2x_leader_reset(bp)) {
11469 					netdev_info(bp->dev,
11470 						    "Recovered in open\n");
11471 					break;
11472 				}
11473 
11474 				/* recovery has failed... */
11475 				bnx2x_set_power_state(bp, PCI_D3hot);
11476 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
11477 
11478 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11479 					  "If you still see this message after a few retries then power cycle is required.\n");
11480 
11481 				return -EAGAIN;
11482 			} while (0);
11483 		}
11484 	}
11485 
11486 	bp->recovery_state = BNX2X_RECOVERY_DONE;
11487 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
11488 	if (rc)
11489 		return rc;
11490 	return bnx2x_open_epilog(bp);
11491 }
11492 
11493 /* called with rtnl_lock */
11494 static int bnx2x_close(struct net_device *dev)
11495 {
11496 	struct bnx2x *bp = netdev_priv(dev);
11497 
11498 	/* Unload the driver, release IRQs */
11499 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11500 
11501 	/* Power off */
11502 	bnx2x_set_power_state(bp, PCI_D3hot);
11503 
11504 	return 0;
11505 }
11506 
11507 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11508 				      struct bnx2x_mcast_ramrod_params *p)
11509 {
11510 	int mc_count = netdev_mc_count(bp->dev);
11511 	struct bnx2x_mcast_list_elem *mc_mac =
11512 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11513 	struct netdev_hw_addr *ha;
11514 
11515 	if (!mc_mac)
11516 		return -ENOMEM;
11517 
11518 	INIT_LIST_HEAD(&p->mcast_list);
11519 
11520 	netdev_for_each_mc_addr(ha, bp->dev) {
11521 		mc_mac->mac = bnx2x_mc_addr(ha);
11522 		list_add_tail(&mc_mac->link, &p->mcast_list);
11523 		mc_mac++;
11524 	}
11525 
11526 	p->mcast_list_len = mc_count;
11527 
11528 	return 0;
11529 }
11530 
11531 static void bnx2x_free_mcast_macs_list(
11532 	struct bnx2x_mcast_ramrod_params *p)
11533 {
11534 	struct bnx2x_mcast_list_elem *mc_mac =
11535 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11536 				 link);
11537 
11538 	WARN_ON(!mc_mac);
11539 	kfree(mc_mac);
11540 }
11541 
11542 /**
11543  * bnx2x_set_uc_list - configure a new unicast MACs list.
11544  *
11545  * @bp: driver handle
11546  *
11547  * We will use zero (0) as a MAC type for these MACs.
11548  */
11549 static int bnx2x_set_uc_list(struct bnx2x *bp)
11550 {
11551 	int rc;
11552 	struct net_device *dev = bp->dev;
11553 	struct netdev_hw_addr *ha;
11554 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11555 	unsigned long ramrod_flags = 0;
11556 
11557 	/* First schedule a cleanup up of old configuration */
11558 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11559 	if (rc < 0) {
11560 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11561 		return rc;
11562 	}
11563 
11564 	netdev_for_each_uc_addr(ha, dev) {
11565 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11566 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11567 		if (rc == -EEXIST) {
11568 			DP(BNX2X_MSG_SP,
11569 			   "Failed to schedule ADD operations: %d\n", rc);
11570 			/* do not treat adding same MAC as error */
11571 			rc = 0;
11572 
11573 		} else if (rc < 0) {
11574 
11575 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11576 				  rc);
11577 			return rc;
11578 		}
11579 	}
11580 
11581 	/* Execute the pending commands */
11582 	__set_bit(RAMROD_CONT, &ramrod_flags);
11583 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11584 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
11585 }
11586 
11587 static int bnx2x_set_mc_list(struct bnx2x *bp)
11588 {
11589 	struct net_device *dev = bp->dev;
11590 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
11591 	int rc = 0;
11592 
11593 	rparam.mcast_obj = &bp->mcast_obj;
11594 
11595 	/* first, clear all configured multicast MACs */
11596 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11597 	if (rc < 0) {
11598 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11599 		return rc;
11600 	}
11601 
11602 	/* then, configure a new MACs list */
11603 	if (netdev_mc_count(dev)) {
11604 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11605 		if (rc) {
11606 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11607 				  rc);
11608 			return rc;
11609 		}
11610 
11611 		/* Now add the new MACs */
11612 		rc = bnx2x_config_mcast(bp, &rparam,
11613 					BNX2X_MCAST_CMD_ADD);
11614 		if (rc < 0)
11615 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11616 				  rc);
11617 
11618 		bnx2x_free_mcast_macs_list(&rparam);
11619 	}
11620 
11621 	return rc;
11622 }
11623 
11624 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11625 void bnx2x_set_rx_mode(struct net_device *dev)
11626 {
11627 	struct bnx2x *bp = netdev_priv(dev);
11628 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11629 
11630 	if (bp->state != BNX2X_STATE_OPEN) {
11631 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11632 		return;
11633 	}
11634 
11635 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11636 
11637 	if (dev->flags & IFF_PROMISC)
11638 		rx_mode = BNX2X_RX_MODE_PROMISC;
11639 	else if ((dev->flags & IFF_ALLMULTI) ||
11640 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11641 		  CHIP_IS_E1(bp)))
11642 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
11643 	else {
11644 		if (IS_PF(bp)) {
11645 			/* some multicasts */
11646 			if (bnx2x_set_mc_list(bp) < 0)
11647 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
11648 
11649 			if (bnx2x_set_uc_list(bp) < 0)
11650 				rx_mode = BNX2X_RX_MODE_PROMISC;
11651 		} else {
11652 			/* configuring mcast to a vf involves sleeping (when we
11653 			 * wait for the pf's response). Since this function is
11654 			 * called from non sleepable context we must schedule
11655 			 * a work item for this purpose
11656 			 */
11657 			smp_mb__before_clear_bit();
11658 			set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11659 				&bp->sp_rtnl_state);
11660 			smp_mb__after_clear_bit();
11661 			schedule_delayed_work(&bp->sp_rtnl_task, 0);
11662 		}
11663 	}
11664 
11665 	bp->rx_mode = rx_mode;
11666 	/* handle ISCSI SD mode */
11667 	if (IS_MF_ISCSI_SD(bp))
11668 		bp->rx_mode = BNX2X_RX_MODE_NONE;
11669 
11670 	/* Schedule the rx_mode command */
11671 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11672 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11673 		return;
11674 	}
11675 
11676 	if (IS_PF(bp)) {
11677 		bnx2x_set_storm_rx_mode(bp);
11678 	} else {
11679 		/* configuring rx mode to storms in a vf involves sleeping (when
11680 		 * we wait for the pf's response). Since this function is
11681 		 * called from non sleepable context we must schedule
11682 		 * a work item for this purpose
11683 		 */
11684 		smp_mb__before_clear_bit();
11685 		set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
11686 			&bp->sp_rtnl_state);
11687 		smp_mb__after_clear_bit();
11688 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
11689 	}
11690 }
11691 
11692 /* called with rtnl_lock */
11693 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11694 			   int devad, u16 addr)
11695 {
11696 	struct bnx2x *bp = netdev_priv(netdev);
11697 	u16 value;
11698 	int rc;
11699 
11700 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11701 	   prtad, devad, addr);
11702 
11703 	/* The HW expects different devad if CL22 is used */
11704 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11705 
11706 	bnx2x_acquire_phy_lock(bp);
11707 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11708 	bnx2x_release_phy_lock(bp);
11709 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11710 
11711 	if (!rc)
11712 		rc = value;
11713 	return rc;
11714 }
11715 
11716 /* called with rtnl_lock */
11717 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11718 			    u16 addr, u16 value)
11719 {
11720 	struct bnx2x *bp = netdev_priv(netdev);
11721 	int rc;
11722 
11723 	DP(NETIF_MSG_LINK,
11724 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11725 	   prtad, devad, addr, value);
11726 
11727 	/* The HW expects different devad if CL22 is used */
11728 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11729 
11730 	bnx2x_acquire_phy_lock(bp);
11731 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11732 	bnx2x_release_phy_lock(bp);
11733 	return rc;
11734 }
11735 
11736 /* called with rtnl_lock */
11737 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11738 {
11739 	struct bnx2x *bp = netdev_priv(dev);
11740 	struct mii_ioctl_data *mdio = if_mii(ifr);
11741 
11742 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11743 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
11744 
11745 	if (!netif_running(dev))
11746 		return -EAGAIN;
11747 
11748 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11749 }
11750 
11751 #ifdef CONFIG_NET_POLL_CONTROLLER
11752 static void poll_bnx2x(struct net_device *dev)
11753 {
11754 	struct bnx2x *bp = netdev_priv(dev);
11755 	int i;
11756 
11757 	for_each_eth_queue(bp, i) {
11758 		struct bnx2x_fastpath *fp = &bp->fp[i];
11759 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11760 	}
11761 }
11762 #endif
11763 
11764 static int bnx2x_validate_addr(struct net_device *dev)
11765 {
11766 	struct bnx2x *bp = netdev_priv(dev);
11767 
11768 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11769 		BNX2X_ERR("Non-valid Ethernet address\n");
11770 		return -EADDRNOTAVAIL;
11771 	}
11772 	return 0;
11773 }
11774 
11775 static const struct net_device_ops bnx2x_netdev_ops = {
11776 	.ndo_open		= bnx2x_open,
11777 	.ndo_stop		= bnx2x_close,
11778 	.ndo_start_xmit		= bnx2x_start_xmit,
11779 	.ndo_select_queue	= bnx2x_select_queue,
11780 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
11781 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
11782 	.ndo_validate_addr	= bnx2x_validate_addr,
11783 	.ndo_do_ioctl		= bnx2x_ioctl,
11784 	.ndo_change_mtu		= bnx2x_change_mtu,
11785 	.ndo_fix_features	= bnx2x_fix_features,
11786 	.ndo_set_features	= bnx2x_set_features,
11787 	.ndo_tx_timeout		= bnx2x_tx_timeout,
11788 #ifdef CONFIG_NET_POLL_CONTROLLER
11789 	.ndo_poll_controller	= poll_bnx2x,
11790 #endif
11791 	.ndo_setup_tc		= bnx2x_setup_tc,
11792 #ifdef CONFIG_BNX2X_SRIOV
11793 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
11794 #endif
11795 #ifdef NETDEV_FCOE_WWNN
11796 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
11797 #endif
11798 };
11799 
11800 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
11801 {
11802 	struct device *dev = &bp->pdev->dev;
11803 
11804 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
11805 		bp->flags |= USING_DAC_FLAG;
11806 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
11807 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
11808 			return -EIO;
11809 		}
11810 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
11811 		dev_err(dev, "System does not support DMA, aborting\n");
11812 		return -EIO;
11813 	}
11814 
11815 	return 0;
11816 }
11817 
11818 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
11819 			  struct net_device *dev, unsigned long board_type)
11820 {
11821 	int rc;
11822 	u32 pci_cfg_dword;
11823 	bool chip_is_e1x = (board_type == BCM57710 ||
11824 			    board_type == BCM57711 ||
11825 			    board_type == BCM57711E);
11826 
11827 	SET_NETDEV_DEV(dev, &pdev->dev);
11828 
11829 	bp->dev = dev;
11830 	bp->pdev = pdev;
11831 
11832 	rc = pci_enable_device(pdev);
11833 	if (rc) {
11834 		dev_err(&bp->pdev->dev,
11835 			"Cannot enable PCI device, aborting\n");
11836 		goto err_out;
11837 	}
11838 
11839 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11840 		dev_err(&bp->pdev->dev,
11841 			"Cannot find PCI device base address, aborting\n");
11842 		rc = -ENODEV;
11843 		goto err_out_disable;
11844 	}
11845 
11846 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
11847 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
11848 		rc = -ENODEV;
11849 		goto err_out_disable;
11850 	}
11851 
11852 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
11853 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
11854 	    PCICFG_REVESION_ID_ERROR_VAL) {
11855 		pr_err("PCI device error, probably due to fan failure, aborting\n");
11856 		rc = -ENODEV;
11857 		goto err_out_disable;
11858 	}
11859 
11860 	if (atomic_read(&pdev->enable_cnt) == 1) {
11861 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11862 		if (rc) {
11863 			dev_err(&bp->pdev->dev,
11864 				"Cannot obtain PCI resources, aborting\n");
11865 			goto err_out_disable;
11866 		}
11867 
11868 		pci_set_master(pdev);
11869 		pci_save_state(pdev);
11870 	}
11871 
11872 	if (IS_PF(bp)) {
11873 		bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
11874 		if (bp->pm_cap == 0) {
11875 			dev_err(&bp->pdev->dev,
11876 				"Cannot find power management capability, aborting\n");
11877 			rc = -EIO;
11878 			goto err_out_release;
11879 		}
11880 	}
11881 
11882 	if (!pci_is_pcie(pdev)) {
11883 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
11884 		rc = -EIO;
11885 		goto err_out_release;
11886 	}
11887 
11888 	rc = bnx2x_set_coherency_mask(bp);
11889 	if (rc)
11890 		goto err_out_release;
11891 
11892 	dev->mem_start = pci_resource_start(pdev, 0);
11893 	dev->base_addr = dev->mem_start;
11894 	dev->mem_end = pci_resource_end(pdev, 0);
11895 
11896 	dev->irq = pdev->irq;
11897 
11898 	bp->regview = pci_ioremap_bar(pdev, 0);
11899 	if (!bp->regview) {
11900 		dev_err(&bp->pdev->dev,
11901 			"Cannot map register space, aborting\n");
11902 		rc = -ENOMEM;
11903 		goto err_out_release;
11904 	}
11905 
11906 	/* In E1/E1H use pci device function given by kernel.
11907 	 * In E2/E3 read physical function from ME register since these chips
11908 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
11909 	 * (depending on hypervisor).
11910 	 */
11911 	if (chip_is_e1x) {
11912 		bp->pf_num = PCI_FUNC(pdev->devfn);
11913 	} else {
11914 		/* chip is E2/3*/
11915 		pci_read_config_dword(bp->pdev,
11916 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
11917 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
11918 				  ME_REG_ABS_PF_NUM_SHIFT);
11919 	}
11920 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
11921 
11922 	bnx2x_set_power_state(bp, PCI_D0);
11923 
11924 	/* clean indirect addresses */
11925 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
11926 			       PCICFG_VENDOR_ID_OFFSET);
11927 	/*
11928 	 * Clean the following indirect addresses for all functions since it
11929 	 * is not used by the driver.
11930 	 */
11931 	if (IS_PF(bp)) {
11932 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
11933 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
11934 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
11935 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
11936 
11937 		if (chip_is_e1x) {
11938 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
11939 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
11940 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
11941 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
11942 		}
11943 
11944 		/* Enable internal target-read (in case we are probed after PF
11945 		 * FLR). Must be done prior to any BAR read access. Only for
11946 		 * 57712 and up
11947 		 */
11948 		if (!chip_is_e1x)
11949 			REG_WR(bp,
11950 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11951 	}
11952 
11953 	dev->watchdog_timeo = TX_TIMEOUT;
11954 
11955 	dev->netdev_ops = &bnx2x_netdev_ops;
11956 	bnx2x_set_ethtool_ops(dev);
11957 
11958 	dev->priv_flags |= IFF_UNICAST_FLT;
11959 
11960 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11961 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
11962 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
11963 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
11964 
11965 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11966 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
11967 
11968 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
11969 	if (bp->flags & USING_DAC_FLAG)
11970 		dev->features |= NETIF_F_HIGHDMA;
11971 
11972 	/* Add Loopback capability to the device */
11973 	dev->hw_features |= NETIF_F_LOOPBACK;
11974 
11975 #ifdef BCM_DCBNL
11976 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
11977 #endif
11978 
11979 	/* get_port_hwinfo() will set prtad and mmds properly */
11980 	bp->mdio.prtad = MDIO_PRTAD_NONE;
11981 	bp->mdio.mmds = 0;
11982 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
11983 	bp->mdio.dev = dev;
11984 	bp->mdio.mdio_read = bnx2x_mdio_read;
11985 	bp->mdio.mdio_write = bnx2x_mdio_write;
11986 
11987 	return 0;
11988 
11989 err_out_release:
11990 	if (atomic_read(&pdev->enable_cnt) == 1)
11991 		pci_release_regions(pdev);
11992 
11993 err_out_disable:
11994 	pci_disable_device(pdev);
11995 	pci_set_drvdata(pdev, NULL);
11996 
11997 err_out:
11998 	return rc;
11999 }
12000 
12001 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, int *speed)
12002 {
12003 	u32 val = 0;
12004 
12005 	pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12006 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12007 
12008 	/* return value of 1=2.5GHz 2=5GHz */
12009 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12010 }
12011 
12012 static int bnx2x_check_firmware(struct bnx2x *bp)
12013 {
12014 	const struct firmware *firmware = bp->firmware;
12015 	struct bnx2x_fw_file_hdr *fw_hdr;
12016 	struct bnx2x_fw_file_section *sections;
12017 	u32 offset, len, num_ops;
12018 	__be16 *ops_offsets;
12019 	int i;
12020 	const u8 *fw_ver;
12021 
12022 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12023 		BNX2X_ERR("Wrong FW size\n");
12024 		return -EINVAL;
12025 	}
12026 
12027 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12028 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12029 
12030 	/* Make sure none of the offsets and sizes make us read beyond
12031 	 * the end of the firmware data */
12032 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12033 		offset = be32_to_cpu(sections[i].offset);
12034 		len = be32_to_cpu(sections[i].len);
12035 		if (offset + len > firmware->size) {
12036 			BNX2X_ERR("Section %d length is out of bounds\n", i);
12037 			return -EINVAL;
12038 		}
12039 	}
12040 
12041 	/* Likewise for the init_ops offsets */
12042 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12043 	ops_offsets = (__force __be16 *)(firmware->data + offset);
12044 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12045 
12046 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12047 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12048 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12049 			return -EINVAL;
12050 		}
12051 	}
12052 
12053 	/* Check FW version */
12054 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12055 	fw_ver = firmware->data + offset;
12056 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12057 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12058 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12059 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12060 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12061 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12062 		       BCM_5710_FW_MAJOR_VERSION,
12063 		       BCM_5710_FW_MINOR_VERSION,
12064 		       BCM_5710_FW_REVISION_VERSION,
12065 		       BCM_5710_FW_ENGINEERING_VERSION);
12066 		return -EINVAL;
12067 	}
12068 
12069 	return 0;
12070 }
12071 
12072 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12073 {
12074 	const __be32 *source = (const __be32 *)_source;
12075 	u32 *target = (u32 *)_target;
12076 	u32 i;
12077 
12078 	for (i = 0; i < n/4; i++)
12079 		target[i] = be32_to_cpu(source[i]);
12080 }
12081 
12082 /*
12083    Ops array is stored in the following format:
12084    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12085  */
12086 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12087 {
12088 	const __be32 *source = (const __be32 *)_source;
12089 	struct raw_op *target = (struct raw_op *)_target;
12090 	u32 i, j, tmp;
12091 
12092 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12093 		tmp = be32_to_cpu(source[j]);
12094 		target[i].op = (tmp >> 24) & 0xff;
12095 		target[i].offset = tmp & 0xffffff;
12096 		target[i].raw_data = be32_to_cpu(source[j + 1]);
12097 	}
12098 }
12099 
12100 /* IRO array is stored in the following format:
12101  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12102  */
12103 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12104 {
12105 	const __be32 *source = (const __be32 *)_source;
12106 	struct iro *target = (struct iro *)_target;
12107 	u32 i, j, tmp;
12108 
12109 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12110 		target[i].base = be32_to_cpu(source[j]);
12111 		j++;
12112 		tmp = be32_to_cpu(source[j]);
12113 		target[i].m1 = (tmp >> 16) & 0xffff;
12114 		target[i].m2 = tmp & 0xffff;
12115 		j++;
12116 		tmp = be32_to_cpu(source[j]);
12117 		target[i].m3 = (tmp >> 16) & 0xffff;
12118 		target[i].size = tmp & 0xffff;
12119 		j++;
12120 	}
12121 }
12122 
12123 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12124 {
12125 	const __be16 *source = (const __be16 *)_source;
12126 	u16 *target = (u16 *)_target;
12127 	u32 i;
12128 
12129 	for (i = 0; i < n/2; i++)
12130 		target[i] = be16_to_cpu(source[i]);
12131 }
12132 
12133 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12134 do {									\
12135 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12136 	bp->arr = kmalloc(len, GFP_KERNEL);				\
12137 	if (!bp->arr)							\
12138 		goto lbl;						\
12139 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12140 	     (u8 *)bp->arr, len);					\
12141 } while (0)
12142 
12143 static int bnx2x_init_firmware(struct bnx2x *bp)
12144 {
12145 	const char *fw_file_name;
12146 	struct bnx2x_fw_file_hdr *fw_hdr;
12147 	int rc;
12148 
12149 	if (bp->firmware)
12150 		return 0;
12151 
12152 	if (CHIP_IS_E1(bp))
12153 		fw_file_name = FW_FILE_NAME_E1;
12154 	else if (CHIP_IS_E1H(bp))
12155 		fw_file_name = FW_FILE_NAME_E1H;
12156 	else if (!CHIP_IS_E1x(bp))
12157 		fw_file_name = FW_FILE_NAME_E2;
12158 	else {
12159 		BNX2X_ERR("Unsupported chip revision\n");
12160 		return -EINVAL;
12161 	}
12162 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12163 
12164 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12165 	if (rc) {
12166 		BNX2X_ERR("Can't load firmware file %s\n",
12167 			  fw_file_name);
12168 		goto request_firmware_exit;
12169 	}
12170 
12171 	rc = bnx2x_check_firmware(bp);
12172 	if (rc) {
12173 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12174 		goto request_firmware_exit;
12175 	}
12176 
12177 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12178 
12179 	/* Initialize the pointers to the init arrays */
12180 	/* Blob */
12181 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12182 
12183 	/* Opcodes */
12184 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12185 
12186 	/* Offsets */
12187 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12188 			    be16_to_cpu_n);
12189 
12190 	/* STORMs firmware */
12191 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12192 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12193 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12194 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12195 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12196 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12197 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12198 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12199 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12200 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12201 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12202 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12203 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12204 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12205 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12206 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12207 	/* IRO */
12208 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12209 
12210 	return 0;
12211 
12212 iro_alloc_err:
12213 	kfree(bp->init_ops_offsets);
12214 init_offsets_alloc_err:
12215 	kfree(bp->init_ops);
12216 init_ops_alloc_err:
12217 	kfree(bp->init_data);
12218 request_firmware_exit:
12219 	release_firmware(bp->firmware);
12220 	bp->firmware = NULL;
12221 
12222 	return rc;
12223 }
12224 
12225 static void bnx2x_release_firmware(struct bnx2x *bp)
12226 {
12227 	kfree(bp->init_ops_offsets);
12228 	kfree(bp->init_ops);
12229 	kfree(bp->init_data);
12230 	release_firmware(bp->firmware);
12231 	bp->firmware = NULL;
12232 }
12233 
12234 
12235 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12236 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12237 	.init_hw_cmn      = bnx2x_init_hw_common,
12238 	.init_hw_port     = bnx2x_init_hw_port,
12239 	.init_hw_func     = bnx2x_init_hw_func,
12240 
12241 	.reset_hw_cmn     = bnx2x_reset_common,
12242 	.reset_hw_port    = bnx2x_reset_port,
12243 	.reset_hw_func    = bnx2x_reset_func,
12244 
12245 	.gunzip_init      = bnx2x_gunzip_init,
12246 	.gunzip_end       = bnx2x_gunzip_end,
12247 
12248 	.init_fw          = bnx2x_init_firmware,
12249 	.release_fw       = bnx2x_release_firmware,
12250 };
12251 
12252 void bnx2x__init_func_obj(struct bnx2x *bp)
12253 {
12254 	/* Prepare DMAE related driver resources */
12255 	bnx2x_setup_dmae(bp);
12256 
12257 	bnx2x_init_func_obj(bp, &bp->func_obj,
12258 			    bnx2x_sp(bp, func_rdata),
12259 			    bnx2x_sp_mapping(bp, func_rdata),
12260 			    bnx2x_sp(bp, func_afex_rdata),
12261 			    bnx2x_sp_mapping(bp, func_afex_rdata),
12262 			    &bnx2x_func_sp_drv);
12263 }
12264 
12265 /* must be called after sriov-enable */
12266 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12267 {
12268 	int cid_count = BNX2X_L2_MAX_CID(bp);
12269 
12270 	if (IS_SRIOV(bp))
12271 		cid_count += BNX2X_VF_CIDS;
12272 
12273 	if (CNIC_SUPPORT(bp))
12274 		cid_count += CNIC_CID_MAX;
12275 
12276 	return roundup(cid_count, QM_CID_ROUND);
12277 }
12278 
12279 /**
12280  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12281  *
12282  * @dev:	pci device
12283  *
12284  */
12285 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12286 				     int cnic_cnt, bool is_vf)
12287 {
12288 	int pos, index;
12289 	u16 control = 0;
12290 
12291 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12292 
12293 	/*
12294 	 * If MSI-X is not supported - return number of SBs needed to support
12295 	 * one fast path queue: one FP queue + SB for CNIC
12296 	 */
12297 	if (!pos) {
12298 		dev_info(&pdev->dev, "no msix capability found\n");
12299 		return 1 + cnic_cnt;
12300 	}
12301 	dev_info(&pdev->dev, "msix capability found\n");
12302 
12303 	/*
12304 	 * The value in the PCI configuration space is the index of the last
12305 	 * entry, namely one less than the actual size of the table, which is
12306 	 * exactly what we want to return from this function: number of all SBs
12307 	 * without the default SB.
12308 	 * For VFs there is no default SB, then we return (index+1).
12309 	 */
12310 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
12311 
12312 	index = control & PCI_MSIX_FLAGS_QSIZE;
12313 
12314 	return is_vf ? index + 1 : index;
12315 }
12316 
12317 static int set_max_cos_est(int chip_id)
12318 {
12319 	switch (chip_id) {
12320 	case BCM57710:
12321 	case BCM57711:
12322 	case BCM57711E:
12323 		return BNX2X_MULTI_TX_COS_E1X;
12324 	case BCM57712:
12325 	case BCM57712_MF:
12326 	case BCM57712_VF:
12327 		return BNX2X_MULTI_TX_COS_E2_E3A0;
12328 	case BCM57800:
12329 	case BCM57800_MF:
12330 	case BCM57800_VF:
12331 	case BCM57810:
12332 	case BCM57810_MF:
12333 	case BCM57840_4_10:
12334 	case BCM57840_2_20:
12335 	case BCM57840_O:
12336 	case BCM57840_MFO:
12337 	case BCM57810_VF:
12338 	case BCM57840_MF:
12339 	case BCM57840_VF:
12340 	case BCM57811:
12341 	case BCM57811_MF:
12342 	case BCM57811_VF:
12343 		return BNX2X_MULTI_TX_COS_E3B0;
12344 		return 1;
12345 	default:
12346 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
12347 		return -ENODEV;
12348 	}
12349 }
12350 
12351 static int set_is_vf(int chip_id)
12352 {
12353 	switch (chip_id) {
12354 	case BCM57712_VF:
12355 	case BCM57800_VF:
12356 	case BCM57810_VF:
12357 	case BCM57840_VF:
12358 	case BCM57811_VF:
12359 		return true;
12360 	default:
12361 		return false;
12362 	}
12363 }
12364 
12365 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12366 
12367 static int bnx2x_init_one(struct pci_dev *pdev,
12368 				    const struct pci_device_id *ent)
12369 {
12370 	struct net_device *dev = NULL;
12371 	struct bnx2x *bp;
12372 	int pcie_width, pcie_speed;
12373 	int rc, max_non_def_sbs;
12374 	int rx_count, tx_count, rss_count, doorbell_size;
12375 	int max_cos_est;
12376 	bool is_vf;
12377 	int cnic_cnt;
12378 
12379 	/* An estimated maximum supported CoS number according to the chip
12380 	 * version.
12381 	 * We will try to roughly estimate the maximum number of CoSes this chip
12382 	 * may support in order to minimize the memory allocated for Tx
12383 	 * netdev_queue's. This number will be accurately calculated during the
12384 	 * initialization of bp->max_cos based on the chip versions AND chip
12385 	 * revision in the bnx2x_init_bp().
12386 	 */
12387 	max_cos_est = set_max_cos_est(ent->driver_data);
12388 	if (max_cos_est < 0)
12389 		return max_cos_est;
12390 	is_vf = set_is_vf(ent->driver_data);
12391 	cnic_cnt = is_vf ? 0 : 1;
12392 
12393 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf);
12394 
12395 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
12396 	rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt;
12397 
12398 	if (rss_count < 1)
12399 		return -EINVAL;
12400 
12401 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12402 	rx_count = rss_count + cnic_cnt;
12403 
12404 	/* Maximum number of netdev Tx queues:
12405 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12406 	 */
12407 	tx_count = rss_count * max_cos_est + cnic_cnt;
12408 
12409 	/* dev zeroed in init_etherdev */
12410 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12411 	if (!dev)
12412 		return -ENOMEM;
12413 
12414 	bp = netdev_priv(dev);
12415 
12416 	bp->flags = 0;
12417 	if (is_vf)
12418 		bp->flags |= IS_VF_FLAG;
12419 
12420 	bp->igu_sb_cnt = max_non_def_sbs;
12421 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12422 	bp->msg_enable = debug;
12423 	bp->cnic_support = cnic_cnt;
12424 	bp->cnic_probe = bnx2x_cnic_probe;
12425 
12426 	pci_set_drvdata(pdev, dev);
12427 
12428 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12429 	if (rc < 0) {
12430 		free_netdev(dev);
12431 		return rc;
12432 	}
12433 
12434 	BNX2X_DEV_INFO("This is a %s function\n",
12435 		       IS_PF(bp) ? "physical" : "virtual");
12436 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12437 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12438 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12439 		       tx_count, rx_count);
12440 
12441 	rc = bnx2x_init_bp(bp);
12442 	if (rc)
12443 		goto init_one_exit;
12444 
12445 	/* Map doorbells here as we need the real value of bp->max_cos which
12446 	 * is initialized in bnx2x_init_bp() to determine the number of
12447 	 * l2 connections.
12448 	 */
12449 	if (IS_VF(bp)) {
12450 		bnx2x_vf_map_doorbells(bp);
12451 		rc = bnx2x_vf_pci_alloc(bp);
12452 		if (rc)
12453 			goto init_one_exit;
12454 	} else {
12455 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12456 		if (doorbell_size > pci_resource_len(pdev, 2)) {
12457 			dev_err(&bp->pdev->dev,
12458 				"Cannot map doorbells, bar size too small, aborting\n");
12459 			rc = -ENOMEM;
12460 			goto init_one_exit;
12461 		}
12462 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12463 						doorbell_size);
12464 	}
12465 	if (!bp->doorbells) {
12466 		dev_err(&bp->pdev->dev,
12467 			"Cannot map doorbell space, aborting\n");
12468 		rc = -ENOMEM;
12469 		goto init_one_exit;
12470 	}
12471 
12472 	if (IS_VF(bp)) {
12473 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12474 		if (rc)
12475 			goto init_one_exit;
12476 	}
12477 
12478 	/* Enable SRIOV if capability found in configuration space.
12479 	 * Once the generic SR-IOV framework makes it in from the
12480 	 * pci tree this will be revised, to allow dynamic control
12481 	 * over the number of VFs. Right now, change the num of vfs
12482 	 * param below to enable SR-IOV.
12483 	 */
12484 	rc = bnx2x_iov_init_one(bp, int_mode, 0/*num vfs*/);
12485 	if (rc)
12486 		goto init_one_exit;
12487 
12488 	/* calc qm_cid_count */
12489 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12490 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12491 
12492 	/* disable FCOE L2 queue for E1x*/
12493 	if (CHIP_IS_E1x(bp))
12494 		bp->flags |= NO_FCOE_FLAG;
12495 
12496 	/* disable FCOE for 57840 device, until FW supports it */
12497 	switch (ent->driver_data) {
12498 	case BCM57840_O:
12499 	case BCM57840_4_10:
12500 	case BCM57840_2_20:
12501 	case BCM57840_MFO:
12502 	case BCM57840_MF:
12503 		bp->flags |= NO_FCOE_FLAG;
12504 	}
12505 
12506 	/* Set bp->num_queues for MSI-X mode*/
12507 	bnx2x_set_num_queues(bp);
12508 
12509 	/* Configure interrupt mode: try to enable MSI-X/MSI if
12510 	 * needed.
12511 	 */
12512 	rc = bnx2x_set_int_mode(bp);
12513 	if (rc) {
12514 		dev_err(&pdev->dev, "Cannot set interrupts\n");
12515 		goto init_one_exit;
12516 	}
12517 	BNX2X_DEV_INFO("set interrupts successfully\n");
12518 
12519 	/* register the net device */
12520 	rc = register_netdev(dev);
12521 	if (rc) {
12522 		dev_err(&pdev->dev, "Cannot register net device\n");
12523 		goto init_one_exit;
12524 	}
12525 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12526 
12527 
12528 	if (!NO_FCOE(bp)) {
12529 		/* Add storage MAC address */
12530 		rtnl_lock();
12531 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12532 		rtnl_unlock();
12533 	}
12534 
12535 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12536 	BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12537 		       pcie_width, pcie_speed);
12538 
12539 	BNX2X_DEV_INFO(
12540 		"%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12541 		    board_info[ent->driver_data].name,
12542 		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12543 		    pcie_width,
12544 		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
12545 		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
12546 		    "5GHz (Gen2)" : "2.5GHz",
12547 		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
12548 
12549 	return 0;
12550 
12551 init_one_exit:
12552 	if (bp->regview)
12553 		iounmap(bp->regview);
12554 
12555 	if (IS_PF(bp) && bp->doorbells)
12556 		iounmap(bp->doorbells);
12557 
12558 	free_netdev(dev);
12559 
12560 	if (atomic_read(&pdev->enable_cnt) == 1)
12561 		pci_release_regions(pdev);
12562 
12563 	pci_disable_device(pdev);
12564 	pci_set_drvdata(pdev, NULL);
12565 
12566 	return rc;
12567 }
12568 
12569 static void bnx2x_remove_one(struct pci_dev *pdev)
12570 {
12571 	struct net_device *dev = pci_get_drvdata(pdev);
12572 	struct bnx2x *bp;
12573 
12574 	if (!dev) {
12575 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12576 		return;
12577 	}
12578 	bp = netdev_priv(dev);
12579 
12580 	/* Delete storage MAC address */
12581 	if (!NO_FCOE(bp)) {
12582 		rtnl_lock();
12583 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12584 		rtnl_unlock();
12585 	}
12586 
12587 #ifdef BCM_DCBNL
12588 	/* Delete app tlvs from dcbnl */
12589 	bnx2x_dcbnl_update_applist(bp, true);
12590 #endif
12591 
12592 	unregister_netdev(dev);
12593 
12594 	/* Power on: we can't let PCI layer write to us while we are in D3 */
12595 	if (IS_PF(bp))
12596 		bnx2x_set_power_state(bp, PCI_D0);
12597 
12598 	/* Disable MSI/MSI-X */
12599 	bnx2x_disable_msi(bp);
12600 
12601 	/* Power off */
12602 	if (IS_PF(bp))
12603 		bnx2x_set_power_state(bp, PCI_D3hot);
12604 
12605 	/* Make sure RESET task is not scheduled before continuing */
12606 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
12607 
12608 	bnx2x_iov_remove_one(bp);
12609 
12610 	/* send message via vfpf channel to release the resources of this vf */
12611 	if (IS_VF(bp))
12612 		bnx2x_vfpf_release(bp);
12613 
12614 	if (bp->regview)
12615 		iounmap(bp->regview);
12616 
12617 	/* for vf doorbells are part of the regview and were unmapped along with
12618 	 * it. FW is only loaded by PF.
12619 	 */
12620 	if (IS_PF(bp)) {
12621 		if (bp->doorbells)
12622 			iounmap(bp->doorbells);
12623 
12624 		bnx2x_release_firmware(bp);
12625 	}
12626 	bnx2x_free_mem_bp(bp);
12627 
12628 	free_netdev(dev);
12629 
12630 	if (atomic_read(&pdev->enable_cnt) == 1)
12631 		pci_release_regions(pdev);
12632 
12633 	pci_disable_device(pdev);
12634 	pci_set_drvdata(pdev, NULL);
12635 }
12636 
12637 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12638 {
12639 	int i;
12640 
12641 	bp->state = BNX2X_STATE_ERROR;
12642 
12643 	bp->rx_mode = BNX2X_RX_MODE_NONE;
12644 
12645 	if (CNIC_LOADED(bp))
12646 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12647 
12648 	/* Stop Tx */
12649 	bnx2x_tx_disable(bp);
12650 
12651 	bnx2x_netif_stop(bp, 0);
12652 	/* Delete all NAPI objects */
12653 	bnx2x_del_all_napi(bp);
12654 	if (CNIC_LOADED(bp))
12655 		bnx2x_del_all_napi_cnic(bp);
12656 
12657 	del_timer_sync(&bp->timer);
12658 
12659 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
12660 
12661 	/* Release IRQs */
12662 	bnx2x_free_irq(bp);
12663 
12664 	/* Free SKBs, SGEs, TPA pool and driver internals */
12665 	bnx2x_free_skbs(bp);
12666 
12667 	for_each_rx_queue(bp, i)
12668 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
12669 
12670 	bnx2x_free_mem(bp);
12671 
12672 	bp->state = BNX2X_STATE_CLOSED;
12673 
12674 	netif_carrier_off(bp->dev);
12675 
12676 	return 0;
12677 }
12678 
12679 static void bnx2x_eeh_recover(struct bnx2x *bp)
12680 {
12681 	u32 val;
12682 
12683 	mutex_init(&bp->port.phy_mutex);
12684 
12685 
12686 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
12687 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12688 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12689 		BNX2X_ERR("BAD MCP validity signature\n");
12690 }
12691 
12692 /**
12693  * bnx2x_io_error_detected - called when PCI error is detected
12694  * @pdev: Pointer to PCI device
12695  * @state: The current pci connection state
12696  *
12697  * This function is called after a PCI bus error affecting
12698  * this device has been detected.
12699  */
12700 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12701 						pci_channel_state_t state)
12702 {
12703 	struct net_device *dev = pci_get_drvdata(pdev);
12704 	struct bnx2x *bp = netdev_priv(dev);
12705 
12706 	rtnl_lock();
12707 
12708 	netif_device_detach(dev);
12709 
12710 	if (state == pci_channel_io_perm_failure) {
12711 		rtnl_unlock();
12712 		return PCI_ERS_RESULT_DISCONNECT;
12713 	}
12714 
12715 	if (netif_running(dev))
12716 		bnx2x_eeh_nic_unload(bp);
12717 
12718 	pci_disable_device(pdev);
12719 
12720 	rtnl_unlock();
12721 
12722 	/* Request a slot reset */
12723 	return PCI_ERS_RESULT_NEED_RESET;
12724 }
12725 
12726 /**
12727  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12728  * @pdev: Pointer to PCI device
12729  *
12730  * Restart the card from scratch, as if from a cold-boot.
12731  */
12732 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12733 {
12734 	struct net_device *dev = pci_get_drvdata(pdev);
12735 	struct bnx2x *bp = netdev_priv(dev);
12736 
12737 	rtnl_lock();
12738 
12739 	if (pci_enable_device(pdev)) {
12740 		dev_err(&pdev->dev,
12741 			"Cannot re-enable PCI device after reset\n");
12742 		rtnl_unlock();
12743 		return PCI_ERS_RESULT_DISCONNECT;
12744 	}
12745 
12746 	pci_set_master(pdev);
12747 	pci_restore_state(pdev);
12748 
12749 	if (netif_running(dev))
12750 		bnx2x_set_power_state(bp, PCI_D0);
12751 
12752 	rtnl_unlock();
12753 
12754 	return PCI_ERS_RESULT_RECOVERED;
12755 }
12756 
12757 /**
12758  * bnx2x_io_resume - called when traffic can start flowing again
12759  * @pdev: Pointer to PCI device
12760  *
12761  * This callback is called when the error recovery driver tells us that
12762  * its OK to resume normal operation.
12763  */
12764 static void bnx2x_io_resume(struct pci_dev *pdev)
12765 {
12766 	struct net_device *dev = pci_get_drvdata(pdev);
12767 	struct bnx2x *bp = netdev_priv(dev);
12768 
12769 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
12770 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
12771 		return;
12772 	}
12773 
12774 	rtnl_lock();
12775 
12776 	bnx2x_eeh_recover(bp);
12777 
12778 	if (netif_running(dev))
12779 		bnx2x_nic_load(bp, LOAD_NORMAL);
12780 
12781 	netif_device_attach(dev);
12782 
12783 	rtnl_unlock();
12784 }
12785 
12786 static const struct pci_error_handlers bnx2x_err_handler = {
12787 	.error_detected = bnx2x_io_error_detected,
12788 	.slot_reset     = bnx2x_io_slot_reset,
12789 	.resume         = bnx2x_io_resume,
12790 };
12791 
12792 static struct pci_driver bnx2x_pci_driver = {
12793 	.name        = DRV_MODULE_NAME,
12794 	.id_table    = bnx2x_pci_tbl,
12795 	.probe       = bnx2x_init_one,
12796 	.remove      = bnx2x_remove_one,
12797 	.suspend     = bnx2x_suspend,
12798 	.resume      = bnx2x_resume,
12799 	.err_handler = &bnx2x_err_handler,
12800 };
12801 
12802 static int __init bnx2x_init(void)
12803 {
12804 	int ret;
12805 
12806 	pr_info("%s", version);
12807 
12808 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
12809 	if (bnx2x_wq == NULL) {
12810 		pr_err("Cannot create workqueue\n");
12811 		return -ENOMEM;
12812 	}
12813 
12814 	ret = pci_register_driver(&bnx2x_pci_driver);
12815 	if (ret) {
12816 		pr_err("Cannot register driver\n");
12817 		destroy_workqueue(bnx2x_wq);
12818 	}
12819 	return ret;
12820 }
12821 
12822 static void __exit bnx2x_cleanup(void)
12823 {
12824 	struct list_head *pos, *q;
12825 	pci_unregister_driver(&bnx2x_pci_driver);
12826 
12827 	destroy_workqueue(bnx2x_wq);
12828 
12829 	/* Free globablly allocated resources */
12830 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
12831 		struct bnx2x_prev_path_list *tmp =
12832 			list_entry(pos, struct bnx2x_prev_path_list, list);
12833 		list_del(pos);
12834 		kfree(tmp);
12835 	}
12836 }
12837 
12838 void bnx2x_notify_link_changed(struct bnx2x *bp)
12839 {
12840 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
12841 }
12842 
12843 module_init(bnx2x_init);
12844 module_exit(bnx2x_cleanup);
12845 
12846 /**
12847  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
12848  *
12849  * @bp:		driver handle
12850  * @set:	set or clear the CAM entry
12851  *
12852  * This function will wait until the ramdord completion returns.
12853  * Return 0 if success, -ENODEV if ramrod doesn't return.
12854  */
12855 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
12856 {
12857 	unsigned long ramrod_flags = 0;
12858 
12859 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12860 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
12861 				 &bp->iscsi_l2_mac_obj, true,
12862 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
12863 }
12864 
12865 /* count denotes the number of new completions we have seen */
12866 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
12867 {
12868 	struct eth_spe *spe;
12869 	int cxt_index, cxt_offset;
12870 
12871 #ifdef BNX2X_STOP_ON_ERROR
12872 	if (unlikely(bp->panic))
12873 		return;
12874 #endif
12875 
12876 	spin_lock_bh(&bp->spq_lock);
12877 	BUG_ON(bp->cnic_spq_pending < count);
12878 	bp->cnic_spq_pending -= count;
12879 
12880 
12881 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
12882 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
12883 				& SPE_HDR_CONN_TYPE) >>
12884 				SPE_HDR_CONN_TYPE_SHIFT;
12885 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
12886 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
12887 
12888 		/* Set validation for iSCSI L2 client before sending SETUP
12889 		 *  ramrod
12890 		 */
12891 		if (type == ETH_CONNECTION_TYPE) {
12892 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
12893 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
12894 					ILT_PAGE_CIDS;
12895 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
12896 					(cxt_index * ILT_PAGE_CIDS);
12897 				bnx2x_set_ctx_validation(bp,
12898 					&bp->context[cxt_index].
12899 							 vcxt[cxt_offset].eth,
12900 					BNX2X_ISCSI_ETH_CID(bp));
12901 			}
12902 		}
12903 
12904 		/*
12905 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
12906 		 * and in the air. We also check that number of outstanding
12907 		 * COMMON ramrods is not more than the EQ and SPQ can
12908 		 * accommodate.
12909 		 */
12910 		if (type == ETH_CONNECTION_TYPE) {
12911 			if (!atomic_read(&bp->cq_spq_left))
12912 				break;
12913 			else
12914 				atomic_dec(&bp->cq_spq_left);
12915 		} else if (type == NONE_CONNECTION_TYPE) {
12916 			if (!atomic_read(&bp->eq_spq_left))
12917 				break;
12918 			else
12919 				atomic_dec(&bp->eq_spq_left);
12920 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
12921 			   (type == FCOE_CONNECTION_TYPE)) {
12922 			if (bp->cnic_spq_pending >=
12923 			    bp->cnic_eth_dev.max_kwqe_pending)
12924 				break;
12925 			else
12926 				bp->cnic_spq_pending++;
12927 		} else {
12928 			BNX2X_ERR("Unknown SPE type: %d\n", type);
12929 			bnx2x_panic();
12930 			break;
12931 		}
12932 
12933 		spe = bnx2x_sp_get_next(bp);
12934 		*spe = *bp->cnic_kwq_cons;
12935 
12936 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
12937 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
12938 
12939 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
12940 			bp->cnic_kwq_cons = bp->cnic_kwq;
12941 		else
12942 			bp->cnic_kwq_cons++;
12943 	}
12944 	bnx2x_sp_prod_update(bp);
12945 	spin_unlock_bh(&bp->spq_lock);
12946 }
12947 
12948 static int bnx2x_cnic_sp_queue(struct net_device *dev,
12949 			       struct kwqe_16 *kwqes[], u32 count)
12950 {
12951 	struct bnx2x *bp = netdev_priv(dev);
12952 	int i;
12953 
12954 #ifdef BNX2X_STOP_ON_ERROR
12955 	if (unlikely(bp->panic)) {
12956 		BNX2X_ERR("Can't post to SP queue while panic\n");
12957 		return -EIO;
12958 	}
12959 #endif
12960 
12961 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
12962 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
12963 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
12964 		return -EAGAIN;
12965 	}
12966 
12967 	spin_lock_bh(&bp->spq_lock);
12968 
12969 	for (i = 0; i < count; i++) {
12970 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
12971 
12972 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
12973 			break;
12974 
12975 		*bp->cnic_kwq_prod = *spe;
12976 
12977 		bp->cnic_kwq_pending++;
12978 
12979 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
12980 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
12981 		   spe->data.update_data_addr.hi,
12982 		   spe->data.update_data_addr.lo,
12983 		   bp->cnic_kwq_pending);
12984 
12985 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
12986 			bp->cnic_kwq_prod = bp->cnic_kwq;
12987 		else
12988 			bp->cnic_kwq_prod++;
12989 	}
12990 
12991 	spin_unlock_bh(&bp->spq_lock);
12992 
12993 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
12994 		bnx2x_cnic_sp_post(bp, 0);
12995 
12996 	return i;
12997 }
12998 
12999 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13000 {
13001 	struct cnic_ops *c_ops;
13002 	int rc = 0;
13003 
13004 	mutex_lock(&bp->cnic_mutex);
13005 	c_ops = rcu_dereference_protected(bp->cnic_ops,
13006 					  lockdep_is_held(&bp->cnic_mutex));
13007 	if (c_ops)
13008 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13009 	mutex_unlock(&bp->cnic_mutex);
13010 
13011 	return rc;
13012 }
13013 
13014 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13015 {
13016 	struct cnic_ops *c_ops;
13017 	int rc = 0;
13018 
13019 	rcu_read_lock();
13020 	c_ops = rcu_dereference(bp->cnic_ops);
13021 	if (c_ops)
13022 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13023 	rcu_read_unlock();
13024 
13025 	return rc;
13026 }
13027 
13028 /*
13029  * for commands that have no data
13030  */
13031 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13032 {
13033 	struct cnic_ctl_info ctl = {0};
13034 
13035 	ctl.cmd = cmd;
13036 
13037 	return bnx2x_cnic_ctl_send(bp, &ctl);
13038 }
13039 
13040 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13041 {
13042 	struct cnic_ctl_info ctl = {0};
13043 
13044 	/* first we tell CNIC and only then we count this as a completion */
13045 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13046 	ctl.data.comp.cid = cid;
13047 	ctl.data.comp.error = err;
13048 
13049 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
13050 	bnx2x_cnic_sp_post(bp, 0);
13051 }
13052 
13053 
13054 /* Called with netif_addr_lock_bh() taken.
13055  * Sets an rx_mode config for an iSCSI ETH client.
13056  * Doesn't block.
13057  * Completion should be checked outside.
13058  */
13059 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13060 {
13061 	unsigned long accept_flags = 0, ramrod_flags = 0;
13062 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13063 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13064 
13065 	if (start) {
13066 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
13067 		 * because it's the only way for UIO Queue to accept
13068 		 * multicasts (in non-promiscuous mode only one Queue per
13069 		 * function will receive multicast packets (leading in our
13070 		 * case).
13071 		 */
13072 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13073 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13074 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13075 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13076 
13077 		/* Clear STOP_PENDING bit if START is requested */
13078 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13079 
13080 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13081 	} else
13082 		/* Clear START_PENDING bit if STOP is requested */
13083 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13084 
13085 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13086 		set_bit(sched_state, &bp->sp_state);
13087 	else {
13088 		__set_bit(RAMROD_RX, &ramrod_flags);
13089 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13090 				    ramrod_flags);
13091 	}
13092 }
13093 
13094 
13095 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13096 {
13097 	struct bnx2x *bp = netdev_priv(dev);
13098 	int rc = 0;
13099 
13100 	switch (ctl->cmd) {
13101 	case DRV_CTL_CTXTBL_WR_CMD: {
13102 		u32 index = ctl->data.io.offset;
13103 		dma_addr_t addr = ctl->data.io.dma_addr;
13104 
13105 		bnx2x_ilt_wr(bp, index, addr);
13106 		break;
13107 	}
13108 
13109 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13110 		int count = ctl->data.credit.credit_count;
13111 
13112 		bnx2x_cnic_sp_post(bp, count);
13113 		break;
13114 	}
13115 
13116 	/* rtnl_lock is held.  */
13117 	case DRV_CTL_START_L2_CMD: {
13118 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13119 		unsigned long sp_bits = 0;
13120 
13121 		/* Configure the iSCSI classification object */
13122 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13123 				   cp->iscsi_l2_client_id,
13124 				   cp->iscsi_l2_cid, BP_FUNC(bp),
13125 				   bnx2x_sp(bp, mac_rdata),
13126 				   bnx2x_sp_mapping(bp, mac_rdata),
13127 				   BNX2X_FILTER_MAC_PENDING,
13128 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13129 				   &bp->macs_pool);
13130 
13131 		/* Set iSCSI MAC address */
13132 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13133 		if (rc)
13134 			break;
13135 
13136 		mmiowb();
13137 		barrier();
13138 
13139 		/* Start accepting on iSCSI L2 ring */
13140 
13141 		netif_addr_lock_bh(dev);
13142 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
13143 		netif_addr_unlock_bh(dev);
13144 
13145 		/* bits to wait on */
13146 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13147 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13148 
13149 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13150 			BNX2X_ERR("rx_mode completion timed out!\n");
13151 
13152 		break;
13153 	}
13154 
13155 	/* rtnl_lock is held.  */
13156 	case DRV_CTL_STOP_L2_CMD: {
13157 		unsigned long sp_bits = 0;
13158 
13159 		/* Stop accepting on iSCSI L2 ring */
13160 		netif_addr_lock_bh(dev);
13161 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
13162 		netif_addr_unlock_bh(dev);
13163 
13164 		/* bits to wait on */
13165 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13166 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13167 
13168 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13169 			BNX2X_ERR("rx_mode completion timed out!\n");
13170 
13171 		mmiowb();
13172 		barrier();
13173 
13174 		/* Unset iSCSI L2 MAC */
13175 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13176 					BNX2X_ISCSI_ETH_MAC, true);
13177 		break;
13178 	}
13179 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13180 		int count = ctl->data.credit.credit_count;
13181 
13182 		smp_mb__before_atomic_inc();
13183 		atomic_add(count, &bp->cq_spq_left);
13184 		smp_mb__after_atomic_inc();
13185 		break;
13186 	}
13187 	case DRV_CTL_ULP_REGISTER_CMD: {
13188 		int ulp_type = ctl->data.register_data.ulp_type;
13189 
13190 		if (CHIP_IS_E3(bp)) {
13191 			int idx = BP_FW_MB_IDX(bp);
13192 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13193 			int path = BP_PATH(bp);
13194 			int port = BP_PORT(bp);
13195 			int i;
13196 			u32 scratch_offset;
13197 			u32 *host_addr;
13198 
13199 			/* first write capability to shmem2 */
13200 			if (ulp_type == CNIC_ULP_ISCSI)
13201 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13202 			else if (ulp_type == CNIC_ULP_FCOE)
13203 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13204 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13205 
13206 			if ((ulp_type != CNIC_ULP_FCOE) ||
13207 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13208 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13209 				break;
13210 
13211 			/* if reached here - should write fcoe capabilities */
13212 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13213 			if (!scratch_offset)
13214 				break;
13215 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
13216 						   fcoe_features[path][port]);
13217 			host_addr = (u32 *) &(ctl->data.register_data.
13218 					      fcoe_features);
13219 			for (i = 0; i < sizeof(struct fcoe_capabilities);
13220 			     i += 4)
13221 				REG_WR(bp, scratch_offset + i,
13222 				       *(host_addr + i/4));
13223 		}
13224 		break;
13225 	}
13226 
13227 	case DRV_CTL_ULP_UNREGISTER_CMD: {
13228 		int ulp_type = ctl->data.ulp_type;
13229 
13230 		if (CHIP_IS_E3(bp)) {
13231 			int idx = BP_FW_MB_IDX(bp);
13232 			u32 cap;
13233 
13234 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13235 			if (ulp_type == CNIC_ULP_ISCSI)
13236 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13237 			else if (ulp_type == CNIC_ULP_FCOE)
13238 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13239 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13240 		}
13241 		break;
13242 	}
13243 
13244 	default:
13245 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
13246 		rc = -EINVAL;
13247 	}
13248 
13249 	return rc;
13250 }
13251 
13252 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13253 {
13254 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13255 
13256 	if (bp->flags & USING_MSIX_FLAG) {
13257 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13258 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13259 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
13260 	} else {
13261 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13262 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13263 	}
13264 	if (!CHIP_IS_E1x(bp))
13265 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13266 	else
13267 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13268 
13269 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13270 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13271 	cp->irq_arr[1].status_blk = bp->def_status_blk;
13272 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13273 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13274 
13275 	cp->num_irq = 2;
13276 }
13277 
13278 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13279 {
13280 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13281 
13282 
13283 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13284 			     bnx2x_cid_ilt_lines(bp);
13285 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13286 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13287 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13288 
13289 	if (NO_ISCSI_OOO(bp))
13290 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13291 }
13292 
13293 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13294 			       void *data)
13295 {
13296 	struct bnx2x *bp = netdev_priv(dev);
13297 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13298 	int rc;
13299 
13300 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13301 
13302 	if (ops == NULL) {
13303 		BNX2X_ERR("NULL ops received\n");
13304 		return -EINVAL;
13305 	}
13306 
13307 	if (!CNIC_SUPPORT(bp)) {
13308 		BNX2X_ERR("Can't register CNIC when not supported\n");
13309 		return -EOPNOTSUPP;
13310 	}
13311 
13312 	if (!CNIC_LOADED(bp)) {
13313 		rc = bnx2x_load_cnic(bp);
13314 		if (rc) {
13315 			BNX2X_ERR("CNIC-related load failed\n");
13316 			return rc;
13317 		}
13318 
13319 	}
13320 
13321 	bp->cnic_enabled = true;
13322 
13323 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13324 	if (!bp->cnic_kwq)
13325 		return -ENOMEM;
13326 
13327 	bp->cnic_kwq_cons = bp->cnic_kwq;
13328 	bp->cnic_kwq_prod = bp->cnic_kwq;
13329 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13330 
13331 	bp->cnic_spq_pending = 0;
13332 	bp->cnic_kwq_pending = 0;
13333 
13334 	bp->cnic_data = data;
13335 
13336 	cp->num_irq = 0;
13337 	cp->drv_state |= CNIC_DRV_STATE_REGD;
13338 	cp->iro_arr = bp->iro_arr;
13339 
13340 	bnx2x_setup_cnic_irq_info(bp);
13341 
13342 	rcu_assign_pointer(bp->cnic_ops, ops);
13343 
13344 	return 0;
13345 }
13346 
13347 static int bnx2x_unregister_cnic(struct net_device *dev)
13348 {
13349 	struct bnx2x *bp = netdev_priv(dev);
13350 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13351 
13352 	mutex_lock(&bp->cnic_mutex);
13353 	cp->drv_state = 0;
13354 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
13355 	mutex_unlock(&bp->cnic_mutex);
13356 	synchronize_rcu();
13357 	kfree(bp->cnic_kwq);
13358 	bp->cnic_kwq = NULL;
13359 
13360 	return 0;
13361 }
13362 
13363 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13364 {
13365 	struct bnx2x *bp = netdev_priv(dev);
13366 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13367 
13368 	/* If both iSCSI and FCoE are disabled - return NULL in
13369 	 * order to indicate CNIC that it should not try to work
13370 	 * with this device.
13371 	 */
13372 	if (NO_ISCSI(bp) && NO_FCOE(bp))
13373 		return NULL;
13374 
13375 	cp->drv_owner = THIS_MODULE;
13376 	cp->chip_id = CHIP_ID(bp);
13377 	cp->pdev = bp->pdev;
13378 	cp->io_base = bp->regview;
13379 	cp->io_base2 = bp->doorbells;
13380 	cp->max_kwqe_pending = 8;
13381 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13382 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13383 			     bnx2x_cid_ilt_lines(bp);
13384 	cp->ctx_tbl_len = CNIC_ILT_LINES;
13385 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13386 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13387 	cp->drv_ctl = bnx2x_drv_ctl;
13388 	cp->drv_register_cnic = bnx2x_register_cnic;
13389 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13390 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13391 	cp->iscsi_l2_client_id =
13392 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13393 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13394 
13395 	if (NO_ISCSI_OOO(bp))
13396 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13397 
13398 	if (NO_ISCSI(bp))
13399 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13400 
13401 	if (NO_FCOE(bp))
13402 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13403 
13404 	BNX2X_DEV_INFO(
13405 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13406 	   cp->ctx_blk_size,
13407 	   cp->ctx_tbl_offset,
13408 	   cp->ctx_tbl_len,
13409 	   cp->starting_cid);
13410 	return cp;
13411 }
13412 
13413 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13414 {
13415 	struct bnx2x *bp = fp->bp;
13416 	u32 offset = BAR_USTRORM_INTMEM;
13417 
13418 	if (IS_VF(bp))
13419 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
13420 	else if (!CHIP_IS_E1x(bp))
13421 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13422 	else
13423 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13424 
13425 	return offset;
13426 }
13427 
13428 /* called only on E1H or E2.
13429  * When pretending to be PF, the pretend value is the function number 0...7
13430  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13431  * combination
13432  */
13433 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13434 {
13435 	u32 pretend_reg;
13436 
13437 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13438 		return -1;
13439 
13440 	/* get my own pretend register */
13441 	pretend_reg = bnx2x_get_pretend_reg(bp);
13442 	REG_WR(bp, pretend_reg, pretend_func_val);
13443 	REG_RD(bp, pretend_reg);
13444 	return 0;
13445 }
13446