1 /* bnx2x_main.c: Broadcom Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 * 9 * Maintained by: Eilon Greenstein <eilong@broadcom.com> 10 * Written by: Eliezer Tamir 11 * Based on code from Michael Chan's bnx2 driver 12 * UDP CSUM errata workaround by Arik Gendelman 13 * Slowpath and fastpath rework by Vladislav Zolotarov 14 * Statistics and Link management by Yitchak Gertner 15 * 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/kernel.h> 23 #include <linux/device.h> /* for dev_info() */ 24 #include <linux/timer.h> 25 #include <linux/errno.h> 26 #include <linux/ioport.h> 27 #include <linux/slab.h> 28 #include <linux/interrupt.h> 29 #include <linux/pci.h> 30 #include <linux/init.h> 31 #include <linux/netdevice.h> 32 #include <linux/etherdevice.h> 33 #include <linux/skbuff.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/bitops.h> 36 #include <linux/irq.h> 37 #include <linux/delay.h> 38 #include <asm/byteorder.h> 39 #include <linux/time.h> 40 #include <linux/ethtool.h> 41 #include <linux/mii.h> 42 #include <linux/if_vlan.h> 43 #include <net/ip.h> 44 #include <net/ipv6.h> 45 #include <net/tcp.h> 46 #include <net/checksum.h> 47 #include <net/ip6_checksum.h> 48 #include <linux/workqueue.h> 49 #include <linux/crc32.h> 50 #include <linux/crc32c.h> 51 #include <linux/prefetch.h> 52 #include <linux/zlib.h> 53 #include <linux/io.h> 54 #include <linux/semaphore.h> 55 #include <linux/stringify.h> 56 #include <linux/vmalloc.h> 57 58 #include "bnx2x.h" 59 #include "bnx2x_init.h" 60 #include "bnx2x_init_ops.h" 61 #include "bnx2x_cmn.h" 62 #include "bnx2x_vfpf.h" 63 #include "bnx2x_dcb.h" 64 #include "bnx2x_sp.h" 65 66 #include <linux/firmware.h> 67 #include "bnx2x_fw_file_hdr.h" 68 /* FW files */ 69 #define FW_FILE_VERSION \ 70 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ 71 __stringify(BCM_5710_FW_MINOR_VERSION) "." \ 72 __stringify(BCM_5710_FW_REVISION_VERSION) "." \ 73 __stringify(BCM_5710_FW_ENGINEERING_VERSION) 74 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" 75 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" 76 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" 77 78 /* Time in jiffies before concluding the transmitter is hung */ 79 #define TX_TIMEOUT (5*HZ) 80 81 static char version[] = 82 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver " 83 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 84 85 MODULE_AUTHOR("Eliezer Tamir"); 86 MODULE_DESCRIPTION("Broadcom NetXtreme II " 87 "BCM57710/57711/57711E/" 88 "57712/57712_MF/57800/57800_MF/57810/57810_MF/" 89 "57840/57840_MF Driver"); 90 MODULE_LICENSE("GPL"); 91 MODULE_VERSION(DRV_MODULE_VERSION); 92 MODULE_FIRMWARE(FW_FILE_NAME_E1); 93 MODULE_FIRMWARE(FW_FILE_NAME_E1H); 94 MODULE_FIRMWARE(FW_FILE_NAME_E2); 95 96 int num_queues; 97 module_param(num_queues, int, 0); 98 MODULE_PARM_DESC(num_queues, 99 " Set number of queues (default is as a number of CPUs)"); 100 101 static int disable_tpa; 102 module_param(disable_tpa, int, 0); 103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); 104 105 int int_mode; 106 module_param(int_mode, int, 0); 107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " 108 "(1 INT#x; 2 MSI)"); 109 110 static int dropless_fc; 111 module_param(dropless_fc, int, 0); 112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); 113 114 static int mrrs = -1; 115 module_param(mrrs, int, 0); 116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); 117 118 static int debug; 119 module_param(debug, int, 0); 120 MODULE_PARM_DESC(debug, " Default debug msglevel"); 121 122 struct workqueue_struct *bnx2x_wq; 123 124 struct bnx2x_mac_vals { 125 u32 xmac_addr; 126 u32 xmac_val; 127 u32 emac_addr; 128 u32 emac_val; 129 u32 umac_addr; 130 u32 umac_val; 131 u32 bmac_addr; 132 u32 bmac_val[2]; 133 }; 134 135 enum bnx2x_board_type { 136 BCM57710 = 0, 137 BCM57711, 138 BCM57711E, 139 BCM57712, 140 BCM57712_MF, 141 BCM57712_VF, 142 BCM57800, 143 BCM57800_MF, 144 BCM57800_VF, 145 BCM57810, 146 BCM57810_MF, 147 BCM57810_VF, 148 BCM57840_4_10, 149 BCM57840_2_20, 150 BCM57840_MF, 151 BCM57840_VF, 152 BCM57811, 153 BCM57811_MF, 154 BCM57840_O, 155 BCM57840_MFO, 156 BCM57811_VF 157 }; 158 159 /* indexed by board_type, above */ 160 static struct { 161 char *name; 162 } board_info[] = { 163 [BCM57710] = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" }, 164 [BCM57711] = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" }, 165 [BCM57711E] = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" }, 166 [BCM57712] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" }, 167 [BCM57712_MF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" }, 168 [BCM57712_VF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" }, 169 [BCM57800] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" }, 170 [BCM57800_MF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" }, 171 [BCM57800_VF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" }, 172 [BCM57810] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" }, 173 [BCM57810_MF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" }, 174 [BCM57810_VF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" }, 175 [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" }, 176 [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" }, 177 [BCM57840_MF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" }, 178 [BCM57840_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }, 179 [BCM57811] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" }, 180 [BCM57811_MF] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" }, 181 [BCM57840_O] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" }, 182 [BCM57840_MFO] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" }, 183 [BCM57811_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" } 184 }; 185 186 #ifndef PCI_DEVICE_ID_NX2_57710 187 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 188 #endif 189 #ifndef PCI_DEVICE_ID_NX2_57711 190 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 191 #endif 192 #ifndef PCI_DEVICE_ID_NX2_57711E 193 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E 194 #endif 195 #ifndef PCI_DEVICE_ID_NX2_57712 196 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 197 #endif 198 #ifndef PCI_DEVICE_ID_NX2_57712_MF 199 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF 200 #endif 201 #ifndef PCI_DEVICE_ID_NX2_57712_VF 202 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF 203 #endif 204 #ifndef PCI_DEVICE_ID_NX2_57800 205 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 206 #endif 207 #ifndef PCI_DEVICE_ID_NX2_57800_MF 208 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF 209 #endif 210 #ifndef PCI_DEVICE_ID_NX2_57800_VF 211 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF 212 #endif 213 #ifndef PCI_DEVICE_ID_NX2_57810 214 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 215 #endif 216 #ifndef PCI_DEVICE_ID_NX2_57810_MF 217 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF 218 #endif 219 #ifndef PCI_DEVICE_ID_NX2_57840_O 220 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE 221 #endif 222 #ifndef PCI_DEVICE_ID_NX2_57810_VF 223 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF 224 #endif 225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10 226 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 227 #endif 228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20 229 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 230 #endif 231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO 232 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE 233 #endif 234 #ifndef PCI_DEVICE_ID_NX2_57840_MF 235 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF 236 #endif 237 #ifndef PCI_DEVICE_ID_NX2_57840_VF 238 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF 239 #endif 240 #ifndef PCI_DEVICE_ID_NX2_57811 241 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 242 #endif 243 #ifndef PCI_DEVICE_ID_NX2_57811_MF 244 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF 245 #endif 246 #ifndef PCI_DEVICE_ID_NX2_57811_VF 247 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF 248 #endif 249 250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = { 251 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, 252 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, 253 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, 254 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, 255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, 256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, 257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, 258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, 259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, 260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, 261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, 262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, 263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, 265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, 266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, 267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, 270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, 271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, 272 { 0 } 273 }; 274 275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); 276 277 /* Global resources for unloading a previously loaded device */ 278 #define BNX2X_PREV_WAIT_NEEDED 1 279 static DEFINE_SEMAPHORE(bnx2x_prev_sem); 280 static LIST_HEAD(bnx2x_prev_list); 281 /**************************************************************************** 282 * General service functions 283 ****************************************************************************/ 284 285 static void __storm_memset_dma_mapping(struct bnx2x *bp, 286 u32 addr, dma_addr_t mapping) 287 { 288 REG_WR(bp, addr, U64_LO(mapping)); 289 REG_WR(bp, addr + 4, U64_HI(mapping)); 290 } 291 292 static void storm_memset_spq_addr(struct bnx2x *bp, 293 dma_addr_t mapping, u16 abs_fid) 294 { 295 u32 addr = XSEM_REG_FAST_MEMORY + 296 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); 297 298 __storm_memset_dma_mapping(bp, addr, mapping); 299 } 300 301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 302 u16 pf_id) 303 { 304 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 305 pf_id); 306 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 307 pf_id); 308 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 309 pf_id); 310 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 311 pf_id); 312 } 313 314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 315 u8 enable) 316 { 317 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 318 enable); 319 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 320 enable); 321 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 322 enable); 323 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 324 enable); 325 } 326 327 static void storm_memset_eq_data(struct bnx2x *bp, 328 struct event_ring_data *eq_data, 329 u16 pfid) 330 { 331 size_t size = sizeof(struct event_ring_data); 332 333 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); 334 335 __storm_memset_struct(bp, addr, size, (u32 *)eq_data); 336 } 337 338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, 339 u16 pfid) 340 { 341 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); 342 REG_WR16(bp, addr, eq_prod); 343 } 344 345 /* used only at init 346 * locking is done by mcp 347 */ 348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) 349 { 350 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 351 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); 352 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 353 PCICFG_VENDOR_ID_OFFSET); 354 } 355 356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) 357 { 358 u32 val; 359 360 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 361 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); 362 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 363 PCICFG_VENDOR_ID_OFFSET); 364 365 return val; 366 } 367 368 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" 369 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" 370 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" 371 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" 372 #define DMAE_DP_DST_NONE "dst_addr [none]" 373 374 static void bnx2x_dp_dmae(struct bnx2x *bp, 375 struct dmae_command *dmae, int msglvl) 376 { 377 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; 378 int i; 379 380 switch (dmae->opcode & DMAE_COMMAND_DST) { 381 case DMAE_CMD_DST_PCI: 382 if (src_type == DMAE_CMD_SRC_PCI) 383 DP(msglvl, "DMAE: opcode 0x%08x\n" 384 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 385 "comp_addr [%x:%08x], comp_val 0x%08x\n", 386 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 387 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 388 dmae->comp_addr_hi, dmae->comp_addr_lo, 389 dmae->comp_val); 390 else 391 DP(msglvl, "DMAE: opcode 0x%08x\n" 392 "src [%08x], len [%d*4], dst [%x:%08x]\n" 393 "comp_addr [%x:%08x], comp_val 0x%08x\n", 394 dmae->opcode, dmae->src_addr_lo >> 2, 395 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 396 dmae->comp_addr_hi, dmae->comp_addr_lo, 397 dmae->comp_val); 398 break; 399 case DMAE_CMD_DST_GRC: 400 if (src_type == DMAE_CMD_SRC_PCI) 401 DP(msglvl, "DMAE: opcode 0x%08x\n" 402 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 403 "comp_addr [%x:%08x], comp_val 0x%08x\n", 404 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 405 dmae->len, dmae->dst_addr_lo >> 2, 406 dmae->comp_addr_hi, dmae->comp_addr_lo, 407 dmae->comp_val); 408 else 409 DP(msglvl, "DMAE: opcode 0x%08x\n" 410 "src [%08x], len [%d*4], dst [%08x]\n" 411 "comp_addr [%x:%08x], comp_val 0x%08x\n", 412 dmae->opcode, dmae->src_addr_lo >> 2, 413 dmae->len, dmae->dst_addr_lo >> 2, 414 dmae->comp_addr_hi, dmae->comp_addr_lo, 415 dmae->comp_val); 416 break; 417 default: 418 if (src_type == DMAE_CMD_SRC_PCI) 419 DP(msglvl, "DMAE: opcode 0x%08x\n" 420 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 421 "comp_addr [%x:%08x] comp_val 0x%08x\n", 422 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 423 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 424 dmae->comp_val); 425 else 426 DP(msglvl, "DMAE: opcode 0x%08x\n" 427 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 428 "comp_addr [%x:%08x] comp_val 0x%08x\n", 429 dmae->opcode, dmae->src_addr_lo >> 2, 430 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 431 dmae->comp_val); 432 break; 433 } 434 435 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) 436 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", 437 i, *(((u32 *)dmae) + i)); 438 } 439 440 /* copy command into DMAE command memory and set DMAE command go */ 441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) 442 { 443 u32 cmd_offset; 444 int i; 445 446 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); 447 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { 448 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); 449 } 450 REG_WR(bp, dmae_reg_go_c[idx], 1); 451 } 452 453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) 454 { 455 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 456 DMAE_CMD_C_ENABLE); 457 } 458 459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) 460 { 461 return opcode & ~DMAE_CMD_SRC_RESET; 462 } 463 464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 465 bool with_comp, u8 comp_type) 466 { 467 u32 opcode = 0; 468 469 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 470 (dst_type << DMAE_COMMAND_DST_SHIFT)); 471 472 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 473 474 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 475 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | 476 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); 477 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 478 479 #ifdef __BIG_ENDIAN 480 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 481 #else 482 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 483 #endif 484 if (with_comp) 485 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); 486 return opcode; 487 } 488 489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, 490 struct dmae_command *dmae, 491 u8 src_type, u8 dst_type) 492 { 493 memset(dmae, 0, sizeof(struct dmae_command)); 494 495 /* set the opcode */ 496 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, 497 true, DMAE_COMP_PCI); 498 499 /* fill in the completion parameters */ 500 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); 501 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); 502 dmae->comp_val = DMAE_COMP_VAL; 503 } 504 505 /* issue a dmae command over the init-channel and wait for completion */ 506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae) 507 { 508 u32 *wb_comp = bnx2x_sp(bp, wb_comp); 509 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; 510 int rc = 0; 511 512 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); 513 514 /* Lock the dmae channel. Disable BHs to prevent a dead-lock 515 * as long as this code is called both from syscall context and 516 * from ndo_set_rx_mode() flow that may be called from BH. 517 */ 518 spin_lock_bh(&bp->dmae_lock); 519 520 /* reset completion */ 521 *wb_comp = 0; 522 523 /* post the command on the channel used for initializations */ 524 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); 525 526 /* wait for completion */ 527 udelay(5); 528 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 529 530 if (!cnt || 531 (bp->recovery_state != BNX2X_RECOVERY_DONE && 532 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 533 BNX2X_ERR("DMAE timeout!\n"); 534 rc = DMAE_TIMEOUT; 535 goto unlock; 536 } 537 cnt--; 538 udelay(50); 539 } 540 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 541 BNX2X_ERR("DMAE PCI error!\n"); 542 rc = DMAE_PCI_ERROR; 543 } 544 545 unlock: 546 spin_unlock_bh(&bp->dmae_lock); 547 return rc; 548 } 549 550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 551 u32 len32) 552 { 553 int rc; 554 struct dmae_command dmae; 555 556 if (!bp->dmae_ready) { 557 u32 *data = bnx2x_sp(bp, wb_data[0]); 558 559 if (CHIP_IS_E1(bp)) 560 bnx2x_init_ind_wr(bp, dst_addr, data, len32); 561 else 562 bnx2x_init_str_wr(bp, dst_addr, data, len32); 563 return; 564 } 565 566 /* set opcode and fixed command fields */ 567 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 568 569 /* fill in addresses and len */ 570 dmae.src_addr_lo = U64_LO(dma_addr); 571 dmae.src_addr_hi = U64_HI(dma_addr); 572 dmae.dst_addr_lo = dst_addr >> 2; 573 dmae.dst_addr_hi = 0; 574 dmae.len = len32; 575 576 /* issue the command and wait for completion */ 577 rc = bnx2x_issue_dmae_with_comp(bp, &dmae); 578 if (rc) { 579 BNX2X_ERR("DMAE returned failure %d\n", rc); 580 bnx2x_panic(); 581 } 582 } 583 584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) 585 { 586 int rc; 587 struct dmae_command dmae; 588 589 if (!bp->dmae_ready) { 590 u32 *data = bnx2x_sp(bp, wb_data[0]); 591 int i; 592 593 if (CHIP_IS_E1(bp)) 594 for (i = 0; i < len32; i++) 595 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); 596 else 597 for (i = 0; i < len32; i++) 598 data[i] = REG_RD(bp, src_addr + i*4); 599 600 return; 601 } 602 603 /* set opcode and fixed command fields */ 604 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 605 606 /* fill in addresses and len */ 607 dmae.src_addr_lo = src_addr >> 2; 608 dmae.src_addr_hi = 0; 609 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); 610 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); 611 dmae.len = len32; 612 613 /* issue the command and wait for completion */ 614 rc = bnx2x_issue_dmae_with_comp(bp, &dmae); 615 if (rc) { 616 BNX2X_ERR("DMAE returned failure %d\n", rc); 617 bnx2x_panic(); 618 } 619 } 620 621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, 622 u32 addr, u32 len) 623 { 624 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); 625 int offset = 0; 626 627 while (len > dmae_wr_max) { 628 bnx2x_write_dmae(bp, phys_addr + offset, 629 addr + offset, dmae_wr_max); 630 offset += dmae_wr_max * 4; 631 len -= dmae_wr_max; 632 } 633 634 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); 635 } 636 637 static int bnx2x_mc_assert(struct bnx2x *bp) 638 { 639 char last_idx; 640 int i, rc = 0; 641 u32 row0, row1, row2, row3; 642 643 /* XSTORM */ 644 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM + 645 XSTORM_ASSERT_LIST_INDEX_OFFSET); 646 if (last_idx) 647 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 648 649 /* print the asserts */ 650 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 651 652 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM + 653 XSTORM_ASSERT_LIST_OFFSET(i)); 654 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM + 655 XSTORM_ASSERT_LIST_OFFSET(i) + 4); 656 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM + 657 XSTORM_ASSERT_LIST_OFFSET(i) + 8); 658 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM + 659 XSTORM_ASSERT_LIST_OFFSET(i) + 12); 660 661 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 662 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 663 i, row3, row2, row1, row0); 664 rc++; 665 } else { 666 break; 667 } 668 } 669 670 /* TSTORM */ 671 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM + 672 TSTORM_ASSERT_LIST_INDEX_OFFSET); 673 if (last_idx) 674 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 675 676 /* print the asserts */ 677 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 678 679 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM + 680 TSTORM_ASSERT_LIST_OFFSET(i)); 681 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM + 682 TSTORM_ASSERT_LIST_OFFSET(i) + 4); 683 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM + 684 TSTORM_ASSERT_LIST_OFFSET(i) + 8); 685 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM + 686 TSTORM_ASSERT_LIST_OFFSET(i) + 12); 687 688 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 689 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 690 i, row3, row2, row1, row0); 691 rc++; 692 } else { 693 break; 694 } 695 } 696 697 /* CSTORM */ 698 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM + 699 CSTORM_ASSERT_LIST_INDEX_OFFSET); 700 if (last_idx) 701 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 702 703 /* print the asserts */ 704 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 705 706 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM + 707 CSTORM_ASSERT_LIST_OFFSET(i)); 708 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM + 709 CSTORM_ASSERT_LIST_OFFSET(i) + 4); 710 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM + 711 CSTORM_ASSERT_LIST_OFFSET(i) + 8); 712 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM + 713 CSTORM_ASSERT_LIST_OFFSET(i) + 12); 714 715 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 716 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 717 i, row3, row2, row1, row0); 718 rc++; 719 } else { 720 break; 721 } 722 } 723 724 /* USTORM */ 725 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM + 726 USTORM_ASSERT_LIST_INDEX_OFFSET); 727 if (last_idx) 728 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 729 730 /* print the asserts */ 731 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 732 733 row0 = REG_RD(bp, BAR_USTRORM_INTMEM + 734 USTORM_ASSERT_LIST_OFFSET(i)); 735 row1 = REG_RD(bp, BAR_USTRORM_INTMEM + 736 USTORM_ASSERT_LIST_OFFSET(i) + 4); 737 row2 = REG_RD(bp, BAR_USTRORM_INTMEM + 738 USTORM_ASSERT_LIST_OFFSET(i) + 8); 739 row3 = REG_RD(bp, BAR_USTRORM_INTMEM + 740 USTORM_ASSERT_LIST_OFFSET(i) + 12); 741 742 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 743 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 744 i, row3, row2, row1, row0); 745 rc++; 746 } else { 747 break; 748 } 749 } 750 751 return rc; 752 } 753 754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) 755 { 756 u32 addr, val; 757 u32 mark, offset; 758 __be32 data[9]; 759 int word; 760 u32 trace_shmem_base; 761 if (BP_NOMCP(bp)) { 762 BNX2X_ERR("NO MCP - can not dump\n"); 763 return; 764 } 765 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", 766 (bp->common.bc_ver & 0xff0000) >> 16, 767 (bp->common.bc_ver & 0xff00) >> 8, 768 (bp->common.bc_ver & 0xff)); 769 770 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); 771 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) 772 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); 773 774 if (BP_PATH(bp) == 0) 775 trace_shmem_base = bp->common.shmem_base; 776 else 777 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); 778 addr = trace_shmem_base - 0x800; 779 780 /* validate TRCB signature */ 781 mark = REG_RD(bp, addr); 782 if (mark != MFW_TRACE_SIGNATURE) { 783 BNX2X_ERR("Trace buffer signature is missing."); 784 return ; 785 } 786 787 /* read cyclic buffer pointer */ 788 addr += 4; 789 mark = REG_RD(bp, addr); 790 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH) 791 + ((mark + 0x3) & ~0x3) - 0x08000000; 792 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); 793 794 printk("%s", lvl); 795 796 /* dump buffer after the mark */ 797 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) { 798 for (word = 0; word < 8; word++) 799 data[word] = htonl(REG_RD(bp, offset + 4*word)); 800 data[8] = 0x0; 801 pr_cont("%s", (char *)data); 802 } 803 804 /* dump buffer before the mark */ 805 for (offset = addr + 4; offset <= mark; offset += 0x8*4) { 806 for (word = 0; word < 8; word++) 807 data[word] = htonl(REG_RD(bp, offset + 4*word)); 808 data[8] = 0x0; 809 pr_cont("%s", (char *)data); 810 } 811 printk("%s" "end of fw dump\n", lvl); 812 } 813 814 static void bnx2x_fw_dump(struct bnx2x *bp) 815 { 816 bnx2x_fw_dump_lvl(bp, KERN_ERR); 817 } 818 819 static void bnx2x_hc_int_disable(struct bnx2x *bp) 820 { 821 int port = BP_PORT(bp); 822 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 823 u32 val = REG_RD(bp, addr); 824 825 /* in E1 we must use only PCI configuration space to disable 826 * MSI/MSIX capability 827 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block 828 */ 829 if (CHIP_IS_E1(bp)) { 830 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on 831 * Use mask register to prevent from HC sending interrupts 832 * after we exit the function 833 */ 834 REG_WR(bp, HC_REG_INT_MASK + port*4, 0); 835 836 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 837 HC_CONFIG_0_REG_INT_LINE_EN_0 | 838 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 839 } else 840 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 841 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 842 HC_CONFIG_0_REG_INT_LINE_EN_0 | 843 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 844 845 DP(NETIF_MSG_IFDOWN, 846 "write %x to HC %d (addr 0x%x)\n", 847 val, port, addr); 848 849 /* flush all outstanding writes */ 850 mmiowb(); 851 852 REG_WR(bp, addr, val); 853 if (REG_RD(bp, addr) != val) 854 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 855 } 856 857 static void bnx2x_igu_int_disable(struct bnx2x *bp) 858 { 859 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 860 861 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 862 IGU_PF_CONF_INT_LINE_EN | 863 IGU_PF_CONF_ATTN_BIT_EN); 864 865 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); 866 867 /* flush all outstanding writes */ 868 mmiowb(); 869 870 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 871 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) 872 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 873 } 874 875 static void bnx2x_int_disable(struct bnx2x *bp) 876 { 877 if (bp->common.int_block == INT_BLOCK_HC) 878 bnx2x_hc_int_disable(bp); 879 else 880 bnx2x_igu_int_disable(bp); 881 } 882 883 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) 884 { 885 int i; 886 u16 j; 887 struct hc_sp_status_block_data sp_sb_data; 888 int func = BP_FUNC(bp); 889 #ifdef BNX2X_STOP_ON_ERROR 890 u16 start = 0, end = 0; 891 u8 cos; 892 #endif 893 if (disable_int) 894 bnx2x_int_disable(bp); 895 896 bp->stats_state = STATS_STATE_DISABLED; 897 bp->eth_stats.unrecoverable_error++; 898 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); 899 900 BNX2X_ERR("begin crash dump -----------------\n"); 901 902 /* Indices */ 903 /* Common */ 904 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", 905 bp->def_idx, bp->def_att_idx, bp->attn_state, 906 bp->spq_prod_idx, bp->stats_counter); 907 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", 908 bp->def_status_blk->atten_status_block.attn_bits, 909 bp->def_status_blk->atten_status_block.attn_bits_ack, 910 bp->def_status_blk->atten_status_block.status_block_id, 911 bp->def_status_blk->atten_status_block.attn_bits_index); 912 BNX2X_ERR(" def ("); 913 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) 914 pr_cont("0x%x%s", 915 bp->def_status_blk->sp_sb.index_values[i], 916 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); 917 918 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 919 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM + 920 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 921 i*sizeof(u32)); 922 923 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", 924 sp_sb_data.igu_sb_id, 925 sp_sb_data.igu_seg_id, 926 sp_sb_data.p_func.pf_id, 927 sp_sb_data.p_func.vnic_id, 928 sp_sb_data.p_func.vf_id, 929 sp_sb_data.p_func.vf_valid, 930 sp_sb_data.state); 931 932 for_each_eth_queue(bp, i) { 933 struct bnx2x_fastpath *fp = &bp->fp[i]; 934 int loop; 935 struct hc_status_block_data_e2 sb_data_e2; 936 struct hc_status_block_data_e1x sb_data_e1x; 937 struct hc_status_block_sm *hc_sm_p = 938 CHIP_IS_E1x(bp) ? 939 sb_data_e1x.common.state_machine : 940 sb_data_e2.common.state_machine; 941 struct hc_index_data *hc_index_p = 942 CHIP_IS_E1x(bp) ? 943 sb_data_e1x.index_data : 944 sb_data_e2.index_data; 945 u8 data_size, cos; 946 u32 *sb_data_p; 947 struct bnx2x_fp_txdata txdata; 948 949 /* Rx */ 950 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", 951 i, fp->rx_bd_prod, fp->rx_bd_cons, 952 fp->rx_comp_prod, 953 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); 954 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", 955 fp->rx_sge_prod, fp->last_max_sge, 956 le16_to_cpu(fp->fp_hc_idx)); 957 958 /* Tx */ 959 for_each_cos_in_tx_queue(fp, cos) 960 { 961 txdata = *fp->txdata_ptr[cos]; 962 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", 963 i, txdata.tx_pkt_prod, 964 txdata.tx_pkt_cons, txdata.tx_bd_prod, 965 txdata.tx_bd_cons, 966 le16_to_cpu(*txdata.tx_cons_sb)); 967 } 968 969 loop = CHIP_IS_E1x(bp) ? 970 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; 971 972 /* host sb data */ 973 974 if (IS_FCOE_FP(fp)) 975 continue; 976 977 BNX2X_ERR(" run indexes ("); 978 for (j = 0; j < HC_SB_MAX_SM; j++) 979 pr_cont("0x%x%s", 980 fp->sb_running_index[j], 981 (j == HC_SB_MAX_SM - 1) ? ")" : " "); 982 983 BNX2X_ERR(" indexes ("); 984 for (j = 0; j < loop; j++) 985 pr_cont("0x%x%s", 986 fp->sb_index_values[j], 987 (j == loop - 1) ? ")" : " "); 988 /* fw sb data */ 989 data_size = CHIP_IS_E1x(bp) ? 990 sizeof(struct hc_status_block_data_e1x) : 991 sizeof(struct hc_status_block_data_e2); 992 data_size /= sizeof(u32); 993 sb_data_p = CHIP_IS_E1x(bp) ? 994 (u32 *)&sb_data_e1x : 995 (u32 *)&sb_data_e2; 996 /* copy sb data in here */ 997 for (j = 0; j < data_size; j++) 998 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + 999 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + 1000 j * sizeof(u32)); 1001 1002 if (!CHIP_IS_E1x(bp)) { 1003 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1004 sb_data_e2.common.p_func.pf_id, 1005 sb_data_e2.common.p_func.vf_id, 1006 sb_data_e2.common.p_func.vf_valid, 1007 sb_data_e2.common.p_func.vnic_id, 1008 sb_data_e2.common.same_igu_sb_1b, 1009 sb_data_e2.common.state); 1010 } else { 1011 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1012 sb_data_e1x.common.p_func.pf_id, 1013 sb_data_e1x.common.p_func.vf_id, 1014 sb_data_e1x.common.p_func.vf_valid, 1015 sb_data_e1x.common.p_func.vnic_id, 1016 sb_data_e1x.common.same_igu_sb_1b, 1017 sb_data_e1x.common.state); 1018 } 1019 1020 /* SB_SMs data */ 1021 for (j = 0; j < HC_SB_MAX_SM; j++) { 1022 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", 1023 j, hc_sm_p[j].__flags, 1024 hc_sm_p[j].igu_sb_id, 1025 hc_sm_p[j].igu_seg_id, 1026 hc_sm_p[j].time_to_expire, 1027 hc_sm_p[j].timer_value); 1028 } 1029 1030 /* Indices data */ 1031 for (j = 0; j < loop; j++) { 1032 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, 1033 hc_index_p[j].flags, 1034 hc_index_p[j].timeout); 1035 } 1036 } 1037 1038 #ifdef BNX2X_STOP_ON_ERROR 1039 1040 /* event queue */ 1041 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); 1042 for (i = 0; i < NUM_EQ_DESC; i++) { 1043 u32 *data = (u32 *)&bp->eq_ring[i].message.data; 1044 1045 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", 1046 i, bp->eq_ring[i].message.opcode, 1047 bp->eq_ring[i].message.error); 1048 BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]); 1049 } 1050 1051 /* Rings */ 1052 /* Rx */ 1053 for_each_valid_rx_queue(bp, i) { 1054 struct bnx2x_fastpath *fp = &bp->fp[i]; 1055 1056 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); 1057 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); 1058 for (j = start; j != end; j = RX_BD(j + 1)) { 1059 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; 1060 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; 1061 1062 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", 1063 i, j, rx_bd[1], rx_bd[0], sw_bd->data); 1064 } 1065 1066 start = RX_SGE(fp->rx_sge_prod); 1067 end = RX_SGE(fp->last_max_sge); 1068 for (j = start; j != end; j = RX_SGE(j + 1)) { 1069 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; 1070 struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; 1071 1072 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", 1073 i, j, rx_sge[1], rx_sge[0], sw_page->page); 1074 } 1075 1076 start = RCQ_BD(fp->rx_comp_cons - 10); 1077 end = RCQ_BD(fp->rx_comp_cons + 503); 1078 for (j = start; j != end; j = RCQ_BD(j + 1)) { 1079 u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; 1080 1081 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", 1082 i, j, cqe[0], cqe[1], cqe[2], cqe[3]); 1083 } 1084 } 1085 1086 /* Tx */ 1087 for_each_valid_tx_queue(bp, i) { 1088 struct bnx2x_fastpath *fp = &bp->fp[i]; 1089 for_each_cos_in_tx_queue(fp, cos) { 1090 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1091 1092 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); 1093 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); 1094 for (j = start; j != end; j = TX_BD(j + 1)) { 1095 struct sw_tx_bd *sw_bd = 1096 &txdata->tx_buf_ring[j]; 1097 1098 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", 1099 i, cos, j, sw_bd->skb, 1100 sw_bd->first_bd); 1101 } 1102 1103 start = TX_BD(txdata->tx_bd_cons - 10); 1104 end = TX_BD(txdata->tx_bd_cons + 254); 1105 for (j = start; j != end; j = TX_BD(j + 1)) { 1106 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; 1107 1108 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", 1109 i, cos, j, tx_bd[0], tx_bd[1], 1110 tx_bd[2], tx_bd[3]); 1111 } 1112 } 1113 } 1114 #endif 1115 bnx2x_fw_dump(bp); 1116 bnx2x_mc_assert(bp); 1117 BNX2X_ERR("end crash dump -----------------\n"); 1118 } 1119 1120 /* 1121 * FLR Support for E2 1122 * 1123 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW 1124 * initialization. 1125 */ 1126 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */ 1127 #define FLR_WAIT_INTERVAL 50 /* usec */ 1128 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ 1129 1130 struct pbf_pN_buf_regs { 1131 int pN; 1132 u32 init_crd; 1133 u32 crd; 1134 u32 crd_freed; 1135 }; 1136 1137 struct pbf_pN_cmd_regs { 1138 int pN; 1139 u32 lines_occup; 1140 u32 lines_freed; 1141 }; 1142 1143 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, 1144 struct pbf_pN_buf_regs *regs, 1145 u32 poll_count) 1146 { 1147 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; 1148 u32 cur_cnt = poll_count; 1149 1150 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); 1151 crd = crd_start = REG_RD(bp, regs->crd); 1152 init_crd = REG_RD(bp, regs->init_crd); 1153 1154 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 1155 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); 1156 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 1157 1158 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < 1159 (init_crd - crd_start))) { 1160 if (cur_cnt--) { 1161 udelay(FLR_WAIT_INTERVAL); 1162 crd = REG_RD(bp, regs->crd); 1163 crd_freed = REG_RD(bp, regs->crd_freed); 1164 } else { 1165 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", 1166 regs->pN); 1167 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", 1168 regs->pN, crd); 1169 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", 1170 regs->pN, crd_freed); 1171 break; 1172 } 1173 } 1174 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", 1175 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1176 } 1177 1178 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, 1179 struct pbf_pN_cmd_regs *regs, 1180 u32 poll_count) 1181 { 1182 u32 occup, to_free, freed, freed_start; 1183 u32 cur_cnt = poll_count; 1184 1185 occup = to_free = REG_RD(bp, regs->lines_occup); 1186 freed = freed_start = REG_RD(bp, regs->lines_freed); 1187 1188 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 1189 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 1190 1191 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { 1192 if (cur_cnt--) { 1193 udelay(FLR_WAIT_INTERVAL); 1194 occup = REG_RD(bp, regs->lines_occup); 1195 freed = REG_RD(bp, regs->lines_freed); 1196 } else { 1197 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", 1198 regs->pN); 1199 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", 1200 regs->pN, occup); 1201 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", 1202 regs->pN, freed); 1203 break; 1204 } 1205 } 1206 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", 1207 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1208 } 1209 1210 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, 1211 u32 expected, u32 poll_count) 1212 { 1213 u32 cur_cnt = poll_count; 1214 u32 val; 1215 1216 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) 1217 udelay(FLR_WAIT_INTERVAL); 1218 1219 return val; 1220 } 1221 1222 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 1223 char *msg, u32 poll_cnt) 1224 { 1225 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); 1226 if (val != 0) { 1227 BNX2X_ERR("%s usage count=%d\n", msg, val); 1228 return 1; 1229 } 1230 return 0; 1231 } 1232 1233 /* Common routines with VF FLR cleanup */ 1234 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) 1235 { 1236 /* adjust polling timeout */ 1237 if (CHIP_REV_IS_EMUL(bp)) 1238 return FLR_POLL_CNT * 2000; 1239 1240 if (CHIP_REV_IS_FPGA(bp)) 1241 return FLR_POLL_CNT * 120; 1242 1243 return FLR_POLL_CNT; 1244 } 1245 1246 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) 1247 { 1248 struct pbf_pN_cmd_regs cmd_regs[] = { 1249 {0, (CHIP_IS_E3B0(bp)) ? 1250 PBF_REG_TQ_OCCUPANCY_Q0 : 1251 PBF_REG_P0_TQ_OCCUPANCY, 1252 (CHIP_IS_E3B0(bp)) ? 1253 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 1254 PBF_REG_P0_TQ_LINES_FREED_CNT}, 1255 {1, (CHIP_IS_E3B0(bp)) ? 1256 PBF_REG_TQ_OCCUPANCY_Q1 : 1257 PBF_REG_P1_TQ_OCCUPANCY, 1258 (CHIP_IS_E3B0(bp)) ? 1259 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 1260 PBF_REG_P1_TQ_LINES_FREED_CNT}, 1261 {4, (CHIP_IS_E3B0(bp)) ? 1262 PBF_REG_TQ_OCCUPANCY_LB_Q : 1263 PBF_REG_P4_TQ_OCCUPANCY, 1264 (CHIP_IS_E3B0(bp)) ? 1265 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 1266 PBF_REG_P4_TQ_LINES_FREED_CNT} 1267 }; 1268 1269 struct pbf_pN_buf_regs buf_regs[] = { 1270 {0, (CHIP_IS_E3B0(bp)) ? 1271 PBF_REG_INIT_CRD_Q0 : 1272 PBF_REG_P0_INIT_CRD , 1273 (CHIP_IS_E3B0(bp)) ? 1274 PBF_REG_CREDIT_Q0 : 1275 PBF_REG_P0_CREDIT, 1276 (CHIP_IS_E3B0(bp)) ? 1277 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 1278 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 1279 {1, (CHIP_IS_E3B0(bp)) ? 1280 PBF_REG_INIT_CRD_Q1 : 1281 PBF_REG_P1_INIT_CRD, 1282 (CHIP_IS_E3B0(bp)) ? 1283 PBF_REG_CREDIT_Q1 : 1284 PBF_REG_P1_CREDIT, 1285 (CHIP_IS_E3B0(bp)) ? 1286 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 1287 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 1288 {4, (CHIP_IS_E3B0(bp)) ? 1289 PBF_REG_INIT_CRD_LB_Q : 1290 PBF_REG_P4_INIT_CRD, 1291 (CHIP_IS_E3B0(bp)) ? 1292 PBF_REG_CREDIT_LB_Q : 1293 PBF_REG_P4_CREDIT, 1294 (CHIP_IS_E3B0(bp)) ? 1295 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 1296 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 1297 }; 1298 1299 int i; 1300 1301 /* Verify the command queues are flushed P0, P1, P4 */ 1302 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) 1303 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); 1304 1305 /* Verify the transmission buffers are flushed P0, P1, P4 */ 1306 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) 1307 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); 1308 } 1309 1310 #define OP_GEN_PARAM(param) \ 1311 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 1312 1313 #define OP_GEN_TYPE(type) \ 1314 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 1315 1316 #define OP_GEN_AGG_VECT(index) \ 1317 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 1318 1319 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) 1320 { 1321 u32 op_gen_command = 0; 1322 u32 comp_addr = BAR_CSTRORM_INTMEM + 1323 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); 1324 int ret = 0; 1325 1326 if (REG_RD(bp, comp_addr)) { 1327 BNX2X_ERR("Cleanup complete was not 0 before sending\n"); 1328 return 1; 1329 } 1330 1331 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 1332 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 1333 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 1334 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 1335 1336 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); 1337 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); 1338 1339 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { 1340 BNX2X_ERR("FW final cleanup did not succeed\n"); 1341 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", 1342 (REG_RD(bp, comp_addr))); 1343 bnx2x_panic(); 1344 return 1; 1345 } 1346 /* Zero completion for next FLR */ 1347 REG_WR(bp, comp_addr, 0); 1348 1349 return ret; 1350 } 1351 1352 u8 bnx2x_is_pcie_pending(struct pci_dev *dev) 1353 { 1354 u16 status; 1355 1356 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 1357 return status & PCI_EXP_DEVSTA_TRPND; 1358 } 1359 1360 /* PF FLR specific routines 1361 */ 1362 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) 1363 { 1364 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 1365 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1366 CFC_REG_NUM_LCIDS_INSIDE_PF, 1367 "CFC PF usage counter timed out", 1368 poll_cnt)) 1369 return 1; 1370 1371 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 1372 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1373 DORQ_REG_PF_USAGE_CNT, 1374 "DQ PF usage counter timed out", 1375 poll_cnt)) 1376 return 1; 1377 1378 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 1379 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1380 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), 1381 "QM PF usage counter timed out", 1382 poll_cnt)) 1383 return 1; 1384 1385 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 1386 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1387 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), 1388 "Timers VNIC usage counter timed out", 1389 poll_cnt)) 1390 return 1; 1391 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1392 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), 1393 "Timers NUM_SCANS usage counter timed out", 1394 poll_cnt)) 1395 return 1; 1396 1397 /* Wait DMAE PF usage counter to zero */ 1398 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1399 dmae_reg_go_c[INIT_DMAE_C(bp)], 1400 "DMAE command register timed out", 1401 poll_cnt)) 1402 return 1; 1403 1404 return 0; 1405 } 1406 1407 static void bnx2x_hw_enable_status(struct bnx2x *bp) 1408 { 1409 u32 val; 1410 1411 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); 1412 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 1413 1414 val = REG_RD(bp, PBF_REG_DISABLE_PF); 1415 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); 1416 1417 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); 1418 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 1419 1420 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); 1421 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 1422 1423 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 1424 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 1425 1426 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 1427 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 1428 1429 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 1430 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 1431 1432 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1433 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", 1434 val); 1435 } 1436 1437 static int bnx2x_pf_flr_clnup(struct bnx2x *bp) 1438 { 1439 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 1440 1441 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); 1442 1443 /* Re-enable PF target read access */ 1444 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 1445 1446 /* Poll HW usage counters */ 1447 DP(BNX2X_MSG_SP, "Polling usage counters\n"); 1448 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) 1449 return -EBUSY; 1450 1451 /* Zero the igu 'trailing edge' and 'leading edge' */ 1452 1453 /* Send the FW cleanup command */ 1454 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) 1455 return -EBUSY; 1456 1457 /* ATC cleanup */ 1458 1459 /* Verify TX hw is flushed */ 1460 bnx2x_tx_hw_flushed(bp, poll_cnt); 1461 1462 /* Wait 100ms (not adjusted according to platform) */ 1463 msleep(100); 1464 1465 /* Verify no pending pci transactions */ 1466 if (bnx2x_is_pcie_pending(bp->pdev)) 1467 BNX2X_ERR("PCIE Transactions still pending\n"); 1468 1469 /* Debug */ 1470 bnx2x_hw_enable_status(bp); 1471 1472 /* 1473 * Master enable - Due to WB DMAE writes performed before this 1474 * register is re-initialized as part of the regular function init 1475 */ 1476 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 1477 1478 return 0; 1479 } 1480 1481 static void bnx2x_hc_int_enable(struct bnx2x *bp) 1482 { 1483 int port = BP_PORT(bp); 1484 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 1485 u32 val = REG_RD(bp, addr); 1486 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1487 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1488 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1489 1490 if (msix) { 1491 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1492 HC_CONFIG_0_REG_INT_LINE_EN_0); 1493 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1494 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1495 if (single_msix) 1496 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 1497 } else if (msi) { 1498 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 1499 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1500 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1501 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1502 } else { 1503 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1504 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1505 HC_CONFIG_0_REG_INT_LINE_EN_0 | 1506 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1507 1508 if (!CHIP_IS_E1(bp)) { 1509 DP(NETIF_MSG_IFUP, 1510 "write %x to HC %d (addr 0x%x)\n", val, port, addr); 1511 1512 REG_WR(bp, addr, val); 1513 1514 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 1515 } 1516 } 1517 1518 if (CHIP_IS_E1(bp)) 1519 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); 1520 1521 DP(NETIF_MSG_IFUP, 1522 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, 1523 (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1524 1525 REG_WR(bp, addr, val); 1526 /* 1527 * Ensure that HC_CONFIG is written before leading/trailing edge config 1528 */ 1529 mmiowb(); 1530 barrier(); 1531 1532 if (!CHIP_IS_E1(bp)) { 1533 /* init leading/trailing edge */ 1534 if (IS_MF(bp)) { 1535 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1536 if (bp->port.pmf) 1537 /* enable nig and gpio3 attention */ 1538 val |= 0x1100; 1539 } else 1540 val = 0xffff; 1541 1542 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 1543 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 1544 } 1545 1546 /* Make sure that interrupts are indeed enabled from here on */ 1547 mmiowb(); 1548 } 1549 1550 static void bnx2x_igu_int_enable(struct bnx2x *bp) 1551 { 1552 u32 val; 1553 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1554 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1555 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1556 1557 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 1558 1559 if (msix) { 1560 val &= ~(IGU_PF_CONF_INT_LINE_EN | 1561 IGU_PF_CONF_SINGLE_ISR_EN); 1562 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1563 IGU_PF_CONF_ATTN_BIT_EN); 1564 1565 if (single_msix) 1566 val |= IGU_PF_CONF_SINGLE_ISR_EN; 1567 } else if (msi) { 1568 val &= ~IGU_PF_CONF_INT_LINE_EN; 1569 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1570 IGU_PF_CONF_ATTN_BIT_EN | 1571 IGU_PF_CONF_SINGLE_ISR_EN); 1572 } else { 1573 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 1574 val |= (IGU_PF_CONF_INT_LINE_EN | 1575 IGU_PF_CONF_ATTN_BIT_EN | 1576 IGU_PF_CONF_SINGLE_ISR_EN); 1577 } 1578 1579 /* Clean previous status - need to configure igu prior to ack*/ 1580 if ((!msix) || single_msix) { 1581 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1582 bnx2x_ack_int(bp); 1583 } 1584 1585 val |= IGU_PF_CONF_FUNC_EN; 1586 1587 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", 1588 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1589 1590 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1591 1592 if (val & IGU_PF_CONF_INT_LINE_EN) 1593 pci_intx(bp->pdev, true); 1594 1595 barrier(); 1596 1597 /* init leading/trailing edge */ 1598 if (IS_MF(bp)) { 1599 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1600 if (bp->port.pmf) 1601 /* enable nig and gpio3 attention */ 1602 val |= 0x1100; 1603 } else 1604 val = 0xffff; 1605 1606 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 1607 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 1608 1609 /* Make sure that interrupts are indeed enabled from here on */ 1610 mmiowb(); 1611 } 1612 1613 void bnx2x_int_enable(struct bnx2x *bp) 1614 { 1615 if (bp->common.int_block == INT_BLOCK_HC) 1616 bnx2x_hc_int_enable(bp); 1617 else 1618 bnx2x_igu_int_enable(bp); 1619 } 1620 1621 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) 1622 { 1623 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 1624 int i, offset; 1625 1626 if (disable_hw) 1627 /* prevent the HW from sending interrupts */ 1628 bnx2x_int_disable(bp); 1629 1630 /* make sure all ISRs are done */ 1631 if (msix) { 1632 synchronize_irq(bp->msix_table[0].vector); 1633 offset = 1; 1634 if (CNIC_SUPPORT(bp)) 1635 offset++; 1636 for_each_eth_queue(bp, i) 1637 synchronize_irq(bp->msix_table[offset++].vector); 1638 } else 1639 synchronize_irq(bp->pdev->irq); 1640 1641 /* make sure sp_task is not running */ 1642 cancel_delayed_work(&bp->sp_task); 1643 cancel_delayed_work(&bp->period_task); 1644 flush_workqueue(bnx2x_wq); 1645 } 1646 1647 /* fast path */ 1648 1649 /* 1650 * General service functions 1651 */ 1652 1653 /* Return true if succeeded to acquire the lock */ 1654 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) 1655 { 1656 u32 lock_status; 1657 u32 resource_bit = (1 << resource); 1658 int func = BP_FUNC(bp); 1659 u32 hw_lock_control_reg; 1660 1661 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1662 "Trying to take a lock on resource %d\n", resource); 1663 1664 /* Validating that the resource is within range */ 1665 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1666 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1667 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1668 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1669 return false; 1670 } 1671 1672 if (func <= 5) 1673 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1674 else 1675 hw_lock_control_reg = 1676 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1677 1678 /* Try to acquire the lock */ 1679 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1680 lock_status = REG_RD(bp, hw_lock_control_reg); 1681 if (lock_status & resource_bit) 1682 return true; 1683 1684 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1685 "Failed to get a lock on resource %d\n", resource); 1686 return false; 1687 } 1688 1689 /** 1690 * bnx2x_get_leader_lock_resource - get the recovery leader resource id 1691 * 1692 * @bp: driver handle 1693 * 1694 * Returns the recovery leader resource id according to the engine this function 1695 * belongs to. Currently only only 2 engines is supported. 1696 */ 1697 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) 1698 { 1699 if (BP_PATH(bp)) 1700 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; 1701 else 1702 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; 1703 } 1704 1705 /** 1706 * bnx2x_trylock_leader_lock- try to acquire a leader lock. 1707 * 1708 * @bp: driver handle 1709 * 1710 * Tries to acquire a leader lock for current engine. 1711 */ 1712 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) 1713 { 1714 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1715 } 1716 1717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); 1718 1719 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ 1720 static int bnx2x_schedule_sp_task(struct bnx2x *bp) 1721 { 1722 /* Set the interrupt occurred bit for the sp-task to recognize it 1723 * must ack the interrupt and transition according to the IGU 1724 * state machine. 1725 */ 1726 atomic_set(&bp->interrupt_occurred, 1); 1727 1728 /* The sp_task must execute only after this bit 1729 * is set, otherwise we will get out of sync and miss all 1730 * further interrupts. Hence, the barrier. 1731 */ 1732 smp_wmb(); 1733 1734 /* schedule sp_task to workqueue */ 1735 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); 1736 } 1737 1738 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) 1739 { 1740 struct bnx2x *bp = fp->bp; 1741 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1742 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1743 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; 1744 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 1745 1746 DP(BNX2X_MSG_SP, 1747 "fp %d cid %d got ramrod #%d state is %x type is %d\n", 1748 fp->index, cid, command, bp->state, 1749 rr_cqe->ramrod_cqe.ramrod_type); 1750 1751 /* If cid is within VF range, replace the slowpath object with the 1752 * one corresponding to this VF 1753 */ 1754 if (cid >= BNX2X_FIRST_VF_CID && 1755 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) 1756 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); 1757 1758 switch (command) { 1759 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 1760 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); 1761 drv_cmd = BNX2X_Q_CMD_UPDATE; 1762 break; 1763 1764 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 1765 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); 1766 drv_cmd = BNX2X_Q_CMD_SETUP; 1767 break; 1768 1769 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 1770 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 1771 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 1772 break; 1773 1774 case (RAMROD_CMD_ID_ETH_HALT): 1775 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); 1776 drv_cmd = BNX2X_Q_CMD_HALT; 1777 break; 1778 1779 case (RAMROD_CMD_ID_ETH_TERMINATE): 1780 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); 1781 drv_cmd = BNX2X_Q_CMD_TERMINATE; 1782 break; 1783 1784 case (RAMROD_CMD_ID_ETH_EMPTY): 1785 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); 1786 drv_cmd = BNX2X_Q_CMD_EMPTY; 1787 break; 1788 1789 default: 1790 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", 1791 command, fp->index); 1792 return; 1793 } 1794 1795 if ((drv_cmd != BNX2X_Q_CMD_MAX) && 1796 q_obj->complete_cmd(bp, q_obj, drv_cmd)) 1797 /* q_obj->complete_cmd() failure means that this was 1798 * an unexpected completion. 1799 * 1800 * In this case we don't want to increase the bp->spq_left 1801 * because apparently we haven't sent this command the first 1802 * place. 1803 */ 1804 #ifdef BNX2X_STOP_ON_ERROR 1805 bnx2x_panic(); 1806 #else 1807 return; 1808 #endif 1809 /* SRIOV: reschedule any 'in_progress' operations */ 1810 bnx2x_iov_sp_event(bp, cid, true); 1811 1812 smp_mb__before_atomic_inc(); 1813 atomic_inc(&bp->cq_spq_left); 1814 /* push the change in bp->spq_left and towards the memory */ 1815 smp_mb__after_atomic_inc(); 1816 1817 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); 1818 1819 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 1820 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { 1821 /* if Q update ramrod is completed for last Q in AFEX vif set 1822 * flow, then ACK MCP at the end 1823 * 1824 * mark pending ACK to MCP bit. 1825 * prevent case that both bits are cleared. 1826 * At the end of load/unload driver checks that 1827 * sp_state is cleared, and this order prevents 1828 * races 1829 */ 1830 smp_mb__before_clear_bit(); 1831 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); 1832 wmb(); 1833 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 1834 smp_mb__after_clear_bit(); 1835 1836 /* schedule the sp task as mcp ack is required */ 1837 bnx2x_schedule_sp_task(bp); 1838 } 1839 1840 return; 1841 } 1842 1843 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) 1844 { 1845 struct bnx2x *bp = netdev_priv(dev_instance); 1846 u16 status = bnx2x_ack_int(bp); 1847 u16 mask; 1848 int i; 1849 u8 cos; 1850 1851 /* Return here if interrupt is shared and it's not for us */ 1852 if (unlikely(status == 0)) { 1853 DP(NETIF_MSG_INTR, "not our interrupt!\n"); 1854 return IRQ_NONE; 1855 } 1856 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); 1857 1858 #ifdef BNX2X_STOP_ON_ERROR 1859 if (unlikely(bp->panic)) 1860 return IRQ_HANDLED; 1861 #endif 1862 1863 for_each_eth_queue(bp, i) { 1864 struct bnx2x_fastpath *fp = &bp->fp[i]; 1865 1866 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); 1867 if (status & mask) { 1868 /* Handle Rx or Tx according to SB id */ 1869 for_each_cos_in_tx_queue(fp, cos) 1870 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1871 prefetch(&fp->sb_running_index[SM_RX_ID]); 1872 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 1873 status &= ~mask; 1874 } 1875 } 1876 1877 if (CNIC_SUPPORT(bp)) { 1878 mask = 0x2; 1879 if (status & (mask | 0x1)) { 1880 struct cnic_ops *c_ops = NULL; 1881 1882 rcu_read_lock(); 1883 c_ops = rcu_dereference(bp->cnic_ops); 1884 if (c_ops && (bp->cnic_eth_dev.drv_state & 1885 CNIC_DRV_STATE_HANDLES_IRQ)) 1886 c_ops->cnic_handler(bp->cnic_data, NULL); 1887 rcu_read_unlock(); 1888 1889 status &= ~mask; 1890 } 1891 } 1892 1893 if (unlikely(status & 0x1)) { 1894 1895 /* schedule sp task to perform default status block work, ack 1896 * attentions and enable interrupts. 1897 */ 1898 bnx2x_schedule_sp_task(bp); 1899 1900 status &= ~0x1; 1901 if (!status) 1902 return IRQ_HANDLED; 1903 } 1904 1905 if (unlikely(status)) 1906 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", 1907 status); 1908 1909 return IRQ_HANDLED; 1910 } 1911 1912 /* Link */ 1913 1914 /* 1915 * General service functions 1916 */ 1917 1918 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) 1919 { 1920 u32 lock_status; 1921 u32 resource_bit = (1 << resource); 1922 int func = BP_FUNC(bp); 1923 u32 hw_lock_control_reg; 1924 int cnt; 1925 1926 /* Validating that the resource is within range */ 1927 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1928 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1929 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1930 return -EINVAL; 1931 } 1932 1933 if (func <= 5) { 1934 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1935 } else { 1936 hw_lock_control_reg = 1937 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1938 } 1939 1940 /* Validating that the resource is not already taken */ 1941 lock_status = REG_RD(bp, hw_lock_control_reg); 1942 if (lock_status & resource_bit) { 1943 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", 1944 lock_status, resource_bit); 1945 return -EEXIST; 1946 } 1947 1948 /* Try for 5 second every 5ms */ 1949 for (cnt = 0; cnt < 1000; cnt++) { 1950 /* Try to acquire the lock */ 1951 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1952 lock_status = REG_RD(bp, hw_lock_control_reg); 1953 if (lock_status & resource_bit) 1954 return 0; 1955 1956 usleep_range(5000, 10000); 1957 } 1958 BNX2X_ERR("Timeout\n"); 1959 return -EAGAIN; 1960 } 1961 1962 int bnx2x_release_leader_lock(struct bnx2x *bp) 1963 { 1964 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1965 } 1966 1967 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) 1968 { 1969 u32 lock_status; 1970 u32 resource_bit = (1 << resource); 1971 int func = BP_FUNC(bp); 1972 u32 hw_lock_control_reg; 1973 1974 /* Validating that the resource is within range */ 1975 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1976 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1977 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1978 return -EINVAL; 1979 } 1980 1981 if (func <= 5) { 1982 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1983 } else { 1984 hw_lock_control_reg = 1985 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1986 } 1987 1988 /* Validating that the resource is currently taken */ 1989 lock_status = REG_RD(bp, hw_lock_control_reg); 1990 if (!(lock_status & resource_bit)) { 1991 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", 1992 lock_status, resource_bit); 1993 return -EFAULT; 1994 } 1995 1996 REG_WR(bp, hw_lock_control_reg, resource_bit); 1997 return 0; 1998 } 1999 2000 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) 2001 { 2002 /* The GPIO should be swapped if swap register is set and active */ 2003 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2004 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2005 int gpio_shift = gpio_num + 2006 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2007 u32 gpio_mask = (1 << gpio_shift); 2008 u32 gpio_reg; 2009 int value; 2010 2011 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2012 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2013 return -EINVAL; 2014 } 2015 2016 /* read GPIO value */ 2017 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2018 2019 /* get the requested pin value */ 2020 if ((gpio_reg & gpio_mask) == gpio_mask) 2021 value = 1; 2022 else 2023 value = 0; 2024 2025 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value); 2026 2027 return value; 2028 } 2029 2030 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2031 { 2032 /* The GPIO should be swapped if swap register is set and active */ 2033 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2034 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2035 int gpio_shift = gpio_num + 2036 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2037 u32 gpio_mask = (1 << gpio_shift); 2038 u32 gpio_reg; 2039 2040 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2041 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2042 return -EINVAL; 2043 } 2044 2045 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2046 /* read GPIO and mask except the float bits */ 2047 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2048 2049 switch (mode) { 2050 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2051 DP(NETIF_MSG_LINK, 2052 "Set GPIO %d (shift %d) -> output low\n", 2053 gpio_num, gpio_shift); 2054 /* clear FLOAT and set CLR */ 2055 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2056 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2057 break; 2058 2059 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2060 DP(NETIF_MSG_LINK, 2061 "Set GPIO %d (shift %d) -> output high\n", 2062 gpio_num, gpio_shift); 2063 /* clear FLOAT and set SET */ 2064 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2065 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2066 break; 2067 2068 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2069 DP(NETIF_MSG_LINK, 2070 "Set GPIO %d (shift %d) -> input\n", 2071 gpio_num, gpio_shift); 2072 /* set FLOAT */ 2073 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2074 break; 2075 2076 default: 2077 break; 2078 } 2079 2080 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2081 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2082 2083 return 0; 2084 } 2085 2086 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) 2087 { 2088 u32 gpio_reg = 0; 2089 int rc = 0; 2090 2091 /* Any port swapping should be handled by caller. */ 2092 2093 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2094 /* read GPIO and mask except the float bits */ 2095 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2096 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2097 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2098 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2099 2100 switch (mode) { 2101 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2102 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); 2103 /* set CLR */ 2104 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2105 break; 2106 2107 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2108 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); 2109 /* set SET */ 2110 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2111 break; 2112 2113 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2114 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); 2115 /* set FLOAT */ 2116 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2117 break; 2118 2119 default: 2120 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); 2121 rc = -EINVAL; 2122 break; 2123 } 2124 2125 if (rc == 0) 2126 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2127 2128 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2129 2130 return rc; 2131 } 2132 2133 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2134 { 2135 /* The GPIO should be swapped if swap register is set and active */ 2136 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2137 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2138 int gpio_shift = gpio_num + 2139 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2140 u32 gpio_mask = (1 << gpio_shift); 2141 u32 gpio_reg; 2142 2143 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2144 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2145 return -EINVAL; 2146 } 2147 2148 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2149 /* read GPIO int */ 2150 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); 2151 2152 switch (mode) { 2153 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2154 DP(NETIF_MSG_LINK, 2155 "Clear GPIO INT %d (shift %d) -> output low\n", 2156 gpio_num, gpio_shift); 2157 /* clear SET and set CLR */ 2158 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2159 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2160 break; 2161 2162 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2163 DP(NETIF_MSG_LINK, 2164 "Set GPIO INT %d (shift %d) -> output high\n", 2165 gpio_num, gpio_shift); 2166 /* clear CLR and set SET */ 2167 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2168 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2169 break; 2170 2171 default: 2172 break; 2173 } 2174 2175 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); 2176 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2177 2178 return 0; 2179 } 2180 2181 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) 2182 { 2183 u32 spio_reg; 2184 2185 /* Only 2 SPIOs are configurable */ 2186 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 2187 BNX2X_ERR("Invalid SPIO 0x%x\n", spio); 2188 return -EINVAL; 2189 } 2190 2191 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2192 /* read SPIO and mask except the float bits */ 2193 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 2194 2195 switch (mode) { 2196 case MISC_SPIO_OUTPUT_LOW: 2197 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); 2198 /* clear FLOAT and set CLR */ 2199 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2200 spio_reg |= (spio << MISC_SPIO_CLR_POS); 2201 break; 2202 2203 case MISC_SPIO_OUTPUT_HIGH: 2204 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); 2205 /* clear FLOAT and set SET */ 2206 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2207 spio_reg |= (spio << MISC_SPIO_SET_POS); 2208 break; 2209 2210 case MISC_SPIO_INPUT_HI_Z: 2211 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); 2212 /* set FLOAT */ 2213 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 2214 break; 2215 2216 default: 2217 break; 2218 } 2219 2220 REG_WR(bp, MISC_REG_SPIO, spio_reg); 2221 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2222 2223 return 0; 2224 } 2225 2226 void bnx2x_calc_fc_adv(struct bnx2x *bp) 2227 { 2228 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); 2229 switch (bp->link_vars.ieee_fc & 2230 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 2231 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 2232 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2233 ADVERTISED_Pause); 2234 break; 2235 2236 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 2237 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 2238 ADVERTISED_Pause); 2239 break; 2240 2241 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 2242 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 2243 break; 2244 2245 default: 2246 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2247 ADVERTISED_Pause); 2248 break; 2249 } 2250 } 2251 2252 static void bnx2x_set_requested_fc(struct bnx2x *bp) 2253 { 2254 /* Initialize link parameters structure variables 2255 * It is recommended to turn off RX FC for jumbo frames 2256 * for better performance 2257 */ 2258 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) 2259 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; 2260 else 2261 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; 2262 } 2263 2264 static void bnx2x_init_dropless_fc(struct bnx2x *bp) 2265 { 2266 u32 pause_enabled = 0; 2267 2268 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { 2269 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 2270 pause_enabled = 1; 2271 2272 REG_WR(bp, BAR_USTRORM_INTMEM + 2273 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), 2274 pause_enabled); 2275 } 2276 2277 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", 2278 pause_enabled ? "enabled" : "disabled"); 2279 } 2280 2281 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) 2282 { 2283 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); 2284 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; 2285 2286 if (!BP_NOMCP(bp)) { 2287 bnx2x_set_requested_fc(bp); 2288 bnx2x_acquire_phy_lock(bp); 2289 2290 if (load_mode == LOAD_DIAG) { 2291 struct link_params *lp = &bp->link_params; 2292 lp->loopback_mode = LOOPBACK_XGXS; 2293 /* do PHY loopback at 10G speed, if possible */ 2294 if (lp->req_line_speed[cfx_idx] < SPEED_10000) { 2295 if (lp->speed_cap_mask[cfx_idx] & 2296 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) 2297 lp->req_line_speed[cfx_idx] = 2298 SPEED_10000; 2299 else 2300 lp->req_line_speed[cfx_idx] = 2301 SPEED_1000; 2302 } 2303 } 2304 2305 if (load_mode == LOAD_LOOPBACK_EXT) { 2306 struct link_params *lp = &bp->link_params; 2307 lp->loopback_mode = LOOPBACK_EXT; 2308 } 2309 2310 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2311 2312 bnx2x_release_phy_lock(bp); 2313 2314 bnx2x_init_dropless_fc(bp); 2315 2316 bnx2x_calc_fc_adv(bp); 2317 2318 if (bp->link_vars.link_up) { 2319 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2320 bnx2x_link_report(bp); 2321 } 2322 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2323 bp->link_params.req_line_speed[cfx_idx] = req_line_speed; 2324 return rc; 2325 } 2326 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 2327 return -EINVAL; 2328 } 2329 2330 void bnx2x_link_set(struct bnx2x *bp) 2331 { 2332 if (!BP_NOMCP(bp)) { 2333 bnx2x_acquire_phy_lock(bp); 2334 bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2335 bnx2x_release_phy_lock(bp); 2336 2337 bnx2x_init_dropless_fc(bp); 2338 2339 bnx2x_calc_fc_adv(bp); 2340 } else 2341 BNX2X_ERR("Bootcode is missing - can not set link\n"); 2342 } 2343 2344 static void bnx2x__link_reset(struct bnx2x *bp) 2345 { 2346 if (!BP_NOMCP(bp)) { 2347 bnx2x_acquire_phy_lock(bp); 2348 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); 2349 bnx2x_release_phy_lock(bp); 2350 } else 2351 BNX2X_ERR("Bootcode is missing - can not reset link\n"); 2352 } 2353 2354 void bnx2x_force_link_reset(struct bnx2x *bp) 2355 { 2356 bnx2x_acquire_phy_lock(bp); 2357 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); 2358 bnx2x_release_phy_lock(bp); 2359 } 2360 2361 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) 2362 { 2363 u8 rc = 0; 2364 2365 if (!BP_NOMCP(bp)) { 2366 bnx2x_acquire_phy_lock(bp); 2367 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, 2368 is_serdes); 2369 bnx2x_release_phy_lock(bp); 2370 } else 2371 BNX2X_ERR("Bootcode is missing - can not test link\n"); 2372 2373 return rc; 2374 } 2375 2376 /* Calculates the sum of vn_min_rates. 2377 It's needed for further normalizing of the min_rates. 2378 Returns: 2379 sum of vn_min_rates. 2380 or 2381 0 - if all the min_rates are 0. 2382 In the later case fairness algorithm should be deactivated. 2383 If not all min_rates are zero then those that are zeroes will be set to 1. 2384 */ 2385 static void bnx2x_calc_vn_min(struct bnx2x *bp, 2386 struct cmng_init_input *input) 2387 { 2388 int all_zero = 1; 2389 int vn; 2390 2391 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2392 u32 vn_cfg = bp->mf_config[vn]; 2393 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 2394 FUNC_MF_CFG_MIN_BW_SHIFT) * 100; 2395 2396 /* Skip hidden vns */ 2397 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2398 vn_min_rate = 0; 2399 /* If min rate is zero - set it to 1 */ 2400 else if (!vn_min_rate) 2401 vn_min_rate = DEF_MIN_RATE; 2402 else 2403 all_zero = 0; 2404 2405 input->vnic_min_rate[vn] = vn_min_rate; 2406 } 2407 2408 /* if ETS or all min rates are zeros - disable fairness */ 2409 if (BNX2X_IS_ETS_ENABLED(bp)) { 2410 input->flags.cmng_enables &= 2411 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2412 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); 2413 } else if (all_zero) { 2414 input->flags.cmng_enables &= 2415 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2416 DP(NETIF_MSG_IFUP, 2417 "All MIN values are zeroes fairness will be disabled\n"); 2418 } else 2419 input->flags.cmng_enables |= 2420 CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2421 } 2422 2423 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, 2424 struct cmng_init_input *input) 2425 { 2426 u16 vn_max_rate; 2427 u32 vn_cfg = bp->mf_config[vn]; 2428 2429 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2430 vn_max_rate = 0; 2431 else { 2432 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); 2433 2434 if (IS_MF_SI(bp)) { 2435 /* maxCfg in percents of linkspeed */ 2436 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; 2437 } else /* SD modes */ 2438 /* maxCfg is absolute in 100Mb units */ 2439 vn_max_rate = maxCfg * 100; 2440 } 2441 2442 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 2443 2444 input->vnic_max_rate[vn] = vn_max_rate; 2445 } 2446 2447 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) 2448 { 2449 if (CHIP_REV_IS_SLOW(bp)) 2450 return CMNG_FNS_NONE; 2451 if (IS_MF(bp)) 2452 return CMNG_FNS_MINMAX; 2453 2454 return CMNG_FNS_NONE; 2455 } 2456 2457 void bnx2x_read_mf_cfg(struct bnx2x *bp) 2458 { 2459 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); 2460 2461 if (BP_NOMCP(bp)) 2462 return; /* what should be the default value in this case */ 2463 2464 /* For 2 port configuration the absolute function number formula 2465 * is: 2466 * abs_func = 2 * vn + BP_PORT + BP_PATH 2467 * 2468 * and there are 4 functions per port 2469 * 2470 * For 4 port configuration it is 2471 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH 2472 * 2473 * and there are 2 functions per port 2474 */ 2475 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2476 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); 2477 2478 if (func >= E1H_FUNC_MAX) 2479 break; 2480 2481 bp->mf_config[vn] = 2482 MF_CFG_RD(bp, func_mf_config[func].config); 2483 } 2484 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 2485 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); 2486 bp->flags |= MF_FUNC_DIS; 2487 } else { 2488 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); 2489 bp->flags &= ~MF_FUNC_DIS; 2490 } 2491 } 2492 2493 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) 2494 { 2495 struct cmng_init_input input; 2496 memset(&input, 0, sizeof(struct cmng_init_input)); 2497 2498 input.port_rate = bp->link_vars.line_speed; 2499 2500 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { 2501 int vn; 2502 2503 /* read mf conf from shmem */ 2504 if (read_cfg) 2505 bnx2x_read_mf_cfg(bp); 2506 2507 /* vn_weight_sum and enable fairness if not 0 */ 2508 bnx2x_calc_vn_min(bp, &input); 2509 2510 /* calculate and set min-max rate for each vn */ 2511 if (bp->port.pmf) 2512 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) 2513 bnx2x_calc_vn_max(bp, vn, &input); 2514 2515 /* always enable rate shaping and fairness */ 2516 input.flags.cmng_enables |= 2517 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 2518 2519 bnx2x_init_cmng(&input, &bp->cmng); 2520 return; 2521 } 2522 2523 /* rate shaping and fairness are disabled */ 2524 DP(NETIF_MSG_IFUP, 2525 "rate shaping and fairness are disabled\n"); 2526 } 2527 2528 static void storm_memset_cmng(struct bnx2x *bp, 2529 struct cmng_init *cmng, 2530 u8 port) 2531 { 2532 int vn; 2533 size_t size = sizeof(struct cmng_struct_per_port); 2534 2535 u32 addr = BAR_XSTRORM_INTMEM + 2536 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); 2537 2538 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); 2539 2540 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2541 int func = func_by_vn(bp, vn); 2542 2543 addr = BAR_XSTRORM_INTMEM + 2544 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); 2545 size = sizeof(struct rate_shaping_vars_per_vn); 2546 __storm_memset_struct(bp, addr, size, 2547 (u32 *)&cmng->vnic.vnic_max_rate[vn]); 2548 2549 addr = BAR_XSTRORM_INTMEM + 2550 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); 2551 size = sizeof(struct fairness_vars_per_vn); 2552 __storm_memset_struct(bp, addr, size, 2553 (u32 *)&cmng->vnic.vnic_min_rate[vn]); 2554 } 2555 } 2556 2557 /* init cmng mode in HW according to local configuration */ 2558 void bnx2x_set_local_cmng(struct bnx2x *bp) 2559 { 2560 int cmng_fns = bnx2x_get_cmng_fns_mode(bp); 2561 2562 if (cmng_fns != CMNG_FNS_NONE) { 2563 bnx2x_cmng_fns_init(bp, false, cmng_fns); 2564 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 2565 } else { 2566 /* rate shaping and fairness are disabled */ 2567 DP(NETIF_MSG_IFUP, 2568 "single function mode without fairness\n"); 2569 } 2570 } 2571 2572 /* This function is called upon link interrupt */ 2573 static void bnx2x_link_attn(struct bnx2x *bp) 2574 { 2575 /* Make sure that we are synced with the current statistics */ 2576 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2577 2578 bnx2x_link_update(&bp->link_params, &bp->link_vars); 2579 2580 bnx2x_init_dropless_fc(bp); 2581 2582 if (bp->link_vars.link_up) { 2583 2584 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { 2585 struct host_port_stats *pstats; 2586 2587 pstats = bnx2x_sp(bp, port_stats); 2588 /* reset old mac stats */ 2589 memset(&(pstats->mac_stx[0]), 0, 2590 sizeof(struct mac_stx)); 2591 } 2592 if (bp->state == BNX2X_STATE_OPEN) 2593 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2594 } 2595 2596 if (bp->link_vars.link_up && bp->link_vars.line_speed) 2597 bnx2x_set_local_cmng(bp); 2598 2599 __bnx2x_link_report(bp); 2600 2601 if (IS_MF(bp)) 2602 bnx2x_link_sync_notify(bp); 2603 } 2604 2605 void bnx2x__link_status_update(struct bnx2x *bp) 2606 { 2607 if (bp->state != BNX2X_STATE_OPEN) 2608 return; 2609 2610 /* read updated dcb configuration */ 2611 if (IS_PF(bp)) { 2612 bnx2x_dcbx_pmf_update(bp); 2613 bnx2x_link_status_update(&bp->link_params, &bp->link_vars); 2614 if (bp->link_vars.link_up) 2615 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2616 else 2617 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2618 /* indicate link status */ 2619 bnx2x_link_report(bp); 2620 2621 } else { /* VF */ 2622 bp->port.supported[0] |= (SUPPORTED_10baseT_Half | 2623 SUPPORTED_10baseT_Full | 2624 SUPPORTED_100baseT_Half | 2625 SUPPORTED_100baseT_Full | 2626 SUPPORTED_1000baseT_Full | 2627 SUPPORTED_2500baseX_Full | 2628 SUPPORTED_10000baseT_Full | 2629 SUPPORTED_TP | 2630 SUPPORTED_FIBRE | 2631 SUPPORTED_Autoneg | 2632 SUPPORTED_Pause | 2633 SUPPORTED_Asym_Pause); 2634 bp->port.advertising[0] = bp->port.supported[0]; 2635 2636 bp->link_params.bp = bp; 2637 bp->link_params.port = BP_PORT(bp); 2638 bp->link_params.req_duplex[0] = DUPLEX_FULL; 2639 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; 2640 bp->link_params.req_line_speed[0] = SPEED_10000; 2641 bp->link_params.speed_cap_mask[0] = 0x7f0000; 2642 bp->link_params.switch_cfg = SWITCH_CFG_10G; 2643 bp->link_vars.mac_type = MAC_TYPE_BMAC; 2644 bp->link_vars.line_speed = SPEED_10000; 2645 bp->link_vars.link_status = 2646 (LINK_STATUS_LINK_UP | 2647 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 2648 bp->link_vars.link_up = 1; 2649 bp->link_vars.duplex = DUPLEX_FULL; 2650 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; 2651 __bnx2x_link_report(bp); 2652 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2653 } 2654 } 2655 2656 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, 2657 u16 vlan_val, u8 allowed_prio) 2658 { 2659 struct bnx2x_func_state_params func_params = {NULL}; 2660 struct bnx2x_func_afex_update_params *f_update_params = 2661 &func_params.params.afex_update; 2662 2663 func_params.f_obj = &bp->func_obj; 2664 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; 2665 2666 /* no need to wait for RAMROD completion, so don't 2667 * set RAMROD_COMP_WAIT flag 2668 */ 2669 2670 f_update_params->vif_id = vifid; 2671 f_update_params->afex_default_vlan = vlan_val; 2672 f_update_params->allowed_priorities = allowed_prio; 2673 2674 /* if ramrod can not be sent, response to MCP immediately */ 2675 if (bnx2x_func_state_change(bp, &func_params) < 0) 2676 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 2677 2678 return 0; 2679 } 2680 2681 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, 2682 u16 vif_index, u8 func_bit_map) 2683 { 2684 struct bnx2x_func_state_params func_params = {NULL}; 2685 struct bnx2x_func_afex_viflists_params *update_params = 2686 &func_params.params.afex_viflists; 2687 int rc; 2688 u32 drv_msg_code; 2689 2690 /* validate only LIST_SET and LIST_GET are received from switch */ 2691 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) 2692 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", 2693 cmd_type); 2694 2695 func_params.f_obj = &bp->func_obj; 2696 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; 2697 2698 /* set parameters according to cmd_type */ 2699 update_params->afex_vif_list_command = cmd_type; 2700 update_params->vif_list_index = vif_index; 2701 update_params->func_bit_map = 2702 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; 2703 update_params->func_to_clear = 0; 2704 drv_msg_code = 2705 (cmd_type == VIF_LIST_RULE_GET) ? 2706 DRV_MSG_CODE_AFEX_LISTGET_ACK : 2707 DRV_MSG_CODE_AFEX_LISTSET_ACK; 2708 2709 /* if ramrod can not be sent, respond to MCP immediately for 2710 * SET and GET requests (other are not triggered from MCP) 2711 */ 2712 rc = bnx2x_func_state_change(bp, &func_params); 2713 if (rc < 0) 2714 bnx2x_fw_command(bp, drv_msg_code, 0); 2715 2716 return 0; 2717 } 2718 2719 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) 2720 { 2721 struct afex_stats afex_stats; 2722 u32 func = BP_ABS_FUNC(bp); 2723 u32 mf_config; 2724 u16 vlan_val; 2725 u32 vlan_prio; 2726 u16 vif_id; 2727 u8 allowed_prio; 2728 u8 vlan_mode; 2729 u32 addr_to_write, vifid, addrs, stats_type, i; 2730 2731 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { 2732 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2733 DP(BNX2X_MSG_MCP, 2734 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); 2735 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); 2736 } 2737 2738 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { 2739 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2740 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); 2741 DP(BNX2X_MSG_MCP, 2742 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", 2743 vifid, addrs); 2744 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, 2745 addrs); 2746 } 2747 2748 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { 2749 addr_to_write = SHMEM2_RD(bp, 2750 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); 2751 stats_type = SHMEM2_RD(bp, 2752 afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2753 2754 DP(BNX2X_MSG_MCP, 2755 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", 2756 addr_to_write); 2757 2758 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); 2759 2760 /* write response to scratchpad, for MCP */ 2761 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) 2762 REG_WR(bp, addr_to_write + i*sizeof(u32), 2763 *(((u32 *)(&afex_stats))+i)); 2764 2765 /* send ack message to MCP */ 2766 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); 2767 } 2768 2769 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { 2770 mf_config = MF_CFG_RD(bp, func_mf_config[func].config); 2771 bp->mf_config[BP_VN(bp)] = mf_config; 2772 DP(BNX2X_MSG_MCP, 2773 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", 2774 mf_config); 2775 2776 /* if VIF_SET is "enabled" */ 2777 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { 2778 /* set rate limit directly to internal RAM */ 2779 struct cmng_init_input cmng_input; 2780 struct rate_shaping_vars_per_vn m_rs_vn; 2781 size_t size = sizeof(struct rate_shaping_vars_per_vn); 2782 u32 addr = BAR_XSTRORM_INTMEM + 2783 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); 2784 2785 bp->mf_config[BP_VN(bp)] = mf_config; 2786 2787 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); 2788 m_rs_vn.vn_counter.rate = 2789 cmng_input.vnic_max_rate[BP_VN(bp)]; 2790 m_rs_vn.vn_counter.quota = 2791 (m_rs_vn.vn_counter.rate * 2792 RS_PERIODIC_TIMEOUT_USEC) / 8; 2793 2794 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); 2795 2796 /* read relevant values from mf_cfg struct in shmem */ 2797 vif_id = 2798 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2799 FUNC_MF_CFG_E1HOV_TAG_MASK) >> 2800 FUNC_MF_CFG_E1HOV_TAG_SHIFT; 2801 vlan_val = 2802 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2803 FUNC_MF_CFG_AFEX_VLAN_MASK) >> 2804 FUNC_MF_CFG_AFEX_VLAN_SHIFT; 2805 vlan_prio = (mf_config & 2806 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 2807 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; 2808 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); 2809 vlan_mode = 2810 (MF_CFG_RD(bp, 2811 func_mf_config[func].afex_config) & 2812 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 2813 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; 2814 allowed_prio = 2815 (MF_CFG_RD(bp, 2816 func_mf_config[func].afex_config) & 2817 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 2818 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; 2819 2820 /* send ramrod to FW, return in case of failure */ 2821 if (bnx2x_afex_func_update(bp, vif_id, vlan_val, 2822 allowed_prio)) 2823 return; 2824 2825 bp->afex_def_vlan_tag = vlan_val; 2826 bp->afex_vlan_mode = vlan_mode; 2827 } else { 2828 /* notify link down because BP->flags is disabled */ 2829 bnx2x_link_report(bp); 2830 2831 /* send INVALID VIF ramrod to FW */ 2832 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); 2833 2834 /* Reset the default afex VLAN */ 2835 bp->afex_def_vlan_tag = -1; 2836 } 2837 } 2838 } 2839 2840 static void bnx2x_pmf_update(struct bnx2x *bp) 2841 { 2842 int port = BP_PORT(bp); 2843 u32 val; 2844 2845 bp->port.pmf = 1; 2846 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); 2847 2848 /* 2849 * We need the mb() to ensure the ordering between the writing to 2850 * bp->port.pmf here and reading it from the bnx2x_periodic_task(). 2851 */ 2852 smp_mb(); 2853 2854 /* queue a periodic task */ 2855 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2856 2857 bnx2x_dcbx_pmf_update(bp); 2858 2859 /* enable nig attention */ 2860 val = (0xff0f | (1 << (BP_VN(bp) + 4))); 2861 if (bp->common.int_block == INT_BLOCK_HC) { 2862 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 2863 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 2864 } else if (!CHIP_IS_E1x(bp)) { 2865 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 2866 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 2867 } 2868 2869 bnx2x_stats_handle(bp, STATS_EVENT_PMF); 2870 } 2871 2872 /* end of Link */ 2873 2874 /* slow path */ 2875 2876 /* 2877 * General service functions 2878 */ 2879 2880 /* send the MCP a request, block until there is a reply */ 2881 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) 2882 { 2883 int mb_idx = BP_FW_MB_IDX(bp); 2884 u32 seq; 2885 u32 rc = 0; 2886 u32 cnt = 1; 2887 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; 2888 2889 mutex_lock(&bp->fw_mb_mutex); 2890 seq = ++bp->fw_seq; 2891 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); 2892 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); 2893 2894 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", 2895 (command | seq), param); 2896 2897 do { 2898 /* let the FW do it's magic ... */ 2899 msleep(delay); 2900 2901 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); 2902 2903 /* Give the FW up to 5 second (500*10ms) */ 2904 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2905 2906 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", 2907 cnt*delay, rc, seq); 2908 2909 /* is this a reply to our command? */ 2910 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) 2911 rc &= FW_MSG_CODE_MASK; 2912 else { 2913 /* FW BUG! */ 2914 BNX2X_ERR("FW failed to respond!\n"); 2915 bnx2x_fw_dump(bp); 2916 rc = 0; 2917 } 2918 mutex_unlock(&bp->fw_mb_mutex); 2919 2920 return rc; 2921 } 2922 2923 static void storm_memset_func_cfg(struct bnx2x *bp, 2924 struct tstorm_eth_function_common_config *tcfg, 2925 u16 abs_fid) 2926 { 2927 size_t size = sizeof(struct tstorm_eth_function_common_config); 2928 2929 u32 addr = BAR_TSTRORM_INTMEM + 2930 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); 2931 2932 __storm_memset_struct(bp, addr, size, (u32 *)tcfg); 2933 } 2934 2935 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) 2936 { 2937 if (CHIP_IS_E1x(bp)) { 2938 struct tstorm_eth_function_common_config tcfg = {0}; 2939 2940 storm_memset_func_cfg(bp, &tcfg, p->func_id); 2941 } 2942 2943 /* Enable the function in the FW */ 2944 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); 2945 storm_memset_func_en(bp, p->func_id, 1); 2946 2947 /* spq */ 2948 if (p->func_flgs & FUNC_FLG_SPQ) { 2949 storm_memset_spq_addr(bp, p->spq_map, p->func_id); 2950 REG_WR(bp, XSEM_REG_FAST_MEMORY + 2951 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); 2952 } 2953 } 2954 2955 /** 2956 * bnx2x_get_common_flags - Return common flags 2957 * 2958 * @bp device handle 2959 * @fp queue handle 2960 * @zero_stats TRUE if statistics zeroing is needed 2961 * 2962 * Return the flags that are common for the Tx-only and not normal connections. 2963 */ 2964 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, 2965 struct bnx2x_fastpath *fp, 2966 bool zero_stats) 2967 { 2968 unsigned long flags = 0; 2969 2970 /* PF driver will always initialize the Queue to an ACTIVE state */ 2971 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); 2972 2973 /* tx only connections collect statistics (on the same index as the 2974 * parent connection). The statistics are zeroed when the parent 2975 * connection is initialized. 2976 */ 2977 2978 __set_bit(BNX2X_Q_FLG_STATS, &flags); 2979 if (zero_stats) 2980 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); 2981 2982 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); 2983 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); 2984 2985 #ifdef BNX2X_STOP_ON_ERROR 2986 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); 2987 #endif 2988 2989 return flags; 2990 } 2991 2992 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, 2993 struct bnx2x_fastpath *fp, 2994 bool leading) 2995 { 2996 unsigned long flags = 0; 2997 2998 /* calculate other queue flags */ 2999 if (IS_MF_SD(bp)) 3000 __set_bit(BNX2X_Q_FLG_OV, &flags); 3001 3002 if (IS_FCOE_FP(fp)) { 3003 __set_bit(BNX2X_Q_FLG_FCOE, &flags); 3004 /* For FCoE - force usage of default priority (for afex) */ 3005 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); 3006 } 3007 3008 if (!fp->disable_tpa) { 3009 __set_bit(BNX2X_Q_FLG_TPA, &flags); 3010 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); 3011 if (fp->mode == TPA_MODE_GRO) 3012 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); 3013 } 3014 3015 if (leading) { 3016 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); 3017 __set_bit(BNX2X_Q_FLG_MCAST, &flags); 3018 } 3019 3020 /* Always set HW VLAN stripping */ 3021 __set_bit(BNX2X_Q_FLG_VLAN, &flags); 3022 3023 /* configure silent vlan removal */ 3024 if (IS_MF_AFEX(bp)) 3025 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); 3026 3027 return flags | bnx2x_get_common_flags(bp, fp, true); 3028 } 3029 3030 static void bnx2x_pf_q_prep_general(struct bnx2x *bp, 3031 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, 3032 u8 cos) 3033 { 3034 gen_init->stat_id = bnx2x_stats_id(fp); 3035 gen_init->spcl_id = fp->cl_id; 3036 3037 /* Always use mini-jumbo MTU for FCoE L2 ring */ 3038 if (IS_FCOE_FP(fp)) 3039 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 3040 else 3041 gen_init->mtu = bp->dev->mtu; 3042 3043 gen_init->cos = cos; 3044 } 3045 3046 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, 3047 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, 3048 struct bnx2x_rxq_setup_params *rxq_init) 3049 { 3050 u8 max_sge = 0; 3051 u16 sge_sz = 0; 3052 u16 tpa_agg_size = 0; 3053 3054 if (!fp->disable_tpa) { 3055 pause->sge_th_lo = SGE_TH_LO(bp); 3056 pause->sge_th_hi = SGE_TH_HI(bp); 3057 3058 /* validate SGE ring has enough to cross high threshold */ 3059 WARN_ON(bp->dropless_fc && 3060 pause->sge_th_hi + FW_PREFETCH_CNT > 3061 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); 3062 3063 tpa_agg_size = TPA_AGG_SIZE; 3064 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> 3065 SGE_PAGE_SHIFT; 3066 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 3067 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; 3068 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); 3069 } 3070 3071 /* pause - not for e1 */ 3072 if (!CHIP_IS_E1(bp)) { 3073 pause->bd_th_lo = BD_TH_LO(bp); 3074 pause->bd_th_hi = BD_TH_HI(bp); 3075 3076 pause->rcq_th_lo = RCQ_TH_LO(bp); 3077 pause->rcq_th_hi = RCQ_TH_HI(bp); 3078 /* 3079 * validate that rings have enough entries to cross 3080 * high thresholds 3081 */ 3082 WARN_ON(bp->dropless_fc && 3083 pause->bd_th_hi + FW_PREFETCH_CNT > 3084 bp->rx_ring_size); 3085 WARN_ON(bp->dropless_fc && 3086 pause->rcq_th_hi + FW_PREFETCH_CNT > 3087 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); 3088 3089 pause->pri_map = 1; 3090 } 3091 3092 /* rxq setup */ 3093 rxq_init->dscr_map = fp->rx_desc_mapping; 3094 rxq_init->sge_map = fp->rx_sge_mapping; 3095 rxq_init->rcq_map = fp->rx_comp_mapping; 3096 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; 3097 3098 /* This should be a maximum number of data bytes that may be 3099 * placed on the BD (not including paddings). 3100 */ 3101 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - 3102 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; 3103 3104 rxq_init->cl_qzone_id = fp->cl_qzone_id; 3105 rxq_init->tpa_agg_sz = tpa_agg_size; 3106 rxq_init->sge_buf_sz = sge_sz; 3107 rxq_init->max_sges_pkt = max_sge; 3108 rxq_init->rss_engine_id = BP_FUNC(bp); 3109 rxq_init->mcast_engine_id = BP_FUNC(bp); 3110 3111 /* Maximum number or simultaneous TPA aggregation for this Queue. 3112 * 3113 * For PF Clients it should be the maximum available number. 3114 * VF driver(s) may want to define it to a smaller value. 3115 */ 3116 rxq_init->max_tpa_queues = MAX_AGG_QS(bp); 3117 3118 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; 3119 rxq_init->fw_sb_id = fp->fw_sb_id; 3120 3121 if (IS_FCOE_FP(fp)) 3122 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; 3123 else 3124 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 3125 /* configure silent vlan removal 3126 * if multi function mode is afex, then mask default vlan 3127 */ 3128 if (IS_MF_AFEX(bp)) { 3129 rxq_init->silent_removal_value = bp->afex_def_vlan_tag; 3130 rxq_init->silent_removal_mask = VLAN_VID_MASK; 3131 } 3132 } 3133 3134 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, 3135 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, 3136 u8 cos) 3137 { 3138 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; 3139 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 3140 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 3141 txq_init->fw_sb_id = fp->fw_sb_id; 3142 3143 /* 3144 * set the tss leading client id for TX classification == 3145 * leading RSS client id 3146 */ 3147 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); 3148 3149 if (IS_FCOE_FP(fp)) { 3150 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; 3151 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; 3152 } 3153 } 3154 3155 static void bnx2x_pf_init(struct bnx2x *bp) 3156 { 3157 struct bnx2x_func_init_params func_init = {0}; 3158 struct event_ring_data eq_data = { {0} }; 3159 u16 flags; 3160 3161 if (!CHIP_IS_E1x(bp)) { 3162 /* reset IGU PF statistics: MSIX + ATTN */ 3163 /* PF */ 3164 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3165 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3166 (CHIP_MODE_IS_4_PORT(bp) ? 3167 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3168 /* ATTN */ 3169 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3170 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3171 BNX2X_IGU_STAS_MSG_PF_CNT*4 + 3172 (CHIP_MODE_IS_4_PORT(bp) ? 3173 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3174 } 3175 3176 /* function setup flags */ 3177 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 3178 3179 /* This flag is relevant for E1x only. 3180 * E2 doesn't have a TPA configuration in a function level. 3181 */ 3182 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0; 3183 3184 func_init.func_flgs = flags; 3185 func_init.pf_id = BP_FUNC(bp); 3186 func_init.func_id = BP_FUNC(bp); 3187 func_init.spq_map = bp->spq_mapping; 3188 func_init.spq_prod = bp->spq_prod_idx; 3189 3190 bnx2x_func_init(bp, &func_init); 3191 3192 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); 3193 3194 /* 3195 * Congestion management values depend on the link rate 3196 * There is no active link so initial link rate is set to 10 Gbps. 3197 * When the link comes up The congestion management values are 3198 * re-calculated according to the actual link rate. 3199 */ 3200 bp->link_vars.line_speed = SPEED_10000; 3201 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); 3202 3203 /* Only the PMF sets the HW */ 3204 if (bp->port.pmf) 3205 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3206 3207 /* init Event Queue - PCI bus guarantees correct endianity*/ 3208 eq_data.base_addr.hi = U64_HI(bp->eq_mapping); 3209 eq_data.base_addr.lo = U64_LO(bp->eq_mapping); 3210 eq_data.producer = bp->eq_prod; 3211 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 3212 eq_data.sb_id = DEF_SB_ID; 3213 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); 3214 } 3215 3216 static void bnx2x_e1h_disable(struct bnx2x *bp) 3217 { 3218 int port = BP_PORT(bp); 3219 3220 bnx2x_tx_disable(bp); 3221 3222 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 3223 } 3224 3225 static void bnx2x_e1h_enable(struct bnx2x *bp) 3226 { 3227 int port = BP_PORT(bp); 3228 3229 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1); 3230 3231 /* Tx queue should be only re-enabled */ 3232 netif_tx_wake_all_queues(bp->dev); 3233 3234 /* 3235 * Should not call netif_carrier_on since it will be called if the link 3236 * is up when checking for link state 3237 */ 3238 } 3239 3240 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 3241 3242 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) 3243 { 3244 struct eth_stats_info *ether_stat = 3245 &bp->slowpath->drv_info_to_mcp.ether_stat; 3246 struct bnx2x_vlan_mac_obj *mac_obj = 3247 &bp->sp_objs->mac_obj; 3248 int i; 3249 3250 strlcpy(ether_stat->version, DRV_MODULE_VERSION, 3251 ETH_STAT_INFO_VERSION_LEN); 3252 3253 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the 3254 * mac_local field in ether_stat struct. The base address is offset by 2 3255 * bytes to account for the field being 8 bytes but a mac address is 3256 * only 6 bytes. Likewise, the stride for the get_n_elements function is 3257 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes 3258 * allocated by the ether_stat struct, so the macs will land in their 3259 * proper positions. 3260 */ 3261 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) 3262 memset(ether_stat->mac_local + i, 0, 3263 sizeof(ether_stat->mac_local[0])); 3264 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, 3265 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 3266 ether_stat->mac_local + MAC_PAD, MAC_PAD, 3267 ETH_ALEN); 3268 ether_stat->mtu_size = bp->dev->mtu; 3269 if (bp->dev->features & NETIF_F_RXCSUM) 3270 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 3271 if (bp->dev->features & NETIF_F_TSO) 3272 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 3273 ether_stat->feature_flags |= bp->common.boot_mode; 3274 3275 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; 3276 3277 ether_stat->txq_size = bp->tx_ring_size; 3278 ether_stat->rxq_size = bp->rx_ring_size; 3279 } 3280 3281 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) 3282 { 3283 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3284 struct fcoe_stats_info *fcoe_stat = 3285 &bp->slowpath->drv_info_to_mcp.fcoe_stat; 3286 3287 if (!CNIC_LOADED(bp)) 3288 return; 3289 3290 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN); 3291 3292 fcoe_stat->qos_priority = 3293 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; 3294 3295 /* insert FCoE stats from ramrod response */ 3296 if (!NO_FCOE(bp)) { 3297 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = 3298 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3299 tstorm_queue_statistics; 3300 3301 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = 3302 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3303 xstorm_queue_statistics; 3304 3305 struct fcoe_statistics_params *fw_fcoe_stat = 3306 &bp->fw_stats_data->fcoe; 3307 3308 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, 3309 fcoe_stat->rx_bytes_lo, 3310 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); 3311 3312 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3313 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, 3314 fcoe_stat->rx_bytes_lo, 3315 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); 3316 3317 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3318 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, 3319 fcoe_stat->rx_bytes_lo, 3320 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); 3321 3322 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3323 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, 3324 fcoe_stat->rx_bytes_lo, 3325 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); 3326 3327 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3328 fcoe_stat->rx_frames_lo, 3329 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); 3330 3331 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3332 fcoe_stat->rx_frames_lo, 3333 fcoe_q_tstorm_stats->rcv_ucast_pkts); 3334 3335 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3336 fcoe_stat->rx_frames_lo, 3337 fcoe_q_tstorm_stats->rcv_bcast_pkts); 3338 3339 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3340 fcoe_stat->rx_frames_lo, 3341 fcoe_q_tstorm_stats->rcv_mcast_pkts); 3342 3343 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, 3344 fcoe_stat->tx_bytes_lo, 3345 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); 3346 3347 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3348 fcoe_q_xstorm_stats->ucast_bytes_sent.hi, 3349 fcoe_stat->tx_bytes_lo, 3350 fcoe_q_xstorm_stats->ucast_bytes_sent.lo); 3351 3352 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3353 fcoe_q_xstorm_stats->bcast_bytes_sent.hi, 3354 fcoe_stat->tx_bytes_lo, 3355 fcoe_q_xstorm_stats->bcast_bytes_sent.lo); 3356 3357 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3358 fcoe_q_xstorm_stats->mcast_bytes_sent.hi, 3359 fcoe_stat->tx_bytes_lo, 3360 fcoe_q_xstorm_stats->mcast_bytes_sent.lo); 3361 3362 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3363 fcoe_stat->tx_frames_lo, 3364 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); 3365 3366 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3367 fcoe_stat->tx_frames_lo, 3368 fcoe_q_xstorm_stats->ucast_pkts_sent); 3369 3370 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3371 fcoe_stat->tx_frames_lo, 3372 fcoe_q_xstorm_stats->bcast_pkts_sent); 3373 3374 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3375 fcoe_stat->tx_frames_lo, 3376 fcoe_q_xstorm_stats->mcast_pkts_sent); 3377 } 3378 3379 /* ask L5 driver to add data to the struct */ 3380 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); 3381 } 3382 3383 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) 3384 { 3385 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3386 struct iscsi_stats_info *iscsi_stat = 3387 &bp->slowpath->drv_info_to_mcp.iscsi_stat; 3388 3389 if (!CNIC_LOADED(bp)) 3390 return; 3391 3392 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, 3393 ETH_ALEN); 3394 3395 iscsi_stat->qos_priority = 3396 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; 3397 3398 /* ask L5 driver to add data to the struct */ 3399 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); 3400 } 3401 3402 /* called due to MCP event (on pmf): 3403 * reread new bandwidth configuration 3404 * configure FW 3405 * notify others function about the change 3406 */ 3407 static void bnx2x_config_mf_bw(struct bnx2x *bp) 3408 { 3409 if (bp->link_vars.link_up) { 3410 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); 3411 bnx2x_link_sync_notify(bp); 3412 } 3413 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3414 } 3415 3416 static void bnx2x_set_mf_bw(struct bnx2x *bp) 3417 { 3418 bnx2x_config_mf_bw(bp); 3419 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 3420 } 3421 3422 static void bnx2x_handle_eee_event(struct bnx2x *bp) 3423 { 3424 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); 3425 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 3426 } 3427 3428 static void bnx2x_handle_drv_info_req(struct bnx2x *bp) 3429 { 3430 enum drv_info_opcode op_code; 3431 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); 3432 3433 /* if drv_info version supported by MFW doesn't match - send NACK */ 3434 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 3435 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3436 return; 3437 } 3438 3439 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 3440 DRV_INFO_CONTROL_OP_CODE_SHIFT; 3441 3442 memset(&bp->slowpath->drv_info_to_mcp, 0, 3443 sizeof(union drv_info_to_mcp)); 3444 3445 switch (op_code) { 3446 case ETH_STATS_OPCODE: 3447 bnx2x_drv_info_ether_stat(bp); 3448 break; 3449 case FCOE_STATS_OPCODE: 3450 bnx2x_drv_info_fcoe_stat(bp); 3451 break; 3452 case ISCSI_STATS_OPCODE: 3453 bnx2x_drv_info_iscsi_stat(bp); 3454 break; 3455 default: 3456 /* if op code isn't supported - send NACK */ 3457 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3458 return; 3459 } 3460 3461 /* if we got drv_info attn from MFW then these fields are defined in 3462 * shmem2 for sure 3463 */ 3464 SHMEM2_WR(bp, drv_info_host_addr_lo, 3465 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3466 SHMEM2_WR(bp, drv_info_host_addr_hi, 3467 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3468 3469 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); 3470 } 3471 3472 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event) 3473 { 3474 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event); 3475 3476 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 3477 3478 /* 3479 * This is the only place besides the function initialization 3480 * where the bp->flags can change so it is done without any 3481 * locks 3482 */ 3483 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 3484 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); 3485 bp->flags |= MF_FUNC_DIS; 3486 3487 bnx2x_e1h_disable(bp); 3488 } else { 3489 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); 3490 bp->flags &= ~MF_FUNC_DIS; 3491 3492 bnx2x_e1h_enable(bp); 3493 } 3494 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 3495 } 3496 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 3497 bnx2x_config_mf_bw(bp); 3498 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 3499 } 3500 3501 /* Report results to MCP */ 3502 if (dcc_event) 3503 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0); 3504 else 3505 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0); 3506 } 3507 3508 /* must be called under the spq lock */ 3509 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) 3510 { 3511 struct eth_spe *next_spe = bp->spq_prod_bd; 3512 3513 if (bp->spq_prod_bd == bp->spq_last_bd) { 3514 bp->spq_prod_bd = bp->spq; 3515 bp->spq_prod_idx = 0; 3516 DP(BNX2X_MSG_SP, "end of spq\n"); 3517 } else { 3518 bp->spq_prod_bd++; 3519 bp->spq_prod_idx++; 3520 } 3521 return next_spe; 3522 } 3523 3524 /* must be called under the spq lock */ 3525 static void bnx2x_sp_prod_update(struct bnx2x *bp) 3526 { 3527 int func = BP_FUNC(bp); 3528 3529 /* 3530 * Make sure that BD data is updated before writing the producer: 3531 * BD data is written to the memory, the producer is read from the 3532 * memory, thus we need a full memory barrier to ensure the ordering. 3533 */ 3534 mb(); 3535 3536 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), 3537 bp->spq_prod_idx); 3538 mmiowb(); 3539 } 3540 3541 /** 3542 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ 3543 * 3544 * @cmd: command to check 3545 * @cmd_type: command type 3546 */ 3547 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) 3548 { 3549 if ((cmd_type == NONE_CONNECTION_TYPE) || 3550 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 3551 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 3552 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 3553 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 3554 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 3555 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) 3556 return true; 3557 else 3558 return false; 3559 } 3560 3561 /** 3562 * bnx2x_sp_post - place a single command on an SP ring 3563 * 3564 * @bp: driver handle 3565 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 3566 * @cid: SW CID the command is related to 3567 * @data_hi: command private data address (high 32 bits) 3568 * @data_lo: command private data address (low 32 bits) 3569 * @cmd_type: command type (e.g. NONE, ETH) 3570 * 3571 * SP data is handled as if it's always an address pair, thus data fields are 3572 * not swapped to little endian in upper functions. Instead this function swaps 3573 * data as if it's two u32 fields. 3574 */ 3575 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 3576 u32 data_hi, u32 data_lo, int cmd_type) 3577 { 3578 struct eth_spe *spe; 3579 u16 type; 3580 bool common = bnx2x_is_contextless_ramrod(command, cmd_type); 3581 3582 #ifdef BNX2X_STOP_ON_ERROR 3583 if (unlikely(bp->panic)) { 3584 BNX2X_ERR("Can't post SP when there is panic\n"); 3585 return -EIO; 3586 } 3587 #endif 3588 3589 spin_lock_bh(&bp->spq_lock); 3590 3591 if (common) { 3592 if (!atomic_read(&bp->eq_spq_left)) { 3593 BNX2X_ERR("BUG! EQ ring full!\n"); 3594 spin_unlock_bh(&bp->spq_lock); 3595 bnx2x_panic(); 3596 return -EBUSY; 3597 } 3598 } else if (!atomic_read(&bp->cq_spq_left)) { 3599 BNX2X_ERR("BUG! SPQ ring full!\n"); 3600 spin_unlock_bh(&bp->spq_lock); 3601 bnx2x_panic(); 3602 return -EBUSY; 3603 } 3604 3605 spe = bnx2x_sp_get_next(bp); 3606 3607 /* CID needs port number to be encoded int it */ 3608 spe->hdr.conn_and_cmd_data = 3609 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | 3610 HW_CID(bp, cid)); 3611 3612 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; 3613 3614 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & 3615 SPE_HDR_FUNCTION_ID); 3616 3617 spe->hdr.type = cpu_to_le16(type); 3618 3619 spe->data.update_data_addr.hi = cpu_to_le32(data_hi); 3620 spe->data.update_data_addr.lo = cpu_to_le32(data_lo); 3621 3622 /* 3623 * It's ok if the actual decrement is issued towards the memory 3624 * somewhere between the spin_lock and spin_unlock. Thus no 3625 * more explicit memory barrier is needed. 3626 */ 3627 if (common) 3628 atomic_dec(&bp->eq_spq_left); 3629 else 3630 atomic_dec(&bp->cq_spq_left); 3631 3632 DP(BNX2X_MSG_SP, 3633 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", 3634 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), 3635 (u32)(U64_LO(bp->spq_mapping) + 3636 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, 3637 HW_CID(bp, cid), data_hi, data_lo, type, 3638 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); 3639 3640 bnx2x_sp_prod_update(bp); 3641 spin_unlock_bh(&bp->spq_lock); 3642 return 0; 3643 } 3644 3645 /* acquire split MCP access lock register */ 3646 static int bnx2x_acquire_alr(struct bnx2x *bp) 3647 { 3648 u32 j, val; 3649 int rc = 0; 3650 3651 might_sleep(); 3652 for (j = 0; j < 1000; j++) { 3653 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); 3654 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); 3655 if (val & MCPR_ACCESS_LOCK_LOCK) 3656 break; 3657 3658 usleep_range(5000, 10000); 3659 } 3660 if (!(val & MCPR_ACCESS_LOCK_LOCK)) { 3661 BNX2X_ERR("Cannot acquire MCP access lock register\n"); 3662 rc = -EBUSY; 3663 } 3664 3665 return rc; 3666 } 3667 3668 /* release split MCP access lock register */ 3669 static void bnx2x_release_alr(struct bnx2x *bp) 3670 { 3671 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); 3672 } 3673 3674 #define BNX2X_DEF_SB_ATT_IDX 0x0001 3675 #define BNX2X_DEF_SB_IDX 0x0002 3676 3677 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) 3678 { 3679 struct host_sp_status_block *def_sb = bp->def_status_blk; 3680 u16 rc = 0; 3681 3682 barrier(); /* status block is written to by the chip */ 3683 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 3684 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; 3685 rc |= BNX2X_DEF_SB_ATT_IDX; 3686 } 3687 3688 if (bp->def_idx != def_sb->sp_sb.running_index) { 3689 bp->def_idx = def_sb->sp_sb.running_index; 3690 rc |= BNX2X_DEF_SB_IDX; 3691 } 3692 3693 /* Do not reorder: indices reading should complete before handling */ 3694 barrier(); 3695 return rc; 3696 } 3697 3698 /* 3699 * slow path service functions 3700 */ 3701 3702 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) 3703 { 3704 int port = BP_PORT(bp); 3705 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 3706 MISC_REG_AEU_MASK_ATTN_FUNC_0; 3707 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 3708 NIG_REG_MASK_INTERRUPT_PORT0; 3709 u32 aeu_mask; 3710 u32 nig_mask = 0; 3711 u32 reg_addr; 3712 3713 if (bp->attn_state & asserted) 3714 BNX2X_ERR("IGU ERROR\n"); 3715 3716 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 3717 aeu_mask = REG_RD(bp, aeu_addr); 3718 3719 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", 3720 aeu_mask, asserted); 3721 aeu_mask &= ~(asserted & 0x3ff); 3722 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 3723 3724 REG_WR(bp, aeu_addr, aeu_mask); 3725 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 3726 3727 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 3728 bp->attn_state |= asserted; 3729 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 3730 3731 if (asserted & ATTN_HARD_WIRED_MASK) { 3732 if (asserted & ATTN_NIG_FOR_FUNC) { 3733 3734 bnx2x_acquire_phy_lock(bp); 3735 3736 /* save nig interrupt mask */ 3737 nig_mask = REG_RD(bp, nig_int_mask_addr); 3738 3739 /* If nig_mask is not set, no need to call the update 3740 * function. 3741 */ 3742 if (nig_mask) { 3743 REG_WR(bp, nig_int_mask_addr, 0); 3744 3745 bnx2x_link_attn(bp); 3746 } 3747 3748 /* handle unicore attn? */ 3749 } 3750 if (asserted & ATTN_SW_TIMER_4_FUNC) 3751 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); 3752 3753 if (asserted & GPIO_2_FUNC) 3754 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); 3755 3756 if (asserted & GPIO_3_FUNC) 3757 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); 3758 3759 if (asserted & GPIO_4_FUNC) 3760 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); 3761 3762 if (port == 0) { 3763 if (asserted & ATTN_GENERAL_ATTN_1) { 3764 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); 3765 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 3766 } 3767 if (asserted & ATTN_GENERAL_ATTN_2) { 3768 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); 3769 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 3770 } 3771 if (asserted & ATTN_GENERAL_ATTN_3) { 3772 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); 3773 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 3774 } 3775 } else { 3776 if (asserted & ATTN_GENERAL_ATTN_4) { 3777 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); 3778 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 3779 } 3780 if (asserted & ATTN_GENERAL_ATTN_5) { 3781 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); 3782 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 3783 } 3784 if (asserted & ATTN_GENERAL_ATTN_6) { 3785 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); 3786 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 3787 } 3788 } 3789 3790 } /* if hardwired */ 3791 3792 if (bp->common.int_block == INT_BLOCK_HC) 3793 reg_addr = (HC_REG_COMMAND_REG + port*32 + 3794 COMMAND_REG_ATTN_BITS_SET); 3795 else 3796 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 3797 3798 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, 3799 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 3800 REG_WR(bp, reg_addr, asserted); 3801 3802 /* now set back the mask */ 3803 if (asserted & ATTN_NIG_FOR_FUNC) { 3804 /* Verify that IGU ack through BAR was written before restoring 3805 * NIG mask. This loop should exit after 2-3 iterations max. 3806 */ 3807 if (bp->common.int_block != INT_BLOCK_HC) { 3808 u32 cnt = 0, igu_acked; 3809 do { 3810 igu_acked = REG_RD(bp, 3811 IGU_REG_ATTENTION_ACK_BITS); 3812 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 3813 (++cnt < MAX_IGU_ATTN_ACK_TO)); 3814 if (!igu_acked) 3815 DP(NETIF_MSG_HW, 3816 "Failed to verify IGU ack on time\n"); 3817 barrier(); 3818 } 3819 REG_WR(bp, nig_int_mask_addr, nig_mask); 3820 bnx2x_release_phy_lock(bp); 3821 } 3822 } 3823 3824 static void bnx2x_fan_failure(struct bnx2x *bp) 3825 { 3826 int port = BP_PORT(bp); 3827 u32 ext_phy_config; 3828 /* mark the failure */ 3829 ext_phy_config = 3830 SHMEM_RD(bp, 3831 dev_info.port_hw_config[port].external_phy_config); 3832 3833 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 3834 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 3835 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, 3836 ext_phy_config); 3837 3838 /* log the failure */ 3839 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" 3840 "Please contact OEM Support for assistance\n"); 3841 3842 /* Schedule device reset (unload) 3843 * This is due to some boards consuming sufficient power when driver is 3844 * up to overheat if fan fails. 3845 */ 3846 smp_mb__before_clear_bit(); 3847 set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state); 3848 smp_mb__after_clear_bit(); 3849 schedule_delayed_work(&bp->sp_rtnl_task, 0); 3850 } 3851 3852 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) 3853 { 3854 int port = BP_PORT(bp); 3855 int reg_offset; 3856 u32 val; 3857 3858 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 3859 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 3860 3861 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 3862 3863 val = REG_RD(bp, reg_offset); 3864 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 3865 REG_WR(bp, reg_offset, val); 3866 3867 BNX2X_ERR("SPIO5 hw attention\n"); 3868 3869 /* Fan failure attention */ 3870 bnx2x_hw_reset_phy(&bp->link_params); 3871 bnx2x_fan_failure(bp); 3872 } 3873 3874 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { 3875 bnx2x_acquire_phy_lock(bp); 3876 bnx2x_handle_module_detect_int(&bp->link_params); 3877 bnx2x_release_phy_lock(bp); 3878 } 3879 3880 if (attn & HW_INTERRUT_ASSERT_SET_0) { 3881 3882 val = REG_RD(bp, reg_offset); 3883 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 3884 REG_WR(bp, reg_offset, val); 3885 3886 BNX2X_ERR("FATAL HW block attention set0 0x%x\n", 3887 (u32)(attn & HW_INTERRUT_ASSERT_SET_0)); 3888 bnx2x_panic(); 3889 } 3890 } 3891 3892 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) 3893 { 3894 u32 val; 3895 3896 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 3897 3898 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); 3899 BNX2X_ERR("DB hw attention 0x%x\n", val); 3900 /* DORQ discard attention */ 3901 if (val & 0x2) 3902 BNX2X_ERR("FATAL error from DORQ\n"); 3903 } 3904 3905 if (attn & HW_INTERRUT_ASSERT_SET_1) { 3906 3907 int port = BP_PORT(bp); 3908 int reg_offset; 3909 3910 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 3911 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 3912 3913 val = REG_RD(bp, reg_offset); 3914 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 3915 REG_WR(bp, reg_offset, val); 3916 3917 BNX2X_ERR("FATAL HW block attention set1 0x%x\n", 3918 (u32)(attn & HW_INTERRUT_ASSERT_SET_1)); 3919 bnx2x_panic(); 3920 } 3921 } 3922 3923 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) 3924 { 3925 u32 val; 3926 3927 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 3928 3929 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); 3930 BNX2X_ERR("CFC hw attention 0x%x\n", val); 3931 /* CFC error attention */ 3932 if (val & 0x2) 3933 BNX2X_ERR("FATAL error from CFC\n"); 3934 } 3935 3936 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 3937 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); 3938 BNX2X_ERR("PXP hw attention-0 0x%x\n", val); 3939 /* RQ_USDMDP_FIFO_OVERFLOW */ 3940 if (val & 0x18000) 3941 BNX2X_ERR("FATAL error from PXP\n"); 3942 3943 if (!CHIP_IS_E1x(bp)) { 3944 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); 3945 BNX2X_ERR("PXP hw attention-1 0x%x\n", val); 3946 } 3947 } 3948 3949 if (attn & HW_INTERRUT_ASSERT_SET_2) { 3950 3951 int port = BP_PORT(bp); 3952 int reg_offset; 3953 3954 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 3955 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 3956 3957 val = REG_RD(bp, reg_offset); 3958 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 3959 REG_WR(bp, reg_offset, val); 3960 3961 BNX2X_ERR("FATAL HW block attention set2 0x%x\n", 3962 (u32)(attn & HW_INTERRUT_ASSERT_SET_2)); 3963 bnx2x_panic(); 3964 } 3965 } 3966 3967 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) 3968 { 3969 u32 val; 3970 3971 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 3972 3973 if (attn & BNX2X_PMF_LINK_ASSERT) { 3974 int func = BP_FUNC(bp); 3975 3976 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 3977 bnx2x_read_mf_cfg(bp); 3978 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, 3979 func_mf_config[BP_ABS_FUNC(bp)].config); 3980 val = SHMEM_RD(bp, 3981 func_mb[BP_FW_MB_IDX(bp)].drv_status); 3982 if (val & DRV_STATUS_DCC_EVENT_MASK) 3983 bnx2x_dcc_event(bp, 3984 (val & DRV_STATUS_DCC_EVENT_MASK)); 3985 3986 if (val & DRV_STATUS_SET_MF_BW) 3987 bnx2x_set_mf_bw(bp); 3988 3989 if (val & DRV_STATUS_DRV_INFO_REQ) 3990 bnx2x_handle_drv_info_req(bp); 3991 3992 if (val & DRV_STATUS_VF_DISABLED) 3993 bnx2x_vf_handle_flr_event(bp); 3994 3995 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) 3996 bnx2x_pmf_update(bp); 3997 3998 if (bp->port.pmf && 3999 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 4000 bp->dcbx_enabled > 0) 4001 /* start dcbx state machine */ 4002 bnx2x_dcbx_set_params(bp, 4003 BNX2X_DCBX_STATE_NEG_RECEIVED); 4004 if (val & DRV_STATUS_AFEX_EVENT_MASK) 4005 bnx2x_handle_afex_cmd(bp, 4006 val & DRV_STATUS_AFEX_EVENT_MASK); 4007 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 4008 bnx2x_handle_eee_event(bp); 4009 if (bp->link_vars.periodic_flags & 4010 PERIODIC_FLAGS_LINK_EVENT) { 4011 /* sync with link */ 4012 bnx2x_acquire_phy_lock(bp); 4013 bp->link_vars.periodic_flags &= 4014 ~PERIODIC_FLAGS_LINK_EVENT; 4015 bnx2x_release_phy_lock(bp); 4016 if (IS_MF(bp)) 4017 bnx2x_link_sync_notify(bp); 4018 bnx2x_link_report(bp); 4019 } 4020 /* Always call it here: bnx2x_link_report() will 4021 * prevent the link indication duplication. 4022 */ 4023 bnx2x__link_status_update(bp); 4024 } else if (attn & BNX2X_MC_ASSERT_BITS) { 4025 4026 BNX2X_ERR("MC assert!\n"); 4027 bnx2x_mc_assert(bp); 4028 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); 4029 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); 4030 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); 4031 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); 4032 bnx2x_panic(); 4033 4034 } else if (attn & BNX2X_MCP_ASSERT) { 4035 4036 BNX2X_ERR("MCP assert!\n"); 4037 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); 4038 bnx2x_fw_dump(bp); 4039 4040 } else 4041 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); 4042 } 4043 4044 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 4045 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); 4046 if (attn & BNX2X_GRC_TIMEOUT) { 4047 val = CHIP_IS_E1(bp) ? 0 : 4048 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); 4049 BNX2X_ERR("GRC time-out 0x%08x\n", val); 4050 } 4051 if (attn & BNX2X_GRC_RSV) { 4052 val = CHIP_IS_E1(bp) ? 0 : 4053 REG_RD(bp, MISC_REG_GRC_RSV_ATTN); 4054 BNX2X_ERR("GRC reserved 0x%08x\n", val); 4055 } 4056 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 4057 } 4058 } 4059 4060 /* 4061 * Bits map: 4062 * 0-7 - Engine0 load counter. 4063 * 8-15 - Engine1 load counter. 4064 * 16 - Engine0 RESET_IN_PROGRESS bit. 4065 * 17 - Engine1 RESET_IN_PROGRESS bit. 4066 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function 4067 * on the engine 4068 * 19 - Engine1 ONE_IS_LOADED. 4069 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 4070 * leader to complete (check for both RESET_IN_PROGRESS bits and not for 4071 * just the one belonging to its engine). 4072 * 4073 */ 4074 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 4075 4076 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff 4077 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 4078 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 4079 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 4080 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 4081 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 4082 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 4083 4084 /* 4085 * Set the GLOBAL_RESET bit. 4086 * 4087 * Should be run under rtnl lock 4088 */ 4089 void bnx2x_set_reset_global(struct bnx2x *bp) 4090 { 4091 u32 val; 4092 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4093 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4094 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); 4095 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4096 } 4097 4098 /* 4099 * Clear the GLOBAL_RESET bit. 4100 * 4101 * Should be run under rtnl lock 4102 */ 4103 static void bnx2x_clear_reset_global(struct bnx2x *bp) 4104 { 4105 u32 val; 4106 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4107 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4108 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); 4109 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4110 } 4111 4112 /* 4113 * Checks the GLOBAL_RESET bit. 4114 * 4115 * should be run under rtnl lock 4116 */ 4117 static bool bnx2x_reset_is_global(struct bnx2x *bp) 4118 { 4119 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4120 4121 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); 4122 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; 4123 } 4124 4125 /* 4126 * Clear RESET_IN_PROGRESS bit for the current engine. 4127 * 4128 * Should be run under rtnl lock 4129 */ 4130 static void bnx2x_set_reset_done(struct bnx2x *bp) 4131 { 4132 u32 val; 4133 u32 bit = BP_PATH(bp) ? 4134 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4135 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4136 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4137 4138 /* Clear the bit */ 4139 val &= ~bit; 4140 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4141 4142 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4143 } 4144 4145 /* 4146 * Set RESET_IN_PROGRESS for the current engine. 4147 * 4148 * should be run under rtnl lock 4149 */ 4150 void bnx2x_set_reset_in_progress(struct bnx2x *bp) 4151 { 4152 u32 val; 4153 u32 bit = BP_PATH(bp) ? 4154 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4155 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4156 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4157 4158 /* Set the bit */ 4159 val |= bit; 4160 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4161 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4162 } 4163 4164 /* 4165 * Checks the RESET_IN_PROGRESS bit for the given engine. 4166 * should be run under rtnl lock 4167 */ 4168 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) 4169 { 4170 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4171 u32 bit = engine ? 4172 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4173 4174 /* return false if bit is set */ 4175 return (val & bit) ? false : true; 4176 } 4177 4178 /* 4179 * set pf load for the current pf. 4180 * 4181 * should be run under rtnl lock 4182 */ 4183 void bnx2x_set_pf_load(struct bnx2x *bp) 4184 { 4185 u32 val1, val; 4186 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4187 BNX2X_PATH0_LOAD_CNT_MASK; 4188 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4189 BNX2X_PATH0_LOAD_CNT_SHIFT; 4190 4191 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4192 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4193 4194 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); 4195 4196 /* get the current counter value */ 4197 val1 = (val & mask) >> shift; 4198 4199 /* set bit of that PF */ 4200 val1 |= (1 << bp->pf_num); 4201 4202 /* clear the old value */ 4203 val &= ~mask; 4204 4205 /* set the new one */ 4206 val |= ((val1 << shift) & mask); 4207 4208 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4209 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4210 } 4211 4212 /** 4213 * bnx2x_clear_pf_load - clear pf load mark 4214 * 4215 * @bp: driver handle 4216 * 4217 * Should be run under rtnl lock. 4218 * Decrements the load counter for the current engine. Returns 4219 * whether other functions are still loaded 4220 */ 4221 bool bnx2x_clear_pf_load(struct bnx2x *bp) 4222 { 4223 u32 val1, val; 4224 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4225 BNX2X_PATH0_LOAD_CNT_MASK; 4226 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4227 BNX2X_PATH0_LOAD_CNT_SHIFT; 4228 4229 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4230 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4231 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); 4232 4233 /* get the current counter value */ 4234 val1 = (val & mask) >> shift; 4235 4236 /* clear bit of that PF */ 4237 val1 &= ~(1 << bp->pf_num); 4238 4239 /* clear the old value */ 4240 val &= ~mask; 4241 4242 /* set the new one */ 4243 val |= ((val1 << shift) & mask); 4244 4245 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4246 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4247 return val1 != 0; 4248 } 4249 4250 /* 4251 * Read the load status for the current engine. 4252 * 4253 * should be run under rtnl lock 4254 */ 4255 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) 4256 { 4257 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : 4258 BNX2X_PATH0_LOAD_CNT_MASK); 4259 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4260 BNX2X_PATH0_LOAD_CNT_SHIFT); 4261 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4262 4263 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); 4264 4265 val = (val & mask) >> shift; 4266 4267 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", 4268 engine, val); 4269 4270 return val != 0; 4271 } 4272 4273 static void _print_parity(struct bnx2x *bp, u32 reg) 4274 { 4275 pr_cont(" [0x%08x] ", REG_RD(bp, reg)); 4276 } 4277 4278 static void _print_next_block(int idx, const char *blk) 4279 { 4280 pr_cont("%s%s", idx ? ", " : "", blk); 4281 } 4282 4283 static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig, 4284 int par_num, bool print) 4285 { 4286 int i = 0; 4287 u32 cur_bit = 0; 4288 for (i = 0; sig; i++) { 4289 cur_bit = ((u32)0x1 << i); 4290 if (sig & cur_bit) { 4291 switch (cur_bit) { 4292 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 4293 if (print) { 4294 _print_next_block(par_num++, "BRB"); 4295 _print_parity(bp, 4296 BRB1_REG_BRB1_PRTY_STS); 4297 } 4298 break; 4299 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 4300 if (print) { 4301 _print_next_block(par_num++, "PARSER"); 4302 _print_parity(bp, PRS_REG_PRS_PRTY_STS); 4303 } 4304 break; 4305 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 4306 if (print) { 4307 _print_next_block(par_num++, "TSDM"); 4308 _print_parity(bp, 4309 TSDM_REG_TSDM_PRTY_STS); 4310 } 4311 break; 4312 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 4313 if (print) { 4314 _print_next_block(par_num++, 4315 "SEARCHER"); 4316 _print_parity(bp, SRC_REG_SRC_PRTY_STS); 4317 } 4318 break; 4319 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 4320 if (print) { 4321 _print_next_block(par_num++, "TCM"); 4322 _print_parity(bp, 4323 TCM_REG_TCM_PRTY_STS); 4324 } 4325 break; 4326 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 4327 if (print) { 4328 _print_next_block(par_num++, "TSEMI"); 4329 _print_parity(bp, 4330 TSEM_REG_TSEM_PRTY_STS_0); 4331 _print_parity(bp, 4332 TSEM_REG_TSEM_PRTY_STS_1); 4333 } 4334 break; 4335 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 4336 if (print) { 4337 _print_next_block(par_num++, "XPB"); 4338 _print_parity(bp, GRCBASE_XPB + 4339 PB_REG_PB_PRTY_STS); 4340 } 4341 break; 4342 } 4343 4344 /* Clear the bit */ 4345 sig &= ~cur_bit; 4346 } 4347 } 4348 4349 return par_num; 4350 } 4351 4352 static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig, 4353 int par_num, bool *global, 4354 bool print) 4355 { 4356 int i = 0; 4357 u32 cur_bit = 0; 4358 for (i = 0; sig; i++) { 4359 cur_bit = ((u32)0x1 << i); 4360 if (sig & cur_bit) { 4361 switch (cur_bit) { 4362 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 4363 if (print) { 4364 _print_next_block(par_num++, "PBF"); 4365 _print_parity(bp, PBF_REG_PBF_PRTY_STS); 4366 } 4367 break; 4368 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 4369 if (print) { 4370 _print_next_block(par_num++, "QM"); 4371 _print_parity(bp, QM_REG_QM_PRTY_STS); 4372 } 4373 break; 4374 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 4375 if (print) { 4376 _print_next_block(par_num++, "TM"); 4377 _print_parity(bp, TM_REG_TM_PRTY_STS); 4378 } 4379 break; 4380 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 4381 if (print) { 4382 _print_next_block(par_num++, "XSDM"); 4383 _print_parity(bp, 4384 XSDM_REG_XSDM_PRTY_STS); 4385 } 4386 break; 4387 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 4388 if (print) { 4389 _print_next_block(par_num++, "XCM"); 4390 _print_parity(bp, XCM_REG_XCM_PRTY_STS); 4391 } 4392 break; 4393 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 4394 if (print) { 4395 _print_next_block(par_num++, "XSEMI"); 4396 _print_parity(bp, 4397 XSEM_REG_XSEM_PRTY_STS_0); 4398 _print_parity(bp, 4399 XSEM_REG_XSEM_PRTY_STS_1); 4400 } 4401 break; 4402 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 4403 if (print) { 4404 _print_next_block(par_num++, 4405 "DOORBELLQ"); 4406 _print_parity(bp, 4407 DORQ_REG_DORQ_PRTY_STS); 4408 } 4409 break; 4410 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 4411 if (print) { 4412 _print_next_block(par_num++, "NIG"); 4413 if (CHIP_IS_E1x(bp)) { 4414 _print_parity(bp, 4415 NIG_REG_NIG_PRTY_STS); 4416 } else { 4417 _print_parity(bp, 4418 NIG_REG_NIG_PRTY_STS_0); 4419 _print_parity(bp, 4420 NIG_REG_NIG_PRTY_STS_1); 4421 } 4422 } 4423 break; 4424 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 4425 if (print) 4426 _print_next_block(par_num++, 4427 "VAUX PCI CORE"); 4428 *global = true; 4429 break; 4430 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 4431 if (print) { 4432 _print_next_block(par_num++, "DEBUG"); 4433 _print_parity(bp, DBG_REG_DBG_PRTY_STS); 4434 } 4435 break; 4436 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 4437 if (print) { 4438 _print_next_block(par_num++, "USDM"); 4439 _print_parity(bp, 4440 USDM_REG_USDM_PRTY_STS); 4441 } 4442 break; 4443 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 4444 if (print) { 4445 _print_next_block(par_num++, "UCM"); 4446 _print_parity(bp, UCM_REG_UCM_PRTY_STS); 4447 } 4448 break; 4449 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 4450 if (print) { 4451 _print_next_block(par_num++, "USEMI"); 4452 _print_parity(bp, 4453 USEM_REG_USEM_PRTY_STS_0); 4454 _print_parity(bp, 4455 USEM_REG_USEM_PRTY_STS_1); 4456 } 4457 break; 4458 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 4459 if (print) { 4460 _print_next_block(par_num++, "UPB"); 4461 _print_parity(bp, GRCBASE_UPB + 4462 PB_REG_PB_PRTY_STS); 4463 } 4464 break; 4465 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 4466 if (print) { 4467 _print_next_block(par_num++, "CSDM"); 4468 _print_parity(bp, 4469 CSDM_REG_CSDM_PRTY_STS); 4470 } 4471 break; 4472 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 4473 if (print) { 4474 _print_next_block(par_num++, "CCM"); 4475 _print_parity(bp, CCM_REG_CCM_PRTY_STS); 4476 } 4477 break; 4478 } 4479 4480 /* Clear the bit */ 4481 sig &= ~cur_bit; 4482 } 4483 } 4484 4485 return par_num; 4486 } 4487 4488 static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig, 4489 int par_num, bool print) 4490 { 4491 int i = 0; 4492 u32 cur_bit = 0; 4493 for (i = 0; sig; i++) { 4494 cur_bit = ((u32)0x1 << i); 4495 if (sig & cur_bit) { 4496 switch (cur_bit) { 4497 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 4498 if (print) { 4499 _print_next_block(par_num++, "CSEMI"); 4500 _print_parity(bp, 4501 CSEM_REG_CSEM_PRTY_STS_0); 4502 _print_parity(bp, 4503 CSEM_REG_CSEM_PRTY_STS_1); 4504 } 4505 break; 4506 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 4507 if (print) { 4508 _print_next_block(par_num++, "PXP"); 4509 _print_parity(bp, PXP_REG_PXP_PRTY_STS); 4510 _print_parity(bp, 4511 PXP2_REG_PXP2_PRTY_STS_0); 4512 _print_parity(bp, 4513 PXP2_REG_PXP2_PRTY_STS_1); 4514 } 4515 break; 4516 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 4517 if (print) 4518 _print_next_block(par_num++, 4519 "PXPPCICLOCKCLIENT"); 4520 break; 4521 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 4522 if (print) { 4523 _print_next_block(par_num++, "CFC"); 4524 _print_parity(bp, 4525 CFC_REG_CFC_PRTY_STS); 4526 } 4527 break; 4528 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 4529 if (print) { 4530 _print_next_block(par_num++, "CDU"); 4531 _print_parity(bp, CDU_REG_CDU_PRTY_STS); 4532 } 4533 break; 4534 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 4535 if (print) { 4536 _print_next_block(par_num++, "DMAE"); 4537 _print_parity(bp, 4538 DMAE_REG_DMAE_PRTY_STS); 4539 } 4540 break; 4541 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 4542 if (print) { 4543 _print_next_block(par_num++, "IGU"); 4544 if (CHIP_IS_E1x(bp)) 4545 _print_parity(bp, 4546 HC_REG_HC_PRTY_STS); 4547 else 4548 _print_parity(bp, 4549 IGU_REG_IGU_PRTY_STS); 4550 } 4551 break; 4552 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 4553 if (print) { 4554 _print_next_block(par_num++, "MISC"); 4555 _print_parity(bp, 4556 MISC_REG_MISC_PRTY_STS); 4557 } 4558 break; 4559 } 4560 4561 /* Clear the bit */ 4562 sig &= ~cur_bit; 4563 } 4564 } 4565 4566 return par_num; 4567 } 4568 4569 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num, 4570 bool *global, bool print) 4571 { 4572 int i = 0; 4573 u32 cur_bit = 0; 4574 for (i = 0; sig; i++) { 4575 cur_bit = ((u32)0x1 << i); 4576 if (sig & cur_bit) { 4577 switch (cur_bit) { 4578 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 4579 if (print) 4580 _print_next_block(par_num++, "MCP ROM"); 4581 *global = true; 4582 break; 4583 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 4584 if (print) 4585 _print_next_block(par_num++, 4586 "MCP UMP RX"); 4587 *global = true; 4588 break; 4589 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 4590 if (print) 4591 _print_next_block(par_num++, 4592 "MCP UMP TX"); 4593 *global = true; 4594 break; 4595 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 4596 if (print) 4597 _print_next_block(par_num++, 4598 "MCP SCPAD"); 4599 *global = true; 4600 break; 4601 } 4602 4603 /* Clear the bit */ 4604 sig &= ~cur_bit; 4605 } 4606 } 4607 4608 return par_num; 4609 } 4610 4611 static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig, 4612 int par_num, bool print) 4613 { 4614 int i = 0; 4615 u32 cur_bit = 0; 4616 for (i = 0; sig; i++) { 4617 cur_bit = ((u32)0x1 << i); 4618 if (sig & cur_bit) { 4619 switch (cur_bit) { 4620 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 4621 if (print) { 4622 _print_next_block(par_num++, "PGLUE_B"); 4623 _print_parity(bp, 4624 PGLUE_B_REG_PGLUE_B_PRTY_STS); 4625 } 4626 break; 4627 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 4628 if (print) { 4629 _print_next_block(par_num++, "ATC"); 4630 _print_parity(bp, 4631 ATC_REG_ATC_PRTY_STS); 4632 } 4633 break; 4634 } 4635 4636 /* Clear the bit */ 4637 sig &= ~cur_bit; 4638 } 4639 } 4640 4641 return par_num; 4642 } 4643 4644 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, 4645 u32 *sig) 4646 { 4647 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 4648 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4649 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4650 (sig[3] & HW_PRTY_ASSERT_SET_3) || 4651 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 4652 int par_num = 0; 4653 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" 4654 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 4655 sig[0] & HW_PRTY_ASSERT_SET_0, 4656 sig[1] & HW_PRTY_ASSERT_SET_1, 4657 sig[2] & HW_PRTY_ASSERT_SET_2, 4658 sig[3] & HW_PRTY_ASSERT_SET_3, 4659 sig[4] & HW_PRTY_ASSERT_SET_4); 4660 if (print) 4661 netdev_err(bp->dev, 4662 "Parity errors detected in blocks: "); 4663 par_num = bnx2x_check_blocks_with_parity0(bp, 4664 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print); 4665 par_num = bnx2x_check_blocks_with_parity1(bp, 4666 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print); 4667 par_num = bnx2x_check_blocks_with_parity2(bp, 4668 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print); 4669 par_num = bnx2x_check_blocks_with_parity3( 4670 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print); 4671 par_num = bnx2x_check_blocks_with_parity4(bp, 4672 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print); 4673 4674 if (print) 4675 pr_cont("\n"); 4676 4677 return true; 4678 } else 4679 return false; 4680 } 4681 4682 /** 4683 * bnx2x_chk_parity_attn - checks for parity attentions. 4684 * 4685 * @bp: driver handle 4686 * @global: true if there was a global attention 4687 * @print: show parity attention in syslog 4688 */ 4689 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) 4690 { 4691 struct attn_route attn = { {0} }; 4692 int port = BP_PORT(bp); 4693 4694 attn.sig[0] = REG_RD(bp, 4695 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 4696 port*4); 4697 attn.sig[1] = REG_RD(bp, 4698 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + 4699 port*4); 4700 attn.sig[2] = REG_RD(bp, 4701 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + 4702 port*4); 4703 attn.sig[3] = REG_RD(bp, 4704 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + 4705 port*4); 4706 4707 if (!CHIP_IS_E1x(bp)) 4708 attn.sig[4] = REG_RD(bp, 4709 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + 4710 port*4); 4711 4712 return bnx2x_parity_attn(bp, global, print, attn.sig); 4713 } 4714 4715 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) 4716 { 4717 u32 val; 4718 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 4719 4720 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 4721 BNX2X_ERR("PGLUE hw attention 0x%x\n", val); 4722 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 4723 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 4724 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 4725 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 4726 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 4727 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 4728 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 4729 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 4730 if (val & 4731 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 4732 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 4733 if (val & 4734 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 4735 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 4736 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 4737 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 4738 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 4739 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 4740 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 4741 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 4742 } 4743 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 4744 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); 4745 BNX2X_ERR("ATC hw attention 0x%x\n", val); 4746 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 4747 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 4748 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 4749 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 4750 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 4751 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 4752 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 4753 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 4754 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 4755 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 4756 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 4757 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 4758 } 4759 4760 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 4761 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 4762 BNX2X_ERR("FATAL parity attention set4 0x%x\n", 4763 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 4764 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 4765 } 4766 } 4767 4768 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) 4769 { 4770 struct attn_route attn, *group_mask; 4771 int port = BP_PORT(bp); 4772 int index; 4773 u32 reg_addr; 4774 u32 val; 4775 u32 aeu_mask; 4776 bool global = false; 4777 4778 /* need to take HW lock because MCP or other port might also 4779 try to handle this event */ 4780 bnx2x_acquire_alr(bp); 4781 4782 if (bnx2x_chk_parity_attn(bp, &global, true)) { 4783 #ifndef BNX2X_STOP_ON_ERROR 4784 bp->recovery_state = BNX2X_RECOVERY_INIT; 4785 schedule_delayed_work(&bp->sp_rtnl_task, 0); 4786 /* Disable HW interrupts */ 4787 bnx2x_int_disable(bp); 4788 /* In case of parity errors don't handle attentions so that 4789 * other function would "see" parity errors. 4790 */ 4791 #else 4792 bnx2x_panic(); 4793 #endif 4794 bnx2x_release_alr(bp); 4795 return; 4796 } 4797 4798 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 4799 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 4800 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 4801 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 4802 if (!CHIP_IS_E1x(bp)) 4803 attn.sig[4] = 4804 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 4805 else 4806 attn.sig[4] = 0; 4807 4808 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", 4809 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 4810 4811 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 4812 if (deasserted & (1 << index)) { 4813 group_mask = &bp->attn_group[index]; 4814 4815 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", 4816 index, 4817 group_mask->sig[0], group_mask->sig[1], 4818 group_mask->sig[2], group_mask->sig[3], 4819 group_mask->sig[4]); 4820 4821 bnx2x_attn_int_deasserted4(bp, 4822 attn.sig[4] & group_mask->sig[4]); 4823 bnx2x_attn_int_deasserted3(bp, 4824 attn.sig[3] & group_mask->sig[3]); 4825 bnx2x_attn_int_deasserted1(bp, 4826 attn.sig[1] & group_mask->sig[1]); 4827 bnx2x_attn_int_deasserted2(bp, 4828 attn.sig[2] & group_mask->sig[2]); 4829 bnx2x_attn_int_deasserted0(bp, 4830 attn.sig[0] & group_mask->sig[0]); 4831 } 4832 } 4833 4834 bnx2x_release_alr(bp); 4835 4836 if (bp->common.int_block == INT_BLOCK_HC) 4837 reg_addr = (HC_REG_COMMAND_REG + port*32 + 4838 COMMAND_REG_ATTN_BITS_CLR); 4839 else 4840 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 4841 4842 val = ~deasserted; 4843 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, 4844 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 4845 REG_WR(bp, reg_addr, val); 4846 4847 if (~bp->attn_state & deasserted) 4848 BNX2X_ERR("IGU ERROR\n"); 4849 4850 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4851 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4852 4853 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4854 aeu_mask = REG_RD(bp, reg_addr); 4855 4856 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", 4857 aeu_mask, deasserted); 4858 aeu_mask |= (deasserted & 0x3ff); 4859 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 4860 4861 REG_WR(bp, reg_addr, aeu_mask); 4862 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4863 4864 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 4865 bp->attn_state &= ~deasserted; 4866 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 4867 } 4868 4869 static void bnx2x_attn_int(struct bnx2x *bp) 4870 { 4871 /* read local copy of bits */ 4872 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. 4873 attn_bits); 4874 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. 4875 attn_bits_ack); 4876 u32 attn_state = bp->attn_state; 4877 4878 /* look for changed bits */ 4879 u32 asserted = attn_bits & ~attn_ack & ~attn_state; 4880 u32 deasserted = ~attn_bits & attn_ack & attn_state; 4881 4882 DP(NETIF_MSG_HW, 4883 "attn_bits %x attn_ack %x asserted %x deasserted %x\n", 4884 attn_bits, attn_ack, asserted, deasserted); 4885 4886 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) 4887 BNX2X_ERR("BAD attention state\n"); 4888 4889 /* handle bits that were raised */ 4890 if (asserted) 4891 bnx2x_attn_int_asserted(bp, asserted); 4892 4893 if (deasserted) 4894 bnx2x_attn_int_deasserted(bp, deasserted); 4895 } 4896 4897 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, 4898 u16 index, u8 op, u8 update) 4899 { 4900 u32 igu_addr = bp->igu_base_addr; 4901 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 4902 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, 4903 igu_addr); 4904 } 4905 4906 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) 4907 { 4908 /* No memory barriers */ 4909 storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); 4910 mmiowb(); /* keep prod updates ordered */ 4911 } 4912 4913 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, 4914 union event_ring_elem *elem) 4915 { 4916 u8 err = elem->message.error; 4917 4918 if (!bp->cnic_eth_dev.starting_cid || 4919 (cid < bp->cnic_eth_dev.starting_cid && 4920 cid != bp->cnic_eth_dev.iscsi_l2_cid)) 4921 return 1; 4922 4923 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); 4924 4925 if (unlikely(err)) { 4926 4927 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", 4928 cid); 4929 bnx2x_panic_dump(bp, false); 4930 } 4931 bnx2x_cnic_cfc_comp(bp, cid, err); 4932 return 0; 4933 } 4934 4935 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) 4936 { 4937 struct bnx2x_mcast_ramrod_params rparam; 4938 int rc; 4939 4940 memset(&rparam, 0, sizeof(rparam)); 4941 4942 rparam.mcast_obj = &bp->mcast_obj; 4943 4944 netif_addr_lock_bh(bp->dev); 4945 4946 /* Clear pending state for the last command */ 4947 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); 4948 4949 /* If there are pending mcast commands - send them */ 4950 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { 4951 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 4952 if (rc < 0) 4953 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 4954 rc); 4955 } 4956 4957 netif_addr_unlock_bh(bp->dev); 4958 } 4959 4960 static void bnx2x_handle_classification_eqe(struct bnx2x *bp, 4961 union event_ring_elem *elem) 4962 { 4963 unsigned long ramrod_flags = 0; 4964 int rc = 0; 4965 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK; 4966 struct bnx2x_vlan_mac_obj *vlan_mac_obj; 4967 4968 /* Always push next commands out, don't wait here */ 4969 __set_bit(RAMROD_CONT, &ramrod_flags); 4970 4971 switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo) 4972 >> BNX2X_SWCID_SHIFT) { 4973 case BNX2X_FILTER_MAC_PENDING: 4974 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); 4975 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) 4976 vlan_mac_obj = &bp->iscsi_l2_mac_obj; 4977 else 4978 vlan_mac_obj = &bp->sp_objs[cid].mac_obj; 4979 4980 break; 4981 case BNX2X_FILTER_MCAST_PENDING: 4982 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); 4983 /* This is only relevant for 57710 where multicast MACs are 4984 * configured as unicast MACs using the same ramrod. 4985 */ 4986 bnx2x_handle_mcast_eqe(bp); 4987 return; 4988 default: 4989 BNX2X_ERR("Unsupported classification command: %d\n", 4990 elem->message.data.eth_event.echo); 4991 return; 4992 } 4993 4994 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); 4995 4996 if (rc < 0) 4997 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 4998 else if (rc > 0) 4999 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); 5000 } 5001 5002 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); 5003 5004 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) 5005 { 5006 netif_addr_lock_bh(bp->dev); 5007 5008 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5009 5010 /* Send rx_mode command again if was requested */ 5011 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) 5012 bnx2x_set_storm_rx_mode(bp); 5013 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, 5014 &bp->sp_state)) 5015 bnx2x_set_iscsi_eth_rx_mode(bp, true); 5016 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, 5017 &bp->sp_state)) 5018 bnx2x_set_iscsi_eth_rx_mode(bp, false); 5019 5020 netif_addr_unlock_bh(bp->dev); 5021 } 5022 5023 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, 5024 union event_ring_elem *elem) 5025 { 5026 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { 5027 DP(BNX2X_MSG_SP, 5028 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", 5029 elem->message.data.vif_list_event.func_bit_map); 5030 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, 5031 elem->message.data.vif_list_event.func_bit_map); 5032 } else if (elem->message.data.vif_list_event.echo == 5033 VIF_LIST_RULE_SET) { 5034 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); 5035 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); 5036 } 5037 } 5038 5039 /* called with rtnl_lock */ 5040 static void bnx2x_after_function_update(struct bnx2x *bp) 5041 { 5042 int q, rc; 5043 struct bnx2x_fastpath *fp; 5044 struct bnx2x_queue_state_params queue_params = {NULL}; 5045 struct bnx2x_queue_update_params *q_update_params = 5046 &queue_params.params.update; 5047 5048 /* Send Q update command with afex vlan removal values for all Qs */ 5049 queue_params.cmd = BNX2X_Q_CMD_UPDATE; 5050 5051 /* set silent vlan removal values according to vlan mode */ 5052 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 5053 &q_update_params->update_flags); 5054 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 5055 &q_update_params->update_flags); 5056 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5057 5058 /* in access mode mark mask and value are 0 to strip all vlans */ 5059 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { 5060 q_update_params->silent_removal_value = 0; 5061 q_update_params->silent_removal_mask = 0; 5062 } else { 5063 q_update_params->silent_removal_value = 5064 (bp->afex_def_vlan_tag & VLAN_VID_MASK); 5065 q_update_params->silent_removal_mask = VLAN_VID_MASK; 5066 } 5067 5068 for_each_eth_queue(bp, q) { 5069 /* Set the appropriate Queue object */ 5070 fp = &bp->fp[q]; 5071 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5072 5073 /* send the ramrod */ 5074 rc = bnx2x_queue_state_change(bp, &queue_params); 5075 if (rc < 0) 5076 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5077 q); 5078 } 5079 5080 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { 5081 fp = &bp->fp[FCOE_IDX(bp)]; 5082 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5083 5084 /* clear pending completion bit */ 5085 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5086 5087 /* mark latest Q bit */ 5088 smp_mb__before_clear_bit(); 5089 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 5090 smp_mb__after_clear_bit(); 5091 5092 /* send Q update ramrod for FCoE Q */ 5093 rc = bnx2x_queue_state_change(bp, &queue_params); 5094 if (rc < 0) 5095 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5096 q); 5097 } else { 5098 /* If no FCoE ring - ACK MCP now */ 5099 bnx2x_link_report(bp); 5100 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5101 } 5102 } 5103 5104 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( 5105 struct bnx2x *bp, u32 cid) 5106 { 5107 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); 5108 5109 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) 5110 return &bnx2x_fcoe_sp_obj(bp, q_obj); 5111 else 5112 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; 5113 } 5114 5115 static void bnx2x_eq_int(struct bnx2x *bp) 5116 { 5117 u16 hw_cons, sw_cons, sw_prod; 5118 union event_ring_elem *elem; 5119 u8 echo; 5120 u32 cid; 5121 u8 opcode; 5122 int rc, spqe_cnt = 0; 5123 struct bnx2x_queue_sp_obj *q_obj; 5124 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; 5125 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; 5126 5127 hw_cons = le16_to_cpu(*bp->eq_cons_sb); 5128 5129 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. 5130 * when we get the next-page we need to adjust so the loop 5131 * condition below will be met. The next element is the size of a 5132 * regular element and hence incrementing by 1 5133 */ 5134 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) 5135 hw_cons++; 5136 5137 /* This function may never run in parallel with itself for a 5138 * specific bp, thus there is no need in "paired" read memory 5139 * barrier here. 5140 */ 5141 sw_cons = bp->eq_cons; 5142 sw_prod = bp->eq_prod; 5143 5144 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", 5145 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); 5146 5147 for (; sw_cons != hw_cons; 5148 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 5149 5150 elem = &bp->eq_ring[EQ_DESC(sw_cons)]; 5151 5152 rc = bnx2x_iov_eq_sp_event(bp, elem); 5153 if (!rc) { 5154 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", 5155 rc); 5156 goto next_spqe; 5157 } 5158 5159 /* elem CID originates from FW; actually LE */ 5160 cid = SW_CID((__force __le32) 5161 elem->message.data.cfc_del_event.cid); 5162 opcode = elem->message.opcode; 5163 5164 /* handle eq element */ 5165 switch (opcode) { 5166 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 5167 DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n"); 5168 bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event); 5169 continue; 5170 5171 case EVENT_RING_OPCODE_STAT_QUERY: 5172 DP(BNX2X_MSG_SP | BNX2X_MSG_STATS, 5173 "got statistics comp event %d\n", 5174 bp->stats_comp++); 5175 /* nothing to do with stats comp */ 5176 goto next_spqe; 5177 5178 case EVENT_RING_OPCODE_CFC_DEL: 5179 /* handle according to cid range */ 5180 /* 5181 * we may want to verify here that the bp state is 5182 * HALTING 5183 */ 5184 DP(BNX2X_MSG_SP, 5185 "got delete ramrod for MULTI[%d]\n", cid); 5186 5187 if (CNIC_LOADED(bp) && 5188 !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) 5189 goto next_spqe; 5190 5191 q_obj = bnx2x_cid_to_q_obj(bp, cid); 5192 5193 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) 5194 break; 5195 5196 goto next_spqe; 5197 5198 case EVENT_RING_OPCODE_STOP_TRAFFIC: 5199 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); 5200 if (f_obj->complete_cmd(bp, f_obj, 5201 BNX2X_F_CMD_TX_STOP)) 5202 break; 5203 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); 5204 goto next_spqe; 5205 5206 case EVENT_RING_OPCODE_START_TRAFFIC: 5207 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); 5208 if (f_obj->complete_cmd(bp, f_obj, 5209 BNX2X_F_CMD_TX_START)) 5210 break; 5211 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); 5212 goto next_spqe; 5213 5214 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 5215 echo = elem->message.data.function_update_event.echo; 5216 if (echo == SWITCH_UPDATE) { 5217 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5218 "got FUNC_SWITCH_UPDATE ramrod\n"); 5219 if (f_obj->complete_cmd( 5220 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) 5221 break; 5222 5223 } else { 5224 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, 5225 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 5226 f_obj->complete_cmd(bp, f_obj, 5227 BNX2X_F_CMD_AFEX_UPDATE); 5228 5229 /* We will perform the Queues update from 5230 * sp_rtnl task as all Queue SP operations 5231 * should run under rtnl_lock. 5232 */ 5233 smp_mb__before_clear_bit(); 5234 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, 5235 &bp->sp_rtnl_state); 5236 smp_mb__after_clear_bit(); 5237 5238 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5239 } 5240 5241 goto next_spqe; 5242 5243 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 5244 f_obj->complete_cmd(bp, f_obj, 5245 BNX2X_F_CMD_AFEX_VIFLISTS); 5246 bnx2x_after_afex_vif_lists(bp, elem); 5247 goto next_spqe; 5248 case EVENT_RING_OPCODE_FUNCTION_START: 5249 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5250 "got FUNC_START ramrod\n"); 5251 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) 5252 break; 5253 5254 goto next_spqe; 5255 5256 case EVENT_RING_OPCODE_FUNCTION_STOP: 5257 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5258 "got FUNC_STOP ramrod\n"); 5259 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) 5260 break; 5261 5262 goto next_spqe; 5263 } 5264 5265 switch (opcode | bp->state) { 5266 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5267 BNX2X_STATE_OPEN): 5268 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5269 BNX2X_STATE_OPENING_WAIT4_PORT): 5270 cid = elem->message.data.eth_event.echo & 5271 BNX2X_SWCID_MASK; 5272 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", 5273 cid); 5274 rss_raw->clear_pending(rss_raw); 5275 break; 5276 5277 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): 5278 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): 5279 case (EVENT_RING_OPCODE_SET_MAC | 5280 BNX2X_STATE_CLOSING_WAIT4_HALT): 5281 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5282 BNX2X_STATE_OPEN): 5283 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5284 BNX2X_STATE_DIAG): 5285 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5286 BNX2X_STATE_CLOSING_WAIT4_HALT): 5287 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n"); 5288 bnx2x_handle_classification_eqe(bp, elem); 5289 break; 5290 5291 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5292 BNX2X_STATE_OPEN): 5293 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5294 BNX2X_STATE_DIAG): 5295 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5296 BNX2X_STATE_CLOSING_WAIT4_HALT): 5297 DP(BNX2X_MSG_SP, "got mcast ramrod\n"); 5298 bnx2x_handle_mcast_eqe(bp); 5299 break; 5300 5301 case (EVENT_RING_OPCODE_FILTERS_RULES | 5302 BNX2X_STATE_OPEN): 5303 case (EVENT_RING_OPCODE_FILTERS_RULES | 5304 BNX2X_STATE_DIAG): 5305 case (EVENT_RING_OPCODE_FILTERS_RULES | 5306 BNX2X_STATE_CLOSING_WAIT4_HALT): 5307 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); 5308 bnx2x_handle_rx_mode_eqe(bp); 5309 break; 5310 default: 5311 /* unknown event log error and continue */ 5312 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", 5313 elem->message.opcode, bp->state); 5314 } 5315 next_spqe: 5316 spqe_cnt++; 5317 } /* for */ 5318 5319 smp_mb__before_atomic_inc(); 5320 atomic_add(spqe_cnt, &bp->eq_spq_left); 5321 5322 bp->eq_cons = sw_cons; 5323 bp->eq_prod = sw_prod; 5324 /* Make sure that above mem writes were issued towards the memory */ 5325 smp_wmb(); 5326 5327 /* update producer */ 5328 bnx2x_update_eq_prod(bp, bp->eq_prod); 5329 } 5330 5331 static void bnx2x_sp_task(struct work_struct *work) 5332 { 5333 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); 5334 5335 DP(BNX2X_MSG_SP, "sp task invoked\n"); 5336 5337 /* make sure the atomic interrupt_occurred has been written */ 5338 smp_rmb(); 5339 if (atomic_read(&bp->interrupt_occurred)) { 5340 5341 /* what work needs to be performed? */ 5342 u16 status = bnx2x_update_dsb_idx(bp); 5343 5344 DP(BNX2X_MSG_SP, "status %x\n", status); 5345 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); 5346 atomic_set(&bp->interrupt_occurred, 0); 5347 5348 /* HW attentions */ 5349 if (status & BNX2X_DEF_SB_ATT_IDX) { 5350 bnx2x_attn_int(bp); 5351 status &= ~BNX2X_DEF_SB_ATT_IDX; 5352 } 5353 5354 /* SP events: STAT_QUERY and others */ 5355 if (status & BNX2X_DEF_SB_IDX) { 5356 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 5357 5358 if (FCOE_INIT(bp) && 5359 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 5360 /* Prevent local bottom-halves from running as 5361 * we are going to change the local NAPI list. 5362 */ 5363 local_bh_disable(); 5364 napi_schedule(&bnx2x_fcoe(bp, napi)); 5365 local_bh_enable(); 5366 } 5367 5368 /* Handle EQ completions */ 5369 bnx2x_eq_int(bp); 5370 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 5371 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); 5372 5373 status &= ~BNX2X_DEF_SB_IDX; 5374 } 5375 5376 /* if status is non zero then perhaps something went wrong */ 5377 if (unlikely(status)) 5378 DP(BNX2X_MSG_SP, 5379 "got an unknown interrupt! (status 0x%x)\n", status); 5380 5381 /* ack status block only if something was actually handled */ 5382 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 5383 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); 5384 } 5385 5386 /* must be called after the EQ processing (since eq leads to sriov 5387 * ramrod completion flows). 5388 * This flow may have been scheduled by the arrival of a ramrod 5389 * completion, or by the sriov code rescheduling itself. 5390 */ 5391 bnx2x_iov_sp_task(bp); 5392 5393 /* afex - poll to check if VIFSET_ACK should be sent to MFW */ 5394 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, 5395 &bp->sp_state)) { 5396 bnx2x_link_report(bp); 5397 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5398 } 5399 } 5400 5401 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) 5402 { 5403 struct net_device *dev = dev_instance; 5404 struct bnx2x *bp = netdev_priv(dev); 5405 5406 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, 5407 IGU_INT_DISABLE, 0); 5408 5409 #ifdef BNX2X_STOP_ON_ERROR 5410 if (unlikely(bp->panic)) 5411 return IRQ_HANDLED; 5412 #endif 5413 5414 if (CNIC_LOADED(bp)) { 5415 struct cnic_ops *c_ops; 5416 5417 rcu_read_lock(); 5418 c_ops = rcu_dereference(bp->cnic_ops); 5419 if (c_ops) 5420 c_ops->cnic_handler(bp->cnic_data, NULL); 5421 rcu_read_unlock(); 5422 } 5423 5424 /* schedule sp task to perform default status block work, ack 5425 * attentions and enable interrupts. 5426 */ 5427 bnx2x_schedule_sp_task(bp); 5428 5429 return IRQ_HANDLED; 5430 } 5431 5432 /* end of slow path */ 5433 5434 void bnx2x_drv_pulse(struct bnx2x *bp) 5435 { 5436 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, 5437 bp->fw_drv_pulse_wr_seq); 5438 } 5439 5440 static void bnx2x_timer(unsigned long data) 5441 { 5442 struct bnx2x *bp = (struct bnx2x *) data; 5443 5444 if (!netif_running(bp->dev)) 5445 return; 5446 5447 if (IS_PF(bp) && 5448 !BP_NOMCP(bp)) { 5449 int mb_idx = BP_FW_MB_IDX(bp); 5450 u32 drv_pulse; 5451 u32 mcp_pulse; 5452 5453 ++bp->fw_drv_pulse_wr_seq; 5454 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 5455 /* TBD - add SYSTEM_TIME */ 5456 drv_pulse = bp->fw_drv_pulse_wr_seq; 5457 bnx2x_drv_pulse(bp); 5458 5459 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & 5460 MCP_PULSE_SEQ_MASK); 5461 /* The delta between driver pulse and mcp response 5462 * should be 1 (before mcp response) or 0 (after mcp response) 5463 */ 5464 if ((drv_pulse != mcp_pulse) && 5465 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 5466 /* someone lost a heartbeat... */ 5467 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 5468 drv_pulse, mcp_pulse); 5469 } 5470 } 5471 5472 if (bp->state == BNX2X_STATE_OPEN) 5473 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); 5474 5475 /* sample pf vf bulletin board for new posts from pf */ 5476 if (IS_VF(bp)) 5477 bnx2x_timer_sriov(bp); 5478 5479 mod_timer(&bp->timer, jiffies + bp->current_interval); 5480 } 5481 5482 /* end of Statistics */ 5483 5484 /* nic init */ 5485 5486 /* 5487 * nic init service functions 5488 */ 5489 5490 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) 5491 { 5492 u32 i; 5493 if (!(len%4) && !(addr%4)) 5494 for (i = 0; i < len; i += 4) 5495 REG_WR(bp, addr + i, fill); 5496 else 5497 for (i = 0; i < len; i++) 5498 REG_WR8(bp, addr + i, fill); 5499 } 5500 5501 /* helper: writes FP SP data to FW - data_size in dwords */ 5502 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, 5503 int fw_sb_id, 5504 u32 *sb_data_p, 5505 u32 data_size) 5506 { 5507 int index; 5508 for (index = 0; index < data_size; index++) 5509 REG_WR(bp, BAR_CSTRORM_INTMEM + 5510 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 5511 sizeof(u32)*index, 5512 *(sb_data_p + index)); 5513 } 5514 5515 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) 5516 { 5517 u32 *sb_data_p; 5518 u32 data_size = 0; 5519 struct hc_status_block_data_e2 sb_data_e2; 5520 struct hc_status_block_data_e1x sb_data_e1x; 5521 5522 /* disable the function first */ 5523 if (!CHIP_IS_E1x(bp)) { 5524 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5525 sb_data_e2.common.state = SB_DISABLED; 5526 sb_data_e2.common.p_func.vf_valid = false; 5527 sb_data_p = (u32 *)&sb_data_e2; 5528 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5529 } else { 5530 memset(&sb_data_e1x, 0, 5531 sizeof(struct hc_status_block_data_e1x)); 5532 sb_data_e1x.common.state = SB_DISABLED; 5533 sb_data_e1x.common.p_func.vf_valid = false; 5534 sb_data_p = (u32 *)&sb_data_e1x; 5535 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5536 } 5537 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5538 5539 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5540 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, 5541 CSTORM_STATUS_BLOCK_SIZE); 5542 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5543 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, 5544 CSTORM_SYNC_BLOCK_SIZE); 5545 } 5546 5547 /* helper: writes SP SB data to FW */ 5548 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, 5549 struct hc_sp_status_block_data *sp_sb_data) 5550 { 5551 int func = BP_FUNC(bp); 5552 int i; 5553 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 5554 REG_WR(bp, BAR_CSTRORM_INTMEM + 5555 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 5556 i*sizeof(u32), 5557 *((u32 *)sp_sb_data + i)); 5558 } 5559 5560 static void bnx2x_zero_sp_sb(struct bnx2x *bp) 5561 { 5562 int func = BP_FUNC(bp); 5563 struct hc_sp_status_block_data sp_sb_data; 5564 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5565 5566 sp_sb_data.state = SB_DISABLED; 5567 sp_sb_data.p_func.vf_valid = false; 5568 5569 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5570 5571 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5572 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, 5573 CSTORM_SP_STATUS_BLOCK_SIZE); 5574 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5575 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, 5576 CSTORM_SP_SYNC_BLOCK_SIZE); 5577 } 5578 5579 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 5580 int igu_sb_id, int igu_seg_id) 5581 { 5582 hc_sm->igu_sb_id = igu_sb_id; 5583 hc_sm->igu_seg_id = igu_seg_id; 5584 hc_sm->timer_value = 0xFF; 5585 hc_sm->time_to_expire = 0xFFFFFFFF; 5586 } 5587 5588 /* allocates state machine ids. */ 5589 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) 5590 { 5591 /* zero out state machine indices */ 5592 /* rx indices */ 5593 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5594 5595 /* tx indices */ 5596 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5597 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 5598 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 5599 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 5600 5601 /* map indices */ 5602 /* rx indices */ 5603 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 5604 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5605 5606 /* tx indices */ 5607 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 5608 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5609 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 5610 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5611 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 5612 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5613 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 5614 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5615 } 5616 5617 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 5618 u8 vf_valid, int fw_sb_id, int igu_sb_id) 5619 { 5620 int igu_seg_id; 5621 5622 struct hc_status_block_data_e2 sb_data_e2; 5623 struct hc_status_block_data_e1x sb_data_e1x; 5624 struct hc_status_block_sm *hc_sm_p; 5625 int data_size; 5626 u32 *sb_data_p; 5627 5628 if (CHIP_INT_MODE_IS_BC(bp)) 5629 igu_seg_id = HC_SEG_ACCESS_NORM; 5630 else 5631 igu_seg_id = IGU_SEG_ACCESS_NORM; 5632 5633 bnx2x_zero_fp_sb(bp, fw_sb_id); 5634 5635 if (!CHIP_IS_E1x(bp)) { 5636 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5637 sb_data_e2.common.state = SB_ENABLED; 5638 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); 5639 sb_data_e2.common.p_func.vf_id = vfid; 5640 sb_data_e2.common.p_func.vf_valid = vf_valid; 5641 sb_data_e2.common.p_func.vnic_id = BP_VN(bp); 5642 sb_data_e2.common.same_igu_sb_1b = true; 5643 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); 5644 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); 5645 hc_sm_p = sb_data_e2.common.state_machine; 5646 sb_data_p = (u32 *)&sb_data_e2; 5647 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5648 bnx2x_map_sb_state_machines(sb_data_e2.index_data); 5649 } else { 5650 memset(&sb_data_e1x, 0, 5651 sizeof(struct hc_status_block_data_e1x)); 5652 sb_data_e1x.common.state = SB_ENABLED; 5653 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); 5654 sb_data_e1x.common.p_func.vf_id = 0xff; 5655 sb_data_e1x.common.p_func.vf_valid = false; 5656 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); 5657 sb_data_e1x.common.same_igu_sb_1b = true; 5658 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); 5659 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); 5660 hc_sm_p = sb_data_e1x.common.state_machine; 5661 sb_data_p = (u32 *)&sb_data_e1x; 5662 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5663 bnx2x_map_sb_state_machines(sb_data_e1x.index_data); 5664 } 5665 5666 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], 5667 igu_sb_id, igu_seg_id); 5668 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], 5669 igu_sb_id, igu_seg_id); 5670 5671 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); 5672 5673 /* write indices to HW - PCI guarantees endianity of regpairs */ 5674 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5675 } 5676 5677 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, 5678 u16 tx_usec, u16 rx_usec) 5679 { 5680 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, 5681 false, rx_usec); 5682 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 5683 HC_INDEX_ETH_TX_CQ_CONS_COS0, false, 5684 tx_usec); 5685 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 5686 HC_INDEX_ETH_TX_CQ_CONS_COS1, false, 5687 tx_usec); 5688 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 5689 HC_INDEX_ETH_TX_CQ_CONS_COS2, false, 5690 tx_usec); 5691 } 5692 5693 static void bnx2x_init_def_sb(struct bnx2x *bp) 5694 { 5695 struct host_sp_status_block *def_sb = bp->def_status_blk; 5696 dma_addr_t mapping = bp->def_status_blk_mapping; 5697 int igu_sp_sb_index; 5698 int igu_seg_id; 5699 int port = BP_PORT(bp); 5700 int func = BP_FUNC(bp); 5701 int reg_offset, reg_offset_en5; 5702 u64 section; 5703 int index; 5704 struct hc_sp_status_block_data sp_sb_data; 5705 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5706 5707 if (CHIP_INT_MODE_IS_BC(bp)) { 5708 igu_sp_sb_index = DEF_SB_IGU_ID; 5709 igu_seg_id = HC_SEG_ACCESS_DEF; 5710 } else { 5711 igu_sp_sb_index = bp->igu_dsb_id; 5712 igu_seg_id = IGU_SEG_ACCESS_DEF; 5713 } 5714 5715 /* ATTN */ 5716 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 5717 atten_status_block); 5718 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 5719 5720 bp->attn_state = 0; 5721 5722 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 5723 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 5724 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 5725 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); 5726 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 5727 int sindex; 5728 /* take care of sig[0]..sig[4] */ 5729 for (sindex = 0; sindex < 4; sindex++) 5730 bp->attn_group[index].sig[sindex] = 5731 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); 5732 5733 if (!CHIP_IS_E1x(bp)) 5734 /* 5735 * enable5 is separate from the rest of the registers, 5736 * and therefore the address skip is 4 5737 * and not 16 between the different groups 5738 */ 5739 bp->attn_group[index].sig[4] = REG_RD(bp, 5740 reg_offset_en5 + 0x4*index); 5741 else 5742 bp->attn_group[index].sig[4] = 0; 5743 } 5744 5745 if (bp->common.int_block == INT_BLOCK_HC) { 5746 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : 5747 HC_REG_ATTN_MSG0_ADDR_L); 5748 5749 REG_WR(bp, reg_offset, U64_LO(section)); 5750 REG_WR(bp, reg_offset + 4, U64_HI(section)); 5751 } else if (!CHIP_IS_E1x(bp)) { 5752 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 5753 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 5754 } 5755 5756 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 5757 sp_sb); 5758 5759 bnx2x_zero_sp_sb(bp); 5760 5761 /* PCI guarantees endianity of regpairs */ 5762 sp_sb_data.state = SB_ENABLED; 5763 sp_sb_data.host_sb_addr.lo = U64_LO(section); 5764 sp_sb_data.host_sb_addr.hi = U64_HI(section); 5765 sp_sb_data.igu_sb_id = igu_sp_sb_index; 5766 sp_sb_data.igu_seg_id = igu_seg_id; 5767 sp_sb_data.p_func.pf_id = func; 5768 sp_sb_data.p_func.vnic_id = BP_VN(bp); 5769 sp_sb_data.p_func.vf_id = 0xff; 5770 5771 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5772 5773 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 5774 } 5775 5776 void bnx2x_update_coalesce(struct bnx2x *bp) 5777 { 5778 int i; 5779 5780 for_each_eth_queue(bp, i) 5781 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, 5782 bp->tx_ticks, bp->rx_ticks); 5783 } 5784 5785 static void bnx2x_init_sp_ring(struct bnx2x *bp) 5786 { 5787 spin_lock_init(&bp->spq_lock); 5788 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); 5789 5790 bp->spq_prod_idx = 0; 5791 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; 5792 bp->spq_prod_bd = bp->spq; 5793 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; 5794 } 5795 5796 static void bnx2x_init_eq_ring(struct bnx2x *bp) 5797 { 5798 int i; 5799 for (i = 1; i <= NUM_EQ_PAGES; i++) { 5800 union event_ring_elem *elem = 5801 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; 5802 5803 elem->next_page.addr.hi = 5804 cpu_to_le32(U64_HI(bp->eq_mapping + 5805 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); 5806 elem->next_page.addr.lo = 5807 cpu_to_le32(U64_LO(bp->eq_mapping + 5808 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); 5809 } 5810 bp->eq_cons = 0; 5811 bp->eq_prod = NUM_EQ_DESC; 5812 bp->eq_cons_sb = BNX2X_EQ_INDEX; 5813 /* we want a warning message before it gets wrought... */ 5814 atomic_set(&bp->eq_spq_left, 5815 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); 5816 } 5817 5818 /* called with netif_addr_lock_bh() */ 5819 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, 5820 unsigned long rx_mode_flags, 5821 unsigned long rx_accept_flags, 5822 unsigned long tx_accept_flags, 5823 unsigned long ramrod_flags) 5824 { 5825 struct bnx2x_rx_mode_ramrod_params ramrod_param; 5826 int rc; 5827 5828 memset(&ramrod_param, 0, sizeof(ramrod_param)); 5829 5830 /* Prepare ramrod parameters */ 5831 ramrod_param.cid = 0; 5832 ramrod_param.cl_id = cl_id; 5833 ramrod_param.rx_mode_obj = &bp->rx_mode_obj; 5834 ramrod_param.func_id = BP_FUNC(bp); 5835 5836 ramrod_param.pstate = &bp->sp_state; 5837 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; 5838 5839 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); 5840 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); 5841 5842 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5843 5844 ramrod_param.ramrod_flags = ramrod_flags; 5845 ramrod_param.rx_mode_flags = rx_mode_flags; 5846 5847 ramrod_param.rx_accept_flags = rx_accept_flags; 5848 ramrod_param.tx_accept_flags = tx_accept_flags; 5849 5850 rc = bnx2x_config_rx_mode(bp, &ramrod_param); 5851 if (rc < 0) { 5852 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); 5853 return rc; 5854 } 5855 5856 return 0; 5857 } 5858 5859 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, 5860 unsigned long *rx_accept_flags, 5861 unsigned long *tx_accept_flags) 5862 { 5863 /* Clear the flags first */ 5864 *rx_accept_flags = 0; 5865 *tx_accept_flags = 0; 5866 5867 switch (rx_mode) { 5868 case BNX2X_RX_MODE_NONE: 5869 /* 5870 * 'drop all' supersedes any accept flags that may have been 5871 * passed to the function. 5872 */ 5873 break; 5874 case BNX2X_RX_MODE_NORMAL: 5875 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 5876 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); 5877 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 5878 5879 /* internal switching mode */ 5880 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 5881 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); 5882 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 5883 5884 break; 5885 case BNX2X_RX_MODE_ALLMULTI: 5886 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 5887 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 5888 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 5889 5890 /* internal switching mode */ 5891 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 5892 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 5893 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 5894 5895 break; 5896 case BNX2X_RX_MODE_PROMISC: 5897 /* According to definition of SI mode, iface in promisc mode 5898 * should receive matched and unmatched (in resolution of port) 5899 * unicast packets. 5900 */ 5901 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); 5902 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 5903 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 5904 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 5905 5906 /* internal switching mode */ 5907 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 5908 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 5909 5910 if (IS_MF_SI(bp)) 5911 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); 5912 else 5913 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 5914 5915 break; 5916 default: 5917 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); 5918 return -EINVAL; 5919 } 5920 5921 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 5922 if (bp->rx_mode != BNX2X_RX_MODE_NONE) { 5923 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 5924 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 5925 } 5926 5927 return 0; 5928 } 5929 5930 /* called with netif_addr_lock_bh() */ 5931 int bnx2x_set_storm_rx_mode(struct bnx2x *bp) 5932 { 5933 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 5934 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 5935 int rc; 5936 5937 if (!NO_FCOE(bp)) 5938 /* Configure rx_mode of FCoE Queue */ 5939 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); 5940 5941 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, 5942 &tx_accept_flags); 5943 if (rc) 5944 return rc; 5945 5946 __set_bit(RAMROD_RX, &ramrod_flags); 5947 __set_bit(RAMROD_TX, &ramrod_flags); 5948 5949 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, 5950 rx_accept_flags, tx_accept_flags, 5951 ramrod_flags); 5952 } 5953 5954 static void bnx2x_init_internal_common(struct bnx2x *bp) 5955 { 5956 int i; 5957 5958 if (IS_MF_SI(bp)) 5959 /* 5960 * In switch independent mode, the TSTORM needs to accept 5961 * packets that failed classification, since approximate match 5962 * mac addresses aren't written to NIG LLH 5963 */ 5964 REG_WR8(bp, BAR_TSTRORM_INTMEM + 5965 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2); 5966 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */ 5967 REG_WR8(bp, BAR_TSTRORM_INTMEM + 5968 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0); 5969 5970 /* Zero this manually as its initialization is 5971 currently missing in the initTool */ 5972 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) 5973 REG_WR(bp, BAR_USTRORM_INTMEM + 5974 USTORM_AGG_DATA_OFFSET + i * 4, 0); 5975 if (!CHIP_IS_E1x(bp)) { 5976 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, 5977 CHIP_INT_MODE_IS_BC(bp) ? 5978 HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 5979 } 5980 } 5981 5982 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) 5983 { 5984 switch (load_code) { 5985 case FW_MSG_CODE_DRV_LOAD_COMMON: 5986 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 5987 bnx2x_init_internal_common(bp); 5988 /* no break */ 5989 5990 case FW_MSG_CODE_DRV_LOAD_PORT: 5991 /* nothing to do */ 5992 /* no break */ 5993 5994 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 5995 /* internal memory per function is 5996 initialized inside bnx2x_pf_init */ 5997 break; 5998 5999 default: 6000 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); 6001 break; 6002 } 6003 } 6004 6005 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) 6006 { 6007 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); 6008 } 6009 6010 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) 6011 { 6012 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); 6013 } 6014 6015 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) 6016 { 6017 if (CHIP_IS_E1x(fp->bp)) 6018 return BP_L_ID(fp->bp) + fp->index; 6019 else /* We want Client ID to be the same as IGU SB ID for 57712 */ 6020 return bnx2x_fp_igu_sb_id(fp); 6021 } 6022 6023 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) 6024 { 6025 struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; 6026 u8 cos; 6027 unsigned long q_type = 0; 6028 u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; 6029 fp->rx_queue = fp_idx; 6030 fp->cid = fp_idx; 6031 fp->cl_id = bnx2x_fp_cl_id(fp); 6032 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); 6033 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); 6034 /* qZone id equals to FW (per path) client id */ 6035 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); 6036 6037 /* init shortcut */ 6038 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); 6039 6040 /* Setup SB indices */ 6041 fp->rx_cons_sb = BNX2X_RX_SB_INDEX; 6042 6043 /* Configure Queue State object */ 6044 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6045 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6046 6047 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); 6048 6049 /* init tx data */ 6050 for_each_cos_in_tx_queue(fp, cos) { 6051 bnx2x_init_txdata(bp, fp->txdata_ptr[cos], 6052 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), 6053 FP_COS_TO_TXQ(fp, cos, bp), 6054 BNX2X_TX_SB_INDEX_BASE + cos, fp); 6055 cids[cos] = fp->txdata_ptr[cos]->cid; 6056 } 6057 6058 /* nothing more for vf to do here */ 6059 if (IS_VF(bp)) 6060 return; 6061 6062 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, 6063 fp->fw_sb_id, fp->igu_sb_id); 6064 bnx2x_update_fpsb_idx(fp); 6065 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, 6066 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6067 bnx2x_sp_mapping(bp, q_rdata), q_type); 6068 6069 /** 6070 * Configure classification DBs: Always enable Tx switching 6071 */ 6072 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); 6073 6074 DP(NETIF_MSG_IFUP, 6075 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6076 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6077 fp->igu_sb_id); 6078 } 6079 6080 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) 6081 { 6082 int i; 6083 6084 for (i = 1; i <= NUM_TX_RINGS; i++) { 6085 struct eth_tx_next_bd *tx_next_bd = 6086 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; 6087 6088 tx_next_bd->addr_hi = 6089 cpu_to_le32(U64_HI(txdata->tx_desc_mapping + 6090 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6091 tx_next_bd->addr_lo = 6092 cpu_to_le32(U64_LO(txdata->tx_desc_mapping + 6093 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6094 } 6095 6096 *txdata->tx_cons_sb = cpu_to_le16(0); 6097 6098 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 6099 txdata->tx_db.data.zero_fill1 = 0; 6100 txdata->tx_db.data.prod = 0; 6101 6102 txdata->tx_pkt_prod = 0; 6103 txdata->tx_pkt_cons = 0; 6104 txdata->tx_bd_prod = 0; 6105 txdata->tx_bd_cons = 0; 6106 txdata->tx_pkt = 0; 6107 } 6108 6109 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) 6110 { 6111 int i; 6112 6113 for_each_tx_queue_cnic(bp, i) 6114 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); 6115 } 6116 6117 static void bnx2x_init_tx_rings(struct bnx2x *bp) 6118 { 6119 int i; 6120 u8 cos; 6121 6122 for_each_eth_queue(bp, i) 6123 for_each_cos_in_tx_queue(&bp->fp[i], cos) 6124 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); 6125 } 6126 6127 void bnx2x_nic_init_cnic(struct bnx2x *bp) 6128 { 6129 if (!NO_FCOE(bp)) 6130 bnx2x_init_fcoe_fp(bp); 6131 6132 bnx2x_init_sb(bp, bp->cnic_sb_mapping, 6133 BNX2X_VF_ID_INVALID, false, 6134 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); 6135 6136 /* ensure status block indices were read */ 6137 rmb(); 6138 bnx2x_init_rx_rings_cnic(bp); 6139 bnx2x_init_tx_rings_cnic(bp); 6140 6141 /* flush all */ 6142 mb(); 6143 mmiowb(); 6144 } 6145 6146 void bnx2x_pre_irq_nic_init(struct bnx2x *bp) 6147 { 6148 int i; 6149 6150 /* Setup NIC internals and enable interrupts */ 6151 for_each_eth_queue(bp, i) 6152 bnx2x_init_eth_fp(bp, i); 6153 6154 /* ensure status block indices were read */ 6155 rmb(); 6156 bnx2x_init_rx_rings(bp); 6157 bnx2x_init_tx_rings(bp); 6158 6159 if (IS_PF(bp)) { 6160 /* Initialize MOD_ABS interrupts */ 6161 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, 6162 bp->common.shmem_base, 6163 bp->common.shmem2_base, BP_PORT(bp)); 6164 6165 /* initialize the default status block and sp ring */ 6166 bnx2x_init_def_sb(bp); 6167 bnx2x_update_dsb_idx(bp); 6168 bnx2x_init_sp_ring(bp); 6169 } else { 6170 bnx2x_memset_stats(bp); 6171 } 6172 } 6173 6174 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code) 6175 { 6176 bnx2x_init_eq_ring(bp); 6177 bnx2x_init_internal(bp, load_code); 6178 bnx2x_pf_init(bp); 6179 bnx2x_stats_init(bp); 6180 6181 /* flush all before enabling interrupts */ 6182 mb(); 6183 mmiowb(); 6184 6185 bnx2x_int_enable(bp); 6186 6187 /* Check for SPIO5 */ 6188 bnx2x_attn_int_deasserted0(bp, 6189 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & 6190 AEU_INPUTS_ATTN_BITS_SPIO5); 6191 } 6192 6193 /* gzip service functions */ 6194 static int bnx2x_gunzip_init(struct bnx2x *bp) 6195 { 6196 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, 6197 &bp->gunzip_mapping, GFP_KERNEL); 6198 if (bp->gunzip_buf == NULL) 6199 goto gunzip_nomem1; 6200 6201 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); 6202 if (bp->strm == NULL) 6203 goto gunzip_nomem2; 6204 6205 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); 6206 if (bp->strm->workspace == NULL) 6207 goto gunzip_nomem3; 6208 6209 return 0; 6210 6211 gunzip_nomem3: 6212 kfree(bp->strm); 6213 bp->strm = NULL; 6214 6215 gunzip_nomem2: 6216 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6217 bp->gunzip_mapping); 6218 bp->gunzip_buf = NULL; 6219 6220 gunzip_nomem1: 6221 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); 6222 return -ENOMEM; 6223 } 6224 6225 static void bnx2x_gunzip_end(struct bnx2x *bp) 6226 { 6227 if (bp->strm) { 6228 vfree(bp->strm->workspace); 6229 kfree(bp->strm); 6230 bp->strm = NULL; 6231 } 6232 6233 if (bp->gunzip_buf) { 6234 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6235 bp->gunzip_mapping); 6236 bp->gunzip_buf = NULL; 6237 } 6238 } 6239 6240 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) 6241 { 6242 int n, rc; 6243 6244 /* check gzip header */ 6245 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { 6246 BNX2X_ERR("Bad gzip header\n"); 6247 return -EINVAL; 6248 } 6249 6250 n = 10; 6251 6252 #define FNAME 0x8 6253 6254 if (zbuf[3] & FNAME) 6255 while ((zbuf[n++] != 0) && (n < len)); 6256 6257 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; 6258 bp->strm->avail_in = len - n; 6259 bp->strm->next_out = bp->gunzip_buf; 6260 bp->strm->avail_out = FW_BUF_SIZE; 6261 6262 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); 6263 if (rc != Z_OK) 6264 return rc; 6265 6266 rc = zlib_inflate(bp->strm, Z_FINISH); 6267 if ((rc != Z_OK) && (rc != Z_STREAM_END)) 6268 netdev_err(bp->dev, "Firmware decompression error: %s\n", 6269 bp->strm->msg); 6270 6271 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); 6272 if (bp->gunzip_outlen & 0x3) 6273 netdev_err(bp->dev, 6274 "Firmware decompression error: gunzip_outlen (%d) not aligned\n", 6275 bp->gunzip_outlen); 6276 bp->gunzip_outlen >>= 2; 6277 6278 zlib_inflateEnd(bp->strm); 6279 6280 if (rc == Z_STREAM_END) 6281 return 0; 6282 6283 return rc; 6284 } 6285 6286 /* nic load/unload */ 6287 6288 /* 6289 * General service functions 6290 */ 6291 6292 /* send a NIG loopback debug packet */ 6293 static void bnx2x_lb_pckt(struct bnx2x *bp) 6294 { 6295 u32 wb_write[3]; 6296 6297 /* Ethernet source and destination addresses */ 6298 wb_write[0] = 0x55555555; 6299 wb_write[1] = 0x55555555; 6300 wb_write[2] = 0x20; /* SOP */ 6301 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6302 6303 /* NON-IP protocol */ 6304 wb_write[0] = 0x09000000; 6305 wb_write[1] = 0x55555555; 6306 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 6307 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6308 } 6309 6310 /* some of the internal memories 6311 * are not directly readable from the driver 6312 * to test them we send debug packets 6313 */ 6314 static int bnx2x_int_mem_test(struct bnx2x *bp) 6315 { 6316 int factor; 6317 int count, i; 6318 u32 val = 0; 6319 6320 if (CHIP_REV_IS_FPGA(bp)) 6321 factor = 120; 6322 else if (CHIP_REV_IS_EMUL(bp)) 6323 factor = 200; 6324 else 6325 factor = 1; 6326 6327 /* Disable inputs of parser neighbor blocks */ 6328 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6329 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6330 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6331 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6332 6333 /* Write 0 to parser credits for CFC search request */ 6334 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6335 6336 /* send Ethernet packet */ 6337 bnx2x_lb_pckt(bp); 6338 6339 /* TODO do i reset NIG statistic? */ 6340 /* Wait until NIG register shows 1 packet of size 0x10 */ 6341 count = 1000 * factor; 6342 while (count) { 6343 6344 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6345 val = *bnx2x_sp(bp, wb_data[0]); 6346 if (val == 0x10) 6347 break; 6348 6349 usleep_range(10000, 20000); 6350 count--; 6351 } 6352 if (val != 0x10) { 6353 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6354 return -1; 6355 } 6356 6357 /* Wait until PRS register shows 1 packet */ 6358 count = 1000 * factor; 6359 while (count) { 6360 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6361 if (val == 1) 6362 break; 6363 6364 usleep_range(10000, 20000); 6365 count--; 6366 } 6367 if (val != 0x1) { 6368 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6369 return -2; 6370 } 6371 6372 /* Reset and init BRB, PRS */ 6373 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6374 msleep(50); 6375 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6376 msleep(50); 6377 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6378 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6379 6380 DP(NETIF_MSG_HW, "part2\n"); 6381 6382 /* Disable inputs of parser neighbor blocks */ 6383 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6384 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6385 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6386 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6387 6388 /* Write 0 to parser credits for CFC search request */ 6389 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6390 6391 /* send 10 Ethernet packets */ 6392 for (i = 0; i < 10; i++) 6393 bnx2x_lb_pckt(bp); 6394 6395 /* Wait until NIG register shows 10 + 1 6396 packets of size 11*0x10 = 0xb0 */ 6397 count = 1000 * factor; 6398 while (count) { 6399 6400 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6401 val = *bnx2x_sp(bp, wb_data[0]); 6402 if (val == 0xb0) 6403 break; 6404 6405 usleep_range(10000, 20000); 6406 count--; 6407 } 6408 if (val != 0xb0) { 6409 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6410 return -3; 6411 } 6412 6413 /* Wait until PRS register shows 2 packets */ 6414 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6415 if (val != 2) 6416 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6417 6418 /* Write 1 to parser credits for CFC search request */ 6419 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 6420 6421 /* Wait until PRS register shows 3 packets */ 6422 msleep(10 * factor); 6423 /* Wait until NIG register shows 1 packet of size 0x10 */ 6424 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6425 if (val != 3) 6426 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6427 6428 /* clear NIG EOP FIFO */ 6429 for (i = 0; i < 11; i++) 6430 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); 6431 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); 6432 if (val != 1) { 6433 BNX2X_ERR("clear of NIG failed\n"); 6434 return -4; 6435 } 6436 6437 /* Reset and init BRB, PRS, NIG */ 6438 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6439 msleep(50); 6440 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6441 msleep(50); 6442 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6443 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6444 if (!CNIC_SUPPORT(bp)) 6445 /* set NIC mode */ 6446 REG_WR(bp, PRS_REG_NIC_MODE, 1); 6447 6448 /* Enable inputs of parser neighbor blocks */ 6449 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); 6450 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); 6451 REG_WR(bp, CFC_REG_DEBUG0, 0x0); 6452 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); 6453 6454 DP(NETIF_MSG_HW, "done\n"); 6455 6456 return 0; /* OK */ 6457 } 6458 6459 static void bnx2x_enable_blocks_attention(struct bnx2x *bp) 6460 { 6461 u32 val; 6462 6463 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6464 if (!CHIP_IS_E1x(bp)) 6465 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); 6466 else 6467 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); 6468 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6469 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 6470 /* 6471 * mask read length error interrupts in brb for parser 6472 * (parsing unit and 'checksum and crc' unit) 6473 * these errors are legal (PU reads fixed length and CAC can cause 6474 * read length error on truncated packets) 6475 */ 6476 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); 6477 REG_WR(bp, QM_REG_QM_INT_MASK, 0); 6478 REG_WR(bp, TM_REG_TM_INT_MASK, 0); 6479 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); 6480 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); 6481 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); 6482 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ 6483 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ 6484 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); 6485 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); 6486 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); 6487 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ 6488 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ 6489 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 6490 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); 6491 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); 6492 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); 6493 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ 6494 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ 6495 6496 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 6497 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 6498 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; 6499 if (!CHIP_IS_E1x(bp)) 6500 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 6501 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; 6502 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); 6503 6504 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); 6505 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); 6506 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); 6507 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ 6508 6509 if (!CHIP_IS_E1x(bp)) 6510 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 6511 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 6512 6513 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); 6514 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); 6515 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ 6516 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 6517 } 6518 6519 static void bnx2x_reset_common(struct bnx2x *bp) 6520 { 6521 u32 val = 0x1400; 6522 6523 /* reset_common */ 6524 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6525 0xd3ffff7f); 6526 6527 if (CHIP_IS_E3(bp)) { 6528 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6529 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6530 } 6531 6532 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); 6533 } 6534 6535 static void bnx2x_setup_dmae(struct bnx2x *bp) 6536 { 6537 bp->dmae_ready = 0; 6538 spin_lock_init(&bp->dmae_lock); 6539 } 6540 6541 static void bnx2x_init_pxp(struct bnx2x *bp) 6542 { 6543 u16 devctl; 6544 int r_order, w_order; 6545 6546 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); 6547 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); 6548 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6549 if (bp->mrrs == -1) 6550 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6551 else { 6552 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); 6553 r_order = bp->mrrs; 6554 } 6555 6556 bnx2x_init_pxp_arb(bp, r_order, w_order); 6557 } 6558 6559 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) 6560 { 6561 int is_required; 6562 u32 val; 6563 int port; 6564 6565 if (BP_NOMCP(bp)) 6566 return; 6567 6568 is_required = 0; 6569 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & 6570 SHARED_HW_CFG_FAN_FAILURE_MASK; 6571 6572 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) 6573 is_required = 1; 6574 6575 /* 6576 * The fan failure mechanism is usually related to the PHY type since 6577 * the power consumption of the board is affected by the PHY. Currently, 6578 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 6579 */ 6580 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) 6581 for (port = PORT_0; port < PORT_MAX; port++) { 6582 is_required |= 6583 bnx2x_fan_failure_det_req( 6584 bp, 6585 bp->common.shmem_base, 6586 bp->common.shmem2_base, 6587 port); 6588 } 6589 6590 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); 6591 6592 if (is_required == 0) 6593 return; 6594 6595 /* Fan failure is indicated by SPIO 5 */ 6596 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 6597 6598 /* set to active low mode */ 6599 val = REG_RD(bp, MISC_REG_SPIO_INT); 6600 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 6601 REG_WR(bp, MISC_REG_SPIO_INT, val); 6602 6603 /* enable interrupt to signal the IGU */ 6604 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 6605 val |= MISC_SPIO_SPIO5; 6606 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); 6607 } 6608 6609 void bnx2x_pf_disable(struct bnx2x *bp) 6610 { 6611 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 6612 val &= ~IGU_PF_CONF_FUNC_EN; 6613 6614 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 6615 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6616 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); 6617 } 6618 6619 static void bnx2x__common_init_phy(struct bnx2x *bp) 6620 { 6621 u32 shmem_base[2], shmem2_base[2]; 6622 /* Avoid common init in case MFW supports LFA */ 6623 if (SHMEM2_RD(bp, size) > 6624 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 6625 return; 6626 shmem_base[0] = bp->common.shmem_base; 6627 shmem2_base[0] = bp->common.shmem2_base; 6628 if (!CHIP_IS_E1x(bp)) { 6629 shmem_base[1] = 6630 SHMEM2_RD(bp, other_shmem_base_addr); 6631 shmem2_base[1] = 6632 SHMEM2_RD(bp, other_shmem2_base_addr); 6633 } 6634 bnx2x_acquire_phy_lock(bp); 6635 bnx2x_common_init_phy(bp, shmem_base, shmem2_base, 6636 bp->common.chip_id); 6637 bnx2x_release_phy_lock(bp); 6638 } 6639 6640 /** 6641 * bnx2x_init_hw_common - initialize the HW at the COMMON phase. 6642 * 6643 * @bp: driver handle 6644 */ 6645 static int bnx2x_init_hw_common(struct bnx2x *bp) 6646 { 6647 u32 val; 6648 6649 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); 6650 6651 /* 6652 * take the RESET lock to protect undi_unload flow from accessing 6653 * registers while we're resetting the chip 6654 */ 6655 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 6656 6657 bnx2x_reset_common(bp); 6658 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); 6659 6660 val = 0xfffc; 6661 if (CHIP_IS_E3(bp)) { 6662 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6663 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6664 } 6665 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); 6666 6667 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 6668 6669 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); 6670 6671 if (!CHIP_IS_E1x(bp)) { 6672 u8 abs_func_id; 6673 6674 /** 6675 * 4-port mode or 2-port mode we need to turn of master-enable 6676 * for everyone, after that, turn it back on for self. 6677 * so, we disregard multi-function or not, and always disable 6678 * for all functions on the given path, this means 0,2,4,6 for 6679 * path 0 and 1,3,5,7 for path 1 6680 */ 6681 for (abs_func_id = BP_PATH(bp); 6682 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { 6683 if (abs_func_id == BP_ABS_FUNC(bp)) { 6684 REG_WR(bp, 6685 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 6686 1); 6687 continue; 6688 } 6689 6690 bnx2x_pretend_func(bp, abs_func_id); 6691 /* clear pf enable */ 6692 bnx2x_pf_disable(bp); 6693 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 6694 } 6695 } 6696 6697 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); 6698 if (CHIP_IS_E1(bp)) { 6699 /* enable HW interrupt from PXP on USDM overflow 6700 bit 16 on INT_MASK_0 */ 6701 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6702 } 6703 6704 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); 6705 bnx2x_init_pxp(bp); 6706 6707 #ifdef __BIG_ENDIAN 6708 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1); 6709 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1); 6710 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 6711 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 6712 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 6713 /* make sure this value is 0 */ 6714 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); 6715 6716 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */ 6717 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1); 6718 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1); 6719 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1); 6720 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 6721 #endif 6722 6723 bnx2x_ilt_init_page_size(bp, INITOP_SET); 6724 6725 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) 6726 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 6727 6728 /* let the HW do it's magic ... */ 6729 msleep(100); 6730 /* finish PXP init */ 6731 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); 6732 if (val != 1) { 6733 BNX2X_ERR("PXP2 CFG failed\n"); 6734 return -EBUSY; 6735 } 6736 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); 6737 if (val != 1) { 6738 BNX2X_ERR("PXP2 RD_INIT failed\n"); 6739 return -EBUSY; 6740 } 6741 6742 /* Timers bug workaround E2 only. We need to set the entire ILT to 6743 * have entries with value "0" and valid bit on. 6744 * This needs to be done by the first PF that is loaded in a path 6745 * (i.e. common phase) 6746 */ 6747 if (!CHIP_IS_E1x(bp)) { 6748 /* In E2 there is a bug in the timers block that can cause function 6 / 7 6749 * (i.e. vnic3) to start even if it is marked as "scan-off". 6750 * This occurs when a different function (func2,3) is being marked 6751 * as "scan-off". Real-life scenario for example: if a driver is being 6752 * load-unloaded while func6,7 are down. This will cause the timer to access 6753 * the ilt, translate to a logical address and send a request to read/write. 6754 * Since the ilt for the function that is down is not valid, this will cause 6755 * a translation error which is unrecoverable. 6756 * The Workaround is intended to make sure that when this happens nothing fatal 6757 * will occur. The workaround: 6758 * 1. First PF driver which loads on a path will: 6759 * a. After taking the chip out of reset, by using pretend, 6760 * it will write "0" to the following registers of 6761 * the other vnics. 6762 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6763 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 6764 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 6765 * And for itself it will write '1' to 6766 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 6767 * dmae-operations (writing to pram for example.) 6768 * note: can be done for only function 6,7 but cleaner this 6769 * way. 6770 * b. Write zero+valid to the entire ILT. 6771 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 6772 * VNIC3 (of that port). The range allocated will be the 6773 * entire ILT. This is needed to prevent ILT range error. 6774 * 2. Any PF driver load flow: 6775 * a. ILT update with the physical addresses of the allocated 6776 * logical pages. 6777 * b. Wait 20msec. - note that this timeout is needed to make 6778 * sure there are no requests in one of the PXP internal 6779 * queues with "old" ILT addresses. 6780 * c. PF enable in the PGLC. 6781 * d. Clear the was_error of the PF in the PGLC. (could have 6782 * occurred while driver was down) 6783 * e. PF enable in the CFC (WEAK + STRONG) 6784 * f. Timers scan enable 6785 * 3. PF driver unload flow: 6786 * a. Clear the Timers scan_en. 6787 * b. Polling for scan_on=0 for that PF. 6788 * c. Clear the PF enable bit in the PXP. 6789 * d. Clear the PF enable in the CFC (WEAK + STRONG) 6790 * e. Write zero+valid to all ILT entries (The valid bit must 6791 * stay set) 6792 * f. If this is VNIC 3 of a port then also init 6793 * first_timers_ilt_entry to zero and last_timers_ilt_entry 6794 * to the last entry in the ILT. 6795 * 6796 * Notes: 6797 * Currently the PF error in the PGLC is non recoverable. 6798 * In the future the there will be a recovery routine for this error. 6799 * Currently attention is masked. 6800 * Having an MCP lock on the load/unload process does not guarantee that 6801 * there is no Timer disable during Func6/7 enable. This is because the 6802 * Timers scan is currently being cleared by the MCP on FLR. 6803 * Step 2.d can be done only for PF6/7 and the driver can also check if 6804 * there is error before clearing it. But the flow above is simpler and 6805 * more general. 6806 * All ILT entries are written by zero+valid and not just PF6/7 6807 * ILT entries since in the future the ILT entries allocation for 6808 * PF-s might be dynamic. 6809 */ 6810 struct ilt_client_info ilt_cli; 6811 struct bnx2x_ilt ilt; 6812 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 6813 memset(&ilt, 0, sizeof(struct bnx2x_ilt)); 6814 6815 /* initialize dummy TM client */ 6816 ilt_cli.start = 0; 6817 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 6818 ilt_cli.client_num = ILT_CLIENT_TM; 6819 6820 /* Step 1: set zeroes to all ilt page entries with valid bit on 6821 * Step 2: set the timers first/last ilt entry to point 6822 * to the entire range to prevent ILT range error for 3rd/4th 6823 * vnic (this code assumes existence of the vnic) 6824 * 6825 * both steps performed by call to bnx2x_ilt_client_init_op() 6826 * with dummy TM client 6827 * 6828 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 6829 * and his brother are split registers 6830 */ 6831 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); 6832 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); 6833 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 6834 6835 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); 6836 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); 6837 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 6838 } 6839 6840 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); 6841 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); 6842 6843 if (!CHIP_IS_E1x(bp)) { 6844 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : 6845 (CHIP_REV_IS_FPGA(bp) ? 400 : 0); 6846 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); 6847 6848 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); 6849 6850 /* let the HW do it's magic ... */ 6851 do { 6852 msleep(200); 6853 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); 6854 } while (factor-- && (val != 1)); 6855 6856 if (val != 1) { 6857 BNX2X_ERR("ATC_INIT failed\n"); 6858 return -EBUSY; 6859 } 6860 } 6861 6862 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); 6863 6864 bnx2x_iov_init_dmae(bp); 6865 6866 /* clean the DMAE memory */ 6867 bp->dmae_ready = 1; 6868 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); 6869 6870 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); 6871 6872 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); 6873 6874 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); 6875 6876 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); 6877 6878 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); 6879 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); 6880 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); 6881 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); 6882 6883 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); 6884 6885 /* QM queues pointers table */ 6886 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); 6887 6888 /* soft reset pulse */ 6889 REG_WR(bp, QM_REG_SOFT_RESET, 1); 6890 REG_WR(bp, QM_REG_SOFT_RESET, 0); 6891 6892 if (CNIC_SUPPORT(bp)) 6893 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); 6894 6895 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); 6896 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT); 6897 if (!CHIP_REV_IS_SLOW(bp)) 6898 /* enable hw interrupt from doorbell Q */ 6899 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6900 6901 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6902 6903 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6904 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); 6905 6906 if (!CHIP_IS_E1(bp)) 6907 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); 6908 6909 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { 6910 if (IS_MF_AFEX(bp)) { 6911 /* configure that VNTag and VLAN headers must be 6912 * received in afex mode 6913 */ 6914 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); 6915 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); 6916 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 6917 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 6918 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); 6919 } else { 6920 /* Bit-map indicating which L2 hdrs may appear 6921 * after the basic Ethernet header 6922 */ 6923 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 6924 bp->path_has_ovlan ? 7 : 6); 6925 } 6926 } 6927 6928 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); 6929 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); 6930 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); 6931 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); 6932 6933 if (!CHIP_IS_E1x(bp)) { 6934 /* reset VFC memories */ 6935 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 6936 VFC_MEMORIES_RST_REG_CAM_RST | 6937 VFC_MEMORIES_RST_REG_RAM_RST); 6938 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 6939 VFC_MEMORIES_RST_REG_CAM_RST | 6940 VFC_MEMORIES_RST_REG_RAM_RST); 6941 6942 msleep(20); 6943 } 6944 6945 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); 6946 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); 6947 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); 6948 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); 6949 6950 /* sync semi rtc */ 6951 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6952 0x80000000); 6953 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 6954 0x80000000); 6955 6956 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); 6957 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); 6958 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); 6959 6960 if (!CHIP_IS_E1x(bp)) { 6961 if (IS_MF_AFEX(bp)) { 6962 /* configure that VNTag and VLAN headers must be 6963 * sent in afex mode 6964 */ 6965 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); 6966 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); 6967 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 6968 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 6969 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); 6970 } else { 6971 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 6972 bp->path_has_ovlan ? 7 : 6); 6973 } 6974 } 6975 6976 REG_WR(bp, SRC_REG_SOFT_RST, 1); 6977 6978 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); 6979 6980 if (CNIC_SUPPORT(bp)) { 6981 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); 6982 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 6983 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); 6984 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); 6985 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); 6986 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 6987 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); 6988 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 6989 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); 6990 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); 6991 } 6992 REG_WR(bp, SRC_REG_SOFT_RST, 0); 6993 6994 if (sizeof(union cdu_context) != 1024) 6995 /* we currently assume that a context is 1024 bytes */ 6996 dev_alert(&bp->pdev->dev, 6997 "please adjust the size of cdu_context(%ld)\n", 6998 (long)sizeof(union cdu_context)); 6999 7000 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); 7001 val = (4 << 24) + (0 << 12) + 1024; 7002 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); 7003 7004 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); 7005 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); 7006 /* enable context validation interrupt from CFC */ 7007 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 7008 7009 /* set the thresholds to prevent CFC/CDU race */ 7010 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); 7011 7012 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); 7013 7014 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) 7015 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); 7016 7017 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); 7018 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); 7019 7020 /* Reset PCIE errors for debug */ 7021 REG_WR(bp, 0x2814, 0xffffffff); 7022 REG_WR(bp, 0x3820, 0xffffffff); 7023 7024 if (!CHIP_IS_E1x(bp)) { 7025 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 7026 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 7027 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 7028 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 7029 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 7030 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 7031 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 7032 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 7033 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 7034 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 7035 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 7036 } 7037 7038 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); 7039 if (!CHIP_IS_E1(bp)) { 7040 /* in E3 this done in per-port section */ 7041 if (!CHIP_IS_E3(bp)) 7042 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7043 } 7044 if (CHIP_IS_E1H(bp)) 7045 /* not applicable for E2 (and above ...) */ 7046 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); 7047 7048 if (CHIP_REV_IS_SLOW(bp)) 7049 msleep(200); 7050 7051 /* finish CFC init */ 7052 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); 7053 if (val != 1) { 7054 BNX2X_ERR("CFC LL_INIT failed\n"); 7055 return -EBUSY; 7056 } 7057 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); 7058 if (val != 1) { 7059 BNX2X_ERR("CFC AC_INIT failed\n"); 7060 return -EBUSY; 7061 } 7062 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 7063 if (val != 1) { 7064 BNX2X_ERR("CFC CAM_INIT failed\n"); 7065 return -EBUSY; 7066 } 7067 REG_WR(bp, CFC_REG_DEBUG0, 0); 7068 7069 if (CHIP_IS_E1(bp)) { 7070 /* read NIG statistic 7071 to see if this is our first up since powerup */ 7072 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 7073 val = *bnx2x_sp(bp, wb_data[0]); 7074 7075 /* do internal memory self test */ 7076 if ((val == 0) && bnx2x_int_mem_test(bp)) { 7077 BNX2X_ERR("internal mem self test failed\n"); 7078 return -EBUSY; 7079 } 7080 } 7081 7082 bnx2x_setup_fan_failure_detection(bp); 7083 7084 /* clear PXP2 attentions */ 7085 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); 7086 7087 bnx2x_enable_blocks_attention(bp); 7088 bnx2x_enable_blocks_parity(bp); 7089 7090 if (!BP_NOMCP(bp)) { 7091 if (CHIP_IS_E1x(bp)) 7092 bnx2x__common_init_phy(bp); 7093 } else 7094 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 7095 7096 return 0; 7097 } 7098 7099 /** 7100 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. 7101 * 7102 * @bp: driver handle 7103 */ 7104 static int bnx2x_init_hw_common_chip(struct bnx2x *bp) 7105 { 7106 int rc = bnx2x_init_hw_common(bp); 7107 7108 if (rc) 7109 return rc; 7110 7111 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 7112 if (!BP_NOMCP(bp)) 7113 bnx2x__common_init_phy(bp); 7114 7115 return 0; 7116 } 7117 7118 static int bnx2x_init_hw_port(struct bnx2x *bp) 7119 { 7120 int port = BP_PORT(bp); 7121 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 7122 u32 low, high; 7123 u32 val; 7124 7125 DP(NETIF_MSG_HW, "starting port init port %d\n", port); 7126 7127 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 7128 7129 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7130 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7131 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7132 7133 /* Timers bug workaround: disables the pf_master bit in pglue at 7134 * common phase, we need to enable it here before any dmae access are 7135 * attempted. Therefore we manually added the enable-master to the 7136 * port phase (it also happens in the function phase) 7137 */ 7138 if (!CHIP_IS_E1x(bp)) 7139 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7140 7141 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7142 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7143 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7144 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7145 7146 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7147 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7148 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7149 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7150 7151 /* QM cid (connection) count */ 7152 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); 7153 7154 if (CNIC_SUPPORT(bp)) { 7155 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7156 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); 7157 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 7158 } 7159 7160 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7161 7162 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7163 7164 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { 7165 7166 if (IS_MF(bp)) 7167 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); 7168 else if (bp->dev->mtu > 4096) { 7169 if (bp->flags & ONE_PORT_FLAG) 7170 low = 160; 7171 else { 7172 val = bp->dev->mtu; 7173 /* (24*1024 + val*4)/256 */ 7174 low = 96 + (val/64) + 7175 ((val % 64) ? 1 : 0); 7176 } 7177 } else 7178 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); 7179 high = low + 56; /* 14*1024/256 */ 7180 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 7181 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 7182 } 7183 7184 if (CHIP_MODE_IS_4_PORT(bp)) 7185 REG_WR(bp, (BP_PORT(bp) ? 7186 BRB1_REG_MAC_GUARANTIED_1 : 7187 BRB1_REG_MAC_GUARANTIED_0), 40); 7188 7189 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7190 if (CHIP_IS_E3B0(bp)) { 7191 if (IS_MF_AFEX(bp)) { 7192 /* configure headers for AFEX mode */ 7193 REG_WR(bp, BP_PORT(bp) ? 7194 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7195 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 7196 REG_WR(bp, BP_PORT(bp) ? 7197 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 7198 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 7199 REG_WR(bp, BP_PORT(bp) ? 7200 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 7201 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 7202 } else { 7203 /* Ovlan exists only if we are in multi-function + 7204 * switch-dependent mode, in switch-independent there 7205 * is no ovlan headers 7206 */ 7207 REG_WR(bp, BP_PORT(bp) ? 7208 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7209 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 7210 (bp->path_has_ovlan ? 7 : 6)); 7211 } 7212 } 7213 7214 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7215 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7216 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7217 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7218 7219 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7220 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7221 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7222 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7223 7224 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7225 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7226 7227 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7228 7229 if (CHIP_IS_E1x(bp)) { 7230 /* configure PBF to work without PAUSE mtu 9000 */ 7231 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 7232 7233 /* update threshold */ 7234 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 7235 /* update init credit */ 7236 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 7237 7238 /* probe changes */ 7239 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); 7240 udelay(50); 7241 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); 7242 } 7243 7244 if (CNIC_SUPPORT(bp)) 7245 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7246 7247 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7248 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7249 7250 if (CHIP_IS_E1(bp)) { 7251 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7252 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7253 } 7254 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7255 7256 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7257 7258 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7259 /* init aeu_mask_attn_func_0/1: 7260 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use 7261 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF 7262 * bits 4-7 are used for "per vn group attention" */ 7263 val = IS_MF(bp) ? 0xF7 : 0x7; 7264 /* Enable DCBX attention for all but E1 */ 7265 val |= CHIP_IS_E1(bp) ? 0 : 0x10; 7266 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 7267 7268 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7269 7270 if (!CHIP_IS_E1x(bp)) { 7271 /* Bit-map indicating which L2 hdrs may appear after the 7272 * basic Ethernet header 7273 */ 7274 if (IS_MF_AFEX(bp)) 7275 REG_WR(bp, BP_PORT(bp) ? 7276 NIG_REG_P1_HDRS_AFTER_BASIC : 7277 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 7278 else 7279 REG_WR(bp, BP_PORT(bp) ? 7280 NIG_REG_P1_HDRS_AFTER_BASIC : 7281 NIG_REG_P0_HDRS_AFTER_BASIC, 7282 IS_MF_SD(bp) ? 7 : 6); 7283 7284 if (CHIP_IS_E3(bp)) 7285 REG_WR(bp, BP_PORT(bp) ? 7286 NIG_REG_LLH1_MF_MODE : 7287 NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7288 } 7289 if (!CHIP_IS_E3(bp)) 7290 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 7291 7292 if (!CHIP_IS_E1(bp)) { 7293 /* 0x2 disable mf_ov, 0x1 enable */ 7294 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 7295 (IS_MF_SD(bp) ? 0x1 : 0x2)); 7296 7297 if (!CHIP_IS_E1x(bp)) { 7298 val = 0; 7299 switch (bp->mf_mode) { 7300 case MULTI_FUNCTION_SD: 7301 val = 1; 7302 break; 7303 case MULTI_FUNCTION_SI: 7304 case MULTI_FUNCTION_AFEX: 7305 val = 2; 7306 break; 7307 } 7308 7309 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : 7310 NIG_REG_LLH0_CLS_TYPE), val); 7311 } 7312 { 7313 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 7314 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 7315 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 7316 } 7317 } 7318 7319 /* If SPIO5 is set to generate interrupts, enable it for this port */ 7320 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 7321 if (val & MISC_SPIO_SPIO5) { 7322 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 7323 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 7324 val = REG_RD(bp, reg_addr); 7325 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 7326 REG_WR(bp, reg_addr, val); 7327 } 7328 7329 return 0; 7330 } 7331 7332 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) 7333 { 7334 int reg; 7335 u32 wb_write[2]; 7336 7337 if (CHIP_IS_E1(bp)) 7338 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 7339 else 7340 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 7341 7342 wb_write[0] = ONCHIP_ADDR1(addr); 7343 wb_write[1] = ONCHIP_ADDR2(addr); 7344 REG_WR_DMAE(bp, reg, wb_write, 2); 7345 } 7346 7347 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) 7348 { 7349 u32 data, ctl, cnt = 100; 7350 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 7351 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 7352 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 7353 u32 sb_bit = 1 << (idu_sb_id%32); 7354 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 7355 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 7356 7357 /* Not supported in BC mode */ 7358 if (CHIP_INT_MODE_IS_BC(bp)) 7359 return; 7360 7361 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup 7362 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 7363 IGU_REGULAR_CLEANUP_SET | 7364 IGU_REGULAR_BCLEANUP; 7365 7366 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 7367 func_encode << IGU_CTRL_REG_FID_SHIFT | 7368 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 7369 7370 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7371 data, igu_addr_data); 7372 REG_WR(bp, igu_addr_data, data); 7373 mmiowb(); 7374 barrier(); 7375 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7376 ctl, igu_addr_ctl); 7377 REG_WR(bp, igu_addr_ctl, ctl); 7378 mmiowb(); 7379 barrier(); 7380 7381 /* wait for clean up to finish */ 7382 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) 7383 msleep(20); 7384 7385 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { 7386 DP(NETIF_MSG_HW, 7387 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", 7388 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 7389 } 7390 } 7391 7392 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) 7393 { 7394 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); 7395 } 7396 7397 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) 7398 { 7399 u32 i, base = FUNC_ILT_BASE(func); 7400 for (i = base; i < base + ILT_PER_FUNC; i++) 7401 bnx2x_ilt_wr(bp, i, 0); 7402 } 7403 7404 static void bnx2x_init_searcher(struct bnx2x *bp) 7405 { 7406 int port = BP_PORT(bp); 7407 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); 7408 /* T1 hash bits value determines the T1 number of entries */ 7409 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 7410 } 7411 7412 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) 7413 { 7414 int rc; 7415 struct bnx2x_func_state_params func_params = {NULL}; 7416 struct bnx2x_func_switch_update_params *switch_update_params = 7417 &func_params.params.switch_update; 7418 7419 /* Prepare parameters for function state transitions */ 7420 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 7421 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 7422 7423 func_params.f_obj = &bp->func_obj; 7424 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 7425 7426 /* Function parameters */ 7427 switch_update_params->suspend = suspend; 7428 7429 rc = bnx2x_func_state_change(bp, &func_params); 7430 7431 return rc; 7432 } 7433 7434 static int bnx2x_reset_nic_mode(struct bnx2x *bp) 7435 { 7436 int rc, i, port = BP_PORT(bp); 7437 int vlan_en = 0, mac_en[NUM_MACS]; 7438 7439 /* Close input from network */ 7440 if (bp->mf_mode == SINGLE_FUNCTION) { 7441 bnx2x_set_rx_filter(&bp->link_params, 0); 7442 } else { 7443 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : 7444 NIG_REG_LLH0_FUNC_EN); 7445 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7446 NIG_REG_LLH0_FUNC_EN, 0); 7447 for (i = 0; i < NUM_MACS; i++) { 7448 mac_en[i] = REG_RD(bp, port ? 7449 (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7450 4 * i) : 7451 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 7452 4 * i)); 7453 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7454 4 * i) : 7455 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); 7456 } 7457 } 7458 7459 /* Close BMC to host */ 7460 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7461 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); 7462 7463 /* Suspend Tx switching to the PF. Completion of this ramrod 7464 * further guarantees that all the packets of that PF / child 7465 * VFs in BRB were processed by the Parser, so it is safe to 7466 * change the NIC_MODE register. 7467 */ 7468 rc = bnx2x_func_switch_update(bp, 1); 7469 if (rc) { 7470 BNX2X_ERR("Can't suspend tx-switching!\n"); 7471 return rc; 7472 } 7473 7474 /* Change NIC_MODE register */ 7475 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7476 7477 /* Open input from network */ 7478 if (bp->mf_mode == SINGLE_FUNCTION) { 7479 bnx2x_set_rx_filter(&bp->link_params, 1); 7480 } else { 7481 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7482 NIG_REG_LLH0_FUNC_EN, vlan_en); 7483 for (i = 0; i < NUM_MACS; i++) { 7484 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7485 4 * i) : 7486 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 7487 mac_en[i]); 7488 } 7489 } 7490 7491 /* Enable BMC to host */ 7492 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7493 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); 7494 7495 /* Resume Tx switching to the PF */ 7496 rc = bnx2x_func_switch_update(bp, 0); 7497 if (rc) { 7498 BNX2X_ERR("Can't resume tx-switching!\n"); 7499 return rc; 7500 } 7501 7502 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7503 return 0; 7504 } 7505 7506 int bnx2x_init_hw_func_cnic(struct bnx2x *bp) 7507 { 7508 int rc; 7509 7510 bnx2x_ilt_init_op_cnic(bp, INITOP_SET); 7511 7512 if (CONFIGURE_NIC_MODE(bp)) { 7513 /* Configure searcher as part of function hw init */ 7514 bnx2x_init_searcher(bp); 7515 7516 /* Reset NIC mode */ 7517 rc = bnx2x_reset_nic_mode(bp); 7518 if (rc) 7519 BNX2X_ERR("Can't change NIC mode!\n"); 7520 return rc; 7521 } 7522 7523 return 0; 7524 } 7525 7526 static int bnx2x_init_hw_func(struct bnx2x *bp) 7527 { 7528 int port = BP_PORT(bp); 7529 int func = BP_FUNC(bp); 7530 int init_phase = PHASE_PF0 + func; 7531 struct bnx2x_ilt *ilt = BP_ILT(bp); 7532 u16 cdu_ilt_start; 7533 u32 addr, val; 7534 u32 main_mem_base, main_mem_size, main_mem_prty_clr; 7535 int i, main_mem_width, rc; 7536 7537 DP(NETIF_MSG_HW, "starting func init func %d\n", func); 7538 7539 /* FLR cleanup - hmmm */ 7540 if (!CHIP_IS_E1x(bp)) { 7541 rc = bnx2x_pf_flr_clnup(bp); 7542 if (rc) { 7543 bnx2x_fw_dump(bp); 7544 return rc; 7545 } 7546 } 7547 7548 /* set MSI reconfigure capability */ 7549 if (bp->common.int_block == INT_BLOCK_HC) { 7550 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 7551 val = REG_RD(bp, addr); 7552 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 7553 REG_WR(bp, addr, val); 7554 } 7555 7556 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7557 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7558 7559 ilt = BP_ILT(bp); 7560 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7561 7562 if (IS_SRIOV(bp)) 7563 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; 7564 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); 7565 7566 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes 7567 * those of the VFs, so start line should be reset 7568 */ 7569 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7570 for (i = 0; i < L2_ILT_LINES(bp); i++) { 7571 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; 7572 ilt->lines[cdu_ilt_start + i].page_mapping = 7573 bp->context[i].cxt_mapping; 7574 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; 7575 } 7576 7577 bnx2x_ilt_init_op(bp, INITOP_SET); 7578 7579 if (!CONFIGURE_NIC_MODE(bp)) { 7580 bnx2x_init_searcher(bp); 7581 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7582 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7583 } else { 7584 /* Set NIC mode */ 7585 REG_WR(bp, PRS_REG_NIC_MODE, 1); 7586 DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); 7587 } 7588 7589 if (!CHIP_IS_E1x(bp)) { 7590 u32 pf_conf = IGU_PF_CONF_FUNC_EN; 7591 7592 /* Turn on a single ISR mode in IGU if driver is going to use 7593 * INT#x or MSI 7594 */ 7595 if (!(bp->flags & USING_MSIX_FLAG)) 7596 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 7597 /* 7598 * Timers workaround bug: function init part. 7599 * Need to wait 20msec after initializing ILT, 7600 * needed to make sure there are no requests in 7601 * one of the PXP internal queues with "old" ILT addresses 7602 */ 7603 msleep(20); 7604 /* 7605 * Master enable - Due to WB DMAE writes performed before this 7606 * register is re-initialized as part of the regular function 7607 * init 7608 */ 7609 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7610 /* Enable the function in IGU */ 7611 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); 7612 } 7613 7614 bp->dmae_ready = 1; 7615 7616 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7617 7618 if (!CHIP_IS_E1x(bp)) 7619 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 7620 7621 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7622 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7623 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7624 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7625 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7626 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7627 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7628 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7629 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7630 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7631 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7632 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7633 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7634 7635 if (!CHIP_IS_E1x(bp)) 7636 REG_WR(bp, QM_REG_PF_EN, 1); 7637 7638 if (!CHIP_IS_E1x(bp)) { 7639 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7640 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7641 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7642 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7643 } 7644 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7645 7646 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7647 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7648 7649 bnx2x_iov_init_dq(bp); 7650 7651 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7652 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7653 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7654 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7655 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7656 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7657 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7658 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7659 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7660 if (!CHIP_IS_E1x(bp)) 7661 REG_WR(bp, PBF_REG_DISABLE_PF, 0); 7662 7663 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7664 7665 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7666 7667 if (!CHIP_IS_E1x(bp)) 7668 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); 7669 7670 if (IS_MF(bp)) { 7671 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7672 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov); 7673 } 7674 7675 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7676 7677 /* HC init per function */ 7678 if (bp->common.int_block == INT_BLOCK_HC) { 7679 if (CHIP_IS_E1H(bp)) { 7680 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7681 7682 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7683 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7684 } 7685 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7686 7687 } else { 7688 int num_segs, sb_idx, prod_offset; 7689 7690 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7691 7692 if (!CHIP_IS_E1x(bp)) { 7693 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 7694 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 7695 } 7696 7697 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7698 7699 if (!CHIP_IS_E1x(bp)) { 7700 int dsb_idx = 0; 7701 /** 7702 * Producer memory: 7703 * E2 mode: address 0-135 match to the mapping memory; 7704 * 136 - PF0 default prod; 137 - PF1 default prod; 7705 * 138 - PF2 default prod; 139 - PF3 default prod; 7706 * 140 - PF0 attn prod; 141 - PF1 attn prod; 7707 * 142 - PF2 attn prod; 143 - PF3 attn prod; 7708 * 144-147 reserved. 7709 * 7710 * E1.5 mode - In backward compatible mode; 7711 * for non default SB; each even line in the memory 7712 * holds the U producer and each odd line hold 7713 * the C producer. The first 128 producers are for 7714 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 7715 * producers are for the DSB for each PF. 7716 * Each PF has five segments: (the order inside each 7717 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 7718 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 7719 * 144-147 attn prods; 7720 */ 7721 /* non-default-status-blocks */ 7722 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 7723 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 7724 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { 7725 prod_offset = (bp->igu_base_sb + sb_idx) * 7726 num_segs; 7727 7728 for (i = 0; i < num_segs; i++) { 7729 addr = IGU_REG_PROD_CONS_MEMORY + 7730 (prod_offset + i) * 4; 7731 REG_WR(bp, addr, 0); 7732 } 7733 /* send consumer update with value 0 */ 7734 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, 7735 USTORM_ID, 0, IGU_INT_NOP, 1); 7736 bnx2x_igu_clear_sb(bp, 7737 bp->igu_base_sb + sb_idx); 7738 } 7739 7740 /* default-status-blocks */ 7741 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 7742 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 7743 7744 if (CHIP_MODE_IS_4_PORT(bp)) 7745 dsb_idx = BP_FUNC(bp); 7746 else 7747 dsb_idx = BP_VN(bp); 7748 7749 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? 7750 IGU_BC_BASE_DSB_PROD + dsb_idx : 7751 IGU_NORM_BASE_DSB_PROD + dsb_idx); 7752 7753 /* 7754 * igu prods come in chunks of E1HVN_MAX (4) - 7755 * does not matters what is the current chip mode 7756 */ 7757 for (i = 0; i < (num_segs * E1HVN_MAX); 7758 i += E1HVN_MAX) { 7759 addr = IGU_REG_PROD_CONS_MEMORY + 7760 (prod_offset + i)*4; 7761 REG_WR(bp, addr, 0); 7762 } 7763 /* send consumer update with 0 */ 7764 if (CHIP_INT_MODE_IS_BC(bp)) { 7765 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7766 USTORM_ID, 0, IGU_INT_NOP, 1); 7767 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7768 CSTORM_ID, 0, IGU_INT_NOP, 1); 7769 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7770 XSTORM_ID, 0, IGU_INT_NOP, 1); 7771 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7772 TSTORM_ID, 0, IGU_INT_NOP, 1); 7773 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7774 ATTENTION_ID, 0, IGU_INT_NOP, 1); 7775 } else { 7776 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7777 USTORM_ID, 0, IGU_INT_NOP, 1); 7778 bnx2x_ack_sb(bp, bp->igu_dsb_id, 7779 ATTENTION_ID, 0, IGU_INT_NOP, 1); 7780 } 7781 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); 7782 7783 /* !!! These should become driver const once 7784 rf-tool supports split-68 const */ 7785 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 7786 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 7787 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 7788 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 7789 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 7790 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 7791 } 7792 } 7793 7794 /* Reset PCIE errors for debug */ 7795 REG_WR(bp, 0x2114, 0xffffffff); 7796 REG_WR(bp, 0x2120, 0xffffffff); 7797 7798 if (CHIP_IS_E1x(bp)) { 7799 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 7800 main_mem_base = HC_REG_MAIN_MEMORY + 7801 BP_PORT(bp) * (main_mem_size * 4); 7802 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 7803 main_mem_width = 8; 7804 7805 val = REG_RD(bp, main_mem_prty_clr); 7806 if (val) 7807 DP(NETIF_MSG_HW, 7808 "Hmmm... Parity errors in HC block during function init (0x%x)!\n", 7809 val); 7810 7811 /* Clear "false" parity errors in MSI-X table */ 7812 for (i = main_mem_base; 7813 i < main_mem_base + main_mem_size * 4; 7814 i += main_mem_width) { 7815 bnx2x_read_dmae(bp, i, main_mem_width / 4); 7816 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), 7817 i, main_mem_width / 4); 7818 } 7819 /* Clear HC parity attention */ 7820 REG_RD(bp, main_mem_prty_clr); 7821 } 7822 7823 #ifdef BNX2X_STOP_ON_ERROR 7824 /* Enable STORMs SP logging */ 7825 REG_WR8(bp, BAR_USTRORM_INTMEM + 7826 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 7827 REG_WR8(bp, BAR_TSTRORM_INTMEM + 7828 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 7829 REG_WR8(bp, BAR_CSTRORM_INTMEM + 7830 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 7831 REG_WR8(bp, BAR_XSTRORM_INTMEM + 7832 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 7833 #endif 7834 7835 bnx2x_phy_probe(&bp->link_params); 7836 7837 return 0; 7838 } 7839 7840 void bnx2x_free_mem_cnic(struct bnx2x *bp) 7841 { 7842 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); 7843 7844 if (!CHIP_IS_E1x(bp)) 7845 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, 7846 sizeof(struct host_hc_status_block_e2)); 7847 else 7848 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, 7849 sizeof(struct host_hc_status_block_e1x)); 7850 7851 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 7852 } 7853 7854 void bnx2x_free_mem(struct bnx2x *bp) 7855 { 7856 int i; 7857 7858 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, 7859 sizeof(struct host_sp_status_block)); 7860 7861 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 7862 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 7863 7864 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, 7865 sizeof(struct bnx2x_slowpath)); 7866 7867 for (i = 0; i < L2_ILT_LINES(bp); i++) 7868 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, 7869 bp->context[i].size); 7870 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); 7871 7872 BNX2X_FREE(bp->ilt->lines); 7873 7874 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); 7875 7876 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, 7877 BCM_PAGE_SIZE * NUM_EQ_PAGES); 7878 7879 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 7880 7881 bnx2x_iov_free_mem(bp); 7882 } 7883 7884 int bnx2x_alloc_mem_cnic(struct bnx2x *bp) 7885 { 7886 if (!CHIP_IS_E1x(bp)) 7887 /* size = the status block + ramrod buffers */ 7888 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping, 7889 sizeof(struct host_hc_status_block_e2)); 7890 else 7891 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, 7892 &bp->cnic_sb_mapping, 7893 sizeof(struct 7894 host_hc_status_block_e1x)); 7895 7896 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) 7897 /* allocate searcher T2 table, as it wasn't allocated before */ 7898 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ); 7899 7900 /* write address to which L5 should insert its values */ 7901 bp->cnic_eth_dev.addr_drv_info_to_mcp = 7902 &bp->slowpath->drv_info_to_mcp; 7903 7904 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) 7905 goto alloc_mem_err; 7906 7907 return 0; 7908 7909 alloc_mem_err: 7910 bnx2x_free_mem_cnic(bp); 7911 BNX2X_ERR("Can't allocate memory\n"); 7912 return -ENOMEM; 7913 } 7914 7915 int bnx2x_alloc_mem(struct bnx2x *bp) 7916 { 7917 int i, allocated, context_size; 7918 7919 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) 7920 /* allocate searcher T2 table */ 7921 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ); 7922 7923 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping, 7924 sizeof(struct host_sp_status_block)); 7925 7926 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping, 7927 sizeof(struct bnx2x_slowpath)); 7928 7929 /* Allocate memory for CDU context: 7930 * This memory is allocated separately and not in the generic ILT 7931 * functions because CDU differs in few aspects: 7932 * 1. There are multiple entities allocating memory for context - 7933 * 'regular' driver, CNIC and SRIOV driver. Each separately controls 7934 * its own ILT lines. 7935 * 2. Since CDU page-size is not a single 4KB page (which is the case 7936 * for the other ILT clients), to be efficient we want to support 7937 * allocation of sub-page-size in the last entry. 7938 * 3. Context pointers are used by the driver to pass to FW / update 7939 * the context (for the other ILT clients the pointers are used just to 7940 * free the memory during unload). 7941 */ 7942 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); 7943 7944 for (i = 0, allocated = 0; allocated < context_size; i++) { 7945 bp->context[i].size = min(CDU_ILT_PAGE_SZ, 7946 (context_size - allocated)); 7947 BNX2X_PCI_ALLOC(bp->context[i].vcxt, 7948 &bp->context[i].cxt_mapping, 7949 bp->context[i].size); 7950 allocated += bp->context[i].size; 7951 } 7952 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES); 7953 7954 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) 7955 goto alloc_mem_err; 7956 7957 if (bnx2x_iov_alloc_mem(bp)) 7958 goto alloc_mem_err; 7959 7960 /* Slow path ring */ 7961 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE); 7962 7963 /* EQ */ 7964 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping, 7965 BCM_PAGE_SIZE * NUM_EQ_PAGES); 7966 7967 return 0; 7968 7969 alloc_mem_err: 7970 bnx2x_free_mem(bp); 7971 BNX2X_ERR("Can't allocate memory\n"); 7972 return -ENOMEM; 7973 } 7974 7975 /* 7976 * Init service functions 7977 */ 7978 7979 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 7980 struct bnx2x_vlan_mac_obj *obj, bool set, 7981 int mac_type, unsigned long *ramrod_flags) 7982 { 7983 int rc; 7984 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 7985 7986 memset(&ramrod_param, 0, sizeof(ramrod_param)); 7987 7988 /* Fill general parameters */ 7989 ramrod_param.vlan_mac_obj = obj; 7990 ramrod_param.ramrod_flags = *ramrod_flags; 7991 7992 /* Fill a user request section if needed */ 7993 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 7994 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 7995 7996 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 7997 7998 /* Set the command: ADD or DEL */ 7999 if (set) 8000 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8001 else 8002 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8003 } 8004 8005 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8006 8007 if (rc == -EEXIST) { 8008 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8009 /* do not treat adding same MAC as error */ 8010 rc = 0; 8011 } else if (rc < 0) 8012 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); 8013 8014 return rc; 8015 } 8016 8017 int bnx2x_del_all_macs(struct bnx2x *bp, 8018 struct bnx2x_vlan_mac_obj *mac_obj, 8019 int mac_type, bool wait_for_comp) 8020 { 8021 int rc; 8022 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 8023 8024 /* Wait for completion of requested */ 8025 if (wait_for_comp) 8026 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8027 8028 /* Set the mac type of addresses we want to clear */ 8029 __set_bit(mac_type, &vlan_mac_flags); 8030 8031 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); 8032 if (rc < 0) 8033 BNX2X_ERR("Failed to delete MACs: %d\n", rc); 8034 8035 return rc; 8036 } 8037 8038 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) 8039 { 8040 if (is_zero_ether_addr(bp->dev->dev_addr) && 8041 (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) { 8042 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN, 8043 "Ignoring Zero MAC for STORAGE SD mode\n"); 8044 return 0; 8045 } 8046 8047 if (IS_PF(bp)) { 8048 unsigned long ramrod_flags = 0; 8049 8050 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); 8051 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8052 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, 8053 &bp->sp_objs->mac_obj, set, 8054 BNX2X_ETH_MAC, &ramrod_flags); 8055 } else { /* vf */ 8056 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, 8057 bp->fp->index, true); 8058 } 8059 } 8060 8061 int bnx2x_setup_leading(struct bnx2x *bp) 8062 { 8063 return bnx2x_setup_queue(bp, &bp->fp[0], 1); 8064 } 8065 8066 /** 8067 * bnx2x_set_int_mode - configure interrupt mode 8068 * 8069 * @bp: driver handle 8070 * 8071 * In case of MSI-X it will also try to enable MSI-X. 8072 */ 8073 int bnx2x_set_int_mode(struct bnx2x *bp) 8074 { 8075 int rc = 0; 8076 8077 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) 8078 return -EINVAL; 8079 8080 switch (int_mode) { 8081 case BNX2X_INT_MODE_MSIX: 8082 /* attempt to enable msix */ 8083 rc = bnx2x_enable_msix(bp); 8084 8085 /* msix attained */ 8086 if (!rc) 8087 return 0; 8088 8089 /* vfs use only msix */ 8090 if (rc && IS_VF(bp)) 8091 return rc; 8092 8093 /* failed to enable multiple MSI-X */ 8094 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", 8095 bp->num_queues, 8096 1 + bp->num_cnic_queues); 8097 8098 /* falling through... */ 8099 case BNX2X_INT_MODE_MSI: 8100 bnx2x_enable_msi(bp); 8101 8102 /* falling through... */ 8103 case BNX2X_INT_MODE_INTX: 8104 bp->num_ethernet_queues = 1; 8105 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 8106 BNX2X_DEV_INFO("set number of queues to 1\n"); 8107 break; 8108 default: 8109 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); 8110 return -EINVAL; 8111 } 8112 return 0; 8113 } 8114 8115 /* must be called prior to any HW initializations */ 8116 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) 8117 { 8118 if (IS_SRIOV(bp)) 8119 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; 8120 return L2_ILT_LINES(bp); 8121 } 8122 8123 void bnx2x_ilt_set_info(struct bnx2x *bp) 8124 { 8125 struct ilt_client_info *ilt_client; 8126 struct bnx2x_ilt *ilt = BP_ILT(bp); 8127 u16 line = 0; 8128 8129 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); 8130 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); 8131 8132 /* CDU */ 8133 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 8134 ilt_client->client_num = ILT_CLIENT_CDU; 8135 ilt_client->page_size = CDU_ILT_PAGE_SZ; 8136 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 8137 ilt_client->start = line; 8138 line += bnx2x_cid_ilt_lines(bp); 8139 8140 if (CNIC_SUPPORT(bp)) 8141 line += CNIC_ILT_LINES; 8142 ilt_client->end = line - 1; 8143 8144 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8145 ilt_client->start, 8146 ilt_client->end, 8147 ilt_client->page_size, 8148 ilt_client->flags, 8149 ilog2(ilt_client->page_size >> 12)); 8150 8151 /* QM */ 8152 if (QM_INIT(bp->qm_cid_count)) { 8153 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 8154 ilt_client->client_num = ILT_CLIENT_QM; 8155 ilt_client->page_size = QM_ILT_PAGE_SZ; 8156 ilt_client->flags = 0; 8157 ilt_client->start = line; 8158 8159 /* 4 bytes for each cid */ 8160 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 8161 QM_ILT_PAGE_SZ); 8162 8163 ilt_client->end = line - 1; 8164 8165 DP(NETIF_MSG_IFUP, 8166 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8167 ilt_client->start, 8168 ilt_client->end, 8169 ilt_client->page_size, 8170 ilt_client->flags, 8171 ilog2(ilt_client->page_size >> 12)); 8172 } 8173 8174 if (CNIC_SUPPORT(bp)) { 8175 /* SRC */ 8176 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 8177 ilt_client->client_num = ILT_CLIENT_SRC; 8178 ilt_client->page_size = SRC_ILT_PAGE_SZ; 8179 ilt_client->flags = 0; 8180 ilt_client->start = line; 8181 line += SRC_ILT_LINES; 8182 ilt_client->end = line - 1; 8183 8184 DP(NETIF_MSG_IFUP, 8185 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8186 ilt_client->start, 8187 ilt_client->end, 8188 ilt_client->page_size, 8189 ilt_client->flags, 8190 ilog2(ilt_client->page_size >> 12)); 8191 8192 /* TM */ 8193 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 8194 ilt_client->client_num = ILT_CLIENT_TM; 8195 ilt_client->page_size = TM_ILT_PAGE_SZ; 8196 ilt_client->flags = 0; 8197 ilt_client->start = line; 8198 line += TM_ILT_LINES; 8199 ilt_client->end = line - 1; 8200 8201 DP(NETIF_MSG_IFUP, 8202 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8203 ilt_client->start, 8204 ilt_client->end, 8205 ilt_client->page_size, 8206 ilt_client->flags, 8207 ilog2(ilt_client->page_size >> 12)); 8208 } 8209 8210 BUG_ON(line > ILT_MAX_LINES); 8211 } 8212 8213 /** 8214 * bnx2x_pf_q_prep_init - prepare INIT transition parameters 8215 * 8216 * @bp: driver handle 8217 * @fp: pointer to fastpath 8218 * @init_params: pointer to parameters structure 8219 * 8220 * parameters configured: 8221 * - HC configuration 8222 * - Queue's CDU context 8223 */ 8224 static void bnx2x_pf_q_prep_init(struct bnx2x *bp, 8225 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) 8226 { 8227 u8 cos; 8228 int cxt_index, cxt_offset; 8229 8230 /* FCoE Queue uses Default SB, thus has no HC capabilities */ 8231 if (!IS_FCOE_FP(fp)) { 8232 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); 8233 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); 8234 8235 /* If HC is supported, enable host coalescing in the transition 8236 * to INIT state. 8237 */ 8238 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); 8239 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); 8240 8241 /* HC rate */ 8242 init_params->rx.hc_rate = bp->rx_ticks ? 8243 (1000000 / bp->rx_ticks) : 0; 8244 init_params->tx.hc_rate = bp->tx_ticks ? 8245 (1000000 / bp->tx_ticks) : 0; 8246 8247 /* FW SB ID */ 8248 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = 8249 fp->fw_sb_id; 8250 8251 /* 8252 * CQ index among the SB indices: FCoE clients uses the default 8253 * SB, therefore it's different. 8254 */ 8255 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 8256 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 8257 } 8258 8259 /* set maximum number of COSs supported by this queue */ 8260 init_params->max_cos = fp->max_cos; 8261 8262 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", 8263 fp->index, init_params->max_cos); 8264 8265 /* set the context pointers queue object */ 8266 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 8267 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; 8268 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * 8269 ILT_PAGE_CIDS); 8270 init_params->cxts[cos] = 8271 &bp->context[cxt_index].vcxt[cxt_offset].eth; 8272 } 8273 } 8274 8275 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8276 struct bnx2x_queue_state_params *q_params, 8277 struct bnx2x_queue_setup_tx_only_params *tx_only_params, 8278 int tx_index, bool leading) 8279 { 8280 memset(tx_only_params, 0, sizeof(*tx_only_params)); 8281 8282 /* Set the command */ 8283 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 8284 8285 /* Set tx-only QUEUE flags: don't zero statistics */ 8286 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); 8287 8288 /* choose the index of the cid to send the slow path on */ 8289 tx_only_params->cid_index = tx_index; 8290 8291 /* Set general TX_ONLY_SETUP parameters */ 8292 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); 8293 8294 /* Set Tx TX_ONLY_SETUP parameters */ 8295 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); 8296 8297 DP(NETIF_MSG_IFUP, 8298 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", 8299 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], 8300 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, 8301 tx_only_params->gen_params.spcl_id, tx_only_params->flags); 8302 8303 /* send the ramrod */ 8304 return bnx2x_queue_state_change(bp, q_params); 8305 } 8306 8307 /** 8308 * bnx2x_setup_queue - setup queue 8309 * 8310 * @bp: driver handle 8311 * @fp: pointer to fastpath 8312 * @leading: is leading 8313 * 8314 * This function performs 2 steps in a Queue state machine 8315 * actually: 1) RESET->INIT 2) INIT->SETUP 8316 */ 8317 8318 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8319 bool leading) 8320 { 8321 struct bnx2x_queue_state_params q_params = {NULL}; 8322 struct bnx2x_queue_setup_params *setup_params = 8323 &q_params.params.setup; 8324 struct bnx2x_queue_setup_tx_only_params *tx_only_params = 8325 &q_params.params.tx_only; 8326 int rc; 8327 u8 tx_index; 8328 8329 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); 8330 8331 /* reset IGU state skip FCoE L2 queue */ 8332 if (!IS_FCOE_FP(fp)) 8333 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, 8334 IGU_INT_ENABLE, 0); 8335 8336 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8337 /* We want to wait for completion in this context */ 8338 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8339 8340 /* Prepare the INIT parameters */ 8341 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); 8342 8343 /* Set the command */ 8344 q_params.cmd = BNX2X_Q_CMD_INIT; 8345 8346 /* Change the state to INIT */ 8347 rc = bnx2x_queue_state_change(bp, &q_params); 8348 if (rc) { 8349 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); 8350 return rc; 8351 } 8352 8353 DP(NETIF_MSG_IFUP, "init complete\n"); 8354 8355 /* Now move the Queue to the SETUP state... */ 8356 memset(setup_params, 0, sizeof(*setup_params)); 8357 8358 /* Set QUEUE flags */ 8359 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); 8360 8361 /* Set general SETUP parameters */ 8362 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, 8363 FIRST_TX_COS_INDEX); 8364 8365 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, 8366 &setup_params->rxq_params); 8367 8368 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, 8369 FIRST_TX_COS_INDEX); 8370 8371 /* Set the command */ 8372 q_params.cmd = BNX2X_Q_CMD_SETUP; 8373 8374 if (IS_FCOE_FP(fp)) 8375 bp->fcoe_init = true; 8376 8377 /* Change the state to SETUP */ 8378 rc = bnx2x_queue_state_change(bp, &q_params); 8379 if (rc) { 8380 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); 8381 return rc; 8382 } 8383 8384 /* loop through the relevant tx-only indices */ 8385 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8386 tx_index < fp->max_cos; 8387 tx_index++) { 8388 8389 /* prepare and send tx-only ramrod*/ 8390 rc = bnx2x_setup_tx_only(bp, fp, &q_params, 8391 tx_only_params, tx_index, leading); 8392 if (rc) { 8393 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", 8394 fp->index, tx_index); 8395 return rc; 8396 } 8397 } 8398 8399 return rc; 8400 } 8401 8402 static int bnx2x_stop_queue(struct bnx2x *bp, int index) 8403 { 8404 struct bnx2x_fastpath *fp = &bp->fp[index]; 8405 struct bnx2x_fp_txdata *txdata; 8406 struct bnx2x_queue_state_params q_params = {NULL}; 8407 int rc, tx_index; 8408 8409 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); 8410 8411 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8412 /* We want to wait for completion in this context */ 8413 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8414 8415 /* close tx-only connections */ 8416 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8417 tx_index < fp->max_cos; 8418 tx_index++){ 8419 8420 /* ascertain this is a normal queue*/ 8421 txdata = fp->txdata_ptr[tx_index]; 8422 8423 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", 8424 txdata->txq_index); 8425 8426 /* send halt terminate on tx-only connection */ 8427 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8428 memset(&q_params.params.terminate, 0, 8429 sizeof(q_params.params.terminate)); 8430 q_params.params.terminate.cid_index = tx_index; 8431 8432 rc = bnx2x_queue_state_change(bp, &q_params); 8433 if (rc) 8434 return rc; 8435 8436 /* send halt terminate on tx-only connection */ 8437 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8438 memset(&q_params.params.cfc_del, 0, 8439 sizeof(q_params.params.cfc_del)); 8440 q_params.params.cfc_del.cid_index = tx_index; 8441 rc = bnx2x_queue_state_change(bp, &q_params); 8442 if (rc) 8443 return rc; 8444 } 8445 /* Stop the primary connection: */ 8446 /* ...halt the connection */ 8447 q_params.cmd = BNX2X_Q_CMD_HALT; 8448 rc = bnx2x_queue_state_change(bp, &q_params); 8449 if (rc) 8450 return rc; 8451 8452 /* ...terminate the connection */ 8453 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8454 memset(&q_params.params.terminate, 0, 8455 sizeof(q_params.params.terminate)); 8456 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 8457 rc = bnx2x_queue_state_change(bp, &q_params); 8458 if (rc) 8459 return rc; 8460 /* ...delete cfc entry */ 8461 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8462 memset(&q_params.params.cfc_del, 0, 8463 sizeof(q_params.params.cfc_del)); 8464 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 8465 return bnx2x_queue_state_change(bp, &q_params); 8466 } 8467 8468 static void bnx2x_reset_func(struct bnx2x *bp) 8469 { 8470 int port = BP_PORT(bp); 8471 int func = BP_FUNC(bp); 8472 int i; 8473 8474 /* Disable the function in the FW */ 8475 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 8476 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 8477 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 8478 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 8479 8480 /* FP SBs */ 8481 for_each_eth_queue(bp, i) { 8482 struct bnx2x_fastpath *fp = &bp->fp[i]; 8483 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8484 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 8485 SB_DISABLED); 8486 } 8487 8488 if (CNIC_LOADED(bp)) 8489 /* CNIC SB */ 8490 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8491 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 8492 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); 8493 8494 /* SP SB */ 8495 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8496 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 8497 SB_DISABLED); 8498 8499 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) 8500 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 8501 0); 8502 8503 /* Configure IGU */ 8504 if (bp->common.int_block == INT_BLOCK_HC) { 8505 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8506 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8507 } else { 8508 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8509 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8510 } 8511 8512 if (CNIC_LOADED(bp)) { 8513 /* Disable Timer scan */ 8514 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 8515 /* 8516 * Wait for at least 10ms and up to 2 second for the timers 8517 * scan to complete 8518 */ 8519 for (i = 0; i < 200; i++) { 8520 usleep_range(10000, 20000); 8521 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) 8522 break; 8523 } 8524 } 8525 /* Clear ILT */ 8526 bnx2x_clear_func_ilt(bp, func); 8527 8528 /* Timers workaround bug for E2: if this is vnic-3, 8529 * we need to set the entire ilt range for this timers. 8530 */ 8531 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { 8532 struct ilt_client_info ilt_cli; 8533 /* use dummy TM client */ 8534 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 8535 ilt_cli.start = 0; 8536 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 8537 ilt_cli.client_num = ILT_CLIENT_TM; 8538 8539 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); 8540 } 8541 8542 /* this assumes that reset_port() called before reset_func()*/ 8543 if (!CHIP_IS_E1x(bp)) 8544 bnx2x_pf_disable(bp); 8545 8546 bp->dmae_ready = 0; 8547 } 8548 8549 static void bnx2x_reset_port(struct bnx2x *bp) 8550 { 8551 int port = BP_PORT(bp); 8552 u32 val; 8553 8554 /* Reset physical Link */ 8555 bnx2x__link_reset(bp); 8556 8557 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 8558 8559 /* Do not rcv packets to BRB */ 8560 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 8561 /* Do not direct rcv packets that are not for MCP to the BRB */ 8562 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 8563 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 8564 8565 /* Configure AEU */ 8566 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 8567 8568 msleep(100); 8569 /* Check for BRB port occupancy */ 8570 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 8571 if (val) 8572 DP(NETIF_MSG_IFDOWN, 8573 "BRB1 is not empty %d blocks are occupied\n", val); 8574 8575 /* TODO: Close Doorbell port? */ 8576 } 8577 8578 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) 8579 { 8580 struct bnx2x_func_state_params func_params = {NULL}; 8581 8582 /* Prepare parameters for function state transitions */ 8583 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 8584 8585 func_params.f_obj = &bp->func_obj; 8586 func_params.cmd = BNX2X_F_CMD_HW_RESET; 8587 8588 func_params.params.hw_init.load_phase = load_code; 8589 8590 return bnx2x_func_state_change(bp, &func_params); 8591 } 8592 8593 static int bnx2x_func_stop(struct bnx2x *bp) 8594 { 8595 struct bnx2x_func_state_params func_params = {NULL}; 8596 int rc; 8597 8598 /* Prepare parameters for function state transitions */ 8599 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 8600 func_params.f_obj = &bp->func_obj; 8601 func_params.cmd = BNX2X_F_CMD_STOP; 8602 8603 /* 8604 * Try to stop the function the 'good way'. If fails (in case 8605 * of a parity error during bnx2x_chip_cleanup()) and we are 8606 * not in a debug mode, perform a state transaction in order to 8607 * enable further HW_RESET transaction. 8608 */ 8609 rc = bnx2x_func_state_change(bp, &func_params); 8610 if (rc) { 8611 #ifdef BNX2X_STOP_ON_ERROR 8612 return rc; 8613 #else 8614 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); 8615 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 8616 return bnx2x_func_state_change(bp, &func_params); 8617 #endif 8618 } 8619 8620 return 0; 8621 } 8622 8623 /** 8624 * bnx2x_send_unload_req - request unload mode from the MCP. 8625 * 8626 * @bp: driver handle 8627 * @unload_mode: requested function's unload mode 8628 * 8629 * Return unload mode returned by the MCP: COMMON, PORT or FUNC. 8630 */ 8631 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) 8632 { 8633 u32 reset_code = 0; 8634 int port = BP_PORT(bp); 8635 8636 /* Select the UNLOAD request mode */ 8637 if (unload_mode == UNLOAD_NORMAL) 8638 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 8639 8640 else if (bp->flags & NO_WOL_FLAG) 8641 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 8642 8643 else if (bp->wol) { 8644 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 8645 u8 *mac_addr = bp->dev->dev_addr; 8646 u32 val; 8647 u16 pmc; 8648 8649 /* The mac address is written to entries 1-4 to 8650 * preserve entry 0 which is used by the PMF 8651 */ 8652 u8 entry = (BP_VN(bp) + 1)*8; 8653 8654 val = (mac_addr[0] << 8) | mac_addr[1]; 8655 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); 8656 8657 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 8658 (mac_addr[4] << 8) | mac_addr[5]; 8659 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 8660 8661 /* Enable the PME and clear the status */ 8662 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc); 8663 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; 8664 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc); 8665 8666 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 8667 8668 } else 8669 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 8670 8671 /* Send the request to the MCP */ 8672 if (!BP_NOMCP(bp)) 8673 reset_code = bnx2x_fw_command(bp, reset_code, 0); 8674 else { 8675 int path = BP_PATH(bp); 8676 8677 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", 8678 path, load_count[path][0], load_count[path][1], 8679 load_count[path][2]); 8680 load_count[path][0]--; 8681 load_count[path][1 + port]--; 8682 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", 8683 path, load_count[path][0], load_count[path][1], 8684 load_count[path][2]); 8685 if (load_count[path][0] == 0) 8686 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; 8687 else if (load_count[path][1 + port] == 0) 8688 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; 8689 else 8690 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; 8691 } 8692 8693 return reset_code; 8694 } 8695 8696 /** 8697 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. 8698 * 8699 * @bp: driver handle 8700 * @keep_link: true iff link should be kept up 8701 */ 8702 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) 8703 { 8704 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 8705 8706 /* Report UNLOAD_DONE to MCP */ 8707 if (!BP_NOMCP(bp)) 8708 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 8709 } 8710 8711 static int bnx2x_func_wait_started(struct bnx2x *bp) 8712 { 8713 int tout = 50; 8714 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 8715 8716 if (!bp->port.pmf) 8717 return 0; 8718 8719 /* 8720 * (assumption: No Attention from MCP at this stage) 8721 * PMF probably in the middle of TX disable/enable transaction 8722 * 1. Sync IRS for default SB 8723 * 2. Sync SP queue - this guarantees us that attention handling started 8724 * 3. Wait, that TX disable/enable transaction completes 8725 * 8726 * 1+2 guarantee that if DCBx attention was scheduled it already changed 8727 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 8728 * received completion for the transaction the state is TX_STOPPED. 8729 * State will return to STARTED after completion of TX_STOPPED-->STARTED 8730 * transaction. 8731 */ 8732 8733 /* make sure default SB ISR is done */ 8734 if (msix) 8735 synchronize_irq(bp->msix_table[0].vector); 8736 else 8737 synchronize_irq(bp->pdev->irq); 8738 8739 flush_workqueue(bnx2x_wq); 8740 8741 while (bnx2x_func_get_state(bp, &bp->func_obj) != 8742 BNX2X_F_STATE_STARTED && tout--) 8743 msleep(20); 8744 8745 if (bnx2x_func_get_state(bp, &bp->func_obj) != 8746 BNX2X_F_STATE_STARTED) { 8747 #ifdef BNX2X_STOP_ON_ERROR 8748 BNX2X_ERR("Wrong function state\n"); 8749 return -EBUSY; 8750 #else 8751 /* 8752 * Failed to complete the transaction in a "good way" 8753 * Force both transactions with CLR bit 8754 */ 8755 struct bnx2x_func_state_params func_params = {NULL}; 8756 8757 DP(NETIF_MSG_IFDOWN, 8758 "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n"); 8759 8760 func_params.f_obj = &bp->func_obj; 8761 __set_bit(RAMROD_DRV_CLR_ONLY, 8762 &func_params.ramrod_flags); 8763 8764 /* STARTED-->TX_ST0PPED */ 8765 func_params.cmd = BNX2X_F_CMD_TX_STOP; 8766 bnx2x_func_state_change(bp, &func_params); 8767 8768 /* TX_ST0PPED-->STARTED */ 8769 func_params.cmd = BNX2X_F_CMD_TX_START; 8770 return bnx2x_func_state_change(bp, &func_params); 8771 #endif 8772 } 8773 8774 return 0; 8775 } 8776 8777 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) 8778 { 8779 int port = BP_PORT(bp); 8780 int i, rc = 0; 8781 u8 cos; 8782 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 8783 u32 reset_code; 8784 8785 /* Wait until tx fastpath tasks complete */ 8786 for_each_tx_queue(bp, i) { 8787 struct bnx2x_fastpath *fp = &bp->fp[i]; 8788 8789 for_each_cos_in_tx_queue(fp, cos) 8790 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 8791 #ifdef BNX2X_STOP_ON_ERROR 8792 if (rc) 8793 return; 8794 #endif 8795 } 8796 8797 /* Give HW time to discard old tx messages */ 8798 usleep_range(1000, 2000); 8799 8800 /* Clean all ETH MACs */ 8801 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, 8802 false); 8803 if (rc < 0) 8804 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); 8805 8806 /* Clean up UC list */ 8807 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, 8808 true); 8809 if (rc < 0) 8810 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", 8811 rc); 8812 8813 /* Disable LLH */ 8814 if (!CHIP_IS_E1(bp)) 8815 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 8816 8817 /* Set "drop all" (stop Rx). 8818 * We need to take a netif_addr_lock() here in order to prevent 8819 * a race between the completion code and this code. 8820 */ 8821 netif_addr_lock_bh(bp->dev); 8822 /* Schedule the rx_mode command */ 8823 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 8824 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 8825 else 8826 bnx2x_set_storm_rx_mode(bp); 8827 8828 /* Cleanup multicast configuration */ 8829 rparam.mcast_obj = &bp->mcast_obj; 8830 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 8831 if (rc < 0) 8832 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); 8833 8834 netif_addr_unlock_bh(bp->dev); 8835 8836 bnx2x_iov_chip_cleanup(bp); 8837 8838 /* 8839 * Send the UNLOAD_REQUEST to the MCP. This will return if 8840 * this function should perform FUNC, PORT or COMMON HW 8841 * reset. 8842 */ 8843 reset_code = bnx2x_send_unload_req(bp, unload_mode); 8844 8845 /* 8846 * (assumption: No Attention from MCP at this stage) 8847 * PMF probably in the middle of TX disable/enable transaction 8848 */ 8849 rc = bnx2x_func_wait_started(bp); 8850 if (rc) { 8851 BNX2X_ERR("bnx2x_func_wait_started failed\n"); 8852 #ifdef BNX2X_STOP_ON_ERROR 8853 return; 8854 #endif 8855 } 8856 8857 /* Close multi and leading connections 8858 * Completions for ramrods are collected in a synchronous way 8859 */ 8860 for_each_eth_queue(bp, i) 8861 if (bnx2x_stop_queue(bp, i)) 8862 #ifdef BNX2X_STOP_ON_ERROR 8863 return; 8864 #else 8865 goto unload_error; 8866 #endif 8867 8868 if (CNIC_LOADED(bp)) { 8869 for_each_cnic_queue(bp, i) 8870 if (bnx2x_stop_queue(bp, i)) 8871 #ifdef BNX2X_STOP_ON_ERROR 8872 return; 8873 #else 8874 goto unload_error; 8875 #endif 8876 } 8877 8878 /* If SP settings didn't get completed so far - something 8879 * very wrong has happen. 8880 */ 8881 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) 8882 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); 8883 8884 #ifndef BNX2X_STOP_ON_ERROR 8885 unload_error: 8886 #endif 8887 rc = bnx2x_func_stop(bp); 8888 if (rc) { 8889 BNX2X_ERR("Function stop failed!\n"); 8890 #ifdef BNX2X_STOP_ON_ERROR 8891 return; 8892 #endif 8893 } 8894 8895 /* Disable HW interrupts, NAPI */ 8896 bnx2x_netif_stop(bp, 1); 8897 /* Delete all NAPI objects */ 8898 bnx2x_del_all_napi(bp); 8899 if (CNIC_LOADED(bp)) 8900 bnx2x_del_all_napi_cnic(bp); 8901 8902 /* Release IRQs */ 8903 bnx2x_free_irq(bp); 8904 8905 /* Reset the chip */ 8906 rc = bnx2x_reset_hw(bp, reset_code); 8907 if (rc) 8908 BNX2X_ERR("HW_RESET failed\n"); 8909 8910 /* Report UNLOAD_DONE to MCP */ 8911 bnx2x_send_unload_done(bp, keep_link); 8912 } 8913 8914 void bnx2x_disable_close_the_gate(struct bnx2x *bp) 8915 { 8916 u32 val; 8917 8918 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); 8919 8920 if (CHIP_IS_E1(bp)) { 8921 int port = BP_PORT(bp); 8922 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8923 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8924 8925 val = REG_RD(bp, addr); 8926 val &= ~(0x300); 8927 REG_WR(bp, addr, val); 8928 } else { 8929 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); 8930 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 8931 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 8932 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); 8933 } 8934 } 8935 8936 /* Close gates #2, #3 and #4: */ 8937 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) 8938 { 8939 u32 val; 8940 8941 /* Gates #2 and #4a are closed/opened for "not E1" only */ 8942 if (!CHIP_IS_E1(bp)) { 8943 /* #4 */ 8944 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 8945 /* #2 */ 8946 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 8947 } 8948 8949 /* #3 */ 8950 if (CHIP_IS_E1x(bp)) { 8951 /* Prevent interrupts from HC on both ports */ 8952 val = REG_RD(bp, HC_REG_CONFIG_1); 8953 REG_WR(bp, HC_REG_CONFIG_1, 8954 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 8955 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 8956 8957 val = REG_RD(bp, HC_REG_CONFIG_0); 8958 REG_WR(bp, HC_REG_CONFIG_0, 8959 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 8960 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 8961 } else { 8962 /* Prevent incoming interrupts in IGU */ 8963 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 8964 8965 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, 8966 (!close) ? 8967 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 8968 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 8969 } 8970 8971 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", 8972 close ? "closing" : "opening"); 8973 mmiowb(); 8974 } 8975 8976 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ 8977 8978 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) 8979 { 8980 /* Do some magic... */ 8981 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 8982 *magic_val = val & SHARED_MF_CLP_MAGIC; 8983 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 8984 } 8985 8986 /** 8987 * bnx2x_clp_reset_done - restore the value of the `magic' bit. 8988 * 8989 * @bp: driver handle 8990 * @magic_val: old value of the `magic' bit. 8991 */ 8992 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) 8993 { 8994 /* Restore the `magic' bit value... */ 8995 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 8996 MF_CFG_WR(bp, shared_mf_config.clp_mb, 8997 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 8998 } 8999 9000 /** 9001 * bnx2x_reset_mcp_prep - prepare for MCP reset. 9002 * 9003 * @bp: driver handle 9004 * @magic_val: old value of 'magic' bit. 9005 * 9006 * Takes care of CLP configurations. 9007 */ 9008 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) 9009 { 9010 u32 shmem; 9011 u32 validity_offset; 9012 9013 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); 9014 9015 /* Set `magic' bit in order to save MF config */ 9016 if (!CHIP_IS_E1(bp)) 9017 bnx2x_clp_reset_prep(bp, magic_val); 9018 9019 /* Get shmem offset */ 9020 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9021 validity_offset = 9022 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); 9023 9024 /* Clear validity map flags */ 9025 if (shmem > 0) 9026 REG_WR(bp, shmem + validity_offset, 0); 9027 } 9028 9029 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 9030 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 9031 9032 /** 9033 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT 9034 * 9035 * @bp: driver handle 9036 */ 9037 static void bnx2x_mcp_wait_one(struct bnx2x *bp) 9038 { 9039 /* special handling for emulation and FPGA, 9040 wait 10 times longer */ 9041 if (CHIP_REV_IS_SLOW(bp)) 9042 msleep(MCP_ONE_TIMEOUT*10); 9043 else 9044 msleep(MCP_ONE_TIMEOUT); 9045 } 9046 9047 /* 9048 * initializes bp->common.shmem_base and waits for validity signature to appear 9049 */ 9050 static int bnx2x_init_shmem(struct bnx2x *bp) 9051 { 9052 int cnt = 0; 9053 u32 val = 0; 9054 9055 do { 9056 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9057 if (bp->common.shmem_base) { 9058 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); 9059 if (val & SHR_MEM_VALIDITY_MB) 9060 return 0; 9061 } 9062 9063 bnx2x_mcp_wait_one(bp); 9064 9065 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 9066 9067 BNX2X_ERR("BAD MCP validity signature\n"); 9068 9069 return -ENODEV; 9070 } 9071 9072 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) 9073 { 9074 int rc = bnx2x_init_shmem(bp); 9075 9076 /* Restore the `magic' bit value */ 9077 if (!CHIP_IS_E1(bp)) 9078 bnx2x_clp_reset_done(bp, magic_val); 9079 9080 return rc; 9081 } 9082 9083 static void bnx2x_pxp_prep(struct bnx2x *bp) 9084 { 9085 if (!CHIP_IS_E1(bp)) { 9086 REG_WR(bp, PXP2_REG_RD_START_INIT, 0); 9087 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); 9088 mmiowb(); 9089 } 9090 } 9091 9092 /* 9093 * Reset the whole chip except for: 9094 * - PCIE core 9095 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by 9096 * one reset bit) 9097 * - IGU 9098 * - MISC (including AEU) 9099 * - GRC 9100 * - RBCN, RBCP 9101 */ 9102 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) 9103 { 9104 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 9105 u32 global_bits2, stay_reset2; 9106 9107 /* 9108 * Bits that have to be set in reset_mask2 if we want to reset 'global' 9109 * (per chip) blocks. 9110 */ 9111 global_bits2 = 9112 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 9113 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 9114 9115 /* Don't reset the following blocks. 9116 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 9117 * reset, as in 4 port device they might still be owned 9118 * by the MCP (there is only one leader per path). 9119 */ 9120 not_reset_mask1 = 9121 MISC_REGISTERS_RESET_REG_1_RST_HC | 9122 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 9123 MISC_REGISTERS_RESET_REG_1_RST_PXP; 9124 9125 not_reset_mask2 = 9126 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 9127 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 9128 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 9129 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 9130 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 9131 MISC_REGISTERS_RESET_REG_2_RST_GRC | 9132 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 9133 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 9134 MISC_REGISTERS_RESET_REG_2_RST_ATC | 9135 MISC_REGISTERS_RESET_REG_2_PGLC | 9136 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 9137 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 9138 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 9139 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 9140 MISC_REGISTERS_RESET_REG_2_UMAC0 | 9141 MISC_REGISTERS_RESET_REG_2_UMAC1; 9142 9143 /* 9144 * Keep the following blocks in reset: 9145 * - all xxMACs are handled by the bnx2x_link code. 9146 */ 9147 stay_reset2 = 9148 MISC_REGISTERS_RESET_REG_2_XMAC | 9149 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 9150 9151 /* Full reset masks according to the chip */ 9152 reset_mask1 = 0xffffffff; 9153 9154 if (CHIP_IS_E1(bp)) 9155 reset_mask2 = 0xffff; 9156 else if (CHIP_IS_E1H(bp)) 9157 reset_mask2 = 0x1ffff; 9158 else if (CHIP_IS_E2(bp)) 9159 reset_mask2 = 0xfffff; 9160 else /* CHIP_IS_E3 */ 9161 reset_mask2 = 0x3ffffff; 9162 9163 /* Don't reset global blocks unless we need to */ 9164 if (!global) 9165 reset_mask2 &= ~global_bits2; 9166 9167 /* 9168 * In case of attention in the QM, we need to reset PXP 9169 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 9170 * because otherwise QM reset would release 'close the gates' shortly 9171 * before resetting the PXP, then the PSWRQ would send a write 9172 * request to PGLUE. Then when PXP is reset, PGLUE would try to 9173 * read the payload data from PSWWR, but PSWWR would not 9174 * respond. The write queue in PGLUE would stuck, dmae commands 9175 * would not return. Therefore it's important to reset the second 9176 * reset register (containing the 9177 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 9178 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 9179 * bit). 9180 */ 9181 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 9182 reset_mask2 & (~not_reset_mask2)); 9183 9184 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 9185 reset_mask1 & (~not_reset_mask1)); 9186 9187 barrier(); 9188 mmiowb(); 9189 9190 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 9191 reset_mask2 & (~stay_reset2)); 9192 9193 barrier(); 9194 mmiowb(); 9195 9196 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 9197 mmiowb(); 9198 } 9199 9200 /** 9201 * bnx2x_er_poll_igu_vq - poll for pending writes bit. 9202 * It should get cleared in no more than 1s. 9203 * 9204 * @bp: driver handle 9205 * 9206 * It should get cleared in no more than 1s. Returns 0 if 9207 * pending writes bit gets cleared. 9208 */ 9209 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) 9210 { 9211 u32 cnt = 1000; 9212 u32 pend_bits = 0; 9213 9214 do { 9215 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); 9216 9217 if (pend_bits == 0) 9218 break; 9219 9220 usleep_range(1000, 2000); 9221 } while (cnt-- > 0); 9222 9223 if (cnt <= 0) { 9224 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", 9225 pend_bits); 9226 return -EBUSY; 9227 } 9228 9229 return 0; 9230 } 9231 9232 static int bnx2x_process_kill(struct bnx2x *bp, bool global) 9233 { 9234 int cnt = 1000; 9235 u32 val = 0; 9236 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 9237 u32 tags_63_32 = 0; 9238 9239 /* Empty the Tetris buffer, wait for 1s */ 9240 do { 9241 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); 9242 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); 9243 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); 9244 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); 9245 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); 9246 if (CHIP_IS_E3(bp)) 9247 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); 9248 9249 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 9250 ((port_is_idle_0 & 0x1) == 0x1) && 9251 ((port_is_idle_1 & 0x1) == 0x1) && 9252 (pgl_exp_rom2 == 0xffffffff) && 9253 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) 9254 break; 9255 usleep_range(1000, 2000); 9256 } while (cnt-- > 0); 9257 9258 if (cnt <= 0) { 9259 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); 9260 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 9261 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, 9262 pgl_exp_rom2); 9263 return -EAGAIN; 9264 } 9265 9266 barrier(); 9267 9268 /* Close gates #2, #3 and #4 */ 9269 bnx2x_set_234_gates(bp, true); 9270 9271 /* Poll for IGU VQs for 57712 and newer chips */ 9272 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) 9273 return -EAGAIN; 9274 9275 /* TBD: Indicate that "process kill" is in progress to MCP */ 9276 9277 /* Clear "unprepared" bit */ 9278 REG_WR(bp, MISC_REG_UNPREPARED, 0); 9279 barrier(); 9280 9281 /* Make sure all is written to the chip before the reset */ 9282 mmiowb(); 9283 9284 /* Wait for 1ms to empty GLUE and PCI-E core queues, 9285 * PSWHST, GRC and PSWRD Tetris buffer. 9286 */ 9287 usleep_range(1000, 2000); 9288 9289 /* Prepare to chip reset: */ 9290 /* MCP */ 9291 if (global) 9292 bnx2x_reset_mcp_prep(bp, &val); 9293 9294 /* PXP */ 9295 bnx2x_pxp_prep(bp); 9296 barrier(); 9297 9298 /* reset the chip */ 9299 bnx2x_process_kill_chip_reset(bp, global); 9300 barrier(); 9301 9302 /* Recover after reset: */ 9303 /* MCP */ 9304 if (global && bnx2x_reset_mcp_comp(bp, val)) 9305 return -EAGAIN; 9306 9307 /* TBD: Add resetting the NO_MCP mode DB here */ 9308 9309 /* Open the gates #2, #3 and #4 */ 9310 bnx2x_set_234_gates(bp, false); 9311 9312 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a 9313 * reset state, re-enable attentions. */ 9314 9315 return 0; 9316 } 9317 9318 static int bnx2x_leader_reset(struct bnx2x *bp) 9319 { 9320 int rc = 0; 9321 bool global = bnx2x_reset_is_global(bp); 9322 u32 load_code; 9323 9324 /* if not going to reset MCP - load "fake" driver to reset HW while 9325 * driver is owner of the HW 9326 */ 9327 if (!global && !BP_NOMCP(bp)) { 9328 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 9329 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 9330 if (!load_code) { 9331 BNX2X_ERR("MCP response failure, aborting\n"); 9332 rc = -EAGAIN; 9333 goto exit_leader_reset; 9334 } 9335 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 9336 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 9337 BNX2X_ERR("MCP unexpected resp, aborting\n"); 9338 rc = -EAGAIN; 9339 goto exit_leader_reset2; 9340 } 9341 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 9342 if (!load_code) { 9343 BNX2X_ERR("MCP response failure, aborting\n"); 9344 rc = -EAGAIN; 9345 goto exit_leader_reset2; 9346 } 9347 } 9348 9349 /* Try to recover after the failure */ 9350 if (bnx2x_process_kill(bp, global)) { 9351 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", 9352 BP_PATH(bp)); 9353 rc = -EAGAIN; 9354 goto exit_leader_reset2; 9355 } 9356 9357 /* 9358 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver 9359 * state. 9360 */ 9361 bnx2x_set_reset_done(bp); 9362 if (global) 9363 bnx2x_clear_reset_global(bp); 9364 9365 exit_leader_reset2: 9366 /* unload "fake driver" if it was loaded */ 9367 if (!global && !BP_NOMCP(bp)) { 9368 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 9369 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 9370 } 9371 exit_leader_reset: 9372 bp->is_leader = 0; 9373 bnx2x_release_leader_lock(bp); 9374 smp_mb(); 9375 return rc; 9376 } 9377 9378 static void bnx2x_recovery_failed(struct bnx2x *bp) 9379 { 9380 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); 9381 9382 /* Disconnect this device */ 9383 netif_device_detach(bp->dev); 9384 9385 /* 9386 * Block ifup for all function on this engine until "process kill" 9387 * or power cycle. 9388 */ 9389 bnx2x_set_reset_in_progress(bp); 9390 9391 /* Shut down the power */ 9392 bnx2x_set_power_state(bp, PCI_D3hot); 9393 9394 bp->recovery_state = BNX2X_RECOVERY_FAILED; 9395 9396 smp_mb(); 9397 } 9398 9399 /* 9400 * Assumption: runs under rtnl lock. This together with the fact 9401 * that it's called only from bnx2x_sp_rtnl() ensure that it 9402 * will never be called when netif_running(bp->dev) is false. 9403 */ 9404 static void bnx2x_parity_recover(struct bnx2x *bp) 9405 { 9406 bool global = false; 9407 u32 error_recovered, error_unrecovered; 9408 bool is_parity; 9409 9410 DP(NETIF_MSG_HW, "Handling parity\n"); 9411 while (1) { 9412 switch (bp->recovery_state) { 9413 case BNX2X_RECOVERY_INIT: 9414 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); 9415 is_parity = bnx2x_chk_parity_attn(bp, &global, false); 9416 WARN_ON(!is_parity); 9417 9418 /* Try to get a LEADER_LOCK HW lock */ 9419 if (bnx2x_trylock_leader_lock(bp)) { 9420 bnx2x_set_reset_in_progress(bp); 9421 /* 9422 * Check if there is a global attention and if 9423 * there was a global attention, set the global 9424 * reset bit. 9425 */ 9426 9427 if (global) 9428 bnx2x_set_reset_global(bp); 9429 9430 bp->is_leader = 1; 9431 } 9432 9433 /* Stop the driver */ 9434 /* If interface has been removed - break */ 9435 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) 9436 return; 9437 9438 bp->recovery_state = BNX2X_RECOVERY_WAIT; 9439 9440 /* Ensure "is_leader", MCP command sequence and 9441 * "recovery_state" update values are seen on other 9442 * CPUs. 9443 */ 9444 smp_mb(); 9445 break; 9446 9447 case BNX2X_RECOVERY_WAIT: 9448 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); 9449 if (bp->is_leader) { 9450 int other_engine = BP_PATH(bp) ? 0 : 1; 9451 bool other_load_status = 9452 bnx2x_get_load_status(bp, other_engine); 9453 bool load_status = 9454 bnx2x_get_load_status(bp, BP_PATH(bp)); 9455 global = bnx2x_reset_is_global(bp); 9456 9457 /* 9458 * In case of a parity in a global block, let 9459 * the first leader that performs a 9460 * leader_reset() reset the global blocks in 9461 * order to clear global attentions. Otherwise 9462 * the gates will remain closed for that 9463 * engine. 9464 */ 9465 if (load_status || 9466 (global && other_load_status)) { 9467 /* Wait until all other functions get 9468 * down. 9469 */ 9470 schedule_delayed_work(&bp->sp_rtnl_task, 9471 HZ/10); 9472 return; 9473 } else { 9474 /* If all other functions got down - 9475 * try to bring the chip back to 9476 * normal. In any case it's an exit 9477 * point for a leader. 9478 */ 9479 if (bnx2x_leader_reset(bp)) { 9480 bnx2x_recovery_failed(bp); 9481 return; 9482 } 9483 9484 /* If we are here, means that the 9485 * leader has succeeded and doesn't 9486 * want to be a leader any more. Try 9487 * to continue as a none-leader. 9488 */ 9489 break; 9490 } 9491 } else { /* non-leader */ 9492 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { 9493 /* Try to get a LEADER_LOCK HW lock as 9494 * long as a former leader may have 9495 * been unloaded by the user or 9496 * released a leadership by another 9497 * reason. 9498 */ 9499 if (bnx2x_trylock_leader_lock(bp)) { 9500 /* I'm a leader now! Restart a 9501 * switch case. 9502 */ 9503 bp->is_leader = 1; 9504 break; 9505 } 9506 9507 schedule_delayed_work(&bp->sp_rtnl_task, 9508 HZ/10); 9509 return; 9510 9511 } else { 9512 /* 9513 * If there was a global attention, wait 9514 * for it to be cleared. 9515 */ 9516 if (bnx2x_reset_is_global(bp)) { 9517 schedule_delayed_work( 9518 &bp->sp_rtnl_task, 9519 HZ/10); 9520 return; 9521 } 9522 9523 error_recovered = 9524 bp->eth_stats.recoverable_error; 9525 error_unrecovered = 9526 bp->eth_stats.unrecoverable_error; 9527 bp->recovery_state = 9528 BNX2X_RECOVERY_NIC_LOADING; 9529 if (bnx2x_nic_load(bp, LOAD_NORMAL)) { 9530 error_unrecovered++; 9531 netdev_err(bp->dev, 9532 "Recovery failed. Power cycle needed\n"); 9533 /* Disconnect this device */ 9534 netif_device_detach(bp->dev); 9535 /* Shut down the power */ 9536 bnx2x_set_power_state( 9537 bp, PCI_D3hot); 9538 smp_mb(); 9539 } else { 9540 bp->recovery_state = 9541 BNX2X_RECOVERY_DONE; 9542 error_recovered++; 9543 smp_mb(); 9544 } 9545 bp->eth_stats.recoverable_error = 9546 error_recovered; 9547 bp->eth_stats.unrecoverable_error = 9548 error_unrecovered; 9549 9550 return; 9551 } 9552 } 9553 default: 9554 return; 9555 } 9556 } 9557 } 9558 9559 static int bnx2x_close(struct net_device *dev); 9560 9561 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is 9562 * scheduled on a general queue in order to prevent a dead lock. 9563 */ 9564 static void bnx2x_sp_rtnl_task(struct work_struct *work) 9565 { 9566 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); 9567 9568 rtnl_lock(); 9569 9570 if (!netif_running(bp->dev)) { 9571 rtnl_unlock(); 9572 return; 9573 } 9574 9575 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { 9576 #ifdef BNX2X_STOP_ON_ERROR 9577 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 9578 "you will need to reboot when done\n"); 9579 goto sp_rtnl_not_reset; 9580 #endif 9581 /* 9582 * Clear all pending SP commands as we are going to reset the 9583 * function anyway. 9584 */ 9585 bp->sp_rtnl_state = 0; 9586 smp_mb(); 9587 9588 bnx2x_parity_recover(bp); 9589 9590 rtnl_unlock(); 9591 return; 9592 } 9593 9594 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { 9595 #ifdef BNX2X_STOP_ON_ERROR 9596 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 9597 "you will need to reboot when done\n"); 9598 goto sp_rtnl_not_reset; 9599 #endif 9600 9601 /* 9602 * Clear all pending SP commands as we are going to reset the 9603 * function anyway. 9604 */ 9605 bp->sp_rtnl_state = 0; 9606 smp_mb(); 9607 9608 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 9609 bnx2x_nic_load(bp, LOAD_NORMAL); 9610 9611 rtnl_unlock(); 9612 return; 9613 } 9614 #ifdef BNX2X_STOP_ON_ERROR 9615 sp_rtnl_not_reset: 9616 #endif 9617 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) 9618 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); 9619 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) 9620 bnx2x_after_function_update(bp); 9621 /* 9622 * in case of fan failure we need to reset id if the "stop on error" 9623 * debug flag is set, since we trying to prevent permanent overheating 9624 * damage 9625 */ 9626 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { 9627 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); 9628 netif_device_detach(bp->dev); 9629 bnx2x_close(bp->dev); 9630 rtnl_unlock(); 9631 return; 9632 } 9633 9634 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { 9635 DP(BNX2X_MSG_SP, 9636 "sending set mcast vf pf channel message from rtnl sp-task\n"); 9637 bnx2x_vfpf_set_mcast(bp->dev); 9638 } 9639 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 9640 &bp->sp_rtnl_state)){ 9641 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) { 9642 bnx2x_tx_disable(bp); 9643 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); 9644 } 9645 } 9646 9647 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE, 9648 &bp->sp_rtnl_state)) { 9649 DP(BNX2X_MSG_SP, 9650 "sending set storm rx mode vf pf channel message from rtnl sp-task\n"); 9651 bnx2x_vfpf_storm_rx_mode(bp); 9652 } 9653 9654 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, 9655 &bp->sp_rtnl_state)) 9656 bnx2x_pf_set_vfs_vlan(bp); 9657 9658 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) 9659 bnx2x_dcbx_stop_hw_tx(bp); 9660 9661 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_RESUME, &bp->sp_rtnl_state)) 9662 bnx2x_dcbx_resume_hw_tx(bp); 9663 9664 /* work which needs rtnl lock not-taken (as it takes the lock itself and 9665 * can be called from other contexts as well) 9666 */ 9667 rtnl_unlock(); 9668 9669 /* enable SR-IOV if applicable */ 9670 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, 9671 &bp->sp_rtnl_state)) { 9672 bnx2x_disable_sriov(bp); 9673 bnx2x_enable_sriov(bp); 9674 } 9675 } 9676 9677 static void bnx2x_period_task(struct work_struct *work) 9678 { 9679 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); 9680 9681 if (!netif_running(bp->dev)) 9682 goto period_task_exit; 9683 9684 if (CHIP_REV_IS_SLOW(bp)) { 9685 BNX2X_ERR("period task called on emulation, ignoring\n"); 9686 goto period_task_exit; 9687 } 9688 9689 bnx2x_acquire_phy_lock(bp); 9690 /* 9691 * The barrier is needed to ensure the ordering between the writing to 9692 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and 9693 * the reading here. 9694 */ 9695 smp_mb(); 9696 if (bp->port.pmf) { 9697 bnx2x_period_func(&bp->link_params, &bp->link_vars); 9698 9699 /* Re-queue task in 1 sec */ 9700 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); 9701 } 9702 9703 bnx2x_release_phy_lock(bp); 9704 period_task_exit: 9705 return; 9706 } 9707 9708 /* 9709 * Init service functions 9710 */ 9711 9712 u32 bnx2x_get_pretend_reg(struct bnx2x *bp) 9713 { 9714 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; 9715 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; 9716 return base + (BP_ABS_FUNC(bp)) * stride; 9717 } 9718 9719 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, 9720 struct bnx2x_mac_vals *vals) 9721 { 9722 u32 val, base_addr, offset, mask, reset_reg; 9723 bool mac_stopped = false; 9724 u8 port = BP_PORT(bp); 9725 9726 /* reset addresses as they also mark which values were changed */ 9727 vals->bmac_addr = 0; 9728 vals->umac_addr = 0; 9729 vals->xmac_addr = 0; 9730 vals->emac_addr = 0; 9731 9732 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); 9733 9734 if (!CHIP_IS_E3(bp)) { 9735 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 9736 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 9737 if ((mask & reset_reg) && val) { 9738 u32 wb_data[2]; 9739 BNX2X_DEV_INFO("Disable bmac Rx\n"); 9740 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM 9741 : NIG_REG_INGRESS_BMAC0_MEM; 9742 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL 9743 : BIGMAC_REGISTER_BMAC_CONTROL; 9744 9745 /* 9746 * use rd/wr since we cannot use dmae. This is safe 9747 * since MCP won't access the bus due to the request 9748 * to unload, and no function on the path can be 9749 * loaded at this time. 9750 */ 9751 wb_data[0] = REG_RD(bp, base_addr + offset); 9752 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); 9753 vals->bmac_addr = base_addr + offset; 9754 vals->bmac_val[0] = wb_data[0]; 9755 vals->bmac_val[1] = wb_data[1]; 9756 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; 9757 REG_WR(bp, vals->bmac_addr, wb_data[0]); 9758 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); 9759 } 9760 BNX2X_DEV_INFO("Disable emac Rx\n"); 9761 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; 9762 vals->emac_val = REG_RD(bp, vals->emac_addr); 9763 REG_WR(bp, vals->emac_addr, 0); 9764 mac_stopped = true; 9765 } else { 9766 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 9767 BNX2X_DEV_INFO("Disable xmac Rx\n"); 9768 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 9769 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); 9770 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 9771 val & ~(1 << 1)); 9772 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 9773 val | (1 << 1)); 9774 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 9775 vals->xmac_val = REG_RD(bp, vals->xmac_addr); 9776 REG_WR(bp, vals->xmac_addr, 0); 9777 mac_stopped = true; 9778 } 9779 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 9780 if (mask & reset_reg) { 9781 BNX2X_DEV_INFO("Disable umac Rx\n"); 9782 base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 9783 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 9784 vals->umac_val = REG_RD(bp, vals->umac_addr); 9785 REG_WR(bp, vals->umac_addr, 0); 9786 mac_stopped = true; 9787 } 9788 } 9789 9790 if (mac_stopped) 9791 msleep(20); 9792 } 9793 9794 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 9795 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) 9796 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 9797 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 9798 9799 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc) 9800 { 9801 u16 rcq, bd; 9802 u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port)); 9803 9804 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; 9805 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; 9806 9807 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); 9808 REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg); 9809 9810 BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 9811 port, bd, rcq); 9812 } 9813 9814 static int bnx2x_prev_mcp_done(struct bnx2x *bp) 9815 { 9816 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 9817 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 9818 if (!rc) { 9819 BNX2X_ERR("MCP response failure, aborting\n"); 9820 return -EBUSY; 9821 } 9822 9823 return 0; 9824 } 9825 9826 static struct bnx2x_prev_path_list * 9827 bnx2x_prev_path_get_entry(struct bnx2x *bp) 9828 { 9829 struct bnx2x_prev_path_list *tmp_list; 9830 9831 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) 9832 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && 9833 bp->pdev->bus->number == tmp_list->bus && 9834 BP_PATH(bp) == tmp_list->path) 9835 return tmp_list; 9836 9837 return NULL; 9838 } 9839 9840 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) 9841 { 9842 struct bnx2x_prev_path_list *tmp_list; 9843 int rc; 9844 9845 rc = down_interruptible(&bnx2x_prev_sem); 9846 if (rc) { 9847 BNX2X_ERR("Received %d when tried to take lock\n", rc); 9848 return rc; 9849 } 9850 9851 tmp_list = bnx2x_prev_path_get_entry(bp); 9852 if (tmp_list) { 9853 tmp_list->aer = 1; 9854 rc = 0; 9855 } else { 9856 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", 9857 BP_PATH(bp)); 9858 } 9859 9860 up(&bnx2x_prev_sem); 9861 9862 return rc; 9863 } 9864 9865 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) 9866 { 9867 struct bnx2x_prev_path_list *tmp_list; 9868 int rc = false; 9869 9870 if (down_trylock(&bnx2x_prev_sem)) 9871 return false; 9872 9873 tmp_list = bnx2x_prev_path_get_entry(bp); 9874 if (tmp_list) { 9875 if (tmp_list->aer) { 9876 DP(NETIF_MSG_HW, "Path %d was marked by AER\n", 9877 BP_PATH(bp)); 9878 } else { 9879 rc = true; 9880 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", 9881 BP_PATH(bp)); 9882 } 9883 } 9884 9885 up(&bnx2x_prev_sem); 9886 9887 return rc; 9888 } 9889 9890 bool bnx2x_port_after_undi(struct bnx2x *bp) 9891 { 9892 struct bnx2x_prev_path_list *entry; 9893 bool val; 9894 9895 down(&bnx2x_prev_sem); 9896 9897 entry = bnx2x_prev_path_get_entry(bp); 9898 val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); 9899 9900 up(&bnx2x_prev_sem); 9901 9902 return val; 9903 } 9904 9905 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) 9906 { 9907 struct bnx2x_prev_path_list *tmp_list; 9908 int rc; 9909 9910 rc = down_interruptible(&bnx2x_prev_sem); 9911 if (rc) { 9912 BNX2X_ERR("Received %d when tried to take lock\n", rc); 9913 return rc; 9914 } 9915 9916 /* Check whether the entry for this path already exists */ 9917 tmp_list = bnx2x_prev_path_get_entry(bp); 9918 if (tmp_list) { 9919 if (!tmp_list->aer) { 9920 BNX2X_ERR("Re-Marking the path.\n"); 9921 } else { 9922 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", 9923 BP_PATH(bp)); 9924 tmp_list->aer = 0; 9925 } 9926 up(&bnx2x_prev_sem); 9927 return 0; 9928 } 9929 up(&bnx2x_prev_sem); 9930 9931 /* Create an entry for this path and add it */ 9932 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); 9933 if (!tmp_list) { 9934 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); 9935 return -ENOMEM; 9936 } 9937 9938 tmp_list->bus = bp->pdev->bus->number; 9939 tmp_list->slot = PCI_SLOT(bp->pdev->devfn); 9940 tmp_list->path = BP_PATH(bp); 9941 tmp_list->aer = 0; 9942 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; 9943 9944 rc = down_interruptible(&bnx2x_prev_sem); 9945 if (rc) { 9946 BNX2X_ERR("Received %d when tried to take lock\n", rc); 9947 kfree(tmp_list); 9948 } else { 9949 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", 9950 BP_PATH(bp)); 9951 list_add(&tmp_list->list, &bnx2x_prev_list); 9952 up(&bnx2x_prev_sem); 9953 } 9954 9955 return rc; 9956 } 9957 9958 static int bnx2x_do_flr(struct bnx2x *bp) 9959 { 9960 int i; 9961 u16 status; 9962 struct pci_dev *dev = bp->pdev; 9963 9964 if (CHIP_IS_E1x(bp)) { 9965 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); 9966 return -EINVAL; 9967 } 9968 9969 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 9970 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 9971 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", 9972 bp->common.bc_ver); 9973 return -EINVAL; 9974 } 9975 9976 /* Wait for Transaction Pending bit clean */ 9977 for (i = 0; i < 4; i++) { 9978 if (i) 9979 msleep((1 << (i - 1)) * 100); 9980 9981 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 9982 if (!(status & PCI_EXP_DEVSTA_TRPND)) 9983 goto clear; 9984 } 9985 9986 dev_err(&dev->dev, 9987 "transaction is not cleared; proceeding with reset anyway\n"); 9988 9989 clear: 9990 9991 BNX2X_DEV_INFO("Initiating FLR\n"); 9992 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); 9993 9994 return 0; 9995 } 9996 9997 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) 9998 { 9999 int rc; 10000 10001 BNX2X_DEV_INFO("Uncommon unload Flow\n"); 10002 10003 /* Test if previous unload process was already finished for this path */ 10004 if (bnx2x_prev_is_path_marked(bp)) 10005 return bnx2x_prev_mcp_done(bp); 10006 10007 BNX2X_DEV_INFO("Path is unmarked\n"); 10008 10009 /* If function has FLR capabilities, and existing FW version matches 10010 * the one required, then FLR will be sufficient to clean any residue 10011 * left by previous driver 10012 */ 10013 rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION); 10014 10015 if (!rc) { 10016 /* fw version is good */ 10017 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); 10018 rc = bnx2x_do_flr(bp); 10019 } 10020 10021 if (!rc) { 10022 /* FLR was performed */ 10023 BNX2X_DEV_INFO("FLR successful\n"); 10024 return 0; 10025 } 10026 10027 BNX2X_DEV_INFO("Could not FLR\n"); 10028 10029 /* Close the MCP request, return failure*/ 10030 rc = bnx2x_prev_mcp_done(bp); 10031 if (!rc) 10032 rc = BNX2X_PREV_WAIT_NEEDED; 10033 10034 return rc; 10035 } 10036 10037 static int bnx2x_prev_unload_common(struct bnx2x *bp) 10038 { 10039 u32 reset_reg, tmp_reg = 0, rc; 10040 bool prev_undi = false; 10041 struct bnx2x_mac_vals mac_vals; 10042 10043 /* It is possible a previous function received 'common' answer, 10044 * but hasn't loaded yet, therefore creating a scenario of 10045 * multiple functions receiving 'common' on the same path. 10046 */ 10047 BNX2X_DEV_INFO("Common unload Flow\n"); 10048 10049 memset(&mac_vals, 0, sizeof(mac_vals)); 10050 10051 if (bnx2x_prev_is_path_marked(bp)) 10052 return bnx2x_prev_mcp_done(bp); 10053 10054 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); 10055 10056 /* Reset should be performed after BRB is emptied */ 10057 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 10058 u32 timer_count = 1000; 10059 10060 /* Close the MAC Rx to prevent BRB from filling up */ 10061 bnx2x_prev_unload_close_mac(bp, &mac_vals); 10062 10063 /* close LLH filters towards the BRB */ 10064 bnx2x_set_rx_filter(&bp->link_params, 0); 10065 10066 /* Check if the UNDI driver was previously loaded 10067 * UNDI driver initializes CID offset for normal bell to 0x7 10068 */ 10069 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 10070 tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST); 10071 if (tmp_reg == 0x7) { 10072 BNX2X_DEV_INFO("UNDI previously loaded\n"); 10073 prev_undi = true; 10074 /* clear the UNDI indication */ 10075 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); 10076 /* clear possible idle check errors */ 10077 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); 10078 } 10079 } 10080 if (!CHIP_IS_E1x(bp)) 10081 /* block FW from writing to host */ 10082 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 10083 10084 /* wait until BRB is empty */ 10085 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10086 while (timer_count) { 10087 u32 prev_brb = tmp_reg; 10088 10089 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10090 if (!tmp_reg) 10091 break; 10092 10093 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); 10094 10095 /* reset timer as long as BRB actually gets emptied */ 10096 if (prev_brb > tmp_reg) 10097 timer_count = 1000; 10098 else 10099 timer_count--; 10100 10101 /* If UNDI resides in memory, manually increment it */ 10102 if (prev_undi) 10103 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1); 10104 10105 udelay(10); 10106 } 10107 10108 if (!timer_count) 10109 BNX2X_ERR("Failed to empty BRB, hope for the best\n"); 10110 } 10111 10112 /* No packets are in the pipeline, path is ready for reset */ 10113 bnx2x_reset_common(bp); 10114 10115 if (mac_vals.xmac_addr) 10116 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); 10117 if (mac_vals.umac_addr) 10118 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val); 10119 if (mac_vals.emac_addr) 10120 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); 10121 if (mac_vals.bmac_addr) { 10122 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 10123 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 10124 } 10125 10126 rc = bnx2x_prev_mark_path(bp, prev_undi); 10127 if (rc) { 10128 bnx2x_prev_mcp_done(bp); 10129 return rc; 10130 } 10131 10132 return bnx2x_prev_mcp_done(bp); 10133 } 10134 10135 /* previous driver DMAE transaction may have occurred when pre-boot stage ended 10136 * and boot began, or when kdump kernel was loaded. Either case would invalidate 10137 * the addresses of the transaction, resulting in was-error bit set in the pci 10138 * causing all hw-to-host pcie transactions to timeout. If this happened we want 10139 * to clear the interrupt which detected this from the pglueb and the was done 10140 * bit 10141 */ 10142 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp) 10143 { 10144 if (!CHIP_IS_E1x(bp)) { 10145 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS); 10146 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 10147 DP(BNX2X_MSG_SP, 10148 "'was error' bit was found to be set in pglueb upon startup. Clearing\n"); 10149 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 10150 1 << BP_FUNC(bp)); 10151 } 10152 } 10153 } 10154 10155 static int bnx2x_prev_unload(struct bnx2x *bp) 10156 { 10157 int time_counter = 10; 10158 u32 rc, fw, hw_lock_reg, hw_lock_val; 10159 BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); 10160 10161 /* clear hw from errors which may have resulted from an interrupted 10162 * dmae transaction. 10163 */ 10164 bnx2x_prev_interrupted_dmae(bp); 10165 10166 /* Release previously held locks */ 10167 hw_lock_reg = (BP_FUNC(bp) <= 5) ? 10168 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : 10169 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); 10170 10171 hw_lock_val = REG_RD(bp, hw_lock_reg); 10172 if (hw_lock_val) { 10173 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 10174 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); 10175 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, 10176 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); 10177 } 10178 10179 BNX2X_DEV_INFO("Release Previously held hw lock\n"); 10180 REG_WR(bp, hw_lock_reg, 0xffffffff); 10181 } else 10182 BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); 10183 10184 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { 10185 BNX2X_DEV_INFO("Release previously held alr\n"); 10186 bnx2x_release_alr(bp); 10187 } 10188 10189 do { 10190 int aer = 0; 10191 /* Lock MCP using an unload request */ 10192 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 10193 if (!fw) { 10194 BNX2X_ERR("MCP response failure, aborting\n"); 10195 rc = -EBUSY; 10196 break; 10197 } 10198 10199 rc = down_interruptible(&bnx2x_prev_sem); 10200 if (rc) { 10201 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", 10202 rc); 10203 } else { 10204 /* If Path is marked by EEH, ignore unload status */ 10205 aer = !!(bnx2x_prev_path_get_entry(bp) && 10206 bnx2x_prev_path_get_entry(bp)->aer); 10207 up(&bnx2x_prev_sem); 10208 } 10209 10210 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { 10211 rc = bnx2x_prev_unload_common(bp); 10212 break; 10213 } 10214 10215 /* non-common reply from MCP might require looping */ 10216 rc = bnx2x_prev_unload_uncommon(bp); 10217 if (rc != BNX2X_PREV_WAIT_NEEDED) 10218 break; 10219 10220 msleep(20); 10221 } while (--time_counter); 10222 10223 if (!time_counter || rc) { 10224 BNX2X_ERR("Failed unloading previous driver, aborting\n"); 10225 rc = -EBUSY; 10226 } 10227 10228 /* Mark function if its port was used to boot from SAN */ 10229 if (bnx2x_port_after_undi(bp)) 10230 bp->link_params.feature_config_flags |= 10231 FEATURE_CONFIG_BOOT_FROM_SAN; 10232 10233 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); 10234 10235 return rc; 10236 } 10237 10238 static void bnx2x_get_common_hwinfo(struct bnx2x *bp) 10239 { 10240 u32 val, val2, val3, val4, id, boot_mode; 10241 u16 pmc; 10242 10243 /* Get the chip revision id and number. */ 10244 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 10245 val = REG_RD(bp, MISC_REG_CHIP_NUM); 10246 id = ((val & 0xffff) << 16); 10247 val = REG_RD(bp, MISC_REG_CHIP_REV); 10248 id |= ((val & 0xf) << 12); 10249 10250 /* Metal is read from PCI regs, but we can't access >=0x400 from 10251 * the configuration space (so we need to reg_rd) 10252 */ 10253 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); 10254 id |= (((val >> 24) & 0xf) << 4); 10255 val = REG_RD(bp, MISC_REG_BOND_ID); 10256 id |= (val & 0xf); 10257 bp->common.chip_id = id; 10258 10259 /* force 57811 according to MISC register */ 10260 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 10261 if (CHIP_IS_57810(bp)) 10262 bp->common.chip_id = (CHIP_NUM_57811 << 16) | 10263 (bp->common.chip_id & 0x0000FFFF); 10264 else if (CHIP_IS_57810_MF(bp)) 10265 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | 10266 (bp->common.chip_id & 0x0000FFFF); 10267 bp->common.chip_id |= 0x1; 10268 } 10269 10270 /* Set doorbell size */ 10271 bp->db_size = (1 << BNX2X_DB_SHIFT); 10272 10273 if (!CHIP_IS_E1x(bp)) { 10274 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); 10275 if ((val & 1) == 0) 10276 val = REG_RD(bp, MISC_REG_PORT4MODE_EN); 10277 else 10278 val = (val >> 1) & 1; 10279 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : 10280 "2_PORT_MODE"); 10281 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : 10282 CHIP_2_PORT_MODE; 10283 10284 if (CHIP_MODE_IS_4_PORT(bp)) 10285 bp->pfid = (bp->pf_num >> 1); /* 0..3 */ 10286 else 10287 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ 10288 } else { 10289 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ 10290 bp->pfid = bp->pf_num; /* 0..7 */ 10291 } 10292 10293 BNX2X_DEV_INFO("pf_id: %x", bp->pfid); 10294 10295 bp->link_params.chip_id = bp->common.chip_id; 10296 BNX2X_DEV_INFO("chip ID is 0x%x\n", id); 10297 10298 val = (REG_RD(bp, 0x2874) & 0x55); 10299 if ((bp->common.chip_id & 0x1) || 10300 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { 10301 bp->flags |= ONE_PORT_FLAG; 10302 BNX2X_DEV_INFO("single port device\n"); 10303 } 10304 10305 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); 10306 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << 10307 (val & MCPR_NVM_CFG4_FLASH_SIZE)); 10308 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", 10309 bp->common.flash_size, bp->common.flash_size); 10310 10311 bnx2x_init_shmem(bp); 10312 10313 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? 10314 MISC_REG_GENERIC_CR_1 : 10315 MISC_REG_GENERIC_CR_0)); 10316 10317 bp->link_params.shmem_base = bp->common.shmem_base; 10318 bp->link_params.shmem2_base = bp->common.shmem2_base; 10319 if (SHMEM2_RD(bp, size) > 10320 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 10321 bp->link_params.lfa_base = 10322 REG_RD(bp, bp->common.shmem2_base + 10323 (u32)offsetof(struct shmem2_region, 10324 lfa_host_addr[BP_PORT(bp)])); 10325 else 10326 bp->link_params.lfa_base = 0; 10327 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", 10328 bp->common.shmem_base, bp->common.shmem2_base); 10329 10330 if (!bp->common.shmem_base) { 10331 BNX2X_DEV_INFO("MCP not active\n"); 10332 bp->flags |= NO_MCP_FLAG; 10333 return; 10334 } 10335 10336 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); 10337 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); 10338 10339 bp->link_params.hw_led_mode = ((bp->common.hw_config & 10340 SHARED_HW_CFG_LED_MODE_MASK) >> 10341 SHARED_HW_CFG_LED_MODE_SHIFT); 10342 10343 bp->link_params.feature_config_flags = 0; 10344 val = SHMEM_RD(bp, dev_info.shared_feature_config.config); 10345 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) 10346 bp->link_params.feature_config_flags |= 10347 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 10348 else 10349 bp->link_params.feature_config_flags &= 10350 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 10351 10352 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; 10353 bp->common.bc_ver = val; 10354 BNX2X_DEV_INFO("bc_ver %X\n", val); 10355 if (val < BNX2X_BC_VER) { 10356 /* for now only warn 10357 * later we might need to enforce this */ 10358 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", 10359 BNX2X_BC_VER, val); 10360 } 10361 bp->link_params.feature_config_flags |= 10362 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? 10363 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; 10364 10365 bp->link_params.feature_config_flags |= 10366 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? 10367 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; 10368 bp->link_params.feature_config_flags |= 10369 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? 10370 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; 10371 bp->link_params.feature_config_flags |= 10372 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? 10373 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; 10374 10375 bp->link_params.feature_config_flags |= 10376 (val >= REQ_BC_VER_4_MT_SUPPORTED) ? 10377 FEATURE_CONFIG_MT_SUPPORT : 0; 10378 10379 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? 10380 BC_SUPPORTS_PFC_STATS : 0; 10381 10382 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? 10383 BC_SUPPORTS_FCOE_FEATURES : 0; 10384 10385 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? 10386 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; 10387 10388 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? 10389 BC_SUPPORTS_RMMOD_CMD : 0; 10390 10391 boot_mode = SHMEM_RD(bp, 10392 dev_info.port_feature_config[BP_PORT(bp)].mba_config) & 10393 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; 10394 switch (boot_mode) { 10395 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: 10396 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; 10397 break; 10398 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: 10399 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; 10400 break; 10401 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: 10402 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; 10403 break; 10404 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: 10405 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; 10406 break; 10407 } 10408 10409 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc); 10410 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; 10411 10412 BNX2X_DEV_INFO("%sWoL capable\n", 10413 (bp->flags & NO_WOL_FLAG) ? "not " : ""); 10414 10415 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); 10416 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); 10417 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); 10418 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); 10419 10420 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", 10421 val, val2, val3, val4); 10422 } 10423 10424 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 10425 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 10426 10427 static int bnx2x_get_igu_cam_info(struct bnx2x *bp) 10428 { 10429 int pfid = BP_FUNC(bp); 10430 int igu_sb_id; 10431 u32 val; 10432 u8 fid, igu_sb_cnt = 0; 10433 10434 bp->igu_base_sb = 0xff; 10435 if (CHIP_INT_MODE_IS_BC(bp)) { 10436 int vn = BP_VN(bp); 10437 igu_sb_cnt = bp->igu_sb_cnt; 10438 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * 10439 FP_SB_MAX_E1x; 10440 10441 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + 10442 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); 10443 10444 return 0; 10445 } 10446 10447 /* IGU in normal mode - read CAM */ 10448 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 10449 igu_sb_id++) { 10450 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 10451 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 10452 continue; 10453 fid = IGU_FID(val); 10454 if ((fid & IGU_FID_ENCODE_IS_PF)) { 10455 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) 10456 continue; 10457 if (IGU_VEC(val) == 0) 10458 /* default status block */ 10459 bp->igu_dsb_id = igu_sb_id; 10460 else { 10461 if (bp->igu_base_sb == 0xff) 10462 bp->igu_base_sb = igu_sb_id; 10463 igu_sb_cnt++; 10464 } 10465 } 10466 } 10467 10468 #ifdef CONFIG_PCI_MSI 10469 /* Due to new PF resource allocation by MFW T7.4 and above, it's 10470 * optional that number of CAM entries will not be equal to the value 10471 * advertised in PCI. 10472 * Driver should use the minimal value of both as the actual status 10473 * block count 10474 */ 10475 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); 10476 #endif 10477 10478 if (igu_sb_cnt == 0) { 10479 BNX2X_ERR("CAM configuration error\n"); 10480 return -EINVAL; 10481 } 10482 10483 return 0; 10484 } 10485 10486 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) 10487 { 10488 int cfg_size = 0, idx, port = BP_PORT(bp); 10489 10490 /* Aggregation of supported attributes of all external phys */ 10491 bp->port.supported[0] = 0; 10492 bp->port.supported[1] = 0; 10493 switch (bp->link_params.num_phys) { 10494 case 1: 10495 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; 10496 cfg_size = 1; 10497 break; 10498 case 2: 10499 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; 10500 cfg_size = 1; 10501 break; 10502 case 3: 10503 if (bp->link_params.multi_phy_config & 10504 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 10505 bp->port.supported[1] = 10506 bp->link_params.phy[EXT_PHY1].supported; 10507 bp->port.supported[0] = 10508 bp->link_params.phy[EXT_PHY2].supported; 10509 } else { 10510 bp->port.supported[0] = 10511 bp->link_params.phy[EXT_PHY1].supported; 10512 bp->port.supported[1] = 10513 bp->link_params.phy[EXT_PHY2].supported; 10514 } 10515 cfg_size = 2; 10516 break; 10517 } 10518 10519 if (!(bp->port.supported[0] || bp->port.supported[1])) { 10520 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", 10521 SHMEM_RD(bp, 10522 dev_info.port_hw_config[port].external_phy_config), 10523 SHMEM_RD(bp, 10524 dev_info.port_hw_config[port].external_phy_config2)); 10525 return; 10526 } 10527 10528 if (CHIP_IS_E3(bp)) 10529 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); 10530 else { 10531 switch (switch_cfg) { 10532 case SWITCH_CFG_1G: 10533 bp->port.phy_addr = REG_RD( 10534 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 10535 break; 10536 case SWITCH_CFG_10G: 10537 bp->port.phy_addr = REG_RD( 10538 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 10539 break; 10540 default: 10541 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", 10542 bp->port.link_config[0]); 10543 return; 10544 } 10545 } 10546 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); 10547 /* mask what we support according to speed_cap_mask per configuration */ 10548 for (idx = 0; idx < cfg_size; idx++) { 10549 if (!(bp->link_params.speed_cap_mask[idx] & 10550 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) 10551 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; 10552 10553 if (!(bp->link_params.speed_cap_mask[idx] & 10554 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) 10555 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; 10556 10557 if (!(bp->link_params.speed_cap_mask[idx] & 10558 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) 10559 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; 10560 10561 if (!(bp->link_params.speed_cap_mask[idx] & 10562 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) 10563 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; 10564 10565 if (!(bp->link_params.speed_cap_mask[idx] & 10566 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) 10567 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | 10568 SUPPORTED_1000baseT_Full); 10569 10570 if (!(bp->link_params.speed_cap_mask[idx] & 10571 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) 10572 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; 10573 10574 if (!(bp->link_params.speed_cap_mask[idx] & 10575 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) 10576 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; 10577 10578 if (!(bp->link_params.speed_cap_mask[idx] & 10579 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) 10580 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; 10581 } 10582 10583 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], 10584 bp->port.supported[1]); 10585 } 10586 10587 static void bnx2x_link_settings_requested(struct bnx2x *bp) 10588 { 10589 u32 link_config, idx, cfg_size = 0; 10590 bp->port.advertising[0] = 0; 10591 bp->port.advertising[1] = 0; 10592 switch (bp->link_params.num_phys) { 10593 case 1: 10594 case 2: 10595 cfg_size = 1; 10596 break; 10597 case 3: 10598 cfg_size = 2; 10599 break; 10600 } 10601 for (idx = 0; idx < cfg_size; idx++) { 10602 bp->link_params.req_duplex[idx] = DUPLEX_FULL; 10603 link_config = bp->port.link_config[idx]; 10604 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 10605 case PORT_FEATURE_LINK_SPEED_AUTO: 10606 if (bp->port.supported[idx] & SUPPORTED_Autoneg) { 10607 bp->link_params.req_line_speed[idx] = 10608 SPEED_AUTO_NEG; 10609 bp->port.advertising[idx] |= 10610 bp->port.supported[idx]; 10611 if (bp->link_params.phy[EXT_PHY1].type == 10612 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 10613 bp->port.advertising[idx] |= 10614 (SUPPORTED_100baseT_Half | 10615 SUPPORTED_100baseT_Full); 10616 } else { 10617 /* force 10G, no AN */ 10618 bp->link_params.req_line_speed[idx] = 10619 SPEED_10000; 10620 bp->port.advertising[idx] |= 10621 (ADVERTISED_10000baseT_Full | 10622 ADVERTISED_FIBRE); 10623 continue; 10624 } 10625 break; 10626 10627 case PORT_FEATURE_LINK_SPEED_10M_FULL: 10628 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { 10629 bp->link_params.req_line_speed[idx] = 10630 SPEED_10; 10631 bp->port.advertising[idx] |= 10632 (ADVERTISED_10baseT_Full | 10633 ADVERTISED_TP); 10634 } else { 10635 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10636 link_config, 10637 bp->link_params.speed_cap_mask[idx]); 10638 return; 10639 } 10640 break; 10641 10642 case PORT_FEATURE_LINK_SPEED_10M_HALF: 10643 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { 10644 bp->link_params.req_line_speed[idx] = 10645 SPEED_10; 10646 bp->link_params.req_duplex[idx] = 10647 DUPLEX_HALF; 10648 bp->port.advertising[idx] |= 10649 (ADVERTISED_10baseT_Half | 10650 ADVERTISED_TP); 10651 } else { 10652 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10653 link_config, 10654 bp->link_params.speed_cap_mask[idx]); 10655 return; 10656 } 10657 break; 10658 10659 case PORT_FEATURE_LINK_SPEED_100M_FULL: 10660 if (bp->port.supported[idx] & 10661 SUPPORTED_100baseT_Full) { 10662 bp->link_params.req_line_speed[idx] = 10663 SPEED_100; 10664 bp->port.advertising[idx] |= 10665 (ADVERTISED_100baseT_Full | 10666 ADVERTISED_TP); 10667 } else { 10668 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10669 link_config, 10670 bp->link_params.speed_cap_mask[idx]); 10671 return; 10672 } 10673 break; 10674 10675 case PORT_FEATURE_LINK_SPEED_100M_HALF: 10676 if (bp->port.supported[idx] & 10677 SUPPORTED_100baseT_Half) { 10678 bp->link_params.req_line_speed[idx] = 10679 SPEED_100; 10680 bp->link_params.req_duplex[idx] = 10681 DUPLEX_HALF; 10682 bp->port.advertising[idx] |= 10683 (ADVERTISED_100baseT_Half | 10684 ADVERTISED_TP); 10685 } else { 10686 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10687 link_config, 10688 bp->link_params.speed_cap_mask[idx]); 10689 return; 10690 } 10691 break; 10692 10693 case PORT_FEATURE_LINK_SPEED_1G: 10694 if (bp->port.supported[idx] & 10695 SUPPORTED_1000baseT_Full) { 10696 bp->link_params.req_line_speed[idx] = 10697 SPEED_1000; 10698 bp->port.advertising[idx] |= 10699 (ADVERTISED_1000baseT_Full | 10700 ADVERTISED_TP); 10701 } else { 10702 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10703 link_config, 10704 bp->link_params.speed_cap_mask[idx]); 10705 return; 10706 } 10707 break; 10708 10709 case PORT_FEATURE_LINK_SPEED_2_5G: 10710 if (bp->port.supported[idx] & 10711 SUPPORTED_2500baseX_Full) { 10712 bp->link_params.req_line_speed[idx] = 10713 SPEED_2500; 10714 bp->port.advertising[idx] |= 10715 (ADVERTISED_2500baseX_Full | 10716 ADVERTISED_TP); 10717 } else { 10718 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10719 link_config, 10720 bp->link_params.speed_cap_mask[idx]); 10721 return; 10722 } 10723 break; 10724 10725 case PORT_FEATURE_LINK_SPEED_10G_CX4: 10726 if (bp->port.supported[idx] & 10727 SUPPORTED_10000baseT_Full) { 10728 bp->link_params.req_line_speed[idx] = 10729 SPEED_10000; 10730 bp->port.advertising[idx] |= 10731 (ADVERTISED_10000baseT_Full | 10732 ADVERTISED_FIBRE); 10733 } else { 10734 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 10735 link_config, 10736 bp->link_params.speed_cap_mask[idx]); 10737 return; 10738 } 10739 break; 10740 case PORT_FEATURE_LINK_SPEED_20G: 10741 bp->link_params.req_line_speed[idx] = SPEED_20000; 10742 10743 break; 10744 default: 10745 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", 10746 link_config); 10747 bp->link_params.req_line_speed[idx] = 10748 SPEED_AUTO_NEG; 10749 bp->port.advertising[idx] = 10750 bp->port.supported[idx]; 10751 break; 10752 } 10753 10754 bp->link_params.req_flow_ctrl[idx] = (link_config & 10755 PORT_FEATURE_FLOW_CONTROL_MASK); 10756 if (bp->link_params.req_flow_ctrl[idx] == 10757 BNX2X_FLOW_CTRL_AUTO) { 10758 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) 10759 bp->link_params.req_flow_ctrl[idx] = 10760 BNX2X_FLOW_CTRL_NONE; 10761 else 10762 bnx2x_set_requested_fc(bp); 10763 } 10764 10765 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", 10766 bp->link_params.req_line_speed[idx], 10767 bp->link_params.req_duplex[idx], 10768 bp->link_params.req_flow_ctrl[idx], 10769 bp->port.advertising[idx]); 10770 } 10771 } 10772 10773 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) 10774 { 10775 __be16 mac_hi_be = cpu_to_be16(mac_hi); 10776 __be32 mac_lo_be = cpu_to_be32(mac_lo); 10777 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); 10778 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); 10779 } 10780 10781 static void bnx2x_get_port_hwinfo(struct bnx2x *bp) 10782 { 10783 int port = BP_PORT(bp); 10784 u32 config; 10785 u32 ext_phy_type, ext_phy_config, eee_mode; 10786 10787 bp->link_params.bp = bp; 10788 bp->link_params.port = port; 10789 10790 bp->link_params.lane_config = 10791 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); 10792 10793 bp->link_params.speed_cap_mask[0] = 10794 SHMEM_RD(bp, 10795 dev_info.port_hw_config[port].speed_capability_mask) & 10796 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 10797 bp->link_params.speed_cap_mask[1] = 10798 SHMEM_RD(bp, 10799 dev_info.port_hw_config[port].speed_capability_mask2) & 10800 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 10801 bp->port.link_config[0] = 10802 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); 10803 10804 bp->port.link_config[1] = 10805 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); 10806 10807 bp->link_params.multi_phy_config = 10808 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); 10809 /* If the device is capable of WoL, set the default state according 10810 * to the HW 10811 */ 10812 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); 10813 bp->wol = (!(bp->flags & NO_WOL_FLAG) && 10814 (config & PORT_FEATURE_WOL_ENABLED)); 10815 10816 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 10817 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) 10818 bp->flags |= NO_ISCSI_FLAG; 10819 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 10820 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) 10821 bp->flags |= NO_FCOE_FLAG; 10822 10823 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", 10824 bp->link_params.lane_config, 10825 bp->link_params.speed_cap_mask[0], 10826 bp->port.link_config[0]); 10827 10828 bp->link_params.switch_cfg = (bp->port.link_config[0] & 10829 PORT_FEATURE_CONNECTED_SWITCH_MASK); 10830 bnx2x_phy_probe(&bp->link_params); 10831 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); 10832 10833 bnx2x_link_settings_requested(bp); 10834 10835 /* 10836 * If connected directly, work with the internal PHY, otherwise, work 10837 * with the external PHY 10838 */ 10839 ext_phy_config = 10840 SHMEM_RD(bp, 10841 dev_info.port_hw_config[port].external_phy_config); 10842 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); 10843 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 10844 bp->mdio.prtad = bp->port.phy_addr; 10845 10846 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 10847 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 10848 bp->mdio.prtad = 10849 XGXS_EXT_PHY_ADDR(ext_phy_config); 10850 10851 /* Configure link feature according to nvram value */ 10852 eee_mode = (((SHMEM_RD(bp, dev_info. 10853 port_feature_config[port].eee_power_mode)) & 10854 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 10855 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 10856 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 10857 bp->link_params.eee_mode = EEE_MODE_ADV_LPI | 10858 EEE_MODE_ENABLE_LPI | 10859 EEE_MODE_OUTPUT_TIME; 10860 } else { 10861 bp->link_params.eee_mode = 0; 10862 } 10863 } 10864 10865 void bnx2x_get_iscsi_info(struct bnx2x *bp) 10866 { 10867 u32 no_flags = NO_ISCSI_FLAG; 10868 int port = BP_PORT(bp); 10869 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 10870 drv_lic_key[port].max_iscsi_conn); 10871 10872 if (!CNIC_SUPPORT(bp)) { 10873 bp->flags |= no_flags; 10874 return; 10875 } 10876 10877 /* Get the number of maximum allowed iSCSI connections */ 10878 bp->cnic_eth_dev.max_iscsi_conn = 10879 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> 10880 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; 10881 10882 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", 10883 bp->cnic_eth_dev.max_iscsi_conn); 10884 10885 /* 10886 * If maximum allowed number of connections is zero - 10887 * disable the feature. 10888 */ 10889 if (!bp->cnic_eth_dev.max_iscsi_conn) 10890 bp->flags |= no_flags; 10891 } 10892 10893 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) 10894 { 10895 /* Port info */ 10896 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 10897 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); 10898 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 10899 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); 10900 10901 /* Node info */ 10902 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 10903 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); 10904 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 10905 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); 10906 } 10907 10908 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) 10909 { 10910 u8 count = 0; 10911 10912 if (IS_MF(bp)) { 10913 u8 fid; 10914 10915 /* iterate over absolute function ids for this path: */ 10916 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { 10917 if (IS_MF_SD(bp)) { 10918 u32 cfg = MF_CFG_RD(bp, 10919 func_mf_config[fid].config); 10920 10921 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && 10922 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == 10923 FUNC_MF_CFG_PROTOCOL_FCOE)) 10924 count++; 10925 } else { 10926 u32 cfg = MF_CFG_RD(bp, 10927 func_ext_config[fid]. 10928 func_cfg); 10929 10930 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && 10931 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) 10932 count++; 10933 } 10934 } 10935 } else { /* SF */ 10936 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; 10937 10938 for (port = 0; port < port_cnt; port++) { 10939 u32 lic = SHMEM_RD(bp, 10940 drv_lic_key[port].max_fcoe_conn) ^ 10941 FW_ENCODE_32BIT_PATTERN; 10942 if (lic) 10943 count++; 10944 } 10945 } 10946 10947 return count; 10948 } 10949 10950 static void bnx2x_get_fcoe_info(struct bnx2x *bp) 10951 { 10952 int port = BP_PORT(bp); 10953 int func = BP_ABS_FUNC(bp); 10954 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 10955 drv_lic_key[port].max_fcoe_conn); 10956 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); 10957 10958 if (!CNIC_SUPPORT(bp)) { 10959 bp->flags |= NO_FCOE_FLAG; 10960 return; 10961 } 10962 10963 /* Get the number of maximum allowed FCoE connections */ 10964 bp->cnic_eth_dev.max_fcoe_conn = 10965 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> 10966 BNX2X_MAX_FCOE_INIT_CONN_SHIFT; 10967 10968 /* Calculate the number of maximum allowed FCoE tasks */ 10969 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; 10970 10971 /* check if FCoE resources must be shared between different functions */ 10972 if (num_fcoe_func) 10973 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; 10974 10975 /* Read the WWN: */ 10976 if (!IS_MF(bp)) { 10977 /* Port info */ 10978 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 10979 SHMEM_RD(bp, 10980 dev_info.port_hw_config[port]. 10981 fcoe_wwn_port_name_upper); 10982 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 10983 SHMEM_RD(bp, 10984 dev_info.port_hw_config[port]. 10985 fcoe_wwn_port_name_lower); 10986 10987 /* Node info */ 10988 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 10989 SHMEM_RD(bp, 10990 dev_info.port_hw_config[port]. 10991 fcoe_wwn_node_name_upper); 10992 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 10993 SHMEM_RD(bp, 10994 dev_info.port_hw_config[port]. 10995 fcoe_wwn_node_name_lower); 10996 } else if (!IS_MF_SD(bp)) { 10997 /* 10998 * Read the WWN info only if the FCoE feature is enabled for 10999 * this function. 11000 */ 11001 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) 11002 bnx2x_get_ext_wwn_info(bp, func); 11003 11004 } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) { 11005 bnx2x_get_ext_wwn_info(bp, func); 11006 } 11007 11008 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); 11009 11010 /* 11011 * If maximum allowed number of connections is zero - 11012 * disable the feature. 11013 */ 11014 if (!bp->cnic_eth_dev.max_fcoe_conn) 11015 bp->flags |= NO_FCOE_FLAG; 11016 } 11017 11018 static void bnx2x_get_cnic_info(struct bnx2x *bp) 11019 { 11020 /* 11021 * iSCSI may be dynamically disabled but reading 11022 * info here we will decrease memory usage by driver 11023 * if the feature is disabled for good 11024 */ 11025 bnx2x_get_iscsi_info(bp); 11026 bnx2x_get_fcoe_info(bp); 11027 } 11028 11029 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) 11030 { 11031 u32 val, val2; 11032 int func = BP_ABS_FUNC(bp); 11033 int port = BP_PORT(bp); 11034 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; 11035 u8 *fip_mac = bp->fip_mac; 11036 11037 if (IS_MF(bp)) { 11038 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or 11039 * FCoE MAC then the appropriate feature should be disabled. 11040 * In non SD mode features configuration comes from struct 11041 * func_ext_config. 11042 */ 11043 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) { 11044 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); 11045 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 11046 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11047 iscsi_mac_addr_upper); 11048 val = MF_CFG_RD(bp, func_ext_config[func]. 11049 iscsi_mac_addr_lower); 11050 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11051 BNX2X_DEV_INFO 11052 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11053 } else { 11054 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11055 } 11056 11057 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 11058 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11059 fcoe_mac_addr_upper); 11060 val = MF_CFG_RD(bp, func_ext_config[func]. 11061 fcoe_mac_addr_lower); 11062 bnx2x_set_mac_buf(fip_mac, val, val2); 11063 BNX2X_DEV_INFO 11064 ("Read FCoE L2 MAC: %pM\n", fip_mac); 11065 } else { 11066 bp->flags |= NO_FCOE_FLAG; 11067 } 11068 11069 bp->mf_ext_config = cfg; 11070 11071 } else { /* SD MODE */ 11072 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { 11073 /* use primary mac as iscsi mac */ 11074 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); 11075 11076 BNX2X_DEV_INFO("SD ISCSI MODE\n"); 11077 BNX2X_DEV_INFO 11078 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11079 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { 11080 /* use primary mac as fip mac */ 11081 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); 11082 BNX2X_DEV_INFO("SD FCoE MODE\n"); 11083 BNX2X_DEV_INFO 11084 ("Read FIP MAC: %pM\n", fip_mac); 11085 } 11086 } 11087 11088 /* If this is a storage-only interface, use SAN mac as 11089 * primary MAC. Notice that for SD this is already the case, 11090 * as the SAN mac was copied from the primary MAC. 11091 */ 11092 if (IS_MF_FCOE_AFEX(bp)) 11093 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN); 11094 } else { 11095 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11096 iscsi_mac_upper); 11097 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11098 iscsi_mac_lower); 11099 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11100 11101 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11102 fcoe_fip_mac_upper); 11103 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11104 fcoe_fip_mac_lower); 11105 bnx2x_set_mac_buf(fip_mac, val, val2); 11106 } 11107 11108 /* Disable iSCSI OOO if MAC configuration is invalid. */ 11109 if (!is_valid_ether_addr(iscsi_mac)) { 11110 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11111 memset(iscsi_mac, 0, ETH_ALEN); 11112 } 11113 11114 /* Disable FCoE if MAC configuration is invalid. */ 11115 if (!is_valid_ether_addr(fip_mac)) { 11116 bp->flags |= NO_FCOE_FLAG; 11117 memset(bp->fip_mac, 0, ETH_ALEN); 11118 } 11119 } 11120 11121 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) 11122 { 11123 u32 val, val2; 11124 int func = BP_ABS_FUNC(bp); 11125 int port = BP_PORT(bp); 11126 11127 /* Zero primary MAC configuration */ 11128 memset(bp->dev->dev_addr, 0, ETH_ALEN); 11129 11130 if (BP_NOMCP(bp)) { 11131 BNX2X_ERROR("warning: random MAC workaround active\n"); 11132 eth_hw_addr_random(bp->dev); 11133 } else if (IS_MF(bp)) { 11134 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11135 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); 11136 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && 11137 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) 11138 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11139 11140 if (CNIC_SUPPORT(bp)) 11141 bnx2x_get_cnic_mac_hwinfo(bp); 11142 } else { 11143 /* in SF read MACs from port configuration */ 11144 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11145 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11146 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11147 11148 if (CNIC_SUPPORT(bp)) 11149 bnx2x_get_cnic_mac_hwinfo(bp); 11150 } 11151 11152 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); 11153 11154 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr)) 11155 dev_err(&bp->pdev->dev, 11156 "bad Ethernet MAC address configuration: %pM\n" 11157 "change it manually before bringing up the appropriate network interface\n", 11158 bp->dev->dev_addr); 11159 } 11160 11161 static bool bnx2x_get_dropless_info(struct bnx2x *bp) 11162 { 11163 int tmp; 11164 u32 cfg; 11165 11166 if (IS_VF(bp)) 11167 return 0; 11168 11169 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { 11170 /* Take function: tmp = func */ 11171 tmp = BP_ABS_FUNC(bp); 11172 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); 11173 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); 11174 } else { 11175 /* Take port: tmp = port */ 11176 tmp = BP_PORT(bp); 11177 cfg = SHMEM_RD(bp, 11178 dev_info.port_hw_config[tmp].generic_features); 11179 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); 11180 } 11181 return cfg; 11182 } 11183 11184 static int bnx2x_get_hwinfo(struct bnx2x *bp) 11185 { 11186 int /*abs*/func = BP_ABS_FUNC(bp); 11187 int vn; 11188 u32 val = 0; 11189 int rc = 0; 11190 11191 bnx2x_get_common_hwinfo(bp); 11192 11193 /* 11194 * initialize IGU parameters 11195 */ 11196 if (CHIP_IS_E1x(bp)) { 11197 bp->common.int_block = INT_BLOCK_HC; 11198 11199 bp->igu_dsb_id = DEF_SB_IGU_ID; 11200 bp->igu_base_sb = 0; 11201 } else { 11202 bp->common.int_block = INT_BLOCK_IGU; 11203 11204 /* do not allow device reset during IGU info processing */ 11205 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11206 11207 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 11208 11209 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11210 int tout = 5000; 11211 11212 BNX2X_DEV_INFO("FORCING Normal Mode\n"); 11213 11214 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 11215 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); 11216 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); 11217 11218 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11219 tout--; 11220 usleep_range(1000, 2000); 11221 } 11222 11223 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11224 dev_err(&bp->pdev->dev, 11225 "FORCING Normal Mode failed!!!\n"); 11226 bnx2x_release_hw_lock(bp, 11227 HW_LOCK_RESOURCE_RESET); 11228 return -EPERM; 11229 } 11230 } 11231 11232 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11233 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); 11234 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; 11235 } else 11236 BNX2X_DEV_INFO("IGU Normal Mode\n"); 11237 11238 rc = bnx2x_get_igu_cam_info(bp); 11239 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11240 if (rc) 11241 return rc; 11242 } 11243 11244 /* 11245 * set base FW non-default (fast path) status block id, this value is 11246 * used to initialize the fw_sb_id saved on the fp/queue structure to 11247 * determine the id used by the FW. 11248 */ 11249 if (CHIP_IS_E1x(bp)) 11250 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); 11251 else /* 11252 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of 11253 * the same queue are indicated on the same IGU SB). So we prefer 11254 * FW and IGU SBs to be the same value. 11255 */ 11256 bp->base_fw_ndsb = bp->igu_base_sb; 11257 11258 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" 11259 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, 11260 bp->igu_sb_cnt, bp->base_fw_ndsb); 11261 11262 /* 11263 * Initialize MF configuration 11264 */ 11265 11266 bp->mf_ov = 0; 11267 bp->mf_mode = 0; 11268 vn = BP_VN(bp); 11269 11270 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { 11271 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", 11272 bp->common.shmem2_base, SHMEM2_RD(bp, size), 11273 (u32)offsetof(struct shmem2_region, mf_cfg_addr)); 11274 11275 if (SHMEM2_HAS(bp, mf_cfg_addr)) 11276 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); 11277 else 11278 bp->common.mf_cfg_base = bp->common.shmem_base + 11279 offsetof(struct shmem_region, func_mb) + 11280 E1H_FUNC_MAX * sizeof(struct drv_func_mb); 11281 /* 11282 * get mf configuration: 11283 * 1. Existence of MF configuration 11284 * 2. MAC address must be legal (check only upper bytes) 11285 * for Switch-Independent mode; 11286 * OVLAN must be legal for Switch-Dependent mode 11287 * 3. SF_MODE configures specific MF mode 11288 */ 11289 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 11290 /* get mf configuration */ 11291 val = SHMEM_RD(bp, 11292 dev_info.shared_feature_config.config); 11293 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; 11294 11295 switch (val) { 11296 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 11297 val = MF_CFG_RD(bp, func_mf_config[func]. 11298 mac_upper); 11299 /* check for legal mac (upper bytes)*/ 11300 if (val != 0xffff) { 11301 bp->mf_mode = MULTI_FUNCTION_SI; 11302 bp->mf_config[vn] = MF_CFG_RD(bp, 11303 func_mf_config[func].config); 11304 } else 11305 BNX2X_DEV_INFO("illegal MAC address for SI\n"); 11306 break; 11307 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 11308 if ((!CHIP_IS_E1x(bp)) && 11309 (MF_CFG_RD(bp, func_mf_config[func]. 11310 mac_upper) != 0xffff) && 11311 (SHMEM2_HAS(bp, 11312 afex_driver_support))) { 11313 bp->mf_mode = MULTI_FUNCTION_AFEX; 11314 bp->mf_config[vn] = MF_CFG_RD(bp, 11315 func_mf_config[func].config); 11316 } else { 11317 BNX2X_DEV_INFO("can not configure afex mode\n"); 11318 } 11319 break; 11320 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 11321 /* get OV configuration */ 11322 val = MF_CFG_RD(bp, 11323 func_mf_config[FUNC_0].e1hov_tag); 11324 val &= FUNC_MF_CFG_E1HOV_TAG_MASK; 11325 11326 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 11327 bp->mf_mode = MULTI_FUNCTION_SD; 11328 bp->mf_config[vn] = MF_CFG_RD(bp, 11329 func_mf_config[func].config); 11330 } else 11331 BNX2X_DEV_INFO("illegal OV for SD\n"); 11332 break; 11333 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 11334 bp->mf_config[vn] = 0; 11335 break; 11336 default: 11337 /* Unknown configuration: reset mf_config */ 11338 bp->mf_config[vn] = 0; 11339 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); 11340 } 11341 } 11342 11343 BNX2X_DEV_INFO("%s function mode\n", 11344 IS_MF(bp) ? "multi" : "single"); 11345 11346 switch (bp->mf_mode) { 11347 case MULTI_FUNCTION_SD: 11348 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 11349 FUNC_MF_CFG_E1HOV_TAG_MASK; 11350 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 11351 bp->mf_ov = val; 11352 bp->path_has_ovlan = true; 11353 11354 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", 11355 func, bp->mf_ov, bp->mf_ov); 11356 } else { 11357 dev_err(&bp->pdev->dev, 11358 "No valid MF OV for func %d, aborting\n", 11359 func); 11360 return -EPERM; 11361 } 11362 break; 11363 case MULTI_FUNCTION_AFEX: 11364 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); 11365 break; 11366 case MULTI_FUNCTION_SI: 11367 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", 11368 func); 11369 break; 11370 default: 11371 if (vn) { 11372 dev_err(&bp->pdev->dev, 11373 "VN %d is in a single function mode, aborting\n", 11374 vn); 11375 return -EPERM; 11376 } 11377 break; 11378 } 11379 11380 /* check if other port on the path needs ovlan: 11381 * Since MF configuration is shared between ports 11382 * Possible mixed modes are only 11383 * {SF, SI} {SF, SD} {SD, SF} {SI, SF} 11384 */ 11385 if (CHIP_MODE_IS_4_PORT(bp) && 11386 !bp->path_has_ovlan && 11387 !IS_MF(bp) && 11388 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 11389 u8 other_port = !BP_PORT(bp); 11390 u8 other_func = BP_PATH(bp) + 2*other_port; 11391 val = MF_CFG_RD(bp, 11392 func_mf_config[other_func].e1hov_tag); 11393 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) 11394 bp->path_has_ovlan = true; 11395 } 11396 } 11397 11398 /* adjust igu_sb_cnt to MF for E1x */ 11399 if (CHIP_IS_E1x(bp) && IS_MF(bp)) 11400 bp->igu_sb_cnt /= E1HVN_MAX; 11401 11402 /* port info */ 11403 bnx2x_get_port_hwinfo(bp); 11404 11405 /* Get MAC addresses */ 11406 bnx2x_get_mac_hwinfo(bp); 11407 11408 bnx2x_get_cnic_info(bp); 11409 11410 return rc; 11411 } 11412 11413 static void bnx2x_read_fwinfo(struct bnx2x *bp) 11414 { 11415 int cnt, i, block_end, rodi; 11416 char vpd_start[BNX2X_VPD_LEN+1]; 11417 char str_id_reg[VENDOR_ID_LEN+1]; 11418 char str_id_cap[VENDOR_ID_LEN+1]; 11419 char *vpd_data; 11420 char *vpd_extended_data = NULL; 11421 u8 len; 11422 11423 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); 11424 memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); 11425 11426 if (cnt < BNX2X_VPD_LEN) 11427 goto out_not_found; 11428 11429 /* VPD RO tag should be first tag after identifier string, hence 11430 * we should be able to find it in first BNX2X_VPD_LEN chars 11431 */ 11432 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, 11433 PCI_VPD_LRDT_RO_DATA); 11434 if (i < 0) 11435 goto out_not_found; 11436 11437 block_end = i + PCI_VPD_LRDT_TAG_SIZE + 11438 pci_vpd_lrdt_size(&vpd_start[i]); 11439 11440 i += PCI_VPD_LRDT_TAG_SIZE; 11441 11442 if (block_end > BNX2X_VPD_LEN) { 11443 vpd_extended_data = kmalloc(block_end, GFP_KERNEL); 11444 if (vpd_extended_data == NULL) 11445 goto out_not_found; 11446 11447 /* read rest of vpd image into vpd_extended_data */ 11448 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); 11449 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, 11450 block_end - BNX2X_VPD_LEN, 11451 vpd_extended_data + BNX2X_VPD_LEN); 11452 if (cnt < (block_end - BNX2X_VPD_LEN)) 11453 goto out_not_found; 11454 vpd_data = vpd_extended_data; 11455 } else 11456 vpd_data = vpd_start; 11457 11458 /* now vpd_data holds full vpd content in both cases */ 11459 11460 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 11461 PCI_VPD_RO_KEYWORD_MFR_ID); 11462 if (rodi < 0) 11463 goto out_not_found; 11464 11465 len = pci_vpd_info_field_size(&vpd_data[rodi]); 11466 11467 if (len != VENDOR_ID_LEN) 11468 goto out_not_found; 11469 11470 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 11471 11472 /* vendor specific info */ 11473 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); 11474 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); 11475 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || 11476 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { 11477 11478 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 11479 PCI_VPD_RO_KEYWORD_VENDOR0); 11480 if (rodi >= 0) { 11481 len = pci_vpd_info_field_size(&vpd_data[rodi]); 11482 11483 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 11484 11485 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { 11486 memcpy(bp->fw_ver, &vpd_data[rodi], len); 11487 bp->fw_ver[len] = ' '; 11488 } 11489 } 11490 kfree(vpd_extended_data); 11491 return; 11492 } 11493 out_not_found: 11494 kfree(vpd_extended_data); 11495 return; 11496 } 11497 11498 static void bnx2x_set_modes_bitmap(struct bnx2x *bp) 11499 { 11500 u32 flags = 0; 11501 11502 if (CHIP_REV_IS_FPGA(bp)) 11503 SET_FLAGS(flags, MODE_FPGA); 11504 else if (CHIP_REV_IS_EMUL(bp)) 11505 SET_FLAGS(flags, MODE_EMUL); 11506 else 11507 SET_FLAGS(flags, MODE_ASIC); 11508 11509 if (CHIP_MODE_IS_4_PORT(bp)) 11510 SET_FLAGS(flags, MODE_PORT4); 11511 else 11512 SET_FLAGS(flags, MODE_PORT2); 11513 11514 if (CHIP_IS_E2(bp)) 11515 SET_FLAGS(flags, MODE_E2); 11516 else if (CHIP_IS_E3(bp)) { 11517 SET_FLAGS(flags, MODE_E3); 11518 if (CHIP_REV(bp) == CHIP_REV_Ax) 11519 SET_FLAGS(flags, MODE_E3_A0); 11520 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ 11521 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 11522 } 11523 11524 if (IS_MF(bp)) { 11525 SET_FLAGS(flags, MODE_MF); 11526 switch (bp->mf_mode) { 11527 case MULTI_FUNCTION_SD: 11528 SET_FLAGS(flags, MODE_MF_SD); 11529 break; 11530 case MULTI_FUNCTION_SI: 11531 SET_FLAGS(flags, MODE_MF_SI); 11532 break; 11533 case MULTI_FUNCTION_AFEX: 11534 SET_FLAGS(flags, MODE_MF_AFEX); 11535 break; 11536 } 11537 } else 11538 SET_FLAGS(flags, MODE_SF); 11539 11540 #if defined(__LITTLE_ENDIAN) 11541 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 11542 #else /*(__BIG_ENDIAN)*/ 11543 SET_FLAGS(flags, MODE_BIG_ENDIAN); 11544 #endif 11545 INIT_MODE_FLAGS(bp) = flags; 11546 } 11547 11548 static int bnx2x_init_bp(struct bnx2x *bp) 11549 { 11550 int func; 11551 int rc; 11552 11553 mutex_init(&bp->port.phy_mutex); 11554 mutex_init(&bp->fw_mb_mutex); 11555 spin_lock_init(&bp->stats_lock); 11556 sema_init(&bp->stats_sema, 1); 11557 11558 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); 11559 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); 11560 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); 11561 if (IS_PF(bp)) { 11562 rc = bnx2x_get_hwinfo(bp); 11563 if (rc) 11564 return rc; 11565 } else { 11566 eth_zero_addr(bp->dev->dev_addr); 11567 } 11568 11569 bnx2x_set_modes_bitmap(bp); 11570 11571 rc = bnx2x_alloc_mem_bp(bp); 11572 if (rc) 11573 return rc; 11574 11575 bnx2x_read_fwinfo(bp); 11576 11577 func = BP_FUNC(bp); 11578 11579 /* need to reset chip if undi was active */ 11580 if (IS_PF(bp) && !BP_NOMCP(bp)) { 11581 /* init fw_seq */ 11582 bp->fw_seq = 11583 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 11584 DRV_MSG_SEQ_NUMBER_MASK; 11585 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 11586 11587 bnx2x_prev_unload(bp); 11588 } 11589 11590 if (CHIP_REV_IS_FPGA(bp)) 11591 dev_err(&bp->pdev->dev, "FPGA detected\n"); 11592 11593 if (BP_NOMCP(bp) && (func == 0)) 11594 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); 11595 11596 bp->disable_tpa = disable_tpa; 11597 bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp); 11598 11599 /* Set TPA flags */ 11600 if (bp->disable_tpa) { 11601 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); 11602 bp->dev->features &= ~NETIF_F_LRO; 11603 } else { 11604 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); 11605 bp->dev->features |= NETIF_F_LRO; 11606 } 11607 11608 if (CHIP_IS_E1(bp)) 11609 bp->dropless_fc = 0; 11610 else 11611 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); 11612 11613 bp->mrrs = mrrs; 11614 11615 bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL; 11616 if (IS_VF(bp)) 11617 bp->rx_ring_size = MAX_RX_AVAIL; 11618 11619 /* make sure that the numbers are in the right granularity */ 11620 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; 11621 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; 11622 11623 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; 11624 11625 init_timer(&bp->timer); 11626 bp->timer.expires = jiffies + bp->current_interval; 11627 bp->timer.data = (unsigned long) bp; 11628 bp->timer.function = bnx2x_timer; 11629 11630 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && 11631 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && 11632 SHMEM2_RD(bp, dcbx_lldp_params_offset) && 11633 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) { 11634 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); 11635 bnx2x_dcbx_init_params(bp); 11636 } else { 11637 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); 11638 } 11639 11640 if (CHIP_IS_E1x(bp)) 11641 bp->cnic_base_cl_id = FP_SB_MAX_E1x; 11642 else 11643 bp->cnic_base_cl_id = FP_SB_MAX_E2; 11644 11645 /* multiple tx priority */ 11646 if (IS_VF(bp)) 11647 bp->max_cos = 1; 11648 else if (CHIP_IS_E1x(bp)) 11649 bp->max_cos = BNX2X_MULTI_TX_COS_E1X; 11650 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) 11651 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; 11652 else if (CHIP_IS_E3B0(bp)) 11653 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; 11654 else 11655 BNX2X_ERR("unknown chip %x revision %x\n", 11656 CHIP_NUM(bp), CHIP_REV(bp)); 11657 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); 11658 11659 /* We need at least one default status block for slow-path events, 11660 * second status block for the L2 queue, and a third status block for 11661 * CNIC if supported. 11662 */ 11663 if (CNIC_SUPPORT(bp)) 11664 bp->min_msix_vec_cnt = 3; 11665 else 11666 bp->min_msix_vec_cnt = 2; 11667 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); 11668 11669 bp->dump_preset_idx = 1; 11670 11671 return rc; 11672 } 11673 11674 /**************************************************************************** 11675 * General service functions 11676 ****************************************************************************/ 11677 11678 /* 11679 * net_device service functions 11680 */ 11681 11682 /* called with rtnl_lock */ 11683 static int bnx2x_open(struct net_device *dev) 11684 { 11685 struct bnx2x *bp = netdev_priv(dev); 11686 bool global = false; 11687 int other_engine = BP_PATH(bp) ? 0 : 1; 11688 bool other_load_status, load_status; 11689 int rc; 11690 11691 bp->stats_init = true; 11692 11693 netif_carrier_off(dev); 11694 11695 bnx2x_set_power_state(bp, PCI_D0); 11696 11697 /* If parity had happen during the unload, then attentions 11698 * and/or RECOVERY_IN_PROGRES may still be set. In this case we 11699 * want the first function loaded on the current engine to 11700 * complete the recovery. 11701 * Parity recovery is only relevant for PF driver. 11702 */ 11703 if (IS_PF(bp)) { 11704 other_load_status = bnx2x_get_load_status(bp, other_engine); 11705 load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); 11706 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || 11707 bnx2x_chk_parity_attn(bp, &global, true)) { 11708 do { 11709 /* If there are attentions and they are in a 11710 * global blocks, set the GLOBAL_RESET bit 11711 * regardless whether it will be this function 11712 * that will complete the recovery or not. 11713 */ 11714 if (global) 11715 bnx2x_set_reset_global(bp); 11716 11717 /* Only the first function on the current 11718 * engine should try to recover in open. In case 11719 * of attentions in global blocks only the first 11720 * in the chip should try to recover. 11721 */ 11722 if ((!load_status && 11723 (!global || !other_load_status)) && 11724 bnx2x_trylock_leader_lock(bp) && 11725 !bnx2x_leader_reset(bp)) { 11726 netdev_info(bp->dev, 11727 "Recovered in open\n"); 11728 break; 11729 } 11730 11731 /* recovery has failed... */ 11732 bnx2x_set_power_state(bp, PCI_D3hot); 11733 bp->recovery_state = BNX2X_RECOVERY_FAILED; 11734 11735 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" 11736 "If you still see this message after a few retries then power cycle is required.\n"); 11737 11738 return -EAGAIN; 11739 } while (0); 11740 } 11741 } 11742 11743 bp->recovery_state = BNX2X_RECOVERY_DONE; 11744 rc = bnx2x_nic_load(bp, LOAD_OPEN); 11745 if (rc) 11746 return rc; 11747 return bnx2x_open_epilog(bp); 11748 } 11749 11750 /* called with rtnl_lock */ 11751 static int bnx2x_close(struct net_device *dev) 11752 { 11753 struct bnx2x *bp = netdev_priv(dev); 11754 11755 /* Unload the driver, release IRQs */ 11756 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 11757 11758 return 0; 11759 } 11760 11761 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, 11762 struct bnx2x_mcast_ramrod_params *p) 11763 { 11764 int mc_count = netdev_mc_count(bp->dev); 11765 struct bnx2x_mcast_list_elem *mc_mac = 11766 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC); 11767 struct netdev_hw_addr *ha; 11768 11769 if (!mc_mac) 11770 return -ENOMEM; 11771 11772 INIT_LIST_HEAD(&p->mcast_list); 11773 11774 netdev_for_each_mc_addr(ha, bp->dev) { 11775 mc_mac->mac = bnx2x_mc_addr(ha); 11776 list_add_tail(&mc_mac->link, &p->mcast_list); 11777 mc_mac++; 11778 } 11779 11780 p->mcast_list_len = mc_count; 11781 11782 return 0; 11783 } 11784 11785 static void bnx2x_free_mcast_macs_list( 11786 struct bnx2x_mcast_ramrod_params *p) 11787 { 11788 struct bnx2x_mcast_list_elem *mc_mac = 11789 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem, 11790 link); 11791 11792 WARN_ON(!mc_mac); 11793 kfree(mc_mac); 11794 } 11795 11796 /** 11797 * bnx2x_set_uc_list - configure a new unicast MACs list. 11798 * 11799 * @bp: driver handle 11800 * 11801 * We will use zero (0) as a MAC type for these MACs. 11802 */ 11803 static int bnx2x_set_uc_list(struct bnx2x *bp) 11804 { 11805 int rc; 11806 struct net_device *dev = bp->dev; 11807 struct netdev_hw_addr *ha; 11808 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 11809 unsigned long ramrod_flags = 0; 11810 11811 /* First schedule a cleanup up of old configuration */ 11812 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); 11813 if (rc < 0) { 11814 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); 11815 return rc; 11816 } 11817 11818 netdev_for_each_uc_addr(ha, dev) { 11819 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, 11820 BNX2X_UC_LIST_MAC, &ramrod_flags); 11821 if (rc == -EEXIST) { 11822 DP(BNX2X_MSG_SP, 11823 "Failed to schedule ADD operations: %d\n", rc); 11824 /* do not treat adding same MAC as error */ 11825 rc = 0; 11826 11827 } else if (rc < 0) { 11828 11829 BNX2X_ERR("Failed to schedule ADD operations: %d\n", 11830 rc); 11831 return rc; 11832 } 11833 } 11834 11835 /* Execute the pending commands */ 11836 __set_bit(RAMROD_CONT, &ramrod_flags); 11837 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, 11838 BNX2X_UC_LIST_MAC, &ramrod_flags); 11839 } 11840 11841 static int bnx2x_set_mc_list(struct bnx2x *bp) 11842 { 11843 struct net_device *dev = bp->dev; 11844 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 11845 int rc = 0; 11846 11847 rparam.mcast_obj = &bp->mcast_obj; 11848 11849 /* first, clear all configured multicast MACs */ 11850 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 11851 if (rc < 0) { 11852 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); 11853 return rc; 11854 } 11855 11856 /* then, configure a new MACs list */ 11857 if (netdev_mc_count(dev)) { 11858 rc = bnx2x_init_mcast_macs_list(bp, &rparam); 11859 if (rc) { 11860 BNX2X_ERR("Failed to create multicast MACs list: %d\n", 11861 rc); 11862 return rc; 11863 } 11864 11865 /* Now add the new MACs */ 11866 rc = bnx2x_config_mcast(bp, &rparam, 11867 BNX2X_MCAST_CMD_ADD); 11868 if (rc < 0) 11869 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 11870 rc); 11871 11872 bnx2x_free_mcast_macs_list(&rparam); 11873 } 11874 11875 return rc; 11876 } 11877 11878 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ 11879 void bnx2x_set_rx_mode(struct net_device *dev) 11880 { 11881 struct bnx2x *bp = netdev_priv(dev); 11882 u32 rx_mode = BNX2X_RX_MODE_NORMAL; 11883 11884 if (bp->state != BNX2X_STATE_OPEN) { 11885 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); 11886 return; 11887 } 11888 11889 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); 11890 11891 if (dev->flags & IFF_PROMISC) 11892 rx_mode = BNX2X_RX_MODE_PROMISC; 11893 else if ((dev->flags & IFF_ALLMULTI) || 11894 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) && 11895 CHIP_IS_E1(bp))) 11896 rx_mode = BNX2X_RX_MODE_ALLMULTI; 11897 else { 11898 if (IS_PF(bp)) { 11899 /* some multicasts */ 11900 if (bnx2x_set_mc_list(bp) < 0) 11901 rx_mode = BNX2X_RX_MODE_ALLMULTI; 11902 11903 if (bnx2x_set_uc_list(bp) < 0) 11904 rx_mode = BNX2X_RX_MODE_PROMISC; 11905 } else { 11906 /* configuring mcast to a vf involves sleeping (when we 11907 * wait for the pf's response). Since this function is 11908 * called from non sleepable context we must schedule 11909 * a work item for this purpose 11910 */ 11911 smp_mb__before_clear_bit(); 11912 set_bit(BNX2X_SP_RTNL_VFPF_MCAST, 11913 &bp->sp_rtnl_state); 11914 smp_mb__after_clear_bit(); 11915 schedule_delayed_work(&bp->sp_rtnl_task, 0); 11916 } 11917 } 11918 11919 bp->rx_mode = rx_mode; 11920 /* handle ISCSI SD mode */ 11921 if (IS_MF_ISCSI_SD(bp)) 11922 bp->rx_mode = BNX2X_RX_MODE_NONE; 11923 11924 /* Schedule the rx_mode command */ 11925 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { 11926 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 11927 return; 11928 } 11929 11930 if (IS_PF(bp)) { 11931 bnx2x_set_storm_rx_mode(bp); 11932 } else { 11933 /* configuring rx mode to storms in a vf involves sleeping (when 11934 * we wait for the pf's response). Since this function is 11935 * called from non sleepable context we must schedule 11936 * a work item for this purpose 11937 */ 11938 smp_mb__before_clear_bit(); 11939 set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE, 11940 &bp->sp_rtnl_state); 11941 smp_mb__after_clear_bit(); 11942 schedule_delayed_work(&bp->sp_rtnl_task, 0); 11943 } 11944 } 11945 11946 /* called with rtnl_lock */ 11947 static int bnx2x_mdio_read(struct net_device *netdev, int prtad, 11948 int devad, u16 addr) 11949 { 11950 struct bnx2x *bp = netdev_priv(netdev); 11951 u16 value; 11952 int rc; 11953 11954 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", 11955 prtad, devad, addr); 11956 11957 /* The HW expects different devad if CL22 is used */ 11958 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 11959 11960 bnx2x_acquire_phy_lock(bp); 11961 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); 11962 bnx2x_release_phy_lock(bp); 11963 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); 11964 11965 if (!rc) 11966 rc = value; 11967 return rc; 11968 } 11969 11970 /* called with rtnl_lock */ 11971 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, 11972 u16 addr, u16 value) 11973 { 11974 struct bnx2x *bp = netdev_priv(netdev); 11975 int rc; 11976 11977 DP(NETIF_MSG_LINK, 11978 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", 11979 prtad, devad, addr, value); 11980 11981 /* The HW expects different devad if CL22 is used */ 11982 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 11983 11984 bnx2x_acquire_phy_lock(bp); 11985 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); 11986 bnx2x_release_phy_lock(bp); 11987 return rc; 11988 } 11989 11990 /* called with rtnl_lock */ 11991 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 11992 { 11993 struct bnx2x *bp = netdev_priv(dev); 11994 struct mii_ioctl_data *mdio = if_mii(ifr); 11995 11996 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", 11997 mdio->phy_id, mdio->reg_num, mdio->val_in); 11998 11999 if (!netif_running(dev)) 12000 return -EAGAIN; 12001 12002 return mdio_mii_ioctl(&bp->mdio, mdio, cmd); 12003 } 12004 12005 #ifdef CONFIG_NET_POLL_CONTROLLER 12006 static void poll_bnx2x(struct net_device *dev) 12007 { 12008 struct bnx2x *bp = netdev_priv(dev); 12009 int i; 12010 12011 for_each_eth_queue(bp, i) { 12012 struct bnx2x_fastpath *fp = &bp->fp[i]; 12013 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 12014 } 12015 } 12016 #endif 12017 12018 static int bnx2x_validate_addr(struct net_device *dev) 12019 { 12020 struct bnx2x *bp = netdev_priv(dev); 12021 12022 /* query the bulletin board for mac address configured by the PF */ 12023 if (IS_VF(bp)) 12024 bnx2x_sample_bulletin(bp); 12025 12026 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) { 12027 BNX2X_ERR("Non-valid Ethernet address\n"); 12028 return -EADDRNOTAVAIL; 12029 } 12030 return 0; 12031 } 12032 12033 static const struct net_device_ops bnx2x_netdev_ops = { 12034 .ndo_open = bnx2x_open, 12035 .ndo_stop = bnx2x_close, 12036 .ndo_start_xmit = bnx2x_start_xmit, 12037 .ndo_select_queue = bnx2x_select_queue, 12038 .ndo_set_rx_mode = bnx2x_set_rx_mode, 12039 .ndo_set_mac_address = bnx2x_change_mac_addr, 12040 .ndo_validate_addr = bnx2x_validate_addr, 12041 .ndo_do_ioctl = bnx2x_ioctl, 12042 .ndo_change_mtu = bnx2x_change_mtu, 12043 .ndo_fix_features = bnx2x_fix_features, 12044 .ndo_set_features = bnx2x_set_features, 12045 .ndo_tx_timeout = bnx2x_tx_timeout, 12046 #ifdef CONFIG_NET_POLL_CONTROLLER 12047 .ndo_poll_controller = poll_bnx2x, 12048 #endif 12049 .ndo_setup_tc = bnx2x_setup_tc, 12050 #ifdef CONFIG_BNX2X_SRIOV 12051 .ndo_set_vf_mac = bnx2x_set_vf_mac, 12052 .ndo_set_vf_vlan = bnx2x_set_vf_vlan, 12053 .ndo_get_vf_config = bnx2x_get_vf_config, 12054 #endif 12055 #ifdef NETDEV_FCOE_WWNN 12056 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, 12057 #endif 12058 12059 #ifdef CONFIG_NET_RX_BUSY_POLL 12060 .ndo_busy_poll = bnx2x_low_latency_recv, 12061 #endif 12062 }; 12063 12064 static int bnx2x_set_coherency_mask(struct bnx2x *bp) 12065 { 12066 struct device *dev = &bp->pdev->dev; 12067 12068 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) { 12069 bp->flags |= USING_DAC_FLAG; 12070 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) { 12071 dev_err(dev, "dma_set_coherent_mask failed, aborting\n"); 12072 return -EIO; 12073 } 12074 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) { 12075 dev_err(dev, "System does not support DMA, aborting\n"); 12076 return -EIO; 12077 } 12078 12079 return 0; 12080 } 12081 12082 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, 12083 struct net_device *dev, unsigned long board_type) 12084 { 12085 int rc; 12086 u32 pci_cfg_dword; 12087 bool chip_is_e1x = (board_type == BCM57710 || 12088 board_type == BCM57711 || 12089 board_type == BCM57711E); 12090 12091 SET_NETDEV_DEV(dev, &pdev->dev); 12092 12093 bp->dev = dev; 12094 bp->pdev = pdev; 12095 12096 rc = pci_enable_device(pdev); 12097 if (rc) { 12098 dev_err(&bp->pdev->dev, 12099 "Cannot enable PCI device, aborting\n"); 12100 goto err_out; 12101 } 12102 12103 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12104 dev_err(&bp->pdev->dev, 12105 "Cannot find PCI device base address, aborting\n"); 12106 rc = -ENODEV; 12107 goto err_out_disable; 12108 } 12109 12110 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { 12111 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); 12112 rc = -ENODEV; 12113 goto err_out_disable; 12114 } 12115 12116 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); 12117 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == 12118 PCICFG_REVESION_ID_ERROR_VAL) { 12119 pr_err("PCI device error, probably due to fan failure, aborting\n"); 12120 rc = -ENODEV; 12121 goto err_out_disable; 12122 } 12123 12124 if (atomic_read(&pdev->enable_cnt) == 1) { 12125 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12126 if (rc) { 12127 dev_err(&bp->pdev->dev, 12128 "Cannot obtain PCI resources, aborting\n"); 12129 goto err_out_disable; 12130 } 12131 12132 pci_set_master(pdev); 12133 pci_save_state(pdev); 12134 } 12135 12136 if (IS_PF(bp)) { 12137 bp->pm_cap = pdev->pm_cap; 12138 if (bp->pm_cap == 0) { 12139 dev_err(&bp->pdev->dev, 12140 "Cannot find power management capability, aborting\n"); 12141 rc = -EIO; 12142 goto err_out_release; 12143 } 12144 } 12145 12146 if (!pci_is_pcie(pdev)) { 12147 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); 12148 rc = -EIO; 12149 goto err_out_release; 12150 } 12151 12152 rc = bnx2x_set_coherency_mask(bp); 12153 if (rc) 12154 goto err_out_release; 12155 12156 dev->mem_start = pci_resource_start(pdev, 0); 12157 dev->base_addr = dev->mem_start; 12158 dev->mem_end = pci_resource_end(pdev, 0); 12159 12160 dev->irq = pdev->irq; 12161 12162 bp->regview = pci_ioremap_bar(pdev, 0); 12163 if (!bp->regview) { 12164 dev_err(&bp->pdev->dev, 12165 "Cannot map register space, aborting\n"); 12166 rc = -ENOMEM; 12167 goto err_out_release; 12168 } 12169 12170 /* In E1/E1H use pci device function given by kernel. 12171 * In E2/E3 read physical function from ME register since these chips 12172 * support Physical Device Assignment where kernel BDF maybe arbitrary 12173 * (depending on hypervisor). 12174 */ 12175 if (chip_is_e1x) { 12176 bp->pf_num = PCI_FUNC(pdev->devfn); 12177 } else { 12178 /* chip is E2/3*/ 12179 pci_read_config_dword(bp->pdev, 12180 PCICFG_ME_REGISTER, &pci_cfg_dword); 12181 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> 12182 ME_REG_ABS_PF_NUM_SHIFT); 12183 } 12184 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); 12185 12186 /* clean indirect addresses */ 12187 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 12188 PCICFG_VENDOR_ID_OFFSET); 12189 /* 12190 * Clean the following indirect addresses for all functions since it 12191 * is not used by the driver. 12192 */ 12193 if (IS_PF(bp)) { 12194 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); 12195 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); 12196 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); 12197 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); 12198 12199 if (chip_is_e1x) { 12200 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); 12201 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); 12202 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); 12203 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); 12204 } 12205 12206 /* Enable internal target-read (in case we are probed after PF 12207 * FLR). Must be done prior to any BAR read access. Only for 12208 * 57712 and up 12209 */ 12210 if (!chip_is_e1x) 12211 REG_WR(bp, 12212 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 12213 } 12214 12215 dev->watchdog_timeo = TX_TIMEOUT; 12216 12217 dev->netdev_ops = &bnx2x_netdev_ops; 12218 bnx2x_set_ethtool_ops(bp, dev); 12219 12220 dev->priv_flags |= IFF_UNICAST_FLT; 12221 12222 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 12223 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 12224 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | 12225 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; 12226 if (!CHIP_IS_E1x(bp)) { 12227 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL; 12228 dev->hw_enc_features = 12229 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 12230 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 12231 NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL; 12232 } 12233 12234 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 12235 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; 12236 12237 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; 12238 if (bp->flags & USING_DAC_FLAG) 12239 dev->features |= NETIF_F_HIGHDMA; 12240 12241 /* Add Loopback capability to the device */ 12242 dev->hw_features |= NETIF_F_LOOPBACK; 12243 12244 #ifdef BCM_DCBNL 12245 dev->dcbnl_ops = &bnx2x_dcbnl_ops; 12246 #endif 12247 12248 /* get_port_hwinfo() will set prtad and mmds properly */ 12249 bp->mdio.prtad = MDIO_PRTAD_NONE; 12250 bp->mdio.mmds = 0; 12251 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; 12252 bp->mdio.dev = dev; 12253 bp->mdio.mdio_read = bnx2x_mdio_read; 12254 bp->mdio.mdio_write = bnx2x_mdio_write; 12255 12256 return 0; 12257 12258 err_out_release: 12259 if (atomic_read(&pdev->enable_cnt) == 1) 12260 pci_release_regions(pdev); 12261 12262 err_out_disable: 12263 pci_disable_device(pdev); 12264 pci_set_drvdata(pdev, NULL); 12265 12266 err_out: 12267 return rc; 12268 } 12269 12270 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, 12271 enum bnx2x_pci_bus_speed *speed) 12272 { 12273 u32 link_speed, val = 0; 12274 12275 pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val); 12276 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT; 12277 12278 link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT; 12279 12280 switch (link_speed) { 12281 case 3: 12282 *speed = BNX2X_PCI_LINK_SPEED_8000; 12283 break; 12284 case 2: 12285 *speed = BNX2X_PCI_LINK_SPEED_5000; 12286 break; 12287 default: 12288 *speed = BNX2X_PCI_LINK_SPEED_2500; 12289 } 12290 } 12291 12292 static int bnx2x_check_firmware(struct bnx2x *bp) 12293 { 12294 const struct firmware *firmware = bp->firmware; 12295 struct bnx2x_fw_file_hdr *fw_hdr; 12296 struct bnx2x_fw_file_section *sections; 12297 u32 offset, len, num_ops; 12298 __be16 *ops_offsets; 12299 int i; 12300 const u8 *fw_ver; 12301 12302 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { 12303 BNX2X_ERR("Wrong FW size\n"); 12304 return -EINVAL; 12305 } 12306 12307 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; 12308 sections = (struct bnx2x_fw_file_section *)fw_hdr; 12309 12310 /* Make sure none of the offsets and sizes make us read beyond 12311 * the end of the firmware data */ 12312 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { 12313 offset = be32_to_cpu(sections[i].offset); 12314 len = be32_to_cpu(sections[i].len); 12315 if (offset + len > firmware->size) { 12316 BNX2X_ERR("Section %d length is out of bounds\n", i); 12317 return -EINVAL; 12318 } 12319 } 12320 12321 /* Likewise for the init_ops offsets */ 12322 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); 12323 ops_offsets = (__force __be16 *)(firmware->data + offset); 12324 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); 12325 12326 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { 12327 if (be16_to_cpu(ops_offsets[i]) > num_ops) { 12328 BNX2X_ERR("Section offset %d is out of bounds\n", i); 12329 return -EINVAL; 12330 } 12331 } 12332 12333 /* Check FW version */ 12334 offset = be32_to_cpu(fw_hdr->fw_version.offset); 12335 fw_ver = firmware->data + offset; 12336 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || 12337 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || 12338 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || 12339 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { 12340 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", 12341 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], 12342 BCM_5710_FW_MAJOR_VERSION, 12343 BCM_5710_FW_MINOR_VERSION, 12344 BCM_5710_FW_REVISION_VERSION, 12345 BCM_5710_FW_ENGINEERING_VERSION); 12346 return -EINVAL; 12347 } 12348 12349 return 0; 12350 } 12351 12352 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 12353 { 12354 const __be32 *source = (const __be32 *)_source; 12355 u32 *target = (u32 *)_target; 12356 u32 i; 12357 12358 for (i = 0; i < n/4; i++) 12359 target[i] = be32_to_cpu(source[i]); 12360 } 12361 12362 /* 12363 Ops array is stored in the following format: 12364 {op(8bit), offset(24bit, big endian), data(32bit, big endian)} 12365 */ 12366 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) 12367 { 12368 const __be32 *source = (const __be32 *)_source; 12369 struct raw_op *target = (struct raw_op *)_target; 12370 u32 i, j, tmp; 12371 12372 for (i = 0, j = 0; i < n/8; i++, j += 2) { 12373 tmp = be32_to_cpu(source[j]); 12374 target[i].op = (tmp >> 24) & 0xff; 12375 target[i].offset = tmp & 0xffffff; 12376 target[i].raw_data = be32_to_cpu(source[j + 1]); 12377 } 12378 } 12379 12380 /* IRO array is stored in the following format: 12381 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } 12382 */ 12383 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) 12384 { 12385 const __be32 *source = (const __be32 *)_source; 12386 struct iro *target = (struct iro *)_target; 12387 u32 i, j, tmp; 12388 12389 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { 12390 target[i].base = be32_to_cpu(source[j]); 12391 j++; 12392 tmp = be32_to_cpu(source[j]); 12393 target[i].m1 = (tmp >> 16) & 0xffff; 12394 target[i].m2 = tmp & 0xffff; 12395 j++; 12396 tmp = be32_to_cpu(source[j]); 12397 target[i].m3 = (tmp >> 16) & 0xffff; 12398 target[i].size = tmp & 0xffff; 12399 j++; 12400 } 12401 } 12402 12403 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 12404 { 12405 const __be16 *source = (const __be16 *)_source; 12406 u16 *target = (u16 *)_target; 12407 u32 i; 12408 12409 for (i = 0; i < n/2; i++) 12410 target[i] = be16_to_cpu(source[i]); 12411 } 12412 12413 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ 12414 do { \ 12415 u32 len = be32_to_cpu(fw_hdr->arr.len); \ 12416 bp->arr = kmalloc(len, GFP_KERNEL); \ 12417 if (!bp->arr) \ 12418 goto lbl; \ 12419 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ 12420 (u8 *)bp->arr, len); \ 12421 } while (0) 12422 12423 static int bnx2x_init_firmware(struct bnx2x *bp) 12424 { 12425 const char *fw_file_name; 12426 struct bnx2x_fw_file_hdr *fw_hdr; 12427 int rc; 12428 12429 if (bp->firmware) 12430 return 0; 12431 12432 if (CHIP_IS_E1(bp)) 12433 fw_file_name = FW_FILE_NAME_E1; 12434 else if (CHIP_IS_E1H(bp)) 12435 fw_file_name = FW_FILE_NAME_E1H; 12436 else if (!CHIP_IS_E1x(bp)) 12437 fw_file_name = FW_FILE_NAME_E2; 12438 else { 12439 BNX2X_ERR("Unsupported chip revision\n"); 12440 return -EINVAL; 12441 } 12442 BNX2X_DEV_INFO("Loading %s\n", fw_file_name); 12443 12444 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); 12445 if (rc) { 12446 BNX2X_ERR("Can't load firmware file %s\n", 12447 fw_file_name); 12448 goto request_firmware_exit; 12449 } 12450 12451 rc = bnx2x_check_firmware(bp); 12452 if (rc) { 12453 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); 12454 goto request_firmware_exit; 12455 } 12456 12457 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; 12458 12459 /* Initialize the pointers to the init arrays */ 12460 /* Blob */ 12461 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); 12462 12463 /* Opcodes */ 12464 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); 12465 12466 /* Offsets */ 12467 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, 12468 be16_to_cpu_n); 12469 12470 /* STORMs firmware */ 12471 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12472 be32_to_cpu(fw_hdr->tsem_int_table_data.offset); 12473 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + 12474 be32_to_cpu(fw_hdr->tsem_pram_data.offset); 12475 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12476 be32_to_cpu(fw_hdr->usem_int_table_data.offset); 12477 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + 12478 be32_to_cpu(fw_hdr->usem_pram_data.offset); 12479 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12480 be32_to_cpu(fw_hdr->xsem_int_table_data.offset); 12481 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + 12482 be32_to_cpu(fw_hdr->xsem_pram_data.offset); 12483 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12484 be32_to_cpu(fw_hdr->csem_int_table_data.offset); 12485 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + 12486 be32_to_cpu(fw_hdr->csem_pram_data.offset); 12487 /* IRO */ 12488 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); 12489 12490 return 0; 12491 12492 iro_alloc_err: 12493 kfree(bp->init_ops_offsets); 12494 init_offsets_alloc_err: 12495 kfree(bp->init_ops); 12496 init_ops_alloc_err: 12497 kfree(bp->init_data); 12498 request_firmware_exit: 12499 release_firmware(bp->firmware); 12500 bp->firmware = NULL; 12501 12502 return rc; 12503 } 12504 12505 static void bnx2x_release_firmware(struct bnx2x *bp) 12506 { 12507 kfree(bp->init_ops_offsets); 12508 kfree(bp->init_ops); 12509 kfree(bp->init_data); 12510 release_firmware(bp->firmware); 12511 bp->firmware = NULL; 12512 } 12513 12514 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { 12515 .init_hw_cmn_chip = bnx2x_init_hw_common_chip, 12516 .init_hw_cmn = bnx2x_init_hw_common, 12517 .init_hw_port = bnx2x_init_hw_port, 12518 .init_hw_func = bnx2x_init_hw_func, 12519 12520 .reset_hw_cmn = bnx2x_reset_common, 12521 .reset_hw_port = bnx2x_reset_port, 12522 .reset_hw_func = bnx2x_reset_func, 12523 12524 .gunzip_init = bnx2x_gunzip_init, 12525 .gunzip_end = bnx2x_gunzip_end, 12526 12527 .init_fw = bnx2x_init_firmware, 12528 .release_fw = bnx2x_release_firmware, 12529 }; 12530 12531 void bnx2x__init_func_obj(struct bnx2x *bp) 12532 { 12533 /* Prepare DMAE related driver resources */ 12534 bnx2x_setup_dmae(bp); 12535 12536 bnx2x_init_func_obj(bp, &bp->func_obj, 12537 bnx2x_sp(bp, func_rdata), 12538 bnx2x_sp_mapping(bp, func_rdata), 12539 bnx2x_sp(bp, func_afex_rdata), 12540 bnx2x_sp_mapping(bp, func_afex_rdata), 12541 &bnx2x_func_sp_drv); 12542 } 12543 12544 /* must be called after sriov-enable */ 12545 static int bnx2x_set_qm_cid_count(struct bnx2x *bp) 12546 { 12547 int cid_count = BNX2X_L2_MAX_CID(bp); 12548 12549 if (IS_SRIOV(bp)) 12550 cid_count += BNX2X_VF_CIDS; 12551 12552 if (CNIC_SUPPORT(bp)) 12553 cid_count += CNIC_CID_MAX; 12554 12555 return roundup(cid_count, QM_CID_ROUND); 12556 } 12557 12558 /** 12559 * bnx2x_get_num_none_def_sbs - return the number of none default SBs 12560 * 12561 * @dev: pci device 12562 * 12563 */ 12564 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, 12565 int cnic_cnt, bool is_vf) 12566 { 12567 int pos, index; 12568 u16 control = 0; 12569 12570 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 12571 12572 /* 12573 * If MSI-X is not supported - return number of SBs needed to support 12574 * one fast path queue: one FP queue + SB for CNIC 12575 */ 12576 if (!pos) { 12577 dev_info(&pdev->dev, "no msix capability found\n"); 12578 return 1 + cnic_cnt; 12579 } 12580 dev_info(&pdev->dev, "msix capability found\n"); 12581 12582 /* 12583 * The value in the PCI configuration space is the index of the last 12584 * entry, namely one less than the actual size of the table, which is 12585 * exactly what we want to return from this function: number of all SBs 12586 * without the default SB. 12587 * For VFs there is no default SB, then we return (index+1). 12588 */ 12589 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control); 12590 12591 index = control & PCI_MSIX_FLAGS_QSIZE; 12592 12593 return is_vf ? index + 1 : index; 12594 } 12595 12596 static int set_max_cos_est(int chip_id) 12597 { 12598 switch (chip_id) { 12599 case BCM57710: 12600 case BCM57711: 12601 case BCM57711E: 12602 return BNX2X_MULTI_TX_COS_E1X; 12603 case BCM57712: 12604 case BCM57712_MF: 12605 case BCM57712_VF: 12606 return BNX2X_MULTI_TX_COS_E2_E3A0; 12607 case BCM57800: 12608 case BCM57800_MF: 12609 case BCM57800_VF: 12610 case BCM57810: 12611 case BCM57810_MF: 12612 case BCM57840_4_10: 12613 case BCM57840_2_20: 12614 case BCM57840_O: 12615 case BCM57840_MFO: 12616 case BCM57810_VF: 12617 case BCM57840_MF: 12618 case BCM57840_VF: 12619 case BCM57811: 12620 case BCM57811_MF: 12621 case BCM57811_VF: 12622 return BNX2X_MULTI_TX_COS_E3B0; 12623 return 1; 12624 default: 12625 pr_err("Unknown board_type (%d), aborting\n", chip_id); 12626 return -ENODEV; 12627 } 12628 } 12629 12630 static int set_is_vf(int chip_id) 12631 { 12632 switch (chip_id) { 12633 case BCM57712_VF: 12634 case BCM57800_VF: 12635 case BCM57810_VF: 12636 case BCM57840_VF: 12637 case BCM57811_VF: 12638 return true; 12639 default: 12640 return false; 12641 } 12642 } 12643 12644 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); 12645 12646 static int bnx2x_init_one(struct pci_dev *pdev, 12647 const struct pci_device_id *ent) 12648 { 12649 struct net_device *dev = NULL; 12650 struct bnx2x *bp; 12651 int pcie_width; 12652 enum bnx2x_pci_bus_speed pcie_speed; 12653 int rc, max_non_def_sbs; 12654 int rx_count, tx_count, rss_count, doorbell_size; 12655 int max_cos_est; 12656 bool is_vf; 12657 int cnic_cnt; 12658 12659 /* An estimated maximum supported CoS number according to the chip 12660 * version. 12661 * We will try to roughly estimate the maximum number of CoSes this chip 12662 * may support in order to minimize the memory allocated for Tx 12663 * netdev_queue's. This number will be accurately calculated during the 12664 * initialization of bp->max_cos based on the chip versions AND chip 12665 * revision in the bnx2x_init_bp(). 12666 */ 12667 max_cos_est = set_max_cos_est(ent->driver_data); 12668 if (max_cos_est < 0) 12669 return max_cos_est; 12670 is_vf = set_is_vf(ent->driver_data); 12671 cnic_cnt = is_vf ? 0 : 1; 12672 12673 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf); 12674 12675 /* Maximum number of RSS queues: one IGU SB goes to CNIC */ 12676 rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt; 12677 12678 if (rss_count < 1) 12679 return -EINVAL; 12680 12681 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ 12682 rx_count = rss_count + cnic_cnt; 12683 12684 /* Maximum number of netdev Tx queues: 12685 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 12686 */ 12687 tx_count = rss_count * max_cos_est + cnic_cnt; 12688 12689 /* dev zeroed in init_etherdev */ 12690 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); 12691 if (!dev) 12692 return -ENOMEM; 12693 12694 bp = netdev_priv(dev); 12695 12696 bp->flags = 0; 12697 if (is_vf) 12698 bp->flags |= IS_VF_FLAG; 12699 12700 bp->igu_sb_cnt = max_non_def_sbs; 12701 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; 12702 bp->msg_enable = debug; 12703 bp->cnic_support = cnic_cnt; 12704 bp->cnic_probe = bnx2x_cnic_probe; 12705 12706 pci_set_drvdata(pdev, dev); 12707 12708 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); 12709 if (rc < 0) { 12710 free_netdev(dev); 12711 return rc; 12712 } 12713 12714 BNX2X_DEV_INFO("This is a %s function\n", 12715 IS_PF(bp) ? "physical" : "virtual"); 12716 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); 12717 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); 12718 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", 12719 tx_count, rx_count); 12720 12721 rc = bnx2x_init_bp(bp); 12722 if (rc) 12723 goto init_one_exit; 12724 12725 /* Map doorbells here as we need the real value of bp->max_cos which 12726 * is initialized in bnx2x_init_bp() to determine the number of 12727 * l2 connections. 12728 */ 12729 if (IS_VF(bp)) { 12730 bp->doorbells = bnx2x_vf_doorbells(bp); 12731 rc = bnx2x_vf_pci_alloc(bp); 12732 if (rc) 12733 goto init_one_exit; 12734 } else { 12735 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); 12736 if (doorbell_size > pci_resource_len(pdev, 2)) { 12737 dev_err(&bp->pdev->dev, 12738 "Cannot map doorbells, bar size too small, aborting\n"); 12739 rc = -ENOMEM; 12740 goto init_one_exit; 12741 } 12742 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2), 12743 doorbell_size); 12744 } 12745 if (!bp->doorbells) { 12746 dev_err(&bp->pdev->dev, 12747 "Cannot map doorbell space, aborting\n"); 12748 rc = -ENOMEM; 12749 goto init_one_exit; 12750 } 12751 12752 if (IS_VF(bp)) { 12753 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); 12754 if (rc) 12755 goto init_one_exit; 12756 } 12757 12758 /* Enable SRIOV if capability found in configuration space */ 12759 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); 12760 if (rc) 12761 goto init_one_exit; 12762 12763 /* calc qm_cid_count */ 12764 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); 12765 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); 12766 12767 /* disable FCOE L2 queue for E1x*/ 12768 if (CHIP_IS_E1x(bp)) 12769 bp->flags |= NO_FCOE_FLAG; 12770 12771 /* Set bp->num_queues for MSI-X mode*/ 12772 bnx2x_set_num_queues(bp); 12773 12774 /* Configure interrupt mode: try to enable MSI-X/MSI if 12775 * needed. 12776 */ 12777 rc = bnx2x_set_int_mode(bp); 12778 if (rc) { 12779 dev_err(&pdev->dev, "Cannot set interrupts\n"); 12780 goto init_one_exit; 12781 } 12782 BNX2X_DEV_INFO("set interrupts successfully\n"); 12783 12784 /* register the net device */ 12785 rc = register_netdev(dev); 12786 if (rc) { 12787 dev_err(&pdev->dev, "Cannot register net device\n"); 12788 goto init_one_exit; 12789 } 12790 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); 12791 12792 if (!NO_FCOE(bp)) { 12793 /* Add storage MAC address */ 12794 rtnl_lock(); 12795 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 12796 rtnl_unlock(); 12797 } 12798 12799 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed); 12800 BNX2X_DEV_INFO("got pcie width %d and speed %d\n", 12801 pcie_width, pcie_speed); 12802 12803 BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n", 12804 board_info[ent->driver_data].name, 12805 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), 12806 pcie_width, 12807 pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" : 12808 pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" : 12809 pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" : 12810 "Unknown", 12811 dev->base_addr, bp->pdev->irq, dev->dev_addr); 12812 12813 return 0; 12814 12815 init_one_exit: 12816 if (bp->regview) 12817 iounmap(bp->regview); 12818 12819 if (IS_PF(bp) && bp->doorbells) 12820 iounmap(bp->doorbells); 12821 12822 free_netdev(dev); 12823 12824 if (atomic_read(&pdev->enable_cnt) == 1) 12825 pci_release_regions(pdev); 12826 12827 pci_disable_device(pdev); 12828 pci_set_drvdata(pdev, NULL); 12829 12830 return rc; 12831 } 12832 12833 static void __bnx2x_remove(struct pci_dev *pdev, 12834 struct net_device *dev, 12835 struct bnx2x *bp, 12836 bool remove_netdev) 12837 { 12838 /* Delete storage MAC address */ 12839 if (!NO_FCOE(bp)) { 12840 rtnl_lock(); 12841 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 12842 rtnl_unlock(); 12843 } 12844 12845 #ifdef BCM_DCBNL 12846 /* Delete app tlvs from dcbnl */ 12847 bnx2x_dcbnl_update_applist(bp, true); 12848 #endif 12849 12850 if (IS_PF(bp) && 12851 !BP_NOMCP(bp) && 12852 (bp->flags & BC_SUPPORTS_RMMOD_CMD)) 12853 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); 12854 12855 /* Close the interface - either directly or implicitly */ 12856 if (remove_netdev) { 12857 unregister_netdev(dev); 12858 } else { 12859 rtnl_lock(); 12860 dev_close(dev); 12861 rtnl_unlock(); 12862 } 12863 12864 bnx2x_iov_remove_one(bp); 12865 12866 /* Power on: we can't let PCI layer write to us while we are in D3 */ 12867 if (IS_PF(bp)) 12868 bnx2x_set_power_state(bp, PCI_D0); 12869 12870 /* Disable MSI/MSI-X */ 12871 bnx2x_disable_msi(bp); 12872 12873 /* Power off */ 12874 if (IS_PF(bp)) 12875 bnx2x_set_power_state(bp, PCI_D3hot); 12876 12877 /* Make sure RESET task is not scheduled before continuing */ 12878 cancel_delayed_work_sync(&bp->sp_rtnl_task); 12879 12880 /* send message via vfpf channel to release the resources of this vf */ 12881 if (IS_VF(bp)) 12882 bnx2x_vfpf_release(bp); 12883 12884 /* Assumes no further PCIe PM changes will occur */ 12885 if (system_state == SYSTEM_POWER_OFF) { 12886 pci_wake_from_d3(pdev, bp->wol); 12887 pci_set_power_state(pdev, PCI_D3hot); 12888 } 12889 12890 if (bp->regview) 12891 iounmap(bp->regview); 12892 12893 /* for vf doorbells are part of the regview and were unmapped along with 12894 * it. FW is only loaded by PF. 12895 */ 12896 if (IS_PF(bp)) { 12897 if (bp->doorbells) 12898 iounmap(bp->doorbells); 12899 12900 bnx2x_release_firmware(bp); 12901 } 12902 bnx2x_free_mem_bp(bp); 12903 12904 if (remove_netdev) 12905 free_netdev(dev); 12906 12907 if (atomic_read(&pdev->enable_cnt) == 1) 12908 pci_release_regions(pdev); 12909 12910 pci_disable_device(pdev); 12911 pci_set_drvdata(pdev, NULL); 12912 } 12913 12914 static void bnx2x_remove_one(struct pci_dev *pdev) 12915 { 12916 struct net_device *dev = pci_get_drvdata(pdev); 12917 struct bnx2x *bp; 12918 12919 if (!dev) { 12920 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 12921 return; 12922 } 12923 bp = netdev_priv(dev); 12924 12925 __bnx2x_remove(pdev, dev, bp, true); 12926 } 12927 12928 static int bnx2x_eeh_nic_unload(struct bnx2x *bp) 12929 { 12930 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 12931 12932 bp->rx_mode = BNX2X_RX_MODE_NONE; 12933 12934 if (CNIC_LOADED(bp)) 12935 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 12936 12937 /* Stop Tx */ 12938 bnx2x_tx_disable(bp); 12939 /* Delete all NAPI objects */ 12940 bnx2x_del_all_napi(bp); 12941 if (CNIC_LOADED(bp)) 12942 bnx2x_del_all_napi_cnic(bp); 12943 netdev_reset_tc(bp->dev); 12944 12945 del_timer_sync(&bp->timer); 12946 cancel_delayed_work(&bp->sp_task); 12947 cancel_delayed_work(&bp->period_task); 12948 12949 spin_lock_bh(&bp->stats_lock); 12950 bp->stats_state = STATS_STATE_DISABLED; 12951 spin_unlock_bh(&bp->stats_lock); 12952 12953 bnx2x_save_statistics(bp); 12954 12955 netif_carrier_off(bp->dev); 12956 12957 return 0; 12958 } 12959 12960 /** 12961 * bnx2x_io_error_detected - called when PCI error is detected 12962 * @pdev: Pointer to PCI device 12963 * @state: The current pci connection state 12964 * 12965 * This function is called after a PCI bus error affecting 12966 * this device has been detected. 12967 */ 12968 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, 12969 pci_channel_state_t state) 12970 { 12971 struct net_device *dev = pci_get_drvdata(pdev); 12972 struct bnx2x *bp = netdev_priv(dev); 12973 12974 rtnl_lock(); 12975 12976 BNX2X_ERR("IO error detected\n"); 12977 12978 netif_device_detach(dev); 12979 12980 if (state == pci_channel_io_perm_failure) { 12981 rtnl_unlock(); 12982 return PCI_ERS_RESULT_DISCONNECT; 12983 } 12984 12985 if (netif_running(dev)) 12986 bnx2x_eeh_nic_unload(bp); 12987 12988 bnx2x_prev_path_mark_eeh(bp); 12989 12990 pci_disable_device(pdev); 12991 12992 rtnl_unlock(); 12993 12994 /* Request a slot reset */ 12995 return PCI_ERS_RESULT_NEED_RESET; 12996 } 12997 12998 /** 12999 * bnx2x_io_slot_reset - called after the PCI bus has been reset 13000 * @pdev: Pointer to PCI device 13001 * 13002 * Restart the card from scratch, as if from a cold-boot. 13003 */ 13004 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) 13005 { 13006 struct net_device *dev = pci_get_drvdata(pdev); 13007 struct bnx2x *bp = netdev_priv(dev); 13008 int i; 13009 13010 rtnl_lock(); 13011 BNX2X_ERR("IO slot reset initializing...\n"); 13012 if (pci_enable_device(pdev)) { 13013 dev_err(&pdev->dev, 13014 "Cannot re-enable PCI device after reset\n"); 13015 rtnl_unlock(); 13016 return PCI_ERS_RESULT_DISCONNECT; 13017 } 13018 13019 pci_set_master(pdev); 13020 pci_restore_state(pdev); 13021 pci_save_state(pdev); 13022 13023 if (netif_running(dev)) 13024 bnx2x_set_power_state(bp, PCI_D0); 13025 13026 if (netif_running(dev)) { 13027 BNX2X_ERR("IO slot reset --> driver unload\n"); 13028 13029 /* MCP should have been reset; Need to wait for validity */ 13030 bnx2x_init_shmem(bp); 13031 13032 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 13033 u32 v; 13034 13035 v = SHMEM2_RD(bp, 13036 drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 13037 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 13038 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 13039 } 13040 bnx2x_drain_tx_queues(bp); 13041 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); 13042 bnx2x_netif_stop(bp, 1); 13043 bnx2x_free_irq(bp); 13044 13045 /* Report UNLOAD_DONE to MCP */ 13046 bnx2x_send_unload_done(bp, true); 13047 13048 bp->sp_state = 0; 13049 bp->port.pmf = 0; 13050 13051 bnx2x_prev_unload(bp); 13052 13053 /* We should have reseted the engine, so It's fair to 13054 * assume the FW will no longer write to the bnx2x driver. 13055 */ 13056 bnx2x_squeeze_objects(bp); 13057 bnx2x_free_skbs(bp); 13058 for_each_rx_queue(bp, i) 13059 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 13060 bnx2x_free_fp_mem(bp); 13061 bnx2x_free_mem(bp); 13062 13063 bp->state = BNX2X_STATE_CLOSED; 13064 } 13065 13066 rtnl_unlock(); 13067 13068 return PCI_ERS_RESULT_RECOVERED; 13069 } 13070 13071 /** 13072 * bnx2x_io_resume - called when traffic can start flowing again 13073 * @pdev: Pointer to PCI device 13074 * 13075 * This callback is called when the error recovery driver tells us that 13076 * its OK to resume normal operation. 13077 */ 13078 static void bnx2x_io_resume(struct pci_dev *pdev) 13079 { 13080 struct net_device *dev = pci_get_drvdata(pdev); 13081 struct bnx2x *bp = netdev_priv(dev); 13082 13083 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 13084 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); 13085 return; 13086 } 13087 13088 rtnl_lock(); 13089 13090 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 13091 DRV_MSG_SEQ_NUMBER_MASK; 13092 13093 if (netif_running(dev)) 13094 bnx2x_nic_load(bp, LOAD_NORMAL); 13095 13096 netif_device_attach(dev); 13097 13098 rtnl_unlock(); 13099 } 13100 13101 static const struct pci_error_handlers bnx2x_err_handler = { 13102 .error_detected = bnx2x_io_error_detected, 13103 .slot_reset = bnx2x_io_slot_reset, 13104 .resume = bnx2x_io_resume, 13105 }; 13106 13107 static void bnx2x_shutdown(struct pci_dev *pdev) 13108 { 13109 struct net_device *dev = pci_get_drvdata(pdev); 13110 struct bnx2x *bp; 13111 13112 if (!dev) 13113 return; 13114 13115 bp = netdev_priv(dev); 13116 if (!bp) 13117 return; 13118 13119 rtnl_lock(); 13120 netif_device_detach(dev); 13121 rtnl_unlock(); 13122 13123 /* Don't remove the netdevice, as there are scenarios which will cause 13124 * the kernel to hang, e.g., when trying to remove bnx2i while the 13125 * rootfs is mounted from SAN. 13126 */ 13127 __bnx2x_remove(pdev, dev, bp, false); 13128 } 13129 13130 static struct pci_driver bnx2x_pci_driver = { 13131 .name = DRV_MODULE_NAME, 13132 .id_table = bnx2x_pci_tbl, 13133 .probe = bnx2x_init_one, 13134 .remove = bnx2x_remove_one, 13135 .suspend = bnx2x_suspend, 13136 .resume = bnx2x_resume, 13137 .err_handler = &bnx2x_err_handler, 13138 #ifdef CONFIG_BNX2X_SRIOV 13139 .sriov_configure = bnx2x_sriov_configure, 13140 #endif 13141 .shutdown = bnx2x_shutdown, 13142 }; 13143 13144 static int __init bnx2x_init(void) 13145 { 13146 int ret; 13147 13148 pr_info("%s", version); 13149 13150 bnx2x_wq = create_singlethread_workqueue("bnx2x"); 13151 if (bnx2x_wq == NULL) { 13152 pr_err("Cannot create workqueue\n"); 13153 return -ENOMEM; 13154 } 13155 13156 ret = pci_register_driver(&bnx2x_pci_driver); 13157 if (ret) { 13158 pr_err("Cannot register driver\n"); 13159 destroy_workqueue(bnx2x_wq); 13160 } 13161 return ret; 13162 } 13163 13164 static void __exit bnx2x_cleanup(void) 13165 { 13166 struct list_head *pos, *q; 13167 13168 pci_unregister_driver(&bnx2x_pci_driver); 13169 13170 destroy_workqueue(bnx2x_wq); 13171 13172 /* Free globally allocated resources */ 13173 list_for_each_safe(pos, q, &bnx2x_prev_list) { 13174 struct bnx2x_prev_path_list *tmp = 13175 list_entry(pos, struct bnx2x_prev_path_list, list); 13176 list_del(pos); 13177 kfree(tmp); 13178 } 13179 } 13180 13181 void bnx2x_notify_link_changed(struct bnx2x *bp) 13182 { 13183 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); 13184 } 13185 13186 module_init(bnx2x_init); 13187 module_exit(bnx2x_cleanup); 13188 13189 /** 13190 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). 13191 * 13192 * @bp: driver handle 13193 * @set: set or clear the CAM entry 13194 * 13195 * This function will wait until the ramrod completion returns. 13196 * Return 0 if success, -ENODEV if ramrod doesn't return. 13197 */ 13198 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) 13199 { 13200 unsigned long ramrod_flags = 0; 13201 13202 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 13203 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, 13204 &bp->iscsi_l2_mac_obj, true, 13205 BNX2X_ISCSI_ETH_MAC, &ramrod_flags); 13206 } 13207 13208 /* count denotes the number of new completions we have seen */ 13209 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) 13210 { 13211 struct eth_spe *spe; 13212 int cxt_index, cxt_offset; 13213 13214 #ifdef BNX2X_STOP_ON_ERROR 13215 if (unlikely(bp->panic)) 13216 return; 13217 #endif 13218 13219 spin_lock_bh(&bp->spq_lock); 13220 BUG_ON(bp->cnic_spq_pending < count); 13221 bp->cnic_spq_pending -= count; 13222 13223 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { 13224 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) 13225 & SPE_HDR_CONN_TYPE) >> 13226 SPE_HDR_CONN_TYPE_SHIFT; 13227 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) 13228 >> SPE_HDR_CMD_ID_SHIFT) & 0xff; 13229 13230 /* Set validation for iSCSI L2 client before sending SETUP 13231 * ramrod 13232 */ 13233 if (type == ETH_CONNECTION_TYPE) { 13234 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { 13235 cxt_index = BNX2X_ISCSI_ETH_CID(bp) / 13236 ILT_PAGE_CIDS; 13237 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - 13238 (cxt_index * ILT_PAGE_CIDS); 13239 bnx2x_set_ctx_validation(bp, 13240 &bp->context[cxt_index]. 13241 vcxt[cxt_offset].eth, 13242 BNX2X_ISCSI_ETH_CID(bp)); 13243 } 13244 } 13245 13246 /* 13247 * There may be not more than 8 L2, not more than 8 L5 SPEs 13248 * and in the air. We also check that number of outstanding 13249 * COMMON ramrods is not more than the EQ and SPQ can 13250 * accommodate. 13251 */ 13252 if (type == ETH_CONNECTION_TYPE) { 13253 if (!atomic_read(&bp->cq_spq_left)) 13254 break; 13255 else 13256 atomic_dec(&bp->cq_spq_left); 13257 } else if (type == NONE_CONNECTION_TYPE) { 13258 if (!atomic_read(&bp->eq_spq_left)) 13259 break; 13260 else 13261 atomic_dec(&bp->eq_spq_left); 13262 } else if ((type == ISCSI_CONNECTION_TYPE) || 13263 (type == FCOE_CONNECTION_TYPE)) { 13264 if (bp->cnic_spq_pending >= 13265 bp->cnic_eth_dev.max_kwqe_pending) 13266 break; 13267 else 13268 bp->cnic_spq_pending++; 13269 } else { 13270 BNX2X_ERR("Unknown SPE type: %d\n", type); 13271 bnx2x_panic(); 13272 break; 13273 } 13274 13275 spe = bnx2x_sp_get_next(bp); 13276 *spe = *bp->cnic_kwq_cons; 13277 13278 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", 13279 bp->cnic_spq_pending, bp->cnic_kwq_pending, count); 13280 13281 if (bp->cnic_kwq_cons == bp->cnic_kwq_last) 13282 bp->cnic_kwq_cons = bp->cnic_kwq; 13283 else 13284 bp->cnic_kwq_cons++; 13285 } 13286 bnx2x_sp_prod_update(bp); 13287 spin_unlock_bh(&bp->spq_lock); 13288 } 13289 13290 static int bnx2x_cnic_sp_queue(struct net_device *dev, 13291 struct kwqe_16 *kwqes[], u32 count) 13292 { 13293 struct bnx2x *bp = netdev_priv(dev); 13294 int i; 13295 13296 #ifdef BNX2X_STOP_ON_ERROR 13297 if (unlikely(bp->panic)) { 13298 BNX2X_ERR("Can't post to SP queue while panic\n"); 13299 return -EIO; 13300 } 13301 #endif 13302 13303 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && 13304 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 13305 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 13306 return -EAGAIN; 13307 } 13308 13309 spin_lock_bh(&bp->spq_lock); 13310 13311 for (i = 0; i < count; i++) { 13312 struct eth_spe *spe = (struct eth_spe *)kwqes[i]; 13313 13314 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) 13315 break; 13316 13317 *bp->cnic_kwq_prod = *spe; 13318 13319 bp->cnic_kwq_pending++; 13320 13321 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", 13322 spe->hdr.conn_and_cmd_data, spe->hdr.type, 13323 spe->data.update_data_addr.hi, 13324 spe->data.update_data_addr.lo, 13325 bp->cnic_kwq_pending); 13326 13327 if (bp->cnic_kwq_prod == bp->cnic_kwq_last) 13328 bp->cnic_kwq_prod = bp->cnic_kwq; 13329 else 13330 bp->cnic_kwq_prod++; 13331 } 13332 13333 spin_unlock_bh(&bp->spq_lock); 13334 13335 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) 13336 bnx2x_cnic_sp_post(bp, 0); 13337 13338 return i; 13339 } 13340 13341 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) 13342 { 13343 struct cnic_ops *c_ops; 13344 int rc = 0; 13345 13346 mutex_lock(&bp->cnic_mutex); 13347 c_ops = rcu_dereference_protected(bp->cnic_ops, 13348 lockdep_is_held(&bp->cnic_mutex)); 13349 if (c_ops) 13350 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 13351 mutex_unlock(&bp->cnic_mutex); 13352 13353 return rc; 13354 } 13355 13356 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) 13357 { 13358 struct cnic_ops *c_ops; 13359 int rc = 0; 13360 13361 rcu_read_lock(); 13362 c_ops = rcu_dereference(bp->cnic_ops); 13363 if (c_ops) 13364 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 13365 rcu_read_unlock(); 13366 13367 return rc; 13368 } 13369 13370 /* 13371 * for commands that have no data 13372 */ 13373 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) 13374 { 13375 struct cnic_ctl_info ctl = {0}; 13376 13377 ctl.cmd = cmd; 13378 13379 return bnx2x_cnic_ctl_send(bp, &ctl); 13380 } 13381 13382 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) 13383 { 13384 struct cnic_ctl_info ctl = {0}; 13385 13386 /* first we tell CNIC and only then we count this as a completion */ 13387 ctl.cmd = CNIC_CTL_COMPLETION_CMD; 13388 ctl.data.comp.cid = cid; 13389 ctl.data.comp.error = err; 13390 13391 bnx2x_cnic_ctl_send_bh(bp, &ctl); 13392 bnx2x_cnic_sp_post(bp, 0); 13393 } 13394 13395 /* Called with netif_addr_lock_bh() taken. 13396 * Sets an rx_mode config for an iSCSI ETH client. 13397 * Doesn't block. 13398 * Completion should be checked outside. 13399 */ 13400 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) 13401 { 13402 unsigned long accept_flags = 0, ramrod_flags = 0; 13403 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 13404 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; 13405 13406 if (start) { 13407 /* Start accepting on iSCSI L2 ring. Accept all multicasts 13408 * because it's the only way for UIO Queue to accept 13409 * multicasts (in non-promiscuous mode only one Queue per 13410 * function will receive multicast packets (leading in our 13411 * case). 13412 */ 13413 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); 13414 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); 13415 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); 13416 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 13417 13418 /* Clear STOP_PENDING bit if START is requested */ 13419 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); 13420 13421 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; 13422 } else 13423 /* Clear START_PENDING bit if STOP is requested */ 13424 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); 13425 13426 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 13427 set_bit(sched_state, &bp->sp_state); 13428 else { 13429 __set_bit(RAMROD_RX, &ramrod_flags); 13430 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, 13431 ramrod_flags); 13432 } 13433 } 13434 13435 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) 13436 { 13437 struct bnx2x *bp = netdev_priv(dev); 13438 int rc = 0; 13439 13440 switch (ctl->cmd) { 13441 case DRV_CTL_CTXTBL_WR_CMD: { 13442 u32 index = ctl->data.io.offset; 13443 dma_addr_t addr = ctl->data.io.dma_addr; 13444 13445 bnx2x_ilt_wr(bp, index, addr); 13446 break; 13447 } 13448 13449 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { 13450 int count = ctl->data.credit.credit_count; 13451 13452 bnx2x_cnic_sp_post(bp, count); 13453 break; 13454 } 13455 13456 /* rtnl_lock is held. */ 13457 case DRV_CTL_START_L2_CMD: { 13458 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13459 unsigned long sp_bits = 0; 13460 13461 /* Configure the iSCSI classification object */ 13462 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, 13463 cp->iscsi_l2_client_id, 13464 cp->iscsi_l2_cid, BP_FUNC(bp), 13465 bnx2x_sp(bp, mac_rdata), 13466 bnx2x_sp_mapping(bp, mac_rdata), 13467 BNX2X_FILTER_MAC_PENDING, 13468 &bp->sp_state, BNX2X_OBJ_TYPE_RX, 13469 &bp->macs_pool); 13470 13471 /* Set iSCSI MAC address */ 13472 rc = bnx2x_set_iscsi_eth_mac_addr(bp); 13473 if (rc) 13474 break; 13475 13476 mmiowb(); 13477 barrier(); 13478 13479 /* Start accepting on iSCSI L2 ring */ 13480 13481 netif_addr_lock_bh(dev); 13482 bnx2x_set_iscsi_eth_rx_mode(bp, true); 13483 netif_addr_unlock_bh(dev); 13484 13485 /* bits to wait on */ 13486 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 13487 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); 13488 13489 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 13490 BNX2X_ERR("rx_mode completion timed out!\n"); 13491 13492 break; 13493 } 13494 13495 /* rtnl_lock is held. */ 13496 case DRV_CTL_STOP_L2_CMD: { 13497 unsigned long sp_bits = 0; 13498 13499 /* Stop accepting on iSCSI L2 ring */ 13500 netif_addr_lock_bh(dev); 13501 bnx2x_set_iscsi_eth_rx_mode(bp, false); 13502 netif_addr_unlock_bh(dev); 13503 13504 /* bits to wait on */ 13505 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 13506 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); 13507 13508 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 13509 BNX2X_ERR("rx_mode completion timed out!\n"); 13510 13511 mmiowb(); 13512 barrier(); 13513 13514 /* Unset iSCSI L2 MAC */ 13515 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, 13516 BNX2X_ISCSI_ETH_MAC, true); 13517 break; 13518 } 13519 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { 13520 int count = ctl->data.credit.credit_count; 13521 13522 smp_mb__before_atomic_inc(); 13523 atomic_add(count, &bp->cq_spq_left); 13524 smp_mb__after_atomic_inc(); 13525 break; 13526 } 13527 case DRV_CTL_ULP_REGISTER_CMD: { 13528 int ulp_type = ctl->data.register_data.ulp_type; 13529 13530 if (CHIP_IS_E3(bp)) { 13531 int idx = BP_FW_MB_IDX(bp); 13532 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 13533 int path = BP_PATH(bp); 13534 int port = BP_PORT(bp); 13535 int i; 13536 u32 scratch_offset; 13537 u32 *host_addr; 13538 13539 /* first write capability to shmem2 */ 13540 if (ulp_type == CNIC_ULP_ISCSI) 13541 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 13542 else if (ulp_type == CNIC_ULP_FCOE) 13543 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 13544 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 13545 13546 if ((ulp_type != CNIC_ULP_FCOE) || 13547 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || 13548 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) 13549 break; 13550 13551 /* if reached here - should write fcoe capabilities */ 13552 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); 13553 if (!scratch_offset) 13554 break; 13555 scratch_offset += offsetof(struct glob_ncsi_oem_data, 13556 fcoe_features[path][port]); 13557 host_addr = (u32 *) &(ctl->data.register_data. 13558 fcoe_features); 13559 for (i = 0; i < sizeof(struct fcoe_capabilities); 13560 i += 4) 13561 REG_WR(bp, scratch_offset + i, 13562 *(host_addr + i/4)); 13563 } 13564 break; 13565 } 13566 13567 case DRV_CTL_ULP_UNREGISTER_CMD: { 13568 int ulp_type = ctl->data.ulp_type; 13569 13570 if (CHIP_IS_E3(bp)) { 13571 int idx = BP_FW_MB_IDX(bp); 13572 u32 cap; 13573 13574 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 13575 if (ulp_type == CNIC_ULP_ISCSI) 13576 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 13577 else if (ulp_type == CNIC_ULP_FCOE) 13578 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 13579 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 13580 } 13581 break; 13582 } 13583 13584 default: 13585 BNX2X_ERR("unknown command %x\n", ctl->cmd); 13586 rc = -EINVAL; 13587 } 13588 13589 return rc; 13590 } 13591 13592 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) 13593 { 13594 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13595 13596 if (bp->flags & USING_MSIX_FLAG) { 13597 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; 13598 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; 13599 cp->irq_arr[0].vector = bp->msix_table[1].vector; 13600 } else { 13601 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; 13602 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; 13603 } 13604 if (!CHIP_IS_E1x(bp)) 13605 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; 13606 else 13607 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; 13608 13609 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); 13610 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); 13611 cp->irq_arr[1].status_blk = bp->def_status_blk; 13612 cp->irq_arr[1].status_blk_num = DEF_SB_ID; 13613 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; 13614 13615 cp->num_irq = 2; 13616 } 13617 13618 void bnx2x_setup_cnic_info(struct bnx2x *bp) 13619 { 13620 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13621 13622 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 13623 bnx2x_cid_ilt_lines(bp); 13624 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 13625 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 13626 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 13627 13628 if (NO_ISCSI_OOO(bp)) 13629 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 13630 } 13631 13632 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, 13633 void *data) 13634 { 13635 struct bnx2x *bp = netdev_priv(dev); 13636 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13637 int rc; 13638 13639 DP(NETIF_MSG_IFUP, "Register_cnic called\n"); 13640 13641 if (ops == NULL) { 13642 BNX2X_ERR("NULL ops received\n"); 13643 return -EINVAL; 13644 } 13645 13646 if (!CNIC_SUPPORT(bp)) { 13647 BNX2X_ERR("Can't register CNIC when not supported\n"); 13648 return -EOPNOTSUPP; 13649 } 13650 13651 if (!CNIC_LOADED(bp)) { 13652 rc = bnx2x_load_cnic(bp); 13653 if (rc) { 13654 BNX2X_ERR("CNIC-related load failed\n"); 13655 return rc; 13656 } 13657 } 13658 13659 bp->cnic_enabled = true; 13660 13661 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); 13662 if (!bp->cnic_kwq) 13663 return -ENOMEM; 13664 13665 bp->cnic_kwq_cons = bp->cnic_kwq; 13666 bp->cnic_kwq_prod = bp->cnic_kwq; 13667 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; 13668 13669 bp->cnic_spq_pending = 0; 13670 bp->cnic_kwq_pending = 0; 13671 13672 bp->cnic_data = data; 13673 13674 cp->num_irq = 0; 13675 cp->drv_state |= CNIC_DRV_STATE_REGD; 13676 cp->iro_arr = bp->iro_arr; 13677 13678 bnx2x_setup_cnic_irq_info(bp); 13679 13680 rcu_assign_pointer(bp->cnic_ops, ops); 13681 13682 return 0; 13683 } 13684 13685 static int bnx2x_unregister_cnic(struct net_device *dev) 13686 { 13687 struct bnx2x *bp = netdev_priv(dev); 13688 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13689 13690 mutex_lock(&bp->cnic_mutex); 13691 cp->drv_state = 0; 13692 RCU_INIT_POINTER(bp->cnic_ops, NULL); 13693 mutex_unlock(&bp->cnic_mutex); 13694 synchronize_rcu(); 13695 bp->cnic_enabled = false; 13696 kfree(bp->cnic_kwq); 13697 bp->cnic_kwq = NULL; 13698 13699 return 0; 13700 } 13701 13702 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) 13703 { 13704 struct bnx2x *bp = netdev_priv(dev); 13705 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 13706 13707 /* If both iSCSI and FCoE are disabled - return NULL in 13708 * order to indicate CNIC that it should not try to work 13709 * with this device. 13710 */ 13711 if (NO_ISCSI(bp) && NO_FCOE(bp)) 13712 return NULL; 13713 13714 cp->drv_owner = THIS_MODULE; 13715 cp->chip_id = CHIP_ID(bp); 13716 cp->pdev = bp->pdev; 13717 cp->io_base = bp->regview; 13718 cp->io_base2 = bp->doorbells; 13719 cp->max_kwqe_pending = 8; 13720 cp->ctx_blk_size = CDU_ILT_PAGE_SZ; 13721 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 13722 bnx2x_cid_ilt_lines(bp); 13723 cp->ctx_tbl_len = CNIC_ILT_LINES; 13724 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 13725 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; 13726 cp->drv_ctl = bnx2x_drv_ctl; 13727 cp->drv_register_cnic = bnx2x_register_cnic; 13728 cp->drv_unregister_cnic = bnx2x_unregister_cnic; 13729 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 13730 cp->iscsi_l2_client_id = 13731 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 13732 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 13733 13734 if (NO_ISCSI_OOO(bp)) 13735 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 13736 13737 if (NO_ISCSI(bp)) 13738 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; 13739 13740 if (NO_FCOE(bp)) 13741 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; 13742 13743 BNX2X_DEV_INFO( 13744 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", 13745 cp->ctx_blk_size, 13746 cp->ctx_tbl_offset, 13747 cp->ctx_tbl_len, 13748 cp->starting_cid); 13749 return cp; 13750 } 13751 13752 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) 13753 { 13754 struct bnx2x *bp = fp->bp; 13755 u32 offset = BAR_USTRORM_INTMEM; 13756 13757 if (IS_VF(bp)) 13758 return bnx2x_vf_ustorm_prods_offset(bp, fp); 13759 else if (!CHIP_IS_E1x(bp)) 13760 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 13761 else 13762 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); 13763 13764 return offset; 13765 } 13766 13767 /* called only on E1H or E2. 13768 * When pretending to be PF, the pretend value is the function number 0...7 13769 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 13770 * combination 13771 */ 13772 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) 13773 { 13774 u32 pretend_reg; 13775 13776 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) 13777 return -1; 13778 13779 /* get my own pretend register */ 13780 pretend_reg = bnx2x_get_pretend_reg(bp); 13781 REG_WR(bp, pretend_reg, pretend_func_val); 13782 REG_RD(bp, pretend_reg); 13783 return 0; 13784 } 13785