1 /* bnx2x_main.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/module.h> 23 #include <linux/moduleparam.h> 24 #include <linux/kernel.h> 25 #include <linux/device.h> /* for dev_info() */ 26 #include <linux/timer.h> 27 #include <linux/errno.h> 28 #include <linux/ioport.h> 29 #include <linux/slab.h> 30 #include <linux/interrupt.h> 31 #include <linux/pci.h> 32 #include <linux/aer.h> 33 #include <linux/init.h> 34 #include <linux/netdevice.h> 35 #include <linux/etherdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/bitops.h> 39 #include <linux/irq.h> 40 #include <linux/delay.h> 41 #include <asm/byteorder.h> 42 #include <linux/time.h> 43 #include <linux/ethtool.h> 44 #include <linux/mii.h> 45 #include <linux/if_vlan.h> 46 #include <linux/crash_dump.h> 47 #include <net/ip.h> 48 #include <net/ipv6.h> 49 #include <net/tcp.h> 50 #include <net/vxlan.h> 51 #include <net/checksum.h> 52 #include <net/ip6_checksum.h> 53 #include <linux/workqueue.h> 54 #include <linux/crc32.h> 55 #include <linux/crc32c.h> 56 #include <linux/prefetch.h> 57 #include <linux/zlib.h> 58 #include <linux/io.h> 59 #include <linux/semaphore.h> 60 #include <linux/stringify.h> 61 #include <linux/vmalloc.h> 62 #include "bnx2x.h" 63 #include "bnx2x_init.h" 64 #include "bnx2x_init_ops.h" 65 #include "bnx2x_cmn.h" 66 #include "bnx2x_vfpf.h" 67 #include "bnx2x_dcb.h" 68 #include "bnx2x_sp.h" 69 #include <linux/firmware.h> 70 #include "bnx2x_fw_file_hdr.h" 71 /* FW files */ 72 #define FW_FILE_VERSION \ 73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ 74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \ 75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \ 76 __stringify(BCM_5710_FW_ENGINEERING_VERSION) 77 78 #define FW_FILE_VERSION_V15 \ 79 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ 80 __stringify(BCM_5710_FW_MINOR_VERSION) "." \ 81 __stringify(BCM_5710_FW_REVISION_VERSION_V15) "." \ 82 __stringify(BCM_5710_FW_ENGINEERING_VERSION) 83 84 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" 85 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" 86 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" 87 #define FW_FILE_NAME_E1_V15 "bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw" 88 #define FW_FILE_NAME_E1H_V15 "bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw" 89 #define FW_FILE_NAME_E2_V15 "bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw" 90 91 /* Time in jiffies before concluding the transmitter is hung */ 92 #define TX_TIMEOUT (5*HZ) 93 94 MODULE_AUTHOR("Eliezer Tamir"); 95 MODULE_DESCRIPTION("QLogic " 96 "BCM57710/57711/57711E/" 97 "57712/57712_MF/57800/57800_MF/57810/57810_MF/" 98 "57840/57840_MF Driver"); 99 MODULE_LICENSE("GPL"); 100 MODULE_FIRMWARE(FW_FILE_NAME_E1); 101 MODULE_FIRMWARE(FW_FILE_NAME_E1H); 102 MODULE_FIRMWARE(FW_FILE_NAME_E2); 103 MODULE_FIRMWARE(FW_FILE_NAME_E1_V15); 104 MODULE_FIRMWARE(FW_FILE_NAME_E1H_V15); 105 MODULE_FIRMWARE(FW_FILE_NAME_E2_V15); 106 107 int bnx2x_num_queues; 108 module_param_named(num_queues, bnx2x_num_queues, int, 0444); 109 MODULE_PARM_DESC(num_queues, 110 " Set number of queues (default is as a number of CPUs)"); 111 112 static int disable_tpa; 113 module_param(disable_tpa, int, 0444); 114 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); 115 116 static int int_mode; 117 module_param(int_mode, int, 0444); 118 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " 119 "(1 INT#x; 2 MSI)"); 120 121 static int dropless_fc; 122 module_param(dropless_fc, int, 0444); 123 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); 124 125 static int mrrs = -1; 126 module_param(mrrs, int, 0444); 127 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); 128 129 static int debug; 130 module_param(debug, int, 0444); 131 MODULE_PARM_DESC(debug, " Default debug msglevel"); 132 133 static struct workqueue_struct *bnx2x_wq; 134 struct workqueue_struct *bnx2x_iov_wq; 135 136 struct bnx2x_mac_vals { 137 u32 xmac_addr; 138 u32 xmac_val; 139 u32 emac_addr; 140 u32 emac_val; 141 u32 umac_addr[2]; 142 u32 umac_val[2]; 143 u32 bmac_addr; 144 u32 bmac_val[2]; 145 }; 146 147 enum bnx2x_board_type { 148 BCM57710 = 0, 149 BCM57711, 150 BCM57711E, 151 BCM57712, 152 BCM57712_MF, 153 BCM57712_VF, 154 BCM57800, 155 BCM57800_MF, 156 BCM57800_VF, 157 BCM57810, 158 BCM57810_MF, 159 BCM57810_VF, 160 BCM57840_4_10, 161 BCM57840_2_20, 162 BCM57840_MF, 163 BCM57840_VF, 164 BCM57811, 165 BCM57811_MF, 166 BCM57840_O, 167 BCM57840_MFO, 168 BCM57811_VF 169 }; 170 171 /* indexed by board_type, above */ 172 static struct { 173 char *name; 174 } board_info[] = { 175 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" }, 176 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" }, 177 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" }, 178 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" }, 179 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" }, 180 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" }, 181 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" }, 182 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" }, 183 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" }, 184 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" }, 185 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" }, 186 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" }, 187 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" }, 188 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" }, 189 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 190 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }, 191 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" }, 192 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" }, 193 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" }, 194 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 195 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" } 196 }; 197 198 #ifndef PCI_DEVICE_ID_NX2_57710 199 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 200 #endif 201 #ifndef PCI_DEVICE_ID_NX2_57711 202 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 203 #endif 204 #ifndef PCI_DEVICE_ID_NX2_57711E 205 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E 206 #endif 207 #ifndef PCI_DEVICE_ID_NX2_57712 208 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 209 #endif 210 #ifndef PCI_DEVICE_ID_NX2_57712_MF 211 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF 212 #endif 213 #ifndef PCI_DEVICE_ID_NX2_57712_VF 214 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF 215 #endif 216 #ifndef PCI_DEVICE_ID_NX2_57800 217 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 218 #endif 219 #ifndef PCI_DEVICE_ID_NX2_57800_MF 220 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF 221 #endif 222 #ifndef PCI_DEVICE_ID_NX2_57800_VF 223 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF 224 #endif 225 #ifndef PCI_DEVICE_ID_NX2_57810 226 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 227 #endif 228 #ifndef PCI_DEVICE_ID_NX2_57810_MF 229 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF 230 #endif 231 #ifndef PCI_DEVICE_ID_NX2_57840_O 232 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE 233 #endif 234 #ifndef PCI_DEVICE_ID_NX2_57810_VF 235 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF 236 #endif 237 #ifndef PCI_DEVICE_ID_NX2_57840_4_10 238 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 239 #endif 240 #ifndef PCI_DEVICE_ID_NX2_57840_2_20 241 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 242 #endif 243 #ifndef PCI_DEVICE_ID_NX2_57840_MFO 244 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE 245 #endif 246 #ifndef PCI_DEVICE_ID_NX2_57840_MF 247 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF 248 #endif 249 #ifndef PCI_DEVICE_ID_NX2_57840_VF 250 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF 251 #endif 252 #ifndef PCI_DEVICE_ID_NX2_57811 253 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 254 #endif 255 #ifndef PCI_DEVICE_ID_NX2_57811_MF 256 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF 257 #endif 258 #ifndef PCI_DEVICE_ID_NX2_57811_VF 259 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF 260 #endif 261 262 static const struct pci_device_id bnx2x_pci_tbl[] = { 263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, 264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, 265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, 266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, 267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, 268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, 269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, 270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, 271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, 272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, 273 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, 274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, 275 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 276 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, 278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, 279 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, 280 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 281 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 282 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 283 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 284 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, 285 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, 286 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, 287 { 0 } 288 }; 289 290 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); 291 292 const u32 dmae_reg_go_c[] = { 293 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3, 294 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7, 295 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11, 296 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15 297 }; 298 299 /* Global resources for unloading a previously loaded device */ 300 #define BNX2X_PREV_WAIT_NEEDED 1 301 static DEFINE_SEMAPHORE(bnx2x_prev_sem); 302 static LIST_HEAD(bnx2x_prev_list); 303 304 /* Forward declaration */ 305 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); 306 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp); 307 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp); 308 309 /**************************************************************************** 310 * General service functions 311 ****************************************************************************/ 312 313 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr); 314 315 static void __storm_memset_dma_mapping(struct bnx2x *bp, 316 u32 addr, dma_addr_t mapping) 317 { 318 REG_WR(bp, addr, U64_LO(mapping)); 319 REG_WR(bp, addr + 4, U64_HI(mapping)); 320 } 321 322 static void storm_memset_spq_addr(struct bnx2x *bp, 323 dma_addr_t mapping, u16 abs_fid) 324 { 325 u32 addr = XSEM_REG_FAST_MEMORY + 326 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); 327 328 __storm_memset_dma_mapping(bp, addr, mapping); 329 } 330 331 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 332 u16 pf_id) 333 { 334 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 335 pf_id); 336 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 337 pf_id); 338 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 339 pf_id); 340 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 341 pf_id); 342 } 343 344 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 345 u8 enable) 346 { 347 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 348 enable); 349 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 350 enable); 351 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 352 enable); 353 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 354 enable); 355 } 356 357 static void storm_memset_eq_data(struct bnx2x *bp, 358 struct event_ring_data *eq_data, 359 u16 pfid) 360 { 361 size_t size = sizeof(struct event_ring_data); 362 363 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); 364 365 __storm_memset_struct(bp, addr, size, (u32 *)eq_data); 366 } 367 368 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, 369 u16 pfid) 370 { 371 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); 372 REG_WR16(bp, addr, eq_prod); 373 } 374 375 /* used only at init 376 * locking is done by mcp 377 */ 378 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) 379 { 380 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 381 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); 382 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 383 PCICFG_VENDOR_ID_OFFSET); 384 } 385 386 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) 387 { 388 u32 val; 389 390 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 391 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); 392 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 393 PCICFG_VENDOR_ID_OFFSET); 394 395 return val; 396 } 397 398 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" 399 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" 400 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" 401 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" 402 #define DMAE_DP_DST_NONE "dst_addr [none]" 403 404 static void bnx2x_dp_dmae(struct bnx2x *bp, 405 struct dmae_command *dmae, int msglvl) 406 { 407 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; 408 int i; 409 410 switch (dmae->opcode & DMAE_COMMAND_DST) { 411 case DMAE_CMD_DST_PCI: 412 if (src_type == DMAE_CMD_SRC_PCI) 413 DP(msglvl, "DMAE: opcode 0x%08x\n" 414 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 415 "comp_addr [%x:%08x], comp_val 0x%08x\n", 416 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 417 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 418 dmae->comp_addr_hi, dmae->comp_addr_lo, 419 dmae->comp_val); 420 else 421 DP(msglvl, "DMAE: opcode 0x%08x\n" 422 "src [%08x], len [%d*4], dst [%x:%08x]\n" 423 "comp_addr [%x:%08x], comp_val 0x%08x\n", 424 dmae->opcode, dmae->src_addr_lo >> 2, 425 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 426 dmae->comp_addr_hi, dmae->comp_addr_lo, 427 dmae->comp_val); 428 break; 429 case DMAE_CMD_DST_GRC: 430 if (src_type == DMAE_CMD_SRC_PCI) 431 DP(msglvl, "DMAE: opcode 0x%08x\n" 432 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 433 "comp_addr [%x:%08x], comp_val 0x%08x\n", 434 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 435 dmae->len, dmae->dst_addr_lo >> 2, 436 dmae->comp_addr_hi, dmae->comp_addr_lo, 437 dmae->comp_val); 438 else 439 DP(msglvl, "DMAE: opcode 0x%08x\n" 440 "src [%08x], len [%d*4], dst [%08x]\n" 441 "comp_addr [%x:%08x], comp_val 0x%08x\n", 442 dmae->opcode, dmae->src_addr_lo >> 2, 443 dmae->len, dmae->dst_addr_lo >> 2, 444 dmae->comp_addr_hi, dmae->comp_addr_lo, 445 dmae->comp_val); 446 break; 447 default: 448 if (src_type == DMAE_CMD_SRC_PCI) 449 DP(msglvl, "DMAE: opcode 0x%08x\n" 450 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 451 "comp_addr [%x:%08x] comp_val 0x%08x\n", 452 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 453 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 454 dmae->comp_val); 455 else 456 DP(msglvl, "DMAE: opcode 0x%08x\n" 457 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 458 "comp_addr [%x:%08x] comp_val 0x%08x\n", 459 dmae->opcode, dmae->src_addr_lo >> 2, 460 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 461 dmae->comp_val); 462 break; 463 } 464 465 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) 466 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", 467 i, *(((u32 *)dmae) + i)); 468 } 469 470 /* copy command into DMAE command memory and set DMAE command go */ 471 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) 472 { 473 u32 cmd_offset; 474 int i; 475 476 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); 477 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { 478 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); 479 } 480 REG_WR(bp, dmae_reg_go_c[idx], 1); 481 } 482 483 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) 484 { 485 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 486 DMAE_CMD_C_ENABLE); 487 } 488 489 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) 490 { 491 return opcode & ~DMAE_CMD_SRC_RESET; 492 } 493 494 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 495 bool with_comp, u8 comp_type) 496 { 497 u32 opcode = 0; 498 499 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 500 (dst_type << DMAE_COMMAND_DST_SHIFT)); 501 502 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 503 504 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 505 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | 506 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); 507 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 508 509 #ifdef __BIG_ENDIAN 510 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 511 #else 512 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 513 #endif 514 if (with_comp) 515 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); 516 return opcode; 517 } 518 519 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, 520 struct dmae_command *dmae, 521 u8 src_type, u8 dst_type) 522 { 523 memset(dmae, 0, sizeof(struct dmae_command)); 524 525 /* set the opcode */ 526 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, 527 true, DMAE_COMP_PCI); 528 529 /* fill in the completion parameters */ 530 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); 531 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); 532 dmae->comp_val = DMAE_COMP_VAL; 533 } 534 535 /* issue a dmae command over the init-channel and wait for completion */ 536 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 537 u32 *comp) 538 { 539 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; 540 int rc = 0; 541 542 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); 543 544 /* Lock the dmae channel. Disable BHs to prevent a dead-lock 545 * as long as this code is called both from syscall context and 546 * from ndo_set_rx_mode() flow that may be called from BH. 547 */ 548 549 spin_lock_bh(&bp->dmae_lock); 550 551 /* reset completion */ 552 *comp = 0; 553 554 /* post the command on the channel used for initializations */ 555 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); 556 557 /* wait for completion */ 558 udelay(5); 559 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 560 561 if (!cnt || 562 (bp->recovery_state != BNX2X_RECOVERY_DONE && 563 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 564 BNX2X_ERR("DMAE timeout!\n"); 565 rc = DMAE_TIMEOUT; 566 goto unlock; 567 } 568 cnt--; 569 udelay(50); 570 } 571 if (*comp & DMAE_PCI_ERR_FLAG) { 572 BNX2X_ERR("DMAE PCI error!\n"); 573 rc = DMAE_PCI_ERROR; 574 } 575 576 unlock: 577 578 spin_unlock_bh(&bp->dmae_lock); 579 580 return rc; 581 } 582 583 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 584 u32 len32) 585 { 586 int rc; 587 struct dmae_command dmae; 588 589 if (!bp->dmae_ready) { 590 u32 *data = bnx2x_sp(bp, wb_data[0]); 591 592 if (CHIP_IS_E1(bp)) 593 bnx2x_init_ind_wr(bp, dst_addr, data, len32); 594 else 595 bnx2x_init_str_wr(bp, dst_addr, data, len32); 596 return; 597 } 598 599 /* set opcode and fixed command fields */ 600 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 601 602 /* fill in addresses and len */ 603 dmae.src_addr_lo = U64_LO(dma_addr); 604 dmae.src_addr_hi = U64_HI(dma_addr); 605 dmae.dst_addr_lo = dst_addr >> 2; 606 dmae.dst_addr_hi = 0; 607 dmae.len = len32; 608 609 /* issue the command and wait for completion */ 610 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 611 if (rc) { 612 BNX2X_ERR("DMAE returned failure %d\n", rc); 613 #ifdef BNX2X_STOP_ON_ERROR 614 bnx2x_panic(); 615 #endif 616 } 617 } 618 619 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) 620 { 621 int rc; 622 struct dmae_command dmae; 623 624 if (!bp->dmae_ready) { 625 u32 *data = bnx2x_sp(bp, wb_data[0]); 626 int i; 627 628 if (CHIP_IS_E1(bp)) 629 for (i = 0; i < len32; i++) 630 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); 631 else 632 for (i = 0; i < len32; i++) 633 data[i] = REG_RD(bp, src_addr + i*4); 634 635 return; 636 } 637 638 /* set opcode and fixed command fields */ 639 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 640 641 /* fill in addresses and len */ 642 dmae.src_addr_lo = src_addr >> 2; 643 dmae.src_addr_hi = 0; 644 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); 645 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); 646 dmae.len = len32; 647 648 /* issue the command and wait for completion */ 649 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 650 if (rc) { 651 BNX2X_ERR("DMAE returned failure %d\n", rc); 652 #ifdef BNX2X_STOP_ON_ERROR 653 bnx2x_panic(); 654 #endif 655 } 656 } 657 658 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, 659 u32 addr, u32 len) 660 { 661 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); 662 int offset = 0; 663 664 while (len > dmae_wr_max) { 665 bnx2x_write_dmae(bp, phys_addr + offset, 666 addr + offset, dmae_wr_max); 667 offset += dmae_wr_max * 4; 668 len -= dmae_wr_max; 669 } 670 671 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); 672 } 673 674 enum storms { 675 XSTORM, 676 TSTORM, 677 CSTORM, 678 USTORM, 679 MAX_STORMS 680 }; 681 682 #define STORMS_NUM 4 683 #define REGS_IN_ENTRY 4 684 685 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp, 686 enum storms storm, 687 int entry) 688 { 689 switch (storm) { 690 case XSTORM: 691 return XSTORM_ASSERT_LIST_OFFSET(entry); 692 case TSTORM: 693 return TSTORM_ASSERT_LIST_OFFSET(entry); 694 case CSTORM: 695 return CSTORM_ASSERT_LIST_OFFSET(entry); 696 case USTORM: 697 return USTORM_ASSERT_LIST_OFFSET(entry); 698 case MAX_STORMS: 699 default: 700 BNX2X_ERR("unknown storm\n"); 701 } 702 return -EINVAL; 703 } 704 705 static int bnx2x_mc_assert(struct bnx2x *bp) 706 { 707 char last_idx; 708 int i, j, rc = 0; 709 enum storms storm; 710 u32 regs[REGS_IN_ENTRY]; 711 u32 bar_storm_intmem[STORMS_NUM] = { 712 BAR_XSTRORM_INTMEM, 713 BAR_TSTRORM_INTMEM, 714 BAR_CSTRORM_INTMEM, 715 BAR_USTRORM_INTMEM 716 }; 717 u32 storm_assert_list_index[STORMS_NUM] = { 718 XSTORM_ASSERT_LIST_INDEX_OFFSET, 719 TSTORM_ASSERT_LIST_INDEX_OFFSET, 720 CSTORM_ASSERT_LIST_INDEX_OFFSET, 721 USTORM_ASSERT_LIST_INDEX_OFFSET 722 }; 723 char *storms_string[STORMS_NUM] = { 724 "XSTORM", 725 "TSTORM", 726 "CSTORM", 727 "USTORM" 728 }; 729 730 for (storm = XSTORM; storm < MAX_STORMS; storm++) { 731 last_idx = REG_RD8(bp, bar_storm_intmem[storm] + 732 storm_assert_list_index[storm]); 733 if (last_idx) 734 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n", 735 storms_string[storm], last_idx); 736 737 /* print the asserts */ 738 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 739 /* read a single assert entry */ 740 for (j = 0; j < REGS_IN_ENTRY; j++) 741 regs[j] = REG_RD(bp, bar_storm_intmem[storm] + 742 bnx2x_get_assert_list_entry(bp, 743 storm, 744 i) + 745 sizeof(u32) * j); 746 747 /* log entry if it contains a valid assert */ 748 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) { 749 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 750 storms_string[storm], i, regs[3], 751 regs[2], regs[1], regs[0]); 752 rc++; 753 } else { 754 break; 755 } 756 } 757 } 758 759 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n", 760 CHIP_IS_E1(bp) ? "everest1" : 761 CHIP_IS_E1H(bp) ? "everest1h" : 762 CHIP_IS_E2(bp) ? "everest2" : "everest3", 763 bp->fw_major, bp->fw_minor, bp->fw_rev); 764 765 return rc; 766 } 767 768 #define MCPR_TRACE_BUFFER_SIZE (0x800) 769 #define SCRATCH_BUFFER_SIZE(bp) \ 770 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000)) 771 772 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) 773 { 774 u32 addr, val; 775 u32 mark, offset; 776 __be32 data[9]; 777 int word; 778 u32 trace_shmem_base; 779 if (BP_NOMCP(bp)) { 780 BNX2X_ERR("NO MCP - can not dump\n"); 781 return; 782 } 783 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", 784 (bp->common.bc_ver & 0xff0000) >> 16, 785 (bp->common.bc_ver & 0xff00) >> 8, 786 (bp->common.bc_ver & 0xff)); 787 788 if (pci_channel_offline(bp->pdev)) { 789 BNX2X_ERR("Cannot dump MCP info while in PCI error\n"); 790 return; 791 } 792 793 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); 794 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) 795 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); 796 797 if (BP_PATH(bp) == 0) 798 trace_shmem_base = bp->common.shmem_base; 799 else 800 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); 801 802 /* sanity */ 803 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE || 804 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) + 805 SCRATCH_BUFFER_SIZE(bp)) { 806 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n", 807 trace_shmem_base); 808 return; 809 } 810 811 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE; 812 813 /* validate TRCB signature */ 814 mark = REG_RD(bp, addr); 815 if (mark != MFW_TRACE_SIGNATURE) { 816 BNX2X_ERR("Trace buffer signature is missing."); 817 return ; 818 } 819 820 /* read cyclic buffer pointer */ 821 addr += 4; 822 mark = REG_RD(bp, addr); 823 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000; 824 if (mark >= trace_shmem_base || mark < addr + 4) { 825 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n"); 826 return; 827 } 828 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); 829 830 printk("%s", lvl); 831 832 /* dump buffer after the mark */ 833 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) { 834 for (word = 0; word < 8; word++) 835 data[word] = htonl(REG_RD(bp, offset + 4*word)); 836 data[8] = 0x0; 837 pr_cont("%s", (char *)data); 838 } 839 840 /* dump buffer before the mark */ 841 for (offset = addr + 4; offset <= mark; offset += 0x8*4) { 842 for (word = 0; word < 8; word++) 843 data[word] = htonl(REG_RD(bp, offset + 4*word)); 844 data[8] = 0x0; 845 pr_cont("%s", (char *)data); 846 } 847 printk("%s" "end of fw dump\n", lvl); 848 } 849 850 static void bnx2x_fw_dump(struct bnx2x *bp) 851 { 852 bnx2x_fw_dump_lvl(bp, KERN_ERR); 853 } 854 855 static void bnx2x_hc_int_disable(struct bnx2x *bp) 856 { 857 int port = BP_PORT(bp); 858 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 859 u32 val = REG_RD(bp, addr); 860 861 /* in E1 we must use only PCI configuration space to disable 862 * MSI/MSIX capability 863 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block 864 */ 865 if (CHIP_IS_E1(bp)) { 866 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on 867 * Use mask register to prevent from HC sending interrupts 868 * after we exit the function 869 */ 870 REG_WR(bp, HC_REG_INT_MASK + port*4, 0); 871 872 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 873 HC_CONFIG_0_REG_INT_LINE_EN_0 | 874 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 875 } else 876 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 877 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 878 HC_CONFIG_0_REG_INT_LINE_EN_0 | 879 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 880 881 DP(NETIF_MSG_IFDOWN, 882 "write %x to HC %d (addr 0x%x)\n", 883 val, port, addr); 884 885 REG_WR(bp, addr, val); 886 if (REG_RD(bp, addr) != val) 887 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 888 } 889 890 static void bnx2x_igu_int_disable(struct bnx2x *bp) 891 { 892 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 893 894 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 895 IGU_PF_CONF_INT_LINE_EN | 896 IGU_PF_CONF_ATTN_BIT_EN); 897 898 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); 899 900 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 901 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) 902 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 903 } 904 905 static void bnx2x_int_disable(struct bnx2x *bp) 906 { 907 if (bp->common.int_block == INT_BLOCK_HC) 908 bnx2x_hc_int_disable(bp); 909 else 910 bnx2x_igu_int_disable(bp); 911 } 912 913 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) 914 { 915 int i; 916 u16 j; 917 struct hc_sp_status_block_data sp_sb_data; 918 int func = BP_FUNC(bp); 919 #ifdef BNX2X_STOP_ON_ERROR 920 u16 start = 0, end = 0; 921 u8 cos; 922 #endif 923 if (IS_PF(bp) && disable_int) 924 bnx2x_int_disable(bp); 925 926 bp->stats_state = STATS_STATE_DISABLED; 927 bp->eth_stats.unrecoverable_error++; 928 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); 929 930 BNX2X_ERR("begin crash dump -----------------\n"); 931 932 /* Indices */ 933 /* Common */ 934 if (IS_PF(bp)) { 935 struct host_sp_status_block *def_sb = bp->def_status_blk; 936 int data_size, cstorm_offset; 937 938 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", 939 bp->def_idx, bp->def_att_idx, bp->attn_state, 940 bp->spq_prod_idx, bp->stats_counter); 941 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", 942 def_sb->atten_status_block.attn_bits, 943 def_sb->atten_status_block.attn_bits_ack, 944 def_sb->atten_status_block.status_block_id, 945 def_sb->atten_status_block.attn_bits_index); 946 BNX2X_ERR(" def ("); 947 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) 948 pr_cont("0x%x%s", 949 def_sb->sp_sb.index_values[i], 950 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); 951 952 data_size = sizeof(struct hc_sp_status_block_data) / 953 sizeof(u32); 954 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func); 955 for (i = 0; i < data_size; i++) 956 *((u32 *)&sp_sb_data + i) = 957 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset + 958 i * sizeof(u32)); 959 960 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", 961 sp_sb_data.igu_sb_id, 962 sp_sb_data.igu_seg_id, 963 sp_sb_data.p_func.pf_id, 964 sp_sb_data.p_func.vnic_id, 965 sp_sb_data.p_func.vf_id, 966 sp_sb_data.p_func.vf_valid, 967 sp_sb_data.state); 968 } 969 970 for_each_eth_queue(bp, i) { 971 struct bnx2x_fastpath *fp = &bp->fp[i]; 972 int loop; 973 struct hc_status_block_data_e2 sb_data_e2; 974 struct hc_status_block_data_e1x sb_data_e1x; 975 struct hc_status_block_sm *hc_sm_p = 976 CHIP_IS_E1x(bp) ? 977 sb_data_e1x.common.state_machine : 978 sb_data_e2.common.state_machine; 979 struct hc_index_data *hc_index_p = 980 CHIP_IS_E1x(bp) ? 981 sb_data_e1x.index_data : 982 sb_data_e2.index_data; 983 u8 data_size, cos; 984 u32 *sb_data_p; 985 struct bnx2x_fp_txdata txdata; 986 987 if (!bp->fp) 988 break; 989 990 if (!fp->rx_cons_sb) 991 continue; 992 993 /* Rx */ 994 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", 995 i, fp->rx_bd_prod, fp->rx_bd_cons, 996 fp->rx_comp_prod, 997 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); 998 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", 999 fp->rx_sge_prod, fp->last_max_sge, 1000 le16_to_cpu(fp->fp_hc_idx)); 1001 1002 /* Tx */ 1003 for_each_cos_in_tx_queue(fp, cos) 1004 { 1005 if (!fp->txdata_ptr[cos]) 1006 break; 1007 1008 txdata = *fp->txdata_ptr[cos]; 1009 1010 if (!txdata.tx_cons_sb) 1011 continue; 1012 1013 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", 1014 i, txdata.tx_pkt_prod, 1015 txdata.tx_pkt_cons, txdata.tx_bd_prod, 1016 txdata.tx_bd_cons, 1017 le16_to_cpu(*txdata.tx_cons_sb)); 1018 } 1019 1020 loop = CHIP_IS_E1x(bp) ? 1021 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; 1022 1023 /* host sb data */ 1024 1025 if (IS_FCOE_FP(fp)) 1026 continue; 1027 1028 BNX2X_ERR(" run indexes ("); 1029 for (j = 0; j < HC_SB_MAX_SM; j++) 1030 pr_cont("0x%x%s", 1031 fp->sb_running_index[j], 1032 (j == HC_SB_MAX_SM - 1) ? ")" : " "); 1033 1034 BNX2X_ERR(" indexes ("); 1035 for (j = 0; j < loop; j++) 1036 pr_cont("0x%x%s", 1037 fp->sb_index_values[j], 1038 (j == loop - 1) ? ")" : " "); 1039 1040 /* VF cannot access FW refelection for status block */ 1041 if (IS_VF(bp)) 1042 continue; 1043 1044 /* fw sb data */ 1045 data_size = CHIP_IS_E1x(bp) ? 1046 sizeof(struct hc_status_block_data_e1x) : 1047 sizeof(struct hc_status_block_data_e2); 1048 data_size /= sizeof(u32); 1049 sb_data_p = CHIP_IS_E1x(bp) ? 1050 (u32 *)&sb_data_e1x : 1051 (u32 *)&sb_data_e2; 1052 /* copy sb data in here */ 1053 for (j = 0; j < data_size; j++) 1054 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + 1055 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + 1056 j * sizeof(u32)); 1057 1058 if (!CHIP_IS_E1x(bp)) { 1059 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1060 sb_data_e2.common.p_func.pf_id, 1061 sb_data_e2.common.p_func.vf_id, 1062 sb_data_e2.common.p_func.vf_valid, 1063 sb_data_e2.common.p_func.vnic_id, 1064 sb_data_e2.common.same_igu_sb_1b, 1065 sb_data_e2.common.state); 1066 } else { 1067 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1068 sb_data_e1x.common.p_func.pf_id, 1069 sb_data_e1x.common.p_func.vf_id, 1070 sb_data_e1x.common.p_func.vf_valid, 1071 sb_data_e1x.common.p_func.vnic_id, 1072 sb_data_e1x.common.same_igu_sb_1b, 1073 sb_data_e1x.common.state); 1074 } 1075 1076 /* SB_SMs data */ 1077 for (j = 0; j < HC_SB_MAX_SM; j++) { 1078 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", 1079 j, hc_sm_p[j].__flags, 1080 hc_sm_p[j].igu_sb_id, 1081 hc_sm_p[j].igu_seg_id, 1082 hc_sm_p[j].time_to_expire, 1083 hc_sm_p[j].timer_value); 1084 } 1085 1086 /* Indices data */ 1087 for (j = 0; j < loop; j++) { 1088 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, 1089 hc_index_p[j].flags, 1090 hc_index_p[j].timeout); 1091 } 1092 } 1093 1094 #ifdef BNX2X_STOP_ON_ERROR 1095 if (IS_PF(bp)) { 1096 /* event queue */ 1097 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); 1098 for (i = 0; i < NUM_EQ_DESC; i++) { 1099 u32 *data = (u32 *)&bp->eq_ring[i].message.data; 1100 1101 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", 1102 i, bp->eq_ring[i].message.opcode, 1103 bp->eq_ring[i].message.error); 1104 BNX2X_ERR("data: %x %x %x\n", 1105 data[0], data[1], data[2]); 1106 } 1107 } 1108 1109 /* Rings */ 1110 /* Rx */ 1111 for_each_valid_rx_queue(bp, i) { 1112 struct bnx2x_fastpath *fp = &bp->fp[i]; 1113 1114 if (!bp->fp) 1115 break; 1116 1117 if (!fp->rx_cons_sb) 1118 continue; 1119 1120 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); 1121 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); 1122 for (j = start; j != end; j = RX_BD(j + 1)) { 1123 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; 1124 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; 1125 1126 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", 1127 i, j, rx_bd[1], rx_bd[0], sw_bd->data); 1128 } 1129 1130 start = RX_SGE(fp->rx_sge_prod); 1131 end = RX_SGE(fp->last_max_sge); 1132 for (j = start; j != end; j = RX_SGE(j + 1)) { 1133 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; 1134 struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; 1135 1136 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", 1137 i, j, rx_sge[1], rx_sge[0], sw_page->page); 1138 } 1139 1140 start = RCQ_BD(fp->rx_comp_cons - 10); 1141 end = RCQ_BD(fp->rx_comp_cons + 503); 1142 for (j = start; j != end; j = RCQ_BD(j + 1)) { 1143 u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; 1144 1145 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", 1146 i, j, cqe[0], cqe[1], cqe[2], cqe[3]); 1147 } 1148 } 1149 1150 /* Tx */ 1151 for_each_valid_tx_queue(bp, i) { 1152 struct bnx2x_fastpath *fp = &bp->fp[i]; 1153 1154 if (!bp->fp) 1155 break; 1156 1157 for_each_cos_in_tx_queue(fp, cos) { 1158 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1159 1160 if (!fp->txdata_ptr[cos]) 1161 break; 1162 1163 if (!txdata->tx_cons_sb) 1164 continue; 1165 1166 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); 1167 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); 1168 for (j = start; j != end; j = TX_BD(j + 1)) { 1169 struct sw_tx_bd *sw_bd = 1170 &txdata->tx_buf_ring[j]; 1171 1172 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", 1173 i, cos, j, sw_bd->skb, 1174 sw_bd->first_bd); 1175 } 1176 1177 start = TX_BD(txdata->tx_bd_cons - 10); 1178 end = TX_BD(txdata->tx_bd_cons + 254); 1179 for (j = start; j != end; j = TX_BD(j + 1)) { 1180 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; 1181 1182 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", 1183 i, cos, j, tx_bd[0], tx_bd[1], 1184 tx_bd[2], tx_bd[3]); 1185 } 1186 } 1187 } 1188 #endif 1189 if (IS_PF(bp)) { 1190 int tmp_msg_en = bp->msg_enable; 1191 1192 bnx2x_fw_dump(bp); 1193 bp->msg_enable |= NETIF_MSG_HW; 1194 BNX2X_ERR("Idle check (1st round) ----------\n"); 1195 bnx2x_idle_chk(bp); 1196 BNX2X_ERR("Idle check (2nd round) ----------\n"); 1197 bnx2x_idle_chk(bp); 1198 bp->msg_enable = tmp_msg_en; 1199 bnx2x_mc_assert(bp); 1200 } 1201 1202 BNX2X_ERR("end crash dump -----------------\n"); 1203 } 1204 1205 /* 1206 * FLR Support for E2 1207 * 1208 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW 1209 * initialization. 1210 */ 1211 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */ 1212 #define FLR_WAIT_INTERVAL 50 /* usec */ 1213 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ 1214 1215 struct pbf_pN_buf_regs { 1216 int pN; 1217 u32 init_crd; 1218 u32 crd; 1219 u32 crd_freed; 1220 }; 1221 1222 struct pbf_pN_cmd_regs { 1223 int pN; 1224 u32 lines_occup; 1225 u32 lines_freed; 1226 }; 1227 1228 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, 1229 struct pbf_pN_buf_regs *regs, 1230 u32 poll_count) 1231 { 1232 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; 1233 u32 cur_cnt = poll_count; 1234 1235 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); 1236 crd = crd_start = REG_RD(bp, regs->crd); 1237 init_crd = REG_RD(bp, regs->init_crd); 1238 1239 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 1240 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); 1241 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 1242 1243 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < 1244 (init_crd - crd_start))) { 1245 if (cur_cnt--) { 1246 udelay(FLR_WAIT_INTERVAL); 1247 crd = REG_RD(bp, regs->crd); 1248 crd_freed = REG_RD(bp, regs->crd_freed); 1249 } else { 1250 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", 1251 regs->pN); 1252 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", 1253 regs->pN, crd); 1254 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", 1255 regs->pN, crd_freed); 1256 break; 1257 } 1258 } 1259 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", 1260 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1261 } 1262 1263 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, 1264 struct pbf_pN_cmd_regs *regs, 1265 u32 poll_count) 1266 { 1267 u32 occup, to_free, freed, freed_start; 1268 u32 cur_cnt = poll_count; 1269 1270 occup = to_free = REG_RD(bp, regs->lines_occup); 1271 freed = freed_start = REG_RD(bp, regs->lines_freed); 1272 1273 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 1274 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 1275 1276 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { 1277 if (cur_cnt--) { 1278 udelay(FLR_WAIT_INTERVAL); 1279 occup = REG_RD(bp, regs->lines_occup); 1280 freed = REG_RD(bp, regs->lines_freed); 1281 } else { 1282 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", 1283 regs->pN); 1284 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", 1285 regs->pN, occup); 1286 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", 1287 regs->pN, freed); 1288 break; 1289 } 1290 } 1291 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", 1292 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1293 } 1294 1295 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, 1296 u32 expected, u32 poll_count) 1297 { 1298 u32 cur_cnt = poll_count; 1299 u32 val; 1300 1301 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) 1302 udelay(FLR_WAIT_INTERVAL); 1303 1304 return val; 1305 } 1306 1307 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 1308 char *msg, u32 poll_cnt) 1309 { 1310 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); 1311 if (val != 0) { 1312 BNX2X_ERR("%s usage count=%d\n", msg, val); 1313 return 1; 1314 } 1315 return 0; 1316 } 1317 1318 /* Common routines with VF FLR cleanup */ 1319 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) 1320 { 1321 /* adjust polling timeout */ 1322 if (CHIP_REV_IS_EMUL(bp)) 1323 return FLR_POLL_CNT * 2000; 1324 1325 if (CHIP_REV_IS_FPGA(bp)) 1326 return FLR_POLL_CNT * 120; 1327 1328 return FLR_POLL_CNT; 1329 } 1330 1331 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) 1332 { 1333 struct pbf_pN_cmd_regs cmd_regs[] = { 1334 {0, (CHIP_IS_E3B0(bp)) ? 1335 PBF_REG_TQ_OCCUPANCY_Q0 : 1336 PBF_REG_P0_TQ_OCCUPANCY, 1337 (CHIP_IS_E3B0(bp)) ? 1338 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 1339 PBF_REG_P0_TQ_LINES_FREED_CNT}, 1340 {1, (CHIP_IS_E3B0(bp)) ? 1341 PBF_REG_TQ_OCCUPANCY_Q1 : 1342 PBF_REG_P1_TQ_OCCUPANCY, 1343 (CHIP_IS_E3B0(bp)) ? 1344 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 1345 PBF_REG_P1_TQ_LINES_FREED_CNT}, 1346 {4, (CHIP_IS_E3B0(bp)) ? 1347 PBF_REG_TQ_OCCUPANCY_LB_Q : 1348 PBF_REG_P4_TQ_OCCUPANCY, 1349 (CHIP_IS_E3B0(bp)) ? 1350 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 1351 PBF_REG_P4_TQ_LINES_FREED_CNT} 1352 }; 1353 1354 struct pbf_pN_buf_regs buf_regs[] = { 1355 {0, (CHIP_IS_E3B0(bp)) ? 1356 PBF_REG_INIT_CRD_Q0 : 1357 PBF_REG_P0_INIT_CRD , 1358 (CHIP_IS_E3B0(bp)) ? 1359 PBF_REG_CREDIT_Q0 : 1360 PBF_REG_P0_CREDIT, 1361 (CHIP_IS_E3B0(bp)) ? 1362 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 1363 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 1364 {1, (CHIP_IS_E3B0(bp)) ? 1365 PBF_REG_INIT_CRD_Q1 : 1366 PBF_REG_P1_INIT_CRD, 1367 (CHIP_IS_E3B0(bp)) ? 1368 PBF_REG_CREDIT_Q1 : 1369 PBF_REG_P1_CREDIT, 1370 (CHIP_IS_E3B0(bp)) ? 1371 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 1372 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 1373 {4, (CHIP_IS_E3B0(bp)) ? 1374 PBF_REG_INIT_CRD_LB_Q : 1375 PBF_REG_P4_INIT_CRD, 1376 (CHIP_IS_E3B0(bp)) ? 1377 PBF_REG_CREDIT_LB_Q : 1378 PBF_REG_P4_CREDIT, 1379 (CHIP_IS_E3B0(bp)) ? 1380 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 1381 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 1382 }; 1383 1384 int i; 1385 1386 /* Verify the command queues are flushed P0, P1, P4 */ 1387 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) 1388 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); 1389 1390 /* Verify the transmission buffers are flushed P0, P1, P4 */ 1391 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) 1392 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); 1393 } 1394 1395 #define OP_GEN_PARAM(param) \ 1396 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 1397 1398 #define OP_GEN_TYPE(type) \ 1399 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 1400 1401 #define OP_GEN_AGG_VECT(index) \ 1402 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 1403 1404 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) 1405 { 1406 u32 op_gen_command = 0; 1407 u32 comp_addr = BAR_CSTRORM_INTMEM + 1408 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); 1409 1410 if (REG_RD(bp, comp_addr)) { 1411 BNX2X_ERR("Cleanup complete was not 0 before sending\n"); 1412 return 1; 1413 } 1414 1415 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 1416 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 1417 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 1418 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 1419 1420 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); 1421 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); 1422 1423 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { 1424 BNX2X_ERR("FW final cleanup did not succeed\n"); 1425 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", 1426 (REG_RD(bp, comp_addr))); 1427 bnx2x_panic(); 1428 return 1; 1429 } 1430 /* Zero completion for next FLR */ 1431 REG_WR(bp, comp_addr, 0); 1432 1433 return 0; 1434 } 1435 1436 u8 bnx2x_is_pcie_pending(struct pci_dev *dev) 1437 { 1438 u16 status; 1439 1440 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 1441 return status & PCI_EXP_DEVSTA_TRPND; 1442 } 1443 1444 /* PF FLR specific routines 1445 */ 1446 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) 1447 { 1448 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 1449 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1450 CFC_REG_NUM_LCIDS_INSIDE_PF, 1451 "CFC PF usage counter timed out", 1452 poll_cnt)) 1453 return 1; 1454 1455 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 1456 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1457 DORQ_REG_PF_USAGE_CNT, 1458 "DQ PF usage counter timed out", 1459 poll_cnt)) 1460 return 1; 1461 1462 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 1463 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1464 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), 1465 "QM PF usage counter timed out", 1466 poll_cnt)) 1467 return 1; 1468 1469 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 1470 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1471 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), 1472 "Timers VNIC usage counter timed out", 1473 poll_cnt)) 1474 return 1; 1475 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1476 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), 1477 "Timers NUM_SCANS usage counter timed out", 1478 poll_cnt)) 1479 return 1; 1480 1481 /* Wait DMAE PF usage counter to zero */ 1482 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1483 dmae_reg_go_c[INIT_DMAE_C(bp)], 1484 "DMAE command register timed out", 1485 poll_cnt)) 1486 return 1; 1487 1488 return 0; 1489 } 1490 1491 static void bnx2x_hw_enable_status(struct bnx2x *bp) 1492 { 1493 u32 val; 1494 1495 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); 1496 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 1497 1498 val = REG_RD(bp, PBF_REG_DISABLE_PF); 1499 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); 1500 1501 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); 1502 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 1503 1504 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); 1505 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 1506 1507 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 1508 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 1509 1510 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 1511 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 1512 1513 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 1514 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 1515 1516 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1517 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", 1518 val); 1519 } 1520 1521 static int bnx2x_pf_flr_clnup(struct bnx2x *bp) 1522 { 1523 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 1524 1525 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); 1526 1527 /* Re-enable PF target read access */ 1528 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 1529 1530 /* Poll HW usage counters */ 1531 DP(BNX2X_MSG_SP, "Polling usage counters\n"); 1532 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) 1533 return -EBUSY; 1534 1535 /* Zero the igu 'trailing edge' and 'leading edge' */ 1536 1537 /* Send the FW cleanup command */ 1538 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) 1539 return -EBUSY; 1540 1541 /* ATC cleanup */ 1542 1543 /* Verify TX hw is flushed */ 1544 bnx2x_tx_hw_flushed(bp, poll_cnt); 1545 1546 /* Wait 100ms (not adjusted according to platform) */ 1547 msleep(100); 1548 1549 /* Verify no pending pci transactions */ 1550 if (bnx2x_is_pcie_pending(bp->pdev)) 1551 BNX2X_ERR("PCIE Transactions still pending\n"); 1552 1553 /* Debug */ 1554 bnx2x_hw_enable_status(bp); 1555 1556 /* 1557 * Master enable - Due to WB DMAE writes performed before this 1558 * register is re-initialized as part of the regular function init 1559 */ 1560 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 1561 1562 return 0; 1563 } 1564 1565 static void bnx2x_hc_int_enable(struct bnx2x *bp) 1566 { 1567 int port = BP_PORT(bp); 1568 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 1569 u32 val = REG_RD(bp, addr); 1570 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1571 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1572 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1573 1574 if (msix) { 1575 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1576 HC_CONFIG_0_REG_INT_LINE_EN_0); 1577 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1578 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1579 if (single_msix) 1580 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 1581 } else if (msi) { 1582 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 1583 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1584 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1585 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1586 } else { 1587 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1588 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1589 HC_CONFIG_0_REG_INT_LINE_EN_0 | 1590 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1591 1592 if (!CHIP_IS_E1(bp)) { 1593 DP(NETIF_MSG_IFUP, 1594 "write %x to HC %d (addr 0x%x)\n", val, port, addr); 1595 1596 REG_WR(bp, addr, val); 1597 1598 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 1599 } 1600 } 1601 1602 if (CHIP_IS_E1(bp)) 1603 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); 1604 1605 DP(NETIF_MSG_IFUP, 1606 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, 1607 (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1608 1609 REG_WR(bp, addr, val); 1610 /* 1611 * Ensure that HC_CONFIG is written before leading/trailing edge config 1612 */ 1613 barrier(); 1614 1615 if (!CHIP_IS_E1(bp)) { 1616 /* init leading/trailing edge */ 1617 if (IS_MF(bp)) { 1618 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1619 if (bp->port.pmf) 1620 /* enable nig and gpio3 attention */ 1621 val |= 0x1100; 1622 } else 1623 val = 0xffff; 1624 1625 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 1626 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 1627 } 1628 } 1629 1630 static void bnx2x_igu_int_enable(struct bnx2x *bp) 1631 { 1632 u32 val; 1633 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1634 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1635 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1636 1637 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 1638 1639 if (msix) { 1640 val &= ~(IGU_PF_CONF_INT_LINE_EN | 1641 IGU_PF_CONF_SINGLE_ISR_EN); 1642 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1643 IGU_PF_CONF_ATTN_BIT_EN); 1644 1645 if (single_msix) 1646 val |= IGU_PF_CONF_SINGLE_ISR_EN; 1647 } else if (msi) { 1648 val &= ~IGU_PF_CONF_INT_LINE_EN; 1649 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1650 IGU_PF_CONF_ATTN_BIT_EN | 1651 IGU_PF_CONF_SINGLE_ISR_EN); 1652 } else { 1653 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 1654 val |= (IGU_PF_CONF_INT_LINE_EN | 1655 IGU_PF_CONF_ATTN_BIT_EN | 1656 IGU_PF_CONF_SINGLE_ISR_EN); 1657 } 1658 1659 /* Clean previous status - need to configure igu prior to ack*/ 1660 if ((!msix) || single_msix) { 1661 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1662 bnx2x_ack_int(bp); 1663 } 1664 1665 val |= IGU_PF_CONF_FUNC_EN; 1666 1667 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", 1668 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1669 1670 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1671 1672 if (val & IGU_PF_CONF_INT_LINE_EN) 1673 pci_intx(bp->pdev, true); 1674 1675 barrier(); 1676 1677 /* init leading/trailing edge */ 1678 if (IS_MF(bp)) { 1679 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1680 if (bp->port.pmf) 1681 /* enable nig and gpio3 attention */ 1682 val |= 0x1100; 1683 } else 1684 val = 0xffff; 1685 1686 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 1687 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 1688 } 1689 1690 void bnx2x_int_enable(struct bnx2x *bp) 1691 { 1692 if (bp->common.int_block == INT_BLOCK_HC) 1693 bnx2x_hc_int_enable(bp); 1694 else 1695 bnx2x_igu_int_enable(bp); 1696 } 1697 1698 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) 1699 { 1700 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 1701 int i, offset; 1702 1703 if (disable_hw) 1704 /* prevent the HW from sending interrupts */ 1705 bnx2x_int_disable(bp); 1706 1707 /* make sure all ISRs are done */ 1708 if (msix) { 1709 synchronize_irq(bp->msix_table[0].vector); 1710 offset = 1; 1711 if (CNIC_SUPPORT(bp)) 1712 offset++; 1713 for_each_eth_queue(bp, i) 1714 synchronize_irq(bp->msix_table[offset++].vector); 1715 } else 1716 synchronize_irq(bp->pdev->irq); 1717 1718 /* make sure sp_task is not running */ 1719 cancel_delayed_work(&bp->sp_task); 1720 cancel_delayed_work(&bp->period_task); 1721 flush_workqueue(bnx2x_wq); 1722 } 1723 1724 /* fast path */ 1725 1726 /* 1727 * General service functions 1728 */ 1729 1730 /* Return true if succeeded to acquire the lock */ 1731 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) 1732 { 1733 u32 lock_status; 1734 u32 resource_bit = (1 << resource); 1735 int func = BP_FUNC(bp); 1736 u32 hw_lock_control_reg; 1737 1738 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1739 "Trying to take a lock on resource %d\n", resource); 1740 1741 /* Validating that the resource is within range */ 1742 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1743 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1744 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1745 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1746 return false; 1747 } 1748 1749 if (func <= 5) 1750 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1751 else 1752 hw_lock_control_reg = 1753 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1754 1755 /* Try to acquire the lock */ 1756 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1757 lock_status = REG_RD(bp, hw_lock_control_reg); 1758 if (lock_status & resource_bit) 1759 return true; 1760 1761 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1762 "Failed to get a lock on resource %d\n", resource); 1763 return false; 1764 } 1765 1766 /** 1767 * bnx2x_get_leader_lock_resource - get the recovery leader resource id 1768 * 1769 * @bp: driver handle 1770 * 1771 * Returns the recovery leader resource id according to the engine this function 1772 * belongs to. Currently only only 2 engines is supported. 1773 */ 1774 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) 1775 { 1776 if (BP_PATH(bp)) 1777 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; 1778 else 1779 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; 1780 } 1781 1782 /** 1783 * bnx2x_trylock_leader_lock- try to acquire a leader lock. 1784 * 1785 * @bp: driver handle 1786 * 1787 * Tries to acquire a leader lock for current engine. 1788 */ 1789 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) 1790 { 1791 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1792 } 1793 1794 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); 1795 1796 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ 1797 static int bnx2x_schedule_sp_task(struct bnx2x *bp) 1798 { 1799 /* Set the interrupt occurred bit for the sp-task to recognize it 1800 * must ack the interrupt and transition according to the IGU 1801 * state machine. 1802 */ 1803 atomic_set(&bp->interrupt_occurred, 1); 1804 1805 /* The sp_task must execute only after this bit 1806 * is set, otherwise we will get out of sync and miss all 1807 * further interrupts. Hence, the barrier. 1808 */ 1809 smp_wmb(); 1810 1811 /* schedule sp_task to workqueue */ 1812 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); 1813 } 1814 1815 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) 1816 { 1817 struct bnx2x *bp = fp->bp; 1818 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1819 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1820 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; 1821 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 1822 1823 DP(BNX2X_MSG_SP, 1824 "fp %d cid %d got ramrod #%d state is %x type is %d\n", 1825 fp->index, cid, command, bp->state, 1826 rr_cqe->ramrod_cqe.ramrod_type); 1827 1828 /* If cid is within VF range, replace the slowpath object with the 1829 * one corresponding to this VF 1830 */ 1831 if (cid >= BNX2X_FIRST_VF_CID && 1832 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) 1833 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); 1834 1835 switch (command) { 1836 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 1837 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); 1838 drv_cmd = BNX2X_Q_CMD_UPDATE; 1839 break; 1840 1841 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 1842 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); 1843 drv_cmd = BNX2X_Q_CMD_SETUP; 1844 break; 1845 1846 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 1847 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 1848 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 1849 break; 1850 1851 case (RAMROD_CMD_ID_ETH_HALT): 1852 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); 1853 drv_cmd = BNX2X_Q_CMD_HALT; 1854 break; 1855 1856 case (RAMROD_CMD_ID_ETH_TERMINATE): 1857 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); 1858 drv_cmd = BNX2X_Q_CMD_TERMINATE; 1859 break; 1860 1861 case (RAMROD_CMD_ID_ETH_EMPTY): 1862 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); 1863 drv_cmd = BNX2X_Q_CMD_EMPTY; 1864 break; 1865 1866 case (RAMROD_CMD_ID_ETH_TPA_UPDATE): 1867 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid); 1868 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA; 1869 break; 1870 1871 default: 1872 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", 1873 command, fp->index); 1874 return; 1875 } 1876 1877 if ((drv_cmd != BNX2X_Q_CMD_MAX) && 1878 q_obj->complete_cmd(bp, q_obj, drv_cmd)) 1879 /* q_obj->complete_cmd() failure means that this was 1880 * an unexpected completion. 1881 * 1882 * In this case we don't want to increase the bp->spq_left 1883 * because apparently we haven't sent this command the first 1884 * place. 1885 */ 1886 #ifdef BNX2X_STOP_ON_ERROR 1887 bnx2x_panic(); 1888 #else 1889 return; 1890 #endif 1891 1892 smp_mb__before_atomic(); 1893 atomic_inc(&bp->cq_spq_left); 1894 /* push the change in bp->spq_left and towards the memory */ 1895 smp_mb__after_atomic(); 1896 1897 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); 1898 1899 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 1900 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { 1901 /* if Q update ramrod is completed for last Q in AFEX vif set 1902 * flow, then ACK MCP at the end 1903 * 1904 * mark pending ACK to MCP bit. 1905 * prevent case that both bits are cleared. 1906 * At the end of load/unload driver checks that 1907 * sp_state is cleared, and this order prevents 1908 * races 1909 */ 1910 smp_mb__before_atomic(); 1911 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); 1912 wmb(); 1913 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 1914 smp_mb__after_atomic(); 1915 1916 /* schedule the sp task as mcp ack is required */ 1917 bnx2x_schedule_sp_task(bp); 1918 } 1919 1920 return; 1921 } 1922 1923 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) 1924 { 1925 struct bnx2x *bp = netdev_priv(dev_instance); 1926 u16 status = bnx2x_ack_int(bp); 1927 u16 mask; 1928 int i; 1929 u8 cos; 1930 1931 /* Return here if interrupt is shared and it's not for us */ 1932 if (unlikely(status == 0)) { 1933 DP(NETIF_MSG_INTR, "not our interrupt!\n"); 1934 return IRQ_NONE; 1935 } 1936 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); 1937 1938 #ifdef BNX2X_STOP_ON_ERROR 1939 if (unlikely(bp->panic)) 1940 return IRQ_HANDLED; 1941 #endif 1942 1943 for_each_eth_queue(bp, i) { 1944 struct bnx2x_fastpath *fp = &bp->fp[i]; 1945 1946 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); 1947 if (status & mask) { 1948 /* Handle Rx or Tx according to SB id */ 1949 for_each_cos_in_tx_queue(fp, cos) 1950 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1951 prefetch(&fp->sb_running_index[SM_RX_ID]); 1952 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1953 status &= ~mask; 1954 } 1955 } 1956 1957 if (CNIC_SUPPORT(bp)) { 1958 mask = 0x2; 1959 if (status & (mask | 0x1)) { 1960 struct cnic_ops *c_ops = NULL; 1961 1962 rcu_read_lock(); 1963 c_ops = rcu_dereference(bp->cnic_ops); 1964 if (c_ops && (bp->cnic_eth_dev.drv_state & 1965 CNIC_DRV_STATE_HANDLES_IRQ)) 1966 c_ops->cnic_handler(bp->cnic_data, NULL); 1967 rcu_read_unlock(); 1968 1969 status &= ~mask; 1970 } 1971 } 1972 1973 if (unlikely(status & 0x1)) { 1974 1975 /* schedule sp task to perform default status block work, ack 1976 * attentions and enable interrupts. 1977 */ 1978 bnx2x_schedule_sp_task(bp); 1979 1980 status &= ~0x1; 1981 if (!status) 1982 return IRQ_HANDLED; 1983 } 1984 1985 if (unlikely(status)) 1986 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", 1987 status); 1988 1989 return IRQ_HANDLED; 1990 } 1991 1992 /* Link */ 1993 1994 /* 1995 * General service functions 1996 */ 1997 1998 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) 1999 { 2000 u32 lock_status; 2001 u32 resource_bit = (1 << resource); 2002 int func = BP_FUNC(bp); 2003 u32 hw_lock_control_reg; 2004 int cnt; 2005 2006 /* Validating that the resource is within range */ 2007 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 2008 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 2009 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2010 return -EINVAL; 2011 } 2012 2013 if (func <= 5) { 2014 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2015 } else { 2016 hw_lock_control_reg = 2017 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2018 } 2019 2020 /* Validating that the resource is not already taken */ 2021 lock_status = REG_RD(bp, hw_lock_control_reg); 2022 if (lock_status & resource_bit) { 2023 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", 2024 lock_status, resource_bit); 2025 return -EEXIST; 2026 } 2027 2028 /* Try for 5 second every 5ms */ 2029 for (cnt = 0; cnt < 1000; cnt++) { 2030 /* Try to acquire the lock */ 2031 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 2032 lock_status = REG_RD(bp, hw_lock_control_reg); 2033 if (lock_status & resource_bit) 2034 return 0; 2035 2036 usleep_range(5000, 10000); 2037 } 2038 BNX2X_ERR("Timeout\n"); 2039 return -EAGAIN; 2040 } 2041 2042 int bnx2x_release_leader_lock(struct bnx2x *bp) 2043 { 2044 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 2045 } 2046 2047 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) 2048 { 2049 u32 lock_status; 2050 u32 resource_bit = (1 << resource); 2051 int func = BP_FUNC(bp); 2052 u32 hw_lock_control_reg; 2053 2054 /* Validating that the resource is within range */ 2055 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 2056 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 2057 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2058 return -EINVAL; 2059 } 2060 2061 if (func <= 5) { 2062 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2063 } else { 2064 hw_lock_control_reg = 2065 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2066 } 2067 2068 /* Validating that the resource is currently taken */ 2069 lock_status = REG_RD(bp, hw_lock_control_reg); 2070 if (!(lock_status & resource_bit)) { 2071 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", 2072 lock_status, resource_bit); 2073 return -EFAULT; 2074 } 2075 2076 REG_WR(bp, hw_lock_control_reg, resource_bit); 2077 return 0; 2078 } 2079 2080 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) 2081 { 2082 /* The GPIO should be swapped if swap register is set and active */ 2083 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2084 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2085 int gpio_shift = gpio_num + 2086 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2087 u32 gpio_mask = (1 << gpio_shift); 2088 u32 gpio_reg; 2089 int value; 2090 2091 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2092 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2093 return -EINVAL; 2094 } 2095 2096 /* read GPIO value */ 2097 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2098 2099 /* get the requested pin value */ 2100 if ((gpio_reg & gpio_mask) == gpio_mask) 2101 value = 1; 2102 else 2103 value = 0; 2104 2105 return value; 2106 } 2107 2108 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2109 { 2110 /* The GPIO should be swapped if swap register is set and active */ 2111 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2112 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2113 int gpio_shift = gpio_num + 2114 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2115 u32 gpio_mask = (1 << gpio_shift); 2116 u32 gpio_reg; 2117 2118 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2119 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2120 return -EINVAL; 2121 } 2122 2123 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2124 /* read GPIO and mask except the float bits */ 2125 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2126 2127 switch (mode) { 2128 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2129 DP(NETIF_MSG_LINK, 2130 "Set GPIO %d (shift %d) -> output low\n", 2131 gpio_num, gpio_shift); 2132 /* clear FLOAT and set CLR */ 2133 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2134 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2135 break; 2136 2137 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2138 DP(NETIF_MSG_LINK, 2139 "Set GPIO %d (shift %d) -> output high\n", 2140 gpio_num, gpio_shift); 2141 /* clear FLOAT and set SET */ 2142 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2143 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2144 break; 2145 2146 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2147 DP(NETIF_MSG_LINK, 2148 "Set GPIO %d (shift %d) -> input\n", 2149 gpio_num, gpio_shift); 2150 /* set FLOAT */ 2151 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2152 break; 2153 2154 default: 2155 break; 2156 } 2157 2158 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2159 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2160 2161 return 0; 2162 } 2163 2164 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) 2165 { 2166 u32 gpio_reg = 0; 2167 int rc = 0; 2168 2169 /* Any port swapping should be handled by caller. */ 2170 2171 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2172 /* read GPIO and mask except the float bits */ 2173 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2174 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2175 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2176 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2177 2178 switch (mode) { 2179 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2180 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); 2181 /* set CLR */ 2182 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2183 break; 2184 2185 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2186 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); 2187 /* set SET */ 2188 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2189 break; 2190 2191 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2192 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); 2193 /* set FLOAT */ 2194 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2195 break; 2196 2197 default: 2198 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); 2199 rc = -EINVAL; 2200 break; 2201 } 2202 2203 if (rc == 0) 2204 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2205 2206 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2207 2208 return rc; 2209 } 2210 2211 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2212 { 2213 /* The GPIO should be swapped if swap register is set and active */ 2214 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2215 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2216 int gpio_shift = gpio_num + 2217 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2218 u32 gpio_mask = (1 << gpio_shift); 2219 u32 gpio_reg; 2220 2221 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2222 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2223 return -EINVAL; 2224 } 2225 2226 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2227 /* read GPIO int */ 2228 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); 2229 2230 switch (mode) { 2231 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2232 DP(NETIF_MSG_LINK, 2233 "Clear GPIO INT %d (shift %d) -> output low\n", 2234 gpio_num, gpio_shift); 2235 /* clear SET and set CLR */ 2236 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2237 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2238 break; 2239 2240 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2241 DP(NETIF_MSG_LINK, 2242 "Set GPIO INT %d (shift %d) -> output high\n", 2243 gpio_num, gpio_shift); 2244 /* clear CLR and set SET */ 2245 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2246 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2247 break; 2248 2249 default: 2250 break; 2251 } 2252 2253 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); 2254 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2255 2256 return 0; 2257 } 2258 2259 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) 2260 { 2261 u32 spio_reg; 2262 2263 /* Only 2 SPIOs are configurable */ 2264 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 2265 BNX2X_ERR("Invalid SPIO 0x%x\n", spio); 2266 return -EINVAL; 2267 } 2268 2269 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2270 /* read SPIO and mask except the float bits */ 2271 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 2272 2273 switch (mode) { 2274 case MISC_SPIO_OUTPUT_LOW: 2275 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); 2276 /* clear FLOAT and set CLR */ 2277 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2278 spio_reg |= (spio << MISC_SPIO_CLR_POS); 2279 break; 2280 2281 case MISC_SPIO_OUTPUT_HIGH: 2282 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); 2283 /* clear FLOAT and set SET */ 2284 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2285 spio_reg |= (spio << MISC_SPIO_SET_POS); 2286 break; 2287 2288 case MISC_SPIO_INPUT_HI_Z: 2289 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); 2290 /* set FLOAT */ 2291 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 2292 break; 2293 2294 default: 2295 break; 2296 } 2297 2298 REG_WR(bp, MISC_REG_SPIO, spio_reg); 2299 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2300 2301 return 0; 2302 } 2303 2304 void bnx2x_calc_fc_adv(struct bnx2x *bp) 2305 { 2306 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); 2307 2308 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2309 ADVERTISED_Pause); 2310 switch (bp->link_vars.ieee_fc & 2311 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 2312 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 2313 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 2314 ADVERTISED_Pause); 2315 break; 2316 2317 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 2318 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 2319 break; 2320 2321 default: 2322 break; 2323 } 2324 } 2325 2326 static void bnx2x_set_requested_fc(struct bnx2x *bp) 2327 { 2328 /* Initialize link parameters structure variables 2329 * It is recommended to turn off RX FC for jumbo frames 2330 * for better performance 2331 */ 2332 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) 2333 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; 2334 else 2335 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; 2336 } 2337 2338 static void bnx2x_init_dropless_fc(struct bnx2x *bp) 2339 { 2340 u32 pause_enabled = 0; 2341 2342 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { 2343 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 2344 pause_enabled = 1; 2345 2346 REG_WR(bp, BAR_USTRORM_INTMEM + 2347 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), 2348 pause_enabled); 2349 } 2350 2351 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", 2352 pause_enabled ? "enabled" : "disabled"); 2353 } 2354 2355 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) 2356 { 2357 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); 2358 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; 2359 2360 if (!BP_NOMCP(bp)) { 2361 bnx2x_set_requested_fc(bp); 2362 bnx2x_acquire_phy_lock(bp); 2363 2364 if (load_mode == LOAD_DIAG) { 2365 struct link_params *lp = &bp->link_params; 2366 lp->loopback_mode = LOOPBACK_XGXS; 2367 /* Prefer doing PHY loopback at highest speed */ 2368 if (lp->req_line_speed[cfx_idx] < SPEED_20000) { 2369 if (lp->speed_cap_mask[cfx_idx] & 2370 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G) 2371 lp->req_line_speed[cfx_idx] = 2372 SPEED_20000; 2373 else if (lp->speed_cap_mask[cfx_idx] & 2374 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) 2375 lp->req_line_speed[cfx_idx] = 2376 SPEED_10000; 2377 else 2378 lp->req_line_speed[cfx_idx] = 2379 SPEED_1000; 2380 } 2381 } 2382 2383 if (load_mode == LOAD_LOOPBACK_EXT) { 2384 struct link_params *lp = &bp->link_params; 2385 lp->loopback_mode = LOOPBACK_EXT; 2386 } 2387 2388 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2389 2390 bnx2x_release_phy_lock(bp); 2391 2392 bnx2x_init_dropless_fc(bp); 2393 2394 bnx2x_calc_fc_adv(bp); 2395 2396 if (bp->link_vars.link_up) { 2397 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2398 bnx2x_link_report(bp); 2399 } 2400 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2401 bp->link_params.req_line_speed[cfx_idx] = req_line_speed; 2402 return rc; 2403 } 2404 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 2405 return -EINVAL; 2406 } 2407 2408 void bnx2x_link_set(struct bnx2x *bp) 2409 { 2410 if (!BP_NOMCP(bp)) { 2411 bnx2x_acquire_phy_lock(bp); 2412 bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2413 bnx2x_release_phy_lock(bp); 2414 2415 bnx2x_init_dropless_fc(bp); 2416 2417 bnx2x_calc_fc_adv(bp); 2418 } else 2419 BNX2X_ERR("Bootcode is missing - can not set link\n"); 2420 } 2421 2422 static void bnx2x__link_reset(struct bnx2x *bp) 2423 { 2424 if (!BP_NOMCP(bp)) { 2425 bnx2x_acquire_phy_lock(bp); 2426 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); 2427 bnx2x_release_phy_lock(bp); 2428 } else 2429 BNX2X_ERR("Bootcode is missing - can not reset link\n"); 2430 } 2431 2432 void bnx2x_force_link_reset(struct bnx2x *bp) 2433 { 2434 bnx2x_acquire_phy_lock(bp); 2435 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); 2436 bnx2x_release_phy_lock(bp); 2437 } 2438 2439 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) 2440 { 2441 u8 rc = 0; 2442 2443 if (!BP_NOMCP(bp)) { 2444 bnx2x_acquire_phy_lock(bp); 2445 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, 2446 is_serdes); 2447 bnx2x_release_phy_lock(bp); 2448 } else 2449 BNX2X_ERR("Bootcode is missing - can not test link\n"); 2450 2451 return rc; 2452 } 2453 2454 /* Calculates the sum of vn_min_rates. 2455 It's needed for further normalizing of the min_rates. 2456 Returns: 2457 sum of vn_min_rates. 2458 or 2459 0 - if all the min_rates are 0. 2460 In the later case fairness algorithm should be deactivated. 2461 If not all min_rates are zero then those that are zeroes will be set to 1. 2462 */ 2463 static void bnx2x_calc_vn_min(struct bnx2x *bp, 2464 struct cmng_init_input *input) 2465 { 2466 int all_zero = 1; 2467 int vn; 2468 2469 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2470 u32 vn_cfg = bp->mf_config[vn]; 2471 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 2472 FUNC_MF_CFG_MIN_BW_SHIFT) * 100; 2473 2474 /* Skip hidden vns */ 2475 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2476 vn_min_rate = 0; 2477 /* If min rate is zero - set it to 1 */ 2478 else if (!vn_min_rate) 2479 vn_min_rate = DEF_MIN_RATE; 2480 else 2481 all_zero = 0; 2482 2483 input->vnic_min_rate[vn] = vn_min_rate; 2484 } 2485 2486 /* if ETS or all min rates are zeros - disable fairness */ 2487 if (BNX2X_IS_ETS_ENABLED(bp)) { 2488 input->flags.cmng_enables &= 2489 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2490 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); 2491 } else if (all_zero) { 2492 input->flags.cmng_enables &= 2493 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2494 DP(NETIF_MSG_IFUP, 2495 "All MIN values are zeroes fairness will be disabled\n"); 2496 } else 2497 input->flags.cmng_enables |= 2498 CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2499 } 2500 2501 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, 2502 struct cmng_init_input *input) 2503 { 2504 u16 vn_max_rate; 2505 u32 vn_cfg = bp->mf_config[vn]; 2506 2507 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2508 vn_max_rate = 0; 2509 else { 2510 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); 2511 2512 if (IS_MF_PERCENT_BW(bp)) { 2513 /* maxCfg in percents of linkspeed */ 2514 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; 2515 } else /* SD modes */ 2516 /* maxCfg is absolute in 100Mb units */ 2517 vn_max_rate = maxCfg * 100; 2518 } 2519 2520 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 2521 2522 input->vnic_max_rate[vn] = vn_max_rate; 2523 } 2524 2525 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) 2526 { 2527 if (CHIP_REV_IS_SLOW(bp)) 2528 return CMNG_FNS_NONE; 2529 if (IS_MF(bp)) 2530 return CMNG_FNS_MINMAX; 2531 2532 return CMNG_FNS_NONE; 2533 } 2534 2535 void bnx2x_read_mf_cfg(struct bnx2x *bp) 2536 { 2537 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); 2538 2539 if (BP_NOMCP(bp)) 2540 return; /* what should be the default value in this case */ 2541 2542 /* For 2 port configuration the absolute function number formula 2543 * is: 2544 * abs_func = 2 * vn + BP_PORT + BP_PATH 2545 * 2546 * and there are 4 functions per port 2547 * 2548 * For 4 port configuration it is 2549 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH 2550 * 2551 * and there are 2 functions per port 2552 */ 2553 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2554 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); 2555 2556 if (func >= E1H_FUNC_MAX) 2557 break; 2558 2559 bp->mf_config[vn] = 2560 MF_CFG_RD(bp, func_mf_config[func].config); 2561 } 2562 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 2563 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); 2564 bp->flags |= MF_FUNC_DIS; 2565 } else { 2566 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); 2567 bp->flags &= ~MF_FUNC_DIS; 2568 } 2569 } 2570 2571 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) 2572 { 2573 struct cmng_init_input input; 2574 memset(&input, 0, sizeof(struct cmng_init_input)); 2575 2576 input.port_rate = bp->link_vars.line_speed; 2577 2578 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { 2579 int vn; 2580 2581 /* read mf conf from shmem */ 2582 if (read_cfg) 2583 bnx2x_read_mf_cfg(bp); 2584 2585 /* vn_weight_sum and enable fairness if not 0 */ 2586 bnx2x_calc_vn_min(bp, &input); 2587 2588 /* calculate and set min-max rate for each vn */ 2589 if (bp->port.pmf) 2590 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) 2591 bnx2x_calc_vn_max(bp, vn, &input); 2592 2593 /* always enable rate shaping and fairness */ 2594 input.flags.cmng_enables |= 2595 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 2596 2597 bnx2x_init_cmng(&input, &bp->cmng); 2598 return; 2599 } 2600 2601 /* rate shaping and fairness are disabled */ 2602 DP(NETIF_MSG_IFUP, 2603 "rate shaping and fairness are disabled\n"); 2604 } 2605 2606 static void storm_memset_cmng(struct bnx2x *bp, 2607 struct cmng_init *cmng, 2608 u8 port) 2609 { 2610 int vn; 2611 size_t size = sizeof(struct cmng_struct_per_port); 2612 2613 u32 addr = BAR_XSTRORM_INTMEM + 2614 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); 2615 2616 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); 2617 2618 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2619 int func = func_by_vn(bp, vn); 2620 2621 addr = BAR_XSTRORM_INTMEM + 2622 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); 2623 size = sizeof(struct rate_shaping_vars_per_vn); 2624 __storm_memset_struct(bp, addr, size, 2625 (u32 *)&cmng->vnic.vnic_max_rate[vn]); 2626 2627 addr = BAR_XSTRORM_INTMEM + 2628 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); 2629 size = sizeof(struct fairness_vars_per_vn); 2630 __storm_memset_struct(bp, addr, size, 2631 (u32 *)&cmng->vnic.vnic_min_rate[vn]); 2632 } 2633 } 2634 2635 /* init cmng mode in HW according to local configuration */ 2636 void bnx2x_set_local_cmng(struct bnx2x *bp) 2637 { 2638 int cmng_fns = bnx2x_get_cmng_fns_mode(bp); 2639 2640 if (cmng_fns != CMNG_FNS_NONE) { 2641 bnx2x_cmng_fns_init(bp, false, cmng_fns); 2642 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 2643 } else { 2644 /* rate shaping and fairness are disabled */ 2645 DP(NETIF_MSG_IFUP, 2646 "single function mode without fairness\n"); 2647 } 2648 } 2649 2650 /* This function is called upon link interrupt */ 2651 static void bnx2x_link_attn(struct bnx2x *bp) 2652 { 2653 /* Make sure that we are synced with the current statistics */ 2654 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2655 2656 bnx2x_link_update(&bp->link_params, &bp->link_vars); 2657 2658 bnx2x_init_dropless_fc(bp); 2659 2660 if (bp->link_vars.link_up) { 2661 2662 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { 2663 struct host_port_stats *pstats; 2664 2665 pstats = bnx2x_sp(bp, port_stats); 2666 /* reset old mac stats */ 2667 memset(&(pstats->mac_stx[0]), 0, 2668 sizeof(struct mac_stx)); 2669 } 2670 if (bp->state == BNX2X_STATE_OPEN) 2671 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2672 } 2673 2674 if (bp->link_vars.link_up && bp->link_vars.line_speed) 2675 bnx2x_set_local_cmng(bp); 2676 2677 __bnx2x_link_report(bp); 2678 2679 if (IS_MF(bp)) 2680 bnx2x_link_sync_notify(bp); 2681 } 2682 2683 void bnx2x__link_status_update(struct bnx2x *bp) 2684 { 2685 if (bp->state != BNX2X_STATE_OPEN) 2686 return; 2687 2688 /* read updated dcb configuration */ 2689 if (IS_PF(bp)) { 2690 bnx2x_dcbx_pmf_update(bp); 2691 bnx2x_link_status_update(&bp->link_params, &bp->link_vars); 2692 if (bp->link_vars.link_up) 2693 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2694 else 2695 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2696 /* indicate link status */ 2697 bnx2x_link_report(bp); 2698 2699 } else { /* VF */ 2700 bp->port.supported[0] |= (SUPPORTED_10baseT_Half | 2701 SUPPORTED_10baseT_Full | 2702 SUPPORTED_100baseT_Half | 2703 SUPPORTED_100baseT_Full | 2704 SUPPORTED_1000baseT_Full | 2705 SUPPORTED_2500baseX_Full | 2706 SUPPORTED_10000baseT_Full | 2707 SUPPORTED_TP | 2708 SUPPORTED_FIBRE | 2709 SUPPORTED_Autoneg | 2710 SUPPORTED_Pause | 2711 SUPPORTED_Asym_Pause); 2712 bp->port.advertising[0] = bp->port.supported[0]; 2713 2714 bp->link_params.bp = bp; 2715 bp->link_params.port = BP_PORT(bp); 2716 bp->link_params.req_duplex[0] = DUPLEX_FULL; 2717 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; 2718 bp->link_params.req_line_speed[0] = SPEED_10000; 2719 bp->link_params.speed_cap_mask[0] = 0x7f0000; 2720 bp->link_params.switch_cfg = SWITCH_CFG_10G; 2721 bp->link_vars.mac_type = MAC_TYPE_BMAC; 2722 bp->link_vars.line_speed = SPEED_10000; 2723 bp->link_vars.link_status = 2724 (LINK_STATUS_LINK_UP | 2725 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 2726 bp->link_vars.link_up = 1; 2727 bp->link_vars.duplex = DUPLEX_FULL; 2728 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; 2729 __bnx2x_link_report(bp); 2730 2731 bnx2x_sample_bulletin(bp); 2732 2733 /* if bulletin board did not have an update for link status 2734 * __bnx2x_link_report will report current status 2735 * but it will NOT duplicate report in case of already reported 2736 * during sampling bulletin board. 2737 */ 2738 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2739 } 2740 } 2741 2742 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, 2743 u16 vlan_val, u8 allowed_prio) 2744 { 2745 struct bnx2x_func_state_params func_params = {NULL}; 2746 struct bnx2x_func_afex_update_params *f_update_params = 2747 &func_params.params.afex_update; 2748 2749 func_params.f_obj = &bp->func_obj; 2750 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; 2751 2752 /* no need to wait for RAMROD completion, so don't 2753 * set RAMROD_COMP_WAIT flag 2754 */ 2755 2756 f_update_params->vif_id = vifid; 2757 f_update_params->afex_default_vlan = vlan_val; 2758 f_update_params->allowed_priorities = allowed_prio; 2759 2760 /* if ramrod can not be sent, response to MCP immediately */ 2761 if (bnx2x_func_state_change(bp, &func_params) < 0) 2762 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 2763 2764 return 0; 2765 } 2766 2767 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, 2768 u16 vif_index, u8 func_bit_map) 2769 { 2770 struct bnx2x_func_state_params func_params = {NULL}; 2771 struct bnx2x_func_afex_viflists_params *update_params = 2772 &func_params.params.afex_viflists; 2773 int rc; 2774 u32 drv_msg_code; 2775 2776 /* validate only LIST_SET and LIST_GET are received from switch */ 2777 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) 2778 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", 2779 cmd_type); 2780 2781 func_params.f_obj = &bp->func_obj; 2782 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; 2783 2784 /* set parameters according to cmd_type */ 2785 update_params->afex_vif_list_command = cmd_type; 2786 update_params->vif_list_index = vif_index; 2787 update_params->func_bit_map = 2788 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; 2789 update_params->func_to_clear = 0; 2790 drv_msg_code = 2791 (cmd_type == VIF_LIST_RULE_GET) ? 2792 DRV_MSG_CODE_AFEX_LISTGET_ACK : 2793 DRV_MSG_CODE_AFEX_LISTSET_ACK; 2794 2795 /* if ramrod can not be sent, respond to MCP immediately for 2796 * SET and GET requests (other are not triggered from MCP) 2797 */ 2798 rc = bnx2x_func_state_change(bp, &func_params); 2799 if (rc < 0) 2800 bnx2x_fw_command(bp, drv_msg_code, 0); 2801 2802 return 0; 2803 } 2804 2805 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) 2806 { 2807 struct afex_stats afex_stats; 2808 u32 func = BP_ABS_FUNC(bp); 2809 u32 mf_config; 2810 u16 vlan_val; 2811 u32 vlan_prio; 2812 u16 vif_id; 2813 u8 allowed_prio; 2814 u8 vlan_mode; 2815 u32 addr_to_write, vifid, addrs, stats_type, i; 2816 2817 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { 2818 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2819 DP(BNX2X_MSG_MCP, 2820 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); 2821 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); 2822 } 2823 2824 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { 2825 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2826 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); 2827 DP(BNX2X_MSG_MCP, 2828 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", 2829 vifid, addrs); 2830 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, 2831 addrs); 2832 } 2833 2834 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { 2835 addr_to_write = SHMEM2_RD(bp, 2836 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); 2837 stats_type = SHMEM2_RD(bp, 2838 afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2839 2840 DP(BNX2X_MSG_MCP, 2841 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", 2842 addr_to_write); 2843 2844 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); 2845 2846 /* write response to scratchpad, for MCP */ 2847 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) 2848 REG_WR(bp, addr_to_write + i*sizeof(u32), 2849 *(((u32 *)(&afex_stats))+i)); 2850 2851 /* send ack message to MCP */ 2852 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); 2853 } 2854 2855 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { 2856 mf_config = MF_CFG_RD(bp, func_mf_config[func].config); 2857 bp->mf_config[BP_VN(bp)] = mf_config; 2858 DP(BNX2X_MSG_MCP, 2859 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", 2860 mf_config); 2861 2862 /* if VIF_SET is "enabled" */ 2863 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { 2864 /* set rate limit directly to internal RAM */ 2865 struct cmng_init_input cmng_input; 2866 struct rate_shaping_vars_per_vn m_rs_vn; 2867 size_t size = sizeof(struct rate_shaping_vars_per_vn); 2868 u32 addr = BAR_XSTRORM_INTMEM + 2869 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); 2870 2871 bp->mf_config[BP_VN(bp)] = mf_config; 2872 2873 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); 2874 m_rs_vn.vn_counter.rate = 2875 cmng_input.vnic_max_rate[BP_VN(bp)]; 2876 m_rs_vn.vn_counter.quota = 2877 (m_rs_vn.vn_counter.rate * 2878 RS_PERIODIC_TIMEOUT_USEC) / 8; 2879 2880 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); 2881 2882 /* read relevant values from mf_cfg struct in shmem */ 2883 vif_id = 2884 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2885 FUNC_MF_CFG_E1HOV_TAG_MASK) >> 2886 FUNC_MF_CFG_E1HOV_TAG_SHIFT; 2887 vlan_val = 2888 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2889 FUNC_MF_CFG_AFEX_VLAN_MASK) >> 2890 FUNC_MF_CFG_AFEX_VLAN_SHIFT; 2891 vlan_prio = (mf_config & 2892 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 2893 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; 2894 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); 2895 vlan_mode = 2896 (MF_CFG_RD(bp, 2897 func_mf_config[func].afex_config) & 2898 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 2899 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; 2900 allowed_prio = 2901 (MF_CFG_RD(bp, 2902 func_mf_config[func].afex_config) & 2903 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 2904 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; 2905 2906 /* send ramrod to FW, return in case of failure */ 2907 if (bnx2x_afex_func_update(bp, vif_id, vlan_val, 2908 allowed_prio)) 2909 return; 2910 2911 bp->afex_def_vlan_tag = vlan_val; 2912 bp->afex_vlan_mode = vlan_mode; 2913 } else { 2914 /* notify link down because BP->flags is disabled */ 2915 bnx2x_link_report(bp); 2916 2917 /* send INVALID VIF ramrod to FW */ 2918 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); 2919 2920 /* Reset the default afex VLAN */ 2921 bp->afex_def_vlan_tag = -1; 2922 } 2923 } 2924 } 2925 2926 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp) 2927 { 2928 struct bnx2x_func_switch_update_params *switch_update_params; 2929 struct bnx2x_func_state_params func_params; 2930 2931 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params)); 2932 switch_update_params = &func_params.params.switch_update; 2933 func_params.f_obj = &bp->func_obj; 2934 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 2935 2936 /* Prepare parameters for function state transitions */ 2937 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2938 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 2939 2940 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) { 2941 int func = BP_ABS_FUNC(bp); 2942 u32 val; 2943 2944 /* Re-learn the S-tag from shmem */ 2945 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2946 FUNC_MF_CFG_E1HOV_TAG_MASK; 2947 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 2948 bp->mf_ov = val; 2949 } else { 2950 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n"); 2951 goto fail; 2952 } 2953 2954 /* Configure new S-tag in LLH */ 2955 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8, 2956 bp->mf_ov); 2957 2958 /* Send Ramrod to update FW of change */ 2959 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG, 2960 &switch_update_params->changes); 2961 switch_update_params->vlan = bp->mf_ov; 2962 2963 if (bnx2x_func_state_change(bp, &func_params) < 0) { 2964 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n", 2965 bp->mf_ov); 2966 goto fail; 2967 } else { 2968 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", 2969 bp->mf_ov); 2970 } 2971 } else { 2972 goto fail; 2973 } 2974 2975 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0); 2976 return; 2977 fail: 2978 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0); 2979 } 2980 2981 static void bnx2x_pmf_update(struct bnx2x *bp) 2982 { 2983 int port = BP_PORT(bp); 2984 u32 val; 2985 2986 bp->port.pmf = 1; 2987 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); 2988 2989 /* 2990 * We need the mb() to ensure the ordering between the writing to 2991 * bp->port.pmf here and reading it from the bnx2x_periodic_task(). 2992 */ 2993 smp_mb(); 2994 2995 /* queue a periodic task */ 2996 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2997 2998 bnx2x_dcbx_pmf_update(bp); 2999 3000 /* enable nig attention */ 3001 val = (0xff0f | (1 << (BP_VN(bp) + 4))); 3002 if (bp->common.int_block == INT_BLOCK_HC) { 3003 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 3004 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 3005 } else if (!CHIP_IS_E1x(bp)) { 3006 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 3007 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 3008 } 3009 3010 bnx2x_stats_handle(bp, STATS_EVENT_PMF); 3011 } 3012 3013 /* end of Link */ 3014 3015 /* slow path */ 3016 3017 /* 3018 * General service functions 3019 */ 3020 3021 /* send the MCP a request, block until there is a reply */ 3022 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) 3023 { 3024 int mb_idx = BP_FW_MB_IDX(bp); 3025 u32 seq; 3026 u32 rc = 0; 3027 u32 cnt = 1; 3028 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; 3029 3030 mutex_lock(&bp->fw_mb_mutex); 3031 seq = ++bp->fw_seq; 3032 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); 3033 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); 3034 3035 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", 3036 (command | seq), param); 3037 3038 do { 3039 /* let the FW do it's magic ... */ 3040 msleep(delay); 3041 3042 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); 3043 3044 /* Give the FW up to 5 second (500*10ms) */ 3045 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 3046 3047 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", 3048 cnt*delay, rc, seq); 3049 3050 /* is this a reply to our command? */ 3051 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) 3052 rc &= FW_MSG_CODE_MASK; 3053 else { 3054 /* FW BUG! */ 3055 BNX2X_ERR("FW failed to respond!\n"); 3056 bnx2x_fw_dump(bp); 3057 rc = 0; 3058 } 3059 mutex_unlock(&bp->fw_mb_mutex); 3060 3061 return rc; 3062 } 3063 3064 static void storm_memset_func_cfg(struct bnx2x *bp, 3065 struct tstorm_eth_function_common_config *tcfg, 3066 u16 abs_fid) 3067 { 3068 size_t size = sizeof(struct tstorm_eth_function_common_config); 3069 3070 u32 addr = BAR_TSTRORM_INTMEM + 3071 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); 3072 3073 __storm_memset_struct(bp, addr, size, (u32 *)tcfg); 3074 } 3075 3076 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) 3077 { 3078 if (CHIP_IS_E1x(bp)) { 3079 struct tstorm_eth_function_common_config tcfg = {0}; 3080 3081 storm_memset_func_cfg(bp, &tcfg, p->func_id); 3082 } 3083 3084 /* Enable the function in the FW */ 3085 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); 3086 storm_memset_func_en(bp, p->func_id, 1); 3087 3088 /* spq */ 3089 if (p->spq_active) { 3090 storm_memset_spq_addr(bp, p->spq_map, p->func_id); 3091 REG_WR(bp, XSEM_REG_FAST_MEMORY + 3092 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); 3093 } 3094 } 3095 3096 /** 3097 * bnx2x_get_common_flags - Return common flags 3098 * 3099 * @bp: device handle 3100 * @fp: queue handle 3101 * @zero_stats: TRUE if statistics zeroing is needed 3102 * 3103 * Return the flags that are common for the Tx-only and not normal connections. 3104 */ 3105 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, 3106 struct bnx2x_fastpath *fp, 3107 bool zero_stats) 3108 { 3109 unsigned long flags = 0; 3110 3111 /* PF driver will always initialize the Queue to an ACTIVE state */ 3112 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); 3113 3114 /* tx only connections collect statistics (on the same index as the 3115 * parent connection). The statistics are zeroed when the parent 3116 * connection is initialized. 3117 */ 3118 3119 __set_bit(BNX2X_Q_FLG_STATS, &flags); 3120 if (zero_stats) 3121 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); 3122 3123 if (bp->flags & TX_SWITCHING) 3124 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags); 3125 3126 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); 3127 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); 3128 3129 #ifdef BNX2X_STOP_ON_ERROR 3130 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); 3131 #endif 3132 3133 return flags; 3134 } 3135 3136 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, 3137 struct bnx2x_fastpath *fp, 3138 bool leading) 3139 { 3140 unsigned long flags = 0; 3141 3142 /* calculate other queue flags */ 3143 if (IS_MF_SD(bp)) 3144 __set_bit(BNX2X_Q_FLG_OV, &flags); 3145 3146 if (IS_FCOE_FP(fp)) { 3147 __set_bit(BNX2X_Q_FLG_FCOE, &flags); 3148 /* For FCoE - force usage of default priority (for afex) */ 3149 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); 3150 } 3151 3152 if (fp->mode != TPA_MODE_DISABLED) { 3153 __set_bit(BNX2X_Q_FLG_TPA, &flags); 3154 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); 3155 if (fp->mode == TPA_MODE_GRO) 3156 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); 3157 } 3158 3159 if (leading) { 3160 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); 3161 __set_bit(BNX2X_Q_FLG_MCAST, &flags); 3162 } 3163 3164 /* Always set HW VLAN stripping */ 3165 __set_bit(BNX2X_Q_FLG_VLAN, &flags); 3166 3167 /* configure silent vlan removal */ 3168 if (IS_MF_AFEX(bp)) 3169 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); 3170 3171 return flags | bnx2x_get_common_flags(bp, fp, true); 3172 } 3173 3174 static void bnx2x_pf_q_prep_general(struct bnx2x *bp, 3175 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, 3176 u8 cos) 3177 { 3178 gen_init->stat_id = bnx2x_stats_id(fp); 3179 gen_init->spcl_id = fp->cl_id; 3180 3181 /* Always use mini-jumbo MTU for FCoE L2 ring */ 3182 if (IS_FCOE_FP(fp)) 3183 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 3184 else 3185 gen_init->mtu = bp->dev->mtu; 3186 3187 gen_init->cos = cos; 3188 3189 gen_init->fp_hsi = ETH_FP_HSI_VERSION; 3190 } 3191 3192 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, 3193 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, 3194 struct bnx2x_rxq_setup_params *rxq_init) 3195 { 3196 u8 max_sge = 0; 3197 u16 sge_sz = 0; 3198 u16 tpa_agg_size = 0; 3199 3200 if (fp->mode != TPA_MODE_DISABLED) { 3201 pause->sge_th_lo = SGE_TH_LO(bp); 3202 pause->sge_th_hi = SGE_TH_HI(bp); 3203 3204 /* validate SGE ring has enough to cross high threshold */ 3205 WARN_ON(bp->dropless_fc && 3206 pause->sge_th_hi + FW_PREFETCH_CNT > 3207 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); 3208 3209 tpa_agg_size = TPA_AGG_SIZE; 3210 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> 3211 SGE_PAGE_SHIFT; 3212 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 3213 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; 3214 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); 3215 } 3216 3217 /* pause - not for e1 */ 3218 if (!CHIP_IS_E1(bp)) { 3219 pause->bd_th_lo = BD_TH_LO(bp); 3220 pause->bd_th_hi = BD_TH_HI(bp); 3221 3222 pause->rcq_th_lo = RCQ_TH_LO(bp); 3223 pause->rcq_th_hi = RCQ_TH_HI(bp); 3224 /* 3225 * validate that rings have enough entries to cross 3226 * high thresholds 3227 */ 3228 WARN_ON(bp->dropless_fc && 3229 pause->bd_th_hi + FW_PREFETCH_CNT > 3230 bp->rx_ring_size); 3231 WARN_ON(bp->dropless_fc && 3232 pause->rcq_th_hi + FW_PREFETCH_CNT > 3233 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); 3234 3235 pause->pri_map = 1; 3236 } 3237 3238 /* rxq setup */ 3239 rxq_init->dscr_map = fp->rx_desc_mapping; 3240 rxq_init->sge_map = fp->rx_sge_mapping; 3241 rxq_init->rcq_map = fp->rx_comp_mapping; 3242 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; 3243 3244 /* This should be a maximum number of data bytes that may be 3245 * placed on the BD (not including paddings). 3246 */ 3247 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - 3248 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; 3249 3250 rxq_init->cl_qzone_id = fp->cl_qzone_id; 3251 rxq_init->tpa_agg_sz = tpa_agg_size; 3252 rxq_init->sge_buf_sz = sge_sz; 3253 rxq_init->max_sges_pkt = max_sge; 3254 rxq_init->rss_engine_id = BP_FUNC(bp); 3255 rxq_init->mcast_engine_id = BP_FUNC(bp); 3256 3257 /* Maximum number or simultaneous TPA aggregation for this Queue. 3258 * 3259 * For PF Clients it should be the maximum available number. 3260 * VF driver(s) may want to define it to a smaller value. 3261 */ 3262 rxq_init->max_tpa_queues = MAX_AGG_QS(bp); 3263 3264 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; 3265 rxq_init->fw_sb_id = fp->fw_sb_id; 3266 3267 if (IS_FCOE_FP(fp)) 3268 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; 3269 else 3270 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 3271 /* configure silent vlan removal 3272 * if multi function mode is afex, then mask default vlan 3273 */ 3274 if (IS_MF_AFEX(bp)) { 3275 rxq_init->silent_removal_value = bp->afex_def_vlan_tag; 3276 rxq_init->silent_removal_mask = VLAN_VID_MASK; 3277 } 3278 } 3279 3280 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, 3281 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, 3282 u8 cos) 3283 { 3284 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; 3285 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 3286 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 3287 txq_init->fw_sb_id = fp->fw_sb_id; 3288 3289 /* 3290 * set the tss leading client id for TX classification == 3291 * leading RSS client id 3292 */ 3293 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); 3294 3295 if (IS_FCOE_FP(fp)) { 3296 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; 3297 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; 3298 } 3299 } 3300 3301 static void bnx2x_pf_init(struct bnx2x *bp) 3302 { 3303 struct bnx2x_func_init_params func_init = {0}; 3304 struct event_ring_data eq_data = { {0} }; 3305 3306 if (!CHIP_IS_E1x(bp)) { 3307 /* reset IGU PF statistics: MSIX + ATTN */ 3308 /* PF */ 3309 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3310 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3311 (CHIP_MODE_IS_4_PORT(bp) ? 3312 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3313 /* ATTN */ 3314 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3315 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3316 BNX2X_IGU_STAS_MSG_PF_CNT*4 + 3317 (CHIP_MODE_IS_4_PORT(bp) ? 3318 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3319 } 3320 3321 func_init.spq_active = true; 3322 func_init.pf_id = BP_FUNC(bp); 3323 func_init.func_id = BP_FUNC(bp); 3324 func_init.spq_map = bp->spq_mapping; 3325 func_init.spq_prod = bp->spq_prod_idx; 3326 3327 bnx2x_func_init(bp, &func_init); 3328 3329 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); 3330 3331 /* 3332 * Congestion management values depend on the link rate 3333 * There is no active link so initial link rate is set to 10 Gbps. 3334 * When the link comes up The congestion management values are 3335 * re-calculated according to the actual link rate. 3336 */ 3337 bp->link_vars.line_speed = SPEED_10000; 3338 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); 3339 3340 /* Only the PMF sets the HW */ 3341 if (bp->port.pmf) 3342 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3343 3344 /* init Event Queue - PCI bus guarantees correct endianity*/ 3345 eq_data.base_addr.hi = U64_HI(bp->eq_mapping); 3346 eq_data.base_addr.lo = U64_LO(bp->eq_mapping); 3347 eq_data.producer = bp->eq_prod; 3348 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 3349 eq_data.sb_id = DEF_SB_ID; 3350 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); 3351 } 3352 3353 static void bnx2x_e1h_disable(struct bnx2x *bp) 3354 { 3355 int port = BP_PORT(bp); 3356 3357 bnx2x_tx_disable(bp); 3358 3359 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 3360 } 3361 3362 static void bnx2x_e1h_enable(struct bnx2x *bp) 3363 { 3364 int port = BP_PORT(bp); 3365 3366 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 3367 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 3368 3369 /* Tx queue should be only re-enabled */ 3370 netif_tx_wake_all_queues(bp->dev); 3371 3372 /* 3373 * Should not call netif_carrier_on since it will be called if the link 3374 * is up when checking for link state 3375 */ 3376 } 3377 3378 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 3379 3380 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) 3381 { 3382 struct eth_stats_info *ether_stat = 3383 &bp->slowpath->drv_info_to_mcp.ether_stat; 3384 struct bnx2x_vlan_mac_obj *mac_obj = 3385 &bp->sp_objs->mac_obj; 3386 int i; 3387 3388 strlcpy(ether_stat->version, DRV_MODULE_VERSION, 3389 ETH_STAT_INFO_VERSION_LEN); 3390 3391 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the 3392 * mac_local field in ether_stat struct. The base address is offset by 2 3393 * bytes to account for the field being 8 bytes but a mac address is 3394 * only 6 bytes. Likewise, the stride for the get_n_elements function is 3395 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes 3396 * allocated by the ether_stat struct, so the macs will land in their 3397 * proper positions. 3398 */ 3399 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) 3400 memset(ether_stat->mac_local + i, 0, 3401 sizeof(ether_stat->mac_local[0])); 3402 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, 3403 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 3404 ether_stat->mac_local + MAC_PAD, MAC_PAD, 3405 ETH_ALEN); 3406 ether_stat->mtu_size = bp->dev->mtu; 3407 if (bp->dev->features & NETIF_F_RXCSUM) 3408 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 3409 if (bp->dev->features & NETIF_F_TSO) 3410 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 3411 ether_stat->feature_flags |= bp->common.boot_mode; 3412 3413 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; 3414 3415 ether_stat->txq_size = bp->tx_ring_size; 3416 ether_stat->rxq_size = bp->rx_ring_size; 3417 3418 #ifdef CONFIG_BNX2X_SRIOV 3419 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0; 3420 #endif 3421 } 3422 3423 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) 3424 { 3425 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3426 struct fcoe_stats_info *fcoe_stat = 3427 &bp->slowpath->drv_info_to_mcp.fcoe_stat; 3428 3429 if (!CNIC_LOADED(bp)) 3430 return; 3431 3432 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN); 3433 3434 fcoe_stat->qos_priority = 3435 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; 3436 3437 /* insert FCoE stats from ramrod response */ 3438 if (!NO_FCOE(bp)) { 3439 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = 3440 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3441 tstorm_queue_statistics; 3442 3443 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = 3444 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3445 xstorm_queue_statistics; 3446 3447 struct fcoe_statistics_params *fw_fcoe_stat = 3448 &bp->fw_stats_data->fcoe; 3449 3450 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, 3451 fcoe_stat->rx_bytes_lo, 3452 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); 3453 3454 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3455 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, 3456 fcoe_stat->rx_bytes_lo, 3457 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); 3458 3459 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3460 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, 3461 fcoe_stat->rx_bytes_lo, 3462 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); 3463 3464 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3465 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, 3466 fcoe_stat->rx_bytes_lo, 3467 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); 3468 3469 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3470 fcoe_stat->rx_frames_lo, 3471 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); 3472 3473 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3474 fcoe_stat->rx_frames_lo, 3475 fcoe_q_tstorm_stats->rcv_ucast_pkts); 3476 3477 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3478 fcoe_stat->rx_frames_lo, 3479 fcoe_q_tstorm_stats->rcv_bcast_pkts); 3480 3481 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3482 fcoe_stat->rx_frames_lo, 3483 fcoe_q_tstorm_stats->rcv_mcast_pkts); 3484 3485 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, 3486 fcoe_stat->tx_bytes_lo, 3487 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); 3488 3489 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3490 fcoe_q_xstorm_stats->ucast_bytes_sent.hi, 3491 fcoe_stat->tx_bytes_lo, 3492 fcoe_q_xstorm_stats->ucast_bytes_sent.lo); 3493 3494 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3495 fcoe_q_xstorm_stats->bcast_bytes_sent.hi, 3496 fcoe_stat->tx_bytes_lo, 3497 fcoe_q_xstorm_stats->bcast_bytes_sent.lo); 3498 3499 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3500 fcoe_q_xstorm_stats->mcast_bytes_sent.hi, 3501 fcoe_stat->tx_bytes_lo, 3502 fcoe_q_xstorm_stats->mcast_bytes_sent.lo); 3503 3504 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3505 fcoe_stat->tx_frames_lo, 3506 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); 3507 3508 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3509 fcoe_stat->tx_frames_lo, 3510 fcoe_q_xstorm_stats->ucast_pkts_sent); 3511 3512 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3513 fcoe_stat->tx_frames_lo, 3514 fcoe_q_xstorm_stats->bcast_pkts_sent); 3515 3516 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3517 fcoe_stat->tx_frames_lo, 3518 fcoe_q_xstorm_stats->mcast_pkts_sent); 3519 } 3520 3521 /* ask L5 driver to add data to the struct */ 3522 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); 3523 } 3524 3525 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) 3526 { 3527 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3528 struct iscsi_stats_info *iscsi_stat = 3529 &bp->slowpath->drv_info_to_mcp.iscsi_stat; 3530 3531 if (!CNIC_LOADED(bp)) 3532 return; 3533 3534 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, 3535 ETH_ALEN); 3536 3537 iscsi_stat->qos_priority = 3538 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; 3539 3540 /* ask L5 driver to add data to the struct */ 3541 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); 3542 } 3543 3544 /* called due to MCP event (on pmf): 3545 * reread new bandwidth configuration 3546 * configure FW 3547 * notify others function about the change 3548 */ 3549 static void bnx2x_config_mf_bw(struct bnx2x *bp) 3550 { 3551 /* Workaround for MFW bug. 3552 * MFW is not supposed to generate BW attention in 3553 * single function mode. 3554 */ 3555 if (!IS_MF(bp)) { 3556 DP(BNX2X_MSG_MCP, 3557 "Ignoring MF BW config in single function mode\n"); 3558 return; 3559 } 3560 3561 if (bp->link_vars.link_up) { 3562 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); 3563 bnx2x_link_sync_notify(bp); 3564 } 3565 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3566 } 3567 3568 static void bnx2x_set_mf_bw(struct bnx2x *bp) 3569 { 3570 bnx2x_config_mf_bw(bp); 3571 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 3572 } 3573 3574 static void bnx2x_handle_eee_event(struct bnx2x *bp) 3575 { 3576 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); 3577 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 3578 } 3579 3580 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20) 3581 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25) 3582 3583 static void bnx2x_handle_drv_info_req(struct bnx2x *bp) 3584 { 3585 enum drv_info_opcode op_code; 3586 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); 3587 bool release = false; 3588 int wait; 3589 3590 /* if drv_info version supported by MFW doesn't match - send NACK */ 3591 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 3592 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3593 return; 3594 } 3595 3596 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 3597 DRV_INFO_CONTROL_OP_CODE_SHIFT; 3598 3599 /* Must prevent other flows from accessing drv_info_to_mcp */ 3600 mutex_lock(&bp->drv_info_mutex); 3601 3602 memset(&bp->slowpath->drv_info_to_mcp, 0, 3603 sizeof(union drv_info_to_mcp)); 3604 3605 switch (op_code) { 3606 case ETH_STATS_OPCODE: 3607 bnx2x_drv_info_ether_stat(bp); 3608 break; 3609 case FCOE_STATS_OPCODE: 3610 bnx2x_drv_info_fcoe_stat(bp); 3611 break; 3612 case ISCSI_STATS_OPCODE: 3613 bnx2x_drv_info_iscsi_stat(bp); 3614 break; 3615 default: 3616 /* if op code isn't supported - send NACK */ 3617 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3618 goto out; 3619 } 3620 3621 /* if we got drv_info attn from MFW then these fields are defined in 3622 * shmem2 for sure 3623 */ 3624 SHMEM2_WR(bp, drv_info_host_addr_lo, 3625 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3626 SHMEM2_WR(bp, drv_info_host_addr_hi, 3627 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3628 3629 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); 3630 3631 /* Since possible management wants both this and get_driver_version 3632 * need to wait until management notifies us it finished utilizing 3633 * the buffer. 3634 */ 3635 if (!SHMEM2_HAS(bp, mfw_drv_indication)) { 3636 DP(BNX2X_MSG_MCP, "Management does not support indication\n"); 3637 } else if (!bp->drv_info_mng_owner) { 3638 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1)); 3639 3640 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) { 3641 u32 indication = SHMEM2_RD(bp, mfw_drv_indication); 3642 3643 /* Management is done; need to clear indication */ 3644 if (indication & bit) { 3645 SHMEM2_WR(bp, mfw_drv_indication, 3646 indication & ~bit); 3647 release = true; 3648 break; 3649 } 3650 3651 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH); 3652 } 3653 } 3654 if (!release) { 3655 DP(BNX2X_MSG_MCP, "Management did not release indication\n"); 3656 bp->drv_info_mng_owner = true; 3657 } 3658 3659 out: 3660 mutex_unlock(&bp->drv_info_mutex); 3661 } 3662 3663 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format) 3664 { 3665 u8 vals[4]; 3666 int i = 0; 3667 3668 if (bnx2x_format) { 3669 i = sscanf(version, "1.%c%hhd.%hhd.%hhd", 3670 &vals[0], &vals[1], &vals[2], &vals[3]); 3671 if (i > 0) 3672 vals[0] -= '0'; 3673 } else { 3674 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd", 3675 &vals[0], &vals[1], &vals[2], &vals[3]); 3676 } 3677 3678 while (i < 4) 3679 vals[i++] = 0; 3680 3681 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3]; 3682 } 3683 3684 void bnx2x_update_mng_version(struct bnx2x *bp) 3685 { 3686 u32 iscsiver = DRV_VER_NOT_LOADED; 3687 u32 fcoever = DRV_VER_NOT_LOADED; 3688 u32 ethver = DRV_VER_NOT_LOADED; 3689 int idx = BP_FW_MB_IDX(bp); 3690 u8 *version; 3691 3692 if (!SHMEM2_HAS(bp, func_os_drv_ver)) 3693 return; 3694 3695 mutex_lock(&bp->drv_info_mutex); 3696 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */ 3697 if (bp->drv_info_mng_owner) 3698 goto out; 3699 3700 if (bp->state != BNX2X_STATE_OPEN) 3701 goto out; 3702 3703 /* Parse ethernet driver version */ 3704 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3705 if (!CNIC_LOADED(bp)) 3706 goto out; 3707 3708 /* Try getting storage driver version via cnic */ 3709 memset(&bp->slowpath->drv_info_to_mcp, 0, 3710 sizeof(union drv_info_to_mcp)); 3711 bnx2x_drv_info_iscsi_stat(bp); 3712 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version; 3713 iscsiver = bnx2x_update_mng_version_utility(version, false); 3714 3715 memset(&bp->slowpath->drv_info_to_mcp, 0, 3716 sizeof(union drv_info_to_mcp)); 3717 bnx2x_drv_info_fcoe_stat(bp); 3718 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version; 3719 fcoever = bnx2x_update_mng_version_utility(version, false); 3720 3721 out: 3722 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver); 3723 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver); 3724 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever); 3725 3726 mutex_unlock(&bp->drv_info_mutex); 3727 3728 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n", 3729 ethver, iscsiver, fcoever); 3730 } 3731 3732 void bnx2x_update_mfw_dump(struct bnx2x *bp) 3733 { 3734 u32 drv_ver; 3735 u32 valid_dump; 3736 3737 if (!SHMEM2_HAS(bp, drv_info)) 3738 return; 3739 3740 /* Update Driver load time, possibly broken in y2038 */ 3741 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds()); 3742 3743 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3744 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver); 3745 3746 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 3747 3748 /* Check & notify On-Chip dump. */ 3749 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump); 3750 3751 if (valid_dump & FIRST_DUMP_VALID) 3752 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n"); 3753 3754 if (valid_dump & SECOND_DUMP_VALID) 3755 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n"); 3756 } 3757 3758 static void bnx2x_oem_event(struct bnx2x *bp, u32 event) 3759 { 3760 u32 cmd_ok, cmd_fail; 3761 3762 /* sanity */ 3763 if (event & DRV_STATUS_DCC_EVENT_MASK && 3764 event & DRV_STATUS_OEM_EVENT_MASK) { 3765 BNX2X_ERR("Received simultaneous events %08x\n", event); 3766 return; 3767 } 3768 3769 if (event & DRV_STATUS_DCC_EVENT_MASK) { 3770 cmd_fail = DRV_MSG_CODE_DCC_FAILURE; 3771 cmd_ok = DRV_MSG_CODE_DCC_OK; 3772 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ { 3773 cmd_fail = DRV_MSG_CODE_OEM_FAILURE; 3774 cmd_ok = DRV_MSG_CODE_OEM_OK; 3775 } 3776 3777 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event); 3778 3779 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3780 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) { 3781 /* This is the only place besides the function initialization 3782 * where the bp->flags can change so it is done without any 3783 * locks 3784 */ 3785 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 3786 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); 3787 bp->flags |= MF_FUNC_DIS; 3788 3789 bnx2x_e1h_disable(bp); 3790 } else { 3791 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); 3792 bp->flags &= ~MF_FUNC_DIS; 3793 3794 bnx2x_e1h_enable(bp); 3795 } 3796 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3797 DRV_STATUS_OEM_DISABLE_ENABLE_PF); 3798 } 3799 3800 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3801 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) { 3802 bnx2x_config_mf_bw(bp); 3803 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3804 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION); 3805 } 3806 3807 /* Report results to MCP */ 3808 if (event) 3809 bnx2x_fw_command(bp, cmd_fail, 0); 3810 else 3811 bnx2x_fw_command(bp, cmd_ok, 0); 3812 } 3813 3814 /* must be called under the spq lock */ 3815 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) 3816 { 3817 struct eth_spe *next_spe = bp->spq_prod_bd; 3818 3819 if (bp->spq_prod_bd == bp->spq_last_bd) { 3820 bp->spq_prod_bd = bp->spq; 3821 bp->spq_prod_idx = 0; 3822 DP(BNX2X_MSG_SP, "end of spq\n"); 3823 } else { 3824 bp->spq_prod_bd++; 3825 bp->spq_prod_idx++; 3826 } 3827 return next_spe; 3828 } 3829 3830 /* must be called under the spq lock */ 3831 static void bnx2x_sp_prod_update(struct bnx2x *bp) 3832 { 3833 int func = BP_FUNC(bp); 3834 3835 /* 3836 * Make sure that BD data is updated before writing the producer: 3837 * BD data is written to the memory, the producer is read from the 3838 * memory, thus we need a full memory barrier to ensure the ordering. 3839 */ 3840 mb(); 3841 3842 REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), 3843 bp->spq_prod_idx); 3844 } 3845 3846 /** 3847 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ 3848 * 3849 * @cmd: command to check 3850 * @cmd_type: command type 3851 */ 3852 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) 3853 { 3854 if ((cmd_type == NONE_CONNECTION_TYPE) || 3855 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 3856 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 3857 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 3858 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 3859 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 3860 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) 3861 return true; 3862 else 3863 return false; 3864 } 3865 3866 /** 3867 * bnx2x_sp_post - place a single command on an SP ring 3868 * 3869 * @bp: driver handle 3870 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 3871 * @cid: SW CID the command is related to 3872 * @data_hi: command private data address (high 32 bits) 3873 * @data_lo: command private data address (low 32 bits) 3874 * @cmd_type: command type (e.g. NONE, ETH) 3875 * 3876 * SP data is handled as if it's always an address pair, thus data fields are 3877 * not swapped to little endian in upper functions. Instead this function swaps 3878 * data as if it's two u32 fields. 3879 */ 3880 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 3881 u32 data_hi, u32 data_lo, int cmd_type) 3882 { 3883 struct eth_spe *spe; 3884 u16 type; 3885 bool common = bnx2x_is_contextless_ramrod(command, cmd_type); 3886 3887 #ifdef BNX2X_STOP_ON_ERROR 3888 if (unlikely(bp->panic)) { 3889 BNX2X_ERR("Can't post SP when there is panic\n"); 3890 return -EIO; 3891 } 3892 #endif 3893 3894 spin_lock_bh(&bp->spq_lock); 3895 3896 if (common) { 3897 if (!atomic_read(&bp->eq_spq_left)) { 3898 BNX2X_ERR("BUG! EQ ring full!\n"); 3899 spin_unlock_bh(&bp->spq_lock); 3900 bnx2x_panic(); 3901 return -EBUSY; 3902 } 3903 } else if (!atomic_read(&bp->cq_spq_left)) { 3904 BNX2X_ERR("BUG! SPQ ring full!\n"); 3905 spin_unlock_bh(&bp->spq_lock); 3906 bnx2x_panic(); 3907 return -EBUSY; 3908 } 3909 3910 spe = bnx2x_sp_get_next(bp); 3911 3912 /* CID needs port number to be encoded int it */ 3913 spe->hdr.conn_and_cmd_data = 3914 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | 3915 HW_CID(bp, cid)); 3916 3917 /* In some cases, type may already contain the func-id 3918 * mainly in SRIOV related use cases, so we add it here only 3919 * if it's not already set. 3920 */ 3921 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) { 3922 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & 3923 SPE_HDR_CONN_TYPE; 3924 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & 3925 SPE_HDR_FUNCTION_ID); 3926 } else { 3927 type = cmd_type; 3928 } 3929 3930 spe->hdr.type = cpu_to_le16(type); 3931 3932 spe->data.update_data_addr.hi = cpu_to_le32(data_hi); 3933 spe->data.update_data_addr.lo = cpu_to_le32(data_lo); 3934 3935 /* 3936 * It's ok if the actual decrement is issued towards the memory 3937 * somewhere between the spin_lock and spin_unlock. Thus no 3938 * more explicit memory barrier is needed. 3939 */ 3940 if (common) 3941 atomic_dec(&bp->eq_spq_left); 3942 else 3943 atomic_dec(&bp->cq_spq_left); 3944 3945 DP(BNX2X_MSG_SP, 3946 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", 3947 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), 3948 (u32)(U64_LO(bp->spq_mapping) + 3949 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, 3950 HW_CID(bp, cid), data_hi, data_lo, type, 3951 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); 3952 3953 bnx2x_sp_prod_update(bp); 3954 spin_unlock_bh(&bp->spq_lock); 3955 return 0; 3956 } 3957 3958 /* acquire split MCP access lock register */ 3959 static int bnx2x_acquire_alr(struct bnx2x *bp) 3960 { 3961 u32 j, val; 3962 int rc = 0; 3963 3964 might_sleep(); 3965 for (j = 0; j < 1000; j++) { 3966 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); 3967 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); 3968 if (val & MCPR_ACCESS_LOCK_LOCK) 3969 break; 3970 3971 usleep_range(5000, 10000); 3972 } 3973 if (!(val & MCPR_ACCESS_LOCK_LOCK)) { 3974 BNX2X_ERR("Cannot acquire MCP access lock register\n"); 3975 rc = -EBUSY; 3976 } 3977 3978 return rc; 3979 } 3980 3981 /* release split MCP access lock register */ 3982 static void bnx2x_release_alr(struct bnx2x *bp) 3983 { 3984 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); 3985 } 3986 3987 #define BNX2X_DEF_SB_ATT_IDX 0x0001 3988 #define BNX2X_DEF_SB_IDX 0x0002 3989 3990 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) 3991 { 3992 struct host_sp_status_block *def_sb = bp->def_status_blk; 3993 u16 rc = 0; 3994 3995 barrier(); /* status block is written to by the chip */ 3996 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 3997 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; 3998 rc |= BNX2X_DEF_SB_ATT_IDX; 3999 } 4000 4001 if (bp->def_idx != def_sb->sp_sb.running_index) { 4002 bp->def_idx = def_sb->sp_sb.running_index; 4003 rc |= BNX2X_DEF_SB_IDX; 4004 } 4005 4006 /* Do not reorder: indices reading should complete before handling */ 4007 barrier(); 4008 return rc; 4009 } 4010 4011 /* 4012 * slow path service functions 4013 */ 4014 4015 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) 4016 { 4017 int port = BP_PORT(bp); 4018 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4019 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4020 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 4021 NIG_REG_MASK_INTERRUPT_PORT0; 4022 u32 aeu_mask; 4023 u32 nig_mask = 0; 4024 u32 reg_addr; 4025 4026 if (bp->attn_state & asserted) 4027 BNX2X_ERR("IGU ERROR\n"); 4028 4029 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4030 aeu_mask = REG_RD(bp, aeu_addr); 4031 4032 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", 4033 aeu_mask, asserted); 4034 aeu_mask &= ~(asserted & 0x3ff); 4035 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 4036 4037 REG_WR(bp, aeu_addr, aeu_mask); 4038 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4039 4040 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 4041 bp->attn_state |= asserted; 4042 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 4043 4044 if (asserted & ATTN_HARD_WIRED_MASK) { 4045 if (asserted & ATTN_NIG_FOR_FUNC) { 4046 4047 bnx2x_acquire_phy_lock(bp); 4048 4049 /* save nig interrupt mask */ 4050 nig_mask = REG_RD(bp, nig_int_mask_addr); 4051 4052 /* If nig_mask is not set, no need to call the update 4053 * function. 4054 */ 4055 if (nig_mask) { 4056 REG_WR(bp, nig_int_mask_addr, 0); 4057 4058 bnx2x_link_attn(bp); 4059 } 4060 4061 /* handle unicore attn? */ 4062 } 4063 if (asserted & ATTN_SW_TIMER_4_FUNC) 4064 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); 4065 4066 if (asserted & GPIO_2_FUNC) 4067 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); 4068 4069 if (asserted & GPIO_3_FUNC) 4070 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); 4071 4072 if (asserted & GPIO_4_FUNC) 4073 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); 4074 4075 if (port == 0) { 4076 if (asserted & ATTN_GENERAL_ATTN_1) { 4077 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); 4078 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 4079 } 4080 if (asserted & ATTN_GENERAL_ATTN_2) { 4081 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); 4082 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 4083 } 4084 if (asserted & ATTN_GENERAL_ATTN_3) { 4085 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); 4086 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 4087 } 4088 } else { 4089 if (asserted & ATTN_GENERAL_ATTN_4) { 4090 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); 4091 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 4092 } 4093 if (asserted & ATTN_GENERAL_ATTN_5) { 4094 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); 4095 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 4096 } 4097 if (asserted & ATTN_GENERAL_ATTN_6) { 4098 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); 4099 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 4100 } 4101 } 4102 4103 } /* if hardwired */ 4104 4105 if (bp->common.int_block == INT_BLOCK_HC) 4106 reg_addr = (HC_REG_COMMAND_REG + port*32 + 4107 COMMAND_REG_ATTN_BITS_SET); 4108 else 4109 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 4110 4111 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, 4112 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 4113 REG_WR(bp, reg_addr, asserted); 4114 4115 /* now set back the mask */ 4116 if (asserted & ATTN_NIG_FOR_FUNC) { 4117 /* Verify that IGU ack through BAR was written before restoring 4118 * NIG mask. This loop should exit after 2-3 iterations max. 4119 */ 4120 if (bp->common.int_block != INT_BLOCK_HC) { 4121 u32 cnt = 0, igu_acked; 4122 do { 4123 igu_acked = REG_RD(bp, 4124 IGU_REG_ATTENTION_ACK_BITS); 4125 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 4126 (++cnt < MAX_IGU_ATTN_ACK_TO)); 4127 if (!igu_acked) 4128 DP(NETIF_MSG_HW, 4129 "Failed to verify IGU ack on time\n"); 4130 barrier(); 4131 } 4132 REG_WR(bp, nig_int_mask_addr, nig_mask); 4133 bnx2x_release_phy_lock(bp); 4134 } 4135 } 4136 4137 static void bnx2x_fan_failure(struct bnx2x *bp) 4138 { 4139 int port = BP_PORT(bp); 4140 u32 ext_phy_config; 4141 /* mark the failure */ 4142 ext_phy_config = 4143 SHMEM_RD(bp, 4144 dev_info.port_hw_config[port].external_phy_config); 4145 4146 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 4147 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 4148 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, 4149 ext_phy_config); 4150 4151 /* log the failure */ 4152 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" 4153 "Please contact OEM Support for assistance\n"); 4154 4155 /* Schedule device reset (unload) 4156 * This is due to some boards consuming sufficient power when driver is 4157 * up to overheat if fan fails. 4158 */ 4159 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0); 4160 } 4161 4162 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) 4163 { 4164 int port = BP_PORT(bp); 4165 int reg_offset; 4166 u32 val; 4167 4168 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 4169 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 4170 4171 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 4172 4173 val = REG_RD(bp, reg_offset); 4174 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 4175 REG_WR(bp, reg_offset, val); 4176 4177 BNX2X_ERR("SPIO5 hw attention\n"); 4178 4179 /* Fan failure attention */ 4180 bnx2x_hw_reset_phy(&bp->link_params); 4181 bnx2x_fan_failure(bp); 4182 } 4183 4184 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { 4185 bnx2x_acquire_phy_lock(bp); 4186 bnx2x_handle_module_detect_int(&bp->link_params); 4187 bnx2x_release_phy_lock(bp); 4188 } 4189 4190 if (attn & HW_INTERRUPT_ASSERT_SET_0) { 4191 4192 val = REG_RD(bp, reg_offset); 4193 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0); 4194 REG_WR(bp, reg_offset, val); 4195 4196 BNX2X_ERR("FATAL HW block attention set0 0x%x\n", 4197 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0)); 4198 bnx2x_panic(); 4199 } 4200 } 4201 4202 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) 4203 { 4204 u32 val; 4205 4206 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 4207 4208 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); 4209 BNX2X_ERR("DB hw attention 0x%x\n", val); 4210 /* DORQ discard attention */ 4211 if (val & 0x2) 4212 BNX2X_ERR("FATAL error from DORQ\n"); 4213 } 4214 4215 if (attn & HW_INTERRUPT_ASSERT_SET_1) { 4216 4217 int port = BP_PORT(bp); 4218 int reg_offset; 4219 4220 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 4221 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 4222 4223 val = REG_RD(bp, reg_offset); 4224 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1); 4225 REG_WR(bp, reg_offset, val); 4226 4227 BNX2X_ERR("FATAL HW block attention set1 0x%x\n", 4228 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1)); 4229 bnx2x_panic(); 4230 } 4231 } 4232 4233 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) 4234 { 4235 u32 val; 4236 4237 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 4238 4239 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); 4240 BNX2X_ERR("CFC hw attention 0x%x\n", val); 4241 /* CFC error attention */ 4242 if (val & 0x2) 4243 BNX2X_ERR("FATAL error from CFC\n"); 4244 } 4245 4246 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 4247 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); 4248 BNX2X_ERR("PXP hw attention-0 0x%x\n", val); 4249 /* RQ_USDMDP_FIFO_OVERFLOW */ 4250 if (val & 0x18000) 4251 BNX2X_ERR("FATAL error from PXP\n"); 4252 4253 if (!CHIP_IS_E1x(bp)) { 4254 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); 4255 BNX2X_ERR("PXP hw attention-1 0x%x\n", val); 4256 } 4257 } 4258 4259 if (attn & HW_INTERRUPT_ASSERT_SET_2) { 4260 4261 int port = BP_PORT(bp); 4262 int reg_offset; 4263 4264 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 4265 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 4266 4267 val = REG_RD(bp, reg_offset); 4268 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2); 4269 REG_WR(bp, reg_offset, val); 4270 4271 BNX2X_ERR("FATAL HW block attention set2 0x%x\n", 4272 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2)); 4273 bnx2x_panic(); 4274 } 4275 } 4276 4277 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) 4278 { 4279 u32 val; 4280 4281 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 4282 4283 if (attn & BNX2X_PMF_LINK_ASSERT) { 4284 int func = BP_FUNC(bp); 4285 4286 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 4287 bnx2x_read_mf_cfg(bp); 4288 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, 4289 func_mf_config[BP_ABS_FUNC(bp)].config); 4290 val = SHMEM_RD(bp, 4291 func_mb[BP_FW_MB_IDX(bp)].drv_status); 4292 4293 if (val & (DRV_STATUS_DCC_EVENT_MASK | 4294 DRV_STATUS_OEM_EVENT_MASK)) 4295 bnx2x_oem_event(bp, 4296 (val & (DRV_STATUS_DCC_EVENT_MASK | 4297 DRV_STATUS_OEM_EVENT_MASK))); 4298 4299 if (val & DRV_STATUS_SET_MF_BW) 4300 bnx2x_set_mf_bw(bp); 4301 4302 if (val & DRV_STATUS_DRV_INFO_REQ) 4303 bnx2x_handle_drv_info_req(bp); 4304 4305 if (val & DRV_STATUS_VF_DISABLED) 4306 bnx2x_schedule_iov_task(bp, 4307 BNX2X_IOV_HANDLE_FLR); 4308 4309 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) 4310 bnx2x_pmf_update(bp); 4311 4312 if (bp->port.pmf && 4313 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 4314 bp->dcbx_enabled > 0) 4315 /* start dcbx state machine */ 4316 bnx2x_dcbx_set_params(bp, 4317 BNX2X_DCBX_STATE_NEG_RECEIVED); 4318 if (val & DRV_STATUS_AFEX_EVENT_MASK) 4319 bnx2x_handle_afex_cmd(bp, 4320 val & DRV_STATUS_AFEX_EVENT_MASK); 4321 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 4322 bnx2x_handle_eee_event(bp); 4323 4324 if (val & DRV_STATUS_OEM_UPDATE_SVID) 4325 bnx2x_schedule_sp_rtnl(bp, 4326 BNX2X_SP_RTNL_UPDATE_SVID, 0); 4327 4328 if (bp->link_vars.periodic_flags & 4329 PERIODIC_FLAGS_LINK_EVENT) { 4330 /* sync with link */ 4331 bnx2x_acquire_phy_lock(bp); 4332 bp->link_vars.periodic_flags &= 4333 ~PERIODIC_FLAGS_LINK_EVENT; 4334 bnx2x_release_phy_lock(bp); 4335 if (IS_MF(bp)) 4336 bnx2x_link_sync_notify(bp); 4337 bnx2x_link_report(bp); 4338 } 4339 /* Always call it here: bnx2x_link_report() will 4340 * prevent the link indication duplication. 4341 */ 4342 bnx2x__link_status_update(bp); 4343 } else if (attn & BNX2X_MC_ASSERT_BITS) { 4344 4345 BNX2X_ERR("MC assert!\n"); 4346 bnx2x_mc_assert(bp); 4347 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); 4348 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); 4349 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); 4350 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); 4351 bnx2x_panic(); 4352 4353 } else if (attn & BNX2X_MCP_ASSERT) { 4354 4355 BNX2X_ERR("MCP assert!\n"); 4356 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); 4357 bnx2x_fw_dump(bp); 4358 4359 } else 4360 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); 4361 } 4362 4363 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 4364 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); 4365 if (attn & BNX2X_GRC_TIMEOUT) { 4366 val = CHIP_IS_E1(bp) ? 0 : 4367 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); 4368 BNX2X_ERR("GRC time-out 0x%08x\n", val); 4369 } 4370 if (attn & BNX2X_GRC_RSV) { 4371 val = CHIP_IS_E1(bp) ? 0 : 4372 REG_RD(bp, MISC_REG_GRC_RSV_ATTN); 4373 BNX2X_ERR("GRC reserved 0x%08x\n", val); 4374 } 4375 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 4376 } 4377 } 4378 4379 /* 4380 * Bits map: 4381 * 0-7 - Engine0 load counter. 4382 * 8-15 - Engine1 load counter. 4383 * 16 - Engine0 RESET_IN_PROGRESS bit. 4384 * 17 - Engine1 RESET_IN_PROGRESS bit. 4385 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function 4386 * on the engine 4387 * 19 - Engine1 ONE_IS_LOADED. 4388 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 4389 * leader to complete (check for both RESET_IN_PROGRESS bits and not for 4390 * just the one belonging to its engine). 4391 * 4392 */ 4393 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 4394 4395 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff 4396 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 4397 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 4398 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 4399 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 4400 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 4401 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 4402 4403 /* 4404 * Set the GLOBAL_RESET bit. 4405 * 4406 * Should be run under rtnl lock 4407 */ 4408 void bnx2x_set_reset_global(struct bnx2x *bp) 4409 { 4410 u32 val; 4411 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4412 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4413 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); 4414 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4415 } 4416 4417 /* 4418 * Clear the GLOBAL_RESET bit. 4419 * 4420 * Should be run under rtnl lock 4421 */ 4422 static void bnx2x_clear_reset_global(struct bnx2x *bp) 4423 { 4424 u32 val; 4425 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4426 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4427 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); 4428 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4429 } 4430 4431 /* 4432 * Checks the GLOBAL_RESET bit. 4433 * 4434 * should be run under rtnl lock 4435 */ 4436 static bool bnx2x_reset_is_global(struct bnx2x *bp) 4437 { 4438 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4439 4440 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); 4441 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; 4442 } 4443 4444 /* 4445 * Clear RESET_IN_PROGRESS bit for the current engine. 4446 * 4447 * Should be run under rtnl lock 4448 */ 4449 static void bnx2x_set_reset_done(struct bnx2x *bp) 4450 { 4451 u32 val; 4452 u32 bit = BP_PATH(bp) ? 4453 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4454 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4455 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4456 4457 /* Clear the bit */ 4458 val &= ~bit; 4459 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4460 4461 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4462 } 4463 4464 /* 4465 * Set RESET_IN_PROGRESS for the current engine. 4466 * 4467 * should be run under rtnl lock 4468 */ 4469 void bnx2x_set_reset_in_progress(struct bnx2x *bp) 4470 { 4471 u32 val; 4472 u32 bit = BP_PATH(bp) ? 4473 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4474 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4475 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4476 4477 /* Set the bit */ 4478 val |= bit; 4479 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4480 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4481 } 4482 4483 /* 4484 * Checks the RESET_IN_PROGRESS bit for the given engine. 4485 * should be run under rtnl lock 4486 */ 4487 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) 4488 { 4489 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4490 u32 bit = engine ? 4491 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4492 4493 /* return false if bit is set */ 4494 return (val & bit) ? false : true; 4495 } 4496 4497 /* 4498 * set pf load for the current pf. 4499 * 4500 * should be run under rtnl lock 4501 */ 4502 void bnx2x_set_pf_load(struct bnx2x *bp) 4503 { 4504 u32 val1, val; 4505 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4506 BNX2X_PATH0_LOAD_CNT_MASK; 4507 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4508 BNX2X_PATH0_LOAD_CNT_SHIFT; 4509 4510 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4511 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4512 4513 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); 4514 4515 /* get the current counter value */ 4516 val1 = (val & mask) >> shift; 4517 4518 /* set bit of that PF */ 4519 val1 |= (1 << bp->pf_num); 4520 4521 /* clear the old value */ 4522 val &= ~mask; 4523 4524 /* set the new one */ 4525 val |= ((val1 << shift) & mask); 4526 4527 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4528 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4529 } 4530 4531 /** 4532 * bnx2x_clear_pf_load - clear pf load mark 4533 * 4534 * @bp: driver handle 4535 * 4536 * Should be run under rtnl lock. 4537 * Decrements the load counter for the current engine. Returns 4538 * whether other functions are still loaded 4539 */ 4540 bool bnx2x_clear_pf_load(struct bnx2x *bp) 4541 { 4542 u32 val1, val; 4543 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4544 BNX2X_PATH0_LOAD_CNT_MASK; 4545 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4546 BNX2X_PATH0_LOAD_CNT_SHIFT; 4547 4548 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4549 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4550 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); 4551 4552 /* get the current counter value */ 4553 val1 = (val & mask) >> shift; 4554 4555 /* clear bit of that PF */ 4556 val1 &= ~(1 << bp->pf_num); 4557 4558 /* clear the old value */ 4559 val &= ~mask; 4560 4561 /* set the new one */ 4562 val |= ((val1 << shift) & mask); 4563 4564 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4565 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4566 return val1 != 0; 4567 } 4568 4569 /* 4570 * Read the load status for the current engine. 4571 * 4572 * should be run under rtnl lock 4573 */ 4574 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) 4575 { 4576 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : 4577 BNX2X_PATH0_LOAD_CNT_MASK); 4578 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4579 BNX2X_PATH0_LOAD_CNT_SHIFT); 4580 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4581 4582 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); 4583 4584 val = (val & mask) >> shift; 4585 4586 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", 4587 engine, val); 4588 4589 return val != 0; 4590 } 4591 4592 static void _print_parity(struct bnx2x *bp, u32 reg) 4593 { 4594 pr_cont(" [0x%08x] ", REG_RD(bp, reg)); 4595 } 4596 4597 static void _print_next_block(int idx, const char *blk) 4598 { 4599 pr_cont("%s%s", idx ? ", " : "", blk); 4600 } 4601 4602 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig, 4603 int *par_num, bool print) 4604 { 4605 u32 cur_bit; 4606 bool res; 4607 int i; 4608 4609 res = false; 4610 4611 for (i = 0; sig; i++) { 4612 cur_bit = (0x1UL << i); 4613 if (sig & cur_bit) { 4614 res |= true; /* Each bit is real error! */ 4615 4616 if (print) { 4617 switch (cur_bit) { 4618 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 4619 _print_next_block((*par_num)++, "BRB"); 4620 _print_parity(bp, 4621 BRB1_REG_BRB1_PRTY_STS); 4622 break; 4623 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 4624 _print_next_block((*par_num)++, 4625 "PARSER"); 4626 _print_parity(bp, PRS_REG_PRS_PRTY_STS); 4627 break; 4628 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 4629 _print_next_block((*par_num)++, "TSDM"); 4630 _print_parity(bp, 4631 TSDM_REG_TSDM_PRTY_STS); 4632 break; 4633 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 4634 _print_next_block((*par_num)++, 4635 "SEARCHER"); 4636 _print_parity(bp, SRC_REG_SRC_PRTY_STS); 4637 break; 4638 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 4639 _print_next_block((*par_num)++, "TCM"); 4640 _print_parity(bp, TCM_REG_TCM_PRTY_STS); 4641 break; 4642 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 4643 _print_next_block((*par_num)++, 4644 "TSEMI"); 4645 _print_parity(bp, 4646 TSEM_REG_TSEM_PRTY_STS_0); 4647 _print_parity(bp, 4648 TSEM_REG_TSEM_PRTY_STS_1); 4649 break; 4650 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 4651 _print_next_block((*par_num)++, "XPB"); 4652 _print_parity(bp, GRCBASE_XPB + 4653 PB_REG_PB_PRTY_STS); 4654 break; 4655 } 4656 } 4657 4658 /* Clear the bit */ 4659 sig &= ~cur_bit; 4660 } 4661 } 4662 4663 return res; 4664 } 4665 4666 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig, 4667 int *par_num, bool *global, 4668 bool print) 4669 { 4670 u32 cur_bit; 4671 bool res; 4672 int i; 4673 4674 res = false; 4675 4676 for (i = 0; sig; i++) { 4677 cur_bit = (0x1UL << i); 4678 if (sig & cur_bit) { 4679 res |= true; /* Each bit is real error! */ 4680 switch (cur_bit) { 4681 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 4682 if (print) { 4683 _print_next_block((*par_num)++, "PBF"); 4684 _print_parity(bp, PBF_REG_PBF_PRTY_STS); 4685 } 4686 break; 4687 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 4688 if (print) { 4689 _print_next_block((*par_num)++, "QM"); 4690 _print_parity(bp, QM_REG_QM_PRTY_STS); 4691 } 4692 break; 4693 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 4694 if (print) { 4695 _print_next_block((*par_num)++, "TM"); 4696 _print_parity(bp, TM_REG_TM_PRTY_STS); 4697 } 4698 break; 4699 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 4700 if (print) { 4701 _print_next_block((*par_num)++, "XSDM"); 4702 _print_parity(bp, 4703 XSDM_REG_XSDM_PRTY_STS); 4704 } 4705 break; 4706 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 4707 if (print) { 4708 _print_next_block((*par_num)++, "XCM"); 4709 _print_parity(bp, XCM_REG_XCM_PRTY_STS); 4710 } 4711 break; 4712 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 4713 if (print) { 4714 _print_next_block((*par_num)++, 4715 "XSEMI"); 4716 _print_parity(bp, 4717 XSEM_REG_XSEM_PRTY_STS_0); 4718 _print_parity(bp, 4719 XSEM_REG_XSEM_PRTY_STS_1); 4720 } 4721 break; 4722 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 4723 if (print) { 4724 _print_next_block((*par_num)++, 4725 "DOORBELLQ"); 4726 _print_parity(bp, 4727 DORQ_REG_DORQ_PRTY_STS); 4728 } 4729 break; 4730 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 4731 if (print) { 4732 _print_next_block((*par_num)++, "NIG"); 4733 if (CHIP_IS_E1x(bp)) { 4734 _print_parity(bp, 4735 NIG_REG_NIG_PRTY_STS); 4736 } else { 4737 _print_parity(bp, 4738 NIG_REG_NIG_PRTY_STS_0); 4739 _print_parity(bp, 4740 NIG_REG_NIG_PRTY_STS_1); 4741 } 4742 } 4743 break; 4744 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 4745 if (print) 4746 _print_next_block((*par_num)++, 4747 "VAUX PCI CORE"); 4748 *global = true; 4749 break; 4750 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 4751 if (print) { 4752 _print_next_block((*par_num)++, 4753 "DEBUG"); 4754 _print_parity(bp, DBG_REG_DBG_PRTY_STS); 4755 } 4756 break; 4757 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 4758 if (print) { 4759 _print_next_block((*par_num)++, "USDM"); 4760 _print_parity(bp, 4761 USDM_REG_USDM_PRTY_STS); 4762 } 4763 break; 4764 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 4765 if (print) { 4766 _print_next_block((*par_num)++, "UCM"); 4767 _print_parity(bp, UCM_REG_UCM_PRTY_STS); 4768 } 4769 break; 4770 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 4771 if (print) { 4772 _print_next_block((*par_num)++, 4773 "USEMI"); 4774 _print_parity(bp, 4775 USEM_REG_USEM_PRTY_STS_0); 4776 _print_parity(bp, 4777 USEM_REG_USEM_PRTY_STS_1); 4778 } 4779 break; 4780 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 4781 if (print) { 4782 _print_next_block((*par_num)++, "UPB"); 4783 _print_parity(bp, GRCBASE_UPB + 4784 PB_REG_PB_PRTY_STS); 4785 } 4786 break; 4787 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 4788 if (print) { 4789 _print_next_block((*par_num)++, "CSDM"); 4790 _print_parity(bp, 4791 CSDM_REG_CSDM_PRTY_STS); 4792 } 4793 break; 4794 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 4795 if (print) { 4796 _print_next_block((*par_num)++, "CCM"); 4797 _print_parity(bp, CCM_REG_CCM_PRTY_STS); 4798 } 4799 break; 4800 } 4801 4802 /* Clear the bit */ 4803 sig &= ~cur_bit; 4804 } 4805 } 4806 4807 return res; 4808 } 4809 4810 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig, 4811 int *par_num, bool print) 4812 { 4813 u32 cur_bit; 4814 bool res; 4815 int i; 4816 4817 res = false; 4818 4819 for (i = 0; sig; i++) { 4820 cur_bit = (0x1UL << i); 4821 if (sig & cur_bit) { 4822 res = true; /* Each bit is real error! */ 4823 if (print) { 4824 switch (cur_bit) { 4825 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 4826 _print_next_block((*par_num)++, 4827 "CSEMI"); 4828 _print_parity(bp, 4829 CSEM_REG_CSEM_PRTY_STS_0); 4830 _print_parity(bp, 4831 CSEM_REG_CSEM_PRTY_STS_1); 4832 break; 4833 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 4834 _print_next_block((*par_num)++, "PXP"); 4835 _print_parity(bp, PXP_REG_PXP_PRTY_STS); 4836 _print_parity(bp, 4837 PXP2_REG_PXP2_PRTY_STS_0); 4838 _print_parity(bp, 4839 PXP2_REG_PXP2_PRTY_STS_1); 4840 break; 4841 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 4842 _print_next_block((*par_num)++, 4843 "PXPPCICLOCKCLIENT"); 4844 break; 4845 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 4846 _print_next_block((*par_num)++, "CFC"); 4847 _print_parity(bp, 4848 CFC_REG_CFC_PRTY_STS); 4849 break; 4850 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 4851 _print_next_block((*par_num)++, "CDU"); 4852 _print_parity(bp, CDU_REG_CDU_PRTY_STS); 4853 break; 4854 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 4855 _print_next_block((*par_num)++, "DMAE"); 4856 _print_parity(bp, 4857 DMAE_REG_DMAE_PRTY_STS); 4858 break; 4859 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 4860 _print_next_block((*par_num)++, "IGU"); 4861 if (CHIP_IS_E1x(bp)) 4862 _print_parity(bp, 4863 HC_REG_HC_PRTY_STS); 4864 else 4865 _print_parity(bp, 4866 IGU_REG_IGU_PRTY_STS); 4867 break; 4868 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 4869 _print_next_block((*par_num)++, "MISC"); 4870 _print_parity(bp, 4871 MISC_REG_MISC_PRTY_STS); 4872 break; 4873 } 4874 } 4875 4876 /* Clear the bit */ 4877 sig &= ~cur_bit; 4878 } 4879 } 4880 4881 return res; 4882 } 4883 4884 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig, 4885 int *par_num, bool *global, 4886 bool print) 4887 { 4888 bool res = false; 4889 u32 cur_bit; 4890 int i; 4891 4892 for (i = 0; sig; i++) { 4893 cur_bit = (0x1UL << i); 4894 if (sig & cur_bit) { 4895 switch (cur_bit) { 4896 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 4897 if (print) 4898 _print_next_block((*par_num)++, 4899 "MCP ROM"); 4900 *global = true; 4901 res = true; 4902 break; 4903 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 4904 if (print) 4905 _print_next_block((*par_num)++, 4906 "MCP UMP RX"); 4907 *global = true; 4908 res = true; 4909 break; 4910 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 4911 if (print) 4912 _print_next_block((*par_num)++, 4913 "MCP UMP TX"); 4914 *global = true; 4915 res = true; 4916 break; 4917 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 4918 (*par_num)++; 4919 /* clear latched SCPAD PATIRY from MCP */ 4920 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 4921 1UL << 10); 4922 break; 4923 } 4924 4925 /* Clear the bit */ 4926 sig &= ~cur_bit; 4927 } 4928 } 4929 4930 return res; 4931 } 4932 4933 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig, 4934 int *par_num, bool print) 4935 { 4936 u32 cur_bit; 4937 bool res; 4938 int i; 4939 4940 res = false; 4941 4942 for (i = 0; sig; i++) { 4943 cur_bit = (0x1UL << i); 4944 if (sig & cur_bit) { 4945 res = true; /* Each bit is real error! */ 4946 if (print) { 4947 switch (cur_bit) { 4948 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 4949 _print_next_block((*par_num)++, 4950 "PGLUE_B"); 4951 _print_parity(bp, 4952 PGLUE_B_REG_PGLUE_B_PRTY_STS); 4953 break; 4954 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 4955 _print_next_block((*par_num)++, "ATC"); 4956 _print_parity(bp, 4957 ATC_REG_ATC_PRTY_STS); 4958 break; 4959 } 4960 } 4961 /* Clear the bit */ 4962 sig &= ~cur_bit; 4963 } 4964 } 4965 4966 return res; 4967 } 4968 4969 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, 4970 u32 *sig) 4971 { 4972 bool res = false; 4973 4974 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 4975 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4976 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4977 (sig[3] & HW_PRTY_ASSERT_SET_3) || 4978 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 4979 int par_num = 0; 4980 4981 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" 4982 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 4983 sig[0] & HW_PRTY_ASSERT_SET_0, 4984 sig[1] & HW_PRTY_ASSERT_SET_1, 4985 sig[2] & HW_PRTY_ASSERT_SET_2, 4986 sig[3] & HW_PRTY_ASSERT_SET_3, 4987 sig[4] & HW_PRTY_ASSERT_SET_4); 4988 if (print) { 4989 if (((sig[0] & HW_PRTY_ASSERT_SET_0) || 4990 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4991 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4992 (sig[4] & HW_PRTY_ASSERT_SET_4)) || 4993 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) { 4994 netdev_err(bp->dev, 4995 "Parity errors detected in blocks: "); 4996 } else { 4997 print = false; 4998 } 4999 } 5000 res |= bnx2x_check_blocks_with_parity0(bp, 5001 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print); 5002 res |= bnx2x_check_blocks_with_parity1(bp, 5003 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print); 5004 res |= bnx2x_check_blocks_with_parity2(bp, 5005 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print); 5006 res |= bnx2x_check_blocks_with_parity3(bp, 5007 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print); 5008 res |= bnx2x_check_blocks_with_parity4(bp, 5009 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print); 5010 5011 if (print) 5012 pr_cont("\n"); 5013 } 5014 5015 return res; 5016 } 5017 5018 /** 5019 * bnx2x_chk_parity_attn - checks for parity attentions. 5020 * 5021 * @bp: driver handle 5022 * @global: true if there was a global attention 5023 * @print: show parity attention in syslog 5024 */ 5025 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) 5026 { 5027 struct attn_route attn = { {0} }; 5028 int port = BP_PORT(bp); 5029 5030 attn.sig[0] = REG_RD(bp, 5031 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 5032 port*4); 5033 attn.sig[1] = REG_RD(bp, 5034 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + 5035 port*4); 5036 attn.sig[2] = REG_RD(bp, 5037 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + 5038 port*4); 5039 attn.sig[3] = REG_RD(bp, 5040 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + 5041 port*4); 5042 /* Since MCP attentions can't be disabled inside the block, we need to 5043 * read AEU registers to see whether they're currently disabled 5044 */ 5045 attn.sig[3] &= ((REG_RD(bp, 5046 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 5047 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) & 5048 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 5049 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 5050 5051 if (!CHIP_IS_E1x(bp)) 5052 attn.sig[4] = REG_RD(bp, 5053 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + 5054 port*4); 5055 5056 return bnx2x_parity_attn(bp, global, print, attn.sig); 5057 } 5058 5059 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) 5060 { 5061 u32 val; 5062 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 5063 5064 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 5065 BNX2X_ERR("PGLUE hw attention 0x%x\n", val); 5066 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 5067 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 5068 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 5069 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 5070 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 5071 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 5072 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 5073 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 5074 if (val & 5075 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 5076 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 5077 if (val & 5078 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 5079 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 5080 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 5081 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 5082 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 5083 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 5084 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 5085 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 5086 } 5087 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 5088 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); 5089 BNX2X_ERR("ATC hw attention 0x%x\n", val); 5090 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 5091 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 5092 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 5093 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 5094 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 5095 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 5096 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 5097 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 5098 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 5099 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 5100 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 5101 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 5102 } 5103 5104 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5105 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 5106 BNX2X_ERR("FATAL parity attention set4 0x%x\n", 5107 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5108 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 5109 } 5110 } 5111 5112 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) 5113 { 5114 struct attn_route attn, *group_mask; 5115 int port = BP_PORT(bp); 5116 int index; 5117 u32 reg_addr; 5118 u32 val; 5119 u32 aeu_mask; 5120 bool global = false; 5121 5122 /* need to take HW lock because MCP or other port might also 5123 try to handle this event */ 5124 bnx2x_acquire_alr(bp); 5125 5126 if (bnx2x_chk_parity_attn(bp, &global, true)) { 5127 #ifndef BNX2X_STOP_ON_ERROR 5128 bp->recovery_state = BNX2X_RECOVERY_INIT; 5129 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5130 /* Disable HW interrupts */ 5131 bnx2x_int_disable(bp); 5132 /* In case of parity errors don't handle attentions so that 5133 * other function would "see" parity errors. 5134 */ 5135 #else 5136 bnx2x_panic(); 5137 #endif 5138 bnx2x_release_alr(bp); 5139 return; 5140 } 5141 5142 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 5143 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 5144 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 5145 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 5146 if (!CHIP_IS_E1x(bp)) 5147 attn.sig[4] = 5148 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 5149 else 5150 attn.sig[4] = 0; 5151 5152 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", 5153 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 5154 5155 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 5156 if (deasserted & (1 << index)) { 5157 group_mask = &bp->attn_group[index]; 5158 5159 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", 5160 index, 5161 group_mask->sig[0], group_mask->sig[1], 5162 group_mask->sig[2], group_mask->sig[3], 5163 group_mask->sig[4]); 5164 5165 bnx2x_attn_int_deasserted4(bp, 5166 attn.sig[4] & group_mask->sig[4]); 5167 bnx2x_attn_int_deasserted3(bp, 5168 attn.sig[3] & group_mask->sig[3]); 5169 bnx2x_attn_int_deasserted1(bp, 5170 attn.sig[1] & group_mask->sig[1]); 5171 bnx2x_attn_int_deasserted2(bp, 5172 attn.sig[2] & group_mask->sig[2]); 5173 bnx2x_attn_int_deasserted0(bp, 5174 attn.sig[0] & group_mask->sig[0]); 5175 } 5176 } 5177 5178 bnx2x_release_alr(bp); 5179 5180 if (bp->common.int_block == INT_BLOCK_HC) 5181 reg_addr = (HC_REG_COMMAND_REG + port*32 + 5182 COMMAND_REG_ATTN_BITS_CLR); 5183 else 5184 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 5185 5186 val = ~deasserted; 5187 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, 5188 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 5189 REG_WR(bp, reg_addr, val); 5190 5191 if (~bp->attn_state & deasserted) 5192 BNX2X_ERR("IGU ERROR\n"); 5193 5194 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 5195 MISC_REG_AEU_MASK_ATTN_FUNC_0; 5196 5197 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5198 aeu_mask = REG_RD(bp, reg_addr); 5199 5200 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", 5201 aeu_mask, deasserted); 5202 aeu_mask |= (deasserted & 0x3ff); 5203 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 5204 5205 REG_WR(bp, reg_addr, aeu_mask); 5206 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5207 5208 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 5209 bp->attn_state &= ~deasserted; 5210 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 5211 } 5212 5213 static void bnx2x_attn_int(struct bnx2x *bp) 5214 { 5215 /* read local copy of bits */ 5216 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. 5217 attn_bits); 5218 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. 5219 attn_bits_ack); 5220 u32 attn_state = bp->attn_state; 5221 5222 /* look for changed bits */ 5223 u32 asserted = attn_bits & ~attn_ack & ~attn_state; 5224 u32 deasserted = ~attn_bits & attn_ack & attn_state; 5225 5226 DP(NETIF_MSG_HW, 5227 "attn_bits %x attn_ack %x asserted %x deasserted %x\n", 5228 attn_bits, attn_ack, asserted, deasserted); 5229 5230 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) 5231 BNX2X_ERR("BAD attention state\n"); 5232 5233 /* handle bits that were raised */ 5234 if (asserted) 5235 bnx2x_attn_int_asserted(bp, asserted); 5236 5237 if (deasserted) 5238 bnx2x_attn_int_deasserted(bp, deasserted); 5239 } 5240 5241 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, 5242 u16 index, u8 op, u8 update) 5243 { 5244 u32 igu_addr = bp->igu_base_addr; 5245 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 5246 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, 5247 igu_addr); 5248 } 5249 5250 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) 5251 { 5252 /* No memory barriers */ 5253 storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); 5254 } 5255 5256 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, 5257 union event_ring_elem *elem) 5258 { 5259 u8 err = elem->message.error; 5260 5261 if (!bp->cnic_eth_dev.starting_cid || 5262 (cid < bp->cnic_eth_dev.starting_cid && 5263 cid != bp->cnic_eth_dev.iscsi_l2_cid)) 5264 return 1; 5265 5266 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); 5267 5268 if (unlikely(err)) { 5269 5270 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", 5271 cid); 5272 bnx2x_panic_dump(bp, false); 5273 } 5274 bnx2x_cnic_cfc_comp(bp, cid, err); 5275 return 0; 5276 } 5277 5278 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) 5279 { 5280 struct bnx2x_mcast_ramrod_params rparam; 5281 int rc; 5282 5283 memset(&rparam, 0, sizeof(rparam)); 5284 5285 rparam.mcast_obj = &bp->mcast_obj; 5286 5287 netif_addr_lock_bh(bp->dev); 5288 5289 /* Clear pending state for the last command */ 5290 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); 5291 5292 /* If there are pending mcast commands - send them */ 5293 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { 5294 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 5295 if (rc < 0) 5296 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 5297 rc); 5298 } 5299 5300 netif_addr_unlock_bh(bp->dev); 5301 } 5302 5303 static void bnx2x_handle_classification_eqe(struct bnx2x *bp, 5304 union event_ring_elem *elem) 5305 { 5306 unsigned long ramrod_flags = 0; 5307 int rc = 0; 5308 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 5309 u32 cid = echo & BNX2X_SWCID_MASK; 5310 struct bnx2x_vlan_mac_obj *vlan_mac_obj; 5311 5312 /* Always push next commands out, don't wait here */ 5313 __set_bit(RAMROD_CONT, &ramrod_flags); 5314 5315 switch (echo >> BNX2X_SWCID_SHIFT) { 5316 case BNX2X_FILTER_MAC_PENDING: 5317 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); 5318 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) 5319 vlan_mac_obj = &bp->iscsi_l2_mac_obj; 5320 else 5321 vlan_mac_obj = &bp->sp_objs[cid].mac_obj; 5322 5323 break; 5324 case BNX2X_FILTER_VLAN_PENDING: 5325 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n"); 5326 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj; 5327 break; 5328 case BNX2X_FILTER_MCAST_PENDING: 5329 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); 5330 /* This is only relevant for 57710 where multicast MACs are 5331 * configured as unicast MACs using the same ramrod. 5332 */ 5333 bnx2x_handle_mcast_eqe(bp); 5334 return; 5335 default: 5336 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 5337 return; 5338 } 5339 5340 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); 5341 5342 if (rc < 0) 5343 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 5344 else if (rc > 0) 5345 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); 5346 } 5347 5348 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); 5349 5350 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) 5351 { 5352 netif_addr_lock_bh(bp->dev); 5353 5354 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5355 5356 /* Send rx_mode command again if was requested */ 5357 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) 5358 bnx2x_set_storm_rx_mode(bp); 5359 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, 5360 &bp->sp_state)) 5361 bnx2x_set_iscsi_eth_rx_mode(bp, true); 5362 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, 5363 &bp->sp_state)) 5364 bnx2x_set_iscsi_eth_rx_mode(bp, false); 5365 5366 netif_addr_unlock_bh(bp->dev); 5367 } 5368 5369 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, 5370 union event_ring_elem *elem) 5371 { 5372 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { 5373 DP(BNX2X_MSG_SP, 5374 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", 5375 elem->message.data.vif_list_event.func_bit_map); 5376 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, 5377 elem->message.data.vif_list_event.func_bit_map); 5378 } else if (elem->message.data.vif_list_event.echo == 5379 VIF_LIST_RULE_SET) { 5380 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); 5381 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); 5382 } 5383 } 5384 5385 /* called with rtnl_lock */ 5386 static void bnx2x_after_function_update(struct bnx2x *bp) 5387 { 5388 int q, rc; 5389 struct bnx2x_fastpath *fp; 5390 struct bnx2x_queue_state_params queue_params = {NULL}; 5391 struct bnx2x_queue_update_params *q_update_params = 5392 &queue_params.params.update; 5393 5394 /* Send Q update command with afex vlan removal values for all Qs */ 5395 queue_params.cmd = BNX2X_Q_CMD_UPDATE; 5396 5397 /* set silent vlan removal values according to vlan mode */ 5398 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 5399 &q_update_params->update_flags); 5400 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 5401 &q_update_params->update_flags); 5402 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5403 5404 /* in access mode mark mask and value are 0 to strip all vlans */ 5405 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { 5406 q_update_params->silent_removal_value = 0; 5407 q_update_params->silent_removal_mask = 0; 5408 } else { 5409 q_update_params->silent_removal_value = 5410 (bp->afex_def_vlan_tag & VLAN_VID_MASK); 5411 q_update_params->silent_removal_mask = VLAN_VID_MASK; 5412 } 5413 5414 for_each_eth_queue(bp, q) { 5415 /* Set the appropriate Queue object */ 5416 fp = &bp->fp[q]; 5417 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5418 5419 /* send the ramrod */ 5420 rc = bnx2x_queue_state_change(bp, &queue_params); 5421 if (rc < 0) 5422 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5423 q); 5424 } 5425 5426 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { 5427 fp = &bp->fp[FCOE_IDX(bp)]; 5428 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5429 5430 /* clear pending completion bit */ 5431 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5432 5433 /* mark latest Q bit */ 5434 smp_mb__before_atomic(); 5435 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 5436 smp_mb__after_atomic(); 5437 5438 /* send Q update ramrod for FCoE Q */ 5439 rc = bnx2x_queue_state_change(bp, &queue_params); 5440 if (rc < 0) 5441 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5442 q); 5443 } else { 5444 /* If no FCoE ring - ACK MCP now */ 5445 bnx2x_link_report(bp); 5446 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5447 } 5448 } 5449 5450 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( 5451 struct bnx2x *bp, u32 cid) 5452 { 5453 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); 5454 5455 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) 5456 return &bnx2x_fcoe_sp_obj(bp, q_obj); 5457 else 5458 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; 5459 } 5460 5461 static void bnx2x_eq_int(struct bnx2x *bp) 5462 { 5463 u16 hw_cons, sw_cons, sw_prod; 5464 union event_ring_elem *elem; 5465 u8 echo; 5466 u32 cid; 5467 u8 opcode; 5468 int rc, spqe_cnt = 0; 5469 struct bnx2x_queue_sp_obj *q_obj; 5470 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; 5471 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; 5472 5473 hw_cons = le16_to_cpu(*bp->eq_cons_sb); 5474 5475 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. 5476 * when we get the next-page we need to adjust so the loop 5477 * condition below will be met. The next element is the size of a 5478 * regular element and hence incrementing by 1 5479 */ 5480 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) 5481 hw_cons++; 5482 5483 /* This function may never run in parallel with itself for a 5484 * specific bp, thus there is no need in "paired" read memory 5485 * barrier here. 5486 */ 5487 sw_cons = bp->eq_cons; 5488 sw_prod = bp->eq_prod; 5489 5490 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", 5491 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); 5492 5493 for (; sw_cons != hw_cons; 5494 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 5495 5496 elem = &bp->eq_ring[EQ_DESC(sw_cons)]; 5497 5498 rc = bnx2x_iov_eq_sp_event(bp, elem); 5499 if (!rc) { 5500 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", 5501 rc); 5502 goto next_spqe; 5503 } 5504 5505 opcode = elem->message.opcode; 5506 5507 /* handle eq element */ 5508 switch (opcode) { 5509 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 5510 bnx2x_vf_mbx_schedule(bp, 5511 &elem->message.data.vf_pf_event); 5512 continue; 5513 5514 case EVENT_RING_OPCODE_STAT_QUERY: 5515 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS), 5516 "got statistics comp event %d\n", 5517 bp->stats_comp++); 5518 /* nothing to do with stats comp */ 5519 goto next_spqe; 5520 5521 case EVENT_RING_OPCODE_CFC_DEL: 5522 /* handle according to cid range */ 5523 /* 5524 * we may want to verify here that the bp state is 5525 * HALTING 5526 */ 5527 5528 /* elem CID originates from FW; actually LE */ 5529 cid = SW_CID(elem->message.data.cfc_del_event.cid); 5530 5531 DP(BNX2X_MSG_SP, 5532 "got delete ramrod for MULTI[%d]\n", cid); 5533 5534 if (CNIC_LOADED(bp) && 5535 !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) 5536 goto next_spqe; 5537 5538 q_obj = bnx2x_cid_to_q_obj(bp, cid); 5539 5540 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) 5541 break; 5542 5543 goto next_spqe; 5544 5545 case EVENT_RING_OPCODE_STOP_TRAFFIC: 5546 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); 5547 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); 5548 if (f_obj->complete_cmd(bp, f_obj, 5549 BNX2X_F_CMD_TX_STOP)) 5550 break; 5551 goto next_spqe; 5552 5553 case EVENT_RING_OPCODE_START_TRAFFIC: 5554 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); 5555 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); 5556 if (f_obj->complete_cmd(bp, f_obj, 5557 BNX2X_F_CMD_TX_START)) 5558 break; 5559 goto next_spqe; 5560 5561 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 5562 echo = elem->message.data.function_update_event.echo; 5563 if (echo == SWITCH_UPDATE) { 5564 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5565 "got FUNC_SWITCH_UPDATE ramrod\n"); 5566 if (f_obj->complete_cmd( 5567 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) 5568 break; 5569 5570 } else { 5571 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE; 5572 5573 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, 5574 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 5575 f_obj->complete_cmd(bp, f_obj, 5576 BNX2X_F_CMD_AFEX_UPDATE); 5577 5578 /* We will perform the Queues update from 5579 * sp_rtnl task as all Queue SP operations 5580 * should run under rtnl_lock. 5581 */ 5582 bnx2x_schedule_sp_rtnl(bp, cmd, 0); 5583 } 5584 5585 goto next_spqe; 5586 5587 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 5588 f_obj->complete_cmd(bp, f_obj, 5589 BNX2X_F_CMD_AFEX_VIFLISTS); 5590 bnx2x_after_afex_vif_lists(bp, elem); 5591 goto next_spqe; 5592 case EVENT_RING_OPCODE_FUNCTION_START: 5593 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5594 "got FUNC_START ramrod\n"); 5595 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) 5596 break; 5597 5598 goto next_spqe; 5599 5600 case EVENT_RING_OPCODE_FUNCTION_STOP: 5601 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5602 "got FUNC_STOP ramrod\n"); 5603 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) 5604 break; 5605 5606 goto next_spqe; 5607 5608 case EVENT_RING_OPCODE_SET_TIMESYNC: 5609 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP, 5610 "got set_timesync ramrod completion\n"); 5611 if (f_obj->complete_cmd(bp, f_obj, 5612 BNX2X_F_CMD_SET_TIMESYNC)) 5613 break; 5614 goto next_spqe; 5615 } 5616 5617 switch (opcode | bp->state) { 5618 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5619 BNX2X_STATE_OPEN): 5620 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5621 BNX2X_STATE_OPENING_WAIT4_PORT): 5622 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5623 BNX2X_STATE_CLOSING_WAIT4_HALT): 5624 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", 5625 SW_CID(elem->message.data.eth_event.echo)); 5626 rss_raw->clear_pending(rss_raw); 5627 break; 5628 5629 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): 5630 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): 5631 case (EVENT_RING_OPCODE_SET_MAC | 5632 BNX2X_STATE_CLOSING_WAIT4_HALT): 5633 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5634 BNX2X_STATE_OPEN): 5635 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5636 BNX2X_STATE_DIAG): 5637 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5638 BNX2X_STATE_CLOSING_WAIT4_HALT): 5639 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n"); 5640 bnx2x_handle_classification_eqe(bp, elem); 5641 break; 5642 5643 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5644 BNX2X_STATE_OPEN): 5645 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5646 BNX2X_STATE_DIAG): 5647 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5648 BNX2X_STATE_CLOSING_WAIT4_HALT): 5649 DP(BNX2X_MSG_SP, "got mcast ramrod\n"); 5650 bnx2x_handle_mcast_eqe(bp); 5651 break; 5652 5653 case (EVENT_RING_OPCODE_FILTERS_RULES | 5654 BNX2X_STATE_OPEN): 5655 case (EVENT_RING_OPCODE_FILTERS_RULES | 5656 BNX2X_STATE_DIAG): 5657 case (EVENT_RING_OPCODE_FILTERS_RULES | 5658 BNX2X_STATE_CLOSING_WAIT4_HALT): 5659 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); 5660 bnx2x_handle_rx_mode_eqe(bp); 5661 break; 5662 default: 5663 /* unknown event log error and continue */ 5664 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", 5665 elem->message.opcode, bp->state); 5666 } 5667 next_spqe: 5668 spqe_cnt++; 5669 } /* for */ 5670 5671 smp_mb__before_atomic(); 5672 atomic_add(spqe_cnt, &bp->eq_spq_left); 5673 5674 bp->eq_cons = sw_cons; 5675 bp->eq_prod = sw_prod; 5676 /* Make sure that above mem writes were issued towards the memory */ 5677 smp_wmb(); 5678 5679 /* update producer */ 5680 bnx2x_update_eq_prod(bp, bp->eq_prod); 5681 } 5682 5683 static void bnx2x_sp_task(struct work_struct *work) 5684 { 5685 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); 5686 5687 DP(BNX2X_MSG_SP, "sp task invoked\n"); 5688 5689 /* make sure the atomic interrupt_occurred has been written */ 5690 smp_rmb(); 5691 if (atomic_read(&bp->interrupt_occurred)) { 5692 5693 /* what work needs to be performed? */ 5694 u16 status = bnx2x_update_dsb_idx(bp); 5695 5696 DP(BNX2X_MSG_SP, "status %x\n", status); 5697 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); 5698 atomic_set(&bp->interrupt_occurred, 0); 5699 5700 /* HW attentions */ 5701 if (status & BNX2X_DEF_SB_ATT_IDX) { 5702 bnx2x_attn_int(bp); 5703 status &= ~BNX2X_DEF_SB_ATT_IDX; 5704 } 5705 5706 /* SP events: STAT_QUERY and others */ 5707 if (status & BNX2X_DEF_SB_IDX) { 5708 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 5709 5710 if (FCOE_INIT(bp) && 5711 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 5712 /* Prevent local bottom-halves from running as 5713 * we are going to change the local NAPI list. 5714 */ 5715 local_bh_disable(); 5716 napi_schedule(&bnx2x_fcoe(bp, napi)); 5717 local_bh_enable(); 5718 } 5719 5720 /* Handle EQ completions */ 5721 bnx2x_eq_int(bp); 5722 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 5723 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); 5724 5725 status &= ~BNX2X_DEF_SB_IDX; 5726 } 5727 5728 /* if status is non zero then perhaps something went wrong */ 5729 if (unlikely(status)) 5730 DP(BNX2X_MSG_SP, 5731 "got an unknown interrupt! (status 0x%x)\n", status); 5732 5733 /* ack status block only if something was actually handled */ 5734 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 5735 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); 5736 } 5737 5738 /* afex - poll to check if VIFSET_ACK should be sent to MFW */ 5739 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, 5740 &bp->sp_state)) { 5741 bnx2x_link_report(bp); 5742 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5743 } 5744 } 5745 5746 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) 5747 { 5748 struct net_device *dev = dev_instance; 5749 struct bnx2x *bp = netdev_priv(dev); 5750 5751 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, 5752 IGU_INT_DISABLE, 0); 5753 5754 #ifdef BNX2X_STOP_ON_ERROR 5755 if (unlikely(bp->panic)) 5756 return IRQ_HANDLED; 5757 #endif 5758 5759 if (CNIC_LOADED(bp)) { 5760 struct cnic_ops *c_ops; 5761 5762 rcu_read_lock(); 5763 c_ops = rcu_dereference(bp->cnic_ops); 5764 if (c_ops) 5765 c_ops->cnic_handler(bp->cnic_data, NULL); 5766 rcu_read_unlock(); 5767 } 5768 5769 /* schedule sp task to perform default status block work, ack 5770 * attentions and enable interrupts. 5771 */ 5772 bnx2x_schedule_sp_task(bp); 5773 5774 return IRQ_HANDLED; 5775 } 5776 5777 /* end of slow path */ 5778 5779 void bnx2x_drv_pulse(struct bnx2x *bp) 5780 { 5781 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, 5782 bp->fw_drv_pulse_wr_seq); 5783 } 5784 5785 static void bnx2x_timer(struct timer_list *t) 5786 { 5787 struct bnx2x *bp = from_timer(bp, t, timer); 5788 5789 if (!netif_running(bp->dev)) 5790 return; 5791 5792 if (IS_PF(bp) && 5793 !BP_NOMCP(bp)) { 5794 int mb_idx = BP_FW_MB_IDX(bp); 5795 u16 drv_pulse; 5796 u16 mcp_pulse; 5797 5798 ++bp->fw_drv_pulse_wr_seq; 5799 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 5800 drv_pulse = bp->fw_drv_pulse_wr_seq; 5801 bnx2x_drv_pulse(bp); 5802 5803 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & 5804 MCP_PULSE_SEQ_MASK); 5805 /* The delta between driver pulse and mcp response 5806 * should not get too big. If the MFW is more than 5 pulses 5807 * behind, we should worry about it enough to generate an error 5808 * log. 5809 */ 5810 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5) 5811 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 5812 drv_pulse, mcp_pulse); 5813 } 5814 5815 if (bp->state == BNX2X_STATE_OPEN) 5816 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); 5817 5818 /* sample pf vf bulletin board for new posts from pf */ 5819 if (IS_VF(bp)) 5820 bnx2x_timer_sriov(bp); 5821 5822 mod_timer(&bp->timer, jiffies + bp->current_interval); 5823 } 5824 5825 /* end of Statistics */ 5826 5827 /* nic init */ 5828 5829 /* 5830 * nic init service functions 5831 */ 5832 5833 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) 5834 { 5835 u32 i; 5836 if (!(len%4) && !(addr%4)) 5837 for (i = 0; i < len; i += 4) 5838 REG_WR(bp, addr + i, fill); 5839 else 5840 for (i = 0; i < len; i++) 5841 REG_WR8(bp, addr + i, fill); 5842 } 5843 5844 /* helper: writes FP SP data to FW - data_size in dwords */ 5845 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, 5846 int fw_sb_id, 5847 u32 *sb_data_p, 5848 u32 data_size) 5849 { 5850 int index; 5851 for (index = 0; index < data_size; index++) 5852 REG_WR(bp, BAR_CSTRORM_INTMEM + 5853 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 5854 sizeof(u32)*index, 5855 *(sb_data_p + index)); 5856 } 5857 5858 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) 5859 { 5860 u32 *sb_data_p; 5861 u32 data_size = 0; 5862 struct hc_status_block_data_e2 sb_data_e2; 5863 struct hc_status_block_data_e1x sb_data_e1x; 5864 5865 /* disable the function first */ 5866 if (!CHIP_IS_E1x(bp)) { 5867 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5868 sb_data_e2.common.state = SB_DISABLED; 5869 sb_data_e2.common.p_func.vf_valid = false; 5870 sb_data_p = (u32 *)&sb_data_e2; 5871 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5872 } else { 5873 memset(&sb_data_e1x, 0, 5874 sizeof(struct hc_status_block_data_e1x)); 5875 sb_data_e1x.common.state = SB_DISABLED; 5876 sb_data_e1x.common.p_func.vf_valid = false; 5877 sb_data_p = (u32 *)&sb_data_e1x; 5878 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5879 } 5880 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5881 5882 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5883 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, 5884 CSTORM_STATUS_BLOCK_SIZE); 5885 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5886 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, 5887 CSTORM_SYNC_BLOCK_SIZE); 5888 } 5889 5890 /* helper: writes SP SB data to FW */ 5891 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, 5892 struct hc_sp_status_block_data *sp_sb_data) 5893 { 5894 int func = BP_FUNC(bp); 5895 int i; 5896 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 5897 REG_WR(bp, BAR_CSTRORM_INTMEM + 5898 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 5899 i*sizeof(u32), 5900 *((u32 *)sp_sb_data + i)); 5901 } 5902 5903 static void bnx2x_zero_sp_sb(struct bnx2x *bp) 5904 { 5905 int func = BP_FUNC(bp); 5906 struct hc_sp_status_block_data sp_sb_data; 5907 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5908 5909 sp_sb_data.state = SB_DISABLED; 5910 sp_sb_data.p_func.vf_valid = false; 5911 5912 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5913 5914 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5915 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, 5916 CSTORM_SP_STATUS_BLOCK_SIZE); 5917 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5918 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, 5919 CSTORM_SP_SYNC_BLOCK_SIZE); 5920 } 5921 5922 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 5923 int igu_sb_id, int igu_seg_id) 5924 { 5925 hc_sm->igu_sb_id = igu_sb_id; 5926 hc_sm->igu_seg_id = igu_seg_id; 5927 hc_sm->timer_value = 0xFF; 5928 hc_sm->time_to_expire = 0xFFFFFFFF; 5929 } 5930 5931 /* allocates state machine ids. */ 5932 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) 5933 { 5934 /* zero out state machine indices */ 5935 /* rx indices */ 5936 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5937 5938 /* tx indices */ 5939 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5940 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 5941 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 5942 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 5943 5944 /* map indices */ 5945 /* rx indices */ 5946 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 5947 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5948 5949 /* tx indices */ 5950 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 5951 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5952 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 5953 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5954 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 5955 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5956 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 5957 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5958 } 5959 5960 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 5961 u8 vf_valid, int fw_sb_id, int igu_sb_id) 5962 { 5963 int igu_seg_id; 5964 5965 struct hc_status_block_data_e2 sb_data_e2; 5966 struct hc_status_block_data_e1x sb_data_e1x; 5967 struct hc_status_block_sm *hc_sm_p; 5968 int data_size; 5969 u32 *sb_data_p; 5970 5971 if (CHIP_INT_MODE_IS_BC(bp)) 5972 igu_seg_id = HC_SEG_ACCESS_NORM; 5973 else 5974 igu_seg_id = IGU_SEG_ACCESS_NORM; 5975 5976 bnx2x_zero_fp_sb(bp, fw_sb_id); 5977 5978 if (!CHIP_IS_E1x(bp)) { 5979 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5980 sb_data_e2.common.state = SB_ENABLED; 5981 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); 5982 sb_data_e2.common.p_func.vf_id = vfid; 5983 sb_data_e2.common.p_func.vf_valid = vf_valid; 5984 sb_data_e2.common.p_func.vnic_id = BP_VN(bp); 5985 sb_data_e2.common.same_igu_sb_1b = true; 5986 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); 5987 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); 5988 hc_sm_p = sb_data_e2.common.state_machine; 5989 sb_data_p = (u32 *)&sb_data_e2; 5990 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5991 bnx2x_map_sb_state_machines(sb_data_e2.index_data); 5992 } else { 5993 memset(&sb_data_e1x, 0, 5994 sizeof(struct hc_status_block_data_e1x)); 5995 sb_data_e1x.common.state = SB_ENABLED; 5996 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); 5997 sb_data_e1x.common.p_func.vf_id = 0xff; 5998 sb_data_e1x.common.p_func.vf_valid = false; 5999 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); 6000 sb_data_e1x.common.same_igu_sb_1b = true; 6001 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); 6002 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); 6003 hc_sm_p = sb_data_e1x.common.state_machine; 6004 sb_data_p = (u32 *)&sb_data_e1x; 6005 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 6006 bnx2x_map_sb_state_machines(sb_data_e1x.index_data); 6007 } 6008 6009 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], 6010 igu_sb_id, igu_seg_id); 6011 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], 6012 igu_sb_id, igu_seg_id); 6013 6014 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); 6015 6016 /* write indices to HW - PCI guarantees endianity of regpairs */ 6017 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 6018 } 6019 6020 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, 6021 u16 tx_usec, u16 rx_usec) 6022 { 6023 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, 6024 false, rx_usec); 6025 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6026 HC_INDEX_ETH_TX_CQ_CONS_COS0, false, 6027 tx_usec); 6028 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6029 HC_INDEX_ETH_TX_CQ_CONS_COS1, false, 6030 tx_usec); 6031 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6032 HC_INDEX_ETH_TX_CQ_CONS_COS2, false, 6033 tx_usec); 6034 } 6035 6036 static void bnx2x_init_def_sb(struct bnx2x *bp) 6037 { 6038 struct host_sp_status_block *def_sb = bp->def_status_blk; 6039 dma_addr_t mapping = bp->def_status_blk_mapping; 6040 int igu_sp_sb_index; 6041 int igu_seg_id; 6042 int port = BP_PORT(bp); 6043 int func = BP_FUNC(bp); 6044 int reg_offset, reg_offset_en5; 6045 u64 section; 6046 int index; 6047 struct hc_sp_status_block_data sp_sb_data; 6048 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 6049 6050 if (CHIP_INT_MODE_IS_BC(bp)) { 6051 igu_sp_sb_index = DEF_SB_IGU_ID; 6052 igu_seg_id = HC_SEG_ACCESS_DEF; 6053 } else { 6054 igu_sp_sb_index = bp->igu_dsb_id; 6055 igu_seg_id = IGU_SEG_ACCESS_DEF; 6056 } 6057 6058 /* ATTN */ 6059 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6060 atten_status_block); 6061 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 6062 6063 bp->attn_state = 0; 6064 6065 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 6066 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 6067 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 6068 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); 6069 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 6070 int sindex; 6071 /* take care of sig[0]..sig[4] */ 6072 for (sindex = 0; sindex < 4; sindex++) 6073 bp->attn_group[index].sig[sindex] = 6074 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); 6075 6076 if (!CHIP_IS_E1x(bp)) 6077 /* 6078 * enable5 is separate from the rest of the registers, 6079 * and therefore the address skip is 4 6080 * and not 16 between the different groups 6081 */ 6082 bp->attn_group[index].sig[4] = REG_RD(bp, 6083 reg_offset_en5 + 0x4*index); 6084 else 6085 bp->attn_group[index].sig[4] = 0; 6086 } 6087 6088 if (bp->common.int_block == INT_BLOCK_HC) { 6089 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : 6090 HC_REG_ATTN_MSG0_ADDR_L); 6091 6092 REG_WR(bp, reg_offset, U64_LO(section)); 6093 REG_WR(bp, reg_offset + 4, U64_HI(section)); 6094 } else if (!CHIP_IS_E1x(bp)) { 6095 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 6096 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 6097 } 6098 6099 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6100 sp_sb); 6101 6102 bnx2x_zero_sp_sb(bp); 6103 6104 /* PCI guarantees endianity of regpairs */ 6105 sp_sb_data.state = SB_ENABLED; 6106 sp_sb_data.host_sb_addr.lo = U64_LO(section); 6107 sp_sb_data.host_sb_addr.hi = U64_HI(section); 6108 sp_sb_data.igu_sb_id = igu_sp_sb_index; 6109 sp_sb_data.igu_seg_id = igu_seg_id; 6110 sp_sb_data.p_func.pf_id = func; 6111 sp_sb_data.p_func.vnic_id = BP_VN(bp); 6112 sp_sb_data.p_func.vf_id = 0xff; 6113 6114 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 6115 6116 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 6117 } 6118 6119 void bnx2x_update_coalesce(struct bnx2x *bp) 6120 { 6121 int i; 6122 6123 for_each_eth_queue(bp, i) 6124 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, 6125 bp->tx_ticks, bp->rx_ticks); 6126 } 6127 6128 static void bnx2x_init_sp_ring(struct bnx2x *bp) 6129 { 6130 spin_lock_init(&bp->spq_lock); 6131 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); 6132 6133 bp->spq_prod_idx = 0; 6134 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; 6135 bp->spq_prod_bd = bp->spq; 6136 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; 6137 } 6138 6139 static void bnx2x_init_eq_ring(struct bnx2x *bp) 6140 { 6141 int i; 6142 for (i = 1; i <= NUM_EQ_PAGES; i++) { 6143 union event_ring_elem *elem = 6144 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; 6145 6146 elem->next_page.addr.hi = 6147 cpu_to_le32(U64_HI(bp->eq_mapping + 6148 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); 6149 elem->next_page.addr.lo = 6150 cpu_to_le32(U64_LO(bp->eq_mapping + 6151 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); 6152 } 6153 bp->eq_cons = 0; 6154 bp->eq_prod = NUM_EQ_DESC; 6155 bp->eq_cons_sb = BNX2X_EQ_INDEX; 6156 /* we want a warning message before it gets wrought... */ 6157 atomic_set(&bp->eq_spq_left, 6158 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); 6159 } 6160 6161 /* called with netif_addr_lock_bh() */ 6162 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, 6163 unsigned long rx_mode_flags, 6164 unsigned long rx_accept_flags, 6165 unsigned long tx_accept_flags, 6166 unsigned long ramrod_flags) 6167 { 6168 struct bnx2x_rx_mode_ramrod_params ramrod_param; 6169 int rc; 6170 6171 memset(&ramrod_param, 0, sizeof(ramrod_param)); 6172 6173 /* Prepare ramrod parameters */ 6174 ramrod_param.cid = 0; 6175 ramrod_param.cl_id = cl_id; 6176 ramrod_param.rx_mode_obj = &bp->rx_mode_obj; 6177 ramrod_param.func_id = BP_FUNC(bp); 6178 6179 ramrod_param.pstate = &bp->sp_state; 6180 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; 6181 6182 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); 6183 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); 6184 6185 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 6186 6187 ramrod_param.ramrod_flags = ramrod_flags; 6188 ramrod_param.rx_mode_flags = rx_mode_flags; 6189 6190 ramrod_param.rx_accept_flags = rx_accept_flags; 6191 ramrod_param.tx_accept_flags = tx_accept_flags; 6192 6193 rc = bnx2x_config_rx_mode(bp, &ramrod_param); 6194 if (rc < 0) { 6195 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); 6196 return rc; 6197 } 6198 6199 return 0; 6200 } 6201 6202 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, 6203 unsigned long *rx_accept_flags, 6204 unsigned long *tx_accept_flags) 6205 { 6206 /* Clear the flags first */ 6207 *rx_accept_flags = 0; 6208 *tx_accept_flags = 0; 6209 6210 switch (rx_mode) { 6211 case BNX2X_RX_MODE_NONE: 6212 /* 6213 * 'drop all' supersedes any accept flags that may have been 6214 * passed to the function. 6215 */ 6216 break; 6217 case BNX2X_RX_MODE_NORMAL: 6218 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6219 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); 6220 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6221 6222 /* internal switching mode */ 6223 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6224 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); 6225 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6226 6227 if (bp->accept_any_vlan) { 6228 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6229 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6230 } 6231 6232 break; 6233 case BNX2X_RX_MODE_ALLMULTI: 6234 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6235 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6236 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6237 6238 /* internal switching mode */ 6239 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6240 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6241 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6242 6243 if (bp->accept_any_vlan) { 6244 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6245 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6246 } 6247 6248 break; 6249 case BNX2X_RX_MODE_PROMISC: 6250 /* According to definition of SI mode, iface in promisc mode 6251 * should receive matched and unmatched (in resolution of port) 6252 * unicast packets. 6253 */ 6254 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); 6255 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6256 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6257 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6258 6259 /* internal switching mode */ 6260 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6261 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6262 6263 if (IS_MF_SI(bp)) 6264 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); 6265 else 6266 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6267 6268 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6269 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6270 6271 break; 6272 default: 6273 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); 6274 return -EINVAL; 6275 } 6276 6277 return 0; 6278 } 6279 6280 /* called with netif_addr_lock_bh() */ 6281 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp) 6282 { 6283 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 6284 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 6285 int rc; 6286 6287 if (!NO_FCOE(bp)) 6288 /* Configure rx_mode of FCoE Queue */ 6289 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); 6290 6291 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, 6292 &tx_accept_flags); 6293 if (rc) 6294 return rc; 6295 6296 __set_bit(RAMROD_RX, &ramrod_flags); 6297 __set_bit(RAMROD_TX, &ramrod_flags); 6298 6299 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, 6300 rx_accept_flags, tx_accept_flags, 6301 ramrod_flags); 6302 } 6303 6304 static void bnx2x_init_internal_common(struct bnx2x *bp) 6305 { 6306 int i; 6307 6308 /* Zero this manually as its initialization is 6309 currently missing in the initTool */ 6310 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) 6311 REG_WR(bp, BAR_USTRORM_INTMEM + 6312 USTORM_AGG_DATA_OFFSET + i * 4, 0); 6313 if (!CHIP_IS_E1x(bp)) { 6314 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, 6315 CHIP_INT_MODE_IS_BC(bp) ? 6316 HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 6317 } 6318 } 6319 6320 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) 6321 { 6322 switch (load_code) { 6323 case FW_MSG_CODE_DRV_LOAD_COMMON: 6324 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 6325 bnx2x_init_internal_common(bp); 6326 fallthrough; 6327 6328 case FW_MSG_CODE_DRV_LOAD_PORT: 6329 /* nothing to do */ 6330 fallthrough; 6331 6332 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 6333 /* internal memory per function is 6334 initialized inside bnx2x_pf_init */ 6335 break; 6336 6337 default: 6338 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); 6339 break; 6340 } 6341 } 6342 6343 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) 6344 { 6345 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); 6346 } 6347 6348 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) 6349 { 6350 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); 6351 } 6352 6353 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) 6354 { 6355 if (CHIP_IS_E1x(fp->bp)) 6356 return BP_L_ID(fp->bp) + fp->index; 6357 else /* We want Client ID to be the same as IGU SB ID for 57712 */ 6358 return bnx2x_fp_igu_sb_id(fp); 6359 } 6360 6361 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) 6362 { 6363 struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; 6364 u8 cos; 6365 unsigned long q_type = 0; 6366 u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; 6367 fp->rx_queue = fp_idx; 6368 fp->cid = fp_idx; 6369 fp->cl_id = bnx2x_fp_cl_id(fp); 6370 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); 6371 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); 6372 /* qZone id equals to FW (per path) client id */ 6373 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); 6374 6375 /* init shortcut */ 6376 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); 6377 6378 /* Setup SB indices */ 6379 fp->rx_cons_sb = BNX2X_RX_SB_INDEX; 6380 6381 /* Configure Queue State object */ 6382 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6383 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6384 6385 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); 6386 6387 /* init tx data */ 6388 for_each_cos_in_tx_queue(fp, cos) { 6389 bnx2x_init_txdata(bp, fp->txdata_ptr[cos], 6390 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), 6391 FP_COS_TO_TXQ(fp, cos, bp), 6392 BNX2X_TX_SB_INDEX_BASE + cos, fp); 6393 cids[cos] = fp->txdata_ptr[cos]->cid; 6394 } 6395 6396 /* nothing more for vf to do here */ 6397 if (IS_VF(bp)) 6398 return; 6399 6400 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, 6401 fp->fw_sb_id, fp->igu_sb_id); 6402 bnx2x_update_fpsb_idx(fp); 6403 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, 6404 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6405 bnx2x_sp_mapping(bp, q_rdata), q_type); 6406 6407 /** 6408 * Configure classification DBs: Always enable Tx switching 6409 */ 6410 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); 6411 6412 DP(NETIF_MSG_IFUP, 6413 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6414 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6415 fp->igu_sb_id); 6416 } 6417 6418 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) 6419 { 6420 int i; 6421 6422 for (i = 1; i <= NUM_TX_RINGS; i++) { 6423 struct eth_tx_next_bd *tx_next_bd = 6424 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; 6425 6426 tx_next_bd->addr_hi = 6427 cpu_to_le32(U64_HI(txdata->tx_desc_mapping + 6428 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6429 tx_next_bd->addr_lo = 6430 cpu_to_le32(U64_LO(txdata->tx_desc_mapping + 6431 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6432 } 6433 6434 *txdata->tx_cons_sb = cpu_to_le16(0); 6435 6436 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 6437 txdata->tx_db.data.zero_fill1 = 0; 6438 txdata->tx_db.data.prod = 0; 6439 6440 txdata->tx_pkt_prod = 0; 6441 txdata->tx_pkt_cons = 0; 6442 txdata->tx_bd_prod = 0; 6443 txdata->tx_bd_cons = 0; 6444 txdata->tx_pkt = 0; 6445 } 6446 6447 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) 6448 { 6449 int i; 6450 6451 for_each_tx_queue_cnic(bp, i) 6452 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); 6453 } 6454 6455 static void bnx2x_init_tx_rings(struct bnx2x *bp) 6456 { 6457 int i; 6458 u8 cos; 6459 6460 for_each_eth_queue(bp, i) 6461 for_each_cos_in_tx_queue(&bp->fp[i], cos) 6462 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); 6463 } 6464 6465 static void bnx2x_init_fcoe_fp(struct bnx2x *bp) 6466 { 6467 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 6468 unsigned long q_type = 0; 6469 6470 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp); 6471 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp, 6472 BNX2X_FCOE_ETH_CL_ID_IDX); 6473 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp); 6474 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID; 6475 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id; 6476 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX; 6477 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]), 6478 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX, 6479 fp); 6480 6481 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index); 6482 6483 /* qZone id equals to FW (per path) client id */ 6484 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp); 6485 /* init shortcut */ 6486 bnx2x_fcoe(bp, ustorm_rx_prods_offset) = 6487 bnx2x_rx_ustorm_prods_offset(fp); 6488 6489 /* Configure Queue State object */ 6490 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6491 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6492 6493 /* No multi-CoS for FCoE L2 client */ 6494 BUG_ON(fp->max_cos != 1); 6495 6496 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, 6497 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6498 bnx2x_sp_mapping(bp, q_rdata), q_type); 6499 6500 DP(NETIF_MSG_IFUP, 6501 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6502 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6503 fp->igu_sb_id); 6504 } 6505 6506 void bnx2x_nic_init_cnic(struct bnx2x *bp) 6507 { 6508 if (!NO_FCOE(bp)) 6509 bnx2x_init_fcoe_fp(bp); 6510 6511 bnx2x_init_sb(bp, bp->cnic_sb_mapping, 6512 BNX2X_VF_ID_INVALID, false, 6513 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); 6514 6515 /* ensure status block indices were read */ 6516 rmb(); 6517 bnx2x_init_rx_rings_cnic(bp); 6518 bnx2x_init_tx_rings_cnic(bp); 6519 6520 /* flush all */ 6521 mb(); 6522 } 6523 6524 void bnx2x_pre_irq_nic_init(struct bnx2x *bp) 6525 { 6526 int i; 6527 6528 /* Setup NIC internals and enable interrupts */ 6529 for_each_eth_queue(bp, i) 6530 bnx2x_init_eth_fp(bp, i); 6531 6532 /* ensure status block indices were read */ 6533 rmb(); 6534 bnx2x_init_rx_rings(bp); 6535 bnx2x_init_tx_rings(bp); 6536 6537 if (IS_PF(bp)) { 6538 /* Initialize MOD_ABS interrupts */ 6539 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, 6540 bp->common.shmem_base, 6541 bp->common.shmem2_base, BP_PORT(bp)); 6542 6543 /* initialize the default status block and sp ring */ 6544 bnx2x_init_def_sb(bp); 6545 bnx2x_update_dsb_idx(bp); 6546 bnx2x_init_sp_ring(bp); 6547 } else { 6548 bnx2x_memset_stats(bp); 6549 } 6550 } 6551 6552 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code) 6553 { 6554 bnx2x_init_eq_ring(bp); 6555 bnx2x_init_internal(bp, load_code); 6556 bnx2x_pf_init(bp); 6557 bnx2x_stats_init(bp); 6558 6559 /* flush all before enabling interrupts */ 6560 mb(); 6561 6562 bnx2x_int_enable(bp); 6563 6564 /* Check for SPIO5 */ 6565 bnx2x_attn_int_deasserted0(bp, 6566 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & 6567 AEU_INPUTS_ATTN_BITS_SPIO5); 6568 } 6569 6570 /* gzip service functions */ 6571 static int bnx2x_gunzip_init(struct bnx2x *bp) 6572 { 6573 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, 6574 &bp->gunzip_mapping, GFP_KERNEL); 6575 if (bp->gunzip_buf == NULL) 6576 goto gunzip_nomem1; 6577 6578 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); 6579 if (bp->strm == NULL) 6580 goto gunzip_nomem2; 6581 6582 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); 6583 if (bp->strm->workspace == NULL) 6584 goto gunzip_nomem3; 6585 6586 return 0; 6587 6588 gunzip_nomem3: 6589 kfree(bp->strm); 6590 bp->strm = NULL; 6591 6592 gunzip_nomem2: 6593 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6594 bp->gunzip_mapping); 6595 bp->gunzip_buf = NULL; 6596 6597 gunzip_nomem1: 6598 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); 6599 return -ENOMEM; 6600 } 6601 6602 static void bnx2x_gunzip_end(struct bnx2x *bp) 6603 { 6604 if (bp->strm) { 6605 vfree(bp->strm->workspace); 6606 kfree(bp->strm); 6607 bp->strm = NULL; 6608 } 6609 6610 if (bp->gunzip_buf) { 6611 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6612 bp->gunzip_mapping); 6613 bp->gunzip_buf = NULL; 6614 } 6615 } 6616 6617 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) 6618 { 6619 int n, rc; 6620 6621 /* check gzip header */ 6622 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { 6623 BNX2X_ERR("Bad gzip header\n"); 6624 return -EINVAL; 6625 } 6626 6627 n = 10; 6628 6629 #define FNAME 0x8 6630 6631 if (zbuf[3] & FNAME) 6632 while ((zbuf[n++] != 0) && (n < len)); 6633 6634 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; 6635 bp->strm->avail_in = len - n; 6636 bp->strm->next_out = bp->gunzip_buf; 6637 bp->strm->avail_out = FW_BUF_SIZE; 6638 6639 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); 6640 if (rc != Z_OK) 6641 return rc; 6642 6643 rc = zlib_inflate(bp->strm, Z_FINISH); 6644 if ((rc != Z_OK) && (rc != Z_STREAM_END)) 6645 netdev_err(bp->dev, "Firmware decompression error: %s\n", 6646 bp->strm->msg); 6647 6648 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); 6649 if (bp->gunzip_outlen & 0x3) 6650 netdev_err(bp->dev, 6651 "Firmware decompression error: gunzip_outlen (%d) not aligned\n", 6652 bp->gunzip_outlen); 6653 bp->gunzip_outlen >>= 2; 6654 6655 zlib_inflateEnd(bp->strm); 6656 6657 if (rc == Z_STREAM_END) 6658 return 0; 6659 6660 return rc; 6661 } 6662 6663 /* nic load/unload */ 6664 6665 /* 6666 * General service functions 6667 */ 6668 6669 /* send a NIG loopback debug packet */ 6670 static void bnx2x_lb_pckt(struct bnx2x *bp) 6671 { 6672 u32 wb_write[3]; 6673 6674 /* Ethernet source and destination addresses */ 6675 wb_write[0] = 0x55555555; 6676 wb_write[1] = 0x55555555; 6677 wb_write[2] = 0x20; /* SOP */ 6678 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6679 6680 /* NON-IP protocol */ 6681 wb_write[0] = 0x09000000; 6682 wb_write[1] = 0x55555555; 6683 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 6684 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6685 } 6686 6687 /* some of the internal memories 6688 * are not directly readable from the driver 6689 * to test them we send debug packets 6690 */ 6691 static int bnx2x_int_mem_test(struct bnx2x *bp) 6692 { 6693 int factor; 6694 int count, i; 6695 u32 val = 0; 6696 6697 if (CHIP_REV_IS_FPGA(bp)) 6698 factor = 120; 6699 else if (CHIP_REV_IS_EMUL(bp)) 6700 factor = 200; 6701 else 6702 factor = 1; 6703 6704 /* Disable inputs of parser neighbor blocks */ 6705 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6706 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6707 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6708 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6709 6710 /* Write 0 to parser credits for CFC search request */ 6711 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6712 6713 /* send Ethernet packet */ 6714 bnx2x_lb_pckt(bp); 6715 6716 /* TODO do i reset NIG statistic? */ 6717 /* Wait until NIG register shows 1 packet of size 0x10 */ 6718 count = 1000 * factor; 6719 while (count) { 6720 6721 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6722 val = *bnx2x_sp(bp, wb_data[0]); 6723 if (val == 0x10) 6724 break; 6725 6726 usleep_range(10000, 20000); 6727 count--; 6728 } 6729 if (val != 0x10) { 6730 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6731 return -1; 6732 } 6733 6734 /* Wait until PRS register shows 1 packet */ 6735 count = 1000 * factor; 6736 while (count) { 6737 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6738 if (val == 1) 6739 break; 6740 6741 usleep_range(10000, 20000); 6742 count--; 6743 } 6744 if (val != 0x1) { 6745 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6746 return -2; 6747 } 6748 6749 /* Reset and init BRB, PRS */ 6750 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6751 msleep(50); 6752 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6753 msleep(50); 6754 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6755 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6756 6757 DP(NETIF_MSG_HW, "part2\n"); 6758 6759 /* Disable inputs of parser neighbor blocks */ 6760 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6761 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6762 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6763 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6764 6765 /* Write 0 to parser credits for CFC search request */ 6766 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6767 6768 /* send 10 Ethernet packets */ 6769 for (i = 0; i < 10; i++) 6770 bnx2x_lb_pckt(bp); 6771 6772 /* Wait until NIG register shows 10 + 1 6773 packets of size 11*0x10 = 0xb0 */ 6774 count = 1000 * factor; 6775 while (count) { 6776 6777 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6778 val = *bnx2x_sp(bp, wb_data[0]); 6779 if (val == 0xb0) 6780 break; 6781 6782 usleep_range(10000, 20000); 6783 count--; 6784 } 6785 if (val != 0xb0) { 6786 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6787 return -3; 6788 } 6789 6790 /* Wait until PRS register shows 2 packets */ 6791 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6792 if (val != 2) 6793 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6794 6795 /* Write 1 to parser credits for CFC search request */ 6796 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 6797 6798 /* Wait until PRS register shows 3 packets */ 6799 msleep(10 * factor); 6800 /* Wait until NIG register shows 1 packet of size 0x10 */ 6801 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6802 if (val != 3) 6803 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6804 6805 /* clear NIG EOP FIFO */ 6806 for (i = 0; i < 11; i++) 6807 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); 6808 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); 6809 if (val != 1) { 6810 BNX2X_ERR("clear of NIG failed\n"); 6811 return -4; 6812 } 6813 6814 /* Reset and init BRB, PRS, NIG */ 6815 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6816 msleep(50); 6817 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6818 msleep(50); 6819 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6820 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6821 if (!CNIC_SUPPORT(bp)) 6822 /* set NIC mode */ 6823 REG_WR(bp, PRS_REG_NIC_MODE, 1); 6824 6825 /* Enable inputs of parser neighbor blocks */ 6826 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); 6827 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); 6828 REG_WR(bp, CFC_REG_DEBUG0, 0x0); 6829 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); 6830 6831 DP(NETIF_MSG_HW, "done\n"); 6832 6833 return 0; /* OK */ 6834 } 6835 6836 static void bnx2x_enable_blocks_attention(struct bnx2x *bp) 6837 { 6838 u32 val; 6839 6840 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6841 if (!CHIP_IS_E1x(bp)) 6842 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); 6843 else 6844 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); 6845 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6846 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 6847 /* 6848 * mask read length error interrupts in brb for parser 6849 * (parsing unit and 'checksum and crc' unit) 6850 * these errors are legal (PU reads fixed length and CAC can cause 6851 * read length error on truncated packets) 6852 */ 6853 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); 6854 REG_WR(bp, QM_REG_QM_INT_MASK, 0); 6855 REG_WR(bp, TM_REG_TM_INT_MASK, 0); 6856 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); 6857 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); 6858 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); 6859 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ 6860 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ 6861 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); 6862 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); 6863 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); 6864 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ 6865 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ 6866 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 6867 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); 6868 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); 6869 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); 6870 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ 6871 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ 6872 6873 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 6874 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 6875 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; 6876 if (!CHIP_IS_E1x(bp)) 6877 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 6878 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; 6879 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); 6880 6881 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); 6882 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); 6883 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); 6884 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ 6885 6886 if (!CHIP_IS_E1x(bp)) 6887 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 6888 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 6889 6890 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); 6891 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); 6892 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ 6893 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 6894 } 6895 6896 static void bnx2x_reset_common(struct bnx2x *bp) 6897 { 6898 u32 val = 0x1400; 6899 6900 /* reset_common */ 6901 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6902 0xd3ffff7f); 6903 6904 if (CHIP_IS_E3(bp)) { 6905 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6906 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6907 } 6908 6909 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); 6910 } 6911 6912 static void bnx2x_setup_dmae(struct bnx2x *bp) 6913 { 6914 bp->dmae_ready = 0; 6915 spin_lock_init(&bp->dmae_lock); 6916 } 6917 6918 static void bnx2x_init_pxp(struct bnx2x *bp) 6919 { 6920 u16 devctl; 6921 int r_order, w_order; 6922 6923 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); 6924 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); 6925 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6926 if (bp->mrrs == -1) 6927 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6928 else { 6929 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); 6930 r_order = bp->mrrs; 6931 } 6932 6933 bnx2x_init_pxp_arb(bp, r_order, w_order); 6934 } 6935 6936 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) 6937 { 6938 int is_required; 6939 u32 val; 6940 int port; 6941 6942 if (BP_NOMCP(bp)) 6943 return; 6944 6945 is_required = 0; 6946 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & 6947 SHARED_HW_CFG_FAN_FAILURE_MASK; 6948 6949 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) 6950 is_required = 1; 6951 6952 /* 6953 * The fan failure mechanism is usually related to the PHY type since 6954 * the power consumption of the board is affected by the PHY. Currently, 6955 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 6956 */ 6957 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) 6958 for (port = PORT_0; port < PORT_MAX; port++) { 6959 is_required |= 6960 bnx2x_fan_failure_det_req( 6961 bp, 6962 bp->common.shmem_base, 6963 bp->common.shmem2_base, 6964 port); 6965 } 6966 6967 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); 6968 6969 if (is_required == 0) 6970 return; 6971 6972 /* Fan failure is indicated by SPIO 5 */ 6973 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 6974 6975 /* set to active low mode */ 6976 val = REG_RD(bp, MISC_REG_SPIO_INT); 6977 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 6978 REG_WR(bp, MISC_REG_SPIO_INT, val); 6979 6980 /* enable interrupt to signal the IGU */ 6981 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 6982 val |= MISC_SPIO_SPIO5; 6983 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); 6984 } 6985 6986 void bnx2x_pf_disable(struct bnx2x *bp) 6987 { 6988 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 6989 val &= ~IGU_PF_CONF_FUNC_EN; 6990 6991 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 6992 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6993 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); 6994 } 6995 6996 static void bnx2x__common_init_phy(struct bnx2x *bp) 6997 { 6998 u32 shmem_base[2], shmem2_base[2]; 6999 /* Avoid common init in case MFW supports LFA */ 7000 if (SHMEM2_RD(bp, size) > 7001 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 7002 return; 7003 shmem_base[0] = bp->common.shmem_base; 7004 shmem2_base[0] = bp->common.shmem2_base; 7005 if (!CHIP_IS_E1x(bp)) { 7006 shmem_base[1] = 7007 SHMEM2_RD(bp, other_shmem_base_addr); 7008 shmem2_base[1] = 7009 SHMEM2_RD(bp, other_shmem2_base_addr); 7010 } 7011 bnx2x_acquire_phy_lock(bp); 7012 bnx2x_common_init_phy(bp, shmem_base, shmem2_base, 7013 bp->common.chip_id); 7014 bnx2x_release_phy_lock(bp); 7015 } 7016 7017 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val) 7018 { 7019 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val); 7020 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val); 7021 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val); 7022 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val); 7023 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val); 7024 7025 /* make sure this value is 0 */ 7026 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); 7027 7028 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val); 7029 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val); 7030 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val); 7031 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val); 7032 } 7033 7034 static void bnx2x_set_endianity(struct bnx2x *bp) 7035 { 7036 #ifdef __BIG_ENDIAN 7037 bnx2x_config_endianity(bp, 1); 7038 #else 7039 bnx2x_config_endianity(bp, 0); 7040 #endif 7041 } 7042 7043 static void bnx2x_reset_endianity(struct bnx2x *bp) 7044 { 7045 bnx2x_config_endianity(bp, 0); 7046 } 7047 7048 /** 7049 * bnx2x_init_hw_common - initialize the HW at the COMMON phase. 7050 * 7051 * @bp: driver handle 7052 */ 7053 static int bnx2x_init_hw_common(struct bnx2x *bp) 7054 { 7055 u32 val; 7056 7057 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); 7058 7059 /* 7060 * take the RESET lock to protect undi_unload flow from accessing 7061 * registers while we're resetting the chip 7062 */ 7063 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7064 7065 bnx2x_reset_common(bp); 7066 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); 7067 7068 val = 0xfffc; 7069 if (CHIP_IS_E3(bp)) { 7070 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 7071 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 7072 } 7073 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); 7074 7075 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7076 7077 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); 7078 7079 if (!CHIP_IS_E1x(bp)) { 7080 u8 abs_func_id; 7081 7082 /** 7083 * 4-port mode or 2-port mode we need to turn of master-enable 7084 * for everyone, after that, turn it back on for self. 7085 * so, we disregard multi-function or not, and always disable 7086 * for all functions on the given path, this means 0,2,4,6 for 7087 * path 0 and 1,3,5,7 for path 1 7088 */ 7089 for (abs_func_id = BP_PATH(bp); 7090 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { 7091 if (abs_func_id == BP_ABS_FUNC(bp)) { 7092 REG_WR(bp, 7093 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 7094 1); 7095 continue; 7096 } 7097 7098 bnx2x_pretend_func(bp, abs_func_id); 7099 /* clear pf enable */ 7100 bnx2x_pf_disable(bp); 7101 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7102 } 7103 } 7104 7105 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); 7106 if (CHIP_IS_E1(bp)) { 7107 /* enable HW interrupt from PXP on USDM overflow 7108 bit 16 on INT_MASK_0 */ 7109 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 7110 } 7111 7112 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); 7113 bnx2x_init_pxp(bp); 7114 bnx2x_set_endianity(bp); 7115 bnx2x_ilt_init_page_size(bp, INITOP_SET); 7116 7117 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) 7118 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 7119 7120 /* let the HW do it's magic ... */ 7121 msleep(100); 7122 /* finish PXP init */ 7123 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); 7124 if (val != 1) { 7125 BNX2X_ERR("PXP2 CFG failed\n"); 7126 return -EBUSY; 7127 } 7128 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); 7129 if (val != 1) { 7130 BNX2X_ERR("PXP2 RD_INIT failed\n"); 7131 return -EBUSY; 7132 } 7133 7134 /* Timers bug workaround E2 only. We need to set the entire ILT to 7135 * have entries with value "0" and valid bit on. 7136 * This needs to be done by the first PF that is loaded in a path 7137 * (i.e. common phase) 7138 */ 7139 if (!CHIP_IS_E1x(bp)) { 7140 /* In E2 there is a bug in the timers block that can cause function 6 / 7 7141 * (i.e. vnic3) to start even if it is marked as "scan-off". 7142 * This occurs when a different function (func2,3) is being marked 7143 * as "scan-off". Real-life scenario for example: if a driver is being 7144 * load-unloaded while func6,7 are down. This will cause the timer to access 7145 * the ilt, translate to a logical address and send a request to read/write. 7146 * Since the ilt for the function that is down is not valid, this will cause 7147 * a translation error which is unrecoverable. 7148 * The Workaround is intended to make sure that when this happens nothing fatal 7149 * will occur. The workaround: 7150 * 1. First PF driver which loads on a path will: 7151 * a. After taking the chip out of reset, by using pretend, 7152 * it will write "0" to the following registers of 7153 * the other vnics. 7154 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 7155 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 7156 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 7157 * And for itself it will write '1' to 7158 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 7159 * dmae-operations (writing to pram for example.) 7160 * note: can be done for only function 6,7 but cleaner this 7161 * way. 7162 * b. Write zero+valid to the entire ILT. 7163 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 7164 * VNIC3 (of that port). The range allocated will be the 7165 * entire ILT. This is needed to prevent ILT range error. 7166 * 2. Any PF driver load flow: 7167 * a. ILT update with the physical addresses of the allocated 7168 * logical pages. 7169 * b. Wait 20msec. - note that this timeout is needed to make 7170 * sure there are no requests in one of the PXP internal 7171 * queues with "old" ILT addresses. 7172 * c. PF enable in the PGLC. 7173 * d. Clear the was_error of the PF in the PGLC. (could have 7174 * occurred while driver was down) 7175 * e. PF enable in the CFC (WEAK + STRONG) 7176 * f. Timers scan enable 7177 * 3. PF driver unload flow: 7178 * a. Clear the Timers scan_en. 7179 * b. Polling for scan_on=0 for that PF. 7180 * c. Clear the PF enable bit in the PXP. 7181 * d. Clear the PF enable in the CFC (WEAK + STRONG) 7182 * e. Write zero+valid to all ILT entries (The valid bit must 7183 * stay set) 7184 * f. If this is VNIC 3 of a port then also init 7185 * first_timers_ilt_entry to zero and last_timers_ilt_entry 7186 * to the last entry in the ILT. 7187 * 7188 * Notes: 7189 * Currently the PF error in the PGLC is non recoverable. 7190 * In the future the there will be a recovery routine for this error. 7191 * Currently attention is masked. 7192 * Having an MCP lock on the load/unload process does not guarantee that 7193 * there is no Timer disable during Func6/7 enable. This is because the 7194 * Timers scan is currently being cleared by the MCP on FLR. 7195 * Step 2.d can be done only for PF6/7 and the driver can also check if 7196 * there is error before clearing it. But the flow above is simpler and 7197 * more general. 7198 * All ILT entries are written by zero+valid and not just PF6/7 7199 * ILT entries since in the future the ILT entries allocation for 7200 * PF-s might be dynamic. 7201 */ 7202 struct ilt_client_info ilt_cli; 7203 struct bnx2x_ilt ilt; 7204 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 7205 memset(&ilt, 0, sizeof(struct bnx2x_ilt)); 7206 7207 /* initialize dummy TM client */ 7208 ilt_cli.start = 0; 7209 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 7210 ilt_cli.client_num = ILT_CLIENT_TM; 7211 7212 /* Step 1: set zeroes to all ilt page entries with valid bit on 7213 * Step 2: set the timers first/last ilt entry to point 7214 * to the entire range to prevent ILT range error for 3rd/4th 7215 * vnic (this code assumes existence of the vnic) 7216 * 7217 * both steps performed by call to bnx2x_ilt_client_init_op() 7218 * with dummy TM client 7219 * 7220 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 7221 * and his brother are split registers 7222 */ 7223 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); 7224 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); 7225 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7226 7227 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); 7228 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); 7229 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 7230 } 7231 7232 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); 7233 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); 7234 7235 if (!CHIP_IS_E1x(bp)) { 7236 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : 7237 (CHIP_REV_IS_FPGA(bp) ? 400 : 0); 7238 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); 7239 7240 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); 7241 7242 /* let the HW do it's magic ... */ 7243 do { 7244 msleep(200); 7245 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); 7246 } while (factor-- && (val != 1)); 7247 7248 if (val != 1) { 7249 BNX2X_ERR("ATC_INIT failed\n"); 7250 return -EBUSY; 7251 } 7252 } 7253 7254 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); 7255 7256 bnx2x_iov_init_dmae(bp); 7257 7258 /* clean the DMAE memory */ 7259 bp->dmae_ready = 1; 7260 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); 7261 7262 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); 7263 7264 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); 7265 7266 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); 7267 7268 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); 7269 7270 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); 7271 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); 7272 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); 7273 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); 7274 7275 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); 7276 7277 /* QM queues pointers table */ 7278 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); 7279 7280 /* soft reset pulse */ 7281 REG_WR(bp, QM_REG_SOFT_RESET, 1); 7282 REG_WR(bp, QM_REG_SOFT_RESET, 0); 7283 7284 if (CNIC_SUPPORT(bp)) 7285 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); 7286 7287 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); 7288 7289 if (!CHIP_REV_IS_SLOW(bp)) 7290 /* enable hw interrupt from doorbell Q */ 7291 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 7292 7293 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 7294 7295 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 7296 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); 7297 7298 if (!CHIP_IS_E1(bp)) 7299 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); 7300 7301 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { 7302 if (IS_MF_AFEX(bp)) { 7303 /* configure that VNTag and VLAN headers must be 7304 * received in afex mode 7305 */ 7306 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); 7307 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); 7308 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 7309 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 7310 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); 7311 } else { 7312 /* Bit-map indicating which L2 hdrs may appear 7313 * after the basic Ethernet header 7314 */ 7315 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 7316 bp->path_has_ovlan ? 7 : 6); 7317 } 7318 } 7319 7320 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); 7321 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); 7322 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); 7323 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); 7324 7325 if (!CHIP_IS_E1x(bp)) { 7326 /* reset VFC memories */ 7327 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7328 VFC_MEMORIES_RST_REG_CAM_RST | 7329 VFC_MEMORIES_RST_REG_RAM_RST); 7330 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7331 VFC_MEMORIES_RST_REG_CAM_RST | 7332 VFC_MEMORIES_RST_REG_RAM_RST); 7333 7334 msleep(20); 7335 } 7336 7337 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); 7338 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); 7339 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); 7340 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); 7341 7342 /* sync semi rtc */ 7343 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 7344 0x80000000); 7345 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 7346 0x80000000); 7347 7348 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); 7349 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); 7350 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); 7351 7352 if (!CHIP_IS_E1x(bp)) { 7353 if (IS_MF_AFEX(bp)) { 7354 /* configure that VNTag and VLAN headers must be 7355 * sent in afex mode 7356 */ 7357 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); 7358 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); 7359 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 7360 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 7361 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); 7362 } else { 7363 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 7364 bp->path_has_ovlan ? 7 : 6); 7365 } 7366 } 7367 7368 REG_WR(bp, SRC_REG_SOFT_RST, 1); 7369 7370 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); 7371 7372 if (CNIC_SUPPORT(bp)) { 7373 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); 7374 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 7375 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); 7376 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); 7377 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); 7378 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 7379 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); 7380 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 7381 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); 7382 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); 7383 } 7384 REG_WR(bp, SRC_REG_SOFT_RST, 0); 7385 7386 if (sizeof(union cdu_context) != 1024) 7387 /* we currently assume that a context is 1024 bytes */ 7388 dev_alert(&bp->pdev->dev, 7389 "please adjust the size of cdu_context(%ld)\n", 7390 (long)sizeof(union cdu_context)); 7391 7392 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); 7393 val = (4 << 24) + (0 << 12) + 1024; 7394 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); 7395 7396 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); 7397 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); 7398 /* enable context validation interrupt from CFC */ 7399 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 7400 7401 /* set the thresholds to prevent CFC/CDU race */ 7402 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); 7403 7404 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); 7405 7406 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) 7407 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); 7408 7409 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); 7410 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); 7411 7412 /* Reset PCIE errors for debug */ 7413 REG_WR(bp, 0x2814, 0xffffffff); 7414 REG_WR(bp, 0x3820, 0xffffffff); 7415 7416 if (!CHIP_IS_E1x(bp)) { 7417 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 7418 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 7419 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 7420 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 7421 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 7422 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 7423 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 7424 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 7425 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 7426 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 7427 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 7428 } 7429 7430 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); 7431 if (!CHIP_IS_E1(bp)) { 7432 /* in E3 this done in per-port section */ 7433 if (!CHIP_IS_E3(bp)) 7434 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7435 } 7436 if (CHIP_IS_E1H(bp)) 7437 /* not applicable for E2 (and above ...) */ 7438 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); 7439 7440 if (CHIP_REV_IS_SLOW(bp)) 7441 msleep(200); 7442 7443 /* finish CFC init */ 7444 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); 7445 if (val != 1) { 7446 BNX2X_ERR("CFC LL_INIT failed\n"); 7447 return -EBUSY; 7448 } 7449 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); 7450 if (val != 1) { 7451 BNX2X_ERR("CFC AC_INIT failed\n"); 7452 return -EBUSY; 7453 } 7454 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 7455 if (val != 1) { 7456 BNX2X_ERR("CFC CAM_INIT failed\n"); 7457 return -EBUSY; 7458 } 7459 REG_WR(bp, CFC_REG_DEBUG0, 0); 7460 7461 if (CHIP_IS_E1(bp)) { 7462 /* read NIG statistic 7463 to see if this is our first up since powerup */ 7464 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 7465 val = *bnx2x_sp(bp, wb_data[0]); 7466 7467 /* do internal memory self test */ 7468 if ((val == 0) && bnx2x_int_mem_test(bp)) { 7469 BNX2X_ERR("internal mem self test failed\n"); 7470 return -EBUSY; 7471 } 7472 } 7473 7474 bnx2x_setup_fan_failure_detection(bp); 7475 7476 /* clear PXP2 attentions */ 7477 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); 7478 7479 bnx2x_enable_blocks_attention(bp); 7480 bnx2x_enable_blocks_parity(bp); 7481 7482 if (!BP_NOMCP(bp)) { 7483 if (CHIP_IS_E1x(bp)) 7484 bnx2x__common_init_phy(bp); 7485 } else 7486 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 7487 7488 if (SHMEM2_HAS(bp, netproc_fw_ver)) 7489 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 7490 7491 return 0; 7492 } 7493 7494 /** 7495 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. 7496 * 7497 * @bp: driver handle 7498 */ 7499 static int bnx2x_init_hw_common_chip(struct bnx2x *bp) 7500 { 7501 int rc = bnx2x_init_hw_common(bp); 7502 7503 if (rc) 7504 return rc; 7505 7506 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 7507 if (!BP_NOMCP(bp)) 7508 bnx2x__common_init_phy(bp); 7509 7510 return 0; 7511 } 7512 7513 static int bnx2x_init_hw_port(struct bnx2x *bp) 7514 { 7515 int port = BP_PORT(bp); 7516 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 7517 u32 low, high; 7518 u32 val, reg; 7519 7520 DP(NETIF_MSG_HW, "starting port init port %d\n", port); 7521 7522 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 7523 7524 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7525 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7526 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7527 7528 /* Timers bug workaround: disables the pf_master bit in pglue at 7529 * common phase, we need to enable it here before any dmae access are 7530 * attempted. Therefore we manually added the enable-master to the 7531 * port phase (it also happens in the function phase) 7532 */ 7533 if (!CHIP_IS_E1x(bp)) 7534 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7535 7536 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7537 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7538 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7539 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7540 7541 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7542 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7543 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7544 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7545 7546 /* QM cid (connection) count */ 7547 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); 7548 7549 if (CNIC_SUPPORT(bp)) { 7550 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7551 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); 7552 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 7553 } 7554 7555 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7556 7557 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7558 7559 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { 7560 7561 if (IS_MF(bp)) 7562 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); 7563 else if (bp->dev->mtu > 4096) { 7564 if (bp->flags & ONE_PORT_FLAG) 7565 low = 160; 7566 else { 7567 val = bp->dev->mtu; 7568 /* (24*1024 + val*4)/256 */ 7569 low = 96 + (val/64) + 7570 ((val % 64) ? 1 : 0); 7571 } 7572 } else 7573 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); 7574 high = low + 56; /* 14*1024/256 */ 7575 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 7576 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 7577 } 7578 7579 if (CHIP_MODE_IS_4_PORT(bp)) 7580 REG_WR(bp, (BP_PORT(bp) ? 7581 BRB1_REG_MAC_GUARANTIED_1 : 7582 BRB1_REG_MAC_GUARANTIED_0), 40); 7583 7584 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7585 if (CHIP_IS_E3B0(bp)) { 7586 if (IS_MF_AFEX(bp)) { 7587 /* configure headers for AFEX mode */ 7588 REG_WR(bp, BP_PORT(bp) ? 7589 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7590 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 7591 REG_WR(bp, BP_PORT(bp) ? 7592 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 7593 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 7594 REG_WR(bp, BP_PORT(bp) ? 7595 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 7596 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 7597 } else { 7598 /* Ovlan exists only if we are in multi-function + 7599 * switch-dependent mode, in switch-independent there 7600 * is no ovlan headers 7601 */ 7602 REG_WR(bp, BP_PORT(bp) ? 7603 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7604 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 7605 (bp->path_has_ovlan ? 7 : 6)); 7606 } 7607 } 7608 7609 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7610 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7611 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7612 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7613 7614 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7615 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7616 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7617 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7618 7619 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7620 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7621 7622 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7623 7624 if (CHIP_IS_E1x(bp)) { 7625 /* configure PBF to work without PAUSE mtu 9000 */ 7626 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 7627 7628 /* update threshold */ 7629 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 7630 /* update init credit */ 7631 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 7632 7633 /* probe changes */ 7634 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); 7635 udelay(50); 7636 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); 7637 } 7638 7639 if (CNIC_SUPPORT(bp)) 7640 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7641 7642 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7643 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7644 7645 if (CHIP_IS_E1(bp)) { 7646 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7647 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7648 } 7649 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7650 7651 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7652 7653 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7654 /* init aeu_mask_attn_func_0/1: 7655 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use 7656 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF 7657 * bits 4-7 are used for "per vn group attention" */ 7658 val = IS_MF(bp) ? 0xF7 : 0x7; 7659 /* Enable DCBX attention for all but E1 */ 7660 val |= CHIP_IS_E1(bp) ? 0 : 0x10; 7661 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 7662 7663 /* SCPAD_PARITY should NOT trigger close the gates */ 7664 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0; 7665 REG_WR(bp, reg, 7666 REG_RD(bp, reg) & 7667 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7668 7669 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0; 7670 REG_WR(bp, reg, 7671 REG_RD(bp, reg) & 7672 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7673 7674 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7675 7676 if (!CHIP_IS_E1x(bp)) { 7677 /* Bit-map indicating which L2 hdrs may appear after the 7678 * basic Ethernet header 7679 */ 7680 if (IS_MF_AFEX(bp)) 7681 REG_WR(bp, BP_PORT(bp) ? 7682 NIG_REG_P1_HDRS_AFTER_BASIC : 7683 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 7684 else 7685 REG_WR(bp, BP_PORT(bp) ? 7686 NIG_REG_P1_HDRS_AFTER_BASIC : 7687 NIG_REG_P0_HDRS_AFTER_BASIC, 7688 IS_MF_SD(bp) ? 7 : 6); 7689 7690 if (CHIP_IS_E3(bp)) 7691 REG_WR(bp, BP_PORT(bp) ? 7692 NIG_REG_LLH1_MF_MODE : 7693 NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7694 } 7695 if (!CHIP_IS_E3(bp)) 7696 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 7697 7698 if (!CHIP_IS_E1(bp)) { 7699 /* 0x2 disable mf_ov, 0x1 enable */ 7700 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 7701 (IS_MF_SD(bp) ? 0x1 : 0x2)); 7702 7703 if (!CHIP_IS_E1x(bp)) { 7704 val = 0; 7705 switch (bp->mf_mode) { 7706 case MULTI_FUNCTION_SD: 7707 val = 1; 7708 break; 7709 case MULTI_FUNCTION_SI: 7710 case MULTI_FUNCTION_AFEX: 7711 val = 2; 7712 break; 7713 } 7714 7715 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : 7716 NIG_REG_LLH0_CLS_TYPE), val); 7717 } 7718 { 7719 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 7720 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 7721 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 7722 } 7723 } 7724 7725 /* If SPIO5 is set to generate interrupts, enable it for this port */ 7726 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 7727 if (val & MISC_SPIO_SPIO5) { 7728 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 7729 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 7730 val = REG_RD(bp, reg_addr); 7731 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 7732 REG_WR(bp, reg_addr, val); 7733 } 7734 7735 if (CHIP_IS_E3B0(bp)) 7736 bp->flags |= PTP_SUPPORTED; 7737 7738 return 0; 7739 } 7740 7741 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) 7742 { 7743 int reg; 7744 u32 wb_write[2]; 7745 7746 if (CHIP_IS_E1(bp)) 7747 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 7748 else 7749 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 7750 7751 wb_write[0] = ONCHIP_ADDR1(addr); 7752 wb_write[1] = ONCHIP_ADDR2(addr); 7753 REG_WR_DMAE(bp, reg, wb_write, 2); 7754 } 7755 7756 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) 7757 { 7758 u32 data, ctl, cnt = 100; 7759 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 7760 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 7761 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 7762 u32 sb_bit = 1 << (idu_sb_id%32); 7763 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 7764 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 7765 7766 /* Not supported in BC mode */ 7767 if (CHIP_INT_MODE_IS_BC(bp)) 7768 return; 7769 7770 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup 7771 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 7772 IGU_REGULAR_CLEANUP_SET | 7773 IGU_REGULAR_BCLEANUP; 7774 7775 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 7776 func_encode << IGU_CTRL_REG_FID_SHIFT | 7777 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 7778 7779 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7780 data, igu_addr_data); 7781 REG_WR(bp, igu_addr_data, data); 7782 barrier(); 7783 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7784 ctl, igu_addr_ctl); 7785 REG_WR(bp, igu_addr_ctl, ctl); 7786 barrier(); 7787 7788 /* wait for clean up to finish */ 7789 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) 7790 msleep(20); 7791 7792 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { 7793 DP(NETIF_MSG_HW, 7794 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", 7795 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 7796 } 7797 } 7798 7799 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) 7800 { 7801 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); 7802 } 7803 7804 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) 7805 { 7806 u32 i, base = FUNC_ILT_BASE(func); 7807 for (i = base; i < base + ILT_PER_FUNC; i++) 7808 bnx2x_ilt_wr(bp, i, 0); 7809 } 7810 7811 static void bnx2x_init_searcher(struct bnx2x *bp) 7812 { 7813 int port = BP_PORT(bp); 7814 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); 7815 /* T1 hash bits value determines the T1 number of entries */ 7816 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 7817 } 7818 7819 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) 7820 { 7821 int rc; 7822 struct bnx2x_func_state_params func_params = {NULL}; 7823 struct bnx2x_func_switch_update_params *switch_update_params = 7824 &func_params.params.switch_update; 7825 7826 /* Prepare parameters for function state transitions */ 7827 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 7828 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 7829 7830 func_params.f_obj = &bp->func_obj; 7831 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 7832 7833 /* Function parameters */ 7834 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG, 7835 &switch_update_params->changes); 7836 if (suspend) 7837 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND, 7838 &switch_update_params->changes); 7839 7840 rc = bnx2x_func_state_change(bp, &func_params); 7841 7842 return rc; 7843 } 7844 7845 static int bnx2x_reset_nic_mode(struct bnx2x *bp) 7846 { 7847 int rc, i, port = BP_PORT(bp); 7848 int vlan_en = 0, mac_en[NUM_MACS]; 7849 7850 /* Close input from network */ 7851 if (bp->mf_mode == SINGLE_FUNCTION) { 7852 bnx2x_set_rx_filter(&bp->link_params, 0); 7853 } else { 7854 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : 7855 NIG_REG_LLH0_FUNC_EN); 7856 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7857 NIG_REG_LLH0_FUNC_EN, 0); 7858 for (i = 0; i < NUM_MACS; i++) { 7859 mac_en[i] = REG_RD(bp, port ? 7860 (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7861 4 * i) : 7862 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 7863 4 * i)); 7864 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7865 4 * i) : 7866 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); 7867 } 7868 } 7869 7870 /* Close BMC to host */ 7871 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7872 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); 7873 7874 /* Suspend Tx switching to the PF. Completion of this ramrod 7875 * further guarantees that all the packets of that PF / child 7876 * VFs in BRB were processed by the Parser, so it is safe to 7877 * change the NIC_MODE register. 7878 */ 7879 rc = bnx2x_func_switch_update(bp, 1); 7880 if (rc) { 7881 BNX2X_ERR("Can't suspend tx-switching!\n"); 7882 return rc; 7883 } 7884 7885 /* Change NIC_MODE register */ 7886 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7887 7888 /* Open input from network */ 7889 if (bp->mf_mode == SINGLE_FUNCTION) { 7890 bnx2x_set_rx_filter(&bp->link_params, 1); 7891 } else { 7892 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7893 NIG_REG_LLH0_FUNC_EN, vlan_en); 7894 for (i = 0; i < NUM_MACS; i++) { 7895 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7896 4 * i) : 7897 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 7898 mac_en[i]); 7899 } 7900 } 7901 7902 /* Enable BMC to host */ 7903 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7904 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); 7905 7906 /* Resume Tx switching to the PF */ 7907 rc = bnx2x_func_switch_update(bp, 0); 7908 if (rc) { 7909 BNX2X_ERR("Can't resume tx-switching!\n"); 7910 return rc; 7911 } 7912 7913 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7914 return 0; 7915 } 7916 7917 int bnx2x_init_hw_func_cnic(struct bnx2x *bp) 7918 { 7919 int rc; 7920 7921 bnx2x_ilt_init_op_cnic(bp, INITOP_SET); 7922 7923 if (CONFIGURE_NIC_MODE(bp)) { 7924 /* Configure searcher as part of function hw init */ 7925 bnx2x_init_searcher(bp); 7926 7927 /* Reset NIC mode */ 7928 rc = bnx2x_reset_nic_mode(bp); 7929 if (rc) 7930 BNX2X_ERR("Can't change NIC mode!\n"); 7931 return rc; 7932 } 7933 7934 return 0; 7935 } 7936 7937 /* previous driver DMAE transaction may have occurred when pre-boot stage ended 7938 * and boot began, or when kdump kernel was loaded. Either case would invalidate 7939 * the addresses of the transaction, resulting in was-error bit set in the pci 7940 * causing all hw-to-host pcie transactions to timeout. If this happened we want 7941 * to clear the interrupt which detected this from the pglueb and the was done 7942 * bit 7943 */ 7944 static void bnx2x_clean_pglue_errors(struct bnx2x *bp) 7945 { 7946 if (!CHIP_IS_E1x(bp)) 7947 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 7948 1 << BP_ABS_FUNC(bp)); 7949 } 7950 7951 static int bnx2x_init_hw_func(struct bnx2x *bp) 7952 { 7953 int port = BP_PORT(bp); 7954 int func = BP_FUNC(bp); 7955 int init_phase = PHASE_PF0 + func; 7956 struct bnx2x_ilt *ilt = BP_ILT(bp); 7957 u16 cdu_ilt_start; 7958 u32 addr, val; 7959 u32 main_mem_base, main_mem_size, main_mem_prty_clr; 7960 int i, main_mem_width, rc; 7961 7962 DP(NETIF_MSG_HW, "starting func init func %d\n", func); 7963 7964 /* FLR cleanup - hmmm */ 7965 if (!CHIP_IS_E1x(bp)) { 7966 rc = bnx2x_pf_flr_clnup(bp); 7967 if (rc) { 7968 bnx2x_fw_dump(bp); 7969 return rc; 7970 } 7971 } 7972 7973 /* set MSI reconfigure capability */ 7974 if (bp->common.int_block == INT_BLOCK_HC) { 7975 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 7976 val = REG_RD(bp, addr); 7977 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 7978 REG_WR(bp, addr, val); 7979 } 7980 7981 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7982 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7983 7984 ilt = BP_ILT(bp); 7985 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7986 7987 if (IS_SRIOV(bp)) 7988 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; 7989 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); 7990 7991 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes 7992 * those of the VFs, so start line should be reset 7993 */ 7994 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7995 for (i = 0; i < L2_ILT_LINES(bp); i++) { 7996 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; 7997 ilt->lines[cdu_ilt_start + i].page_mapping = 7998 bp->context[i].cxt_mapping; 7999 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; 8000 } 8001 8002 bnx2x_ilt_init_op(bp, INITOP_SET); 8003 8004 if (!CONFIGURE_NIC_MODE(bp)) { 8005 bnx2x_init_searcher(bp); 8006 REG_WR(bp, PRS_REG_NIC_MODE, 0); 8007 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 8008 } else { 8009 /* Set NIC mode */ 8010 REG_WR(bp, PRS_REG_NIC_MODE, 1); 8011 DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); 8012 } 8013 8014 if (!CHIP_IS_E1x(bp)) { 8015 u32 pf_conf = IGU_PF_CONF_FUNC_EN; 8016 8017 /* Turn on a single ISR mode in IGU if driver is going to use 8018 * INT#x or MSI 8019 */ 8020 if (!(bp->flags & USING_MSIX_FLAG)) 8021 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 8022 /* 8023 * Timers workaround bug: function init part. 8024 * Need to wait 20msec after initializing ILT, 8025 * needed to make sure there are no requests in 8026 * one of the PXP internal queues with "old" ILT addresses 8027 */ 8028 msleep(20); 8029 /* 8030 * Master enable - Due to WB DMAE writes performed before this 8031 * register is re-initialized as part of the regular function 8032 * init 8033 */ 8034 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 8035 /* Enable the function in IGU */ 8036 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); 8037 } 8038 8039 bp->dmae_ready = 1; 8040 8041 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 8042 8043 bnx2x_clean_pglue_errors(bp); 8044 8045 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 8046 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 8047 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 8048 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 8049 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 8050 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 8051 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 8052 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 8053 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 8054 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 8055 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 8056 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 8057 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 8058 8059 if (!CHIP_IS_E1x(bp)) 8060 REG_WR(bp, QM_REG_PF_EN, 1); 8061 8062 if (!CHIP_IS_E1x(bp)) { 8063 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8064 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8065 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8066 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8067 } 8068 bnx2x_init_block(bp, BLOCK_QM, init_phase); 8069 8070 bnx2x_init_block(bp, BLOCK_TM, init_phase); 8071 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 8072 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */ 8073 8074 bnx2x_iov_init_dq(bp); 8075 8076 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 8077 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 8078 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 8079 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 8080 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 8081 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 8082 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 8083 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 8084 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 8085 if (!CHIP_IS_E1x(bp)) 8086 REG_WR(bp, PBF_REG_DISABLE_PF, 0); 8087 8088 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 8089 8090 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 8091 8092 if (!CHIP_IS_E1x(bp)) 8093 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); 8094 8095 if (IS_MF(bp)) { 8096 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) { 8097 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 8098 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, 8099 bp->mf_ov); 8100 } 8101 } 8102 8103 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 8104 8105 /* HC init per function */ 8106 if (bp->common.int_block == INT_BLOCK_HC) { 8107 if (CHIP_IS_E1H(bp)) { 8108 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8109 8110 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8111 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8112 } 8113 bnx2x_init_block(bp, BLOCK_HC, init_phase); 8114 8115 } else { 8116 int num_segs, sb_idx, prod_offset; 8117 8118 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8119 8120 if (!CHIP_IS_E1x(bp)) { 8121 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8122 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8123 } 8124 8125 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 8126 8127 if (!CHIP_IS_E1x(bp)) { 8128 int dsb_idx = 0; 8129 /** 8130 * Producer memory: 8131 * E2 mode: address 0-135 match to the mapping memory; 8132 * 136 - PF0 default prod; 137 - PF1 default prod; 8133 * 138 - PF2 default prod; 139 - PF3 default prod; 8134 * 140 - PF0 attn prod; 141 - PF1 attn prod; 8135 * 142 - PF2 attn prod; 143 - PF3 attn prod; 8136 * 144-147 reserved. 8137 * 8138 * E1.5 mode - In backward compatible mode; 8139 * for non default SB; each even line in the memory 8140 * holds the U producer and each odd line hold 8141 * the C producer. The first 128 producers are for 8142 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 8143 * producers are for the DSB for each PF. 8144 * Each PF has five segments: (the order inside each 8145 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 8146 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 8147 * 144-147 attn prods; 8148 */ 8149 /* non-default-status-blocks */ 8150 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8151 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 8152 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { 8153 prod_offset = (bp->igu_base_sb + sb_idx) * 8154 num_segs; 8155 8156 for (i = 0; i < num_segs; i++) { 8157 addr = IGU_REG_PROD_CONS_MEMORY + 8158 (prod_offset + i) * 4; 8159 REG_WR(bp, addr, 0); 8160 } 8161 /* send consumer update with value 0 */ 8162 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, 8163 USTORM_ID, 0, IGU_INT_NOP, 1); 8164 bnx2x_igu_clear_sb(bp, 8165 bp->igu_base_sb + sb_idx); 8166 } 8167 8168 /* default-status-blocks */ 8169 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8170 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 8171 8172 if (CHIP_MODE_IS_4_PORT(bp)) 8173 dsb_idx = BP_FUNC(bp); 8174 else 8175 dsb_idx = BP_VN(bp); 8176 8177 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? 8178 IGU_BC_BASE_DSB_PROD + dsb_idx : 8179 IGU_NORM_BASE_DSB_PROD + dsb_idx); 8180 8181 /* 8182 * igu prods come in chunks of E1HVN_MAX (4) - 8183 * does not matters what is the current chip mode 8184 */ 8185 for (i = 0; i < (num_segs * E1HVN_MAX); 8186 i += E1HVN_MAX) { 8187 addr = IGU_REG_PROD_CONS_MEMORY + 8188 (prod_offset + i)*4; 8189 REG_WR(bp, addr, 0); 8190 } 8191 /* send consumer update with 0 */ 8192 if (CHIP_INT_MODE_IS_BC(bp)) { 8193 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8194 USTORM_ID, 0, IGU_INT_NOP, 1); 8195 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8196 CSTORM_ID, 0, IGU_INT_NOP, 1); 8197 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8198 XSTORM_ID, 0, IGU_INT_NOP, 1); 8199 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8200 TSTORM_ID, 0, IGU_INT_NOP, 1); 8201 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8202 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8203 } else { 8204 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8205 USTORM_ID, 0, IGU_INT_NOP, 1); 8206 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8207 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8208 } 8209 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); 8210 8211 /* !!! These should become driver const once 8212 rf-tool supports split-68 const */ 8213 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 8214 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 8215 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 8216 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 8217 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 8218 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 8219 } 8220 } 8221 8222 /* Reset PCIE errors for debug */ 8223 REG_WR(bp, 0x2114, 0xffffffff); 8224 REG_WR(bp, 0x2120, 0xffffffff); 8225 8226 if (CHIP_IS_E1x(bp)) { 8227 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 8228 main_mem_base = HC_REG_MAIN_MEMORY + 8229 BP_PORT(bp) * (main_mem_size * 4); 8230 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 8231 main_mem_width = 8; 8232 8233 val = REG_RD(bp, main_mem_prty_clr); 8234 if (val) 8235 DP(NETIF_MSG_HW, 8236 "Hmmm... Parity errors in HC block during function init (0x%x)!\n", 8237 val); 8238 8239 /* Clear "false" parity errors in MSI-X table */ 8240 for (i = main_mem_base; 8241 i < main_mem_base + main_mem_size * 4; 8242 i += main_mem_width) { 8243 bnx2x_read_dmae(bp, i, main_mem_width / 4); 8244 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), 8245 i, main_mem_width / 4); 8246 } 8247 /* Clear HC parity attention */ 8248 REG_RD(bp, main_mem_prty_clr); 8249 } 8250 8251 #ifdef BNX2X_STOP_ON_ERROR 8252 /* Enable STORMs SP logging */ 8253 REG_WR8(bp, BAR_USTRORM_INTMEM + 8254 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8255 REG_WR8(bp, BAR_TSTRORM_INTMEM + 8256 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8257 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8258 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8259 REG_WR8(bp, BAR_XSTRORM_INTMEM + 8260 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8261 #endif 8262 8263 bnx2x_phy_probe(&bp->link_params); 8264 8265 return 0; 8266 } 8267 8268 void bnx2x_free_mem_cnic(struct bnx2x *bp) 8269 { 8270 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); 8271 8272 if (!CHIP_IS_E1x(bp)) 8273 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, 8274 sizeof(struct host_hc_status_block_e2)); 8275 else 8276 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, 8277 sizeof(struct host_hc_status_block_e1x)); 8278 8279 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8280 } 8281 8282 void bnx2x_free_mem(struct bnx2x *bp) 8283 { 8284 int i; 8285 8286 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 8287 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 8288 8289 if (IS_VF(bp)) 8290 return; 8291 8292 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, 8293 sizeof(struct host_sp_status_block)); 8294 8295 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, 8296 sizeof(struct bnx2x_slowpath)); 8297 8298 for (i = 0; i < L2_ILT_LINES(bp); i++) 8299 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, 8300 bp->context[i].size); 8301 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); 8302 8303 BNX2X_FREE(bp->ilt->lines); 8304 8305 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); 8306 8307 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, 8308 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8309 8310 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8311 8312 bnx2x_iov_free_mem(bp); 8313 } 8314 8315 int bnx2x_alloc_mem_cnic(struct bnx2x *bp) 8316 { 8317 if (!CHIP_IS_E1x(bp)) { 8318 /* size = the status block + ramrod buffers */ 8319 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8320 sizeof(struct host_hc_status_block_e2)); 8321 if (!bp->cnic_sb.e2_sb) 8322 goto alloc_mem_err; 8323 } else { 8324 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8325 sizeof(struct host_hc_status_block_e1x)); 8326 if (!bp->cnic_sb.e1x_sb) 8327 goto alloc_mem_err; 8328 } 8329 8330 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8331 /* allocate searcher T2 table, as it wasn't allocated before */ 8332 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8333 if (!bp->t2) 8334 goto alloc_mem_err; 8335 } 8336 8337 /* write address to which L5 should insert its values */ 8338 bp->cnic_eth_dev.addr_drv_info_to_mcp = 8339 &bp->slowpath->drv_info_to_mcp; 8340 8341 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) 8342 goto alloc_mem_err; 8343 8344 return 0; 8345 8346 alloc_mem_err: 8347 bnx2x_free_mem_cnic(bp); 8348 BNX2X_ERR("Can't allocate memory\n"); 8349 return -ENOMEM; 8350 } 8351 8352 int bnx2x_alloc_mem(struct bnx2x *bp) 8353 { 8354 int i, allocated, context_size; 8355 8356 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8357 /* allocate searcher T2 table */ 8358 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8359 if (!bp->t2) 8360 goto alloc_mem_err; 8361 } 8362 8363 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping, 8364 sizeof(struct host_sp_status_block)); 8365 if (!bp->def_status_blk) 8366 goto alloc_mem_err; 8367 8368 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping, 8369 sizeof(struct bnx2x_slowpath)); 8370 if (!bp->slowpath) 8371 goto alloc_mem_err; 8372 8373 /* Allocate memory for CDU context: 8374 * This memory is allocated separately and not in the generic ILT 8375 * functions because CDU differs in few aspects: 8376 * 1. There are multiple entities allocating memory for context - 8377 * 'regular' driver, CNIC and SRIOV driver. Each separately controls 8378 * its own ILT lines. 8379 * 2. Since CDU page-size is not a single 4KB page (which is the case 8380 * for the other ILT clients), to be efficient we want to support 8381 * allocation of sub-page-size in the last entry. 8382 * 3. Context pointers are used by the driver to pass to FW / update 8383 * the context (for the other ILT clients the pointers are used just to 8384 * free the memory during unload). 8385 */ 8386 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); 8387 8388 for (i = 0, allocated = 0; allocated < context_size; i++) { 8389 bp->context[i].size = min(CDU_ILT_PAGE_SZ, 8390 (context_size - allocated)); 8391 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping, 8392 bp->context[i].size); 8393 if (!bp->context[i].vcxt) 8394 goto alloc_mem_err; 8395 allocated += bp->context[i].size; 8396 } 8397 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line), 8398 GFP_KERNEL); 8399 if (!bp->ilt->lines) 8400 goto alloc_mem_err; 8401 8402 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) 8403 goto alloc_mem_err; 8404 8405 if (bnx2x_iov_alloc_mem(bp)) 8406 goto alloc_mem_err; 8407 8408 /* Slow path ring */ 8409 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE); 8410 if (!bp->spq) 8411 goto alloc_mem_err; 8412 8413 /* EQ */ 8414 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping, 8415 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8416 if (!bp->eq_ring) 8417 goto alloc_mem_err; 8418 8419 return 0; 8420 8421 alloc_mem_err: 8422 bnx2x_free_mem(bp); 8423 BNX2X_ERR("Can't allocate memory\n"); 8424 return -ENOMEM; 8425 } 8426 8427 /* 8428 * Init service functions 8429 */ 8430 8431 int bnx2x_set_mac_one(struct bnx2x *bp, const u8 *mac, 8432 struct bnx2x_vlan_mac_obj *obj, bool set, 8433 int mac_type, unsigned long *ramrod_flags) 8434 { 8435 int rc; 8436 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8437 8438 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8439 8440 /* Fill general parameters */ 8441 ramrod_param.vlan_mac_obj = obj; 8442 ramrod_param.ramrod_flags = *ramrod_flags; 8443 8444 /* Fill a user request section if needed */ 8445 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8446 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 8447 8448 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 8449 8450 /* Set the command: ADD or DEL */ 8451 if (set) 8452 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8453 else 8454 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8455 } 8456 8457 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8458 8459 if (rc == -EEXIST) { 8460 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8461 /* do not treat adding same MAC as error */ 8462 rc = 0; 8463 } else if (rc < 0) 8464 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); 8465 8466 return rc; 8467 } 8468 8469 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan, 8470 struct bnx2x_vlan_mac_obj *obj, bool set, 8471 unsigned long *ramrod_flags) 8472 { 8473 int rc; 8474 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8475 8476 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8477 8478 /* Fill general parameters */ 8479 ramrod_param.vlan_mac_obj = obj; 8480 ramrod_param.ramrod_flags = *ramrod_flags; 8481 8482 /* Fill a user request section if needed */ 8483 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8484 ramrod_param.user_req.u.vlan.vlan = vlan; 8485 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags); 8486 /* Set the command: ADD or DEL */ 8487 if (set) 8488 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8489 else 8490 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8491 } 8492 8493 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8494 8495 if (rc == -EEXIST) { 8496 /* Do not treat adding same vlan as error. */ 8497 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8498 rc = 0; 8499 } else if (rc < 0) { 8500 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del")); 8501 } 8502 8503 return rc; 8504 } 8505 8506 void bnx2x_clear_vlan_info(struct bnx2x *bp) 8507 { 8508 struct bnx2x_vlan_entry *vlan; 8509 8510 /* Mark that hw forgot all entries */ 8511 list_for_each_entry(vlan, &bp->vlan_reg, link) 8512 vlan->hw = false; 8513 8514 bp->vlan_cnt = 0; 8515 } 8516 8517 static int bnx2x_del_all_vlans(struct bnx2x *bp) 8518 { 8519 struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj; 8520 unsigned long ramrod_flags = 0, vlan_flags = 0; 8521 int rc; 8522 8523 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8524 __set_bit(BNX2X_VLAN, &vlan_flags); 8525 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags); 8526 if (rc) 8527 return rc; 8528 8529 bnx2x_clear_vlan_info(bp); 8530 8531 return 0; 8532 } 8533 8534 int bnx2x_del_all_macs(struct bnx2x *bp, 8535 struct bnx2x_vlan_mac_obj *mac_obj, 8536 int mac_type, bool wait_for_comp) 8537 { 8538 int rc; 8539 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 8540 8541 /* Wait for completion of requested */ 8542 if (wait_for_comp) 8543 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8544 8545 /* Set the mac type of addresses we want to clear */ 8546 __set_bit(mac_type, &vlan_mac_flags); 8547 8548 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); 8549 if (rc < 0) 8550 BNX2X_ERR("Failed to delete MACs: %d\n", rc); 8551 8552 return rc; 8553 } 8554 8555 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) 8556 { 8557 if (IS_PF(bp)) { 8558 unsigned long ramrod_flags = 0; 8559 8560 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); 8561 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8562 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, 8563 &bp->sp_objs->mac_obj, set, 8564 BNX2X_ETH_MAC, &ramrod_flags); 8565 } else { /* vf */ 8566 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, 8567 bp->fp->index, set); 8568 } 8569 } 8570 8571 int bnx2x_setup_leading(struct bnx2x *bp) 8572 { 8573 if (IS_PF(bp)) 8574 return bnx2x_setup_queue(bp, &bp->fp[0], true); 8575 else /* VF */ 8576 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true); 8577 } 8578 8579 /** 8580 * bnx2x_set_int_mode - configure interrupt mode 8581 * 8582 * @bp: driver handle 8583 * 8584 * In case of MSI-X it will also try to enable MSI-X. 8585 */ 8586 int bnx2x_set_int_mode(struct bnx2x *bp) 8587 { 8588 int rc = 0; 8589 8590 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) { 8591 BNX2X_ERR("VF not loaded since interrupt mode not msix\n"); 8592 return -EINVAL; 8593 } 8594 8595 switch (int_mode) { 8596 case BNX2X_INT_MODE_MSIX: 8597 /* attempt to enable msix */ 8598 rc = bnx2x_enable_msix(bp); 8599 8600 /* msix attained */ 8601 if (!rc) 8602 return 0; 8603 8604 /* vfs use only msix */ 8605 if (rc && IS_VF(bp)) 8606 return rc; 8607 8608 /* failed to enable multiple MSI-X */ 8609 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", 8610 bp->num_queues, 8611 1 + bp->num_cnic_queues); 8612 8613 fallthrough; 8614 case BNX2X_INT_MODE_MSI: 8615 bnx2x_enable_msi(bp); 8616 8617 fallthrough; 8618 case BNX2X_INT_MODE_INTX: 8619 bp->num_ethernet_queues = 1; 8620 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 8621 BNX2X_DEV_INFO("set number of queues to 1\n"); 8622 break; 8623 default: 8624 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); 8625 return -EINVAL; 8626 } 8627 return 0; 8628 } 8629 8630 /* must be called prior to any HW initializations */ 8631 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) 8632 { 8633 if (IS_SRIOV(bp)) 8634 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; 8635 return L2_ILT_LINES(bp); 8636 } 8637 8638 void bnx2x_ilt_set_info(struct bnx2x *bp) 8639 { 8640 struct ilt_client_info *ilt_client; 8641 struct bnx2x_ilt *ilt = BP_ILT(bp); 8642 u16 line = 0; 8643 8644 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); 8645 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); 8646 8647 /* CDU */ 8648 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 8649 ilt_client->client_num = ILT_CLIENT_CDU; 8650 ilt_client->page_size = CDU_ILT_PAGE_SZ; 8651 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 8652 ilt_client->start = line; 8653 line += bnx2x_cid_ilt_lines(bp); 8654 8655 if (CNIC_SUPPORT(bp)) 8656 line += CNIC_ILT_LINES; 8657 ilt_client->end = line - 1; 8658 8659 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8660 ilt_client->start, 8661 ilt_client->end, 8662 ilt_client->page_size, 8663 ilt_client->flags, 8664 ilog2(ilt_client->page_size >> 12)); 8665 8666 /* QM */ 8667 if (QM_INIT(bp->qm_cid_count)) { 8668 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 8669 ilt_client->client_num = ILT_CLIENT_QM; 8670 ilt_client->page_size = QM_ILT_PAGE_SZ; 8671 ilt_client->flags = 0; 8672 ilt_client->start = line; 8673 8674 /* 4 bytes for each cid */ 8675 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 8676 QM_ILT_PAGE_SZ); 8677 8678 ilt_client->end = line - 1; 8679 8680 DP(NETIF_MSG_IFUP, 8681 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8682 ilt_client->start, 8683 ilt_client->end, 8684 ilt_client->page_size, 8685 ilt_client->flags, 8686 ilog2(ilt_client->page_size >> 12)); 8687 } 8688 8689 if (CNIC_SUPPORT(bp)) { 8690 /* SRC */ 8691 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 8692 ilt_client->client_num = ILT_CLIENT_SRC; 8693 ilt_client->page_size = SRC_ILT_PAGE_SZ; 8694 ilt_client->flags = 0; 8695 ilt_client->start = line; 8696 line += SRC_ILT_LINES; 8697 ilt_client->end = line - 1; 8698 8699 DP(NETIF_MSG_IFUP, 8700 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8701 ilt_client->start, 8702 ilt_client->end, 8703 ilt_client->page_size, 8704 ilt_client->flags, 8705 ilog2(ilt_client->page_size >> 12)); 8706 8707 /* TM */ 8708 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 8709 ilt_client->client_num = ILT_CLIENT_TM; 8710 ilt_client->page_size = TM_ILT_PAGE_SZ; 8711 ilt_client->flags = 0; 8712 ilt_client->start = line; 8713 line += TM_ILT_LINES; 8714 ilt_client->end = line - 1; 8715 8716 DP(NETIF_MSG_IFUP, 8717 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8718 ilt_client->start, 8719 ilt_client->end, 8720 ilt_client->page_size, 8721 ilt_client->flags, 8722 ilog2(ilt_client->page_size >> 12)); 8723 } 8724 8725 BUG_ON(line > ILT_MAX_LINES); 8726 } 8727 8728 /** 8729 * bnx2x_pf_q_prep_init - prepare INIT transition parameters 8730 * 8731 * @bp: driver handle 8732 * @fp: pointer to fastpath 8733 * @init_params: pointer to parameters structure 8734 * 8735 * parameters configured: 8736 * - HC configuration 8737 * - Queue's CDU context 8738 */ 8739 static void bnx2x_pf_q_prep_init(struct bnx2x *bp, 8740 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) 8741 { 8742 u8 cos; 8743 int cxt_index, cxt_offset; 8744 8745 /* FCoE Queue uses Default SB, thus has no HC capabilities */ 8746 if (!IS_FCOE_FP(fp)) { 8747 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); 8748 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); 8749 8750 /* If HC is supported, enable host coalescing in the transition 8751 * to INIT state. 8752 */ 8753 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); 8754 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); 8755 8756 /* HC rate */ 8757 init_params->rx.hc_rate = bp->rx_ticks ? 8758 (1000000 / bp->rx_ticks) : 0; 8759 init_params->tx.hc_rate = bp->tx_ticks ? 8760 (1000000 / bp->tx_ticks) : 0; 8761 8762 /* FW SB ID */ 8763 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = 8764 fp->fw_sb_id; 8765 8766 /* 8767 * CQ index among the SB indices: FCoE clients uses the default 8768 * SB, therefore it's different. 8769 */ 8770 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 8771 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 8772 } 8773 8774 /* set maximum number of COSs supported by this queue */ 8775 init_params->max_cos = fp->max_cos; 8776 8777 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", 8778 fp->index, init_params->max_cos); 8779 8780 /* set the context pointers queue object */ 8781 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 8782 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; 8783 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * 8784 ILT_PAGE_CIDS); 8785 init_params->cxts[cos] = 8786 &bp->context[cxt_index].vcxt[cxt_offset].eth; 8787 } 8788 } 8789 8790 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8791 struct bnx2x_queue_state_params *q_params, 8792 struct bnx2x_queue_setup_tx_only_params *tx_only_params, 8793 int tx_index, bool leading) 8794 { 8795 memset(tx_only_params, 0, sizeof(*tx_only_params)); 8796 8797 /* Set the command */ 8798 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 8799 8800 /* Set tx-only QUEUE flags: don't zero statistics */ 8801 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); 8802 8803 /* choose the index of the cid to send the slow path on */ 8804 tx_only_params->cid_index = tx_index; 8805 8806 /* Set general TX_ONLY_SETUP parameters */ 8807 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); 8808 8809 /* Set Tx TX_ONLY_SETUP parameters */ 8810 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); 8811 8812 DP(NETIF_MSG_IFUP, 8813 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", 8814 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], 8815 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, 8816 tx_only_params->gen_params.spcl_id, tx_only_params->flags); 8817 8818 /* send the ramrod */ 8819 return bnx2x_queue_state_change(bp, q_params); 8820 } 8821 8822 /** 8823 * bnx2x_setup_queue - setup queue 8824 * 8825 * @bp: driver handle 8826 * @fp: pointer to fastpath 8827 * @leading: is leading 8828 * 8829 * This function performs 2 steps in a Queue state machine 8830 * actually: 1) RESET->INIT 2) INIT->SETUP 8831 */ 8832 8833 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8834 bool leading) 8835 { 8836 struct bnx2x_queue_state_params q_params = {NULL}; 8837 struct bnx2x_queue_setup_params *setup_params = 8838 &q_params.params.setup; 8839 struct bnx2x_queue_setup_tx_only_params *tx_only_params = 8840 &q_params.params.tx_only; 8841 int rc; 8842 u8 tx_index; 8843 8844 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); 8845 8846 /* reset IGU state skip FCoE L2 queue */ 8847 if (!IS_FCOE_FP(fp)) 8848 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, 8849 IGU_INT_ENABLE, 0); 8850 8851 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8852 /* We want to wait for completion in this context */ 8853 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8854 8855 /* Prepare the INIT parameters */ 8856 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); 8857 8858 /* Set the command */ 8859 q_params.cmd = BNX2X_Q_CMD_INIT; 8860 8861 /* Change the state to INIT */ 8862 rc = bnx2x_queue_state_change(bp, &q_params); 8863 if (rc) { 8864 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); 8865 return rc; 8866 } 8867 8868 DP(NETIF_MSG_IFUP, "init complete\n"); 8869 8870 /* Now move the Queue to the SETUP state... */ 8871 memset(setup_params, 0, sizeof(*setup_params)); 8872 8873 /* Set QUEUE flags */ 8874 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); 8875 8876 /* Set general SETUP parameters */ 8877 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, 8878 FIRST_TX_COS_INDEX); 8879 8880 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, 8881 &setup_params->rxq_params); 8882 8883 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, 8884 FIRST_TX_COS_INDEX); 8885 8886 /* Set the command */ 8887 q_params.cmd = BNX2X_Q_CMD_SETUP; 8888 8889 if (IS_FCOE_FP(fp)) 8890 bp->fcoe_init = true; 8891 8892 /* Change the state to SETUP */ 8893 rc = bnx2x_queue_state_change(bp, &q_params); 8894 if (rc) { 8895 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); 8896 return rc; 8897 } 8898 8899 /* loop through the relevant tx-only indices */ 8900 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8901 tx_index < fp->max_cos; 8902 tx_index++) { 8903 8904 /* prepare and send tx-only ramrod*/ 8905 rc = bnx2x_setup_tx_only(bp, fp, &q_params, 8906 tx_only_params, tx_index, leading); 8907 if (rc) { 8908 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", 8909 fp->index, tx_index); 8910 return rc; 8911 } 8912 } 8913 8914 return rc; 8915 } 8916 8917 static int bnx2x_stop_queue(struct bnx2x *bp, int index) 8918 { 8919 struct bnx2x_fastpath *fp = &bp->fp[index]; 8920 struct bnx2x_fp_txdata *txdata; 8921 struct bnx2x_queue_state_params q_params = {NULL}; 8922 int rc, tx_index; 8923 8924 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); 8925 8926 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8927 /* We want to wait for completion in this context */ 8928 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8929 8930 /* close tx-only connections */ 8931 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8932 tx_index < fp->max_cos; 8933 tx_index++){ 8934 8935 /* ascertain this is a normal queue*/ 8936 txdata = fp->txdata_ptr[tx_index]; 8937 8938 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", 8939 txdata->txq_index); 8940 8941 /* send halt terminate on tx-only connection */ 8942 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8943 memset(&q_params.params.terminate, 0, 8944 sizeof(q_params.params.terminate)); 8945 q_params.params.terminate.cid_index = tx_index; 8946 8947 rc = bnx2x_queue_state_change(bp, &q_params); 8948 if (rc) 8949 return rc; 8950 8951 /* send halt terminate on tx-only connection */ 8952 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8953 memset(&q_params.params.cfc_del, 0, 8954 sizeof(q_params.params.cfc_del)); 8955 q_params.params.cfc_del.cid_index = tx_index; 8956 rc = bnx2x_queue_state_change(bp, &q_params); 8957 if (rc) 8958 return rc; 8959 } 8960 /* Stop the primary connection: */ 8961 /* ...halt the connection */ 8962 q_params.cmd = BNX2X_Q_CMD_HALT; 8963 rc = bnx2x_queue_state_change(bp, &q_params); 8964 if (rc) 8965 return rc; 8966 8967 /* ...terminate the connection */ 8968 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8969 memset(&q_params.params.terminate, 0, 8970 sizeof(q_params.params.terminate)); 8971 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 8972 rc = bnx2x_queue_state_change(bp, &q_params); 8973 if (rc) 8974 return rc; 8975 /* ...delete cfc entry */ 8976 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8977 memset(&q_params.params.cfc_del, 0, 8978 sizeof(q_params.params.cfc_del)); 8979 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 8980 return bnx2x_queue_state_change(bp, &q_params); 8981 } 8982 8983 static void bnx2x_reset_func(struct bnx2x *bp) 8984 { 8985 int port = BP_PORT(bp); 8986 int func = BP_FUNC(bp); 8987 int i; 8988 8989 /* Disable the function in the FW */ 8990 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 8991 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 8992 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 8993 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 8994 8995 /* FP SBs */ 8996 for_each_eth_queue(bp, i) { 8997 struct bnx2x_fastpath *fp = &bp->fp[i]; 8998 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8999 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 9000 SB_DISABLED); 9001 } 9002 9003 if (CNIC_LOADED(bp)) 9004 /* CNIC SB */ 9005 REG_WR8(bp, BAR_CSTRORM_INTMEM + 9006 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 9007 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); 9008 9009 /* SP SB */ 9010 REG_WR8(bp, BAR_CSTRORM_INTMEM + 9011 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 9012 SB_DISABLED); 9013 9014 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) 9015 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 9016 0); 9017 9018 /* Configure IGU */ 9019 if (bp->common.int_block == INT_BLOCK_HC) { 9020 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 9021 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 9022 } else { 9023 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 9024 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 9025 } 9026 9027 if (CNIC_LOADED(bp)) { 9028 /* Disable Timer scan */ 9029 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 9030 /* 9031 * Wait for at least 10ms and up to 2 second for the timers 9032 * scan to complete 9033 */ 9034 for (i = 0; i < 200; i++) { 9035 usleep_range(10000, 20000); 9036 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) 9037 break; 9038 } 9039 } 9040 /* Clear ILT */ 9041 bnx2x_clear_func_ilt(bp, func); 9042 9043 /* Timers workaround bug for E2: if this is vnic-3, 9044 * we need to set the entire ilt range for this timers. 9045 */ 9046 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { 9047 struct ilt_client_info ilt_cli; 9048 /* use dummy TM client */ 9049 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 9050 ilt_cli.start = 0; 9051 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 9052 ilt_cli.client_num = ILT_CLIENT_TM; 9053 9054 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); 9055 } 9056 9057 /* this assumes that reset_port() called before reset_func()*/ 9058 if (!CHIP_IS_E1x(bp)) 9059 bnx2x_pf_disable(bp); 9060 9061 bp->dmae_ready = 0; 9062 } 9063 9064 static void bnx2x_reset_port(struct bnx2x *bp) 9065 { 9066 int port = BP_PORT(bp); 9067 u32 val; 9068 9069 /* Reset physical Link */ 9070 bnx2x__link_reset(bp); 9071 9072 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 9073 9074 /* Do not rcv packets to BRB */ 9075 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 9076 /* Do not direct rcv packets that are not for MCP to the BRB */ 9077 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 9078 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 9079 9080 /* Configure AEU */ 9081 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 9082 9083 msleep(100); 9084 /* Check for BRB port occupancy */ 9085 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 9086 if (val) 9087 DP(NETIF_MSG_IFDOWN, 9088 "BRB1 is not empty %d blocks are occupied\n", val); 9089 9090 /* TODO: Close Doorbell port? */ 9091 } 9092 9093 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) 9094 { 9095 struct bnx2x_func_state_params func_params = {NULL}; 9096 9097 /* Prepare parameters for function state transitions */ 9098 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9099 9100 func_params.f_obj = &bp->func_obj; 9101 func_params.cmd = BNX2X_F_CMD_HW_RESET; 9102 9103 func_params.params.hw_init.load_phase = load_code; 9104 9105 return bnx2x_func_state_change(bp, &func_params); 9106 } 9107 9108 static int bnx2x_func_stop(struct bnx2x *bp) 9109 { 9110 struct bnx2x_func_state_params func_params = {NULL}; 9111 int rc; 9112 9113 /* Prepare parameters for function state transitions */ 9114 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9115 func_params.f_obj = &bp->func_obj; 9116 func_params.cmd = BNX2X_F_CMD_STOP; 9117 9118 /* 9119 * Try to stop the function the 'good way'. If fails (in case 9120 * of a parity error during bnx2x_chip_cleanup()) and we are 9121 * not in a debug mode, perform a state transaction in order to 9122 * enable further HW_RESET transaction. 9123 */ 9124 rc = bnx2x_func_state_change(bp, &func_params); 9125 if (rc) { 9126 #ifdef BNX2X_STOP_ON_ERROR 9127 return rc; 9128 #else 9129 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); 9130 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 9131 return bnx2x_func_state_change(bp, &func_params); 9132 #endif 9133 } 9134 9135 return 0; 9136 } 9137 9138 /** 9139 * bnx2x_send_unload_req - request unload mode from the MCP. 9140 * 9141 * @bp: driver handle 9142 * @unload_mode: requested function's unload mode 9143 * 9144 * Return unload mode returned by the MCP: COMMON, PORT or FUNC. 9145 */ 9146 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) 9147 { 9148 u32 reset_code = 0; 9149 int port = BP_PORT(bp); 9150 9151 /* Select the UNLOAD request mode */ 9152 if (unload_mode == UNLOAD_NORMAL) 9153 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9154 9155 else if (bp->flags & NO_WOL_FLAG) 9156 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 9157 9158 else if (bp->wol) { 9159 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 9160 const u8 *mac_addr = bp->dev->dev_addr; 9161 struct pci_dev *pdev = bp->pdev; 9162 u32 val; 9163 u16 pmc; 9164 9165 /* The mac address is written to entries 1-4 to 9166 * preserve entry 0 which is used by the PMF 9167 */ 9168 u8 entry = (BP_VN(bp) + 1)*8; 9169 9170 val = (mac_addr[0] << 8) | mac_addr[1]; 9171 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); 9172 9173 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 9174 (mac_addr[4] << 8) | mac_addr[5]; 9175 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 9176 9177 /* Enable the PME and clear the status */ 9178 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc); 9179 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; 9180 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc); 9181 9182 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 9183 9184 } else 9185 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9186 9187 /* Send the request to the MCP */ 9188 if (!BP_NOMCP(bp)) 9189 reset_code = bnx2x_fw_command(bp, reset_code, 0); 9190 else { 9191 int path = BP_PATH(bp); 9192 9193 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", 9194 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9195 bnx2x_load_count[path][2]); 9196 bnx2x_load_count[path][0]--; 9197 bnx2x_load_count[path][1 + port]--; 9198 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", 9199 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9200 bnx2x_load_count[path][2]); 9201 if (bnx2x_load_count[path][0] == 0) 9202 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; 9203 else if (bnx2x_load_count[path][1 + port] == 0) 9204 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; 9205 else 9206 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; 9207 } 9208 9209 return reset_code; 9210 } 9211 9212 /** 9213 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. 9214 * 9215 * @bp: driver handle 9216 * @keep_link: true iff link should be kept up 9217 */ 9218 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) 9219 { 9220 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 9221 9222 /* Report UNLOAD_DONE to MCP */ 9223 if (!BP_NOMCP(bp)) 9224 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 9225 } 9226 9227 static int bnx2x_func_wait_started(struct bnx2x *bp) 9228 { 9229 int tout = 50; 9230 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 9231 9232 if (!bp->port.pmf) 9233 return 0; 9234 9235 /* 9236 * (assumption: No Attention from MCP at this stage) 9237 * PMF probably in the middle of TX disable/enable transaction 9238 * 1. Sync IRS for default SB 9239 * 2. Sync SP queue - this guarantees us that attention handling started 9240 * 3. Wait, that TX disable/enable transaction completes 9241 * 9242 * 1+2 guarantee that if DCBx attention was scheduled it already changed 9243 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 9244 * received completion for the transaction the state is TX_STOPPED. 9245 * State will return to STARTED after completion of TX_STOPPED-->STARTED 9246 * transaction. 9247 */ 9248 9249 /* make sure default SB ISR is done */ 9250 if (msix) 9251 synchronize_irq(bp->msix_table[0].vector); 9252 else 9253 synchronize_irq(bp->pdev->irq); 9254 9255 flush_workqueue(bnx2x_wq); 9256 flush_workqueue(bnx2x_iov_wq); 9257 9258 while (bnx2x_func_get_state(bp, &bp->func_obj) != 9259 BNX2X_F_STATE_STARTED && tout--) 9260 msleep(20); 9261 9262 if (bnx2x_func_get_state(bp, &bp->func_obj) != 9263 BNX2X_F_STATE_STARTED) { 9264 #ifdef BNX2X_STOP_ON_ERROR 9265 BNX2X_ERR("Wrong function state\n"); 9266 return -EBUSY; 9267 #else 9268 /* 9269 * Failed to complete the transaction in a "good way" 9270 * Force both transactions with CLR bit 9271 */ 9272 struct bnx2x_func_state_params func_params = {NULL}; 9273 9274 DP(NETIF_MSG_IFDOWN, 9275 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n"); 9276 9277 func_params.f_obj = &bp->func_obj; 9278 __set_bit(RAMROD_DRV_CLR_ONLY, 9279 &func_params.ramrod_flags); 9280 9281 /* STARTED-->TX_ST0PPED */ 9282 func_params.cmd = BNX2X_F_CMD_TX_STOP; 9283 bnx2x_func_state_change(bp, &func_params); 9284 9285 /* TX_ST0PPED-->STARTED */ 9286 func_params.cmd = BNX2X_F_CMD_TX_START; 9287 return bnx2x_func_state_change(bp, &func_params); 9288 #endif 9289 } 9290 9291 return 0; 9292 } 9293 9294 static void bnx2x_disable_ptp(struct bnx2x *bp) 9295 { 9296 int port = BP_PORT(bp); 9297 9298 /* Disable sending PTP packets to host */ 9299 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 9300 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 9301 9302 /* Reset PTP event detection rules */ 9303 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 9304 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 9305 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 9306 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 9307 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 9308 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 9309 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 9310 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 9311 9312 /* Disable the PTP feature */ 9313 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 9314 NIG_REG_P0_PTP_EN, 0x0); 9315 } 9316 9317 /* Called during unload, to stop PTP-related stuff */ 9318 static void bnx2x_stop_ptp(struct bnx2x *bp) 9319 { 9320 /* Cancel PTP work queue. Should be done after the Tx queues are 9321 * drained to prevent additional scheduling. 9322 */ 9323 cancel_work_sync(&bp->ptp_task); 9324 9325 if (bp->ptp_tx_skb) { 9326 dev_kfree_skb_any(bp->ptp_tx_skb); 9327 bp->ptp_tx_skb = NULL; 9328 } 9329 9330 /* Disable PTP in HW */ 9331 bnx2x_disable_ptp(bp); 9332 9333 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n"); 9334 } 9335 9336 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) 9337 { 9338 int port = BP_PORT(bp); 9339 int i, rc = 0; 9340 u8 cos; 9341 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 9342 u32 reset_code; 9343 9344 /* Wait until tx fastpath tasks complete */ 9345 for_each_tx_queue(bp, i) { 9346 struct bnx2x_fastpath *fp = &bp->fp[i]; 9347 9348 for_each_cos_in_tx_queue(fp, cos) 9349 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 9350 #ifdef BNX2X_STOP_ON_ERROR 9351 if (rc) 9352 return; 9353 #endif 9354 } 9355 9356 /* Give HW time to discard old tx messages */ 9357 usleep_range(1000, 2000); 9358 9359 /* Clean all ETH MACs */ 9360 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, 9361 false); 9362 if (rc < 0) 9363 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); 9364 9365 /* Clean up UC list */ 9366 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, 9367 true); 9368 if (rc < 0) 9369 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", 9370 rc); 9371 9372 /* The whole *vlan_obj structure may be not initialized if VLAN 9373 * filtering offload is not supported by hardware. Currently this is 9374 * true for all hardware covered by CHIP_IS_E1x(). 9375 */ 9376 if (!CHIP_IS_E1x(bp)) { 9377 /* Remove all currently configured VLANs */ 9378 rc = bnx2x_del_all_vlans(bp); 9379 if (rc < 0) 9380 BNX2X_ERR("Failed to delete all VLANs\n"); 9381 } 9382 9383 /* Disable LLH */ 9384 if (!CHIP_IS_E1(bp)) 9385 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 9386 9387 /* Set "drop all" (stop Rx). 9388 * We need to take a netif_addr_lock() here in order to prevent 9389 * a race between the completion code and this code. 9390 */ 9391 netif_addr_lock_bh(bp->dev); 9392 /* Schedule the rx_mode command */ 9393 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 9394 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 9395 else if (bp->slowpath) 9396 bnx2x_set_storm_rx_mode(bp); 9397 9398 /* Cleanup multicast configuration */ 9399 rparam.mcast_obj = &bp->mcast_obj; 9400 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 9401 if (rc < 0) 9402 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); 9403 9404 netif_addr_unlock_bh(bp->dev); 9405 9406 bnx2x_iov_chip_cleanup(bp); 9407 9408 /* 9409 * Send the UNLOAD_REQUEST to the MCP. This will return if 9410 * this function should perform FUNC, PORT or COMMON HW 9411 * reset. 9412 */ 9413 reset_code = bnx2x_send_unload_req(bp, unload_mode); 9414 9415 /* 9416 * (assumption: No Attention from MCP at this stage) 9417 * PMF probably in the middle of TX disable/enable transaction 9418 */ 9419 rc = bnx2x_func_wait_started(bp); 9420 if (rc) { 9421 BNX2X_ERR("bnx2x_func_wait_started failed\n"); 9422 #ifdef BNX2X_STOP_ON_ERROR 9423 return; 9424 #endif 9425 } 9426 9427 /* Close multi and leading connections 9428 * Completions for ramrods are collected in a synchronous way 9429 */ 9430 for_each_eth_queue(bp, i) 9431 if (bnx2x_stop_queue(bp, i)) 9432 #ifdef BNX2X_STOP_ON_ERROR 9433 return; 9434 #else 9435 goto unload_error; 9436 #endif 9437 9438 if (CNIC_LOADED(bp)) { 9439 for_each_cnic_queue(bp, i) 9440 if (bnx2x_stop_queue(bp, i)) 9441 #ifdef BNX2X_STOP_ON_ERROR 9442 return; 9443 #else 9444 goto unload_error; 9445 #endif 9446 } 9447 9448 /* If SP settings didn't get completed so far - something 9449 * very wrong has happen. 9450 */ 9451 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) 9452 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); 9453 9454 #ifndef BNX2X_STOP_ON_ERROR 9455 unload_error: 9456 #endif 9457 rc = bnx2x_func_stop(bp); 9458 if (rc) { 9459 BNX2X_ERR("Function stop failed!\n"); 9460 #ifdef BNX2X_STOP_ON_ERROR 9461 return; 9462 #endif 9463 } 9464 9465 /* stop_ptp should be after the Tx queues are drained to prevent 9466 * scheduling to the cancelled PTP work queue. It should also be after 9467 * function stop ramrod is sent, since as part of this ramrod FW access 9468 * PTP registers. 9469 */ 9470 if (bp->flags & PTP_SUPPORTED) { 9471 bnx2x_stop_ptp(bp); 9472 if (bp->ptp_clock) { 9473 ptp_clock_unregister(bp->ptp_clock); 9474 bp->ptp_clock = NULL; 9475 } 9476 } 9477 9478 /* Disable HW interrupts, NAPI */ 9479 bnx2x_netif_stop(bp, 1); 9480 /* Delete all NAPI objects */ 9481 bnx2x_del_all_napi(bp); 9482 if (CNIC_LOADED(bp)) 9483 bnx2x_del_all_napi_cnic(bp); 9484 9485 /* Release IRQs */ 9486 bnx2x_free_irq(bp); 9487 9488 /* Reset the chip, unless PCI function is offline. If we reach this 9489 * point following a PCI error handling, it means device is really 9490 * in a bad state and we're about to remove it, so reset the chip 9491 * is not a good idea. 9492 */ 9493 if (!pci_channel_offline(bp->pdev)) { 9494 rc = bnx2x_reset_hw(bp, reset_code); 9495 if (rc) 9496 BNX2X_ERR("HW_RESET failed\n"); 9497 } 9498 9499 /* Report UNLOAD_DONE to MCP */ 9500 bnx2x_send_unload_done(bp, keep_link); 9501 } 9502 9503 void bnx2x_disable_close_the_gate(struct bnx2x *bp) 9504 { 9505 u32 val; 9506 9507 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); 9508 9509 if (CHIP_IS_E1(bp)) { 9510 int port = BP_PORT(bp); 9511 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 9512 MISC_REG_AEU_MASK_ATTN_FUNC_0; 9513 9514 val = REG_RD(bp, addr); 9515 val &= ~(0x300); 9516 REG_WR(bp, addr, val); 9517 } else { 9518 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); 9519 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 9520 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 9521 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); 9522 } 9523 } 9524 9525 /* Close gates #2, #3 and #4: */ 9526 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) 9527 { 9528 u32 val; 9529 9530 /* Gates #2 and #4a are closed/opened for "not E1" only */ 9531 if (!CHIP_IS_E1(bp)) { 9532 /* #4 */ 9533 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 9534 /* #2 */ 9535 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 9536 } 9537 9538 /* #3 */ 9539 if (CHIP_IS_E1x(bp)) { 9540 /* Prevent interrupts from HC on both ports */ 9541 val = REG_RD(bp, HC_REG_CONFIG_1); 9542 REG_WR(bp, HC_REG_CONFIG_1, 9543 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 9544 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 9545 9546 val = REG_RD(bp, HC_REG_CONFIG_0); 9547 REG_WR(bp, HC_REG_CONFIG_0, 9548 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 9549 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 9550 } else { 9551 /* Prevent incoming interrupts in IGU */ 9552 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 9553 9554 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, 9555 (!close) ? 9556 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 9557 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 9558 } 9559 9560 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", 9561 close ? "closing" : "opening"); 9562 } 9563 9564 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ 9565 9566 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) 9567 { 9568 /* Do some magic... */ 9569 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9570 *magic_val = val & SHARED_MF_CLP_MAGIC; 9571 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 9572 } 9573 9574 /** 9575 * bnx2x_clp_reset_done - restore the value of the `magic' bit. 9576 * 9577 * @bp: driver handle 9578 * @magic_val: old value of the `magic' bit. 9579 */ 9580 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) 9581 { 9582 /* Restore the `magic' bit value... */ 9583 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9584 MF_CFG_WR(bp, shared_mf_config.clp_mb, 9585 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 9586 } 9587 9588 /** 9589 * bnx2x_reset_mcp_prep - prepare for MCP reset. 9590 * 9591 * @bp: driver handle 9592 * @magic_val: old value of 'magic' bit. 9593 * 9594 * Takes care of CLP configurations. 9595 */ 9596 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) 9597 { 9598 u32 shmem; 9599 u32 validity_offset; 9600 9601 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); 9602 9603 /* Set `magic' bit in order to save MF config */ 9604 if (!CHIP_IS_E1(bp)) 9605 bnx2x_clp_reset_prep(bp, magic_val); 9606 9607 /* Get shmem offset */ 9608 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9609 validity_offset = 9610 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); 9611 9612 /* Clear validity map flags */ 9613 if (shmem > 0) 9614 REG_WR(bp, shmem + validity_offset, 0); 9615 } 9616 9617 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 9618 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 9619 9620 /** 9621 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT 9622 * 9623 * @bp: driver handle 9624 */ 9625 static void bnx2x_mcp_wait_one(struct bnx2x *bp) 9626 { 9627 /* special handling for emulation and FPGA, 9628 wait 10 times longer */ 9629 if (CHIP_REV_IS_SLOW(bp)) 9630 msleep(MCP_ONE_TIMEOUT*10); 9631 else 9632 msleep(MCP_ONE_TIMEOUT); 9633 } 9634 9635 /* 9636 * initializes bp->common.shmem_base and waits for validity signature to appear 9637 */ 9638 static int bnx2x_init_shmem(struct bnx2x *bp) 9639 { 9640 int cnt = 0; 9641 u32 val = 0; 9642 9643 do { 9644 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9645 9646 /* If we read all 0xFFs, means we are in PCI error state and 9647 * should bail out to avoid crashes on adapter's FW reads. 9648 */ 9649 if (bp->common.shmem_base == 0xFFFFFFFF) { 9650 bp->flags |= NO_MCP_FLAG; 9651 return -ENODEV; 9652 } 9653 9654 if (bp->common.shmem_base) { 9655 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); 9656 if (val & SHR_MEM_VALIDITY_MB) 9657 return 0; 9658 } 9659 9660 bnx2x_mcp_wait_one(bp); 9661 9662 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 9663 9664 BNX2X_ERR("BAD MCP validity signature\n"); 9665 9666 return -ENODEV; 9667 } 9668 9669 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) 9670 { 9671 int rc = bnx2x_init_shmem(bp); 9672 9673 /* Restore the `magic' bit value */ 9674 if (!CHIP_IS_E1(bp)) 9675 bnx2x_clp_reset_done(bp, magic_val); 9676 9677 return rc; 9678 } 9679 9680 static void bnx2x_pxp_prep(struct bnx2x *bp) 9681 { 9682 if (!CHIP_IS_E1(bp)) { 9683 REG_WR(bp, PXP2_REG_RD_START_INIT, 0); 9684 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); 9685 } 9686 } 9687 9688 /* 9689 * Reset the whole chip except for: 9690 * - PCIE core 9691 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by 9692 * one reset bit) 9693 * - IGU 9694 * - MISC (including AEU) 9695 * - GRC 9696 * - RBCN, RBCP 9697 */ 9698 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) 9699 { 9700 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 9701 u32 global_bits2, stay_reset2; 9702 9703 /* 9704 * Bits that have to be set in reset_mask2 if we want to reset 'global' 9705 * (per chip) blocks. 9706 */ 9707 global_bits2 = 9708 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 9709 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 9710 9711 /* Don't reset the following blocks. 9712 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 9713 * reset, as in 4 port device they might still be owned 9714 * by the MCP (there is only one leader per path). 9715 */ 9716 not_reset_mask1 = 9717 MISC_REGISTERS_RESET_REG_1_RST_HC | 9718 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 9719 MISC_REGISTERS_RESET_REG_1_RST_PXP; 9720 9721 not_reset_mask2 = 9722 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 9723 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 9724 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 9725 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 9726 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 9727 MISC_REGISTERS_RESET_REG_2_RST_GRC | 9728 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 9729 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 9730 MISC_REGISTERS_RESET_REG_2_RST_ATC | 9731 MISC_REGISTERS_RESET_REG_2_PGLC | 9732 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 9733 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 9734 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 9735 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 9736 MISC_REGISTERS_RESET_REG_2_UMAC0 | 9737 MISC_REGISTERS_RESET_REG_2_UMAC1; 9738 9739 /* 9740 * Keep the following blocks in reset: 9741 * - all xxMACs are handled by the bnx2x_link code. 9742 */ 9743 stay_reset2 = 9744 MISC_REGISTERS_RESET_REG_2_XMAC | 9745 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 9746 9747 /* Full reset masks according to the chip */ 9748 reset_mask1 = 0xffffffff; 9749 9750 if (CHIP_IS_E1(bp)) 9751 reset_mask2 = 0xffff; 9752 else if (CHIP_IS_E1H(bp)) 9753 reset_mask2 = 0x1ffff; 9754 else if (CHIP_IS_E2(bp)) 9755 reset_mask2 = 0xfffff; 9756 else /* CHIP_IS_E3 */ 9757 reset_mask2 = 0x3ffffff; 9758 9759 /* Don't reset global blocks unless we need to */ 9760 if (!global) 9761 reset_mask2 &= ~global_bits2; 9762 9763 /* 9764 * In case of attention in the QM, we need to reset PXP 9765 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 9766 * because otherwise QM reset would release 'close the gates' shortly 9767 * before resetting the PXP, then the PSWRQ would send a write 9768 * request to PGLUE. Then when PXP is reset, PGLUE would try to 9769 * read the payload data from PSWWR, but PSWWR would not 9770 * respond. The write queue in PGLUE would stuck, dmae commands 9771 * would not return. Therefore it's important to reset the second 9772 * reset register (containing the 9773 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 9774 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 9775 * bit). 9776 */ 9777 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 9778 reset_mask2 & (~not_reset_mask2)); 9779 9780 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 9781 reset_mask1 & (~not_reset_mask1)); 9782 9783 barrier(); 9784 9785 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 9786 reset_mask2 & (~stay_reset2)); 9787 9788 barrier(); 9789 9790 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 9791 } 9792 9793 /** 9794 * bnx2x_er_poll_igu_vq - poll for pending writes bit. 9795 * It should get cleared in no more than 1s. 9796 * 9797 * @bp: driver handle 9798 * 9799 * It should get cleared in no more than 1s. Returns 0 if 9800 * pending writes bit gets cleared. 9801 */ 9802 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) 9803 { 9804 u32 cnt = 1000; 9805 u32 pend_bits = 0; 9806 9807 do { 9808 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); 9809 9810 if (pend_bits == 0) 9811 break; 9812 9813 usleep_range(1000, 2000); 9814 } while (cnt-- > 0); 9815 9816 if (cnt <= 0) { 9817 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", 9818 pend_bits); 9819 return -EBUSY; 9820 } 9821 9822 return 0; 9823 } 9824 9825 static int bnx2x_process_kill(struct bnx2x *bp, bool global) 9826 { 9827 int cnt = 1000; 9828 u32 val = 0; 9829 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 9830 u32 tags_63_32 = 0; 9831 9832 /* Empty the Tetris buffer, wait for 1s */ 9833 do { 9834 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); 9835 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); 9836 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); 9837 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); 9838 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); 9839 if (CHIP_IS_E3(bp)) 9840 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); 9841 9842 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 9843 ((port_is_idle_0 & 0x1) == 0x1) && 9844 ((port_is_idle_1 & 0x1) == 0x1) && 9845 (pgl_exp_rom2 == 0xffffffff) && 9846 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) 9847 break; 9848 usleep_range(1000, 2000); 9849 } while (cnt-- > 0); 9850 9851 if (cnt <= 0) { 9852 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); 9853 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 9854 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, 9855 pgl_exp_rom2); 9856 return -EAGAIN; 9857 } 9858 9859 barrier(); 9860 9861 /* Close gates #2, #3 and #4 */ 9862 bnx2x_set_234_gates(bp, true); 9863 9864 /* Poll for IGU VQs for 57712 and newer chips */ 9865 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) 9866 return -EAGAIN; 9867 9868 /* TBD: Indicate that "process kill" is in progress to MCP */ 9869 9870 /* Clear "unprepared" bit */ 9871 REG_WR(bp, MISC_REG_UNPREPARED, 0); 9872 barrier(); 9873 9874 /* Wait for 1ms to empty GLUE and PCI-E core queues, 9875 * PSWHST, GRC and PSWRD Tetris buffer. 9876 */ 9877 usleep_range(1000, 2000); 9878 9879 /* Prepare to chip reset: */ 9880 /* MCP */ 9881 if (global) 9882 bnx2x_reset_mcp_prep(bp, &val); 9883 9884 /* PXP */ 9885 bnx2x_pxp_prep(bp); 9886 barrier(); 9887 9888 /* reset the chip */ 9889 bnx2x_process_kill_chip_reset(bp, global); 9890 barrier(); 9891 9892 /* clear errors in PGB */ 9893 if (!CHIP_IS_E1x(bp)) 9894 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 9895 9896 /* Recover after reset: */ 9897 /* MCP */ 9898 if (global && bnx2x_reset_mcp_comp(bp, val)) 9899 return -EAGAIN; 9900 9901 /* TBD: Add resetting the NO_MCP mode DB here */ 9902 9903 /* Open the gates #2, #3 and #4 */ 9904 bnx2x_set_234_gates(bp, false); 9905 9906 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a 9907 * reset state, re-enable attentions. */ 9908 9909 return 0; 9910 } 9911 9912 static int bnx2x_leader_reset(struct bnx2x *bp) 9913 { 9914 int rc = 0; 9915 bool global = bnx2x_reset_is_global(bp); 9916 u32 load_code; 9917 9918 /* if not going to reset MCP - load "fake" driver to reset HW while 9919 * driver is owner of the HW 9920 */ 9921 if (!global && !BP_NOMCP(bp)) { 9922 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 9923 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 9924 if (!load_code) { 9925 BNX2X_ERR("MCP response failure, aborting\n"); 9926 rc = -EAGAIN; 9927 goto exit_leader_reset; 9928 } 9929 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 9930 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 9931 BNX2X_ERR("MCP unexpected resp, aborting\n"); 9932 rc = -EAGAIN; 9933 goto exit_leader_reset2; 9934 } 9935 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 9936 if (!load_code) { 9937 BNX2X_ERR("MCP response failure, aborting\n"); 9938 rc = -EAGAIN; 9939 goto exit_leader_reset2; 9940 } 9941 } 9942 9943 /* Try to recover after the failure */ 9944 if (bnx2x_process_kill(bp, global)) { 9945 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", 9946 BP_PATH(bp)); 9947 rc = -EAGAIN; 9948 goto exit_leader_reset2; 9949 } 9950 9951 /* 9952 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver 9953 * state. 9954 */ 9955 bnx2x_set_reset_done(bp); 9956 if (global) 9957 bnx2x_clear_reset_global(bp); 9958 9959 exit_leader_reset2: 9960 /* unload "fake driver" if it was loaded */ 9961 if (!global && !BP_NOMCP(bp)) { 9962 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 9963 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 9964 } 9965 exit_leader_reset: 9966 bp->is_leader = 0; 9967 bnx2x_release_leader_lock(bp); 9968 smp_mb(); 9969 return rc; 9970 } 9971 9972 static void bnx2x_recovery_failed(struct bnx2x *bp) 9973 { 9974 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); 9975 9976 /* Disconnect this device */ 9977 netif_device_detach(bp->dev); 9978 9979 /* 9980 * Block ifup for all function on this engine until "process kill" 9981 * or power cycle. 9982 */ 9983 bnx2x_set_reset_in_progress(bp); 9984 9985 /* Shut down the power */ 9986 bnx2x_set_power_state(bp, PCI_D3hot); 9987 9988 bp->recovery_state = BNX2X_RECOVERY_FAILED; 9989 9990 smp_mb(); 9991 } 9992 9993 /* 9994 * Assumption: runs under rtnl lock. This together with the fact 9995 * that it's called only from bnx2x_sp_rtnl() ensure that it 9996 * will never be called when netif_running(bp->dev) is false. 9997 */ 9998 static void bnx2x_parity_recover(struct bnx2x *bp) 9999 { 10000 u32 error_recovered, error_unrecovered; 10001 bool is_parity, global = false; 10002 #ifdef CONFIG_BNX2X_SRIOV 10003 int vf_idx; 10004 10005 for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) { 10006 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 10007 10008 if (vf) 10009 vf->state = VF_LOST; 10010 } 10011 #endif 10012 DP(NETIF_MSG_HW, "Handling parity\n"); 10013 while (1) { 10014 switch (bp->recovery_state) { 10015 case BNX2X_RECOVERY_INIT: 10016 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); 10017 is_parity = bnx2x_chk_parity_attn(bp, &global, false); 10018 WARN_ON(!is_parity); 10019 10020 /* Try to get a LEADER_LOCK HW lock */ 10021 if (bnx2x_trylock_leader_lock(bp)) { 10022 bnx2x_set_reset_in_progress(bp); 10023 /* 10024 * Check if there is a global attention and if 10025 * there was a global attention, set the global 10026 * reset bit. 10027 */ 10028 10029 if (global) 10030 bnx2x_set_reset_global(bp); 10031 10032 bp->is_leader = 1; 10033 } 10034 10035 /* Stop the driver */ 10036 /* If interface has been removed - break */ 10037 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) 10038 return; 10039 10040 bp->recovery_state = BNX2X_RECOVERY_WAIT; 10041 10042 /* Ensure "is_leader", MCP command sequence and 10043 * "recovery_state" update values are seen on other 10044 * CPUs. 10045 */ 10046 smp_mb(); 10047 break; 10048 10049 case BNX2X_RECOVERY_WAIT: 10050 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); 10051 if (bp->is_leader) { 10052 int other_engine = BP_PATH(bp) ? 0 : 1; 10053 bool other_load_status = 10054 bnx2x_get_load_status(bp, other_engine); 10055 bool load_status = 10056 bnx2x_get_load_status(bp, BP_PATH(bp)); 10057 global = bnx2x_reset_is_global(bp); 10058 10059 /* 10060 * In case of a parity in a global block, let 10061 * the first leader that performs a 10062 * leader_reset() reset the global blocks in 10063 * order to clear global attentions. Otherwise 10064 * the gates will remain closed for that 10065 * engine. 10066 */ 10067 if (load_status || 10068 (global && other_load_status)) { 10069 /* Wait until all other functions get 10070 * down. 10071 */ 10072 schedule_delayed_work(&bp->sp_rtnl_task, 10073 HZ/10); 10074 return; 10075 } else { 10076 /* If all other functions got down - 10077 * try to bring the chip back to 10078 * normal. In any case it's an exit 10079 * point for a leader. 10080 */ 10081 if (bnx2x_leader_reset(bp)) { 10082 bnx2x_recovery_failed(bp); 10083 return; 10084 } 10085 10086 /* If we are here, means that the 10087 * leader has succeeded and doesn't 10088 * want to be a leader any more. Try 10089 * to continue as a none-leader. 10090 */ 10091 break; 10092 } 10093 } else { /* non-leader */ 10094 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { 10095 /* Try to get a LEADER_LOCK HW lock as 10096 * long as a former leader may have 10097 * been unloaded by the user or 10098 * released a leadership by another 10099 * reason. 10100 */ 10101 if (bnx2x_trylock_leader_lock(bp)) { 10102 /* I'm a leader now! Restart a 10103 * switch case. 10104 */ 10105 bp->is_leader = 1; 10106 break; 10107 } 10108 10109 schedule_delayed_work(&bp->sp_rtnl_task, 10110 HZ/10); 10111 return; 10112 10113 } else { 10114 /* 10115 * If there was a global attention, wait 10116 * for it to be cleared. 10117 */ 10118 if (bnx2x_reset_is_global(bp)) { 10119 schedule_delayed_work( 10120 &bp->sp_rtnl_task, 10121 HZ/10); 10122 return; 10123 } 10124 10125 error_recovered = 10126 bp->eth_stats.recoverable_error; 10127 error_unrecovered = 10128 bp->eth_stats.unrecoverable_error; 10129 bp->recovery_state = 10130 BNX2X_RECOVERY_NIC_LOADING; 10131 if (bnx2x_nic_load(bp, LOAD_NORMAL)) { 10132 error_unrecovered++; 10133 netdev_err(bp->dev, 10134 "Recovery failed. Power cycle needed\n"); 10135 /* Disconnect this device */ 10136 netif_device_detach(bp->dev); 10137 /* Shut down the power */ 10138 bnx2x_set_power_state( 10139 bp, PCI_D3hot); 10140 smp_mb(); 10141 } else { 10142 bp->recovery_state = 10143 BNX2X_RECOVERY_DONE; 10144 error_recovered++; 10145 smp_mb(); 10146 } 10147 bp->eth_stats.recoverable_error = 10148 error_recovered; 10149 bp->eth_stats.unrecoverable_error = 10150 error_unrecovered; 10151 10152 return; 10153 } 10154 } 10155 default: 10156 return; 10157 } 10158 } 10159 } 10160 10161 static int bnx2x_udp_port_update(struct bnx2x *bp) 10162 { 10163 struct bnx2x_func_switch_update_params *switch_update_params; 10164 struct bnx2x_func_state_params func_params = {NULL}; 10165 u16 vxlan_port = 0, geneve_port = 0; 10166 int rc; 10167 10168 switch_update_params = &func_params.params.switch_update; 10169 10170 /* Prepare parameters for function state transitions */ 10171 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 10172 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 10173 10174 func_params.f_obj = &bp->func_obj; 10175 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 10176 10177 /* Function parameters */ 10178 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG, 10179 &switch_update_params->changes); 10180 10181 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) { 10182 geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]; 10183 switch_update_params->geneve_dst_port = geneve_port; 10184 } 10185 10186 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) { 10187 vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]; 10188 switch_update_params->vxlan_dst_port = vxlan_port; 10189 } 10190 10191 /* Re-enable inner-rss for the offloaded UDP tunnels */ 10192 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS, 10193 &switch_update_params->changes); 10194 10195 rc = bnx2x_func_state_change(bp, &func_params); 10196 if (rc) 10197 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n", 10198 vxlan_port, geneve_port, rc); 10199 else 10200 DP(BNX2X_MSG_SP, 10201 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n", 10202 vxlan_port, geneve_port); 10203 10204 return rc; 10205 } 10206 10207 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 10208 { 10209 struct bnx2x *bp = netdev_priv(netdev); 10210 struct udp_tunnel_info ti; 10211 10212 udp_tunnel_nic_get_port(netdev, table, 0, &ti); 10213 bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port); 10214 10215 return bnx2x_udp_port_update(bp); 10216 } 10217 10218 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = { 10219 .sync_table = bnx2x_udp_tunnel_sync, 10220 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 10221 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 10222 .tables = { 10223 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 10224 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 10225 }, 10226 }; 10227 10228 static int bnx2x_close(struct net_device *dev); 10229 10230 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is 10231 * scheduled on a general queue in order to prevent a dead lock. 10232 */ 10233 static void bnx2x_sp_rtnl_task(struct work_struct *work) 10234 { 10235 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); 10236 10237 rtnl_lock(); 10238 10239 if (!netif_running(bp->dev)) { 10240 rtnl_unlock(); 10241 return; 10242 } 10243 10244 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { 10245 #ifdef BNX2X_STOP_ON_ERROR 10246 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10247 "you will need to reboot when done\n"); 10248 goto sp_rtnl_not_reset; 10249 #endif 10250 /* 10251 * Clear all pending SP commands as we are going to reset the 10252 * function anyway. 10253 */ 10254 bp->sp_rtnl_state = 0; 10255 smp_mb(); 10256 10257 bnx2x_parity_recover(bp); 10258 10259 rtnl_unlock(); 10260 return; 10261 } 10262 10263 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { 10264 #ifdef BNX2X_STOP_ON_ERROR 10265 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10266 "you will need to reboot when done\n"); 10267 goto sp_rtnl_not_reset; 10268 #endif 10269 10270 /* 10271 * Clear all pending SP commands as we are going to reset the 10272 * function anyway. 10273 */ 10274 bp->sp_rtnl_state = 0; 10275 smp_mb(); 10276 10277 /* Immediately indicate link as down */ 10278 bp->link_vars.link_up = 0; 10279 bp->force_link_down = true; 10280 netif_carrier_off(bp->dev); 10281 BNX2X_ERR("Indicating link is down due to Tx-timeout\n"); 10282 10283 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10284 /* When ret value shows failure of allocation failure, 10285 * the nic is rebooted again. If open still fails, a error 10286 * message to notify the user. 10287 */ 10288 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) { 10289 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10290 if (bnx2x_nic_load(bp, LOAD_NORMAL)) 10291 BNX2X_ERR("Open the NIC fails again!\n"); 10292 } 10293 rtnl_unlock(); 10294 return; 10295 } 10296 #ifdef BNX2X_STOP_ON_ERROR 10297 sp_rtnl_not_reset: 10298 #endif 10299 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) 10300 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); 10301 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) 10302 bnx2x_after_function_update(bp); 10303 /* 10304 * in case of fan failure we need to reset id if the "stop on error" 10305 * debug flag is set, since we trying to prevent permanent overheating 10306 * damage 10307 */ 10308 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { 10309 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); 10310 netif_device_detach(bp->dev); 10311 bnx2x_close(bp->dev); 10312 rtnl_unlock(); 10313 return; 10314 } 10315 10316 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { 10317 DP(BNX2X_MSG_SP, 10318 "sending set mcast vf pf channel message from rtnl sp-task\n"); 10319 bnx2x_vfpf_set_mcast(bp->dev); 10320 } 10321 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 10322 &bp->sp_rtnl_state)){ 10323 if (netif_carrier_ok(bp->dev)) { 10324 bnx2x_tx_disable(bp); 10325 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); 10326 } 10327 } 10328 10329 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) { 10330 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n"); 10331 bnx2x_set_rx_mode_inner(bp); 10332 } 10333 10334 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, 10335 &bp->sp_rtnl_state)) 10336 bnx2x_pf_set_vfs_vlan(bp); 10337 10338 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) { 10339 bnx2x_dcbx_stop_hw_tx(bp); 10340 bnx2x_dcbx_resume_hw_tx(bp); 10341 } 10342 10343 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION, 10344 &bp->sp_rtnl_state)) 10345 bnx2x_update_mng_version(bp); 10346 10347 if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state)) 10348 bnx2x_handle_update_svid_cmd(bp); 10349 10350 /* work which needs rtnl lock not-taken (as it takes the lock itself and 10351 * can be called from other contexts as well) 10352 */ 10353 rtnl_unlock(); 10354 10355 /* enable SR-IOV if applicable */ 10356 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, 10357 &bp->sp_rtnl_state)) { 10358 bnx2x_disable_sriov(bp); 10359 bnx2x_enable_sriov(bp); 10360 } 10361 } 10362 10363 static void bnx2x_period_task(struct work_struct *work) 10364 { 10365 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); 10366 10367 if (!netif_running(bp->dev)) 10368 goto period_task_exit; 10369 10370 if (CHIP_REV_IS_SLOW(bp)) { 10371 BNX2X_ERR("period task called on emulation, ignoring\n"); 10372 goto period_task_exit; 10373 } 10374 10375 bnx2x_acquire_phy_lock(bp); 10376 /* 10377 * The barrier is needed to ensure the ordering between the writing to 10378 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and 10379 * the reading here. 10380 */ 10381 smp_mb(); 10382 if (bp->port.pmf) { 10383 bnx2x_period_func(&bp->link_params, &bp->link_vars); 10384 10385 /* Re-queue task in 1 sec */ 10386 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); 10387 } 10388 10389 bnx2x_release_phy_lock(bp); 10390 period_task_exit: 10391 return; 10392 } 10393 10394 /* 10395 * Init service functions 10396 */ 10397 10398 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp) 10399 { 10400 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; 10401 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; 10402 return base + (BP_ABS_FUNC(bp)) * stride; 10403 } 10404 10405 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp, 10406 u8 port, u32 reset_reg, 10407 struct bnx2x_mac_vals *vals) 10408 { 10409 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 10410 u32 base_addr; 10411 10412 if (!(mask & reset_reg)) 10413 return false; 10414 10415 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port); 10416 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 10417 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG; 10418 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]); 10419 REG_WR(bp, vals->umac_addr[port], 0); 10420 10421 return true; 10422 } 10423 10424 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, 10425 struct bnx2x_mac_vals *vals) 10426 { 10427 u32 val, base_addr, offset, mask, reset_reg; 10428 bool mac_stopped = false; 10429 u8 port = BP_PORT(bp); 10430 10431 /* reset addresses as they also mark which values were changed */ 10432 memset(vals, 0, sizeof(*vals)); 10433 10434 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); 10435 10436 if (!CHIP_IS_E3(bp)) { 10437 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 10438 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 10439 if ((mask & reset_reg) && val) { 10440 u32 wb_data[2]; 10441 BNX2X_DEV_INFO("Disable bmac Rx\n"); 10442 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM 10443 : NIG_REG_INGRESS_BMAC0_MEM; 10444 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL 10445 : BIGMAC_REGISTER_BMAC_CONTROL; 10446 10447 /* 10448 * use rd/wr since we cannot use dmae. This is safe 10449 * since MCP won't access the bus due to the request 10450 * to unload, and no function on the path can be 10451 * loaded at this time. 10452 */ 10453 wb_data[0] = REG_RD(bp, base_addr + offset); 10454 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); 10455 vals->bmac_addr = base_addr + offset; 10456 vals->bmac_val[0] = wb_data[0]; 10457 vals->bmac_val[1] = wb_data[1]; 10458 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; 10459 REG_WR(bp, vals->bmac_addr, wb_data[0]); 10460 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); 10461 } 10462 BNX2X_DEV_INFO("Disable emac Rx\n"); 10463 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; 10464 vals->emac_val = REG_RD(bp, vals->emac_addr); 10465 REG_WR(bp, vals->emac_addr, 0); 10466 mac_stopped = true; 10467 } else { 10468 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 10469 BNX2X_DEV_INFO("Disable xmac Rx\n"); 10470 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 10471 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); 10472 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10473 val & ~(1 << 1)); 10474 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10475 val | (1 << 1)); 10476 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 10477 vals->xmac_val = REG_RD(bp, vals->xmac_addr); 10478 REG_WR(bp, vals->xmac_addr, 0); 10479 mac_stopped = true; 10480 } 10481 10482 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0, 10483 reset_reg, vals); 10484 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1, 10485 reset_reg, vals); 10486 } 10487 10488 if (mac_stopped) 10489 msleep(20); 10490 } 10491 10492 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 10493 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \ 10494 0x1848 + ((f) << 4)) 10495 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) 10496 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 10497 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 10498 10499 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07) 10500 #define BCM_5710_UNDI_FW_MF_MINOR (0x08) 10501 #define BCM_5710_UNDI_FW_MF_VERS (0x05) 10502 10503 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp) 10504 { 10505 /* UNDI marks its presence in DORQ - 10506 * it initializes CID offset for normal bell to 0x7 10507 */ 10508 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) & 10509 MISC_REGISTERS_RESET_REG_1_RST_DORQ)) 10510 return false; 10511 10512 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) { 10513 BNX2X_DEV_INFO("UNDI previously loaded\n"); 10514 return true; 10515 } 10516 10517 return false; 10518 } 10519 10520 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc) 10521 { 10522 u16 rcq, bd; 10523 u32 addr, tmp_reg; 10524 10525 if (BP_FUNC(bp) < 2) 10526 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp)); 10527 else 10528 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2); 10529 10530 tmp_reg = REG_RD(bp, addr); 10531 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; 10532 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; 10533 10534 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); 10535 REG_WR(bp, addr, tmp_reg); 10536 10537 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n", 10538 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq); 10539 } 10540 10541 static int bnx2x_prev_mcp_done(struct bnx2x *bp) 10542 { 10543 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 10544 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 10545 if (!rc) { 10546 BNX2X_ERR("MCP response failure, aborting\n"); 10547 return -EBUSY; 10548 } 10549 10550 return 0; 10551 } 10552 10553 static struct bnx2x_prev_path_list * 10554 bnx2x_prev_path_get_entry(struct bnx2x *bp) 10555 { 10556 struct bnx2x_prev_path_list *tmp_list; 10557 10558 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) 10559 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && 10560 bp->pdev->bus->number == tmp_list->bus && 10561 BP_PATH(bp) == tmp_list->path) 10562 return tmp_list; 10563 10564 return NULL; 10565 } 10566 10567 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) 10568 { 10569 struct bnx2x_prev_path_list *tmp_list; 10570 int rc; 10571 10572 rc = down_interruptible(&bnx2x_prev_sem); 10573 if (rc) { 10574 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10575 return rc; 10576 } 10577 10578 tmp_list = bnx2x_prev_path_get_entry(bp); 10579 if (tmp_list) { 10580 tmp_list->aer = 1; 10581 rc = 0; 10582 } else { 10583 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", 10584 BP_PATH(bp)); 10585 } 10586 10587 up(&bnx2x_prev_sem); 10588 10589 return rc; 10590 } 10591 10592 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) 10593 { 10594 struct bnx2x_prev_path_list *tmp_list; 10595 bool rc = false; 10596 10597 if (down_trylock(&bnx2x_prev_sem)) 10598 return false; 10599 10600 tmp_list = bnx2x_prev_path_get_entry(bp); 10601 if (tmp_list) { 10602 if (tmp_list->aer) { 10603 DP(NETIF_MSG_HW, "Path %d was marked by AER\n", 10604 BP_PATH(bp)); 10605 } else { 10606 rc = true; 10607 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", 10608 BP_PATH(bp)); 10609 } 10610 } 10611 10612 up(&bnx2x_prev_sem); 10613 10614 return rc; 10615 } 10616 10617 bool bnx2x_port_after_undi(struct bnx2x *bp) 10618 { 10619 struct bnx2x_prev_path_list *entry; 10620 bool val; 10621 10622 down(&bnx2x_prev_sem); 10623 10624 entry = bnx2x_prev_path_get_entry(bp); 10625 val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); 10626 10627 up(&bnx2x_prev_sem); 10628 10629 return val; 10630 } 10631 10632 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) 10633 { 10634 struct bnx2x_prev_path_list *tmp_list; 10635 int rc; 10636 10637 rc = down_interruptible(&bnx2x_prev_sem); 10638 if (rc) { 10639 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10640 return rc; 10641 } 10642 10643 /* Check whether the entry for this path already exists */ 10644 tmp_list = bnx2x_prev_path_get_entry(bp); 10645 if (tmp_list) { 10646 if (!tmp_list->aer) { 10647 BNX2X_ERR("Re-Marking the path.\n"); 10648 } else { 10649 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", 10650 BP_PATH(bp)); 10651 tmp_list->aer = 0; 10652 } 10653 up(&bnx2x_prev_sem); 10654 return 0; 10655 } 10656 up(&bnx2x_prev_sem); 10657 10658 /* Create an entry for this path and add it */ 10659 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); 10660 if (!tmp_list) { 10661 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); 10662 return -ENOMEM; 10663 } 10664 10665 tmp_list->bus = bp->pdev->bus->number; 10666 tmp_list->slot = PCI_SLOT(bp->pdev->devfn); 10667 tmp_list->path = BP_PATH(bp); 10668 tmp_list->aer = 0; 10669 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; 10670 10671 rc = down_interruptible(&bnx2x_prev_sem); 10672 if (rc) { 10673 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10674 kfree(tmp_list); 10675 } else { 10676 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", 10677 BP_PATH(bp)); 10678 list_add(&tmp_list->list, &bnx2x_prev_list); 10679 up(&bnx2x_prev_sem); 10680 } 10681 10682 return rc; 10683 } 10684 10685 static int bnx2x_do_flr(struct bnx2x *bp) 10686 { 10687 struct pci_dev *dev = bp->pdev; 10688 10689 if (CHIP_IS_E1x(bp)) { 10690 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); 10691 return -EINVAL; 10692 } 10693 10694 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 10695 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 10696 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", 10697 bp->common.bc_ver); 10698 return -EINVAL; 10699 } 10700 10701 if (!pci_wait_for_pending_transaction(dev)) 10702 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 10703 10704 BNX2X_DEV_INFO("Initiating FLR\n"); 10705 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); 10706 10707 return 0; 10708 } 10709 10710 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) 10711 { 10712 int rc; 10713 10714 BNX2X_DEV_INFO("Uncommon unload Flow\n"); 10715 10716 /* Test if previous unload process was already finished for this path */ 10717 if (bnx2x_prev_is_path_marked(bp)) 10718 return bnx2x_prev_mcp_done(bp); 10719 10720 BNX2X_DEV_INFO("Path is unmarked\n"); 10721 10722 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */ 10723 if (bnx2x_prev_is_after_undi(bp)) 10724 goto out; 10725 10726 /* If function has FLR capabilities, and existing FW version matches 10727 * the one required, then FLR will be sufficient to clean any residue 10728 * left by previous driver 10729 */ 10730 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false); 10731 10732 if (!rc) { 10733 /* fw version is good */ 10734 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); 10735 rc = bnx2x_do_flr(bp); 10736 } 10737 10738 if (!rc) { 10739 /* FLR was performed */ 10740 BNX2X_DEV_INFO("FLR successful\n"); 10741 return 0; 10742 } 10743 10744 BNX2X_DEV_INFO("Could not FLR\n"); 10745 10746 out: 10747 /* Close the MCP request, return failure*/ 10748 rc = bnx2x_prev_mcp_done(bp); 10749 if (!rc) 10750 rc = BNX2X_PREV_WAIT_NEEDED; 10751 10752 return rc; 10753 } 10754 10755 static int bnx2x_prev_unload_common(struct bnx2x *bp) 10756 { 10757 u32 reset_reg, tmp_reg = 0, rc; 10758 bool prev_undi = false; 10759 struct bnx2x_mac_vals mac_vals; 10760 10761 /* It is possible a previous function received 'common' answer, 10762 * but hasn't loaded yet, therefore creating a scenario of 10763 * multiple functions receiving 'common' on the same path. 10764 */ 10765 BNX2X_DEV_INFO("Common unload Flow\n"); 10766 10767 memset(&mac_vals, 0, sizeof(mac_vals)); 10768 10769 if (bnx2x_prev_is_path_marked(bp)) 10770 return bnx2x_prev_mcp_done(bp); 10771 10772 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); 10773 10774 /* Reset should be performed after BRB is emptied */ 10775 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 10776 u32 timer_count = 1000; 10777 10778 /* Close the MAC Rx to prevent BRB from filling up */ 10779 bnx2x_prev_unload_close_mac(bp, &mac_vals); 10780 10781 /* close LLH filters for both ports towards the BRB */ 10782 bnx2x_set_rx_filter(&bp->link_params, 0); 10783 bp->link_params.port ^= 1; 10784 bnx2x_set_rx_filter(&bp->link_params, 0); 10785 bp->link_params.port ^= 1; 10786 10787 /* Check if the UNDI driver was previously loaded */ 10788 if (bnx2x_prev_is_after_undi(bp)) { 10789 prev_undi = true; 10790 /* clear the UNDI indication */ 10791 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); 10792 /* clear possible idle check errors */ 10793 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); 10794 } 10795 if (!CHIP_IS_E1x(bp)) 10796 /* block FW from writing to host */ 10797 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 10798 10799 /* wait until BRB is empty */ 10800 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10801 while (timer_count) { 10802 u32 prev_brb = tmp_reg; 10803 10804 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10805 if (!tmp_reg) 10806 break; 10807 10808 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); 10809 10810 /* reset timer as long as BRB actually gets emptied */ 10811 if (prev_brb > tmp_reg) 10812 timer_count = 1000; 10813 else 10814 timer_count--; 10815 10816 /* If UNDI resides in memory, manually increment it */ 10817 if (prev_undi) 10818 bnx2x_prev_unload_undi_inc(bp, 1); 10819 10820 udelay(10); 10821 } 10822 10823 if (!timer_count) 10824 BNX2X_ERR("Failed to empty BRB, hope for the best\n"); 10825 } 10826 10827 /* No packets are in the pipeline, path is ready for reset */ 10828 bnx2x_reset_common(bp); 10829 10830 if (mac_vals.xmac_addr) 10831 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); 10832 if (mac_vals.umac_addr[0]) 10833 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]); 10834 if (mac_vals.umac_addr[1]) 10835 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]); 10836 if (mac_vals.emac_addr) 10837 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); 10838 if (mac_vals.bmac_addr) { 10839 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 10840 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 10841 } 10842 10843 rc = bnx2x_prev_mark_path(bp, prev_undi); 10844 if (rc) { 10845 bnx2x_prev_mcp_done(bp); 10846 return rc; 10847 } 10848 10849 return bnx2x_prev_mcp_done(bp); 10850 } 10851 10852 static int bnx2x_prev_unload(struct bnx2x *bp) 10853 { 10854 int time_counter = 10; 10855 u32 rc, fw, hw_lock_reg, hw_lock_val; 10856 BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); 10857 10858 /* clear hw from errors which may have resulted from an interrupted 10859 * dmae transaction. 10860 */ 10861 bnx2x_clean_pglue_errors(bp); 10862 10863 /* Release previously held locks */ 10864 hw_lock_reg = (BP_FUNC(bp) <= 5) ? 10865 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : 10866 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); 10867 10868 hw_lock_val = REG_RD(bp, hw_lock_reg); 10869 if (hw_lock_val) { 10870 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 10871 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); 10872 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, 10873 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); 10874 } 10875 10876 BNX2X_DEV_INFO("Release Previously held hw lock\n"); 10877 REG_WR(bp, hw_lock_reg, 0xffffffff); 10878 } else 10879 BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); 10880 10881 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { 10882 BNX2X_DEV_INFO("Release previously held alr\n"); 10883 bnx2x_release_alr(bp); 10884 } 10885 10886 do { 10887 int aer = 0; 10888 /* Lock MCP using an unload request */ 10889 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 10890 if (!fw) { 10891 BNX2X_ERR("MCP response failure, aborting\n"); 10892 rc = -EBUSY; 10893 break; 10894 } 10895 10896 rc = down_interruptible(&bnx2x_prev_sem); 10897 if (rc) { 10898 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", 10899 rc); 10900 } else { 10901 /* If Path is marked by EEH, ignore unload status */ 10902 aer = !!(bnx2x_prev_path_get_entry(bp) && 10903 bnx2x_prev_path_get_entry(bp)->aer); 10904 up(&bnx2x_prev_sem); 10905 } 10906 10907 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { 10908 rc = bnx2x_prev_unload_common(bp); 10909 break; 10910 } 10911 10912 /* non-common reply from MCP might require looping */ 10913 rc = bnx2x_prev_unload_uncommon(bp); 10914 if (rc != BNX2X_PREV_WAIT_NEEDED) 10915 break; 10916 10917 msleep(20); 10918 } while (--time_counter); 10919 10920 if (!time_counter || rc) { 10921 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n"); 10922 rc = -EPROBE_DEFER; 10923 } 10924 10925 /* Mark function if its port was used to boot from SAN */ 10926 if (bnx2x_port_after_undi(bp)) 10927 bp->link_params.feature_config_flags |= 10928 FEATURE_CONFIG_BOOT_FROM_SAN; 10929 10930 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); 10931 10932 return rc; 10933 } 10934 10935 static void bnx2x_get_common_hwinfo(struct bnx2x *bp) 10936 { 10937 u32 val, val2, val3, val4, id, boot_mode; 10938 u16 pmc; 10939 10940 /* Get the chip revision id and number. */ 10941 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 10942 val = REG_RD(bp, MISC_REG_CHIP_NUM); 10943 id = ((val & 0xffff) << 16); 10944 val = REG_RD(bp, MISC_REG_CHIP_REV); 10945 id |= ((val & 0xf) << 12); 10946 10947 /* Metal is read from PCI regs, but we can't access >=0x400 from 10948 * the configuration space (so we need to reg_rd) 10949 */ 10950 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); 10951 id |= (((val >> 24) & 0xf) << 4); 10952 val = REG_RD(bp, MISC_REG_BOND_ID); 10953 id |= (val & 0xf); 10954 bp->common.chip_id = id; 10955 10956 /* force 57811 according to MISC register */ 10957 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 10958 if (CHIP_IS_57810(bp)) 10959 bp->common.chip_id = (CHIP_NUM_57811 << 16) | 10960 (bp->common.chip_id & 0x0000FFFF); 10961 else if (CHIP_IS_57810_MF(bp)) 10962 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | 10963 (bp->common.chip_id & 0x0000FFFF); 10964 bp->common.chip_id |= 0x1; 10965 } 10966 10967 /* Set doorbell size */ 10968 bp->db_size = (1 << BNX2X_DB_SHIFT); 10969 10970 if (!CHIP_IS_E1x(bp)) { 10971 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); 10972 if ((val & 1) == 0) 10973 val = REG_RD(bp, MISC_REG_PORT4MODE_EN); 10974 else 10975 val = (val >> 1) & 1; 10976 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : 10977 "2_PORT_MODE"); 10978 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : 10979 CHIP_2_PORT_MODE; 10980 10981 if (CHIP_MODE_IS_4_PORT(bp)) 10982 bp->pfid = (bp->pf_num >> 1); /* 0..3 */ 10983 else 10984 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ 10985 } else { 10986 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ 10987 bp->pfid = bp->pf_num; /* 0..7 */ 10988 } 10989 10990 BNX2X_DEV_INFO("pf_id: %x", bp->pfid); 10991 10992 bp->link_params.chip_id = bp->common.chip_id; 10993 BNX2X_DEV_INFO("chip ID is 0x%x\n", id); 10994 10995 val = (REG_RD(bp, 0x2874) & 0x55); 10996 if ((bp->common.chip_id & 0x1) || 10997 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { 10998 bp->flags |= ONE_PORT_FLAG; 10999 BNX2X_DEV_INFO("single port device\n"); 11000 } 11001 11002 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); 11003 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << 11004 (val & MCPR_NVM_CFG4_FLASH_SIZE)); 11005 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", 11006 bp->common.flash_size, bp->common.flash_size); 11007 11008 bnx2x_init_shmem(bp); 11009 11010 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? 11011 MISC_REG_GENERIC_CR_1 : 11012 MISC_REG_GENERIC_CR_0)); 11013 11014 bp->link_params.shmem_base = bp->common.shmem_base; 11015 bp->link_params.shmem2_base = bp->common.shmem2_base; 11016 if (SHMEM2_RD(bp, size) > 11017 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 11018 bp->link_params.lfa_base = 11019 REG_RD(bp, bp->common.shmem2_base + 11020 (u32)offsetof(struct shmem2_region, 11021 lfa_host_addr[BP_PORT(bp)])); 11022 else 11023 bp->link_params.lfa_base = 0; 11024 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", 11025 bp->common.shmem_base, bp->common.shmem2_base); 11026 11027 if (!bp->common.shmem_base) { 11028 BNX2X_DEV_INFO("MCP not active\n"); 11029 bp->flags |= NO_MCP_FLAG; 11030 return; 11031 } 11032 11033 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); 11034 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); 11035 11036 bp->link_params.hw_led_mode = ((bp->common.hw_config & 11037 SHARED_HW_CFG_LED_MODE_MASK) >> 11038 SHARED_HW_CFG_LED_MODE_SHIFT); 11039 11040 bp->link_params.feature_config_flags = 0; 11041 val = SHMEM_RD(bp, dev_info.shared_feature_config.config); 11042 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) 11043 bp->link_params.feature_config_flags |= 11044 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 11045 else 11046 bp->link_params.feature_config_flags &= 11047 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 11048 11049 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; 11050 bp->common.bc_ver = val; 11051 BNX2X_DEV_INFO("bc_ver %X\n", val); 11052 if (val < BNX2X_BC_VER) { 11053 /* for now only warn 11054 * later we might need to enforce this */ 11055 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", 11056 BNX2X_BC_VER, val); 11057 } 11058 bp->link_params.feature_config_flags |= 11059 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? 11060 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; 11061 11062 bp->link_params.feature_config_flags |= 11063 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? 11064 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; 11065 bp->link_params.feature_config_flags |= 11066 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? 11067 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; 11068 bp->link_params.feature_config_flags |= 11069 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? 11070 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; 11071 11072 bp->link_params.feature_config_flags |= 11073 (val >= REQ_BC_VER_4_MT_SUPPORTED) ? 11074 FEATURE_CONFIG_MT_SUPPORT : 0; 11075 11076 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? 11077 BC_SUPPORTS_PFC_STATS : 0; 11078 11079 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? 11080 BC_SUPPORTS_FCOE_FEATURES : 0; 11081 11082 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? 11083 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; 11084 11085 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? 11086 BC_SUPPORTS_RMMOD_CMD : 0; 11087 11088 boot_mode = SHMEM_RD(bp, 11089 dev_info.port_feature_config[BP_PORT(bp)].mba_config) & 11090 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; 11091 switch (boot_mode) { 11092 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: 11093 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; 11094 break; 11095 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: 11096 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; 11097 break; 11098 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: 11099 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; 11100 break; 11101 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: 11102 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; 11103 break; 11104 } 11105 11106 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc); 11107 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; 11108 11109 BNX2X_DEV_INFO("%sWoL capable\n", 11110 (bp->flags & NO_WOL_FLAG) ? "not " : ""); 11111 11112 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); 11113 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); 11114 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); 11115 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); 11116 11117 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", 11118 val, val2, val3, val4); 11119 } 11120 11121 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 11122 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 11123 11124 static int bnx2x_get_igu_cam_info(struct bnx2x *bp) 11125 { 11126 int pfid = BP_FUNC(bp); 11127 int igu_sb_id; 11128 u32 val; 11129 u8 fid, igu_sb_cnt = 0; 11130 11131 bp->igu_base_sb = 0xff; 11132 if (CHIP_INT_MODE_IS_BC(bp)) { 11133 int vn = BP_VN(bp); 11134 igu_sb_cnt = bp->igu_sb_cnt; 11135 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * 11136 FP_SB_MAX_E1x; 11137 11138 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + 11139 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); 11140 11141 return 0; 11142 } 11143 11144 /* IGU in normal mode - read CAM */ 11145 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 11146 igu_sb_id++) { 11147 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 11148 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 11149 continue; 11150 fid = IGU_FID(val); 11151 if ((fid & IGU_FID_ENCODE_IS_PF)) { 11152 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) 11153 continue; 11154 if (IGU_VEC(val) == 0) 11155 /* default status block */ 11156 bp->igu_dsb_id = igu_sb_id; 11157 else { 11158 if (bp->igu_base_sb == 0xff) 11159 bp->igu_base_sb = igu_sb_id; 11160 igu_sb_cnt++; 11161 } 11162 } 11163 } 11164 11165 #ifdef CONFIG_PCI_MSI 11166 /* Due to new PF resource allocation by MFW T7.4 and above, it's 11167 * optional that number of CAM entries will not be equal to the value 11168 * advertised in PCI. 11169 * Driver should use the minimal value of both as the actual status 11170 * block count 11171 */ 11172 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); 11173 #endif 11174 11175 if (igu_sb_cnt == 0) { 11176 BNX2X_ERR("CAM configuration error\n"); 11177 return -EINVAL; 11178 } 11179 11180 return 0; 11181 } 11182 11183 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) 11184 { 11185 int cfg_size = 0, idx, port = BP_PORT(bp); 11186 11187 /* Aggregation of supported attributes of all external phys */ 11188 bp->port.supported[0] = 0; 11189 bp->port.supported[1] = 0; 11190 switch (bp->link_params.num_phys) { 11191 case 1: 11192 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; 11193 cfg_size = 1; 11194 break; 11195 case 2: 11196 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; 11197 cfg_size = 1; 11198 break; 11199 case 3: 11200 if (bp->link_params.multi_phy_config & 11201 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11202 bp->port.supported[1] = 11203 bp->link_params.phy[EXT_PHY1].supported; 11204 bp->port.supported[0] = 11205 bp->link_params.phy[EXT_PHY2].supported; 11206 } else { 11207 bp->port.supported[0] = 11208 bp->link_params.phy[EXT_PHY1].supported; 11209 bp->port.supported[1] = 11210 bp->link_params.phy[EXT_PHY2].supported; 11211 } 11212 cfg_size = 2; 11213 break; 11214 } 11215 11216 if (!(bp->port.supported[0] || bp->port.supported[1])) { 11217 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", 11218 SHMEM_RD(bp, 11219 dev_info.port_hw_config[port].external_phy_config), 11220 SHMEM_RD(bp, 11221 dev_info.port_hw_config[port].external_phy_config2)); 11222 return; 11223 } 11224 11225 if (CHIP_IS_E3(bp)) 11226 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); 11227 else { 11228 switch (switch_cfg) { 11229 case SWITCH_CFG_1G: 11230 bp->port.phy_addr = REG_RD( 11231 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 11232 break; 11233 case SWITCH_CFG_10G: 11234 bp->port.phy_addr = REG_RD( 11235 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 11236 break; 11237 default: 11238 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", 11239 bp->port.link_config[0]); 11240 return; 11241 } 11242 } 11243 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); 11244 /* mask what we support according to speed_cap_mask per configuration */ 11245 for (idx = 0; idx < cfg_size; idx++) { 11246 if (!(bp->link_params.speed_cap_mask[idx] & 11247 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) 11248 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; 11249 11250 if (!(bp->link_params.speed_cap_mask[idx] & 11251 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) 11252 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; 11253 11254 if (!(bp->link_params.speed_cap_mask[idx] & 11255 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) 11256 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; 11257 11258 if (!(bp->link_params.speed_cap_mask[idx] & 11259 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) 11260 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; 11261 11262 if (!(bp->link_params.speed_cap_mask[idx] & 11263 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) 11264 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | 11265 SUPPORTED_1000baseT_Full); 11266 11267 if (!(bp->link_params.speed_cap_mask[idx] & 11268 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) 11269 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; 11270 11271 if (!(bp->link_params.speed_cap_mask[idx] & 11272 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) 11273 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; 11274 11275 if (!(bp->link_params.speed_cap_mask[idx] & 11276 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) 11277 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; 11278 } 11279 11280 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], 11281 bp->port.supported[1]); 11282 } 11283 11284 static void bnx2x_link_settings_requested(struct bnx2x *bp) 11285 { 11286 u32 link_config, idx, cfg_size = 0; 11287 bp->port.advertising[0] = 0; 11288 bp->port.advertising[1] = 0; 11289 switch (bp->link_params.num_phys) { 11290 case 1: 11291 case 2: 11292 cfg_size = 1; 11293 break; 11294 case 3: 11295 cfg_size = 2; 11296 break; 11297 } 11298 for (idx = 0; idx < cfg_size; idx++) { 11299 bp->link_params.req_duplex[idx] = DUPLEX_FULL; 11300 link_config = bp->port.link_config[idx]; 11301 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 11302 case PORT_FEATURE_LINK_SPEED_AUTO: 11303 if (bp->port.supported[idx] & SUPPORTED_Autoneg) { 11304 bp->link_params.req_line_speed[idx] = 11305 SPEED_AUTO_NEG; 11306 bp->port.advertising[idx] |= 11307 bp->port.supported[idx]; 11308 if (bp->link_params.phy[EXT_PHY1].type == 11309 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 11310 bp->port.advertising[idx] |= 11311 (SUPPORTED_100baseT_Half | 11312 SUPPORTED_100baseT_Full); 11313 } else { 11314 /* force 10G, no AN */ 11315 bp->link_params.req_line_speed[idx] = 11316 SPEED_10000; 11317 bp->port.advertising[idx] |= 11318 (ADVERTISED_10000baseT_Full | 11319 ADVERTISED_FIBRE); 11320 continue; 11321 } 11322 break; 11323 11324 case PORT_FEATURE_LINK_SPEED_10M_FULL: 11325 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { 11326 bp->link_params.req_line_speed[idx] = 11327 SPEED_10; 11328 bp->port.advertising[idx] |= 11329 (ADVERTISED_10baseT_Full | 11330 ADVERTISED_TP); 11331 } else { 11332 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11333 link_config, 11334 bp->link_params.speed_cap_mask[idx]); 11335 return; 11336 } 11337 break; 11338 11339 case PORT_FEATURE_LINK_SPEED_10M_HALF: 11340 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { 11341 bp->link_params.req_line_speed[idx] = 11342 SPEED_10; 11343 bp->link_params.req_duplex[idx] = 11344 DUPLEX_HALF; 11345 bp->port.advertising[idx] |= 11346 (ADVERTISED_10baseT_Half | 11347 ADVERTISED_TP); 11348 } else { 11349 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11350 link_config, 11351 bp->link_params.speed_cap_mask[idx]); 11352 return; 11353 } 11354 break; 11355 11356 case PORT_FEATURE_LINK_SPEED_100M_FULL: 11357 if (bp->port.supported[idx] & 11358 SUPPORTED_100baseT_Full) { 11359 bp->link_params.req_line_speed[idx] = 11360 SPEED_100; 11361 bp->port.advertising[idx] |= 11362 (ADVERTISED_100baseT_Full | 11363 ADVERTISED_TP); 11364 } else { 11365 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11366 link_config, 11367 bp->link_params.speed_cap_mask[idx]); 11368 return; 11369 } 11370 break; 11371 11372 case PORT_FEATURE_LINK_SPEED_100M_HALF: 11373 if (bp->port.supported[idx] & 11374 SUPPORTED_100baseT_Half) { 11375 bp->link_params.req_line_speed[idx] = 11376 SPEED_100; 11377 bp->link_params.req_duplex[idx] = 11378 DUPLEX_HALF; 11379 bp->port.advertising[idx] |= 11380 (ADVERTISED_100baseT_Half | 11381 ADVERTISED_TP); 11382 } else { 11383 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11384 link_config, 11385 bp->link_params.speed_cap_mask[idx]); 11386 return; 11387 } 11388 break; 11389 11390 case PORT_FEATURE_LINK_SPEED_1G: 11391 if (bp->port.supported[idx] & 11392 SUPPORTED_1000baseT_Full) { 11393 bp->link_params.req_line_speed[idx] = 11394 SPEED_1000; 11395 bp->port.advertising[idx] |= 11396 (ADVERTISED_1000baseT_Full | 11397 ADVERTISED_TP); 11398 } else if (bp->port.supported[idx] & 11399 SUPPORTED_1000baseKX_Full) { 11400 bp->link_params.req_line_speed[idx] = 11401 SPEED_1000; 11402 bp->port.advertising[idx] |= 11403 ADVERTISED_1000baseKX_Full; 11404 } else { 11405 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11406 link_config, 11407 bp->link_params.speed_cap_mask[idx]); 11408 return; 11409 } 11410 break; 11411 11412 case PORT_FEATURE_LINK_SPEED_2_5G: 11413 if (bp->port.supported[idx] & 11414 SUPPORTED_2500baseX_Full) { 11415 bp->link_params.req_line_speed[idx] = 11416 SPEED_2500; 11417 bp->port.advertising[idx] |= 11418 (ADVERTISED_2500baseX_Full | 11419 ADVERTISED_TP); 11420 } else { 11421 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11422 link_config, 11423 bp->link_params.speed_cap_mask[idx]); 11424 return; 11425 } 11426 break; 11427 11428 case PORT_FEATURE_LINK_SPEED_10G_CX4: 11429 if (bp->port.supported[idx] & 11430 SUPPORTED_10000baseT_Full) { 11431 bp->link_params.req_line_speed[idx] = 11432 SPEED_10000; 11433 bp->port.advertising[idx] |= 11434 (ADVERTISED_10000baseT_Full | 11435 ADVERTISED_FIBRE); 11436 } else if (bp->port.supported[idx] & 11437 SUPPORTED_10000baseKR_Full) { 11438 bp->link_params.req_line_speed[idx] = 11439 SPEED_10000; 11440 bp->port.advertising[idx] |= 11441 (ADVERTISED_10000baseKR_Full | 11442 ADVERTISED_FIBRE); 11443 } else { 11444 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11445 link_config, 11446 bp->link_params.speed_cap_mask[idx]); 11447 return; 11448 } 11449 break; 11450 case PORT_FEATURE_LINK_SPEED_20G: 11451 bp->link_params.req_line_speed[idx] = SPEED_20000; 11452 11453 break; 11454 default: 11455 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", 11456 link_config); 11457 bp->link_params.req_line_speed[idx] = 11458 SPEED_AUTO_NEG; 11459 bp->port.advertising[idx] = 11460 bp->port.supported[idx]; 11461 break; 11462 } 11463 11464 bp->link_params.req_flow_ctrl[idx] = (link_config & 11465 PORT_FEATURE_FLOW_CONTROL_MASK); 11466 if (bp->link_params.req_flow_ctrl[idx] == 11467 BNX2X_FLOW_CTRL_AUTO) { 11468 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) 11469 bp->link_params.req_flow_ctrl[idx] = 11470 BNX2X_FLOW_CTRL_NONE; 11471 else 11472 bnx2x_set_requested_fc(bp); 11473 } 11474 11475 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", 11476 bp->link_params.req_line_speed[idx], 11477 bp->link_params.req_duplex[idx], 11478 bp->link_params.req_flow_ctrl[idx], 11479 bp->port.advertising[idx]); 11480 } 11481 } 11482 11483 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) 11484 { 11485 __be16 mac_hi_be = cpu_to_be16(mac_hi); 11486 __be32 mac_lo_be = cpu_to_be32(mac_lo); 11487 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); 11488 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); 11489 } 11490 11491 static void bnx2x_get_port_hwinfo(struct bnx2x *bp) 11492 { 11493 int port = BP_PORT(bp); 11494 u32 config; 11495 u32 ext_phy_type, ext_phy_config, eee_mode; 11496 11497 bp->link_params.bp = bp; 11498 bp->link_params.port = port; 11499 11500 bp->link_params.lane_config = 11501 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); 11502 11503 bp->link_params.speed_cap_mask[0] = 11504 SHMEM_RD(bp, 11505 dev_info.port_hw_config[port].speed_capability_mask) & 11506 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11507 bp->link_params.speed_cap_mask[1] = 11508 SHMEM_RD(bp, 11509 dev_info.port_hw_config[port].speed_capability_mask2) & 11510 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11511 bp->port.link_config[0] = 11512 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); 11513 11514 bp->port.link_config[1] = 11515 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); 11516 11517 bp->link_params.multi_phy_config = 11518 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); 11519 /* If the device is capable of WoL, set the default state according 11520 * to the HW 11521 */ 11522 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); 11523 bp->wol = (!(bp->flags & NO_WOL_FLAG) && 11524 (config & PORT_FEATURE_WOL_ENABLED)); 11525 11526 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11527 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) 11528 bp->flags |= NO_ISCSI_FLAG; 11529 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11530 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) 11531 bp->flags |= NO_FCOE_FLAG; 11532 11533 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", 11534 bp->link_params.lane_config, 11535 bp->link_params.speed_cap_mask[0], 11536 bp->port.link_config[0]); 11537 11538 bp->link_params.switch_cfg = (bp->port.link_config[0] & 11539 PORT_FEATURE_CONNECTED_SWITCH_MASK); 11540 bnx2x_phy_probe(&bp->link_params); 11541 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); 11542 11543 bnx2x_link_settings_requested(bp); 11544 11545 /* 11546 * If connected directly, work with the internal PHY, otherwise, work 11547 * with the external PHY 11548 */ 11549 ext_phy_config = 11550 SHMEM_RD(bp, 11551 dev_info.port_hw_config[port].external_phy_config); 11552 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); 11553 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 11554 bp->mdio.prtad = bp->port.phy_addr; 11555 11556 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 11557 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 11558 bp->mdio.prtad = 11559 XGXS_EXT_PHY_ADDR(ext_phy_config); 11560 11561 /* Configure link feature according to nvram value */ 11562 eee_mode = (((SHMEM_RD(bp, dev_info. 11563 port_feature_config[port].eee_power_mode)) & 11564 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 11565 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 11566 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 11567 bp->link_params.eee_mode = EEE_MODE_ADV_LPI | 11568 EEE_MODE_ENABLE_LPI | 11569 EEE_MODE_OUTPUT_TIME; 11570 } else { 11571 bp->link_params.eee_mode = 0; 11572 } 11573 } 11574 11575 void bnx2x_get_iscsi_info(struct bnx2x *bp) 11576 { 11577 u32 no_flags = NO_ISCSI_FLAG; 11578 int port = BP_PORT(bp); 11579 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11580 drv_lic_key[port].max_iscsi_conn); 11581 11582 if (!CNIC_SUPPORT(bp)) { 11583 bp->flags |= no_flags; 11584 return; 11585 } 11586 11587 /* Get the number of maximum allowed iSCSI connections */ 11588 bp->cnic_eth_dev.max_iscsi_conn = 11589 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> 11590 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; 11591 11592 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", 11593 bp->cnic_eth_dev.max_iscsi_conn); 11594 11595 /* 11596 * If maximum allowed number of connections is zero - 11597 * disable the feature. 11598 */ 11599 if (!bp->cnic_eth_dev.max_iscsi_conn) 11600 bp->flags |= no_flags; 11601 } 11602 11603 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) 11604 { 11605 /* Port info */ 11606 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11607 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); 11608 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11609 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); 11610 11611 /* Node info */ 11612 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11613 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); 11614 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11615 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); 11616 } 11617 11618 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) 11619 { 11620 u8 count = 0; 11621 11622 if (IS_MF(bp)) { 11623 u8 fid; 11624 11625 /* iterate over absolute function ids for this path: */ 11626 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { 11627 if (IS_MF_SD(bp)) { 11628 u32 cfg = MF_CFG_RD(bp, 11629 func_mf_config[fid].config); 11630 11631 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && 11632 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == 11633 FUNC_MF_CFG_PROTOCOL_FCOE)) 11634 count++; 11635 } else { 11636 u32 cfg = MF_CFG_RD(bp, 11637 func_ext_config[fid]. 11638 func_cfg); 11639 11640 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && 11641 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) 11642 count++; 11643 } 11644 } 11645 } else { /* SF */ 11646 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; 11647 11648 for (port = 0; port < port_cnt; port++) { 11649 u32 lic = SHMEM_RD(bp, 11650 drv_lic_key[port].max_fcoe_conn) ^ 11651 FW_ENCODE_32BIT_PATTERN; 11652 if (lic) 11653 count++; 11654 } 11655 } 11656 11657 return count; 11658 } 11659 11660 static void bnx2x_get_fcoe_info(struct bnx2x *bp) 11661 { 11662 int port = BP_PORT(bp); 11663 int func = BP_ABS_FUNC(bp); 11664 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11665 drv_lic_key[port].max_fcoe_conn); 11666 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); 11667 11668 if (!CNIC_SUPPORT(bp)) { 11669 bp->flags |= NO_FCOE_FLAG; 11670 return; 11671 } 11672 11673 /* Get the number of maximum allowed FCoE connections */ 11674 bp->cnic_eth_dev.max_fcoe_conn = 11675 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> 11676 BNX2X_MAX_FCOE_INIT_CONN_SHIFT; 11677 11678 /* Calculate the number of maximum allowed FCoE tasks */ 11679 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; 11680 11681 /* check if FCoE resources must be shared between different functions */ 11682 if (num_fcoe_func) 11683 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; 11684 11685 /* Read the WWN: */ 11686 if (!IS_MF(bp)) { 11687 /* Port info */ 11688 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11689 SHMEM_RD(bp, 11690 dev_info.port_hw_config[port]. 11691 fcoe_wwn_port_name_upper); 11692 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11693 SHMEM_RD(bp, 11694 dev_info.port_hw_config[port]. 11695 fcoe_wwn_port_name_lower); 11696 11697 /* Node info */ 11698 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11699 SHMEM_RD(bp, 11700 dev_info.port_hw_config[port]. 11701 fcoe_wwn_node_name_upper); 11702 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11703 SHMEM_RD(bp, 11704 dev_info.port_hw_config[port]. 11705 fcoe_wwn_node_name_lower); 11706 } else if (!IS_MF_SD(bp)) { 11707 /* Read the WWN info only if the FCoE feature is enabled for 11708 * this function. 11709 */ 11710 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp)) 11711 bnx2x_get_ext_wwn_info(bp, func); 11712 } else { 11713 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) 11714 bnx2x_get_ext_wwn_info(bp, func); 11715 } 11716 11717 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); 11718 11719 /* 11720 * If maximum allowed number of connections is zero - 11721 * disable the feature. 11722 */ 11723 if (!bp->cnic_eth_dev.max_fcoe_conn) { 11724 bp->flags |= NO_FCOE_FLAG; 11725 eth_zero_addr(bp->fip_mac); 11726 } 11727 } 11728 11729 static void bnx2x_get_cnic_info(struct bnx2x *bp) 11730 { 11731 /* 11732 * iSCSI may be dynamically disabled but reading 11733 * info here we will decrease memory usage by driver 11734 * if the feature is disabled for good 11735 */ 11736 bnx2x_get_iscsi_info(bp); 11737 bnx2x_get_fcoe_info(bp); 11738 } 11739 11740 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) 11741 { 11742 u32 val, val2; 11743 int func = BP_ABS_FUNC(bp); 11744 int port = BP_PORT(bp); 11745 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; 11746 u8 *fip_mac = bp->fip_mac; 11747 11748 if (IS_MF(bp)) { 11749 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or 11750 * FCoE MAC then the appropriate feature should be disabled. 11751 * In non SD mode features configuration comes from struct 11752 * func_ext_config. 11753 */ 11754 if (!IS_MF_SD(bp)) { 11755 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); 11756 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 11757 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11758 iscsi_mac_addr_upper); 11759 val = MF_CFG_RD(bp, func_ext_config[func]. 11760 iscsi_mac_addr_lower); 11761 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11762 BNX2X_DEV_INFO 11763 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11764 } else { 11765 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11766 } 11767 11768 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 11769 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11770 fcoe_mac_addr_upper); 11771 val = MF_CFG_RD(bp, func_ext_config[func]. 11772 fcoe_mac_addr_lower); 11773 bnx2x_set_mac_buf(fip_mac, val, val2); 11774 BNX2X_DEV_INFO 11775 ("Read FCoE L2 MAC: %pM\n", fip_mac); 11776 } else { 11777 bp->flags |= NO_FCOE_FLAG; 11778 } 11779 11780 bp->mf_ext_config = cfg; 11781 11782 } else { /* SD MODE */ 11783 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { 11784 /* use primary mac as iscsi mac */ 11785 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); 11786 11787 BNX2X_DEV_INFO("SD ISCSI MODE\n"); 11788 BNX2X_DEV_INFO 11789 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11790 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { 11791 /* use primary mac as fip mac */ 11792 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); 11793 BNX2X_DEV_INFO("SD FCoE MODE\n"); 11794 BNX2X_DEV_INFO 11795 ("Read FIP MAC: %pM\n", fip_mac); 11796 } 11797 } 11798 11799 /* If this is a storage-only interface, use SAN mac as 11800 * primary MAC. Notice that for SD this is already the case, 11801 * as the SAN mac was copied from the primary MAC. 11802 */ 11803 if (IS_MF_FCOE_AFEX(bp)) 11804 eth_hw_addr_set(bp->dev, fip_mac); 11805 } else { 11806 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11807 iscsi_mac_upper); 11808 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11809 iscsi_mac_lower); 11810 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11811 11812 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11813 fcoe_fip_mac_upper); 11814 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11815 fcoe_fip_mac_lower); 11816 bnx2x_set_mac_buf(fip_mac, val, val2); 11817 } 11818 11819 /* Disable iSCSI OOO if MAC configuration is invalid. */ 11820 if (!is_valid_ether_addr(iscsi_mac)) { 11821 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11822 eth_zero_addr(iscsi_mac); 11823 } 11824 11825 /* Disable FCoE if MAC configuration is invalid. */ 11826 if (!is_valid_ether_addr(fip_mac)) { 11827 bp->flags |= NO_FCOE_FLAG; 11828 eth_zero_addr(bp->fip_mac); 11829 } 11830 } 11831 11832 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) 11833 { 11834 u32 val, val2; 11835 int func = BP_ABS_FUNC(bp); 11836 int port = BP_PORT(bp); 11837 u8 addr[ETH_ALEN] = {}; 11838 11839 /* Zero primary MAC configuration */ 11840 eth_hw_addr_set(bp->dev, addr); 11841 11842 if (BP_NOMCP(bp)) { 11843 BNX2X_ERROR("warning: random MAC workaround active\n"); 11844 eth_hw_addr_random(bp->dev); 11845 } else if (IS_MF(bp)) { 11846 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11847 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); 11848 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && 11849 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) { 11850 bnx2x_set_mac_buf(addr, val, val2); 11851 eth_hw_addr_set(bp->dev, addr); 11852 } 11853 11854 if (CNIC_SUPPORT(bp)) 11855 bnx2x_get_cnic_mac_hwinfo(bp); 11856 } else { 11857 /* in SF read MACs from port configuration */ 11858 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11859 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11860 bnx2x_set_mac_buf(addr, val, val2); 11861 eth_hw_addr_set(bp->dev, addr); 11862 11863 if (CNIC_SUPPORT(bp)) 11864 bnx2x_get_cnic_mac_hwinfo(bp); 11865 } 11866 11867 if (!BP_NOMCP(bp)) { 11868 /* Read physical port identifier from shmem */ 11869 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11870 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11871 bnx2x_set_mac_buf(bp->phys_port_id, val, val2); 11872 bp->flags |= HAS_PHYS_PORT_ID; 11873 } 11874 11875 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); 11876 11877 if (!is_valid_ether_addr(bp->dev->dev_addr)) 11878 dev_err(&bp->pdev->dev, 11879 "bad Ethernet MAC address configuration: %pM\n" 11880 "change it manually before bringing up the appropriate network interface\n", 11881 bp->dev->dev_addr); 11882 } 11883 11884 static bool bnx2x_get_dropless_info(struct bnx2x *bp) 11885 { 11886 int tmp; 11887 u32 cfg; 11888 11889 if (IS_VF(bp)) 11890 return false; 11891 11892 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { 11893 /* Take function: tmp = func */ 11894 tmp = BP_ABS_FUNC(bp); 11895 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); 11896 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); 11897 } else { 11898 /* Take port: tmp = port */ 11899 tmp = BP_PORT(bp); 11900 cfg = SHMEM_RD(bp, 11901 dev_info.port_hw_config[tmp].generic_features); 11902 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); 11903 } 11904 return cfg; 11905 } 11906 11907 static void validate_set_si_mode(struct bnx2x *bp) 11908 { 11909 u8 func = BP_ABS_FUNC(bp); 11910 u32 val; 11911 11912 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11913 11914 /* check for legal mac (upper bytes) */ 11915 if (val != 0xffff) { 11916 bp->mf_mode = MULTI_FUNCTION_SI; 11917 bp->mf_config[BP_VN(bp)] = 11918 MF_CFG_RD(bp, func_mf_config[func].config); 11919 } else 11920 BNX2X_DEV_INFO("illegal MAC address for SI\n"); 11921 } 11922 11923 static int bnx2x_get_hwinfo(struct bnx2x *bp) 11924 { 11925 int /*abs*/func = BP_ABS_FUNC(bp); 11926 int vn; 11927 u32 val = 0, val2 = 0; 11928 int rc = 0; 11929 11930 /* Validate that chip access is feasible */ 11931 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) { 11932 dev_err(&bp->pdev->dev, 11933 "Chip read returns all Fs. Preventing probe from continuing\n"); 11934 return -EINVAL; 11935 } 11936 11937 bnx2x_get_common_hwinfo(bp); 11938 11939 /* 11940 * initialize IGU parameters 11941 */ 11942 if (CHIP_IS_E1x(bp)) { 11943 bp->common.int_block = INT_BLOCK_HC; 11944 11945 bp->igu_dsb_id = DEF_SB_IGU_ID; 11946 bp->igu_base_sb = 0; 11947 } else { 11948 bp->common.int_block = INT_BLOCK_IGU; 11949 11950 /* do not allow device reset during IGU info processing */ 11951 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11952 11953 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 11954 11955 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11956 int tout = 5000; 11957 11958 BNX2X_DEV_INFO("FORCING Normal Mode\n"); 11959 11960 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 11961 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); 11962 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); 11963 11964 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11965 tout--; 11966 usleep_range(1000, 2000); 11967 } 11968 11969 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11970 dev_err(&bp->pdev->dev, 11971 "FORCING Normal Mode failed!!!\n"); 11972 bnx2x_release_hw_lock(bp, 11973 HW_LOCK_RESOURCE_RESET); 11974 return -EPERM; 11975 } 11976 } 11977 11978 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11979 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); 11980 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; 11981 } else 11982 BNX2X_DEV_INFO("IGU Normal Mode\n"); 11983 11984 rc = bnx2x_get_igu_cam_info(bp); 11985 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11986 if (rc) 11987 return rc; 11988 } 11989 11990 /* 11991 * set base FW non-default (fast path) status block id, this value is 11992 * used to initialize the fw_sb_id saved on the fp/queue structure to 11993 * determine the id used by the FW. 11994 */ 11995 if (CHIP_IS_E1x(bp)) 11996 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); 11997 else /* 11998 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of 11999 * the same queue are indicated on the same IGU SB). So we prefer 12000 * FW and IGU SBs to be the same value. 12001 */ 12002 bp->base_fw_ndsb = bp->igu_base_sb; 12003 12004 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" 12005 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, 12006 bp->igu_sb_cnt, bp->base_fw_ndsb); 12007 12008 /* 12009 * Initialize MF configuration 12010 */ 12011 bp->mf_ov = 0; 12012 bp->mf_mode = 0; 12013 bp->mf_sub_mode = 0; 12014 vn = BP_VN(bp); 12015 12016 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { 12017 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", 12018 bp->common.shmem2_base, SHMEM2_RD(bp, size), 12019 (u32)offsetof(struct shmem2_region, mf_cfg_addr)); 12020 12021 if (SHMEM2_HAS(bp, mf_cfg_addr)) 12022 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); 12023 else 12024 bp->common.mf_cfg_base = bp->common.shmem_base + 12025 offsetof(struct shmem_region, func_mb) + 12026 E1H_FUNC_MAX * sizeof(struct drv_func_mb); 12027 /* 12028 * get mf configuration: 12029 * 1. Existence of MF configuration 12030 * 2. MAC address must be legal (check only upper bytes) 12031 * for Switch-Independent mode; 12032 * OVLAN must be legal for Switch-Dependent mode 12033 * 3. SF_MODE configures specific MF mode 12034 */ 12035 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12036 /* get mf configuration */ 12037 val = SHMEM_RD(bp, 12038 dev_info.shared_feature_config.config); 12039 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; 12040 12041 switch (val) { 12042 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 12043 validate_set_si_mode(bp); 12044 break; 12045 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 12046 if ((!CHIP_IS_E1x(bp)) && 12047 (MF_CFG_RD(bp, func_mf_config[func]. 12048 mac_upper) != 0xffff) && 12049 (SHMEM2_HAS(bp, 12050 afex_driver_support))) { 12051 bp->mf_mode = MULTI_FUNCTION_AFEX; 12052 bp->mf_config[vn] = MF_CFG_RD(bp, 12053 func_mf_config[func].config); 12054 } else { 12055 BNX2X_DEV_INFO("can not configure afex mode\n"); 12056 } 12057 break; 12058 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 12059 /* get OV configuration */ 12060 val = MF_CFG_RD(bp, 12061 func_mf_config[FUNC_0].e1hov_tag); 12062 val &= FUNC_MF_CFG_E1HOV_TAG_MASK; 12063 12064 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12065 bp->mf_mode = MULTI_FUNCTION_SD; 12066 bp->mf_config[vn] = MF_CFG_RD(bp, 12067 func_mf_config[func].config); 12068 } else 12069 BNX2X_DEV_INFO("illegal OV for SD\n"); 12070 break; 12071 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE: 12072 bp->mf_mode = MULTI_FUNCTION_SD; 12073 bp->mf_sub_mode = SUB_MF_MODE_BD; 12074 bp->mf_config[vn] = 12075 MF_CFG_RD(bp, 12076 func_mf_config[func].config); 12077 12078 if (SHMEM2_HAS(bp, mtu_size)) { 12079 int mtu_idx = BP_FW_MB_IDX(bp); 12080 u16 mtu_size; 12081 u32 mtu; 12082 12083 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]); 12084 mtu_size = (u16)mtu; 12085 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n", 12086 mtu_size, mtu); 12087 12088 /* if valid: update device mtu */ 12089 if ((mtu_size >= ETH_MIN_PACKET_SIZE) && 12090 (mtu_size <= 12091 ETH_MAX_JUMBO_PACKET_SIZE)) 12092 bp->dev->mtu = mtu_size; 12093 } 12094 break; 12095 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE: 12096 bp->mf_mode = MULTI_FUNCTION_SD; 12097 bp->mf_sub_mode = SUB_MF_MODE_UFP; 12098 bp->mf_config[vn] = 12099 MF_CFG_RD(bp, 12100 func_mf_config[func].config); 12101 break; 12102 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 12103 bp->mf_config[vn] = 0; 12104 break; 12105 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE: 12106 val2 = SHMEM_RD(bp, 12107 dev_info.shared_hw_config.config_3); 12108 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK; 12109 switch (val2) { 12110 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5: 12111 validate_set_si_mode(bp); 12112 bp->mf_sub_mode = 12113 SUB_MF_MODE_NPAR1_DOT_5; 12114 break; 12115 default: 12116 /* Unknown configuration */ 12117 bp->mf_config[vn] = 0; 12118 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n", 12119 val); 12120 } 12121 break; 12122 default: 12123 /* Unknown configuration: reset mf_config */ 12124 bp->mf_config[vn] = 0; 12125 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); 12126 } 12127 } 12128 12129 BNX2X_DEV_INFO("%s function mode\n", 12130 IS_MF(bp) ? "multi" : "single"); 12131 12132 switch (bp->mf_mode) { 12133 case MULTI_FUNCTION_SD: 12134 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 12135 FUNC_MF_CFG_E1HOV_TAG_MASK; 12136 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12137 bp->mf_ov = val; 12138 bp->path_has_ovlan = true; 12139 12140 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", 12141 func, bp->mf_ov, bp->mf_ov); 12142 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) || 12143 (bp->mf_sub_mode == SUB_MF_MODE_BD)) { 12144 dev_err(&bp->pdev->dev, 12145 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n", 12146 func); 12147 bp->path_has_ovlan = true; 12148 } else { 12149 dev_err(&bp->pdev->dev, 12150 "No valid MF OV for func %d, aborting\n", 12151 func); 12152 return -EPERM; 12153 } 12154 break; 12155 case MULTI_FUNCTION_AFEX: 12156 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); 12157 break; 12158 case MULTI_FUNCTION_SI: 12159 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", 12160 func); 12161 break; 12162 default: 12163 if (vn) { 12164 dev_err(&bp->pdev->dev, 12165 "VN %d is in a single function mode, aborting\n", 12166 vn); 12167 return -EPERM; 12168 } 12169 break; 12170 } 12171 12172 /* check if other port on the path needs ovlan: 12173 * Since MF configuration is shared between ports 12174 * Possible mixed modes are only 12175 * {SF, SI} {SF, SD} {SD, SF} {SI, SF} 12176 */ 12177 if (CHIP_MODE_IS_4_PORT(bp) && 12178 !bp->path_has_ovlan && 12179 !IS_MF(bp) && 12180 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12181 u8 other_port = !BP_PORT(bp); 12182 u8 other_func = BP_PATH(bp) + 2*other_port; 12183 val = MF_CFG_RD(bp, 12184 func_mf_config[other_func].e1hov_tag); 12185 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) 12186 bp->path_has_ovlan = true; 12187 } 12188 } 12189 12190 /* adjust igu_sb_cnt to MF for E1H */ 12191 if (CHIP_IS_E1H(bp) && IS_MF(bp)) 12192 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT); 12193 12194 /* port info */ 12195 bnx2x_get_port_hwinfo(bp); 12196 12197 /* Get MAC addresses */ 12198 bnx2x_get_mac_hwinfo(bp); 12199 12200 bnx2x_get_cnic_info(bp); 12201 12202 return rc; 12203 } 12204 12205 static void bnx2x_read_fwinfo(struct bnx2x *bp) 12206 { 12207 char str_id[VENDOR_ID_LEN + 1]; 12208 unsigned int vpd_len, kw_len; 12209 u8 *vpd_data; 12210 int rodi; 12211 12212 memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); 12213 12214 vpd_data = pci_vpd_alloc(bp->pdev, &vpd_len); 12215 if (IS_ERR(vpd_data)) 12216 return; 12217 12218 rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len, 12219 PCI_VPD_RO_KEYWORD_MFR_ID, &kw_len); 12220 if (rodi < 0 || kw_len != VENDOR_ID_LEN) 12221 goto out_not_found; 12222 12223 /* vendor specific info */ 12224 snprintf(str_id, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); 12225 if (!strncasecmp(str_id, &vpd_data[rodi], VENDOR_ID_LEN)) { 12226 rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len, 12227 PCI_VPD_RO_KEYWORD_VENDOR0, 12228 &kw_len); 12229 if (rodi >= 0 && kw_len < sizeof(bp->fw_ver)) { 12230 memcpy(bp->fw_ver, &vpd_data[rodi], kw_len); 12231 bp->fw_ver[kw_len] = ' '; 12232 } 12233 } 12234 out_not_found: 12235 kfree(vpd_data); 12236 } 12237 12238 static void bnx2x_set_modes_bitmap(struct bnx2x *bp) 12239 { 12240 u32 flags = 0; 12241 12242 if (CHIP_REV_IS_FPGA(bp)) 12243 SET_FLAGS(flags, MODE_FPGA); 12244 else if (CHIP_REV_IS_EMUL(bp)) 12245 SET_FLAGS(flags, MODE_EMUL); 12246 else 12247 SET_FLAGS(flags, MODE_ASIC); 12248 12249 if (CHIP_MODE_IS_4_PORT(bp)) 12250 SET_FLAGS(flags, MODE_PORT4); 12251 else 12252 SET_FLAGS(flags, MODE_PORT2); 12253 12254 if (CHIP_IS_E2(bp)) 12255 SET_FLAGS(flags, MODE_E2); 12256 else if (CHIP_IS_E3(bp)) { 12257 SET_FLAGS(flags, MODE_E3); 12258 if (CHIP_REV(bp) == CHIP_REV_Ax) 12259 SET_FLAGS(flags, MODE_E3_A0); 12260 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ 12261 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 12262 } 12263 12264 if (IS_MF(bp)) { 12265 SET_FLAGS(flags, MODE_MF); 12266 switch (bp->mf_mode) { 12267 case MULTI_FUNCTION_SD: 12268 SET_FLAGS(flags, MODE_MF_SD); 12269 break; 12270 case MULTI_FUNCTION_SI: 12271 SET_FLAGS(flags, MODE_MF_SI); 12272 break; 12273 case MULTI_FUNCTION_AFEX: 12274 SET_FLAGS(flags, MODE_MF_AFEX); 12275 break; 12276 } 12277 } else 12278 SET_FLAGS(flags, MODE_SF); 12279 12280 #if defined(__LITTLE_ENDIAN) 12281 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 12282 #else /*(__BIG_ENDIAN)*/ 12283 SET_FLAGS(flags, MODE_BIG_ENDIAN); 12284 #endif 12285 INIT_MODE_FLAGS(bp) = flags; 12286 } 12287 12288 static int bnx2x_init_bp(struct bnx2x *bp) 12289 { 12290 int func; 12291 int rc; 12292 12293 mutex_init(&bp->port.phy_mutex); 12294 mutex_init(&bp->fw_mb_mutex); 12295 mutex_init(&bp->drv_info_mutex); 12296 sema_init(&bp->stats_lock, 1); 12297 bp->drv_info_mng_owner = false; 12298 INIT_LIST_HEAD(&bp->vlan_reg); 12299 12300 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); 12301 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); 12302 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); 12303 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task); 12304 if (IS_PF(bp)) { 12305 rc = bnx2x_get_hwinfo(bp); 12306 if (rc) 12307 return rc; 12308 } else { 12309 static const u8 zero_addr[ETH_ALEN] = {}; 12310 12311 eth_hw_addr_set(bp->dev, zero_addr); 12312 } 12313 12314 bnx2x_set_modes_bitmap(bp); 12315 12316 rc = bnx2x_alloc_mem_bp(bp); 12317 if (rc) 12318 return rc; 12319 12320 bnx2x_read_fwinfo(bp); 12321 12322 if (IS_PF(bp)) { 12323 rc = bnx2x_init_firmware(bp); 12324 12325 if (rc) { 12326 bnx2x_free_mem_bp(bp); 12327 return rc; 12328 } 12329 } 12330 12331 func = BP_FUNC(bp); 12332 12333 /* need to reset chip if undi was active */ 12334 if (IS_PF(bp) && !BP_NOMCP(bp)) { 12335 /* init fw_seq */ 12336 bp->fw_seq = 12337 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 12338 DRV_MSG_SEQ_NUMBER_MASK; 12339 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 12340 12341 rc = bnx2x_prev_unload(bp); 12342 if (rc) { 12343 bnx2x_release_firmware(bp); 12344 bnx2x_free_mem_bp(bp); 12345 return rc; 12346 } 12347 } 12348 12349 if (CHIP_REV_IS_FPGA(bp)) 12350 dev_err(&bp->pdev->dev, "FPGA detected\n"); 12351 12352 if (BP_NOMCP(bp) && (func == 0)) 12353 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); 12354 12355 bp->disable_tpa = disable_tpa; 12356 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp); 12357 /* Reduce memory usage in kdump environment by disabling TPA */ 12358 bp->disable_tpa |= is_kdump_kernel(); 12359 12360 /* Set TPA flags */ 12361 if (bp->disable_tpa) { 12362 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12363 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12364 } 12365 12366 if (CHIP_IS_E1(bp)) 12367 bp->dropless_fc = false; 12368 else 12369 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); 12370 12371 bp->mrrs = mrrs; 12372 12373 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL; 12374 if (IS_VF(bp)) 12375 bp->rx_ring_size = MAX_RX_AVAIL; 12376 12377 /* make sure that the numbers are in the right granularity */ 12378 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; 12379 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; 12380 12381 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; 12382 12383 timer_setup(&bp->timer, bnx2x_timer, 0); 12384 bp->timer.expires = jiffies + bp->current_interval; 12385 12386 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && 12387 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && 12388 SHMEM2_HAS(bp, dcbx_en) && 12389 SHMEM2_RD(bp, dcbx_lldp_params_offset) && 12390 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) && 12391 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) { 12392 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); 12393 bnx2x_dcbx_init_params(bp); 12394 } else { 12395 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); 12396 } 12397 12398 if (CHIP_IS_E1x(bp)) 12399 bp->cnic_base_cl_id = FP_SB_MAX_E1x; 12400 else 12401 bp->cnic_base_cl_id = FP_SB_MAX_E2; 12402 12403 /* multiple tx priority */ 12404 if (IS_VF(bp)) 12405 bp->max_cos = 1; 12406 else if (CHIP_IS_E1x(bp)) 12407 bp->max_cos = BNX2X_MULTI_TX_COS_E1X; 12408 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) 12409 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; 12410 else if (CHIP_IS_E3B0(bp)) 12411 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; 12412 else 12413 BNX2X_ERR("unknown chip %x revision %x\n", 12414 CHIP_NUM(bp), CHIP_REV(bp)); 12415 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); 12416 12417 /* We need at least one default status block for slow-path events, 12418 * second status block for the L2 queue, and a third status block for 12419 * CNIC if supported. 12420 */ 12421 if (IS_VF(bp)) 12422 bp->min_msix_vec_cnt = 1; 12423 else if (CNIC_SUPPORT(bp)) 12424 bp->min_msix_vec_cnt = 3; 12425 else /* PF w/o cnic */ 12426 bp->min_msix_vec_cnt = 2; 12427 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); 12428 12429 bp->dump_preset_idx = 1; 12430 12431 return rc; 12432 } 12433 12434 /**************************************************************************** 12435 * General service functions 12436 ****************************************************************************/ 12437 12438 /* 12439 * net_device service functions 12440 */ 12441 12442 /* called with rtnl_lock */ 12443 static int bnx2x_open(struct net_device *dev) 12444 { 12445 struct bnx2x *bp = netdev_priv(dev); 12446 int rc; 12447 12448 bp->stats_init = true; 12449 12450 netif_carrier_off(dev); 12451 12452 bnx2x_set_power_state(bp, PCI_D0); 12453 12454 /* If parity had happen during the unload, then attentions 12455 * and/or RECOVERY_IN_PROGRES may still be set. In this case we 12456 * want the first function loaded on the current engine to 12457 * complete the recovery. 12458 * Parity recovery is only relevant for PF driver. 12459 */ 12460 if (IS_PF(bp)) { 12461 int other_engine = BP_PATH(bp) ? 0 : 1; 12462 bool other_load_status, load_status; 12463 bool global = false; 12464 12465 other_load_status = bnx2x_get_load_status(bp, other_engine); 12466 load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); 12467 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || 12468 bnx2x_chk_parity_attn(bp, &global, true)) { 12469 do { 12470 /* If there are attentions and they are in a 12471 * global blocks, set the GLOBAL_RESET bit 12472 * regardless whether it will be this function 12473 * that will complete the recovery or not. 12474 */ 12475 if (global) 12476 bnx2x_set_reset_global(bp); 12477 12478 /* Only the first function on the current 12479 * engine should try to recover in open. In case 12480 * of attentions in global blocks only the first 12481 * in the chip should try to recover. 12482 */ 12483 if ((!load_status && 12484 (!global || !other_load_status)) && 12485 bnx2x_trylock_leader_lock(bp) && 12486 !bnx2x_leader_reset(bp)) { 12487 netdev_info(bp->dev, 12488 "Recovered in open\n"); 12489 break; 12490 } 12491 12492 /* recovery has failed... */ 12493 bnx2x_set_power_state(bp, PCI_D3hot); 12494 bp->recovery_state = BNX2X_RECOVERY_FAILED; 12495 12496 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" 12497 "If you still see this message after a few retries then power cycle is required.\n"); 12498 12499 return -EAGAIN; 12500 } while (0); 12501 } 12502 } 12503 12504 bp->recovery_state = BNX2X_RECOVERY_DONE; 12505 rc = bnx2x_nic_load(bp, LOAD_OPEN); 12506 if (rc) 12507 return rc; 12508 12509 return 0; 12510 } 12511 12512 /* called with rtnl_lock */ 12513 static int bnx2x_close(struct net_device *dev) 12514 { 12515 struct bnx2x *bp = netdev_priv(dev); 12516 12517 /* Unload the driver, release IRQs */ 12518 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 12519 12520 return 0; 12521 } 12522 12523 struct bnx2x_mcast_list_elem_group 12524 { 12525 struct list_head mcast_group_link; 12526 struct bnx2x_mcast_list_elem mcast_elems[]; 12527 }; 12528 12529 #define MCAST_ELEMS_PER_PG \ 12530 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \ 12531 sizeof(struct bnx2x_mcast_list_elem)) 12532 12533 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list) 12534 { 12535 struct bnx2x_mcast_list_elem_group *current_mcast_group; 12536 12537 while (!list_empty(mcast_group_list)) { 12538 current_mcast_group = list_first_entry(mcast_group_list, 12539 struct bnx2x_mcast_list_elem_group, 12540 mcast_group_link); 12541 list_del(¤t_mcast_group->mcast_group_link); 12542 free_page((unsigned long)current_mcast_group); 12543 } 12544 } 12545 12546 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, 12547 struct bnx2x_mcast_ramrod_params *p, 12548 struct list_head *mcast_group_list) 12549 { 12550 struct bnx2x_mcast_list_elem *mc_mac; 12551 struct netdev_hw_addr *ha; 12552 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL; 12553 int mc_count = netdev_mc_count(bp->dev); 12554 int offset = 0; 12555 12556 INIT_LIST_HEAD(&p->mcast_list); 12557 netdev_for_each_mc_addr(ha, bp->dev) { 12558 if (!offset) { 12559 current_mcast_group = 12560 (struct bnx2x_mcast_list_elem_group *) 12561 __get_free_page(GFP_ATOMIC); 12562 if (!current_mcast_group) { 12563 bnx2x_free_mcast_macs_list(mcast_group_list); 12564 BNX2X_ERR("Failed to allocate mc MAC list\n"); 12565 return -ENOMEM; 12566 } 12567 list_add(¤t_mcast_group->mcast_group_link, 12568 mcast_group_list); 12569 } 12570 mc_mac = ¤t_mcast_group->mcast_elems[offset]; 12571 mc_mac->mac = bnx2x_mc_addr(ha); 12572 list_add_tail(&mc_mac->link, &p->mcast_list); 12573 offset++; 12574 if (offset == MCAST_ELEMS_PER_PG) 12575 offset = 0; 12576 } 12577 p->mcast_list_len = mc_count; 12578 return 0; 12579 } 12580 12581 /** 12582 * bnx2x_set_uc_list - configure a new unicast MACs list. 12583 * 12584 * @bp: driver handle 12585 * 12586 * We will use zero (0) as a MAC type for these MACs. 12587 */ 12588 static int bnx2x_set_uc_list(struct bnx2x *bp) 12589 { 12590 int rc; 12591 struct net_device *dev = bp->dev; 12592 struct netdev_hw_addr *ha; 12593 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 12594 unsigned long ramrod_flags = 0; 12595 12596 /* First schedule a cleanup up of old configuration */ 12597 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); 12598 if (rc < 0) { 12599 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); 12600 return rc; 12601 } 12602 12603 netdev_for_each_uc_addr(ha, dev) { 12604 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, 12605 BNX2X_UC_LIST_MAC, &ramrod_flags); 12606 if (rc == -EEXIST) { 12607 DP(BNX2X_MSG_SP, 12608 "Failed to schedule ADD operations: %d\n", rc); 12609 /* do not treat adding same MAC as error */ 12610 rc = 0; 12611 12612 } else if (rc < 0) { 12613 12614 BNX2X_ERR("Failed to schedule ADD operations: %d\n", 12615 rc); 12616 return rc; 12617 } 12618 } 12619 12620 /* Execute the pending commands */ 12621 __set_bit(RAMROD_CONT, &ramrod_flags); 12622 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, 12623 BNX2X_UC_LIST_MAC, &ramrod_flags); 12624 } 12625 12626 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp) 12627 { 12628 LIST_HEAD(mcast_group_list); 12629 struct net_device *dev = bp->dev; 12630 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12631 int rc = 0; 12632 12633 rparam.mcast_obj = &bp->mcast_obj; 12634 12635 /* first, clear all configured multicast MACs */ 12636 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12637 if (rc < 0) { 12638 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); 12639 return rc; 12640 } 12641 12642 /* then, configure a new MACs list */ 12643 if (netdev_mc_count(dev)) { 12644 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list); 12645 if (rc) 12646 return rc; 12647 12648 /* Now add the new MACs */ 12649 rc = bnx2x_config_mcast(bp, &rparam, 12650 BNX2X_MCAST_CMD_ADD); 12651 if (rc < 0) 12652 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12653 rc); 12654 12655 bnx2x_free_mcast_macs_list(&mcast_group_list); 12656 } 12657 12658 return rc; 12659 } 12660 12661 static int bnx2x_set_mc_list(struct bnx2x *bp) 12662 { 12663 LIST_HEAD(mcast_group_list); 12664 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12665 struct net_device *dev = bp->dev; 12666 int rc = 0; 12667 12668 /* On older adapters, we need to flush and re-add filters */ 12669 if (CHIP_IS_E1x(bp)) 12670 return bnx2x_set_mc_list_e1x(bp); 12671 12672 rparam.mcast_obj = &bp->mcast_obj; 12673 12674 if (netdev_mc_count(dev)) { 12675 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list); 12676 if (rc) 12677 return rc; 12678 12679 /* Override the curently configured set of mc filters */ 12680 rc = bnx2x_config_mcast(bp, &rparam, 12681 BNX2X_MCAST_CMD_SET); 12682 if (rc < 0) 12683 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12684 rc); 12685 12686 bnx2x_free_mcast_macs_list(&mcast_group_list); 12687 } else { 12688 /* If no mc addresses are required, flush the configuration */ 12689 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12690 if (rc < 0) 12691 BNX2X_ERR("Failed to clear multicast configuration %d\n", 12692 rc); 12693 } 12694 12695 return rc; 12696 } 12697 12698 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ 12699 static void bnx2x_set_rx_mode(struct net_device *dev) 12700 { 12701 struct bnx2x *bp = netdev_priv(dev); 12702 12703 if (bp->state != BNX2X_STATE_OPEN) { 12704 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); 12705 return; 12706 } else { 12707 /* Schedule an SP task to handle rest of change */ 12708 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE, 12709 NETIF_MSG_IFUP); 12710 } 12711 } 12712 12713 void bnx2x_set_rx_mode_inner(struct bnx2x *bp) 12714 { 12715 u32 rx_mode = BNX2X_RX_MODE_NORMAL; 12716 12717 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); 12718 12719 netif_addr_lock_bh(bp->dev); 12720 12721 if (bp->dev->flags & IFF_PROMISC) { 12722 rx_mode = BNX2X_RX_MODE_PROMISC; 12723 } else if ((bp->dev->flags & IFF_ALLMULTI) || 12724 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) && 12725 CHIP_IS_E1(bp))) { 12726 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12727 } else { 12728 if (IS_PF(bp)) { 12729 /* some multicasts */ 12730 if (bnx2x_set_mc_list(bp) < 0) 12731 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12732 12733 /* release bh lock, as bnx2x_set_uc_list might sleep */ 12734 netif_addr_unlock_bh(bp->dev); 12735 if (bnx2x_set_uc_list(bp) < 0) 12736 rx_mode = BNX2X_RX_MODE_PROMISC; 12737 netif_addr_lock_bh(bp->dev); 12738 } else { 12739 /* configuring mcast to a vf involves sleeping (when we 12740 * wait for the pf's response). 12741 */ 12742 bnx2x_schedule_sp_rtnl(bp, 12743 BNX2X_SP_RTNL_VFPF_MCAST, 0); 12744 } 12745 } 12746 12747 bp->rx_mode = rx_mode; 12748 /* handle ISCSI SD mode */ 12749 if (IS_MF_ISCSI_ONLY(bp)) 12750 bp->rx_mode = BNX2X_RX_MODE_NONE; 12751 12752 /* Schedule the rx_mode command */ 12753 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { 12754 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 12755 netif_addr_unlock_bh(bp->dev); 12756 return; 12757 } 12758 12759 if (IS_PF(bp)) { 12760 bnx2x_set_storm_rx_mode(bp); 12761 netif_addr_unlock_bh(bp->dev); 12762 } else { 12763 /* VF will need to request the PF to make this change, and so 12764 * the VF needs to release the bottom-half lock prior to the 12765 * request (as it will likely require sleep on the VF side) 12766 */ 12767 netif_addr_unlock_bh(bp->dev); 12768 bnx2x_vfpf_storm_rx_mode(bp); 12769 } 12770 } 12771 12772 /* called with rtnl_lock */ 12773 static int bnx2x_mdio_read(struct net_device *netdev, int prtad, 12774 int devad, u16 addr) 12775 { 12776 struct bnx2x *bp = netdev_priv(netdev); 12777 u16 value; 12778 int rc; 12779 12780 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", 12781 prtad, devad, addr); 12782 12783 /* The HW expects different devad if CL22 is used */ 12784 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12785 12786 bnx2x_acquire_phy_lock(bp); 12787 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); 12788 bnx2x_release_phy_lock(bp); 12789 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); 12790 12791 if (!rc) 12792 rc = value; 12793 return rc; 12794 } 12795 12796 /* called with rtnl_lock */ 12797 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, 12798 u16 addr, u16 value) 12799 { 12800 struct bnx2x *bp = netdev_priv(netdev); 12801 int rc; 12802 12803 DP(NETIF_MSG_LINK, 12804 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", 12805 prtad, devad, addr, value); 12806 12807 /* The HW expects different devad if CL22 is used */ 12808 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12809 12810 bnx2x_acquire_phy_lock(bp); 12811 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); 12812 bnx2x_release_phy_lock(bp); 12813 return rc; 12814 } 12815 12816 /* called with rtnl_lock */ 12817 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12818 { 12819 struct bnx2x *bp = netdev_priv(dev); 12820 struct mii_ioctl_data *mdio = if_mii(ifr); 12821 12822 if (!netif_running(dev)) 12823 return -EAGAIN; 12824 12825 switch (cmd) { 12826 case SIOCSHWTSTAMP: 12827 return bnx2x_hwtstamp_ioctl(bp, ifr); 12828 default: 12829 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", 12830 mdio->phy_id, mdio->reg_num, mdio->val_in); 12831 return mdio_mii_ioctl(&bp->mdio, mdio, cmd); 12832 } 12833 } 12834 12835 static int bnx2x_validate_addr(struct net_device *dev) 12836 { 12837 struct bnx2x *bp = netdev_priv(dev); 12838 12839 /* query the bulletin board for mac address configured by the PF */ 12840 if (IS_VF(bp)) 12841 bnx2x_sample_bulletin(bp); 12842 12843 if (!is_valid_ether_addr(dev->dev_addr)) { 12844 BNX2X_ERR("Non-valid Ethernet address\n"); 12845 return -EADDRNOTAVAIL; 12846 } 12847 return 0; 12848 } 12849 12850 static int bnx2x_get_phys_port_id(struct net_device *netdev, 12851 struct netdev_phys_item_id *ppid) 12852 { 12853 struct bnx2x *bp = netdev_priv(netdev); 12854 12855 if (!(bp->flags & HAS_PHYS_PORT_ID)) 12856 return -EOPNOTSUPP; 12857 12858 ppid->id_len = sizeof(bp->phys_port_id); 12859 memcpy(ppid->id, bp->phys_port_id, ppid->id_len); 12860 12861 return 0; 12862 } 12863 12864 static netdev_features_t bnx2x_features_check(struct sk_buff *skb, 12865 struct net_device *dev, 12866 netdev_features_t features) 12867 { 12868 /* 12869 * A skb with gso_size + header length > 9700 will cause a 12870 * firmware panic. Drop GSO support. 12871 * 12872 * Eventually the upper layer should not pass these packets down. 12873 * 12874 * For speed, if the gso_size is <= 9000, assume there will 12875 * not be 700 bytes of headers and pass it through. Only do a 12876 * full (slow) validation if the gso_size is > 9000. 12877 * 12878 * (Due to the way SKB_BY_FRAGS works this will also do a full 12879 * validation in that case.) 12880 */ 12881 if (unlikely(skb_is_gso(skb) && 12882 (skb_shinfo(skb)->gso_size > 9000) && 12883 !skb_gso_validate_mac_len(skb, 9700))) 12884 features &= ~NETIF_F_GSO_MASK; 12885 12886 features = vlan_features_check(skb, features); 12887 return vxlan_features_check(skb, features); 12888 } 12889 12890 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add) 12891 { 12892 int rc; 12893 12894 if (IS_PF(bp)) { 12895 unsigned long ramrod_flags = 0; 12896 12897 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12898 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj, 12899 add, &ramrod_flags); 12900 } else { 12901 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add); 12902 } 12903 12904 return rc; 12905 } 12906 12907 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp) 12908 { 12909 struct bnx2x_vlan_entry *vlan; 12910 int rc = 0; 12911 12912 /* Configure all non-configured entries */ 12913 list_for_each_entry(vlan, &bp->vlan_reg, link) { 12914 if (vlan->hw) 12915 continue; 12916 12917 if (bp->vlan_cnt >= bp->vlan_credit) 12918 return -ENOBUFS; 12919 12920 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true); 12921 if (rc) { 12922 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid); 12923 return rc; 12924 } 12925 12926 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid); 12927 vlan->hw = true; 12928 bp->vlan_cnt++; 12929 } 12930 12931 return 0; 12932 } 12933 12934 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode) 12935 { 12936 bool need_accept_any_vlan; 12937 12938 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp); 12939 12940 if (bp->accept_any_vlan != need_accept_any_vlan) { 12941 bp->accept_any_vlan = need_accept_any_vlan; 12942 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n", 12943 bp->accept_any_vlan ? "raised" : "cleared"); 12944 if (set_rx_mode) { 12945 if (IS_PF(bp)) 12946 bnx2x_set_rx_mode_inner(bp); 12947 else 12948 bnx2x_vfpf_storm_rx_mode(bp); 12949 } 12950 } 12951 } 12952 12953 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp) 12954 { 12955 /* Don't set rx mode here. Our caller will do it. */ 12956 bnx2x_vlan_configure(bp, false); 12957 12958 return 0; 12959 } 12960 12961 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 12962 { 12963 struct bnx2x *bp = netdev_priv(dev); 12964 struct bnx2x_vlan_entry *vlan; 12965 12966 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid); 12967 12968 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL); 12969 if (!vlan) 12970 return -ENOMEM; 12971 12972 vlan->vid = vid; 12973 vlan->hw = false; 12974 list_add_tail(&vlan->link, &bp->vlan_reg); 12975 12976 if (netif_running(dev)) 12977 bnx2x_vlan_configure(bp, true); 12978 12979 return 0; 12980 } 12981 12982 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 12983 { 12984 struct bnx2x *bp = netdev_priv(dev); 12985 struct bnx2x_vlan_entry *vlan; 12986 bool found = false; 12987 int rc = 0; 12988 12989 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid); 12990 12991 list_for_each_entry(vlan, &bp->vlan_reg, link) 12992 if (vlan->vid == vid) { 12993 found = true; 12994 break; 12995 } 12996 12997 if (!found) { 12998 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid); 12999 return -EINVAL; 13000 } 13001 13002 if (netif_running(dev) && vlan->hw) { 13003 rc = __bnx2x_vlan_configure_vid(bp, vid, false); 13004 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid); 13005 bp->vlan_cnt--; 13006 } 13007 13008 list_del(&vlan->link); 13009 kfree(vlan); 13010 13011 if (netif_running(dev)) 13012 bnx2x_vlan_configure(bp, true); 13013 13014 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc); 13015 13016 return rc; 13017 } 13018 13019 static const struct net_device_ops bnx2x_netdev_ops = { 13020 .ndo_open = bnx2x_open, 13021 .ndo_stop = bnx2x_close, 13022 .ndo_start_xmit = bnx2x_start_xmit, 13023 .ndo_select_queue = bnx2x_select_queue, 13024 .ndo_set_rx_mode = bnx2x_set_rx_mode, 13025 .ndo_set_mac_address = bnx2x_change_mac_addr, 13026 .ndo_validate_addr = bnx2x_validate_addr, 13027 .ndo_eth_ioctl = bnx2x_ioctl, 13028 .ndo_change_mtu = bnx2x_change_mtu, 13029 .ndo_fix_features = bnx2x_fix_features, 13030 .ndo_set_features = bnx2x_set_features, 13031 .ndo_tx_timeout = bnx2x_tx_timeout, 13032 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid, 13033 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid, 13034 .ndo_setup_tc = __bnx2x_setup_tc, 13035 #ifdef CONFIG_BNX2X_SRIOV 13036 .ndo_set_vf_mac = bnx2x_set_vf_mac, 13037 .ndo_set_vf_vlan = bnx2x_set_vf_vlan, 13038 .ndo_get_vf_config = bnx2x_get_vf_config, 13039 .ndo_set_vf_spoofchk = bnx2x_set_vf_spoofchk, 13040 #endif 13041 #ifdef NETDEV_FCOE_WWNN 13042 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, 13043 #endif 13044 13045 .ndo_get_phys_port_id = bnx2x_get_phys_port_id, 13046 .ndo_set_vf_link_state = bnx2x_set_vf_link_state, 13047 .ndo_features_check = bnx2x_features_check, 13048 }; 13049 13050 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp) 13051 { 13052 if (bp->flags & AER_ENABLED) { 13053 pci_disable_pcie_error_reporting(bp->pdev); 13054 bp->flags &= ~AER_ENABLED; 13055 } 13056 } 13057 13058 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, 13059 struct net_device *dev, unsigned long board_type) 13060 { 13061 int rc; 13062 u32 pci_cfg_dword; 13063 bool chip_is_e1x = (board_type == BCM57710 || 13064 board_type == BCM57711 || 13065 board_type == BCM57711E); 13066 13067 SET_NETDEV_DEV(dev, &pdev->dev); 13068 13069 bp->dev = dev; 13070 bp->pdev = pdev; 13071 13072 rc = pci_enable_device(pdev); 13073 if (rc) { 13074 dev_err(&bp->pdev->dev, 13075 "Cannot enable PCI device, aborting\n"); 13076 goto err_out; 13077 } 13078 13079 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 13080 dev_err(&bp->pdev->dev, 13081 "Cannot find PCI device base address, aborting\n"); 13082 rc = -ENODEV; 13083 goto err_out_disable; 13084 } 13085 13086 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { 13087 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); 13088 rc = -ENODEV; 13089 goto err_out_disable; 13090 } 13091 13092 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); 13093 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == 13094 PCICFG_REVESION_ID_ERROR_VAL) { 13095 pr_err("PCI device error, probably due to fan failure, aborting\n"); 13096 rc = -ENODEV; 13097 goto err_out_disable; 13098 } 13099 13100 if (atomic_read(&pdev->enable_cnt) == 1) { 13101 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 13102 if (rc) { 13103 dev_err(&bp->pdev->dev, 13104 "Cannot obtain PCI resources, aborting\n"); 13105 goto err_out_disable; 13106 } 13107 13108 pci_set_master(pdev); 13109 pci_save_state(pdev); 13110 } 13111 13112 if (IS_PF(bp)) { 13113 if (!pdev->pm_cap) { 13114 dev_err(&bp->pdev->dev, 13115 "Cannot find power management capability, aborting\n"); 13116 rc = -EIO; 13117 goto err_out_release; 13118 } 13119 } 13120 13121 if (!pci_is_pcie(pdev)) { 13122 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); 13123 rc = -EIO; 13124 goto err_out_release; 13125 } 13126 13127 rc = dma_set_mask_and_coherent(&bp->pdev->dev, DMA_BIT_MASK(64)); 13128 if (rc) { 13129 dev_err(&bp->pdev->dev, "System does not support DMA, aborting\n"); 13130 goto err_out_release; 13131 } 13132 13133 dev->mem_start = pci_resource_start(pdev, 0); 13134 dev->base_addr = dev->mem_start; 13135 dev->mem_end = pci_resource_end(pdev, 0); 13136 13137 dev->irq = pdev->irq; 13138 13139 bp->regview = pci_ioremap_bar(pdev, 0); 13140 if (!bp->regview) { 13141 dev_err(&bp->pdev->dev, 13142 "Cannot map register space, aborting\n"); 13143 rc = -ENOMEM; 13144 goto err_out_release; 13145 } 13146 13147 /* In E1/E1H use pci device function given by kernel. 13148 * In E2/E3 read physical function from ME register since these chips 13149 * support Physical Device Assignment where kernel BDF maybe arbitrary 13150 * (depending on hypervisor). 13151 */ 13152 if (chip_is_e1x) { 13153 bp->pf_num = PCI_FUNC(pdev->devfn); 13154 } else { 13155 /* chip is E2/3*/ 13156 pci_read_config_dword(bp->pdev, 13157 PCICFG_ME_REGISTER, &pci_cfg_dword); 13158 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> 13159 ME_REG_ABS_PF_NUM_SHIFT); 13160 } 13161 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); 13162 13163 /* clean indirect addresses */ 13164 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 13165 PCICFG_VENDOR_ID_OFFSET); 13166 13167 /* Set PCIe reset type to fundamental for EEH recovery */ 13168 pdev->needs_freset = 1; 13169 13170 /* AER (Advanced Error reporting) configuration */ 13171 rc = pci_enable_pcie_error_reporting(pdev); 13172 if (!rc) 13173 bp->flags |= AER_ENABLED; 13174 else 13175 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc); 13176 13177 /* 13178 * Clean the following indirect addresses for all functions since it 13179 * is not used by the driver. 13180 */ 13181 if (IS_PF(bp)) { 13182 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); 13183 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); 13184 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); 13185 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); 13186 13187 if (chip_is_e1x) { 13188 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); 13189 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); 13190 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); 13191 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); 13192 } 13193 13194 /* Enable internal target-read (in case we are probed after PF 13195 * FLR). Must be done prior to any BAR read access. Only for 13196 * 57712 and up 13197 */ 13198 if (!chip_is_e1x) 13199 REG_WR(bp, 13200 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13201 } 13202 13203 dev->watchdog_timeo = TX_TIMEOUT; 13204 13205 dev->netdev_ops = &bnx2x_netdev_ops; 13206 bnx2x_set_ethtool_ops(bp, dev); 13207 13208 dev->priv_flags |= IFF_UNICAST_FLT; 13209 13210 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13211 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13212 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW | 13213 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; 13214 if (!chip_is_e1x) { 13215 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | 13216 NETIF_F_GSO_IPXIP4 | 13217 NETIF_F_GSO_UDP_TUNNEL | 13218 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13219 NETIF_F_GSO_PARTIAL; 13220 13221 dev->hw_enc_features = 13222 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13223 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13224 NETIF_F_GSO_IPXIP4 | 13225 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | 13226 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | 13227 NETIF_F_GSO_PARTIAL; 13228 13229 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM | 13230 NETIF_F_GSO_UDP_TUNNEL_CSUM; 13231 13232 if (IS_PF(bp)) 13233 dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels; 13234 } 13235 13236 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13237 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; 13238 13239 if (IS_PF(bp)) { 13240 if (chip_is_e1x) 13241 bp->accept_any_vlan = true; 13242 else 13243 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13244 } 13245 /* For VF we'll know whether to enable VLAN filtering after 13246 * getting a response to CHANNEL_TLV_ACQUIRE from PF. 13247 */ 13248 13249 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; 13250 dev->features |= NETIF_F_HIGHDMA; 13251 if (dev->features & NETIF_F_LRO) 13252 dev->features &= ~NETIF_F_GRO_HW; 13253 13254 /* Add Loopback capability to the device */ 13255 dev->hw_features |= NETIF_F_LOOPBACK; 13256 13257 #ifdef BCM_DCBNL 13258 dev->dcbnl_ops = &bnx2x_dcbnl_ops; 13259 #endif 13260 13261 /* MTU range, 46 - 9600 */ 13262 dev->min_mtu = ETH_MIN_PACKET_SIZE; 13263 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE; 13264 13265 /* get_port_hwinfo() will set prtad and mmds properly */ 13266 bp->mdio.prtad = MDIO_PRTAD_NONE; 13267 bp->mdio.mmds = 0; 13268 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; 13269 bp->mdio.dev = dev; 13270 bp->mdio.mdio_read = bnx2x_mdio_read; 13271 bp->mdio.mdio_write = bnx2x_mdio_write; 13272 13273 return 0; 13274 13275 err_out_release: 13276 if (atomic_read(&pdev->enable_cnt) == 1) 13277 pci_release_regions(pdev); 13278 13279 err_out_disable: 13280 pci_disable_device(pdev); 13281 13282 err_out: 13283 return rc; 13284 } 13285 13286 static int bnx2x_check_firmware(struct bnx2x *bp) 13287 { 13288 const struct firmware *firmware = bp->firmware; 13289 struct bnx2x_fw_file_hdr *fw_hdr; 13290 struct bnx2x_fw_file_section *sections; 13291 u32 offset, len, num_ops; 13292 __be16 *ops_offsets; 13293 int i; 13294 const u8 *fw_ver; 13295 13296 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { 13297 BNX2X_ERR("Wrong FW size\n"); 13298 return -EINVAL; 13299 } 13300 13301 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; 13302 sections = (struct bnx2x_fw_file_section *)fw_hdr; 13303 13304 /* Make sure none of the offsets and sizes make us read beyond 13305 * the end of the firmware data */ 13306 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { 13307 offset = be32_to_cpu(sections[i].offset); 13308 len = be32_to_cpu(sections[i].len); 13309 if (offset + len > firmware->size) { 13310 BNX2X_ERR("Section %d length is out of bounds\n", i); 13311 return -EINVAL; 13312 } 13313 } 13314 13315 /* Likewise for the init_ops offsets */ 13316 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); 13317 ops_offsets = (__force __be16 *)(firmware->data + offset); 13318 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); 13319 13320 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { 13321 if (be16_to_cpu(ops_offsets[i]) > num_ops) { 13322 BNX2X_ERR("Section offset %d is out of bounds\n", i); 13323 return -EINVAL; 13324 } 13325 } 13326 13327 /* Check FW version */ 13328 offset = be32_to_cpu(fw_hdr->fw_version.offset); 13329 fw_ver = firmware->data + offset; 13330 if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor || 13331 fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) { 13332 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", 13333 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], 13334 bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng); 13335 return -EINVAL; 13336 } 13337 13338 return 0; 13339 } 13340 13341 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13342 { 13343 const __be32 *source = (const __be32 *)_source; 13344 u32 *target = (u32 *)_target; 13345 u32 i; 13346 13347 for (i = 0; i < n/4; i++) 13348 target[i] = be32_to_cpu(source[i]); 13349 } 13350 13351 /* 13352 Ops array is stored in the following format: 13353 {op(8bit), offset(24bit, big endian), data(32bit, big endian)} 13354 */ 13355 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) 13356 { 13357 const __be32 *source = (const __be32 *)_source; 13358 struct raw_op *target = (struct raw_op *)_target; 13359 u32 i, j, tmp; 13360 13361 for (i = 0, j = 0; i < n/8; i++, j += 2) { 13362 tmp = be32_to_cpu(source[j]); 13363 target[i].op = (tmp >> 24) & 0xff; 13364 target[i].offset = tmp & 0xffffff; 13365 target[i].raw_data = be32_to_cpu(source[j + 1]); 13366 } 13367 } 13368 13369 /* IRO array is stored in the following format: 13370 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } 13371 */ 13372 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) 13373 { 13374 const __be32 *source = (const __be32 *)_source; 13375 struct iro *target = (struct iro *)_target; 13376 u32 i, j, tmp; 13377 13378 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { 13379 target[i].base = be32_to_cpu(source[j]); 13380 j++; 13381 tmp = be32_to_cpu(source[j]); 13382 target[i].m1 = (tmp >> 16) & 0xffff; 13383 target[i].m2 = tmp & 0xffff; 13384 j++; 13385 tmp = be32_to_cpu(source[j]); 13386 target[i].m3 = (tmp >> 16) & 0xffff; 13387 target[i].size = tmp & 0xffff; 13388 j++; 13389 } 13390 } 13391 13392 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13393 { 13394 const __be16 *source = (const __be16 *)_source; 13395 u16 *target = (u16 *)_target; 13396 u32 i; 13397 13398 for (i = 0; i < n/2; i++) 13399 target[i] = be16_to_cpu(source[i]); 13400 } 13401 13402 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ 13403 do { \ 13404 u32 len = be32_to_cpu(fw_hdr->arr.len); \ 13405 bp->arr = kmalloc(len, GFP_KERNEL); \ 13406 if (!bp->arr) \ 13407 goto lbl; \ 13408 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ 13409 (u8 *)bp->arr, len); \ 13410 } while (0) 13411 13412 int bnx2x_init_firmware(struct bnx2x *bp) 13413 { 13414 const char *fw_file_name, *fw_file_name_v15; 13415 struct bnx2x_fw_file_hdr *fw_hdr; 13416 int rc; 13417 13418 if (bp->firmware) 13419 return 0; 13420 13421 if (CHIP_IS_E1(bp)) { 13422 fw_file_name = FW_FILE_NAME_E1; 13423 fw_file_name_v15 = FW_FILE_NAME_E1_V15; 13424 } else if (CHIP_IS_E1H(bp)) { 13425 fw_file_name = FW_FILE_NAME_E1H; 13426 fw_file_name_v15 = FW_FILE_NAME_E1H_V15; 13427 } else if (!CHIP_IS_E1x(bp)) { 13428 fw_file_name = FW_FILE_NAME_E2; 13429 fw_file_name_v15 = FW_FILE_NAME_E2_V15; 13430 } else { 13431 BNX2X_ERR("Unsupported chip revision\n"); 13432 return -EINVAL; 13433 } 13434 13435 BNX2X_DEV_INFO("Loading %s\n", fw_file_name); 13436 13437 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); 13438 if (rc) { 13439 BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15); 13440 13441 /* try to load prev version */ 13442 rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev); 13443 13444 if (rc) 13445 goto request_firmware_exit; 13446 13447 bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15; 13448 } else { 13449 bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI; 13450 bp->fw_rev = BCM_5710_FW_REVISION_VERSION; 13451 } 13452 13453 bp->fw_major = BCM_5710_FW_MAJOR_VERSION; 13454 bp->fw_minor = BCM_5710_FW_MINOR_VERSION; 13455 bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION; 13456 13457 rc = bnx2x_check_firmware(bp); 13458 if (rc) { 13459 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); 13460 goto request_firmware_exit; 13461 } 13462 13463 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; 13464 13465 /* Initialize the pointers to the init arrays */ 13466 /* Blob */ 13467 rc = -ENOMEM; 13468 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); 13469 13470 /* Opcodes */ 13471 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); 13472 13473 /* Offsets */ 13474 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, 13475 be16_to_cpu_n); 13476 13477 /* STORMs firmware */ 13478 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13479 be32_to_cpu(fw_hdr->tsem_int_table_data.offset); 13480 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + 13481 be32_to_cpu(fw_hdr->tsem_pram_data.offset); 13482 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13483 be32_to_cpu(fw_hdr->usem_int_table_data.offset); 13484 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + 13485 be32_to_cpu(fw_hdr->usem_pram_data.offset); 13486 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13487 be32_to_cpu(fw_hdr->xsem_int_table_data.offset); 13488 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + 13489 be32_to_cpu(fw_hdr->xsem_pram_data.offset); 13490 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13491 be32_to_cpu(fw_hdr->csem_int_table_data.offset); 13492 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + 13493 be32_to_cpu(fw_hdr->csem_pram_data.offset); 13494 /* IRO */ 13495 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); 13496 13497 return 0; 13498 13499 iro_alloc_err: 13500 kfree(bp->init_ops_offsets); 13501 init_offsets_alloc_err: 13502 kfree(bp->init_ops); 13503 init_ops_alloc_err: 13504 kfree(bp->init_data); 13505 request_firmware_exit: 13506 release_firmware(bp->firmware); 13507 bp->firmware = NULL; 13508 13509 return rc; 13510 } 13511 13512 void bnx2x_release_firmware(struct bnx2x *bp) 13513 { 13514 kfree(bp->init_ops_offsets); 13515 kfree(bp->init_ops); 13516 kfree(bp->init_data); 13517 release_firmware(bp->firmware); 13518 bp->firmware = NULL; 13519 } 13520 13521 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { 13522 .init_hw_cmn_chip = bnx2x_init_hw_common_chip, 13523 .init_hw_cmn = bnx2x_init_hw_common, 13524 .init_hw_port = bnx2x_init_hw_port, 13525 .init_hw_func = bnx2x_init_hw_func, 13526 13527 .reset_hw_cmn = bnx2x_reset_common, 13528 .reset_hw_port = bnx2x_reset_port, 13529 .reset_hw_func = bnx2x_reset_func, 13530 13531 .gunzip_init = bnx2x_gunzip_init, 13532 .gunzip_end = bnx2x_gunzip_end, 13533 13534 .init_fw = bnx2x_init_firmware, 13535 .release_fw = bnx2x_release_firmware, 13536 }; 13537 13538 void bnx2x__init_func_obj(struct bnx2x *bp) 13539 { 13540 /* Prepare DMAE related driver resources */ 13541 bnx2x_setup_dmae(bp); 13542 13543 bnx2x_init_func_obj(bp, &bp->func_obj, 13544 bnx2x_sp(bp, func_rdata), 13545 bnx2x_sp_mapping(bp, func_rdata), 13546 bnx2x_sp(bp, func_afex_rdata), 13547 bnx2x_sp_mapping(bp, func_afex_rdata), 13548 &bnx2x_func_sp_drv); 13549 } 13550 13551 /* must be called after sriov-enable */ 13552 static int bnx2x_set_qm_cid_count(struct bnx2x *bp) 13553 { 13554 int cid_count = BNX2X_L2_MAX_CID(bp); 13555 13556 if (IS_SRIOV(bp)) 13557 cid_count += BNX2X_VF_CIDS; 13558 13559 if (CNIC_SUPPORT(bp)) 13560 cid_count += CNIC_CID_MAX; 13561 13562 return roundup(cid_count, QM_CID_ROUND); 13563 } 13564 13565 /** 13566 * bnx2x_get_num_non_def_sbs - return the number of none default SBs 13567 * @pdev: pci device 13568 * @cnic_cnt: count 13569 * 13570 */ 13571 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt) 13572 { 13573 int index; 13574 u16 control = 0; 13575 13576 /* 13577 * If MSI-X is not supported - return number of SBs needed to support 13578 * one fast path queue: one FP queue + SB for CNIC 13579 */ 13580 if (!pdev->msix_cap) { 13581 dev_info(&pdev->dev, "no msix capability found\n"); 13582 return 1 + cnic_cnt; 13583 } 13584 dev_info(&pdev->dev, "msix capability found\n"); 13585 13586 /* 13587 * The value in the PCI configuration space is the index of the last 13588 * entry, namely one less than the actual size of the table, which is 13589 * exactly what we want to return from this function: number of all SBs 13590 * without the default SB. 13591 * For VFs there is no default SB, then we return (index+1). 13592 */ 13593 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control); 13594 13595 index = control & PCI_MSIX_FLAGS_QSIZE; 13596 13597 return index; 13598 } 13599 13600 static int set_max_cos_est(int chip_id) 13601 { 13602 switch (chip_id) { 13603 case BCM57710: 13604 case BCM57711: 13605 case BCM57711E: 13606 return BNX2X_MULTI_TX_COS_E1X; 13607 case BCM57712: 13608 case BCM57712_MF: 13609 return BNX2X_MULTI_TX_COS_E2_E3A0; 13610 case BCM57800: 13611 case BCM57800_MF: 13612 case BCM57810: 13613 case BCM57810_MF: 13614 case BCM57840_4_10: 13615 case BCM57840_2_20: 13616 case BCM57840_O: 13617 case BCM57840_MFO: 13618 case BCM57840_MF: 13619 case BCM57811: 13620 case BCM57811_MF: 13621 return BNX2X_MULTI_TX_COS_E3B0; 13622 case BCM57712_VF: 13623 case BCM57800_VF: 13624 case BCM57810_VF: 13625 case BCM57840_VF: 13626 case BCM57811_VF: 13627 return 1; 13628 default: 13629 pr_err("Unknown board_type (%d), aborting\n", chip_id); 13630 return -ENODEV; 13631 } 13632 } 13633 13634 static int set_is_vf(int chip_id) 13635 { 13636 switch (chip_id) { 13637 case BCM57712_VF: 13638 case BCM57800_VF: 13639 case BCM57810_VF: 13640 case BCM57840_VF: 13641 case BCM57811_VF: 13642 return true; 13643 default: 13644 return false; 13645 } 13646 } 13647 13648 /* nig_tsgen registers relative address */ 13649 #define tsgen_ctrl 0x0 13650 #define tsgen_freecount 0x10 13651 #define tsgen_synctime_t0 0x20 13652 #define tsgen_offset_t0 0x28 13653 #define tsgen_drift_t0 0x30 13654 #define tsgen_synctime_t1 0x58 13655 #define tsgen_offset_t1 0x60 13656 #define tsgen_drift_t1 0x68 13657 13658 /* FW workaround for setting drift */ 13659 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir, 13660 int best_val, int best_period) 13661 { 13662 struct bnx2x_func_state_params func_params = {NULL}; 13663 struct bnx2x_func_set_timesync_params *set_timesync_params = 13664 &func_params.params.set_timesync; 13665 13666 /* Prepare parameters for function state transitions */ 13667 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 13668 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 13669 13670 func_params.f_obj = &bp->func_obj; 13671 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 13672 13673 /* Function parameters */ 13674 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET; 13675 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 13676 set_timesync_params->add_sub_drift_adjust_value = 13677 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE; 13678 set_timesync_params->drift_adjust_value = best_val; 13679 set_timesync_params->drift_adjust_period = best_period; 13680 13681 return bnx2x_func_state_change(bp, &func_params); 13682 } 13683 13684 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 13685 { 13686 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13687 int rc; 13688 int drift_dir = 1; 13689 int val, period, period1, period2, dif, dif1, dif2; 13690 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0; 13691 13692 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb); 13693 13694 if (!netif_running(bp->dev)) { 13695 DP(BNX2X_MSG_PTP, 13696 "PTP adjfreq called while the interface is down\n"); 13697 return -ENETDOWN; 13698 } 13699 13700 if (ppb < 0) { 13701 ppb = -ppb; 13702 drift_dir = 0; 13703 } 13704 13705 if (ppb == 0) { 13706 best_val = 1; 13707 best_period = 0x1FFFFFF; 13708 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) { 13709 best_val = 31; 13710 best_period = 1; 13711 } else { 13712 /* Changed not to allow val = 8, 16, 24 as these values 13713 * are not supported in workaround. 13714 */ 13715 for (val = 0; val <= 31; val++) { 13716 if ((val & 0x7) == 0) 13717 continue; 13718 period1 = val * 1000000 / ppb; 13719 period2 = period1 + 1; 13720 if (period1 != 0) 13721 dif1 = ppb - (val * 1000000 / period1); 13722 else 13723 dif1 = BNX2X_MAX_PHC_DRIFT; 13724 if (dif1 < 0) 13725 dif1 = -dif1; 13726 dif2 = ppb - (val * 1000000 / period2); 13727 if (dif2 < 0) 13728 dif2 = -dif2; 13729 dif = (dif1 < dif2) ? dif1 : dif2; 13730 period = (dif1 < dif2) ? period1 : period2; 13731 if (dif < best_dif) { 13732 best_dif = dif; 13733 best_val = val; 13734 best_period = period; 13735 } 13736 } 13737 } 13738 13739 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val, 13740 best_period); 13741 if (rc) { 13742 BNX2X_ERR("Failed to set drift\n"); 13743 return -EFAULT; 13744 } 13745 13746 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val, 13747 best_period); 13748 13749 return 0; 13750 } 13751 13752 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 13753 { 13754 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13755 13756 if (!netif_running(bp->dev)) { 13757 DP(BNX2X_MSG_PTP, 13758 "PTP adjtime called while the interface is down\n"); 13759 return -ENETDOWN; 13760 } 13761 13762 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta); 13763 13764 timecounter_adjtime(&bp->timecounter, delta); 13765 13766 return 0; 13767 } 13768 13769 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 13770 { 13771 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13772 u64 ns; 13773 13774 if (!netif_running(bp->dev)) { 13775 DP(BNX2X_MSG_PTP, 13776 "PTP gettime called while the interface is down\n"); 13777 return -ENETDOWN; 13778 } 13779 13780 ns = timecounter_read(&bp->timecounter); 13781 13782 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns); 13783 13784 *ts = ns_to_timespec64(ns); 13785 13786 return 0; 13787 } 13788 13789 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp, 13790 const struct timespec64 *ts) 13791 { 13792 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13793 u64 ns; 13794 13795 if (!netif_running(bp->dev)) { 13796 DP(BNX2X_MSG_PTP, 13797 "PTP settime called while the interface is down\n"); 13798 return -ENETDOWN; 13799 } 13800 13801 ns = timespec64_to_ns(ts); 13802 13803 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns); 13804 13805 /* Re-init the timecounter */ 13806 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns); 13807 13808 return 0; 13809 } 13810 13811 /* Enable (or disable) ancillary features of the phc subsystem */ 13812 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp, 13813 struct ptp_clock_request *rq, int on) 13814 { 13815 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13816 13817 BNX2X_ERR("PHC ancillary features are not supported\n"); 13818 return -ENOTSUPP; 13819 } 13820 13821 void bnx2x_register_phc(struct bnx2x *bp) 13822 { 13823 /* Fill the ptp_clock_info struct and register PTP clock*/ 13824 bp->ptp_clock_info.owner = THIS_MODULE; 13825 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name); 13826 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */ 13827 bp->ptp_clock_info.n_alarm = 0; 13828 bp->ptp_clock_info.n_ext_ts = 0; 13829 bp->ptp_clock_info.n_per_out = 0; 13830 bp->ptp_clock_info.pps = 0; 13831 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq; 13832 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime; 13833 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime; 13834 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime; 13835 bp->ptp_clock_info.enable = bnx2x_ptp_enable; 13836 13837 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev); 13838 if (IS_ERR(bp->ptp_clock)) { 13839 bp->ptp_clock = NULL; 13840 BNX2X_ERR("PTP clock registration failed\n"); 13841 } 13842 } 13843 13844 static int bnx2x_init_one(struct pci_dev *pdev, 13845 const struct pci_device_id *ent) 13846 { 13847 struct net_device *dev = NULL; 13848 struct bnx2x *bp; 13849 int rc, max_non_def_sbs; 13850 int rx_count, tx_count, rss_count, doorbell_size; 13851 int max_cos_est; 13852 bool is_vf; 13853 int cnic_cnt; 13854 13855 /* Management FW 'remembers' living interfaces. Allow it some time 13856 * to forget previously living interfaces, allowing a proper re-load. 13857 */ 13858 if (is_kdump_kernel()) { 13859 ktime_t now = ktime_get_boottime(); 13860 ktime_t fw_ready_time = ktime_set(5, 0); 13861 13862 if (ktime_before(now, fw_ready_time)) 13863 msleep(ktime_ms_delta(fw_ready_time, now)); 13864 } 13865 13866 /* An estimated maximum supported CoS number according to the chip 13867 * version. 13868 * We will try to roughly estimate the maximum number of CoSes this chip 13869 * may support in order to minimize the memory allocated for Tx 13870 * netdev_queue's. This number will be accurately calculated during the 13871 * initialization of bp->max_cos based on the chip versions AND chip 13872 * revision in the bnx2x_init_bp(). 13873 */ 13874 max_cos_est = set_max_cos_est(ent->driver_data); 13875 if (max_cos_est < 0) 13876 return max_cos_est; 13877 is_vf = set_is_vf(ent->driver_data); 13878 cnic_cnt = is_vf ? 0 : 1; 13879 13880 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt); 13881 13882 /* add another SB for VF as it has no default SB */ 13883 max_non_def_sbs += is_vf ? 1 : 0; 13884 13885 /* Maximum number of RSS queues: one IGU SB goes to CNIC */ 13886 rss_count = max_non_def_sbs - cnic_cnt; 13887 13888 if (rss_count < 1) 13889 return -EINVAL; 13890 13891 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ 13892 rx_count = rss_count + cnic_cnt; 13893 13894 /* Maximum number of netdev Tx queues: 13895 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 13896 */ 13897 tx_count = rss_count * max_cos_est + cnic_cnt; 13898 13899 /* dev zeroed in init_etherdev */ 13900 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); 13901 if (!dev) 13902 return -ENOMEM; 13903 13904 bp = netdev_priv(dev); 13905 13906 bp->flags = 0; 13907 if (is_vf) 13908 bp->flags |= IS_VF_FLAG; 13909 13910 bp->igu_sb_cnt = max_non_def_sbs; 13911 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; 13912 bp->msg_enable = debug; 13913 bp->cnic_support = cnic_cnt; 13914 bp->cnic_probe = bnx2x_cnic_probe; 13915 13916 pci_set_drvdata(pdev, dev); 13917 13918 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); 13919 if (rc < 0) { 13920 free_netdev(dev); 13921 return rc; 13922 } 13923 13924 BNX2X_DEV_INFO("This is a %s function\n", 13925 IS_PF(bp) ? "physical" : "virtual"); 13926 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); 13927 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); 13928 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", 13929 tx_count, rx_count); 13930 13931 rc = bnx2x_init_bp(bp); 13932 if (rc) 13933 goto init_one_exit; 13934 13935 /* Map doorbells here as we need the real value of bp->max_cos which 13936 * is initialized in bnx2x_init_bp() to determine the number of 13937 * l2 connections. 13938 */ 13939 if (IS_VF(bp)) { 13940 bp->doorbells = bnx2x_vf_doorbells(bp); 13941 rc = bnx2x_vf_pci_alloc(bp); 13942 if (rc) 13943 goto init_one_freemem; 13944 } else { 13945 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); 13946 if (doorbell_size > pci_resource_len(pdev, 2)) { 13947 dev_err(&bp->pdev->dev, 13948 "Cannot map doorbells, bar size too small, aborting\n"); 13949 rc = -ENOMEM; 13950 goto init_one_freemem; 13951 } 13952 bp->doorbells = ioremap(pci_resource_start(pdev, 2), 13953 doorbell_size); 13954 } 13955 if (!bp->doorbells) { 13956 dev_err(&bp->pdev->dev, 13957 "Cannot map doorbell space, aborting\n"); 13958 rc = -ENOMEM; 13959 goto init_one_freemem; 13960 } 13961 13962 if (IS_VF(bp)) { 13963 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); 13964 if (rc) 13965 goto init_one_freemem; 13966 13967 #ifdef CONFIG_BNX2X_SRIOV 13968 /* VF with OLD Hypervisor or old PF do not support filtering */ 13969 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) { 13970 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13971 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13972 } 13973 #endif 13974 } 13975 13976 /* Enable SRIOV if capability found in configuration space */ 13977 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); 13978 if (rc) 13979 goto init_one_freemem; 13980 13981 /* calc qm_cid_count */ 13982 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); 13983 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); 13984 13985 /* disable FCOE L2 queue for E1x*/ 13986 if (CHIP_IS_E1x(bp)) 13987 bp->flags |= NO_FCOE_FLAG; 13988 13989 /* Set bp->num_queues for MSI-X mode*/ 13990 bnx2x_set_num_queues(bp); 13991 13992 /* Configure interrupt mode: try to enable MSI-X/MSI if 13993 * needed. 13994 */ 13995 rc = bnx2x_set_int_mode(bp); 13996 if (rc) { 13997 dev_err(&pdev->dev, "Cannot set interrupts\n"); 13998 goto init_one_freemem; 13999 } 14000 BNX2X_DEV_INFO("set interrupts successfully\n"); 14001 14002 /* register the net device */ 14003 rc = register_netdev(dev); 14004 if (rc) { 14005 dev_err(&pdev->dev, "Cannot register net device\n"); 14006 goto init_one_freemem; 14007 } 14008 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); 14009 14010 if (!NO_FCOE(bp)) { 14011 /* Add storage MAC address */ 14012 rtnl_lock(); 14013 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 14014 rtnl_unlock(); 14015 } 14016 BNX2X_DEV_INFO( 14017 "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n", 14018 board_info[ent->driver_data].name, 14019 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), 14020 dev->base_addr, bp->pdev->irq, dev->dev_addr); 14021 pcie_print_link_status(bp->pdev); 14022 14023 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 14024 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 14025 14026 return 0; 14027 14028 init_one_freemem: 14029 bnx2x_release_firmware(bp); 14030 bnx2x_free_mem_bp(bp); 14031 14032 init_one_exit: 14033 bnx2x_disable_pcie_error_reporting(bp); 14034 14035 if (bp->regview) 14036 iounmap(bp->regview); 14037 14038 if (IS_PF(bp) && bp->doorbells) 14039 iounmap(bp->doorbells); 14040 14041 free_netdev(dev); 14042 14043 if (atomic_read(&pdev->enable_cnt) == 1) 14044 pci_release_regions(pdev); 14045 14046 pci_disable_device(pdev); 14047 14048 return rc; 14049 } 14050 14051 static void __bnx2x_remove(struct pci_dev *pdev, 14052 struct net_device *dev, 14053 struct bnx2x *bp, 14054 bool remove_netdev) 14055 { 14056 /* Delete storage MAC address */ 14057 if (!NO_FCOE(bp)) { 14058 rtnl_lock(); 14059 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 14060 rtnl_unlock(); 14061 } 14062 14063 #ifdef BCM_DCBNL 14064 /* Delete app tlvs from dcbnl */ 14065 bnx2x_dcbnl_update_applist(bp, true); 14066 #endif 14067 14068 if (IS_PF(bp) && 14069 !BP_NOMCP(bp) && 14070 (bp->flags & BC_SUPPORTS_RMMOD_CMD)) 14071 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); 14072 14073 /* Close the interface - either directly or implicitly */ 14074 if (remove_netdev) { 14075 unregister_netdev(dev); 14076 } else { 14077 rtnl_lock(); 14078 dev_close(dev); 14079 rtnl_unlock(); 14080 } 14081 14082 bnx2x_iov_remove_one(bp); 14083 14084 /* Power on: we can't let PCI layer write to us while we are in D3 */ 14085 if (IS_PF(bp)) { 14086 bnx2x_set_power_state(bp, PCI_D0); 14087 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED); 14088 14089 /* Set endianity registers to reset values in case next driver 14090 * boots in different endianty environment. 14091 */ 14092 bnx2x_reset_endianity(bp); 14093 } 14094 14095 /* Disable MSI/MSI-X */ 14096 bnx2x_disable_msi(bp); 14097 14098 /* Power off */ 14099 if (IS_PF(bp)) 14100 bnx2x_set_power_state(bp, PCI_D3hot); 14101 14102 /* Make sure RESET task is not scheduled before continuing */ 14103 cancel_delayed_work_sync(&bp->sp_rtnl_task); 14104 14105 /* send message via vfpf channel to release the resources of this vf */ 14106 if (IS_VF(bp)) 14107 bnx2x_vfpf_release(bp); 14108 14109 /* Assumes no further PCIe PM changes will occur */ 14110 if (system_state == SYSTEM_POWER_OFF) { 14111 pci_wake_from_d3(pdev, bp->wol); 14112 pci_set_power_state(pdev, PCI_D3hot); 14113 } 14114 14115 bnx2x_disable_pcie_error_reporting(bp); 14116 if (remove_netdev) { 14117 if (bp->regview) 14118 iounmap(bp->regview); 14119 14120 /* For vfs, doorbells are part of the regview and were unmapped 14121 * along with it. FW is only loaded by PF. 14122 */ 14123 if (IS_PF(bp)) { 14124 if (bp->doorbells) 14125 iounmap(bp->doorbells); 14126 14127 bnx2x_release_firmware(bp); 14128 } else { 14129 bnx2x_vf_pci_dealloc(bp); 14130 } 14131 bnx2x_free_mem_bp(bp); 14132 14133 free_netdev(dev); 14134 14135 if (atomic_read(&pdev->enable_cnt) == 1) 14136 pci_release_regions(pdev); 14137 14138 pci_disable_device(pdev); 14139 } 14140 } 14141 14142 static void bnx2x_remove_one(struct pci_dev *pdev) 14143 { 14144 struct net_device *dev = pci_get_drvdata(pdev); 14145 struct bnx2x *bp; 14146 14147 if (!dev) { 14148 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 14149 return; 14150 } 14151 bp = netdev_priv(dev); 14152 14153 __bnx2x_remove(pdev, dev, bp, true); 14154 } 14155 14156 static int bnx2x_eeh_nic_unload(struct bnx2x *bp) 14157 { 14158 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 14159 14160 bp->rx_mode = BNX2X_RX_MODE_NONE; 14161 14162 if (CNIC_LOADED(bp)) 14163 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 14164 14165 /* Stop Tx */ 14166 bnx2x_tx_disable(bp); 14167 /* Delete all NAPI objects */ 14168 bnx2x_del_all_napi(bp); 14169 if (CNIC_LOADED(bp)) 14170 bnx2x_del_all_napi_cnic(bp); 14171 netdev_reset_tc(bp->dev); 14172 14173 del_timer_sync(&bp->timer); 14174 cancel_delayed_work_sync(&bp->sp_task); 14175 cancel_delayed_work_sync(&bp->period_task); 14176 14177 if (!down_timeout(&bp->stats_lock, HZ / 10)) { 14178 bp->stats_state = STATS_STATE_DISABLED; 14179 up(&bp->stats_lock); 14180 } 14181 14182 bnx2x_save_statistics(bp); 14183 14184 netif_carrier_off(bp->dev); 14185 14186 return 0; 14187 } 14188 14189 /** 14190 * bnx2x_io_error_detected - called when PCI error is detected 14191 * @pdev: Pointer to PCI device 14192 * @state: The current pci connection state 14193 * 14194 * This function is called after a PCI bus error affecting 14195 * this device has been detected. 14196 */ 14197 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, 14198 pci_channel_state_t state) 14199 { 14200 struct net_device *dev = pci_get_drvdata(pdev); 14201 struct bnx2x *bp = netdev_priv(dev); 14202 14203 rtnl_lock(); 14204 14205 BNX2X_ERR("IO error detected\n"); 14206 14207 netif_device_detach(dev); 14208 14209 if (state == pci_channel_io_perm_failure) { 14210 rtnl_unlock(); 14211 return PCI_ERS_RESULT_DISCONNECT; 14212 } 14213 14214 if (netif_running(dev)) 14215 bnx2x_eeh_nic_unload(bp); 14216 14217 bnx2x_prev_path_mark_eeh(bp); 14218 14219 pci_disable_device(pdev); 14220 14221 rtnl_unlock(); 14222 14223 /* Request a slot reset */ 14224 return PCI_ERS_RESULT_NEED_RESET; 14225 } 14226 14227 /** 14228 * bnx2x_io_slot_reset - called after the PCI bus has been reset 14229 * @pdev: Pointer to PCI device 14230 * 14231 * Restart the card from scratch, as if from a cold-boot. 14232 */ 14233 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) 14234 { 14235 struct net_device *dev = pci_get_drvdata(pdev); 14236 struct bnx2x *bp = netdev_priv(dev); 14237 int i; 14238 14239 rtnl_lock(); 14240 BNX2X_ERR("IO slot reset initializing...\n"); 14241 if (pci_enable_device(pdev)) { 14242 dev_err(&pdev->dev, 14243 "Cannot re-enable PCI device after reset\n"); 14244 rtnl_unlock(); 14245 return PCI_ERS_RESULT_DISCONNECT; 14246 } 14247 14248 pci_set_master(pdev); 14249 pci_restore_state(pdev); 14250 pci_save_state(pdev); 14251 14252 if (netif_running(dev)) 14253 bnx2x_set_power_state(bp, PCI_D0); 14254 14255 if (netif_running(dev)) { 14256 BNX2X_ERR("IO slot reset --> driver unload\n"); 14257 14258 /* MCP should have been reset; Need to wait for validity */ 14259 if (bnx2x_init_shmem(bp)) { 14260 rtnl_unlock(); 14261 return PCI_ERS_RESULT_DISCONNECT; 14262 } 14263 14264 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 14265 u32 v; 14266 14267 v = SHMEM2_RD(bp, 14268 drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 14269 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 14270 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 14271 } 14272 bnx2x_drain_tx_queues(bp); 14273 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); 14274 bnx2x_netif_stop(bp, 1); 14275 bnx2x_free_irq(bp); 14276 14277 /* Report UNLOAD_DONE to MCP */ 14278 bnx2x_send_unload_done(bp, true); 14279 14280 bp->sp_state = 0; 14281 bp->port.pmf = 0; 14282 14283 bnx2x_prev_unload(bp); 14284 14285 /* We should have reseted the engine, so It's fair to 14286 * assume the FW will no longer write to the bnx2x driver. 14287 */ 14288 bnx2x_squeeze_objects(bp); 14289 bnx2x_free_skbs(bp); 14290 for_each_rx_queue(bp, i) 14291 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 14292 bnx2x_free_fp_mem(bp); 14293 bnx2x_free_mem(bp); 14294 14295 bp->state = BNX2X_STATE_CLOSED; 14296 } 14297 14298 rtnl_unlock(); 14299 14300 return PCI_ERS_RESULT_RECOVERED; 14301 } 14302 14303 /** 14304 * bnx2x_io_resume - called when traffic can start flowing again 14305 * @pdev: Pointer to PCI device 14306 * 14307 * This callback is called when the error recovery driver tells us that 14308 * its OK to resume normal operation. 14309 */ 14310 static void bnx2x_io_resume(struct pci_dev *pdev) 14311 { 14312 struct net_device *dev = pci_get_drvdata(pdev); 14313 struct bnx2x *bp = netdev_priv(dev); 14314 14315 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 14316 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); 14317 return; 14318 } 14319 14320 rtnl_lock(); 14321 14322 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 14323 DRV_MSG_SEQ_NUMBER_MASK; 14324 14325 if (netif_running(dev)) 14326 bnx2x_nic_load(bp, LOAD_NORMAL); 14327 14328 netif_device_attach(dev); 14329 14330 rtnl_unlock(); 14331 } 14332 14333 static const struct pci_error_handlers bnx2x_err_handler = { 14334 .error_detected = bnx2x_io_error_detected, 14335 .slot_reset = bnx2x_io_slot_reset, 14336 .resume = bnx2x_io_resume, 14337 }; 14338 14339 static void bnx2x_shutdown(struct pci_dev *pdev) 14340 { 14341 struct net_device *dev = pci_get_drvdata(pdev); 14342 struct bnx2x *bp; 14343 14344 if (!dev) 14345 return; 14346 14347 bp = netdev_priv(dev); 14348 if (!bp) 14349 return; 14350 14351 rtnl_lock(); 14352 netif_device_detach(dev); 14353 rtnl_unlock(); 14354 14355 /* Don't remove the netdevice, as there are scenarios which will cause 14356 * the kernel to hang, e.g., when trying to remove bnx2i while the 14357 * rootfs is mounted from SAN. 14358 */ 14359 __bnx2x_remove(pdev, dev, bp, false); 14360 } 14361 14362 static struct pci_driver bnx2x_pci_driver = { 14363 .name = DRV_MODULE_NAME, 14364 .id_table = bnx2x_pci_tbl, 14365 .probe = bnx2x_init_one, 14366 .remove = bnx2x_remove_one, 14367 .driver.pm = &bnx2x_pm_ops, 14368 .err_handler = &bnx2x_err_handler, 14369 #ifdef CONFIG_BNX2X_SRIOV 14370 .sriov_configure = bnx2x_sriov_configure, 14371 #endif 14372 .shutdown = bnx2x_shutdown, 14373 }; 14374 14375 static int __init bnx2x_init(void) 14376 { 14377 int ret; 14378 14379 bnx2x_wq = create_singlethread_workqueue("bnx2x"); 14380 if (bnx2x_wq == NULL) { 14381 pr_err("Cannot create workqueue\n"); 14382 return -ENOMEM; 14383 } 14384 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov"); 14385 if (!bnx2x_iov_wq) { 14386 pr_err("Cannot create iov workqueue\n"); 14387 destroy_workqueue(bnx2x_wq); 14388 return -ENOMEM; 14389 } 14390 14391 ret = pci_register_driver(&bnx2x_pci_driver); 14392 if (ret) { 14393 pr_err("Cannot register driver\n"); 14394 destroy_workqueue(bnx2x_wq); 14395 destroy_workqueue(bnx2x_iov_wq); 14396 } 14397 return ret; 14398 } 14399 14400 static void __exit bnx2x_cleanup(void) 14401 { 14402 struct list_head *pos, *q; 14403 14404 pci_unregister_driver(&bnx2x_pci_driver); 14405 14406 destroy_workqueue(bnx2x_wq); 14407 destroy_workqueue(bnx2x_iov_wq); 14408 14409 /* Free globally allocated resources */ 14410 list_for_each_safe(pos, q, &bnx2x_prev_list) { 14411 struct bnx2x_prev_path_list *tmp = 14412 list_entry(pos, struct bnx2x_prev_path_list, list); 14413 list_del(pos); 14414 kfree(tmp); 14415 } 14416 } 14417 14418 void bnx2x_notify_link_changed(struct bnx2x *bp) 14419 { 14420 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); 14421 } 14422 14423 module_init(bnx2x_init); 14424 module_exit(bnx2x_cleanup); 14425 14426 /** 14427 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). 14428 * @bp: driver handle 14429 * 14430 * This function will wait until the ramrod completion returns. 14431 * Return 0 if success, -ENODEV if ramrod doesn't return. 14432 */ 14433 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) 14434 { 14435 unsigned long ramrod_flags = 0; 14436 14437 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 14438 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, 14439 &bp->iscsi_l2_mac_obj, true, 14440 BNX2X_ISCSI_ETH_MAC, &ramrod_flags); 14441 } 14442 14443 /* count denotes the number of new completions we have seen */ 14444 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) 14445 { 14446 struct eth_spe *spe; 14447 int cxt_index, cxt_offset; 14448 14449 #ifdef BNX2X_STOP_ON_ERROR 14450 if (unlikely(bp->panic)) 14451 return; 14452 #endif 14453 14454 spin_lock_bh(&bp->spq_lock); 14455 BUG_ON(bp->cnic_spq_pending < count); 14456 bp->cnic_spq_pending -= count; 14457 14458 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { 14459 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) 14460 & SPE_HDR_CONN_TYPE) >> 14461 SPE_HDR_CONN_TYPE_SHIFT; 14462 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) 14463 >> SPE_HDR_CMD_ID_SHIFT) & 0xff; 14464 14465 /* Set validation for iSCSI L2 client before sending SETUP 14466 * ramrod 14467 */ 14468 if (type == ETH_CONNECTION_TYPE) { 14469 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { 14470 cxt_index = BNX2X_ISCSI_ETH_CID(bp) / 14471 ILT_PAGE_CIDS; 14472 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - 14473 (cxt_index * ILT_PAGE_CIDS); 14474 bnx2x_set_ctx_validation(bp, 14475 &bp->context[cxt_index]. 14476 vcxt[cxt_offset].eth, 14477 BNX2X_ISCSI_ETH_CID(bp)); 14478 } 14479 } 14480 14481 /* 14482 * There may be not more than 8 L2, not more than 8 L5 SPEs 14483 * and in the air. We also check that number of outstanding 14484 * COMMON ramrods is not more than the EQ and SPQ can 14485 * accommodate. 14486 */ 14487 if (type == ETH_CONNECTION_TYPE) { 14488 if (!atomic_read(&bp->cq_spq_left)) 14489 break; 14490 else 14491 atomic_dec(&bp->cq_spq_left); 14492 } else if (type == NONE_CONNECTION_TYPE) { 14493 if (!atomic_read(&bp->eq_spq_left)) 14494 break; 14495 else 14496 atomic_dec(&bp->eq_spq_left); 14497 } else if ((type == ISCSI_CONNECTION_TYPE) || 14498 (type == FCOE_CONNECTION_TYPE)) { 14499 if (bp->cnic_spq_pending >= 14500 bp->cnic_eth_dev.max_kwqe_pending) 14501 break; 14502 else 14503 bp->cnic_spq_pending++; 14504 } else { 14505 BNX2X_ERR("Unknown SPE type: %d\n", type); 14506 bnx2x_panic(); 14507 break; 14508 } 14509 14510 spe = bnx2x_sp_get_next(bp); 14511 *spe = *bp->cnic_kwq_cons; 14512 14513 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", 14514 bp->cnic_spq_pending, bp->cnic_kwq_pending, count); 14515 14516 if (bp->cnic_kwq_cons == bp->cnic_kwq_last) 14517 bp->cnic_kwq_cons = bp->cnic_kwq; 14518 else 14519 bp->cnic_kwq_cons++; 14520 } 14521 bnx2x_sp_prod_update(bp); 14522 spin_unlock_bh(&bp->spq_lock); 14523 } 14524 14525 static int bnx2x_cnic_sp_queue(struct net_device *dev, 14526 struct kwqe_16 *kwqes[], u32 count) 14527 { 14528 struct bnx2x *bp = netdev_priv(dev); 14529 int i; 14530 14531 #ifdef BNX2X_STOP_ON_ERROR 14532 if (unlikely(bp->panic)) { 14533 BNX2X_ERR("Can't post to SP queue while panic\n"); 14534 return -EIO; 14535 } 14536 #endif 14537 14538 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && 14539 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 14540 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 14541 return -EAGAIN; 14542 } 14543 14544 spin_lock_bh(&bp->spq_lock); 14545 14546 for (i = 0; i < count; i++) { 14547 struct eth_spe *spe = (struct eth_spe *)kwqes[i]; 14548 14549 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) 14550 break; 14551 14552 *bp->cnic_kwq_prod = *spe; 14553 14554 bp->cnic_kwq_pending++; 14555 14556 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", 14557 spe->hdr.conn_and_cmd_data, spe->hdr.type, 14558 spe->data.update_data_addr.hi, 14559 spe->data.update_data_addr.lo, 14560 bp->cnic_kwq_pending); 14561 14562 if (bp->cnic_kwq_prod == bp->cnic_kwq_last) 14563 bp->cnic_kwq_prod = bp->cnic_kwq; 14564 else 14565 bp->cnic_kwq_prod++; 14566 } 14567 14568 spin_unlock_bh(&bp->spq_lock); 14569 14570 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) 14571 bnx2x_cnic_sp_post(bp, 0); 14572 14573 return i; 14574 } 14575 14576 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14577 { 14578 struct cnic_ops *c_ops; 14579 int rc = 0; 14580 14581 mutex_lock(&bp->cnic_mutex); 14582 c_ops = rcu_dereference_protected(bp->cnic_ops, 14583 lockdep_is_held(&bp->cnic_mutex)); 14584 if (c_ops) 14585 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14586 mutex_unlock(&bp->cnic_mutex); 14587 14588 return rc; 14589 } 14590 14591 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14592 { 14593 struct cnic_ops *c_ops; 14594 int rc = 0; 14595 14596 rcu_read_lock(); 14597 c_ops = rcu_dereference(bp->cnic_ops); 14598 if (c_ops) 14599 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14600 rcu_read_unlock(); 14601 14602 return rc; 14603 } 14604 14605 /* 14606 * for commands that have no data 14607 */ 14608 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) 14609 { 14610 struct cnic_ctl_info ctl = {0}; 14611 14612 ctl.cmd = cmd; 14613 14614 return bnx2x_cnic_ctl_send(bp, &ctl); 14615 } 14616 14617 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) 14618 { 14619 struct cnic_ctl_info ctl = {0}; 14620 14621 /* first we tell CNIC and only then we count this as a completion */ 14622 ctl.cmd = CNIC_CTL_COMPLETION_CMD; 14623 ctl.data.comp.cid = cid; 14624 ctl.data.comp.error = err; 14625 14626 bnx2x_cnic_ctl_send_bh(bp, &ctl); 14627 bnx2x_cnic_sp_post(bp, 0); 14628 } 14629 14630 /* Called with netif_addr_lock_bh() taken. 14631 * Sets an rx_mode config for an iSCSI ETH client. 14632 * Doesn't block. 14633 * Completion should be checked outside. 14634 */ 14635 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) 14636 { 14637 unsigned long accept_flags = 0, ramrod_flags = 0; 14638 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 14639 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; 14640 14641 if (start) { 14642 /* Start accepting on iSCSI L2 ring. Accept all multicasts 14643 * because it's the only way for UIO Queue to accept 14644 * multicasts (in non-promiscuous mode only one Queue per 14645 * function will receive multicast packets (leading in our 14646 * case). 14647 */ 14648 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); 14649 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); 14650 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); 14651 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 14652 14653 /* Clear STOP_PENDING bit if START is requested */ 14654 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); 14655 14656 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; 14657 } else 14658 /* Clear START_PENDING bit if STOP is requested */ 14659 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); 14660 14661 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 14662 set_bit(sched_state, &bp->sp_state); 14663 else { 14664 __set_bit(RAMROD_RX, &ramrod_flags); 14665 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, 14666 ramrod_flags); 14667 } 14668 } 14669 14670 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) 14671 { 14672 struct bnx2x *bp = netdev_priv(dev); 14673 int rc = 0; 14674 14675 switch (ctl->cmd) { 14676 case DRV_CTL_CTXTBL_WR_CMD: { 14677 u32 index = ctl->data.io.offset; 14678 dma_addr_t addr = ctl->data.io.dma_addr; 14679 14680 bnx2x_ilt_wr(bp, index, addr); 14681 break; 14682 } 14683 14684 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { 14685 int count = ctl->data.credit.credit_count; 14686 14687 bnx2x_cnic_sp_post(bp, count); 14688 break; 14689 } 14690 14691 /* rtnl_lock is held. */ 14692 case DRV_CTL_START_L2_CMD: { 14693 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14694 unsigned long sp_bits = 0; 14695 14696 /* Configure the iSCSI classification object */ 14697 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, 14698 cp->iscsi_l2_client_id, 14699 cp->iscsi_l2_cid, BP_FUNC(bp), 14700 bnx2x_sp(bp, mac_rdata), 14701 bnx2x_sp_mapping(bp, mac_rdata), 14702 BNX2X_FILTER_MAC_PENDING, 14703 &bp->sp_state, BNX2X_OBJ_TYPE_RX, 14704 &bp->macs_pool); 14705 14706 /* Set iSCSI MAC address */ 14707 rc = bnx2x_set_iscsi_eth_mac_addr(bp); 14708 if (rc) 14709 break; 14710 14711 barrier(); 14712 14713 /* Start accepting on iSCSI L2 ring */ 14714 14715 netif_addr_lock_bh(dev); 14716 bnx2x_set_iscsi_eth_rx_mode(bp, true); 14717 netif_addr_unlock_bh(dev); 14718 14719 /* bits to wait on */ 14720 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14721 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); 14722 14723 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14724 BNX2X_ERR("rx_mode completion timed out!\n"); 14725 14726 break; 14727 } 14728 14729 /* rtnl_lock is held. */ 14730 case DRV_CTL_STOP_L2_CMD: { 14731 unsigned long sp_bits = 0; 14732 14733 /* Stop accepting on iSCSI L2 ring */ 14734 netif_addr_lock_bh(dev); 14735 bnx2x_set_iscsi_eth_rx_mode(bp, false); 14736 netif_addr_unlock_bh(dev); 14737 14738 /* bits to wait on */ 14739 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14740 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); 14741 14742 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14743 BNX2X_ERR("rx_mode completion timed out!\n"); 14744 14745 barrier(); 14746 14747 /* Unset iSCSI L2 MAC */ 14748 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, 14749 BNX2X_ISCSI_ETH_MAC, true); 14750 break; 14751 } 14752 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { 14753 int count = ctl->data.credit.credit_count; 14754 14755 smp_mb__before_atomic(); 14756 atomic_add(count, &bp->cq_spq_left); 14757 smp_mb__after_atomic(); 14758 break; 14759 } 14760 case DRV_CTL_ULP_REGISTER_CMD: { 14761 int ulp_type = ctl->data.register_data.ulp_type; 14762 14763 if (CHIP_IS_E3(bp)) { 14764 int idx = BP_FW_MB_IDX(bp); 14765 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14766 int path = BP_PATH(bp); 14767 int port = BP_PORT(bp); 14768 int i; 14769 u32 scratch_offset; 14770 u32 *host_addr; 14771 14772 /* first write capability to shmem2 */ 14773 if (ulp_type == CNIC_ULP_ISCSI) 14774 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14775 else if (ulp_type == CNIC_ULP_FCOE) 14776 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14777 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14778 14779 if ((ulp_type != CNIC_ULP_FCOE) || 14780 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || 14781 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) 14782 break; 14783 14784 /* if reached here - should write fcoe capabilities */ 14785 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); 14786 if (!scratch_offset) 14787 break; 14788 scratch_offset += offsetof(struct glob_ncsi_oem_data, 14789 fcoe_features[path][port]); 14790 host_addr = (u32 *) &(ctl->data.register_data. 14791 fcoe_features); 14792 for (i = 0; i < sizeof(struct fcoe_capabilities); 14793 i += 4) 14794 REG_WR(bp, scratch_offset + i, 14795 *(host_addr + i/4)); 14796 } 14797 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14798 break; 14799 } 14800 14801 case DRV_CTL_ULP_UNREGISTER_CMD: { 14802 int ulp_type = ctl->data.ulp_type; 14803 14804 if (CHIP_IS_E3(bp)) { 14805 int idx = BP_FW_MB_IDX(bp); 14806 u32 cap; 14807 14808 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14809 if (ulp_type == CNIC_ULP_ISCSI) 14810 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14811 else if (ulp_type == CNIC_ULP_FCOE) 14812 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14813 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14814 } 14815 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14816 break; 14817 } 14818 14819 default: 14820 BNX2X_ERR("unknown command %x\n", ctl->cmd); 14821 rc = -EINVAL; 14822 } 14823 14824 /* For storage-only interfaces, change driver state */ 14825 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) { 14826 switch (ctl->drv_state) { 14827 case DRV_NOP: 14828 break; 14829 case DRV_ACTIVE: 14830 bnx2x_set_os_driver_state(bp, 14831 OS_DRIVER_STATE_ACTIVE); 14832 break; 14833 case DRV_INACTIVE: 14834 bnx2x_set_os_driver_state(bp, 14835 OS_DRIVER_STATE_DISABLED); 14836 break; 14837 case DRV_UNLOADED: 14838 bnx2x_set_os_driver_state(bp, 14839 OS_DRIVER_STATE_NOT_LOADED); 14840 break; 14841 default: 14842 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state); 14843 } 14844 } 14845 14846 return rc; 14847 } 14848 14849 static int bnx2x_get_fc_npiv(struct net_device *dev, 14850 struct cnic_fc_npiv_tbl *cnic_tbl) 14851 { 14852 struct bnx2x *bp = netdev_priv(dev); 14853 struct bdn_fc_npiv_tbl *tbl = NULL; 14854 u32 offset, entries; 14855 int rc = -EINVAL; 14856 int i; 14857 14858 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0])) 14859 goto out; 14860 14861 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n"); 14862 14863 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL); 14864 if (!tbl) { 14865 BNX2X_ERR("Failed to allocate fc_npiv table\n"); 14866 goto out; 14867 } 14868 14869 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]); 14870 if (!offset) { 14871 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n"); 14872 goto out; 14873 } 14874 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset); 14875 14876 /* Read the table contents from nvram */ 14877 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) { 14878 BNX2X_ERR("Failed to read FC-NPIV table\n"); 14879 goto out; 14880 } 14881 14882 /* Since bnx2x_nvram_read() returns data in be32, we need to convert 14883 * the number of entries back to cpu endianness. 14884 */ 14885 entries = tbl->fc_npiv_cfg.num_of_npiv; 14886 entries = (__force u32)be32_to_cpu((__force __be32)entries); 14887 tbl->fc_npiv_cfg.num_of_npiv = entries; 14888 14889 if (!tbl->fc_npiv_cfg.num_of_npiv) { 14890 DP(BNX2X_MSG_MCP, 14891 "No FC-NPIV table [valid, simply not present]\n"); 14892 goto out; 14893 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) { 14894 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n", 14895 tbl->fc_npiv_cfg.num_of_npiv); 14896 goto out; 14897 } else { 14898 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n", 14899 tbl->fc_npiv_cfg.num_of_npiv); 14900 } 14901 14902 /* Copy the data into cnic-provided struct */ 14903 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv; 14904 for (i = 0; i < cnic_tbl->count; i++) { 14905 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8); 14906 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8); 14907 } 14908 14909 rc = 0; 14910 out: 14911 kfree(tbl); 14912 return rc; 14913 } 14914 14915 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) 14916 { 14917 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14918 14919 if (bp->flags & USING_MSIX_FLAG) { 14920 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; 14921 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; 14922 cp->irq_arr[0].vector = bp->msix_table[1].vector; 14923 } else { 14924 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; 14925 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; 14926 } 14927 if (!CHIP_IS_E1x(bp)) 14928 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; 14929 else 14930 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; 14931 14932 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); 14933 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); 14934 cp->irq_arr[1].status_blk = bp->def_status_blk; 14935 cp->irq_arr[1].status_blk_num = DEF_SB_ID; 14936 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; 14937 14938 cp->num_irq = 2; 14939 } 14940 14941 void bnx2x_setup_cnic_info(struct bnx2x *bp) 14942 { 14943 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14944 14945 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 14946 bnx2x_cid_ilt_lines(bp); 14947 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 14948 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 14949 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 14950 14951 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n", 14952 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid, 14953 cp->iscsi_l2_cid); 14954 14955 if (NO_ISCSI_OOO(bp)) 14956 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 14957 } 14958 14959 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, 14960 void *data) 14961 { 14962 struct bnx2x *bp = netdev_priv(dev); 14963 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14964 int rc; 14965 14966 DP(NETIF_MSG_IFUP, "Register_cnic called\n"); 14967 14968 if (ops == NULL) { 14969 BNX2X_ERR("NULL ops received\n"); 14970 return -EINVAL; 14971 } 14972 14973 if (!CNIC_SUPPORT(bp)) { 14974 BNX2X_ERR("Can't register CNIC when not supported\n"); 14975 return -EOPNOTSUPP; 14976 } 14977 14978 if (!CNIC_LOADED(bp)) { 14979 rc = bnx2x_load_cnic(bp); 14980 if (rc) { 14981 BNX2X_ERR("CNIC-related load failed\n"); 14982 return rc; 14983 } 14984 } 14985 14986 bp->cnic_enabled = true; 14987 14988 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); 14989 if (!bp->cnic_kwq) 14990 return -ENOMEM; 14991 14992 bp->cnic_kwq_cons = bp->cnic_kwq; 14993 bp->cnic_kwq_prod = bp->cnic_kwq; 14994 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; 14995 14996 bp->cnic_spq_pending = 0; 14997 bp->cnic_kwq_pending = 0; 14998 14999 bp->cnic_data = data; 15000 15001 cp->num_irq = 0; 15002 cp->drv_state |= CNIC_DRV_STATE_REGD; 15003 cp->iro_arr = bp->iro_arr; 15004 15005 bnx2x_setup_cnic_irq_info(bp); 15006 15007 rcu_assign_pointer(bp->cnic_ops, ops); 15008 15009 /* Schedule driver to read CNIC driver versions */ 15010 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 15011 15012 return 0; 15013 } 15014 15015 static int bnx2x_unregister_cnic(struct net_device *dev) 15016 { 15017 struct bnx2x *bp = netdev_priv(dev); 15018 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15019 15020 mutex_lock(&bp->cnic_mutex); 15021 cp->drv_state = 0; 15022 RCU_INIT_POINTER(bp->cnic_ops, NULL); 15023 mutex_unlock(&bp->cnic_mutex); 15024 synchronize_rcu(); 15025 bp->cnic_enabled = false; 15026 kfree(bp->cnic_kwq); 15027 bp->cnic_kwq = NULL; 15028 15029 return 0; 15030 } 15031 15032 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) 15033 { 15034 struct bnx2x *bp = netdev_priv(dev); 15035 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15036 15037 /* If both iSCSI and FCoE are disabled - return NULL in 15038 * order to indicate CNIC that it should not try to work 15039 * with this device. 15040 */ 15041 if (NO_ISCSI(bp) && NO_FCOE(bp)) 15042 return NULL; 15043 15044 cp->drv_owner = THIS_MODULE; 15045 cp->chip_id = CHIP_ID(bp); 15046 cp->pdev = bp->pdev; 15047 cp->io_base = bp->regview; 15048 cp->io_base2 = bp->doorbells; 15049 cp->max_kwqe_pending = 8; 15050 cp->ctx_blk_size = CDU_ILT_PAGE_SZ; 15051 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 15052 bnx2x_cid_ilt_lines(bp); 15053 cp->ctx_tbl_len = CNIC_ILT_LINES; 15054 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 15055 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; 15056 cp->drv_ctl = bnx2x_drv_ctl; 15057 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv; 15058 cp->drv_register_cnic = bnx2x_register_cnic; 15059 cp->drv_unregister_cnic = bnx2x_unregister_cnic; 15060 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 15061 cp->iscsi_l2_client_id = 15062 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 15063 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 15064 15065 if (NO_ISCSI_OOO(bp)) 15066 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 15067 15068 if (NO_ISCSI(bp)) 15069 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; 15070 15071 if (NO_FCOE(bp)) 15072 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; 15073 15074 BNX2X_DEV_INFO( 15075 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", 15076 cp->ctx_blk_size, 15077 cp->ctx_tbl_offset, 15078 cp->ctx_tbl_len, 15079 cp->starting_cid); 15080 return cp; 15081 } 15082 15083 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) 15084 { 15085 struct bnx2x *bp = fp->bp; 15086 u32 offset = BAR_USTRORM_INTMEM; 15087 15088 if (IS_VF(bp)) 15089 return bnx2x_vf_ustorm_prods_offset(bp, fp); 15090 else if (!CHIP_IS_E1x(bp)) 15091 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 15092 else 15093 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); 15094 15095 return offset; 15096 } 15097 15098 /* called only on E1H or E2. 15099 * When pretending to be PF, the pretend value is the function number 0...7 15100 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 15101 * combination 15102 */ 15103 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) 15104 { 15105 u32 pretend_reg; 15106 15107 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) 15108 return -1; 15109 15110 /* get my own pretend register */ 15111 pretend_reg = bnx2x_get_pretend_reg(bp); 15112 REG_WR(bp, pretend_reg, pretend_func_val); 15113 REG_RD(bp, pretend_reg); 15114 return 0; 15115 } 15116 15117 static void bnx2x_ptp_task(struct work_struct *work) 15118 { 15119 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task); 15120 int port = BP_PORT(bp); 15121 u32 val_seq; 15122 u64 timestamp, ns; 15123 struct skb_shared_hwtstamps shhwtstamps; 15124 bool bail = true; 15125 int i; 15126 15127 /* FW may take a while to complete timestamping; try a bit and if it's 15128 * still not complete, may indicate an error state - bail out then. 15129 */ 15130 for (i = 0; i < 10; i++) { 15131 /* Read Tx timestamp registers */ 15132 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15133 NIG_REG_P0_TLLH_PTP_BUF_SEQID); 15134 if (val_seq & 0x10000) { 15135 bail = false; 15136 break; 15137 } 15138 msleep(1 << i); 15139 } 15140 15141 if (!bail) { 15142 /* There is a valid timestamp value */ 15143 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB : 15144 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB); 15145 timestamp <<= 32; 15146 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB : 15147 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB); 15148 /* Reset timestamp register to allow new timestamp */ 15149 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15150 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15151 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15152 15153 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 15154 shhwtstamps.hwtstamp = ns_to_ktime(ns); 15155 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps); 15156 15157 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n", 15158 timestamp, ns); 15159 } else { 15160 DP(BNX2X_MSG_PTP, 15161 "Tx timestamp is not recorded (register read=%u)\n", 15162 val_seq); 15163 bp->eth_stats.ptp_skip_tx_ts++; 15164 } 15165 15166 dev_kfree_skb_any(bp->ptp_tx_skb); 15167 bp->ptp_tx_skb = NULL; 15168 } 15169 15170 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb) 15171 { 15172 int port = BP_PORT(bp); 15173 u64 timestamp, ns; 15174 15175 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB : 15176 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB); 15177 timestamp <<= 32; 15178 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB : 15179 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB); 15180 15181 /* Reset timestamp register to allow new timestamp */ 15182 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15183 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15184 15185 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15186 15187 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 15188 15189 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n", 15190 timestamp, ns); 15191 } 15192 15193 /* Read the PHC */ 15194 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc) 15195 { 15196 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter); 15197 int port = BP_PORT(bp); 15198 u32 wb_data[2]; 15199 u64 phc_cycles; 15200 15201 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 : 15202 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2); 15203 phc_cycles = wb_data[1]; 15204 phc_cycles = (phc_cycles << 32) + wb_data[0]; 15205 15206 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles); 15207 15208 return phc_cycles; 15209 } 15210 15211 static void bnx2x_init_cyclecounter(struct bnx2x *bp) 15212 { 15213 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter)); 15214 bp->cyclecounter.read = bnx2x_cyclecounter_read; 15215 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64); 15216 bp->cyclecounter.shift = 0; 15217 bp->cyclecounter.mult = 1; 15218 } 15219 15220 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp) 15221 { 15222 struct bnx2x_func_state_params func_params = {NULL}; 15223 struct bnx2x_func_set_timesync_params *set_timesync_params = 15224 &func_params.params.set_timesync; 15225 15226 /* Prepare parameters for function state transitions */ 15227 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 15228 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 15229 15230 func_params.f_obj = &bp->func_obj; 15231 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 15232 15233 /* Function parameters */ 15234 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET; 15235 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 15236 15237 return bnx2x_func_state_change(bp, &func_params); 15238 } 15239 15240 static int bnx2x_enable_ptp_packets(struct bnx2x *bp) 15241 { 15242 struct bnx2x_queue_state_params q_params; 15243 int rc, i; 15244 15245 /* send queue update ramrod to enable PTP packets */ 15246 memset(&q_params, 0, sizeof(q_params)); 15247 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 15248 q_params.cmd = BNX2X_Q_CMD_UPDATE; 15249 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, 15250 &q_params.params.update.update_flags); 15251 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS, 15252 &q_params.params.update.update_flags); 15253 15254 /* send the ramrod on all the queues of the PF */ 15255 for_each_eth_queue(bp, i) { 15256 struct bnx2x_fastpath *fp = &bp->fp[i]; 15257 15258 /* Set the appropriate Queue object */ 15259 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 15260 15261 /* Update the Queue state */ 15262 rc = bnx2x_queue_state_change(bp, &q_params); 15263 if (rc) { 15264 BNX2X_ERR("Failed to enable PTP packets\n"); 15265 return rc; 15266 } 15267 } 15268 15269 return 0; 15270 } 15271 15272 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5 15273 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB 15274 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA) 15275 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE) 15276 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE) 15277 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE) 15278 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA) 15279 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE) 15280 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF) 15281 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF) 15282 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA) 15283 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE) 15284 15285 int bnx2x_configure_ptp_filters(struct bnx2x *bp) 15286 { 15287 int port = BP_PORT(bp); 15288 u32 param, rule; 15289 int rc; 15290 15291 if (!bp->hwtstamp_ioctl_called) 15292 return 0; 15293 15294 param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15295 NIG_REG_P0_TLLH_PTP_PARAM_MASK; 15296 rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15297 NIG_REG_P0_TLLH_PTP_RULE_MASK; 15298 switch (bp->tx_type) { 15299 case HWTSTAMP_TX_ON: 15300 bp->flags |= TX_TIMESTAMPING_EN; 15301 REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK); 15302 REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK); 15303 break; 15304 case HWTSTAMP_TX_ONESTEP_SYNC: 15305 case HWTSTAMP_TX_ONESTEP_P2P: 15306 BNX2X_ERR("One-step timestamping is not supported\n"); 15307 return -ERANGE; 15308 } 15309 15310 param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15311 NIG_REG_P0_LLH_PTP_PARAM_MASK; 15312 rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15313 NIG_REG_P0_LLH_PTP_RULE_MASK; 15314 switch (bp->rx_filter) { 15315 case HWTSTAMP_FILTER_NONE: 15316 break; 15317 case HWTSTAMP_FILTER_ALL: 15318 case HWTSTAMP_FILTER_SOME: 15319 case HWTSTAMP_FILTER_NTP_ALL: 15320 bp->rx_filter = HWTSTAMP_FILTER_NONE; 15321 break; 15322 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 15323 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 15324 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 15325 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 15326 /* Initialize PTP detection for UDP/IPv4 events */ 15327 REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK); 15328 REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK); 15329 break; 15330 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 15331 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 15332 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 15333 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 15334 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */ 15335 REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK); 15336 REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK); 15337 break; 15338 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 15339 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 15340 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 15341 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 15342 /* Initialize PTP detection L2 events */ 15343 REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK); 15344 REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK); 15345 15346 break; 15347 case HWTSTAMP_FILTER_PTP_V2_EVENT: 15348 case HWTSTAMP_FILTER_PTP_V2_SYNC: 15349 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 15350 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 15351 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */ 15352 REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK); 15353 REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK); 15354 break; 15355 } 15356 15357 /* Indicate to FW that this PF expects recorded PTP packets */ 15358 rc = bnx2x_enable_ptp_packets(bp); 15359 if (rc) 15360 return rc; 15361 15362 /* Enable sending PTP packets to host */ 15363 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15364 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1); 15365 15366 return 0; 15367 } 15368 15369 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr) 15370 { 15371 struct hwtstamp_config config; 15372 int rc; 15373 15374 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n"); 15375 15376 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 15377 return -EFAULT; 15378 15379 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n", 15380 config.tx_type, config.rx_filter); 15381 15382 bp->hwtstamp_ioctl_called = true; 15383 bp->tx_type = config.tx_type; 15384 bp->rx_filter = config.rx_filter; 15385 15386 rc = bnx2x_configure_ptp_filters(bp); 15387 if (rc) 15388 return rc; 15389 15390 config.rx_filter = bp->rx_filter; 15391 15392 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 15393 -EFAULT : 0; 15394 } 15395 15396 /* Configures HW for PTP */ 15397 static int bnx2x_configure_ptp(struct bnx2x *bp) 15398 { 15399 int rc, port = BP_PORT(bp); 15400 u32 wb_data[2]; 15401 15402 /* Reset PTP event detection rules - will be configured in the IOCTL */ 15403 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15404 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 15405 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15406 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 15407 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15408 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 15409 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15410 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 15411 15412 /* Disable PTP packets to host - will be configured in the IOCTL*/ 15413 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15414 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 15415 15416 /* Enable the PTP feature */ 15417 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 15418 NIG_REG_P0_PTP_EN, 0x3F); 15419 15420 /* Enable the free-running counter */ 15421 wb_data[0] = 0; 15422 wb_data[1] = 0; 15423 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2); 15424 15425 /* Reset drift register (offset register is not reset) */ 15426 rc = bnx2x_send_reset_timesync_ramrod(bp); 15427 if (rc) { 15428 BNX2X_ERR("Failed to reset PHC drift register\n"); 15429 return -EFAULT; 15430 } 15431 15432 /* Reset possibly old timestamps */ 15433 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15434 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15435 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15436 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15437 15438 return 0; 15439 } 15440 15441 /* Called during load, to initialize PTP-related stuff */ 15442 void bnx2x_init_ptp(struct bnx2x *bp) 15443 { 15444 int rc; 15445 15446 /* Configure PTP in HW */ 15447 rc = bnx2x_configure_ptp(bp); 15448 if (rc) { 15449 BNX2X_ERR("Stopping PTP initialization\n"); 15450 return; 15451 } 15452 15453 /* Init work queue for Tx timestamping */ 15454 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task); 15455 15456 /* Init cyclecounter and timecounter. This is done only in the first 15457 * load. If done in every load, PTP application will fail when doing 15458 * unload / load (e.g. MTU change) while it is running. 15459 */ 15460 if (!bp->timecounter_init_done) { 15461 bnx2x_init_cyclecounter(bp); 15462 timecounter_init(&bp->timecounter, &bp->cyclecounter, 15463 ktime_to_ns(ktime_get_real())); 15464 bp->timecounter_init_done = true; 15465 } 15466 15467 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n"); 15468 } 15469