1 /* bnx2x_main.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/module.h> 23 #include <linux/moduleparam.h> 24 #include <linux/kernel.h> 25 #include <linux/device.h> /* for dev_info() */ 26 #include <linux/timer.h> 27 #include <linux/errno.h> 28 #include <linux/ioport.h> 29 #include <linux/slab.h> 30 #include <linux/interrupt.h> 31 #include <linux/pci.h> 32 #include <linux/aer.h> 33 #include <linux/init.h> 34 #include <linux/netdevice.h> 35 #include <linux/etherdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/bitops.h> 39 #include <linux/irq.h> 40 #include <linux/delay.h> 41 #include <asm/byteorder.h> 42 #include <linux/time.h> 43 #include <linux/ethtool.h> 44 #include <linux/mii.h> 45 #include <linux/if_vlan.h> 46 #include <linux/crash_dump.h> 47 #include <net/ip.h> 48 #include <net/ipv6.h> 49 #include <net/tcp.h> 50 #include <net/vxlan.h> 51 #include <net/checksum.h> 52 #include <net/ip6_checksum.h> 53 #include <linux/workqueue.h> 54 #include <linux/crc32.h> 55 #include <linux/crc32c.h> 56 #include <linux/prefetch.h> 57 #include <linux/zlib.h> 58 #include <linux/io.h> 59 #include <linux/semaphore.h> 60 #include <linux/stringify.h> 61 #include <linux/vmalloc.h> 62 63 #include "bnx2x.h" 64 #include "bnx2x_init.h" 65 #include "bnx2x_init_ops.h" 66 #include "bnx2x_cmn.h" 67 #include "bnx2x_vfpf.h" 68 #include "bnx2x_dcb.h" 69 #include "bnx2x_sp.h" 70 #include <linux/firmware.h> 71 #include "bnx2x_fw_file_hdr.h" 72 /* FW files */ 73 #define FW_FILE_VERSION \ 74 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ 75 __stringify(BCM_5710_FW_MINOR_VERSION) "." \ 76 __stringify(BCM_5710_FW_REVISION_VERSION) "." \ 77 __stringify(BCM_5710_FW_ENGINEERING_VERSION) 78 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" 79 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" 80 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" 81 82 /* Time in jiffies before concluding the transmitter is hung */ 83 #define TX_TIMEOUT (5*HZ) 84 85 static char version[] = 86 "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver " 87 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 88 89 MODULE_AUTHOR("Eliezer Tamir"); 90 MODULE_DESCRIPTION("QLogic " 91 "BCM57710/57711/57711E/" 92 "57712/57712_MF/57800/57800_MF/57810/57810_MF/" 93 "57840/57840_MF Driver"); 94 MODULE_LICENSE("GPL"); 95 MODULE_VERSION(DRV_MODULE_VERSION); 96 MODULE_FIRMWARE(FW_FILE_NAME_E1); 97 MODULE_FIRMWARE(FW_FILE_NAME_E1H); 98 MODULE_FIRMWARE(FW_FILE_NAME_E2); 99 100 int bnx2x_num_queues; 101 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO); 102 MODULE_PARM_DESC(num_queues, 103 " Set number of queues (default is as a number of CPUs)"); 104 105 static int disable_tpa; 106 module_param(disable_tpa, int, S_IRUGO); 107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); 108 109 static int int_mode; 110 module_param(int_mode, int, S_IRUGO); 111 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " 112 "(1 INT#x; 2 MSI)"); 113 114 static int dropless_fc; 115 module_param(dropless_fc, int, S_IRUGO); 116 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); 117 118 static int mrrs = -1; 119 module_param(mrrs, int, S_IRUGO); 120 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); 121 122 static int debug; 123 module_param(debug, int, S_IRUGO); 124 MODULE_PARM_DESC(debug, " Default debug msglevel"); 125 126 static struct workqueue_struct *bnx2x_wq; 127 struct workqueue_struct *bnx2x_iov_wq; 128 129 struct bnx2x_mac_vals { 130 u32 xmac_addr; 131 u32 xmac_val; 132 u32 emac_addr; 133 u32 emac_val; 134 u32 umac_addr[2]; 135 u32 umac_val[2]; 136 u32 bmac_addr; 137 u32 bmac_val[2]; 138 }; 139 140 enum bnx2x_board_type { 141 BCM57710 = 0, 142 BCM57711, 143 BCM57711E, 144 BCM57712, 145 BCM57712_MF, 146 BCM57712_VF, 147 BCM57800, 148 BCM57800_MF, 149 BCM57800_VF, 150 BCM57810, 151 BCM57810_MF, 152 BCM57810_VF, 153 BCM57840_4_10, 154 BCM57840_2_20, 155 BCM57840_MF, 156 BCM57840_VF, 157 BCM57811, 158 BCM57811_MF, 159 BCM57840_O, 160 BCM57840_MFO, 161 BCM57811_VF 162 }; 163 164 /* indexed by board_type, above */ 165 static struct { 166 char *name; 167 } board_info[] = { 168 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" }, 169 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" }, 170 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" }, 171 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" }, 172 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" }, 173 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" }, 174 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" }, 175 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" }, 176 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" }, 177 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" }, 178 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" }, 179 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" }, 180 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" }, 181 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" }, 182 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 183 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }, 184 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" }, 185 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" }, 186 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" }, 187 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 188 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" } 189 }; 190 191 #ifndef PCI_DEVICE_ID_NX2_57710 192 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 193 #endif 194 #ifndef PCI_DEVICE_ID_NX2_57711 195 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 196 #endif 197 #ifndef PCI_DEVICE_ID_NX2_57711E 198 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E 199 #endif 200 #ifndef PCI_DEVICE_ID_NX2_57712 201 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 202 #endif 203 #ifndef PCI_DEVICE_ID_NX2_57712_MF 204 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF 205 #endif 206 #ifndef PCI_DEVICE_ID_NX2_57712_VF 207 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF 208 #endif 209 #ifndef PCI_DEVICE_ID_NX2_57800 210 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 211 #endif 212 #ifndef PCI_DEVICE_ID_NX2_57800_MF 213 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF 214 #endif 215 #ifndef PCI_DEVICE_ID_NX2_57800_VF 216 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF 217 #endif 218 #ifndef PCI_DEVICE_ID_NX2_57810 219 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 220 #endif 221 #ifndef PCI_DEVICE_ID_NX2_57810_MF 222 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF 223 #endif 224 #ifndef PCI_DEVICE_ID_NX2_57840_O 225 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE 226 #endif 227 #ifndef PCI_DEVICE_ID_NX2_57810_VF 228 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF 229 #endif 230 #ifndef PCI_DEVICE_ID_NX2_57840_4_10 231 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 232 #endif 233 #ifndef PCI_DEVICE_ID_NX2_57840_2_20 234 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 235 #endif 236 #ifndef PCI_DEVICE_ID_NX2_57840_MFO 237 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE 238 #endif 239 #ifndef PCI_DEVICE_ID_NX2_57840_MF 240 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF 241 #endif 242 #ifndef PCI_DEVICE_ID_NX2_57840_VF 243 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF 244 #endif 245 #ifndef PCI_DEVICE_ID_NX2_57811 246 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 247 #endif 248 #ifndef PCI_DEVICE_ID_NX2_57811_MF 249 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF 250 #endif 251 #ifndef PCI_DEVICE_ID_NX2_57811_VF 252 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF 253 #endif 254 255 static const struct pci_device_id bnx2x_pci_tbl[] = { 256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, 257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, 258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, 259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, 260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, 261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, 262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, 263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, 264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, 265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, 266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, 267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, 268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 269 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, 271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, 272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, 273 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 274 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 275 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 276 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, 278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, 279 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, 280 { 0 } 281 }; 282 283 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); 284 285 /* Global resources for unloading a previously loaded device */ 286 #define BNX2X_PREV_WAIT_NEEDED 1 287 static DEFINE_SEMAPHORE(bnx2x_prev_sem); 288 static LIST_HEAD(bnx2x_prev_list); 289 290 /* Forward declaration */ 291 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); 292 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp); 293 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp); 294 295 /**************************************************************************** 296 * General service functions 297 ****************************************************************************/ 298 299 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr); 300 301 static void __storm_memset_dma_mapping(struct bnx2x *bp, 302 u32 addr, dma_addr_t mapping) 303 { 304 REG_WR(bp, addr, U64_LO(mapping)); 305 REG_WR(bp, addr + 4, U64_HI(mapping)); 306 } 307 308 static void storm_memset_spq_addr(struct bnx2x *bp, 309 dma_addr_t mapping, u16 abs_fid) 310 { 311 u32 addr = XSEM_REG_FAST_MEMORY + 312 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); 313 314 __storm_memset_dma_mapping(bp, addr, mapping); 315 } 316 317 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 318 u16 pf_id) 319 { 320 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 321 pf_id); 322 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 323 pf_id); 324 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 325 pf_id); 326 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 327 pf_id); 328 } 329 330 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 331 u8 enable) 332 { 333 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 334 enable); 335 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 336 enable); 337 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 338 enable); 339 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 340 enable); 341 } 342 343 static void storm_memset_eq_data(struct bnx2x *bp, 344 struct event_ring_data *eq_data, 345 u16 pfid) 346 { 347 size_t size = sizeof(struct event_ring_data); 348 349 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); 350 351 __storm_memset_struct(bp, addr, size, (u32 *)eq_data); 352 } 353 354 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, 355 u16 pfid) 356 { 357 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); 358 REG_WR16(bp, addr, eq_prod); 359 } 360 361 /* used only at init 362 * locking is done by mcp 363 */ 364 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) 365 { 366 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 367 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); 368 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 369 PCICFG_VENDOR_ID_OFFSET); 370 } 371 372 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) 373 { 374 u32 val; 375 376 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 377 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); 378 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 379 PCICFG_VENDOR_ID_OFFSET); 380 381 return val; 382 } 383 384 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" 385 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" 386 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" 387 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" 388 #define DMAE_DP_DST_NONE "dst_addr [none]" 389 390 static void bnx2x_dp_dmae(struct bnx2x *bp, 391 struct dmae_command *dmae, int msglvl) 392 { 393 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; 394 int i; 395 396 switch (dmae->opcode & DMAE_COMMAND_DST) { 397 case DMAE_CMD_DST_PCI: 398 if (src_type == DMAE_CMD_SRC_PCI) 399 DP(msglvl, "DMAE: opcode 0x%08x\n" 400 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 401 "comp_addr [%x:%08x], comp_val 0x%08x\n", 402 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 403 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 404 dmae->comp_addr_hi, dmae->comp_addr_lo, 405 dmae->comp_val); 406 else 407 DP(msglvl, "DMAE: opcode 0x%08x\n" 408 "src [%08x], len [%d*4], dst [%x:%08x]\n" 409 "comp_addr [%x:%08x], comp_val 0x%08x\n", 410 dmae->opcode, dmae->src_addr_lo >> 2, 411 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 412 dmae->comp_addr_hi, dmae->comp_addr_lo, 413 dmae->comp_val); 414 break; 415 case DMAE_CMD_DST_GRC: 416 if (src_type == DMAE_CMD_SRC_PCI) 417 DP(msglvl, "DMAE: opcode 0x%08x\n" 418 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 419 "comp_addr [%x:%08x], comp_val 0x%08x\n", 420 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 421 dmae->len, dmae->dst_addr_lo >> 2, 422 dmae->comp_addr_hi, dmae->comp_addr_lo, 423 dmae->comp_val); 424 else 425 DP(msglvl, "DMAE: opcode 0x%08x\n" 426 "src [%08x], len [%d*4], dst [%08x]\n" 427 "comp_addr [%x:%08x], comp_val 0x%08x\n", 428 dmae->opcode, dmae->src_addr_lo >> 2, 429 dmae->len, dmae->dst_addr_lo >> 2, 430 dmae->comp_addr_hi, dmae->comp_addr_lo, 431 dmae->comp_val); 432 break; 433 default: 434 if (src_type == DMAE_CMD_SRC_PCI) 435 DP(msglvl, "DMAE: opcode 0x%08x\n" 436 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 437 "comp_addr [%x:%08x] comp_val 0x%08x\n", 438 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 439 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 440 dmae->comp_val); 441 else 442 DP(msglvl, "DMAE: opcode 0x%08x\n" 443 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 444 "comp_addr [%x:%08x] comp_val 0x%08x\n", 445 dmae->opcode, dmae->src_addr_lo >> 2, 446 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 447 dmae->comp_val); 448 break; 449 } 450 451 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) 452 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", 453 i, *(((u32 *)dmae) + i)); 454 } 455 456 /* copy command into DMAE command memory and set DMAE command go */ 457 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) 458 { 459 u32 cmd_offset; 460 int i; 461 462 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); 463 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { 464 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); 465 } 466 REG_WR(bp, dmae_reg_go_c[idx], 1); 467 } 468 469 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) 470 { 471 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 472 DMAE_CMD_C_ENABLE); 473 } 474 475 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) 476 { 477 return opcode & ~DMAE_CMD_SRC_RESET; 478 } 479 480 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 481 bool with_comp, u8 comp_type) 482 { 483 u32 opcode = 0; 484 485 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 486 (dst_type << DMAE_COMMAND_DST_SHIFT)); 487 488 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 489 490 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 491 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | 492 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); 493 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 494 495 #ifdef __BIG_ENDIAN 496 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 497 #else 498 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 499 #endif 500 if (with_comp) 501 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); 502 return opcode; 503 } 504 505 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, 506 struct dmae_command *dmae, 507 u8 src_type, u8 dst_type) 508 { 509 memset(dmae, 0, sizeof(struct dmae_command)); 510 511 /* set the opcode */ 512 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, 513 true, DMAE_COMP_PCI); 514 515 /* fill in the completion parameters */ 516 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); 517 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); 518 dmae->comp_val = DMAE_COMP_VAL; 519 } 520 521 /* issue a dmae command over the init-channel and wait for completion */ 522 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 523 u32 *comp) 524 { 525 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; 526 int rc = 0; 527 528 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); 529 530 /* Lock the dmae channel. Disable BHs to prevent a dead-lock 531 * as long as this code is called both from syscall context and 532 * from ndo_set_rx_mode() flow that may be called from BH. 533 */ 534 535 spin_lock_bh(&bp->dmae_lock); 536 537 /* reset completion */ 538 *comp = 0; 539 540 /* post the command on the channel used for initializations */ 541 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); 542 543 /* wait for completion */ 544 udelay(5); 545 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 546 547 if (!cnt || 548 (bp->recovery_state != BNX2X_RECOVERY_DONE && 549 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 550 BNX2X_ERR("DMAE timeout!\n"); 551 rc = DMAE_TIMEOUT; 552 goto unlock; 553 } 554 cnt--; 555 udelay(50); 556 } 557 if (*comp & DMAE_PCI_ERR_FLAG) { 558 BNX2X_ERR("DMAE PCI error!\n"); 559 rc = DMAE_PCI_ERROR; 560 } 561 562 unlock: 563 564 spin_unlock_bh(&bp->dmae_lock); 565 566 return rc; 567 } 568 569 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 570 u32 len32) 571 { 572 int rc; 573 struct dmae_command dmae; 574 575 if (!bp->dmae_ready) { 576 u32 *data = bnx2x_sp(bp, wb_data[0]); 577 578 if (CHIP_IS_E1(bp)) 579 bnx2x_init_ind_wr(bp, dst_addr, data, len32); 580 else 581 bnx2x_init_str_wr(bp, dst_addr, data, len32); 582 return; 583 } 584 585 /* set opcode and fixed command fields */ 586 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 587 588 /* fill in addresses and len */ 589 dmae.src_addr_lo = U64_LO(dma_addr); 590 dmae.src_addr_hi = U64_HI(dma_addr); 591 dmae.dst_addr_lo = dst_addr >> 2; 592 dmae.dst_addr_hi = 0; 593 dmae.len = len32; 594 595 /* issue the command and wait for completion */ 596 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 597 if (rc) { 598 BNX2X_ERR("DMAE returned failure %d\n", rc); 599 #ifdef BNX2X_STOP_ON_ERROR 600 bnx2x_panic(); 601 #endif 602 } 603 } 604 605 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) 606 { 607 int rc; 608 struct dmae_command dmae; 609 610 if (!bp->dmae_ready) { 611 u32 *data = bnx2x_sp(bp, wb_data[0]); 612 int i; 613 614 if (CHIP_IS_E1(bp)) 615 for (i = 0; i < len32; i++) 616 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); 617 else 618 for (i = 0; i < len32; i++) 619 data[i] = REG_RD(bp, src_addr + i*4); 620 621 return; 622 } 623 624 /* set opcode and fixed command fields */ 625 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 626 627 /* fill in addresses and len */ 628 dmae.src_addr_lo = src_addr >> 2; 629 dmae.src_addr_hi = 0; 630 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); 631 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); 632 dmae.len = len32; 633 634 /* issue the command and wait for completion */ 635 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 636 if (rc) { 637 BNX2X_ERR("DMAE returned failure %d\n", rc); 638 #ifdef BNX2X_STOP_ON_ERROR 639 bnx2x_panic(); 640 #endif 641 } 642 } 643 644 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, 645 u32 addr, u32 len) 646 { 647 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); 648 int offset = 0; 649 650 while (len > dmae_wr_max) { 651 bnx2x_write_dmae(bp, phys_addr + offset, 652 addr + offset, dmae_wr_max); 653 offset += dmae_wr_max * 4; 654 len -= dmae_wr_max; 655 } 656 657 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); 658 } 659 660 enum storms { 661 XSTORM, 662 TSTORM, 663 CSTORM, 664 USTORM, 665 MAX_STORMS 666 }; 667 668 #define STORMS_NUM 4 669 #define REGS_IN_ENTRY 4 670 671 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp, 672 enum storms storm, 673 int entry) 674 { 675 switch (storm) { 676 case XSTORM: 677 return XSTORM_ASSERT_LIST_OFFSET(entry); 678 case TSTORM: 679 return TSTORM_ASSERT_LIST_OFFSET(entry); 680 case CSTORM: 681 return CSTORM_ASSERT_LIST_OFFSET(entry); 682 case USTORM: 683 return USTORM_ASSERT_LIST_OFFSET(entry); 684 case MAX_STORMS: 685 default: 686 BNX2X_ERR("unknown storm\n"); 687 } 688 return -EINVAL; 689 } 690 691 static int bnx2x_mc_assert(struct bnx2x *bp) 692 { 693 char last_idx; 694 int i, j, rc = 0; 695 enum storms storm; 696 u32 regs[REGS_IN_ENTRY]; 697 u32 bar_storm_intmem[STORMS_NUM] = { 698 BAR_XSTRORM_INTMEM, 699 BAR_TSTRORM_INTMEM, 700 BAR_CSTRORM_INTMEM, 701 BAR_USTRORM_INTMEM 702 }; 703 u32 storm_assert_list_index[STORMS_NUM] = { 704 XSTORM_ASSERT_LIST_INDEX_OFFSET, 705 TSTORM_ASSERT_LIST_INDEX_OFFSET, 706 CSTORM_ASSERT_LIST_INDEX_OFFSET, 707 USTORM_ASSERT_LIST_INDEX_OFFSET 708 }; 709 char *storms_string[STORMS_NUM] = { 710 "XSTORM", 711 "TSTORM", 712 "CSTORM", 713 "USTORM" 714 }; 715 716 for (storm = XSTORM; storm < MAX_STORMS; storm++) { 717 last_idx = REG_RD8(bp, bar_storm_intmem[storm] + 718 storm_assert_list_index[storm]); 719 if (last_idx) 720 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n", 721 storms_string[storm], last_idx); 722 723 /* print the asserts */ 724 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 725 /* read a single assert entry */ 726 for (j = 0; j < REGS_IN_ENTRY; j++) 727 regs[j] = REG_RD(bp, bar_storm_intmem[storm] + 728 bnx2x_get_assert_list_entry(bp, 729 storm, 730 i) + 731 sizeof(u32) * j); 732 733 /* log entry if it contains a valid assert */ 734 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) { 735 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 736 storms_string[storm], i, regs[3], 737 regs[2], regs[1], regs[0]); 738 rc++; 739 } else { 740 break; 741 } 742 } 743 } 744 745 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n", 746 CHIP_IS_E1(bp) ? "everest1" : 747 CHIP_IS_E1H(bp) ? "everest1h" : 748 CHIP_IS_E2(bp) ? "everest2" : "everest3", 749 BCM_5710_FW_MAJOR_VERSION, 750 BCM_5710_FW_MINOR_VERSION, 751 BCM_5710_FW_REVISION_VERSION); 752 753 return rc; 754 } 755 756 #define MCPR_TRACE_BUFFER_SIZE (0x800) 757 #define SCRATCH_BUFFER_SIZE(bp) \ 758 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000)) 759 760 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) 761 { 762 u32 addr, val; 763 u32 mark, offset; 764 __be32 data[9]; 765 int word; 766 u32 trace_shmem_base; 767 if (BP_NOMCP(bp)) { 768 BNX2X_ERR("NO MCP - can not dump\n"); 769 return; 770 } 771 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", 772 (bp->common.bc_ver & 0xff0000) >> 16, 773 (bp->common.bc_ver & 0xff00) >> 8, 774 (bp->common.bc_ver & 0xff)); 775 776 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); 777 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) 778 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); 779 780 if (BP_PATH(bp) == 0) 781 trace_shmem_base = bp->common.shmem_base; 782 else 783 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); 784 785 /* sanity */ 786 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE || 787 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) + 788 SCRATCH_BUFFER_SIZE(bp)) { 789 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n", 790 trace_shmem_base); 791 return; 792 } 793 794 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE; 795 796 /* validate TRCB signature */ 797 mark = REG_RD(bp, addr); 798 if (mark != MFW_TRACE_SIGNATURE) { 799 BNX2X_ERR("Trace buffer signature is missing."); 800 return ; 801 } 802 803 /* read cyclic buffer pointer */ 804 addr += 4; 805 mark = REG_RD(bp, addr); 806 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000; 807 if (mark >= trace_shmem_base || mark < addr + 4) { 808 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n"); 809 return; 810 } 811 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); 812 813 printk("%s", lvl); 814 815 /* dump buffer after the mark */ 816 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) { 817 for (word = 0; word < 8; word++) 818 data[word] = htonl(REG_RD(bp, offset + 4*word)); 819 data[8] = 0x0; 820 pr_cont("%s", (char *)data); 821 } 822 823 /* dump buffer before the mark */ 824 for (offset = addr + 4; offset <= mark; offset += 0x8*4) { 825 for (word = 0; word < 8; word++) 826 data[word] = htonl(REG_RD(bp, offset + 4*word)); 827 data[8] = 0x0; 828 pr_cont("%s", (char *)data); 829 } 830 printk("%s" "end of fw dump\n", lvl); 831 } 832 833 static void bnx2x_fw_dump(struct bnx2x *bp) 834 { 835 bnx2x_fw_dump_lvl(bp, KERN_ERR); 836 } 837 838 static void bnx2x_hc_int_disable(struct bnx2x *bp) 839 { 840 int port = BP_PORT(bp); 841 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 842 u32 val = REG_RD(bp, addr); 843 844 /* in E1 we must use only PCI configuration space to disable 845 * MSI/MSIX capability 846 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block 847 */ 848 if (CHIP_IS_E1(bp)) { 849 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on 850 * Use mask register to prevent from HC sending interrupts 851 * after we exit the function 852 */ 853 REG_WR(bp, HC_REG_INT_MASK + port*4, 0); 854 855 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 856 HC_CONFIG_0_REG_INT_LINE_EN_0 | 857 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 858 } else 859 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 860 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 861 HC_CONFIG_0_REG_INT_LINE_EN_0 | 862 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 863 864 DP(NETIF_MSG_IFDOWN, 865 "write %x to HC %d (addr 0x%x)\n", 866 val, port, addr); 867 868 /* flush all outstanding writes */ 869 mmiowb(); 870 871 REG_WR(bp, addr, val); 872 if (REG_RD(bp, addr) != val) 873 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 874 } 875 876 static void bnx2x_igu_int_disable(struct bnx2x *bp) 877 { 878 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 879 880 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 881 IGU_PF_CONF_INT_LINE_EN | 882 IGU_PF_CONF_ATTN_BIT_EN); 883 884 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); 885 886 /* flush all outstanding writes */ 887 mmiowb(); 888 889 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 890 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) 891 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 892 } 893 894 static void bnx2x_int_disable(struct bnx2x *bp) 895 { 896 if (bp->common.int_block == INT_BLOCK_HC) 897 bnx2x_hc_int_disable(bp); 898 else 899 bnx2x_igu_int_disable(bp); 900 } 901 902 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) 903 { 904 int i; 905 u16 j; 906 struct hc_sp_status_block_data sp_sb_data; 907 int func = BP_FUNC(bp); 908 #ifdef BNX2X_STOP_ON_ERROR 909 u16 start = 0, end = 0; 910 u8 cos; 911 #endif 912 if (IS_PF(bp) && disable_int) 913 bnx2x_int_disable(bp); 914 915 bp->stats_state = STATS_STATE_DISABLED; 916 bp->eth_stats.unrecoverable_error++; 917 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); 918 919 BNX2X_ERR("begin crash dump -----------------\n"); 920 921 /* Indices */ 922 /* Common */ 923 if (IS_PF(bp)) { 924 struct host_sp_status_block *def_sb = bp->def_status_blk; 925 int data_size, cstorm_offset; 926 927 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", 928 bp->def_idx, bp->def_att_idx, bp->attn_state, 929 bp->spq_prod_idx, bp->stats_counter); 930 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", 931 def_sb->atten_status_block.attn_bits, 932 def_sb->atten_status_block.attn_bits_ack, 933 def_sb->atten_status_block.status_block_id, 934 def_sb->atten_status_block.attn_bits_index); 935 BNX2X_ERR(" def ("); 936 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) 937 pr_cont("0x%x%s", 938 def_sb->sp_sb.index_values[i], 939 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); 940 941 data_size = sizeof(struct hc_sp_status_block_data) / 942 sizeof(u32); 943 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func); 944 for (i = 0; i < data_size; i++) 945 *((u32 *)&sp_sb_data + i) = 946 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset + 947 i * sizeof(u32)); 948 949 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", 950 sp_sb_data.igu_sb_id, 951 sp_sb_data.igu_seg_id, 952 sp_sb_data.p_func.pf_id, 953 sp_sb_data.p_func.vnic_id, 954 sp_sb_data.p_func.vf_id, 955 sp_sb_data.p_func.vf_valid, 956 sp_sb_data.state); 957 } 958 959 for_each_eth_queue(bp, i) { 960 struct bnx2x_fastpath *fp = &bp->fp[i]; 961 int loop; 962 struct hc_status_block_data_e2 sb_data_e2; 963 struct hc_status_block_data_e1x sb_data_e1x; 964 struct hc_status_block_sm *hc_sm_p = 965 CHIP_IS_E1x(bp) ? 966 sb_data_e1x.common.state_machine : 967 sb_data_e2.common.state_machine; 968 struct hc_index_data *hc_index_p = 969 CHIP_IS_E1x(bp) ? 970 sb_data_e1x.index_data : 971 sb_data_e2.index_data; 972 u8 data_size, cos; 973 u32 *sb_data_p; 974 struct bnx2x_fp_txdata txdata; 975 976 if (!bp->fp) 977 break; 978 979 if (!fp->rx_cons_sb) 980 continue; 981 982 /* Rx */ 983 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", 984 i, fp->rx_bd_prod, fp->rx_bd_cons, 985 fp->rx_comp_prod, 986 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); 987 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", 988 fp->rx_sge_prod, fp->last_max_sge, 989 le16_to_cpu(fp->fp_hc_idx)); 990 991 /* Tx */ 992 for_each_cos_in_tx_queue(fp, cos) 993 { 994 if (!fp->txdata_ptr[cos]) 995 break; 996 997 txdata = *fp->txdata_ptr[cos]; 998 999 if (!txdata.tx_cons_sb) 1000 continue; 1001 1002 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", 1003 i, txdata.tx_pkt_prod, 1004 txdata.tx_pkt_cons, txdata.tx_bd_prod, 1005 txdata.tx_bd_cons, 1006 le16_to_cpu(*txdata.tx_cons_sb)); 1007 } 1008 1009 loop = CHIP_IS_E1x(bp) ? 1010 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; 1011 1012 /* host sb data */ 1013 1014 if (IS_FCOE_FP(fp)) 1015 continue; 1016 1017 BNX2X_ERR(" run indexes ("); 1018 for (j = 0; j < HC_SB_MAX_SM; j++) 1019 pr_cont("0x%x%s", 1020 fp->sb_running_index[j], 1021 (j == HC_SB_MAX_SM - 1) ? ")" : " "); 1022 1023 BNX2X_ERR(" indexes ("); 1024 for (j = 0; j < loop; j++) 1025 pr_cont("0x%x%s", 1026 fp->sb_index_values[j], 1027 (j == loop - 1) ? ")" : " "); 1028 1029 /* VF cannot access FW refelection for status block */ 1030 if (IS_VF(bp)) 1031 continue; 1032 1033 /* fw sb data */ 1034 data_size = CHIP_IS_E1x(bp) ? 1035 sizeof(struct hc_status_block_data_e1x) : 1036 sizeof(struct hc_status_block_data_e2); 1037 data_size /= sizeof(u32); 1038 sb_data_p = CHIP_IS_E1x(bp) ? 1039 (u32 *)&sb_data_e1x : 1040 (u32 *)&sb_data_e2; 1041 /* copy sb data in here */ 1042 for (j = 0; j < data_size; j++) 1043 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + 1044 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + 1045 j * sizeof(u32)); 1046 1047 if (!CHIP_IS_E1x(bp)) { 1048 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1049 sb_data_e2.common.p_func.pf_id, 1050 sb_data_e2.common.p_func.vf_id, 1051 sb_data_e2.common.p_func.vf_valid, 1052 sb_data_e2.common.p_func.vnic_id, 1053 sb_data_e2.common.same_igu_sb_1b, 1054 sb_data_e2.common.state); 1055 } else { 1056 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1057 sb_data_e1x.common.p_func.pf_id, 1058 sb_data_e1x.common.p_func.vf_id, 1059 sb_data_e1x.common.p_func.vf_valid, 1060 sb_data_e1x.common.p_func.vnic_id, 1061 sb_data_e1x.common.same_igu_sb_1b, 1062 sb_data_e1x.common.state); 1063 } 1064 1065 /* SB_SMs data */ 1066 for (j = 0; j < HC_SB_MAX_SM; j++) { 1067 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", 1068 j, hc_sm_p[j].__flags, 1069 hc_sm_p[j].igu_sb_id, 1070 hc_sm_p[j].igu_seg_id, 1071 hc_sm_p[j].time_to_expire, 1072 hc_sm_p[j].timer_value); 1073 } 1074 1075 /* Indices data */ 1076 for (j = 0; j < loop; j++) { 1077 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, 1078 hc_index_p[j].flags, 1079 hc_index_p[j].timeout); 1080 } 1081 } 1082 1083 #ifdef BNX2X_STOP_ON_ERROR 1084 if (IS_PF(bp)) { 1085 /* event queue */ 1086 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); 1087 for (i = 0; i < NUM_EQ_DESC; i++) { 1088 u32 *data = (u32 *)&bp->eq_ring[i].message.data; 1089 1090 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", 1091 i, bp->eq_ring[i].message.opcode, 1092 bp->eq_ring[i].message.error); 1093 BNX2X_ERR("data: %x %x %x\n", 1094 data[0], data[1], data[2]); 1095 } 1096 } 1097 1098 /* Rings */ 1099 /* Rx */ 1100 for_each_valid_rx_queue(bp, i) { 1101 struct bnx2x_fastpath *fp = &bp->fp[i]; 1102 1103 if (!bp->fp) 1104 break; 1105 1106 if (!fp->rx_cons_sb) 1107 continue; 1108 1109 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); 1110 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); 1111 for (j = start; j != end; j = RX_BD(j + 1)) { 1112 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; 1113 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; 1114 1115 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", 1116 i, j, rx_bd[1], rx_bd[0], sw_bd->data); 1117 } 1118 1119 start = RX_SGE(fp->rx_sge_prod); 1120 end = RX_SGE(fp->last_max_sge); 1121 for (j = start; j != end; j = RX_SGE(j + 1)) { 1122 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; 1123 struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; 1124 1125 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", 1126 i, j, rx_sge[1], rx_sge[0], sw_page->page); 1127 } 1128 1129 start = RCQ_BD(fp->rx_comp_cons - 10); 1130 end = RCQ_BD(fp->rx_comp_cons + 503); 1131 for (j = start; j != end; j = RCQ_BD(j + 1)) { 1132 u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; 1133 1134 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", 1135 i, j, cqe[0], cqe[1], cqe[2], cqe[3]); 1136 } 1137 } 1138 1139 /* Tx */ 1140 for_each_valid_tx_queue(bp, i) { 1141 struct bnx2x_fastpath *fp = &bp->fp[i]; 1142 1143 if (!bp->fp) 1144 break; 1145 1146 for_each_cos_in_tx_queue(fp, cos) { 1147 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1148 1149 if (!fp->txdata_ptr[cos]) 1150 break; 1151 1152 if (!txdata->tx_cons_sb) 1153 continue; 1154 1155 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); 1156 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); 1157 for (j = start; j != end; j = TX_BD(j + 1)) { 1158 struct sw_tx_bd *sw_bd = 1159 &txdata->tx_buf_ring[j]; 1160 1161 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", 1162 i, cos, j, sw_bd->skb, 1163 sw_bd->first_bd); 1164 } 1165 1166 start = TX_BD(txdata->tx_bd_cons - 10); 1167 end = TX_BD(txdata->tx_bd_cons + 254); 1168 for (j = start; j != end; j = TX_BD(j + 1)) { 1169 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; 1170 1171 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", 1172 i, cos, j, tx_bd[0], tx_bd[1], 1173 tx_bd[2], tx_bd[3]); 1174 } 1175 } 1176 } 1177 #endif 1178 if (IS_PF(bp)) { 1179 bnx2x_fw_dump(bp); 1180 bnx2x_mc_assert(bp); 1181 } 1182 BNX2X_ERR("end crash dump -----------------\n"); 1183 } 1184 1185 /* 1186 * FLR Support for E2 1187 * 1188 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW 1189 * initialization. 1190 */ 1191 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */ 1192 #define FLR_WAIT_INTERVAL 50 /* usec */ 1193 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ 1194 1195 struct pbf_pN_buf_regs { 1196 int pN; 1197 u32 init_crd; 1198 u32 crd; 1199 u32 crd_freed; 1200 }; 1201 1202 struct pbf_pN_cmd_regs { 1203 int pN; 1204 u32 lines_occup; 1205 u32 lines_freed; 1206 }; 1207 1208 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, 1209 struct pbf_pN_buf_regs *regs, 1210 u32 poll_count) 1211 { 1212 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; 1213 u32 cur_cnt = poll_count; 1214 1215 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); 1216 crd = crd_start = REG_RD(bp, regs->crd); 1217 init_crd = REG_RD(bp, regs->init_crd); 1218 1219 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 1220 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); 1221 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 1222 1223 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < 1224 (init_crd - crd_start))) { 1225 if (cur_cnt--) { 1226 udelay(FLR_WAIT_INTERVAL); 1227 crd = REG_RD(bp, regs->crd); 1228 crd_freed = REG_RD(bp, regs->crd_freed); 1229 } else { 1230 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", 1231 regs->pN); 1232 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", 1233 regs->pN, crd); 1234 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", 1235 regs->pN, crd_freed); 1236 break; 1237 } 1238 } 1239 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", 1240 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1241 } 1242 1243 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, 1244 struct pbf_pN_cmd_regs *regs, 1245 u32 poll_count) 1246 { 1247 u32 occup, to_free, freed, freed_start; 1248 u32 cur_cnt = poll_count; 1249 1250 occup = to_free = REG_RD(bp, regs->lines_occup); 1251 freed = freed_start = REG_RD(bp, regs->lines_freed); 1252 1253 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 1254 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 1255 1256 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { 1257 if (cur_cnt--) { 1258 udelay(FLR_WAIT_INTERVAL); 1259 occup = REG_RD(bp, regs->lines_occup); 1260 freed = REG_RD(bp, regs->lines_freed); 1261 } else { 1262 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", 1263 regs->pN); 1264 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", 1265 regs->pN, occup); 1266 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", 1267 regs->pN, freed); 1268 break; 1269 } 1270 } 1271 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", 1272 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1273 } 1274 1275 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, 1276 u32 expected, u32 poll_count) 1277 { 1278 u32 cur_cnt = poll_count; 1279 u32 val; 1280 1281 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) 1282 udelay(FLR_WAIT_INTERVAL); 1283 1284 return val; 1285 } 1286 1287 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 1288 char *msg, u32 poll_cnt) 1289 { 1290 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); 1291 if (val != 0) { 1292 BNX2X_ERR("%s usage count=%d\n", msg, val); 1293 return 1; 1294 } 1295 return 0; 1296 } 1297 1298 /* Common routines with VF FLR cleanup */ 1299 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) 1300 { 1301 /* adjust polling timeout */ 1302 if (CHIP_REV_IS_EMUL(bp)) 1303 return FLR_POLL_CNT * 2000; 1304 1305 if (CHIP_REV_IS_FPGA(bp)) 1306 return FLR_POLL_CNT * 120; 1307 1308 return FLR_POLL_CNT; 1309 } 1310 1311 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) 1312 { 1313 struct pbf_pN_cmd_regs cmd_regs[] = { 1314 {0, (CHIP_IS_E3B0(bp)) ? 1315 PBF_REG_TQ_OCCUPANCY_Q0 : 1316 PBF_REG_P0_TQ_OCCUPANCY, 1317 (CHIP_IS_E3B0(bp)) ? 1318 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 1319 PBF_REG_P0_TQ_LINES_FREED_CNT}, 1320 {1, (CHIP_IS_E3B0(bp)) ? 1321 PBF_REG_TQ_OCCUPANCY_Q1 : 1322 PBF_REG_P1_TQ_OCCUPANCY, 1323 (CHIP_IS_E3B0(bp)) ? 1324 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 1325 PBF_REG_P1_TQ_LINES_FREED_CNT}, 1326 {4, (CHIP_IS_E3B0(bp)) ? 1327 PBF_REG_TQ_OCCUPANCY_LB_Q : 1328 PBF_REG_P4_TQ_OCCUPANCY, 1329 (CHIP_IS_E3B0(bp)) ? 1330 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 1331 PBF_REG_P4_TQ_LINES_FREED_CNT} 1332 }; 1333 1334 struct pbf_pN_buf_regs buf_regs[] = { 1335 {0, (CHIP_IS_E3B0(bp)) ? 1336 PBF_REG_INIT_CRD_Q0 : 1337 PBF_REG_P0_INIT_CRD , 1338 (CHIP_IS_E3B0(bp)) ? 1339 PBF_REG_CREDIT_Q0 : 1340 PBF_REG_P0_CREDIT, 1341 (CHIP_IS_E3B0(bp)) ? 1342 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 1343 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 1344 {1, (CHIP_IS_E3B0(bp)) ? 1345 PBF_REG_INIT_CRD_Q1 : 1346 PBF_REG_P1_INIT_CRD, 1347 (CHIP_IS_E3B0(bp)) ? 1348 PBF_REG_CREDIT_Q1 : 1349 PBF_REG_P1_CREDIT, 1350 (CHIP_IS_E3B0(bp)) ? 1351 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 1352 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 1353 {4, (CHIP_IS_E3B0(bp)) ? 1354 PBF_REG_INIT_CRD_LB_Q : 1355 PBF_REG_P4_INIT_CRD, 1356 (CHIP_IS_E3B0(bp)) ? 1357 PBF_REG_CREDIT_LB_Q : 1358 PBF_REG_P4_CREDIT, 1359 (CHIP_IS_E3B0(bp)) ? 1360 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 1361 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 1362 }; 1363 1364 int i; 1365 1366 /* Verify the command queues are flushed P0, P1, P4 */ 1367 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) 1368 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); 1369 1370 /* Verify the transmission buffers are flushed P0, P1, P4 */ 1371 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) 1372 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); 1373 } 1374 1375 #define OP_GEN_PARAM(param) \ 1376 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 1377 1378 #define OP_GEN_TYPE(type) \ 1379 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 1380 1381 #define OP_GEN_AGG_VECT(index) \ 1382 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 1383 1384 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) 1385 { 1386 u32 op_gen_command = 0; 1387 u32 comp_addr = BAR_CSTRORM_INTMEM + 1388 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); 1389 int ret = 0; 1390 1391 if (REG_RD(bp, comp_addr)) { 1392 BNX2X_ERR("Cleanup complete was not 0 before sending\n"); 1393 return 1; 1394 } 1395 1396 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 1397 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 1398 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 1399 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 1400 1401 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); 1402 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); 1403 1404 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { 1405 BNX2X_ERR("FW final cleanup did not succeed\n"); 1406 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", 1407 (REG_RD(bp, comp_addr))); 1408 bnx2x_panic(); 1409 return 1; 1410 } 1411 /* Zero completion for next FLR */ 1412 REG_WR(bp, comp_addr, 0); 1413 1414 return ret; 1415 } 1416 1417 u8 bnx2x_is_pcie_pending(struct pci_dev *dev) 1418 { 1419 u16 status; 1420 1421 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 1422 return status & PCI_EXP_DEVSTA_TRPND; 1423 } 1424 1425 /* PF FLR specific routines 1426 */ 1427 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) 1428 { 1429 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 1430 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1431 CFC_REG_NUM_LCIDS_INSIDE_PF, 1432 "CFC PF usage counter timed out", 1433 poll_cnt)) 1434 return 1; 1435 1436 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 1437 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1438 DORQ_REG_PF_USAGE_CNT, 1439 "DQ PF usage counter timed out", 1440 poll_cnt)) 1441 return 1; 1442 1443 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 1444 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1445 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), 1446 "QM PF usage counter timed out", 1447 poll_cnt)) 1448 return 1; 1449 1450 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 1451 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1452 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), 1453 "Timers VNIC usage counter timed out", 1454 poll_cnt)) 1455 return 1; 1456 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1457 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), 1458 "Timers NUM_SCANS usage counter timed out", 1459 poll_cnt)) 1460 return 1; 1461 1462 /* Wait DMAE PF usage counter to zero */ 1463 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1464 dmae_reg_go_c[INIT_DMAE_C(bp)], 1465 "DMAE command register timed out", 1466 poll_cnt)) 1467 return 1; 1468 1469 return 0; 1470 } 1471 1472 static void bnx2x_hw_enable_status(struct bnx2x *bp) 1473 { 1474 u32 val; 1475 1476 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); 1477 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 1478 1479 val = REG_RD(bp, PBF_REG_DISABLE_PF); 1480 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); 1481 1482 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); 1483 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 1484 1485 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); 1486 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 1487 1488 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 1489 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 1490 1491 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 1492 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 1493 1494 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 1495 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 1496 1497 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1498 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", 1499 val); 1500 } 1501 1502 static int bnx2x_pf_flr_clnup(struct bnx2x *bp) 1503 { 1504 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 1505 1506 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); 1507 1508 /* Re-enable PF target read access */ 1509 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 1510 1511 /* Poll HW usage counters */ 1512 DP(BNX2X_MSG_SP, "Polling usage counters\n"); 1513 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) 1514 return -EBUSY; 1515 1516 /* Zero the igu 'trailing edge' and 'leading edge' */ 1517 1518 /* Send the FW cleanup command */ 1519 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) 1520 return -EBUSY; 1521 1522 /* ATC cleanup */ 1523 1524 /* Verify TX hw is flushed */ 1525 bnx2x_tx_hw_flushed(bp, poll_cnt); 1526 1527 /* Wait 100ms (not adjusted according to platform) */ 1528 msleep(100); 1529 1530 /* Verify no pending pci transactions */ 1531 if (bnx2x_is_pcie_pending(bp->pdev)) 1532 BNX2X_ERR("PCIE Transactions still pending\n"); 1533 1534 /* Debug */ 1535 bnx2x_hw_enable_status(bp); 1536 1537 /* 1538 * Master enable - Due to WB DMAE writes performed before this 1539 * register is re-initialized as part of the regular function init 1540 */ 1541 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 1542 1543 return 0; 1544 } 1545 1546 static void bnx2x_hc_int_enable(struct bnx2x *bp) 1547 { 1548 int port = BP_PORT(bp); 1549 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 1550 u32 val = REG_RD(bp, addr); 1551 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1552 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1553 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1554 1555 if (msix) { 1556 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1557 HC_CONFIG_0_REG_INT_LINE_EN_0); 1558 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1559 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1560 if (single_msix) 1561 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 1562 } else if (msi) { 1563 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 1564 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1565 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1566 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1567 } else { 1568 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1569 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1570 HC_CONFIG_0_REG_INT_LINE_EN_0 | 1571 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1572 1573 if (!CHIP_IS_E1(bp)) { 1574 DP(NETIF_MSG_IFUP, 1575 "write %x to HC %d (addr 0x%x)\n", val, port, addr); 1576 1577 REG_WR(bp, addr, val); 1578 1579 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 1580 } 1581 } 1582 1583 if (CHIP_IS_E1(bp)) 1584 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); 1585 1586 DP(NETIF_MSG_IFUP, 1587 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, 1588 (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1589 1590 REG_WR(bp, addr, val); 1591 /* 1592 * Ensure that HC_CONFIG is written before leading/trailing edge config 1593 */ 1594 mmiowb(); 1595 barrier(); 1596 1597 if (!CHIP_IS_E1(bp)) { 1598 /* init leading/trailing edge */ 1599 if (IS_MF(bp)) { 1600 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1601 if (bp->port.pmf) 1602 /* enable nig and gpio3 attention */ 1603 val |= 0x1100; 1604 } else 1605 val = 0xffff; 1606 1607 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 1608 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 1609 } 1610 1611 /* Make sure that interrupts are indeed enabled from here on */ 1612 mmiowb(); 1613 } 1614 1615 static void bnx2x_igu_int_enable(struct bnx2x *bp) 1616 { 1617 u32 val; 1618 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1619 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1620 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1621 1622 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 1623 1624 if (msix) { 1625 val &= ~(IGU_PF_CONF_INT_LINE_EN | 1626 IGU_PF_CONF_SINGLE_ISR_EN); 1627 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1628 IGU_PF_CONF_ATTN_BIT_EN); 1629 1630 if (single_msix) 1631 val |= IGU_PF_CONF_SINGLE_ISR_EN; 1632 } else if (msi) { 1633 val &= ~IGU_PF_CONF_INT_LINE_EN; 1634 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1635 IGU_PF_CONF_ATTN_BIT_EN | 1636 IGU_PF_CONF_SINGLE_ISR_EN); 1637 } else { 1638 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 1639 val |= (IGU_PF_CONF_INT_LINE_EN | 1640 IGU_PF_CONF_ATTN_BIT_EN | 1641 IGU_PF_CONF_SINGLE_ISR_EN); 1642 } 1643 1644 /* Clean previous status - need to configure igu prior to ack*/ 1645 if ((!msix) || single_msix) { 1646 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1647 bnx2x_ack_int(bp); 1648 } 1649 1650 val |= IGU_PF_CONF_FUNC_EN; 1651 1652 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", 1653 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1654 1655 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1656 1657 if (val & IGU_PF_CONF_INT_LINE_EN) 1658 pci_intx(bp->pdev, true); 1659 1660 barrier(); 1661 1662 /* init leading/trailing edge */ 1663 if (IS_MF(bp)) { 1664 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1665 if (bp->port.pmf) 1666 /* enable nig and gpio3 attention */ 1667 val |= 0x1100; 1668 } else 1669 val = 0xffff; 1670 1671 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 1672 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 1673 1674 /* Make sure that interrupts are indeed enabled from here on */ 1675 mmiowb(); 1676 } 1677 1678 void bnx2x_int_enable(struct bnx2x *bp) 1679 { 1680 if (bp->common.int_block == INT_BLOCK_HC) 1681 bnx2x_hc_int_enable(bp); 1682 else 1683 bnx2x_igu_int_enable(bp); 1684 } 1685 1686 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) 1687 { 1688 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 1689 int i, offset; 1690 1691 if (disable_hw) 1692 /* prevent the HW from sending interrupts */ 1693 bnx2x_int_disable(bp); 1694 1695 /* make sure all ISRs are done */ 1696 if (msix) { 1697 synchronize_irq(bp->msix_table[0].vector); 1698 offset = 1; 1699 if (CNIC_SUPPORT(bp)) 1700 offset++; 1701 for_each_eth_queue(bp, i) 1702 synchronize_irq(bp->msix_table[offset++].vector); 1703 } else 1704 synchronize_irq(bp->pdev->irq); 1705 1706 /* make sure sp_task is not running */ 1707 cancel_delayed_work(&bp->sp_task); 1708 cancel_delayed_work(&bp->period_task); 1709 flush_workqueue(bnx2x_wq); 1710 } 1711 1712 /* fast path */ 1713 1714 /* 1715 * General service functions 1716 */ 1717 1718 /* Return true if succeeded to acquire the lock */ 1719 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) 1720 { 1721 u32 lock_status; 1722 u32 resource_bit = (1 << resource); 1723 int func = BP_FUNC(bp); 1724 u32 hw_lock_control_reg; 1725 1726 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1727 "Trying to take a lock on resource %d\n", resource); 1728 1729 /* Validating that the resource is within range */ 1730 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1731 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1732 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1733 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1734 return false; 1735 } 1736 1737 if (func <= 5) 1738 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1739 else 1740 hw_lock_control_reg = 1741 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1742 1743 /* Try to acquire the lock */ 1744 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1745 lock_status = REG_RD(bp, hw_lock_control_reg); 1746 if (lock_status & resource_bit) 1747 return true; 1748 1749 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1750 "Failed to get a lock on resource %d\n", resource); 1751 return false; 1752 } 1753 1754 /** 1755 * bnx2x_get_leader_lock_resource - get the recovery leader resource id 1756 * 1757 * @bp: driver handle 1758 * 1759 * Returns the recovery leader resource id according to the engine this function 1760 * belongs to. Currently only only 2 engines is supported. 1761 */ 1762 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) 1763 { 1764 if (BP_PATH(bp)) 1765 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; 1766 else 1767 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; 1768 } 1769 1770 /** 1771 * bnx2x_trylock_leader_lock- try to acquire a leader lock. 1772 * 1773 * @bp: driver handle 1774 * 1775 * Tries to acquire a leader lock for current engine. 1776 */ 1777 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) 1778 { 1779 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1780 } 1781 1782 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); 1783 1784 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ 1785 static int bnx2x_schedule_sp_task(struct bnx2x *bp) 1786 { 1787 /* Set the interrupt occurred bit for the sp-task to recognize it 1788 * must ack the interrupt and transition according to the IGU 1789 * state machine. 1790 */ 1791 atomic_set(&bp->interrupt_occurred, 1); 1792 1793 /* The sp_task must execute only after this bit 1794 * is set, otherwise we will get out of sync and miss all 1795 * further interrupts. Hence, the barrier. 1796 */ 1797 smp_wmb(); 1798 1799 /* schedule sp_task to workqueue */ 1800 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); 1801 } 1802 1803 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) 1804 { 1805 struct bnx2x *bp = fp->bp; 1806 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1807 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1808 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; 1809 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 1810 1811 DP(BNX2X_MSG_SP, 1812 "fp %d cid %d got ramrod #%d state is %x type is %d\n", 1813 fp->index, cid, command, bp->state, 1814 rr_cqe->ramrod_cqe.ramrod_type); 1815 1816 /* If cid is within VF range, replace the slowpath object with the 1817 * one corresponding to this VF 1818 */ 1819 if (cid >= BNX2X_FIRST_VF_CID && 1820 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) 1821 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); 1822 1823 switch (command) { 1824 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 1825 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); 1826 drv_cmd = BNX2X_Q_CMD_UPDATE; 1827 break; 1828 1829 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 1830 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); 1831 drv_cmd = BNX2X_Q_CMD_SETUP; 1832 break; 1833 1834 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 1835 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 1836 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 1837 break; 1838 1839 case (RAMROD_CMD_ID_ETH_HALT): 1840 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); 1841 drv_cmd = BNX2X_Q_CMD_HALT; 1842 break; 1843 1844 case (RAMROD_CMD_ID_ETH_TERMINATE): 1845 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); 1846 drv_cmd = BNX2X_Q_CMD_TERMINATE; 1847 break; 1848 1849 case (RAMROD_CMD_ID_ETH_EMPTY): 1850 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); 1851 drv_cmd = BNX2X_Q_CMD_EMPTY; 1852 break; 1853 1854 case (RAMROD_CMD_ID_ETH_TPA_UPDATE): 1855 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid); 1856 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA; 1857 break; 1858 1859 default: 1860 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", 1861 command, fp->index); 1862 return; 1863 } 1864 1865 if ((drv_cmd != BNX2X_Q_CMD_MAX) && 1866 q_obj->complete_cmd(bp, q_obj, drv_cmd)) 1867 /* q_obj->complete_cmd() failure means that this was 1868 * an unexpected completion. 1869 * 1870 * In this case we don't want to increase the bp->spq_left 1871 * because apparently we haven't sent this command the first 1872 * place. 1873 */ 1874 #ifdef BNX2X_STOP_ON_ERROR 1875 bnx2x_panic(); 1876 #else 1877 return; 1878 #endif 1879 1880 smp_mb__before_atomic(); 1881 atomic_inc(&bp->cq_spq_left); 1882 /* push the change in bp->spq_left and towards the memory */ 1883 smp_mb__after_atomic(); 1884 1885 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); 1886 1887 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 1888 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { 1889 /* if Q update ramrod is completed for last Q in AFEX vif set 1890 * flow, then ACK MCP at the end 1891 * 1892 * mark pending ACK to MCP bit. 1893 * prevent case that both bits are cleared. 1894 * At the end of load/unload driver checks that 1895 * sp_state is cleared, and this order prevents 1896 * races 1897 */ 1898 smp_mb__before_atomic(); 1899 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); 1900 wmb(); 1901 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 1902 smp_mb__after_atomic(); 1903 1904 /* schedule the sp task as mcp ack is required */ 1905 bnx2x_schedule_sp_task(bp); 1906 } 1907 1908 return; 1909 } 1910 1911 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) 1912 { 1913 struct bnx2x *bp = netdev_priv(dev_instance); 1914 u16 status = bnx2x_ack_int(bp); 1915 u16 mask; 1916 int i; 1917 u8 cos; 1918 1919 /* Return here if interrupt is shared and it's not for us */ 1920 if (unlikely(status == 0)) { 1921 DP(NETIF_MSG_INTR, "not our interrupt!\n"); 1922 return IRQ_NONE; 1923 } 1924 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); 1925 1926 #ifdef BNX2X_STOP_ON_ERROR 1927 if (unlikely(bp->panic)) 1928 return IRQ_HANDLED; 1929 #endif 1930 1931 for_each_eth_queue(bp, i) { 1932 struct bnx2x_fastpath *fp = &bp->fp[i]; 1933 1934 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); 1935 if (status & mask) { 1936 /* Handle Rx or Tx according to SB id */ 1937 for_each_cos_in_tx_queue(fp, cos) 1938 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1939 prefetch(&fp->sb_running_index[SM_RX_ID]); 1940 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1941 status &= ~mask; 1942 } 1943 } 1944 1945 if (CNIC_SUPPORT(bp)) { 1946 mask = 0x2; 1947 if (status & (mask | 0x1)) { 1948 struct cnic_ops *c_ops = NULL; 1949 1950 rcu_read_lock(); 1951 c_ops = rcu_dereference(bp->cnic_ops); 1952 if (c_ops && (bp->cnic_eth_dev.drv_state & 1953 CNIC_DRV_STATE_HANDLES_IRQ)) 1954 c_ops->cnic_handler(bp->cnic_data, NULL); 1955 rcu_read_unlock(); 1956 1957 status &= ~mask; 1958 } 1959 } 1960 1961 if (unlikely(status & 0x1)) { 1962 1963 /* schedule sp task to perform default status block work, ack 1964 * attentions and enable interrupts. 1965 */ 1966 bnx2x_schedule_sp_task(bp); 1967 1968 status &= ~0x1; 1969 if (!status) 1970 return IRQ_HANDLED; 1971 } 1972 1973 if (unlikely(status)) 1974 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", 1975 status); 1976 1977 return IRQ_HANDLED; 1978 } 1979 1980 /* Link */ 1981 1982 /* 1983 * General service functions 1984 */ 1985 1986 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) 1987 { 1988 u32 lock_status; 1989 u32 resource_bit = (1 << resource); 1990 int func = BP_FUNC(bp); 1991 u32 hw_lock_control_reg; 1992 int cnt; 1993 1994 /* Validating that the resource is within range */ 1995 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1996 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1997 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1998 return -EINVAL; 1999 } 2000 2001 if (func <= 5) { 2002 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2003 } else { 2004 hw_lock_control_reg = 2005 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2006 } 2007 2008 /* Validating that the resource is not already taken */ 2009 lock_status = REG_RD(bp, hw_lock_control_reg); 2010 if (lock_status & resource_bit) { 2011 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", 2012 lock_status, resource_bit); 2013 return -EEXIST; 2014 } 2015 2016 /* Try for 5 second every 5ms */ 2017 for (cnt = 0; cnt < 1000; cnt++) { 2018 /* Try to acquire the lock */ 2019 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 2020 lock_status = REG_RD(bp, hw_lock_control_reg); 2021 if (lock_status & resource_bit) 2022 return 0; 2023 2024 usleep_range(5000, 10000); 2025 } 2026 BNX2X_ERR("Timeout\n"); 2027 return -EAGAIN; 2028 } 2029 2030 int bnx2x_release_leader_lock(struct bnx2x *bp) 2031 { 2032 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 2033 } 2034 2035 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) 2036 { 2037 u32 lock_status; 2038 u32 resource_bit = (1 << resource); 2039 int func = BP_FUNC(bp); 2040 u32 hw_lock_control_reg; 2041 2042 /* Validating that the resource is within range */ 2043 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 2044 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 2045 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2046 return -EINVAL; 2047 } 2048 2049 if (func <= 5) { 2050 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2051 } else { 2052 hw_lock_control_reg = 2053 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2054 } 2055 2056 /* Validating that the resource is currently taken */ 2057 lock_status = REG_RD(bp, hw_lock_control_reg); 2058 if (!(lock_status & resource_bit)) { 2059 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", 2060 lock_status, resource_bit); 2061 return -EFAULT; 2062 } 2063 2064 REG_WR(bp, hw_lock_control_reg, resource_bit); 2065 return 0; 2066 } 2067 2068 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) 2069 { 2070 /* The GPIO should be swapped if swap register is set and active */ 2071 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2072 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2073 int gpio_shift = gpio_num + 2074 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2075 u32 gpio_mask = (1 << gpio_shift); 2076 u32 gpio_reg; 2077 int value; 2078 2079 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2080 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2081 return -EINVAL; 2082 } 2083 2084 /* read GPIO value */ 2085 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2086 2087 /* get the requested pin value */ 2088 if ((gpio_reg & gpio_mask) == gpio_mask) 2089 value = 1; 2090 else 2091 value = 0; 2092 2093 return value; 2094 } 2095 2096 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2097 { 2098 /* The GPIO should be swapped if swap register is set and active */ 2099 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2100 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2101 int gpio_shift = gpio_num + 2102 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2103 u32 gpio_mask = (1 << gpio_shift); 2104 u32 gpio_reg; 2105 2106 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2107 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2108 return -EINVAL; 2109 } 2110 2111 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2112 /* read GPIO and mask except the float bits */ 2113 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2114 2115 switch (mode) { 2116 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2117 DP(NETIF_MSG_LINK, 2118 "Set GPIO %d (shift %d) -> output low\n", 2119 gpio_num, gpio_shift); 2120 /* clear FLOAT and set CLR */ 2121 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2122 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2123 break; 2124 2125 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2126 DP(NETIF_MSG_LINK, 2127 "Set GPIO %d (shift %d) -> output high\n", 2128 gpio_num, gpio_shift); 2129 /* clear FLOAT and set SET */ 2130 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2131 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2132 break; 2133 2134 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2135 DP(NETIF_MSG_LINK, 2136 "Set GPIO %d (shift %d) -> input\n", 2137 gpio_num, gpio_shift); 2138 /* set FLOAT */ 2139 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2140 break; 2141 2142 default: 2143 break; 2144 } 2145 2146 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2147 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2148 2149 return 0; 2150 } 2151 2152 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) 2153 { 2154 u32 gpio_reg = 0; 2155 int rc = 0; 2156 2157 /* Any port swapping should be handled by caller. */ 2158 2159 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2160 /* read GPIO and mask except the float bits */ 2161 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2162 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2163 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2164 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2165 2166 switch (mode) { 2167 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2168 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); 2169 /* set CLR */ 2170 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2171 break; 2172 2173 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2174 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); 2175 /* set SET */ 2176 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2177 break; 2178 2179 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2180 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); 2181 /* set FLOAT */ 2182 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2183 break; 2184 2185 default: 2186 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); 2187 rc = -EINVAL; 2188 break; 2189 } 2190 2191 if (rc == 0) 2192 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2193 2194 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2195 2196 return rc; 2197 } 2198 2199 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2200 { 2201 /* The GPIO should be swapped if swap register is set and active */ 2202 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2203 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2204 int gpio_shift = gpio_num + 2205 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2206 u32 gpio_mask = (1 << gpio_shift); 2207 u32 gpio_reg; 2208 2209 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2210 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2211 return -EINVAL; 2212 } 2213 2214 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2215 /* read GPIO int */ 2216 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); 2217 2218 switch (mode) { 2219 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2220 DP(NETIF_MSG_LINK, 2221 "Clear GPIO INT %d (shift %d) -> output low\n", 2222 gpio_num, gpio_shift); 2223 /* clear SET and set CLR */ 2224 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2225 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2226 break; 2227 2228 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2229 DP(NETIF_MSG_LINK, 2230 "Set GPIO INT %d (shift %d) -> output high\n", 2231 gpio_num, gpio_shift); 2232 /* clear CLR and set SET */ 2233 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2234 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2235 break; 2236 2237 default: 2238 break; 2239 } 2240 2241 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); 2242 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2243 2244 return 0; 2245 } 2246 2247 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) 2248 { 2249 u32 spio_reg; 2250 2251 /* Only 2 SPIOs are configurable */ 2252 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 2253 BNX2X_ERR("Invalid SPIO 0x%x\n", spio); 2254 return -EINVAL; 2255 } 2256 2257 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2258 /* read SPIO and mask except the float bits */ 2259 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 2260 2261 switch (mode) { 2262 case MISC_SPIO_OUTPUT_LOW: 2263 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); 2264 /* clear FLOAT and set CLR */ 2265 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2266 spio_reg |= (spio << MISC_SPIO_CLR_POS); 2267 break; 2268 2269 case MISC_SPIO_OUTPUT_HIGH: 2270 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); 2271 /* clear FLOAT and set SET */ 2272 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2273 spio_reg |= (spio << MISC_SPIO_SET_POS); 2274 break; 2275 2276 case MISC_SPIO_INPUT_HI_Z: 2277 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); 2278 /* set FLOAT */ 2279 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 2280 break; 2281 2282 default: 2283 break; 2284 } 2285 2286 REG_WR(bp, MISC_REG_SPIO, spio_reg); 2287 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2288 2289 return 0; 2290 } 2291 2292 void bnx2x_calc_fc_adv(struct bnx2x *bp) 2293 { 2294 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); 2295 2296 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2297 ADVERTISED_Pause); 2298 switch (bp->link_vars.ieee_fc & 2299 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 2300 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 2301 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 2302 ADVERTISED_Pause); 2303 break; 2304 2305 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 2306 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 2307 break; 2308 2309 default: 2310 break; 2311 } 2312 } 2313 2314 static void bnx2x_set_requested_fc(struct bnx2x *bp) 2315 { 2316 /* Initialize link parameters structure variables 2317 * It is recommended to turn off RX FC for jumbo frames 2318 * for better performance 2319 */ 2320 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) 2321 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; 2322 else 2323 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; 2324 } 2325 2326 static void bnx2x_init_dropless_fc(struct bnx2x *bp) 2327 { 2328 u32 pause_enabled = 0; 2329 2330 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { 2331 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 2332 pause_enabled = 1; 2333 2334 REG_WR(bp, BAR_USTRORM_INTMEM + 2335 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), 2336 pause_enabled); 2337 } 2338 2339 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", 2340 pause_enabled ? "enabled" : "disabled"); 2341 } 2342 2343 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) 2344 { 2345 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); 2346 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; 2347 2348 if (!BP_NOMCP(bp)) { 2349 bnx2x_set_requested_fc(bp); 2350 bnx2x_acquire_phy_lock(bp); 2351 2352 if (load_mode == LOAD_DIAG) { 2353 struct link_params *lp = &bp->link_params; 2354 lp->loopback_mode = LOOPBACK_XGXS; 2355 /* Prefer doing PHY loopback at highest speed */ 2356 if (lp->req_line_speed[cfx_idx] < SPEED_20000) { 2357 if (lp->speed_cap_mask[cfx_idx] & 2358 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G) 2359 lp->req_line_speed[cfx_idx] = 2360 SPEED_20000; 2361 else if (lp->speed_cap_mask[cfx_idx] & 2362 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) 2363 lp->req_line_speed[cfx_idx] = 2364 SPEED_10000; 2365 else 2366 lp->req_line_speed[cfx_idx] = 2367 SPEED_1000; 2368 } 2369 } 2370 2371 if (load_mode == LOAD_LOOPBACK_EXT) { 2372 struct link_params *lp = &bp->link_params; 2373 lp->loopback_mode = LOOPBACK_EXT; 2374 } 2375 2376 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2377 2378 bnx2x_release_phy_lock(bp); 2379 2380 bnx2x_init_dropless_fc(bp); 2381 2382 bnx2x_calc_fc_adv(bp); 2383 2384 if (bp->link_vars.link_up) { 2385 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2386 bnx2x_link_report(bp); 2387 } 2388 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2389 bp->link_params.req_line_speed[cfx_idx] = req_line_speed; 2390 return rc; 2391 } 2392 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 2393 return -EINVAL; 2394 } 2395 2396 void bnx2x_link_set(struct bnx2x *bp) 2397 { 2398 if (!BP_NOMCP(bp)) { 2399 bnx2x_acquire_phy_lock(bp); 2400 bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2401 bnx2x_release_phy_lock(bp); 2402 2403 bnx2x_init_dropless_fc(bp); 2404 2405 bnx2x_calc_fc_adv(bp); 2406 } else 2407 BNX2X_ERR("Bootcode is missing - can not set link\n"); 2408 } 2409 2410 static void bnx2x__link_reset(struct bnx2x *bp) 2411 { 2412 if (!BP_NOMCP(bp)) { 2413 bnx2x_acquire_phy_lock(bp); 2414 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); 2415 bnx2x_release_phy_lock(bp); 2416 } else 2417 BNX2X_ERR("Bootcode is missing - can not reset link\n"); 2418 } 2419 2420 void bnx2x_force_link_reset(struct bnx2x *bp) 2421 { 2422 bnx2x_acquire_phy_lock(bp); 2423 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); 2424 bnx2x_release_phy_lock(bp); 2425 } 2426 2427 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) 2428 { 2429 u8 rc = 0; 2430 2431 if (!BP_NOMCP(bp)) { 2432 bnx2x_acquire_phy_lock(bp); 2433 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, 2434 is_serdes); 2435 bnx2x_release_phy_lock(bp); 2436 } else 2437 BNX2X_ERR("Bootcode is missing - can not test link\n"); 2438 2439 return rc; 2440 } 2441 2442 /* Calculates the sum of vn_min_rates. 2443 It's needed for further normalizing of the min_rates. 2444 Returns: 2445 sum of vn_min_rates. 2446 or 2447 0 - if all the min_rates are 0. 2448 In the later case fairness algorithm should be deactivated. 2449 If not all min_rates are zero then those that are zeroes will be set to 1. 2450 */ 2451 static void bnx2x_calc_vn_min(struct bnx2x *bp, 2452 struct cmng_init_input *input) 2453 { 2454 int all_zero = 1; 2455 int vn; 2456 2457 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2458 u32 vn_cfg = bp->mf_config[vn]; 2459 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 2460 FUNC_MF_CFG_MIN_BW_SHIFT) * 100; 2461 2462 /* Skip hidden vns */ 2463 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2464 vn_min_rate = 0; 2465 /* If min rate is zero - set it to 1 */ 2466 else if (!vn_min_rate) 2467 vn_min_rate = DEF_MIN_RATE; 2468 else 2469 all_zero = 0; 2470 2471 input->vnic_min_rate[vn] = vn_min_rate; 2472 } 2473 2474 /* if ETS or all min rates are zeros - disable fairness */ 2475 if (BNX2X_IS_ETS_ENABLED(bp)) { 2476 input->flags.cmng_enables &= 2477 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2478 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); 2479 } else if (all_zero) { 2480 input->flags.cmng_enables &= 2481 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2482 DP(NETIF_MSG_IFUP, 2483 "All MIN values are zeroes fairness will be disabled\n"); 2484 } else 2485 input->flags.cmng_enables |= 2486 CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2487 } 2488 2489 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, 2490 struct cmng_init_input *input) 2491 { 2492 u16 vn_max_rate; 2493 u32 vn_cfg = bp->mf_config[vn]; 2494 2495 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2496 vn_max_rate = 0; 2497 else { 2498 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); 2499 2500 if (IS_MF_PERCENT_BW(bp)) { 2501 /* maxCfg in percents of linkspeed */ 2502 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; 2503 } else /* SD modes */ 2504 /* maxCfg is absolute in 100Mb units */ 2505 vn_max_rate = maxCfg * 100; 2506 } 2507 2508 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 2509 2510 input->vnic_max_rate[vn] = vn_max_rate; 2511 } 2512 2513 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) 2514 { 2515 if (CHIP_REV_IS_SLOW(bp)) 2516 return CMNG_FNS_NONE; 2517 if (IS_MF(bp)) 2518 return CMNG_FNS_MINMAX; 2519 2520 return CMNG_FNS_NONE; 2521 } 2522 2523 void bnx2x_read_mf_cfg(struct bnx2x *bp) 2524 { 2525 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); 2526 2527 if (BP_NOMCP(bp)) 2528 return; /* what should be the default value in this case */ 2529 2530 /* For 2 port configuration the absolute function number formula 2531 * is: 2532 * abs_func = 2 * vn + BP_PORT + BP_PATH 2533 * 2534 * and there are 4 functions per port 2535 * 2536 * For 4 port configuration it is 2537 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH 2538 * 2539 * and there are 2 functions per port 2540 */ 2541 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2542 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); 2543 2544 if (func >= E1H_FUNC_MAX) 2545 break; 2546 2547 bp->mf_config[vn] = 2548 MF_CFG_RD(bp, func_mf_config[func].config); 2549 } 2550 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 2551 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); 2552 bp->flags |= MF_FUNC_DIS; 2553 } else { 2554 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); 2555 bp->flags &= ~MF_FUNC_DIS; 2556 } 2557 } 2558 2559 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) 2560 { 2561 struct cmng_init_input input; 2562 memset(&input, 0, sizeof(struct cmng_init_input)); 2563 2564 input.port_rate = bp->link_vars.line_speed; 2565 2566 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { 2567 int vn; 2568 2569 /* read mf conf from shmem */ 2570 if (read_cfg) 2571 bnx2x_read_mf_cfg(bp); 2572 2573 /* vn_weight_sum and enable fairness if not 0 */ 2574 bnx2x_calc_vn_min(bp, &input); 2575 2576 /* calculate and set min-max rate for each vn */ 2577 if (bp->port.pmf) 2578 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) 2579 bnx2x_calc_vn_max(bp, vn, &input); 2580 2581 /* always enable rate shaping and fairness */ 2582 input.flags.cmng_enables |= 2583 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 2584 2585 bnx2x_init_cmng(&input, &bp->cmng); 2586 return; 2587 } 2588 2589 /* rate shaping and fairness are disabled */ 2590 DP(NETIF_MSG_IFUP, 2591 "rate shaping and fairness are disabled\n"); 2592 } 2593 2594 static void storm_memset_cmng(struct bnx2x *bp, 2595 struct cmng_init *cmng, 2596 u8 port) 2597 { 2598 int vn; 2599 size_t size = sizeof(struct cmng_struct_per_port); 2600 2601 u32 addr = BAR_XSTRORM_INTMEM + 2602 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); 2603 2604 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); 2605 2606 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2607 int func = func_by_vn(bp, vn); 2608 2609 addr = BAR_XSTRORM_INTMEM + 2610 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); 2611 size = sizeof(struct rate_shaping_vars_per_vn); 2612 __storm_memset_struct(bp, addr, size, 2613 (u32 *)&cmng->vnic.vnic_max_rate[vn]); 2614 2615 addr = BAR_XSTRORM_INTMEM + 2616 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); 2617 size = sizeof(struct fairness_vars_per_vn); 2618 __storm_memset_struct(bp, addr, size, 2619 (u32 *)&cmng->vnic.vnic_min_rate[vn]); 2620 } 2621 } 2622 2623 /* init cmng mode in HW according to local configuration */ 2624 void bnx2x_set_local_cmng(struct bnx2x *bp) 2625 { 2626 int cmng_fns = bnx2x_get_cmng_fns_mode(bp); 2627 2628 if (cmng_fns != CMNG_FNS_NONE) { 2629 bnx2x_cmng_fns_init(bp, false, cmng_fns); 2630 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 2631 } else { 2632 /* rate shaping and fairness are disabled */ 2633 DP(NETIF_MSG_IFUP, 2634 "single function mode without fairness\n"); 2635 } 2636 } 2637 2638 /* This function is called upon link interrupt */ 2639 static void bnx2x_link_attn(struct bnx2x *bp) 2640 { 2641 /* Make sure that we are synced with the current statistics */ 2642 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2643 2644 bnx2x_link_update(&bp->link_params, &bp->link_vars); 2645 2646 bnx2x_init_dropless_fc(bp); 2647 2648 if (bp->link_vars.link_up) { 2649 2650 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { 2651 struct host_port_stats *pstats; 2652 2653 pstats = bnx2x_sp(bp, port_stats); 2654 /* reset old mac stats */ 2655 memset(&(pstats->mac_stx[0]), 0, 2656 sizeof(struct mac_stx)); 2657 } 2658 if (bp->state == BNX2X_STATE_OPEN) 2659 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2660 } 2661 2662 if (bp->link_vars.link_up && bp->link_vars.line_speed) 2663 bnx2x_set_local_cmng(bp); 2664 2665 __bnx2x_link_report(bp); 2666 2667 if (IS_MF(bp)) 2668 bnx2x_link_sync_notify(bp); 2669 } 2670 2671 void bnx2x__link_status_update(struct bnx2x *bp) 2672 { 2673 if (bp->state != BNX2X_STATE_OPEN) 2674 return; 2675 2676 /* read updated dcb configuration */ 2677 if (IS_PF(bp)) { 2678 bnx2x_dcbx_pmf_update(bp); 2679 bnx2x_link_status_update(&bp->link_params, &bp->link_vars); 2680 if (bp->link_vars.link_up) 2681 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2682 else 2683 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2684 /* indicate link status */ 2685 bnx2x_link_report(bp); 2686 2687 } else { /* VF */ 2688 bp->port.supported[0] |= (SUPPORTED_10baseT_Half | 2689 SUPPORTED_10baseT_Full | 2690 SUPPORTED_100baseT_Half | 2691 SUPPORTED_100baseT_Full | 2692 SUPPORTED_1000baseT_Full | 2693 SUPPORTED_2500baseX_Full | 2694 SUPPORTED_10000baseT_Full | 2695 SUPPORTED_TP | 2696 SUPPORTED_FIBRE | 2697 SUPPORTED_Autoneg | 2698 SUPPORTED_Pause | 2699 SUPPORTED_Asym_Pause); 2700 bp->port.advertising[0] = bp->port.supported[0]; 2701 2702 bp->link_params.bp = bp; 2703 bp->link_params.port = BP_PORT(bp); 2704 bp->link_params.req_duplex[0] = DUPLEX_FULL; 2705 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; 2706 bp->link_params.req_line_speed[0] = SPEED_10000; 2707 bp->link_params.speed_cap_mask[0] = 0x7f0000; 2708 bp->link_params.switch_cfg = SWITCH_CFG_10G; 2709 bp->link_vars.mac_type = MAC_TYPE_BMAC; 2710 bp->link_vars.line_speed = SPEED_10000; 2711 bp->link_vars.link_status = 2712 (LINK_STATUS_LINK_UP | 2713 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 2714 bp->link_vars.link_up = 1; 2715 bp->link_vars.duplex = DUPLEX_FULL; 2716 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; 2717 __bnx2x_link_report(bp); 2718 2719 bnx2x_sample_bulletin(bp); 2720 2721 /* if bulletin board did not have an update for link status 2722 * __bnx2x_link_report will report current status 2723 * but it will NOT duplicate report in case of already reported 2724 * during sampling bulletin board. 2725 */ 2726 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2727 } 2728 } 2729 2730 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, 2731 u16 vlan_val, u8 allowed_prio) 2732 { 2733 struct bnx2x_func_state_params func_params = {NULL}; 2734 struct bnx2x_func_afex_update_params *f_update_params = 2735 &func_params.params.afex_update; 2736 2737 func_params.f_obj = &bp->func_obj; 2738 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; 2739 2740 /* no need to wait for RAMROD completion, so don't 2741 * set RAMROD_COMP_WAIT flag 2742 */ 2743 2744 f_update_params->vif_id = vifid; 2745 f_update_params->afex_default_vlan = vlan_val; 2746 f_update_params->allowed_priorities = allowed_prio; 2747 2748 /* if ramrod can not be sent, response to MCP immediately */ 2749 if (bnx2x_func_state_change(bp, &func_params) < 0) 2750 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 2751 2752 return 0; 2753 } 2754 2755 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, 2756 u16 vif_index, u8 func_bit_map) 2757 { 2758 struct bnx2x_func_state_params func_params = {NULL}; 2759 struct bnx2x_func_afex_viflists_params *update_params = 2760 &func_params.params.afex_viflists; 2761 int rc; 2762 u32 drv_msg_code; 2763 2764 /* validate only LIST_SET and LIST_GET are received from switch */ 2765 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) 2766 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", 2767 cmd_type); 2768 2769 func_params.f_obj = &bp->func_obj; 2770 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; 2771 2772 /* set parameters according to cmd_type */ 2773 update_params->afex_vif_list_command = cmd_type; 2774 update_params->vif_list_index = vif_index; 2775 update_params->func_bit_map = 2776 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; 2777 update_params->func_to_clear = 0; 2778 drv_msg_code = 2779 (cmd_type == VIF_LIST_RULE_GET) ? 2780 DRV_MSG_CODE_AFEX_LISTGET_ACK : 2781 DRV_MSG_CODE_AFEX_LISTSET_ACK; 2782 2783 /* if ramrod can not be sent, respond to MCP immediately for 2784 * SET and GET requests (other are not triggered from MCP) 2785 */ 2786 rc = bnx2x_func_state_change(bp, &func_params); 2787 if (rc < 0) 2788 bnx2x_fw_command(bp, drv_msg_code, 0); 2789 2790 return 0; 2791 } 2792 2793 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) 2794 { 2795 struct afex_stats afex_stats; 2796 u32 func = BP_ABS_FUNC(bp); 2797 u32 mf_config; 2798 u16 vlan_val; 2799 u32 vlan_prio; 2800 u16 vif_id; 2801 u8 allowed_prio; 2802 u8 vlan_mode; 2803 u32 addr_to_write, vifid, addrs, stats_type, i; 2804 2805 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { 2806 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2807 DP(BNX2X_MSG_MCP, 2808 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); 2809 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); 2810 } 2811 2812 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { 2813 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2814 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); 2815 DP(BNX2X_MSG_MCP, 2816 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", 2817 vifid, addrs); 2818 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, 2819 addrs); 2820 } 2821 2822 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { 2823 addr_to_write = SHMEM2_RD(bp, 2824 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); 2825 stats_type = SHMEM2_RD(bp, 2826 afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2827 2828 DP(BNX2X_MSG_MCP, 2829 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", 2830 addr_to_write); 2831 2832 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); 2833 2834 /* write response to scratchpad, for MCP */ 2835 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) 2836 REG_WR(bp, addr_to_write + i*sizeof(u32), 2837 *(((u32 *)(&afex_stats))+i)); 2838 2839 /* send ack message to MCP */ 2840 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); 2841 } 2842 2843 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { 2844 mf_config = MF_CFG_RD(bp, func_mf_config[func].config); 2845 bp->mf_config[BP_VN(bp)] = mf_config; 2846 DP(BNX2X_MSG_MCP, 2847 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", 2848 mf_config); 2849 2850 /* if VIF_SET is "enabled" */ 2851 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { 2852 /* set rate limit directly to internal RAM */ 2853 struct cmng_init_input cmng_input; 2854 struct rate_shaping_vars_per_vn m_rs_vn; 2855 size_t size = sizeof(struct rate_shaping_vars_per_vn); 2856 u32 addr = BAR_XSTRORM_INTMEM + 2857 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); 2858 2859 bp->mf_config[BP_VN(bp)] = mf_config; 2860 2861 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); 2862 m_rs_vn.vn_counter.rate = 2863 cmng_input.vnic_max_rate[BP_VN(bp)]; 2864 m_rs_vn.vn_counter.quota = 2865 (m_rs_vn.vn_counter.rate * 2866 RS_PERIODIC_TIMEOUT_USEC) / 8; 2867 2868 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); 2869 2870 /* read relevant values from mf_cfg struct in shmem */ 2871 vif_id = 2872 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2873 FUNC_MF_CFG_E1HOV_TAG_MASK) >> 2874 FUNC_MF_CFG_E1HOV_TAG_SHIFT; 2875 vlan_val = 2876 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2877 FUNC_MF_CFG_AFEX_VLAN_MASK) >> 2878 FUNC_MF_CFG_AFEX_VLAN_SHIFT; 2879 vlan_prio = (mf_config & 2880 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 2881 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; 2882 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); 2883 vlan_mode = 2884 (MF_CFG_RD(bp, 2885 func_mf_config[func].afex_config) & 2886 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 2887 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; 2888 allowed_prio = 2889 (MF_CFG_RD(bp, 2890 func_mf_config[func].afex_config) & 2891 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 2892 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; 2893 2894 /* send ramrod to FW, return in case of failure */ 2895 if (bnx2x_afex_func_update(bp, vif_id, vlan_val, 2896 allowed_prio)) 2897 return; 2898 2899 bp->afex_def_vlan_tag = vlan_val; 2900 bp->afex_vlan_mode = vlan_mode; 2901 } else { 2902 /* notify link down because BP->flags is disabled */ 2903 bnx2x_link_report(bp); 2904 2905 /* send INVALID VIF ramrod to FW */ 2906 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); 2907 2908 /* Reset the default afex VLAN */ 2909 bp->afex_def_vlan_tag = -1; 2910 } 2911 } 2912 } 2913 2914 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp) 2915 { 2916 struct bnx2x_func_switch_update_params *switch_update_params; 2917 struct bnx2x_func_state_params func_params; 2918 2919 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params)); 2920 switch_update_params = &func_params.params.switch_update; 2921 func_params.f_obj = &bp->func_obj; 2922 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 2923 2924 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) { 2925 int func = BP_ABS_FUNC(bp); 2926 u32 val; 2927 2928 /* Re-learn the S-tag from shmem */ 2929 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2930 FUNC_MF_CFG_E1HOV_TAG_MASK; 2931 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 2932 bp->mf_ov = val; 2933 } else { 2934 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n"); 2935 goto fail; 2936 } 2937 2938 /* Configure new S-tag in LLH */ 2939 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8, 2940 bp->mf_ov); 2941 2942 /* Send Ramrod to update FW of change */ 2943 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG, 2944 &switch_update_params->changes); 2945 switch_update_params->vlan = bp->mf_ov; 2946 2947 if (bnx2x_func_state_change(bp, &func_params) < 0) { 2948 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n", 2949 bp->mf_ov); 2950 goto fail; 2951 } else { 2952 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", 2953 bp->mf_ov); 2954 } 2955 } else { 2956 goto fail; 2957 } 2958 2959 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0); 2960 return; 2961 fail: 2962 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0); 2963 } 2964 2965 static void bnx2x_pmf_update(struct bnx2x *bp) 2966 { 2967 int port = BP_PORT(bp); 2968 u32 val; 2969 2970 bp->port.pmf = 1; 2971 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); 2972 2973 /* 2974 * We need the mb() to ensure the ordering between the writing to 2975 * bp->port.pmf here and reading it from the bnx2x_periodic_task(). 2976 */ 2977 smp_mb(); 2978 2979 /* queue a periodic task */ 2980 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2981 2982 bnx2x_dcbx_pmf_update(bp); 2983 2984 /* enable nig attention */ 2985 val = (0xff0f | (1 << (BP_VN(bp) + 4))); 2986 if (bp->common.int_block == INT_BLOCK_HC) { 2987 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 2988 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 2989 } else if (!CHIP_IS_E1x(bp)) { 2990 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 2991 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 2992 } 2993 2994 bnx2x_stats_handle(bp, STATS_EVENT_PMF); 2995 } 2996 2997 /* end of Link */ 2998 2999 /* slow path */ 3000 3001 /* 3002 * General service functions 3003 */ 3004 3005 /* send the MCP a request, block until there is a reply */ 3006 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) 3007 { 3008 int mb_idx = BP_FW_MB_IDX(bp); 3009 u32 seq; 3010 u32 rc = 0; 3011 u32 cnt = 1; 3012 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; 3013 3014 mutex_lock(&bp->fw_mb_mutex); 3015 seq = ++bp->fw_seq; 3016 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); 3017 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); 3018 3019 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", 3020 (command | seq), param); 3021 3022 do { 3023 /* let the FW do it's magic ... */ 3024 msleep(delay); 3025 3026 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); 3027 3028 /* Give the FW up to 5 second (500*10ms) */ 3029 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 3030 3031 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", 3032 cnt*delay, rc, seq); 3033 3034 /* is this a reply to our command? */ 3035 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) 3036 rc &= FW_MSG_CODE_MASK; 3037 else { 3038 /* FW BUG! */ 3039 BNX2X_ERR("FW failed to respond!\n"); 3040 bnx2x_fw_dump(bp); 3041 rc = 0; 3042 } 3043 mutex_unlock(&bp->fw_mb_mutex); 3044 3045 return rc; 3046 } 3047 3048 static void storm_memset_func_cfg(struct bnx2x *bp, 3049 struct tstorm_eth_function_common_config *tcfg, 3050 u16 abs_fid) 3051 { 3052 size_t size = sizeof(struct tstorm_eth_function_common_config); 3053 3054 u32 addr = BAR_TSTRORM_INTMEM + 3055 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); 3056 3057 __storm_memset_struct(bp, addr, size, (u32 *)tcfg); 3058 } 3059 3060 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) 3061 { 3062 if (CHIP_IS_E1x(bp)) { 3063 struct tstorm_eth_function_common_config tcfg = {0}; 3064 3065 storm_memset_func_cfg(bp, &tcfg, p->func_id); 3066 } 3067 3068 /* Enable the function in the FW */ 3069 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); 3070 storm_memset_func_en(bp, p->func_id, 1); 3071 3072 /* spq */ 3073 if (p->spq_active) { 3074 storm_memset_spq_addr(bp, p->spq_map, p->func_id); 3075 REG_WR(bp, XSEM_REG_FAST_MEMORY + 3076 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); 3077 } 3078 } 3079 3080 /** 3081 * bnx2x_get_common_flags - Return common flags 3082 * 3083 * @bp device handle 3084 * @fp queue handle 3085 * @zero_stats TRUE if statistics zeroing is needed 3086 * 3087 * Return the flags that are common for the Tx-only and not normal connections. 3088 */ 3089 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, 3090 struct bnx2x_fastpath *fp, 3091 bool zero_stats) 3092 { 3093 unsigned long flags = 0; 3094 3095 /* PF driver will always initialize the Queue to an ACTIVE state */ 3096 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); 3097 3098 /* tx only connections collect statistics (on the same index as the 3099 * parent connection). The statistics are zeroed when the parent 3100 * connection is initialized. 3101 */ 3102 3103 __set_bit(BNX2X_Q_FLG_STATS, &flags); 3104 if (zero_stats) 3105 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); 3106 3107 if (bp->flags & TX_SWITCHING) 3108 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags); 3109 3110 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); 3111 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); 3112 3113 #ifdef BNX2X_STOP_ON_ERROR 3114 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); 3115 #endif 3116 3117 return flags; 3118 } 3119 3120 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, 3121 struct bnx2x_fastpath *fp, 3122 bool leading) 3123 { 3124 unsigned long flags = 0; 3125 3126 /* calculate other queue flags */ 3127 if (IS_MF_SD(bp)) 3128 __set_bit(BNX2X_Q_FLG_OV, &flags); 3129 3130 if (IS_FCOE_FP(fp)) { 3131 __set_bit(BNX2X_Q_FLG_FCOE, &flags); 3132 /* For FCoE - force usage of default priority (for afex) */ 3133 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); 3134 } 3135 3136 if (fp->mode != TPA_MODE_DISABLED) { 3137 __set_bit(BNX2X_Q_FLG_TPA, &flags); 3138 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); 3139 if (fp->mode == TPA_MODE_GRO) 3140 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); 3141 } 3142 3143 if (leading) { 3144 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); 3145 __set_bit(BNX2X_Q_FLG_MCAST, &flags); 3146 } 3147 3148 /* Always set HW VLAN stripping */ 3149 __set_bit(BNX2X_Q_FLG_VLAN, &flags); 3150 3151 /* configure silent vlan removal */ 3152 if (IS_MF_AFEX(bp)) 3153 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); 3154 3155 return flags | bnx2x_get_common_flags(bp, fp, true); 3156 } 3157 3158 static void bnx2x_pf_q_prep_general(struct bnx2x *bp, 3159 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, 3160 u8 cos) 3161 { 3162 gen_init->stat_id = bnx2x_stats_id(fp); 3163 gen_init->spcl_id = fp->cl_id; 3164 3165 /* Always use mini-jumbo MTU for FCoE L2 ring */ 3166 if (IS_FCOE_FP(fp)) 3167 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 3168 else 3169 gen_init->mtu = bp->dev->mtu; 3170 3171 gen_init->cos = cos; 3172 3173 gen_init->fp_hsi = ETH_FP_HSI_VERSION; 3174 } 3175 3176 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, 3177 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, 3178 struct bnx2x_rxq_setup_params *rxq_init) 3179 { 3180 u8 max_sge = 0; 3181 u16 sge_sz = 0; 3182 u16 tpa_agg_size = 0; 3183 3184 if (fp->mode != TPA_MODE_DISABLED) { 3185 pause->sge_th_lo = SGE_TH_LO(bp); 3186 pause->sge_th_hi = SGE_TH_HI(bp); 3187 3188 /* validate SGE ring has enough to cross high threshold */ 3189 WARN_ON(bp->dropless_fc && 3190 pause->sge_th_hi + FW_PREFETCH_CNT > 3191 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); 3192 3193 tpa_agg_size = TPA_AGG_SIZE; 3194 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> 3195 SGE_PAGE_SHIFT; 3196 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 3197 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; 3198 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); 3199 } 3200 3201 /* pause - not for e1 */ 3202 if (!CHIP_IS_E1(bp)) { 3203 pause->bd_th_lo = BD_TH_LO(bp); 3204 pause->bd_th_hi = BD_TH_HI(bp); 3205 3206 pause->rcq_th_lo = RCQ_TH_LO(bp); 3207 pause->rcq_th_hi = RCQ_TH_HI(bp); 3208 /* 3209 * validate that rings have enough entries to cross 3210 * high thresholds 3211 */ 3212 WARN_ON(bp->dropless_fc && 3213 pause->bd_th_hi + FW_PREFETCH_CNT > 3214 bp->rx_ring_size); 3215 WARN_ON(bp->dropless_fc && 3216 pause->rcq_th_hi + FW_PREFETCH_CNT > 3217 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); 3218 3219 pause->pri_map = 1; 3220 } 3221 3222 /* rxq setup */ 3223 rxq_init->dscr_map = fp->rx_desc_mapping; 3224 rxq_init->sge_map = fp->rx_sge_mapping; 3225 rxq_init->rcq_map = fp->rx_comp_mapping; 3226 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; 3227 3228 /* This should be a maximum number of data bytes that may be 3229 * placed on the BD (not including paddings). 3230 */ 3231 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - 3232 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; 3233 3234 rxq_init->cl_qzone_id = fp->cl_qzone_id; 3235 rxq_init->tpa_agg_sz = tpa_agg_size; 3236 rxq_init->sge_buf_sz = sge_sz; 3237 rxq_init->max_sges_pkt = max_sge; 3238 rxq_init->rss_engine_id = BP_FUNC(bp); 3239 rxq_init->mcast_engine_id = BP_FUNC(bp); 3240 3241 /* Maximum number or simultaneous TPA aggregation for this Queue. 3242 * 3243 * For PF Clients it should be the maximum available number. 3244 * VF driver(s) may want to define it to a smaller value. 3245 */ 3246 rxq_init->max_tpa_queues = MAX_AGG_QS(bp); 3247 3248 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; 3249 rxq_init->fw_sb_id = fp->fw_sb_id; 3250 3251 if (IS_FCOE_FP(fp)) 3252 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; 3253 else 3254 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 3255 /* configure silent vlan removal 3256 * if multi function mode is afex, then mask default vlan 3257 */ 3258 if (IS_MF_AFEX(bp)) { 3259 rxq_init->silent_removal_value = bp->afex_def_vlan_tag; 3260 rxq_init->silent_removal_mask = VLAN_VID_MASK; 3261 } 3262 } 3263 3264 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, 3265 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, 3266 u8 cos) 3267 { 3268 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; 3269 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 3270 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 3271 txq_init->fw_sb_id = fp->fw_sb_id; 3272 3273 /* 3274 * set the tss leading client id for TX classification == 3275 * leading RSS client id 3276 */ 3277 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); 3278 3279 if (IS_FCOE_FP(fp)) { 3280 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; 3281 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; 3282 } 3283 } 3284 3285 static void bnx2x_pf_init(struct bnx2x *bp) 3286 { 3287 struct bnx2x_func_init_params func_init = {0}; 3288 struct event_ring_data eq_data = { {0} }; 3289 3290 if (!CHIP_IS_E1x(bp)) { 3291 /* reset IGU PF statistics: MSIX + ATTN */ 3292 /* PF */ 3293 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3294 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3295 (CHIP_MODE_IS_4_PORT(bp) ? 3296 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3297 /* ATTN */ 3298 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3299 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3300 BNX2X_IGU_STAS_MSG_PF_CNT*4 + 3301 (CHIP_MODE_IS_4_PORT(bp) ? 3302 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3303 } 3304 3305 func_init.spq_active = true; 3306 func_init.pf_id = BP_FUNC(bp); 3307 func_init.func_id = BP_FUNC(bp); 3308 func_init.spq_map = bp->spq_mapping; 3309 func_init.spq_prod = bp->spq_prod_idx; 3310 3311 bnx2x_func_init(bp, &func_init); 3312 3313 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); 3314 3315 /* 3316 * Congestion management values depend on the link rate 3317 * There is no active link so initial link rate is set to 10 Gbps. 3318 * When the link comes up The congestion management values are 3319 * re-calculated according to the actual link rate. 3320 */ 3321 bp->link_vars.line_speed = SPEED_10000; 3322 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); 3323 3324 /* Only the PMF sets the HW */ 3325 if (bp->port.pmf) 3326 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3327 3328 /* init Event Queue - PCI bus guarantees correct endianity*/ 3329 eq_data.base_addr.hi = U64_HI(bp->eq_mapping); 3330 eq_data.base_addr.lo = U64_LO(bp->eq_mapping); 3331 eq_data.producer = bp->eq_prod; 3332 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 3333 eq_data.sb_id = DEF_SB_ID; 3334 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); 3335 } 3336 3337 static void bnx2x_e1h_disable(struct bnx2x *bp) 3338 { 3339 int port = BP_PORT(bp); 3340 3341 bnx2x_tx_disable(bp); 3342 3343 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 3344 } 3345 3346 static void bnx2x_e1h_enable(struct bnx2x *bp) 3347 { 3348 int port = BP_PORT(bp); 3349 3350 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 3351 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 3352 3353 /* Tx queue should be only re-enabled */ 3354 netif_tx_wake_all_queues(bp->dev); 3355 3356 /* 3357 * Should not call netif_carrier_on since it will be called if the link 3358 * is up when checking for link state 3359 */ 3360 } 3361 3362 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 3363 3364 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) 3365 { 3366 struct eth_stats_info *ether_stat = 3367 &bp->slowpath->drv_info_to_mcp.ether_stat; 3368 struct bnx2x_vlan_mac_obj *mac_obj = 3369 &bp->sp_objs->mac_obj; 3370 int i; 3371 3372 strlcpy(ether_stat->version, DRV_MODULE_VERSION, 3373 ETH_STAT_INFO_VERSION_LEN); 3374 3375 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the 3376 * mac_local field in ether_stat struct. The base address is offset by 2 3377 * bytes to account for the field being 8 bytes but a mac address is 3378 * only 6 bytes. Likewise, the stride for the get_n_elements function is 3379 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes 3380 * allocated by the ether_stat struct, so the macs will land in their 3381 * proper positions. 3382 */ 3383 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) 3384 memset(ether_stat->mac_local + i, 0, 3385 sizeof(ether_stat->mac_local[0])); 3386 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, 3387 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 3388 ether_stat->mac_local + MAC_PAD, MAC_PAD, 3389 ETH_ALEN); 3390 ether_stat->mtu_size = bp->dev->mtu; 3391 if (bp->dev->features & NETIF_F_RXCSUM) 3392 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 3393 if (bp->dev->features & NETIF_F_TSO) 3394 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 3395 ether_stat->feature_flags |= bp->common.boot_mode; 3396 3397 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; 3398 3399 ether_stat->txq_size = bp->tx_ring_size; 3400 ether_stat->rxq_size = bp->rx_ring_size; 3401 3402 #ifdef CONFIG_BNX2X_SRIOV 3403 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0; 3404 #endif 3405 } 3406 3407 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) 3408 { 3409 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3410 struct fcoe_stats_info *fcoe_stat = 3411 &bp->slowpath->drv_info_to_mcp.fcoe_stat; 3412 3413 if (!CNIC_LOADED(bp)) 3414 return; 3415 3416 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN); 3417 3418 fcoe_stat->qos_priority = 3419 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; 3420 3421 /* insert FCoE stats from ramrod response */ 3422 if (!NO_FCOE(bp)) { 3423 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = 3424 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3425 tstorm_queue_statistics; 3426 3427 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = 3428 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3429 xstorm_queue_statistics; 3430 3431 struct fcoe_statistics_params *fw_fcoe_stat = 3432 &bp->fw_stats_data->fcoe; 3433 3434 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, 3435 fcoe_stat->rx_bytes_lo, 3436 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); 3437 3438 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3439 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, 3440 fcoe_stat->rx_bytes_lo, 3441 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); 3442 3443 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3444 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, 3445 fcoe_stat->rx_bytes_lo, 3446 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); 3447 3448 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3449 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, 3450 fcoe_stat->rx_bytes_lo, 3451 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); 3452 3453 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3454 fcoe_stat->rx_frames_lo, 3455 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); 3456 3457 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3458 fcoe_stat->rx_frames_lo, 3459 fcoe_q_tstorm_stats->rcv_ucast_pkts); 3460 3461 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3462 fcoe_stat->rx_frames_lo, 3463 fcoe_q_tstorm_stats->rcv_bcast_pkts); 3464 3465 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3466 fcoe_stat->rx_frames_lo, 3467 fcoe_q_tstorm_stats->rcv_mcast_pkts); 3468 3469 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, 3470 fcoe_stat->tx_bytes_lo, 3471 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); 3472 3473 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3474 fcoe_q_xstorm_stats->ucast_bytes_sent.hi, 3475 fcoe_stat->tx_bytes_lo, 3476 fcoe_q_xstorm_stats->ucast_bytes_sent.lo); 3477 3478 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3479 fcoe_q_xstorm_stats->bcast_bytes_sent.hi, 3480 fcoe_stat->tx_bytes_lo, 3481 fcoe_q_xstorm_stats->bcast_bytes_sent.lo); 3482 3483 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3484 fcoe_q_xstorm_stats->mcast_bytes_sent.hi, 3485 fcoe_stat->tx_bytes_lo, 3486 fcoe_q_xstorm_stats->mcast_bytes_sent.lo); 3487 3488 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3489 fcoe_stat->tx_frames_lo, 3490 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); 3491 3492 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3493 fcoe_stat->tx_frames_lo, 3494 fcoe_q_xstorm_stats->ucast_pkts_sent); 3495 3496 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3497 fcoe_stat->tx_frames_lo, 3498 fcoe_q_xstorm_stats->bcast_pkts_sent); 3499 3500 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3501 fcoe_stat->tx_frames_lo, 3502 fcoe_q_xstorm_stats->mcast_pkts_sent); 3503 } 3504 3505 /* ask L5 driver to add data to the struct */ 3506 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); 3507 } 3508 3509 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) 3510 { 3511 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3512 struct iscsi_stats_info *iscsi_stat = 3513 &bp->slowpath->drv_info_to_mcp.iscsi_stat; 3514 3515 if (!CNIC_LOADED(bp)) 3516 return; 3517 3518 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, 3519 ETH_ALEN); 3520 3521 iscsi_stat->qos_priority = 3522 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; 3523 3524 /* ask L5 driver to add data to the struct */ 3525 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); 3526 } 3527 3528 /* called due to MCP event (on pmf): 3529 * reread new bandwidth configuration 3530 * configure FW 3531 * notify others function about the change 3532 */ 3533 static void bnx2x_config_mf_bw(struct bnx2x *bp) 3534 { 3535 if (bp->link_vars.link_up) { 3536 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); 3537 bnx2x_link_sync_notify(bp); 3538 } 3539 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3540 } 3541 3542 static void bnx2x_set_mf_bw(struct bnx2x *bp) 3543 { 3544 bnx2x_config_mf_bw(bp); 3545 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 3546 } 3547 3548 static void bnx2x_handle_eee_event(struct bnx2x *bp) 3549 { 3550 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); 3551 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 3552 } 3553 3554 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20) 3555 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25) 3556 3557 static void bnx2x_handle_drv_info_req(struct bnx2x *bp) 3558 { 3559 enum drv_info_opcode op_code; 3560 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); 3561 bool release = false; 3562 int wait; 3563 3564 /* if drv_info version supported by MFW doesn't match - send NACK */ 3565 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 3566 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3567 return; 3568 } 3569 3570 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 3571 DRV_INFO_CONTROL_OP_CODE_SHIFT; 3572 3573 /* Must prevent other flows from accessing drv_info_to_mcp */ 3574 mutex_lock(&bp->drv_info_mutex); 3575 3576 memset(&bp->slowpath->drv_info_to_mcp, 0, 3577 sizeof(union drv_info_to_mcp)); 3578 3579 switch (op_code) { 3580 case ETH_STATS_OPCODE: 3581 bnx2x_drv_info_ether_stat(bp); 3582 break; 3583 case FCOE_STATS_OPCODE: 3584 bnx2x_drv_info_fcoe_stat(bp); 3585 break; 3586 case ISCSI_STATS_OPCODE: 3587 bnx2x_drv_info_iscsi_stat(bp); 3588 break; 3589 default: 3590 /* if op code isn't supported - send NACK */ 3591 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3592 goto out; 3593 } 3594 3595 /* if we got drv_info attn from MFW then these fields are defined in 3596 * shmem2 for sure 3597 */ 3598 SHMEM2_WR(bp, drv_info_host_addr_lo, 3599 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3600 SHMEM2_WR(bp, drv_info_host_addr_hi, 3601 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3602 3603 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); 3604 3605 /* Since possible management wants both this and get_driver_version 3606 * need to wait until management notifies us it finished utilizing 3607 * the buffer. 3608 */ 3609 if (!SHMEM2_HAS(bp, mfw_drv_indication)) { 3610 DP(BNX2X_MSG_MCP, "Management does not support indication\n"); 3611 } else if (!bp->drv_info_mng_owner) { 3612 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1)); 3613 3614 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) { 3615 u32 indication = SHMEM2_RD(bp, mfw_drv_indication); 3616 3617 /* Management is done; need to clear indication */ 3618 if (indication & bit) { 3619 SHMEM2_WR(bp, mfw_drv_indication, 3620 indication & ~bit); 3621 release = true; 3622 break; 3623 } 3624 3625 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH); 3626 } 3627 } 3628 if (!release) { 3629 DP(BNX2X_MSG_MCP, "Management did not release indication\n"); 3630 bp->drv_info_mng_owner = true; 3631 } 3632 3633 out: 3634 mutex_unlock(&bp->drv_info_mutex); 3635 } 3636 3637 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format) 3638 { 3639 u8 vals[4]; 3640 int i = 0; 3641 3642 if (bnx2x_format) { 3643 i = sscanf(version, "1.%c%hhd.%hhd.%hhd", 3644 &vals[0], &vals[1], &vals[2], &vals[3]); 3645 if (i > 0) 3646 vals[0] -= '0'; 3647 } else { 3648 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd", 3649 &vals[0], &vals[1], &vals[2], &vals[3]); 3650 } 3651 3652 while (i < 4) 3653 vals[i++] = 0; 3654 3655 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3]; 3656 } 3657 3658 void bnx2x_update_mng_version(struct bnx2x *bp) 3659 { 3660 u32 iscsiver = DRV_VER_NOT_LOADED; 3661 u32 fcoever = DRV_VER_NOT_LOADED; 3662 u32 ethver = DRV_VER_NOT_LOADED; 3663 int idx = BP_FW_MB_IDX(bp); 3664 u8 *version; 3665 3666 if (!SHMEM2_HAS(bp, func_os_drv_ver)) 3667 return; 3668 3669 mutex_lock(&bp->drv_info_mutex); 3670 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */ 3671 if (bp->drv_info_mng_owner) 3672 goto out; 3673 3674 if (bp->state != BNX2X_STATE_OPEN) 3675 goto out; 3676 3677 /* Parse ethernet driver version */ 3678 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3679 if (!CNIC_LOADED(bp)) 3680 goto out; 3681 3682 /* Try getting storage driver version via cnic */ 3683 memset(&bp->slowpath->drv_info_to_mcp, 0, 3684 sizeof(union drv_info_to_mcp)); 3685 bnx2x_drv_info_iscsi_stat(bp); 3686 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version; 3687 iscsiver = bnx2x_update_mng_version_utility(version, false); 3688 3689 memset(&bp->slowpath->drv_info_to_mcp, 0, 3690 sizeof(union drv_info_to_mcp)); 3691 bnx2x_drv_info_fcoe_stat(bp); 3692 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version; 3693 fcoever = bnx2x_update_mng_version_utility(version, false); 3694 3695 out: 3696 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver); 3697 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver); 3698 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever); 3699 3700 mutex_unlock(&bp->drv_info_mutex); 3701 3702 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n", 3703 ethver, iscsiver, fcoever); 3704 } 3705 3706 void bnx2x_update_mfw_dump(struct bnx2x *bp) 3707 { 3708 struct timeval epoc; 3709 u32 drv_ver; 3710 u32 valid_dump; 3711 3712 if (!SHMEM2_HAS(bp, drv_info)) 3713 return; 3714 3715 /* Update Driver load time */ 3716 do_gettimeofday(&epoc); 3717 SHMEM2_WR(bp, drv_info.epoc, epoc.tv_sec); 3718 3719 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3720 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver); 3721 3722 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 3723 3724 /* Check & notify On-Chip dump. */ 3725 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump); 3726 3727 if (valid_dump & FIRST_DUMP_VALID) 3728 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n"); 3729 3730 if (valid_dump & SECOND_DUMP_VALID) 3731 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n"); 3732 } 3733 3734 static void bnx2x_oem_event(struct bnx2x *bp, u32 event) 3735 { 3736 u32 cmd_ok, cmd_fail; 3737 3738 /* sanity */ 3739 if (event & DRV_STATUS_DCC_EVENT_MASK && 3740 event & DRV_STATUS_OEM_EVENT_MASK) { 3741 BNX2X_ERR("Received simultaneous events %08x\n", event); 3742 return; 3743 } 3744 3745 if (event & DRV_STATUS_DCC_EVENT_MASK) { 3746 cmd_fail = DRV_MSG_CODE_DCC_FAILURE; 3747 cmd_ok = DRV_MSG_CODE_DCC_OK; 3748 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ { 3749 cmd_fail = DRV_MSG_CODE_OEM_FAILURE; 3750 cmd_ok = DRV_MSG_CODE_OEM_OK; 3751 } 3752 3753 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event); 3754 3755 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3756 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) { 3757 /* This is the only place besides the function initialization 3758 * where the bp->flags can change so it is done without any 3759 * locks 3760 */ 3761 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 3762 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); 3763 bp->flags |= MF_FUNC_DIS; 3764 3765 bnx2x_e1h_disable(bp); 3766 } else { 3767 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); 3768 bp->flags &= ~MF_FUNC_DIS; 3769 3770 bnx2x_e1h_enable(bp); 3771 } 3772 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3773 DRV_STATUS_OEM_DISABLE_ENABLE_PF); 3774 } 3775 3776 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3777 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) { 3778 bnx2x_config_mf_bw(bp); 3779 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3780 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION); 3781 } 3782 3783 /* Report results to MCP */ 3784 if (event) 3785 bnx2x_fw_command(bp, cmd_fail, 0); 3786 else 3787 bnx2x_fw_command(bp, cmd_ok, 0); 3788 } 3789 3790 /* must be called under the spq lock */ 3791 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) 3792 { 3793 struct eth_spe *next_spe = bp->spq_prod_bd; 3794 3795 if (bp->spq_prod_bd == bp->spq_last_bd) { 3796 bp->spq_prod_bd = bp->spq; 3797 bp->spq_prod_idx = 0; 3798 DP(BNX2X_MSG_SP, "end of spq\n"); 3799 } else { 3800 bp->spq_prod_bd++; 3801 bp->spq_prod_idx++; 3802 } 3803 return next_spe; 3804 } 3805 3806 /* must be called under the spq lock */ 3807 static void bnx2x_sp_prod_update(struct bnx2x *bp) 3808 { 3809 int func = BP_FUNC(bp); 3810 3811 /* 3812 * Make sure that BD data is updated before writing the producer: 3813 * BD data is written to the memory, the producer is read from the 3814 * memory, thus we need a full memory barrier to ensure the ordering. 3815 */ 3816 mb(); 3817 3818 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), 3819 bp->spq_prod_idx); 3820 mmiowb(); 3821 } 3822 3823 /** 3824 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ 3825 * 3826 * @cmd: command to check 3827 * @cmd_type: command type 3828 */ 3829 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) 3830 { 3831 if ((cmd_type == NONE_CONNECTION_TYPE) || 3832 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 3833 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 3834 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 3835 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 3836 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 3837 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) 3838 return true; 3839 else 3840 return false; 3841 } 3842 3843 /** 3844 * bnx2x_sp_post - place a single command on an SP ring 3845 * 3846 * @bp: driver handle 3847 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 3848 * @cid: SW CID the command is related to 3849 * @data_hi: command private data address (high 32 bits) 3850 * @data_lo: command private data address (low 32 bits) 3851 * @cmd_type: command type (e.g. NONE, ETH) 3852 * 3853 * SP data is handled as if it's always an address pair, thus data fields are 3854 * not swapped to little endian in upper functions. Instead this function swaps 3855 * data as if it's two u32 fields. 3856 */ 3857 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 3858 u32 data_hi, u32 data_lo, int cmd_type) 3859 { 3860 struct eth_spe *spe; 3861 u16 type; 3862 bool common = bnx2x_is_contextless_ramrod(command, cmd_type); 3863 3864 #ifdef BNX2X_STOP_ON_ERROR 3865 if (unlikely(bp->panic)) { 3866 BNX2X_ERR("Can't post SP when there is panic\n"); 3867 return -EIO; 3868 } 3869 #endif 3870 3871 spin_lock_bh(&bp->spq_lock); 3872 3873 if (common) { 3874 if (!atomic_read(&bp->eq_spq_left)) { 3875 BNX2X_ERR("BUG! EQ ring full!\n"); 3876 spin_unlock_bh(&bp->spq_lock); 3877 bnx2x_panic(); 3878 return -EBUSY; 3879 } 3880 } else if (!atomic_read(&bp->cq_spq_left)) { 3881 BNX2X_ERR("BUG! SPQ ring full!\n"); 3882 spin_unlock_bh(&bp->spq_lock); 3883 bnx2x_panic(); 3884 return -EBUSY; 3885 } 3886 3887 spe = bnx2x_sp_get_next(bp); 3888 3889 /* CID needs port number to be encoded int it */ 3890 spe->hdr.conn_and_cmd_data = 3891 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | 3892 HW_CID(bp, cid)); 3893 3894 /* In some cases, type may already contain the func-id 3895 * mainly in SRIOV related use cases, so we add it here only 3896 * if it's not already set. 3897 */ 3898 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) { 3899 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & 3900 SPE_HDR_CONN_TYPE; 3901 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & 3902 SPE_HDR_FUNCTION_ID); 3903 } else { 3904 type = cmd_type; 3905 } 3906 3907 spe->hdr.type = cpu_to_le16(type); 3908 3909 spe->data.update_data_addr.hi = cpu_to_le32(data_hi); 3910 spe->data.update_data_addr.lo = cpu_to_le32(data_lo); 3911 3912 /* 3913 * It's ok if the actual decrement is issued towards the memory 3914 * somewhere between the spin_lock and spin_unlock. Thus no 3915 * more explicit memory barrier is needed. 3916 */ 3917 if (common) 3918 atomic_dec(&bp->eq_spq_left); 3919 else 3920 atomic_dec(&bp->cq_spq_left); 3921 3922 DP(BNX2X_MSG_SP, 3923 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", 3924 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), 3925 (u32)(U64_LO(bp->spq_mapping) + 3926 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, 3927 HW_CID(bp, cid), data_hi, data_lo, type, 3928 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); 3929 3930 bnx2x_sp_prod_update(bp); 3931 spin_unlock_bh(&bp->spq_lock); 3932 return 0; 3933 } 3934 3935 /* acquire split MCP access lock register */ 3936 static int bnx2x_acquire_alr(struct bnx2x *bp) 3937 { 3938 u32 j, val; 3939 int rc = 0; 3940 3941 might_sleep(); 3942 for (j = 0; j < 1000; j++) { 3943 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); 3944 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); 3945 if (val & MCPR_ACCESS_LOCK_LOCK) 3946 break; 3947 3948 usleep_range(5000, 10000); 3949 } 3950 if (!(val & MCPR_ACCESS_LOCK_LOCK)) { 3951 BNX2X_ERR("Cannot acquire MCP access lock register\n"); 3952 rc = -EBUSY; 3953 } 3954 3955 return rc; 3956 } 3957 3958 /* release split MCP access lock register */ 3959 static void bnx2x_release_alr(struct bnx2x *bp) 3960 { 3961 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); 3962 } 3963 3964 #define BNX2X_DEF_SB_ATT_IDX 0x0001 3965 #define BNX2X_DEF_SB_IDX 0x0002 3966 3967 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) 3968 { 3969 struct host_sp_status_block *def_sb = bp->def_status_blk; 3970 u16 rc = 0; 3971 3972 barrier(); /* status block is written to by the chip */ 3973 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 3974 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; 3975 rc |= BNX2X_DEF_SB_ATT_IDX; 3976 } 3977 3978 if (bp->def_idx != def_sb->sp_sb.running_index) { 3979 bp->def_idx = def_sb->sp_sb.running_index; 3980 rc |= BNX2X_DEF_SB_IDX; 3981 } 3982 3983 /* Do not reorder: indices reading should complete before handling */ 3984 barrier(); 3985 return rc; 3986 } 3987 3988 /* 3989 * slow path service functions 3990 */ 3991 3992 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) 3993 { 3994 int port = BP_PORT(bp); 3995 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 3996 MISC_REG_AEU_MASK_ATTN_FUNC_0; 3997 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 3998 NIG_REG_MASK_INTERRUPT_PORT0; 3999 u32 aeu_mask; 4000 u32 nig_mask = 0; 4001 u32 reg_addr; 4002 4003 if (bp->attn_state & asserted) 4004 BNX2X_ERR("IGU ERROR\n"); 4005 4006 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4007 aeu_mask = REG_RD(bp, aeu_addr); 4008 4009 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", 4010 aeu_mask, asserted); 4011 aeu_mask &= ~(asserted & 0x3ff); 4012 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 4013 4014 REG_WR(bp, aeu_addr, aeu_mask); 4015 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4016 4017 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 4018 bp->attn_state |= asserted; 4019 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 4020 4021 if (asserted & ATTN_HARD_WIRED_MASK) { 4022 if (asserted & ATTN_NIG_FOR_FUNC) { 4023 4024 bnx2x_acquire_phy_lock(bp); 4025 4026 /* save nig interrupt mask */ 4027 nig_mask = REG_RD(bp, nig_int_mask_addr); 4028 4029 /* If nig_mask is not set, no need to call the update 4030 * function. 4031 */ 4032 if (nig_mask) { 4033 REG_WR(bp, nig_int_mask_addr, 0); 4034 4035 bnx2x_link_attn(bp); 4036 } 4037 4038 /* handle unicore attn? */ 4039 } 4040 if (asserted & ATTN_SW_TIMER_4_FUNC) 4041 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); 4042 4043 if (asserted & GPIO_2_FUNC) 4044 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); 4045 4046 if (asserted & GPIO_3_FUNC) 4047 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); 4048 4049 if (asserted & GPIO_4_FUNC) 4050 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); 4051 4052 if (port == 0) { 4053 if (asserted & ATTN_GENERAL_ATTN_1) { 4054 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); 4055 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 4056 } 4057 if (asserted & ATTN_GENERAL_ATTN_2) { 4058 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); 4059 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 4060 } 4061 if (asserted & ATTN_GENERAL_ATTN_3) { 4062 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); 4063 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 4064 } 4065 } else { 4066 if (asserted & ATTN_GENERAL_ATTN_4) { 4067 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); 4068 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 4069 } 4070 if (asserted & ATTN_GENERAL_ATTN_5) { 4071 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); 4072 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 4073 } 4074 if (asserted & ATTN_GENERAL_ATTN_6) { 4075 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); 4076 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 4077 } 4078 } 4079 4080 } /* if hardwired */ 4081 4082 if (bp->common.int_block == INT_BLOCK_HC) 4083 reg_addr = (HC_REG_COMMAND_REG + port*32 + 4084 COMMAND_REG_ATTN_BITS_SET); 4085 else 4086 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 4087 4088 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, 4089 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 4090 REG_WR(bp, reg_addr, asserted); 4091 4092 /* now set back the mask */ 4093 if (asserted & ATTN_NIG_FOR_FUNC) { 4094 /* Verify that IGU ack through BAR was written before restoring 4095 * NIG mask. This loop should exit after 2-3 iterations max. 4096 */ 4097 if (bp->common.int_block != INT_BLOCK_HC) { 4098 u32 cnt = 0, igu_acked; 4099 do { 4100 igu_acked = REG_RD(bp, 4101 IGU_REG_ATTENTION_ACK_BITS); 4102 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 4103 (++cnt < MAX_IGU_ATTN_ACK_TO)); 4104 if (!igu_acked) 4105 DP(NETIF_MSG_HW, 4106 "Failed to verify IGU ack on time\n"); 4107 barrier(); 4108 } 4109 REG_WR(bp, nig_int_mask_addr, nig_mask); 4110 bnx2x_release_phy_lock(bp); 4111 } 4112 } 4113 4114 static void bnx2x_fan_failure(struct bnx2x *bp) 4115 { 4116 int port = BP_PORT(bp); 4117 u32 ext_phy_config; 4118 /* mark the failure */ 4119 ext_phy_config = 4120 SHMEM_RD(bp, 4121 dev_info.port_hw_config[port].external_phy_config); 4122 4123 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 4124 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 4125 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, 4126 ext_phy_config); 4127 4128 /* log the failure */ 4129 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" 4130 "Please contact OEM Support for assistance\n"); 4131 4132 /* Schedule device reset (unload) 4133 * This is due to some boards consuming sufficient power when driver is 4134 * up to overheat if fan fails. 4135 */ 4136 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0); 4137 } 4138 4139 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) 4140 { 4141 int port = BP_PORT(bp); 4142 int reg_offset; 4143 u32 val; 4144 4145 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 4146 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 4147 4148 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 4149 4150 val = REG_RD(bp, reg_offset); 4151 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 4152 REG_WR(bp, reg_offset, val); 4153 4154 BNX2X_ERR("SPIO5 hw attention\n"); 4155 4156 /* Fan failure attention */ 4157 bnx2x_hw_reset_phy(&bp->link_params); 4158 bnx2x_fan_failure(bp); 4159 } 4160 4161 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { 4162 bnx2x_acquire_phy_lock(bp); 4163 bnx2x_handle_module_detect_int(&bp->link_params); 4164 bnx2x_release_phy_lock(bp); 4165 } 4166 4167 if (attn & HW_INTERRUT_ASSERT_SET_0) { 4168 4169 val = REG_RD(bp, reg_offset); 4170 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 4171 REG_WR(bp, reg_offset, val); 4172 4173 BNX2X_ERR("FATAL HW block attention set0 0x%x\n", 4174 (u32)(attn & HW_INTERRUT_ASSERT_SET_0)); 4175 bnx2x_panic(); 4176 } 4177 } 4178 4179 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) 4180 { 4181 u32 val; 4182 4183 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 4184 4185 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); 4186 BNX2X_ERR("DB hw attention 0x%x\n", val); 4187 /* DORQ discard attention */ 4188 if (val & 0x2) 4189 BNX2X_ERR("FATAL error from DORQ\n"); 4190 } 4191 4192 if (attn & HW_INTERRUT_ASSERT_SET_1) { 4193 4194 int port = BP_PORT(bp); 4195 int reg_offset; 4196 4197 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 4198 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 4199 4200 val = REG_RD(bp, reg_offset); 4201 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 4202 REG_WR(bp, reg_offset, val); 4203 4204 BNX2X_ERR("FATAL HW block attention set1 0x%x\n", 4205 (u32)(attn & HW_INTERRUT_ASSERT_SET_1)); 4206 bnx2x_panic(); 4207 } 4208 } 4209 4210 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) 4211 { 4212 u32 val; 4213 4214 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 4215 4216 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); 4217 BNX2X_ERR("CFC hw attention 0x%x\n", val); 4218 /* CFC error attention */ 4219 if (val & 0x2) 4220 BNX2X_ERR("FATAL error from CFC\n"); 4221 } 4222 4223 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 4224 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); 4225 BNX2X_ERR("PXP hw attention-0 0x%x\n", val); 4226 /* RQ_USDMDP_FIFO_OVERFLOW */ 4227 if (val & 0x18000) 4228 BNX2X_ERR("FATAL error from PXP\n"); 4229 4230 if (!CHIP_IS_E1x(bp)) { 4231 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); 4232 BNX2X_ERR("PXP hw attention-1 0x%x\n", val); 4233 } 4234 } 4235 4236 if (attn & HW_INTERRUT_ASSERT_SET_2) { 4237 4238 int port = BP_PORT(bp); 4239 int reg_offset; 4240 4241 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 4242 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 4243 4244 val = REG_RD(bp, reg_offset); 4245 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 4246 REG_WR(bp, reg_offset, val); 4247 4248 BNX2X_ERR("FATAL HW block attention set2 0x%x\n", 4249 (u32)(attn & HW_INTERRUT_ASSERT_SET_2)); 4250 bnx2x_panic(); 4251 } 4252 } 4253 4254 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) 4255 { 4256 u32 val; 4257 4258 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 4259 4260 if (attn & BNX2X_PMF_LINK_ASSERT) { 4261 int func = BP_FUNC(bp); 4262 4263 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 4264 bnx2x_read_mf_cfg(bp); 4265 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, 4266 func_mf_config[BP_ABS_FUNC(bp)].config); 4267 val = SHMEM_RD(bp, 4268 func_mb[BP_FW_MB_IDX(bp)].drv_status); 4269 4270 if (val & (DRV_STATUS_DCC_EVENT_MASK | 4271 DRV_STATUS_OEM_EVENT_MASK)) 4272 bnx2x_oem_event(bp, 4273 (val & (DRV_STATUS_DCC_EVENT_MASK | 4274 DRV_STATUS_OEM_EVENT_MASK))); 4275 4276 if (val & DRV_STATUS_SET_MF_BW) 4277 bnx2x_set_mf_bw(bp); 4278 4279 if (val & DRV_STATUS_DRV_INFO_REQ) 4280 bnx2x_handle_drv_info_req(bp); 4281 4282 if (val & DRV_STATUS_VF_DISABLED) 4283 bnx2x_schedule_iov_task(bp, 4284 BNX2X_IOV_HANDLE_FLR); 4285 4286 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) 4287 bnx2x_pmf_update(bp); 4288 4289 if (bp->port.pmf && 4290 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 4291 bp->dcbx_enabled > 0) 4292 /* start dcbx state machine */ 4293 bnx2x_dcbx_set_params(bp, 4294 BNX2X_DCBX_STATE_NEG_RECEIVED); 4295 if (val & DRV_STATUS_AFEX_EVENT_MASK) 4296 bnx2x_handle_afex_cmd(bp, 4297 val & DRV_STATUS_AFEX_EVENT_MASK); 4298 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 4299 bnx2x_handle_eee_event(bp); 4300 4301 if (val & DRV_STATUS_OEM_UPDATE_SVID) 4302 bnx2x_handle_update_svid_cmd(bp); 4303 4304 if (bp->link_vars.periodic_flags & 4305 PERIODIC_FLAGS_LINK_EVENT) { 4306 /* sync with link */ 4307 bnx2x_acquire_phy_lock(bp); 4308 bp->link_vars.periodic_flags &= 4309 ~PERIODIC_FLAGS_LINK_EVENT; 4310 bnx2x_release_phy_lock(bp); 4311 if (IS_MF(bp)) 4312 bnx2x_link_sync_notify(bp); 4313 bnx2x_link_report(bp); 4314 } 4315 /* Always call it here: bnx2x_link_report() will 4316 * prevent the link indication duplication. 4317 */ 4318 bnx2x__link_status_update(bp); 4319 } else if (attn & BNX2X_MC_ASSERT_BITS) { 4320 4321 BNX2X_ERR("MC assert!\n"); 4322 bnx2x_mc_assert(bp); 4323 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); 4324 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); 4325 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); 4326 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); 4327 bnx2x_panic(); 4328 4329 } else if (attn & BNX2X_MCP_ASSERT) { 4330 4331 BNX2X_ERR("MCP assert!\n"); 4332 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); 4333 bnx2x_fw_dump(bp); 4334 4335 } else 4336 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); 4337 } 4338 4339 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 4340 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); 4341 if (attn & BNX2X_GRC_TIMEOUT) { 4342 val = CHIP_IS_E1(bp) ? 0 : 4343 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); 4344 BNX2X_ERR("GRC time-out 0x%08x\n", val); 4345 } 4346 if (attn & BNX2X_GRC_RSV) { 4347 val = CHIP_IS_E1(bp) ? 0 : 4348 REG_RD(bp, MISC_REG_GRC_RSV_ATTN); 4349 BNX2X_ERR("GRC reserved 0x%08x\n", val); 4350 } 4351 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 4352 } 4353 } 4354 4355 /* 4356 * Bits map: 4357 * 0-7 - Engine0 load counter. 4358 * 8-15 - Engine1 load counter. 4359 * 16 - Engine0 RESET_IN_PROGRESS bit. 4360 * 17 - Engine1 RESET_IN_PROGRESS bit. 4361 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function 4362 * on the engine 4363 * 19 - Engine1 ONE_IS_LOADED. 4364 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 4365 * leader to complete (check for both RESET_IN_PROGRESS bits and not for 4366 * just the one belonging to its engine). 4367 * 4368 */ 4369 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 4370 4371 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff 4372 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 4373 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 4374 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 4375 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 4376 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 4377 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 4378 4379 /* 4380 * Set the GLOBAL_RESET bit. 4381 * 4382 * Should be run under rtnl lock 4383 */ 4384 void bnx2x_set_reset_global(struct bnx2x *bp) 4385 { 4386 u32 val; 4387 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4388 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4389 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); 4390 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4391 } 4392 4393 /* 4394 * Clear the GLOBAL_RESET bit. 4395 * 4396 * Should be run under rtnl lock 4397 */ 4398 static void bnx2x_clear_reset_global(struct bnx2x *bp) 4399 { 4400 u32 val; 4401 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4402 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4403 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); 4404 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4405 } 4406 4407 /* 4408 * Checks the GLOBAL_RESET bit. 4409 * 4410 * should be run under rtnl lock 4411 */ 4412 static bool bnx2x_reset_is_global(struct bnx2x *bp) 4413 { 4414 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4415 4416 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); 4417 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; 4418 } 4419 4420 /* 4421 * Clear RESET_IN_PROGRESS bit for the current engine. 4422 * 4423 * Should be run under rtnl lock 4424 */ 4425 static void bnx2x_set_reset_done(struct bnx2x *bp) 4426 { 4427 u32 val; 4428 u32 bit = BP_PATH(bp) ? 4429 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4430 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4431 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4432 4433 /* Clear the bit */ 4434 val &= ~bit; 4435 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4436 4437 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4438 } 4439 4440 /* 4441 * Set RESET_IN_PROGRESS for the current engine. 4442 * 4443 * should be run under rtnl lock 4444 */ 4445 void bnx2x_set_reset_in_progress(struct bnx2x *bp) 4446 { 4447 u32 val; 4448 u32 bit = BP_PATH(bp) ? 4449 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4450 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4451 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4452 4453 /* Set the bit */ 4454 val |= bit; 4455 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4456 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4457 } 4458 4459 /* 4460 * Checks the RESET_IN_PROGRESS bit for the given engine. 4461 * should be run under rtnl lock 4462 */ 4463 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) 4464 { 4465 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4466 u32 bit = engine ? 4467 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4468 4469 /* return false if bit is set */ 4470 return (val & bit) ? false : true; 4471 } 4472 4473 /* 4474 * set pf load for the current pf. 4475 * 4476 * should be run under rtnl lock 4477 */ 4478 void bnx2x_set_pf_load(struct bnx2x *bp) 4479 { 4480 u32 val1, val; 4481 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4482 BNX2X_PATH0_LOAD_CNT_MASK; 4483 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4484 BNX2X_PATH0_LOAD_CNT_SHIFT; 4485 4486 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4487 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4488 4489 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); 4490 4491 /* get the current counter value */ 4492 val1 = (val & mask) >> shift; 4493 4494 /* set bit of that PF */ 4495 val1 |= (1 << bp->pf_num); 4496 4497 /* clear the old value */ 4498 val &= ~mask; 4499 4500 /* set the new one */ 4501 val |= ((val1 << shift) & mask); 4502 4503 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4504 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4505 } 4506 4507 /** 4508 * bnx2x_clear_pf_load - clear pf load mark 4509 * 4510 * @bp: driver handle 4511 * 4512 * Should be run under rtnl lock. 4513 * Decrements the load counter for the current engine. Returns 4514 * whether other functions are still loaded 4515 */ 4516 bool bnx2x_clear_pf_load(struct bnx2x *bp) 4517 { 4518 u32 val1, val; 4519 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4520 BNX2X_PATH0_LOAD_CNT_MASK; 4521 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4522 BNX2X_PATH0_LOAD_CNT_SHIFT; 4523 4524 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4525 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4526 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); 4527 4528 /* get the current counter value */ 4529 val1 = (val & mask) >> shift; 4530 4531 /* clear bit of that PF */ 4532 val1 &= ~(1 << bp->pf_num); 4533 4534 /* clear the old value */ 4535 val &= ~mask; 4536 4537 /* set the new one */ 4538 val |= ((val1 << shift) & mask); 4539 4540 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4541 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4542 return val1 != 0; 4543 } 4544 4545 /* 4546 * Read the load status for the current engine. 4547 * 4548 * should be run under rtnl lock 4549 */ 4550 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) 4551 { 4552 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : 4553 BNX2X_PATH0_LOAD_CNT_MASK); 4554 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4555 BNX2X_PATH0_LOAD_CNT_SHIFT); 4556 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4557 4558 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); 4559 4560 val = (val & mask) >> shift; 4561 4562 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", 4563 engine, val); 4564 4565 return val != 0; 4566 } 4567 4568 static void _print_parity(struct bnx2x *bp, u32 reg) 4569 { 4570 pr_cont(" [0x%08x] ", REG_RD(bp, reg)); 4571 } 4572 4573 static void _print_next_block(int idx, const char *blk) 4574 { 4575 pr_cont("%s%s", idx ? ", " : "", blk); 4576 } 4577 4578 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig, 4579 int *par_num, bool print) 4580 { 4581 u32 cur_bit; 4582 bool res; 4583 int i; 4584 4585 res = false; 4586 4587 for (i = 0; sig; i++) { 4588 cur_bit = (0x1UL << i); 4589 if (sig & cur_bit) { 4590 res |= true; /* Each bit is real error! */ 4591 4592 if (print) { 4593 switch (cur_bit) { 4594 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 4595 _print_next_block((*par_num)++, "BRB"); 4596 _print_parity(bp, 4597 BRB1_REG_BRB1_PRTY_STS); 4598 break; 4599 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 4600 _print_next_block((*par_num)++, 4601 "PARSER"); 4602 _print_parity(bp, PRS_REG_PRS_PRTY_STS); 4603 break; 4604 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 4605 _print_next_block((*par_num)++, "TSDM"); 4606 _print_parity(bp, 4607 TSDM_REG_TSDM_PRTY_STS); 4608 break; 4609 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 4610 _print_next_block((*par_num)++, 4611 "SEARCHER"); 4612 _print_parity(bp, SRC_REG_SRC_PRTY_STS); 4613 break; 4614 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 4615 _print_next_block((*par_num)++, "TCM"); 4616 _print_parity(bp, TCM_REG_TCM_PRTY_STS); 4617 break; 4618 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 4619 _print_next_block((*par_num)++, 4620 "TSEMI"); 4621 _print_parity(bp, 4622 TSEM_REG_TSEM_PRTY_STS_0); 4623 _print_parity(bp, 4624 TSEM_REG_TSEM_PRTY_STS_1); 4625 break; 4626 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 4627 _print_next_block((*par_num)++, "XPB"); 4628 _print_parity(bp, GRCBASE_XPB + 4629 PB_REG_PB_PRTY_STS); 4630 break; 4631 } 4632 } 4633 4634 /* Clear the bit */ 4635 sig &= ~cur_bit; 4636 } 4637 } 4638 4639 return res; 4640 } 4641 4642 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig, 4643 int *par_num, bool *global, 4644 bool print) 4645 { 4646 u32 cur_bit; 4647 bool res; 4648 int i; 4649 4650 res = false; 4651 4652 for (i = 0; sig; i++) { 4653 cur_bit = (0x1UL << i); 4654 if (sig & cur_bit) { 4655 res |= true; /* Each bit is real error! */ 4656 switch (cur_bit) { 4657 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 4658 if (print) { 4659 _print_next_block((*par_num)++, "PBF"); 4660 _print_parity(bp, PBF_REG_PBF_PRTY_STS); 4661 } 4662 break; 4663 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 4664 if (print) { 4665 _print_next_block((*par_num)++, "QM"); 4666 _print_parity(bp, QM_REG_QM_PRTY_STS); 4667 } 4668 break; 4669 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 4670 if (print) { 4671 _print_next_block((*par_num)++, "TM"); 4672 _print_parity(bp, TM_REG_TM_PRTY_STS); 4673 } 4674 break; 4675 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 4676 if (print) { 4677 _print_next_block((*par_num)++, "XSDM"); 4678 _print_parity(bp, 4679 XSDM_REG_XSDM_PRTY_STS); 4680 } 4681 break; 4682 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 4683 if (print) { 4684 _print_next_block((*par_num)++, "XCM"); 4685 _print_parity(bp, XCM_REG_XCM_PRTY_STS); 4686 } 4687 break; 4688 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 4689 if (print) { 4690 _print_next_block((*par_num)++, 4691 "XSEMI"); 4692 _print_parity(bp, 4693 XSEM_REG_XSEM_PRTY_STS_0); 4694 _print_parity(bp, 4695 XSEM_REG_XSEM_PRTY_STS_1); 4696 } 4697 break; 4698 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 4699 if (print) { 4700 _print_next_block((*par_num)++, 4701 "DOORBELLQ"); 4702 _print_parity(bp, 4703 DORQ_REG_DORQ_PRTY_STS); 4704 } 4705 break; 4706 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 4707 if (print) { 4708 _print_next_block((*par_num)++, "NIG"); 4709 if (CHIP_IS_E1x(bp)) { 4710 _print_parity(bp, 4711 NIG_REG_NIG_PRTY_STS); 4712 } else { 4713 _print_parity(bp, 4714 NIG_REG_NIG_PRTY_STS_0); 4715 _print_parity(bp, 4716 NIG_REG_NIG_PRTY_STS_1); 4717 } 4718 } 4719 break; 4720 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 4721 if (print) 4722 _print_next_block((*par_num)++, 4723 "VAUX PCI CORE"); 4724 *global = true; 4725 break; 4726 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 4727 if (print) { 4728 _print_next_block((*par_num)++, 4729 "DEBUG"); 4730 _print_parity(bp, DBG_REG_DBG_PRTY_STS); 4731 } 4732 break; 4733 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 4734 if (print) { 4735 _print_next_block((*par_num)++, "USDM"); 4736 _print_parity(bp, 4737 USDM_REG_USDM_PRTY_STS); 4738 } 4739 break; 4740 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 4741 if (print) { 4742 _print_next_block((*par_num)++, "UCM"); 4743 _print_parity(bp, UCM_REG_UCM_PRTY_STS); 4744 } 4745 break; 4746 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 4747 if (print) { 4748 _print_next_block((*par_num)++, 4749 "USEMI"); 4750 _print_parity(bp, 4751 USEM_REG_USEM_PRTY_STS_0); 4752 _print_parity(bp, 4753 USEM_REG_USEM_PRTY_STS_1); 4754 } 4755 break; 4756 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 4757 if (print) { 4758 _print_next_block((*par_num)++, "UPB"); 4759 _print_parity(bp, GRCBASE_UPB + 4760 PB_REG_PB_PRTY_STS); 4761 } 4762 break; 4763 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 4764 if (print) { 4765 _print_next_block((*par_num)++, "CSDM"); 4766 _print_parity(bp, 4767 CSDM_REG_CSDM_PRTY_STS); 4768 } 4769 break; 4770 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 4771 if (print) { 4772 _print_next_block((*par_num)++, "CCM"); 4773 _print_parity(bp, CCM_REG_CCM_PRTY_STS); 4774 } 4775 break; 4776 } 4777 4778 /* Clear the bit */ 4779 sig &= ~cur_bit; 4780 } 4781 } 4782 4783 return res; 4784 } 4785 4786 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig, 4787 int *par_num, bool print) 4788 { 4789 u32 cur_bit; 4790 bool res; 4791 int i; 4792 4793 res = false; 4794 4795 for (i = 0; sig; i++) { 4796 cur_bit = (0x1UL << i); 4797 if (sig & cur_bit) { 4798 res = true; /* Each bit is real error! */ 4799 if (print) { 4800 switch (cur_bit) { 4801 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 4802 _print_next_block((*par_num)++, 4803 "CSEMI"); 4804 _print_parity(bp, 4805 CSEM_REG_CSEM_PRTY_STS_0); 4806 _print_parity(bp, 4807 CSEM_REG_CSEM_PRTY_STS_1); 4808 break; 4809 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 4810 _print_next_block((*par_num)++, "PXP"); 4811 _print_parity(bp, PXP_REG_PXP_PRTY_STS); 4812 _print_parity(bp, 4813 PXP2_REG_PXP2_PRTY_STS_0); 4814 _print_parity(bp, 4815 PXP2_REG_PXP2_PRTY_STS_1); 4816 break; 4817 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 4818 _print_next_block((*par_num)++, 4819 "PXPPCICLOCKCLIENT"); 4820 break; 4821 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 4822 _print_next_block((*par_num)++, "CFC"); 4823 _print_parity(bp, 4824 CFC_REG_CFC_PRTY_STS); 4825 break; 4826 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 4827 _print_next_block((*par_num)++, "CDU"); 4828 _print_parity(bp, CDU_REG_CDU_PRTY_STS); 4829 break; 4830 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 4831 _print_next_block((*par_num)++, "DMAE"); 4832 _print_parity(bp, 4833 DMAE_REG_DMAE_PRTY_STS); 4834 break; 4835 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 4836 _print_next_block((*par_num)++, "IGU"); 4837 if (CHIP_IS_E1x(bp)) 4838 _print_parity(bp, 4839 HC_REG_HC_PRTY_STS); 4840 else 4841 _print_parity(bp, 4842 IGU_REG_IGU_PRTY_STS); 4843 break; 4844 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 4845 _print_next_block((*par_num)++, "MISC"); 4846 _print_parity(bp, 4847 MISC_REG_MISC_PRTY_STS); 4848 break; 4849 } 4850 } 4851 4852 /* Clear the bit */ 4853 sig &= ~cur_bit; 4854 } 4855 } 4856 4857 return res; 4858 } 4859 4860 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig, 4861 int *par_num, bool *global, 4862 bool print) 4863 { 4864 bool res = false; 4865 u32 cur_bit; 4866 int i; 4867 4868 for (i = 0; sig; i++) { 4869 cur_bit = (0x1UL << i); 4870 if (sig & cur_bit) { 4871 switch (cur_bit) { 4872 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 4873 if (print) 4874 _print_next_block((*par_num)++, 4875 "MCP ROM"); 4876 *global = true; 4877 res = true; 4878 break; 4879 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 4880 if (print) 4881 _print_next_block((*par_num)++, 4882 "MCP UMP RX"); 4883 *global = true; 4884 res = true; 4885 break; 4886 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 4887 if (print) 4888 _print_next_block((*par_num)++, 4889 "MCP UMP TX"); 4890 *global = true; 4891 res = true; 4892 break; 4893 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 4894 (*par_num)++; 4895 /* clear latched SCPAD PATIRY from MCP */ 4896 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 4897 1UL << 10); 4898 break; 4899 } 4900 4901 /* Clear the bit */ 4902 sig &= ~cur_bit; 4903 } 4904 } 4905 4906 return res; 4907 } 4908 4909 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig, 4910 int *par_num, bool print) 4911 { 4912 u32 cur_bit; 4913 bool res; 4914 int i; 4915 4916 res = false; 4917 4918 for (i = 0; sig; i++) { 4919 cur_bit = (0x1UL << i); 4920 if (sig & cur_bit) { 4921 res = true; /* Each bit is real error! */ 4922 if (print) { 4923 switch (cur_bit) { 4924 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 4925 _print_next_block((*par_num)++, 4926 "PGLUE_B"); 4927 _print_parity(bp, 4928 PGLUE_B_REG_PGLUE_B_PRTY_STS); 4929 break; 4930 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 4931 _print_next_block((*par_num)++, "ATC"); 4932 _print_parity(bp, 4933 ATC_REG_ATC_PRTY_STS); 4934 break; 4935 } 4936 } 4937 /* Clear the bit */ 4938 sig &= ~cur_bit; 4939 } 4940 } 4941 4942 return res; 4943 } 4944 4945 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, 4946 u32 *sig) 4947 { 4948 bool res = false; 4949 4950 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 4951 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4952 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4953 (sig[3] & HW_PRTY_ASSERT_SET_3) || 4954 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 4955 int par_num = 0; 4956 4957 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" 4958 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 4959 sig[0] & HW_PRTY_ASSERT_SET_0, 4960 sig[1] & HW_PRTY_ASSERT_SET_1, 4961 sig[2] & HW_PRTY_ASSERT_SET_2, 4962 sig[3] & HW_PRTY_ASSERT_SET_3, 4963 sig[4] & HW_PRTY_ASSERT_SET_4); 4964 if (print) { 4965 if (((sig[0] & HW_PRTY_ASSERT_SET_0) || 4966 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4967 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4968 (sig[4] & HW_PRTY_ASSERT_SET_4)) || 4969 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) { 4970 netdev_err(bp->dev, 4971 "Parity errors detected in blocks: "); 4972 } else { 4973 print = false; 4974 } 4975 } 4976 res |= bnx2x_check_blocks_with_parity0(bp, 4977 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print); 4978 res |= bnx2x_check_blocks_with_parity1(bp, 4979 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print); 4980 res |= bnx2x_check_blocks_with_parity2(bp, 4981 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print); 4982 res |= bnx2x_check_blocks_with_parity3(bp, 4983 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print); 4984 res |= bnx2x_check_blocks_with_parity4(bp, 4985 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print); 4986 4987 if (print) 4988 pr_cont("\n"); 4989 } 4990 4991 return res; 4992 } 4993 4994 /** 4995 * bnx2x_chk_parity_attn - checks for parity attentions. 4996 * 4997 * @bp: driver handle 4998 * @global: true if there was a global attention 4999 * @print: show parity attention in syslog 5000 */ 5001 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) 5002 { 5003 struct attn_route attn = { {0} }; 5004 int port = BP_PORT(bp); 5005 5006 attn.sig[0] = REG_RD(bp, 5007 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 5008 port*4); 5009 attn.sig[1] = REG_RD(bp, 5010 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + 5011 port*4); 5012 attn.sig[2] = REG_RD(bp, 5013 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + 5014 port*4); 5015 attn.sig[3] = REG_RD(bp, 5016 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + 5017 port*4); 5018 /* Since MCP attentions can't be disabled inside the block, we need to 5019 * read AEU registers to see whether they're currently disabled 5020 */ 5021 attn.sig[3] &= ((REG_RD(bp, 5022 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 5023 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) & 5024 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 5025 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 5026 5027 if (!CHIP_IS_E1x(bp)) 5028 attn.sig[4] = REG_RD(bp, 5029 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + 5030 port*4); 5031 5032 return bnx2x_parity_attn(bp, global, print, attn.sig); 5033 } 5034 5035 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) 5036 { 5037 u32 val; 5038 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 5039 5040 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 5041 BNX2X_ERR("PGLUE hw attention 0x%x\n", val); 5042 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 5043 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 5044 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 5045 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 5046 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 5047 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 5048 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 5049 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 5050 if (val & 5051 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 5052 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 5053 if (val & 5054 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 5055 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 5056 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 5057 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 5058 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 5059 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 5060 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 5061 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 5062 } 5063 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 5064 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); 5065 BNX2X_ERR("ATC hw attention 0x%x\n", val); 5066 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 5067 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 5068 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 5069 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 5070 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 5071 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 5072 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 5073 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 5074 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 5075 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 5076 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 5077 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 5078 } 5079 5080 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5081 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 5082 BNX2X_ERR("FATAL parity attention set4 0x%x\n", 5083 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5084 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 5085 } 5086 } 5087 5088 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) 5089 { 5090 struct attn_route attn, *group_mask; 5091 int port = BP_PORT(bp); 5092 int index; 5093 u32 reg_addr; 5094 u32 val; 5095 u32 aeu_mask; 5096 bool global = false; 5097 5098 /* need to take HW lock because MCP or other port might also 5099 try to handle this event */ 5100 bnx2x_acquire_alr(bp); 5101 5102 if (bnx2x_chk_parity_attn(bp, &global, true)) { 5103 #ifndef BNX2X_STOP_ON_ERROR 5104 bp->recovery_state = BNX2X_RECOVERY_INIT; 5105 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5106 /* Disable HW interrupts */ 5107 bnx2x_int_disable(bp); 5108 /* In case of parity errors don't handle attentions so that 5109 * other function would "see" parity errors. 5110 */ 5111 #else 5112 bnx2x_panic(); 5113 #endif 5114 bnx2x_release_alr(bp); 5115 return; 5116 } 5117 5118 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 5119 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 5120 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 5121 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 5122 if (!CHIP_IS_E1x(bp)) 5123 attn.sig[4] = 5124 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 5125 else 5126 attn.sig[4] = 0; 5127 5128 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", 5129 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 5130 5131 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 5132 if (deasserted & (1 << index)) { 5133 group_mask = &bp->attn_group[index]; 5134 5135 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", 5136 index, 5137 group_mask->sig[0], group_mask->sig[1], 5138 group_mask->sig[2], group_mask->sig[3], 5139 group_mask->sig[4]); 5140 5141 bnx2x_attn_int_deasserted4(bp, 5142 attn.sig[4] & group_mask->sig[4]); 5143 bnx2x_attn_int_deasserted3(bp, 5144 attn.sig[3] & group_mask->sig[3]); 5145 bnx2x_attn_int_deasserted1(bp, 5146 attn.sig[1] & group_mask->sig[1]); 5147 bnx2x_attn_int_deasserted2(bp, 5148 attn.sig[2] & group_mask->sig[2]); 5149 bnx2x_attn_int_deasserted0(bp, 5150 attn.sig[0] & group_mask->sig[0]); 5151 } 5152 } 5153 5154 bnx2x_release_alr(bp); 5155 5156 if (bp->common.int_block == INT_BLOCK_HC) 5157 reg_addr = (HC_REG_COMMAND_REG + port*32 + 5158 COMMAND_REG_ATTN_BITS_CLR); 5159 else 5160 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 5161 5162 val = ~deasserted; 5163 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, 5164 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 5165 REG_WR(bp, reg_addr, val); 5166 5167 if (~bp->attn_state & deasserted) 5168 BNX2X_ERR("IGU ERROR\n"); 5169 5170 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 5171 MISC_REG_AEU_MASK_ATTN_FUNC_0; 5172 5173 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5174 aeu_mask = REG_RD(bp, reg_addr); 5175 5176 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", 5177 aeu_mask, deasserted); 5178 aeu_mask |= (deasserted & 0x3ff); 5179 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 5180 5181 REG_WR(bp, reg_addr, aeu_mask); 5182 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5183 5184 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 5185 bp->attn_state &= ~deasserted; 5186 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 5187 } 5188 5189 static void bnx2x_attn_int(struct bnx2x *bp) 5190 { 5191 /* read local copy of bits */ 5192 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. 5193 attn_bits); 5194 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. 5195 attn_bits_ack); 5196 u32 attn_state = bp->attn_state; 5197 5198 /* look for changed bits */ 5199 u32 asserted = attn_bits & ~attn_ack & ~attn_state; 5200 u32 deasserted = ~attn_bits & attn_ack & attn_state; 5201 5202 DP(NETIF_MSG_HW, 5203 "attn_bits %x attn_ack %x asserted %x deasserted %x\n", 5204 attn_bits, attn_ack, asserted, deasserted); 5205 5206 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) 5207 BNX2X_ERR("BAD attention state\n"); 5208 5209 /* handle bits that were raised */ 5210 if (asserted) 5211 bnx2x_attn_int_asserted(bp, asserted); 5212 5213 if (deasserted) 5214 bnx2x_attn_int_deasserted(bp, deasserted); 5215 } 5216 5217 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, 5218 u16 index, u8 op, u8 update) 5219 { 5220 u32 igu_addr = bp->igu_base_addr; 5221 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 5222 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, 5223 igu_addr); 5224 } 5225 5226 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) 5227 { 5228 /* No memory barriers */ 5229 storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); 5230 mmiowb(); /* keep prod updates ordered */ 5231 } 5232 5233 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, 5234 union event_ring_elem *elem) 5235 { 5236 u8 err = elem->message.error; 5237 5238 if (!bp->cnic_eth_dev.starting_cid || 5239 (cid < bp->cnic_eth_dev.starting_cid && 5240 cid != bp->cnic_eth_dev.iscsi_l2_cid)) 5241 return 1; 5242 5243 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); 5244 5245 if (unlikely(err)) { 5246 5247 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", 5248 cid); 5249 bnx2x_panic_dump(bp, false); 5250 } 5251 bnx2x_cnic_cfc_comp(bp, cid, err); 5252 return 0; 5253 } 5254 5255 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) 5256 { 5257 struct bnx2x_mcast_ramrod_params rparam; 5258 int rc; 5259 5260 memset(&rparam, 0, sizeof(rparam)); 5261 5262 rparam.mcast_obj = &bp->mcast_obj; 5263 5264 netif_addr_lock_bh(bp->dev); 5265 5266 /* Clear pending state for the last command */ 5267 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); 5268 5269 /* If there are pending mcast commands - send them */ 5270 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { 5271 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 5272 if (rc < 0) 5273 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 5274 rc); 5275 } 5276 5277 netif_addr_unlock_bh(bp->dev); 5278 } 5279 5280 static void bnx2x_handle_classification_eqe(struct bnx2x *bp, 5281 union event_ring_elem *elem) 5282 { 5283 unsigned long ramrod_flags = 0; 5284 int rc = 0; 5285 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK; 5286 struct bnx2x_vlan_mac_obj *vlan_mac_obj; 5287 5288 /* Always push next commands out, don't wait here */ 5289 __set_bit(RAMROD_CONT, &ramrod_flags); 5290 5291 switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo) 5292 >> BNX2X_SWCID_SHIFT) { 5293 case BNX2X_FILTER_MAC_PENDING: 5294 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); 5295 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) 5296 vlan_mac_obj = &bp->iscsi_l2_mac_obj; 5297 else 5298 vlan_mac_obj = &bp->sp_objs[cid].mac_obj; 5299 5300 break; 5301 case BNX2X_FILTER_VLAN_PENDING: 5302 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n"); 5303 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj; 5304 break; 5305 case BNX2X_FILTER_MCAST_PENDING: 5306 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); 5307 /* This is only relevant for 57710 where multicast MACs are 5308 * configured as unicast MACs using the same ramrod. 5309 */ 5310 bnx2x_handle_mcast_eqe(bp); 5311 return; 5312 default: 5313 BNX2X_ERR("Unsupported classification command: %d\n", 5314 elem->message.data.eth_event.echo); 5315 return; 5316 } 5317 5318 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); 5319 5320 if (rc < 0) 5321 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 5322 else if (rc > 0) 5323 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); 5324 } 5325 5326 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); 5327 5328 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) 5329 { 5330 netif_addr_lock_bh(bp->dev); 5331 5332 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5333 5334 /* Send rx_mode command again if was requested */ 5335 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) 5336 bnx2x_set_storm_rx_mode(bp); 5337 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, 5338 &bp->sp_state)) 5339 bnx2x_set_iscsi_eth_rx_mode(bp, true); 5340 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, 5341 &bp->sp_state)) 5342 bnx2x_set_iscsi_eth_rx_mode(bp, false); 5343 5344 netif_addr_unlock_bh(bp->dev); 5345 } 5346 5347 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, 5348 union event_ring_elem *elem) 5349 { 5350 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { 5351 DP(BNX2X_MSG_SP, 5352 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", 5353 elem->message.data.vif_list_event.func_bit_map); 5354 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, 5355 elem->message.data.vif_list_event.func_bit_map); 5356 } else if (elem->message.data.vif_list_event.echo == 5357 VIF_LIST_RULE_SET) { 5358 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); 5359 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); 5360 } 5361 } 5362 5363 /* called with rtnl_lock */ 5364 static void bnx2x_after_function_update(struct bnx2x *bp) 5365 { 5366 int q, rc; 5367 struct bnx2x_fastpath *fp; 5368 struct bnx2x_queue_state_params queue_params = {NULL}; 5369 struct bnx2x_queue_update_params *q_update_params = 5370 &queue_params.params.update; 5371 5372 /* Send Q update command with afex vlan removal values for all Qs */ 5373 queue_params.cmd = BNX2X_Q_CMD_UPDATE; 5374 5375 /* set silent vlan removal values according to vlan mode */ 5376 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 5377 &q_update_params->update_flags); 5378 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 5379 &q_update_params->update_flags); 5380 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5381 5382 /* in access mode mark mask and value are 0 to strip all vlans */ 5383 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { 5384 q_update_params->silent_removal_value = 0; 5385 q_update_params->silent_removal_mask = 0; 5386 } else { 5387 q_update_params->silent_removal_value = 5388 (bp->afex_def_vlan_tag & VLAN_VID_MASK); 5389 q_update_params->silent_removal_mask = VLAN_VID_MASK; 5390 } 5391 5392 for_each_eth_queue(bp, q) { 5393 /* Set the appropriate Queue object */ 5394 fp = &bp->fp[q]; 5395 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5396 5397 /* send the ramrod */ 5398 rc = bnx2x_queue_state_change(bp, &queue_params); 5399 if (rc < 0) 5400 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5401 q); 5402 } 5403 5404 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { 5405 fp = &bp->fp[FCOE_IDX(bp)]; 5406 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5407 5408 /* clear pending completion bit */ 5409 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5410 5411 /* mark latest Q bit */ 5412 smp_mb__before_atomic(); 5413 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 5414 smp_mb__after_atomic(); 5415 5416 /* send Q update ramrod for FCoE Q */ 5417 rc = bnx2x_queue_state_change(bp, &queue_params); 5418 if (rc < 0) 5419 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5420 q); 5421 } else { 5422 /* If no FCoE ring - ACK MCP now */ 5423 bnx2x_link_report(bp); 5424 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5425 } 5426 } 5427 5428 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( 5429 struct bnx2x *bp, u32 cid) 5430 { 5431 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); 5432 5433 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) 5434 return &bnx2x_fcoe_sp_obj(bp, q_obj); 5435 else 5436 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; 5437 } 5438 5439 static void bnx2x_eq_int(struct bnx2x *bp) 5440 { 5441 u16 hw_cons, sw_cons, sw_prod; 5442 union event_ring_elem *elem; 5443 u8 echo; 5444 u32 cid; 5445 u8 opcode; 5446 int rc, spqe_cnt = 0; 5447 struct bnx2x_queue_sp_obj *q_obj; 5448 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; 5449 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; 5450 5451 hw_cons = le16_to_cpu(*bp->eq_cons_sb); 5452 5453 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. 5454 * when we get the next-page we need to adjust so the loop 5455 * condition below will be met. The next element is the size of a 5456 * regular element and hence incrementing by 1 5457 */ 5458 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) 5459 hw_cons++; 5460 5461 /* This function may never run in parallel with itself for a 5462 * specific bp, thus there is no need in "paired" read memory 5463 * barrier here. 5464 */ 5465 sw_cons = bp->eq_cons; 5466 sw_prod = bp->eq_prod; 5467 5468 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", 5469 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); 5470 5471 for (; sw_cons != hw_cons; 5472 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 5473 5474 elem = &bp->eq_ring[EQ_DESC(sw_cons)]; 5475 5476 rc = bnx2x_iov_eq_sp_event(bp, elem); 5477 if (!rc) { 5478 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", 5479 rc); 5480 goto next_spqe; 5481 } 5482 5483 /* elem CID originates from FW; actually LE */ 5484 cid = SW_CID((__force __le32) 5485 elem->message.data.cfc_del_event.cid); 5486 opcode = elem->message.opcode; 5487 5488 /* handle eq element */ 5489 switch (opcode) { 5490 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 5491 bnx2x_vf_mbx_schedule(bp, 5492 &elem->message.data.vf_pf_event); 5493 continue; 5494 5495 case EVENT_RING_OPCODE_STAT_QUERY: 5496 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS), 5497 "got statistics comp event %d\n", 5498 bp->stats_comp++); 5499 /* nothing to do with stats comp */ 5500 goto next_spqe; 5501 5502 case EVENT_RING_OPCODE_CFC_DEL: 5503 /* handle according to cid range */ 5504 /* 5505 * we may want to verify here that the bp state is 5506 * HALTING 5507 */ 5508 DP(BNX2X_MSG_SP, 5509 "got delete ramrod for MULTI[%d]\n", cid); 5510 5511 if (CNIC_LOADED(bp) && 5512 !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) 5513 goto next_spqe; 5514 5515 q_obj = bnx2x_cid_to_q_obj(bp, cid); 5516 5517 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) 5518 break; 5519 5520 goto next_spqe; 5521 5522 case EVENT_RING_OPCODE_STOP_TRAFFIC: 5523 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); 5524 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); 5525 if (f_obj->complete_cmd(bp, f_obj, 5526 BNX2X_F_CMD_TX_STOP)) 5527 break; 5528 goto next_spqe; 5529 5530 case EVENT_RING_OPCODE_START_TRAFFIC: 5531 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); 5532 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); 5533 if (f_obj->complete_cmd(bp, f_obj, 5534 BNX2X_F_CMD_TX_START)) 5535 break; 5536 goto next_spqe; 5537 5538 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 5539 echo = elem->message.data.function_update_event.echo; 5540 if (echo == SWITCH_UPDATE) { 5541 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5542 "got FUNC_SWITCH_UPDATE ramrod\n"); 5543 if (f_obj->complete_cmd( 5544 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) 5545 break; 5546 5547 } else { 5548 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE; 5549 5550 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, 5551 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 5552 f_obj->complete_cmd(bp, f_obj, 5553 BNX2X_F_CMD_AFEX_UPDATE); 5554 5555 /* We will perform the Queues update from 5556 * sp_rtnl task as all Queue SP operations 5557 * should run under rtnl_lock. 5558 */ 5559 bnx2x_schedule_sp_rtnl(bp, cmd, 0); 5560 } 5561 5562 goto next_spqe; 5563 5564 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 5565 f_obj->complete_cmd(bp, f_obj, 5566 BNX2X_F_CMD_AFEX_VIFLISTS); 5567 bnx2x_after_afex_vif_lists(bp, elem); 5568 goto next_spqe; 5569 case EVENT_RING_OPCODE_FUNCTION_START: 5570 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5571 "got FUNC_START ramrod\n"); 5572 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) 5573 break; 5574 5575 goto next_spqe; 5576 5577 case EVENT_RING_OPCODE_FUNCTION_STOP: 5578 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5579 "got FUNC_STOP ramrod\n"); 5580 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) 5581 break; 5582 5583 goto next_spqe; 5584 5585 case EVENT_RING_OPCODE_SET_TIMESYNC: 5586 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP, 5587 "got set_timesync ramrod completion\n"); 5588 if (f_obj->complete_cmd(bp, f_obj, 5589 BNX2X_F_CMD_SET_TIMESYNC)) 5590 break; 5591 goto next_spqe; 5592 } 5593 5594 switch (opcode | bp->state) { 5595 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5596 BNX2X_STATE_OPEN): 5597 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5598 BNX2X_STATE_OPENING_WAIT4_PORT): 5599 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5600 BNX2X_STATE_CLOSING_WAIT4_HALT): 5601 cid = elem->message.data.eth_event.echo & 5602 BNX2X_SWCID_MASK; 5603 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", 5604 cid); 5605 rss_raw->clear_pending(rss_raw); 5606 break; 5607 5608 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): 5609 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): 5610 case (EVENT_RING_OPCODE_SET_MAC | 5611 BNX2X_STATE_CLOSING_WAIT4_HALT): 5612 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5613 BNX2X_STATE_OPEN): 5614 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5615 BNX2X_STATE_DIAG): 5616 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5617 BNX2X_STATE_CLOSING_WAIT4_HALT): 5618 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n"); 5619 bnx2x_handle_classification_eqe(bp, elem); 5620 break; 5621 5622 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5623 BNX2X_STATE_OPEN): 5624 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5625 BNX2X_STATE_DIAG): 5626 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5627 BNX2X_STATE_CLOSING_WAIT4_HALT): 5628 DP(BNX2X_MSG_SP, "got mcast ramrod\n"); 5629 bnx2x_handle_mcast_eqe(bp); 5630 break; 5631 5632 case (EVENT_RING_OPCODE_FILTERS_RULES | 5633 BNX2X_STATE_OPEN): 5634 case (EVENT_RING_OPCODE_FILTERS_RULES | 5635 BNX2X_STATE_DIAG): 5636 case (EVENT_RING_OPCODE_FILTERS_RULES | 5637 BNX2X_STATE_CLOSING_WAIT4_HALT): 5638 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); 5639 bnx2x_handle_rx_mode_eqe(bp); 5640 break; 5641 default: 5642 /* unknown event log error and continue */ 5643 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", 5644 elem->message.opcode, bp->state); 5645 } 5646 next_spqe: 5647 spqe_cnt++; 5648 } /* for */ 5649 5650 smp_mb__before_atomic(); 5651 atomic_add(spqe_cnt, &bp->eq_spq_left); 5652 5653 bp->eq_cons = sw_cons; 5654 bp->eq_prod = sw_prod; 5655 /* Make sure that above mem writes were issued towards the memory */ 5656 smp_wmb(); 5657 5658 /* update producer */ 5659 bnx2x_update_eq_prod(bp, bp->eq_prod); 5660 } 5661 5662 static void bnx2x_sp_task(struct work_struct *work) 5663 { 5664 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); 5665 5666 DP(BNX2X_MSG_SP, "sp task invoked\n"); 5667 5668 /* make sure the atomic interrupt_occurred has been written */ 5669 smp_rmb(); 5670 if (atomic_read(&bp->interrupt_occurred)) { 5671 5672 /* what work needs to be performed? */ 5673 u16 status = bnx2x_update_dsb_idx(bp); 5674 5675 DP(BNX2X_MSG_SP, "status %x\n", status); 5676 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); 5677 atomic_set(&bp->interrupt_occurred, 0); 5678 5679 /* HW attentions */ 5680 if (status & BNX2X_DEF_SB_ATT_IDX) { 5681 bnx2x_attn_int(bp); 5682 status &= ~BNX2X_DEF_SB_ATT_IDX; 5683 } 5684 5685 /* SP events: STAT_QUERY and others */ 5686 if (status & BNX2X_DEF_SB_IDX) { 5687 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 5688 5689 if (FCOE_INIT(bp) && 5690 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 5691 /* Prevent local bottom-halves from running as 5692 * we are going to change the local NAPI list. 5693 */ 5694 local_bh_disable(); 5695 napi_schedule(&bnx2x_fcoe(bp, napi)); 5696 local_bh_enable(); 5697 } 5698 5699 /* Handle EQ completions */ 5700 bnx2x_eq_int(bp); 5701 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 5702 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); 5703 5704 status &= ~BNX2X_DEF_SB_IDX; 5705 } 5706 5707 /* if status is non zero then perhaps something went wrong */ 5708 if (unlikely(status)) 5709 DP(BNX2X_MSG_SP, 5710 "got an unknown interrupt! (status 0x%x)\n", status); 5711 5712 /* ack status block only if something was actually handled */ 5713 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 5714 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); 5715 } 5716 5717 /* afex - poll to check if VIFSET_ACK should be sent to MFW */ 5718 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, 5719 &bp->sp_state)) { 5720 bnx2x_link_report(bp); 5721 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5722 } 5723 } 5724 5725 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) 5726 { 5727 struct net_device *dev = dev_instance; 5728 struct bnx2x *bp = netdev_priv(dev); 5729 5730 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, 5731 IGU_INT_DISABLE, 0); 5732 5733 #ifdef BNX2X_STOP_ON_ERROR 5734 if (unlikely(bp->panic)) 5735 return IRQ_HANDLED; 5736 #endif 5737 5738 if (CNIC_LOADED(bp)) { 5739 struct cnic_ops *c_ops; 5740 5741 rcu_read_lock(); 5742 c_ops = rcu_dereference(bp->cnic_ops); 5743 if (c_ops) 5744 c_ops->cnic_handler(bp->cnic_data, NULL); 5745 rcu_read_unlock(); 5746 } 5747 5748 /* schedule sp task to perform default status block work, ack 5749 * attentions and enable interrupts. 5750 */ 5751 bnx2x_schedule_sp_task(bp); 5752 5753 return IRQ_HANDLED; 5754 } 5755 5756 /* end of slow path */ 5757 5758 void bnx2x_drv_pulse(struct bnx2x *bp) 5759 { 5760 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, 5761 bp->fw_drv_pulse_wr_seq); 5762 } 5763 5764 static void bnx2x_timer(unsigned long data) 5765 { 5766 struct bnx2x *bp = (struct bnx2x *) data; 5767 5768 if (!netif_running(bp->dev)) 5769 return; 5770 5771 if (IS_PF(bp) && 5772 !BP_NOMCP(bp)) { 5773 int mb_idx = BP_FW_MB_IDX(bp); 5774 u16 drv_pulse; 5775 u16 mcp_pulse; 5776 5777 ++bp->fw_drv_pulse_wr_seq; 5778 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 5779 drv_pulse = bp->fw_drv_pulse_wr_seq; 5780 bnx2x_drv_pulse(bp); 5781 5782 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & 5783 MCP_PULSE_SEQ_MASK); 5784 /* The delta between driver pulse and mcp response 5785 * should not get too big. If the MFW is more than 5 pulses 5786 * behind, we should worry about it enough to generate an error 5787 * log. 5788 */ 5789 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5) 5790 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 5791 drv_pulse, mcp_pulse); 5792 } 5793 5794 if (bp->state == BNX2X_STATE_OPEN) 5795 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); 5796 5797 /* sample pf vf bulletin board for new posts from pf */ 5798 if (IS_VF(bp)) 5799 bnx2x_timer_sriov(bp); 5800 5801 mod_timer(&bp->timer, jiffies + bp->current_interval); 5802 } 5803 5804 /* end of Statistics */ 5805 5806 /* nic init */ 5807 5808 /* 5809 * nic init service functions 5810 */ 5811 5812 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) 5813 { 5814 u32 i; 5815 if (!(len%4) && !(addr%4)) 5816 for (i = 0; i < len; i += 4) 5817 REG_WR(bp, addr + i, fill); 5818 else 5819 for (i = 0; i < len; i++) 5820 REG_WR8(bp, addr + i, fill); 5821 } 5822 5823 /* helper: writes FP SP data to FW - data_size in dwords */ 5824 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, 5825 int fw_sb_id, 5826 u32 *sb_data_p, 5827 u32 data_size) 5828 { 5829 int index; 5830 for (index = 0; index < data_size; index++) 5831 REG_WR(bp, BAR_CSTRORM_INTMEM + 5832 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 5833 sizeof(u32)*index, 5834 *(sb_data_p + index)); 5835 } 5836 5837 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) 5838 { 5839 u32 *sb_data_p; 5840 u32 data_size = 0; 5841 struct hc_status_block_data_e2 sb_data_e2; 5842 struct hc_status_block_data_e1x sb_data_e1x; 5843 5844 /* disable the function first */ 5845 if (!CHIP_IS_E1x(bp)) { 5846 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5847 sb_data_e2.common.state = SB_DISABLED; 5848 sb_data_e2.common.p_func.vf_valid = false; 5849 sb_data_p = (u32 *)&sb_data_e2; 5850 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5851 } else { 5852 memset(&sb_data_e1x, 0, 5853 sizeof(struct hc_status_block_data_e1x)); 5854 sb_data_e1x.common.state = SB_DISABLED; 5855 sb_data_e1x.common.p_func.vf_valid = false; 5856 sb_data_p = (u32 *)&sb_data_e1x; 5857 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5858 } 5859 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5860 5861 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5862 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, 5863 CSTORM_STATUS_BLOCK_SIZE); 5864 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5865 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, 5866 CSTORM_SYNC_BLOCK_SIZE); 5867 } 5868 5869 /* helper: writes SP SB data to FW */ 5870 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, 5871 struct hc_sp_status_block_data *sp_sb_data) 5872 { 5873 int func = BP_FUNC(bp); 5874 int i; 5875 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 5876 REG_WR(bp, BAR_CSTRORM_INTMEM + 5877 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 5878 i*sizeof(u32), 5879 *((u32 *)sp_sb_data + i)); 5880 } 5881 5882 static void bnx2x_zero_sp_sb(struct bnx2x *bp) 5883 { 5884 int func = BP_FUNC(bp); 5885 struct hc_sp_status_block_data sp_sb_data; 5886 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5887 5888 sp_sb_data.state = SB_DISABLED; 5889 sp_sb_data.p_func.vf_valid = false; 5890 5891 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5892 5893 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5894 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, 5895 CSTORM_SP_STATUS_BLOCK_SIZE); 5896 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5897 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, 5898 CSTORM_SP_SYNC_BLOCK_SIZE); 5899 } 5900 5901 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 5902 int igu_sb_id, int igu_seg_id) 5903 { 5904 hc_sm->igu_sb_id = igu_sb_id; 5905 hc_sm->igu_seg_id = igu_seg_id; 5906 hc_sm->timer_value = 0xFF; 5907 hc_sm->time_to_expire = 0xFFFFFFFF; 5908 } 5909 5910 /* allocates state machine ids. */ 5911 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) 5912 { 5913 /* zero out state machine indices */ 5914 /* rx indices */ 5915 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5916 5917 /* tx indices */ 5918 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5919 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 5920 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 5921 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 5922 5923 /* map indices */ 5924 /* rx indices */ 5925 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 5926 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5927 5928 /* tx indices */ 5929 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 5930 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5931 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 5932 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5933 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 5934 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5935 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 5936 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5937 } 5938 5939 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 5940 u8 vf_valid, int fw_sb_id, int igu_sb_id) 5941 { 5942 int igu_seg_id; 5943 5944 struct hc_status_block_data_e2 sb_data_e2; 5945 struct hc_status_block_data_e1x sb_data_e1x; 5946 struct hc_status_block_sm *hc_sm_p; 5947 int data_size; 5948 u32 *sb_data_p; 5949 5950 if (CHIP_INT_MODE_IS_BC(bp)) 5951 igu_seg_id = HC_SEG_ACCESS_NORM; 5952 else 5953 igu_seg_id = IGU_SEG_ACCESS_NORM; 5954 5955 bnx2x_zero_fp_sb(bp, fw_sb_id); 5956 5957 if (!CHIP_IS_E1x(bp)) { 5958 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5959 sb_data_e2.common.state = SB_ENABLED; 5960 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); 5961 sb_data_e2.common.p_func.vf_id = vfid; 5962 sb_data_e2.common.p_func.vf_valid = vf_valid; 5963 sb_data_e2.common.p_func.vnic_id = BP_VN(bp); 5964 sb_data_e2.common.same_igu_sb_1b = true; 5965 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); 5966 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); 5967 hc_sm_p = sb_data_e2.common.state_machine; 5968 sb_data_p = (u32 *)&sb_data_e2; 5969 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5970 bnx2x_map_sb_state_machines(sb_data_e2.index_data); 5971 } else { 5972 memset(&sb_data_e1x, 0, 5973 sizeof(struct hc_status_block_data_e1x)); 5974 sb_data_e1x.common.state = SB_ENABLED; 5975 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); 5976 sb_data_e1x.common.p_func.vf_id = 0xff; 5977 sb_data_e1x.common.p_func.vf_valid = false; 5978 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); 5979 sb_data_e1x.common.same_igu_sb_1b = true; 5980 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); 5981 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); 5982 hc_sm_p = sb_data_e1x.common.state_machine; 5983 sb_data_p = (u32 *)&sb_data_e1x; 5984 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5985 bnx2x_map_sb_state_machines(sb_data_e1x.index_data); 5986 } 5987 5988 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], 5989 igu_sb_id, igu_seg_id); 5990 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], 5991 igu_sb_id, igu_seg_id); 5992 5993 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); 5994 5995 /* write indices to HW - PCI guarantees endianity of regpairs */ 5996 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5997 } 5998 5999 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, 6000 u16 tx_usec, u16 rx_usec) 6001 { 6002 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, 6003 false, rx_usec); 6004 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6005 HC_INDEX_ETH_TX_CQ_CONS_COS0, false, 6006 tx_usec); 6007 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6008 HC_INDEX_ETH_TX_CQ_CONS_COS1, false, 6009 tx_usec); 6010 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6011 HC_INDEX_ETH_TX_CQ_CONS_COS2, false, 6012 tx_usec); 6013 } 6014 6015 static void bnx2x_init_def_sb(struct bnx2x *bp) 6016 { 6017 struct host_sp_status_block *def_sb = bp->def_status_blk; 6018 dma_addr_t mapping = bp->def_status_blk_mapping; 6019 int igu_sp_sb_index; 6020 int igu_seg_id; 6021 int port = BP_PORT(bp); 6022 int func = BP_FUNC(bp); 6023 int reg_offset, reg_offset_en5; 6024 u64 section; 6025 int index; 6026 struct hc_sp_status_block_data sp_sb_data; 6027 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 6028 6029 if (CHIP_INT_MODE_IS_BC(bp)) { 6030 igu_sp_sb_index = DEF_SB_IGU_ID; 6031 igu_seg_id = HC_SEG_ACCESS_DEF; 6032 } else { 6033 igu_sp_sb_index = bp->igu_dsb_id; 6034 igu_seg_id = IGU_SEG_ACCESS_DEF; 6035 } 6036 6037 /* ATTN */ 6038 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6039 atten_status_block); 6040 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 6041 6042 bp->attn_state = 0; 6043 6044 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 6045 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 6046 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 6047 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); 6048 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 6049 int sindex; 6050 /* take care of sig[0]..sig[4] */ 6051 for (sindex = 0; sindex < 4; sindex++) 6052 bp->attn_group[index].sig[sindex] = 6053 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); 6054 6055 if (!CHIP_IS_E1x(bp)) 6056 /* 6057 * enable5 is separate from the rest of the registers, 6058 * and therefore the address skip is 4 6059 * and not 16 between the different groups 6060 */ 6061 bp->attn_group[index].sig[4] = REG_RD(bp, 6062 reg_offset_en5 + 0x4*index); 6063 else 6064 bp->attn_group[index].sig[4] = 0; 6065 } 6066 6067 if (bp->common.int_block == INT_BLOCK_HC) { 6068 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : 6069 HC_REG_ATTN_MSG0_ADDR_L); 6070 6071 REG_WR(bp, reg_offset, U64_LO(section)); 6072 REG_WR(bp, reg_offset + 4, U64_HI(section)); 6073 } else if (!CHIP_IS_E1x(bp)) { 6074 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 6075 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 6076 } 6077 6078 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6079 sp_sb); 6080 6081 bnx2x_zero_sp_sb(bp); 6082 6083 /* PCI guarantees endianity of regpairs */ 6084 sp_sb_data.state = SB_ENABLED; 6085 sp_sb_data.host_sb_addr.lo = U64_LO(section); 6086 sp_sb_data.host_sb_addr.hi = U64_HI(section); 6087 sp_sb_data.igu_sb_id = igu_sp_sb_index; 6088 sp_sb_data.igu_seg_id = igu_seg_id; 6089 sp_sb_data.p_func.pf_id = func; 6090 sp_sb_data.p_func.vnic_id = BP_VN(bp); 6091 sp_sb_data.p_func.vf_id = 0xff; 6092 6093 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 6094 6095 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 6096 } 6097 6098 void bnx2x_update_coalesce(struct bnx2x *bp) 6099 { 6100 int i; 6101 6102 for_each_eth_queue(bp, i) 6103 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, 6104 bp->tx_ticks, bp->rx_ticks); 6105 } 6106 6107 static void bnx2x_init_sp_ring(struct bnx2x *bp) 6108 { 6109 spin_lock_init(&bp->spq_lock); 6110 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); 6111 6112 bp->spq_prod_idx = 0; 6113 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; 6114 bp->spq_prod_bd = bp->spq; 6115 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; 6116 } 6117 6118 static void bnx2x_init_eq_ring(struct bnx2x *bp) 6119 { 6120 int i; 6121 for (i = 1; i <= NUM_EQ_PAGES; i++) { 6122 union event_ring_elem *elem = 6123 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; 6124 6125 elem->next_page.addr.hi = 6126 cpu_to_le32(U64_HI(bp->eq_mapping + 6127 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); 6128 elem->next_page.addr.lo = 6129 cpu_to_le32(U64_LO(bp->eq_mapping + 6130 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); 6131 } 6132 bp->eq_cons = 0; 6133 bp->eq_prod = NUM_EQ_DESC; 6134 bp->eq_cons_sb = BNX2X_EQ_INDEX; 6135 /* we want a warning message before it gets wrought... */ 6136 atomic_set(&bp->eq_spq_left, 6137 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); 6138 } 6139 6140 /* called with netif_addr_lock_bh() */ 6141 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, 6142 unsigned long rx_mode_flags, 6143 unsigned long rx_accept_flags, 6144 unsigned long tx_accept_flags, 6145 unsigned long ramrod_flags) 6146 { 6147 struct bnx2x_rx_mode_ramrod_params ramrod_param; 6148 int rc; 6149 6150 memset(&ramrod_param, 0, sizeof(ramrod_param)); 6151 6152 /* Prepare ramrod parameters */ 6153 ramrod_param.cid = 0; 6154 ramrod_param.cl_id = cl_id; 6155 ramrod_param.rx_mode_obj = &bp->rx_mode_obj; 6156 ramrod_param.func_id = BP_FUNC(bp); 6157 6158 ramrod_param.pstate = &bp->sp_state; 6159 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; 6160 6161 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); 6162 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); 6163 6164 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 6165 6166 ramrod_param.ramrod_flags = ramrod_flags; 6167 ramrod_param.rx_mode_flags = rx_mode_flags; 6168 6169 ramrod_param.rx_accept_flags = rx_accept_flags; 6170 ramrod_param.tx_accept_flags = tx_accept_flags; 6171 6172 rc = bnx2x_config_rx_mode(bp, &ramrod_param); 6173 if (rc < 0) { 6174 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); 6175 return rc; 6176 } 6177 6178 return 0; 6179 } 6180 6181 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, 6182 unsigned long *rx_accept_flags, 6183 unsigned long *tx_accept_flags) 6184 { 6185 /* Clear the flags first */ 6186 *rx_accept_flags = 0; 6187 *tx_accept_flags = 0; 6188 6189 switch (rx_mode) { 6190 case BNX2X_RX_MODE_NONE: 6191 /* 6192 * 'drop all' supersedes any accept flags that may have been 6193 * passed to the function. 6194 */ 6195 break; 6196 case BNX2X_RX_MODE_NORMAL: 6197 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6198 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); 6199 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6200 6201 /* internal switching mode */ 6202 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6203 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); 6204 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6205 6206 if (bp->accept_any_vlan) { 6207 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6208 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6209 } 6210 6211 break; 6212 case BNX2X_RX_MODE_ALLMULTI: 6213 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6214 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6215 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6216 6217 /* internal switching mode */ 6218 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6219 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6220 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6221 6222 if (bp->accept_any_vlan) { 6223 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6224 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6225 } 6226 6227 break; 6228 case BNX2X_RX_MODE_PROMISC: 6229 /* According to definition of SI mode, iface in promisc mode 6230 * should receive matched and unmatched (in resolution of port) 6231 * unicast packets. 6232 */ 6233 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); 6234 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6235 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6236 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6237 6238 /* internal switching mode */ 6239 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6240 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6241 6242 if (IS_MF_SI(bp)) 6243 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); 6244 else 6245 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6246 6247 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6248 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6249 6250 break; 6251 default: 6252 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); 6253 return -EINVAL; 6254 } 6255 6256 return 0; 6257 } 6258 6259 /* called with netif_addr_lock_bh() */ 6260 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp) 6261 { 6262 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 6263 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 6264 int rc; 6265 6266 if (!NO_FCOE(bp)) 6267 /* Configure rx_mode of FCoE Queue */ 6268 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); 6269 6270 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, 6271 &tx_accept_flags); 6272 if (rc) 6273 return rc; 6274 6275 __set_bit(RAMROD_RX, &ramrod_flags); 6276 __set_bit(RAMROD_TX, &ramrod_flags); 6277 6278 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, 6279 rx_accept_flags, tx_accept_flags, 6280 ramrod_flags); 6281 } 6282 6283 static void bnx2x_init_internal_common(struct bnx2x *bp) 6284 { 6285 int i; 6286 6287 /* Zero this manually as its initialization is 6288 currently missing in the initTool */ 6289 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) 6290 REG_WR(bp, BAR_USTRORM_INTMEM + 6291 USTORM_AGG_DATA_OFFSET + i * 4, 0); 6292 if (!CHIP_IS_E1x(bp)) { 6293 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, 6294 CHIP_INT_MODE_IS_BC(bp) ? 6295 HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 6296 } 6297 } 6298 6299 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) 6300 { 6301 switch (load_code) { 6302 case FW_MSG_CODE_DRV_LOAD_COMMON: 6303 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 6304 bnx2x_init_internal_common(bp); 6305 /* no break */ 6306 6307 case FW_MSG_CODE_DRV_LOAD_PORT: 6308 /* nothing to do */ 6309 /* no break */ 6310 6311 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 6312 /* internal memory per function is 6313 initialized inside bnx2x_pf_init */ 6314 break; 6315 6316 default: 6317 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); 6318 break; 6319 } 6320 } 6321 6322 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) 6323 { 6324 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); 6325 } 6326 6327 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) 6328 { 6329 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); 6330 } 6331 6332 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) 6333 { 6334 if (CHIP_IS_E1x(fp->bp)) 6335 return BP_L_ID(fp->bp) + fp->index; 6336 else /* We want Client ID to be the same as IGU SB ID for 57712 */ 6337 return bnx2x_fp_igu_sb_id(fp); 6338 } 6339 6340 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) 6341 { 6342 struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; 6343 u8 cos; 6344 unsigned long q_type = 0; 6345 u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; 6346 fp->rx_queue = fp_idx; 6347 fp->cid = fp_idx; 6348 fp->cl_id = bnx2x_fp_cl_id(fp); 6349 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); 6350 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); 6351 /* qZone id equals to FW (per path) client id */ 6352 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); 6353 6354 /* init shortcut */ 6355 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); 6356 6357 /* Setup SB indices */ 6358 fp->rx_cons_sb = BNX2X_RX_SB_INDEX; 6359 6360 /* Configure Queue State object */ 6361 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6362 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6363 6364 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); 6365 6366 /* init tx data */ 6367 for_each_cos_in_tx_queue(fp, cos) { 6368 bnx2x_init_txdata(bp, fp->txdata_ptr[cos], 6369 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), 6370 FP_COS_TO_TXQ(fp, cos, bp), 6371 BNX2X_TX_SB_INDEX_BASE + cos, fp); 6372 cids[cos] = fp->txdata_ptr[cos]->cid; 6373 } 6374 6375 /* nothing more for vf to do here */ 6376 if (IS_VF(bp)) 6377 return; 6378 6379 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, 6380 fp->fw_sb_id, fp->igu_sb_id); 6381 bnx2x_update_fpsb_idx(fp); 6382 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, 6383 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6384 bnx2x_sp_mapping(bp, q_rdata), q_type); 6385 6386 /** 6387 * Configure classification DBs: Always enable Tx switching 6388 */ 6389 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); 6390 6391 DP(NETIF_MSG_IFUP, 6392 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6393 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6394 fp->igu_sb_id); 6395 } 6396 6397 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) 6398 { 6399 int i; 6400 6401 for (i = 1; i <= NUM_TX_RINGS; i++) { 6402 struct eth_tx_next_bd *tx_next_bd = 6403 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; 6404 6405 tx_next_bd->addr_hi = 6406 cpu_to_le32(U64_HI(txdata->tx_desc_mapping + 6407 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6408 tx_next_bd->addr_lo = 6409 cpu_to_le32(U64_LO(txdata->tx_desc_mapping + 6410 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6411 } 6412 6413 *txdata->tx_cons_sb = cpu_to_le16(0); 6414 6415 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 6416 txdata->tx_db.data.zero_fill1 = 0; 6417 txdata->tx_db.data.prod = 0; 6418 6419 txdata->tx_pkt_prod = 0; 6420 txdata->tx_pkt_cons = 0; 6421 txdata->tx_bd_prod = 0; 6422 txdata->tx_bd_cons = 0; 6423 txdata->tx_pkt = 0; 6424 } 6425 6426 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) 6427 { 6428 int i; 6429 6430 for_each_tx_queue_cnic(bp, i) 6431 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); 6432 } 6433 6434 static void bnx2x_init_tx_rings(struct bnx2x *bp) 6435 { 6436 int i; 6437 u8 cos; 6438 6439 for_each_eth_queue(bp, i) 6440 for_each_cos_in_tx_queue(&bp->fp[i], cos) 6441 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); 6442 } 6443 6444 static void bnx2x_init_fcoe_fp(struct bnx2x *bp) 6445 { 6446 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 6447 unsigned long q_type = 0; 6448 6449 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp); 6450 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp, 6451 BNX2X_FCOE_ETH_CL_ID_IDX); 6452 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp); 6453 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID; 6454 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id; 6455 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX; 6456 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]), 6457 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX, 6458 fp); 6459 6460 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index); 6461 6462 /* qZone id equals to FW (per path) client id */ 6463 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp); 6464 /* init shortcut */ 6465 bnx2x_fcoe(bp, ustorm_rx_prods_offset) = 6466 bnx2x_rx_ustorm_prods_offset(fp); 6467 6468 /* Configure Queue State object */ 6469 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6470 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6471 6472 /* No multi-CoS for FCoE L2 client */ 6473 BUG_ON(fp->max_cos != 1); 6474 6475 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, 6476 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6477 bnx2x_sp_mapping(bp, q_rdata), q_type); 6478 6479 DP(NETIF_MSG_IFUP, 6480 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6481 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6482 fp->igu_sb_id); 6483 } 6484 6485 void bnx2x_nic_init_cnic(struct bnx2x *bp) 6486 { 6487 if (!NO_FCOE(bp)) 6488 bnx2x_init_fcoe_fp(bp); 6489 6490 bnx2x_init_sb(bp, bp->cnic_sb_mapping, 6491 BNX2X_VF_ID_INVALID, false, 6492 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); 6493 6494 /* ensure status block indices were read */ 6495 rmb(); 6496 bnx2x_init_rx_rings_cnic(bp); 6497 bnx2x_init_tx_rings_cnic(bp); 6498 6499 /* flush all */ 6500 mb(); 6501 mmiowb(); 6502 } 6503 6504 void bnx2x_pre_irq_nic_init(struct bnx2x *bp) 6505 { 6506 int i; 6507 6508 /* Setup NIC internals and enable interrupts */ 6509 for_each_eth_queue(bp, i) 6510 bnx2x_init_eth_fp(bp, i); 6511 6512 /* ensure status block indices were read */ 6513 rmb(); 6514 bnx2x_init_rx_rings(bp); 6515 bnx2x_init_tx_rings(bp); 6516 6517 if (IS_PF(bp)) { 6518 /* Initialize MOD_ABS interrupts */ 6519 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, 6520 bp->common.shmem_base, 6521 bp->common.shmem2_base, BP_PORT(bp)); 6522 6523 /* initialize the default status block and sp ring */ 6524 bnx2x_init_def_sb(bp); 6525 bnx2x_update_dsb_idx(bp); 6526 bnx2x_init_sp_ring(bp); 6527 } else { 6528 bnx2x_memset_stats(bp); 6529 } 6530 } 6531 6532 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code) 6533 { 6534 bnx2x_init_eq_ring(bp); 6535 bnx2x_init_internal(bp, load_code); 6536 bnx2x_pf_init(bp); 6537 bnx2x_stats_init(bp); 6538 6539 /* flush all before enabling interrupts */ 6540 mb(); 6541 mmiowb(); 6542 6543 bnx2x_int_enable(bp); 6544 6545 /* Check for SPIO5 */ 6546 bnx2x_attn_int_deasserted0(bp, 6547 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & 6548 AEU_INPUTS_ATTN_BITS_SPIO5); 6549 } 6550 6551 /* gzip service functions */ 6552 static int bnx2x_gunzip_init(struct bnx2x *bp) 6553 { 6554 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, 6555 &bp->gunzip_mapping, GFP_KERNEL); 6556 if (bp->gunzip_buf == NULL) 6557 goto gunzip_nomem1; 6558 6559 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); 6560 if (bp->strm == NULL) 6561 goto gunzip_nomem2; 6562 6563 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); 6564 if (bp->strm->workspace == NULL) 6565 goto gunzip_nomem3; 6566 6567 return 0; 6568 6569 gunzip_nomem3: 6570 kfree(bp->strm); 6571 bp->strm = NULL; 6572 6573 gunzip_nomem2: 6574 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6575 bp->gunzip_mapping); 6576 bp->gunzip_buf = NULL; 6577 6578 gunzip_nomem1: 6579 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); 6580 return -ENOMEM; 6581 } 6582 6583 static void bnx2x_gunzip_end(struct bnx2x *bp) 6584 { 6585 if (bp->strm) { 6586 vfree(bp->strm->workspace); 6587 kfree(bp->strm); 6588 bp->strm = NULL; 6589 } 6590 6591 if (bp->gunzip_buf) { 6592 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6593 bp->gunzip_mapping); 6594 bp->gunzip_buf = NULL; 6595 } 6596 } 6597 6598 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) 6599 { 6600 int n, rc; 6601 6602 /* check gzip header */ 6603 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { 6604 BNX2X_ERR("Bad gzip header\n"); 6605 return -EINVAL; 6606 } 6607 6608 n = 10; 6609 6610 #define FNAME 0x8 6611 6612 if (zbuf[3] & FNAME) 6613 while ((zbuf[n++] != 0) && (n < len)); 6614 6615 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; 6616 bp->strm->avail_in = len - n; 6617 bp->strm->next_out = bp->gunzip_buf; 6618 bp->strm->avail_out = FW_BUF_SIZE; 6619 6620 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); 6621 if (rc != Z_OK) 6622 return rc; 6623 6624 rc = zlib_inflate(bp->strm, Z_FINISH); 6625 if ((rc != Z_OK) && (rc != Z_STREAM_END)) 6626 netdev_err(bp->dev, "Firmware decompression error: %s\n", 6627 bp->strm->msg); 6628 6629 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); 6630 if (bp->gunzip_outlen & 0x3) 6631 netdev_err(bp->dev, 6632 "Firmware decompression error: gunzip_outlen (%d) not aligned\n", 6633 bp->gunzip_outlen); 6634 bp->gunzip_outlen >>= 2; 6635 6636 zlib_inflateEnd(bp->strm); 6637 6638 if (rc == Z_STREAM_END) 6639 return 0; 6640 6641 return rc; 6642 } 6643 6644 /* nic load/unload */ 6645 6646 /* 6647 * General service functions 6648 */ 6649 6650 /* send a NIG loopback debug packet */ 6651 static void bnx2x_lb_pckt(struct bnx2x *bp) 6652 { 6653 u32 wb_write[3]; 6654 6655 /* Ethernet source and destination addresses */ 6656 wb_write[0] = 0x55555555; 6657 wb_write[1] = 0x55555555; 6658 wb_write[2] = 0x20; /* SOP */ 6659 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6660 6661 /* NON-IP protocol */ 6662 wb_write[0] = 0x09000000; 6663 wb_write[1] = 0x55555555; 6664 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 6665 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6666 } 6667 6668 /* some of the internal memories 6669 * are not directly readable from the driver 6670 * to test them we send debug packets 6671 */ 6672 static int bnx2x_int_mem_test(struct bnx2x *bp) 6673 { 6674 int factor; 6675 int count, i; 6676 u32 val = 0; 6677 6678 if (CHIP_REV_IS_FPGA(bp)) 6679 factor = 120; 6680 else if (CHIP_REV_IS_EMUL(bp)) 6681 factor = 200; 6682 else 6683 factor = 1; 6684 6685 /* Disable inputs of parser neighbor blocks */ 6686 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6687 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6688 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6689 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6690 6691 /* Write 0 to parser credits for CFC search request */ 6692 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6693 6694 /* send Ethernet packet */ 6695 bnx2x_lb_pckt(bp); 6696 6697 /* TODO do i reset NIG statistic? */ 6698 /* Wait until NIG register shows 1 packet of size 0x10 */ 6699 count = 1000 * factor; 6700 while (count) { 6701 6702 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6703 val = *bnx2x_sp(bp, wb_data[0]); 6704 if (val == 0x10) 6705 break; 6706 6707 usleep_range(10000, 20000); 6708 count--; 6709 } 6710 if (val != 0x10) { 6711 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6712 return -1; 6713 } 6714 6715 /* Wait until PRS register shows 1 packet */ 6716 count = 1000 * factor; 6717 while (count) { 6718 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6719 if (val == 1) 6720 break; 6721 6722 usleep_range(10000, 20000); 6723 count--; 6724 } 6725 if (val != 0x1) { 6726 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6727 return -2; 6728 } 6729 6730 /* Reset and init BRB, PRS */ 6731 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6732 msleep(50); 6733 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6734 msleep(50); 6735 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6736 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6737 6738 DP(NETIF_MSG_HW, "part2\n"); 6739 6740 /* Disable inputs of parser neighbor blocks */ 6741 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6742 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6743 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6744 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6745 6746 /* Write 0 to parser credits for CFC search request */ 6747 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6748 6749 /* send 10 Ethernet packets */ 6750 for (i = 0; i < 10; i++) 6751 bnx2x_lb_pckt(bp); 6752 6753 /* Wait until NIG register shows 10 + 1 6754 packets of size 11*0x10 = 0xb0 */ 6755 count = 1000 * factor; 6756 while (count) { 6757 6758 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6759 val = *bnx2x_sp(bp, wb_data[0]); 6760 if (val == 0xb0) 6761 break; 6762 6763 usleep_range(10000, 20000); 6764 count--; 6765 } 6766 if (val != 0xb0) { 6767 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6768 return -3; 6769 } 6770 6771 /* Wait until PRS register shows 2 packets */ 6772 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6773 if (val != 2) 6774 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6775 6776 /* Write 1 to parser credits for CFC search request */ 6777 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 6778 6779 /* Wait until PRS register shows 3 packets */ 6780 msleep(10 * factor); 6781 /* Wait until NIG register shows 1 packet of size 0x10 */ 6782 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6783 if (val != 3) 6784 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6785 6786 /* clear NIG EOP FIFO */ 6787 for (i = 0; i < 11; i++) 6788 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); 6789 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); 6790 if (val != 1) { 6791 BNX2X_ERR("clear of NIG failed\n"); 6792 return -4; 6793 } 6794 6795 /* Reset and init BRB, PRS, NIG */ 6796 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6797 msleep(50); 6798 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6799 msleep(50); 6800 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6801 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6802 if (!CNIC_SUPPORT(bp)) 6803 /* set NIC mode */ 6804 REG_WR(bp, PRS_REG_NIC_MODE, 1); 6805 6806 /* Enable inputs of parser neighbor blocks */ 6807 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); 6808 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); 6809 REG_WR(bp, CFC_REG_DEBUG0, 0x0); 6810 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); 6811 6812 DP(NETIF_MSG_HW, "done\n"); 6813 6814 return 0; /* OK */ 6815 } 6816 6817 static void bnx2x_enable_blocks_attention(struct bnx2x *bp) 6818 { 6819 u32 val; 6820 6821 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6822 if (!CHIP_IS_E1x(bp)) 6823 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); 6824 else 6825 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); 6826 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6827 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 6828 /* 6829 * mask read length error interrupts in brb for parser 6830 * (parsing unit and 'checksum and crc' unit) 6831 * these errors are legal (PU reads fixed length and CAC can cause 6832 * read length error on truncated packets) 6833 */ 6834 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); 6835 REG_WR(bp, QM_REG_QM_INT_MASK, 0); 6836 REG_WR(bp, TM_REG_TM_INT_MASK, 0); 6837 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); 6838 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); 6839 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); 6840 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ 6841 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ 6842 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); 6843 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); 6844 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); 6845 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ 6846 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ 6847 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 6848 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); 6849 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); 6850 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); 6851 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ 6852 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ 6853 6854 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 6855 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 6856 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; 6857 if (!CHIP_IS_E1x(bp)) 6858 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 6859 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; 6860 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); 6861 6862 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); 6863 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); 6864 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); 6865 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ 6866 6867 if (!CHIP_IS_E1x(bp)) 6868 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 6869 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 6870 6871 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); 6872 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); 6873 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ 6874 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 6875 } 6876 6877 static void bnx2x_reset_common(struct bnx2x *bp) 6878 { 6879 u32 val = 0x1400; 6880 6881 /* reset_common */ 6882 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6883 0xd3ffff7f); 6884 6885 if (CHIP_IS_E3(bp)) { 6886 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6887 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6888 } 6889 6890 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); 6891 } 6892 6893 static void bnx2x_setup_dmae(struct bnx2x *bp) 6894 { 6895 bp->dmae_ready = 0; 6896 spin_lock_init(&bp->dmae_lock); 6897 } 6898 6899 static void bnx2x_init_pxp(struct bnx2x *bp) 6900 { 6901 u16 devctl; 6902 int r_order, w_order; 6903 6904 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); 6905 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); 6906 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6907 if (bp->mrrs == -1) 6908 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6909 else { 6910 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); 6911 r_order = bp->mrrs; 6912 } 6913 6914 bnx2x_init_pxp_arb(bp, r_order, w_order); 6915 } 6916 6917 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) 6918 { 6919 int is_required; 6920 u32 val; 6921 int port; 6922 6923 if (BP_NOMCP(bp)) 6924 return; 6925 6926 is_required = 0; 6927 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & 6928 SHARED_HW_CFG_FAN_FAILURE_MASK; 6929 6930 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) 6931 is_required = 1; 6932 6933 /* 6934 * The fan failure mechanism is usually related to the PHY type since 6935 * the power consumption of the board is affected by the PHY. Currently, 6936 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 6937 */ 6938 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) 6939 for (port = PORT_0; port < PORT_MAX; port++) { 6940 is_required |= 6941 bnx2x_fan_failure_det_req( 6942 bp, 6943 bp->common.shmem_base, 6944 bp->common.shmem2_base, 6945 port); 6946 } 6947 6948 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); 6949 6950 if (is_required == 0) 6951 return; 6952 6953 /* Fan failure is indicated by SPIO 5 */ 6954 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 6955 6956 /* set to active low mode */ 6957 val = REG_RD(bp, MISC_REG_SPIO_INT); 6958 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 6959 REG_WR(bp, MISC_REG_SPIO_INT, val); 6960 6961 /* enable interrupt to signal the IGU */ 6962 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 6963 val |= MISC_SPIO_SPIO5; 6964 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); 6965 } 6966 6967 void bnx2x_pf_disable(struct bnx2x *bp) 6968 { 6969 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 6970 val &= ~IGU_PF_CONF_FUNC_EN; 6971 6972 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 6973 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6974 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); 6975 } 6976 6977 static void bnx2x__common_init_phy(struct bnx2x *bp) 6978 { 6979 u32 shmem_base[2], shmem2_base[2]; 6980 /* Avoid common init in case MFW supports LFA */ 6981 if (SHMEM2_RD(bp, size) > 6982 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 6983 return; 6984 shmem_base[0] = bp->common.shmem_base; 6985 shmem2_base[0] = bp->common.shmem2_base; 6986 if (!CHIP_IS_E1x(bp)) { 6987 shmem_base[1] = 6988 SHMEM2_RD(bp, other_shmem_base_addr); 6989 shmem2_base[1] = 6990 SHMEM2_RD(bp, other_shmem2_base_addr); 6991 } 6992 bnx2x_acquire_phy_lock(bp); 6993 bnx2x_common_init_phy(bp, shmem_base, shmem2_base, 6994 bp->common.chip_id); 6995 bnx2x_release_phy_lock(bp); 6996 } 6997 6998 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val) 6999 { 7000 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val); 7001 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val); 7002 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val); 7003 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val); 7004 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val); 7005 7006 /* make sure this value is 0 */ 7007 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); 7008 7009 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val); 7010 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val); 7011 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val); 7012 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val); 7013 } 7014 7015 static void bnx2x_set_endianity(struct bnx2x *bp) 7016 { 7017 #ifdef __BIG_ENDIAN 7018 bnx2x_config_endianity(bp, 1); 7019 #else 7020 bnx2x_config_endianity(bp, 0); 7021 #endif 7022 } 7023 7024 static void bnx2x_reset_endianity(struct bnx2x *bp) 7025 { 7026 bnx2x_config_endianity(bp, 0); 7027 } 7028 7029 /** 7030 * bnx2x_init_hw_common - initialize the HW at the COMMON phase. 7031 * 7032 * @bp: driver handle 7033 */ 7034 static int bnx2x_init_hw_common(struct bnx2x *bp) 7035 { 7036 u32 val; 7037 7038 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); 7039 7040 /* 7041 * take the RESET lock to protect undi_unload flow from accessing 7042 * registers while we're resetting the chip 7043 */ 7044 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7045 7046 bnx2x_reset_common(bp); 7047 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); 7048 7049 val = 0xfffc; 7050 if (CHIP_IS_E3(bp)) { 7051 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 7052 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 7053 } 7054 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); 7055 7056 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7057 7058 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); 7059 7060 if (!CHIP_IS_E1x(bp)) { 7061 u8 abs_func_id; 7062 7063 /** 7064 * 4-port mode or 2-port mode we need to turn of master-enable 7065 * for everyone, after that, turn it back on for self. 7066 * so, we disregard multi-function or not, and always disable 7067 * for all functions on the given path, this means 0,2,4,6 for 7068 * path 0 and 1,3,5,7 for path 1 7069 */ 7070 for (abs_func_id = BP_PATH(bp); 7071 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { 7072 if (abs_func_id == BP_ABS_FUNC(bp)) { 7073 REG_WR(bp, 7074 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 7075 1); 7076 continue; 7077 } 7078 7079 bnx2x_pretend_func(bp, abs_func_id); 7080 /* clear pf enable */ 7081 bnx2x_pf_disable(bp); 7082 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7083 } 7084 } 7085 7086 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); 7087 if (CHIP_IS_E1(bp)) { 7088 /* enable HW interrupt from PXP on USDM overflow 7089 bit 16 on INT_MASK_0 */ 7090 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 7091 } 7092 7093 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); 7094 bnx2x_init_pxp(bp); 7095 bnx2x_set_endianity(bp); 7096 bnx2x_ilt_init_page_size(bp, INITOP_SET); 7097 7098 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) 7099 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 7100 7101 /* let the HW do it's magic ... */ 7102 msleep(100); 7103 /* finish PXP init */ 7104 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); 7105 if (val != 1) { 7106 BNX2X_ERR("PXP2 CFG failed\n"); 7107 return -EBUSY; 7108 } 7109 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); 7110 if (val != 1) { 7111 BNX2X_ERR("PXP2 RD_INIT failed\n"); 7112 return -EBUSY; 7113 } 7114 7115 /* Timers bug workaround E2 only. We need to set the entire ILT to 7116 * have entries with value "0" and valid bit on. 7117 * This needs to be done by the first PF that is loaded in a path 7118 * (i.e. common phase) 7119 */ 7120 if (!CHIP_IS_E1x(bp)) { 7121 /* In E2 there is a bug in the timers block that can cause function 6 / 7 7122 * (i.e. vnic3) to start even if it is marked as "scan-off". 7123 * This occurs when a different function (func2,3) is being marked 7124 * as "scan-off". Real-life scenario for example: if a driver is being 7125 * load-unloaded while func6,7 are down. This will cause the timer to access 7126 * the ilt, translate to a logical address and send a request to read/write. 7127 * Since the ilt for the function that is down is not valid, this will cause 7128 * a translation error which is unrecoverable. 7129 * The Workaround is intended to make sure that when this happens nothing fatal 7130 * will occur. The workaround: 7131 * 1. First PF driver which loads on a path will: 7132 * a. After taking the chip out of reset, by using pretend, 7133 * it will write "0" to the following registers of 7134 * the other vnics. 7135 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 7136 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 7137 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 7138 * And for itself it will write '1' to 7139 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 7140 * dmae-operations (writing to pram for example.) 7141 * note: can be done for only function 6,7 but cleaner this 7142 * way. 7143 * b. Write zero+valid to the entire ILT. 7144 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 7145 * VNIC3 (of that port). The range allocated will be the 7146 * entire ILT. This is needed to prevent ILT range error. 7147 * 2. Any PF driver load flow: 7148 * a. ILT update with the physical addresses of the allocated 7149 * logical pages. 7150 * b. Wait 20msec. - note that this timeout is needed to make 7151 * sure there are no requests in one of the PXP internal 7152 * queues with "old" ILT addresses. 7153 * c. PF enable in the PGLC. 7154 * d. Clear the was_error of the PF in the PGLC. (could have 7155 * occurred while driver was down) 7156 * e. PF enable in the CFC (WEAK + STRONG) 7157 * f. Timers scan enable 7158 * 3. PF driver unload flow: 7159 * a. Clear the Timers scan_en. 7160 * b. Polling for scan_on=0 for that PF. 7161 * c. Clear the PF enable bit in the PXP. 7162 * d. Clear the PF enable in the CFC (WEAK + STRONG) 7163 * e. Write zero+valid to all ILT entries (The valid bit must 7164 * stay set) 7165 * f. If this is VNIC 3 of a port then also init 7166 * first_timers_ilt_entry to zero and last_timers_ilt_entry 7167 * to the last entry in the ILT. 7168 * 7169 * Notes: 7170 * Currently the PF error in the PGLC is non recoverable. 7171 * In the future the there will be a recovery routine for this error. 7172 * Currently attention is masked. 7173 * Having an MCP lock on the load/unload process does not guarantee that 7174 * there is no Timer disable during Func6/7 enable. This is because the 7175 * Timers scan is currently being cleared by the MCP on FLR. 7176 * Step 2.d can be done only for PF6/7 and the driver can also check if 7177 * there is error before clearing it. But the flow above is simpler and 7178 * more general. 7179 * All ILT entries are written by zero+valid and not just PF6/7 7180 * ILT entries since in the future the ILT entries allocation for 7181 * PF-s might be dynamic. 7182 */ 7183 struct ilt_client_info ilt_cli; 7184 struct bnx2x_ilt ilt; 7185 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 7186 memset(&ilt, 0, sizeof(struct bnx2x_ilt)); 7187 7188 /* initialize dummy TM client */ 7189 ilt_cli.start = 0; 7190 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 7191 ilt_cli.client_num = ILT_CLIENT_TM; 7192 7193 /* Step 1: set zeroes to all ilt page entries with valid bit on 7194 * Step 2: set the timers first/last ilt entry to point 7195 * to the entire range to prevent ILT range error for 3rd/4th 7196 * vnic (this code assumes existence of the vnic) 7197 * 7198 * both steps performed by call to bnx2x_ilt_client_init_op() 7199 * with dummy TM client 7200 * 7201 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 7202 * and his brother are split registers 7203 */ 7204 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); 7205 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); 7206 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7207 7208 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); 7209 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); 7210 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 7211 } 7212 7213 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); 7214 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); 7215 7216 if (!CHIP_IS_E1x(bp)) { 7217 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : 7218 (CHIP_REV_IS_FPGA(bp) ? 400 : 0); 7219 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); 7220 7221 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); 7222 7223 /* let the HW do it's magic ... */ 7224 do { 7225 msleep(200); 7226 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); 7227 } while (factor-- && (val != 1)); 7228 7229 if (val != 1) { 7230 BNX2X_ERR("ATC_INIT failed\n"); 7231 return -EBUSY; 7232 } 7233 } 7234 7235 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); 7236 7237 bnx2x_iov_init_dmae(bp); 7238 7239 /* clean the DMAE memory */ 7240 bp->dmae_ready = 1; 7241 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); 7242 7243 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); 7244 7245 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); 7246 7247 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); 7248 7249 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); 7250 7251 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); 7252 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); 7253 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); 7254 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); 7255 7256 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); 7257 7258 /* QM queues pointers table */ 7259 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); 7260 7261 /* soft reset pulse */ 7262 REG_WR(bp, QM_REG_SOFT_RESET, 1); 7263 REG_WR(bp, QM_REG_SOFT_RESET, 0); 7264 7265 if (CNIC_SUPPORT(bp)) 7266 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); 7267 7268 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); 7269 7270 if (!CHIP_REV_IS_SLOW(bp)) 7271 /* enable hw interrupt from doorbell Q */ 7272 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 7273 7274 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 7275 7276 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 7277 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); 7278 7279 if (!CHIP_IS_E1(bp)) 7280 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); 7281 7282 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { 7283 if (IS_MF_AFEX(bp)) { 7284 /* configure that VNTag and VLAN headers must be 7285 * received in afex mode 7286 */ 7287 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); 7288 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); 7289 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 7290 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 7291 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); 7292 } else { 7293 /* Bit-map indicating which L2 hdrs may appear 7294 * after the basic Ethernet header 7295 */ 7296 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 7297 bp->path_has_ovlan ? 7 : 6); 7298 } 7299 } 7300 7301 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); 7302 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); 7303 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); 7304 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); 7305 7306 if (!CHIP_IS_E1x(bp)) { 7307 /* reset VFC memories */ 7308 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7309 VFC_MEMORIES_RST_REG_CAM_RST | 7310 VFC_MEMORIES_RST_REG_RAM_RST); 7311 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7312 VFC_MEMORIES_RST_REG_CAM_RST | 7313 VFC_MEMORIES_RST_REG_RAM_RST); 7314 7315 msleep(20); 7316 } 7317 7318 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); 7319 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); 7320 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); 7321 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); 7322 7323 /* sync semi rtc */ 7324 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 7325 0x80000000); 7326 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 7327 0x80000000); 7328 7329 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); 7330 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); 7331 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); 7332 7333 if (!CHIP_IS_E1x(bp)) { 7334 if (IS_MF_AFEX(bp)) { 7335 /* configure that VNTag and VLAN headers must be 7336 * sent in afex mode 7337 */ 7338 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); 7339 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); 7340 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 7341 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 7342 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); 7343 } else { 7344 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 7345 bp->path_has_ovlan ? 7 : 6); 7346 } 7347 } 7348 7349 REG_WR(bp, SRC_REG_SOFT_RST, 1); 7350 7351 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); 7352 7353 if (CNIC_SUPPORT(bp)) { 7354 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); 7355 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 7356 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); 7357 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); 7358 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); 7359 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 7360 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); 7361 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 7362 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); 7363 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); 7364 } 7365 REG_WR(bp, SRC_REG_SOFT_RST, 0); 7366 7367 if (sizeof(union cdu_context) != 1024) 7368 /* we currently assume that a context is 1024 bytes */ 7369 dev_alert(&bp->pdev->dev, 7370 "please adjust the size of cdu_context(%ld)\n", 7371 (long)sizeof(union cdu_context)); 7372 7373 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); 7374 val = (4 << 24) + (0 << 12) + 1024; 7375 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); 7376 7377 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); 7378 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); 7379 /* enable context validation interrupt from CFC */ 7380 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 7381 7382 /* set the thresholds to prevent CFC/CDU race */ 7383 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); 7384 7385 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); 7386 7387 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) 7388 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); 7389 7390 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); 7391 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); 7392 7393 /* Reset PCIE errors for debug */ 7394 REG_WR(bp, 0x2814, 0xffffffff); 7395 REG_WR(bp, 0x3820, 0xffffffff); 7396 7397 if (!CHIP_IS_E1x(bp)) { 7398 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 7399 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 7400 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 7401 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 7402 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 7403 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 7404 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 7405 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 7406 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 7407 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 7408 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 7409 } 7410 7411 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); 7412 if (!CHIP_IS_E1(bp)) { 7413 /* in E3 this done in per-port section */ 7414 if (!CHIP_IS_E3(bp)) 7415 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7416 } 7417 if (CHIP_IS_E1H(bp)) 7418 /* not applicable for E2 (and above ...) */ 7419 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); 7420 7421 if (CHIP_REV_IS_SLOW(bp)) 7422 msleep(200); 7423 7424 /* finish CFC init */ 7425 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); 7426 if (val != 1) { 7427 BNX2X_ERR("CFC LL_INIT failed\n"); 7428 return -EBUSY; 7429 } 7430 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); 7431 if (val != 1) { 7432 BNX2X_ERR("CFC AC_INIT failed\n"); 7433 return -EBUSY; 7434 } 7435 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 7436 if (val != 1) { 7437 BNX2X_ERR("CFC CAM_INIT failed\n"); 7438 return -EBUSY; 7439 } 7440 REG_WR(bp, CFC_REG_DEBUG0, 0); 7441 7442 if (CHIP_IS_E1(bp)) { 7443 /* read NIG statistic 7444 to see if this is our first up since powerup */ 7445 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 7446 val = *bnx2x_sp(bp, wb_data[0]); 7447 7448 /* do internal memory self test */ 7449 if ((val == 0) && bnx2x_int_mem_test(bp)) { 7450 BNX2X_ERR("internal mem self test failed\n"); 7451 return -EBUSY; 7452 } 7453 } 7454 7455 bnx2x_setup_fan_failure_detection(bp); 7456 7457 /* clear PXP2 attentions */ 7458 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); 7459 7460 bnx2x_enable_blocks_attention(bp); 7461 bnx2x_enable_blocks_parity(bp); 7462 7463 if (!BP_NOMCP(bp)) { 7464 if (CHIP_IS_E1x(bp)) 7465 bnx2x__common_init_phy(bp); 7466 } else 7467 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 7468 7469 if (SHMEM2_HAS(bp, netproc_fw_ver)) 7470 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 7471 7472 return 0; 7473 } 7474 7475 /** 7476 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. 7477 * 7478 * @bp: driver handle 7479 */ 7480 static int bnx2x_init_hw_common_chip(struct bnx2x *bp) 7481 { 7482 int rc = bnx2x_init_hw_common(bp); 7483 7484 if (rc) 7485 return rc; 7486 7487 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 7488 if (!BP_NOMCP(bp)) 7489 bnx2x__common_init_phy(bp); 7490 7491 return 0; 7492 } 7493 7494 static int bnx2x_init_hw_port(struct bnx2x *bp) 7495 { 7496 int port = BP_PORT(bp); 7497 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 7498 u32 low, high; 7499 u32 val, reg; 7500 7501 DP(NETIF_MSG_HW, "starting port init port %d\n", port); 7502 7503 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 7504 7505 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7506 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7507 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7508 7509 /* Timers bug workaround: disables the pf_master bit in pglue at 7510 * common phase, we need to enable it here before any dmae access are 7511 * attempted. Therefore we manually added the enable-master to the 7512 * port phase (it also happens in the function phase) 7513 */ 7514 if (!CHIP_IS_E1x(bp)) 7515 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7516 7517 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7518 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7519 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7520 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7521 7522 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7523 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7524 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7525 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7526 7527 /* QM cid (connection) count */ 7528 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); 7529 7530 if (CNIC_SUPPORT(bp)) { 7531 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7532 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); 7533 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 7534 } 7535 7536 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7537 7538 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7539 7540 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { 7541 7542 if (IS_MF(bp)) 7543 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); 7544 else if (bp->dev->mtu > 4096) { 7545 if (bp->flags & ONE_PORT_FLAG) 7546 low = 160; 7547 else { 7548 val = bp->dev->mtu; 7549 /* (24*1024 + val*4)/256 */ 7550 low = 96 + (val/64) + 7551 ((val % 64) ? 1 : 0); 7552 } 7553 } else 7554 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); 7555 high = low + 56; /* 14*1024/256 */ 7556 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 7557 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 7558 } 7559 7560 if (CHIP_MODE_IS_4_PORT(bp)) 7561 REG_WR(bp, (BP_PORT(bp) ? 7562 BRB1_REG_MAC_GUARANTIED_1 : 7563 BRB1_REG_MAC_GUARANTIED_0), 40); 7564 7565 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7566 if (CHIP_IS_E3B0(bp)) { 7567 if (IS_MF_AFEX(bp)) { 7568 /* configure headers for AFEX mode */ 7569 REG_WR(bp, BP_PORT(bp) ? 7570 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7571 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 7572 REG_WR(bp, BP_PORT(bp) ? 7573 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 7574 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 7575 REG_WR(bp, BP_PORT(bp) ? 7576 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 7577 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 7578 } else { 7579 /* Ovlan exists only if we are in multi-function + 7580 * switch-dependent mode, in switch-independent there 7581 * is no ovlan headers 7582 */ 7583 REG_WR(bp, BP_PORT(bp) ? 7584 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7585 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 7586 (bp->path_has_ovlan ? 7 : 6)); 7587 } 7588 } 7589 7590 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7591 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7592 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7593 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7594 7595 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7596 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7597 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7598 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7599 7600 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7601 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7602 7603 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7604 7605 if (CHIP_IS_E1x(bp)) { 7606 /* configure PBF to work without PAUSE mtu 9000 */ 7607 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 7608 7609 /* update threshold */ 7610 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 7611 /* update init credit */ 7612 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 7613 7614 /* probe changes */ 7615 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); 7616 udelay(50); 7617 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); 7618 } 7619 7620 if (CNIC_SUPPORT(bp)) 7621 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7622 7623 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7624 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7625 7626 if (CHIP_IS_E1(bp)) { 7627 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7628 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7629 } 7630 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7631 7632 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7633 7634 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7635 /* init aeu_mask_attn_func_0/1: 7636 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use 7637 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF 7638 * bits 4-7 are used for "per vn group attention" */ 7639 val = IS_MF(bp) ? 0xF7 : 0x7; 7640 /* Enable DCBX attention for all but E1 */ 7641 val |= CHIP_IS_E1(bp) ? 0 : 0x10; 7642 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 7643 7644 /* SCPAD_PARITY should NOT trigger close the gates */ 7645 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0; 7646 REG_WR(bp, reg, 7647 REG_RD(bp, reg) & 7648 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7649 7650 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0; 7651 REG_WR(bp, reg, 7652 REG_RD(bp, reg) & 7653 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7654 7655 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7656 7657 if (!CHIP_IS_E1x(bp)) { 7658 /* Bit-map indicating which L2 hdrs may appear after the 7659 * basic Ethernet header 7660 */ 7661 if (IS_MF_AFEX(bp)) 7662 REG_WR(bp, BP_PORT(bp) ? 7663 NIG_REG_P1_HDRS_AFTER_BASIC : 7664 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 7665 else 7666 REG_WR(bp, BP_PORT(bp) ? 7667 NIG_REG_P1_HDRS_AFTER_BASIC : 7668 NIG_REG_P0_HDRS_AFTER_BASIC, 7669 IS_MF_SD(bp) ? 7 : 6); 7670 7671 if (CHIP_IS_E3(bp)) 7672 REG_WR(bp, BP_PORT(bp) ? 7673 NIG_REG_LLH1_MF_MODE : 7674 NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7675 } 7676 if (!CHIP_IS_E3(bp)) 7677 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 7678 7679 if (!CHIP_IS_E1(bp)) { 7680 /* 0x2 disable mf_ov, 0x1 enable */ 7681 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 7682 (IS_MF_SD(bp) ? 0x1 : 0x2)); 7683 7684 if (!CHIP_IS_E1x(bp)) { 7685 val = 0; 7686 switch (bp->mf_mode) { 7687 case MULTI_FUNCTION_SD: 7688 val = 1; 7689 break; 7690 case MULTI_FUNCTION_SI: 7691 case MULTI_FUNCTION_AFEX: 7692 val = 2; 7693 break; 7694 } 7695 7696 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : 7697 NIG_REG_LLH0_CLS_TYPE), val); 7698 } 7699 { 7700 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 7701 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 7702 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 7703 } 7704 } 7705 7706 /* If SPIO5 is set to generate interrupts, enable it for this port */ 7707 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 7708 if (val & MISC_SPIO_SPIO5) { 7709 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 7710 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 7711 val = REG_RD(bp, reg_addr); 7712 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 7713 REG_WR(bp, reg_addr, val); 7714 } 7715 7716 return 0; 7717 } 7718 7719 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) 7720 { 7721 int reg; 7722 u32 wb_write[2]; 7723 7724 if (CHIP_IS_E1(bp)) 7725 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 7726 else 7727 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 7728 7729 wb_write[0] = ONCHIP_ADDR1(addr); 7730 wb_write[1] = ONCHIP_ADDR2(addr); 7731 REG_WR_DMAE(bp, reg, wb_write, 2); 7732 } 7733 7734 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) 7735 { 7736 u32 data, ctl, cnt = 100; 7737 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 7738 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 7739 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 7740 u32 sb_bit = 1 << (idu_sb_id%32); 7741 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 7742 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 7743 7744 /* Not supported in BC mode */ 7745 if (CHIP_INT_MODE_IS_BC(bp)) 7746 return; 7747 7748 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup 7749 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 7750 IGU_REGULAR_CLEANUP_SET | 7751 IGU_REGULAR_BCLEANUP; 7752 7753 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 7754 func_encode << IGU_CTRL_REG_FID_SHIFT | 7755 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 7756 7757 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7758 data, igu_addr_data); 7759 REG_WR(bp, igu_addr_data, data); 7760 mmiowb(); 7761 barrier(); 7762 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7763 ctl, igu_addr_ctl); 7764 REG_WR(bp, igu_addr_ctl, ctl); 7765 mmiowb(); 7766 barrier(); 7767 7768 /* wait for clean up to finish */ 7769 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) 7770 msleep(20); 7771 7772 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { 7773 DP(NETIF_MSG_HW, 7774 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", 7775 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 7776 } 7777 } 7778 7779 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) 7780 { 7781 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); 7782 } 7783 7784 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) 7785 { 7786 u32 i, base = FUNC_ILT_BASE(func); 7787 for (i = base; i < base + ILT_PER_FUNC; i++) 7788 bnx2x_ilt_wr(bp, i, 0); 7789 } 7790 7791 static void bnx2x_init_searcher(struct bnx2x *bp) 7792 { 7793 int port = BP_PORT(bp); 7794 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); 7795 /* T1 hash bits value determines the T1 number of entries */ 7796 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 7797 } 7798 7799 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) 7800 { 7801 int rc; 7802 struct bnx2x_func_state_params func_params = {NULL}; 7803 struct bnx2x_func_switch_update_params *switch_update_params = 7804 &func_params.params.switch_update; 7805 7806 /* Prepare parameters for function state transitions */ 7807 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 7808 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 7809 7810 func_params.f_obj = &bp->func_obj; 7811 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 7812 7813 /* Function parameters */ 7814 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG, 7815 &switch_update_params->changes); 7816 if (suspend) 7817 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND, 7818 &switch_update_params->changes); 7819 7820 rc = bnx2x_func_state_change(bp, &func_params); 7821 7822 return rc; 7823 } 7824 7825 static int bnx2x_reset_nic_mode(struct bnx2x *bp) 7826 { 7827 int rc, i, port = BP_PORT(bp); 7828 int vlan_en = 0, mac_en[NUM_MACS]; 7829 7830 /* Close input from network */ 7831 if (bp->mf_mode == SINGLE_FUNCTION) { 7832 bnx2x_set_rx_filter(&bp->link_params, 0); 7833 } else { 7834 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : 7835 NIG_REG_LLH0_FUNC_EN); 7836 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7837 NIG_REG_LLH0_FUNC_EN, 0); 7838 for (i = 0; i < NUM_MACS; i++) { 7839 mac_en[i] = REG_RD(bp, port ? 7840 (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7841 4 * i) : 7842 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 7843 4 * i)); 7844 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7845 4 * i) : 7846 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); 7847 } 7848 } 7849 7850 /* Close BMC to host */ 7851 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7852 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); 7853 7854 /* Suspend Tx switching to the PF. Completion of this ramrod 7855 * further guarantees that all the packets of that PF / child 7856 * VFs in BRB were processed by the Parser, so it is safe to 7857 * change the NIC_MODE register. 7858 */ 7859 rc = bnx2x_func_switch_update(bp, 1); 7860 if (rc) { 7861 BNX2X_ERR("Can't suspend tx-switching!\n"); 7862 return rc; 7863 } 7864 7865 /* Change NIC_MODE register */ 7866 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7867 7868 /* Open input from network */ 7869 if (bp->mf_mode == SINGLE_FUNCTION) { 7870 bnx2x_set_rx_filter(&bp->link_params, 1); 7871 } else { 7872 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7873 NIG_REG_LLH0_FUNC_EN, vlan_en); 7874 for (i = 0; i < NUM_MACS; i++) { 7875 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7876 4 * i) : 7877 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 7878 mac_en[i]); 7879 } 7880 } 7881 7882 /* Enable BMC to host */ 7883 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7884 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); 7885 7886 /* Resume Tx switching to the PF */ 7887 rc = bnx2x_func_switch_update(bp, 0); 7888 if (rc) { 7889 BNX2X_ERR("Can't resume tx-switching!\n"); 7890 return rc; 7891 } 7892 7893 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7894 return 0; 7895 } 7896 7897 int bnx2x_init_hw_func_cnic(struct bnx2x *bp) 7898 { 7899 int rc; 7900 7901 bnx2x_ilt_init_op_cnic(bp, INITOP_SET); 7902 7903 if (CONFIGURE_NIC_MODE(bp)) { 7904 /* Configure searcher as part of function hw init */ 7905 bnx2x_init_searcher(bp); 7906 7907 /* Reset NIC mode */ 7908 rc = bnx2x_reset_nic_mode(bp); 7909 if (rc) 7910 BNX2X_ERR("Can't change NIC mode!\n"); 7911 return rc; 7912 } 7913 7914 return 0; 7915 } 7916 7917 /* previous driver DMAE transaction may have occurred when pre-boot stage ended 7918 * and boot began, or when kdump kernel was loaded. Either case would invalidate 7919 * the addresses of the transaction, resulting in was-error bit set in the pci 7920 * causing all hw-to-host pcie transactions to timeout. If this happened we want 7921 * to clear the interrupt which detected this from the pglueb and the was done 7922 * bit 7923 */ 7924 static void bnx2x_clean_pglue_errors(struct bnx2x *bp) 7925 { 7926 if (!CHIP_IS_E1x(bp)) 7927 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 7928 1 << BP_ABS_FUNC(bp)); 7929 } 7930 7931 static int bnx2x_init_hw_func(struct bnx2x *bp) 7932 { 7933 int port = BP_PORT(bp); 7934 int func = BP_FUNC(bp); 7935 int init_phase = PHASE_PF0 + func; 7936 struct bnx2x_ilt *ilt = BP_ILT(bp); 7937 u16 cdu_ilt_start; 7938 u32 addr, val; 7939 u32 main_mem_base, main_mem_size, main_mem_prty_clr; 7940 int i, main_mem_width, rc; 7941 7942 DP(NETIF_MSG_HW, "starting func init func %d\n", func); 7943 7944 /* FLR cleanup - hmmm */ 7945 if (!CHIP_IS_E1x(bp)) { 7946 rc = bnx2x_pf_flr_clnup(bp); 7947 if (rc) { 7948 bnx2x_fw_dump(bp); 7949 return rc; 7950 } 7951 } 7952 7953 /* set MSI reconfigure capability */ 7954 if (bp->common.int_block == INT_BLOCK_HC) { 7955 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 7956 val = REG_RD(bp, addr); 7957 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 7958 REG_WR(bp, addr, val); 7959 } 7960 7961 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7962 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7963 7964 ilt = BP_ILT(bp); 7965 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7966 7967 if (IS_SRIOV(bp)) 7968 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; 7969 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); 7970 7971 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes 7972 * those of the VFs, so start line should be reset 7973 */ 7974 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7975 for (i = 0; i < L2_ILT_LINES(bp); i++) { 7976 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; 7977 ilt->lines[cdu_ilt_start + i].page_mapping = 7978 bp->context[i].cxt_mapping; 7979 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; 7980 } 7981 7982 bnx2x_ilt_init_op(bp, INITOP_SET); 7983 7984 if (!CONFIGURE_NIC_MODE(bp)) { 7985 bnx2x_init_searcher(bp); 7986 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7987 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7988 } else { 7989 /* Set NIC mode */ 7990 REG_WR(bp, PRS_REG_NIC_MODE, 1); 7991 DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); 7992 } 7993 7994 if (!CHIP_IS_E1x(bp)) { 7995 u32 pf_conf = IGU_PF_CONF_FUNC_EN; 7996 7997 /* Turn on a single ISR mode in IGU if driver is going to use 7998 * INT#x or MSI 7999 */ 8000 if (!(bp->flags & USING_MSIX_FLAG)) 8001 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 8002 /* 8003 * Timers workaround bug: function init part. 8004 * Need to wait 20msec after initializing ILT, 8005 * needed to make sure there are no requests in 8006 * one of the PXP internal queues with "old" ILT addresses 8007 */ 8008 msleep(20); 8009 /* 8010 * Master enable - Due to WB DMAE writes performed before this 8011 * register is re-initialized as part of the regular function 8012 * init 8013 */ 8014 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 8015 /* Enable the function in IGU */ 8016 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); 8017 } 8018 8019 bp->dmae_ready = 1; 8020 8021 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 8022 8023 bnx2x_clean_pglue_errors(bp); 8024 8025 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 8026 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 8027 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 8028 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 8029 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 8030 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 8031 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 8032 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 8033 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 8034 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 8035 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 8036 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 8037 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 8038 8039 if (!CHIP_IS_E1x(bp)) 8040 REG_WR(bp, QM_REG_PF_EN, 1); 8041 8042 if (!CHIP_IS_E1x(bp)) { 8043 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8044 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8045 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8046 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8047 } 8048 bnx2x_init_block(bp, BLOCK_QM, init_phase); 8049 8050 bnx2x_init_block(bp, BLOCK_TM, init_phase); 8051 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 8052 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */ 8053 8054 bnx2x_iov_init_dq(bp); 8055 8056 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 8057 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 8058 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 8059 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 8060 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 8061 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 8062 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 8063 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 8064 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 8065 if (!CHIP_IS_E1x(bp)) 8066 REG_WR(bp, PBF_REG_DISABLE_PF, 0); 8067 8068 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 8069 8070 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 8071 8072 if (!CHIP_IS_E1x(bp)) 8073 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); 8074 8075 if (IS_MF(bp)) { 8076 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) { 8077 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 8078 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, 8079 bp->mf_ov); 8080 } 8081 } 8082 8083 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 8084 8085 /* HC init per function */ 8086 if (bp->common.int_block == INT_BLOCK_HC) { 8087 if (CHIP_IS_E1H(bp)) { 8088 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8089 8090 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8091 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8092 } 8093 bnx2x_init_block(bp, BLOCK_HC, init_phase); 8094 8095 } else { 8096 int num_segs, sb_idx, prod_offset; 8097 8098 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8099 8100 if (!CHIP_IS_E1x(bp)) { 8101 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8102 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8103 } 8104 8105 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 8106 8107 if (!CHIP_IS_E1x(bp)) { 8108 int dsb_idx = 0; 8109 /** 8110 * Producer memory: 8111 * E2 mode: address 0-135 match to the mapping memory; 8112 * 136 - PF0 default prod; 137 - PF1 default prod; 8113 * 138 - PF2 default prod; 139 - PF3 default prod; 8114 * 140 - PF0 attn prod; 141 - PF1 attn prod; 8115 * 142 - PF2 attn prod; 143 - PF3 attn prod; 8116 * 144-147 reserved. 8117 * 8118 * E1.5 mode - In backward compatible mode; 8119 * for non default SB; each even line in the memory 8120 * holds the U producer and each odd line hold 8121 * the C producer. The first 128 producers are for 8122 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 8123 * producers are for the DSB for each PF. 8124 * Each PF has five segments: (the order inside each 8125 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 8126 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 8127 * 144-147 attn prods; 8128 */ 8129 /* non-default-status-blocks */ 8130 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8131 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 8132 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { 8133 prod_offset = (bp->igu_base_sb + sb_idx) * 8134 num_segs; 8135 8136 for (i = 0; i < num_segs; i++) { 8137 addr = IGU_REG_PROD_CONS_MEMORY + 8138 (prod_offset + i) * 4; 8139 REG_WR(bp, addr, 0); 8140 } 8141 /* send consumer update with value 0 */ 8142 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, 8143 USTORM_ID, 0, IGU_INT_NOP, 1); 8144 bnx2x_igu_clear_sb(bp, 8145 bp->igu_base_sb + sb_idx); 8146 } 8147 8148 /* default-status-blocks */ 8149 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8150 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 8151 8152 if (CHIP_MODE_IS_4_PORT(bp)) 8153 dsb_idx = BP_FUNC(bp); 8154 else 8155 dsb_idx = BP_VN(bp); 8156 8157 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? 8158 IGU_BC_BASE_DSB_PROD + dsb_idx : 8159 IGU_NORM_BASE_DSB_PROD + dsb_idx); 8160 8161 /* 8162 * igu prods come in chunks of E1HVN_MAX (4) - 8163 * does not matters what is the current chip mode 8164 */ 8165 for (i = 0; i < (num_segs * E1HVN_MAX); 8166 i += E1HVN_MAX) { 8167 addr = IGU_REG_PROD_CONS_MEMORY + 8168 (prod_offset + i)*4; 8169 REG_WR(bp, addr, 0); 8170 } 8171 /* send consumer update with 0 */ 8172 if (CHIP_INT_MODE_IS_BC(bp)) { 8173 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8174 USTORM_ID, 0, IGU_INT_NOP, 1); 8175 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8176 CSTORM_ID, 0, IGU_INT_NOP, 1); 8177 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8178 XSTORM_ID, 0, IGU_INT_NOP, 1); 8179 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8180 TSTORM_ID, 0, IGU_INT_NOP, 1); 8181 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8182 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8183 } else { 8184 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8185 USTORM_ID, 0, IGU_INT_NOP, 1); 8186 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8187 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8188 } 8189 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); 8190 8191 /* !!! These should become driver const once 8192 rf-tool supports split-68 const */ 8193 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 8194 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 8195 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 8196 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 8197 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 8198 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 8199 } 8200 } 8201 8202 /* Reset PCIE errors for debug */ 8203 REG_WR(bp, 0x2114, 0xffffffff); 8204 REG_WR(bp, 0x2120, 0xffffffff); 8205 8206 if (CHIP_IS_E1x(bp)) { 8207 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 8208 main_mem_base = HC_REG_MAIN_MEMORY + 8209 BP_PORT(bp) * (main_mem_size * 4); 8210 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 8211 main_mem_width = 8; 8212 8213 val = REG_RD(bp, main_mem_prty_clr); 8214 if (val) 8215 DP(NETIF_MSG_HW, 8216 "Hmmm... Parity errors in HC block during function init (0x%x)!\n", 8217 val); 8218 8219 /* Clear "false" parity errors in MSI-X table */ 8220 for (i = main_mem_base; 8221 i < main_mem_base + main_mem_size * 4; 8222 i += main_mem_width) { 8223 bnx2x_read_dmae(bp, i, main_mem_width / 4); 8224 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), 8225 i, main_mem_width / 4); 8226 } 8227 /* Clear HC parity attention */ 8228 REG_RD(bp, main_mem_prty_clr); 8229 } 8230 8231 #ifdef BNX2X_STOP_ON_ERROR 8232 /* Enable STORMs SP logging */ 8233 REG_WR8(bp, BAR_USTRORM_INTMEM + 8234 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8235 REG_WR8(bp, BAR_TSTRORM_INTMEM + 8236 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8237 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8238 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8239 REG_WR8(bp, BAR_XSTRORM_INTMEM + 8240 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8241 #endif 8242 8243 bnx2x_phy_probe(&bp->link_params); 8244 8245 return 0; 8246 } 8247 8248 void bnx2x_free_mem_cnic(struct bnx2x *bp) 8249 { 8250 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); 8251 8252 if (!CHIP_IS_E1x(bp)) 8253 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, 8254 sizeof(struct host_hc_status_block_e2)); 8255 else 8256 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, 8257 sizeof(struct host_hc_status_block_e1x)); 8258 8259 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8260 } 8261 8262 void bnx2x_free_mem(struct bnx2x *bp) 8263 { 8264 int i; 8265 8266 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 8267 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 8268 8269 if (IS_VF(bp)) 8270 return; 8271 8272 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, 8273 sizeof(struct host_sp_status_block)); 8274 8275 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, 8276 sizeof(struct bnx2x_slowpath)); 8277 8278 for (i = 0; i < L2_ILT_LINES(bp); i++) 8279 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, 8280 bp->context[i].size); 8281 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); 8282 8283 BNX2X_FREE(bp->ilt->lines); 8284 8285 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); 8286 8287 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, 8288 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8289 8290 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8291 8292 bnx2x_iov_free_mem(bp); 8293 } 8294 8295 int bnx2x_alloc_mem_cnic(struct bnx2x *bp) 8296 { 8297 if (!CHIP_IS_E1x(bp)) { 8298 /* size = the status block + ramrod buffers */ 8299 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8300 sizeof(struct host_hc_status_block_e2)); 8301 if (!bp->cnic_sb.e2_sb) 8302 goto alloc_mem_err; 8303 } else { 8304 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8305 sizeof(struct host_hc_status_block_e1x)); 8306 if (!bp->cnic_sb.e1x_sb) 8307 goto alloc_mem_err; 8308 } 8309 8310 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8311 /* allocate searcher T2 table, as it wasn't allocated before */ 8312 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8313 if (!bp->t2) 8314 goto alloc_mem_err; 8315 } 8316 8317 /* write address to which L5 should insert its values */ 8318 bp->cnic_eth_dev.addr_drv_info_to_mcp = 8319 &bp->slowpath->drv_info_to_mcp; 8320 8321 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) 8322 goto alloc_mem_err; 8323 8324 return 0; 8325 8326 alloc_mem_err: 8327 bnx2x_free_mem_cnic(bp); 8328 BNX2X_ERR("Can't allocate memory\n"); 8329 return -ENOMEM; 8330 } 8331 8332 int bnx2x_alloc_mem(struct bnx2x *bp) 8333 { 8334 int i, allocated, context_size; 8335 8336 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8337 /* allocate searcher T2 table */ 8338 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8339 if (!bp->t2) 8340 goto alloc_mem_err; 8341 } 8342 8343 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping, 8344 sizeof(struct host_sp_status_block)); 8345 if (!bp->def_status_blk) 8346 goto alloc_mem_err; 8347 8348 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping, 8349 sizeof(struct bnx2x_slowpath)); 8350 if (!bp->slowpath) 8351 goto alloc_mem_err; 8352 8353 /* Allocate memory for CDU context: 8354 * This memory is allocated separately and not in the generic ILT 8355 * functions because CDU differs in few aspects: 8356 * 1. There are multiple entities allocating memory for context - 8357 * 'regular' driver, CNIC and SRIOV driver. Each separately controls 8358 * its own ILT lines. 8359 * 2. Since CDU page-size is not a single 4KB page (which is the case 8360 * for the other ILT clients), to be efficient we want to support 8361 * allocation of sub-page-size in the last entry. 8362 * 3. Context pointers are used by the driver to pass to FW / update 8363 * the context (for the other ILT clients the pointers are used just to 8364 * free the memory during unload). 8365 */ 8366 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); 8367 8368 for (i = 0, allocated = 0; allocated < context_size; i++) { 8369 bp->context[i].size = min(CDU_ILT_PAGE_SZ, 8370 (context_size - allocated)); 8371 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping, 8372 bp->context[i].size); 8373 if (!bp->context[i].vcxt) 8374 goto alloc_mem_err; 8375 allocated += bp->context[i].size; 8376 } 8377 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line), 8378 GFP_KERNEL); 8379 if (!bp->ilt->lines) 8380 goto alloc_mem_err; 8381 8382 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) 8383 goto alloc_mem_err; 8384 8385 if (bnx2x_iov_alloc_mem(bp)) 8386 goto alloc_mem_err; 8387 8388 /* Slow path ring */ 8389 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE); 8390 if (!bp->spq) 8391 goto alloc_mem_err; 8392 8393 /* EQ */ 8394 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping, 8395 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8396 if (!bp->eq_ring) 8397 goto alloc_mem_err; 8398 8399 return 0; 8400 8401 alloc_mem_err: 8402 bnx2x_free_mem(bp); 8403 BNX2X_ERR("Can't allocate memory\n"); 8404 return -ENOMEM; 8405 } 8406 8407 /* 8408 * Init service functions 8409 */ 8410 8411 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 8412 struct bnx2x_vlan_mac_obj *obj, bool set, 8413 int mac_type, unsigned long *ramrod_flags) 8414 { 8415 int rc; 8416 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8417 8418 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8419 8420 /* Fill general parameters */ 8421 ramrod_param.vlan_mac_obj = obj; 8422 ramrod_param.ramrod_flags = *ramrod_flags; 8423 8424 /* Fill a user request section if needed */ 8425 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8426 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 8427 8428 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 8429 8430 /* Set the command: ADD or DEL */ 8431 if (set) 8432 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8433 else 8434 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8435 } 8436 8437 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8438 8439 if (rc == -EEXIST) { 8440 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8441 /* do not treat adding same MAC as error */ 8442 rc = 0; 8443 } else if (rc < 0) 8444 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); 8445 8446 return rc; 8447 } 8448 8449 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan, 8450 struct bnx2x_vlan_mac_obj *obj, bool set, 8451 unsigned long *ramrod_flags) 8452 { 8453 int rc; 8454 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8455 8456 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8457 8458 /* Fill general parameters */ 8459 ramrod_param.vlan_mac_obj = obj; 8460 ramrod_param.ramrod_flags = *ramrod_flags; 8461 8462 /* Fill a user request section if needed */ 8463 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8464 ramrod_param.user_req.u.vlan.vlan = vlan; 8465 /* Set the command: ADD or DEL */ 8466 if (set) 8467 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8468 else 8469 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8470 } 8471 8472 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8473 8474 if (rc == -EEXIST) { 8475 /* Do not treat adding same vlan as error. */ 8476 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8477 rc = 0; 8478 } else if (rc < 0) { 8479 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del")); 8480 } 8481 8482 return rc; 8483 } 8484 8485 int bnx2x_del_all_macs(struct bnx2x *bp, 8486 struct bnx2x_vlan_mac_obj *mac_obj, 8487 int mac_type, bool wait_for_comp) 8488 { 8489 int rc; 8490 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 8491 8492 /* Wait for completion of requested */ 8493 if (wait_for_comp) 8494 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8495 8496 /* Set the mac type of addresses we want to clear */ 8497 __set_bit(mac_type, &vlan_mac_flags); 8498 8499 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); 8500 if (rc < 0) 8501 BNX2X_ERR("Failed to delete MACs: %d\n", rc); 8502 8503 return rc; 8504 } 8505 8506 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) 8507 { 8508 if (IS_PF(bp)) { 8509 unsigned long ramrod_flags = 0; 8510 8511 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); 8512 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8513 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, 8514 &bp->sp_objs->mac_obj, set, 8515 BNX2X_ETH_MAC, &ramrod_flags); 8516 } else { /* vf */ 8517 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, 8518 bp->fp->index, set); 8519 } 8520 } 8521 8522 int bnx2x_setup_leading(struct bnx2x *bp) 8523 { 8524 if (IS_PF(bp)) 8525 return bnx2x_setup_queue(bp, &bp->fp[0], true); 8526 else /* VF */ 8527 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true); 8528 } 8529 8530 /** 8531 * bnx2x_set_int_mode - configure interrupt mode 8532 * 8533 * @bp: driver handle 8534 * 8535 * In case of MSI-X it will also try to enable MSI-X. 8536 */ 8537 int bnx2x_set_int_mode(struct bnx2x *bp) 8538 { 8539 int rc = 0; 8540 8541 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) { 8542 BNX2X_ERR("VF not loaded since interrupt mode not msix\n"); 8543 return -EINVAL; 8544 } 8545 8546 switch (int_mode) { 8547 case BNX2X_INT_MODE_MSIX: 8548 /* attempt to enable msix */ 8549 rc = bnx2x_enable_msix(bp); 8550 8551 /* msix attained */ 8552 if (!rc) 8553 return 0; 8554 8555 /* vfs use only msix */ 8556 if (rc && IS_VF(bp)) 8557 return rc; 8558 8559 /* failed to enable multiple MSI-X */ 8560 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", 8561 bp->num_queues, 8562 1 + bp->num_cnic_queues); 8563 8564 /* falling through... */ 8565 case BNX2X_INT_MODE_MSI: 8566 bnx2x_enable_msi(bp); 8567 8568 /* falling through... */ 8569 case BNX2X_INT_MODE_INTX: 8570 bp->num_ethernet_queues = 1; 8571 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 8572 BNX2X_DEV_INFO("set number of queues to 1\n"); 8573 break; 8574 default: 8575 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); 8576 return -EINVAL; 8577 } 8578 return 0; 8579 } 8580 8581 /* must be called prior to any HW initializations */ 8582 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) 8583 { 8584 if (IS_SRIOV(bp)) 8585 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; 8586 return L2_ILT_LINES(bp); 8587 } 8588 8589 void bnx2x_ilt_set_info(struct bnx2x *bp) 8590 { 8591 struct ilt_client_info *ilt_client; 8592 struct bnx2x_ilt *ilt = BP_ILT(bp); 8593 u16 line = 0; 8594 8595 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); 8596 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); 8597 8598 /* CDU */ 8599 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 8600 ilt_client->client_num = ILT_CLIENT_CDU; 8601 ilt_client->page_size = CDU_ILT_PAGE_SZ; 8602 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 8603 ilt_client->start = line; 8604 line += bnx2x_cid_ilt_lines(bp); 8605 8606 if (CNIC_SUPPORT(bp)) 8607 line += CNIC_ILT_LINES; 8608 ilt_client->end = line - 1; 8609 8610 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8611 ilt_client->start, 8612 ilt_client->end, 8613 ilt_client->page_size, 8614 ilt_client->flags, 8615 ilog2(ilt_client->page_size >> 12)); 8616 8617 /* QM */ 8618 if (QM_INIT(bp->qm_cid_count)) { 8619 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 8620 ilt_client->client_num = ILT_CLIENT_QM; 8621 ilt_client->page_size = QM_ILT_PAGE_SZ; 8622 ilt_client->flags = 0; 8623 ilt_client->start = line; 8624 8625 /* 4 bytes for each cid */ 8626 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 8627 QM_ILT_PAGE_SZ); 8628 8629 ilt_client->end = line - 1; 8630 8631 DP(NETIF_MSG_IFUP, 8632 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8633 ilt_client->start, 8634 ilt_client->end, 8635 ilt_client->page_size, 8636 ilt_client->flags, 8637 ilog2(ilt_client->page_size >> 12)); 8638 } 8639 8640 if (CNIC_SUPPORT(bp)) { 8641 /* SRC */ 8642 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 8643 ilt_client->client_num = ILT_CLIENT_SRC; 8644 ilt_client->page_size = SRC_ILT_PAGE_SZ; 8645 ilt_client->flags = 0; 8646 ilt_client->start = line; 8647 line += SRC_ILT_LINES; 8648 ilt_client->end = line - 1; 8649 8650 DP(NETIF_MSG_IFUP, 8651 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8652 ilt_client->start, 8653 ilt_client->end, 8654 ilt_client->page_size, 8655 ilt_client->flags, 8656 ilog2(ilt_client->page_size >> 12)); 8657 8658 /* TM */ 8659 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 8660 ilt_client->client_num = ILT_CLIENT_TM; 8661 ilt_client->page_size = TM_ILT_PAGE_SZ; 8662 ilt_client->flags = 0; 8663 ilt_client->start = line; 8664 line += TM_ILT_LINES; 8665 ilt_client->end = line - 1; 8666 8667 DP(NETIF_MSG_IFUP, 8668 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8669 ilt_client->start, 8670 ilt_client->end, 8671 ilt_client->page_size, 8672 ilt_client->flags, 8673 ilog2(ilt_client->page_size >> 12)); 8674 } 8675 8676 BUG_ON(line > ILT_MAX_LINES); 8677 } 8678 8679 /** 8680 * bnx2x_pf_q_prep_init - prepare INIT transition parameters 8681 * 8682 * @bp: driver handle 8683 * @fp: pointer to fastpath 8684 * @init_params: pointer to parameters structure 8685 * 8686 * parameters configured: 8687 * - HC configuration 8688 * - Queue's CDU context 8689 */ 8690 static void bnx2x_pf_q_prep_init(struct bnx2x *bp, 8691 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) 8692 { 8693 u8 cos; 8694 int cxt_index, cxt_offset; 8695 8696 /* FCoE Queue uses Default SB, thus has no HC capabilities */ 8697 if (!IS_FCOE_FP(fp)) { 8698 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); 8699 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); 8700 8701 /* If HC is supported, enable host coalescing in the transition 8702 * to INIT state. 8703 */ 8704 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); 8705 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); 8706 8707 /* HC rate */ 8708 init_params->rx.hc_rate = bp->rx_ticks ? 8709 (1000000 / bp->rx_ticks) : 0; 8710 init_params->tx.hc_rate = bp->tx_ticks ? 8711 (1000000 / bp->tx_ticks) : 0; 8712 8713 /* FW SB ID */ 8714 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = 8715 fp->fw_sb_id; 8716 8717 /* 8718 * CQ index among the SB indices: FCoE clients uses the default 8719 * SB, therefore it's different. 8720 */ 8721 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 8722 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 8723 } 8724 8725 /* set maximum number of COSs supported by this queue */ 8726 init_params->max_cos = fp->max_cos; 8727 8728 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", 8729 fp->index, init_params->max_cos); 8730 8731 /* set the context pointers queue object */ 8732 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 8733 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; 8734 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * 8735 ILT_PAGE_CIDS); 8736 init_params->cxts[cos] = 8737 &bp->context[cxt_index].vcxt[cxt_offset].eth; 8738 } 8739 } 8740 8741 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8742 struct bnx2x_queue_state_params *q_params, 8743 struct bnx2x_queue_setup_tx_only_params *tx_only_params, 8744 int tx_index, bool leading) 8745 { 8746 memset(tx_only_params, 0, sizeof(*tx_only_params)); 8747 8748 /* Set the command */ 8749 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 8750 8751 /* Set tx-only QUEUE flags: don't zero statistics */ 8752 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); 8753 8754 /* choose the index of the cid to send the slow path on */ 8755 tx_only_params->cid_index = tx_index; 8756 8757 /* Set general TX_ONLY_SETUP parameters */ 8758 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); 8759 8760 /* Set Tx TX_ONLY_SETUP parameters */ 8761 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); 8762 8763 DP(NETIF_MSG_IFUP, 8764 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", 8765 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], 8766 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, 8767 tx_only_params->gen_params.spcl_id, tx_only_params->flags); 8768 8769 /* send the ramrod */ 8770 return bnx2x_queue_state_change(bp, q_params); 8771 } 8772 8773 /** 8774 * bnx2x_setup_queue - setup queue 8775 * 8776 * @bp: driver handle 8777 * @fp: pointer to fastpath 8778 * @leading: is leading 8779 * 8780 * This function performs 2 steps in a Queue state machine 8781 * actually: 1) RESET->INIT 2) INIT->SETUP 8782 */ 8783 8784 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8785 bool leading) 8786 { 8787 struct bnx2x_queue_state_params q_params = {NULL}; 8788 struct bnx2x_queue_setup_params *setup_params = 8789 &q_params.params.setup; 8790 struct bnx2x_queue_setup_tx_only_params *tx_only_params = 8791 &q_params.params.tx_only; 8792 int rc; 8793 u8 tx_index; 8794 8795 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); 8796 8797 /* reset IGU state skip FCoE L2 queue */ 8798 if (!IS_FCOE_FP(fp)) 8799 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, 8800 IGU_INT_ENABLE, 0); 8801 8802 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8803 /* We want to wait for completion in this context */ 8804 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8805 8806 /* Prepare the INIT parameters */ 8807 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); 8808 8809 /* Set the command */ 8810 q_params.cmd = BNX2X_Q_CMD_INIT; 8811 8812 /* Change the state to INIT */ 8813 rc = bnx2x_queue_state_change(bp, &q_params); 8814 if (rc) { 8815 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); 8816 return rc; 8817 } 8818 8819 DP(NETIF_MSG_IFUP, "init complete\n"); 8820 8821 /* Now move the Queue to the SETUP state... */ 8822 memset(setup_params, 0, sizeof(*setup_params)); 8823 8824 /* Set QUEUE flags */ 8825 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); 8826 8827 /* Set general SETUP parameters */ 8828 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, 8829 FIRST_TX_COS_INDEX); 8830 8831 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, 8832 &setup_params->rxq_params); 8833 8834 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, 8835 FIRST_TX_COS_INDEX); 8836 8837 /* Set the command */ 8838 q_params.cmd = BNX2X_Q_CMD_SETUP; 8839 8840 if (IS_FCOE_FP(fp)) 8841 bp->fcoe_init = true; 8842 8843 /* Change the state to SETUP */ 8844 rc = bnx2x_queue_state_change(bp, &q_params); 8845 if (rc) { 8846 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); 8847 return rc; 8848 } 8849 8850 /* loop through the relevant tx-only indices */ 8851 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8852 tx_index < fp->max_cos; 8853 tx_index++) { 8854 8855 /* prepare and send tx-only ramrod*/ 8856 rc = bnx2x_setup_tx_only(bp, fp, &q_params, 8857 tx_only_params, tx_index, leading); 8858 if (rc) { 8859 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", 8860 fp->index, tx_index); 8861 return rc; 8862 } 8863 } 8864 8865 return rc; 8866 } 8867 8868 static int bnx2x_stop_queue(struct bnx2x *bp, int index) 8869 { 8870 struct bnx2x_fastpath *fp = &bp->fp[index]; 8871 struct bnx2x_fp_txdata *txdata; 8872 struct bnx2x_queue_state_params q_params = {NULL}; 8873 int rc, tx_index; 8874 8875 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); 8876 8877 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8878 /* We want to wait for completion in this context */ 8879 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8880 8881 /* close tx-only connections */ 8882 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8883 tx_index < fp->max_cos; 8884 tx_index++){ 8885 8886 /* ascertain this is a normal queue*/ 8887 txdata = fp->txdata_ptr[tx_index]; 8888 8889 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", 8890 txdata->txq_index); 8891 8892 /* send halt terminate on tx-only connection */ 8893 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8894 memset(&q_params.params.terminate, 0, 8895 sizeof(q_params.params.terminate)); 8896 q_params.params.terminate.cid_index = tx_index; 8897 8898 rc = bnx2x_queue_state_change(bp, &q_params); 8899 if (rc) 8900 return rc; 8901 8902 /* send halt terminate on tx-only connection */ 8903 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8904 memset(&q_params.params.cfc_del, 0, 8905 sizeof(q_params.params.cfc_del)); 8906 q_params.params.cfc_del.cid_index = tx_index; 8907 rc = bnx2x_queue_state_change(bp, &q_params); 8908 if (rc) 8909 return rc; 8910 } 8911 /* Stop the primary connection: */ 8912 /* ...halt the connection */ 8913 q_params.cmd = BNX2X_Q_CMD_HALT; 8914 rc = bnx2x_queue_state_change(bp, &q_params); 8915 if (rc) 8916 return rc; 8917 8918 /* ...terminate the connection */ 8919 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8920 memset(&q_params.params.terminate, 0, 8921 sizeof(q_params.params.terminate)); 8922 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 8923 rc = bnx2x_queue_state_change(bp, &q_params); 8924 if (rc) 8925 return rc; 8926 /* ...delete cfc entry */ 8927 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8928 memset(&q_params.params.cfc_del, 0, 8929 sizeof(q_params.params.cfc_del)); 8930 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 8931 return bnx2x_queue_state_change(bp, &q_params); 8932 } 8933 8934 static void bnx2x_reset_func(struct bnx2x *bp) 8935 { 8936 int port = BP_PORT(bp); 8937 int func = BP_FUNC(bp); 8938 int i; 8939 8940 /* Disable the function in the FW */ 8941 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 8942 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 8943 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 8944 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 8945 8946 /* FP SBs */ 8947 for_each_eth_queue(bp, i) { 8948 struct bnx2x_fastpath *fp = &bp->fp[i]; 8949 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8950 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 8951 SB_DISABLED); 8952 } 8953 8954 if (CNIC_LOADED(bp)) 8955 /* CNIC SB */ 8956 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8957 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 8958 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); 8959 8960 /* SP SB */ 8961 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8962 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 8963 SB_DISABLED); 8964 8965 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) 8966 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 8967 0); 8968 8969 /* Configure IGU */ 8970 if (bp->common.int_block == INT_BLOCK_HC) { 8971 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8972 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8973 } else { 8974 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8975 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8976 } 8977 8978 if (CNIC_LOADED(bp)) { 8979 /* Disable Timer scan */ 8980 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 8981 /* 8982 * Wait for at least 10ms and up to 2 second for the timers 8983 * scan to complete 8984 */ 8985 for (i = 0; i < 200; i++) { 8986 usleep_range(10000, 20000); 8987 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) 8988 break; 8989 } 8990 } 8991 /* Clear ILT */ 8992 bnx2x_clear_func_ilt(bp, func); 8993 8994 /* Timers workaround bug for E2: if this is vnic-3, 8995 * we need to set the entire ilt range for this timers. 8996 */ 8997 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { 8998 struct ilt_client_info ilt_cli; 8999 /* use dummy TM client */ 9000 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 9001 ilt_cli.start = 0; 9002 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 9003 ilt_cli.client_num = ILT_CLIENT_TM; 9004 9005 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); 9006 } 9007 9008 /* this assumes that reset_port() called before reset_func()*/ 9009 if (!CHIP_IS_E1x(bp)) 9010 bnx2x_pf_disable(bp); 9011 9012 bp->dmae_ready = 0; 9013 } 9014 9015 static void bnx2x_reset_port(struct bnx2x *bp) 9016 { 9017 int port = BP_PORT(bp); 9018 u32 val; 9019 9020 /* Reset physical Link */ 9021 bnx2x__link_reset(bp); 9022 9023 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 9024 9025 /* Do not rcv packets to BRB */ 9026 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 9027 /* Do not direct rcv packets that are not for MCP to the BRB */ 9028 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 9029 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 9030 9031 /* Configure AEU */ 9032 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 9033 9034 msleep(100); 9035 /* Check for BRB port occupancy */ 9036 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 9037 if (val) 9038 DP(NETIF_MSG_IFDOWN, 9039 "BRB1 is not empty %d blocks are occupied\n", val); 9040 9041 /* TODO: Close Doorbell port? */ 9042 } 9043 9044 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) 9045 { 9046 struct bnx2x_func_state_params func_params = {NULL}; 9047 9048 /* Prepare parameters for function state transitions */ 9049 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9050 9051 func_params.f_obj = &bp->func_obj; 9052 func_params.cmd = BNX2X_F_CMD_HW_RESET; 9053 9054 func_params.params.hw_init.load_phase = load_code; 9055 9056 return bnx2x_func_state_change(bp, &func_params); 9057 } 9058 9059 static int bnx2x_func_stop(struct bnx2x *bp) 9060 { 9061 struct bnx2x_func_state_params func_params = {NULL}; 9062 int rc; 9063 9064 /* Prepare parameters for function state transitions */ 9065 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9066 func_params.f_obj = &bp->func_obj; 9067 func_params.cmd = BNX2X_F_CMD_STOP; 9068 9069 /* 9070 * Try to stop the function the 'good way'. If fails (in case 9071 * of a parity error during bnx2x_chip_cleanup()) and we are 9072 * not in a debug mode, perform a state transaction in order to 9073 * enable further HW_RESET transaction. 9074 */ 9075 rc = bnx2x_func_state_change(bp, &func_params); 9076 if (rc) { 9077 #ifdef BNX2X_STOP_ON_ERROR 9078 return rc; 9079 #else 9080 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); 9081 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 9082 return bnx2x_func_state_change(bp, &func_params); 9083 #endif 9084 } 9085 9086 return 0; 9087 } 9088 9089 /** 9090 * bnx2x_send_unload_req - request unload mode from the MCP. 9091 * 9092 * @bp: driver handle 9093 * @unload_mode: requested function's unload mode 9094 * 9095 * Return unload mode returned by the MCP: COMMON, PORT or FUNC. 9096 */ 9097 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) 9098 { 9099 u32 reset_code = 0; 9100 int port = BP_PORT(bp); 9101 9102 /* Select the UNLOAD request mode */ 9103 if (unload_mode == UNLOAD_NORMAL) 9104 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9105 9106 else if (bp->flags & NO_WOL_FLAG) 9107 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 9108 9109 else if (bp->wol) { 9110 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 9111 u8 *mac_addr = bp->dev->dev_addr; 9112 struct pci_dev *pdev = bp->pdev; 9113 u32 val; 9114 u16 pmc; 9115 9116 /* The mac address is written to entries 1-4 to 9117 * preserve entry 0 which is used by the PMF 9118 */ 9119 u8 entry = (BP_VN(bp) + 1)*8; 9120 9121 val = (mac_addr[0] << 8) | mac_addr[1]; 9122 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); 9123 9124 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 9125 (mac_addr[4] << 8) | mac_addr[5]; 9126 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 9127 9128 /* Enable the PME and clear the status */ 9129 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc); 9130 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; 9131 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc); 9132 9133 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 9134 9135 } else 9136 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9137 9138 /* Send the request to the MCP */ 9139 if (!BP_NOMCP(bp)) 9140 reset_code = bnx2x_fw_command(bp, reset_code, 0); 9141 else { 9142 int path = BP_PATH(bp); 9143 9144 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", 9145 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9146 bnx2x_load_count[path][2]); 9147 bnx2x_load_count[path][0]--; 9148 bnx2x_load_count[path][1 + port]--; 9149 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", 9150 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9151 bnx2x_load_count[path][2]); 9152 if (bnx2x_load_count[path][0] == 0) 9153 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; 9154 else if (bnx2x_load_count[path][1 + port] == 0) 9155 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; 9156 else 9157 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; 9158 } 9159 9160 return reset_code; 9161 } 9162 9163 /** 9164 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. 9165 * 9166 * @bp: driver handle 9167 * @keep_link: true iff link should be kept up 9168 */ 9169 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) 9170 { 9171 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 9172 9173 /* Report UNLOAD_DONE to MCP */ 9174 if (!BP_NOMCP(bp)) 9175 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 9176 } 9177 9178 static int bnx2x_func_wait_started(struct bnx2x *bp) 9179 { 9180 int tout = 50; 9181 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 9182 9183 if (!bp->port.pmf) 9184 return 0; 9185 9186 /* 9187 * (assumption: No Attention from MCP at this stage) 9188 * PMF probably in the middle of TX disable/enable transaction 9189 * 1. Sync IRS for default SB 9190 * 2. Sync SP queue - this guarantees us that attention handling started 9191 * 3. Wait, that TX disable/enable transaction completes 9192 * 9193 * 1+2 guarantee that if DCBx attention was scheduled it already changed 9194 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 9195 * received completion for the transaction the state is TX_STOPPED. 9196 * State will return to STARTED after completion of TX_STOPPED-->STARTED 9197 * transaction. 9198 */ 9199 9200 /* make sure default SB ISR is done */ 9201 if (msix) 9202 synchronize_irq(bp->msix_table[0].vector); 9203 else 9204 synchronize_irq(bp->pdev->irq); 9205 9206 flush_workqueue(bnx2x_wq); 9207 flush_workqueue(bnx2x_iov_wq); 9208 9209 while (bnx2x_func_get_state(bp, &bp->func_obj) != 9210 BNX2X_F_STATE_STARTED && tout--) 9211 msleep(20); 9212 9213 if (bnx2x_func_get_state(bp, &bp->func_obj) != 9214 BNX2X_F_STATE_STARTED) { 9215 #ifdef BNX2X_STOP_ON_ERROR 9216 BNX2X_ERR("Wrong function state\n"); 9217 return -EBUSY; 9218 #else 9219 /* 9220 * Failed to complete the transaction in a "good way" 9221 * Force both transactions with CLR bit 9222 */ 9223 struct bnx2x_func_state_params func_params = {NULL}; 9224 9225 DP(NETIF_MSG_IFDOWN, 9226 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n"); 9227 9228 func_params.f_obj = &bp->func_obj; 9229 __set_bit(RAMROD_DRV_CLR_ONLY, 9230 &func_params.ramrod_flags); 9231 9232 /* STARTED-->TX_ST0PPED */ 9233 func_params.cmd = BNX2X_F_CMD_TX_STOP; 9234 bnx2x_func_state_change(bp, &func_params); 9235 9236 /* TX_ST0PPED-->STARTED */ 9237 func_params.cmd = BNX2X_F_CMD_TX_START; 9238 return bnx2x_func_state_change(bp, &func_params); 9239 #endif 9240 } 9241 9242 return 0; 9243 } 9244 9245 static void bnx2x_disable_ptp(struct bnx2x *bp) 9246 { 9247 int port = BP_PORT(bp); 9248 9249 /* Disable sending PTP packets to host */ 9250 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 9251 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 9252 9253 /* Reset PTP event detection rules */ 9254 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 9255 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 9256 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 9257 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 9258 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 9259 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 9260 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 9261 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 9262 9263 /* Disable the PTP feature */ 9264 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 9265 NIG_REG_P0_PTP_EN, 0x0); 9266 } 9267 9268 /* Called during unload, to stop PTP-related stuff */ 9269 static void bnx2x_stop_ptp(struct bnx2x *bp) 9270 { 9271 /* Cancel PTP work queue. Should be done after the Tx queues are 9272 * drained to prevent additional scheduling. 9273 */ 9274 cancel_work_sync(&bp->ptp_task); 9275 9276 if (bp->ptp_tx_skb) { 9277 dev_kfree_skb_any(bp->ptp_tx_skb); 9278 bp->ptp_tx_skb = NULL; 9279 } 9280 9281 /* Disable PTP in HW */ 9282 bnx2x_disable_ptp(bp); 9283 9284 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n"); 9285 } 9286 9287 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) 9288 { 9289 int port = BP_PORT(bp); 9290 int i, rc = 0; 9291 u8 cos; 9292 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 9293 u32 reset_code; 9294 9295 /* Wait until tx fastpath tasks complete */ 9296 for_each_tx_queue(bp, i) { 9297 struct bnx2x_fastpath *fp = &bp->fp[i]; 9298 9299 for_each_cos_in_tx_queue(fp, cos) 9300 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 9301 #ifdef BNX2X_STOP_ON_ERROR 9302 if (rc) 9303 return; 9304 #endif 9305 } 9306 9307 /* Give HW time to discard old tx messages */ 9308 usleep_range(1000, 2000); 9309 9310 /* Clean all ETH MACs */ 9311 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, 9312 false); 9313 if (rc < 0) 9314 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); 9315 9316 /* Clean up UC list */ 9317 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, 9318 true); 9319 if (rc < 0) 9320 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", 9321 rc); 9322 9323 /* Disable LLH */ 9324 if (!CHIP_IS_E1(bp)) 9325 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 9326 9327 /* Set "drop all" (stop Rx). 9328 * We need to take a netif_addr_lock() here in order to prevent 9329 * a race between the completion code and this code. 9330 */ 9331 netif_addr_lock_bh(bp->dev); 9332 /* Schedule the rx_mode command */ 9333 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 9334 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 9335 else 9336 bnx2x_set_storm_rx_mode(bp); 9337 9338 /* Cleanup multicast configuration */ 9339 rparam.mcast_obj = &bp->mcast_obj; 9340 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 9341 if (rc < 0) 9342 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); 9343 9344 netif_addr_unlock_bh(bp->dev); 9345 9346 bnx2x_iov_chip_cleanup(bp); 9347 9348 /* 9349 * Send the UNLOAD_REQUEST to the MCP. This will return if 9350 * this function should perform FUNC, PORT or COMMON HW 9351 * reset. 9352 */ 9353 reset_code = bnx2x_send_unload_req(bp, unload_mode); 9354 9355 /* 9356 * (assumption: No Attention from MCP at this stage) 9357 * PMF probably in the middle of TX disable/enable transaction 9358 */ 9359 rc = bnx2x_func_wait_started(bp); 9360 if (rc) { 9361 BNX2X_ERR("bnx2x_func_wait_started failed\n"); 9362 #ifdef BNX2X_STOP_ON_ERROR 9363 return; 9364 #endif 9365 } 9366 9367 /* Close multi and leading connections 9368 * Completions for ramrods are collected in a synchronous way 9369 */ 9370 for_each_eth_queue(bp, i) 9371 if (bnx2x_stop_queue(bp, i)) 9372 #ifdef BNX2X_STOP_ON_ERROR 9373 return; 9374 #else 9375 goto unload_error; 9376 #endif 9377 9378 if (CNIC_LOADED(bp)) { 9379 for_each_cnic_queue(bp, i) 9380 if (bnx2x_stop_queue(bp, i)) 9381 #ifdef BNX2X_STOP_ON_ERROR 9382 return; 9383 #else 9384 goto unload_error; 9385 #endif 9386 } 9387 9388 /* If SP settings didn't get completed so far - something 9389 * very wrong has happen. 9390 */ 9391 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) 9392 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); 9393 9394 #ifndef BNX2X_STOP_ON_ERROR 9395 unload_error: 9396 #endif 9397 rc = bnx2x_func_stop(bp); 9398 if (rc) { 9399 BNX2X_ERR("Function stop failed!\n"); 9400 #ifdef BNX2X_STOP_ON_ERROR 9401 return; 9402 #endif 9403 } 9404 9405 /* stop_ptp should be after the Tx queues are drained to prevent 9406 * scheduling to the cancelled PTP work queue. It should also be after 9407 * function stop ramrod is sent, since as part of this ramrod FW access 9408 * PTP registers. 9409 */ 9410 if (bp->flags & PTP_SUPPORTED) 9411 bnx2x_stop_ptp(bp); 9412 9413 /* Disable HW interrupts, NAPI */ 9414 bnx2x_netif_stop(bp, 1); 9415 /* Delete all NAPI objects */ 9416 bnx2x_del_all_napi(bp); 9417 if (CNIC_LOADED(bp)) 9418 bnx2x_del_all_napi_cnic(bp); 9419 9420 /* Release IRQs */ 9421 bnx2x_free_irq(bp); 9422 9423 /* Reset the chip */ 9424 rc = bnx2x_reset_hw(bp, reset_code); 9425 if (rc) 9426 BNX2X_ERR("HW_RESET failed\n"); 9427 9428 /* Report UNLOAD_DONE to MCP */ 9429 bnx2x_send_unload_done(bp, keep_link); 9430 } 9431 9432 void bnx2x_disable_close_the_gate(struct bnx2x *bp) 9433 { 9434 u32 val; 9435 9436 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); 9437 9438 if (CHIP_IS_E1(bp)) { 9439 int port = BP_PORT(bp); 9440 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 9441 MISC_REG_AEU_MASK_ATTN_FUNC_0; 9442 9443 val = REG_RD(bp, addr); 9444 val &= ~(0x300); 9445 REG_WR(bp, addr, val); 9446 } else { 9447 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); 9448 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 9449 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 9450 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); 9451 } 9452 } 9453 9454 /* Close gates #2, #3 and #4: */ 9455 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) 9456 { 9457 u32 val; 9458 9459 /* Gates #2 and #4a are closed/opened for "not E1" only */ 9460 if (!CHIP_IS_E1(bp)) { 9461 /* #4 */ 9462 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 9463 /* #2 */ 9464 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 9465 } 9466 9467 /* #3 */ 9468 if (CHIP_IS_E1x(bp)) { 9469 /* Prevent interrupts from HC on both ports */ 9470 val = REG_RD(bp, HC_REG_CONFIG_1); 9471 REG_WR(bp, HC_REG_CONFIG_1, 9472 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 9473 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 9474 9475 val = REG_RD(bp, HC_REG_CONFIG_0); 9476 REG_WR(bp, HC_REG_CONFIG_0, 9477 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 9478 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 9479 } else { 9480 /* Prevent incoming interrupts in IGU */ 9481 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 9482 9483 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, 9484 (!close) ? 9485 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 9486 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 9487 } 9488 9489 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", 9490 close ? "closing" : "opening"); 9491 mmiowb(); 9492 } 9493 9494 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ 9495 9496 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) 9497 { 9498 /* Do some magic... */ 9499 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9500 *magic_val = val & SHARED_MF_CLP_MAGIC; 9501 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 9502 } 9503 9504 /** 9505 * bnx2x_clp_reset_done - restore the value of the `magic' bit. 9506 * 9507 * @bp: driver handle 9508 * @magic_val: old value of the `magic' bit. 9509 */ 9510 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) 9511 { 9512 /* Restore the `magic' bit value... */ 9513 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9514 MF_CFG_WR(bp, shared_mf_config.clp_mb, 9515 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 9516 } 9517 9518 /** 9519 * bnx2x_reset_mcp_prep - prepare for MCP reset. 9520 * 9521 * @bp: driver handle 9522 * @magic_val: old value of 'magic' bit. 9523 * 9524 * Takes care of CLP configurations. 9525 */ 9526 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) 9527 { 9528 u32 shmem; 9529 u32 validity_offset; 9530 9531 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); 9532 9533 /* Set `magic' bit in order to save MF config */ 9534 if (!CHIP_IS_E1(bp)) 9535 bnx2x_clp_reset_prep(bp, magic_val); 9536 9537 /* Get shmem offset */ 9538 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9539 validity_offset = 9540 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); 9541 9542 /* Clear validity map flags */ 9543 if (shmem > 0) 9544 REG_WR(bp, shmem + validity_offset, 0); 9545 } 9546 9547 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 9548 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 9549 9550 /** 9551 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT 9552 * 9553 * @bp: driver handle 9554 */ 9555 static void bnx2x_mcp_wait_one(struct bnx2x *bp) 9556 { 9557 /* special handling for emulation and FPGA, 9558 wait 10 times longer */ 9559 if (CHIP_REV_IS_SLOW(bp)) 9560 msleep(MCP_ONE_TIMEOUT*10); 9561 else 9562 msleep(MCP_ONE_TIMEOUT); 9563 } 9564 9565 /* 9566 * initializes bp->common.shmem_base and waits for validity signature to appear 9567 */ 9568 static int bnx2x_init_shmem(struct bnx2x *bp) 9569 { 9570 int cnt = 0; 9571 u32 val = 0; 9572 9573 do { 9574 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9575 if (bp->common.shmem_base) { 9576 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); 9577 if (val & SHR_MEM_VALIDITY_MB) 9578 return 0; 9579 } 9580 9581 bnx2x_mcp_wait_one(bp); 9582 9583 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 9584 9585 BNX2X_ERR("BAD MCP validity signature\n"); 9586 9587 return -ENODEV; 9588 } 9589 9590 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) 9591 { 9592 int rc = bnx2x_init_shmem(bp); 9593 9594 /* Restore the `magic' bit value */ 9595 if (!CHIP_IS_E1(bp)) 9596 bnx2x_clp_reset_done(bp, magic_val); 9597 9598 return rc; 9599 } 9600 9601 static void bnx2x_pxp_prep(struct bnx2x *bp) 9602 { 9603 if (!CHIP_IS_E1(bp)) { 9604 REG_WR(bp, PXP2_REG_RD_START_INIT, 0); 9605 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); 9606 mmiowb(); 9607 } 9608 } 9609 9610 /* 9611 * Reset the whole chip except for: 9612 * - PCIE core 9613 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by 9614 * one reset bit) 9615 * - IGU 9616 * - MISC (including AEU) 9617 * - GRC 9618 * - RBCN, RBCP 9619 */ 9620 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) 9621 { 9622 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 9623 u32 global_bits2, stay_reset2; 9624 9625 /* 9626 * Bits that have to be set in reset_mask2 if we want to reset 'global' 9627 * (per chip) blocks. 9628 */ 9629 global_bits2 = 9630 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 9631 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 9632 9633 /* Don't reset the following blocks. 9634 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 9635 * reset, as in 4 port device they might still be owned 9636 * by the MCP (there is only one leader per path). 9637 */ 9638 not_reset_mask1 = 9639 MISC_REGISTERS_RESET_REG_1_RST_HC | 9640 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 9641 MISC_REGISTERS_RESET_REG_1_RST_PXP; 9642 9643 not_reset_mask2 = 9644 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 9645 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 9646 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 9647 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 9648 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 9649 MISC_REGISTERS_RESET_REG_2_RST_GRC | 9650 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 9651 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 9652 MISC_REGISTERS_RESET_REG_2_RST_ATC | 9653 MISC_REGISTERS_RESET_REG_2_PGLC | 9654 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 9655 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 9656 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 9657 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 9658 MISC_REGISTERS_RESET_REG_2_UMAC0 | 9659 MISC_REGISTERS_RESET_REG_2_UMAC1; 9660 9661 /* 9662 * Keep the following blocks in reset: 9663 * - all xxMACs are handled by the bnx2x_link code. 9664 */ 9665 stay_reset2 = 9666 MISC_REGISTERS_RESET_REG_2_XMAC | 9667 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 9668 9669 /* Full reset masks according to the chip */ 9670 reset_mask1 = 0xffffffff; 9671 9672 if (CHIP_IS_E1(bp)) 9673 reset_mask2 = 0xffff; 9674 else if (CHIP_IS_E1H(bp)) 9675 reset_mask2 = 0x1ffff; 9676 else if (CHIP_IS_E2(bp)) 9677 reset_mask2 = 0xfffff; 9678 else /* CHIP_IS_E3 */ 9679 reset_mask2 = 0x3ffffff; 9680 9681 /* Don't reset global blocks unless we need to */ 9682 if (!global) 9683 reset_mask2 &= ~global_bits2; 9684 9685 /* 9686 * In case of attention in the QM, we need to reset PXP 9687 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 9688 * because otherwise QM reset would release 'close the gates' shortly 9689 * before resetting the PXP, then the PSWRQ would send a write 9690 * request to PGLUE. Then when PXP is reset, PGLUE would try to 9691 * read the payload data from PSWWR, but PSWWR would not 9692 * respond. The write queue in PGLUE would stuck, dmae commands 9693 * would not return. Therefore it's important to reset the second 9694 * reset register (containing the 9695 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 9696 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 9697 * bit). 9698 */ 9699 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 9700 reset_mask2 & (~not_reset_mask2)); 9701 9702 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 9703 reset_mask1 & (~not_reset_mask1)); 9704 9705 barrier(); 9706 mmiowb(); 9707 9708 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 9709 reset_mask2 & (~stay_reset2)); 9710 9711 barrier(); 9712 mmiowb(); 9713 9714 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 9715 mmiowb(); 9716 } 9717 9718 /** 9719 * bnx2x_er_poll_igu_vq - poll for pending writes bit. 9720 * It should get cleared in no more than 1s. 9721 * 9722 * @bp: driver handle 9723 * 9724 * It should get cleared in no more than 1s. Returns 0 if 9725 * pending writes bit gets cleared. 9726 */ 9727 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) 9728 { 9729 u32 cnt = 1000; 9730 u32 pend_bits = 0; 9731 9732 do { 9733 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); 9734 9735 if (pend_bits == 0) 9736 break; 9737 9738 usleep_range(1000, 2000); 9739 } while (cnt-- > 0); 9740 9741 if (cnt <= 0) { 9742 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", 9743 pend_bits); 9744 return -EBUSY; 9745 } 9746 9747 return 0; 9748 } 9749 9750 static int bnx2x_process_kill(struct bnx2x *bp, bool global) 9751 { 9752 int cnt = 1000; 9753 u32 val = 0; 9754 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 9755 u32 tags_63_32 = 0; 9756 9757 /* Empty the Tetris buffer, wait for 1s */ 9758 do { 9759 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); 9760 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); 9761 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); 9762 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); 9763 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); 9764 if (CHIP_IS_E3(bp)) 9765 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); 9766 9767 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 9768 ((port_is_idle_0 & 0x1) == 0x1) && 9769 ((port_is_idle_1 & 0x1) == 0x1) && 9770 (pgl_exp_rom2 == 0xffffffff) && 9771 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) 9772 break; 9773 usleep_range(1000, 2000); 9774 } while (cnt-- > 0); 9775 9776 if (cnt <= 0) { 9777 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); 9778 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 9779 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, 9780 pgl_exp_rom2); 9781 return -EAGAIN; 9782 } 9783 9784 barrier(); 9785 9786 /* Close gates #2, #3 and #4 */ 9787 bnx2x_set_234_gates(bp, true); 9788 9789 /* Poll for IGU VQs for 57712 and newer chips */ 9790 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) 9791 return -EAGAIN; 9792 9793 /* TBD: Indicate that "process kill" is in progress to MCP */ 9794 9795 /* Clear "unprepared" bit */ 9796 REG_WR(bp, MISC_REG_UNPREPARED, 0); 9797 barrier(); 9798 9799 /* Make sure all is written to the chip before the reset */ 9800 mmiowb(); 9801 9802 /* Wait for 1ms to empty GLUE and PCI-E core queues, 9803 * PSWHST, GRC and PSWRD Tetris buffer. 9804 */ 9805 usleep_range(1000, 2000); 9806 9807 /* Prepare to chip reset: */ 9808 /* MCP */ 9809 if (global) 9810 bnx2x_reset_mcp_prep(bp, &val); 9811 9812 /* PXP */ 9813 bnx2x_pxp_prep(bp); 9814 barrier(); 9815 9816 /* reset the chip */ 9817 bnx2x_process_kill_chip_reset(bp, global); 9818 barrier(); 9819 9820 /* clear errors in PGB */ 9821 if (!CHIP_IS_E1x(bp)) 9822 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 9823 9824 /* Recover after reset: */ 9825 /* MCP */ 9826 if (global && bnx2x_reset_mcp_comp(bp, val)) 9827 return -EAGAIN; 9828 9829 /* TBD: Add resetting the NO_MCP mode DB here */ 9830 9831 /* Open the gates #2, #3 and #4 */ 9832 bnx2x_set_234_gates(bp, false); 9833 9834 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a 9835 * reset state, re-enable attentions. */ 9836 9837 return 0; 9838 } 9839 9840 static int bnx2x_leader_reset(struct bnx2x *bp) 9841 { 9842 int rc = 0; 9843 bool global = bnx2x_reset_is_global(bp); 9844 u32 load_code; 9845 9846 /* if not going to reset MCP - load "fake" driver to reset HW while 9847 * driver is owner of the HW 9848 */ 9849 if (!global && !BP_NOMCP(bp)) { 9850 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 9851 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 9852 if (!load_code) { 9853 BNX2X_ERR("MCP response failure, aborting\n"); 9854 rc = -EAGAIN; 9855 goto exit_leader_reset; 9856 } 9857 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 9858 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 9859 BNX2X_ERR("MCP unexpected resp, aborting\n"); 9860 rc = -EAGAIN; 9861 goto exit_leader_reset2; 9862 } 9863 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 9864 if (!load_code) { 9865 BNX2X_ERR("MCP response failure, aborting\n"); 9866 rc = -EAGAIN; 9867 goto exit_leader_reset2; 9868 } 9869 } 9870 9871 /* Try to recover after the failure */ 9872 if (bnx2x_process_kill(bp, global)) { 9873 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", 9874 BP_PATH(bp)); 9875 rc = -EAGAIN; 9876 goto exit_leader_reset2; 9877 } 9878 9879 /* 9880 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver 9881 * state. 9882 */ 9883 bnx2x_set_reset_done(bp); 9884 if (global) 9885 bnx2x_clear_reset_global(bp); 9886 9887 exit_leader_reset2: 9888 /* unload "fake driver" if it was loaded */ 9889 if (!global && !BP_NOMCP(bp)) { 9890 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 9891 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 9892 } 9893 exit_leader_reset: 9894 bp->is_leader = 0; 9895 bnx2x_release_leader_lock(bp); 9896 smp_mb(); 9897 return rc; 9898 } 9899 9900 static void bnx2x_recovery_failed(struct bnx2x *bp) 9901 { 9902 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); 9903 9904 /* Disconnect this device */ 9905 netif_device_detach(bp->dev); 9906 9907 /* 9908 * Block ifup for all function on this engine until "process kill" 9909 * or power cycle. 9910 */ 9911 bnx2x_set_reset_in_progress(bp); 9912 9913 /* Shut down the power */ 9914 bnx2x_set_power_state(bp, PCI_D3hot); 9915 9916 bp->recovery_state = BNX2X_RECOVERY_FAILED; 9917 9918 smp_mb(); 9919 } 9920 9921 /* 9922 * Assumption: runs under rtnl lock. This together with the fact 9923 * that it's called only from bnx2x_sp_rtnl() ensure that it 9924 * will never be called when netif_running(bp->dev) is false. 9925 */ 9926 static void bnx2x_parity_recover(struct bnx2x *bp) 9927 { 9928 bool global = false; 9929 u32 error_recovered, error_unrecovered; 9930 bool is_parity; 9931 9932 DP(NETIF_MSG_HW, "Handling parity\n"); 9933 while (1) { 9934 switch (bp->recovery_state) { 9935 case BNX2X_RECOVERY_INIT: 9936 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); 9937 is_parity = bnx2x_chk_parity_attn(bp, &global, false); 9938 WARN_ON(!is_parity); 9939 9940 /* Try to get a LEADER_LOCK HW lock */ 9941 if (bnx2x_trylock_leader_lock(bp)) { 9942 bnx2x_set_reset_in_progress(bp); 9943 /* 9944 * Check if there is a global attention and if 9945 * there was a global attention, set the global 9946 * reset bit. 9947 */ 9948 9949 if (global) 9950 bnx2x_set_reset_global(bp); 9951 9952 bp->is_leader = 1; 9953 } 9954 9955 /* Stop the driver */ 9956 /* If interface has been removed - break */ 9957 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) 9958 return; 9959 9960 bp->recovery_state = BNX2X_RECOVERY_WAIT; 9961 9962 /* Ensure "is_leader", MCP command sequence and 9963 * "recovery_state" update values are seen on other 9964 * CPUs. 9965 */ 9966 smp_mb(); 9967 break; 9968 9969 case BNX2X_RECOVERY_WAIT: 9970 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); 9971 if (bp->is_leader) { 9972 int other_engine = BP_PATH(bp) ? 0 : 1; 9973 bool other_load_status = 9974 bnx2x_get_load_status(bp, other_engine); 9975 bool load_status = 9976 bnx2x_get_load_status(bp, BP_PATH(bp)); 9977 global = bnx2x_reset_is_global(bp); 9978 9979 /* 9980 * In case of a parity in a global block, let 9981 * the first leader that performs a 9982 * leader_reset() reset the global blocks in 9983 * order to clear global attentions. Otherwise 9984 * the gates will remain closed for that 9985 * engine. 9986 */ 9987 if (load_status || 9988 (global && other_load_status)) { 9989 /* Wait until all other functions get 9990 * down. 9991 */ 9992 schedule_delayed_work(&bp->sp_rtnl_task, 9993 HZ/10); 9994 return; 9995 } else { 9996 /* If all other functions got down - 9997 * try to bring the chip back to 9998 * normal. In any case it's an exit 9999 * point for a leader. 10000 */ 10001 if (bnx2x_leader_reset(bp)) { 10002 bnx2x_recovery_failed(bp); 10003 return; 10004 } 10005 10006 /* If we are here, means that the 10007 * leader has succeeded and doesn't 10008 * want to be a leader any more. Try 10009 * to continue as a none-leader. 10010 */ 10011 break; 10012 } 10013 } else { /* non-leader */ 10014 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { 10015 /* Try to get a LEADER_LOCK HW lock as 10016 * long as a former leader may have 10017 * been unloaded by the user or 10018 * released a leadership by another 10019 * reason. 10020 */ 10021 if (bnx2x_trylock_leader_lock(bp)) { 10022 /* I'm a leader now! Restart a 10023 * switch case. 10024 */ 10025 bp->is_leader = 1; 10026 break; 10027 } 10028 10029 schedule_delayed_work(&bp->sp_rtnl_task, 10030 HZ/10); 10031 return; 10032 10033 } else { 10034 /* 10035 * If there was a global attention, wait 10036 * for it to be cleared. 10037 */ 10038 if (bnx2x_reset_is_global(bp)) { 10039 schedule_delayed_work( 10040 &bp->sp_rtnl_task, 10041 HZ/10); 10042 return; 10043 } 10044 10045 error_recovered = 10046 bp->eth_stats.recoverable_error; 10047 error_unrecovered = 10048 bp->eth_stats.unrecoverable_error; 10049 bp->recovery_state = 10050 BNX2X_RECOVERY_NIC_LOADING; 10051 if (bnx2x_nic_load(bp, LOAD_NORMAL)) { 10052 error_unrecovered++; 10053 netdev_err(bp->dev, 10054 "Recovery failed. Power cycle needed\n"); 10055 /* Disconnect this device */ 10056 netif_device_detach(bp->dev); 10057 /* Shut down the power */ 10058 bnx2x_set_power_state( 10059 bp, PCI_D3hot); 10060 smp_mb(); 10061 } else { 10062 bp->recovery_state = 10063 BNX2X_RECOVERY_DONE; 10064 error_recovered++; 10065 smp_mb(); 10066 } 10067 bp->eth_stats.recoverable_error = 10068 error_recovered; 10069 bp->eth_stats.unrecoverable_error = 10070 error_unrecovered; 10071 10072 return; 10073 } 10074 } 10075 default: 10076 return; 10077 } 10078 } 10079 } 10080 10081 #ifdef CONFIG_BNX2X_VXLAN 10082 static int bnx2x_vxlan_port_update(struct bnx2x *bp, u16 port) 10083 { 10084 struct bnx2x_func_switch_update_params *switch_update_params; 10085 struct bnx2x_func_state_params func_params = {NULL}; 10086 int rc; 10087 10088 switch_update_params = &func_params.params.switch_update; 10089 10090 /* Prepare parameters for function state transitions */ 10091 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 10092 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 10093 10094 func_params.f_obj = &bp->func_obj; 10095 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 10096 10097 /* Function parameters */ 10098 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG, 10099 &switch_update_params->changes); 10100 switch_update_params->vxlan_dst_port = port; 10101 rc = bnx2x_func_state_change(bp, &func_params); 10102 if (rc) 10103 BNX2X_ERR("failed to change vxlan dst port to %d (rc = 0x%x)\n", 10104 port, rc); 10105 return rc; 10106 } 10107 10108 static void __bnx2x_add_vxlan_port(struct bnx2x *bp, u16 port) 10109 { 10110 if (!netif_running(bp->dev)) 10111 return; 10112 10113 if (bp->vxlan_dst_port || !IS_PF(bp)) { 10114 DP(BNX2X_MSG_SP, "Vxlan destination port limit reached\n"); 10115 return; 10116 } 10117 10118 bp->vxlan_dst_port = port; 10119 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_ADD_VXLAN_PORT, 0); 10120 } 10121 10122 static void bnx2x_add_vxlan_port(struct net_device *netdev, 10123 sa_family_t sa_family, __be16 port) 10124 { 10125 struct bnx2x *bp = netdev_priv(netdev); 10126 u16 t_port = ntohs(port); 10127 10128 __bnx2x_add_vxlan_port(bp, t_port); 10129 } 10130 10131 static void __bnx2x_del_vxlan_port(struct bnx2x *bp, u16 port) 10132 { 10133 if (!bp->vxlan_dst_port || bp->vxlan_dst_port != port || !IS_PF(bp)) { 10134 DP(BNX2X_MSG_SP, "Invalid vxlan port\n"); 10135 return; 10136 } 10137 10138 if (netif_running(bp->dev)) { 10139 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_DEL_VXLAN_PORT, 0); 10140 } else { 10141 bp->vxlan_dst_port = 0; 10142 netdev_info(bp->dev, "Deleted vxlan dest port %d", port); 10143 } 10144 } 10145 10146 static void bnx2x_del_vxlan_port(struct net_device *netdev, 10147 sa_family_t sa_family, __be16 port) 10148 { 10149 struct bnx2x *bp = netdev_priv(netdev); 10150 u16 t_port = ntohs(port); 10151 10152 __bnx2x_del_vxlan_port(bp, t_port); 10153 } 10154 #endif 10155 10156 static int bnx2x_close(struct net_device *dev); 10157 10158 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is 10159 * scheduled on a general queue in order to prevent a dead lock. 10160 */ 10161 static void bnx2x_sp_rtnl_task(struct work_struct *work) 10162 { 10163 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); 10164 #ifdef CONFIG_BNX2X_VXLAN 10165 u16 port; 10166 #endif 10167 10168 rtnl_lock(); 10169 10170 if (!netif_running(bp->dev)) { 10171 rtnl_unlock(); 10172 return; 10173 } 10174 10175 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { 10176 #ifdef BNX2X_STOP_ON_ERROR 10177 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10178 "you will need to reboot when done\n"); 10179 goto sp_rtnl_not_reset; 10180 #endif 10181 /* 10182 * Clear all pending SP commands as we are going to reset the 10183 * function anyway. 10184 */ 10185 bp->sp_rtnl_state = 0; 10186 smp_mb(); 10187 10188 bnx2x_parity_recover(bp); 10189 10190 rtnl_unlock(); 10191 return; 10192 } 10193 10194 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { 10195 #ifdef BNX2X_STOP_ON_ERROR 10196 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10197 "you will need to reboot when done\n"); 10198 goto sp_rtnl_not_reset; 10199 #endif 10200 10201 /* 10202 * Clear all pending SP commands as we are going to reset the 10203 * function anyway. 10204 */ 10205 bp->sp_rtnl_state = 0; 10206 smp_mb(); 10207 10208 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10209 bnx2x_nic_load(bp, LOAD_NORMAL); 10210 10211 rtnl_unlock(); 10212 return; 10213 } 10214 #ifdef BNX2X_STOP_ON_ERROR 10215 sp_rtnl_not_reset: 10216 #endif 10217 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) 10218 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); 10219 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) 10220 bnx2x_after_function_update(bp); 10221 /* 10222 * in case of fan failure we need to reset id if the "stop on error" 10223 * debug flag is set, since we trying to prevent permanent overheating 10224 * damage 10225 */ 10226 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { 10227 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); 10228 netif_device_detach(bp->dev); 10229 bnx2x_close(bp->dev); 10230 rtnl_unlock(); 10231 return; 10232 } 10233 10234 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { 10235 DP(BNX2X_MSG_SP, 10236 "sending set mcast vf pf channel message from rtnl sp-task\n"); 10237 bnx2x_vfpf_set_mcast(bp->dev); 10238 } 10239 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 10240 &bp->sp_rtnl_state)){ 10241 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) { 10242 bnx2x_tx_disable(bp); 10243 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); 10244 } 10245 } 10246 10247 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) { 10248 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n"); 10249 bnx2x_set_rx_mode_inner(bp); 10250 } 10251 10252 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, 10253 &bp->sp_rtnl_state)) 10254 bnx2x_pf_set_vfs_vlan(bp); 10255 10256 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) { 10257 bnx2x_dcbx_stop_hw_tx(bp); 10258 bnx2x_dcbx_resume_hw_tx(bp); 10259 } 10260 10261 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION, 10262 &bp->sp_rtnl_state)) 10263 bnx2x_update_mng_version(bp); 10264 10265 #ifdef CONFIG_BNX2X_VXLAN 10266 port = bp->vxlan_dst_port; 10267 if (test_and_clear_bit(BNX2X_SP_RTNL_ADD_VXLAN_PORT, 10268 &bp->sp_rtnl_state)) { 10269 if (!bnx2x_vxlan_port_update(bp, port)) 10270 netdev_info(bp->dev, "Added vxlan dest port %d", port); 10271 else 10272 bp->vxlan_dst_port = 0; 10273 } 10274 10275 if (test_and_clear_bit(BNX2X_SP_RTNL_DEL_VXLAN_PORT, 10276 &bp->sp_rtnl_state)) { 10277 if (!bnx2x_vxlan_port_update(bp, 0)) { 10278 netdev_info(bp->dev, 10279 "Deleted vxlan dest port %d", port); 10280 bp->vxlan_dst_port = 0; 10281 vxlan_get_rx_port(bp->dev); 10282 } 10283 } 10284 #endif 10285 10286 /* work which needs rtnl lock not-taken (as it takes the lock itself and 10287 * can be called from other contexts as well) 10288 */ 10289 rtnl_unlock(); 10290 10291 /* enable SR-IOV if applicable */ 10292 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, 10293 &bp->sp_rtnl_state)) { 10294 bnx2x_disable_sriov(bp); 10295 bnx2x_enable_sriov(bp); 10296 } 10297 } 10298 10299 static void bnx2x_period_task(struct work_struct *work) 10300 { 10301 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); 10302 10303 if (!netif_running(bp->dev)) 10304 goto period_task_exit; 10305 10306 if (CHIP_REV_IS_SLOW(bp)) { 10307 BNX2X_ERR("period task called on emulation, ignoring\n"); 10308 goto period_task_exit; 10309 } 10310 10311 bnx2x_acquire_phy_lock(bp); 10312 /* 10313 * The barrier is needed to ensure the ordering between the writing to 10314 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and 10315 * the reading here. 10316 */ 10317 smp_mb(); 10318 if (bp->port.pmf) { 10319 bnx2x_period_func(&bp->link_params, &bp->link_vars); 10320 10321 /* Re-queue task in 1 sec */ 10322 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); 10323 } 10324 10325 bnx2x_release_phy_lock(bp); 10326 period_task_exit: 10327 return; 10328 } 10329 10330 /* 10331 * Init service functions 10332 */ 10333 10334 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp) 10335 { 10336 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; 10337 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; 10338 return base + (BP_ABS_FUNC(bp)) * stride; 10339 } 10340 10341 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp, 10342 u8 port, u32 reset_reg, 10343 struct bnx2x_mac_vals *vals) 10344 { 10345 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 10346 u32 base_addr; 10347 10348 if (!(mask & reset_reg)) 10349 return false; 10350 10351 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port); 10352 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 10353 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG; 10354 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]); 10355 REG_WR(bp, vals->umac_addr[port], 0); 10356 10357 return true; 10358 } 10359 10360 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, 10361 struct bnx2x_mac_vals *vals) 10362 { 10363 u32 val, base_addr, offset, mask, reset_reg; 10364 bool mac_stopped = false; 10365 u8 port = BP_PORT(bp); 10366 10367 /* reset addresses as they also mark which values were changed */ 10368 memset(vals, 0, sizeof(*vals)); 10369 10370 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); 10371 10372 if (!CHIP_IS_E3(bp)) { 10373 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 10374 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 10375 if ((mask & reset_reg) && val) { 10376 u32 wb_data[2]; 10377 BNX2X_DEV_INFO("Disable bmac Rx\n"); 10378 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM 10379 : NIG_REG_INGRESS_BMAC0_MEM; 10380 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL 10381 : BIGMAC_REGISTER_BMAC_CONTROL; 10382 10383 /* 10384 * use rd/wr since we cannot use dmae. This is safe 10385 * since MCP won't access the bus due to the request 10386 * to unload, and no function on the path can be 10387 * loaded at this time. 10388 */ 10389 wb_data[0] = REG_RD(bp, base_addr + offset); 10390 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); 10391 vals->bmac_addr = base_addr + offset; 10392 vals->bmac_val[0] = wb_data[0]; 10393 vals->bmac_val[1] = wb_data[1]; 10394 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; 10395 REG_WR(bp, vals->bmac_addr, wb_data[0]); 10396 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); 10397 } 10398 BNX2X_DEV_INFO("Disable emac Rx\n"); 10399 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; 10400 vals->emac_val = REG_RD(bp, vals->emac_addr); 10401 REG_WR(bp, vals->emac_addr, 0); 10402 mac_stopped = true; 10403 } else { 10404 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 10405 BNX2X_DEV_INFO("Disable xmac Rx\n"); 10406 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 10407 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); 10408 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10409 val & ~(1 << 1)); 10410 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10411 val | (1 << 1)); 10412 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 10413 vals->xmac_val = REG_RD(bp, vals->xmac_addr); 10414 REG_WR(bp, vals->xmac_addr, 0); 10415 mac_stopped = true; 10416 } 10417 10418 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0, 10419 reset_reg, vals); 10420 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1, 10421 reset_reg, vals); 10422 } 10423 10424 if (mac_stopped) 10425 msleep(20); 10426 } 10427 10428 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 10429 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \ 10430 0x1848 + ((f) << 4)) 10431 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) 10432 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 10433 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 10434 10435 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07) 10436 #define BCM_5710_UNDI_FW_MF_MINOR (0x08) 10437 #define BCM_5710_UNDI_FW_MF_VERS (0x05) 10438 10439 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp) 10440 { 10441 /* UNDI marks its presence in DORQ - 10442 * it initializes CID offset for normal bell to 0x7 10443 */ 10444 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) & 10445 MISC_REGISTERS_RESET_REG_1_RST_DORQ)) 10446 return false; 10447 10448 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) { 10449 BNX2X_DEV_INFO("UNDI previously loaded\n"); 10450 return true; 10451 } 10452 10453 return false; 10454 } 10455 10456 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc) 10457 { 10458 u16 rcq, bd; 10459 u32 addr, tmp_reg; 10460 10461 if (BP_FUNC(bp) < 2) 10462 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp)); 10463 else 10464 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2); 10465 10466 tmp_reg = REG_RD(bp, addr); 10467 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; 10468 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; 10469 10470 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); 10471 REG_WR(bp, addr, tmp_reg); 10472 10473 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n", 10474 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq); 10475 } 10476 10477 static int bnx2x_prev_mcp_done(struct bnx2x *bp) 10478 { 10479 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 10480 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 10481 if (!rc) { 10482 BNX2X_ERR("MCP response failure, aborting\n"); 10483 return -EBUSY; 10484 } 10485 10486 return 0; 10487 } 10488 10489 static struct bnx2x_prev_path_list * 10490 bnx2x_prev_path_get_entry(struct bnx2x *bp) 10491 { 10492 struct bnx2x_prev_path_list *tmp_list; 10493 10494 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) 10495 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && 10496 bp->pdev->bus->number == tmp_list->bus && 10497 BP_PATH(bp) == tmp_list->path) 10498 return tmp_list; 10499 10500 return NULL; 10501 } 10502 10503 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) 10504 { 10505 struct bnx2x_prev_path_list *tmp_list; 10506 int rc; 10507 10508 rc = down_interruptible(&bnx2x_prev_sem); 10509 if (rc) { 10510 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10511 return rc; 10512 } 10513 10514 tmp_list = bnx2x_prev_path_get_entry(bp); 10515 if (tmp_list) { 10516 tmp_list->aer = 1; 10517 rc = 0; 10518 } else { 10519 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", 10520 BP_PATH(bp)); 10521 } 10522 10523 up(&bnx2x_prev_sem); 10524 10525 return rc; 10526 } 10527 10528 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) 10529 { 10530 struct bnx2x_prev_path_list *tmp_list; 10531 bool rc = false; 10532 10533 if (down_trylock(&bnx2x_prev_sem)) 10534 return false; 10535 10536 tmp_list = bnx2x_prev_path_get_entry(bp); 10537 if (tmp_list) { 10538 if (tmp_list->aer) { 10539 DP(NETIF_MSG_HW, "Path %d was marked by AER\n", 10540 BP_PATH(bp)); 10541 } else { 10542 rc = true; 10543 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", 10544 BP_PATH(bp)); 10545 } 10546 } 10547 10548 up(&bnx2x_prev_sem); 10549 10550 return rc; 10551 } 10552 10553 bool bnx2x_port_after_undi(struct bnx2x *bp) 10554 { 10555 struct bnx2x_prev_path_list *entry; 10556 bool val; 10557 10558 down(&bnx2x_prev_sem); 10559 10560 entry = bnx2x_prev_path_get_entry(bp); 10561 val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); 10562 10563 up(&bnx2x_prev_sem); 10564 10565 return val; 10566 } 10567 10568 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) 10569 { 10570 struct bnx2x_prev_path_list *tmp_list; 10571 int rc; 10572 10573 rc = down_interruptible(&bnx2x_prev_sem); 10574 if (rc) { 10575 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10576 return rc; 10577 } 10578 10579 /* Check whether the entry for this path already exists */ 10580 tmp_list = bnx2x_prev_path_get_entry(bp); 10581 if (tmp_list) { 10582 if (!tmp_list->aer) { 10583 BNX2X_ERR("Re-Marking the path.\n"); 10584 } else { 10585 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", 10586 BP_PATH(bp)); 10587 tmp_list->aer = 0; 10588 } 10589 up(&bnx2x_prev_sem); 10590 return 0; 10591 } 10592 up(&bnx2x_prev_sem); 10593 10594 /* Create an entry for this path and add it */ 10595 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); 10596 if (!tmp_list) { 10597 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); 10598 return -ENOMEM; 10599 } 10600 10601 tmp_list->bus = bp->pdev->bus->number; 10602 tmp_list->slot = PCI_SLOT(bp->pdev->devfn); 10603 tmp_list->path = BP_PATH(bp); 10604 tmp_list->aer = 0; 10605 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; 10606 10607 rc = down_interruptible(&bnx2x_prev_sem); 10608 if (rc) { 10609 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10610 kfree(tmp_list); 10611 } else { 10612 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", 10613 BP_PATH(bp)); 10614 list_add(&tmp_list->list, &bnx2x_prev_list); 10615 up(&bnx2x_prev_sem); 10616 } 10617 10618 return rc; 10619 } 10620 10621 static int bnx2x_do_flr(struct bnx2x *bp) 10622 { 10623 struct pci_dev *dev = bp->pdev; 10624 10625 if (CHIP_IS_E1x(bp)) { 10626 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); 10627 return -EINVAL; 10628 } 10629 10630 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 10631 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 10632 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", 10633 bp->common.bc_ver); 10634 return -EINVAL; 10635 } 10636 10637 if (!pci_wait_for_pending_transaction(dev)) 10638 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 10639 10640 BNX2X_DEV_INFO("Initiating FLR\n"); 10641 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); 10642 10643 return 0; 10644 } 10645 10646 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) 10647 { 10648 int rc; 10649 10650 BNX2X_DEV_INFO("Uncommon unload Flow\n"); 10651 10652 /* Test if previous unload process was already finished for this path */ 10653 if (bnx2x_prev_is_path_marked(bp)) 10654 return bnx2x_prev_mcp_done(bp); 10655 10656 BNX2X_DEV_INFO("Path is unmarked\n"); 10657 10658 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */ 10659 if (bnx2x_prev_is_after_undi(bp)) 10660 goto out; 10661 10662 /* If function has FLR capabilities, and existing FW version matches 10663 * the one required, then FLR will be sufficient to clean any residue 10664 * left by previous driver 10665 */ 10666 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false); 10667 10668 if (!rc) { 10669 /* fw version is good */ 10670 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); 10671 rc = bnx2x_do_flr(bp); 10672 } 10673 10674 if (!rc) { 10675 /* FLR was performed */ 10676 BNX2X_DEV_INFO("FLR successful\n"); 10677 return 0; 10678 } 10679 10680 BNX2X_DEV_INFO("Could not FLR\n"); 10681 10682 out: 10683 /* Close the MCP request, return failure*/ 10684 rc = bnx2x_prev_mcp_done(bp); 10685 if (!rc) 10686 rc = BNX2X_PREV_WAIT_NEEDED; 10687 10688 return rc; 10689 } 10690 10691 static int bnx2x_prev_unload_common(struct bnx2x *bp) 10692 { 10693 u32 reset_reg, tmp_reg = 0, rc; 10694 bool prev_undi = false; 10695 struct bnx2x_mac_vals mac_vals; 10696 10697 /* It is possible a previous function received 'common' answer, 10698 * but hasn't loaded yet, therefore creating a scenario of 10699 * multiple functions receiving 'common' on the same path. 10700 */ 10701 BNX2X_DEV_INFO("Common unload Flow\n"); 10702 10703 memset(&mac_vals, 0, sizeof(mac_vals)); 10704 10705 if (bnx2x_prev_is_path_marked(bp)) 10706 return bnx2x_prev_mcp_done(bp); 10707 10708 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); 10709 10710 /* Reset should be performed after BRB is emptied */ 10711 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 10712 u32 timer_count = 1000; 10713 10714 /* Close the MAC Rx to prevent BRB from filling up */ 10715 bnx2x_prev_unload_close_mac(bp, &mac_vals); 10716 10717 /* close LLH filters for both ports towards the BRB */ 10718 bnx2x_set_rx_filter(&bp->link_params, 0); 10719 bp->link_params.port ^= 1; 10720 bnx2x_set_rx_filter(&bp->link_params, 0); 10721 bp->link_params.port ^= 1; 10722 10723 /* Check if the UNDI driver was previously loaded */ 10724 if (bnx2x_prev_is_after_undi(bp)) { 10725 prev_undi = true; 10726 /* clear the UNDI indication */ 10727 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); 10728 /* clear possible idle check errors */ 10729 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); 10730 } 10731 if (!CHIP_IS_E1x(bp)) 10732 /* block FW from writing to host */ 10733 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 10734 10735 /* wait until BRB is empty */ 10736 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10737 while (timer_count) { 10738 u32 prev_brb = tmp_reg; 10739 10740 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10741 if (!tmp_reg) 10742 break; 10743 10744 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); 10745 10746 /* reset timer as long as BRB actually gets emptied */ 10747 if (prev_brb > tmp_reg) 10748 timer_count = 1000; 10749 else 10750 timer_count--; 10751 10752 /* If UNDI resides in memory, manually increment it */ 10753 if (prev_undi) 10754 bnx2x_prev_unload_undi_inc(bp, 1); 10755 10756 udelay(10); 10757 } 10758 10759 if (!timer_count) 10760 BNX2X_ERR("Failed to empty BRB, hope for the best\n"); 10761 } 10762 10763 /* No packets are in the pipeline, path is ready for reset */ 10764 bnx2x_reset_common(bp); 10765 10766 if (mac_vals.xmac_addr) 10767 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); 10768 if (mac_vals.umac_addr[0]) 10769 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]); 10770 if (mac_vals.umac_addr[1]) 10771 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]); 10772 if (mac_vals.emac_addr) 10773 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); 10774 if (mac_vals.bmac_addr) { 10775 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 10776 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 10777 } 10778 10779 rc = bnx2x_prev_mark_path(bp, prev_undi); 10780 if (rc) { 10781 bnx2x_prev_mcp_done(bp); 10782 return rc; 10783 } 10784 10785 return bnx2x_prev_mcp_done(bp); 10786 } 10787 10788 static int bnx2x_prev_unload(struct bnx2x *bp) 10789 { 10790 int time_counter = 10; 10791 u32 rc, fw, hw_lock_reg, hw_lock_val; 10792 BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); 10793 10794 /* clear hw from errors which may have resulted from an interrupted 10795 * dmae transaction. 10796 */ 10797 bnx2x_clean_pglue_errors(bp); 10798 10799 /* Release previously held locks */ 10800 hw_lock_reg = (BP_FUNC(bp) <= 5) ? 10801 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : 10802 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); 10803 10804 hw_lock_val = REG_RD(bp, hw_lock_reg); 10805 if (hw_lock_val) { 10806 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 10807 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); 10808 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, 10809 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); 10810 } 10811 10812 BNX2X_DEV_INFO("Release Previously held hw lock\n"); 10813 REG_WR(bp, hw_lock_reg, 0xffffffff); 10814 } else 10815 BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); 10816 10817 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { 10818 BNX2X_DEV_INFO("Release previously held alr\n"); 10819 bnx2x_release_alr(bp); 10820 } 10821 10822 do { 10823 int aer = 0; 10824 /* Lock MCP using an unload request */ 10825 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 10826 if (!fw) { 10827 BNX2X_ERR("MCP response failure, aborting\n"); 10828 rc = -EBUSY; 10829 break; 10830 } 10831 10832 rc = down_interruptible(&bnx2x_prev_sem); 10833 if (rc) { 10834 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", 10835 rc); 10836 } else { 10837 /* If Path is marked by EEH, ignore unload status */ 10838 aer = !!(bnx2x_prev_path_get_entry(bp) && 10839 bnx2x_prev_path_get_entry(bp)->aer); 10840 up(&bnx2x_prev_sem); 10841 } 10842 10843 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { 10844 rc = bnx2x_prev_unload_common(bp); 10845 break; 10846 } 10847 10848 /* non-common reply from MCP might require looping */ 10849 rc = bnx2x_prev_unload_uncommon(bp); 10850 if (rc != BNX2X_PREV_WAIT_NEEDED) 10851 break; 10852 10853 msleep(20); 10854 } while (--time_counter); 10855 10856 if (!time_counter || rc) { 10857 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n"); 10858 rc = -EPROBE_DEFER; 10859 } 10860 10861 /* Mark function if its port was used to boot from SAN */ 10862 if (bnx2x_port_after_undi(bp)) 10863 bp->link_params.feature_config_flags |= 10864 FEATURE_CONFIG_BOOT_FROM_SAN; 10865 10866 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); 10867 10868 return rc; 10869 } 10870 10871 static void bnx2x_get_common_hwinfo(struct bnx2x *bp) 10872 { 10873 u32 val, val2, val3, val4, id, boot_mode; 10874 u16 pmc; 10875 10876 /* Get the chip revision id and number. */ 10877 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 10878 val = REG_RD(bp, MISC_REG_CHIP_NUM); 10879 id = ((val & 0xffff) << 16); 10880 val = REG_RD(bp, MISC_REG_CHIP_REV); 10881 id |= ((val & 0xf) << 12); 10882 10883 /* Metal is read from PCI regs, but we can't access >=0x400 from 10884 * the configuration space (so we need to reg_rd) 10885 */ 10886 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); 10887 id |= (((val >> 24) & 0xf) << 4); 10888 val = REG_RD(bp, MISC_REG_BOND_ID); 10889 id |= (val & 0xf); 10890 bp->common.chip_id = id; 10891 10892 /* force 57811 according to MISC register */ 10893 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 10894 if (CHIP_IS_57810(bp)) 10895 bp->common.chip_id = (CHIP_NUM_57811 << 16) | 10896 (bp->common.chip_id & 0x0000FFFF); 10897 else if (CHIP_IS_57810_MF(bp)) 10898 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | 10899 (bp->common.chip_id & 0x0000FFFF); 10900 bp->common.chip_id |= 0x1; 10901 } 10902 10903 /* Set doorbell size */ 10904 bp->db_size = (1 << BNX2X_DB_SHIFT); 10905 10906 if (!CHIP_IS_E1x(bp)) { 10907 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); 10908 if ((val & 1) == 0) 10909 val = REG_RD(bp, MISC_REG_PORT4MODE_EN); 10910 else 10911 val = (val >> 1) & 1; 10912 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : 10913 "2_PORT_MODE"); 10914 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : 10915 CHIP_2_PORT_MODE; 10916 10917 if (CHIP_MODE_IS_4_PORT(bp)) 10918 bp->pfid = (bp->pf_num >> 1); /* 0..3 */ 10919 else 10920 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ 10921 } else { 10922 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ 10923 bp->pfid = bp->pf_num; /* 0..7 */ 10924 } 10925 10926 BNX2X_DEV_INFO("pf_id: %x", bp->pfid); 10927 10928 bp->link_params.chip_id = bp->common.chip_id; 10929 BNX2X_DEV_INFO("chip ID is 0x%x\n", id); 10930 10931 val = (REG_RD(bp, 0x2874) & 0x55); 10932 if ((bp->common.chip_id & 0x1) || 10933 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { 10934 bp->flags |= ONE_PORT_FLAG; 10935 BNX2X_DEV_INFO("single port device\n"); 10936 } 10937 10938 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); 10939 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << 10940 (val & MCPR_NVM_CFG4_FLASH_SIZE)); 10941 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", 10942 bp->common.flash_size, bp->common.flash_size); 10943 10944 bnx2x_init_shmem(bp); 10945 10946 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? 10947 MISC_REG_GENERIC_CR_1 : 10948 MISC_REG_GENERIC_CR_0)); 10949 10950 bp->link_params.shmem_base = bp->common.shmem_base; 10951 bp->link_params.shmem2_base = bp->common.shmem2_base; 10952 if (SHMEM2_RD(bp, size) > 10953 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 10954 bp->link_params.lfa_base = 10955 REG_RD(bp, bp->common.shmem2_base + 10956 (u32)offsetof(struct shmem2_region, 10957 lfa_host_addr[BP_PORT(bp)])); 10958 else 10959 bp->link_params.lfa_base = 0; 10960 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", 10961 bp->common.shmem_base, bp->common.shmem2_base); 10962 10963 if (!bp->common.shmem_base) { 10964 BNX2X_DEV_INFO("MCP not active\n"); 10965 bp->flags |= NO_MCP_FLAG; 10966 return; 10967 } 10968 10969 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); 10970 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); 10971 10972 bp->link_params.hw_led_mode = ((bp->common.hw_config & 10973 SHARED_HW_CFG_LED_MODE_MASK) >> 10974 SHARED_HW_CFG_LED_MODE_SHIFT); 10975 10976 bp->link_params.feature_config_flags = 0; 10977 val = SHMEM_RD(bp, dev_info.shared_feature_config.config); 10978 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) 10979 bp->link_params.feature_config_flags |= 10980 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 10981 else 10982 bp->link_params.feature_config_flags &= 10983 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 10984 10985 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; 10986 bp->common.bc_ver = val; 10987 BNX2X_DEV_INFO("bc_ver %X\n", val); 10988 if (val < BNX2X_BC_VER) { 10989 /* for now only warn 10990 * later we might need to enforce this */ 10991 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", 10992 BNX2X_BC_VER, val); 10993 } 10994 bp->link_params.feature_config_flags |= 10995 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? 10996 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; 10997 10998 bp->link_params.feature_config_flags |= 10999 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? 11000 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; 11001 bp->link_params.feature_config_flags |= 11002 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? 11003 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; 11004 bp->link_params.feature_config_flags |= 11005 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? 11006 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; 11007 11008 bp->link_params.feature_config_flags |= 11009 (val >= REQ_BC_VER_4_MT_SUPPORTED) ? 11010 FEATURE_CONFIG_MT_SUPPORT : 0; 11011 11012 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? 11013 BC_SUPPORTS_PFC_STATS : 0; 11014 11015 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? 11016 BC_SUPPORTS_FCOE_FEATURES : 0; 11017 11018 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? 11019 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; 11020 11021 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? 11022 BC_SUPPORTS_RMMOD_CMD : 0; 11023 11024 boot_mode = SHMEM_RD(bp, 11025 dev_info.port_feature_config[BP_PORT(bp)].mba_config) & 11026 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; 11027 switch (boot_mode) { 11028 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: 11029 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; 11030 break; 11031 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: 11032 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; 11033 break; 11034 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: 11035 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; 11036 break; 11037 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: 11038 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; 11039 break; 11040 } 11041 11042 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc); 11043 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; 11044 11045 BNX2X_DEV_INFO("%sWoL capable\n", 11046 (bp->flags & NO_WOL_FLAG) ? "not " : ""); 11047 11048 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); 11049 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); 11050 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); 11051 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); 11052 11053 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", 11054 val, val2, val3, val4); 11055 } 11056 11057 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 11058 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 11059 11060 static int bnx2x_get_igu_cam_info(struct bnx2x *bp) 11061 { 11062 int pfid = BP_FUNC(bp); 11063 int igu_sb_id; 11064 u32 val; 11065 u8 fid, igu_sb_cnt = 0; 11066 11067 bp->igu_base_sb = 0xff; 11068 if (CHIP_INT_MODE_IS_BC(bp)) { 11069 int vn = BP_VN(bp); 11070 igu_sb_cnt = bp->igu_sb_cnt; 11071 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * 11072 FP_SB_MAX_E1x; 11073 11074 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + 11075 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); 11076 11077 return 0; 11078 } 11079 11080 /* IGU in normal mode - read CAM */ 11081 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 11082 igu_sb_id++) { 11083 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 11084 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 11085 continue; 11086 fid = IGU_FID(val); 11087 if ((fid & IGU_FID_ENCODE_IS_PF)) { 11088 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) 11089 continue; 11090 if (IGU_VEC(val) == 0) 11091 /* default status block */ 11092 bp->igu_dsb_id = igu_sb_id; 11093 else { 11094 if (bp->igu_base_sb == 0xff) 11095 bp->igu_base_sb = igu_sb_id; 11096 igu_sb_cnt++; 11097 } 11098 } 11099 } 11100 11101 #ifdef CONFIG_PCI_MSI 11102 /* Due to new PF resource allocation by MFW T7.4 and above, it's 11103 * optional that number of CAM entries will not be equal to the value 11104 * advertised in PCI. 11105 * Driver should use the minimal value of both as the actual status 11106 * block count 11107 */ 11108 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); 11109 #endif 11110 11111 if (igu_sb_cnt == 0) { 11112 BNX2X_ERR("CAM configuration error\n"); 11113 return -EINVAL; 11114 } 11115 11116 return 0; 11117 } 11118 11119 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) 11120 { 11121 int cfg_size = 0, idx, port = BP_PORT(bp); 11122 11123 /* Aggregation of supported attributes of all external phys */ 11124 bp->port.supported[0] = 0; 11125 bp->port.supported[1] = 0; 11126 switch (bp->link_params.num_phys) { 11127 case 1: 11128 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; 11129 cfg_size = 1; 11130 break; 11131 case 2: 11132 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; 11133 cfg_size = 1; 11134 break; 11135 case 3: 11136 if (bp->link_params.multi_phy_config & 11137 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11138 bp->port.supported[1] = 11139 bp->link_params.phy[EXT_PHY1].supported; 11140 bp->port.supported[0] = 11141 bp->link_params.phy[EXT_PHY2].supported; 11142 } else { 11143 bp->port.supported[0] = 11144 bp->link_params.phy[EXT_PHY1].supported; 11145 bp->port.supported[1] = 11146 bp->link_params.phy[EXT_PHY2].supported; 11147 } 11148 cfg_size = 2; 11149 break; 11150 } 11151 11152 if (!(bp->port.supported[0] || bp->port.supported[1])) { 11153 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", 11154 SHMEM_RD(bp, 11155 dev_info.port_hw_config[port].external_phy_config), 11156 SHMEM_RD(bp, 11157 dev_info.port_hw_config[port].external_phy_config2)); 11158 return; 11159 } 11160 11161 if (CHIP_IS_E3(bp)) 11162 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); 11163 else { 11164 switch (switch_cfg) { 11165 case SWITCH_CFG_1G: 11166 bp->port.phy_addr = REG_RD( 11167 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 11168 break; 11169 case SWITCH_CFG_10G: 11170 bp->port.phy_addr = REG_RD( 11171 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 11172 break; 11173 default: 11174 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", 11175 bp->port.link_config[0]); 11176 return; 11177 } 11178 } 11179 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); 11180 /* mask what we support according to speed_cap_mask per configuration */ 11181 for (idx = 0; idx < cfg_size; idx++) { 11182 if (!(bp->link_params.speed_cap_mask[idx] & 11183 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) 11184 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; 11185 11186 if (!(bp->link_params.speed_cap_mask[idx] & 11187 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) 11188 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; 11189 11190 if (!(bp->link_params.speed_cap_mask[idx] & 11191 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) 11192 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; 11193 11194 if (!(bp->link_params.speed_cap_mask[idx] & 11195 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) 11196 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; 11197 11198 if (!(bp->link_params.speed_cap_mask[idx] & 11199 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) 11200 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | 11201 SUPPORTED_1000baseT_Full); 11202 11203 if (!(bp->link_params.speed_cap_mask[idx] & 11204 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) 11205 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; 11206 11207 if (!(bp->link_params.speed_cap_mask[idx] & 11208 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) 11209 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; 11210 11211 if (!(bp->link_params.speed_cap_mask[idx] & 11212 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) 11213 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; 11214 } 11215 11216 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], 11217 bp->port.supported[1]); 11218 } 11219 11220 static void bnx2x_link_settings_requested(struct bnx2x *bp) 11221 { 11222 u32 link_config, idx, cfg_size = 0; 11223 bp->port.advertising[0] = 0; 11224 bp->port.advertising[1] = 0; 11225 switch (bp->link_params.num_phys) { 11226 case 1: 11227 case 2: 11228 cfg_size = 1; 11229 break; 11230 case 3: 11231 cfg_size = 2; 11232 break; 11233 } 11234 for (idx = 0; idx < cfg_size; idx++) { 11235 bp->link_params.req_duplex[idx] = DUPLEX_FULL; 11236 link_config = bp->port.link_config[idx]; 11237 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 11238 case PORT_FEATURE_LINK_SPEED_AUTO: 11239 if (bp->port.supported[idx] & SUPPORTED_Autoneg) { 11240 bp->link_params.req_line_speed[idx] = 11241 SPEED_AUTO_NEG; 11242 bp->port.advertising[idx] |= 11243 bp->port.supported[idx]; 11244 if (bp->link_params.phy[EXT_PHY1].type == 11245 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 11246 bp->port.advertising[idx] |= 11247 (SUPPORTED_100baseT_Half | 11248 SUPPORTED_100baseT_Full); 11249 } else { 11250 /* force 10G, no AN */ 11251 bp->link_params.req_line_speed[idx] = 11252 SPEED_10000; 11253 bp->port.advertising[idx] |= 11254 (ADVERTISED_10000baseT_Full | 11255 ADVERTISED_FIBRE); 11256 continue; 11257 } 11258 break; 11259 11260 case PORT_FEATURE_LINK_SPEED_10M_FULL: 11261 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { 11262 bp->link_params.req_line_speed[idx] = 11263 SPEED_10; 11264 bp->port.advertising[idx] |= 11265 (ADVERTISED_10baseT_Full | 11266 ADVERTISED_TP); 11267 } else { 11268 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11269 link_config, 11270 bp->link_params.speed_cap_mask[idx]); 11271 return; 11272 } 11273 break; 11274 11275 case PORT_FEATURE_LINK_SPEED_10M_HALF: 11276 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { 11277 bp->link_params.req_line_speed[idx] = 11278 SPEED_10; 11279 bp->link_params.req_duplex[idx] = 11280 DUPLEX_HALF; 11281 bp->port.advertising[idx] |= 11282 (ADVERTISED_10baseT_Half | 11283 ADVERTISED_TP); 11284 } else { 11285 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11286 link_config, 11287 bp->link_params.speed_cap_mask[idx]); 11288 return; 11289 } 11290 break; 11291 11292 case PORT_FEATURE_LINK_SPEED_100M_FULL: 11293 if (bp->port.supported[idx] & 11294 SUPPORTED_100baseT_Full) { 11295 bp->link_params.req_line_speed[idx] = 11296 SPEED_100; 11297 bp->port.advertising[idx] |= 11298 (ADVERTISED_100baseT_Full | 11299 ADVERTISED_TP); 11300 } else { 11301 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11302 link_config, 11303 bp->link_params.speed_cap_mask[idx]); 11304 return; 11305 } 11306 break; 11307 11308 case PORT_FEATURE_LINK_SPEED_100M_HALF: 11309 if (bp->port.supported[idx] & 11310 SUPPORTED_100baseT_Half) { 11311 bp->link_params.req_line_speed[idx] = 11312 SPEED_100; 11313 bp->link_params.req_duplex[idx] = 11314 DUPLEX_HALF; 11315 bp->port.advertising[idx] |= 11316 (ADVERTISED_100baseT_Half | 11317 ADVERTISED_TP); 11318 } else { 11319 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11320 link_config, 11321 bp->link_params.speed_cap_mask[idx]); 11322 return; 11323 } 11324 break; 11325 11326 case PORT_FEATURE_LINK_SPEED_1G: 11327 if (bp->port.supported[idx] & 11328 SUPPORTED_1000baseT_Full) { 11329 bp->link_params.req_line_speed[idx] = 11330 SPEED_1000; 11331 bp->port.advertising[idx] |= 11332 (ADVERTISED_1000baseT_Full | 11333 ADVERTISED_TP); 11334 } else if (bp->port.supported[idx] & 11335 SUPPORTED_1000baseKX_Full) { 11336 bp->link_params.req_line_speed[idx] = 11337 SPEED_1000; 11338 bp->port.advertising[idx] |= 11339 ADVERTISED_1000baseKX_Full; 11340 } else { 11341 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11342 link_config, 11343 bp->link_params.speed_cap_mask[idx]); 11344 return; 11345 } 11346 break; 11347 11348 case PORT_FEATURE_LINK_SPEED_2_5G: 11349 if (bp->port.supported[idx] & 11350 SUPPORTED_2500baseX_Full) { 11351 bp->link_params.req_line_speed[idx] = 11352 SPEED_2500; 11353 bp->port.advertising[idx] |= 11354 (ADVERTISED_2500baseX_Full | 11355 ADVERTISED_TP); 11356 } else { 11357 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11358 link_config, 11359 bp->link_params.speed_cap_mask[idx]); 11360 return; 11361 } 11362 break; 11363 11364 case PORT_FEATURE_LINK_SPEED_10G_CX4: 11365 if (bp->port.supported[idx] & 11366 SUPPORTED_10000baseT_Full) { 11367 bp->link_params.req_line_speed[idx] = 11368 SPEED_10000; 11369 bp->port.advertising[idx] |= 11370 (ADVERTISED_10000baseT_Full | 11371 ADVERTISED_FIBRE); 11372 } else if (bp->port.supported[idx] & 11373 SUPPORTED_10000baseKR_Full) { 11374 bp->link_params.req_line_speed[idx] = 11375 SPEED_10000; 11376 bp->port.advertising[idx] |= 11377 (ADVERTISED_10000baseKR_Full | 11378 ADVERTISED_FIBRE); 11379 } else { 11380 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11381 link_config, 11382 bp->link_params.speed_cap_mask[idx]); 11383 return; 11384 } 11385 break; 11386 case PORT_FEATURE_LINK_SPEED_20G: 11387 bp->link_params.req_line_speed[idx] = SPEED_20000; 11388 11389 break; 11390 default: 11391 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", 11392 link_config); 11393 bp->link_params.req_line_speed[idx] = 11394 SPEED_AUTO_NEG; 11395 bp->port.advertising[idx] = 11396 bp->port.supported[idx]; 11397 break; 11398 } 11399 11400 bp->link_params.req_flow_ctrl[idx] = (link_config & 11401 PORT_FEATURE_FLOW_CONTROL_MASK); 11402 if (bp->link_params.req_flow_ctrl[idx] == 11403 BNX2X_FLOW_CTRL_AUTO) { 11404 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) 11405 bp->link_params.req_flow_ctrl[idx] = 11406 BNX2X_FLOW_CTRL_NONE; 11407 else 11408 bnx2x_set_requested_fc(bp); 11409 } 11410 11411 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", 11412 bp->link_params.req_line_speed[idx], 11413 bp->link_params.req_duplex[idx], 11414 bp->link_params.req_flow_ctrl[idx], 11415 bp->port.advertising[idx]); 11416 } 11417 } 11418 11419 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) 11420 { 11421 __be16 mac_hi_be = cpu_to_be16(mac_hi); 11422 __be32 mac_lo_be = cpu_to_be32(mac_lo); 11423 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); 11424 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); 11425 } 11426 11427 static void bnx2x_get_port_hwinfo(struct bnx2x *bp) 11428 { 11429 int port = BP_PORT(bp); 11430 u32 config; 11431 u32 ext_phy_type, ext_phy_config, eee_mode; 11432 11433 bp->link_params.bp = bp; 11434 bp->link_params.port = port; 11435 11436 bp->link_params.lane_config = 11437 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); 11438 11439 bp->link_params.speed_cap_mask[0] = 11440 SHMEM_RD(bp, 11441 dev_info.port_hw_config[port].speed_capability_mask) & 11442 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11443 bp->link_params.speed_cap_mask[1] = 11444 SHMEM_RD(bp, 11445 dev_info.port_hw_config[port].speed_capability_mask2) & 11446 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11447 bp->port.link_config[0] = 11448 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); 11449 11450 bp->port.link_config[1] = 11451 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); 11452 11453 bp->link_params.multi_phy_config = 11454 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); 11455 /* If the device is capable of WoL, set the default state according 11456 * to the HW 11457 */ 11458 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); 11459 bp->wol = (!(bp->flags & NO_WOL_FLAG) && 11460 (config & PORT_FEATURE_WOL_ENABLED)); 11461 11462 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11463 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) 11464 bp->flags |= NO_ISCSI_FLAG; 11465 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11466 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) 11467 bp->flags |= NO_FCOE_FLAG; 11468 11469 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", 11470 bp->link_params.lane_config, 11471 bp->link_params.speed_cap_mask[0], 11472 bp->port.link_config[0]); 11473 11474 bp->link_params.switch_cfg = (bp->port.link_config[0] & 11475 PORT_FEATURE_CONNECTED_SWITCH_MASK); 11476 bnx2x_phy_probe(&bp->link_params); 11477 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); 11478 11479 bnx2x_link_settings_requested(bp); 11480 11481 /* 11482 * If connected directly, work with the internal PHY, otherwise, work 11483 * with the external PHY 11484 */ 11485 ext_phy_config = 11486 SHMEM_RD(bp, 11487 dev_info.port_hw_config[port].external_phy_config); 11488 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); 11489 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 11490 bp->mdio.prtad = bp->port.phy_addr; 11491 11492 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 11493 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 11494 bp->mdio.prtad = 11495 XGXS_EXT_PHY_ADDR(ext_phy_config); 11496 11497 /* Configure link feature according to nvram value */ 11498 eee_mode = (((SHMEM_RD(bp, dev_info. 11499 port_feature_config[port].eee_power_mode)) & 11500 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 11501 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 11502 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 11503 bp->link_params.eee_mode = EEE_MODE_ADV_LPI | 11504 EEE_MODE_ENABLE_LPI | 11505 EEE_MODE_OUTPUT_TIME; 11506 } else { 11507 bp->link_params.eee_mode = 0; 11508 } 11509 } 11510 11511 void bnx2x_get_iscsi_info(struct bnx2x *bp) 11512 { 11513 u32 no_flags = NO_ISCSI_FLAG; 11514 int port = BP_PORT(bp); 11515 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11516 drv_lic_key[port].max_iscsi_conn); 11517 11518 if (!CNIC_SUPPORT(bp)) { 11519 bp->flags |= no_flags; 11520 return; 11521 } 11522 11523 /* Get the number of maximum allowed iSCSI connections */ 11524 bp->cnic_eth_dev.max_iscsi_conn = 11525 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> 11526 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; 11527 11528 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", 11529 bp->cnic_eth_dev.max_iscsi_conn); 11530 11531 /* 11532 * If maximum allowed number of connections is zero - 11533 * disable the feature. 11534 */ 11535 if (!bp->cnic_eth_dev.max_iscsi_conn) 11536 bp->flags |= no_flags; 11537 } 11538 11539 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) 11540 { 11541 /* Port info */ 11542 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11543 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); 11544 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11545 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); 11546 11547 /* Node info */ 11548 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11549 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); 11550 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11551 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); 11552 } 11553 11554 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) 11555 { 11556 u8 count = 0; 11557 11558 if (IS_MF(bp)) { 11559 u8 fid; 11560 11561 /* iterate over absolute function ids for this path: */ 11562 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { 11563 if (IS_MF_SD(bp)) { 11564 u32 cfg = MF_CFG_RD(bp, 11565 func_mf_config[fid].config); 11566 11567 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && 11568 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == 11569 FUNC_MF_CFG_PROTOCOL_FCOE)) 11570 count++; 11571 } else { 11572 u32 cfg = MF_CFG_RD(bp, 11573 func_ext_config[fid]. 11574 func_cfg); 11575 11576 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && 11577 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) 11578 count++; 11579 } 11580 } 11581 } else { /* SF */ 11582 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; 11583 11584 for (port = 0; port < port_cnt; port++) { 11585 u32 lic = SHMEM_RD(bp, 11586 drv_lic_key[port].max_fcoe_conn) ^ 11587 FW_ENCODE_32BIT_PATTERN; 11588 if (lic) 11589 count++; 11590 } 11591 } 11592 11593 return count; 11594 } 11595 11596 static void bnx2x_get_fcoe_info(struct bnx2x *bp) 11597 { 11598 int port = BP_PORT(bp); 11599 int func = BP_ABS_FUNC(bp); 11600 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11601 drv_lic_key[port].max_fcoe_conn); 11602 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); 11603 11604 if (!CNIC_SUPPORT(bp)) { 11605 bp->flags |= NO_FCOE_FLAG; 11606 return; 11607 } 11608 11609 /* Get the number of maximum allowed FCoE connections */ 11610 bp->cnic_eth_dev.max_fcoe_conn = 11611 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> 11612 BNX2X_MAX_FCOE_INIT_CONN_SHIFT; 11613 11614 /* Calculate the number of maximum allowed FCoE tasks */ 11615 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; 11616 11617 /* check if FCoE resources must be shared between different functions */ 11618 if (num_fcoe_func) 11619 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; 11620 11621 /* Read the WWN: */ 11622 if (!IS_MF(bp)) { 11623 /* Port info */ 11624 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11625 SHMEM_RD(bp, 11626 dev_info.port_hw_config[port]. 11627 fcoe_wwn_port_name_upper); 11628 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11629 SHMEM_RD(bp, 11630 dev_info.port_hw_config[port]. 11631 fcoe_wwn_port_name_lower); 11632 11633 /* Node info */ 11634 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11635 SHMEM_RD(bp, 11636 dev_info.port_hw_config[port]. 11637 fcoe_wwn_node_name_upper); 11638 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11639 SHMEM_RD(bp, 11640 dev_info.port_hw_config[port]. 11641 fcoe_wwn_node_name_lower); 11642 } else if (!IS_MF_SD(bp)) { 11643 /* Read the WWN info only if the FCoE feature is enabled for 11644 * this function. 11645 */ 11646 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp)) 11647 bnx2x_get_ext_wwn_info(bp, func); 11648 } else { 11649 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) 11650 bnx2x_get_ext_wwn_info(bp, func); 11651 } 11652 11653 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); 11654 11655 /* 11656 * If maximum allowed number of connections is zero - 11657 * disable the feature. 11658 */ 11659 if (!bp->cnic_eth_dev.max_fcoe_conn) 11660 bp->flags |= NO_FCOE_FLAG; 11661 } 11662 11663 static void bnx2x_get_cnic_info(struct bnx2x *bp) 11664 { 11665 /* 11666 * iSCSI may be dynamically disabled but reading 11667 * info here we will decrease memory usage by driver 11668 * if the feature is disabled for good 11669 */ 11670 bnx2x_get_iscsi_info(bp); 11671 bnx2x_get_fcoe_info(bp); 11672 } 11673 11674 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) 11675 { 11676 u32 val, val2; 11677 int func = BP_ABS_FUNC(bp); 11678 int port = BP_PORT(bp); 11679 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; 11680 u8 *fip_mac = bp->fip_mac; 11681 11682 if (IS_MF(bp)) { 11683 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or 11684 * FCoE MAC then the appropriate feature should be disabled. 11685 * In non SD mode features configuration comes from struct 11686 * func_ext_config. 11687 */ 11688 if (!IS_MF_SD(bp)) { 11689 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); 11690 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 11691 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11692 iscsi_mac_addr_upper); 11693 val = MF_CFG_RD(bp, func_ext_config[func]. 11694 iscsi_mac_addr_lower); 11695 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11696 BNX2X_DEV_INFO 11697 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11698 } else { 11699 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11700 } 11701 11702 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 11703 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11704 fcoe_mac_addr_upper); 11705 val = MF_CFG_RD(bp, func_ext_config[func]. 11706 fcoe_mac_addr_lower); 11707 bnx2x_set_mac_buf(fip_mac, val, val2); 11708 BNX2X_DEV_INFO 11709 ("Read FCoE L2 MAC: %pM\n", fip_mac); 11710 } else { 11711 bp->flags |= NO_FCOE_FLAG; 11712 } 11713 11714 bp->mf_ext_config = cfg; 11715 11716 } else { /* SD MODE */ 11717 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { 11718 /* use primary mac as iscsi mac */ 11719 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); 11720 11721 BNX2X_DEV_INFO("SD ISCSI MODE\n"); 11722 BNX2X_DEV_INFO 11723 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11724 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { 11725 /* use primary mac as fip mac */ 11726 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); 11727 BNX2X_DEV_INFO("SD FCoE MODE\n"); 11728 BNX2X_DEV_INFO 11729 ("Read FIP MAC: %pM\n", fip_mac); 11730 } 11731 } 11732 11733 /* If this is a storage-only interface, use SAN mac as 11734 * primary MAC. Notice that for SD this is already the case, 11735 * as the SAN mac was copied from the primary MAC. 11736 */ 11737 if (IS_MF_FCOE_AFEX(bp)) 11738 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN); 11739 } else { 11740 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11741 iscsi_mac_upper); 11742 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11743 iscsi_mac_lower); 11744 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11745 11746 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11747 fcoe_fip_mac_upper); 11748 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11749 fcoe_fip_mac_lower); 11750 bnx2x_set_mac_buf(fip_mac, val, val2); 11751 } 11752 11753 /* Disable iSCSI OOO if MAC configuration is invalid. */ 11754 if (!is_valid_ether_addr(iscsi_mac)) { 11755 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11756 eth_zero_addr(iscsi_mac); 11757 } 11758 11759 /* Disable FCoE if MAC configuration is invalid. */ 11760 if (!is_valid_ether_addr(fip_mac)) { 11761 bp->flags |= NO_FCOE_FLAG; 11762 eth_zero_addr(bp->fip_mac); 11763 } 11764 } 11765 11766 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) 11767 { 11768 u32 val, val2; 11769 int func = BP_ABS_FUNC(bp); 11770 int port = BP_PORT(bp); 11771 11772 /* Zero primary MAC configuration */ 11773 eth_zero_addr(bp->dev->dev_addr); 11774 11775 if (BP_NOMCP(bp)) { 11776 BNX2X_ERROR("warning: random MAC workaround active\n"); 11777 eth_hw_addr_random(bp->dev); 11778 } else if (IS_MF(bp)) { 11779 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11780 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); 11781 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && 11782 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) 11783 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11784 11785 if (CNIC_SUPPORT(bp)) 11786 bnx2x_get_cnic_mac_hwinfo(bp); 11787 } else { 11788 /* in SF read MACs from port configuration */ 11789 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11790 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11791 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11792 11793 if (CNIC_SUPPORT(bp)) 11794 bnx2x_get_cnic_mac_hwinfo(bp); 11795 } 11796 11797 if (!BP_NOMCP(bp)) { 11798 /* Read physical port identifier from shmem */ 11799 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11800 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11801 bnx2x_set_mac_buf(bp->phys_port_id, val, val2); 11802 bp->flags |= HAS_PHYS_PORT_ID; 11803 } 11804 11805 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); 11806 11807 if (!is_valid_ether_addr(bp->dev->dev_addr)) 11808 dev_err(&bp->pdev->dev, 11809 "bad Ethernet MAC address configuration: %pM\n" 11810 "change it manually before bringing up the appropriate network interface\n", 11811 bp->dev->dev_addr); 11812 } 11813 11814 static bool bnx2x_get_dropless_info(struct bnx2x *bp) 11815 { 11816 int tmp; 11817 u32 cfg; 11818 11819 if (IS_VF(bp)) 11820 return false; 11821 11822 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { 11823 /* Take function: tmp = func */ 11824 tmp = BP_ABS_FUNC(bp); 11825 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); 11826 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); 11827 } else { 11828 /* Take port: tmp = port */ 11829 tmp = BP_PORT(bp); 11830 cfg = SHMEM_RD(bp, 11831 dev_info.port_hw_config[tmp].generic_features); 11832 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); 11833 } 11834 return cfg; 11835 } 11836 11837 static void validate_set_si_mode(struct bnx2x *bp) 11838 { 11839 u8 func = BP_ABS_FUNC(bp); 11840 u32 val; 11841 11842 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11843 11844 /* check for legal mac (upper bytes) */ 11845 if (val != 0xffff) { 11846 bp->mf_mode = MULTI_FUNCTION_SI; 11847 bp->mf_config[BP_VN(bp)] = 11848 MF_CFG_RD(bp, func_mf_config[func].config); 11849 } else 11850 BNX2X_DEV_INFO("illegal MAC address for SI\n"); 11851 } 11852 11853 static int bnx2x_get_hwinfo(struct bnx2x *bp) 11854 { 11855 int /*abs*/func = BP_ABS_FUNC(bp); 11856 int vn, mfw_vn; 11857 u32 val = 0, val2 = 0; 11858 int rc = 0; 11859 11860 /* Validate that chip access is feasible */ 11861 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) { 11862 dev_err(&bp->pdev->dev, 11863 "Chip read returns all Fs. Preventing probe from continuing\n"); 11864 return -EINVAL; 11865 } 11866 11867 bnx2x_get_common_hwinfo(bp); 11868 11869 /* 11870 * initialize IGU parameters 11871 */ 11872 if (CHIP_IS_E1x(bp)) { 11873 bp->common.int_block = INT_BLOCK_HC; 11874 11875 bp->igu_dsb_id = DEF_SB_IGU_ID; 11876 bp->igu_base_sb = 0; 11877 } else { 11878 bp->common.int_block = INT_BLOCK_IGU; 11879 11880 /* do not allow device reset during IGU info processing */ 11881 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11882 11883 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 11884 11885 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11886 int tout = 5000; 11887 11888 BNX2X_DEV_INFO("FORCING Normal Mode\n"); 11889 11890 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 11891 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); 11892 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); 11893 11894 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11895 tout--; 11896 usleep_range(1000, 2000); 11897 } 11898 11899 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11900 dev_err(&bp->pdev->dev, 11901 "FORCING Normal Mode failed!!!\n"); 11902 bnx2x_release_hw_lock(bp, 11903 HW_LOCK_RESOURCE_RESET); 11904 return -EPERM; 11905 } 11906 } 11907 11908 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11909 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); 11910 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; 11911 } else 11912 BNX2X_DEV_INFO("IGU Normal Mode\n"); 11913 11914 rc = bnx2x_get_igu_cam_info(bp); 11915 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11916 if (rc) 11917 return rc; 11918 } 11919 11920 /* 11921 * set base FW non-default (fast path) status block id, this value is 11922 * used to initialize the fw_sb_id saved on the fp/queue structure to 11923 * determine the id used by the FW. 11924 */ 11925 if (CHIP_IS_E1x(bp)) 11926 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); 11927 else /* 11928 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of 11929 * the same queue are indicated on the same IGU SB). So we prefer 11930 * FW and IGU SBs to be the same value. 11931 */ 11932 bp->base_fw_ndsb = bp->igu_base_sb; 11933 11934 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" 11935 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, 11936 bp->igu_sb_cnt, bp->base_fw_ndsb); 11937 11938 /* 11939 * Initialize MF configuration 11940 */ 11941 11942 bp->mf_ov = 0; 11943 bp->mf_mode = 0; 11944 bp->mf_sub_mode = 0; 11945 vn = BP_VN(bp); 11946 mfw_vn = BP_FW_MB_IDX(bp); 11947 11948 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { 11949 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", 11950 bp->common.shmem2_base, SHMEM2_RD(bp, size), 11951 (u32)offsetof(struct shmem2_region, mf_cfg_addr)); 11952 11953 if (SHMEM2_HAS(bp, mf_cfg_addr)) 11954 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); 11955 else 11956 bp->common.mf_cfg_base = bp->common.shmem_base + 11957 offsetof(struct shmem_region, func_mb) + 11958 E1H_FUNC_MAX * sizeof(struct drv_func_mb); 11959 /* 11960 * get mf configuration: 11961 * 1. Existence of MF configuration 11962 * 2. MAC address must be legal (check only upper bytes) 11963 * for Switch-Independent mode; 11964 * OVLAN must be legal for Switch-Dependent mode 11965 * 3. SF_MODE configures specific MF mode 11966 */ 11967 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 11968 /* get mf configuration */ 11969 val = SHMEM_RD(bp, 11970 dev_info.shared_feature_config.config); 11971 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; 11972 11973 switch (val) { 11974 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 11975 validate_set_si_mode(bp); 11976 break; 11977 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 11978 if ((!CHIP_IS_E1x(bp)) && 11979 (MF_CFG_RD(bp, func_mf_config[func]. 11980 mac_upper) != 0xffff) && 11981 (SHMEM2_HAS(bp, 11982 afex_driver_support))) { 11983 bp->mf_mode = MULTI_FUNCTION_AFEX; 11984 bp->mf_config[vn] = MF_CFG_RD(bp, 11985 func_mf_config[func].config); 11986 } else { 11987 BNX2X_DEV_INFO("can not configure afex mode\n"); 11988 } 11989 break; 11990 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 11991 /* get OV configuration */ 11992 val = MF_CFG_RD(bp, 11993 func_mf_config[FUNC_0].e1hov_tag); 11994 val &= FUNC_MF_CFG_E1HOV_TAG_MASK; 11995 11996 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 11997 bp->mf_mode = MULTI_FUNCTION_SD; 11998 bp->mf_config[vn] = MF_CFG_RD(bp, 11999 func_mf_config[func].config); 12000 } else 12001 BNX2X_DEV_INFO("illegal OV for SD\n"); 12002 break; 12003 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE: 12004 bp->mf_mode = MULTI_FUNCTION_SD; 12005 bp->mf_sub_mode = SUB_MF_MODE_BD; 12006 bp->mf_config[vn] = 12007 MF_CFG_RD(bp, 12008 func_mf_config[func].config); 12009 12010 if (SHMEM2_HAS(bp, mtu_size)) { 12011 int mtu_idx = BP_FW_MB_IDX(bp); 12012 u16 mtu_size; 12013 u32 mtu; 12014 12015 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]); 12016 mtu_size = (u16)mtu; 12017 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n", 12018 mtu_size, mtu); 12019 12020 /* if valid: update device mtu */ 12021 if (((mtu_size + ETH_HLEN) >= 12022 ETH_MIN_PACKET_SIZE) && 12023 (mtu_size <= 12024 ETH_MAX_JUMBO_PACKET_SIZE)) 12025 bp->dev->mtu = mtu_size; 12026 } 12027 break; 12028 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE: 12029 bp->mf_mode = MULTI_FUNCTION_SD; 12030 bp->mf_sub_mode = SUB_MF_MODE_UFP; 12031 bp->mf_config[vn] = 12032 MF_CFG_RD(bp, 12033 func_mf_config[func].config); 12034 break; 12035 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 12036 bp->mf_config[vn] = 0; 12037 break; 12038 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE: 12039 val2 = SHMEM_RD(bp, 12040 dev_info.shared_hw_config.config_3); 12041 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK; 12042 switch (val2) { 12043 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5: 12044 validate_set_si_mode(bp); 12045 bp->mf_sub_mode = 12046 SUB_MF_MODE_NPAR1_DOT_5; 12047 break; 12048 default: 12049 /* Unknown configuration */ 12050 bp->mf_config[vn] = 0; 12051 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n", 12052 val); 12053 } 12054 break; 12055 default: 12056 /* Unknown configuration: reset mf_config */ 12057 bp->mf_config[vn] = 0; 12058 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); 12059 } 12060 } 12061 12062 BNX2X_DEV_INFO("%s function mode\n", 12063 IS_MF(bp) ? "multi" : "single"); 12064 12065 switch (bp->mf_mode) { 12066 case MULTI_FUNCTION_SD: 12067 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 12068 FUNC_MF_CFG_E1HOV_TAG_MASK; 12069 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12070 bp->mf_ov = val; 12071 bp->path_has_ovlan = true; 12072 12073 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", 12074 func, bp->mf_ov, bp->mf_ov); 12075 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) || 12076 (bp->mf_sub_mode == SUB_MF_MODE_BD)) { 12077 dev_err(&bp->pdev->dev, 12078 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n", 12079 func); 12080 bp->path_has_ovlan = true; 12081 } else { 12082 dev_err(&bp->pdev->dev, 12083 "No valid MF OV for func %d, aborting\n", 12084 func); 12085 return -EPERM; 12086 } 12087 break; 12088 case MULTI_FUNCTION_AFEX: 12089 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); 12090 break; 12091 case MULTI_FUNCTION_SI: 12092 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", 12093 func); 12094 break; 12095 default: 12096 if (vn) { 12097 dev_err(&bp->pdev->dev, 12098 "VN %d is in a single function mode, aborting\n", 12099 vn); 12100 return -EPERM; 12101 } 12102 break; 12103 } 12104 12105 /* check if other port on the path needs ovlan: 12106 * Since MF configuration is shared between ports 12107 * Possible mixed modes are only 12108 * {SF, SI} {SF, SD} {SD, SF} {SI, SF} 12109 */ 12110 if (CHIP_MODE_IS_4_PORT(bp) && 12111 !bp->path_has_ovlan && 12112 !IS_MF(bp) && 12113 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12114 u8 other_port = !BP_PORT(bp); 12115 u8 other_func = BP_PATH(bp) + 2*other_port; 12116 val = MF_CFG_RD(bp, 12117 func_mf_config[other_func].e1hov_tag); 12118 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) 12119 bp->path_has_ovlan = true; 12120 } 12121 } 12122 12123 /* adjust igu_sb_cnt to MF for E1H */ 12124 if (CHIP_IS_E1H(bp) && IS_MF(bp)) 12125 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT); 12126 12127 /* port info */ 12128 bnx2x_get_port_hwinfo(bp); 12129 12130 /* Get MAC addresses */ 12131 bnx2x_get_mac_hwinfo(bp); 12132 12133 bnx2x_get_cnic_info(bp); 12134 12135 return rc; 12136 } 12137 12138 static void bnx2x_read_fwinfo(struct bnx2x *bp) 12139 { 12140 int cnt, i, block_end, rodi; 12141 char vpd_start[BNX2X_VPD_LEN+1]; 12142 char str_id_reg[VENDOR_ID_LEN+1]; 12143 char str_id_cap[VENDOR_ID_LEN+1]; 12144 char *vpd_data; 12145 char *vpd_extended_data = NULL; 12146 u8 len; 12147 12148 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); 12149 memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); 12150 12151 if (cnt < BNX2X_VPD_LEN) 12152 goto out_not_found; 12153 12154 /* VPD RO tag should be first tag after identifier string, hence 12155 * we should be able to find it in first BNX2X_VPD_LEN chars 12156 */ 12157 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, 12158 PCI_VPD_LRDT_RO_DATA); 12159 if (i < 0) 12160 goto out_not_found; 12161 12162 block_end = i + PCI_VPD_LRDT_TAG_SIZE + 12163 pci_vpd_lrdt_size(&vpd_start[i]); 12164 12165 i += PCI_VPD_LRDT_TAG_SIZE; 12166 12167 if (block_end > BNX2X_VPD_LEN) { 12168 vpd_extended_data = kmalloc(block_end, GFP_KERNEL); 12169 if (vpd_extended_data == NULL) 12170 goto out_not_found; 12171 12172 /* read rest of vpd image into vpd_extended_data */ 12173 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); 12174 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, 12175 block_end - BNX2X_VPD_LEN, 12176 vpd_extended_data + BNX2X_VPD_LEN); 12177 if (cnt < (block_end - BNX2X_VPD_LEN)) 12178 goto out_not_found; 12179 vpd_data = vpd_extended_data; 12180 } else 12181 vpd_data = vpd_start; 12182 12183 /* now vpd_data holds full vpd content in both cases */ 12184 12185 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12186 PCI_VPD_RO_KEYWORD_MFR_ID); 12187 if (rodi < 0) 12188 goto out_not_found; 12189 12190 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12191 12192 if (len != VENDOR_ID_LEN) 12193 goto out_not_found; 12194 12195 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12196 12197 /* vendor specific info */ 12198 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); 12199 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); 12200 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || 12201 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { 12202 12203 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12204 PCI_VPD_RO_KEYWORD_VENDOR0); 12205 if (rodi >= 0) { 12206 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12207 12208 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12209 12210 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { 12211 memcpy(bp->fw_ver, &vpd_data[rodi], len); 12212 bp->fw_ver[len] = ' '; 12213 } 12214 } 12215 kfree(vpd_extended_data); 12216 return; 12217 } 12218 out_not_found: 12219 kfree(vpd_extended_data); 12220 return; 12221 } 12222 12223 static void bnx2x_set_modes_bitmap(struct bnx2x *bp) 12224 { 12225 u32 flags = 0; 12226 12227 if (CHIP_REV_IS_FPGA(bp)) 12228 SET_FLAGS(flags, MODE_FPGA); 12229 else if (CHIP_REV_IS_EMUL(bp)) 12230 SET_FLAGS(flags, MODE_EMUL); 12231 else 12232 SET_FLAGS(flags, MODE_ASIC); 12233 12234 if (CHIP_MODE_IS_4_PORT(bp)) 12235 SET_FLAGS(flags, MODE_PORT4); 12236 else 12237 SET_FLAGS(flags, MODE_PORT2); 12238 12239 if (CHIP_IS_E2(bp)) 12240 SET_FLAGS(flags, MODE_E2); 12241 else if (CHIP_IS_E3(bp)) { 12242 SET_FLAGS(flags, MODE_E3); 12243 if (CHIP_REV(bp) == CHIP_REV_Ax) 12244 SET_FLAGS(flags, MODE_E3_A0); 12245 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ 12246 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 12247 } 12248 12249 if (IS_MF(bp)) { 12250 SET_FLAGS(flags, MODE_MF); 12251 switch (bp->mf_mode) { 12252 case MULTI_FUNCTION_SD: 12253 SET_FLAGS(flags, MODE_MF_SD); 12254 break; 12255 case MULTI_FUNCTION_SI: 12256 SET_FLAGS(flags, MODE_MF_SI); 12257 break; 12258 case MULTI_FUNCTION_AFEX: 12259 SET_FLAGS(flags, MODE_MF_AFEX); 12260 break; 12261 } 12262 } else 12263 SET_FLAGS(flags, MODE_SF); 12264 12265 #if defined(__LITTLE_ENDIAN) 12266 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 12267 #else /*(__BIG_ENDIAN)*/ 12268 SET_FLAGS(flags, MODE_BIG_ENDIAN); 12269 #endif 12270 INIT_MODE_FLAGS(bp) = flags; 12271 } 12272 12273 static int bnx2x_init_bp(struct bnx2x *bp) 12274 { 12275 int func; 12276 int rc; 12277 12278 mutex_init(&bp->port.phy_mutex); 12279 mutex_init(&bp->fw_mb_mutex); 12280 mutex_init(&bp->drv_info_mutex); 12281 sema_init(&bp->stats_lock, 1); 12282 bp->drv_info_mng_owner = false; 12283 INIT_LIST_HEAD(&bp->vlan_reg); 12284 12285 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); 12286 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); 12287 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); 12288 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task); 12289 if (IS_PF(bp)) { 12290 rc = bnx2x_get_hwinfo(bp); 12291 if (rc) 12292 return rc; 12293 } else { 12294 eth_zero_addr(bp->dev->dev_addr); 12295 } 12296 12297 bnx2x_set_modes_bitmap(bp); 12298 12299 rc = bnx2x_alloc_mem_bp(bp); 12300 if (rc) 12301 return rc; 12302 12303 bnx2x_read_fwinfo(bp); 12304 12305 func = BP_FUNC(bp); 12306 12307 /* need to reset chip if undi was active */ 12308 if (IS_PF(bp) && !BP_NOMCP(bp)) { 12309 /* init fw_seq */ 12310 bp->fw_seq = 12311 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 12312 DRV_MSG_SEQ_NUMBER_MASK; 12313 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 12314 12315 rc = bnx2x_prev_unload(bp); 12316 if (rc) { 12317 bnx2x_free_mem_bp(bp); 12318 return rc; 12319 } 12320 } 12321 12322 if (CHIP_REV_IS_FPGA(bp)) 12323 dev_err(&bp->pdev->dev, "FPGA detected\n"); 12324 12325 if (BP_NOMCP(bp) && (func == 0)) 12326 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); 12327 12328 bp->disable_tpa = disable_tpa; 12329 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp); 12330 /* Reduce memory usage in kdump environment by disabling TPA */ 12331 bp->disable_tpa |= is_kdump_kernel(); 12332 12333 /* Set TPA flags */ 12334 if (bp->disable_tpa) { 12335 bp->dev->hw_features &= ~NETIF_F_LRO; 12336 bp->dev->features &= ~NETIF_F_LRO; 12337 } 12338 12339 if (CHIP_IS_E1(bp)) 12340 bp->dropless_fc = 0; 12341 else 12342 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); 12343 12344 bp->mrrs = mrrs; 12345 12346 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL; 12347 if (IS_VF(bp)) 12348 bp->rx_ring_size = MAX_RX_AVAIL; 12349 12350 /* make sure that the numbers are in the right granularity */ 12351 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; 12352 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; 12353 12354 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; 12355 12356 init_timer(&bp->timer); 12357 bp->timer.expires = jiffies + bp->current_interval; 12358 bp->timer.data = (unsigned long) bp; 12359 bp->timer.function = bnx2x_timer; 12360 12361 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && 12362 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && 12363 SHMEM2_RD(bp, dcbx_lldp_params_offset) && 12364 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) { 12365 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); 12366 bnx2x_dcbx_init_params(bp); 12367 } else { 12368 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); 12369 } 12370 12371 if (CHIP_IS_E1x(bp)) 12372 bp->cnic_base_cl_id = FP_SB_MAX_E1x; 12373 else 12374 bp->cnic_base_cl_id = FP_SB_MAX_E2; 12375 12376 /* multiple tx priority */ 12377 if (IS_VF(bp)) 12378 bp->max_cos = 1; 12379 else if (CHIP_IS_E1x(bp)) 12380 bp->max_cos = BNX2X_MULTI_TX_COS_E1X; 12381 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) 12382 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; 12383 else if (CHIP_IS_E3B0(bp)) 12384 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; 12385 else 12386 BNX2X_ERR("unknown chip %x revision %x\n", 12387 CHIP_NUM(bp), CHIP_REV(bp)); 12388 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); 12389 12390 /* We need at least one default status block for slow-path events, 12391 * second status block for the L2 queue, and a third status block for 12392 * CNIC if supported. 12393 */ 12394 if (IS_VF(bp)) 12395 bp->min_msix_vec_cnt = 1; 12396 else if (CNIC_SUPPORT(bp)) 12397 bp->min_msix_vec_cnt = 3; 12398 else /* PF w/o cnic */ 12399 bp->min_msix_vec_cnt = 2; 12400 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); 12401 12402 bp->dump_preset_idx = 1; 12403 12404 if (CHIP_IS_E3B0(bp)) 12405 bp->flags |= PTP_SUPPORTED; 12406 12407 return rc; 12408 } 12409 12410 /**************************************************************************** 12411 * General service functions 12412 ****************************************************************************/ 12413 12414 /* 12415 * net_device service functions 12416 */ 12417 12418 /* called with rtnl_lock */ 12419 static int bnx2x_open(struct net_device *dev) 12420 { 12421 struct bnx2x *bp = netdev_priv(dev); 12422 int rc; 12423 12424 bp->stats_init = true; 12425 12426 netif_carrier_off(dev); 12427 12428 bnx2x_set_power_state(bp, PCI_D0); 12429 12430 /* If parity had happen during the unload, then attentions 12431 * and/or RECOVERY_IN_PROGRES may still be set. In this case we 12432 * want the first function loaded on the current engine to 12433 * complete the recovery. 12434 * Parity recovery is only relevant for PF driver. 12435 */ 12436 if (IS_PF(bp)) { 12437 int other_engine = BP_PATH(bp) ? 0 : 1; 12438 bool other_load_status, load_status; 12439 bool global = false; 12440 12441 other_load_status = bnx2x_get_load_status(bp, other_engine); 12442 load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); 12443 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || 12444 bnx2x_chk_parity_attn(bp, &global, true)) { 12445 do { 12446 /* If there are attentions and they are in a 12447 * global blocks, set the GLOBAL_RESET bit 12448 * regardless whether it will be this function 12449 * that will complete the recovery or not. 12450 */ 12451 if (global) 12452 bnx2x_set_reset_global(bp); 12453 12454 /* Only the first function on the current 12455 * engine should try to recover in open. In case 12456 * of attentions in global blocks only the first 12457 * in the chip should try to recover. 12458 */ 12459 if ((!load_status && 12460 (!global || !other_load_status)) && 12461 bnx2x_trylock_leader_lock(bp) && 12462 !bnx2x_leader_reset(bp)) { 12463 netdev_info(bp->dev, 12464 "Recovered in open\n"); 12465 break; 12466 } 12467 12468 /* recovery has failed... */ 12469 bnx2x_set_power_state(bp, PCI_D3hot); 12470 bp->recovery_state = BNX2X_RECOVERY_FAILED; 12471 12472 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" 12473 "If you still see this message after a few retries then power cycle is required.\n"); 12474 12475 return -EAGAIN; 12476 } while (0); 12477 } 12478 } 12479 12480 bp->recovery_state = BNX2X_RECOVERY_DONE; 12481 rc = bnx2x_nic_load(bp, LOAD_OPEN); 12482 if (rc) 12483 return rc; 12484 12485 #ifdef CONFIG_BNX2X_VXLAN 12486 if (IS_PF(bp)) 12487 vxlan_get_rx_port(dev); 12488 #endif 12489 12490 return 0; 12491 } 12492 12493 /* called with rtnl_lock */ 12494 static int bnx2x_close(struct net_device *dev) 12495 { 12496 struct bnx2x *bp = netdev_priv(dev); 12497 12498 /* Unload the driver, release IRQs */ 12499 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 12500 12501 return 0; 12502 } 12503 12504 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, 12505 struct bnx2x_mcast_ramrod_params *p) 12506 { 12507 int mc_count = netdev_mc_count(bp->dev); 12508 struct bnx2x_mcast_list_elem *mc_mac = 12509 kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC); 12510 struct netdev_hw_addr *ha; 12511 12512 if (!mc_mac) 12513 return -ENOMEM; 12514 12515 INIT_LIST_HEAD(&p->mcast_list); 12516 12517 netdev_for_each_mc_addr(ha, bp->dev) { 12518 mc_mac->mac = bnx2x_mc_addr(ha); 12519 list_add_tail(&mc_mac->link, &p->mcast_list); 12520 mc_mac++; 12521 } 12522 12523 p->mcast_list_len = mc_count; 12524 12525 return 0; 12526 } 12527 12528 static void bnx2x_free_mcast_macs_list( 12529 struct bnx2x_mcast_ramrod_params *p) 12530 { 12531 struct bnx2x_mcast_list_elem *mc_mac = 12532 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem, 12533 link); 12534 12535 WARN_ON(!mc_mac); 12536 kfree(mc_mac); 12537 } 12538 12539 /** 12540 * bnx2x_set_uc_list - configure a new unicast MACs list. 12541 * 12542 * @bp: driver handle 12543 * 12544 * We will use zero (0) as a MAC type for these MACs. 12545 */ 12546 static int bnx2x_set_uc_list(struct bnx2x *bp) 12547 { 12548 int rc; 12549 struct net_device *dev = bp->dev; 12550 struct netdev_hw_addr *ha; 12551 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 12552 unsigned long ramrod_flags = 0; 12553 12554 /* First schedule a cleanup up of old configuration */ 12555 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); 12556 if (rc < 0) { 12557 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); 12558 return rc; 12559 } 12560 12561 netdev_for_each_uc_addr(ha, dev) { 12562 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, 12563 BNX2X_UC_LIST_MAC, &ramrod_flags); 12564 if (rc == -EEXIST) { 12565 DP(BNX2X_MSG_SP, 12566 "Failed to schedule ADD operations: %d\n", rc); 12567 /* do not treat adding same MAC as error */ 12568 rc = 0; 12569 12570 } else if (rc < 0) { 12571 12572 BNX2X_ERR("Failed to schedule ADD operations: %d\n", 12573 rc); 12574 return rc; 12575 } 12576 } 12577 12578 /* Execute the pending commands */ 12579 __set_bit(RAMROD_CONT, &ramrod_flags); 12580 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, 12581 BNX2X_UC_LIST_MAC, &ramrod_flags); 12582 } 12583 12584 static int bnx2x_set_mc_list(struct bnx2x *bp) 12585 { 12586 struct net_device *dev = bp->dev; 12587 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12588 int rc = 0; 12589 12590 rparam.mcast_obj = &bp->mcast_obj; 12591 12592 /* first, clear all configured multicast MACs */ 12593 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12594 if (rc < 0) { 12595 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); 12596 return rc; 12597 } 12598 12599 /* then, configure a new MACs list */ 12600 if (netdev_mc_count(dev)) { 12601 rc = bnx2x_init_mcast_macs_list(bp, &rparam); 12602 if (rc) { 12603 BNX2X_ERR("Failed to create multicast MACs list: %d\n", 12604 rc); 12605 return rc; 12606 } 12607 12608 /* Now add the new MACs */ 12609 rc = bnx2x_config_mcast(bp, &rparam, 12610 BNX2X_MCAST_CMD_ADD); 12611 if (rc < 0) 12612 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12613 rc); 12614 12615 bnx2x_free_mcast_macs_list(&rparam); 12616 } 12617 12618 return rc; 12619 } 12620 12621 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ 12622 static void bnx2x_set_rx_mode(struct net_device *dev) 12623 { 12624 struct bnx2x *bp = netdev_priv(dev); 12625 12626 if (bp->state != BNX2X_STATE_OPEN) { 12627 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); 12628 return; 12629 } else { 12630 /* Schedule an SP task to handle rest of change */ 12631 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE, 12632 NETIF_MSG_IFUP); 12633 } 12634 } 12635 12636 void bnx2x_set_rx_mode_inner(struct bnx2x *bp) 12637 { 12638 u32 rx_mode = BNX2X_RX_MODE_NORMAL; 12639 12640 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); 12641 12642 netif_addr_lock_bh(bp->dev); 12643 12644 if (bp->dev->flags & IFF_PROMISC) { 12645 rx_mode = BNX2X_RX_MODE_PROMISC; 12646 } else if ((bp->dev->flags & IFF_ALLMULTI) || 12647 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) && 12648 CHIP_IS_E1(bp))) { 12649 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12650 } else { 12651 if (IS_PF(bp)) { 12652 /* some multicasts */ 12653 if (bnx2x_set_mc_list(bp) < 0) 12654 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12655 12656 /* release bh lock, as bnx2x_set_uc_list might sleep */ 12657 netif_addr_unlock_bh(bp->dev); 12658 if (bnx2x_set_uc_list(bp) < 0) 12659 rx_mode = BNX2X_RX_MODE_PROMISC; 12660 netif_addr_lock_bh(bp->dev); 12661 } else { 12662 /* configuring mcast to a vf involves sleeping (when we 12663 * wait for the pf's response). 12664 */ 12665 bnx2x_schedule_sp_rtnl(bp, 12666 BNX2X_SP_RTNL_VFPF_MCAST, 0); 12667 } 12668 } 12669 12670 bp->rx_mode = rx_mode; 12671 /* handle ISCSI SD mode */ 12672 if (IS_MF_ISCSI_ONLY(bp)) 12673 bp->rx_mode = BNX2X_RX_MODE_NONE; 12674 12675 /* Schedule the rx_mode command */ 12676 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { 12677 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 12678 netif_addr_unlock_bh(bp->dev); 12679 return; 12680 } 12681 12682 if (IS_PF(bp)) { 12683 bnx2x_set_storm_rx_mode(bp); 12684 netif_addr_unlock_bh(bp->dev); 12685 } else { 12686 /* VF will need to request the PF to make this change, and so 12687 * the VF needs to release the bottom-half lock prior to the 12688 * request (as it will likely require sleep on the VF side) 12689 */ 12690 netif_addr_unlock_bh(bp->dev); 12691 bnx2x_vfpf_storm_rx_mode(bp); 12692 } 12693 } 12694 12695 /* called with rtnl_lock */ 12696 static int bnx2x_mdio_read(struct net_device *netdev, int prtad, 12697 int devad, u16 addr) 12698 { 12699 struct bnx2x *bp = netdev_priv(netdev); 12700 u16 value; 12701 int rc; 12702 12703 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", 12704 prtad, devad, addr); 12705 12706 /* The HW expects different devad if CL22 is used */ 12707 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12708 12709 bnx2x_acquire_phy_lock(bp); 12710 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); 12711 bnx2x_release_phy_lock(bp); 12712 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); 12713 12714 if (!rc) 12715 rc = value; 12716 return rc; 12717 } 12718 12719 /* called with rtnl_lock */ 12720 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, 12721 u16 addr, u16 value) 12722 { 12723 struct bnx2x *bp = netdev_priv(netdev); 12724 int rc; 12725 12726 DP(NETIF_MSG_LINK, 12727 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", 12728 prtad, devad, addr, value); 12729 12730 /* The HW expects different devad if CL22 is used */ 12731 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12732 12733 bnx2x_acquire_phy_lock(bp); 12734 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); 12735 bnx2x_release_phy_lock(bp); 12736 return rc; 12737 } 12738 12739 /* called with rtnl_lock */ 12740 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12741 { 12742 struct bnx2x *bp = netdev_priv(dev); 12743 struct mii_ioctl_data *mdio = if_mii(ifr); 12744 12745 if (!netif_running(dev)) 12746 return -EAGAIN; 12747 12748 switch (cmd) { 12749 case SIOCSHWTSTAMP: 12750 return bnx2x_hwtstamp_ioctl(bp, ifr); 12751 default: 12752 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", 12753 mdio->phy_id, mdio->reg_num, mdio->val_in); 12754 return mdio_mii_ioctl(&bp->mdio, mdio, cmd); 12755 } 12756 } 12757 12758 #ifdef CONFIG_NET_POLL_CONTROLLER 12759 static void poll_bnx2x(struct net_device *dev) 12760 { 12761 struct bnx2x *bp = netdev_priv(dev); 12762 int i; 12763 12764 for_each_eth_queue(bp, i) { 12765 struct bnx2x_fastpath *fp = &bp->fp[i]; 12766 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 12767 } 12768 } 12769 #endif 12770 12771 static int bnx2x_validate_addr(struct net_device *dev) 12772 { 12773 struct bnx2x *bp = netdev_priv(dev); 12774 12775 /* query the bulletin board for mac address configured by the PF */ 12776 if (IS_VF(bp)) 12777 bnx2x_sample_bulletin(bp); 12778 12779 if (!is_valid_ether_addr(dev->dev_addr)) { 12780 BNX2X_ERR("Non-valid Ethernet address\n"); 12781 return -EADDRNOTAVAIL; 12782 } 12783 return 0; 12784 } 12785 12786 static int bnx2x_get_phys_port_id(struct net_device *netdev, 12787 struct netdev_phys_item_id *ppid) 12788 { 12789 struct bnx2x *bp = netdev_priv(netdev); 12790 12791 if (!(bp->flags & HAS_PHYS_PORT_ID)) 12792 return -EOPNOTSUPP; 12793 12794 ppid->id_len = sizeof(bp->phys_port_id); 12795 memcpy(ppid->id, bp->phys_port_id, ppid->id_len); 12796 12797 return 0; 12798 } 12799 12800 static netdev_features_t bnx2x_features_check(struct sk_buff *skb, 12801 struct net_device *dev, 12802 netdev_features_t features) 12803 { 12804 features = vlan_features_check(skb, features); 12805 return vxlan_features_check(skb, features); 12806 } 12807 12808 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add) 12809 { 12810 int rc; 12811 12812 if (IS_PF(bp)) { 12813 unsigned long ramrod_flags = 0; 12814 12815 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12816 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj, 12817 add, &ramrod_flags); 12818 } else { 12819 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add); 12820 } 12821 12822 return rc; 12823 } 12824 12825 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp) 12826 { 12827 struct bnx2x_vlan_entry *vlan; 12828 int rc = 0; 12829 12830 if (!bp->vlan_cnt) { 12831 DP(NETIF_MSG_IFUP, "No need to re-configure vlan filters\n"); 12832 return 0; 12833 } 12834 12835 list_for_each_entry(vlan, &bp->vlan_reg, link) { 12836 /* Prepare for cleanup in case of errors */ 12837 if (rc) { 12838 vlan->hw = false; 12839 continue; 12840 } 12841 12842 if (!vlan->hw) 12843 continue; 12844 12845 DP(NETIF_MSG_IFUP, "Re-configuring vlan 0x%04x\n", vlan->vid); 12846 12847 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true); 12848 if (rc) { 12849 BNX2X_ERR("Unable to configure VLAN %d\n", vlan->vid); 12850 vlan->hw = false; 12851 rc = -EINVAL; 12852 continue; 12853 } 12854 } 12855 12856 return rc; 12857 } 12858 12859 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 12860 { 12861 struct bnx2x *bp = netdev_priv(dev); 12862 struct bnx2x_vlan_entry *vlan; 12863 bool hw = false; 12864 int rc = 0; 12865 12866 if (!netif_running(bp->dev)) { 12867 DP(NETIF_MSG_IFUP, 12868 "Ignoring VLAN configuration the interface is down\n"); 12869 return -EFAULT; 12870 } 12871 12872 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid); 12873 12874 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL); 12875 if (!vlan) 12876 return -ENOMEM; 12877 12878 bp->vlan_cnt++; 12879 if (bp->vlan_cnt > bp->vlan_credit && !bp->accept_any_vlan) { 12880 DP(NETIF_MSG_IFUP, "Accept all VLAN raised\n"); 12881 bp->accept_any_vlan = true; 12882 if (IS_PF(bp)) 12883 bnx2x_set_rx_mode_inner(bp); 12884 else 12885 bnx2x_vfpf_storm_rx_mode(bp); 12886 } else if (bp->vlan_cnt <= bp->vlan_credit) { 12887 rc = __bnx2x_vlan_configure_vid(bp, vid, true); 12888 hw = true; 12889 } 12890 12891 vlan->vid = vid; 12892 vlan->hw = hw; 12893 12894 if (!rc) { 12895 list_add(&vlan->link, &bp->vlan_reg); 12896 } else { 12897 bp->vlan_cnt--; 12898 kfree(vlan); 12899 } 12900 12901 DP(NETIF_MSG_IFUP, "Adding VLAN result %d\n", rc); 12902 12903 return rc; 12904 } 12905 12906 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 12907 { 12908 struct bnx2x *bp = netdev_priv(dev); 12909 struct bnx2x_vlan_entry *vlan; 12910 int rc = 0; 12911 12912 if (!netif_running(bp->dev)) { 12913 DP(NETIF_MSG_IFUP, 12914 "Ignoring VLAN configuration the interface is down\n"); 12915 return -EFAULT; 12916 } 12917 12918 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid); 12919 12920 if (!bp->vlan_cnt) { 12921 BNX2X_ERR("Unable to kill VLAN %d\n", vid); 12922 return -EINVAL; 12923 } 12924 12925 list_for_each_entry(vlan, &bp->vlan_reg, link) 12926 if (vlan->vid == vid) 12927 break; 12928 12929 if (vlan->vid != vid) { 12930 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid); 12931 return -EINVAL; 12932 } 12933 12934 if (vlan->hw) 12935 rc = __bnx2x_vlan_configure_vid(bp, vid, false); 12936 12937 list_del(&vlan->link); 12938 kfree(vlan); 12939 12940 bp->vlan_cnt--; 12941 12942 if (bp->vlan_cnt <= bp->vlan_credit && bp->accept_any_vlan) { 12943 /* Configure all non-configured entries */ 12944 list_for_each_entry(vlan, &bp->vlan_reg, link) { 12945 if (vlan->hw) 12946 continue; 12947 12948 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true); 12949 if (rc) { 12950 BNX2X_ERR("Unable to config VLAN %d\n", 12951 vlan->vid); 12952 continue; 12953 } 12954 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", 12955 vlan->vid); 12956 vlan->hw = true; 12957 } 12958 DP(NETIF_MSG_IFUP, "Accept all VLAN Removed\n"); 12959 bp->accept_any_vlan = false; 12960 if (IS_PF(bp)) 12961 bnx2x_set_rx_mode_inner(bp); 12962 else 12963 bnx2x_vfpf_storm_rx_mode(bp); 12964 } 12965 12966 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc); 12967 12968 return rc; 12969 } 12970 12971 static const struct net_device_ops bnx2x_netdev_ops = { 12972 .ndo_open = bnx2x_open, 12973 .ndo_stop = bnx2x_close, 12974 .ndo_start_xmit = bnx2x_start_xmit, 12975 .ndo_select_queue = bnx2x_select_queue, 12976 .ndo_set_rx_mode = bnx2x_set_rx_mode, 12977 .ndo_set_mac_address = bnx2x_change_mac_addr, 12978 .ndo_validate_addr = bnx2x_validate_addr, 12979 .ndo_do_ioctl = bnx2x_ioctl, 12980 .ndo_change_mtu = bnx2x_change_mtu, 12981 .ndo_fix_features = bnx2x_fix_features, 12982 .ndo_set_features = bnx2x_set_features, 12983 .ndo_tx_timeout = bnx2x_tx_timeout, 12984 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid, 12985 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid, 12986 #ifdef CONFIG_NET_POLL_CONTROLLER 12987 .ndo_poll_controller = poll_bnx2x, 12988 #endif 12989 .ndo_setup_tc = bnx2x_setup_tc, 12990 #ifdef CONFIG_BNX2X_SRIOV 12991 .ndo_set_vf_mac = bnx2x_set_vf_mac, 12992 .ndo_set_vf_vlan = bnx2x_set_vf_vlan, 12993 .ndo_get_vf_config = bnx2x_get_vf_config, 12994 #endif 12995 #ifdef NETDEV_FCOE_WWNN 12996 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, 12997 #endif 12998 12999 #ifdef CONFIG_NET_RX_BUSY_POLL 13000 .ndo_busy_poll = bnx2x_low_latency_recv, 13001 #endif 13002 .ndo_get_phys_port_id = bnx2x_get_phys_port_id, 13003 .ndo_set_vf_link_state = bnx2x_set_vf_link_state, 13004 .ndo_features_check = bnx2x_features_check, 13005 #ifdef CONFIG_BNX2X_VXLAN 13006 .ndo_add_vxlan_port = bnx2x_add_vxlan_port, 13007 .ndo_del_vxlan_port = bnx2x_del_vxlan_port, 13008 #endif 13009 }; 13010 13011 static int bnx2x_set_coherency_mask(struct bnx2x *bp) 13012 { 13013 struct device *dev = &bp->pdev->dev; 13014 13015 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 && 13016 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) { 13017 dev_err(dev, "System does not support DMA, aborting\n"); 13018 return -EIO; 13019 } 13020 13021 return 0; 13022 } 13023 13024 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp) 13025 { 13026 if (bp->flags & AER_ENABLED) { 13027 pci_disable_pcie_error_reporting(bp->pdev); 13028 bp->flags &= ~AER_ENABLED; 13029 } 13030 } 13031 13032 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, 13033 struct net_device *dev, unsigned long board_type) 13034 { 13035 int rc; 13036 u32 pci_cfg_dword; 13037 bool chip_is_e1x = (board_type == BCM57710 || 13038 board_type == BCM57711 || 13039 board_type == BCM57711E); 13040 13041 SET_NETDEV_DEV(dev, &pdev->dev); 13042 13043 bp->dev = dev; 13044 bp->pdev = pdev; 13045 13046 rc = pci_enable_device(pdev); 13047 if (rc) { 13048 dev_err(&bp->pdev->dev, 13049 "Cannot enable PCI device, aborting\n"); 13050 goto err_out; 13051 } 13052 13053 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 13054 dev_err(&bp->pdev->dev, 13055 "Cannot find PCI device base address, aborting\n"); 13056 rc = -ENODEV; 13057 goto err_out_disable; 13058 } 13059 13060 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { 13061 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); 13062 rc = -ENODEV; 13063 goto err_out_disable; 13064 } 13065 13066 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); 13067 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == 13068 PCICFG_REVESION_ID_ERROR_VAL) { 13069 pr_err("PCI device error, probably due to fan failure, aborting\n"); 13070 rc = -ENODEV; 13071 goto err_out_disable; 13072 } 13073 13074 if (atomic_read(&pdev->enable_cnt) == 1) { 13075 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 13076 if (rc) { 13077 dev_err(&bp->pdev->dev, 13078 "Cannot obtain PCI resources, aborting\n"); 13079 goto err_out_disable; 13080 } 13081 13082 pci_set_master(pdev); 13083 pci_save_state(pdev); 13084 } 13085 13086 if (IS_PF(bp)) { 13087 if (!pdev->pm_cap) { 13088 dev_err(&bp->pdev->dev, 13089 "Cannot find power management capability, aborting\n"); 13090 rc = -EIO; 13091 goto err_out_release; 13092 } 13093 } 13094 13095 if (!pci_is_pcie(pdev)) { 13096 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); 13097 rc = -EIO; 13098 goto err_out_release; 13099 } 13100 13101 rc = bnx2x_set_coherency_mask(bp); 13102 if (rc) 13103 goto err_out_release; 13104 13105 dev->mem_start = pci_resource_start(pdev, 0); 13106 dev->base_addr = dev->mem_start; 13107 dev->mem_end = pci_resource_end(pdev, 0); 13108 13109 dev->irq = pdev->irq; 13110 13111 bp->regview = pci_ioremap_bar(pdev, 0); 13112 if (!bp->regview) { 13113 dev_err(&bp->pdev->dev, 13114 "Cannot map register space, aborting\n"); 13115 rc = -ENOMEM; 13116 goto err_out_release; 13117 } 13118 13119 /* In E1/E1H use pci device function given by kernel. 13120 * In E2/E3 read physical function from ME register since these chips 13121 * support Physical Device Assignment where kernel BDF maybe arbitrary 13122 * (depending on hypervisor). 13123 */ 13124 if (chip_is_e1x) { 13125 bp->pf_num = PCI_FUNC(pdev->devfn); 13126 } else { 13127 /* chip is E2/3*/ 13128 pci_read_config_dword(bp->pdev, 13129 PCICFG_ME_REGISTER, &pci_cfg_dword); 13130 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> 13131 ME_REG_ABS_PF_NUM_SHIFT); 13132 } 13133 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); 13134 13135 /* clean indirect addresses */ 13136 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 13137 PCICFG_VENDOR_ID_OFFSET); 13138 13139 /* Set PCIe reset type to fundamental for EEH recovery */ 13140 pdev->needs_freset = 1; 13141 13142 /* AER (Advanced Error reporting) configuration */ 13143 rc = pci_enable_pcie_error_reporting(pdev); 13144 if (!rc) 13145 bp->flags |= AER_ENABLED; 13146 else 13147 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc); 13148 13149 /* 13150 * Clean the following indirect addresses for all functions since it 13151 * is not used by the driver. 13152 */ 13153 if (IS_PF(bp)) { 13154 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); 13155 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); 13156 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); 13157 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); 13158 13159 if (chip_is_e1x) { 13160 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); 13161 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); 13162 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); 13163 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); 13164 } 13165 13166 /* Enable internal target-read (in case we are probed after PF 13167 * FLR). Must be done prior to any BAR read access. Only for 13168 * 57712 and up 13169 */ 13170 if (!chip_is_e1x) 13171 REG_WR(bp, 13172 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13173 } 13174 13175 dev->watchdog_timeo = TX_TIMEOUT; 13176 13177 dev->netdev_ops = &bnx2x_netdev_ops; 13178 bnx2x_set_ethtool_ops(bp, dev); 13179 13180 dev->priv_flags |= IFF_UNICAST_FLT; 13181 13182 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13183 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13184 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | 13185 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; 13186 if (!chip_is_e1x) { 13187 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL | 13188 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT; 13189 dev->hw_enc_features = 13190 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13191 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13192 NETIF_F_GSO_IPIP | 13193 NETIF_F_GSO_SIT | 13194 NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL; 13195 } 13196 13197 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13198 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; 13199 13200 /* VF with OLD Hypervisor or old PF do not support filtering */ 13201 if (IS_PF(bp)) { 13202 if (CHIP_IS_E1x(bp)) 13203 bp->accept_any_vlan = true; 13204 else 13205 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13206 #ifdef CONFIG_BNX2X_SRIOV 13207 } else if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) { 13208 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13209 #endif 13210 } 13211 13212 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; 13213 dev->features |= NETIF_F_HIGHDMA; 13214 13215 /* Add Loopback capability to the device */ 13216 dev->hw_features |= NETIF_F_LOOPBACK; 13217 13218 #ifdef BCM_DCBNL 13219 dev->dcbnl_ops = &bnx2x_dcbnl_ops; 13220 #endif 13221 13222 /* get_port_hwinfo() will set prtad and mmds properly */ 13223 bp->mdio.prtad = MDIO_PRTAD_NONE; 13224 bp->mdio.mmds = 0; 13225 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; 13226 bp->mdio.dev = dev; 13227 bp->mdio.mdio_read = bnx2x_mdio_read; 13228 bp->mdio.mdio_write = bnx2x_mdio_write; 13229 13230 return 0; 13231 13232 err_out_release: 13233 if (atomic_read(&pdev->enable_cnt) == 1) 13234 pci_release_regions(pdev); 13235 13236 err_out_disable: 13237 pci_disable_device(pdev); 13238 13239 err_out: 13240 return rc; 13241 } 13242 13243 static int bnx2x_check_firmware(struct bnx2x *bp) 13244 { 13245 const struct firmware *firmware = bp->firmware; 13246 struct bnx2x_fw_file_hdr *fw_hdr; 13247 struct bnx2x_fw_file_section *sections; 13248 u32 offset, len, num_ops; 13249 __be16 *ops_offsets; 13250 int i; 13251 const u8 *fw_ver; 13252 13253 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { 13254 BNX2X_ERR("Wrong FW size\n"); 13255 return -EINVAL; 13256 } 13257 13258 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; 13259 sections = (struct bnx2x_fw_file_section *)fw_hdr; 13260 13261 /* Make sure none of the offsets and sizes make us read beyond 13262 * the end of the firmware data */ 13263 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { 13264 offset = be32_to_cpu(sections[i].offset); 13265 len = be32_to_cpu(sections[i].len); 13266 if (offset + len > firmware->size) { 13267 BNX2X_ERR("Section %d length is out of bounds\n", i); 13268 return -EINVAL; 13269 } 13270 } 13271 13272 /* Likewise for the init_ops offsets */ 13273 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); 13274 ops_offsets = (__force __be16 *)(firmware->data + offset); 13275 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); 13276 13277 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { 13278 if (be16_to_cpu(ops_offsets[i]) > num_ops) { 13279 BNX2X_ERR("Section offset %d is out of bounds\n", i); 13280 return -EINVAL; 13281 } 13282 } 13283 13284 /* Check FW version */ 13285 offset = be32_to_cpu(fw_hdr->fw_version.offset); 13286 fw_ver = firmware->data + offset; 13287 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || 13288 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || 13289 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || 13290 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { 13291 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", 13292 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], 13293 BCM_5710_FW_MAJOR_VERSION, 13294 BCM_5710_FW_MINOR_VERSION, 13295 BCM_5710_FW_REVISION_VERSION, 13296 BCM_5710_FW_ENGINEERING_VERSION); 13297 return -EINVAL; 13298 } 13299 13300 return 0; 13301 } 13302 13303 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13304 { 13305 const __be32 *source = (const __be32 *)_source; 13306 u32 *target = (u32 *)_target; 13307 u32 i; 13308 13309 for (i = 0; i < n/4; i++) 13310 target[i] = be32_to_cpu(source[i]); 13311 } 13312 13313 /* 13314 Ops array is stored in the following format: 13315 {op(8bit), offset(24bit, big endian), data(32bit, big endian)} 13316 */ 13317 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) 13318 { 13319 const __be32 *source = (const __be32 *)_source; 13320 struct raw_op *target = (struct raw_op *)_target; 13321 u32 i, j, tmp; 13322 13323 for (i = 0, j = 0; i < n/8; i++, j += 2) { 13324 tmp = be32_to_cpu(source[j]); 13325 target[i].op = (tmp >> 24) & 0xff; 13326 target[i].offset = tmp & 0xffffff; 13327 target[i].raw_data = be32_to_cpu(source[j + 1]); 13328 } 13329 } 13330 13331 /* IRO array is stored in the following format: 13332 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } 13333 */ 13334 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) 13335 { 13336 const __be32 *source = (const __be32 *)_source; 13337 struct iro *target = (struct iro *)_target; 13338 u32 i, j, tmp; 13339 13340 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { 13341 target[i].base = be32_to_cpu(source[j]); 13342 j++; 13343 tmp = be32_to_cpu(source[j]); 13344 target[i].m1 = (tmp >> 16) & 0xffff; 13345 target[i].m2 = tmp & 0xffff; 13346 j++; 13347 tmp = be32_to_cpu(source[j]); 13348 target[i].m3 = (tmp >> 16) & 0xffff; 13349 target[i].size = tmp & 0xffff; 13350 j++; 13351 } 13352 } 13353 13354 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13355 { 13356 const __be16 *source = (const __be16 *)_source; 13357 u16 *target = (u16 *)_target; 13358 u32 i; 13359 13360 for (i = 0; i < n/2; i++) 13361 target[i] = be16_to_cpu(source[i]); 13362 } 13363 13364 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ 13365 do { \ 13366 u32 len = be32_to_cpu(fw_hdr->arr.len); \ 13367 bp->arr = kmalloc(len, GFP_KERNEL); \ 13368 if (!bp->arr) \ 13369 goto lbl; \ 13370 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ 13371 (u8 *)bp->arr, len); \ 13372 } while (0) 13373 13374 static int bnx2x_init_firmware(struct bnx2x *bp) 13375 { 13376 const char *fw_file_name; 13377 struct bnx2x_fw_file_hdr *fw_hdr; 13378 int rc; 13379 13380 if (bp->firmware) 13381 return 0; 13382 13383 if (CHIP_IS_E1(bp)) 13384 fw_file_name = FW_FILE_NAME_E1; 13385 else if (CHIP_IS_E1H(bp)) 13386 fw_file_name = FW_FILE_NAME_E1H; 13387 else if (!CHIP_IS_E1x(bp)) 13388 fw_file_name = FW_FILE_NAME_E2; 13389 else { 13390 BNX2X_ERR("Unsupported chip revision\n"); 13391 return -EINVAL; 13392 } 13393 BNX2X_DEV_INFO("Loading %s\n", fw_file_name); 13394 13395 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); 13396 if (rc) { 13397 BNX2X_ERR("Can't load firmware file %s\n", 13398 fw_file_name); 13399 goto request_firmware_exit; 13400 } 13401 13402 rc = bnx2x_check_firmware(bp); 13403 if (rc) { 13404 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); 13405 goto request_firmware_exit; 13406 } 13407 13408 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; 13409 13410 /* Initialize the pointers to the init arrays */ 13411 /* Blob */ 13412 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); 13413 13414 /* Opcodes */ 13415 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); 13416 13417 /* Offsets */ 13418 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, 13419 be16_to_cpu_n); 13420 13421 /* STORMs firmware */ 13422 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13423 be32_to_cpu(fw_hdr->tsem_int_table_data.offset); 13424 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + 13425 be32_to_cpu(fw_hdr->tsem_pram_data.offset); 13426 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13427 be32_to_cpu(fw_hdr->usem_int_table_data.offset); 13428 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + 13429 be32_to_cpu(fw_hdr->usem_pram_data.offset); 13430 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13431 be32_to_cpu(fw_hdr->xsem_int_table_data.offset); 13432 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + 13433 be32_to_cpu(fw_hdr->xsem_pram_data.offset); 13434 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13435 be32_to_cpu(fw_hdr->csem_int_table_data.offset); 13436 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + 13437 be32_to_cpu(fw_hdr->csem_pram_data.offset); 13438 /* IRO */ 13439 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); 13440 13441 return 0; 13442 13443 iro_alloc_err: 13444 kfree(bp->init_ops_offsets); 13445 init_offsets_alloc_err: 13446 kfree(bp->init_ops); 13447 init_ops_alloc_err: 13448 kfree(bp->init_data); 13449 request_firmware_exit: 13450 release_firmware(bp->firmware); 13451 bp->firmware = NULL; 13452 13453 return rc; 13454 } 13455 13456 static void bnx2x_release_firmware(struct bnx2x *bp) 13457 { 13458 kfree(bp->init_ops_offsets); 13459 kfree(bp->init_ops); 13460 kfree(bp->init_data); 13461 release_firmware(bp->firmware); 13462 bp->firmware = NULL; 13463 } 13464 13465 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { 13466 .init_hw_cmn_chip = bnx2x_init_hw_common_chip, 13467 .init_hw_cmn = bnx2x_init_hw_common, 13468 .init_hw_port = bnx2x_init_hw_port, 13469 .init_hw_func = bnx2x_init_hw_func, 13470 13471 .reset_hw_cmn = bnx2x_reset_common, 13472 .reset_hw_port = bnx2x_reset_port, 13473 .reset_hw_func = bnx2x_reset_func, 13474 13475 .gunzip_init = bnx2x_gunzip_init, 13476 .gunzip_end = bnx2x_gunzip_end, 13477 13478 .init_fw = bnx2x_init_firmware, 13479 .release_fw = bnx2x_release_firmware, 13480 }; 13481 13482 void bnx2x__init_func_obj(struct bnx2x *bp) 13483 { 13484 /* Prepare DMAE related driver resources */ 13485 bnx2x_setup_dmae(bp); 13486 13487 bnx2x_init_func_obj(bp, &bp->func_obj, 13488 bnx2x_sp(bp, func_rdata), 13489 bnx2x_sp_mapping(bp, func_rdata), 13490 bnx2x_sp(bp, func_afex_rdata), 13491 bnx2x_sp_mapping(bp, func_afex_rdata), 13492 &bnx2x_func_sp_drv); 13493 } 13494 13495 /* must be called after sriov-enable */ 13496 static int bnx2x_set_qm_cid_count(struct bnx2x *bp) 13497 { 13498 int cid_count = BNX2X_L2_MAX_CID(bp); 13499 13500 if (IS_SRIOV(bp)) 13501 cid_count += BNX2X_VF_CIDS; 13502 13503 if (CNIC_SUPPORT(bp)) 13504 cid_count += CNIC_CID_MAX; 13505 13506 return roundup(cid_count, QM_CID_ROUND); 13507 } 13508 13509 /** 13510 * bnx2x_get_num_none_def_sbs - return the number of none default SBs 13511 * 13512 * @dev: pci device 13513 * 13514 */ 13515 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt) 13516 { 13517 int index; 13518 u16 control = 0; 13519 13520 /* 13521 * If MSI-X is not supported - return number of SBs needed to support 13522 * one fast path queue: one FP queue + SB for CNIC 13523 */ 13524 if (!pdev->msix_cap) { 13525 dev_info(&pdev->dev, "no msix capability found\n"); 13526 return 1 + cnic_cnt; 13527 } 13528 dev_info(&pdev->dev, "msix capability found\n"); 13529 13530 /* 13531 * The value in the PCI configuration space is the index of the last 13532 * entry, namely one less than the actual size of the table, which is 13533 * exactly what we want to return from this function: number of all SBs 13534 * without the default SB. 13535 * For VFs there is no default SB, then we return (index+1). 13536 */ 13537 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control); 13538 13539 index = control & PCI_MSIX_FLAGS_QSIZE; 13540 13541 return index; 13542 } 13543 13544 static int set_max_cos_est(int chip_id) 13545 { 13546 switch (chip_id) { 13547 case BCM57710: 13548 case BCM57711: 13549 case BCM57711E: 13550 return BNX2X_MULTI_TX_COS_E1X; 13551 case BCM57712: 13552 case BCM57712_MF: 13553 return BNX2X_MULTI_TX_COS_E2_E3A0; 13554 case BCM57800: 13555 case BCM57800_MF: 13556 case BCM57810: 13557 case BCM57810_MF: 13558 case BCM57840_4_10: 13559 case BCM57840_2_20: 13560 case BCM57840_O: 13561 case BCM57840_MFO: 13562 case BCM57840_MF: 13563 case BCM57811: 13564 case BCM57811_MF: 13565 return BNX2X_MULTI_TX_COS_E3B0; 13566 case BCM57712_VF: 13567 case BCM57800_VF: 13568 case BCM57810_VF: 13569 case BCM57840_VF: 13570 case BCM57811_VF: 13571 return 1; 13572 default: 13573 pr_err("Unknown board_type (%d), aborting\n", chip_id); 13574 return -ENODEV; 13575 } 13576 } 13577 13578 static int set_is_vf(int chip_id) 13579 { 13580 switch (chip_id) { 13581 case BCM57712_VF: 13582 case BCM57800_VF: 13583 case BCM57810_VF: 13584 case BCM57840_VF: 13585 case BCM57811_VF: 13586 return true; 13587 default: 13588 return false; 13589 } 13590 } 13591 13592 /* nig_tsgen registers relative address */ 13593 #define tsgen_ctrl 0x0 13594 #define tsgen_freecount 0x10 13595 #define tsgen_synctime_t0 0x20 13596 #define tsgen_offset_t0 0x28 13597 #define tsgen_drift_t0 0x30 13598 #define tsgen_synctime_t1 0x58 13599 #define tsgen_offset_t1 0x60 13600 #define tsgen_drift_t1 0x68 13601 13602 /* FW workaround for setting drift */ 13603 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir, 13604 int best_val, int best_period) 13605 { 13606 struct bnx2x_func_state_params func_params = {NULL}; 13607 struct bnx2x_func_set_timesync_params *set_timesync_params = 13608 &func_params.params.set_timesync; 13609 13610 /* Prepare parameters for function state transitions */ 13611 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 13612 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 13613 13614 func_params.f_obj = &bp->func_obj; 13615 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 13616 13617 /* Function parameters */ 13618 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET; 13619 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 13620 set_timesync_params->add_sub_drift_adjust_value = 13621 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE; 13622 set_timesync_params->drift_adjust_value = best_val; 13623 set_timesync_params->drift_adjust_period = best_period; 13624 13625 return bnx2x_func_state_change(bp, &func_params); 13626 } 13627 13628 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 13629 { 13630 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13631 int rc; 13632 int drift_dir = 1; 13633 int val, period, period1, period2, dif, dif1, dif2; 13634 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0; 13635 13636 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb); 13637 13638 if (!netif_running(bp->dev)) { 13639 DP(BNX2X_MSG_PTP, 13640 "PTP adjfreq called while the interface is down\n"); 13641 return -EFAULT; 13642 } 13643 13644 if (ppb < 0) { 13645 ppb = -ppb; 13646 drift_dir = 0; 13647 } 13648 13649 if (ppb == 0) { 13650 best_val = 1; 13651 best_period = 0x1FFFFFF; 13652 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) { 13653 best_val = 31; 13654 best_period = 1; 13655 } else { 13656 /* Changed not to allow val = 8, 16, 24 as these values 13657 * are not supported in workaround. 13658 */ 13659 for (val = 0; val <= 31; val++) { 13660 if ((val & 0x7) == 0) 13661 continue; 13662 period1 = val * 1000000 / ppb; 13663 period2 = period1 + 1; 13664 if (period1 != 0) 13665 dif1 = ppb - (val * 1000000 / period1); 13666 else 13667 dif1 = BNX2X_MAX_PHC_DRIFT; 13668 if (dif1 < 0) 13669 dif1 = -dif1; 13670 dif2 = ppb - (val * 1000000 / period2); 13671 if (dif2 < 0) 13672 dif2 = -dif2; 13673 dif = (dif1 < dif2) ? dif1 : dif2; 13674 period = (dif1 < dif2) ? period1 : period2; 13675 if (dif < best_dif) { 13676 best_dif = dif; 13677 best_val = val; 13678 best_period = period; 13679 } 13680 } 13681 } 13682 13683 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val, 13684 best_period); 13685 if (rc) { 13686 BNX2X_ERR("Failed to set drift\n"); 13687 return -EFAULT; 13688 } 13689 13690 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val, 13691 best_period); 13692 13693 return 0; 13694 } 13695 13696 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 13697 { 13698 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13699 13700 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta); 13701 13702 timecounter_adjtime(&bp->timecounter, delta); 13703 13704 return 0; 13705 } 13706 13707 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 13708 { 13709 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13710 u64 ns; 13711 13712 ns = timecounter_read(&bp->timecounter); 13713 13714 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns); 13715 13716 *ts = ns_to_timespec64(ns); 13717 13718 return 0; 13719 } 13720 13721 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp, 13722 const struct timespec64 *ts) 13723 { 13724 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13725 u64 ns; 13726 13727 ns = timespec64_to_ns(ts); 13728 13729 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns); 13730 13731 /* Re-init the timecounter */ 13732 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns); 13733 13734 return 0; 13735 } 13736 13737 /* Enable (or disable) ancillary features of the phc subsystem */ 13738 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp, 13739 struct ptp_clock_request *rq, int on) 13740 { 13741 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13742 13743 BNX2X_ERR("PHC ancillary features are not supported\n"); 13744 return -ENOTSUPP; 13745 } 13746 13747 static void bnx2x_register_phc(struct bnx2x *bp) 13748 { 13749 /* Fill the ptp_clock_info struct and register PTP clock*/ 13750 bp->ptp_clock_info.owner = THIS_MODULE; 13751 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name); 13752 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */ 13753 bp->ptp_clock_info.n_alarm = 0; 13754 bp->ptp_clock_info.n_ext_ts = 0; 13755 bp->ptp_clock_info.n_per_out = 0; 13756 bp->ptp_clock_info.pps = 0; 13757 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq; 13758 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime; 13759 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime; 13760 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime; 13761 bp->ptp_clock_info.enable = bnx2x_ptp_enable; 13762 13763 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev); 13764 if (IS_ERR(bp->ptp_clock)) { 13765 bp->ptp_clock = NULL; 13766 BNX2X_ERR("PTP clock registeration failed\n"); 13767 } 13768 } 13769 13770 static int bnx2x_init_one(struct pci_dev *pdev, 13771 const struct pci_device_id *ent) 13772 { 13773 struct net_device *dev = NULL; 13774 struct bnx2x *bp; 13775 enum pcie_link_width pcie_width; 13776 enum pci_bus_speed pcie_speed; 13777 int rc, max_non_def_sbs; 13778 int rx_count, tx_count, rss_count, doorbell_size; 13779 int max_cos_est; 13780 bool is_vf; 13781 int cnic_cnt; 13782 13783 /* Management FW 'remembers' living interfaces. Allow it some time 13784 * to forget previously living interfaces, allowing a proper re-load. 13785 */ 13786 if (is_kdump_kernel()) { 13787 ktime_t now = ktime_get_boottime(); 13788 ktime_t fw_ready_time = ktime_set(5, 0); 13789 13790 if (ktime_before(now, fw_ready_time)) 13791 msleep(ktime_ms_delta(fw_ready_time, now)); 13792 } 13793 13794 /* An estimated maximum supported CoS number according to the chip 13795 * version. 13796 * We will try to roughly estimate the maximum number of CoSes this chip 13797 * may support in order to minimize the memory allocated for Tx 13798 * netdev_queue's. This number will be accurately calculated during the 13799 * initialization of bp->max_cos based on the chip versions AND chip 13800 * revision in the bnx2x_init_bp(). 13801 */ 13802 max_cos_est = set_max_cos_est(ent->driver_data); 13803 if (max_cos_est < 0) 13804 return max_cos_est; 13805 is_vf = set_is_vf(ent->driver_data); 13806 cnic_cnt = is_vf ? 0 : 1; 13807 13808 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt); 13809 13810 /* add another SB for VF as it has no default SB */ 13811 max_non_def_sbs += is_vf ? 1 : 0; 13812 13813 /* Maximum number of RSS queues: one IGU SB goes to CNIC */ 13814 rss_count = max_non_def_sbs - cnic_cnt; 13815 13816 if (rss_count < 1) 13817 return -EINVAL; 13818 13819 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ 13820 rx_count = rss_count + cnic_cnt; 13821 13822 /* Maximum number of netdev Tx queues: 13823 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 13824 */ 13825 tx_count = rss_count * max_cos_est + cnic_cnt; 13826 13827 /* dev zeroed in init_etherdev */ 13828 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); 13829 if (!dev) 13830 return -ENOMEM; 13831 13832 bp = netdev_priv(dev); 13833 13834 bp->flags = 0; 13835 if (is_vf) 13836 bp->flags |= IS_VF_FLAG; 13837 13838 bp->igu_sb_cnt = max_non_def_sbs; 13839 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; 13840 bp->msg_enable = debug; 13841 bp->cnic_support = cnic_cnt; 13842 bp->cnic_probe = bnx2x_cnic_probe; 13843 13844 pci_set_drvdata(pdev, dev); 13845 13846 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); 13847 if (rc < 0) { 13848 free_netdev(dev); 13849 return rc; 13850 } 13851 13852 BNX2X_DEV_INFO("This is a %s function\n", 13853 IS_PF(bp) ? "physical" : "virtual"); 13854 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); 13855 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); 13856 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", 13857 tx_count, rx_count); 13858 13859 rc = bnx2x_init_bp(bp); 13860 if (rc) 13861 goto init_one_exit; 13862 13863 /* Map doorbells here as we need the real value of bp->max_cos which 13864 * is initialized in bnx2x_init_bp() to determine the number of 13865 * l2 connections. 13866 */ 13867 if (IS_VF(bp)) { 13868 bp->doorbells = bnx2x_vf_doorbells(bp); 13869 rc = bnx2x_vf_pci_alloc(bp); 13870 if (rc) 13871 goto init_one_exit; 13872 } else { 13873 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); 13874 if (doorbell_size > pci_resource_len(pdev, 2)) { 13875 dev_err(&bp->pdev->dev, 13876 "Cannot map doorbells, bar size too small, aborting\n"); 13877 rc = -ENOMEM; 13878 goto init_one_exit; 13879 } 13880 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2), 13881 doorbell_size); 13882 } 13883 if (!bp->doorbells) { 13884 dev_err(&bp->pdev->dev, 13885 "Cannot map doorbell space, aborting\n"); 13886 rc = -ENOMEM; 13887 goto init_one_exit; 13888 } 13889 13890 if (IS_VF(bp)) { 13891 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); 13892 if (rc) 13893 goto init_one_exit; 13894 } 13895 13896 /* Enable SRIOV if capability found in configuration space */ 13897 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); 13898 if (rc) 13899 goto init_one_exit; 13900 13901 /* calc qm_cid_count */ 13902 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); 13903 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); 13904 13905 /* disable FCOE L2 queue for E1x*/ 13906 if (CHIP_IS_E1x(bp)) 13907 bp->flags |= NO_FCOE_FLAG; 13908 13909 /* Set bp->num_queues for MSI-X mode*/ 13910 bnx2x_set_num_queues(bp); 13911 13912 /* Configure interrupt mode: try to enable MSI-X/MSI if 13913 * needed. 13914 */ 13915 rc = bnx2x_set_int_mode(bp); 13916 if (rc) { 13917 dev_err(&pdev->dev, "Cannot set interrupts\n"); 13918 goto init_one_exit; 13919 } 13920 BNX2X_DEV_INFO("set interrupts successfully\n"); 13921 13922 /* register the net device */ 13923 rc = register_netdev(dev); 13924 if (rc) { 13925 dev_err(&pdev->dev, "Cannot register net device\n"); 13926 goto init_one_exit; 13927 } 13928 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); 13929 13930 if (!NO_FCOE(bp)) { 13931 /* Add storage MAC address */ 13932 rtnl_lock(); 13933 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 13934 rtnl_unlock(); 13935 } 13936 if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) || 13937 pcie_speed == PCI_SPEED_UNKNOWN || 13938 pcie_width == PCIE_LNK_WIDTH_UNKNOWN) 13939 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n"); 13940 else 13941 BNX2X_DEV_INFO( 13942 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n", 13943 board_info[ent->driver_data].name, 13944 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), 13945 pcie_width, 13946 pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" : 13947 pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" : 13948 pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" : 13949 "Unknown", 13950 dev->base_addr, bp->pdev->irq, dev->dev_addr); 13951 13952 bnx2x_register_phc(bp); 13953 13954 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 13955 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 13956 13957 return 0; 13958 13959 init_one_exit: 13960 bnx2x_disable_pcie_error_reporting(bp); 13961 13962 if (bp->regview) 13963 iounmap(bp->regview); 13964 13965 if (IS_PF(bp) && bp->doorbells) 13966 iounmap(bp->doorbells); 13967 13968 free_netdev(dev); 13969 13970 if (atomic_read(&pdev->enable_cnt) == 1) 13971 pci_release_regions(pdev); 13972 13973 pci_disable_device(pdev); 13974 13975 return rc; 13976 } 13977 13978 static void __bnx2x_remove(struct pci_dev *pdev, 13979 struct net_device *dev, 13980 struct bnx2x *bp, 13981 bool remove_netdev) 13982 { 13983 if (bp->ptp_clock) { 13984 ptp_clock_unregister(bp->ptp_clock); 13985 bp->ptp_clock = NULL; 13986 } 13987 13988 /* Delete storage MAC address */ 13989 if (!NO_FCOE(bp)) { 13990 rtnl_lock(); 13991 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 13992 rtnl_unlock(); 13993 } 13994 13995 #ifdef BCM_DCBNL 13996 /* Delete app tlvs from dcbnl */ 13997 bnx2x_dcbnl_update_applist(bp, true); 13998 #endif 13999 14000 if (IS_PF(bp) && 14001 !BP_NOMCP(bp) && 14002 (bp->flags & BC_SUPPORTS_RMMOD_CMD)) 14003 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); 14004 14005 /* Close the interface - either directly or implicitly */ 14006 if (remove_netdev) { 14007 unregister_netdev(dev); 14008 } else { 14009 rtnl_lock(); 14010 dev_close(dev); 14011 rtnl_unlock(); 14012 } 14013 14014 bnx2x_iov_remove_one(bp); 14015 14016 /* Power on: we can't let PCI layer write to us while we are in D3 */ 14017 if (IS_PF(bp)) { 14018 bnx2x_set_power_state(bp, PCI_D0); 14019 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED); 14020 14021 /* Set endianity registers to reset values in case next driver 14022 * boots in different endianty environment. 14023 */ 14024 bnx2x_reset_endianity(bp); 14025 } 14026 14027 /* Disable MSI/MSI-X */ 14028 bnx2x_disable_msi(bp); 14029 14030 /* Power off */ 14031 if (IS_PF(bp)) 14032 bnx2x_set_power_state(bp, PCI_D3hot); 14033 14034 /* Make sure RESET task is not scheduled before continuing */ 14035 cancel_delayed_work_sync(&bp->sp_rtnl_task); 14036 14037 /* send message via vfpf channel to release the resources of this vf */ 14038 if (IS_VF(bp)) 14039 bnx2x_vfpf_release(bp); 14040 14041 /* Assumes no further PCIe PM changes will occur */ 14042 if (system_state == SYSTEM_POWER_OFF) { 14043 pci_wake_from_d3(pdev, bp->wol); 14044 pci_set_power_state(pdev, PCI_D3hot); 14045 } 14046 14047 bnx2x_disable_pcie_error_reporting(bp); 14048 if (remove_netdev) { 14049 if (bp->regview) 14050 iounmap(bp->regview); 14051 14052 /* For vfs, doorbells are part of the regview and were unmapped 14053 * along with it. FW is only loaded by PF. 14054 */ 14055 if (IS_PF(bp)) { 14056 if (bp->doorbells) 14057 iounmap(bp->doorbells); 14058 14059 bnx2x_release_firmware(bp); 14060 } else { 14061 bnx2x_vf_pci_dealloc(bp); 14062 } 14063 bnx2x_free_mem_bp(bp); 14064 14065 free_netdev(dev); 14066 14067 if (atomic_read(&pdev->enable_cnt) == 1) 14068 pci_release_regions(pdev); 14069 14070 pci_disable_device(pdev); 14071 } 14072 } 14073 14074 static void bnx2x_remove_one(struct pci_dev *pdev) 14075 { 14076 struct net_device *dev = pci_get_drvdata(pdev); 14077 struct bnx2x *bp; 14078 14079 if (!dev) { 14080 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 14081 return; 14082 } 14083 bp = netdev_priv(dev); 14084 14085 __bnx2x_remove(pdev, dev, bp, true); 14086 } 14087 14088 static int bnx2x_eeh_nic_unload(struct bnx2x *bp) 14089 { 14090 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 14091 14092 bp->rx_mode = BNX2X_RX_MODE_NONE; 14093 14094 if (CNIC_LOADED(bp)) 14095 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 14096 14097 /* Stop Tx */ 14098 bnx2x_tx_disable(bp); 14099 /* Delete all NAPI objects */ 14100 bnx2x_del_all_napi(bp); 14101 if (CNIC_LOADED(bp)) 14102 bnx2x_del_all_napi_cnic(bp); 14103 netdev_reset_tc(bp->dev); 14104 14105 del_timer_sync(&bp->timer); 14106 cancel_delayed_work_sync(&bp->sp_task); 14107 cancel_delayed_work_sync(&bp->period_task); 14108 14109 if (!down_timeout(&bp->stats_lock, HZ / 10)) { 14110 bp->stats_state = STATS_STATE_DISABLED; 14111 up(&bp->stats_lock); 14112 } 14113 14114 bnx2x_save_statistics(bp); 14115 14116 netif_carrier_off(bp->dev); 14117 14118 return 0; 14119 } 14120 14121 /** 14122 * bnx2x_io_error_detected - called when PCI error is detected 14123 * @pdev: Pointer to PCI device 14124 * @state: The current pci connection state 14125 * 14126 * This function is called after a PCI bus error affecting 14127 * this device has been detected. 14128 */ 14129 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, 14130 pci_channel_state_t state) 14131 { 14132 struct net_device *dev = pci_get_drvdata(pdev); 14133 struct bnx2x *bp = netdev_priv(dev); 14134 14135 rtnl_lock(); 14136 14137 BNX2X_ERR("IO error detected\n"); 14138 14139 netif_device_detach(dev); 14140 14141 if (state == pci_channel_io_perm_failure) { 14142 rtnl_unlock(); 14143 return PCI_ERS_RESULT_DISCONNECT; 14144 } 14145 14146 if (netif_running(dev)) 14147 bnx2x_eeh_nic_unload(bp); 14148 14149 bnx2x_prev_path_mark_eeh(bp); 14150 14151 pci_disable_device(pdev); 14152 14153 rtnl_unlock(); 14154 14155 /* Request a slot reset */ 14156 return PCI_ERS_RESULT_NEED_RESET; 14157 } 14158 14159 /** 14160 * bnx2x_io_slot_reset - called after the PCI bus has been reset 14161 * @pdev: Pointer to PCI device 14162 * 14163 * Restart the card from scratch, as if from a cold-boot. 14164 */ 14165 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) 14166 { 14167 struct net_device *dev = pci_get_drvdata(pdev); 14168 struct bnx2x *bp = netdev_priv(dev); 14169 int i; 14170 14171 rtnl_lock(); 14172 BNX2X_ERR("IO slot reset initializing...\n"); 14173 if (pci_enable_device(pdev)) { 14174 dev_err(&pdev->dev, 14175 "Cannot re-enable PCI device after reset\n"); 14176 rtnl_unlock(); 14177 return PCI_ERS_RESULT_DISCONNECT; 14178 } 14179 14180 pci_set_master(pdev); 14181 pci_restore_state(pdev); 14182 pci_save_state(pdev); 14183 14184 if (netif_running(dev)) 14185 bnx2x_set_power_state(bp, PCI_D0); 14186 14187 if (netif_running(dev)) { 14188 BNX2X_ERR("IO slot reset --> driver unload\n"); 14189 14190 /* MCP should have been reset; Need to wait for validity */ 14191 bnx2x_init_shmem(bp); 14192 14193 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 14194 u32 v; 14195 14196 v = SHMEM2_RD(bp, 14197 drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 14198 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 14199 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 14200 } 14201 bnx2x_drain_tx_queues(bp); 14202 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); 14203 bnx2x_netif_stop(bp, 1); 14204 bnx2x_free_irq(bp); 14205 14206 /* Report UNLOAD_DONE to MCP */ 14207 bnx2x_send_unload_done(bp, true); 14208 14209 bp->sp_state = 0; 14210 bp->port.pmf = 0; 14211 14212 bnx2x_prev_unload(bp); 14213 14214 /* We should have reseted the engine, so It's fair to 14215 * assume the FW will no longer write to the bnx2x driver. 14216 */ 14217 bnx2x_squeeze_objects(bp); 14218 bnx2x_free_skbs(bp); 14219 for_each_rx_queue(bp, i) 14220 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 14221 bnx2x_free_fp_mem(bp); 14222 bnx2x_free_mem(bp); 14223 14224 bp->state = BNX2X_STATE_CLOSED; 14225 } 14226 14227 rtnl_unlock(); 14228 14229 /* If AER, perform cleanup of the PCIe registers */ 14230 if (bp->flags & AER_ENABLED) { 14231 if (pci_cleanup_aer_uncorrect_error_status(pdev)) 14232 BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n"); 14233 else 14234 DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n"); 14235 } 14236 14237 return PCI_ERS_RESULT_RECOVERED; 14238 } 14239 14240 /** 14241 * bnx2x_io_resume - called when traffic can start flowing again 14242 * @pdev: Pointer to PCI device 14243 * 14244 * This callback is called when the error recovery driver tells us that 14245 * its OK to resume normal operation. 14246 */ 14247 static void bnx2x_io_resume(struct pci_dev *pdev) 14248 { 14249 struct net_device *dev = pci_get_drvdata(pdev); 14250 struct bnx2x *bp = netdev_priv(dev); 14251 14252 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 14253 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); 14254 return; 14255 } 14256 14257 rtnl_lock(); 14258 14259 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 14260 DRV_MSG_SEQ_NUMBER_MASK; 14261 14262 if (netif_running(dev)) 14263 bnx2x_nic_load(bp, LOAD_NORMAL); 14264 14265 netif_device_attach(dev); 14266 14267 rtnl_unlock(); 14268 } 14269 14270 static const struct pci_error_handlers bnx2x_err_handler = { 14271 .error_detected = bnx2x_io_error_detected, 14272 .slot_reset = bnx2x_io_slot_reset, 14273 .resume = bnx2x_io_resume, 14274 }; 14275 14276 static void bnx2x_shutdown(struct pci_dev *pdev) 14277 { 14278 struct net_device *dev = pci_get_drvdata(pdev); 14279 struct bnx2x *bp; 14280 14281 if (!dev) 14282 return; 14283 14284 bp = netdev_priv(dev); 14285 if (!bp) 14286 return; 14287 14288 rtnl_lock(); 14289 netif_device_detach(dev); 14290 rtnl_unlock(); 14291 14292 /* Don't remove the netdevice, as there are scenarios which will cause 14293 * the kernel to hang, e.g., when trying to remove bnx2i while the 14294 * rootfs is mounted from SAN. 14295 */ 14296 __bnx2x_remove(pdev, dev, bp, false); 14297 } 14298 14299 static struct pci_driver bnx2x_pci_driver = { 14300 .name = DRV_MODULE_NAME, 14301 .id_table = bnx2x_pci_tbl, 14302 .probe = bnx2x_init_one, 14303 .remove = bnx2x_remove_one, 14304 .suspend = bnx2x_suspend, 14305 .resume = bnx2x_resume, 14306 .err_handler = &bnx2x_err_handler, 14307 #ifdef CONFIG_BNX2X_SRIOV 14308 .sriov_configure = bnx2x_sriov_configure, 14309 #endif 14310 .shutdown = bnx2x_shutdown, 14311 }; 14312 14313 static int __init bnx2x_init(void) 14314 { 14315 int ret; 14316 14317 pr_info("%s", version); 14318 14319 bnx2x_wq = create_singlethread_workqueue("bnx2x"); 14320 if (bnx2x_wq == NULL) { 14321 pr_err("Cannot create workqueue\n"); 14322 return -ENOMEM; 14323 } 14324 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov"); 14325 if (!bnx2x_iov_wq) { 14326 pr_err("Cannot create iov workqueue\n"); 14327 destroy_workqueue(bnx2x_wq); 14328 return -ENOMEM; 14329 } 14330 14331 ret = pci_register_driver(&bnx2x_pci_driver); 14332 if (ret) { 14333 pr_err("Cannot register driver\n"); 14334 destroy_workqueue(bnx2x_wq); 14335 destroy_workqueue(bnx2x_iov_wq); 14336 } 14337 return ret; 14338 } 14339 14340 static void __exit bnx2x_cleanup(void) 14341 { 14342 struct list_head *pos, *q; 14343 14344 pci_unregister_driver(&bnx2x_pci_driver); 14345 14346 destroy_workqueue(bnx2x_wq); 14347 destroy_workqueue(bnx2x_iov_wq); 14348 14349 /* Free globally allocated resources */ 14350 list_for_each_safe(pos, q, &bnx2x_prev_list) { 14351 struct bnx2x_prev_path_list *tmp = 14352 list_entry(pos, struct bnx2x_prev_path_list, list); 14353 list_del(pos); 14354 kfree(tmp); 14355 } 14356 } 14357 14358 void bnx2x_notify_link_changed(struct bnx2x *bp) 14359 { 14360 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); 14361 } 14362 14363 module_init(bnx2x_init); 14364 module_exit(bnx2x_cleanup); 14365 14366 /** 14367 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). 14368 * 14369 * @bp: driver handle 14370 * @set: set or clear the CAM entry 14371 * 14372 * This function will wait until the ramrod completion returns. 14373 * Return 0 if success, -ENODEV if ramrod doesn't return. 14374 */ 14375 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) 14376 { 14377 unsigned long ramrod_flags = 0; 14378 14379 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 14380 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, 14381 &bp->iscsi_l2_mac_obj, true, 14382 BNX2X_ISCSI_ETH_MAC, &ramrod_flags); 14383 } 14384 14385 /* count denotes the number of new completions we have seen */ 14386 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) 14387 { 14388 struct eth_spe *spe; 14389 int cxt_index, cxt_offset; 14390 14391 #ifdef BNX2X_STOP_ON_ERROR 14392 if (unlikely(bp->panic)) 14393 return; 14394 #endif 14395 14396 spin_lock_bh(&bp->spq_lock); 14397 BUG_ON(bp->cnic_spq_pending < count); 14398 bp->cnic_spq_pending -= count; 14399 14400 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { 14401 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) 14402 & SPE_HDR_CONN_TYPE) >> 14403 SPE_HDR_CONN_TYPE_SHIFT; 14404 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) 14405 >> SPE_HDR_CMD_ID_SHIFT) & 0xff; 14406 14407 /* Set validation for iSCSI L2 client before sending SETUP 14408 * ramrod 14409 */ 14410 if (type == ETH_CONNECTION_TYPE) { 14411 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { 14412 cxt_index = BNX2X_ISCSI_ETH_CID(bp) / 14413 ILT_PAGE_CIDS; 14414 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - 14415 (cxt_index * ILT_PAGE_CIDS); 14416 bnx2x_set_ctx_validation(bp, 14417 &bp->context[cxt_index]. 14418 vcxt[cxt_offset].eth, 14419 BNX2X_ISCSI_ETH_CID(bp)); 14420 } 14421 } 14422 14423 /* 14424 * There may be not more than 8 L2, not more than 8 L5 SPEs 14425 * and in the air. We also check that number of outstanding 14426 * COMMON ramrods is not more than the EQ and SPQ can 14427 * accommodate. 14428 */ 14429 if (type == ETH_CONNECTION_TYPE) { 14430 if (!atomic_read(&bp->cq_spq_left)) 14431 break; 14432 else 14433 atomic_dec(&bp->cq_spq_left); 14434 } else if (type == NONE_CONNECTION_TYPE) { 14435 if (!atomic_read(&bp->eq_spq_left)) 14436 break; 14437 else 14438 atomic_dec(&bp->eq_spq_left); 14439 } else if ((type == ISCSI_CONNECTION_TYPE) || 14440 (type == FCOE_CONNECTION_TYPE)) { 14441 if (bp->cnic_spq_pending >= 14442 bp->cnic_eth_dev.max_kwqe_pending) 14443 break; 14444 else 14445 bp->cnic_spq_pending++; 14446 } else { 14447 BNX2X_ERR("Unknown SPE type: %d\n", type); 14448 bnx2x_panic(); 14449 break; 14450 } 14451 14452 spe = bnx2x_sp_get_next(bp); 14453 *spe = *bp->cnic_kwq_cons; 14454 14455 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", 14456 bp->cnic_spq_pending, bp->cnic_kwq_pending, count); 14457 14458 if (bp->cnic_kwq_cons == bp->cnic_kwq_last) 14459 bp->cnic_kwq_cons = bp->cnic_kwq; 14460 else 14461 bp->cnic_kwq_cons++; 14462 } 14463 bnx2x_sp_prod_update(bp); 14464 spin_unlock_bh(&bp->spq_lock); 14465 } 14466 14467 static int bnx2x_cnic_sp_queue(struct net_device *dev, 14468 struct kwqe_16 *kwqes[], u32 count) 14469 { 14470 struct bnx2x *bp = netdev_priv(dev); 14471 int i; 14472 14473 #ifdef BNX2X_STOP_ON_ERROR 14474 if (unlikely(bp->panic)) { 14475 BNX2X_ERR("Can't post to SP queue while panic\n"); 14476 return -EIO; 14477 } 14478 #endif 14479 14480 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && 14481 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 14482 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 14483 return -EAGAIN; 14484 } 14485 14486 spin_lock_bh(&bp->spq_lock); 14487 14488 for (i = 0; i < count; i++) { 14489 struct eth_spe *spe = (struct eth_spe *)kwqes[i]; 14490 14491 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) 14492 break; 14493 14494 *bp->cnic_kwq_prod = *spe; 14495 14496 bp->cnic_kwq_pending++; 14497 14498 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", 14499 spe->hdr.conn_and_cmd_data, spe->hdr.type, 14500 spe->data.update_data_addr.hi, 14501 spe->data.update_data_addr.lo, 14502 bp->cnic_kwq_pending); 14503 14504 if (bp->cnic_kwq_prod == bp->cnic_kwq_last) 14505 bp->cnic_kwq_prod = bp->cnic_kwq; 14506 else 14507 bp->cnic_kwq_prod++; 14508 } 14509 14510 spin_unlock_bh(&bp->spq_lock); 14511 14512 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) 14513 bnx2x_cnic_sp_post(bp, 0); 14514 14515 return i; 14516 } 14517 14518 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14519 { 14520 struct cnic_ops *c_ops; 14521 int rc = 0; 14522 14523 mutex_lock(&bp->cnic_mutex); 14524 c_ops = rcu_dereference_protected(bp->cnic_ops, 14525 lockdep_is_held(&bp->cnic_mutex)); 14526 if (c_ops) 14527 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14528 mutex_unlock(&bp->cnic_mutex); 14529 14530 return rc; 14531 } 14532 14533 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14534 { 14535 struct cnic_ops *c_ops; 14536 int rc = 0; 14537 14538 rcu_read_lock(); 14539 c_ops = rcu_dereference(bp->cnic_ops); 14540 if (c_ops) 14541 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14542 rcu_read_unlock(); 14543 14544 return rc; 14545 } 14546 14547 /* 14548 * for commands that have no data 14549 */ 14550 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) 14551 { 14552 struct cnic_ctl_info ctl = {0}; 14553 14554 ctl.cmd = cmd; 14555 14556 return bnx2x_cnic_ctl_send(bp, &ctl); 14557 } 14558 14559 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) 14560 { 14561 struct cnic_ctl_info ctl = {0}; 14562 14563 /* first we tell CNIC and only then we count this as a completion */ 14564 ctl.cmd = CNIC_CTL_COMPLETION_CMD; 14565 ctl.data.comp.cid = cid; 14566 ctl.data.comp.error = err; 14567 14568 bnx2x_cnic_ctl_send_bh(bp, &ctl); 14569 bnx2x_cnic_sp_post(bp, 0); 14570 } 14571 14572 /* Called with netif_addr_lock_bh() taken. 14573 * Sets an rx_mode config for an iSCSI ETH client. 14574 * Doesn't block. 14575 * Completion should be checked outside. 14576 */ 14577 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) 14578 { 14579 unsigned long accept_flags = 0, ramrod_flags = 0; 14580 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 14581 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; 14582 14583 if (start) { 14584 /* Start accepting on iSCSI L2 ring. Accept all multicasts 14585 * because it's the only way for UIO Queue to accept 14586 * multicasts (in non-promiscuous mode only one Queue per 14587 * function will receive multicast packets (leading in our 14588 * case). 14589 */ 14590 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); 14591 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); 14592 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); 14593 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 14594 14595 /* Clear STOP_PENDING bit if START is requested */ 14596 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); 14597 14598 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; 14599 } else 14600 /* Clear START_PENDING bit if STOP is requested */ 14601 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); 14602 14603 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 14604 set_bit(sched_state, &bp->sp_state); 14605 else { 14606 __set_bit(RAMROD_RX, &ramrod_flags); 14607 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, 14608 ramrod_flags); 14609 } 14610 } 14611 14612 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) 14613 { 14614 struct bnx2x *bp = netdev_priv(dev); 14615 int rc = 0; 14616 14617 switch (ctl->cmd) { 14618 case DRV_CTL_CTXTBL_WR_CMD: { 14619 u32 index = ctl->data.io.offset; 14620 dma_addr_t addr = ctl->data.io.dma_addr; 14621 14622 bnx2x_ilt_wr(bp, index, addr); 14623 break; 14624 } 14625 14626 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { 14627 int count = ctl->data.credit.credit_count; 14628 14629 bnx2x_cnic_sp_post(bp, count); 14630 break; 14631 } 14632 14633 /* rtnl_lock is held. */ 14634 case DRV_CTL_START_L2_CMD: { 14635 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14636 unsigned long sp_bits = 0; 14637 14638 /* Configure the iSCSI classification object */ 14639 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, 14640 cp->iscsi_l2_client_id, 14641 cp->iscsi_l2_cid, BP_FUNC(bp), 14642 bnx2x_sp(bp, mac_rdata), 14643 bnx2x_sp_mapping(bp, mac_rdata), 14644 BNX2X_FILTER_MAC_PENDING, 14645 &bp->sp_state, BNX2X_OBJ_TYPE_RX, 14646 &bp->macs_pool); 14647 14648 /* Set iSCSI MAC address */ 14649 rc = bnx2x_set_iscsi_eth_mac_addr(bp); 14650 if (rc) 14651 break; 14652 14653 mmiowb(); 14654 barrier(); 14655 14656 /* Start accepting on iSCSI L2 ring */ 14657 14658 netif_addr_lock_bh(dev); 14659 bnx2x_set_iscsi_eth_rx_mode(bp, true); 14660 netif_addr_unlock_bh(dev); 14661 14662 /* bits to wait on */ 14663 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14664 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); 14665 14666 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14667 BNX2X_ERR("rx_mode completion timed out!\n"); 14668 14669 break; 14670 } 14671 14672 /* rtnl_lock is held. */ 14673 case DRV_CTL_STOP_L2_CMD: { 14674 unsigned long sp_bits = 0; 14675 14676 /* Stop accepting on iSCSI L2 ring */ 14677 netif_addr_lock_bh(dev); 14678 bnx2x_set_iscsi_eth_rx_mode(bp, false); 14679 netif_addr_unlock_bh(dev); 14680 14681 /* bits to wait on */ 14682 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14683 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); 14684 14685 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14686 BNX2X_ERR("rx_mode completion timed out!\n"); 14687 14688 mmiowb(); 14689 barrier(); 14690 14691 /* Unset iSCSI L2 MAC */ 14692 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, 14693 BNX2X_ISCSI_ETH_MAC, true); 14694 break; 14695 } 14696 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { 14697 int count = ctl->data.credit.credit_count; 14698 14699 smp_mb__before_atomic(); 14700 atomic_add(count, &bp->cq_spq_left); 14701 smp_mb__after_atomic(); 14702 break; 14703 } 14704 case DRV_CTL_ULP_REGISTER_CMD: { 14705 int ulp_type = ctl->data.register_data.ulp_type; 14706 14707 if (CHIP_IS_E3(bp)) { 14708 int idx = BP_FW_MB_IDX(bp); 14709 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14710 int path = BP_PATH(bp); 14711 int port = BP_PORT(bp); 14712 int i; 14713 u32 scratch_offset; 14714 u32 *host_addr; 14715 14716 /* first write capability to shmem2 */ 14717 if (ulp_type == CNIC_ULP_ISCSI) 14718 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14719 else if (ulp_type == CNIC_ULP_FCOE) 14720 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14721 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14722 14723 if ((ulp_type != CNIC_ULP_FCOE) || 14724 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || 14725 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) 14726 break; 14727 14728 /* if reached here - should write fcoe capabilities */ 14729 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); 14730 if (!scratch_offset) 14731 break; 14732 scratch_offset += offsetof(struct glob_ncsi_oem_data, 14733 fcoe_features[path][port]); 14734 host_addr = (u32 *) &(ctl->data.register_data. 14735 fcoe_features); 14736 for (i = 0; i < sizeof(struct fcoe_capabilities); 14737 i += 4) 14738 REG_WR(bp, scratch_offset + i, 14739 *(host_addr + i/4)); 14740 } 14741 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14742 break; 14743 } 14744 14745 case DRV_CTL_ULP_UNREGISTER_CMD: { 14746 int ulp_type = ctl->data.ulp_type; 14747 14748 if (CHIP_IS_E3(bp)) { 14749 int idx = BP_FW_MB_IDX(bp); 14750 u32 cap; 14751 14752 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14753 if (ulp_type == CNIC_ULP_ISCSI) 14754 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14755 else if (ulp_type == CNIC_ULP_FCOE) 14756 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14757 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14758 } 14759 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14760 break; 14761 } 14762 14763 default: 14764 BNX2X_ERR("unknown command %x\n", ctl->cmd); 14765 rc = -EINVAL; 14766 } 14767 14768 /* For storage-only interfaces, change driver state */ 14769 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) { 14770 switch (ctl->drv_state) { 14771 case DRV_NOP: 14772 break; 14773 case DRV_ACTIVE: 14774 bnx2x_set_os_driver_state(bp, 14775 OS_DRIVER_STATE_ACTIVE); 14776 break; 14777 case DRV_INACTIVE: 14778 bnx2x_set_os_driver_state(bp, 14779 OS_DRIVER_STATE_DISABLED); 14780 break; 14781 case DRV_UNLOADED: 14782 bnx2x_set_os_driver_state(bp, 14783 OS_DRIVER_STATE_NOT_LOADED); 14784 break; 14785 default: 14786 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state); 14787 } 14788 } 14789 14790 return rc; 14791 } 14792 14793 static int bnx2x_get_fc_npiv(struct net_device *dev, 14794 struct cnic_fc_npiv_tbl *cnic_tbl) 14795 { 14796 struct bnx2x *bp = netdev_priv(dev); 14797 struct bdn_fc_npiv_tbl *tbl = NULL; 14798 u32 offset, entries; 14799 int rc = -EINVAL; 14800 int i; 14801 14802 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0])) 14803 goto out; 14804 14805 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n"); 14806 14807 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL); 14808 if (!tbl) { 14809 BNX2X_ERR("Failed to allocate fc_npiv table\n"); 14810 goto out; 14811 } 14812 14813 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]); 14814 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset); 14815 14816 /* Read the table contents from nvram */ 14817 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) { 14818 BNX2X_ERR("Failed to read FC-NPIV table\n"); 14819 goto out; 14820 } 14821 14822 /* Since bnx2x_nvram_read() returns data in be32, we need to convert 14823 * the number of entries back to cpu endianness. 14824 */ 14825 entries = tbl->fc_npiv_cfg.num_of_npiv; 14826 entries = (__force u32)be32_to_cpu((__force __be32)entries); 14827 tbl->fc_npiv_cfg.num_of_npiv = entries; 14828 14829 if (!tbl->fc_npiv_cfg.num_of_npiv) { 14830 DP(BNX2X_MSG_MCP, 14831 "No FC-NPIV table [valid, simply not present]\n"); 14832 goto out; 14833 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) { 14834 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n", 14835 tbl->fc_npiv_cfg.num_of_npiv); 14836 goto out; 14837 } else { 14838 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n", 14839 tbl->fc_npiv_cfg.num_of_npiv); 14840 } 14841 14842 /* Copy the data into cnic-provided struct */ 14843 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv; 14844 for (i = 0; i < cnic_tbl->count; i++) { 14845 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8); 14846 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8); 14847 } 14848 14849 rc = 0; 14850 out: 14851 kfree(tbl); 14852 return rc; 14853 } 14854 14855 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) 14856 { 14857 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14858 14859 if (bp->flags & USING_MSIX_FLAG) { 14860 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; 14861 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; 14862 cp->irq_arr[0].vector = bp->msix_table[1].vector; 14863 } else { 14864 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; 14865 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; 14866 } 14867 if (!CHIP_IS_E1x(bp)) 14868 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; 14869 else 14870 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; 14871 14872 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); 14873 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); 14874 cp->irq_arr[1].status_blk = bp->def_status_blk; 14875 cp->irq_arr[1].status_blk_num = DEF_SB_ID; 14876 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; 14877 14878 cp->num_irq = 2; 14879 } 14880 14881 void bnx2x_setup_cnic_info(struct bnx2x *bp) 14882 { 14883 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14884 14885 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 14886 bnx2x_cid_ilt_lines(bp); 14887 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 14888 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 14889 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 14890 14891 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n", 14892 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid, 14893 cp->iscsi_l2_cid); 14894 14895 if (NO_ISCSI_OOO(bp)) 14896 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 14897 } 14898 14899 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, 14900 void *data) 14901 { 14902 struct bnx2x *bp = netdev_priv(dev); 14903 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14904 int rc; 14905 14906 DP(NETIF_MSG_IFUP, "Register_cnic called\n"); 14907 14908 if (ops == NULL) { 14909 BNX2X_ERR("NULL ops received\n"); 14910 return -EINVAL; 14911 } 14912 14913 if (!CNIC_SUPPORT(bp)) { 14914 BNX2X_ERR("Can't register CNIC when not supported\n"); 14915 return -EOPNOTSUPP; 14916 } 14917 14918 if (!CNIC_LOADED(bp)) { 14919 rc = bnx2x_load_cnic(bp); 14920 if (rc) { 14921 BNX2X_ERR("CNIC-related load failed\n"); 14922 return rc; 14923 } 14924 } 14925 14926 bp->cnic_enabled = true; 14927 14928 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); 14929 if (!bp->cnic_kwq) 14930 return -ENOMEM; 14931 14932 bp->cnic_kwq_cons = bp->cnic_kwq; 14933 bp->cnic_kwq_prod = bp->cnic_kwq; 14934 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; 14935 14936 bp->cnic_spq_pending = 0; 14937 bp->cnic_kwq_pending = 0; 14938 14939 bp->cnic_data = data; 14940 14941 cp->num_irq = 0; 14942 cp->drv_state |= CNIC_DRV_STATE_REGD; 14943 cp->iro_arr = bp->iro_arr; 14944 14945 bnx2x_setup_cnic_irq_info(bp); 14946 14947 rcu_assign_pointer(bp->cnic_ops, ops); 14948 14949 /* Schedule driver to read CNIC driver versions */ 14950 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14951 14952 return 0; 14953 } 14954 14955 static int bnx2x_unregister_cnic(struct net_device *dev) 14956 { 14957 struct bnx2x *bp = netdev_priv(dev); 14958 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14959 14960 mutex_lock(&bp->cnic_mutex); 14961 cp->drv_state = 0; 14962 RCU_INIT_POINTER(bp->cnic_ops, NULL); 14963 mutex_unlock(&bp->cnic_mutex); 14964 synchronize_rcu(); 14965 bp->cnic_enabled = false; 14966 kfree(bp->cnic_kwq); 14967 bp->cnic_kwq = NULL; 14968 14969 return 0; 14970 } 14971 14972 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) 14973 { 14974 struct bnx2x *bp = netdev_priv(dev); 14975 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14976 14977 /* If both iSCSI and FCoE are disabled - return NULL in 14978 * order to indicate CNIC that it should not try to work 14979 * with this device. 14980 */ 14981 if (NO_ISCSI(bp) && NO_FCOE(bp)) 14982 return NULL; 14983 14984 cp->drv_owner = THIS_MODULE; 14985 cp->chip_id = CHIP_ID(bp); 14986 cp->pdev = bp->pdev; 14987 cp->io_base = bp->regview; 14988 cp->io_base2 = bp->doorbells; 14989 cp->max_kwqe_pending = 8; 14990 cp->ctx_blk_size = CDU_ILT_PAGE_SZ; 14991 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 14992 bnx2x_cid_ilt_lines(bp); 14993 cp->ctx_tbl_len = CNIC_ILT_LINES; 14994 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 14995 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; 14996 cp->drv_ctl = bnx2x_drv_ctl; 14997 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv; 14998 cp->drv_register_cnic = bnx2x_register_cnic; 14999 cp->drv_unregister_cnic = bnx2x_unregister_cnic; 15000 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 15001 cp->iscsi_l2_client_id = 15002 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 15003 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 15004 15005 if (NO_ISCSI_OOO(bp)) 15006 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 15007 15008 if (NO_ISCSI(bp)) 15009 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; 15010 15011 if (NO_FCOE(bp)) 15012 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; 15013 15014 BNX2X_DEV_INFO( 15015 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", 15016 cp->ctx_blk_size, 15017 cp->ctx_tbl_offset, 15018 cp->ctx_tbl_len, 15019 cp->starting_cid); 15020 return cp; 15021 } 15022 15023 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) 15024 { 15025 struct bnx2x *bp = fp->bp; 15026 u32 offset = BAR_USTRORM_INTMEM; 15027 15028 if (IS_VF(bp)) 15029 return bnx2x_vf_ustorm_prods_offset(bp, fp); 15030 else if (!CHIP_IS_E1x(bp)) 15031 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 15032 else 15033 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); 15034 15035 return offset; 15036 } 15037 15038 /* called only on E1H or E2. 15039 * When pretending to be PF, the pretend value is the function number 0...7 15040 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 15041 * combination 15042 */ 15043 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) 15044 { 15045 u32 pretend_reg; 15046 15047 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) 15048 return -1; 15049 15050 /* get my own pretend register */ 15051 pretend_reg = bnx2x_get_pretend_reg(bp); 15052 REG_WR(bp, pretend_reg, pretend_func_val); 15053 REG_RD(bp, pretend_reg); 15054 return 0; 15055 } 15056 15057 static void bnx2x_ptp_task(struct work_struct *work) 15058 { 15059 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task); 15060 int port = BP_PORT(bp); 15061 u32 val_seq; 15062 u64 timestamp, ns; 15063 struct skb_shared_hwtstamps shhwtstamps; 15064 15065 /* Read Tx timestamp registers */ 15066 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15067 NIG_REG_P0_TLLH_PTP_BUF_SEQID); 15068 if (val_seq & 0x10000) { 15069 /* There is a valid timestamp value */ 15070 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB : 15071 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB); 15072 timestamp <<= 32; 15073 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB : 15074 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB); 15075 /* Reset timestamp register to allow new timestamp */ 15076 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15077 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15078 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15079 15080 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 15081 shhwtstamps.hwtstamp = ns_to_ktime(ns); 15082 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps); 15083 dev_kfree_skb_any(bp->ptp_tx_skb); 15084 bp->ptp_tx_skb = NULL; 15085 15086 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n", 15087 timestamp, ns); 15088 } else { 15089 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n"); 15090 /* Reschedule to keep checking for a valid timestamp value */ 15091 schedule_work(&bp->ptp_task); 15092 } 15093 } 15094 15095 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb) 15096 { 15097 int port = BP_PORT(bp); 15098 u64 timestamp, ns; 15099 15100 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB : 15101 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB); 15102 timestamp <<= 32; 15103 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB : 15104 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB); 15105 15106 /* Reset timestamp register to allow new timestamp */ 15107 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15108 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15109 15110 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15111 15112 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 15113 15114 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n", 15115 timestamp, ns); 15116 } 15117 15118 /* Read the PHC */ 15119 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc) 15120 { 15121 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter); 15122 int port = BP_PORT(bp); 15123 u32 wb_data[2]; 15124 u64 phc_cycles; 15125 15126 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 : 15127 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2); 15128 phc_cycles = wb_data[1]; 15129 phc_cycles = (phc_cycles << 32) + wb_data[0]; 15130 15131 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles); 15132 15133 return phc_cycles; 15134 } 15135 15136 static void bnx2x_init_cyclecounter(struct bnx2x *bp) 15137 { 15138 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter)); 15139 bp->cyclecounter.read = bnx2x_cyclecounter_read; 15140 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64); 15141 bp->cyclecounter.shift = 1; 15142 bp->cyclecounter.mult = 1; 15143 } 15144 15145 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp) 15146 { 15147 struct bnx2x_func_state_params func_params = {NULL}; 15148 struct bnx2x_func_set_timesync_params *set_timesync_params = 15149 &func_params.params.set_timesync; 15150 15151 /* Prepare parameters for function state transitions */ 15152 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 15153 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 15154 15155 func_params.f_obj = &bp->func_obj; 15156 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 15157 15158 /* Function parameters */ 15159 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET; 15160 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 15161 15162 return bnx2x_func_state_change(bp, &func_params); 15163 } 15164 15165 static int bnx2x_enable_ptp_packets(struct bnx2x *bp) 15166 { 15167 struct bnx2x_queue_state_params q_params; 15168 int rc, i; 15169 15170 /* send queue update ramrod to enable PTP packets */ 15171 memset(&q_params, 0, sizeof(q_params)); 15172 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 15173 q_params.cmd = BNX2X_Q_CMD_UPDATE; 15174 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, 15175 &q_params.params.update.update_flags); 15176 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS, 15177 &q_params.params.update.update_flags); 15178 15179 /* send the ramrod on all the queues of the PF */ 15180 for_each_eth_queue(bp, i) { 15181 struct bnx2x_fastpath *fp = &bp->fp[i]; 15182 15183 /* Set the appropriate Queue object */ 15184 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 15185 15186 /* Update the Queue state */ 15187 rc = bnx2x_queue_state_change(bp, &q_params); 15188 if (rc) { 15189 BNX2X_ERR("Failed to enable PTP packets\n"); 15190 return rc; 15191 } 15192 } 15193 15194 return 0; 15195 } 15196 15197 int bnx2x_configure_ptp_filters(struct bnx2x *bp) 15198 { 15199 int port = BP_PORT(bp); 15200 int rc; 15201 15202 if (!bp->hwtstamp_ioctl_called) 15203 return 0; 15204 15205 switch (bp->tx_type) { 15206 case HWTSTAMP_TX_ON: 15207 bp->flags |= TX_TIMESTAMPING_EN; 15208 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15209 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA); 15210 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15211 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE); 15212 break; 15213 case HWTSTAMP_TX_ONESTEP_SYNC: 15214 BNX2X_ERR("One-step timestamping is not supported\n"); 15215 return -ERANGE; 15216 } 15217 15218 switch (bp->rx_filter) { 15219 case HWTSTAMP_FILTER_NONE: 15220 break; 15221 case HWTSTAMP_FILTER_ALL: 15222 case HWTSTAMP_FILTER_SOME: 15223 bp->rx_filter = HWTSTAMP_FILTER_NONE; 15224 break; 15225 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 15226 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 15227 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 15228 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 15229 /* Initialize PTP detection for UDP/IPv4 events */ 15230 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15231 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE); 15232 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15233 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE); 15234 break; 15235 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 15236 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 15237 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 15238 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 15239 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */ 15240 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15241 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA); 15242 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15243 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE); 15244 break; 15245 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 15246 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 15247 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 15248 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 15249 /* Initialize PTP detection L2 events */ 15250 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15251 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF); 15252 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15253 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF); 15254 15255 break; 15256 case HWTSTAMP_FILTER_PTP_V2_EVENT: 15257 case HWTSTAMP_FILTER_PTP_V2_SYNC: 15258 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 15259 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 15260 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */ 15261 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15262 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA); 15263 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15264 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE); 15265 break; 15266 } 15267 15268 /* Indicate to FW that this PF expects recorded PTP packets */ 15269 rc = bnx2x_enable_ptp_packets(bp); 15270 if (rc) 15271 return rc; 15272 15273 /* Enable sending PTP packets to host */ 15274 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15275 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1); 15276 15277 return 0; 15278 } 15279 15280 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr) 15281 { 15282 struct hwtstamp_config config; 15283 int rc; 15284 15285 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n"); 15286 15287 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 15288 return -EFAULT; 15289 15290 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n", 15291 config.tx_type, config.rx_filter); 15292 15293 if (config.flags) { 15294 BNX2X_ERR("config.flags is reserved for future use\n"); 15295 return -EINVAL; 15296 } 15297 15298 bp->hwtstamp_ioctl_called = 1; 15299 bp->tx_type = config.tx_type; 15300 bp->rx_filter = config.rx_filter; 15301 15302 rc = bnx2x_configure_ptp_filters(bp); 15303 if (rc) 15304 return rc; 15305 15306 config.rx_filter = bp->rx_filter; 15307 15308 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 15309 -EFAULT : 0; 15310 } 15311 15312 /* Configures HW for PTP */ 15313 static int bnx2x_configure_ptp(struct bnx2x *bp) 15314 { 15315 int rc, port = BP_PORT(bp); 15316 u32 wb_data[2]; 15317 15318 /* Reset PTP event detection rules - will be configured in the IOCTL */ 15319 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15320 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 15321 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15322 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 15323 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15324 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 15325 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15326 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 15327 15328 /* Disable PTP packets to host - will be configured in the IOCTL*/ 15329 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15330 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 15331 15332 /* Enable the PTP feature */ 15333 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 15334 NIG_REG_P0_PTP_EN, 0x3F); 15335 15336 /* Enable the free-running counter */ 15337 wb_data[0] = 0; 15338 wb_data[1] = 0; 15339 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2); 15340 15341 /* Reset drift register (offset register is not reset) */ 15342 rc = bnx2x_send_reset_timesync_ramrod(bp); 15343 if (rc) { 15344 BNX2X_ERR("Failed to reset PHC drift register\n"); 15345 return -EFAULT; 15346 } 15347 15348 /* Reset possibly old timestamps */ 15349 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15350 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15351 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15352 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15353 15354 return 0; 15355 } 15356 15357 /* Called during load, to initialize PTP-related stuff */ 15358 void bnx2x_init_ptp(struct bnx2x *bp) 15359 { 15360 int rc; 15361 15362 /* Configure PTP in HW */ 15363 rc = bnx2x_configure_ptp(bp); 15364 if (rc) { 15365 BNX2X_ERR("Stopping PTP initialization\n"); 15366 return; 15367 } 15368 15369 /* Init work queue for Tx timestamping */ 15370 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task); 15371 15372 /* Init cyclecounter and timecounter. This is done only in the first 15373 * load. If done in every load, PTP application will fail when doing 15374 * unload / load (e.g. MTU change) while it is running. 15375 */ 15376 if (!bp->timecounter_init_done) { 15377 bnx2x_init_cyclecounter(bp); 15378 timecounter_init(&bp->timecounter, &bp->cyclecounter, 15379 ktime_to_ns(ktime_get_real())); 15380 bp->timecounter_init_done = 1; 15381 } 15382 15383 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n"); 15384 } 15385