1 /* bnx2x_main.c: Broadcom Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 * 9 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 10 * Written by: Eliezer Tamir 11 * Based on code from Michael Chan's bnx2 driver 12 * UDP CSUM errata workaround by Arik Gendelman 13 * Slowpath and fastpath rework by Vladislav Zolotarov 14 * Statistics and Link management by Yitchak Gertner 15 * 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/kernel.h> 23 #include <linux/device.h> /* for dev_info() */ 24 #include <linux/timer.h> 25 #include <linux/errno.h> 26 #include <linux/ioport.h> 27 #include <linux/slab.h> 28 #include <linux/interrupt.h> 29 #include <linux/pci.h> 30 #include <linux/aer.h> 31 #include <linux/init.h> 32 #include <linux/netdevice.h> 33 #include <linux/etherdevice.h> 34 #include <linux/skbuff.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/bitops.h> 37 #include <linux/irq.h> 38 #include <linux/delay.h> 39 #include <asm/byteorder.h> 40 #include <linux/time.h> 41 #include <linux/ethtool.h> 42 #include <linux/mii.h> 43 #include <linux/if_vlan.h> 44 #include <linux/crash_dump.h> 45 #include <net/ip.h> 46 #include <net/ipv6.h> 47 #include <net/tcp.h> 48 #include <net/checksum.h> 49 #include <net/ip6_checksum.h> 50 #include <linux/workqueue.h> 51 #include <linux/crc32.h> 52 #include <linux/crc32c.h> 53 #include <linux/prefetch.h> 54 #include <linux/zlib.h> 55 #include <linux/io.h> 56 #include <linux/semaphore.h> 57 #include <linux/stringify.h> 58 #include <linux/vmalloc.h> 59 60 #include "bnx2x.h" 61 #include "bnx2x_init.h" 62 #include "bnx2x_init_ops.h" 63 #include "bnx2x_cmn.h" 64 #include "bnx2x_vfpf.h" 65 #include "bnx2x_dcb.h" 66 #include "bnx2x_sp.h" 67 #include <linux/firmware.h> 68 #include "bnx2x_fw_file_hdr.h" 69 /* FW files */ 70 #define FW_FILE_VERSION \ 71 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ 72 __stringify(BCM_5710_FW_MINOR_VERSION) "." \ 73 __stringify(BCM_5710_FW_REVISION_VERSION) "." \ 74 __stringify(BCM_5710_FW_ENGINEERING_VERSION) 75 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" 76 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" 77 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" 78 79 /* Time in jiffies before concluding the transmitter is hung */ 80 #define TX_TIMEOUT (5*HZ) 81 82 static char version[] = 83 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver " 84 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 85 86 MODULE_AUTHOR("Eliezer Tamir"); 87 MODULE_DESCRIPTION("Broadcom NetXtreme II " 88 "BCM57710/57711/57711E/" 89 "57712/57712_MF/57800/57800_MF/57810/57810_MF/" 90 "57840/57840_MF Driver"); 91 MODULE_LICENSE("GPL"); 92 MODULE_VERSION(DRV_MODULE_VERSION); 93 MODULE_FIRMWARE(FW_FILE_NAME_E1); 94 MODULE_FIRMWARE(FW_FILE_NAME_E1H); 95 MODULE_FIRMWARE(FW_FILE_NAME_E2); 96 97 int bnx2x_num_queues; 98 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO); 99 MODULE_PARM_DESC(num_queues, 100 " Set number of queues (default is as a number of CPUs)"); 101 102 static int disable_tpa; 103 module_param(disable_tpa, int, S_IRUGO); 104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); 105 106 static int int_mode; 107 module_param(int_mode, int, S_IRUGO); 108 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " 109 "(1 INT#x; 2 MSI)"); 110 111 static int dropless_fc; 112 module_param(dropless_fc, int, S_IRUGO); 113 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); 114 115 static int mrrs = -1; 116 module_param(mrrs, int, S_IRUGO); 117 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); 118 119 static int debug; 120 module_param(debug, int, S_IRUGO); 121 MODULE_PARM_DESC(debug, " Default debug msglevel"); 122 123 static struct workqueue_struct *bnx2x_wq; 124 struct workqueue_struct *bnx2x_iov_wq; 125 126 struct bnx2x_mac_vals { 127 u32 xmac_addr; 128 u32 xmac_val; 129 u32 emac_addr; 130 u32 emac_val; 131 u32 umac_addr; 132 u32 umac_val; 133 u32 bmac_addr; 134 u32 bmac_val[2]; 135 }; 136 137 enum bnx2x_board_type { 138 BCM57710 = 0, 139 BCM57711, 140 BCM57711E, 141 BCM57712, 142 BCM57712_MF, 143 BCM57712_VF, 144 BCM57800, 145 BCM57800_MF, 146 BCM57800_VF, 147 BCM57810, 148 BCM57810_MF, 149 BCM57810_VF, 150 BCM57840_4_10, 151 BCM57840_2_20, 152 BCM57840_MF, 153 BCM57840_VF, 154 BCM57811, 155 BCM57811_MF, 156 BCM57840_O, 157 BCM57840_MFO, 158 BCM57811_VF 159 }; 160 161 /* indexed by board_type, above */ 162 static struct { 163 char *name; 164 } board_info[] = { 165 [BCM57710] = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" }, 166 [BCM57711] = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" }, 167 [BCM57711E] = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" }, 168 [BCM57712] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" }, 169 [BCM57712_MF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" }, 170 [BCM57712_VF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" }, 171 [BCM57800] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" }, 172 [BCM57800_MF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" }, 173 [BCM57800_VF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" }, 174 [BCM57810] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" }, 175 [BCM57810_MF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" }, 176 [BCM57810_VF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" }, 177 [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" }, 178 [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" }, 179 [BCM57840_MF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" }, 180 [BCM57840_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }, 181 [BCM57811] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" }, 182 [BCM57811_MF] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" }, 183 [BCM57840_O] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" }, 184 [BCM57840_MFO] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" }, 185 [BCM57811_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" } 186 }; 187 188 #ifndef PCI_DEVICE_ID_NX2_57710 189 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 190 #endif 191 #ifndef PCI_DEVICE_ID_NX2_57711 192 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 193 #endif 194 #ifndef PCI_DEVICE_ID_NX2_57711E 195 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E 196 #endif 197 #ifndef PCI_DEVICE_ID_NX2_57712 198 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 199 #endif 200 #ifndef PCI_DEVICE_ID_NX2_57712_MF 201 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF 202 #endif 203 #ifndef PCI_DEVICE_ID_NX2_57712_VF 204 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF 205 #endif 206 #ifndef PCI_DEVICE_ID_NX2_57800 207 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 208 #endif 209 #ifndef PCI_DEVICE_ID_NX2_57800_MF 210 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF 211 #endif 212 #ifndef PCI_DEVICE_ID_NX2_57800_VF 213 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF 214 #endif 215 #ifndef PCI_DEVICE_ID_NX2_57810 216 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 217 #endif 218 #ifndef PCI_DEVICE_ID_NX2_57810_MF 219 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF 220 #endif 221 #ifndef PCI_DEVICE_ID_NX2_57840_O 222 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE 223 #endif 224 #ifndef PCI_DEVICE_ID_NX2_57810_VF 225 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF 226 #endif 227 #ifndef PCI_DEVICE_ID_NX2_57840_4_10 228 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 229 #endif 230 #ifndef PCI_DEVICE_ID_NX2_57840_2_20 231 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 232 #endif 233 #ifndef PCI_DEVICE_ID_NX2_57840_MFO 234 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE 235 #endif 236 #ifndef PCI_DEVICE_ID_NX2_57840_MF 237 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF 238 #endif 239 #ifndef PCI_DEVICE_ID_NX2_57840_VF 240 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF 241 #endif 242 #ifndef PCI_DEVICE_ID_NX2_57811 243 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 244 #endif 245 #ifndef PCI_DEVICE_ID_NX2_57811_MF 246 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF 247 #endif 248 #ifndef PCI_DEVICE_ID_NX2_57811_VF 249 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF 250 #endif 251 252 static const struct pci_device_id bnx2x_pci_tbl[] = { 253 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, 254 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, 255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, 256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, 257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, 258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, 259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, 260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, 261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, 262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, 263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, 264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, 265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, 267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, 268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, 269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, 272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, 273 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, 274 { 0 } 275 }; 276 277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); 278 279 /* Global resources for unloading a previously loaded device */ 280 #define BNX2X_PREV_WAIT_NEEDED 1 281 static DEFINE_SEMAPHORE(bnx2x_prev_sem); 282 static LIST_HEAD(bnx2x_prev_list); 283 284 /* Forward declaration */ 285 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); 286 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp); 287 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp); 288 289 /**************************************************************************** 290 * General service functions 291 ****************************************************************************/ 292 293 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr); 294 295 static void __storm_memset_dma_mapping(struct bnx2x *bp, 296 u32 addr, dma_addr_t mapping) 297 { 298 REG_WR(bp, addr, U64_LO(mapping)); 299 REG_WR(bp, addr + 4, U64_HI(mapping)); 300 } 301 302 static void storm_memset_spq_addr(struct bnx2x *bp, 303 dma_addr_t mapping, u16 abs_fid) 304 { 305 u32 addr = XSEM_REG_FAST_MEMORY + 306 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); 307 308 __storm_memset_dma_mapping(bp, addr, mapping); 309 } 310 311 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 312 u16 pf_id) 313 { 314 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 315 pf_id); 316 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 317 pf_id); 318 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 319 pf_id); 320 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 321 pf_id); 322 } 323 324 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 325 u8 enable) 326 { 327 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 328 enable); 329 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 330 enable); 331 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 332 enable); 333 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 334 enable); 335 } 336 337 static void storm_memset_eq_data(struct bnx2x *bp, 338 struct event_ring_data *eq_data, 339 u16 pfid) 340 { 341 size_t size = sizeof(struct event_ring_data); 342 343 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); 344 345 __storm_memset_struct(bp, addr, size, (u32 *)eq_data); 346 } 347 348 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, 349 u16 pfid) 350 { 351 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); 352 REG_WR16(bp, addr, eq_prod); 353 } 354 355 /* used only at init 356 * locking is done by mcp 357 */ 358 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) 359 { 360 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 361 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); 362 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 363 PCICFG_VENDOR_ID_OFFSET); 364 } 365 366 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) 367 { 368 u32 val; 369 370 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 371 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); 372 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 373 PCICFG_VENDOR_ID_OFFSET); 374 375 return val; 376 } 377 378 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" 379 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" 380 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" 381 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" 382 #define DMAE_DP_DST_NONE "dst_addr [none]" 383 384 static void bnx2x_dp_dmae(struct bnx2x *bp, 385 struct dmae_command *dmae, int msglvl) 386 { 387 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; 388 int i; 389 390 switch (dmae->opcode & DMAE_COMMAND_DST) { 391 case DMAE_CMD_DST_PCI: 392 if (src_type == DMAE_CMD_SRC_PCI) 393 DP(msglvl, "DMAE: opcode 0x%08x\n" 394 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 395 "comp_addr [%x:%08x], comp_val 0x%08x\n", 396 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 397 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 398 dmae->comp_addr_hi, dmae->comp_addr_lo, 399 dmae->comp_val); 400 else 401 DP(msglvl, "DMAE: opcode 0x%08x\n" 402 "src [%08x], len [%d*4], dst [%x:%08x]\n" 403 "comp_addr [%x:%08x], comp_val 0x%08x\n", 404 dmae->opcode, dmae->src_addr_lo >> 2, 405 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 406 dmae->comp_addr_hi, dmae->comp_addr_lo, 407 dmae->comp_val); 408 break; 409 case DMAE_CMD_DST_GRC: 410 if (src_type == DMAE_CMD_SRC_PCI) 411 DP(msglvl, "DMAE: opcode 0x%08x\n" 412 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 413 "comp_addr [%x:%08x], comp_val 0x%08x\n", 414 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 415 dmae->len, dmae->dst_addr_lo >> 2, 416 dmae->comp_addr_hi, dmae->comp_addr_lo, 417 dmae->comp_val); 418 else 419 DP(msglvl, "DMAE: opcode 0x%08x\n" 420 "src [%08x], len [%d*4], dst [%08x]\n" 421 "comp_addr [%x:%08x], comp_val 0x%08x\n", 422 dmae->opcode, dmae->src_addr_lo >> 2, 423 dmae->len, dmae->dst_addr_lo >> 2, 424 dmae->comp_addr_hi, dmae->comp_addr_lo, 425 dmae->comp_val); 426 break; 427 default: 428 if (src_type == DMAE_CMD_SRC_PCI) 429 DP(msglvl, "DMAE: opcode 0x%08x\n" 430 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 431 "comp_addr [%x:%08x] comp_val 0x%08x\n", 432 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 433 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 434 dmae->comp_val); 435 else 436 DP(msglvl, "DMAE: opcode 0x%08x\n" 437 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 438 "comp_addr [%x:%08x] comp_val 0x%08x\n", 439 dmae->opcode, dmae->src_addr_lo >> 2, 440 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 441 dmae->comp_val); 442 break; 443 } 444 445 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) 446 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", 447 i, *(((u32 *)dmae) + i)); 448 } 449 450 /* copy command into DMAE command memory and set DMAE command go */ 451 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) 452 { 453 u32 cmd_offset; 454 int i; 455 456 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); 457 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { 458 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); 459 } 460 REG_WR(bp, dmae_reg_go_c[idx], 1); 461 } 462 463 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) 464 { 465 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 466 DMAE_CMD_C_ENABLE); 467 } 468 469 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) 470 { 471 return opcode & ~DMAE_CMD_SRC_RESET; 472 } 473 474 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 475 bool with_comp, u8 comp_type) 476 { 477 u32 opcode = 0; 478 479 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 480 (dst_type << DMAE_COMMAND_DST_SHIFT)); 481 482 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 483 484 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 485 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | 486 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); 487 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 488 489 #ifdef __BIG_ENDIAN 490 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 491 #else 492 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 493 #endif 494 if (with_comp) 495 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); 496 return opcode; 497 } 498 499 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, 500 struct dmae_command *dmae, 501 u8 src_type, u8 dst_type) 502 { 503 memset(dmae, 0, sizeof(struct dmae_command)); 504 505 /* set the opcode */ 506 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, 507 true, DMAE_COMP_PCI); 508 509 /* fill in the completion parameters */ 510 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); 511 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); 512 dmae->comp_val = DMAE_COMP_VAL; 513 } 514 515 /* issue a dmae command over the init-channel and wait for completion */ 516 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 517 u32 *comp) 518 { 519 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; 520 int rc = 0; 521 522 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); 523 524 /* Lock the dmae channel. Disable BHs to prevent a dead-lock 525 * as long as this code is called both from syscall context and 526 * from ndo_set_rx_mode() flow that may be called from BH. 527 */ 528 529 spin_lock_bh(&bp->dmae_lock); 530 531 /* reset completion */ 532 *comp = 0; 533 534 /* post the command on the channel used for initializations */ 535 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); 536 537 /* wait for completion */ 538 udelay(5); 539 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 540 541 if (!cnt || 542 (bp->recovery_state != BNX2X_RECOVERY_DONE && 543 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 544 BNX2X_ERR("DMAE timeout!\n"); 545 rc = DMAE_TIMEOUT; 546 goto unlock; 547 } 548 cnt--; 549 udelay(50); 550 } 551 if (*comp & DMAE_PCI_ERR_FLAG) { 552 BNX2X_ERR("DMAE PCI error!\n"); 553 rc = DMAE_PCI_ERROR; 554 } 555 556 unlock: 557 558 spin_unlock_bh(&bp->dmae_lock); 559 560 return rc; 561 } 562 563 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 564 u32 len32) 565 { 566 int rc; 567 struct dmae_command dmae; 568 569 if (!bp->dmae_ready) { 570 u32 *data = bnx2x_sp(bp, wb_data[0]); 571 572 if (CHIP_IS_E1(bp)) 573 bnx2x_init_ind_wr(bp, dst_addr, data, len32); 574 else 575 bnx2x_init_str_wr(bp, dst_addr, data, len32); 576 return; 577 } 578 579 /* set opcode and fixed command fields */ 580 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 581 582 /* fill in addresses and len */ 583 dmae.src_addr_lo = U64_LO(dma_addr); 584 dmae.src_addr_hi = U64_HI(dma_addr); 585 dmae.dst_addr_lo = dst_addr >> 2; 586 dmae.dst_addr_hi = 0; 587 dmae.len = len32; 588 589 /* issue the command and wait for completion */ 590 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 591 if (rc) { 592 BNX2X_ERR("DMAE returned failure %d\n", rc); 593 #ifdef BNX2X_STOP_ON_ERROR 594 bnx2x_panic(); 595 #endif 596 } 597 } 598 599 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) 600 { 601 int rc; 602 struct dmae_command dmae; 603 604 if (!bp->dmae_ready) { 605 u32 *data = bnx2x_sp(bp, wb_data[0]); 606 int i; 607 608 if (CHIP_IS_E1(bp)) 609 for (i = 0; i < len32; i++) 610 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); 611 else 612 for (i = 0; i < len32; i++) 613 data[i] = REG_RD(bp, src_addr + i*4); 614 615 return; 616 } 617 618 /* set opcode and fixed command fields */ 619 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 620 621 /* fill in addresses and len */ 622 dmae.src_addr_lo = src_addr >> 2; 623 dmae.src_addr_hi = 0; 624 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); 625 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); 626 dmae.len = len32; 627 628 /* issue the command and wait for completion */ 629 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 630 if (rc) { 631 BNX2X_ERR("DMAE returned failure %d\n", rc); 632 #ifdef BNX2X_STOP_ON_ERROR 633 bnx2x_panic(); 634 #endif 635 } 636 } 637 638 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, 639 u32 addr, u32 len) 640 { 641 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); 642 int offset = 0; 643 644 while (len > dmae_wr_max) { 645 bnx2x_write_dmae(bp, phys_addr + offset, 646 addr + offset, dmae_wr_max); 647 offset += dmae_wr_max * 4; 648 len -= dmae_wr_max; 649 } 650 651 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); 652 } 653 654 enum storms { 655 XSTORM, 656 TSTORM, 657 CSTORM, 658 USTORM, 659 MAX_STORMS 660 }; 661 662 #define STORMS_NUM 4 663 #define REGS_IN_ENTRY 4 664 665 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp, 666 enum storms storm, 667 int entry) 668 { 669 switch (storm) { 670 case XSTORM: 671 return XSTORM_ASSERT_LIST_OFFSET(entry); 672 case TSTORM: 673 return TSTORM_ASSERT_LIST_OFFSET(entry); 674 case CSTORM: 675 return CSTORM_ASSERT_LIST_OFFSET(entry); 676 case USTORM: 677 return USTORM_ASSERT_LIST_OFFSET(entry); 678 case MAX_STORMS: 679 default: 680 BNX2X_ERR("unknown storm\n"); 681 } 682 return -EINVAL; 683 } 684 685 static int bnx2x_mc_assert(struct bnx2x *bp) 686 { 687 char last_idx; 688 int i, j, rc = 0; 689 enum storms storm; 690 u32 regs[REGS_IN_ENTRY]; 691 u32 bar_storm_intmem[STORMS_NUM] = { 692 BAR_XSTRORM_INTMEM, 693 BAR_TSTRORM_INTMEM, 694 BAR_CSTRORM_INTMEM, 695 BAR_USTRORM_INTMEM 696 }; 697 u32 storm_assert_list_index[STORMS_NUM] = { 698 XSTORM_ASSERT_LIST_INDEX_OFFSET, 699 TSTORM_ASSERT_LIST_INDEX_OFFSET, 700 CSTORM_ASSERT_LIST_INDEX_OFFSET, 701 USTORM_ASSERT_LIST_INDEX_OFFSET 702 }; 703 char *storms_string[STORMS_NUM] = { 704 "XSTORM", 705 "TSTORM", 706 "CSTORM", 707 "USTORM" 708 }; 709 710 for (storm = XSTORM; storm < MAX_STORMS; storm++) { 711 last_idx = REG_RD8(bp, bar_storm_intmem[storm] + 712 storm_assert_list_index[storm]); 713 if (last_idx) 714 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n", 715 storms_string[storm], last_idx); 716 717 /* print the asserts */ 718 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 719 /* read a single assert entry */ 720 for (j = 0; j < REGS_IN_ENTRY; j++) 721 regs[j] = REG_RD(bp, bar_storm_intmem[storm] + 722 bnx2x_get_assert_list_entry(bp, 723 storm, 724 i) + 725 sizeof(u32) * j); 726 727 /* log entry if it contains a valid assert */ 728 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) { 729 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 730 storms_string[storm], i, regs[3], 731 regs[2], regs[1], regs[0]); 732 rc++; 733 } else { 734 break; 735 } 736 } 737 } 738 739 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n", 740 CHIP_IS_E1(bp) ? "everest1" : 741 CHIP_IS_E1H(bp) ? "everest1h" : 742 CHIP_IS_E2(bp) ? "everest2" : "everest3", 743 BCM_5710_FW_MAJOR_VERSION, 744 BCM_5710_FW_MINOR_VERSION, 745 BCM_5710_FW_REVISION_VERSION); 746 747 return rc; 748 } 749 750 #define MCPR_TRACE_BUFFER_SIZE (0x800) 751 #define SCRATCH_BUFFER_SIZE(bp) \ 752 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000)) 753 754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) 755 { 756 u32 addr, val; 757 u32 mark, offset; 758 __be32 data[9]; 759 int word; 760 u32 trace_shmem_base; 761 if (BP_NOMCP(bp)) { 762 BNX2X_ERR("NO MCP - can not dump\n"); 763 return; 764 } 765 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", 766 (bp->common.bc_ver & 0xff0000) >> 16, 767 (bp->common.bc_ver & 0xff00) >> 8, 768 (bp->common.bc_ver & 0xff)); 769 770 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); 771 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) 772 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); 773 774 if (BP_PATH(bp) == 0) 775 trace_shmem_base = bp->common.shmem_base; 776 else 777 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); 778 779 /* sanity */ 780 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE || 781 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) + 782 SCRATCH_BUFFER_SIZE(bp)) { 783 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n", 784 trace_shmem_base); 785 return; 786 } 787 788 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE; 789 790 /* validate TRCB signature */ 791 mark = REG_RD(bp, addr); 792 if (mark != MFW_TRACE_SIGNATURE) { 793 BNX2X_ERR("Trace buffer signature is missing."); 794 return ; 795 } 796 797 /* read cyclic buffer pointer */ 798 addr += 4; 799 mark = REG_RD(bp, addr); 800 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000; 801 if (mark >= trace_shmem_base || mark < addr + 4) { 802 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n"); 803 return; 804 } 805 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); 806 807 printk("%s", lvl); 808 809 /* dump buffer after the mark */ 810 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) { 811 for (word = 0; word < 8; word++) 812 data[word] = htonl(REG_RD(bp, offset + 4*word)); 813 data[8] = 0x0; 814 pr_cont("%s", (char *)data); 815 } 816 817 /* dump buffer before the mark */ 818 for (offset = addr + 4; offset <= mark; offset += 0x8*4) { 819 for (word = 0; word < 8; word++) 820 data[word] = htonl(REG_RD(bp, offset + 4*word)); 821 data[8] = 0x0; 822 pr_cont("%s", (char *)data); 823 } 824 printk("%s" "end of fw dump\n", lvl); 825 } 826 827 static void bnx2x_fw_dump(struct bnx2x *bp) 828 { 829 bnx2x_fw_dump_lvl(bp, KERN_ERR); 830 } 831 832 static void bnx2x_hc_int_disable(struct bnx2x *bp) 833 { 834 int port = BP_PORT(bp); 835 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 836 u32 val = REG_RD(bp, addr); 837 838 /* in E1 we must use only PCI configuration space to disable 839 * MSI/MSIX capability 840 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block 841 */ 842 if (CHIP_IS_E1(bp)) { 843 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on 844 * Use mask register to prevent from HC sending interrupts 845 * after we exit the function 846 */ 847 REG_WR(bp, HC_REG_INT_MASK + port*4, 0); 848 849 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 850 HC_CONFIG_0_REG_INT_LINE_EN_0 | 851 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 852 } else 853 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 854 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 855 HC_CONFIG_0_REG_INT_LINE_EN_0 | 856 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 857 858 DP(NETIF_MSG_IFDOWN, 859 "write %x to HC %d (addr 0x%x)\n", 860 val, port, addr); 861 862 /* flush all outstanding writes */ 863 mmiowb(); 864 865 REG_WR(bp, addr, val); 866 if (REG_RD(bp, addr) != val) 867 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 868 } 869 870 static void bnx2x_igu_int_disable(struct bnx2x *bp) 871 { 872 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 873 874 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 875 IGU_PF_CONF_INT_LINE_EN | 876 IGU_PF_CONF_ATTN_BIT_EN); 877 878 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); 879 880 /* flush all outstanding writes */ 881 mmiowb(); 882 883 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 884 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) 885 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 886 } 887 888 static void bnx2x_int_disable(struct bnx2x *bp) 889 { 890 if (bp->common.int_block == INT_BLOCK_HC) 891 bnx2x_hc_int_disable(bp); 892 else 893 bnx2x_igu_int_disable(bp); 894 } 895 896 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) 897 { 898 int i; 899 u16 j; 900 struct hc_sp_status_block_data sp_sb_data; 901 int func = BP_FUNC(bp); 902 #ifdef BNX2X_STOP_ON_ERROR 903 u16 start = 0, end = 0; 904 u8 cos; 905 #endif 906 if (IS_PF(bp) && disable_int) 907 bnx2x_int_disable(bp); 908 909 bp->stats_state = STATS_STATE_DISABLED; 910 bp->eth_stats.unrecoverable_error++; 911 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); 912 913 BNX2X_ERR("begin crash dump -----------------\n"); 914 915 /* Indices */ 916 /* Common */ 917 if (IS_PF(bp)) { 918 struct host_sp_status_block *def_sb = bp->def_status_blk; 919 int data_size, cstorm_offset; 920 921 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", 922 bp->def_idx, bp->def_att_idx, bp->attn_state, 923 bp->spq_prod_idx, bp->stats_counter); 924 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", 925 def_sb->atten_status_block.attn_bits, 926 def_sb->atten_status_block.attn_bits_ack, 927 def_sb->atten_status_block.status_block_id, 928 def_sb->atten_status_block.attn_bits_index); 929 BNX2X_ERR(" def ("); 930 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) 931 pr_cont("0x%x%s", 932 def_sb->sp_sb.index_values[i], 933 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); 934 935 data_size = sizeof(struct hc_sp_status_block_data) / 936 sizeof(u32); 937 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func); 938 for (i = 0; i < data_size; i++) 939 *((u32 *)&sp_sb_data + i) = 940 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset + 941 i * sizeof(u32)); 942 943 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", 944 sp_sb_data.igu_sb_id, 945 sp_sb_data.igu_seg_id, 946 sp_sb_data.p_func.pf_id, 947 sp_sb_data.p_func.vnic_id, 948 sp_sb_data.p_func.vf_id, 949 sp_sb_data.p_func.vf_valid, 950 sp_sb_data.state); 951 } 952 953 for_each_eth_queue(bp, i) { 954 struct bnx2x_fastpath *fp = &bp->fp[i]; 955 int loop; 956 struct hc_status_block_data_e2 sb_data_e2; 957 struct hc_status_block_data_e1x sb_data_e1x; 958 struct hc_status_block_sm *hc_sm_p = 959 CHIP_IS_E1x(bp) ? 960 sb_data_e1x.common.state_machine : 961 sb_data_e2.common.state_machine; 962 struct hc_index_data *hc_index_p = 963 CHIP_IS_E1x(bp) ? 964 sb_data_e1x.index_data : 965 sb_data_e2.index_data; 966 u8 data_size, cos; 967 u32 *sb_data_p; 968 struct bnx2x_fp_txdata txdata; 969 970 if (!bp->fp) 971 break; 972 973 if (!fp->rx_cons_sb) 974 continue; 975 976 /* Rx */ 977 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", 978 i, fp->rx_bd_prod, fp->rx_bd_cons, 979 fp->rx_comp_prod, 980 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); 981 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", 982 fp->rx_sge_prod, fp->last_max_sge, 983 le16_to_cpu(fp->fp_hc_idx)); 984 985 /* Tx */ 986 for_each_cos_in_tx_queue(fp, cos) 987 { 988 if (!fp->txdata_ptr[cos]) 989 break; 990 991 txdata = *fp->txdata_ptr[cos]; 992 993 if (!txdata.tx_cons_sb) 994 continue; 995 996 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", 997 i, txdata.tx_pkt_prod, 998 txdata.tx_pkt_cons, txdata.tx_bd_prod, 999 txdata.tx_bd_cons, 1000 le16_to_cpu(*txdata.tx_cons_sb)); 1001 } 1002 1003 loop = CHIP_IS_E1x(bp) ? 1004 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; 1005 1006 /* host sb data */ 1007 1008 if (IS_FCOE_FP(fp)) 1009 continue; 1010 1011 BNX2X_ERR(" run indexes ("); 1012 for (j = 0; j < HC_SB_MAX_SM; j++) 1013 pr_cont("0x%x%s", 1014 fp->sb_running_index[j], 1015 (j == HC_SB_MAX_SM - 1) ? ")" : " "); 1016 1017 BNX2X_ERR(" indexes ("); 1018 for (j = 0; j < loop; j++) 1019 pr_cont("0x%x%s", 1020 fp->sb_index_values[j], 1021 (j == loop - 1) ? ")" : " "); 1022 1023 /* VF cannot access FW refelection for status block */ 1024 if (IS_VF(bp)) 1025 continue; 1026 1027 /* fw sb data */ 1028 data_size = CHIP_IS_E1x(bp) ? 1029 sizeof(struct hc_status_block_data_e1x) : 1030 sizeof(struct hc_status_block_data_e2); 1031 data_size /= sizeof(u32); 1032 sb_data_p = CHIP_IS_E1x(bp) ? 1033 (u32 *)&sb_data_e1x : 1034 (u32 *)&sb_data_e2; 1035 /* copy sb data in here */ 1036 for (j = 0; j < data_size; j++) 1037 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + 1038 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + 1039 j * sizeof(u32)); 1040 1041 if (!CHIP_IS_E1x(bp)) { 1042 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1043 sb_data_e2.common.p_func.pf_id, 1044 sb_data_e2.common.p_func.vf_id, 1045 sb_data_e2.common.p_func.vf_valid, 1046 sb_data_e2.common.p_func.vnic_id, 1047 sb_data_e2.common.same_igu_sb_1b, 1048 sb_data_e2.common.state); 1049 } else { 1050 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1051 sb_data_e1x.common.p_func.pf_id, 1052 sb_data_e1x.common.p_func.vf_id, 1053 sb_data_e1x.common.p_func.vf_valid, 1054 sb_data_e1x.common.p_func.vnic_id, 1055 sb_data_e1x.common.same_igu_sb_1b, 1056 sb_data_e1x.common.state); 1057 } 1058 1059 /* SB_SMs data */ 1060 for (j = 0; j < HC_SB_MAX_SM; j++) { 1061 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", 1062 j, hc_sm_p[j].__flags, 1063 hc_sm_p[j].igu_sb_id, 1064 hc_sm_p[j].igu_seg_id, 1065 hc_sm_p[j].time_to_expire, 1066 hc_sm_p[j].timer_value); 1067 } 1068 1069 /* Indices data */ 1070 for (j = 0; j < loop; j++) { 1071 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, 1072 hc_index_p[j].flags, 1073 hc_index_p[j].timeout); 1074 } 1075 } 1076 1077 #ifdef BNX2X_STOP_ON_ERROR 1078 if (IS_PF(bp)) { 1079 /* event queue */ 1080 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); 1081 for (i = 0; i < NUM_EQ_DESC; i++) { 1082 u32 *data = (u32 *)&bp->eq_ring[i].message.data; 1083 1084 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", 1085 i, bp->eq_ring[i].message.opcode, 1086 bp->eq_ring[i].message.error); 1087 BNX2X_ERR("data: %x %x %x\n", 1088 data[0], data[1], data[2]); 1089 } 1090 } 1091 1092 /* Rings */ 1093 /* Rx */ 1094 for_each_valid_rx_queue(bp, i) { 1095 struct bnx2x_fastpath *fp = &bp->fp[i]; 1096 1097 if (!bp->fp) 1098 break; 1099 1100 if (!fp->rx_cons_sb) 1101 continue; 1102 1103 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); 1104 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); 1105 for (j = start; j != end; j = RX_BD(j + 1)) { 1106 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; 1107 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; 1108 1109 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", 1110 i, j, rx_bd[1], rx_bd[0], sw_bd->data); 1111 } 1112 1113 start = RX_SGE(fp->rx_sge_prod); 1114 end = RX_SGE(fp->last_max_sge); 1115 for (j = start; j != end; j = RX_SGE(j + 1)) { 1116 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; 1117 struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; 1118 1119 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", 1120 i, j, rx_sge[1], rx_sge[0], sw_page->page); 1121 } 1122 1123 start = RCQ_BD(fp->rx_comp_cons - 10); 1124 end = RCQ_BD(fp->rx_comp_cons + 503); 1125 for (j = start; j != end; j = RCQ_BD(j + 1)) { 1126 u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; 1127 1128 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", 1129 i, j, cqe[0], cqe[1], cqe[2], cqe[3]); 1130 } 1131 } 1132 1133 /* Tx */ 1134 for_each_valid_tx_queue(bp, i) { 1135 struct bnx2x_fastpath *fp = &bp->fp[i]; 1136 1137 if (!bp->fp) 1138 break; 1139 1140 for_each_cos_in_tx_queue(fp, cos) { 1141 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1142 1143 if (!fp->txdata_ptr[cos]) 1144 break; 1145 1146 if (!txdata->tx_cons_sb) 1147 continue; 1148 1149 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); 1150 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); 1151 for (j = start; j != end; j = TX_BD(j + 1)) { 1152 struct sw_tx_bd *sw_bd = 1153 &txdata->tx_buf_ring[j]; 1154 1155 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", 1156 i, cos, j, sw_bd->skb, 1157 sw_bd->first_bd); 1158 } 1159 1160 start = TX_BD(txdata->tx_bd_cons - 10); 1161 end = TX_BD(txdata->tx_bd_cons + 254); 1162 for (j = start; j != end; j = TX_BD(j + 1)) { 1163 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; 1164 1165 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", 1166 i, cos, j, tx_bd[0], tx_bd[1], 1167 tx_bd[2], tx_bd[3]); 1168 } 1169 } 1170 } 1171 #endif 1172 if (IS_PF(bp)) { 1173 bnx2x_fw_dump(bp); 1174 bnx2x_mc_assert(bp); 1175 } 1176 BNX2X_ERR("end crash dump -----------------\n"); 1177 } 1178 1179 /* 1180 * FLR Support for E2 1181 * 1182 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW 1183 * initialization. 1184 */ 1185 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */ 1186 #define FLR_WAIT_INTERVAL 50 /* usec */ 1187 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ 1188 1189 struct pbf_pN_buf_regs { 1190 int pN; 1191 u32 init_crd; 1192 u32 crd; 1193 u32 crd_freed; 1194 }; 1195 1196 struct pbf_pN_cmd_regs { 1197 int pN; 1198 u32 lines_occup; 1199 u32 lines_freed; 1200 }; 1201 1202 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, 1203 struct pbf_pN_buf_regs *regs, 1204 u32 poll_count) 1205 { 1206 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; 1207 u32 cur_cnt = poll_count; 1208 1209 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); 1210 crd = crd_start = REG_RD(bp, regs->crd); 1211 init_crd = REG_RD(bp, regs->init_crd); 1212 1213 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 1214 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); 1215 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 1216 1217 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < 1218 (init_crd - crd_start))) { 1219 if (cur_cnt--) { 1220 udelay(FLR_WAIT_INTERVAL); 1221 crd = REG_RD(bp, regs->crd); 1222 crd_freed = REG_RD(bp, regs->crd_freed); 1223 } else { 1224 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", 1225 regs->pN); 1226 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", 1227 regs->pN, crd); 1228 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", 1229 regs->pN, crd_freed); 1230 break; 1231 } 1232 } 1233 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", 1234 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1235 } 1236 1237 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, 1238 struct pbf_pN_cmd_regs *regs, 1239 u32 poll_count) 1240 { 1241 u32 occup, to_free, freed, freed_start; 1242 u32 cur_cnt = poll_count; 1243 1244 occup = to_free = REG_RD(bp, regs->lines_occup); 1245 freed = freed_start = REG_RD(bp, regs->lines_freed); 1246 1247 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 1248 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 1249 1250 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { 1251 if (cur_cnt--) { 1252 udelay(FLR_WAIT_INTERVAL); 1253 occup = REG_RD(bp, regs->lines_occup); 1254 freed = REG_RD(bp, regs->lines_freed); 1255 } else { 1256 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", 1257 regs->pN); 1258 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", 1259 regs->pN, occup); 1260 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", 1261 regs->pN, freed); 1262 break; 1263 } 1264 } 1265 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", 1266 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1267 } 1268 1269 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, 1270 u32 expected, u32 poll_count) 1271 { 1272 u32 cur_cnt = poll_count; 1273 u32 val; 1274 1275 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) 1276 udelay(FLR_WAIT_INTERVAL); 1277 1278 return val; 1279 } 1280 1281 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 1282 char *msg, u32 poll_cnt) 1283 { 1284 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); 1285 if (val != 0) { 1286 BNX2X_ERR("%s usage count=%d\n", msg, val); 1287 return 1; 1288 } 1289 return 0; 1290 } 1291 1292 /* Common routines with VF FLR cleanup */ 1293 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) 1294 { 1295 /* adjust polling timeout */ 1296 if (CHIP_REV_IS_EMUL(bp)) 1297 return FLR_POLL_CNT * 2000; 1298 1299 if (CHIP_REV_IS_FPGA(bp)) 1300 return FLR_POLL_CNT * 120; 1301 1302 return FLR_POLL_CNT; 1303 } 1304 1305 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) 1306 { 1307 struct pbf_pN_cmd_regs cmd_regs[] = { 1308 {0, (CHIP_IS_E3B0(bp)) ? 1309 PBF_REG_TQ_OCCUPANCY_Q0 : 1310 PBF_REG_P0_TQ_OCCUPANCY, 1311 (CHIP_IS_E3B0(bp)) ? 1312 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 1313 PBF_REG_P0_TQ_LINES_FREED_CNT}, 1314 {1, (CHIP_IS_E3B0(bp)) ? 1315 PBF_REG_TQ_OCCUPANCY_Q1 : 1316 PBF_REG_P1_TQ_OCCUPANCY, 1317 (CHIP_IS_E3B0(bp)) ? 1318 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 1319 PBF_REG_P1_TQ_LINES_FREED_CNT}, 1320 {4, (CHIP_IS_E3B0(bp)) ? 1321 PBF_REG_TQ_OCCUPANCY_LB_Q : 1322 PBF_REG_P4_TQ_OCCUPANCY, 1323 (CHIP_IS_E3B0(bp)) ? 1324 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 1325 PBF_REG_P4_TQ_LINES_FREED_CNT} 1326 }; 1327 1328 struct pbf_pN_buf_regs buf_regs[] = { 1329 {0, (CHIP_IS_E3B0(bp)) ? 1330 PBF_REG_INIT_CRD_Q0 : 1331 PBF_REG_P0_INIT_CRD , 1332 (CHIP_IS_E3B0(bp)) ? 1333 PBF_REG_CREDIT_Q0 : 1334 PBF_REG_P0_CREDIT, 1335 (CHIP_IS_E3B0(bp)) ? 1336 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 1337 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 1338 {1, (CHIP_IS_E3B0(bp)) ? 1339 PBF_REG_INIT_CRD_Q1 : 1340 PBF_REG_P1_INIT_CRD, 1341 (CHIP_IS_E3B0(bp)) ? 1342 PBF_REG_CREDIT_Q1 : 1343 PBF_REG_P1_CREDIT, 1344 (CHIP_IS_E3B0(bp)) ? 1345 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 1346 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 1347 {4, (CHIP_IS_E3B0(bp)) ? 1348 PBF_REG_INIT_CRD_LB_Q : 1349 PBF_REG_P4_INIT_CRD, 1350 (CHIP_IS_E3B0(bp)) ? 1351 PBF_REG_CREDIT_LB_Q : 1352 PBF_REG_P4_CREDIT, 1353 (CHIP_IS_E3B0(bp)) ? 1354 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 1355 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 1356 }; 1357 1358 int i; 1359 1360 /* Verify the command queues are flushed P0, P1, P4 */ 1361 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) 1362 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); 1363 1364 /* Verify the transmission buffers are flushed P0, P1, P4 */ 1365 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) 1366 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); 1367 } 1368 1369 #define OP_GEN_PARAM(param) \ 1370 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 1371 1372 #define OP_GEN_TYPE(type) \ 1373 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 1374 1375 #define OP_GEN_AGG_VECT(index) \ 1376 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 1377 1378 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) 1379 { 1380 u32 op_gen_command = 0; 1381 u32 comp_addr = BAR_CSTRORM_INTMEM + 1382 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); 1383 int ret = 0; 1384 1385 if (REG_RD(bp, comp_addr)) { 1386 BNX2X_ERR("Cleanup complete was not 0 before sending\n"); 1387 return 1; 1388 } 1389 1390 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 1391 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 1392 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 1393 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 1394 1395 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); 1396 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); 1397 1398 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { 1399 BNX2X_ERR("FW final cleanup did not succeed\n"); 1400 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", 1401 (REG_RD(bp, comp_addr))); 1402 bnx2x_panic(); 1403 return 1; 1404 } 1405 /* Zero completion for next FLR */ 1406 REG_WR(bp, comp_addr, 0); 1407 1408 return ret; 1409 } 1410 1411 u8 bnx2x_is_pcie_pending(struct pci_dev *dev) 1412 { 1413 u16 status; 1414 1415 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 1416 return status & PCI_EXP_DEVSTA_TRPND; 1417 } 1418 1419 /* PF FLR specific routines 1420 */ 1421 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) 1422 { 1423 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 1424 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1425 CFC_REG_NUM_LCIDS_INSIDE_PF, 1426 "CFC PF usage counter timed out", 1427 poll_cnt)) 1428 return 1; 1429 1430 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 1431 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1432 DORQ_REG_PF_USAGE_CNT, 1433 "DQ PF usage counter timed out", 1434 poll_cnt)) 1435 return 1; 1436 1437 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 1438 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1439 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), 1440 "QM PF usage counter timed out", 1441 poll_cnt)) 1442 return 1; 1443 1444 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 1445 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1446 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), 1447 "Timers VNIC usage counter timed out", 1448 poll_cnt)) 1449 return 1; 1450 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1451 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), 1452 "Timers NUM_SCANS usage counter timed out", 1453 poll_cnt)) 1454 return 1; 1455 1456 /* Wait DMAE PF usage counter to zero */ 1457 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1458 dmae_reg_go_c[INIT_DMAE_C(bp)], 1459 "DMAE command register timed out", 1460 poll_cnt)) 1461 return 1; 1462 1463 return 0; 1464 } 1465 1466 static void bnx2x_hw_enable_status(struct bnx2x *bp) 1467 { 1468 u32 val; 1469 1470 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); 1471 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 1472 1473 val = REG_RD(bp, PBF_REG_DISABLE_PF); 1474 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); 1475 1476 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); 1477 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 1478 1479 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); 1480 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 1481 1482 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 1483 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 1484 1485 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 1486 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 1487 1488 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 1489 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 1490 1491 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1492 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", 1493 val); 1494 } 1495 1496 static int bnx2x_pf_flr_clnup(struct bnx2x *bp) 1497 { 1498 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 1499 1500 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); 1501 1502 /* Re-enable PF target read access */ 1503 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 1504 1505 /* Poll HW usage counters */ 1506 DP(BNX2X_MSG_SP, "Polling usage counters\n"); 1507 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) 1508 return -EBUSY; 1509 1510 /* Zero the igu 'trailing edge' and 'leading edge' */ 1511 1512 /* Send the FW cleanup command */ 1513 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) 1514 return -EBUSY; 1515 1516 /* ATC cleanup */ 1517 1518 /* Verify TX hw is flushed */ 1519 bnx2x_tx_hw_flushed(bp, poll_cnt); 1520 1521 /* Wait 100ms (not adjusted according to platform) */ 1522 msleep(100); 1523 1524 /* Verify no pending pci transactions */ 1525 if (bnx2x_is_pcie_pending(bp->pdev)) 1526 BNX2X_ERR("PCIE Transactions still pending\n"); 1527 1528 /* Debug */ 1529 bnx2x_hw_enable_status(bp); 1530 1531 /* 1532 * Master enable - Due to WB DMAE writes performed before this 1533 * register is re-initialized as part of the regular function init 1534 */ 1535 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 1536 1537 return 0; 1538 } 1539 1540 static void bnx2x_hc_int_enable(struct bnx2x *bp) 1541 { 1542 int port = BP_PORT(bp); 1543 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 1544 u32 val = REG_RD(bp, addr); 1545 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1546 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1547 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1548 1549 if (msix) { 1550 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1551 HC_CONFIG_0_REG_INT_LINE_EN_0); 1552 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1553 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1554 if (single_msix) 1555 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 1556 } else if (msi) { 1557 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 1558 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1559 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1560 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1561 } else { 1562 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1563 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1564 HC_CONFIG_0_REG_INT_LINE_EN_0 | 1565 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1566 1567 if (!CHIP_IS_E1(bp)) { 1568 DP(NETIF_MSG_IFUP, 1569 "write %x to HC %d (addr 0x%x)\n", val, port, addr); 1570 1571 REG_WR(bp, addr, val); 1572 1573 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 1574 } 1575 } 1576 1577 if (CHIP_IS_E1(bp)) 1578 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); 1579 1580 DP(NETIF_MSG_IFUP, 1581 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, 1582 (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1583 1584 REG_WR(bp, addr, val); 1585 /* 1586 * Ensure that HC_CONFIG is written before leading/trailing edge config 1587 */ 1588 mmiowb(); 1589 barrier(); 1590 1591 if (!CHIP_IS_E1(bp)) { 1592 /* init leading/trailing edge */ 1593 if (IS_MF(bp)) { 1594 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1595 if (bp->port.pmf) 1596 /* enable nig and gpio3 attention */ 1597 val |= 0x1100; 1598 } else 1599 val = 0xffff; 1600 1601 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 1602 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 1603 } 1604 1605 /* Make sure that interrupts are indeed enabled from here on */ 1606 mmiowb(); 1607 } 1608 1609 static void bnx2x_igu_int_enable(struct bnx2x *bp) 1610 { 1611 u32 val; 1612 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1613 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1614 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1615 1616 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 1617 1618 if (msix) { 1619 val &= ~(IGU_PF_CONF_INT_LINE_EN | 1620 IGU_PF_CONF_SINGLE_ISR_EN); 1621 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1622 IGU_PF_CONF_ATTN_BIT_EN); 1623 1624 if (single_msix) 1625 val |= IGU_PF_CONF_SINGLE_ISR_EN; 1626 } else if (msi) { 1627 val &= ~IGU_PF_CONF_INT_LINE_EN; 1628 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1629 IGU_PF_CONF_ATTN_BIT_EN | 1630 IGU_PF_CONF_SINGLE_ISR_EN); 1631 } else { 1632 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 1633 val |= (IGU_PF_CONF_INT_LINE_EN | 1634 IGU_PF_CONF_ATTN_BIT_EN | 1635 IGU_PF_CONF_SINGLE_ISR_EN); 1636 } 1637 1638 /* Clean previous status - need to configure igu prior to ack*/ 1639 if ((!msix) || single_msix) { 1640 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1641 bnx2x_ack_int(bp); 1642 } 1643 1644 val |= IGU_PF_CONF_FUNC_EN; 1645 1646 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", 1647 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1648 1649 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1650 1651 if (val & IGU_PF_CONF_INT_LINE_EN) 1652 pci_intx(bp->pdev, true); 1653 1654 barrier(); 1655 1656 /* init leading/trailing edge */ 1657 if (IS_MF(bp)) { 1658 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1659 if (bp->port.pmf) 1660 /* enable nig and gpio3 attention */ 1661 val |= 0x1100; 1662 } else 1663 val = 0xffff; 1664 1665 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 1666 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 1667 1668 /* Make sure that interrupts are indeed enabled from here on */ 1669 mmiowb(); 1670 } 1671 1672 void bnx2x_int_enable(struct bnx2x *bp) 1673 { 1674 if (bp->common.int_block == INT_BLOCK_HC) 1675 bnx2x_hc_int_enable(bp); 1676 else 1677 bnx2x_igu_int_enable(bp); 1678 } 1679 1680 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) 1681 { 1682 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 1683 int i, offset; 1684 1685 if (disable_hw) 1686 /* prevent the HW from sending interrupts */ 1687 bnx2x_int_disable(bp); 1688 1689 /* make sure all ISRs are done */ 1690 if (msix) { 1691 synchronize_irq(bp->msix_table[0].vector); 1692 offset = 1; 1693 if (CNIC_SUPPORT(bp)) 1694 offset++; 1695 for_each_eth_queue(bp, i) 1696 synchronize_irq(bp->msix_table[offset++].vector); 1697 } else 1698 synchronize_irq(bp->pdev->irq); 1699 1700 /* make sure sp_task is not running */ 1701 cancel_delayed_work(&bp->sp_task); 1702 cancel_delayed_work(&bp->period_task); 1703 flush_workqueue(bnx2x_wq); 1704 } 1705 1706 /* fast path */ 1707 1708 /* 1709 * General service functions 1710 */ 1711 1712 /* Return true if succeeded to acquire the lock */ 1713 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) 1714 { 1715 u32 lock_status; 1716 u32 resource_bit = (1 << resource); 1717 int func = BP_FUNC(bp); 1718 u32 hw_lock_control_reg; 1719 1720 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1721 "Trying to take a lock on resource %d\n", resource); 1722 1723 /* Validating that the resource is within range */ 1724 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1725 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1726 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1727 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1728 return false; 1729 } 1730 1731 if (func <= 5) 1732 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1733 else 1734 hw_lock_control_reg = 1735 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1736 1737 /* Try to acquire the lock */ 1738 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1739 lock_status = REG_RD(bp, hw_lock_control_reg); 1740 if (lock_status & resource_bit) 1741 return true; 1742 1743 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1744 "Failed to get a lock on resource %d\n", resource); 1745 return false; 1746 } 1747 1748 /** 1749 * bnx2x_get_leader_lock_resource - get the recovery leader resource id 1750 * 1751 * @bp: driver handle 1752 * 1753 * Returns the recovery leader resource id according to the engine this function 1754 * belongs to. Currently only only 2 engines is supported. 1755 */ 1756 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) 1757 { 1758 if (BP_PATH(bp)) 1759 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; 1760 else 1761 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; 1762 } 1763 1764 /** 1765 * bnx2x_trylock_leader_lock- try to acquire a leader lock. 1766 * 1767 * @bp: driver handle 1768 * 1769 * Tries to acquire a leader lock for current engine. 1770 */ 1771 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) 1772 { 1773 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1774 } 1775 1776 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); 1777 1778 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ 1779 static int bnx2x_schedule_sp_task(struct bnx2x *bp) 1780 { 1781 /* Set the interrupt occurred bit for the sp-task to recognize it 1782 * must ack the interrupt and transition according to the IGU 1783 * state machine. 1784 */ 1785 atomic_set(&bp->interrupt_occurred, 1); 1786 1787 /* The sp_task must execute only after this bit 1788 * is set, otherwise we will get out of sync and miss all 1789 * further interrupts. Hence, the barrier. 1790 */ 1791 smp_wmb(); 1792 1793 /* schedule sp_task to workqueue */ 1794 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); 1795 } 1796 1797 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) 1798 { 1799 struct bnx2x *bp = fp->bp; 1800 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1801 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1802 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; 1803 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 1804 1805 DP(BNX2X_MSG_SP, 1806 "fp %d cid %d got ramrod #%d state is %x type is %d\n", 1807 fp->index, cid, command, bp->state, 1808 rr_cqe->ramrod_cqe.ramrod_type); 1809 1810 /* If cid is within VF range, replace the slowpath object with the 1811 * one corresponding to this VF 1812 */ 1813 if (cid >= BNX2X_FIRST_VF_CID && 1814 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) 1815 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); 1816 1817 switch (command) { 1818 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 1819 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); 1820 drv_cmd = BNX2X_Q_CMD_UPDATE; 1821 break; 1822 1823 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 1824 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); 1825 drv_cmd = BNX2X_Q_CMD_SETUP; 1826 break; 1827 1828 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 1829 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 1830 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 1831 break; 1832 1833 case (RAMROD_CMD_ID_ETH_HALT): 1834 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); 1835 drv_cmd = BNX2X_Q_CMD_HALT; 1836 break; 1837 1838 case (RAMROD_CMD_ID_ETH_TERMINATE): 1839 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); 1840 drv_cmd = BNX2X_Q_CMD_TERMINATE; 1841 break; 1842 1843 case (RAMROD_CMD_ID_ETH_EMPTY): 1844 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); 1845 drv_cmd = BNX2X_Q_CMD_EMPTY; 1846 break; 1847 1848 case (RAMROD_CMD_ID_ETH_TPA_UPDATE): 1849 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid); 1850 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA; 1851 break; 1852 1853 default: 1854 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", 1855 command, fp->index); 1856 return; 1857 } 1858 1859 if ((drv_cmd != BNX2X_Q_CMD_MAX) && 1860 q_obj->complete_cmd(bp, q_obj, drv_cmd)) 1861 /* q_obj->complete_cmd() failure means that this was 1862 * an unexpected completion. 1863 * 1864 * In this case we don't want to increase the bp->spq_left 1865 * because apparently we haven't sent this command the first 1866 * place. 1867 */ 1868 #ifdef BNX2X_STOP_ON_ERROR 1869 bnx2x_panic(); 1870 #else 1871 return; 1872 #endif 1873 1874 smp_mb__before_atomic(); 1875 atomic_inc(&bp->cq_spq_left); 1876 /* push the change in bp->spq_left and towards the memory */ 1877 smp_mb__after_atomic(); 1878 1879 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); 1880 1881 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 1882 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { 1883 /* if Q update ramrod is completed for last Q in AFEX vif set 1884 * flow, then ACK MCP at the end 1885 * 1886 * mark pending ACK to MCP bit. 1887 * prevent case that both bits are cleared. 1888 * At the end of load/unload driver checks that 1889 * sp_state is cleared, and this order prevents 1890 * races 1891 */ 1892 smp_mb__before_atomic(); 1893 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); 1894 wmb(); 1895 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 1896 smp_mb__after_atomic(); 1897 1898 /* schedule the sp task as mcp ack is required */ 1899 bnx2x_schedule_sp_task(bp); 1900 } 1901 1902 return; 1903 } 1904 1905 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) 1906 { 1907 struct bnx2x *bp = netdev_priv(dev_instance); 1908 u16 status = bnx2x_ack_int(bp); 1909 u16 mask; 1910 int i; 1911 u8 cos; 1912 1913 /* Return here if interrupt is shared and it's not for us */ 1914 if (unlikely(status == 0)) { 1915 DP(NETIF_MSG_INTR, "not our interrupt!\n"); 1916 return IRQ_NONE; 1917 } 1918 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); 1919 1920 #ifdef BNX2X_STOP_ON_ERROR 1921 if (unlikely(bp->panic)) 1922 return IRQ_HANDLED; 1923 #endif 1924 1925 for_each_eth_queue(bp, i) { 1926 struct bnx2x_fastpath *fp = &bp->fp[i]; 1927 1928 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); 1929 if (status & mask) { 1930 /* Handle Rx or Tx according to SB id */ 1931 for_each_cos_in_tx_queue(fp, cos) 1932 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1933 prefetch(&fp->sb_running_index[SM_RX_ID]); 1934 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 1935 status &= ~mask; 1936 } 1937 } 1938 1939 if (CNIC_SUPPORT(bp)) { 1940 mask = 0x2; 1941 if (status & (mask | 0x1)) { 1942 struct cnic_ops *c_ops = NULL; 1943 1944 rcu_read_lock(); 1945 c_ops = rcu_dereference(bp->cnic_ops); 1946 if (c_ops && (bp->cnic_eth_dev.drv_state & 1947 CNIC_DRV_STATE_HANDLES_IRQ)) 1948 c_ops->cnic_handler(bp->cnic_data, NULL); 1949 rcu_read_unlock(); 1950 1951 status &= ~mask; 1952 } 1953 } 1954 1955 if (unlikely(status & 0x1)) { 1956 1957 /* schedule sp task to perform default status block work, ack 1958 * attentions and enable interrupts. 1959 */ 1960 bnx2x_schedule_sp_task(bp); 1961 1962 status &= ~0x1; 1963 if (!status) 1964 return IRQ_HANDLED; 1965 } 1966 1967 if (unlikely(status)) 1968 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", 1969 status); 1970 1971 return IRQ_HANDLED; 1972 } 1973 1974 /* Link */ 1975 1976 /* 1977 * General service functions 1978 */ 1979 1980 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) 1981 { 1982 u32 lock_status; 1983 u32 resource_bit = (1 << resource); 1984 int func = BP_FUNC(bp); 1985 u32 hw_lock_control_reg; 1986 int cnt; 1987 1988 /* Validating that the resource is within range */ 1989 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1990 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1991 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1992 return -EINVAL; 1993 } 1994 1995 if (func <= 5) { 1996 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1997 } else { 1998 hw_lock_control_reg = 1999 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2000 } 2001 2002 /* Validating that the resource is not already taken */ 2003 lock_status = REG_RD(bp, hw_lock_control_reg); 2004 if (lock_status & resource_bit) { 2005 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", 2006 lock_status, resource_bit); 2007 return -EEXIST; 2008 } 2009 2010 /* Try for 5 second every 5ms */ 2011 for (cnt = 0; cnt < 1000; cnt++) { 2012 /* Try to acquire the lock */ 2013 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 2014 lock_status = REG_RD(bp, hw_lock_control_reg); 2015 if (lock_status & resource_bit) 2016 return 0; 2017 2018 usleep_range(5000, 10000); 2019 } 2020 BNX2X_ERR("Timeout\n"); 2021 return -EAGAIN; 2022 } 2023 2024 int bnx2x_release_leader_lock(struct bnx2x *bp) 2025 { 2026 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 2027 } 2028 2029 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) 2030 { 2031 u32 lock_status; 2032 u32 resource_bit = (1 << resource); 2033 int func = BP_FUNC(bp); 2034 u32 hw_lock_control_reg; 2035 2036 /* Validating that the resource is within range */ 2037 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 2038 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 2039 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2040 return -EINVAL; 2041 } 2042 2043 if (func <= 5) { 2044 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2045 } else { 2046 hw_lock_control_reg = 2047 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2048 } 2049 2050 /* Validating that the resource is currently taken */ 2051 lock_status = REG_RD(bp, hw_lock_control_reg); 2052 if (!(lock_status & resource_bit)) { 2053 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", 2054 lock_status, resource_bit); 2055 return -EFAULT; 2056 } 2057 2058 REG_WR(bp, hw_lock_control_reg, resource_bit); 2059 return 0; 2060 } 2061 2062 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) 2063 { 2064 /* The GPIO should be swapped if swap register is set and active */ 2065 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2066 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2067 int gpio_shift = gpio_num + 2068 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2069 u32 gpio_mask = (1 << gpio_shift); 2070 u32 gpio_reg; 2071 int value; 2072 2073 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2074 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2075 return -EINVAL; 2076 } 2077 2078 /* read GPIO value */ 2079 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2080 2081 /* get the requested pin value */ 2082 if ((gpio_reg & gpio_mask) == gpio_mask) 2083 value = 1; 2084 else 2085 value = 0; 2086 2087 return value; 2088 } 2089 2090 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2091 { 2092 /* The GPIO should be swapped if swap register is set and active */ 2093 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2094 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2095 int gpio_shift = gpio_num + 2096 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2097 u32 gpio_mask = (1 << gpio_shift); 2098 u32 gpio_reg; 2099 2100 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2101 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2102 return -EINVAL; 2103 } 2104 2105 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2106 /* read GPIO and mask except the float bits */ 2107 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2108 2109 switch (mode) { 2110 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2111 DP(NETIF_MSG_LINK, 2112 "Set GPIO %d (shift %d) -> output low\n", 2113 gpio_num, gpio_shift); 2114 /* clear FLOAT and set CLR */ 2115 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2116 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2117 break; 2118 2119 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2120 DP(NETIF_MSG_LINK, 2121 "Set GPIO %d (shift %d) -> output high\n", 2122 gpio_num, gpio_shift); 2123 /* clear FLOAT and set SET */ 2124 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2125 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2126 break; 2127 2128 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2129 DP(NETIF_MSG_LINK, 2130 "Set GPIO %d (shift %d) -> input\n", 2131 gpio_num, gpio_shift); 2132 /* set FLOAT */ 2133 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2134 break; 2135 2136 default: 2137 break; 2138 } 2139 2140 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2141 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2142 2143 return 0; 2144 } 2145 2146 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) 2147 { 2148 u32 gpio_reg = 0; 2149 int rc = 0; 2150 2151 /* Any port swapping should be handled by caller. */ 2152 2153 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2154 /* read GPIO and mask except the float bits */ 2155 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2156 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2157 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2158 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2159 2160 switch (mode) { 2161 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2162 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); 2163 /* set CLR */ 2164 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2165 break; 2166 2167 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2168 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); 2169 /* set SET */ 2170 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2171 break; 2172 2173 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2174 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); 2175 /* set FLOAT */ 2176 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2177 break; 2178 2179 default: 2180 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); 2181 rc = -EINVAL; 2182 break; 2183 } 2184 2185 if (rc == 0) 2186 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2187 2188 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2189 2190 return rc; 2191 } 2192 2193 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2194 { 2195 /* The GPIO should be swapped if swap register is set and active */ 2196 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2197 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2198 int gpio_shift = gpio_num + 2199 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2200 u32 gpio_mask = (1 << gpio_shift); 2201 u32 gpio_reg; 2202 2203 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2204 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2205 return -EINVAL; 2206 } 2207 2208 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2209 /* read GPIO int */ 2210 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); 2211 2212 switch (mode) { 2213 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2214 DP(NETIF_MSG_LINK, 2215 "Clear GPIO INT %d (shift %d) -> output low\n", 2216 gpio_num, gpio_shift); 2217 /* clear SET and set CLR */ 2218 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2219 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2220 break; 2221 2222 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2223 DP(NETIF_MSG_LINK, 2224 "Set GPIO INT %d (shift %d) -> output high\n", 2225 gpio_num, gpio_shift); 2226 /* clear CLR and set SET */ 2227 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2228 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2229 break; 2230 2231 default: 2232 break; 2233 } 2234 2235 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); 2236 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2237 2238 return 0; 2239 } 2240 2241 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) 2242 { 2243 u32 spio_reg; 2244 2245 /* Only 2 SPIOs are configurable */ 2246 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 2247 BNX2X_ERR("Invalid SPIO 0x%x\n", spio); 2248 return -EINVAL; 2249 } 2250 2251 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2252 /* read SPIO and mask except the float bits */ 2253 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 2254 2255 switch (mode) { 2256 case MISC_SPIO_OUTPUT_LOW: 2257 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); 2258 /* clear FLOAT and set CLR */ 2259 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2260 spio_reg |= (spio << MISC_SPIO_CLR_POS); 2261 break; 2262 2263 case MISC_SPIO_OUTPUT_HIGH: 2264 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); 2265 /* clear FLOAT and set SET */ 2266 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2267 spio_reg |= (spio << MISC_SPIO_SET_POS); 2268 break; 2269 2270 case MISC_SPIO_INPUT_HI_Z: 2271 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); 2272 /* set FLOAT */ 2273 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 2274 break; 2275 2276 default: 2277 break; 2278 } 2279 2280 REG_WR(bp, MISC_REG_SPIO, spio_reg); 2281 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2282 2283 return 0; 2284 } 2285 2286 void bnx2x_calc_fc_adv(struct bnx2x *bp) 2287 { 2288 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); 2289 switch (bp->link_vars.ieee_fc & 2290 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 2291 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 2292 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2293 ADVERTISED_Pause); 2294 break; 2295 2296 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 2297 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 2298 ADVERTISED_Pause); 2299 break; 2300 2301 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 2302 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 2303 break; 2304 2305 default: 2306 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2307 ADVERTISED_Pause); 2308 break; 2309 } 2310 } 2311 2312 static void bnx2x_set_requested_fc(struct bnx2x *bp) 2313 { 2314 /* Initialize link parameters structure variables 2315 * It is recommended to turn off RX FC for jumbo frames 2316 * for better performance 2317 */ 2318 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) 2319 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; 2320 else 2321 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; 2322 } 2323 2324 static void bnx2x_init_dropless_fc(struct bnx2x *bp) 2325 { 2326 u32 pause_enabled = 0; 2327 2328 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { 2329 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 2330 pause_enabled = 1; 2331 2332 REG_WR(bp, BAR_USTRORM_INTMEM + 2333 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), 2334 pause_enabled); 2335 } 2336 2337 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", 2338 pause_enabled ? "enabled" : "disabled"); 2339 } 2340 2341 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) 2342 { 2343 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); 2344 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; 2345 2346 if (!BP_NOMCP(bp)) { 2347 bnx2x_set_requested_fc(bp); 2348 bnx2x_acquire_phy_lock(bp); 2349 2350 if (load_mode == LOAD_DIAG) { 2351 struct link_params *lp = &bp->link_params; 2352 lp->loopback_mode = LOOPBACK_XGXS; 2353 /* do PHY loopback at 10G speed, if possible */ 2354 if (lp->req_line_speed[cfx_idx] < SPEED_10000) { 2355 if (lp->speed_cap_mask[cfx_idx] & 2356 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) 2357 lp->req_line_speed[cfx_idx] = 2358 SPEED_10000; 2359 else 2360 lp->req_line_speed[cfx_idx] = 2361 SPEED_1000; 2362 } 2363 } 2364 2365 if (load_mode == LOAD_LOOPBACK_EXT) { 2366 struct link_params *lp = &bp->link_params; 2367 lp->loopback_mode = LOOPBACK_EXT; 2368 } 2369 2370 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2371 2372 bnx2x_release_phy_lock(bp); 2373 2374 bnx2x_init_dropless_fc(bp); 2375 2376 bnx2x_calc_fc_adv(bp); 2377 2378 if (bp->link_vars.link_up) { 2379 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2380 bnx2x_link_report(bp); 2381 } 2382 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2383 bp->link_params.req_line_speed[cfx_idx] = req_line_speed; 2384 return rc; 2385 } 2386 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 2387 return -EINVAL; 2388 } 2389 2390 void bnx2x_link_set(struct bnx2x *bp) 2391 { 2392 if (!BP_NOMCP(bp)) { 2393 bnx2x_acquire_phy_lock(bp); 2394 bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2395 bnx2x_release_phy_lock(bp); 2396 2397 bnx2x_init_dropless_fc(bp); 2398 2399 bnx2x_calc_fc_adv(bp); 2400 } else 2401 BNX2X_ERR("Bootcode is missing - can not set link\n"); 2402 } 2403 2404 static void bnx2x__link_reset(struct bnx2x *bp) 2405 { 2406 if (!BP_NOMCP(bp)) { 2407 bnx2x_acquire_phy_lock(bp); 2408 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); 2409 bnx2x_release_phy_lock(bp); 2410 } else 2411 BNX2X_ERR("Bootcode is missing - can not reset link\n"); 2412 } 2413 2414 void bnx2x_force_link_reset(struct bnx2x *bp) 2415 { 2416 bnx2x_acquire_phy_lock(bp); 2417 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); 2418 bnx2x_release_phy_lock(bp); 2419 } 2420 2421 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) 2422 { 2423 u8 rc = 0; 2424 2425 if (!BP_NOMCP(bp)) { 2426 bnx2x_acquire_phy_lock(bp); 2427 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, 2428 is_serdes); 2429 bnx2x_release_phy_lock(bp); 2430 } else 2431 BNX2X_ERR("Bootcode is missing - can not test link\n"); 2432 2433 return rc; 2434 } 2435 2436 /* Calculates the sum of vn_min_rates. 2437 It's needed for further normalizing of the min_rates. 2438 Returns: 2439 sum of vn_min_rates. 2440 or 2441 0 - if all the min_rates are 0. 2442 In the later case fairness algorithm should be deactivated. 2443 If not all min_rates are zero then those that are zeroes will be set to 1. 2444 */ 2445 static void bnx2x_calc_vn_min(struct bnx2x *bp, 2446 struct cmng_init_input *input) 2447 { 2448 int all_zero = 1; 2449 int vn; 2450 2451 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2452 u32 vn_cfg = bp->mf_config[vn]; 2453 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 2454 FUNC_MF_CFG_MIN_BW_SHIFT) * 100; 2455 2456 /* Skip hidden vns */ 2457 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2458 vn_min_rate = 0; 2459 /* If min rate is zero - set it to 1 */ 2460 else if (!vn_min_rate) 2461 vn_min_rate = DEF_MIN_RATE; 2462 else 2463 all_zero = 0; 2464 2465 input->vnic_min_rate[vn] = vn_min_rate; 2466 } 2467 2468 /* if ETS or all min rates are zeros - disable fairness */ 2469 if (BNX2X_IS_ETS_ENABLED(bp)) { 2470 input->flags.cmng_enables &= 2471 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2472 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); 2473 } else if (all_zero) { 2474 input->flags.cmng_enables &= 2475 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2476 DP(NETIF_MSG_IFUP, 2477 "All MIN values are zeroes fairness will be disabled\n"); 2478 } else 2479 input->flags.cmng_enables |= 2480 CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2481 } 2482 2483 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, 2484 struct cmng_init_input *input) 2485 { 2486 u16 vn_max_rate; 2487 u32 vn_cfg = bp->mf_config[vn]; 2488 2489 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2490 vn_max_rate = 0; 2491 else { 2492 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); 2493 2494 if (IS_MF_SI(bp)) { 2495 /* maxCfg in percents of linkspeed */ 2496 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; 2497 } else /* SD modes */ 2498 /* maxCfg is absolute in 100Mb units */ 2499 vn_max_rate = maxCfg * 100; 2500 } 2501 2502 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 2503 2504 input->vnic_max_rate[vn] = vn_max_rate; 2505 } 2506 2507 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) 2508 { 2509 if (CHIP_REV_IS_SLOW(bp)) 2510 return CMNG_FNS_NONE; 2511 if (IS_MF(bp)) 2512 return CMNG_FNS_MINMAX; 2513 2514 return CMNG_FNS_NONE; 2515 } 2516 2517 void bnx2x_read_mf_cfg(struct bnx2x *bp) 2518 { 2519 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); 2520 2521 if (BP_NOMCP(bp)) 2522 return; /* what should be the default value in this case */ 2523 2524 /* For 2 port configuration the absolute function number formula 2525 * is: 2526 * abs_func = 2 * vn + BP_PORT + BP_PATH 2527 * 2528 * and there are 4 functions per port 2529 * 2530 * For 4 port configuration it is 2531 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH 2532 * 2533 * and there are 2 functions per port 2534 */ 2535 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2536 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); 2537 2538 if (func >= E1H_FUNC_MAX) 2539 break; 2540 2541 bp->mf_config[vn] = 2542 MF_CFG_RD(bp, func_mf_config[func].config); 2543 } 2544 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 2545 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); 2546 bp->flags |= MF_FUNC_DIS; 2547 } else { 2548 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); 2549 bp->flags &= ~MF_FUNC_DIS; 2550 } 2551 } 2552 2553 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) 2554 { 2555 struct cmng_init_input input; 2556 memset(&input, 0, sizeof(struct cmng_init_input)); 2557 2558 input.port_rate = bp->link_vars.line_speed; 2559 2560 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { 2561 int vn; 2562 2563 /* read mf conf from shmem */ 2564 if (read_cfg) 2565 bnx2x_read_mf_cfg(bp); 2566 2567 /* vn_weight_sum and enable fairness if not 0 */ 2568 bnx2x_calc_vn_min(bp, &input); 2569 2570 /* calculate and set min-max rate for each vn */ 2571 if (bp->port.pmf) 2572 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) 2573 bnx2x_calc_vn_max(bp, vn, &input); 2574 2575 /* always enable rate shaping and fairness */ 2576 input.flags.cmng_enables |= 2577 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 2578 2579 bnx2x_init_cmng(&input, &bp->cmng); 2580 return; 2581 } 2582 2583 /* rate shaping and fairness are disabled */ 2584 DP(NETIF_MSG_IFUP, 2585 "rate shaping and fairness are disabled\n"); 2586 } 2587 2588 static void storm_memset_cmng(struct bnx2x *bp, 2589 struct cmng_init *cmng, 2590 u8 port) 2591 { 2592 int vn; 2593 size_t size = sizeof(struct cmng_struct_per_port); 2594 2595 u32 addr = BAR_XSTRORM_INTMEM + 2596 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); 2597 2598 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); 2599 2600 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2601 int func = func_by_vn(bp, vn); 2602 2603 addr = BAR_XSTRORM_INTMEM + 2604 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); 2605 size = sizeof(struct rate_shaping_vars_per_vn); 2606 __storm_memset_struct(bp, addr, size, 2607 (u32 *)&cmng->vnic.vnic_max_rate[vn]); 2608 2609 addr = BAR_XSTRORM_INTMEM + 2610 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); 2611 size = sizeof(struct fairness_vars_per_vn); 2612 __storm_memset_struct(bp, addr, size, 2613 (u32 *)&cmng->vnic.vnic_min_rate[vn]); 2614 } 2615 } 2616 2617 /* init cmng mode in HW according to local configuration */ 2618 void bnx2x_set_local_cmng(struct bnx2x *bp) 2619 { 2620 int cmng_fns = bnx2x_get_cmng_fns_mode(bp); 2621 2622 if (cmng_fns != CMNG_FNS_NONE) { 2623 bnx2x_cmng_fns_init(bp, false, cmng_fns); 2624 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 2625 } else { 2626 /* rate shaping and fairness are disabled */ 2627 DP(NETIF_MSG_IFUP, 2628 "single function mode without fairness\n"); 2629 } 2630 } 2631 2632 /* This function is called upon link interrupt */ 2633 static void bnx2x_link_attn(struct bnx2x *bp) 2634 { 2635 /* Make sure that we are synced with the current statistics */ 2636 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2637 2638 bnx2x_link_update(&bp->link_params, &bp->link_vars); 2639 2640 bnx2x_init_dropless_fc(bp); 2641 2642 if (bp->link_vars.link_up) { 2643 2644 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { 2645 struct host_port_stats *pstats; 2646 2647 pstats = bnx2x_sp(bp, port_stats); 2648 /* reset old mac stats */ 2649 memset(&(pstats->mac_stx[0]), 0, 2650 sizeof(struct mac_stx)); 2651 } 2652 if (bp->state == BNX2X_STATE_OPEN) 2653 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2654 } 2655 2656 if (bp->link_vars.link_up && bp->link_vars.line_speed) 2657 bnx2x_set_local_cmng(bp); 2658 2659 __bnx2x_link_report(bp); 2660 2661 if (IS_MF(bp)) 2662 bnx2x_link_sync_notify(bp); 2663 } 2664 2665 void bnx2x__link_status_update(struct bnx2x *bp) 2666 { 2667 if (bp->state != BNX2X_STATE_OPEN) 2668 return; 2669 2670 /* read updated dcb configuration */ 2671 if (IS_PF(bp)) { 2672 bnx2x_dcbx_pmf_update(bp); 2673 bnx2x_link_status_update(&bp->link_params, &bp->link_vars); 2674 if (bp->link_vars.link_up) 2675 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2676 else 2677 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2678 /* indicate link status */ 2679 bnx2x_link_report(bp); 2680 2681 } else { /* VF */ 2682 bp->port.supported[0] |= (SUPPORTED_10baseT_Half | 2683 SUPPORTED_10baseT_Full | 2684 SUPPORTED_100baseT_Half | 2685 SUPPORTED_100baseT_Full | 2686 SUPPORTED_1000baseT_Full | 2687 SUPPORTED_2500baseX_Full | 2688 SUPPORTED_10000baseT_Full | 2689 SUPPORTED_TP | 2690 SUPPORTED_FIBRE | 2691 SUPPORTED_Autoneg | 2692 SUPPORTED_Pause | 2693 SUPPORTED_Asym_Pause); 2694 bp->port.advertising[0] = bp->port.supported[0]; 2695 2696 bp->link_params.bp = bp; 2697 bp->link_params.port = BP_PORT(bp); 2698 bp->link_params.req_duplex[0] = DUPLEX_FULL; 2699 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; 2700 bp->link_params.req_line_speed[0] = SPEED_10000; 2701 bp->link_params.speed_cap_mask[0] = 0x7f0000; 2702 bp->link_params.switch_cfg = SWITCH_CFG_10G; 2703 bp->link_vars.mac_type = MAC_TYPE_BMAC; 2704 bp->link_vars.line_speed = SPEED_10000; 2705 bp->link_vars.link_status = 2706 (LINK_STATUS_LINK_UP | 2707 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 2708 bp->link_vars.link_up = 1; 2709 bp->link_vars.duplex = DUPLEX_FULL; 2710 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; 2711 __bnx2x_link_report(bp); 2712 2713 bnx2x_sample_bulletin(bp); 2714 2715 /* if bulletin board did not have an update for link status 2716 * __bnx2x_link_report will report current status 2717 * but it will NOT duplicate report in case of already reported 2718 * during sampling bulletin board. 2719 */ 2720 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2721 } 2722 } 2723 2724 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, 2725 u16 vlan_val, u8 allowed_prio) 2726 { 2727 struct bnx2x_func_state_params func_params = {NULL}; 2728 struct bnx2x_func_afex_update_params *f_update_params = 2729 &func_params.params.afex_update; 2730 2731 func_params.f_obj = &bp->func_obj; 2732 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; 2733 2734 /* no need to wait for RAMROD completion, so don't 2735 * set RAMROD_COMP_WAIT flag 2736 */ 2737 2738 f_update_params->vif_id = vifid; 2739 f_update_params->afex_default_vlan = vlan_val; 2740 f_update_params->allowed_priorities = allowed_prio; 2741 2742 /* if ramrod can not be sent, response to MCP immediately */ 2743 if (bnx2x_func_state_change(bp, &func_params) < 0) 2744 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 2745 2746 return 0; 2747 } 2748 2749 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, 2750 u16 vif_index, u8 func_bit_map) 2751 { 2752 struct bnx2x_func_state_params func_params = {NULL}; 2753 struct bnx2x_func_afex_viflists_params *update_params = 2754 &func_params.params.afex_viflists; 2755 int rc; 2756 u32 drv_msg_code; 2757 2758 /* validate only LIST_SET and LIST_GET are received from switch */ 2759 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) 2760 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", 2761 cmd_type); 2762 2763 func_params.f_obj = &bp->func_obj; 2764 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; 2765 2766 /* set parameters according to cmd_type */ 2767 update_params->afex_vif_list_command = cmd_type; 2768 update_params->vif_list_index = vif_index; 2769 update_params->func_bit_map = 2770 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; 2771 update_params->func_to_clear = 0; 2772 drv_msg_code = 2773 (cmd_type == VIF_LIST_RULE_GET) ? 2774 DRV_MSG_CODE_AFEX_LISTGET_ACK : 2775 DRV_MSG_CODE_AFEX_LISTSET_ACK; 2776 2777 /* if ramrod can not be sent, respond to MCP immediately for 2778 * SET and GET requests (other are not triggered from MCP) 2779 */ 2780 rc = bnx2x_func_state_change(bp, &func_params); 2781 if (rc < 0) 2782 bnx2x_fw_command(bp, drv_msg_code, 0); 2783 2784 return 0; 2785 } 2786 2787 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) 2788 { 2789 struct afex_stats afex_stats; 2790 u32 func = BP_ABS_FUNC(bp); 2791 u32 mf_config; 2792 u16 vlan_val; 2793 u32 vlan_prio; 2794 u16 vif_id; 2795 u8 allowed_prio; 2796 u8 vlan_mode; 2797 u32 addr_to_write, vifid, addrs, stats_type, i; 2798 2799 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { 2800 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2801 DP(BNX2X_MSG_MCP, 2802 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); 2803 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); 2804 } 2805 2806 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { 2807 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2808 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); 2809 DP(BNX2X_MSG_MCP, 2810 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", 2811 vifid, addrs); 2812 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, 2813 addrs); 2814 } 2815 2816 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { 2817 addr_to_write = SHMEM2_RD(bp, 2818 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); 2819 stats_type = SHMEM2_RD(bp, 2820 afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2821 2822 DP(BNX2X_MSG_MCP, 2823 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", 2824 addr_to_write); 2825 2826 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); 2827 2828 /* write response to scratchpad, for MCP */ 2829 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) 2830 REG_WR(bp, addr_to_write + i*sizeof(u32), 2831 *(((u32 *)(&afex_stats))+i)); 2832 2833 /* send ack message to MCP */ 2834 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); 2835 } 2836 2837 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { 2838 mf_config = MF_CFG_RD(bp, func_mf_config[func].config); 2839 bp->mf_config[BP_VN(bp)] = mf_config; 2840 DP(BNX2X_MSG_MCP, 2841 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", 2842 mf_config); 2843 2844 /* if VIF_SET is "enabled" */ 2845 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { 2846 /* set rate limit directly to internal RAM */ 2847 struct cmng_init_input cmng_input; 2848 struct rate_shaping_vars_per_vn m_rs_vn; 2849 size_t size = sizeof(struct rate_shaping_vars_per_vn); 2850 u32 addr = BAR_XSTRORM_INTMEM + 2851 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); 2852 2853 bp->mf_config[BP_VN(bp)] = mf_config; 2854 2855 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); 2856 m_rs_vn.vn_counter.rate = 2857 cmng_input.vnic_max_rate[BP_VN(bp)]; 2858 m_rs_vn.vn_counter.quota = 2859 (m_rs_vn.vn_counter.rate * 2860 RS_PERIODIC_TIMEOUT_USEC) / 8; 2861 2862 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); 2863 2864 /* read relevant values from mf_cfg struct in shmem */ 2865 vif_id = 2866 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2867 FUNC_MF_CFG_E1HOV_TAG_MASK) >> 2868 FUNC_MF_CFG_E1HOV_TAG_SHIFT; 2869 vlan_val = 2870 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2871 FUNC_MF_CFG_AFEX_VLAN_MASK) >> 2872 FUNC_MF_CFG_AFEX_VLAN_SHIFT; 2873 vlan_prio = (mf_config & 2874 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 2875 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; 2876 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); 2877 vlan_mode = 2878 (MF_CFG_RD(bp, 2879 func_mf_config[func].afex_config) & 2880 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 2881 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; 2882 allowed_prio = 2883 (MF_CFG_RD(bp, 2884 func_mf_config[func].afex_config) & 2885 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 2886 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; 2887 2888 /* send ramrod to FW, return in case of failure */ 2889 if (bnx2x_afex_func_update(bp, vif_id, vlan_val, 2890 allowed_prio)) 2891 return; 2892 2893 bp->afex_def_vlan_tag = vlan_val; 2894 bp->afex_vlan_mode = vlan_mode; 2895 } else { 2896 /* notify link down because BP->flags is disabled */ 2897 bnx2x_link_report(bp); 2898 2899 /* send INVALID VIF ramrod to FW */ 2900 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); 2901 2902 /* Reset the default afex VLAN */ 2903 bp->afex_def_vlan_tag = -1; 2904 } 2905 } 2906 } 2907 2908 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp) 2909 { 2910 struct bnx2x_func_switch_update_params *switch_update_params; 2911 struct bnx2x_func_state_params func_params; 2912 2913 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params)); 2914 switch_update_params = &func_params.params.switch_update; 2915 func_params.f_obj = &bp->func_obj; 2916 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 2917 2918 if (IS_MF_UFP(bp)) { 2919 int func = BP_ABS_FUNC(bp); 2920 u32 val; 2921 2922 /* Re-learn the S-tag from shmem */ 2923 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2924 FUNC_MF_CFG_E1HOV_TAG_MASK; 2925 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 2926 bp->mf_ov = val; 2927 } else { 2928 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n"); 2929 goto fail; 2930 } 2931 2932 /* Configure new S-tag in LLH */ 2933 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8, 2934 bp->mf_ov); 2935 2936 /* Send Ramrod to update FW of change */ 2937 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG, 2938 &switch_update_params->changes); 2939 switch_update_params->vlan = bp->mf_ov; 2940 2941 if (bnx2x_func_state_change(bp, &func_params) < 0) { 2942 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n", 2943 bp->mf_ov); 2944 goto fail; 2945 } 2946 2947 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", bp->mf_ov); 2948 2949 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0); 2950 2951 return; 2952 } 2953 2954 /* not supported by SW yet */ 2955 fail: 2956 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0); 2957 } 2958 2959 static void bnx2x_pmf_update(struct bnx2x *bp) 2960 { 2961 int port = BP_PORT(bp); 2962 u32 val; 2963 2964 bp->port.pmf = 1; 2965 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); 2966 2967 /* 2968 * We need the mb() to ensure the ordering between the writing to 2969 * bp->port.pmf here and reading it from the bnx2x_periodic_task(). 2970 */ 2971 smp_mb(); 2972 2973 /* queue a periodic task */ 2974 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2975 2976 bnx2x_dcbx_pmf_update(bp); 2977 2978 /* enable nig attention */ 2979 val = (0xff0f | (1 << (BP_VN(bp) + 4))); 2980 if (bp->common.int_block == INT_BLOCK_HC) { 2981 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 2982 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 2983 } else if (!CHIP_IS_E1x(bp)) { 2984 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 2985 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 2986 } 2987 2988 bnx2x_stats_handle(bp, STATS_EVENT_PMF); 2989 } 2990 2991 /* end of Link */ 2992 2993 /* slow path */ 2994 2995 /* 2996 * General service functions 2997 */ 2998 2999 /* send the MCP a request, block until there is a reply */ 3000 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) 3001 { 3002 int mb_idx = BP_FW_MB_IDX(bp); 3003 u32 seq; 3004 u32 rc = 0; 3005 u32 cnt = 1; 3006 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; 3007 3008 mutex_lock(&bp->fw_mb_mutex); 3009 seq = ++bp->fw_seq; 3010 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); 3011 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); 3012 3013 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", 3014 (command | seq), param); 3015 3016 do { 3017 /* let the FW do it's magic ... */ 3018 msleep(delay); 3019 3020 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); 3021 3022 /* Give the FW up to 5 second (500*10ms) */ 3023 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 3024 3025 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", 3026 cnt*delay, rc, seq); 3027 3028 /* is this a reply to our command? */ 3029 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) 3030 rc &= FW_MSG_CODE_MASK; 3031 else { 3032 /* FW BUG! */ 3033 BNX2X_ERR("FW failed to respond!\n"); 3034 bnx2x_fw_dump(bp); 3035 rc = 0; 3036 } 3037 mutex_unlock(&bp->fw_mb_mutex); 3038 3039 return rc; 3040 } 3041 3042 static void storm_memset_func_cfg(struct bnx2x *bp, 3043 struct tstorm_eth_function_common_config *tcfg, 3044 u16 abs_fid) 3045 { 3046 size_t size = sizeof(struct tstorm_eth_function_common_config); 3047 3048 u32 addr = BAR_TSTRORM_INTMEM + 3049 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); 3050 3051 __storm_memset_struct(bp, addr, size, (u32 *)tcfg); 3052 } 3053 3054 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) 3055 { 3056 if (CHIP_IS_E1x(bp)) { 3057 struct tstorm_eth_function_common_config tcfg = {0}; 3058 3059 storm_memset_func_cfg(bp, &tcfg, p->func_id); 3060 } 3061 3062 /* Enable the function in the FW */ 3063 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); 3064 storm_memset_func_en(bp, p->func_id, 1); 3065 3066 /* spq */ 3067 if (p->func_flgs & FUNC_FLG_SPQ) { 3068 storm_memset_spq_addr(bp, p->spq_map, p->func_id); 3069 REG_WR(bp, XSEM_REG_FAST_MEMORY + 3070 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); 3071 } 3072 } 3073 3074 /** 3075 * bnx2x_get_common_flags - Return common flags 3076 * 3077 * @bp device handle 3078 * @fp queue handle 3079 * @zero_stats TRUE if statistics zeroing is needed 3080 * 3081 * Return the flags that are common for the Tx-only and not normal connections. 3082 */ 3083 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, 3084 struct bnx2x_fastpath *fp, 3085 bool zero_stats) 3086 { 3087 unsigned long flags = 0; 3088 3089 /* PF driver will always initialize the Queue to an ACTIVE state */ 3090 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); 3091 3092 /* tx only connections collect statistics (on the same index as the 3093 * parent connection). The statistics are zeroed when the parent 3094 * connection is initialized. 3095 */ 3096 3097 __set_bit(BNX2X_Q_FLG_STATS, &flags); 3098 if (zero_stats) 3099 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); 3100 3101 if (bp->flags & TX_SWITCHING) 3102 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags); 3103 3104 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); 3105 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); 3106 3107 #ifdef BNX2X_STOP_ON_ERROR 3108 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); 3109 #endif 3110 3111 return flags; 3112 } 3113 3114 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, 3115 struct bnx2x_fastpath *fp, 3116 bool leading) 3117 { 3118 unsigned long flags = 0; 3119 3120 /* calculate other queue flags */ 3121 if (IS_MF_SD(bp)) 3122 __set_bit(BNX2X_Q_FLG_OV, &flags); 3123 3124 if (IS_FCOE_FP(fp)) { 3125 __set_bit(BNX2X_Q_FLG_FCOE, &flags); 3126 /* For FCoE - force usage of default priority (for afex) */ 3127 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); 3128 } 3129 3130 if (!fp->disable_tpa) { 3131 __set_bit(BNX2X_Q_FLG_TPA, &flags); 3132 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); 3133 if (fp->mode == TPA_MODE_GRO) 3134 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); 3135 } 3136 3137 if (leading) { 3138 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); 3139 __set_bit(BNX2X_Q_FLG_MCAST, &flags); 3140 } 3141 3142 /* Always set HW VLAN stripping */ 3143 __set_bit(BNX2X_Q_FLG_VLAN, &flags); 3144 3145 /* configure silent vlan removal */ 3146 if (IS_MF_AFEX(bp)) 3147 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); 3148 3149 return flags | bnx2x_get_common_flags(bp, fp, true); 3150 } 3151 3152 static void bnx2x_pf_q_prep_general(struct bnx2x *bp, 3153 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, 3154 u8 cos) 3155 { 3156 gen_init->stat_id = bnx2x_stats_id(fp); 3157 gen_init->spcl_id = fp->cl_id; 3158 3159 /* Always use mini-jumbo MTU for FCoE L2 ring */ 3160 if (IS_FCOE_FP(fp)) 3161 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 3162 else 3163 gen_init->mtu = bp->dev->mtu; 3164 3165 gen_init->cos = cos; 3166 } 3167 3168 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, 3169 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, 3170 struct bnx2x_rxq_setup_params *rxq_init) 3171 { 3172 u8 max_sge = 0; 3173 u16 sge_sz = 0; 3174 u16 tpa_agg_size = 0; 3175 3176 if (!fp->disable_tpa) { 3177 pause->sge_th_lo = SGE_TH_LO(bp); 3178 pause->sge_th_hi = SGE_TH_HI(bp); 3179 3180 /* validate SGE ring has enough to cross high threshold */ 3181 WARN_ON(bp->dropless_fc && 3182 pause->sge_th_hi + FW_PREFETCH_CNT > 3183 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); 3184 3185 tpa_agg_size = TPA_AGG_SIZE; 3186 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> 3187 SGE_PAGE_SHIFT; 3188 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 3189 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; 3190 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); 3191 } 3192 3193 /* pause - not for e1 */ 3194 if (!CHIP_IS_E1(bp)) { 3195 pause->bd_th_lo = BD_TH_LO(bp); 3196 pause->bd_th_hi = BD_TH_HI(bp); 3197 3198 pause->rcq_th_lo = RCQ_TH_LO(bp); 3199 pause->rcq_th_hi = RCQ_TH_HI(bp); 3200 /* 3201 * validate that rings have enough entries to cross 3202 * high thresholds 3203 */ 3204 WARN_ON(bp->dropless_fc && 3205 pause->bd_th_hi + FW_PREFETCH_CNT > 3206 bp->rx_ring_size); 3207 WARN_ON(bp->dropless_fc && 3208 pause->rcq_th_hi + FW_PREFETCH_CNT > 3209 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); 3210 3211 pause->pri_map = 1; 3212 } 3213 3214 /* rxq setup */ 3215 rxq_init->dscr_map = fp->rx_desc_mapping; 3216 rxq_init->sge_map = fp->rx_sge_mapping; 3217 rxq_init->rcq_map = fp->rx_comp_mapping; 3218 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; 3219 3220 /* This should be a maximum number of data bytes that may be 3221 * placed on the BD (not including paddings). 3222 */ 3223 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - 3224 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; 3225 3226 rxq_init->cl_qzone_id = fp->cl_qzone_id; 3227 rxq_init->tpa_agg_sz = tpa_agg_size; 3228 rxq_init->sge_buf_sz = sge_sz; 3229 rxq_init->max_sges_pkt = max_sge; 3230 rxq_init->rss_engine_id = BP_FUNC(bp); 3231 rxq_init->mcast_engine_id = BP_FUNC(bp); 3232 3233 /* Maximum number or simultaneous TPA aggregation for this Queue. 3234 * 3235 * For PF Clients it should be the maximum available number. 3236 * VF driver(s) may want to define it to a smaller value. 3237 */ 3238 rxq_init->max_tpa_queues = MAX_AGG_QS(bp); 3239 3240 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; 3241 rxq_init->fw_sb_id = fp->fw_sb_id; 3242 3243 if (IS_FCOE_FP(fp)) 3244 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; 3245 else 3246 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 3247 /* configure silent vlan removal 3248 * if multi function mode is afex, then mask default vlan 3249 */ 3250 if (IS_MF_AFEX(bp)) { 3251 rxq_init->silent_removal_value = bp->afex_def_vlan_tag; 3252 rxq_init->silent_removal_mask = VLAN_VID_MASK; 3253 } 3254 } 3255 3256 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, 3257 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, 3258 u8 cos) 3259 { 3260 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; 3261 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 3262 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 3263 txq_init->fw_sb_id = fp->fw_sb_id; 3264 3265 /* 3266 * set the tss leading client id for TX classification == 3267 * leading RSS client id 3268 */ 3269 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); 3270 3271 if (IS_FCOE_FP(fp)) { 3272 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; 3273 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; 3274 } 3275 } 3276 3277 static void bnx2x_pf_init(struct bnx2x *bp) 3278 { 3279 struct bnx2x_func_init_params func_init = {0}; 3280 struct event_ring_data eq_data = { {0} }; 3281 u16 flags; 3282 3283 if (!CHIP_IS_E1x(bp)) { 3284 /* reset IGU PF statistics: MSIX + ATTN */ 3285 /* PF */ 3286 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3287 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3288 (CHIP_MODE_IS_4_PORT(bp) ? 3289 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3290 /* ATTN */ 3291 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3292 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3293 BNX2X_IGU_STAS_MSG_PF_CNT*4 + 3294 (CHIP_MODE_IS_4_PORT(bp) ? 3295 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3296 } 3297 3298 /* function setup flags */ 3299 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 3300 3301 /* This flag is relevant for E1x only. 3302 * E2 doesn't have a TPA configuration in a function level. 3303 */ 3304 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0; 3305 3306 func_init.func_flgs = flags; 3307 func_init.pf_id = BP_FUNC(bp); 3308 func_init.func_id = BP_FUNC(bp); 3309 func_init.spq_map = bp->spq_mapping; 3310 func_init.spq_prod = bp->spq_prod_idx; 3311 3312 bnx2x_func_init(bp, &func_init); 3313 3314 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); 3315 3316 /* 3317 * Congestion management values depend on the link rate 3318 * There is no active link so initial link rate is set to 10 Gbps. 3319 * When the link comes up The congestion management values are 3320 * re-calculated according to the actual link rate. 3321 */ 3322 bp->link_vars.line_speed = SPEED_10000; 3323 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); 3324 3325 /* Only the PMF sets the HW */ 3326 if (bp->port.pmf) 3327 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3328 3329 /* init Event Queue - PCI bus guarantees correct endianity*/ 3330 eq_data.base_addr.hi = U64_HI(bp->eq_mapping); 3331 eq_data.base_addr.lo = U64_LO(bp->eq_mapping); 3332 eq_data.producer = bp->eq_prod; 3333 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 3334 eq_data.sb_id = DEF_SB_ID; 3335 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); 3336 } 3337 3338 static void bnx2x_e1h_disable(struct bnx2x *bp) 3339 { 3340 int port = BP_PORT(bp); 3341 3342 bnx2x_tx_disable(bp); 3343 3344 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 3345 } 3346 3347 static void bnx2x_e1h_enable(struct bnx2x *bp) 3348 { 3349 int port = BP_PORT(bp); 3350 3351 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 3352 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 3353 3354 /* Tx queue should be only re-enabled */ 3355 netif_tx_wake_all_queues(bp->dev); 3356 3357 /* 3358 * Should not call netif_carrier_on since it will be called if the link 3359 * is up when checking for link state 3360 */ 3361 } 3362 3363 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 3364 3365 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) 3366 { 3367 struct eth_stats_info *ether_stat = 3368 &bp->slowpath->drv_info_to_mcp.ether_stat; 3369 struct bnx2x_vlan_mac_obj *mac_obj = 3370 &bp->sp_objs->mac_obj; 3371 int i; 3372 3373 strlcpy(ether_stat->version, DRV_MODULE_VERSION, 3374 ETH_STAT_INFO_VERSION_LEN); 3375 3376 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the 3377 * mac_local field in ether_stat struct. The base address is offset by 2 3378 * bytes to account for the field being 8 bytes but a mac address is 3379 * only 6 bytes. Likewise, the stride for the get_n_elements function is 3380 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes 3381 * allocated by the ether_stat struct, so the macs will land in their 3382 * proper positions. 3383 */ 3384 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) 3385 memset(ether_stat->mac_local + i, 0, 3386 sizeof(ether_stat->mac_local[0])); 3387 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, 3388 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 3389 ether_stat->mac_local + MAC_PAD, MAC_PAD, 3390 ETH_ALEN); 3391 ether_stat->mtu_size = bp->dev->mtu; 3392 if (bp->dev->features & NETIF_F_RXCSUM) 3393 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 3394 if (bp->dev->features & NETIF_F_TSO) 3395 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 3396 ether_stat->feature_flags |= bp->common.boot_mode; 3397 3398 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; 3399 3400 ether_stat->txq_size = bp->tx_ring_size; 3401 ether_stat->rxq_size = bp->rx_ring_size; 3402 3403 #ifdef CONFIG_BNX2X_SRIOV 3404 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0; 3405 #endif 3406 } 3407 3408 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) 3409 { 3410 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3411 struct fcoe_stats_info *fcoe_stat = 3412 &bp->slowpath->drv_info_to_mcp.fcoe_stat; 3413 3414 if (!CNIC_LOADED(bp)) 3415 return; 3416 3417 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN); 3418 3419 fcoe_stat->qos_priority = 3420 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; 3421 3422 /* insert FCoE stats from ramrod response */ 3423 if (!NO_FCOE(bp)) { 3424 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = 3425 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3426 tstorm_queue_statistics; 3427 3428 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = 3429 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3430 xstorm_queue_statistics; 3431 3432 struct fcoe_statistics_params *fw_fcoe_stat = 3433 &bp->fw_stats_data->fcoe; 3434 3435 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, 3436 fcoe_stat->rx_bytes_lo, 3437 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); 3438 3439 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3440 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, 3441 fcoe_stat->rx_bytes_lo, 3442 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); 3443 3444 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3445 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, 3446 fcoe_stat->rx_bytes_lo, 3447 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); 3448 3449 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3450 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, 3451 fcoe_stat->rx_bytes_lo, 3452 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); 3453 3454 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3455 fcoe_stat->rx_frames_lo, 3456 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); 3457 3458 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3459 fcoe_stat->rx_frames_lo, 3460 fcoe_q_tstorm_stats->rcv_ucast_pkts); 3461 3462 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3463 fcoe_stat->rx_frames_lo, 3464 fcoe_q_tstorm_stats->rcv_bcast_pkts); 3465 3466 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3467 fcoe_stat->rx_frames_lo, 3468 fcoe_q_tstorm_stats->rcv_mcast_pkts); 3469 3470 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, 3471 fcoe_stat->tx_bytes_lo, 3472 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); 3473 3474 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3475 fcoe_q_xstorm_stats->ucast_bytes_sent.hi, 3476 fcoe_stat->tx_bytes_lo, 3477 fcoe_q_xstorm_stats->ucast_bytes_sent.lo); 3478 3479 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3480 fcoe_q_xstorm_stats->bcast_bytes_sent.hi, 3481 fcoe_stat->tx_bytes_lo, 3482 fcoe_q_xstorm_stats->bcast_bytes_sent.lo); 3483 3484 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3485 fcoe_q_xstorm_stats->mcast_bytes_sent.hi, 3486 fcoe_stat->tx_bytes_lo, 3487 fcoe_q_xstorm_stats->mcast_bytes_sent.lo); 3488 3489 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3490 fcoe_stat->tx_frames_lo, 3491 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); 3492 3493 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3494 fcoe_stat->tx_frames_lo, 3495 fcoe_q_xstorm_stats->ucast_pkts_sent); 3496 3497 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3498 fcoe_stat->tx_frames_lo, 3499 fcoe_q_xstorm_stats->bcast_pkts_sent); 3500 3501 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3502 fcoe_stat->tx_frames_lo, 3503 fcoe_q_xstorm_stats->mcast_pkts_sent); 3504 } 3505 3506 /* ask L5 driver to add data to the struct */ 3507 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); 3508 } 3509 3510 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) 3511 { 3512 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3513 struct iscsi_stats_info *iscsi_stat = 3514 &bp->slowpath->drv_info_to_mcp.iscsi_stat; 3515 3516 if (!CNIC_LOADED(bp)) 3517 return; 3518 3519 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, 3520 ETH_ALEN); 3521 3522 iscsi_stat->qos_priority = 3523 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; 3524 3525 /* ask L5 driver to add data to the struct */ 3526 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); 3527 } 3528 3529 /* called due to MCP event (on pmf): 3530 * reread new bandwidth configuration 3531 * configure FW 3532 * notify others function about the change 3533 */ 3534 static void bnx2x_config_mf_bw(struct bnx2x *bp) 3535 { 3536 if (bp->link_vars.link_up) { 3537 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); 3538 bnx2x_link_sync_notify(bp); 3539 } 3540 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3541 } 3542 3543 static void bnx2x_set_mf_bw(struct bnx2x *bp) 3544 { 3545 bnx2x_config_mf_bw(bp); 3546 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 3547 } 3548 3549 static void bnx2x_handle_eee_event(struct bnx2x *bp) 3550 { 3551 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); 3552 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 3553 } 3554 3555 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20) 3556 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25) 3557 3558 static void bnx2x_handle_drv_info_req(struct bnx2x *bp) 3559 { 3560 enum drv_info_opcode op_code; 3561 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); 3562 bool release = false; 3563 int wait; 3564 3565 /* if drv_info version supported by MFW doesn't match - send NACK */ 3566 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 3567 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3568 return; 3569 } 3570 3571 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 3572 DRV_INFO_CONTROL_OP_CODE_SHIFT; 3573 3574 /* Must prevent other flows from accessing drv_info_to_mcp */ 3575 mutex_lock(&bp->drv_info_mutex); 3576 3577 memset(&bp->slowpath->drv_info_to_mcp, 0, 3578 sizeof(union drv_info_to_mcp)); 3579 3580 switch (op_code) { 3581 case ETH_STATS_OPCODE: 3582 bnx2x_drv_info_ether_stat(bp); 3583 break; 3584 case FCOE_STATS_OPCODE: 3585 bnx2x_drv_info_fcoe_stat(bp); 3586 break; 3587 case ISCSI_STATS_OPCODE: 3588 bnx2x_drv_info_iscsi_stat(bp); 3589 break; 3590 default: 3591 /* if op code isn't supported - send NACK */ 3592 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3593 goto out; 3594 } 3595 3596 /* if we got drv_info attn from MFW then these fields are defined in 3597 * shmem2 for sure 3598 */ 3599 SHMEM2_WR(bp, drv_info_host_addr_lo, 3600 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3601 SHMEM2_WR(bp, drv_info_host_addr_hi, 3602 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3603 3604 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); 3605 3606 /* Since possible management wants both this and get_driver_version 3607 * need to wait until management notifies us it finished utilizing 3608 * the buffer. 3609 */ 3610 if (!SHMEM2_HAS(bp, mfw_drv_indication)) { 3611 DP(BNX2X_MSG_MCP, "Management does not support indication\n"); 3612 } else if (!bp->drv_info_mng_owner) { 3613 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1)); 3614 3615 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) { 3616 u32 indication = SHMEM2_RD(bp, mfw_drv_indication); 3617 3618 /* Management is done; need to clear indication */ 3619 if (indication & bit) { 3620 SHMEM2_WR(bp, mfw_drv_indication, 3621 indication & ~bit); 3622 release = true; 3623 break; 3624 } 3625 3626 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH); 3627 } 3628 } 3629 if (!release) { 3630 DP(BNX2X_MSG_MCP, "Management did not release indication\n"); 3631 bp->drv_info_mng_owner = true; 3632 } 3633 3634 out: 3635 mutex_unlock(&bp->drv_info_mutex); 3636 } 3637 3638 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format) 3639 { 3640 u8 vals[4]; 3641 int i = 0; 3642 3643 if (bnx2x_format) { 3644 i = sscanf(version, "1.%c%hhd.%hhd.%hhd", 3645 &vals[0], &vals[1], &vals[2], &vals[3]); 3646 if (i > 0) 3647 vals[0] -= '0'; 3648 } else { 3649 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd", 3650 &vals[0], &vals[1], &vals[2], &vals[3]); 3651 } 3652 3653 while (i < 4) 3654 vals[i++] = 0; 3655 3656 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3]; 3657 } 3658 3659 void bnx2x_update_mng_version(struct bnx2x *bp) 3660 { 3661 u32 iscsiver = DRV_VER_NOT_LOADED; 3662 u32 fcoever = DRV_VER_NOT_LOADED; 3663 u32 ethver = DRV_VER_NOT_LOADED; 3664 int idx = BP_FW_MB_IDX(bp); 3665 u8 *version; 3666 3667 if (!SHMEM2_HAS(bp, func_os_drv_ver)) 3668 return; 3669 3670 mutex_lock(&bp->drv_info_mutex); 3671 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */ 3672 if (bp->drv_info_mng_owner) 3673 goto out; 3674 3675 if (bp->state != BNX2X_STATE_OPEN) 3676 goto out; 3677 3678 /* Parse ethernet driver version */ 3679 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3680 if (!CNIC_LOADED(bp)) 3681 goto out; 3682 3683 /* Try getting storage driver version via cnic */ 3684 memset(&bp->slowpath->drv_info_to_mcp, 0, 3685 sizeof(union drv_info_to_mcp)); 3686 bnx2x_drv_info_iscsi_stat(bp); 3687 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version; 3688 iscsiver = bnx2x_update_mng_version_utility(version, false); 3689 3690 memset(&bp->slowpath->drv_info_to_mcp, 0, 3691 sizeof(union drv_info_to_mcp)); 3692 bnx2x_drv_info_fcoe_stat(bp); 3693 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version; 3694 fcoever = bnx2x_update_mng_version_utility(version, false); 3695 3696 out: 3697 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver); 3698 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver); 3699 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever); 3700 3701 mutex_unlock(&bp->drv_info_mutex); 3702 3703 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n", 3704 ethver, iscsiver, fcoever); 3705 } 3706 3707 static void bnx2x_oem_event(struct bnx2x *bp, u32 event) 3708 { 3709 u32 cmd_ok, cmd_fail; 3710 3711 /* sanity */ 3712 if (event & DRV_STATUS_DCC_EVENT_MASK && 3713 event & DRV_STATUS_OEM_EVENT_MASK) { 3714 BNX2X_ERR("Received simultaneous events %08x\n", event); 3715 return; 3716 } 3717 3718 if (event & DRV_STATUS_DCC_EVENT_MASK) { 3719 cmd_fail = DRV_MSG_CODE_DCC_FAILURE; 3720 cmd_ok = DRV_MSG_CODE_DCC_OK; 3721 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ { 3722 cmd_fail = DRV_MSG_CODE_OEM_FAILURE; 3723 cmd_ok = DRV_MSG_CODE_OEM_OK; 3724 } 3725 3726 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event); 3727 3728 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3729 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) { 3730 /* This is the only place besides the function initialization 3731 * where the bp->flags can change so it is done without any 3732 * locks 3733 */ 3734 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 3735 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); 3736 bp->flags |= MF_FUNC_DIS; 3737 3738 bnx2x_e1h_disable(bp); 3739 } else { 3740 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); 3741 bp->flags &= ~MF_FUNC_DIS; 3742 3743 bnx2x_e1h_enable(bp); 3744 } 3745 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3746 DRV_STATUS_OEM_DISABLE_ENABLE_PF); 3747 } 3748 3749 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3750 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) { 3751 bnx2x_config_mf_bw(bp); 3752 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3753 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION); 3754 } 3755 3756 /* Report results to MCP */ 3757 if (event) 3758 bnx2x_fw_command(bp, cmd_fail, 0); 3759 else 3760 bnx2x_fw_command(bp, cmd_ok, 0); 3761 } 3762 3763 /* must be called under the spq lock */ 3764 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) 3765 { 3766 struct eth_spe *next_spe = bp->spq_prod_bd; 3767 3768 if (bp->spq_prod_bd == bp->spq_last_bd) { 3769 bp->spq_prod_bd = bp->spq; 3770 bp->spq_prod_idx = 0; 3771 DP(BNX2X_MSG_SP, "end of spq\n"); 3772 } else { 3773 bp->spq_prod_bd++; 3774 bp->spq_prod_idx++; 3775 } 3776 return next_spe; 3777 } 3778 3779 /* must be called under the spq lock */ 3780 static void bnx2x_sp_prod_update(struct bnx2x *bp) 3781 { 3782 int func = BP_FUNC(bp); 3783 3784 /* 3785 * Make sure that BD data is updated before writing the producer: 3786 * BD data is written to the memory, the producer is read from the 3787 * memory, thus we need a full memory barrier to ensure the ordering. 3788 */ 3789 mb(); 3790 3791 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), 3792 bp->spq_prod_idx); 3793 mmiowb(); 3794 } 3795 3796 /** 3797 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ 3798 * 3799 * @cmd: command to check 3800 * @cmd_type: command type 3801 */ 3802 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) 3803 { 3804 if ((cmd_type == NONE_CONNECTION_TYPE) || 3805 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 3806 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 3807 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 3808 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 3809 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 3810 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) 3811 return true; 3812 else 3813 return false; 3814 } 3815 3816 /** 3817 * bnx2x_sp_post - place a single command on an SP ring 3818 * 3819 * @bp: driver handle 3820 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 3821 * @cid: SW CID the command is related to 3822 * @data_hi: command private data address (high 32 bits) 3823 * @data_lo: command private data address (low 32 bits) 3824 * @cmd_type: command type (e.g. NONE, ETH) 3825 * 3826 * SP data is handled as if it's always an address pair, thus data fields are 3827 * not swapped to little endian in upper functions. Instead this function swaps 3828 * data as if it's two u32 fields. 3829 */ 3830 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 3831 u32 data_hi, u32 data_lo, int cmd_type) 3832 { 3833 struct eth_spe *spe; 3834 u16 type; 3835 bool common = bnx2x_is_contextless_ramrod(command, cmd_type); 3836 3837 #ifdef BNX2X_STOP_ON_ERROR 3838 if (unlikely(bp->panic)) { 3839 BNX2X_ERR("Can't post SP when there is panic\n"); 3840 return -EIO; 3841 } 3842 #endif 3843 3844 spin_lock_bh(&bp->spq_lock); 3845 3846 if (common) { 3847 if (!atomic_read(&bp->eq_spq_left)) { 3848 BNX2X_ERR("BUG! EQ ring full!\n"); 3849 spin_unlock_bh(&bp->spq_lock); 3850 bnx2x_panic(); 3851 return -EBUSY; 3852 } 3853 } else if (!atomic_read(&bp->cq_spq_left)) { 3854 BNX2X_ERR("BUG! SPQ ring full!\n"); 3855 spin_unlock_bh(&bp->spq_lock); 3856 bnx2x_panic(); 3857 return -EBUSY; 3858 } 3859 3860 spe = bnx2x_sp_get_next(bp); 3861 3862 /* CID needs port number to be encoded int it */ 3863 spe->hdr.conn_and_cmd_data = 3864 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | 3865 HW_CID(bp, cid)); 3866 3867 /* In some cases, type may already contain the func-id 3868 * mainly in SRIOV related use cases, so we add it here only 3869 * if it's not already set. 3870 */ 3871 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) { 3872 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & 3873 SPE_HDR_CONN_TYPE; 3874 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & 3875 SPE_HDR_FUNCTION_ID); 3876 } else { 3877 type = cmd_type; 3878 } 3879 3880 spe->hdr.type = cpu_to_le16(type); 3881 3882 spe->data.update_data_addr.hi = cpu_to_le32(data_hi); 3883 spe->data.update_data_addr.lo = cpu_to_le32(data_lo); 3884 3885 /* 3886 * It's ok if the actual decrement is issued towards the memory 3887 * somewhere between the spin_lock and spin_unlock. Thus no 3888 * more explicit memory barrier is needed. 3889 */ 3890 if (common) 3891 atomic_dec(&bp->eq_spq_left); 3892 else 3893 atomic_dec(&bp->cq_spq_left); 3894 3895 DP(BNX2X_MSG_SP, 3896 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", 3897 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), 3898 (u32)(U64_LO(bp->spq_mapping) + 3899 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, 3900 HW_CID(bp, cid), data_hi, data_lo, type, 3901 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); 3902 3903 bnx2x_sp_prod_update(bp); 3904 spin_unlock_bh(&bp->spq_lock); 3905 return 0; 3906 } 3907 3908 /* acquire split MCP access lock register */ 3909 static int bnx2x_acquire_alr(struct bnx2x *bp) 3910 { 3911 u32 j, val; 3912 int rc = 0; 3913 3914 might_sleep(); 3915 for (j = 0; j < 1000; j++) { 3916 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); 3917 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); 3918 if (val & MCPR_ACCESS_LOCK_LOCK) 3919 break; 3920 3921 usleep_range(5000, 10000); 3922 } 3923 if (!(val & MCPR_ACCESS_LOCK_LOCK)) { 3924 BNX2X_ERR("Cannot acquire MCP access lock register\n"); 3925 rc = -EBUSY; 3926 } 3927 3928 return rc; 3929 } 3930 3931 /* release split MCP access lock register */ 3932 static void bnx2x_release_alr(struct bnx2x *bp) 3933 { 3934 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); 3935 } 3936 3937 #define BNX2X_DEF_SB_ATT_IDX 0x0001 3938 #define BNX2X_DEF_SB_IDX 0x0002 3939 3940 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) 3941 { 3942 struct host_sp_status_block *def_sb = bp->def_status_blk; 3943 u16 rc = 0; 3944 3945 barrier(); /* status block is written to by the chip */ 3946 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 3947 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; 3948 rc |= BNX2X_DEF_SB_ATT_IDX; 3949 } 3950 3951 if (bp->def_idx != def_sb->sp_sb.running_index) { 3952 bp->def_idx = def_sb->sp_sb.running_index; 3953 rc |= BNX2X_DEF_SB_IDX; 3954 } 3955 3956 /* Do not reorder: indices reading should complete before handling */ 3957 barrier(); 3958 return rc; 3959 } 3960 3961 /* 3962 * slow path service functions 3963 */ 3964 3965 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) 3966 { 3967 int port = BP_PORT(bp); 3968 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 3969 MISC_REG_AEU_MASK_ATTN_FUNC_0; 3970 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 3971 NIG_REG_MASK_INTERRUPT_PORT0; 3972 u32 aeu_mask; 3973 u32 nig_mask = 0; 3974 u32 reg_addr; 3975 3976 if (bp->attn_state & asserted) 3977 BNX2X_ERR("IGU ERROR\n"); 3978 3979 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 3980 aeu_mask = REG_RD(bp, aeu_addr); 3981 3982 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", 3983 aeu_mask, asserted); 3984 aeu_mask &= ~(asserted & 0x3ff); 3985 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 3986 3987 REG_WR(bp, aeu_addr, aeu_mask); 3988 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 3989 3990 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 3991 bp->attn_state |= asserted; 3992 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 3993 3994 if (asserted & ATTN_HARD_WIRED_MASK) { 3995 if (asserted & ATTN_NIG_FOR_FUNC) { 3996 3997 bnx2x_acquire_phy_lock(bp); 3998 3999 /* save nig interrupt mask */ 4000 nig_mask = REG_RD(bp, nig_int_mask_addr); 4001 4002 /* If nig_mask is not set, no need to call the update 4003 * function. 4004 */ 4005 if (nig_mask) { 4006 REG_WR(bp, nig_int_mask_addr, 0); 4007 4008 bnx2x_link_attn(bp); 4009 } 4010 4011 /* handle unicore attn? */ 4012 } 4013 if (asserted & ATTN_SW_TIMER_4_FUNC) 4014 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); 4015 4016 if (asserted & GPIO_2_FUNC) 4017 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); 4018 4019 if (asserted & GPIO_3_FUNC) 4020 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); 4021 4022 if (asserted & GPIO_4_FUNC) 4023 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); 4024 4025 if (port == 0) { 4026 if (asserted & ATTN_GENERAL_ATTN_1) { 4027 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); 4028 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 4029 } 4030 if (asserted & ATTN_GENERAL_ATTN_2) { 4031 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); 4032 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 4033 } 4034 if (asserted & ATTN_GENERAL_ATTN_3) { 4035 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); 4036 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 4037 } 4038 } else { 4039 if (asserted & ATTN_GENERAL_ATTN_4) { 4040 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); 4041 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 4042 } 4043 if (asserted & ATTN_GENERAL_ATTN_5) { 4044 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); 4045 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 4046 } 4047 if (asserted & ATTN_GENERAL_ATTN_6) { 4048 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); 4049 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 4050 } 4051 } 4052 4053 } /* if hardwired */ 4054 4055 if (bp->common.int_block == INT_BLOCK_HC) 4056 reg_addr = (HC_REG_COMMAND_REG + port*32 + 4057 COMMAND_REG_ATTN_BITS_SET); 4058 else 4059 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 4060 4061 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, 4062 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 4063 REG_WR(bp, reg_addr, asserted); 4064 4065 /* now set back the mask */ 4066 if (asserted & ATTN_NIG_FOR_FUNC) { 4067 /* Verify that IGU ack through BAR was written before restoring 4068 * NIG mask. This loop should exit after 2-3 iterations max. 4069 */ 4070 if (bp->common.int_block != INT_BLOCK_HC) { 4071 u32 cnt = 0, igu_acked; 4072 do { 4073 igu_acked = REG_RD(bp, 4074 IGU_REG_ATTENTION_ACK_BITS); 4075 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 4076 (++cnt < MAX_IGU_ATTN_ACK_TO)); 4077 if (!igu_acked) 4078 DP(NETIF_MSG_HW, 4079 "Failed to verify IGU ack on time\n"); 4080 barrier(); 4081 } 4082 REG_WR(bp, nig_int_mask_addr, nig_mask); 4083 bnx2x_release_phy_lock(bp); 4084 } 4085 } 4086 4087 static void bnx2x_fan_failure(struct bnx2x *bp) 4088 { 4089 int port = BP_PORT(bp); 4090 u32 ext_phy_config; 4091 /* mark the failure */ 4092 ext_phy_config = 4093 SHMEM_RD(bp, 4094 dev_info.port_hw_config[port].external_phy_config); 4095 4096 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 4097 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 4098 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, 4099 ext_phy_config); 4100 4101 /* log the failure */ 4102 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" 4103 "Please contact OEM Support for assistance\n"); 4104 4105 /* Schedule device reset (unload) 4106 * This is due to some boards consuming sufficient power when driver is 4107 * up to overheat if fan fails. 4108 */ 4109 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0); 4110 } 4111 4112 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) 4113 { 4114 int port = BP_PORT(bp); 4115 int reg_offset; 4116 u32 val; 4117 4118 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 4119 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 4120 4121 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 4122 4123 val = REG_RD(bp, reg_offset); 4124 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 4125 REG_WR(bp, reg_offset, val); 4126 4127 BNX2X_ERR("SPIO5 hw attention\n"); 4128 4129 /* Fan failure attention */ 4130 bnx2x_hw_reset_phy(&bp->link_params); 4131 bnx2x_fan_failure(bp); 4132 } 4133 4134 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { 4135 bnx2x_acquire_phy_lock(bp); 4136 bnx2x_handle_module_detect_int(&bp->link_params); 4137 bnx2x_release_phy_lock(bp); 4138 } 4139 4140 if (attn & HW_INTERRUT_ASSERT_SET_0) { 4141 4142 val = REG_RD(bp, reg_offset); 4143 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 4144 REG_WR(bp, reg_offset, val); 4145 4146 BNX2X_ERR("FATAL HW block attention set0 0x%x\n", 4147 (u32)(attn & HW_INTERRUT_ASSERT_SET_0)); 4148 bnx2x_panic(); 4149 } 4150 } 4151 4152 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) 4153 { 4154 u32 val; 4155 4156 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 4157 4158 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); 4159 BNX2X_ERR("DB hw attention 0x%x\n", val); 4160 /* DORQ discard attention */ 4161 if (val & 0x2) 4162 BNX2X_ERR("FATAL error from DORQ\n"); 4163 } 4164 4165 if (attn & HW_INTERRUT_ASSERT_SET_1) { 4166 4167 int port = BP_PORT(bp); 4168 int reg_offset; 4169 4170 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 4171 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 4172 4173 val = REG_RD(bp, reg_offset); 4174 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 4175 REG_WR(bp, reg_offset, val); 4176 4177 BNX2X_ERR("FATAL HW block attention set1 0x%x\n", 4178 (u32)(attn & HW_INTERRUT_ASSERT_SET_1)); 4179 bnx2x_panic(); 4180 } 4181 } 4182 4183 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) 4184 { 4185 u32 val; 4186 4187 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 4188 4189 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); 4190 BNX2X_ERR("CFC hw attention 0x%x\n", val); 4191 /* CFC error attention */ 4192 if (val & 0x2) 4193 BNX2X_ERR("FATAL error from CFC\n"); 4194 } 4195 4196 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 4197 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); 4198 BNX2X_ERR("PXP hw attention-0 0x%x\n", val); 4199 /* RQ_USDMDP_FIFO_OVERFLOW */ 4200 if (val & 0x18000) 4201 BNX2X_ERR("FATAL error from PXP\n"); 4202 4203 if (!CHIP_IS_E1x(bp)) { 4204 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); 4205 BNX2X_ERR("PXP hw attention-1 0x%x\n", val); 4206 } 4207 } 4208 4209 if (attn & HW_INTERRUT_ASSERT_SET_2) { 4210 4211 int port = BP_PORT(bp); 4212 int reg_offset; 4213 4214 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 4215 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 4216 4217 val = REG_RD(bp, reg_offset); 4218 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 4219 REG_WR(bp, reg_offset, val); 4220 4221 BNX2X_ERR("FATAL HW block attention set2 0x%x\n", 4222 (u32)(attn & HW_INTERRUT_ASSERT_SET_2)); 4223 bnx2x_panic(); 4224 } 4225 } 4226 4227 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) 4228 { 4229 u32 val; 4230 4231 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 4232 4233 if (attn & BNX2X_PMF_LINK_ASSERT) { 4234 int func = BP_FUNC(bp); 4235 4236 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 4237 bnx2x_read_mf_cfg(bp); 4238 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, 4239 func_mf_config[BP_ABS_FUNC(bp)].config); 4240 val = SHMEM_RD(bp, 4241 func_mb[BP_FW_MB_IDX(bp)].drv_status); 4242 4243 if (val & (DRV_STATUS_DCC_EVENT_MASK | 4244 DRV_STATUS_OEM_EVENT_MASK)) 4245 bnx2x_oem_event(bp, 4246 (val & (DRV_STATUS_DCC_EVENT_MASK | 4247 DRV_STATUS_OEM_EVENT_MASK))); 4248 4249 if (val & DRV_STATUS_SET_MF_BW) 4250 bnx2x_set_mf_bw(bp); 4251 4252 if (val & DRV_STATUS_DRV_INFO_REQ) 4253 bnx2x_handle_drv_info_req(bp); 4254 4255 if (val & DRV_STATUS_VF_DISABLED) 4256 bnx2x_schedule_iov_task(bp, 4257 BNX2X_IOV_HANDLE_FLR); 4258 4259 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) 4260 bnx2x_pmf_update(bp); 4261 4262 if (bp->port.pmf && 4263 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 4264 bp->dcbx_enabled > 0) 4265 /* start dcbx state machine */ 4266 bnx2x_dcbx_set_params(bp, 4267 BNX2X_DCBX_STATE_NEG_RECEIVED); 4268 if (val & DRV_STATUS_AFEX_EVENT_MASK) 4269 bnx2x_handle_afex_cmd(bp, 4270 val & DRV_STATUS_AFEX_EVENT_MASK); 4271 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 4272 bnx2x_handle_eee_event(bp); 4273 4274 if (val & DRV_STATUS_OEM_UPDATE_SVID) 4275 bnx2x_handle_update_svid_cmd(bp); 4276 4277 if (bp->link_vars.periodic_flags & 4278 PERIODIC_FLAGS_LINK_EVENT) { 4279 /* sync with link */ 4280 bnx2x_acquire_phy_lock(bp); 4281 bp->link_vars.periodic_flags &= 4282 ~PERIODIC_FLAGS_LINK_EVENT; 4283 bnx2x_release_phy_lock(bp); 4284 if (IS_MF(bp)) 4285 bnx2x_link_sync_notify(bp); 4286 bnx2x_link_report(bp); 4287 } 4288 /* Always call it here: bnx2x_link_report() will 4289 * prevent the link indication duplication. 4290 */ 4291 bnx2x__link_status_update(bp); 4292 } else if (attn & BNX2X_MC_ASSERT_BITS) { 4293 4294 BNX2X_ERR("MC assert!\n"); 4295 bnx2x_mc_assert(bp); 4296 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); 4297 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); 4298 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); 4299 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); 4300 bnx2x_panic(); 4301 4302 } else if (attn & BNX2X_MCP_ASSERT) { 4303 4304 BNX2X_ERR("MCP assert!\n"); 4305 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); 4306 bnx2x_fw_dump(bp); 4307 4308 } else 4309 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); 4310 } 4311 4312 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 4313 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); 4314 if (attn & BNX2X_GRC_TIMEOUT) { 4315 val = CHIP_IS_E1(bp) ? 0 : 4316 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); 4317 BNX2X_ERR("GRC time-out 0x%08x\n", val); 4318 } 4319 if (attn & BNX2X_GRC_RSV) { 4320 val = CHIP_IS_E1(bp) ? 0 : 4321 REG_RD(bp, MISC_REG_GRC_RSV_ATTN); 4322 BNX2X_ERR("GRC reserved 0x%08x\n", val); 4323 } 4324 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 4325 } 4326 } 4327 4328 /* 4329 * Bits map: 4330 * 0-7 - Engine0 load counter. 4331 * 8-15 - Engine1 load counter. 4332 * 16 - Engine0 RESET_IN_PROGRESS bit. 4333 * 17 - Engine1 RESET_IN_PROGRESS bit. 4334 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function 4335 * on the engine 4336 * 19 - Engine1 ONE_IS_LOADED. 4337 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 4338 * leader to complete (check for both RESET_IN_PROGRESS bits and not for 4339 * just the one belonging to its engine). 4340 * 4341 */ 4342 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 4343 4344 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff 4345 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 4346 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 4347 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 4348 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 4349 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 4350 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 4351 4352 /* 4353 * Set the GLOBAL_RESET bit. 4354 * 4355 * Should be run under rtnl lock 4356 */ 4357 void bnx2x_set_reset_global(struct bnx2x *bp) 4358 { 4359 u32 val; 4360 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4361 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4362 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); 4363 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4364 } 4365 4366 /* 4367 * Clear the GLOBAL_RESET bit. 4368 * 4369 * Should be run under rtnl lock 4370 */ 4371 static void bnx2x_clear_reset_global(struct bnx2x *bp) 4372 { 4373 u32 val; 4374 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4375 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4376 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); 4377 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4378 } 4379 4380 /* 4381 * Checks the GLOBAL_RESET bit. 4382 * 4383 * should be run under rtnl lock 4384 */ 4385 static bool bnx2x_reset_is_global(struct bnx2x *bp) 4386 { 4387 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4388 4389 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); 4390 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; 4391 } 4392 4393 /* 4394 * Clear RESET_IN_PROGRESS bit for the current engine. 4395 * 4396 * Should be run under rtnl lock 4397 */ 4398 static void bnx2x_set_reset_done(struct bnx2x *bp) 4399 { 4400 u32 val; 4401 u32 bit = BP_PATH(bp) ? 4402 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4403 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4404 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4405 4406 /* Clear the bit */ 4407 val &= ~bit; 4408 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4409 4410 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4411 } 4412 4413 /* 4414 * Set RESET_IN_PROGRESS for the current engine. 4415 * 4416 * should be run under rtnl lock 4417 */ 4418 void bnx2x_set_reset_in_progress(struct bnx2x *bp) 4419 { 4420 u32 val; 4421 u32 bit = BP_PATH(bp) ? 4422 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4423 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4424 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4425 4426 /* Set the bit */ 4427 val |= bit; 4428 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4429 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4430 } 4431 4432 /* 4433 * Checks the RESET_IN_PROGRESS bit for the given engine. 4434 * should be run under rtnl lock 4435 */ 4436 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) 4437 { 4438 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4439 u32 bit = engine ? 4440 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4441 4442 /* return false if bit is set */ 4443 return (val & bit) ? false : true; 4444 } 4445 4446 /* 4447 * set pf load for the current pf. 4448 * 4449 * should be run under rtnl lock 4450 */ 4451 void bnx2x_set_pf_load(struct bnx2x *bp) 4452 { 4453 u32 val1, val; 4454 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4455 BNX2X_PATH0_LOAD_CNT_MASK; 4456 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4457 BNX2X_PATH0_LOAD_CNT_SHIFT; 4458 4459 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4460 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4461 4462 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); 4463 4464 /* get the current counter value */ 4465 val1 = (val & mask) >> shift; 4466 4467 /* set bit of that PF */ 4468 val1 |= (1 << bp->pf_num); 4469 4470 /* clear the old value */ 4471 val &= ~mask; 4472 4473 /* set the new one */ 4474 val |= ((val1 << shift) & mask); 4475 4476 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4477 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4478 } 4479 4480 /** 4481 * bnx2x_clear_pf_load - clear pf load mark 4482 * 4483 * @bp: driver handle 4484 * 4485 * Should be run under rtnl lock. 4486 * Decrements the load counter for the current engine. Returns 4487 * whether other functions are still loaded 4488 */ 4489 bool bnx2x_clear_pf_load(struct bnx2x *bp) 4490 { 4491 u32 val1, val; 4492 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4493 BNX2X_PATH0_LOAD_CNT_MASK; 4494 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4495 BNX2X_PATH0_LOAD_CNT_SHIFT; 4496 4497 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4498 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4499 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); 4500 4501 /* get the current counter value */ 4502 val1 = (val & mask) >> shift; 4503 4504 /* clear bit of that PF */ 4505 val1 &= ~(1 << bp->pf_num); 4506 4507 /* clear the old value */ 4508 val &= ~mask; 4509 4510 /* set the new one */ 4511 val |= ((val1 << shift) & mask); 4512 4513 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4514 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4515 return val1 != 0; 4516 } 4517 4518 /* 4519 * Read the load status for the current engine. 4520 * 4521 * should be run under rtnl lock 4522 */ 4523 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) 4524 { 4525 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : 4526 BNX2X_PATH0_LOAD_CNT_MASK); 4527 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4528 BNX2X_PATH0_LOAD_CNT_SHIFT); 4529 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4530 4531 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); 4532 4533 val = (val & mask) >> shift; 4534 4535 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", 4536 engine, val); 4537 4538 return val != 0; 4539 } 4540 4541 static void _print_parity(struct bnx2x *bp, u32 reg) 4542 { 4543 pr_cont(" [0x%08x] ", REG_RD(bp, reg)); 4544 } 4545 4546 static void _print_next_block(int idx, const char *blk) 4547 { 4548 pr_cont("%s%s", idx ? ", " : "", blk); 4549 } 4550 4551 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig, 4552 int *par_num, bool print) 4553 { 4554 u32 cur_bit; 4555 bool res; 4556 int i; 4557 4558 res = false; 4559 4560 for (i = 0; sig; i++) { 4561 cur_bit = (0x1UL << i); 4562 if (sig & cur_bit) { 4563 res |= true; /* Each bit is real error! */ 4564 4565 if (print) { 4566 switch (cur_bit) { 4567 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 4568 _print_next_block((*par_num)++, "BRB"); 4569 _print_parity(bp, 4570 BRB1_REG_BRB1_PRTY_STS); 4571 break; 4572 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 4573 _print_next_block((*par_num)++, 4574 "PARSER"); 4575 _print_parity(bp, PRS_REG_PRS_PRTY_STS); 4576 break; 4577 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 4578 _print_next_block((*par_num)++, "TSDM"); 4579 _print_parity(bp, 4580 TSDM_REG_TSDM_PRTY_STS); 4581 break; 4582 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 4583 _print_next_block((*par_num)++, 4584 "SEARCHER"); 4585 _print_parity(bp, SRC_REG_SRC_PRTY_STS); 4586 break; 4587 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 4588 _print_next_block((*par_num)++, "TCM"); 4589 _print_parity(bp, TCM_REG_TCM_PRTY_STS); 4590 break; 4591 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 4592 _print_next_block((*par_num)++, 4593 "TSEMI"); 4594 _print_parity(bp, 4595 TSEM_REG_TSEM_PRTY_STS_0); 4596 _print_parity(bp, 4597 TSEM_REG_TSEM_PRTY_STS_1); 4598 break; 4599 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 4600 _print_next_block((*par_num)++, "XPB"); 4601 _print_parity(bp, GRCBASE_XPB + 4602 PB_REG_PB_PRTY_STS); 4603 break; 4604 } 4605 } 4606 4607 /* Clear the bit */ 4608 sig &= ~cur_bit; 4609 } 4610 } 4611 4612 return res; 4613 } 4614 4615 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig, 4616 int *par_num, bool *global, 4617 bool print) 4618 { 4619 u32 cur_bit; 4620 bool res; 4621 int i; 4622 4623 res = false; 4624 4625 for (i = 0; sig; i++) { 4626 cur_bit = (0x1UL << i); 4627 if (sig & cur_bit) { 4628 res |= true; /* Each bit is real error! */ 4629 switch (cur_bit) { 4630 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 4631 if (print) { 4632 _print_next_block((*par_num)++, "PBF"); 4633 _print_parity(bp, PBF_REG_PBF_PRTY_STS); 4634 } 4635 break; 4636 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 4637 if (print) { 4638 _print_next_block((*par_num)++, "QM"); 4639 _print_parity(bp, QM_REG_QM_PRTY_STS); 4640 } 4641 break; 4642 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 4643 if (print) { 4644 _print_next_block((*par_num)++, "TM"); 4645 _print_parity(bp, TM_REG_TM_PRTY_STS); 4646 } 4647 break; 4648 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 4649 if (print) { 4650 _print_next_block((*par_num)++, "XSDM"); 4651 _print_parity(bp, 4652 XSDM_REG_XSDM_PRTY_STS); 4653 } 4654 break; 4655 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 4656 if (print) { 4657 _print_next_block((*par_num)++, "XCM"); 4658 _print_parity(bp, XCM_REG_XCM_PRTY_STS); 4659 } 4660 break; 4661 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 4662 if (print) { 4663 _print_next_block((*par_num)++, 4664 "XSEMI"); 4665 _print_parity(bp, 4666 XSEM_REG_XSEM_PRTY_STS_0); 4667 _print_parity(bp, 4668 XSEM_REG_XSEM_PRTY_STS_1); 4669 } 4670 break; 4671 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 4672 if (print) { 4673 _print_next_block((*par_num)++, 4674 "DOORBELLQ"); 4675 _print_parity(bp, 4676 DORQ_REG_DORQ_PRTY_STS); 4677 } 4678 break; 4679 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 4680 if (print) { 4681 _print_next_block((*par_num)++, "NIG"); 4682 if (CHIP_IS_E1x(bp)) { 4683 _print_parity(bp, 4684 NIG_REG_NIG_PRTY_STS); 4685 } else { 4686 _print_parity(bp, 4687 NIG_REG_NIG_PRTY_STS_0); 4688 _print_parity(bp, 4689 NIG_REG_NIG_PRTY_STS_1); 4690 } 4691 } 4692 break; 4693 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 4694 if (print) 4695 _print_next_block((*par_num)++, 4696 "VAUX PCI CORE"); 4697 *global = true; 4698 break; 4699 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 4700 if (print) { 4701 _print_next_block((*par_num)++, 4702 "DEBUG"); 4703 _print_parity(bp, DBG_REG_DBG_PRTY_STS); 4704 } 4705 break; 4706 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 4707 if (print) { 4708 _print_next_block((*par_num)++, "USDM"); 4709 _print_parity(bp, 4710 USDM_REG_USDM_PRTY_STS); 4711 } 4712 break; 4713 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 4714 if (print) { 4715 _print_next_block((*par_num)++, "UCM"); 4716 _print_parity(bp, UCM_REG_UCM_PRTY_STS); 4717 } 4718 break; 4719 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 4720 if (print) { 4721 _print_next_block((*par_num)++, 4722 "USEMI"); 4723 _print_parity(bp, 4724 USEM_REG_USEM_PRTY_STS_0); 4725 _print_parity(bp, 4726 USEM_REG_USEM_PRTY_STS_1); 4727 } 4728 break; 4729 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 4730 if (print) { 4731 _print_next_block((*par_num)++, "UPB"); 4732 _print_parity(bp, GRCBASE_UPB + 4733 PB_REG_PB_PRTY_STS); 4734 } 4735 break; 4736 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 4737 if (print) { 4738 _print_next_block((*par_num)++, "CSDM"); 4739 _print_parity(bp, 4740 CSDM_REG_CSDM_PRTY_STS); 4741 } 4742 break; 4743 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 4744 if (print) { 4745 _print_next_block((*par_num)++, "CCM"); 4746 _print_parity(bp, CCM_REG_CCM_PRTY_STS); 4747 } 4748 break; 4749 } 4750 4751 /* Clear the bit */ 4752 sig &= ~cur_bit; 4753 } 4754 } 4755 4756 return res; 4757 } 4758 4759 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig, 4760 int *par_num, bool print) 4761 { 4762 u32 cur_bit; 4763 bool res; 4764 int i; 4765 4766 res = false; 4767 4768 for (i = 0; sig; i++) { 4769 cur_bit = (0x1UL << i); 4770 if (sig & cur_bit) { 4771 res = true; /* Each bit is real error! */ 4772 if (print) { 4773 switch (cur_bit) { 4774 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 4775 _print_next_block((*par_num)++, 4776 "CSEMI"); 4777 _print_parity(bp, 4778 CSEM_REG_CSEM_PRTY_STS_0); 4779 _print_parity(bp, 4780 CSEM_REG_CSEM_PRTY_STS_1); 4781 break; 4782 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 4783 _print_next_block((*par_num)++, "PXP"); 4784 _print_parity(bp, PXP_REG_PXP_PRTY_STS); 4785 _print_parity(bp, 4786 PXP2_REG_PXP2_PRTY_STS_0); 4787 _print_parity(bp, 4788 PXP2_REG_PXP2_PRTY_STS_1); 4789 break; 4790 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 4791 _print_next_block((*par_num)++, 4792 "PXPPCICLOCKCLIENT"); 4793 break; 4794 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 4795 _print_next_block((*par_num)++, "CFC"); 4796 _print_parity(bp, 4797 CFC_REG_CFC_PRTY_STS); 4798 break; 4799 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 4800 _print_next_block((*par_num)++, "CDU"); 4801 _print_parity(bp, CDU_REG_CDU_PRTY_STS); 4802 break; 4803 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 4804 _print_next_block((*par_num)++, "DMAE"); 4805 _print_parity(bp, 4806 DMAE_REG_DMAE_PRTY_STS); 4807 break; 4808 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 4809 _print_next_block((*par_num)++, "IGU"); 4810 if (CHIP_IS_E1x(bp)) 4811 _print_parity(bp, 4812 HC_REG_HC_PRTY_STS); 4813 else 4814 _print_parity(bp, 4815 IGU_REG_IGU_PRTY_STS); 4816 break; 4817 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 4818 _print_next_block((*par_num)++, "MISC"); 4819 _print_parity(bp, 4820 MISC_REG_MISC_PRTY_STS); 4821 break; 4822 } 4823 } 4824 4825 /* Clear the bit */ 4826 sig &= ~cur_bit; 4827 } 4828 } 4829 4830 return res; 4831 } 4832 4833 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig, 4834 int *par_num, bool *global, 4835 bool print) 4836 { 4837 bool res = false; 4838 u32 cur_bit; 4839 int i; 4840 4841 for (i = 0; sig; i++) { 4842 cur_bit = (0x1UL << i); 4843 if (sig & cur_bit) { 4844 switch (cur_bit) { 4845 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 4846 if (print) 4847 _print_next_block((*par_num)++, 4848 "MCP ROM"); 4849 *global = true; 4850 res = true; 4851 break; 4852 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 4853 if (print) 4854 _print_next_block((*par_num)++, 4855 "MCP UMP RX"); 4856 *global = true; 4857 res = true; 4858 break; 4859 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 4860 if (print) 4861 _print_next_block((*par_num)++, 4862 "MCP UMP TX"); 4863 *global = true; 4864 res = true; 4865 break; 4866 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 4867 if (print) 4868 _print_next_block((*par_num)++, 4869 "MCP SCPAD"); 4870 /* clear latched SCPAD PATIRY from MCP */ 4871 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 4872 1UL << 10); 4873 break; 4874 } 4875 4876 /* Clear the bit */ 4877 sig &= ~cur_bit; 4878 } 4879 } 4880 4881 return res; 4882 } 4883 4884 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig, 4885 int *par_num, bool print) 4886 { 4887 u32 cur_bit; 4888 bool res; 4889 int i; 4890 4891 res = false; 4892 4893 for (i = 0; sig; i++) { 4894 cur_bit = (0x1UL << i); 4895 if (sig & cur_bit) { 4896 res = true; /* Each bit is real error! */ 4897 if (print) { 4898 switch (cur_bit) { 4899 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 4900 _print_next_block((*par_num)++, 4901 "PGLUE_B"); 4902 _print_parity(bp, 4903 PGLUE_B_REG_PGLUE_B_PRTY_STS); 4904 break; 4905 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 4906 _print_next_block((*par_num)++, "ATC"); 4907 _print_parity(bp, 4908 ATC_REG_ATC_PRTY_STS); 4909 break; 4910 } 4911 } 4912 /* Clear the bit */ 4913 sig &= ~cur_bit; 4914 } 4915 } 4916 4917 return res; 4918 } 4919 4920 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, 4921 u32 *sig) 4922 { 4923 bool res = false; 4924 4925 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 4926 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4927 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4928 (sig[3] & HW_PRTY_ASSERT_SET_3) || 4929 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 4930 int par_num = 0; 4931 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" 4932 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 4933 sig[0] & HW_PRTY_ASSERT_SET_0, 4934 sig[1] & HW_PRTY_ASSERT_SET_1, 4935 sig[2] & HW_PRTY_ASSERT_SET_2, 4936 sig[3] & HW_PRTY_ASSERT_SET_3, 4937 sig[4] & HW_PRTY_ASSERT_SET_4); 4938 if (print) 4939 netdev_err(bp->dev, 4940 "Parity errors detected in blocks: "); 4941 res |= bnx2x_check_blocks_with_parity0(bp, 4942 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print); 4943 res |= bnx2x_check_blocks_with_parity1(bp, 4944 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print); 4945 res |= bnx2x_check_blocks_with_parity2(bp, 4946 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print); 4947 res |= bnx2x_check_blocks_with_parity3(bp, 4948 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print); 4949 res |= bnx2x_check_blocks_with_parity4(bp, 4950 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print); 4951 4952 if (print) 4953 pr_cont("\n"); 4954 } 4955 4956 return res; 4957 } 4958 4959 /** 4960 * bnx2x_chk_parity_attn - checks for parity attentions. 4961 * 4962 * @bp: driver handle 4963 * @global: true if there was a global attention 4964 * @print: show parity attention in syslog 4965 */ 4966 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) 4967 { 4968 struct attn_route attn = { {0} }; 4969 int port = BP_PORT(bp); 4970 4971 attn.sig[0] = REG_RD(bp, 4972 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 4973 port*4); 4974 attn.sig[1] = REG_RD(bp, 4975 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + 4976 port*4); 4977 attn.sig[2] = REG_RD(bp, 4978 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + 4979 port*4); 4980 attn.sig[3] = REG_RD(bp, 4981 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + 4982 port*4); 4983 /* Since MCP attentions can't be disabled inside the block, we need to 4984 * read AEU registers to see whether they're currently disabled 4985 */ 4986 attn.sig[3] &= ((REG_RD(bp, 4987 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 4988 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) & 4989 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 4990 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 4991 4992 if (!CHIP_IS_E1x(bp)) 4993 attn.sig[4] = REG_RD(bp, 4994 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + 4995 port*4); 4996 4997 return bnx2x_parity_attn(bp, global, print, attn.sig); 4998 } 4999 5000 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) 5001 { 5002 u32 val; 5003 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 5004 5005 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 5006 BNX2X_ERR("PGLUE hw attention 0x%x\n", val); 5007 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 5008 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 5009 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 5010 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 5011 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 5012 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 5013 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 5014 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 5015 if (val & 5016 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 5017 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 5018 if (val & 5019 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 5020 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 5021 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 5022 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 5023 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 5024 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 5025 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 5026 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 5027 } 5028 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 5029 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); 5030 BNX2X_ERR("ATC hw attention 0x%x\n", val); 5031 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 5032 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 5033 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 5034 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 5035 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 5036 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 5037 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 5038 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 5039 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 5040 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 5041 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 5042 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 5043 } 5044 5045 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5046 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 5047 BNX2X_ERR("FATAL parity attention set4 0x%x\n", 5048 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5049 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 5050 } 5051 } 5052 5053 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) 5054 { 5055 struct attn_route attn, *group_mask; 5056 int port = BP_PORT(bp); 5057 int index; 5058 u32 reg_addr; 5059 u32 val; 5060 u32 aeu_mask; 5061 bool global = false; 5062 5063 /* need to take HW lock because MCP or other port might also 5064 try to handle this event */ 5065 bnx2x_acquire_alr(bp); 5066 5067 if (bnx2x_chk_parity_attn(bp, &global, true)) { 5068 #ifndef BNX2X_STOP_ON_ERROR 5069 bp->recovery_state = BNX2X_RECOVERY_INIT; 5070 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5071 /* Disable HW interrupts */ 5072 bnx2x_int_disable(bp); 5073 /* In case of parity errors don't handle attentions so that 5074 * other function would "see" parity errors. 5075 */ 5076 #else 5077 bnx2x_panic(); 5078 #endif 5079 bnx2x_release_alr(bp); 5080 return; 5081 } 5082 5083 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 5084 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 5085 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 5086 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 5087 if (!CHIP_IS_E1x(bp)) 5088 attn.sig[4] = 5089 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 5090 else 5091 attn.sig[4] = 0; 5092 5093 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", 5094 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 5095 5096 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 5097 if (deasserted & (1 << index)) { 5098 group_mask = &bp->attn_group[index]; 5099 5100 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", 5101 index, 5102 group_mask->sig[0], group_mask->sig[1], 5103 group_mask->sig[2], group_mask->sig[3], 5104 group_mask->sig[4]); 5105 5106 bnx2x_attn_int_deasserted4(bp, 5107 attn.sig[4] & group_mask->sig[4]); 5108 bnx2x_attn_int_deasserted3(bp, 5109 attn.sig[3] & group_mask->sig[3]); 5110 bnx2x_attn_int_deasserted1(bp, 5111 attn.sig[1] & group_mask->sig[1]); 5112 bnx2x_attn_int_deasserted2(bp, 5113 attn.sig[2] & group_mask->sig[2]); 5114 bnx2x_attn_int_deasserted0(bp, 5115 attn.sig[0] & group_mask->sig[0]); 5116 } 5117 } 5118 5119 bnx2x_release_alr(bp); 5120 5121 if (bp->common.int_block == INT_BLOCK_HC) 5122 reg_addr = (HC_REG_COMMAND_REG + port*32 + 5123 COMMAND_REG_ATTN_BITS_CLR); 5124 else 5125 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 5126 5127 val = ~deasserted; 5128 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, 5129 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 5130 REG_WR(bp, reg_addr, val); 5131 5132 if (~bp->attn_state & deasserted) 5133 BNX2X_ERR("IGU ERROR\n"); 5134 5135 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 5136 MISC_REG_AEU_MASK_ATTN_FUNC_0; 5137 5138 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5139 aeu_mask = REG_RD(bp, reg_addr); 5140 5141 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", 5142 aeu_mask, deasserted); 5143 aeu_mask |= (deasserted & 0x3ff); 5144 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 5145 5146 REG_WR(bp, reg_addr, aeu_mask); 5147 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5148 5149 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 5150 bp->attn_state &= ~deasserted; 5151 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 5152 } 5153 5154 static void bnx2x_attn_int(struct bnx2x *bp) 5155 { 5156 /* read local copy of bits */ 5157 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. 5158 attn_bits); 5159 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. 5160 attn_bits_ack); 5161 u32 attn_state = bp->attn_state; 5162 5163 /* look for changed bits */ 5164 u32 asserted = attn_bits & ~attn_ack & ~attn_state; 5165 u32 deasserted = ~attn_bits & attn_ack & attn_state; 5166 5167 DP(NETIF_MSG_HW, 5168 "attn_bits %x attn_ack %x asserted %x deasserted %x\n", 5169 attn_bits, attn_ack, asserted, deasserted); 5170 5171 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) 5172 BNX2X_ERR("BAD attention state\n"); 5173 5174 /* handle bits that were raised */ 5175 if (asserted) 5176 bnx2x_attn_int_asserted(bp, asserted); 5177 5178 if (deasserted) 5179 bnx2x_attn_int_deasserted(bp, deasserted); 5180 } 5181 5182 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, 5183 u16 index, u8 op, u8 update) 5184 { 5185 u32 igu_addr = bp->igu_base_addr; 5186 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 5187 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, 5188 igu_addr); 5189 } 5190 5191 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) 5192 { 5193 /* No memory barriers */ 5194 storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); 5195 mmiowb(); /* keep prod updates ordered */ 5196 } 5197 5198 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, 5199 union event_ring_elem *elem) 5200 { 5201 u8 err = elem->message.error; 5202 5203 if (!bp->cnic_eth_dev.starting_cid || 5204 (cid < bp->cnic_eth_dev.starting_cid && 5205 cid != bp->cnic_eth_dev.iscsi_l2_cid)) 5206 return 1; 5207 5208 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); 5209 5210 if (unlikely(err)) { 5211 5212 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", 5213 cid); 5214 bnx2x_panic_dump(bp, false); 5215 } 5216 bnx2x_cnic_cfc_comp(bp, cid, err); 5217 return 0; 5218 } 5219 5220 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) 5221 { 5222 struct bnx2x_mcast_ramrod_params rparam; 5223 int rc; 5224 5225 memset(&rparam, 0, sizeof(rparam)); 5226 5227 rparam.mcast_obj = &bp->mcast_obj; 5228 5229 netif_addr_lock_bh(bp->dev); 5230 5231 /* Clear pending state for the last command */ 5232 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); 5233 5234 /* If there are pending mcast commands - send them */ 5235 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { 5236 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 5237 if (rc < 0) 5238 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 5239 rc); 5240 } 5241 5242 netif_addr_unlock_bh(bp->dev); 5243 } 5244 5245 static void bnx2x_handle_classification_eqe(struct bnx2x *bp, 5246 union event_ring_elem *elem) 5247 { 5248 unsigned long ramrod_flags = 0; 5249 int rc = 0; 5250 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK; 5251 struct bnx2x_vlan_mac_obj *vlan_mac_obj; 5252 5253 /* Always push next commands out, don't wait here */ 5254 __set_bit(RAMROD_CONT, &ramrod_flags); 5255 5256 switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo) 5257 >> BNX2X_SWCID_SHIFT) { 5258 case BNX2X_FILTER_MAC_PENDING: 5259 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); 5260 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) 5261 vlan_mac_obj = &bp->iscsi_l2_mac_obj; 5262 else 5263 vlan_mac_obj = &bp->sp_objs[cid].mac_obj; 5264 5265 break; 5266 case BNX2X_FILTER_MCAST_PENDING: 5267 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); 5268 /* This is only relevant for 57710 where multicast MACs are 5269 * configured as unicast MACs using the same ramrod. 5270 */ 5271 bnx2x_handle_mcast_eqe(bp); 5272 return; 5273 default: 5274 BNX2X_ERR("Unsupported classification command: %d\n", 5275 elem->message.data.eth_event.echo); 5276 return; 5277 } 5278 5279 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); 5280 5281 if (rc < 0) 5282 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 5283 else if (rc > 0) 5284 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); 5285 } 5286 5287 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); 5288 5289 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) 5290 { 5291 netif_addr_lock_bh(bp->dev); 5292 5293 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5294 5295 /* Send rx_mode command again if was requested */ 5296 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) 5297 bnx2x_set_storm_rx_mode(bp); 5298 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, 5299 &bp->sp_state)) 5300 bnx2x_set_iscsi_eth_rx_mode(bp, true); 5301 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, 5302 &bp->sp_state)) 5303 bnx2x_set_iscsi_eth_rx_mode(bp, false); 5304 5305 netif_addr_unlock_bh(bp->dev); 5306 } 5307 5308 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, 5309 union event_ring_elem *elem) 5310 { 5311 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { 5312 DP(BNX2X_MSG_SP, 5313 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", 5314 elem->message.data.vif_list_event.func_bit_map); 5315 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, 5316 elem->message.data.vif_list_event.func_bit_map); 5317 } else if (elem->message.data.vif_list_event.echo == 5318 VIF_LIST_RULE_SET) { 5319 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); 5320 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); 5321 } 5322 } 5323 5324 /* called with rtnl_lock */ 5325 static void bnx2x_after_function_update(struct bnx2x *bp) 5326 { 5327 int q, rc; 5328 struct bnx2x_fastpath *fp; 5329 struct bnx2x_queue_state_params queue_params = {NULL}; 5330 struct bnx2x_queue_update_params *q_update_params = 5331 &queue_params.params.update; 5332 5333 /* Send Q update command with afex vlan removal values for all Qs */ 5334 queue_params.cmd = BNX2X_Q_CMD_UPDATE; 5335 5336 /* set silent vlan removal values according to vlan mode */ 5337 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 5338 &q_update_params->update_flags); 5339 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 5340 &q_update_params->update_flags); 5341 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5342 5343 /* in access mode mark mask and value are 0 to strip all vlans */ 5344 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { 5345 q_update_params->silent_removal_value = 0; 5346 q_update_params->silent_removal_mask = 0; 5347 } else { 5348 q_update_params->silent_removal_value = 5349 (bp->afex_def_vlan_tag & VLAN_VID_MASK); 5350 q_update_params->silent_removal_mask = VLAN_VID_MASK; 5351 } 5352 5353 for_each_eth_queue(bp, q) { 5354 /* Set the appropriate Queue object */ 5355 fp = &bp->fp[q]; 5356 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5357 5358 /* send the ramrod */ 5359 rc = bnx2x_queue_state_change(bp, &queue_params); 5360 if (rc < 0) 5361 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5362 q); 5363 } 5364 5365 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { 5366 fp = &bp->fp[FCOE_IDX(bp)]; 5367 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5368 5369 /* clear pending completion bit */ 5370 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5371 5372 /* mark latest Q bit */ 5373 smp_mb__before_atomic(); 5374 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 5375 smp_mb__after_atomic(); 5376 5377 /* send Q update ramrod for FCoE Q */ 5378 rc = bnx2x_queue_state_change(bp, &queue_params); 5379 if (rc < 0) 5380 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5381 q); 5382 } else { 5383 /* If no FCoE ring - ACK MCP now */ 5384 bnx2x_link_report(bp); 5385 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5386 } 5387 } 5388 5389 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( 5390 struct bnx2x *bp, u32 cid) 5391 { 5392 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); 5393 5394 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) 5395 return &bnx2x_fcoe_sp_obj(bp, q_obj); 5396 else 5397 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; 5398 } 5399 5400 static void bnx2x_eq_int(struct bnx2x *bp) 5401 { 5402 u16 hw_cons, sw_cons, sw_prod; 5403 union event_ring_elem *elem; 5404 u8 echo; 5405 u32 cid; 5406 u8 opcode; 5407 int rc, spqe_cnt = 0; 5408 struct bnx2x_queue_sp_obj *q_obj; 5409 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; 5410 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; 5411 5412 hw_cons = le16_to_cpu(*bp->eq_cons_sb); 5413 5414 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. 5415 * when we get the next-page we need to adjust so the loop 5416 * condition below will be met. The next element is the size of a 5417 * regular element and hence incrementing by 1 5418 */ 5419 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) 5420 hw_cons++; 5421 5422 /* This function may never run in parallel with itself for a 5423 * specific bp, thus there is no need in "paired" read memory 5424 * barrier here. 5425 */ 5426 sw_cons = bp->eq_cons; 5427 sw_prod = bp->eq_prod; 5428 5429 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", 5430 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); 5431 5432 for (; sw_cons != hw_cons; 5433 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 5434 5435 elem = &bp->eq_ring[EQ_DESC(sw_cons)]; 5436 5437 rc = bnx2x_iov_eq_sp_event(bp, elem); 5438 if (!rc) { 5439 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", 5440 rc); 5441 goto next_spqe; 5442 } 5443 5444 /* elem CID originates from FW; actually LE */ 5445 cid = SW_CID((__force __le32) 5446 elem->message.data.cfc_del_event.cid); 5447 opcode = elem->message.opcode; 5448 5449 /* handle eq element */ 5450 switch (opcode) { 5451 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 5452 bnx2x_vf_mbx_schedule(bp, 5453 &elem->message.data.vf_pf_event); 5454 continue; 5455 5456 case EVENT_RING_OPCODE_STAT_QUERY: 5457 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS), 5458 "got statistics comp event %d\n", 5459 bp->stats_comp++); 5460 /* nothing to do with stats comp */ 5461 goto next_spqe; 5462 5463 case EVENT_RING_OPCODE_CFC_DEL: 5464 /* handle according to cid range */ 5465 /* 5466 * we may want to verify here that the bp state is 5467 * HALTING 5468 */ 5469 DP(BNX2X_MSG_SP, 5470 "got delete ramrod for MULTI[%d]\n", cid); 5471 5472 if (CNIC_LOADED(bp) && 5473 !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) 5474 goto next_spqe; 5475 5476 q_obj = bnx2x_cid_to_q_obj(bp, cid); 5477 5478 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) 5479 break; 5480 5481 goto next_spqe; 5482 5483 case EVENT_RING_OPCODE_STOP_TRAFFIC: 5484 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); 5485 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); 5486 if (f_obj->complete_cmd(bp, f_obj, 5487 BNX2X_F_CMD_TX_STOP)) 5488 break; 5489 goto next_spqe; 5490 5491 case EVENT_RING_OPCODE_START_TRAFFIC: 5492 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); 5493 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); 5494 if (f_obj->complete_cmd(bp, f_obj, 5495 BNX2X_F_CMD_TX_START)) 5496 break; 5497 goto next_spqe; 5498 5499 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 5500 echo = elem->message.data.function_update_event.echo; 5501 if (echo == SWITCH_UPDATE) { 5502 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5503 "got FUNC_SWITCH_UPDATE ramrod\n"); 5504 if (f_obj->complete_cmd( 5505 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) 5506 break; 5507 5508 } else { 5509 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE; 5510 5511 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, 5512 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 5513 f_obj->complete_cmd(bp, f_obj, 5514 BNX2X_F_CMD_AFEX_UPDATE); 5515 5516 /* We will perform the Queues update from 5517 * sp_rtnl task as all Queue SP operations 5518 * should run under rtnl_lock. 5519 */ 5520 bnx2x_schedule_sp_rtnl(bp, cmd, 0); 5521 } 5522 5523 goto next_spqe; 5524 5525 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 5526 f_obj->complete_cmd(bp, f_obj, 5527 BNX2X_F_CMD_AFEX_VIFLISTS); 5528 bnx2x_after_afex_vif_lists(bp, elem); 5529 goto next_spqe; 5530 case EVENT_RING_OPCODE_FUNCTION_START: 5531 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5532 "got FUNC_START ramrod\n"); 5533 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) 5534 break; 5535 5536 goto next_spqe; 5537 5538 case EVENT_RING_OPCODE_FUNCTION_STOP: 5539 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5540 "got FUNC_STOP ramrod\n"); 5541 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) 5542 break; 5543 5544 goto next_spqe; 5545 5546 case EVENT_RING_OPCODE_SET_TIMESYNC: 5547 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP, 5548 "got set_timesync ramrod completion\n"); 5549 if (f_obj->complete_cmd(bp, f_obj, 5550 BNX2X_F_CMD_SET_TIMESYNC)) 5551 break; 5552 goto next_spqe; 5553 } 5554 5555 switch (opcode | bp->state) { 5556 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5557 BNX2X_STATE_OPEN): 5558 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5559 BNX2X_STATE_OPENING_WAIT4_PORT): 5560 cid = elem->message.data.eth_event.echo & 5561 BNX2X_SWCID_MASK; 5562 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", 5563 cid); 5564 rss_raw->clear_pending(rss_raw); 5565 break; 5566 5567 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): 5568 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): 5569 case (EVENT_RING_OPCODE_SET_MAC | 5570 BNX2X_STATE_CLOSING_WAIT4_HALT): 5571 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5572 BNX2X_STATE_OPEN): 5573 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5574 BNX2X_STATE_DIAG): 5575 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5576 BNX2X_STATE_CLOSING_WAIT4_HALT): 5577 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n"); 5578 bnx2x_handle_classification_eqe(bp, elem); 5579 break; 5580 5581 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5582 BNX2X_STATE_OPEN): 5583 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5584 BNX2X_STATE_DIAG): 5585 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5586 BNX2X_STATE_CLOSING_WAIT4_HALT): 5587 DP(BNX2X_MSG_SP, "got mcast ramrod\n"); 5588 bnx2x_handle_mcast_eqe(bp); 5589 break; 5590 5591 case (EVENT_RING_OPCODE_FILTERS_RULES | 5592 BNX2X_STATE_OPEN): 5593 case (EVENT_RING_OPCODE_FILTERS_RULES | 5594 BNX2X_STATE_DIAG): 5595 case (EVENT_RING_OPCODE_FILTERS_RULES | 5596 BNX2X_STATE_CLOSING_WAIT4_HALT): 5597 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); 5598 bnx2x_handle_rx_mode_eqe(bp); 5599 break; 5600 default: 5601 /* unknown event log error and continue */ 5602 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", 5603 elem->message.opcode, bp->state); 5604 } 5605 next_spqe: 5606 spqe_cnt++; 5607 } /* for */ 5608 5609 smp_mb__before_atomic(); 5610 atomic_add(spqe_cnt, &bp->eq_spq_left); 5611 5612 bp->eq_cons = sw_cons; 5613 bp->eq_prod = sw_prod; 5614 /* Make sure that above mem writes were issued towards the memory */ 5615 smp_wmb(); 5616 5617 /* update producer */ 5618 bnx2x_update_eq_prod(bp, bp->eq_prod); 5619 } 5620 5621 static void bnx2x_sp_task(struct work_struct *work) 5622 { 5623 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); 5624 5625 DP(BNX2X_MSG_SP, "sp task invoked\n"); 5626 5627 /* make sure the atomic interrupt_occurred has been written */ 5628 smp_rmb(); 5629 if (atomic_read(&bp->interrupt_occurred)) { 5630 5631 /* what work needs to be performed? */ 5632 u16 status = bnx2x_update_dsb_idx(bp); 5633 5634 DP(BNX2X_MSG_SP, "status %x\n", status); 5635 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); 5636 atomic_set(&bp->interrupt_occurred, 0); 5637 5638 /* HW attentions */ 5639 if (status & BNX2X_DEF_SB_ATT_IDX) { 5640 bnx2x_attn_int(bp); 5641 status &= ~BNX2X_DEF_SB_ATT_IDX; 5642 } 5643 5644 /* SP events: STAT_QUERY and others */ 5645 if (status & BNX2X_DEF_SB_IDX) { 5646 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 5647 5648 if (FCOE_INIT(bp) && 5649 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 5650 /* Prevent local bottom-halves from running as 5651 * we are going to change the local NAPI list. 5652 */ 5653 local_bh_disable(); 5654 napi_schedule(&bnx2x_fcoe(bp, napi)); 5655 local_bh_enable(); 5656 } 5657 5658 /* Handle EQ completions */ 5659 bnx2x_eq_int(bp); 5660 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 5661 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); 5662 5663 status &= ~BNX2X_DEF_SB_IDX; 5664 } 5665 5666 /* if status is non zero then perhaps something went wrong */ 5667 if (unlikely(status)) 5668 DP(BNX2X_MSG_SP, 5669 "got an unknown interrupt! (status 0x%x)\n", status); 5670 5671 /* ack status block only if something was actually handled */ 5672 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 5673 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); 5674 } 5675 5676 /* afex - poll to check if VIFSET_ACK should be sent to MFW */ 5677 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, 5678 &bp->sp_state)) { 5679 bnx2x_link_report(bp); 5680 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5681 } 5682 } 5683 5684 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) 5685 { 5686 struct net_device *dev = dev_instance; 5687 struct bnx2x *bp = netdev_priv(dev); 5688 5689 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, 5690 IGU_INT_DISABLE, 0); 5691 5692 #ifdef BNX2X_STOP_ON_ERROR 5693 if (unlikely(bp->panic)) 5694 return IRQ_HANDLED; 5695 #endif 5696 5697 if (CNIC_LOADED(bp)) { 5698 struct cnic_ops *c_ops; 5699 5700 rcu_read_lock(); 5701 c_ops = rcu_dereference(bp->cnic_ops); 5702 if (c_ops) 5703 c_ops->cnic_handler(bp->cnic_data, NULL); 5704 rcu_read_unlock(); 5705 } 5706 5707 /* schedule sp task to perform default status block work, ack 5708 * attentions and enable interrupts. 5709 */ 5710 bnx2x_schedule_sp_task(bp); 5711 5712 return IRQ_HANDLED; 5713 } 5714 5715 /* end of slow path */ 5716 5717 void bnx2x_drv_pulse(struct bnx2x *bp) 5718 { 5719 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, 5720 bp->fw_drv_pulse_wr_seq); 5721 } 5722 5723 static void bnx2x_timer(unsigned long data) 5724 { 5725 struct bnx2x *bp = (struct bnx2x *) data; 5726 5727 if (!netif_running(bp->dev)) 5728 return; 5729 5730 if (IS_PF(bp) && 5731 !BP_NOMCP(bp)) { 5732 int mb_idx = BP_FW_MB_IDX(bp); 5733 u16 drv_pulse; 5734 u16 mcp_pulse; 5735 5736 ++bp->fw_drv_pulse_wr_seq; 5737 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 5738 drv_pulse = bp->fw_drv_pulse_wr_seq; 5739 bnx2x_drv_pulse(bp); 5740 5741 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & 5742 MCP_PULSE_SEQ_MASK); 5743 /* The delta between driver pulse and mcp response 5744 * should not get too big. If the MFW is more than 5 pulses 5745 * behind, we should worry about it enough to generate an error 5746 * log. 5747 */ 5748 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5) 5749 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 5750 drv_pulse, mcp_pulse); 5751 } 5752 5753 if (bp->state == BNX2X_STATE_OPEN) 5754 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); 5755 5756 /* sample pf vf bulletin board for new posts from pf */ 5757 if (IS_VF(bp)) 5758 bnx2x_timer_sriov(bp); 5759 5760 mod_timer(&bp->timer, jiffies + bp->current_interval); 5761 } 5762 5763 /* end of Statistics */ 5764 5765 /* nic init */ 5766 5767 /* 5768 * nic init service functions 5769 */ 5770 5771 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) 5772 { 5773 u32 i; 5774 if (!(len%4) && !(addr%4)) 5775 for (i = 0; i < len; i += 4) 5776 REG_WR(bp, addr + i, fill); 5777 else 5778 for (i = 0; i < len; i++) 5779 REG_WR8(bp, addr + i, fill); 5780 } 5781 5782 /* helper: writes FP SP data to FW - data_size in dwords */ 5783 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, 5784 int fw_sb_id, 5785 u32 *sb_data_p, 5786 u32 data_size) 5787 { 5788 int index; 5789 for (index = 0; index < data_size; index++) 5790 REG_WR(bp, BAR_CSTRORM_INTMEM + 5791 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 5792 sizeof(u32)*index, 5793 *(sb_data_p + index)); 5794 } 5795 5796 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) 5797 { 5798 u32 *sb_data_p; 5799 u32 data_size = 0; 5800 struct hc_status_block_data_e2 sb_data_e2; 5801 struct hc_status_block_data_e1x sb_data_e1x; 5802 5803 /* disable the function first */ 5804 if (!CHIP_IS_E1x(bp)) { 5805 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5806 sb_data_e2.common.state = SB_DISABLED; 5807 sb_data_e2.common.p_func.vf_valid = false; 5808 sb_data_p = (u32 *)&sb_data_e2; 5809 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5810 } else { 5811 memset(&sb_data_e1x, 0, 5812 sizeof(struct hc_status_block_data_e1x)); 5813 sb_data_e1x.common.state = SB_DISABLED; 5814 sb_data_e1x.common.p_func.vf_valid = false; 5815 sb_data_p = (u32 *)&sb_data_e1x; 5816 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5817 } 5818 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5819 5820 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5821 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, 5822 CSTORM_STATUS_BLOCK_SIZE); 5823 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5824 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, 5825 CSTORM_SYNC_BLOCK_SIZE); 5826 } 5827 5828 /* helper: writes SP SB data to FW */ 5829 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, 5830 struct hc_sp_status_block_data *sp_sb_data) 5831 { 5832 int func = BP_FUNC(bp); 5833 int i; 5834 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 5835 REG_WR(bp, BAR_CSTRORM_INTMEM + 5836 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 5837 i*sizeof(u32), 5838 *((u32 *)sp_sb_data + i)); 5839 } 5840 5841 static void bnx2x_zero_sp_sb(struct bnx2x *bp) 5842 { 5843 int func = BP_FUNC(bp); 5844 struct hc_sp_status_block_data sp_sb_data; 5845 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5846 5847 sp_sb_data.state = SB_DISABLED; 5848 sp_sb_data.p_func.vf_valid = false; 5849 5850 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5851 5852 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5853 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, 5854 CSTORM_SP_STATUS_BLOCK_SIZE); 5855 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5856 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, 5857 CSTORM_SP_SYNC_BLOCK_SIZE); 5858 } 5859 5860 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 5861 int igu_sb_id, int igu_seg_id) 5862 { 5863 hc_sm->igu_sb_id = igu_sb_id; 5864 hc_sm->igu_seg_id = igu_seg_id; 5865 hc_sm->timer_value = 0xFF; 5866 hc_sm->time_to_expire = 0xFFFFFFFF; 5867 } 5868 5869 /* allocates state machine ids. */ 5870 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) 5871 { 5872 /* zero out state machine indices */ 5873 /* rx indices */ 5874 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5875 5876 /* tx indices */ 5877 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5878 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 5879 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 5880 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 5881 5882 /* map indices */ 5883 /* rx indices */ 5884 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 5885 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5886 5887 /* tx indices */ 5888 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 5889 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5890 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 5891 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5892 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 5893 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5894 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 5895 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5896 } 5897 5898 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 5899 u8 vf_valid, int fw_sb_id, int igu_sb_id) 5900 { 5901 int igu_seg_id; 5902 5903 struct hc_status_block_data_e2 sb_data_e2; 5904 struct hc_status_block_data_e1x sb_data_e1x; 5905 struct hc_status_block_sm *hc_sm_p; 5906 int data_size; 5907 u32 *sb_data_p; 5908 5909 if (CHIP_INT_MODE_IS_BC(bp)) 5910 igu_seg_id = HC_SEG_ACCESS_NORM; 5911 else 5912 igu_seg_id = IGU_SEG_ACCESS_NORM; 5913 5914 bnx2x_zero_fp_sb(bp, fw_sb_id); 5915 5916 if (!CHIP_IS_E1x(bp)) { 5917 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5918 sb_data_e2.common.state = SB_ENABLED; 5919 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); 5920 sb_data_e2.common.p_func.vf_id = vfid; 5921 sb_data_e2.common.p_func.vf_valid = vf_valid; 5922 sb_data_e2.common.p_func.vnic_id = BP_VN(bp); 5923 sb_data_e2.common.same_igu_sb_1b = true; 5924 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); 5925 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); 5926 hc_sm_p = sb_data_e2.common.state_machine; 5927 sb_data_p = (u32 *)&sb_data_e2; 5928 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5929 bnx2x_map_sb_state_machines(sb_data_e2.index_data); 5930 } else { 5931 memset(&sb_data_e1x, 0, 5932 sizeof(struct hc_status_block_data_e1x)); 5933 sb_data_e1x.common.state = SB_ENABLED; 5934 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); 5935 sb_data_e1x.common.p_func.vf_id = 0xff; 5936 sb_data_e1x.common.p_func.vf_valid = false; 5937 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); 5938 sb_data_e1x.common.same_igu_sb_1b = true; 5939 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); 5940 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); 5941 hc_sm_p = sb_data_e1x.common.state_machine; 5942 sb_data_p = (u32 *)&sb_data_e1x; 5943 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5944 bnx2x_map_sb_state_machines(sb_data_e1x.index_data); 5945 } 5946 5947 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], 5948 igu_sb_id, igu_seg_id); 5949 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], 5950 igu_sb_id, igu_seg_id); 5951 5952 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); 5953 5954 /* write indices to HW - PCI guarantees endianity of regpairs */ 5955 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5956 } 5957 5958 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, 5959 u16 tx_usec, u16 rx_usec) 5960 { 5961 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, 5962 false, rx_usec); 5963 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 5964 HC_INDEX_ETH_TX_CQ_CONS_COS0, false, 5965 tx_usec); 5966 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 5967 HC_INDEX_ETH_TX_CQ_CONS_COS1, false, 5968 tx_usec); 5969 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 5970 HC_INDEX_ETH_TX_CQ_CONS_COS2, false, 5971 tx_usec); 5972 } 5973 5974 static void bnx2x_init_def_sb(struct bnx2x *bp) 5975 { 5976 struct host_sp_status_block *def_sb = bp->def_status_blk; 5977 dma_addr_t mapping = bp->def_status_blk_mapping; 5978 int igu_sp_sb_index; 5979 int igu_seg_id; 5980 int port = BP_PORT(bp); 5981 int func = BP_FUNC(bp); 5982 int reg_offset, reg_offset_en5; 5983 u64 section; 5984 int index; 5985 struct hc_sp_status_block_data sp_sb_data; 5986 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5987 5988 if (CHIP_INT_MODE_IS_BC(bp)) { 5989 igu_sp_sb_index = DEF_SB_IGU_ID; 5990 igu_seg_id = HC_SEG_ACCESS_DEF; 5991 } else { 5992 igu_sp_sb_index = bp->igu_dsb_id; 5993 igu_seg_id = IGU_SEG_ACCESS_DEF; 5994 } 5995 5996 /* ATTN */ 5997 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 5998 atten_status_block); 5999 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 6000 6001 bp->attn_state = 0; 6002 6003 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 6004 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 6005 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 6006 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); 6007 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 6008 int sindex; 6009 /* take care of sig[0]..sig[4] */ 6010 for (sindex = 0; sindex < 4; sindex++) 6011 bp->attn_group[index].sig[sindex] = 6012 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); 6013 6014 if (!CHIP_IS_E1x(bp)) 6015 /* 6016 * enable5 is separate from the rest of the registers, 6017 * and therefore the address skip is 4 6018 * and not 16 between the different groups 6019 */ 6020 bp->attn_group[index].sig[4] = REG_RD(bp, 6021 reg_offset_en5 + 0x4*index); 6022 else 6023 bp->attn_group[index].sig[4] = 0; 6024 } 6025 6026 if (bp->common.int_block == INT_BLOCK_HC) { 6027 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : 6028 HC_REG_ATTN_MSG0_ADDR_L); 6029 6030 REG_WR(bp, reg_offset, U64_LO(section)); 6031 REG_WR(bp, reg_offset + 4, U64_HI(section)); 6032 } else if (!CHIP_IS_E1x(bp)) { 6033 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 6034 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 6035 } 6036 6037 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6038 sp_sb); 6039 6040 bnx2x_zero_sp_sb(bp); 6041 6042 /* PCI guarantees endianity of regpairs */ 6043 sp_sb_data.state = SB_ENABLED; 6044 sp_sb_data.host_sb_addr.lo = U64_LO(section); 6045 sp_sb_data.host_sb_addr.hi = U64_HI(section); 6046 sp_sb_data.igu_sb_id = igu_sp_sb_index; 6047 sp_sb_data.igu_seg_id = igu_seg_id; 6048 sp_sb_data.p_func.pf_id = func; 6049 sp_sb_data.p_func.vnic_id = BP_VN(bp); 6050 sp_sb_data.p_func.vf_id = 0xff; 6051 6052 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 6053 6054 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 6055 } 6056 6057 void bnx2x_update_coalesce(struct bnx2x *bp) 6058 { 6059 int i; 6060 6061 for_each_eth_queue(bp, i) 6062 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, 6063 bp->tx_ticks, bp->rx_ticks); 6064 } 6065 6066 static void bnx2x_init_sp_ring(struct bnx2x *bp) 6067 { 6068 spin_lock_init(&bp->spq_lock); 6069 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); 6070 6071 bp->spq_prod_idx = 0; 6072 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; 6073 bp->spq_prod_bd = bp->spq; 6074 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; 6075 } 6076 6077 static void bnx2x_init_eq_ring(struct bnx2x *bp) 6078 { 6079 int i; 6080 for (i = 1; i <= NUM_EQ_PAGES; i++) { 6081 union event_ring_elem *elem = 6082 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; 6083 6084 elem->next_page.addr.hi = 6085 cpu_to_le32(U64_HI(bp->eq_mapping + 6086 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); 6087 elem->next_page.addr.lo = 6088 cpu_to_le32(U64_LO(bp->eq_mapping + 6089 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); 6090 } 6091 bp->eq_cons = 0; 6092 bp->eq_prod = NUM_EQ_DESC; 6093 bp->eq_cons_sb = BNX2X_EQ_INDEX; 6094 /* we want a warning message before it gets wrought... */ 6095 atomic_set(&bp->eq_spq_left, 6096 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); 6097 } 6098 6099 /* called with netif_addr_lock_bh() */ 6100 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, 6101 unsigned long rx_mode_flags, 6102 unsigned long rx_accept_flags, 6103 unsigned long tx_accept_flags, 6104 unsigned long ramrod_flags) 6105 { 6106 struct bnx2x_rx_mode_ramrod_params ramrod_param; 6107 int rc; 6108 6109 memset(&ramrod_param, 0, sizeof(ramrod_param)); 6110 6111 /* Prepare ramrod parameters */ 6112 ramrod_param.cid = 0; 6113 ramrod_param.cl_id = cl_id; 6114 ramrod_param.rx_mode_obj = &bp->rx_mode_obj; 6115 ramrod_param.func_id = BP_FUNC(bp); 6116 6117 ramrod_param.pstate = &bp->sp_state; 6118 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; 6119 6120 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); 6121 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); 6122 6123 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 6124 6125 ramrod_param.ramrod_flags = ramrod_flags; 6126 ramrod_param.rx_mode_flags = rx_mode_flags; 6127 6128 ramrod_param.rx_accept_flags = rx_accept_flags; 6129 ramrod_param.tx_accept_flags = tx_accept_flags; 6130 6131 rc = bnx2x_config_rx_mode(bp, &ramrod_param); 6132 if (rc < 0) { 6133 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); 6134 return rc; 6135 } 6136 6137 return 0; 6138 } 6139 6140 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, 6141 unsigned long *rx_accept_flags, 6142 unsigned long *tx_accept_flags) 6143 { 6144 /* Clear the flags first */ 6145 *rx_accept_flags = 0; 6146 *tx_accept_flags = 0; 6147 6148 switch (rx_mode) { 6149 case BNX2X_RX_MODE_NONE: 6150 /* 6151 * 'drop all' supersedes any accept flags that may have been 6152 * passed to the function. 6153 */ 6154 break; 6155 case BNX2X_RX_MODE_NORMAL: 6156 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6157 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); 6158 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6159 6160 /* internal switching mode */ 6161 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6162 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); 6163 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6164 6165 break; 6166 case BNX2X_RX_MODE_ALLMULTI: 6167 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6168 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6169 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6170 6171 /* internal switching mode */ 6172 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6173 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6174 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6175 6176 break; 6177 case BNX2X_RX_MODE_PROMISC: 6178 /* According to definition of SI mode, iface in promisc mode 6179 * should receive matched and unmatched (in resolution of port) 6180 * unicast packets. 6181 */ 6182 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); 6183 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6184 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6185 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6186 6187 /* internal switching mode */ 6188 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6189 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6190 6191 if (IS_MF_SI(bp)) 6192 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); 6193 else 6194 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6195 6196 break; 6197 default: 6198 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); 6199 return -EINVAL; 6200 } 6201 6202 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 6203 if (rx_mode != BNX2X_RX_MODE_NONE) { 6204 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6205 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6206 } 6207 6208 return 0; 6209 } 6210 6211 /* called with netif_addr_lock_bh() */ 6212 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp) 6213 { 6214 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 6215 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 6216 int rc; 6217 6218 if (!NO_FCOE(bp)) 6219 /* Configure rx_mode of FCoE Queue */ 6220 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); 6221 6222 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, 6223 &tx_accept_flags); 6224 if (rc) 6225 return rc; 6226 6227 __set_bit(RAMROD_RX, &ramrod_flags); 6228 __set_bit(RAMROD_TX, &ramrod_flags); 6229 6230 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, 6231 rx_accept_flags, tx_accept_flags, 6232 ramrod_flags); 6233 } 6234 6235 static void bnx2x_init_internal_common(struct bnx2x *bp) 6236 { 6237 int i; 6238 6239 /* Zero this manually as its initialization is 6240 currently missing in the initTool */ 6241 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) 6242 REG_WR(bp, BAR_USTRORM_INTMEM + 6243 USTORM_AGG_DATA_OFFSET + i * 4, 0); 6244 if (!CHIP_IS_E1x(bp)) { 6245 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, 6246 CHIP_INT_MODE_IS_BC(bp) ? 6247 HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 6248 } 6249 } 6250 6251 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) 6252 { 6253 switch (load_code) { 6254 case FW_MSG_CODE_DRV_LOAD_COMMON: 6255 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 6256 bnx2x_init_internal_common(bp); 6257 /* no break */ 6258 6259 case FW_MSG_CODE_DRV_LOAD_PORT: 6260 /* nothing to do */ 6261 /* no break */ 6262 6263 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 6264 /* internal memory per function is 6265 initialized inside bnx2x_pf_init */ 6266 break; 6267 6268 default: 6269 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); 6270 break; 6271 } 6272 } 6273 6274 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) 6275 { 6276 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); 6277 } 6278 6279 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) 6280 { 6281 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); 6282 } 6283 6284 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) 6285 { 6286 if (CHIP_IS_E1x(fp->bp)) 6287 return BP_L_ID(fp->bp) + fp->index; 6288 else /* We want Client ID to be the same as IGU SB ID for 57712 */ 6289 return bnx2x_fp_igu_sb_id(fp); 6290 } 6291 6292 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) 6293 { 6294 struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; 6295 u8 cos; 6296 unsigned long q_type = 0; 6297 u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; 6298 fp->rx_queue = fp_idx; 6299 fp->cid = fp_idx; 6300 fp->cl_id = bnx2x_fp_cl_id(fp); 6301 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); 6302 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); 6303 /* qZone id equals to FW (per path) client id */ 6304 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); 6305 6306 /* init shortcut */ 6307 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); 6308 6309 /* Setup SB indices */ 6310 fp->rx_cons_sb = BNX2X_RX_SB_INDEX; 6311 6312 /* Configure Queue State object */ 6313 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6314 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6315 6316 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); 6317 6318 /* init tx data */ 6319 for_each_cos_in_tx_queue(fp, cos) { 6320 bnx2x_init_txdata(bp, fp->txdata_ptr[cos], 6321 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), 6322 FP_COS_TO_TXQ(fp, cos, bp), 6323 BNX2X_TX_SB_INDEX_BASE + cos, fp); 6324 cids[cos] = fp->txdata_ptr[cos]->cid; 6325 } 6326 6327 /* nothing more for vf to do here */ 6328 if (IS_VF(bp)) 6329 return; 6330 6331 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, 6332 fp->fw_sb_id, fp->igu_sb_id); 6333 bnx2x_update_fpsb_idx(fp); 6334 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, 6335 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6336 bnx2x_sp_mapping(bp, q_rdata), q_type); 6337 6338 /** 6339 * Configure classification DBs: Always enable Tx switching 6340 */ 6341 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); 6342 6343 DP(NETIF_MSG_IFUP, 6344 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6345 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6346 fp->igu_sb_id); 6347 } 6348 6349 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) 6350 { 6351 int i; 6352 6353 for (i = 1; i <= NUM_TX_RINGS; i++) { 6354 struct eth_tx_next_bd *tx_next_bd = 6355 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; 6356 6357 tx_next_bd->addr_hi = 6358 cpu_to_le32(U64_HI(txdata->tx_desc_mapping + 6359 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6360 tx_next_bd->addr_lo = 6361 cpu_to_le32(U64_LO(txdata->tx_desc_mapping + 6362 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6363 } 6364 6365 *txdata->tx_cons_sb = cpu_to_le16(0); 6366 6367 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 6368 txdata->tx_db.data.zero_fill1 = 0; 6369 txdata->tx_db.data.prod = 0; 6370 6371 txdata->tx_pkt_prod = 0; 6372 txdata->tx_pkt_cons = 0; 6373 txdata->tx_bd_prod = 0; 6374 txdata->tx_bd_cons = 0; 6375 txdata->tx_pkt = 0; 6376 } 6377 6378 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) 6379 { 6380 int i; 6381 6382 for_each_tx_queue_cnic(bp, i) 6383 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); 6384 } 6385 6386 static void bnx2x_init_tx_rings(struct bnx2x *bp) 6387 { 6388 int i; 6389 u8 cos; 6390 6391 for_each_eth_queue(bp, i) 6392 for_each_cos_in_tx_queue(&bp->fp[i], cos) 6393 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); 6394 } 6395 6396 static void bnx2x_init_fcoe_fp(struct bnx2x *bp) 6397 { 6398 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 6399 unsigned long q_type = 0; 6400 6401 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp); 6402 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp, 6403 BNX2X_FCOE_ETH_CL_ID_IDX); 6404 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp); 6405 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID; 6406 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id; 6407 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX; 6408 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]), 6409 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX, 6410 fp); 6411 6412 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index); 6413 6414 /* qZone id equals to FW (per path) client id */ 6415 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp); 6416 /* init shortcut */ 6417 bnx2x_fcoe(bp, ustorm_rx_prods_offset) = 6418 bnx2x_rx_ustorm_prods_offset(fp); 6419 6420 /* Configure Queue State object */ 6421 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6422 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6423 6424 /* No multi-CoS for FCoE L2 client */ 6425 BUG_ON(fp->max_cos != 1); 6426 6427 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, 6428 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6429 bnx2x_sp_mapping(bp, q_rdata), q_type); 6430 6431 DP(NETIF_MSG_IFUP, 6432 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6433 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6434 fp->igu_sb_id); 6435 } 6436 6437 void bnx2x_nic_init_cnic(struct bnx2x *bp) 6438 { 6439 if (!NO_FCOE(bp)) 6440 bnx2x_init_fcoe_fp(bp); 6441 6442 bnx2x_init_sb(bp, bp->cnic_sb_mapping, 6443 BNX2X_VF_ID_INVALID, false, 6444 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); 6445 6446 /* ensure status block indices were read */ 6447 rmb(); 6448 bnx2x_init_rx_rings_cnic(bp); 6449 bnx2x_init_tx_rings_cnic(bp); 6450 6451 /* flush all */ 6452 mb(); 6453 mmiowb(); 6454 } 6455 6456 void bnx2x_pre_irq_nic_init(struct bnx2x *bp) 6457 { 6458 int i; 6459 6460 /* Setup NIC internals and enable interrupts */ 6461 for_each_eth_queue(bp, i) 6462 bnx2x_init_eth_fp(bp, i); 6463 6464 /* ensure status block indices were read */ 6465 rmb(); 6466 bnx2x_init_rx_rings(bp); 6467 bnx2x_init_tx_rings(bp); 6468 6469 if (IS_PF(bp)) { 6470 /* Initialize MOD_ABS interrupts */ 6471 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, 6472 bp->common.shmem_base, 6473 bp->common.shmem2_base, BP_PORT(bp)); 6474 6475 /* initialize the default status block and sp ring */ 6476 bnx2x_init_def_sb(bp); 6477 bnx2x_update_dsb_idx(bp); 6478 bnx2x_init_sp_ring(bp); 6479 } else { 6480 bnx2x_memset_stats(bp); 6481 } 6482 } 6483 6484 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code) 6485 { 6486 bnx2x_init_eq_ring(bp); 6487 bnx2x_init_internal(bp, load_code); 6488 bnx2x_pf_init(bp); 6489 bnx2x_stats_init(bp); 6490 6491 /* flush all before enabling interrupts */ 6492 mb(); 6493 mmiowb(); 6494 6495 bnx2x_int_enable(bp); 6496 6497 /* Check for SPIO5 */ 6498 bnx2x_attn_int_deasserted0(bp, 6499 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & 6500 AEU_INPUTS_ATTN_BITS_SPIO5); 6501 } 6502 6503 /* gzip service functions */ 6504 static int bnx2x_gunzip_init(struct bnx2x *bp) 6505 { 6506 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, 6507 &bp->gunzip_mapping, GFP_KERNEL); 6508 if (bp->gunzip_buf == NULL) 6509 goto gunzip_nomem1; 6510 6511 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); 6512 if (bp->strm == NULL) 6513 goto gunzip_nomem2; 6514 6515 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); 6516 if (bp->strm->workspace == NULL) 6517 goto gunzip_nomem3; 6518 6519 return 0; 6520 6521 gunzip_nomem3: 6522 kfree(bp->strm); 6523 bp->strm = NULL; 6524 6525 gunzip_nomem2: 6526 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6527 bp->gunzip_mapping); 6528 bp->gunzip_buf = NULL; 6529 6530 gunzip_nomem1: 6531 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); 6532 return -ENOMEM; 6533 } 6534 6535 static void bnx2x_gunzip_end(struct bnx2x *bp) 6536 { 6537 if (bp->strm) { 6538 vfree(bp->strm->workspace); 6539 kfree(bp->strm); 6540 bp->strm = NULL; 6541 } 6542 6543 if (bp->gunzip_buf) { 6544 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6545 bp->gunzip_mapping); 6546 bp->gunzip_buf = NULL; 6547 } 6548 } 6549 6550 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) 6551 { 6552 int n, rc; 6553 6554 /* check gzip header */ 6555 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { 6556 BNX2X_ERR("Bad gzip header\n"); 6557 return -EINVAL; 6558 } 6559 6560 n = 10; 6561 6562 #define FNAME 0x8 6563 6564 if (zbuf[3] & FNAME) 6565 while ((zbuf[n++] != 0) && (n < len)); 6566 6567 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; 6568 bp->strm->avail_in = len - n; 6569 bp->strm->next_out = bp->gunzip_buf; 6570 bp->strm->avail_out = FW_BUF_SIZE; 6571 6572 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); 6573 if (rc != Z_OK) 6574 return rc; 6575 6576 rc = zlib_inflate(bp->strm, Z_FINISH); 6577 if ((rc != Z_OK) && (rc != Z_STREAM_END)) 6578 netdev_err(bp->dev, "Firmware decompression error: %s\n", 6579 bp->strm->msg); 6580 6581 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); 6582 if (bp->gunzip_outlen & 0x3) 6583 netdev_err(bp->dev, 6584 "Firmware decompression error: gunzip_outlen (%d) not aligned\n", 6585 bp->gunzip_outlen); 6586 bp->gunzip_outlen >>= 2; 6587 6588 zlib_inflateEnd(bp->strm); 6589 6590 if (rc == Z_STREAM_END) 6591 return 0; 6592 6593 return rc; 6594 } 6595 6596 /* nic load/unload */ 6597 6598 /* 6599 * General service functions 6600 */ 6601 6602 /* send a NIG loopback debug packet */ 6603 static void bnx2x_lb_pckt(struct bnx2x *bp) 6604 { 6605 u32 wb_write[3]; 6606 6607 /* Ethernet source and destination addresses */ 6608 wb_write[0] = 0x55555555; 6609 wb_write[1] = 0x55555555; 6610 wb_write[2] = 0x20; /* SOP */ 6611 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6612 6613 /* NON-IP protocol */ 6614 wb_write[0] = 0x09000000; 6615 wb_write[1] = 0x55555555; 6616 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 6617 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6618 } 6619 6620 /* some of the internal memories 6621 * are not directly readable from the driver 6622 * to test them we send debug packets 6623 */ 6624 static int bnx2x_int_mem_test(struct bnx2x *bp) 6625 { 6626 int factor; 6627 int count, i; 6628 u32 val = 0; 6629 6630 if (CHIP_REV_IS_FPGA(bp)) 6631 factor = 120; 6632 else if (CHIP_REV_IS_EMUL(bp)) 6633 factor = 200; 6634 else 6635 factor = 1; 6636 6637 /* Disable inputs of parser neighbor blocks */ 6638 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6639 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6640 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6641 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6642 6643 /* Write 0 to parser credits for CFC search request */ 6644 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6645 6646 /* send Ethernet packet */ 6647 bnx2x_lb_pckt(bp); 6648 6649 /* TODO do i reset NIG statistic? */ 6650 /* Wait until NIG register shows 1 packet of size 0x10 */ 6651 count = 1000 * factor; 6652 while (count) { 6653 6654 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6655 val = *bnx2x_sp(bp, wb_data[0]); 6656 if (val == 0x10) 6657 break; 6658 6659 usleep_range(10000, 20000); 6660 count--; 6661 } 6662 if (val != 0x10) { 6663 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6664 return -1; 6665 } 6666 6667 /* Wait until PRS register shows 1 packet */ 6668 count = 1000 * factor; 6669 while (count) { 6670 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6671 if (val == 1) 6672 break; 6673 6674 usleep_range(10000, 20000); 6675 count--; 6676 } 6677 if (val != 0x1) { 6678 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6679 return -2; 6680 } 6681 6682 /* Reset and init BRB, PRS */ 6683 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6684 msleep(50); 6685 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6686 msleep(50); 6687 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6688 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6689 6690 DP(NETIF_MSG_HW, "part2\n"); 6691 6692 /* Disable inputs of parser neighbor blocks */ 6693 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6694 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6695 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6696 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6697 6698 /* Write 0 to parser credits for CFC search request */ 6699 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6700 6701 /* send 10 Ethernet packets */ 6702 for (i = 0; i < 10; i++) 6703 bnx2x_lb_pckt(bp); 6704 6705 /* Wait until NIG register shows 10 + 1 6706 packets of size 11*0x10 = 0xb0 */ 6707 count = 1000 * factor; 6708 while (count) { 6709 6710 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6711 val = *bnx2x_sp(bp, wb_data[0]); 6712 if (val == 0xb0) 6713 break; 6714 6715 usleep_range(10000, 20000); 6716 count--; 6717 } 6718 if (val != 0xb0) { 6719 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6720 return -3; 6721 } 6722 6723 /* Wait until PRS register shows 2 packets */ 6724 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6725 if (val != 2) 6726 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6727 6728 /* Write 1 to parser credits for CFC search request */ 6729 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 6730 6731 /* Wait until PRS register shows 3 packets */ 6732 msleep(10 * factor); 6733 /* Wait until NIG register shows 1 packet of size 0x10 */ 6734 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6735 if (val != 3) 6736 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6737 6738 /* clear NIG EOP FIFO */ 6739 for (i = 0; i < 11; i++) 6740 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); 6741 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); 6742 if (val != 1) { 6743 BNX2X_ERR("clear of NIG failed\n"); 6744 return -4; 6745 } 6746 6747 /* Reset and init BRB, PRS, NIG */ 6748 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6749 msleep(50); 6750 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6751 msleep(50); 6752 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6753 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6754 if (!CNIC_SUPPORT(bp)) 6755 /* set NIC mode */ 6756 REG_WR(bp, PRS_REG_NIC_MODE, 1); 6757 6758 /* Enable inputs of parser neighbor blocks */ 6759 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); 6760 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); 6761 REG_WR(bp, CFC_REG_DEBUG0, 0x0); 6762 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); 6763 6764 DP(NETIF_MSG_HW, "done\n"); 6765 6766 return 0; /* OK */ 6767 } 6768 6769 static void bnx2x_enable_blocks_attention(struct bnx2x *bp) 6770 { 6771 u32 val; 6772 6773 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6774 if (!CHIP_IS_E1x(bp)) 6775 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); 6776 else 6777 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); 6778 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6779 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 6780 /* 6781 * mask read length error interrupts in brb for parser 6782 * (parsing unit and 'checksum and crc' unit) 6783 * these errors are legal (PU reads fixed length and CAC can cause 6784 * read length error on truncated packets) 6785 */ 6786 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); 6787 REG_WR(bp, QM_REG_QM_INT_MASK, 0); 6788 REG_WR(bp, TM_REG_TM_INT_MASK, 0); 6789 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); 6790 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); 6791 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); 6792 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ 6793 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ 6794 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); 6795 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); 6796 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); 6797 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ 6798 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ 6799 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 6800 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); 6801 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); 6802 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); 6803 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ 6804 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ 6805 6806 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 6807 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 6808 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; 6809 if (!CHIP_IS_E1x(bp)) 6810 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 6811 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; 6812 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); 6813 6814 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); 6815 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); 6816 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); 6817 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ 6818 6819 if (!CHIP_IS_E1x(bp)) 6820 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 6821 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 6822 6823 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); 6824 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); 6825 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ 6826 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 6827 } 6828 6829 static void bnx2x_reset_common(struct bnx2x *bp) 6830 { 6831 u32 val = 0x1400; 6832 6833 /* reset_common */ 6834 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6835 0xd3ffff7f); 6836 6837 if (CHIP_IS_E3(bp)) { 6838 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6839 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6840 } 6841 6842 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); 6843 } 6844 6845 static void bnx2x_setup_dmae(struct bnx2x *bp) 6846 { 6847 bp->dmae_ready = 0; 6848 spin_lock_init(&bp->dmae_lock); 6849 } 6850 6851 static void bnx2x_init_pxp(struct bnx2x *bp) 6852 { 6853 u16 devctl; 6854 int r_order, w_order; 6855 6856 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); 6857 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); 6858 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6859 if (bp->mrrs == -1) 6860 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6861 else { 6862 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); 6863 r_order = bp->mrrs; 6864 } 6865 6866 bnx2x_init_pxp_arb(bp, r_order, w_order); 6867 } 6868 6869 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) 6870 { 6871 int is_required; 6872 u32 val; 6873 int port; 6874 6875 if (BP_NOMCP(bp)) 6876 return; 6877 6878 is_required = 0; 6879 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & 6880 SHARED_HW_CFG_FAN_FAILURE_MASK; 6881 6882 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) 6883 is_required = 1; 6884 6885 /* 6886 * The fan failure mechanism is usually related to the PHY type since 6887 * the power consumption of the board is affected by the PHY. Currently, 6888 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 6889 */ 6890 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) 6891 for (port = PORT_0; port < PORT_MAX; port++) { 6892 is_required |= 6893 bnx2x_fan_failure_det_req( 6894 bp, 6895 bp->common.shmem_base, 6896 bp->common.shmem2_base, 6897 port); 6898 } 6899 6900 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); 6901 6902 if (is_required == 0) 6903 return; 6904 6905 /* Fan failure is indicated by SPIO 5 */ 6906 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 6907 6908 /* set to active low mode */ 6909 val = REG_RD(bp, MISC_REG_SPIO_INT); 6910 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 6911 REG_WR(bp, MISC_REG_SPIO_INT, val); 6912 6913 /* enable interrupt to signal the IGU */ 6914 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 6915 val |= MISC_SPIO_SPIO5; 6916 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); 6917 } 6918 6919 void bnx2x_pf_disable(struct bnx2x *bp) 6920 { 6921 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 6922 val &= ~IGU_PF_CONF_FUNC_EN; 6923 6924 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 6925 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6926 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); 6927 } 6928 6929 static void bnx2x__common_init_phy(struct bnx2x *bp) 6930 { 6931 u32 shmem_base[2], shmem2_base[2]; 6932 /* Avoid common init in case MFW supports LFA */ 6933 if (SHMEM2_RD(bp, size) > 6934 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 6935 return; 6936 shmem_base[0] = bp->common.shmem_base; 6937 shmem2_base[0] = bp->common.shmem2_base; 6938 if (!CHIP_IS_E1x(bp)) { 6939 shmem_base[1] = 6940 SHMEM2_RD(bp, other_shmem_base_addr); 6941 shmem2_base[1] = 6942 SHMEM2_RD(bp, other_shmem2_base_addr); 6943 } 6944 bnx2x_acquire_phy_lock(bp); 6945 bnx2x_common_init_phy(bp, shmem_base, shmem2_base, 6946 bp->common.chip_id); 6947 bnx2x_release_phy_lock(bp); 6948 } 6949 6950 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val) 6951 { 6952 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val); 6953 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val); 6954 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val); 6955 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val); 6956 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val); 6957 6958 /* make sure this value is 0 */ 6959 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); 6960 6961 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val); 6962 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val); 6963 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val); 6964 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val); 6965 } 6966 6967 static void bnx2x_set_endianity(struct bnx2x *bp) 6968 { 6969 #ifdef __BIG_ENDIAN 6970 bnx2x_config_endianity(bp, 1); 6971 #else 6972 bnx2x_config_endianity(bp, 0); 6973 #endif 6974 } 6975 6976 static void bnx2x_reset_endianity(struct bnx2x *bp) 6977 { 6978 bnx2x_config_endianity(bp, 0); 6979 } 6980 6981 /** 6982 * bnx2x_init_hw_common - initialize the HW at the COMMON phase. 6983 * 6984 * @bp: driver handle 6985 */ 6986 static int bnx2x_init_hw_common(struct bnx2x *bp) 6987 { 6988 u32 val; 6989 6990 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); 6991 6992 /* 6993 * take the RESET lock to protect undi_unload flow from accessing 6994 * registers while we're resetting the chip 6995 */ 6996 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 6997 6998 bnx2x_reset_common(bp); 6999 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); 7000 7001 val = 0xfffc; 7002 if (CHIP_IS_E3(bp)) { 7003 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 7004 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 7005 } 7006 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); 7007 7008 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7009 7010 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); 7011 7012 if (!CHIP_IS_E1x(bp)) { 7013 u8 abs_func_id; 7014 7015 /** 7016 * 4-port mode or 2-port mode we need to turn of master-enable 7017 * for everyone, after that, turn it back on for self. 7018 * so, we disregard multi-function or not, and always disable 7019 * for all functions on the given path, this means 0,2,4,6 for 7020 * path 0 and 1,3,5,7 for path 1 7021 */ 7022 for (abs_func_id = BP_PATH(bp); 7023 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { 7024 if (abs_func_id == BP_ABS_FUNC(bp)) { 7025 REG_WR(bp, 7026 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 7027 1); 7028 continue; 7029 } 7030 7031 bnx2x_pretend_func(bp, abs_func_id); 7032 /* clear pf enable */ 7033 bnx2x_pf_disable(bp); 7034 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7035 } 7036 } 7037 7038 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); 7039 if (CHIP_IS_E1(bp)) { 7040 /* enable HW interrupt from PXP on USDM overflow 7041 bit 16 on INT_MASK_0 */ 7042 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 7043 } 7044 7045 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); 7046 bnx2x_init_pxp(bp); 7047 bnx2x_set_endianity(bp); 7048 bnx2x_ilt_init_page_size(bp, INITOP_SET); 7049 7050 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) 7051 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 7052 7053 /* let the HW do it's magic ... */ 7054 msleep(100); 7055 /* finish PXP init */ 7056 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); 7057 if (val != 1) { 7058 BNX2X_ERR("PXP2 CFG failed\n"); 7059 return -EBUSY; 7060 } 7061 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); 7062 if (val != 1) { 7063 BNX2X_ERR("PXP2 RD_INIT failed\n"); 7064 return -EBUSY; 7065 } 7066 7067 /* Timers bug workaround E2 only. We need to set the entire ILT to 7068 * have entries with value "0" and valid bit on. 7069 * This needs to be done by the first PF that is loaded in a path 7070 * (i.e. common phase) 7071 */ 7072 if (!CHIP_IS_E1x(bp)) { 7073 /* In E2 there is a bug in the timers block that can cause function 6 / 7 7074 * (i.e. vnic3) to start even if it is marked as "scan-off". 7075 * This occurs when a different function (func2,3) is being marked 7076 * as "scan-off". Real-life scenario for example: if a driver is being 7077 * load-unloaded while func6,7 are down. This will cause the timer to access 7078 * the ilt, translate to a logical address and send a request to read/write. 7079 * Since the ilt for the function that is down is not valid, this will cause 7080 * a translation error which is unrecoverable. 7081 * The Workaround is intended to make sure that when this happens nothing fatal 7082 * will occur. The workaround: 7083 * 1. First PF driver which loads on a path will: 7084 * a. After taking the chip out of reset, by using pretend, 7085 * it will write "0" to the following registers of 7086 * the other vnics. 7087 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 7088 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 7089 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 7090 * And for itself it will write '1' to 7091 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 7092 * dmae-operations (writing to pram for example.) 7093 * note: can be done for only function 6,7 but cleaner this 7094 * way. 7095 * b. Write zero+valid to the entire ILT. 7096 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 7097 * VNIC3 (of that port). The range allocated will be the 7098 * entire ILT. This is needed to prevent ILT range error. 7099 * 2. Any PF driver load flow: 7100 * a. ILT update with the physical addresses of the allocated 7101 * logical pages. 7102 * b. Wait 20msec. - note that this timeout is needed to make 7103 * sure there are no requests in one of the PXP internal 7104 * queues with "old" ILT addresses. 7105 * c. PF enable in the PGLC. 7106 * d. Clear the was_error of the PF in the PGLC. (could have 7107 * occurred while driver was down) 7108 * e. PF enable in the CFC (WEAK + STRONG) 7109 * f. Timers scan enable 7110 * 3. PF driver unload flow: 7111 * a. Clear the Timers scan_en. 7112 * b. Polling for scan_on=0 for that PF. 7113 * c. Clear the PF enable bit in the PXP. 7114 * d. Clear the PF enable in the CFC (WEAK + STRONG) 7115 * e. Write zero+valid to all ILT entries (The valid bit must 7116 * stay set) 7117 * f. If this is VNIC 3 of a port then also init 7118 * first_timers_ilt_entry to zero and last_timers_ilt_entry 7119 * to the last entry in the ILT. 7120 * 7121 * Notes: 7122 * Currently the PF error in the PGLC is non recoverable. 7123 * In the future the there will be a recovery routine for this error. 7124 * Currently attention is masked. 7125 * Having an MCP lock on the load/unload process does not guarantee that 7126 * there is no Timer disable during Func6/7 enable. This is because the 7127 * Timers scan is currently being cleared by the MCP on FLR. 7128 * Step 2.d can be done only for PF6/7 and the driver can also check if 7129 * there is error before clearing it. But the flow above is simpler and 7130 * more general. 7131 * All ILT entries are written by zero+valid and not just PF6/7 7132 * ILT entries since in the future the ILT entries allocation for 7133 * PF-s might be dynamic. 7134 */ 7135 struct ilt_client_info ilt_cli; 7136 struct bnx2x_ilt ilt; 7137 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 7138 memset(&ilt, 0, sizeof(struct bnx2x_ilt)); 7139 7140 /* initialize dummy TM client */ 7141 ilt_cli.start = 0; 7142 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 7143 ilt_cli.client_num = ILT_CLIENT_TM; 7144 7145 /* Step 1: set zeroes to all ilt page entries with valid bit on 7146 * Step 2: set the timers first/last ilt entry to point 7147 * to the entire range to prevent ILT range error for 3rd/4th 7148 * vnic (this code assumes existence of the vnic) 7149 * 7150 * both steps performed by call to bnx2x_ilt_client_init_op() 7151 * with dummy TM client 7152 * 7153 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 7154 * and his brother are split registers 7155 */ 7156 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); 7157 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); 7158 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7159 7160 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); 7161 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); 7162 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 7163 } 7164 7165 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); 7166 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); 7167 7168 if (!CHIP_IS_E1x(bp)) { 7169 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : 7170 (CHIP_REV_IS_FPGA(bp) ? 400 : 0); 7171 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); 7172 7173 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); 7174 7175 /* let the HW do it's magic ... */ 7176 do { 7177 msleep(200); 7178 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); 7179 } while (factor-- && (val != 1)); 7180 7181 if (val != 1) { 7182 BNX2X_ERR("ATC_INIT failed\n"); 7183 return -EBUSY; 7184 } 7185 } 7186 7187 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); 7188 7189 bnx2x_iov_init_dmae(bp); 7190 7191 /* clean the DMAE memory */ 7192 bp->dmae_ready = 1; 7193 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); 7194 7195 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); 7196 7197 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); 7198 7199 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); 7200 7201 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); 7202 7203 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); 7204 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); 7205 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); 7206 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); 7207 7208 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); 7209 7210 /* QM queues pointers table */ 7211 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); 7212 7213 /* soft reset pulse */ 7214 REG_WR(bp, QM_REG_SOFT_RESET, 1); 7215 REG_WR(bp, QM_REG_SOFT_RESET, 0); 7216 7217 if (CNIC_SUPPORT(bp)) 7218 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); 7219 7220 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); 7221 7222 if (!CHIP_REV_IS_SLOW(bp)) 7223 /* enable hw interrupt from doorbell Q */ 7224 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 7225 7226 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 7227 7228 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 7229 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); 7230 7231 if (!CHIP_IS_E1(bp)) 7232 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); 7233 7234 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { 7235 if (IS_MF_AFEX(bp)) { 7236 /* configure that VNTag and VLAN headers must be 7237 * received in afex mode 7238 */ 7239 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); 7240 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); 7241 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 7242 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 7243 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); 7244 } else { 7245 /* Bit-map indicating which L2 hdrs may appear 7246 * after the basic Ethernet header 7247 */ 7248 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 7249 bp->path_has_ovlan ? 7 : 6); 7250 } 7251 } 7252 7253 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); 7254 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); 7255 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); 7256 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); 7257 7258 if (!CHIP_IS_E1x(bp)) { 7259 /* reset VFC memories */ 7260 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7261 VFC_MEMORIES_RST_REG_CAM_RST | 7262 VFC_MEMORIES_RST_REG_RAM_RST); 7263 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7264 VFC_MEMORIES_RST_REG_CAM_RST | 7265 VFC_MEMORIES_RST_REG_RAM_RST); 7266 7267 msleep(20); 7268 } 7269 7270 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); 7271 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); 7272 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); 7273 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); 7274 7275 /* sync semi rtc */ 7276 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 7277 0x80000000); 7278 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 7279 0x80000000); 7280 7281 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); 7282 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); 7283 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); 7284 7285 if (!CHIP_IS_E1x(bp)) { 7286 if (IS_MF_AFEX(bp)) { 7287 /* configure that VNTag and VLAN headers must be 7288 * sent in afex mode 7289 */ 7290 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); 7291 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); 7292 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 7293 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 7294 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); 7295 } else { 7296 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 7297 bp->path_has_ovlan ? 7 : 6); 7298 } 7299 } 7300 7301 REG_WR(bp, SRC_REG_SOFT_RST, 1); 7302 7303 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); 7304 7305 if (CNIC_SUPPORT(bp)) { 7306 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); 7307 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 7308 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); 7309 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); 7310 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); 7311 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 7312 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); 7313 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 7314 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); 7315 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); 7316 } 7317 REG_WR(bp, SRC_REG_SOFT_RST, 0); 7318 7319 if (sizeof(union cdu_context) != 1024) 7320 /* we currently assume that a context is 1024 bytes */ 7321 dev_alert(&bp->pdev->dev, 7322 "please adjust the size of cdu_context(%ld)\n", 7323 (long)sizeof(union cdu_context)); 7324 7325 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); 7326 val = (4 << 24) + (0 << 12) + 1024; 7327 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); 7328 7329 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); 7330 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); 7331 /* enable context validation interrupt from CFC */ 7332 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 7333 7334 /* set the thresholds to prevent CFC/CDU race */ 7335 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); 7336 7337 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); 7338 7339 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) 7340 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); 7341 7342 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); 7343 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); 7344 7345 /* Reset PCIE errors for debug */ 7346 REG_WR(bp, 0x2814, 0xffffffff); 7347 REG_WR(bp, 0x3820, 0xffffffff); 7348 7349 if (!CHIP_IS_E1x(bp)) { 7350 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 7351 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 7352 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 7353 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 7354 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 7355 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 7356 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 7357 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 7358 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 7359 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 7360 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 7361 } 7362 7363 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); 7364 if (!CHIP_IS_E1(bp)) { 7365 /* in E3 this done in per-port section */ 7366 if (!CHIP_IS_E3(bp)) 7367 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7368 } 7369 if (CHIP_IS_E1H(bp)) 7370 /* not applicable for E2 (and above ...) */ 7371 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); 7372 7373 if (CHIP_REV_IS_SLOW(bp)) 7374 msleep(200); 7375 7376 /* finish CFC init */ 7377 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); 7378 if (val != 1) { 7379 BNX2X_ERR("CFC LL_INIT failed\n"); 7380 return -EBUSY; 7381 } 7382 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); 7383 if (val != 1) { 7384 BNX2X_ERR("CFC AC_INIT failed\n"); 7385 return -EBUSY; 7386 } 7387 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 7388 if (val != 1) { 7389 BNX2X_ERR("CFC CAM_INIT failed\n"); 7390 return -EBUSY; 7391 } 7392 REG_WR(bp, CFC_REG_DEBUG0, 0); 7393 7394 if (CHIP_IS_E1(bp)) { 7395 /* read NIG statistic 7396 to see if this is our first up since powerup */ 7397 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 7398 val = *bnx2x_sp(bp, wb_data[0]); 7399 7400 /* do internal memory self test */ 7401 if ((val == 0) && bnx2x_int_mem_test(bp)) { 7402 BNX2X_ERR("internal mem self test failed\n"); 7403 return -EBUSY; 7404 } 7405 } 7406 7407 bnx2x_setup_fan_failure_detection(bp); 7408 7409 /* clear PXP2 attentions */ 7410 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); 7411 7412 bnx2x_enable_blocks_attention(bp); 7413 bnx2x_enable_blocks_parity(bp); 7414 7415 if (!BP_NOMCP(bp)) { 7416 if (CHIP_IS_E1x(bp)) 7417 bnx2x__common_init_phy(bp); 7418 } else 7419 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 7420 7421 return 0; 7422 } 7423 7424 /** 7425 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. 7426 * 7427 * @bp: driver handle 7428 */ 7429 static int bnx2x_init_hw_common_chip(struct bnx2x *bp) 7430 { 7431 int rc = bnx2x_init_hw_common(bp); 7432 7433 if (rc) 7434 return rc; 7435 7436 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 7437 if (!BP_NOMCP(bp)) 7438 bnx2x__common_init_phy(bp); 7439 7440 return 0; 7441 } 7442 7443 static int bnx2x_init_hw_port(struct bnx2x *bp) 7444 { 7445 int port = BP_PORT(bp); 7446 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 7447 u32 low, high; 7448 u32 val, reg; 7449 7450 DP(NETIF_MSG_HW, "starting port init port %d\n", port); 7451 7452 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 7453 7454 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7455 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7456 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7457 7458 /* Timers bug workaround: disables the pf_master bit in pglue at 7459 * common phase, we need to enable it here before any dmae access are 7460 * attempted. Therefore we manually added the enable-master to the 7461 * port phase (it also happens in the function phase) 7462 */ 7463 if (!CHIP_IS_E1x(bp)) 7464 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7465 7466 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7467 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7468 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7469 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7470 7471 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7472 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7473 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7474 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7475 7476 /* QM cid (connection) count */ 7477 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); 7478 7479 if (CNIC_SUPPORT(bp)) { 7480 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7481 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); 7482 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 7483 } 7484 7485 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7486 7487 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7488 7489 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { 7490 7491 if (IS_MF(bp)) 7492 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); 7493 else if (bp->dev->mtu > 4096) { 7494 if (bp->flags & ONE_PORT_FLAG) 7495 low = 160; 7496 else { 7497 val = bp->dev->mtu; 7498 /* (24*1024 + val*4)/256 */ 7499 low = 96 + (val/64) + 7500 ((val % 64) ? 1 : 0); 7501 } 7502 } else 7503 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); 7504 high = low + 56; /* 14*1024/256 */ 7505 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 7506 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 7507 } 7508 7509 if (CHIP_MODE_IS_4_PORT(bp)) 7510 REG_WR(bp, (BP_PORT(bp) ? 7511 BRB1_REG_MAC_GUARANTIED_1 : 7512 BRB1_REG_MAC_GUARANTIED_0), 40); 7513 7514 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7515 if (CHIP_IS_E3B0(bp)) { 7516 if (IS_MF_AFEX(bp)) { 7517 /* configure headers for AFEX mode */ 7518 REG_WR(bp, BP_PORT(bp) ? 7519 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7520 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 7521 REG_WR(bp, BP_PORT(bp) ? 7522 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 7523 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 7524 REG_WR(bp, BP_PORT(bp) ? 7525 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 7526 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 7527 } else { 7528 /* Ovlan exists only if we are in multi-function + 7529 * switch-dependent mode, in switch-independent there 7530 * is no ovlan headers 7531 */ 7532 REG_WR(bp, BP_PORT(bp) ? 7533 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7534 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 7535 (bp->path_has_ovlan ? 7 : 6)); 7536 } 7537 } 7538 7539 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7540 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7541 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7542 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7543 7544 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7545 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7546 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7547 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7548 7549 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7550 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7551 7552 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7553 7554 if (CHIP_IS_E1x(bp)) { 7555 /* configure PBF to work without PAUSE mtu 9000 */ 7556 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 7557 7558 /* update threshold */ 7559 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 7560 /* update init credit */ 7561 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 7562 7563 /* probe changes */ 7564 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); 7565 udelay(50); 7566 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); 7567 } 7568 7569 if (CNIC_SUPPORT(bp)) 7570 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7571 7572 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7573 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7574 7575 if (CHIP_IS_E1(bp)) { 7576 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7577 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7578 } 7579 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7580 7581 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7582 7583 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7584 /* init aeu_mask_attn_func_0/1: 7585 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use 7586 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF 7587 * bits 4-7 are used for "per vn group attention" */ 7588 val = IS_MF(bp) ? 0xF7 : 0x7; 7589 /* Enable DCBX attention for all but E1 */ 7590 val |= CHIP_IS_E1(bp) ? 0 : 0x10; 7591 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 7592 7593 /* SCPAD_PARITY should NOT trigger close the gates */ 7594 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0; 7595 REG_WR(bp, reg, 7596 REG_RD(bp, reg) & 7597 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7598 7599 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0; 7600 REG_WR(bp, reg, 7601 REG_RD(bp, reg) & 7602 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7603 7604 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7605 7606 if (!CHIP_IS_E1x(bp)) { 7607 /* Bit-map indicating which L2 hdrs may appear after the 7608 * basic Ethernet header 7609 */ 7610 if (IS_MF_AFEX(bp)) 7611 REG_WR(bp, BP_PORT(bp) ? 7612 NIG_REG_P1_HDRS_AFTER_BASIC : 7613 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 7614 else 7615 REG_WR(bp, BP_PORT(bp) ? 7616 NIG_REG_P1_HDRS_AFTER_BASIC : 7617 NIG_REG_P0_HDRS_AFTER_BASIC, 7618 IS_MF_SD(bp) ? 7 : 6); 7619 7620 if (CHIP_IS_E3(bp)) 7621 REG_WR(bp, BP_PORT(bp) ? 7622 NIG_REG_LLH1_MF_MODE : 7623 NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7624 } 7625 if (!CHIP_IS_E3(bp)) 7626 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 7627 7628 if (!CHIP_IS_E1(bp)) { 7629 /* 0x2 disable mf_ov, 0x1 enable */ 7630 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 7631 (IS_MF_SD(bp) ? 0x1 : 0x2)); 7632 7633 if (!CHIP_IS_E1x(bp)) { 7634 val = 0; 7635 switch (bp->mf_mode) { 7636 case MULTI_FUNCTION_SD: 7637 val = 1; 7638 break; 7639 case MULTI_FUNCTION_SI: 7640 case MULTI_FUNCTION_AFEX: 7641 val = 2; 7642 break; 7643 } 7644 7645 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : 7646 NIG_REG_LLH0_CLS_TYPE), val); 7647 } 7648 { 7649 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 7650 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 7651 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 7652 } 7653 } 7654 7655 /* If SPIO5 is set to generate interrupts, enable it for this port */ 7656 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 7657 if (val & MISC_SPIO_SPIO5) { 7658 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 7659 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 7660 val = REG_RD(bp, reg_addr); 7661 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 7662 REG_WR(bp, reg_addr, val); 7663 } 7664 7665 return 0; 7666 } 7667 7668 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) 7669 { 7670 int reg; 7671 u32 wb_write[2]; 7672 7673 if (CHIP_IS_E1(bp)) 7674 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 7675 else 7676 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 7677 7678 wb_write[0] = ONCHIP_ADDR1(addr); 7679 wb_write[1] = ONCHIP_ADDR2(addr); 7680 REG_WR_DMAE(bp, reg, wb_write, 2); 7681 } 7682 7683 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) 7684 { 7685 u32 data, ctl, cnt = 100; 7686 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 7687 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 7688 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 7689 u32 sb_bit = 1 << (idu_sb_id%32); 7690 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 7691 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 7692 7693 /* Not supported in BC mode */ 7694 if (CHIP_INT_MODE_IS_BC(bp)) 7695 return; 7696 7697 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup 7698 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 7699 IGU_REGULAR_CLEANUP_SET | 7700 IGU_REGULAR_BCLEANUP; 7701 7702 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 7703 func_encode << IGU_CTRL_REG_FID_SHIFT | 7704 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 7705 7706 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7707 data, igu_addr_data); 7708 REG_WR(bp, igu_addr_data, data); 7709 mmiowb(); 7710 barrier(); 7711 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7712 ctl, igu_addr_ctl); 7713 REG_WR(bp, igu_addr_ctl, ctl); 7714 mmiowb(); 7715 barrier(); 7716 7717 /* wait for clean up to finish */ 7718 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) 7719 msleep(20); 7720 7721 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { 7722 DP(NETIF_MSG_HW, 7723 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", 7724 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 7725 } 7726 } 7727 7728 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) 7729 { 7730 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); 7731 } 7732 7733 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) 7734 { 7735 u32 i, base = FUNC_ILT_BASE(func); 7736 for (i = base; i < base + ILT_PER_FUNC; i++) 7737 bnx2x_ilt_wr(bp, i, 0); 7738 } 7739 7740 static void bnx2x_init_searcher(struct bnx2x *bp) 7741 { 7742 int port = BP_PORT(bp); 7743 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); 7744 /* T1 hash bits value determines the T1 number of entries */ 7745 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 7746 } 7747 7748 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) 7749 { 7750 int rc; 7751 struct bnx2x_func_state_params func_params = {NULL}; 7752 struct bnx2x_func_switch_update_params *switch_update_params = 7753 &func_params.params.switch_update; 7754 7755 /* Prepare parameters for function state transitions */ 7756 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 7757 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 7758 7759 func_params.f_obj = &bp->func_obj; 7760 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 7761 7762 /* Function parameters */ 7763 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG, 7764 &switch_update_params->changes); 7765 if (suspend) 7766 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND, 7767 &switch_update_params->changes); 7768 7769 rc = bnx2x_func_state_change(bp, &func_params); 7770 7771 return rc; 7772 } 7773 7774 static int bnx2x_reset_nic_mode(struct bnx2x *bp) 7775 { 7776 int rc, i, port = BP_PORT(bp); 7777 int vlan_en = 0, mac_en[NUM_MACS]; 7778 7779 /* Close input from network */ 7780 if (bp->mf_mode == SINGLE_FUNCTION) { 7781 bnx2x_set_rx_filter(&bp->link_params, 0); 7782 } else { 7783 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : 7784 NIG_REG_LLH0_FUNC_EN); 7785 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7786 NIG_REG_LLH0_FUNC_EN, 0); 7787 for (i = 0; i < NUM_MACS; i++) { 7788 mac_en[i] = REG_RD(bp, port ? 7789 (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7790 4 * i) : 7791 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 7792 4 * i)); 7793 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7794 4 * i) : 7795 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); 7796 } 7797 } 7798 7799 /* Close BMC to host */ 7800 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7801 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); 7802 7803 /* Suspend Tx switching to the PF. Completion of this ramrod 7804 * further guarantees that all the packets of that PF / child 7805 * VFs in BRB were processed by the Parser, so it is safe to 7806 * change the NIC_MODE register. 7807 */ 7808 rc = bnx2x_func_switch_update(bp, 1); 7809 if (rc) { 7810 BNX2X_ERR("Can't suspend tx-switching!\n"); 7811 return rc; 7812 } 7813 7814 /* Change NIC_MODE register */ 7815 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7816 7817 /* Open input from network */ 7818 if (bp->mf_mode == SINGLE_FUNCTION) { 7819 bnx2x_set_rx_filter(&bp->link_params, 1); 7820 } else { 7821 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7822 NIG_REG_LLH0_FUNC_EN, vlan_en); 7823 for (i = 0; i < NUM_MACS; i++) { 7824 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7825 4 * i) : 7826 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 7827 mac_en[i]); 7828 } 7829 } 7830 7831 /* Enable BMC to host */ 7832 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7833 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); 7834 7835 /* Resume Tx switching to the PF */ 7836 rc = bnx2x_func_switch_update(bp, 0); 7837 if (rc) { 7838 BNX2X_ERR("Can't resume tx-switching!\n"); 7839 return rc; 7840 } 7841 7842 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7843 return 0; 7844 } 7845 7846 int bnx2x_init_hw_func_cnic(struct bnx2x *bp) 7847 { 7848 int rc; 7849 7850 bnx2x_ilt_init_op_cnic(bp, INITOP_SET); 7851 7852 if (CONFIGURE_NIC_MODE(bp)) { 7853 /* Configure searcher as part of function hw init */ 7854 bnx2x_init_searcher(bp); 7855 7856 /* Reset NIC mode */ 7857 rc = bnx2x_reset_nic_mode(bp); 7858 if (rc) 7859 BNX2X_ERR("Can't change NIC mode!\n"); 7860 return rc; 7861 } 7862 7863 return 0; 7864 } 7865 7866 static int bnx2x_init_hw_func(struct bnx2x *bp) 7867 { 7868 int port = BP_PORT(bp); 7869 int func = BP_FUNC(bp); 7870 int init_phase = PHASE_PF0 + func; 7871 struct bnx2x_ilt *ilt = BP_ILT(bp); 7872 u16 cdu_ilt_start; 7873 u32 addr, val; 7874 u32 main_mem_base, main_mem_size, main_mem_prty_clr; 7875 int i, main_mem_width, rc; 7876 7877 DP(NETIF_MSG_HW, "starting func init func %d\n", func); 7878 7879 /* FLR cleanup - hmmm */ 7880 if (!CHIP_IS_E1x(bp)) { 7881 rc = bnx2x_pf_flr_clnup(bp); 7882 if (rc) { 7883 bnx2x_fw_dump(bp); 7884 return rc; 7885 } 7886 } 7887 7888 /* set MSI reconfigure capability */ 7889 if (bp->common.int_block == INT_BLOCK_HC) { 7890 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 7891 val = REG_RD(bp, addr); 7892 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 7893 REG_WR(bp, addr, val); 7894 } 7895 7896 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7897 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7898 7899 ilt = BP_ILT(bp); 7900 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7901 7902 if (IS_SRIOV(bp)) 7903 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; 7904 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); 7905 7906 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes 7907 * those of the VFs, so start line should be reset 7908 */ 7909 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7910 for (i = 0; i < L2_ILT_LINES(bp); i++) { 7911 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; 7912 ilt->lines[cdu_ilt_start + i].page_mapping = 7913 bp->context[i].cxt_mapping; 7914 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; 7915 } 7916 7917 bnx2x_ilt_init_op(bp, INITOP_SET); 7918 7919 if (!CONFIGURE_NIC_MODE(bp)) { 7920 bnx2x_init_searcher(bp); 7921 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7922 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7923 } else { 7924 /* Set NIC mode */ 7925 REG_WR(bp, PRS_REG_NIC_MODE, 1); 7926 DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); 7927 } 7928 7929 if (!CHIP_IS_E1x(bp)) { 7930 u32 pf_conf = IGU_PF_CONF_FUNC_EN; 7931 7932 /* Turn on a single ISR mode in IGU if driver is going to use 7933 * INT#x or MSI 7934 */ 7935 if (!(bp->flags & USING_MSIX_FLAG)) 7936 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 7937 /* 7938 * Timers workaround bug: function init part. 7939 * Need to wait 20msec after initializing ILT, 7940 * needed to make sure there are no requests in 7941 * one of the PXP internal queues with "old" ILT addresses 7942 */ 7943 msleep(20); 7944 /* 7945 * Master enable - Due to WB DMAE writes performed before this 7946 * register is re-initialized as part of the regular function 7947 * init 7948 */ 7949 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7950 /* Enable the function in IGU */ 7951 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); 7952 } 7953 7954 bp->dmae_ready = 1; 7955 7956 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7957 7958 if (!CHIP_IS_E1x(bp)) 7959 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 7960 7961 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7962 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7963 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7964 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7965 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7966 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7967 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7968 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7969 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7970 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7971 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7972 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7973 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7974 7975 if (!CHIP_IS_E1x(bp)) 7976 REG_WR(bp, QM_REG_PF_EN, 1); 7977 7978 if (!CHIP_IS_E1x(bp)) { 7979 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7980 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7981 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7982 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 7983 } 7984 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7985 7986 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7987 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7988 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */ 7989 7990 bnx2x_iov_init_dq(bp); 7991 7992 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7993 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7994 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7995 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7996 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7997 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7998 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7999 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 8000 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 8001 if (!CHIP_IS_E1x(bp)) 8002 REG_WR(bp, PBF_REG_DISABLE_PF, 0); 8003 8004 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 8005 8006 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 8007 8008 if (!CHIP_IS_E1x(bp)) 8009 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); 8010 8011 if (IS_MF(bp)) { 8012 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) { 8013 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 8014 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, 8015 bp->mf_ov); 8016 } 8017 } 8018 8019 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 8020 8021 /* HC init per function */ 8022 if (bp->common.int_block == INT_BLOCK_HC) { 8023 if (CHIP_IS_E1H(bp)) { 8024 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8025 8026 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8027 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8028 } 8029 bnx2x_init_block(bp, BLOCK_HC, init_phase); 8030 8031 } else { 8032 int num_segs, sb_idx, prod_offset; 8033 8034 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8035 8036 if (!CHIP_IS_E1x(bp)) { 8037 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8038 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8039 } 8040 8041 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 8042 8043 if (!CHIP_IS_E1x(bp)) { 8044 int dsb_idx = 0; 8045 /** 8046 * Producer memory: 8047 * E2 mode: address 0-135 match to the mapping memory; 8048 * 136 - PF0 default prod; 137 - PF1 default prod; 8049 * 138 - PF2 default prod; 139 - PF3 default prod; 8050 * 140 - PF0 attn prod; 141 - PF1 attn prod; 8051 * 142 - PF2 attn prod; 143 - PF3 attn prod; 8052 * 144-147 reserved. 8053 * 8054 * E1.5 mode - In backward compatible mode; 8055 * for non default SB; each even line in the memory 8056 * holds the U producer and each odd line hold 8057 * the C producer. The first 128 producers are for 8058 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 8059 * producers are for the DSB for each PF. 8060 * Each PF has five segments: (the order inside each 8061 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 8062 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 8063 * 144-147 attn prods; 8064 */ 8065 /* non-default-status-blocks */ 8066 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8067 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 8068 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { 8069 prod_offset = (bp->igu_base_sb + sb_idx) * 8070 num_segs; 8071 8072 for (i = 0; i < num_segs; i++) { 8073 addr = IGU_REG_PROD_CONS_MEMORY + 8074 (prod_offset + i) * 4; 8075 REG_WR(bp, addr, 0); 8076 } 8077 /* send consumer update with value 0 */ 8078 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, 8079 USTORM_ID, 0, IGU_INT_NOP, 1); 8080 bnx2x_igu_clear_sb(bp, 8081 bp->igu_base_sb + sb_idx); 8082 } 8083 8084 /* default-status-blocks */ 8085 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8086 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 8087 8088 if (CHIP_MODE_IS_4_PORT(bp)) 8089 dsb_idx = BP_FUNC(bp); 8090 else 8091 dsb_idx = BP_VN(bp); 8092 8093 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? 8094 IGU_BC_BASE_DSB_PROD + dsb_idx : 8095 IGU_NORM_BASE_DSB_PROD + dsb_idx); 8096 8097 /* 8098 * igu prods come in chunks of E1HVN_MAX (4) - 8099 * does not matters what is the current chip mode 8100 */ 8101 for (i = 0; i < (num_segs * E1HVN_MAX); 8102 i += E1HVN_MAX) { 8103 addr = IGU_REG_PROD_CONS_MEMORY + 8104 (prod_offset + i)*4; 8105 REG_WR(bp, addr, 0); 8106 } 8107 /* send consumer update with 0 */ 8108 if (CHIP_INT_MODE_IS_BC(bp)) { 8109 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8110 USTORM_ID, 0, IGU_INT_NOP, 1); 8111 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8112 CSTORM_ID, 0, IGU_INT_NOP, 1); 8113 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8114 XSTORM_ID, 0, IGU_INT_NOP, 1); 8115 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8116 TSTORM_ID, 0, IGU_INT_NOP, 1); 8117 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8118 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8119 } else { 8120 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8121 USTORM_ID, 0, IGU_INT_NOP, 1); 8122 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8123 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8124 } 8125 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); 8126 8127 /* !!! These should become driver const once 8128 rf-tool supports split-68 const */ 8129 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 8130 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 8131 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 8132 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 8133 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 8134 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 8135 } 8136 } 8137 8138 /* Reset PCIE errors for debug */ 8139 REG_WR(bp, 0x2114, 0xffffffff); 8140 REG_WR(bp, 0x2120, 0xffffffff); 8141 8142 if (CHIP_IS_E1x(bp)) { 8143 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 8144 main_mem_base = HC_REG_MAIN_MEMORY + 8145 BP_PORT(bp) * (main_mem_size * 4); 8146 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 8147 main_mem_width = 8; 8148 8149 val = REG_RD(bp, main_mem_prty_clr); 8150 if (val) 8151 DP(NETIF_MSG_HW, 8152 "Hmmm... Parity errors in HC block during function init (0x%x)!\n", 8153 val); 8154 8155 /* Clear "false" parity errors in MSI-X table */ 8156 for (i = main_mem_base; 8157 i < main_mem_base + main_mem_size * 4; 8158 i += main_mem_width) { 8159 bnx2x_read_dmae(bp, i, main_mem_width / 4); 8160 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), 8161 i, main_mem_width / 4); 8162 } 8163 /* Clear HC parity attention */ 8164 REG_RD(bp, main_mem_prty_clr); 8165 } 8166 8167 #ifdef BNX2X_STOP_ON_ERROR 8168 /* Enable STORMs SP logging */ 8169 REG_WR8(bp, BAR_USTRORM_INTMEM + 8170 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8171 REG_WR8(bp, BAR_TSTRORM_INTMEM + 8172 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8173 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8174 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8175 REG_WR8(bp, BAR_XSTRORM_INTMEM + 8176 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8177 #endif 8178 8179 bnx2x_phy_probe(&bp->link_params); 8180 8181 return 0; 8182 } 8183 8184 void bnx2x_free_mem_cnic(struct bnx2x *bp) 8185 { 8186 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); 8187 8188 if (!CHIP_IS_E1x(bp)) 8189 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, 8190 sizeof(struct host_hc_status_block_e2)); 8191 else 8192 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, 8193 sizeof(struct host_hc_status_block_e1x)); 8194 8195 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8196 } 8197 8198 void bnx2x_free_mem(struct bnx2x *bp) 8199 { 8200 int i; 8201 8202 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 8203 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 8204 8205 if (IS_VF(bp)) 8206 return; 8207 8208 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, 8209 sizeof(struct host_sp_status_block)); 8210 8211 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, 8212 sizeof(struct bnx2x_slowpath)); 8213 8214 for (i = 0; i < L2_ILT_LINES(bp); i++) 8215 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, 8216 bp->context[i].size); 8217 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); 8218 8219 BNX2X_FREE(bp->ilt->lines); 8220 8221 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); 8222 8223 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, 8224 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8225 8226 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8227 8228 bnx2x_iov_free_mem(bp); 8229 } 8230 8231 int bnx2x_alloc_mem_cnic(struct bnx2x *bp) 8232 { 8233 if (!CHIP_IS_E1x(bp)) { 8234 /* size = the status block + ramrod buffers */ 8235 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8236 sizeof(struct host_hc_status_block_e2)); 8237 if (!bp->cnic_sb.e2_sb) 8238 goto alloc_mem_err; 8239 } else { 8240 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8241 sizeof(struct host_hc_status_block_e1x)); 8242 if (!bp->cnic_sb.e1x_sb) 8243 goto alloc_mem_err; 8244 } 8245 8246 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8247 /* allocate searcher T2 table, as it wasn't allocated before */ 8248 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8249 if (!bp->t2) 8250 goto alloc_mem_err; 8251 } 8252 8253 /* write address to which L5 should insert its values */ 8254 bp->cnic_eth_dev.addr_drv_info_to_mcp = 8255 &bp->slowpath->drv_info_to_mcp; 8256 8257 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) 8258 goto alloc_mem_err; 8259 8260 return 0; 8261 8262 alloc_mem_err: 8263 bnx2x_free_mem_cnic(bp); 8264 BNX2X_ERR("Can't allocate memory\n"); 8265 return -ENOMEM; 8266 } 8267 8268 int bnx2x_alloc_mem(struct bnx2x *bp) 8269 { 8270 int i, allocated, context_size; 8271 8272 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8273 /* allocate searcher T2 table */ 8274 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8275 if (!bp->t2) 8276 goto alloc_mem_err; 8277 } 8278 8279 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping, 8280 sizeof(struct host_sp_status_block)); 8281 if (!bp->def_status_blk) 8282 goto alloc_mem_err; 8283 8284 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping, 8285 sizeof(struct bnx2x_slowpath)); 8286 if (!bp->slowpath) 8287 goto alloc_mem_err; 8288 8289 /* Allocate memory for CDU context: 8290 * This memory is allocated separately and not in the generic ILT 8291 * functions because CDU differs in few aspects: 8292 * 1. There are multiple entities allocating memory for context - 8293 * 'regular' driver, CNIC and SRIOV driver. Each separately controls 8294 * its own ILT lines. 8295 * 2. Since CDU page-size is not a single 4KB page (which is the case 8296 * for the other ILT clients), to be efficient we want to support 8297 * allocation of sub-page-size in the last entry. 8298 * 3. Context pointers are used by the driver to pass to FW / update 8299 * the context (for the other ILT clients the pointers are used just to 8300 * free the memory during unload). 8301 */ 8302 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); 8303 8304 for (i = 0, allocated = 0; allocated < context_size; i++) { 8305 bp->context[i].size = min(CDU_ILT_PAGE_SZ, 8306 (context_size - allocated)); 8307 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping, 8308 bp->context[i].size); 8309 if (!bp->context[i].vcxt) 8310 goto alloc_mem_err; 8311 allocated += bp->context[i].size; 8312 } 8313 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line), 8314 GFP_KERNEL); 8315 if (!bp->ilt->lines) 8316 goto alloc_mem_err; 8317 8318 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) 8319 goto alloc_mem_err; 8320 8321 if (bnx2x_iov_alloc_mem(bp)) 8322 goto alloc_mem_err; 8323 8324 /* Slow path ring */ 8325 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE); 8326 if (!bp->spq) 8327 goto alloc_mem_err; 8328 8329 /* EQ */ 8330 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping, 8331 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8332 if (!bp->eq_ring) 8333 goto alloc_mem_err; 8334 8335 return 0; 8336 8337 alloc_mem_err: 8338 bnx2x_free_mem(bp); 8339 BNX2X_ERR("Can't allocate memory\n"); 8340 return -ENOMEM; 8341 } 8342 8343 /* 8344 * Init service functions 8345 */ 8346 8347 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 8348 struct bnx2x_vlan_mac_obj *obj, bool set, 8349 int mac_type, unsigned long *ramrod_flags) 8350 { 8351 int rc; 8352 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8353 8354 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8355 8356 /* Fill general parameters */ 8357 ramrod_param.vlan_mac_obj = obj; 8358 ramrod_param.ramrod_flags = *ramrod_flags; 8359 8360 /* Fill a user request section if needed */ 8361 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8362 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 8363 8364 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 8365 8366 /* Set the command: ADD or DEL */ 8367 if (set) 8368 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8369 else 8370 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8371 } 8372 8373 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8374 8375 if (rc == -EEXIST) { 8376 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8377 /* do not treat adding same MAC as error */ 8378 rc = 0; 8379 } else if (rc < 0) 8380 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); 8381 8382 return rc; 8383 } 8384 8385 int bnx2x_del_all_macs(struct bnx2x *bp, 8386 struct bnx2x_vlan_mac_obj *mac_obj, 8387 int mac_type, bool wait_for_comp) 8388 { 8389 int rc; 8390 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 8391 8392 /* Wait for completion of requested */ 8393 if (wait_for_comp) 8394 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8395 8396 /* Set the mac type of addresses we want to clear */ 8397 __set_bit(mac_type, &vlan_mac_flags); 8398 8399 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); 8400 if (rc < 0) 8401 BNX2X_ERR("Failed to delete MACs: %d\n", rc); 8402 8403 return rc; 8404 } 8405 8406 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) 8407 { 8408 if (IS_PF(bp)) { 8409 unsigned long ramrod_flags = 0; 8410 8411 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); 8412 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8413 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, 8414 &bp->sp_objs->mac_obj, set, 8415 BNX2X_ETH_MAC, &ramrod_flags); 8416 } else { /* vf */ 8417 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, 8418 bp->fp->index, true); 8419 } 8420 } 8421 8422 int bnx2x_setup_leading(struct bnx2x *bp) 8423 { 8424 if (IS_PF(bp)) 8425 return bnx2x_setup_queue(bp, &bp->fp[0], true); 8426 else /* VF */ 8427 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true); 8428 } 8429 8430 /** 8431 * bnx2x_set_int_mode - configure interrupt mode 8432 * 8433 * @bp: driver handle 8434 * 8435 * In case of MSI-X it will also try to enable MSI-X. 8436 */ 8437 int bnx2x_set_int_mode(struct bnx2x *bp) 8438 { 8439 int rc = 0; 8440 8441 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) { 8442 BNX2X_ERR("VF not loaded since interrupt mode not msix\n"); 8443 return -EINVAL; 8444 } 8445 8446 switch (int_mode) { 8447 case BNX2X_INT_MODE_MSIX: 8448 /* attempt to enable msix */ 8449 rc = bnx2x_enable_msix(bp); 8450 8451 /* msix attained */ 8452 if (!rc) 8453 return 0; 8454 8455 /* vfs use only msix */ 8456 if (rc && IS_VF(bp)) 8457 return rc; 8458 8459 /* failed to enable multiple MSI-X */ 8460 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", 8461 bp->num_queues, 8462 1 + bp->num_cnic_queues); 8463 8464 /* falling through... */ 8465 case BNX2X_INT_MODE_MSI: 8466 bnx2x_enable_msi(bp); 8467 8468 /* falling through... */ 8469 case BNX2X_INT_MODE_INTX: 8470 bp->num_ethernet_queues = 1; 8471 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 8472 BNX2X_DEV_INFO("set number of queues to 1\n"); 8473 break; 8474 default: 8475 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); 8476 return -EINVAL; 8477 } 8478 return 0; 8479 } 8480 8481 /* must be called prior to any HW initializations */ 8482 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) 8483 { 8484 if (IS_SRIOV(bp)) 8485 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; 8486 return L2_ILT_LINES(bp); 8487 } 8488 8489 void bnx2x_ilt_set_info(struct bnx2x *bp) 8490 { 8491 struct ilt_client_info *ilt_client; 8492 struct bnx2x_ilt *ilt = BP_ILT(bp); 8493 u16 line = 0; 8494 8495 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); 8496 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); 8497 8498 /* CDU */ 8499 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 8500 ilt_client->client_num = ILT_CLIENT_CDU; 8501 ilt_client->page_size = CDU_ILT_PAGE_SZ; 8502 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 8503 ilt_client->start = line; 8504 line += bnx2x_cid_ilt_lines(bp); 8505 8506 if (CNIC_SUPPORT(bp)) 8507 line += CNIC_ILT_LINES; 8508 ilt_client->end = line - 1; 8509 8510 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8511 ilt_client->start, 8512 ilt_client->end, 8513 ilt_client->page_size, 8514 ilt_client->flags, 8515 ilog2(ilt_client->page_size >> 12)); 8516 8517 /* QM */ 8518 if (QM_INIT(bp->qm_cid_count)) { 8519 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 8520 ilt_client->client_num = ILT_CLIENT_QM; 8521 ilt_client->page_size = QM_ILT_PAGE_SZ; 8522 ilt_client->flags = 0; 8523 ilt_client->start = line; 8524 8525 /* 4 bytes for each cid */ 8526 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 8527 QM_ILT_PAGE_SZ); 8528 8529 ilt_client->end = line - 1; 8530 8531 DP(NETIF_MSG_IFUP, 8532 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8533 ilt_client->start, 8534 ilt_client->end, 8535 ilt_client->page_size, 8536 ilt_client->flags, 8537 ilog2(ilt_client->page_size >> 12)); 8538 } 8539 8540 if (CNIC_SUPPORT(bp)) { 8541 /* SRC */ 8542 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 8543 ilt_client->client_num = ILT_CLIENT_SRC; 8544 ilt_client->page_size = SRC_ILT_PAGE_SZ; 8545 ilt_client->flags = 0; 8546 ilt_client->start = line; 8547 line += SRC_ILT_LINES; 8548 ilt_client->end = line - 1; 8549 8550 DP(NETIF_MSG_IFUP, 8551 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8552 ilt_client->start, 8553 ilt_client->end, 8554 ilt_client->page_size, 8555 ilt_client->flags, 8556 ilog2(ilt_client->page_size >> 12)); 8557 8558 /* TM */ 8559 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 8560 ilt_client->client_num = ILT_CLIENT_TM; 8561 ilt_client->page_size = TM_ILT_PAGE_SZ; 8562 ilt_client->flags = 0; 8563 ilt_client->start = line; 8564 line += TM_ILT_LINES; 8565 ilt_client->end = line - 1; 8566 8567 DP(NETIF_MSG_IFUP, 8568 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8569 ilt_client->start, 8570 ilt_client->end, 8571 ilt_client->page_size, 8572 ilt_client->flags, 8573 ilog2(ilt_client->page_size >> 12)); 8574 } 8575 8576 BUG_ON(line > ILT_MAX_LINES); 8577 } 8578 8579 /** 8580 * bnx2x_pf_q_prep_init - prepare INIT transition parameters 8581 * 8582 * @bp: driver handle 8583 * @fp: pointer to fastpath 8584 * @init_params: pointer to parameters structure 8585 * 8586 * parameters configured: 8587 * - HC configuration 8588 * - Queue's CDU context 8589 */ 8590 static void bnx2x_pf_q_prep_init(struct bnx2x *bp, 8591 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) 8592 { 8593 u8 cos; 8594 int cxt_index, cxt_offset; 8595 8596 /* FCoE Queue uses Default SB, thus has no HC capabilities */ 8597 if (!IS_FCOE_FP(fp)) { 8598 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); 8599 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); 8600 8601 /* If HC is supported, enable host coalescing in the transition 8602 * to INIT state. 8603 */ 8604 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); 8605 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); 8606 8607 /* HC rate */ 8608 init_params->rx.hc_rate = bp->rx_ticks ? 8609 (1000000 / bp->rx_ticks) : 0; 8610 init_params->tx.hc_rate = bp->tx_ticks ? 8611 (1000000 / bp->tx_ticks) : 0; 8612 8613 /* FW SB ID */ 8614 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = 8615 fp->fw_sb_id; 8616 8617 /* 8618 * CQ index among the SB indices: FCoE clients uses the default 8619 * SB, therefore it's different. 8620 */ 8621 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 8622 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 8623 } 8624 8625 /* set maximum number of COSs supported by this queue */ 8626 init_params->max_cos = fp->max_cos; 8627 8628 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", 8629 fp->index, init_params->max_cos); 8630 8631 /* set the context pointers queue object */ 8632 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 8633 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; 8634 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * 8635 ILT_PAGE_CIDS); 8636 init_params->cxts[cos] = 8637 &bp->context[cxt_index].vcxt[cxt_offset].eth; 8638 } 8639 } 8640 8641 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8642 struct bnx2x_queue_state_params *q_params, 8643 struct bnx2x_queue_setup_tx_only_params *tx_only_params, 8644 int tx_index, bool leading) 8645 { 8646 memset(tx_only_params, 0, sizeof(*tx_only_params)); 8647 8648 /* Set the command */ 8649 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 8650 8651 /* Set tx-only QUEUE flags: don't zero statistics */ 8652 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); 8653 8654 /* choose the index of the cid to send the slow path on */ 8655 tx_only_params->cid_index = tx_index; 8656 8657 /* Set general TX_ONLY_SETUP parameters */ 8658 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); 8659 8660 /* Set Tx TX_ONLY_SETUP parameters */ 8661 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); 8662 8663 DP(NETIF_MSG_IFUP, 8664 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", 8665 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], 8666 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, 8667 tx_only_params->gen_params.spcl_id, tx_only_params->flags); 8668 8669 /* send the ramrod */ 8670 return bnx2x_queue_state_change(bp, q_params); 8671 } 8672 8673 /** 8674 * bnx2x_setup_queue - setup queue 8675 * 8676 * @bp: driver handle 8677 * @fp: pointer to fastpath 8678 * @leading: is leading 8679 * 8680 * This function performs 2 steps in a Queue state machine 8681 * actually: 1) RESET->INIT 2) INIT->SETUP 8682 */ 8683 8684 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8685 bool leading) 8686 { 8687 struct bnx2x_queue_state_params q_params = {NULL}; 8688 struct bnx2x_queue_setup_params *setup_params = 8689 &q_params.params.setup; 8690 struct bnx2x_queue_setup_tx_only_params *tx_only_params = 8691 &q_params.params.tx_only; 8692 int rc; 8693 u8 tx_index; 8694 8695 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); 8696 8697 /* reset IGU state skip FCoE L2 queue */ 8698 if (!IS_FCOE_FP(fp)) 8699 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, 8700 IGU_INT_ENABLE, 0); 8701 8702 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8703 /* We want to wait for completion in this context */ 8704 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8705 8706 /* Prepare the INIT parameters */ 8707 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); 8708 8709 /* Set the command */ 8710 q_params.cmd = BNX2X_Q_CMD_INIT; 8711 8712 /* Change the state to INIT */ 8713 rc = bnx2x_queue_state_change(bp, &q_params); 8714 if (rc) { 8715 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); 8716 return rc; 8717 } 8718 8719 DP(NETIF_MSG_IFUP, "init complete\n"); 8720 8721 /* Now move the Queue to the SETUP state... */ 8722 memset(setup_params, 0, sizeof(*setup_params)); 8723 8724 /* Set QUEUE flags */ 8725 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); 8726 8727 /* Set general SETUP parameters */ 8728 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, 8729 FIRST_TX_COS_INDEX); 8730 8731 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, 8732 &setup_params->rxq_params); 8733 8734 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, 8735 FIRST_TX_COS_INDEX); 8736 8737 /* Set the command */ 8738 q_params.cmd = BNX2X_Q_CMD_SETUP; 8739 8740 if (IS_FCOE_FP(fp)) 8741 bp->fcoe_init = true; 8742 8743 /* Change the state to SETUP */ 8744 rc = bnx2x_queue_state_change(bp, &q_params); 8745 if (rc) { 8746 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); 8747 return rc; 8748 } 8749 8750 /* loop through the relevant tx-only indices */ 8751 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8752 tx_index < fp->max_cos; 8753 tx_index++) { 8754 8755 /* prepare and send tx-only ramrod*/ 8756 rc = bnx2x_setup_tx_only(bp, fp, &q_params, 8757 tx_only_params, tx_index, leading); 8758 if (rc) { 8759 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", 8760 fp->index, tx_index); 8761 return rc; 8762 } 8763 } 8764 8765 return rc; 8766 } 8767 8768 static int bnx2x_stop_queue(struct bnx2x *bp, int index) 8769 { 8770 struct bnx2x_fastpath *fp = &bp->fp[index]; 8771 struct bnx2x_fp_txdata *txdata; 8772 struct bnx2x_queue_state_params q_params = {NULL}; 8773 int rc, tx_index; 8774 8775 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); 8776 8777 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8778 /* We want to wait for completion in this context */ 8779 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8780 8781 /* close tx-only connections */ 8782 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8783 tx_index < fp->max_cos; 8784 tx_index++){ 8785 8786 /* ascertain this is a normal queue*/ 8787 txdata = fp->txdata_ptr[tx_index]; 8788 8789 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", 8790 txdata->txq_index); 8791 8792 /* send halt terminate on tx-only connection */ 8793 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8794 memset(&q_params.params.terminate, 0, 8795 sizeof(q_params.params.terminate)); 8796 q_params.params.terminate.cid_index = tx_index; 8797 8798 rc = bnx2x_queue_state_change(bp, &q_params); 8799 if (rc) 8800 return rc; 8801 8802 /* send halt terminate on tx-only connection */ 8803 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8804 memset(&q_params.params.cfc_del, 0, 8805 sizeof(q_params.params.cfc_del)); 8806 q_params.params.cfc_del.cid_index = tx_index; 8807 rc = bnx2x_queue_state_change(bp, &q_params); 8808 if (rc) 8809 return rc; 8810 } 8811 /* Stop the primary connection: */ 8812 /* ...halt the connection */ 8813 q_params.cmd = BNX2X_Q_CMD_HALT; 8814 rc = bnx2x_queue_state_change(bp, &q_params); 8815 if (rc) 8816 return rc; 8817 8818 /* ...terminate the connection */ 8819 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8820 memset(&q_params.params.terminate, 0, 8821 sizeof(q_params.params.terminate)); 8822 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 8823 rc = bnx2x_queue_state_change(bp, &q_params); 8824 if (rc) 8825 return rc; 8826 /* ...delete cfc entry */ 8827 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8828 memset(&q_params.params.cfc_del, 0, 8829 sizeof(q_params.params.cfc_del)); 8830 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 8831 return bnx2x_queue_state_change(bp, &q_params); 8832 } 8833 8834 static void bnx2x_reset_func(struct bnx2x *bp) 8835 { 8836 int port = BP_PORT(bp); 8837 int func = BP_FUNC(bp); 8838 int i; 8839 8840 /* Disable the function in the FW */ 8841 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 8842 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 8843 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 8844 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 8845 8846 /* FP SBs */ 8847 for_each_eth_queue(bp, i) { 8848 struct bnx2x_fastpath *fp = &bp->fp[i]; 8849 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8850 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 8851 SB_DISABLED); 8852 } 8853 8854 if (CNIC_LOADED(bp)) 8855 /* CNIC SB */ 8856 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8857 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 8858 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); 8859 8860 /* SP SB */ 8861 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8862 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 8863 SB_DISABLED); 8864 8865 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) 8866 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 8867 0); 8868 8869 /* Configure IGU */ 8870 if (bp->common.int_block == INT_BLOCK_HC) { 8871 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8872 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8873 } else { 8874 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8875 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8876 } 8877 8878 if (CNIC_LOADED(bp)) { 8879 /* Disable Timer scan */ 8880 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 8881 /* 8882 * Wait for at least 10ms and up to 2 second for the timers 8883 * scan to complete 8884 */ 8885 for (i = 0; i < 200; i++) { 8886 usleep_range(10000, 20000); 8887 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) 8888 break; 8889 } 8890 } 8891 /* Clear ILT */ 8892 bnx2x_clear_func_ilt(bp, func); 8893 8894 /* Timers workaround bug for E2: if this is vnic-3, 8895 * we need to set the entire ilt range for this timers. 8896 */ 8897 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { 8898 struct ilt_client_info ilt_cli; 8899 /* use dummy TM client */ 8900 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 8901 ilt_cli.start = 0; 8902 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 8903 ilt_cli.client_num = ILT_CLIENT_TM; 8904 8905 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); 8906 } 8907 8908 /* this assumes that reset_port() called before reset_func()*/ 8909 if (!CHIP_IS_E1x(bp)) 8910 bnx2x_pf_disable(bp); 8911 8912 bp->dmae_ready = 0; 8913 } 8914 8915 static void bnx2x_reset_port(struct bnx2x *bp) 8916 { 8917 int port = BP_PORT(bp); 8918 u32 val; 8919 8920 /* Reset physical Link */ 8921 bnx2x__link_reset(bp); 8922 8923 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 8924 8925 /* Do not rcv packets to BRB */ 8926 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 8927 /* Do not direct rcv packets that are not for MCP to the BRB */ 8928 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 8929 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 8930 8931 /* Configure AEU */ 8932 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 8933 8934 msleep(100); 8935 /* Check for BRB port occupancy */ 8936 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 8937 if (val) 8938 DP(NETIF_MSG_IFDOWN, 8939 "BRB1 is not empty %d blocks are occupied\n", val); 8940 8941 /* TODO: Close Doorbell port? */ 8942 } 8943 8944 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) 8945 { 8946 struct bnx2x_func_state_params func_params = {NULL}; 8947 8948 /* Prepare parameters for function state transitions */ 8949 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 8950 8951 func_params.f_obj = &bp->func_obj; 8952 func_params.cmd = BNX2X_F_CMD_HW_RESET; 8953 8954 func_params.params.hw_init.load_phase = load_code; 8955 8956 return bnx2x_func_state_change(bp, &func_params); 8957 } 8958 8959 static int bnx2x_func_stop(struct bnx2x *bp) 8960 { 8961 struct bnx2x_func_state_params func_params = {NULL}; 8962 int rc; 8963 8964 /* Prepare parameters for function state transitions */ 8965 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 8966 func_params.f_obj = &bp->func_obj; 8967 func_params.cmd = BNX2X_F_CMD_STOP; 8968 8969 /* 8970 * Try to stop the function the 'good way'. If fails (in case 8971 * of a parity error during bnx2x_chip_cleanup()) and we are 8972 * not in a debug mode, perform a state transaction in order to 8973 * enable further HW_RESET transaction. 8974 */ 8975 rc = bnx2x_func_state_change(bp, &func_params); 8976 if (rc) { 8977 #ifdef BNX2X_STOP_ON_ERROR 8978 return rc; 8979 #else 8980 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); 8981 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 8982 return bnx2x_func_state_change(bp, &func_params); 8983 #endif 8984 } 8985 8986 return 0; 8987 } 8988 8989 /** 8990 * bnx2x_send_unload_req - request unload mode from the MCP. 8991 * 8992 * @bp: driver handle 8993 * @unload_mode: requested function's unload mode 8994 * 8995 * Return unload mode returned by the MCP: COMMON, PORT or FUNC. 8996 */ 8997 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) 8998 { 8999 u32 reset_code = 0; 9000 int port = BP_PORT(bp); 9001 9002 /* Select the UNLOAD request mode */ 9003 if (unload_mode == UNLOAD_NORMAL) 9004 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9005 9006 else if (bp->flags & NO_WOL_FLAG) 9007 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 9008 9009 else if (bp->wol) { 9010 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 9011 u8 *mac_addr = bp->dev->dev_addr; 9012 struct pci_dev *pdev = bp->pdev; 9013 u32 val; 9014 u16 pmc; 9015 9016 /* The mac address is written to entries 1-4 to 9017 * preserve entry 0 which is used by the PMF 9018 */ 9019 u8 entry = (BP_VN(bp) + 1)*8; 9020 9021 val = (mac_addr[0] << 8) | mac_addr[1]; 9022 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); 9023 9024 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 9025 (mac_addr[4] << 8) | mac_addr[5]; 9026 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 9027 9028 /* Enable the PME and clear the status */ 9029 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc); 9030 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; 9031 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc); 9032 9033 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 9034 9035 } else 9036 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9037 9038 /* Send the request to the MCP */ 9039 if (!BP_NOMCP(bp)) 9040 reset_code = bnx2x_fw_command(bp, reset_code, 0); 9041 else { 9042 int path = BP_PATH(bp); 9043 9044 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", 9045 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9046 bnx2x_load_count[path][2]); 9047 bnx2x_load_count[path][0]--; 9048 bnx2x_load_count[path][1 + port]--; 9049 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", 9050 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9051 bnx2x_load_count[path][2]); 9052 if (bnx2x_load_count[path][0] == 0) 9053 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; 9054 else if (bnx2x_load_count[path][1 + port] == 0) 9055 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; 9056 else 9057 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; 9058 } 9059 9060 return reset_code; 9061 } 9062 9063 /** 9064 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. 9065 * 9066 * @bp: driver handle 9067 * @keep_link: true iff link should be kept up 9068 */ 9069 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) 9070 { 9071 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 9072 9073 /* Report UNLOAD_DONE to MCP */ 9074 if (!BP_NOMCP(bp)) 9075 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 9076 } 9077 9078 static int bnx2x_func_wait_started(struct bnx2x *bp) 9079 { 9080 int tout = 50; 9081 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 9082 9083 if (!bp->port.pmf) 9084 return 0; 9085 9086 /* 9087 * (assumption: No Attention from MCP at this stage) 9088 * PMF probably in the middle of TX disable/enable transaction 9089 * 1. Sync IRS for default SB 9090 * 2. Sync SP queue - this guarantees us that attention handling started 9091 * 3. Wait, that TX disable/enable transaction completes 9092 * 9093 * 1+2 guarantee that if DCBx attention was scheduled it already changed 9094 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 9095 * received completion for the transaction the state is TX_STOPPED. 9096 * State will return to STARTED after completion of TX_STOPPED-->STARTED 9097 * transaction. 9098 */ 9099 9100 /* make sure default SB ISR is done */ 9101 if (msix) 9102 synchronize_irq(bp->msix_table[0].vector); 9103 else 9104 synchronize_irq(bp->pdev->irq); 9105 9106 flush_workqueue(bnx2x_wq); 9107 flush_workqueue(bnx2x_iov_wq); 9108 9109 while (bnx2x_func_get_state(bp, &bp->func_obj) != 9110 BNX2X_F_STATE_STARTED && tout--) 9111 msleep(20); 9112 9113 if (bnx2x_func_get_state(bp, &bp->func_obj) != 9114 BNX2X_F_STATE_STARTED) { 9115 #ifdef BNX2X_STOP_ON_ERROR 9116 BNX2X_ERR("Wrong function state\n"); 9117 return -EBUSY; 9118 #else 9119 /* 9120 * Failed to complete the transaction in a "good way" 9121 * Force both transactions with CLR bit 9122 */ 9123 struct bnx2x_func_state_params func_params = {NULL}; 9124 9125 DP(NETIF_MSG_IFDOWN, 9126 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n"); 9127 9128 func_params.f_obj = &bp->func_obj; 9129 __set_bit(RAMROD_DRV_CLR_ONLY, 9130 &func_params.ramrod_flags); 9131 9132 /* STARTED-->TX_ST0PPED */ 9133 func_params.cmd = BNX2X_F_CMD_TX_STOP; 9134 bnx2x_func_state_change(bp, &func_params); 9135 9136 /* TX_ST0PPED-->STARTED */ 9137 func_params.cmd = BNX2X_F_CMD_TX_START; 9138 return bnx2x_func_state_change(bp, &func_params); 9139 #endif 9140 } 9141 9142 return 0; 9143 } 9144 9145 static void bnx2x_disable_ptp(struct bnx2x *bp) 9146 { 9147 int port = BP_PORT(bp); 9148 9149 /* Disable sending PTP packets to host */ 9150 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 9151 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 9152 9153 /* Reset PTP event detection rules */ 9154 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 9155 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 9156 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 9157 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 9158 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 9159 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 9160 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 9161 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 9162 9163 /* Disable the PTP feature */ 9164 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 9165 NIG_REG_P0_PTP_EN, 0x0); 9166 } 9167 9168 /* Called during unload, to stop PTP-related stuff */ 9169 void bnx2x_stop_ptp(struct bnx2x *bp) 9170 { 9171 /* Cancel PTP work queue. Should be done after the Tx queues are 9172 * drained to prevent additional scheduling. 9173 */ 9174 cancel_work_sync(&bp->ptp_task); 9175 9176 if (bp->ptp_tx_skb) { 9177 dev_kfree_skb_any(bp->ptp_tx_skb); 9178 bp->ptp_tx_skb = NULL; 9179 } 9180 9181 /* Disable PTP in HW */ 9182 bnx2x_disable_ptp(bp); 9183 9184 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n"); 9185 } 9186 9187 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) 9188 { 9189 int port = BP_PORT(bp); 9190 int i, rc = 0; 9191 u8 cos; 9192 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 9193 u32 reset_code; 9194 9195 /* Wait until tx fastpath tasks complete */ 9196 for_each_tx_queue(bp, i) { 9197 struct bnx2x_fastpath *fp = &bp->fp[i]; 9198 9199 for_each_cos_in_tx_queue(fp, cos) 9200 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 9201 #ifdef BNX2X_STOP_ON_ERROR 9202 if (rc) 9203 return; 9204 #endif 9205 } 9206 9207 /* Give HW time to discard old tx messages */ 9208 usleep_range(1000, 2000); 9209 9210 /* Clean all ETH MACs */ 9211 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, 9212 false); 9213 if (rc < 0) 9214 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); 9215 9216 /* Clean up UC list */ 9217 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, 9218 true); 9219 if (rc < 0) 9220 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", 9221 rc); 9222 9223 /* Disable LLH */ 9224 if (!CHIP_IS_E1(bp)) 9225 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 9226 9227 /* Set "drop all" (stop Rx). 9228 * We need to take a netif_addr_lock() here in order to prevent 9229 * a race between the completion code and this code. 9230 */ 9231 netif_addr_lock_bh(bp->dev); 9232 /* Schedule the rx_mode command */ 9233 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 9234 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 9235 else 9236 bnx2x_set_storm_rx_mode(bp); 9237 9238 /* Cleanup multicast configuration */ 9239 rparam.mcast_obj = &bp->mcast_obj; 9240 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 9241 if (rc < 0) 9242 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); 9243 9244 netif_addr_unlock_bh(bp->dev); 9245 9246 bnx2x_iov_chip_cleanup(bp); 9247 9248 /* 9249 * Send the UNLOAD_REQUEST to the MCP. This will return if 9250 * this function should perform FUNC, PORT or COMMON HW 9251 * reset. 9252 */ 9253 reset_code = bnx2x_send_unload_req(bp, unload_mode); 9254 9255 /* 9256 * (assumption: No Attention from MCP at this stage) 9257 * PMF probably in the middle of TX disable/enable transaction 9258 */ 9259 rc = bnx2x_func_wait_started(bp); 9260 if (rc) { 9261 BNX2X_ERR("bnx2x_func_wait_started failed\n"); 9262 #ifdef BNX2X_STOP_ON_ERROR 9263 return; 9264 #endif 9265 } 9266 9267 /* Close multi and leading connections 9268 * Completions for ramrods are collected in a synchronous way 9269 */ 9270 for_each_eth_queue(bp, i) 9271 if (bnx2x_stop_queue(bp, i)) 9272 #ifdef BNX2X_STOP_ON_ERROR 9273 return; 9274 #else 9275 goto unload_error; 9276 #endif 9277 9278 if (CNIC_LOADED(bp)) { 9279 for_each_cnic_queue(bp, i) 9280 if (bnx2x_stop_queue(bp, i)) 9281 #ifdef BNX2X_STOP_ON_ERROR 9282 return; 9283 #else 9284 goto unload_error; 9285 #endif 9286 } 9287 9288 /* If SP settings didn't get completed so far - something 9289 * very wrong has happen. 9290 */ 9291 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) 9292 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); 9293 9294 #ifndef BNX2X_STOP_ON_ERROR 9295 unload_error: 9296 #endif 9297 rc = bnx2x_func_stop(bp); 9298 if (rc) { 9299 BNX2X_ERR("Function stop failed!\n"); 9300 #ifdef BNX2X_STOP_ON_ERROR 9301 return; 9302 #endif 9303 } 9304 9305 /* stop_ptp should be after the Tx queues are drained to prevent 9306 * scheduling to the cancelled PTP work queue. It should also be after 9307 * function stop ramrod is sent, since as part of this ramrod FW access 9308 * PTP registers. 9309 */ 9310 bnx2x_stop_ptp(bp); 9311 9312 /* Disable HW interrupts, NAPI */ 9313 bnx2x_netif_stop(bp, 1); 9314 /* Delete all NAPI objects */ 9315 bnx2x_del_all_napi(bp); 9316 if (CNIC_LOADED(bp)) 9317 bnx2x_del_all_napi_cnic(bp); 9318 9319 /* Release IRQs */ 9320 bnx2x_free_irq(bp); 9321 9322 /* Reset the chip */ 9323 rc = bnx2x_reset_hw(bp, reset_code); 9324 if (rc) 9325 BNX2X_ERR("HW_RESET failed\n"); 9326 9327 /* Report UNLOAD_DONE to MCP */ 9328 bnx2x_send_unload_done(bp, keep_link); 9329 } 9330 9331 void bnx2x_disable_close_the_gate(struct bnx2x *bp) 9332 { 9333 u32 val; 9334 9335 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); 9336 9337 if (CHIP_IS_E1(bp)) { 9338 int port = BP_PORT(bp); 9339 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 9340 MISC_REG_AEU_MASK_ATTN_FUNC_0; 9341 9342 val = REG_RD(bp, addr); 9343 val &= ~(0x300); 9344 REG_WR(bp, addr, val); 9345 } else { 9346 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); 9347 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 9348 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 9349 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); 9350 } 9351 } 9352 9353 /* Close gates #2, #3 and #4: */ 9354 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) 9355 { 9356 u32 val; 9357 9358 /* Gates #2 and #4a are closed/opened for "not E1" only */ 9359 if (!CHIP_IS_E1(bp)) { 9360 /* #4 */ 9361 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 9362 /* #2 */ 9363 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 9364 } 9365 9366 /* #3 */ 9367 if (CHIP_IS_E1x(bp)) { 9368 /* Prevent interrupts from HC on both ports */ 9369 val = REG_RD(bp, HC_REG_CONFIG_1); 9370 REG_WR(bp, HC_REG_CONFIG_1, 9371 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 9372 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 9373 9374 val = REG_RD(bp, HC_REG_CONFIG_0); 9375 REG_WR(bp, HC_REG_CONFIG_0, 9376 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 9377 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 9378 } else { 9379 /* Prevent incoming interrupts in IGU */ 9380 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 9381 9382 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, 9383 (!close) ? 9384 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 9385 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 9386 } 9387 9388 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", 9389 close ? "closing" : "opening"); 9390 mmiowb(); 9391 } 9392 9393 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ 9394 9395 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) 9396 { 9397 /* Do some magic... */ 9398 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9399 *magic_val = val & SHARED_MF_CLP_MAGIC; 9400 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 9401 } 9402 9403 /** 9404 * bnx2x_clp_reset_done - restore the value of the `magic' bit. 9405 * 9406 * @bp: driver handle 9407 * @magic_val: old value of the `magic' bit. 9408 */ 9409 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) 9410 { 9411 /* Restore the `magic' bit value... */ 9412 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9413 MF_CFG_WR(bp, shared_mf_config.clp_mb, 9414 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 9415 } 9416 9417 /** 9418 * bnx2x_reset_mcp_prep - prepare for MCP reset. 9419 * 9420 * @bp: driver handle 9421 * @magic_val: old value of 'magic' bit. 9422 * 9423 * Takes care of CLP configurations. 9424 */ 9425 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) 9426 { 9427 u32 shmem; 9428 u32 validity_offset; 9429 9430 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); 9431 9432 /* Set `magic' bit in order to save MF config */ 9433 if (!CHIP_IS_E1(bp)) 9434 bnx2x_clp_reset_prep(bp, magic_val); 9435 9436 /* Get shmem offset */ 9437 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9438 validity_offset = 9439 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); 9440 9441 /* Clear validity map flags */ 9442 if (shmem > 0) 9443 REG_WR(bp, shmem + validity_offset, 0); 9444 } 9445 9446 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 9447 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 9448 9449 /** 9450 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT 9451 * 9452 * @bp: driver handle 9453 */ 9454 static void bnx2x_mcp_wait_one(struct bnx2x *bp) 9455 { 9456 /* special handling for emulation and FPGA, 9457 wait 10 times longer */ 9458 if (CHIP_REV_IS_SLOW(bp)) 9459 msleep(MCP_ONE_TIMEOUT*10); 9460 else 9461 msleep(MCP_ONE_TIMEOUT); 9462 } 9463 9464 /* 9465 * initializes bp->common.shmem_base and waits for validity signature to appear 9466 */ 9467 static int bnx2x_init_shmem(struct bnx2x *bp) 9468 { 9469 int cnt = 0; 9470 u32 val = 0; 9471 9472 do { 9473 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9474 if (bp->common.shmem_base) { 9475 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); 9476 if (val & SHR_MEM_VALIDITY_MB) 9477 return 0; 9478 } 9479 9480 bnx2x_mcp_wait_one(bp); 9481 9482 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 9483 9484 BNX2X_ERR("BAD MCP validity signature\n"); 9485 9486 return -ENODEV; 9487 } 9488 9489 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) 9490 { 9491 int rc = bnx2x_init_shmem(bp); 9492 9493 /* Restore the `magic' bit value */ 9494 if (!CHIP_IS_E1(bp)) 9495 bnx2x_clp_reset_done(bp, magic_val); 9496 9497 return rc; 9498 } 9499 9500 static void bnx2x_pxp_prep(struct bnx2x *bp) 9501 { 9502 if (!CHIP_IS_E1(bp)) { 9503 REG_WR(bp, PXP2_REG_RD_START_INIT, 0); 9504 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); 9505 mmiowb(); 9506 } 9507 } 9508 9509 /* 9510 * Reset the whole chip except for: 9511 * - PCIE core 9512 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by 9513 * one reset bit) 9514 * - IGU 9515 * - MISC (including AEU) 9516 * - GRC 9517 * - RBCN, RBCP 9518 */ 9519 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) 9520 { 9521 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 9522 u32 global_bits2, stay_reset2; 9523 9524 /* 9525 * Bits that have to be set in reset_mask2 if we want to reset 'global' 9526 * (per chip) blocks. 9527 */ 9528 global_bits2 = 9529 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 9530 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 9531 9532 /* Don't reset the following blocks. 9533 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 9534 * reset, as in 4 port device they might still be owned 9535 * by the MCP (there is only one leader per path). 9536 */ 9537 not_reset_mask1 = 9538 MISC_REGISTERS_RESET_REG_1_RST_HC | 9539 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 9540 MISC_REGISTERS_RESET_REG_1_RST_PXP; 9541 9542 not_reset_mask2 = 9543 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 9544 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 9545 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 9546 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 9547 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 9548 MISC_REGISTERS_RESET_REG_2_RST_GRC | 9549 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 9550 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 9551 MISC_REGISTERS_RESET_REG_2_RST_ATC | 9552 MISC_REGISTERS_RESET_REG_2_PGLC | 9553 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 9554 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 9555 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 9556 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 9557 MISC_REGISTERS_RESET_REG_2_UMAC0 | 9558 MISC_REGISTERS_RESET_REG_2_UMAC1; 9559 9560 /* 9561 * Keep the following blocks in reset: 9562 * - all xxMACs are handled by the bnx2x_link code. 9563 */ 9564 stay_reset2 = 9565 MISC_REGISTERS_RESET_REG_2_XMAC | 9566 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 9567 9568 /* Full reset masks according to the chip */ 9569 reset_mask1 = 0xffffffff; 9570 9571 if (CHIP_IS_E1(bp)) 9572 reset_mask2 = 0xffff; 9573 else if (CHIP_IS_E1H(bp)) 9574 reset_mask2 = 0x1ffff; 9575 else if (CHIP_IS_E2(bp)) 9576 reset_mask2 = 0xfffff; 9577 else /* CHIP_IS_E3 */ 9578 reset_mask2 = 0x3ffffff; 9579 9580 /* Don't reset global blocks unless we need to */ 9581 if (!global) 9582 reset_mask2 &= ~global_bits2; 9583 9584 /* 9585 * In case of attention in the QM, we need to reset PXP 9586 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 9587 * because otherwise QM reset would release 'close the gates' shortly 9588 * before resetting the PXP, then the PSWRQ would send a write 9589 * request to PGLUE. Then when PXP is reset, PGLUE would try to 9590 * read the payload data from PSWWR, but PSWWR would not 9591 * respond. The write queue in PGLUE would stuck, dmae commands 9592 * would not return. Therefore it's important to reset the second 9593 * reset register (containing the 9594 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 9595 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 9596 * bit). 9597 */ 9598 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 9599 reset_mask2 & (~not_reset_mask2)); 9600 9601 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 9602 reset_mask1 & (~not_reset_mask1)); 9603 9604 barrier(); 9605 mmiowb(); 9606 9607 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 9608 reset_mask2 & (~stay_reset2)); 9609 9610 barrier(); 9611 mmiowb(); 9612 9613 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 9614 mmiowb(); 9615 } 9616 9617 /** 9618 * bnx2x_er_poll_igu_vq - poll for pending writes bit. 9619 * It should get cleared in no more than 1s. 9620 * 9621 * @bp: driver handle 9622 * 9623 * It should get cleared in no more than 1s. Returns 0 if 9624 * pending writes bit gets cleared. 9625 */ 9626 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) 9627 { 9628 u32 cnt = 1000; 9629 u32 pend_bits = 0; 9630 9631 do { 9632 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); 9633 9634 if (pend_bits == 0) 9635 break; 9636 9637 usleep_range(1000, 2000); 9638 } while (cnt-- > 0); 9639 9640 if (cnt <= 0) { 9641 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", 9642 pend_bits); 9643 return -EBUSY; 9644 } 9645 9646 return 0; 9647 } 9648 9649 static int bnx2x_process_kill(struct bnx2x *bp, bool global) 9650 { 9651 int cnt = 1000; 9652 u32 val = 0; 9653 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 9654 u32 tags_63_32 = 0; 9655 9656 /* Empty the Tetris buffer, wait for 1s */ 9657 do { 9658 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); 9659 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); 9660 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); 9661 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); 9662 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); 9663 if (CHIP_IS_E3(bp)) 9664 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); 9665 9666 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 9667 ((port_is_idle_0 & 0x1) == 0x1) && 9668 ((port_is_idle_1 & 0x1) == 0x1) && 9669 (pgl_exp_rom2 == 0xffffffff) && 9670 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) 9671 break; 9672 usleep_range(1000, 2000); 9673 } while (cnt-- > 0); 9674 9675 if (cnt <= 0) { 9676 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); 9677 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 9678 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, 9679 pgl_exp_rom2); 9680 return -EAGAIN; 9681 } 9682 9683 barrier(); 9684 9685 /* Close gates #2, #3 and #4 */ 9686 bnx2x_set_234_gates(bp, true); 9687 9688 /* Poll for IGU VQs for 57712 and newer chips */ 9689 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) 9690 return -EAGAIN; 9691 9692 /* TBD: Indicate that "process kill" is in progress to MCP */ 9693 9694 /* Clear "unprepared" bit */ 9695 REG_WR(bp, MISC_REG_UNPREPARED, 0); 9696 barrier(); 9697 9698 /* Make sure all is written to the chip before the reset */ 9699 mmiowb(); 9700 9701 /* Wait for 1ms to empty GLUE and PCI-E core queues, 9702 * PSWHST, GRC and PSWRD Tetris buffer. 9703 */ 9704 usleep_range(1000, 2000); 9705 9706 /* Prepare to chip reset: */ 9707 /* MCP */ 9708 if (global) 9709 bnx2x_reset_mcp_prep(bp, &val); 9710 9711 /* PXP */ 9712 bnx2x_pxp_prep(bp); 9713 barrier(); 9714 9715 /* reset the chip */ 9716 bnx2x_process_kill_chip_reset(bp, global); 9717 barrier(); 9718 9719 /* clear errors in PGB */ 9720 if (!CHIP_IS_E1x(bp)) 9721 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 9722 9723 /* Recover after reset: */ 9724 /* MCP */ 9725 if (global && bnx2x_reset_mcp_comp(bp, val)) 9726 return -EAGAIN; 9727 9728 /* TBD: Add resetting the NO_MCP mode DB here */ 9729 9730 /* Open the gates #2, #3 and #4 */ 9731 bnx2x_set_234_gates(bp, false); 9732 9733 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a 9734 * reset state, re-enable attentions. */ 9735 9736 return 0; 9737 } 9738 9739 static int bnx2x_leader_reset(struct bnx2x *bp) 9740 { 9741 int rc = 0; 9742 bool global = bnx2x_reset_is_global(bp); 9743 u32 load_code; 9744 9745 /* if not going to reset MCP - load "fake" driver to reset HW while 9746 * driver is owner of the HW 9747 */ 9748 if (!global && !BP_NOMCP(bp)) { 9749 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 9750 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 9751 if (!load_code) { 9752 BNX2X_ERR("MCP response failure, aborting\n"); 9753 rc = -EAGAIN; 9754 goto exit_leader_reset; 9755 } 9756 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 9757 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 9758 BNX2X_ERR("MCP unexpected resp, aborting\n"); 9759 rc = -EAGAIN; 9760 goto exit_leader_reset2; 9761 } 9762 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 9763 if (!load_code) { 9764 BNX2X_ERR("MCP response failure, aborting\n"); 9765 rc = -EAGAIN; 9766 goto exit_leader_reset2; 9767 } 9768 } 9769 9770 /* Try to recover after the failure */ 9771 if (bnx2x_process_kill(bp, global)) { 9772 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", 9773 BP_PATH(bp)); 9774 rc = -EAGAIN; 9775 goto exit_leader_reset2; 9776 } 9777 9778 /* 9779 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver 9780 * state. 9781 */ 9782 bnx2x_set_reset_done(bp); 9783 if (global) 9784 bnx2x_clear_reset_global(bp); 9785 9786 exit_leader_reset2: 9787 /* unload "fake driver" if it was loaded */ 9788 if (!global && !BP_NOMCP(bp)) { 9789 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 9790 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 9791 } 9792 exit_leader_reset: 9793 bp->is_leader = 0; 9794 bnx2x_release_leader_lock(bp); 9795 smp_mb(); 9796 return rc; 9797 } 9798 9799 static void bnx2x_recovery_failed(struct bnx2x *bp) 9800 { 9801 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); 9802 9803 /* Disconnect this device */ 9804 netif_device_detach(bp->dev); 9805 9806 /* 9807 * Block ifup for all function on this engine until "process kill" 9808 * or power cycle. 9809 */ 9810 bnx2x_set_reset_in_progress(bp); 9811 9812 /* Shut down the power */ 9813 bnx2x_set_power_state(bp, PCI_D3hot); 9814 9815 bp->recovery_state = BNX2X_RECOVERY_FAILED; 9816 9817 smp_mb(); 9818 } 9819 9820 /* 9821 * Assumption: runs under rtnl lock. This together with the fact 9822 * that it's called only from bnx2x_sp_rtnl() ensure that it 9823 * will never be called when netif_running(bp->dev) is false. 9824 */ 9825 static void bnx2x_parity_recover(struct bnx2x *bp) 9826 { 9827 bool global = false; 9828 u32 error_recovered, error_unrecovered; 9829 bool is_parity; 9830 9831 DP(NETIF_MSG_HW, "Handling parity\n"); 9832 while (1) { 9833 switch (bp->recovery_state) { 9834 case BNX2X_RECOVERY_INIT: 9835 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); 9836 is_parity = bnx2x_chk_parity_attn(bp, &global, false); 9837 WARN_ON(!is_parity); 9838 9839 /* Try to get a LEADER_LOCK HW lock */ 9840 if (bnx2x_trylock_leader_lock(bp)) { 9841 bnx2x_set_reset_in_progress(bp); 9842 /* 9843 * Check if there is a global attention and if 9844 * there was a global attention, set the global 9845 * reset bit. 9846 */ 9847 9848 if (global) 9849 bnx2x_set_reset_global(bp); 9850 9851 bp->is_leader = 1; 9852 } 9853 9854 /* Stop the driver */ 9855 /* If interface has been removed - break */ 9856 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) 9857 return; 9858 9859 bp->recovery_state = BNX2X_RECOVERY_WAIT; 9860 9861 /* Ensure "is_leader", MCP command sequence and 9862 * "recovery_state" update values are seen on other 9863 * CPUs. 9864 */ 9865 smp_mb(); 9866 break; 9867 9868 case BNX2X_RECOVERY_WAIT: 9869 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); 9870 if (bp->is_leader) { 9871 int other_engine = BP_PATH(bp) ? 0 : 1; 9872 bool other_load_status = 9873 bnx2x_get_load_status(bp, other_engine); 9874 bool load_status = 9875 bnx2x_get_load_status(bp, BP_PATH(bp)); 9876 global = bnx2x_reset_is_global(bp); 9877 9878 /* 9879 * In case of a parity in a global block, let 9880 * the first leader that performs a 9881 * leader_reset() reset the global blocks in 9882 * order to clear global attentions. Otherwise 9883 * the gates will remain closed for that 9884 * engine. 9885 */ 9886 if (load_status || 9887 (global && other_load_status)) { 9888 /* Wait until all other functions get 9889 * down. 9890 */ 9891 schedule_delayed_work(&bp->sp_rtnl_task, 9892 HZ/10); 9893 return; 9894 } else { 9895 /* If all other functions got down - 9896 * try to bring the chip back to 9897 * normal. In any case it's an exit 9898 * point for a leader. 9899 */ 9900 if (bnx2x_leader_reset(bp)) { 9901 bnx2x_recovery_failed(bp); 9902 return; 9903 } 9904 9905 /* If we are here, means that the 9906 * leader has succeeded and doesn't 9907 * want to be a leader any more. Try 9908 * to continue as a none-leader. 9909 */ 9910 break; 9911 } 9912 } else { /* non-leader */ 9913 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { 9914 /* Try to get a LEADER_LOCK HW lock as 9915 * long as a former leader may have 9916 * been unloaded by the user or 9917 * released a leadership by another 9918 * reason. 9919 */ 9920 if (bnx2x_trylock_leader_lock(bp)) { 9921 /* I'm a leader now! Restart a 9922 * switch case. 9923 */ 9924 bp->is_leader = 1; 9925 break; 9926 } 9927 9928 schedule_delayed_work(&bp->sp_rtnl_task, 9929 HZ/10); 9930 return; 9931 9932 } else { 9933 /* 9934 * If there was a global attention, wait 9935 * for it to be cleared. 9936 */ 9937 if (bnx2x_reset_is_global(bp)) { 9938 schedule_delayed_work( 9939 &bp->sp_rtnl_task, 9940 HZ/10); 9941 return; 9942 } 9943 9944 error_recovered = 9945 bp->eth_stats.recoverable_error; 9946 error_unrecovered = 9947 bp->eth_stats.unrecoverable_error; 9948 bp->recovery_state = 9949 BNX2X_RECOVERY_NIC_LOADING; 9950 if (bnx2x_nic_load(bp, LOAD_NORMAL)) { 9951 error_unrecovered++; 9952 netdev_err(bp->dev, 9953 "Recovery failed. Power cycle needed\n"); 9954 /* Disconnect this device */ 9955 netif_device_detach(bp->dev); 9956 /* Shut down the power */ 9957 bnx2x_set_power_state( 9958 bp, PCI_D3hot); 9959 smp_mb(); 9960 } else { 9961 bp->recovery_state = 9962 BNX2X_RECOVERY_DONE; 9963 error_recovered++; 9964 smp_mb(); 9965 } 9966 bp->eth_stats.recoverable_error = 9967 error_recovered; 9968 bp->eth_stats.unrecoverable_error = 9969 error_unrecovered; 9970 9971 return; 9972 } 9973 } 9974 default: 9975 return; 9976 } 9977 } 9978 } 9979 9980 static int bnx2x_close(struct net_device *dev); 9981 9982 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is 9983 * scheduled on a general queue in order to prevent a dead lock. 9984 */ 9985 static void bnx2x_sp_rtnl_task(struct work_struct *work) 9986 { 9987 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); 9988 9989 rtnl_lock(); 9990 9991 if (!netif_running(bp->dev)) { 9992 rtnl_unlock(); 9993 return; 9994 } 9995 9996 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { 9997 #ifdef BNX2X_STOP_ON_ERROR 9998 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 9999 "you will need to reboot when done\n"); 10000 goto sp_rtnl_not_reset; 10001 #endif 10002 /* 10003 * Clear all pending SP commands as we are going to reset the 10004 * function anyway. 10005 */ 10006 bp->sp_rtnl_state = 0; 10007 smp_mb(); 10008 10009 bnx2x_parity_recover(bp); 10010 10011 rtnl_unlock(); 10012 return; 10013 } 10014 10015 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { 10016 #ifdef BNX2X_STOP_ON_ERROR 10017 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10018 "you will need to reboot when done\n"); 10019 goto sp_rtnl_not_reset; 10020 #endif 10021 10022 /* 10023 * Clear all pending SP commands as we are going to reset the 10024 * function anyway. 10025 */ 10026 bp->sp_rtnl_state = 0; 10027 smp_mb(); 10028 10029 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10030 bnx2x_nic_load(bp, LOAD_NORMAL); 10031 10032 rtnl_unlock(); 10033 return; 10034 } 10035 #ifdef BNX2X_STOP_ON_ERROR 10036 sp_rtnl_not_reset: 10037 #endif 10038 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) 10039 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); 10040 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) 10041 bnx2x_after_function_update(bp); 10042 /* 10043 * in case of fan failure we need to reset id if the "stop on error" 10044 * debug flag is set, since we trying to prevent permanent overheating 10045 * damage 10046 */ 10047 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { 10048 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); 10049 netif_device_detach(bp->dev); 10050 bnx2x_close(bp->dev); 10051 rtnl_unlock(); 10052 return; 10053 } 10054 10055 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { 10056 DP(BNX2X_MSG_SP, 10057 "sending set mcast vf pf channel message from rtnl sp-task\n"); 10058 bnx2x_vfpf_set_mcast(bp->dev); 10059 } 10060 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 10061 &bp->sp_rtnl_state)){ 10062 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) { 10063 bnx2x_tx_disable(bp); 10064 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); 10065 } 10066 } 10067 10068 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) { 10069 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n"); 10070 bnx2x_set_rx_mode_inner(bp); 10071 } 10072 10073 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, 10074 &bp->sp_rtnl_state)) 10075 bnx2x_pf_set_vfs_vlan(bp); 10076 10077 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) { 10078 bnx2x_dcbx_stop_hw_tx(bp); 10079 bnx2x_dcbx_resume_hw_tx(bp); 10080 } 10081 10082 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION, 10083 &bp->sp_rtnl_state)) 10084 bnx2x_update_mng_version(bp); 10085 10086 /* work which needs rtnl lock not-taken (as it takes the lock itself and 10087 * can be called from other contexts as well) 10088 */ 10089 rtnl_unlock(); 10090 10091 /* enable SR-IOV if applicable */ 10092 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, 10093 &bp->sp_rtnl_state)) { 10094 bnx2x_disable_sriov(bp); 10095 bnx2x_enable_sriov(bp); 10096 } 10097 } 10098 10099 static void bnx2x_period_task(struct work_struct *work) 10100 { 10101 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); 10102 10103 if (!netif_running(bp->dev)) 10104 goto period_task_exit; 10105 10106 if (CHIP_REV_IS_SLOW(bp)) { 10107 BNX2X_ERR("period task called on emulation, ignoring\n"); 10108 goto period_task_exit; 10109 } 10110 10111 bnx2x_acquire_phy_lock(bp); 10112 /* 10113 * The barrier is needed to ensure the ordering between the writing to 10114 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and 10115 * the reading here. 10116 */ 10117 smp_mb(); 10118 if (bp->port.pmf) { 10119 bnx2x_period_func(&bp->link_params, &bp->link_vars); 10120 10121 /* Re-queue task in 1 sec */ 10122 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); 10123 } 10124 10125 bnx2x_release_phy_lock(bp); 10126 period_task_exit: 10127 return; 10128 } 10129 10130 /* 10131 * Init service functions 10132 */ 10133 10134 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp) 10135 { 10136 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; 10137 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; 10138 return base + (BP_ABS_FUNC(bp)) * stride; 10139 } 10140 10141 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, 10142 struct bnx2x_mac_vals *vals) 10143 { 10144 u32 val, base_addr, offset, mask, reset_reg; 10145 bool mac_stopped = false; 10146 u8 port = BP_PORT(bp); 10147 10148 /* reset addresses as they also mark which values were changed */ 10149 vals->bmac_addr = 0; 10150 vals->umac_addr = 0; 10151 vals->xmac_addr = 0; 10152 vals->emac_addr = 0; 10153 10154 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); 10155 10156 if (!CHIP_IS_E3(bp)) { 10157 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 10158 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 10159 if ((mask & reset_reg) && val) { 10160 u32 wb_data[2]; 10161 BNX2X_DEV_INFO("Disable bmac Rx\n"); 10162 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM 10163 : NIG_REG_INGRESS_BMAC0_MEM; 10164 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL 10165 : BIGMAC_REGISTER_BMAC_CONTROL; 10166 10167 /* 10168 * use rd/wr since we cannot use dmae. This is safe 10169 * since MCP won't access the bus due to the request 10170 * to unload, and no function on the path can be 10171 * loaded at this time. 10172 */ 10173 wb_data[0] = REG_RD(bp, base_addr + offset); 10174 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); 10175 vals->bmac_addr = base_addr + offset; 10176 vals->bmac_val[0] = wb_data[0]; 10177 vals->bmac_val[1] = wb_data[1]; 10178 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; 10179 REG_WR(bp, vals->bmac_addr, wb_data[0]); 10180 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); 10181 } 10182 BNX2X_DEV_INFO("Disable emac Rx\n"); 10183 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; 10184 vals->emac_val = REG_RD(bp, vals->emac_addr); 10185 REG_WR(bp, vals->emac_addr, 0); 10186 mac_stopped = true; 10187 } else { 10188 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 10189 BNX2X_DEV_INFO("Disable xmac Rx\n"); 10190 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 10191 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); 10192 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10193 val & ~(1 << 1)); 10194 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10195 val | (1 << 1)); 10196 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 10197 vals->xmac_val = REG_RD(bp, vals->xmac_addr); 10198 REG_WR(bp, vals->xmac_addr, 0); 10199 mac_stopped = true; 10200 } 10201 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 10202 if (mask & reset_reg) { 10203 BNX2X_DEV_INFO("Disable umac Rx\n"); 10204 base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 10205 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 10206 vals->umac_val = REG_RD(bp, vals->umac_addr); 10207 REG_WR(bp, vals->umac_addr, 0); 10208 mac_stopped = true; 10209 } 10210 } 10211 10212 if (mac_stopped) 10213 msleep(20); 10214 } 10215 10216 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 10217 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \ 10218 0x1848 + ((f) << 4)) 10219 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) 10220 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 10221 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 10222 10223 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07) 10224 #define BCM_5710_UNDI_FW_MF_MINOR (0x08) 10225 #define BCM_5710_UNDI_FW_MF_VERS (0x05) 10226 10227 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp) 10228 { 10229 /* UNDI marks its presence in DORQ - 10230 * it initializes CID offset for normal bell to 0x7 10231 */ 10232 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) & 10233 MISC_REGISTERS_RESET_REG_1_RST_DORQ)) 10234 return false; 10235 10236 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) { 10237 BNX2X_DEV_INFO("UNDI previously loaded\n"); 10238 return true; 10239 } 10240 10241 return false; 10242 } 10243 10244 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc) 10245 { 10246 u16 rcq, bd; 10247 u32 addr, tmp_reg; 10248 10249 if (BP_FUNC(bp) < 2) 10250 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp)); 10251 else 10252 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2); 10253 10254 tmp_reg = REG_RD(bp, addr); 10255 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; 10256 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; 10257 10258 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); 10259 REG_WR(bp, addr, tmp_reg); 10260 10261 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n", 10262 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq); 10263 } 10264 10265 static int bnx2x_prev_mcp_done(struct bnx2x *bp) 10266 { 10267 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 10268 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 10269 if (!rc) { 10270 BNX2X_ERR("MCP response failure, aborting\n"); 10271 return -EBUSY; 10272 } 10273 10274 return 0; 10275 } 10276 10277 static struct bnx2x_prev_path_list * 10278 bnx2x_prev_path_get_entry(struct bnx2x *bp) 10279 { 10280 struct bnx2x_prev_path_list *tmp_list; 10281 10282 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) 10283 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && 10284 bp->pdev->bus->number == tmp_list->bus && 10285 BP_PATH(bp) == tmp_list->path) 10286 return tmp_list; 10287 10288 return NULL; 10289 } 10290 10291 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) 10292 { 10293 struct bnx2x_prev_path_list *tmp_list; 10294 int rc; 10295 10296 rc = down_interruptible(&bnx2x_prev_sem); 10297 if (rc) { 10298 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10299 return rc; 10300 } 10301 10302 tmp_list = bnx2x_prev_path_get_entry(bp); 10303 if (tmp_list) { 10304 tmp_list->aer = 1; 10305 rc = 0; 10306 } else { 10307 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", 10308 BP_PATH(bp)); 10309 } 10310 10311 up(&bnx2x_prev_sem); 10312 10313 return rc; 10314 } 10315 10316 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) 10317 { 10318 struct bnx2x_prev_path_list *tmp_list; 10319 bool rc = false; 10320 10321 if (down_trylock(&bnx2x_prev_sem)) 10322 return false; 10323 10324 tmp_list = bnx2x_prev_path_get_entry(bp); 10325 if (tmp_list) { 10326 if (tmp_list->aer) { 10327 DP(NETIF_MSG_HW, "Path %d was marked by AER\n", 10328 BP_PATH(bp)); 10329 } else { 10330 rc = true; 10331 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", 10332 BP_PATH(bp)); 10333 } 10334 } 10335 10336 up(&bnx2x_prev_sem); 10337 10338 return rc; 10339 } 10340 10341 bool bnx2x_port_after_undi(struct bnx2x *bp) 10342 { 10343 struct bnx2x_prev_path_list *entry; 10344 bool val; 10345 10346 down(&bnx2x_prev_sem); 10347 10348 entry = bnx2x_prev_path_get_entry(bp); 10349 val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); 10350 10351 up(&bnx2x_prev_sem); 10352 10353 return val; 10354 } 10355 10356 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) 10357 { 10358 struct bnx2x_prev_path_list *tmp_list; 10359 int rc; 10360 10361 rc = down_interruptible(&bnx2x_prev_sem); 10362 if (rc) { 10363 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10364 return rc; 10365 } 10366 10367 /* Check whether the entry for this path already exists */ 10368 tmp_list = bnx2x_prev_path_get_entry(bp); 10369 if (tmp_list) { 10370 if (!tmp_list->aer) { 10371 BNX2X_ERR("Re-Marking the path.\n"); 10372 } else { 10373 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", 10374 BP_PATH(bp)); 10375 tmp_list->aer = 0; 10376 } 10377 up(&bnx2x_prev_sem); 10378 return 0; 10379 } 10380 up(&bnx2x_prev_sem); 10381 10382 /* Create an entry for this path and add it */ 10383 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); 10384 if (!tmp_list) { 10385 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); 10386 return -ENOMEM; 10387 } 10388 10389 tmp_list->bus = bp->pdev->bus->number; 10390 tmp_list->slot = PCI_SLOT(bp->pdev->devfn); 10391 tmp_list->path = BP_PATH(bp); 10392 tmp_list->aer = 0; 10393 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; 10394 10395 rc = down_interruptible(&bnx2x_prev_sem); 10396 if (rc) { 10397 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10398 kfree(tmp_list); 10399 } else { 10400 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", 10401 BP_PATH(bp)); 10402 list_add(&tmp_list->list, &bnx2x_prev_list); 10403 up(&bnx2x_prev_sem); 10404 } 10405 10406 return rc; 10407 } 10408 10409 static int bnx2x_do_flr(struct bnx2x *bp) 10410 { 10411 struct pci_dev *dev = bp->pdev; 10412 10413 if (CHIP_IS_E1x(bp)) { 10414 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); 10415 return -EINVAL; 10416 } 10417 10418 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 10419 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 10420 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", 10421 bp->common.bc_ver); 10422 return -EINVAL; 10423 } 10424 10425 if (!pci_wait_for_pending_transaction(dev)) 10426 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 10427 10428 BNX2X_DEV_INFO("Initiating FLR\n"); 10429 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); 10430 10431 return 0; 10432 } 10433 10434 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) 10435 { 10436 int rc; 10437 10438 BNX2X_DEV_INFO("Uncommon unload Flow\n"); 10439 10440 /* Test if previous unload process was already finished for this path */ 10441 if (bnx2x_prev_is_path_marked(bp)) 10442 return bnx2x_prev_mcp_done(bp); 10443 10444 BNX2X_DEV_INFO("Path is unmarked\n"); 10445 10446 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */ 10447 if (bnx2x_prev_is_after_undi(bp)) 10448 goto out; 10449 10450 /* If function has FLR capabilities, and existing FW version matches 10451 * the one required, then FLR will be sufficient to clean any residue 10452 * left by previous driver 10453 */ 10454 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false); 10455 10456 if (!rc) { 10457 /* fw version is good */ 10458 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); 10459 rc = bnx2x_do_flr(bp); 10460 } 10461 10462 if (!rc) { 10463 /* FLR was performed */ 10464 BNX2X_DEV_INFO("FLR successful\n"); 10465 return 0; 10466 } 10467 10468 BNX2X_DEV_INFO("Could not FLR\n"); 10469 10470 out: 10471 /* Close the MCP request, return failure*/ 10472 rc = bnx2x_prev_mcp_done(bp); 10473 if (!rc) 10474 rc = BNX2X_PREV_WAIT_NEEDED; 10475 10476 return rc; 10477 } 10478 10479 static int bnx2x_prev_unload_common(struct bnx2x *bp) 10480 { 10481 u32 reset_reg, tmp_reg = 0, rc; 10482 bool prev_undi = false; 10483 struct bnx2x_mac_vals mac_vals; 10484 10485 /* It is possible a previous function received 'common' answer, 10486 * but hasn't loaded yet, therefore creating a scenario of 10487 * multiple functions receiving 'common' on the same path. 10488 */ 10489 BNX2X_DEV_INFO("Common unload Flow\n"); 10490 10491 memset(&mac_vals, 0, sizeof(mac_vals)); 10492 10493 if (bnx2x_prev_is_path_marked(bp)) 10494 return bnx2x_prev_mcp_done(bp); 10495 10496 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); 10497 10498 /* Reset should be performed after BRB is emptied */ 10499 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 10500 u32 timer_count = 1000; 10501 10502 /* Close the MAC Rx to prevent BRB from filling up */ 10503 bnx2x_prev_unload_close_mac(bp, &mac_vals); 10504 10505 /* close LLH filters towards the BRB */ 10506 bnx2x_set_rx_filter(&bp->link_params, 0); 10507 10508 /* Check if the UNDI driver was previously loaded */ 10509 if (bnx2x_prev_is_after_undi(bp)) { 10510 prev_undi = true; 10511 /* clear the UNDI indication */ 10512 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); 10513 /* clear possible idle check errors */ 10514 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); 10515 } 10516 if (!CHIP_IS_E1x(bp)) 10517 /* block FW from writing to host */ 10518 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 10519 10520 /* wait until BRB is empty */ 10521 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10522 while (timer_count) { 10523 u32 prev_brb = tmp_reg; 10524 10525 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10526 if (!tmp_reg) 10527 break; 10528 10529 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); 10530 10531 /* reset timer as long as BRB actually gets emptied */ 10532 if (prev_brb > tmp_reg) 10533 timer_count = 1000; 10534 else 10535 timer_count--; 10536 10537 /* If UNDI resides in memory, manually increment it */ 10538 if (prev_undi) 10539 bnx2x_prev_unload_undi_inc(bp, 1); 10540 10541 udelay(10); 10542 } 10543 10544 if (!timer_count) 10545 BNX2X_ERR("Failed to empty BRB, hope for the best\n"); 10546 } 10547 10548 /* No packets are in the pipeline, path is ready for reset */ 10549 bnx2x_reset_common(bp); 10550 10551 if (mac_vals.xmac_addr) 10552 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); 10553 if (mac_vals.umac_addr) 10554 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val); 10555 if (mac_vals.emac_addr) 10556 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); 10557 if (mac_vals.bmac_addr) { 10558 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 10559 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 10560 } 10561 10562 rc = bnx2x_prev_mark_path(bp, prev_undi); 10563 if (rc) { 10564 bnx2x_prev_mcp_done(bp); 10565 return rc; 10566 } 10567 10568 return bnx2x_prev_mcp_done(bp); 10569 } 10570 10571 /* previous driver DMAE transaction may have occurred when pre-boot stage ended 10572 * and boot began, or when kdump kernel was loaded. Either case would invalidate 10573 * the addresses of the transaction, resulting in was-error bit set in the pci 10574 * causing all hw-to-host pcie transactions to timeout. If this happened we want 10575 * to clear the interrupt which detected this from the pglueb and the was done 10576 * bit 10577 */ 10578 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp) 10579 { 10580 if (!CHIP_IS_E1x(bp)) { 10581 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS); 10582 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 10583 DP(BNX2X_MSG_SP, 10584 "'was error' bit was found to be set in pglueb upon startup. Clearing\n"); 10585 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 10586 1 << BP_FUNC(bp)); 10587 } 10588 } 10589 } 10590 10591 static int bnx2x_prev_unload(struct bnx2x *bp) 10592 { 10593 int time_counter = 10; 10594 u32 rc, fw, hw_lock_reg, hw_lock_val; 10595 BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); 10596 10597 /* clear hw from errors which may have resulted from an interrupted 10598 * dmae transaction. 10599 */ 10600 bnx2x_prev_interrupted_dmae(bp); 10601 10602 /* Release previously held locks */ 10603 hw_lock_reg = (BP_FUNC(bp) <= 5) ? 10604 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : 10605 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); 10606 10607 hw_lock_val = REG_RD(bp, hw_lock_reg); 10608 if (hw_lock_val) { 10609 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 10610 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); 10611 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, 10612 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); 10613 } 10614 10615 BNX2X_DEV_INFO("Release Previously held hw lock\n"); 10616 REG_WR(bp, hw_lock_reg, 0xffffffff); 10617 } else 10618 BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); 10619 10620 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { 10621 BNX2X_DEV_INFO("Release previously held alr\n"); 10622 bnx2x_release_alr(bp); 10623 } 10624 10625 do { 10626 int aer = 0; 10627 /* Lock MCP using an unload request */ 10628 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 10629 if (!fw) { 10630 BNX2X_ERR("MCP response failure, aborting\n"); 10631 rc = -EBUSY; 10632 break; 10633 } 10634 10635 rc = down_interruptible(&bnx2x_prev_sem); 10636 if (rc) { 10637 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", 10638 rc); 10639 } else { 10640 /* If Path is marked by EEH, ignore unload status */ 10641 aer = !!(bnx2x_prev_path_get_entry(bp) && 10642 bnx2x_prev_path_get_entry(bp)->aer); 10643 up(&bnx2x_prev_sem); 10644 } 10645 10646 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { 10647 rc = bnx2x_prev_unload_common(bp); 10648 break; 10649 } 10650 10651 /* non-common reply from MCP might require looping */ 10652 rc = bnx2x_prev_unload_uncommon(bp); 10653 if (rc != BNX2X_PREV_WAIT_NEEDED) 10654 break; 10655 10656 msleep(20); 10657 } while (--time_counter); 10658 10659 if (!time_counter || rc) { 10660 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n"); 10661 rc = -EPROBE_DEFER; 10662 } 10663 10664 /* Mark function if its port was used to boot from SAN */ 10665 if (bnx2x_port_after_undi(bp)) 10666 bp->link_params.feature_config_flags |= 10667 FEATURE_CONFIG_BOOT_FROM_SAN; 10668 10669 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); 10670 10671 return rc; 10672 } 10673 10674 static void bnx2x_get_common_hwinfo(struct bnx2x *bp) 10675 { 10676 u32 val, val2, val3, val4, id, boot_mode; 10677 u16 pmc; 10678 10679 /* Get the chip revision id and number. */ 10680 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 10681 val = REG_RD(bp, MISC_REG_CHIP_NUM); 10682 id = ((val & 0xffff) << 16); 10683 val = REG_RD(bp, MISC_REG_CHIP_REV); 10684 id |= ((val & 0xf) << 12); 10685 10686 /* Metal is read from PCI regs, but we can't access >=0x400 from 10687 * the configuration space (so we need to reg_rd) 10688 */ 10689 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); 10690 id |= (((val >> 24) & 0xf) << 4); 10691 val = REG_RD(bp, MISC_REG_BOND_ID); 10692 id |= (val & 0xf); 10693 bp->common.chip_id = id; 10694 10695 /* force 57811 according to MISC register */ 10696 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 10697 if (CHIP_IS_57810(bp)) 10698 bp->common.chip_id = (CHIP_NUM_57811 << 16) | 10699 (bp->common.chip_id & 0x0000FFFF); 10700 else if (CHIP_IS_57810_MF(bp)) 10701 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | 10702 (bp->common.chip_id & 0x0000FFFF); 10703 bp->common.chip_id |= 0x1; 10704 } 10705 10706 /* Set doorbell size */ 10707 bp->db_size = (1 << BNX2X_DB_SHIFT); 10708 10709 if (!CHIP_IS_E1x(bp)) { 10710 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); 10711 if ((val & 1) == 0) 10712 val = REG_RD(bp, MISC_REG_PORT4MODE_EN); 10713 else 10714 val = (val >> 1) & 1; 10715 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : 10716 "2_PORT_MODE"); 10717 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : 10718 CHIP_2_PORT_MODE; 10719 10720 if (CHIP_MODE_IS_4_PORT(bp)) 10721 bp->pfid = (bp->pf_num >> 1); /* 0..3 */ 10722 else 10723 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ 10724 } else { 10725 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ 10726 bp->pfid = bp->pf_num; /* 0..7 */ 10727 } 10728 10729 BNX2X_DEV_INFO("pf_id: %x", bp->pfid); 10730 10731 bp->link_params.chip_id = bp->common.chip_id; 10732 BNX2X_DEV_INFO("chip ID is 0x%x\n", id); 10733 10734 val = (REG_RD(bp, 0x2874) & 0x55); 10735 if ((bp->common.chip_id & 0x1) || 10736 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { 10737 bp->flags |= ONE_PORT_FLAG; 10738 BNX2X_DEV_INFO("single port device\n"); 10739 } 10740 10741 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); 10742 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << 10743 (val & MCPR_NVM_CFG4_FLASH_SIZE)); 10744 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", 10745 bp->common.flash_size, bp->common.flash_size); 10746 10747 bnx2x_init_shmem(bp); 10748 10749 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? 10750 MISC_REG_GENERIC_CR_1 : 10751 MISC_REG_GENERIC_CR_0)); 10752 10753 bp->link_params.shmem_base = bp->common.shmem_base; 10754 bp->link_params.shmem2_base = bp->common.shmem2_base; 10755 if (SHMEM2_RD(bp, size) > 10756 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 10757 bp->link_params.lfa_base = 10758 REG_RD(bp, bp->common.shmem2_base + 10759 (u32)offsetof(struct shmem2_region, 10760 lfa_host_addr[BP_PORT(bp)])); 10761 else 10762 bp->link_params.lfa_base = 0; 10763 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", 10764 bp->common.shmem_base, bp->common.shmem2_base); 10765 10766 if (!bp->common.shmem_base) { 10767 BNX2X_DEV_INFO("MCP not active\n"); 10768 bp->flags |= NO_MCP_FLAG; 10769 return; 10770 } 10771 10772 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); 10773 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); 10774 10775 bp->link_params.hw_led_mode = ((bp->common.hw_config & 10776 SHARED_HW_CFG_LED_MODE_MASK) >> 10777 SHARED_HW_CFG_LED_MODE_SHIFT); 10778 10779 bp->link_params.feature_config_flags = 0; 10780 val = SHMEM_RD(bp, dev_info.shared_feature_config.config); 10781 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) 10782 bp->link_params.feature_config_flags |= 10783 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 10784 else 10785 bp->link_params.feature_config_flags &= 10786 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 10787 10788 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; 10789 bp->common.bc_ver = val; 10790 BNX2X_DEV_INFO("bc_ver %X\n", val); 10791 if (val < BNX2X_BC_VER) { 10792 /* for now only warn 10793 * later we might need to enforce this */ 10794 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", 10795 BNX2X_BC_VER, val); 10796 } 10797 bp->link_params.feature_config_flags |= 10798 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? 10799 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; 10800 10801 bp->link_params.feature_config_flags |= 10802 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? 10803 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; 10804 bp->link_params.feature_config_flags |= 10805 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? 10806 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; 10807 bp->link_params.feature_config_flags |= 10808 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? 10809 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; 10810 10811 bp->link_params.feature_config_flags |= 10812 (val >= REQ_BC_VER_4_MT_SUPPORTED) ? 10813 FEATURE_CONFIG_MT_SUPPORT : 0; 10814 10815 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? 10816 BC_SUPPORTS_PFC_STATS : 0; 10817 10818 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? 10819 BC_SUPPORTS_FCOE_FEATURES : 0; 10820 10821 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? 10822 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; 10823 10824 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? 10825 BC_SUPPORTS_RMMOD_CMD : 0; 10826 10827 boot_mode = SHMEM_RD(bp, 10828 dev_info.port_feature_config[BP_PORT(bp)].mba_config) & 10829 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; 10830 switch (boot_mode) { 10831 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: 10832 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; 10833 break; 10834 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: 10835 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; 10836 break; 10837 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: 10838 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; 10839 break; 10840 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: 10841 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; 10842 break; 10843 } 10844 10845 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc); 10846 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; 10847 10848 BNX2X_DEV_INFO("%sWoL capable\n", 10849 (bp->flags & NO_WOL_FLAG) ? "not " : ""); 10850 10851 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); 10852 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); 10853 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); 10854 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); 10855 10856 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", 10857 val, val2, val3, val4); 10858 } 10859 10860 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 10861 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 10862 10863 static int bnx2x_get_igu_cam_info(struct bnx2x *bp) 10864 { 10865 int pfid = BP_FUNC(bp); 10866 int igu_sb_id; 10867 u32 val; 10868 u8 fid, igu_sb_cnt = 0; 10869 10870 bp->igu_base_sb = 0xff; 10871 if (CHIP_INT_MODE_IS_BC(bp)) { 10872 int vn = BP_VN(bp); 10873 igu_sb_cnt = bp->igu_sb_cnt; 10874 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * 10875 FP_SB_MAX_E1x; 10876 10877 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + 10878 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); 10879 10880 return 0; 10881 } 10882 10883 /* IGU in normal mode - read CAM */ 10884 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 10885 igu_sb_id++) { 10886 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 10887 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 10888 continue; 10889 fid = IGU_FID(val); 10890 if ((fid & IGU_FID_ENCODE_IS_PF)) { 10891 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) 10892 continue; 10893 if (IGU_VEC(val) == 0) 10894 /* default status block */ 10895 bp->igu_dsb_id = igu_sb_id; 10896 else { 10897 if (bp->igu_base_sb == 0xff) 10898 bp->igu_base_sb = igu_sb_id; 10899 igu_sb_cnt++; 10900 } 10901 } 10902 } 10903 10904 #ifdef CONFIG_PCI_MSI 10905 /* Due to new PF resource allocation by MFW T7.4 and above, it's 10906 * optional that number of CAM entries will not be equal to the value 10907 * advertised in PCI. 10908 * Driver should use the minimal value of both as the actual status 10909 * block count 10910 */ 10911 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); 10912 #endif 10913 10914 if (igu_sb_cnt == 0) { 10915 BNX2X_ERR("CAM configuration error\n"); 10916 return -EINVAL; 10917 } 10918 10919 return 0; 10920 } 10921 10922 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) 10923 { 10924 int cfg_size = 0, idx, port = BP_PORT(bp); 10925 10926 /* Aggregation of supported attributes of all external phys */ 10927 bp->port.supported[0] = 0; 10928 bp->port.supported[1] = 0; 10929 switch (bp->link_params.num_phys) { 10930 case 1: 10931 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; 10932 cfg_size = 1; 10933 break; 10934 case 2: 10935 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; 10936 cfg_size = 1; 10937 break; 10938 case 3: 10939 if (bp->link_params.multi_phy_config & 10940 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 10941 bp->port.supported[1] = 10942 bp->link_params.phy[EXT_PHY1].supported; 10943 bp->port.supported[0] = 10944 bp->link_params.phy[EXT_PHY2].supported; 10945 } else { 10946 bp->port.supported[0] = 10947 bp->link_params.phy[EXT_PHY1].supported; 10948 bp->port.supported[1] = 10949 bp->link_params.phy[EXT_PHY2].supported; 10950 } 10951 cfg_size = 2; 10952 break; 10953 } 10954 10955 if (!(bp->port.supported[0] || bp->port.supported[1])) { 10956 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", 10957 SHMEM_RD(bp, 10958 dev_info.port_hw_config[port].external_phy_config), 10959 SHMEM_RD(bp, 10960 dev_info.port_hw_config[port].external_phy_config2)); 10961 return; 10962 } 10963 10964 if (CHIP_IS_E3(bp)) 10965 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); 10966 else { 10967 switch (switch_cfg) { 10968 case SWITCH_CFG_1G: 10969 bp->port.phy_addr = REG_RD( 10970 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 10971 break; 10972 case SWITCH_CFG_10G: 10973 bp->port.phy_addr = REG_RD( 10974 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 10975 break; 10976 default: 10977 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", 10978 bp->port.link_config[0]); 10979 return; 10980 } 10981 } 10982 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); 10983 /* mask what we support according to speed_cap_mask per configuration */ 10984 for (idx = 0; idx < cfg_size; idx++) { 10985 if (!(bp->link_params.speed_cap_mask[idx] & 10986 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) 10987 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; 10988 10989 if (!(bp->link_params.speed_cap_mask[idx] & 10990 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) 10991 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; 10992 10993 if (!(bp->link_params.speed_cap_mask[idx] & 10994 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) 10995 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; 10996 10997 if (!(bp->link_params.speed_cap_mask[idx] & 10998 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) 10999 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; 11000 11001 if (!(bp->link_params.speed_cap_mask[idx] & 11002 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) 11003 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | 11004 SUPPORTED_1000baseT_Full); 11005 11006 if (!(bp->link_params.speed_cap_mask[idx] & 11007 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) 11008 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; 11009 11010 if (!(bp->link_params.speed_cap_mask[idx] & 11011 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) 11012 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; 11013 11014 if (!(bp->link_params.speed_cap_mask[idx] & 11015 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) 11016 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; 11017 } 11018 11019 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], 11020 bp->port.supported[1]); 11021 } 11022 11023 static void bnx2x_link_settings_requested(struct bnx2x *bp) 11024 { 11025 u32 link_config, idx, cfg_size = 0; 11026 bp->port.advertising[0] = 0; 11027 bp->port.advertising[1] = 0; 11028 switch (bp->link_params.num_phys) { 11029 case 1: 11030 case 2: 11031 cfg_size = 1; 11032 break; 11033 case 3: 11034 cfg_size = 2; 11035 break; 11036 } 11037 for (idx = 0; idx < cfg_size; idx++) { 11038 bp->link_params.req_duplex[idx] = DUPLEX_FULL; 11039 link_config = bp->port.link_config[idx]; 11040 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 11041 case PORT_FEATURE_LINK_SPEED_AUTO: 11042 if (bp->port.supported[idx] & SUPPORTED_Autoneg) { 11043 bp->link_params.req_line_speed[idx] = 11044 SPEED_AUTO_NEG; 11045 bp->port.advertising[idx] |= 11046 bp->port.supported[idx]; 11047 if (bp->link_params.phy[EXT_PHY1].type == 11048 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 11049 bp->port.advertising[idx] |= 11050 (SUPPORTED_100baseT_Half | 11051 SUPPORTED_100baseT_Full); 11052 } else { 11053 /* force 10G, no AN */ 11054 bp->link_params.req_line_speed[idx] = 11055 SPEED_10000; 11056 bp->port.advertising[idx] |= 11057 (ADVERTISED_10000baseT_Full | 11058 ADVERTISED_FIBRE); 11059 continue; 11060 } 11061 break; 11062 11063 case PORT_FEATURE_LINK_SPEED_10M_FULL: 11064 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { 11065 bp->link_params.req_line_speed[idx] = 11066 SPEED_10; 11067 bp->port.advertising[idx] |= 11068 (ADVERTISED_10baseT_Full | 11069 ADVERTISED_TP); 11070 } else { 11071 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11072 link_config, 11073 bp->link_params.speed_cap_mask[idx]); 11074 return; 11075 } 11076 break; 11077 11078 case PORT_FEATURE_LINK_SPEED_10M_HALF: 11079 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { 11080 bp->link_params.req_line_speed[idx] = 11081 SPEED_10; 11082 bp->link_params.req_duplex[idx] = 11083 DUPLEX_HALF; 11084 bp->port.advertising[idx] |= 11085 (ADVERTISED_10baseT_Half | 11086 ADVERTISED_TP); 11087 } else { 11088 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11089 link_config, 11090 bp->link_params.speed_cap_mask[idx]); 11091 return; 11092 } 11093 break; 11094 11095 case PORT_FEATURE_LINK_SPEED_100M_FULL: 11096 if (bp->port.supported[idx] & 11097 SUPPORTED_100baseT_Full) { 11098 bp->link_params.req_line_speed[idx] = 11099 SPEED_100; 11100 bp->port.advertising[idx] |= 11101 (ADVERTISED_100baseT_Full | 11102 ADVERTISED_TP); 11103 } else { 11104 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11105 link_config, 11106 bp->link_params.speed_cap_mask[idx]); 11107 return; 11108 } 11109 break; 11110 11111 case PORT_FEATURE_LINK_SPEED_100M_HALF: 11112 if (bp->port.supported[idx] & 11113 SUPPORTED_100baseT_Half) { 11114 bp->link_params.req_line_speed[idx] = 11115 SPEED_100; 11116 bp->link_params.req_duplex[idx] = 11117 DUPLEX_HALF; 11118 bp->port.advertising[idx] |= 11119 (ADVERTISED_100baseT_Half | 11120 ADVERTISED_TP); 11121 } else { 11122 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11123 link_config, 11124 bp->link_params.speed_cap_mask[idx]); 11125 return; 11126 } 11127 break; 11128 11129 case PORT_FEATURE_LINK_SPEED_1G: 11130 if (bp->port.supported[idx] & 11131 SUPPORTED_1000baseT_Full) { 11132 bp->link_params.req_line_speed[idx] = 11133 SPEED_1000; 11134 bp->port.advertising[idx] |= 11135 (ADVERTISED_1000baseT_Full | 11136 ADVERTISED_TP); 11137 } else { 11138 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11139 link_config, 11140 bp->link_params.speed_cap_mask[idx]); 11141 return; 11142 } 11143 break; 11144 11145 case PORT_FEATURE_LINK_SPEED_2_5G: 11146 if (bp->port.supported[idx] & 11147 SUPPORTED_2500baseX_Full) { 11148 bp->link_params.req_line_speed[idx] = 11149 SPEED_2500; 11150 bp->port.advertising[idx] |= 11151 (ADVERTISED_2500baseX_Full | 11152 ADVERTISED_TP); 11153 } else { 11154 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11155 link_config, 11156 bp->link_params.speed_cap_mask[idx]); 11157 return; 11158 } 11159 break; 11160 11161 case PORT_FEATURE_LINK_SPEED_10G_CX4: 11162 if (bp->port.supported[idx] & 11163 SUPPORTED_10000baseT_Full) { 11164 bp->link_params.req_line_speed[idx] = 11165 SPEED_10000; 11166 bp->port.advertising[idx] |= 11167 (ADVERTISED_10000baseT_Full | 11168 ADVERTISED_FIBRE); 11169 } else { 11170 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11171 link_config, 11172 bp->link_params.speed_cap_mask[idx]); 11173 return; 11174 } 11175 break; 11176 case PORT_FEATURE_LINK_SPEED_20G: 11177 bp->link_params.req_line_speed[idx] = SPEED_20000; 11178 11179 break; 11180 default: 11181 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", 11182 link_config); 11183 bp->link_params.req_line_speed[idx] = 11184 SPEED_AUTO_NEG; 11185 bp->port.advertising[idx] = 11186 bp->port.supported[idx]; 11187 break; 11188 } 11189 11190 bp->link_params.req_flow_ctrl[idx] = (link_config & 11191 PORT_FEATURE_FLOW_CONTROL_MASK); 11192 if (bp->link_params.req_flow_ctrl[idx] == 11193 BNX2X_FLOW_CTRL_AUTO) { 11194 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) 11195 bp->link_params.req_flow_ctrl[idx] = 11196 BNX2X_FLOW_CTRL_NONE; 11197 else 11198 bnx2x_set_requested_fc(bp); 11199 } 11200 11201 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", 11202 bp->link_params.req_line_speed[idx], 11203 bp->link_params.req_duplex[idx], 11204 bp->link_params.req_flow_ctrl[idx], 11205 bp->port.advertising[idx]); 11206 } 11207 } 11208 11209 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) 11210 { 11211 __be16 mac_hi_be = cpu_to_be16(mac_hi); 11212 __be32 mac_lo_be = cpu_to_be32(mac_lo); 11213 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); 11214 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); 11215 } 11216 11217 static void bnx2x_get_port_hwinfo(struct bnx2x *bp) 11218 { 11219 int port = BP_PORT(bp); 11220 u32 config; 11221 u32 ext_phy_type, ext_phy_config, eee_mode; 11222 11223 bp->link_params.bp = bp; 11224 bp->link_params.port = port; 11225 11226 bp->link_params.lane_config = 11227 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); 11228 11229 bp->link_params.speed_cap_mask[0] = 11230 SHMEM_RD(bp, 11231 dev_info.port_hw_config[port].speed_capability_mask) & 11232 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11233 bp->link_params.speed_cap_mask[1] = 11234 SHMEM_RD(bp, 11235 dev_info.port_hw_config[port].speed_capability_mask2) & 11236 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11237 bp->port.link_config[0] = 11238 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); 11239 11240 bp->port.link_config[1] = 11241 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); 11242 11243 bp->link_params.multi_phy_config = 11244 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); 11245 /* If the device is capable of WoL, set the default state according 11246 * to the HW 11247 */ 11248 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); 11249 bp->wol = (!(bp->flags & NO_WOL_FLAG) && 11250 (config & PORT_FEATURE_WOL_ENABLED)); 11251 11252 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11253 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) 11254 bp->flags |= NO_ISCSI_FLAG; 11255 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11256 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) 11257 bp->flags |= NO_FCOE_FLAG; 11258 11259 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", 11260 bp->link_params.lane_config, 11261 bp->link_params.speed_cap_mask[0], 11262 bp->port.link_config[0]); 11263 11264 bp->link_params.switch_cfg = (bp->port.link_config[0] & 11265 PORT_FEATURE_CONNECTED_SWITCH_MASK); 11266 bnx2x_phy_probe(&bp->link_params); 11267 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); 11268 11269 bnx2x_link_settings_requested(bp); 11270 11271 /* 11272 * If connected directly, work with the internal PHY, otherwise, work 11273 * with the external PHY 11274 */ 11275 ext_phy_config = 11276 SHMEM_RD(bp, 11277 dev_info.port_hw_config[port].external_phy_config); 11278 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); 11279 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 11280 bp->mdio.prtad = bp->port.phy_addr; 11281 11282 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 11283 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 11284 bp->mdio.prtad = 11285 XGXS_EXT_PHY_ADDR(ext_phy_config); 11286 11287 /* Configure link feature according to nvram value */ 11288 eee_mode = (((SHMEM_RD(bp, dev_info. 11289 port_feature_config[port].eee_power_mode)) & 11290 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 11291 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 11292 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 11293 bp->link_params.eee_mode = EEE_MODE_ADV_LPI | 11294 EEE_MODE_ENABLE_LPI | 11295 EEE_MODE_OUTPUT_TIME; 11296 } else { 11297 bp->link_params.eee_mode = 0; 11298 } 11299 } 11300 11301 void bnx2x_get_iscsi_info(struct bnx2x *bp) 11302 { 11303 u32 no_flags = NO_ISCSI_FLAG; 11304 int port = BP_PORT(bp); 11305 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11306 drv_lic_key[port].max_iscsi_conn); 11307 11308 if (!CNIC_SUPPORT(bp)) { 11309 bp->flags |= no_flags; 11310 return; 11311 } 11312 11313 /* Get the number of maximum allowed iSCSI connections */ 11314 bp->cnic_eth_dev.max_iscsi_conn = 11315 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> 11316 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; 11317 11318 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", 11319 bp->cnic_eth_dev.max_iscsi_conn); 11320 11321 /* 11322 * If maximum allowed number of connections is zero - 11323 * disable the feature. 11324 */ 11325 if (!bp->cnic_eth_dev.max_iscsi_conn) 11326 bp->flags |= no_flags; 11327 } 11328 11329 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) 11330 { 11331 /* Port info */ 11332 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11333 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); 11334 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11335 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); 11336 11337 /* Node info */ 11338 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11339 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); 11340 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11341 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); 11342 } 11343 11344 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) 11345 { 11346 u8 count = 0; 11347 11348 if (IS_MF(bp)) { 11349 u8 fid; 11350 11351 /* iterate over absolute function ids for this path: */ 11352 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { 11353 if (IS_MF_SD(bp)) { 11354 u32 cfg = MF_CFG_RD(bp, 11355 func_mf_config[fid].config); 11356 11357 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && 11358 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == 11359 FUNC_MF_CFG_PROTOCOL_FCOE)) 11360 count++; 11361 } else { 11362 u32 cfg = MF_CFG_RD(bp, 11363 func_ext_config[fid]. 11364 func_cfg); 11365 11366 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && 11367 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) 11368 count++; 11369 } 11370 } 11371 } else { /* SF */ 11372 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; 11373 11374 for (port = 0; port < port_cnt; port++) { 11375 u32 lic = SHMEM_RD(bp, 11376 drv_lic_key[port].max_fcoe_conn) ^ 11377 FW_ENCODE_32BIT_PATTERN; 11378 if (lic) 11379 count++; 11380 } 11381 } 11382 11383 return count; 11384 } 11385 11386 static void bnx2x_get_fcoe_info(struct bnx2x *bp) 11387 { 11388 int port = BP_PORT(bp); 11389 int func = BP_ABS_FUNC(bp); 11390 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11391 drv_lic_key[port].max_fcoe_conn); 11392 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); 11393 11394 if (!CNIC_SUPPORT(bp)) { 11395 bp->flags |= NO_FCOE_FLAG; 11396 return; 11397 } 11398 11399 /* Get the number of maximum allowed FCoE connections */ 11400 bp->cnic_eth_dev.max_fcoe_conn = 11401 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> 11402 BNX2X_MAX_FCOE_INIT_CONN_SHIFT; 11403 11404 /* Calculate the number of maximum allowed FCoE tasks */ 11405 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; 11406 11407 /* check if FCoE resources must be shared between different functions */ 11408 if (num_fcoe_func) 11409 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; 11410 11411 /* Read the WWN: */ 11412 if (!IS_MF(bp)) { 11413 /* Port info */ 11414 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11415 SHMEM_RD(bp, 11416 dev_info.port_hw_config[port]. 11417 fcoe_wwn_port_name_upper); 11418 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11419 SHMEM_RD(bp, 11420 dev_info.port_hw_config[port]. 11421 fcoe_wwn_port_name_lower); 11422 11423 /* Node info */ 11424 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11425 SHMEM_RD(bp, 11426 dev_info.port_hw_config[port]. 11427 fcoe_wwn_node_name_upper); 11428 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11429 SHMEM_RD(bp, 11430 dev_info.port_hw_config[port]. 11431 fcoe_wwn_node_name_lower); 11432 } else if (!IS_MF_SD(bp)) { 11433 /* Read the WWN info only if the FCoE feature is enabled for 11434 * this function. 11435 */ 11436 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp)) 11437 bnx2x_get_ext_wwn_info(bp, func); 11438 } else { 11439 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) 11440 bnx2x_get_ext_wwn_info(bp, func); 11441 } 11442 11443 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); 11444 11445 /* 11446 * If maximum allowed number of connections is zero - 11447 * disable the feature. 11448 */ 11449 if (!bp->cnic_eth_dev.max_fcoe_conn) 11450 bp->flags |= NO_FCOE_FLAG; 11451 } 11452 11453 static void bnx2x_get_cnic_info(struct bnx2x *bp) 11454 { 11455 /* 11456 * iSCSI may be dynamically disabled but reading 11457 * info here we will decrease memory usage by driver 11458 * if the feature is disabled for good 11459 */ 11460 bnx2x_get_iscsi_info(bp); 11461 bnx2x_get_fcoe_info(bp); 11462 } 11463 11464 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) 11465 { 11466 u32 val, val2; 11467 int func = BP_ABS_FUNC(bp); 11468 int port = BP_PORT(bp); 11469 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; 11470 u8 *fip_mac = bp->fip_mac; 11471 11472 if (IS_MF(bp)) { 11473 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or 11474 * FCoE MAC then the appropriate feature should be disabled. 11475 * In non SD mode features configuration comes from struct 11476 * func_ext_config. 11477 */ 11478 if (!IS_MF_SD(bp)) { 11479 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); 11480 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 11481 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11482 iscsi_mac_addr_upper); 11483 val = MF_CFG_RD(bp, func_ext_config[func]. 11484 iscsi_mac_addr_lower); 11485 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11486 BNX2X_DEV_INFO 11487 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11488 } else { 11489 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11490 } 11491 11492 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 11493 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11494 fcoe_mac_addr_upper); 11495 val = MF_CFG_RD(bp, func_ext_config[func]. 11496 fcoe_mac_addr_lower); 11497 bnx2x_set_mac_buf(fip_mac, val, val2); 11498 BNX2X_DEV_INFO 11499 ("Read FCoE L2 MAC: %pM\n", fip_mac); 11500 } else { 11501 bp->flags |= NO_FCOE_FLAG; 11502 } 11503 11504 bp->mf_ext_config = cfg; 11505 11506 } else { /* SD MODE */ 11507 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { 11508 /* use primary mac as iscsi mac */ 11509 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); 11510 11511 BNX2X_DEV_INFO("SD ISCSI MODE\n"); 11512 BNX2X_DEV_INFO 11513 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11514 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { 11515 /* use primary mac as fip mac */ 11516 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); 11517 BNX2X_DEV_INFO("SD FCoE MODE\n"); 11518 BNX2X_DEV_INFO 11519 ("Read FIP MAC: %pM\n", fip_mac); 11520 } 11521 } 11522 11523 /* If this is a storage-only interface, use SAN mac as 11524 * primary MAC. Notice that for SD this is already the case, 11525 * as the SAN mac was copied from the primary MAC. 11526 */ 11527 if (IS_MF_FCOE_AFEX(bp)) 11528 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN); 11529 } else { 11530 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11531 iscsi_mac_upper); 11532 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11533 iscsi_mac_lower); 11534 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11535 11536 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11537 fcoe_fip_mac_upper); 11538 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11539 fcoe_fip_mac_lower); 11540 bnx2x_set_mac_buf(fip_mac, val, val2); 11541 } 11542 11543 /* Disable iSCSI OOO if MAC configuration is invalid. */ 11544 if (!is_valid_ether_addr(iscsi_mac)) { 11545 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11546 memset(iscsi_mac, 0, ETH_ALEN); 11547 } 11548 11549 /* Disable FCoE if MAC configuration is invalid. */ 11550 if (!is_valid_ether_addr(fip_mac)) { 11551 bp->flags |= NO_FCOE_FLAG; 11552 memset(bp->fip_mac, 0, ETH_ALEN); 11553 } 11554 } 11555 11556 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) 11557 { 11558 u32 val, val2; 11559 int func = BP_ABS_FUNC(bp); 11560 int port = BP_PORT(bp); 11561 11562 /* Zero primary MAC configuration */ 11563 memset(bp->dev->dev_addr, 0, ETH_ALEN); 11564 11565 if (BP_NOMCP(bp)) { 11566 BNX2X_ERROR("warning: random MAC workaround active\n"); 11567 eth_hw_addr_random(bp->dev); 11568 } else if (IS_MF(bp)) { 11569 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11570 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); 11571 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && 11572 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) 11573 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11574 11575 if (CNIC_SUPPORT(bp)) 11576 bnx2x_get_cnic_mac_hwinfo(bp); 11577 } else { 11578 /* in SF read MACs from port configuration */ 11579 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11580 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11581 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11582 11583 if (CNIC_SUPPORT(bp)) 11584 bnx2x_get_cnic_mac_hwinfo(bp); 11585 } 11586 11587 if (!BP_NOMCP(bp)) { 11588 /* Read physical port identifier from shmem */ 11589 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11590 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11591 bnx2x_set_mac_buf(bp->phys_port_id, val, val2); 11592 bp->flags |= HAS_PHYS_PORT_ID; 11593 } 11594 11595 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); 11596 11597 if (!is_valid_ether_addr(bp->dev->dev_addr)) 11598 dev_err(&bp->pdev->dev, 11599 "bad Ethernet MAC address configuration: %pM\n" 11600 "change it manually before bringing up the appropriate network interface\n", 11601 bp->dev->dev_addr); 11602 } 11603 11604 static bool bnx2x_get_dropless_info(struct bnx2x *bp) 11605 { 11606 int tmp; 11607 u32 cfg; 11608 11609 if (IS_VF(bp)) 11610 return 0; 11611 11612 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { 11613 /* Take function: tmp = func */ 11614 tmp = BP_ABS_FUNC(bp); 11615 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); 11616 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); 11617 } else { 11618 /* Take port: tmp = port */ 11619 tmp = BP_PORT(bp); 11620 cfg = SHMEM_RD(bp, 11621 dev_info.port_hw_config[tmp].generic_features); 11622 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); 11623 } 11624 return cfg; 11625 } 11626 11627 static void validate_set_si_mode(struct bnx2x *bp) 11628 { 11629 u8 func = BP_ABS_FUNC(bp); 11630 u32 val; 11631 11632 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11633 11634 /* check for legal mac (upper bytes) */ 11635 if (val != 0xffff) { 11636 bp->mf_mode = MULTI_FUNCTION_SI; 11637 bp->mf_config[BP_VN(bp)] = 11638 MF_CFG_RD(bp, func_mf_config[func].config); 11639 } else 11640 BNX2X_DEV_INFO("illegal MAC address for SI\n"); 11641 } 11642 11643 static int bnx2x_get_hwinfo(struct bnx2x *bp) 11644 { 11645 int /*abs*/func = BP_ABS_FUNC(bp); 11646 int vn; 11647 u32 val = 0, val2 = 0; 11648 int rc = 0; 11649 11650 bnx2x_get_common_hwinfo(bp); 11651 11652 /* 11653 * initialize IGU parameters 11654 */ 11655 if (CHIP_IS_E1x(bp)) { 11656 bp->common.int_block = INT_BLOCK_HC; 11657 11658 bp->igu_dsb_id = DEF_SB_IGU_ID; 11659 bp->igu_base_sb = 0; 11660 } else { 11661 bp->common.int_block = INT_BLOCK_IGU; 11662 11663 /* do not allow device reset during IGU info processing */ 11664 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11665 11666 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 11667 11668 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11669 int tout = 5000; 11670 11671 BNX2X_DEV_INFO("FORCING Normal Mode\n"); 11672 11673 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 11674 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); 11675 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); 11676 11677 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11678 tout--; 11679 usleep_range(1000, 2000); 11680 } 11681 11682 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11683 dev_err(&bp->pdev->dev, 11684 "FORCING Normal Mode failed!!!\n"); 11685 bnx2x_release_hw_lock(bp, 11686 HW_LOCK_RESOURCE_RESET); 11687 return -EPERM; 11688 } 11689 } 11690 11691 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11692 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); 11693 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; 11694 } else 11695 BNX2X_DEV_INFO("IGU Normal Mode\n"); 11696 11697 rc = bnx2x_get_igu_cam_info(bp); 11698 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11699 if (rc) 11700 return rc; 11701 } 11702 11703 /* 11704 * set base FW non-default (fast path) status block id, this value is 11705 * used to initialize the fw_sb_id saved on the fp/queue structure to 11706 * determine the id used by the FW. 11707 */ 11708 if (CHIP_IS_E1x(bp)) 11709 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); 11710 else /* 11711 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of 11712 * the same queue are indicated on the same IGU SB). So we prefer 11713 * FW and IGU SBs to be the same value. 11714 */ 11715 bp->base_fw_ndsb = bp->igu_base_sb; 11716 11717 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" 11718 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, 11719 bp->igu_sb_cnt, bp->base_fw_ndsb); 11720 11721 /* 11722 * Initialize MF configuration 11723 */ 11724 11725 bp->mf_ov = 0; 11726 bp->mf_mode = 0; 11727 bp->mf_sub_mode = 0; 11728 vn = BP_VN(bp); 11729 11730 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { 11731 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", 11732 bp->common.shmem2_base, SHMEM2_RD(bp, size), 11733 (u32)offsetof(struct shmem2_region, mf_cfg_addr)); 11734 11735 if (SHMEM2_HAS(bp, mf_cfg_addr)) 11736 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); 11737 else 11738 bp->common.mf_cfg_base = bp->common.shmem_base + 11739 offsetof(struct shmem_region, func_mb) + 11740 E1H_FUNC_MAX * sizeof(struct drv_func_mb); 11741 /* 11742 * get mf configuration: 11743 * 1. Existence of MF configuration 11744 * 2. MAC address must be legal (check only upper bytes) 11745 * for Switch-Independent mode; 11746 * OVLAN must be legal for Switch-Dependent mode 11747 * 3. SF_MODE configures specific MF mode 11748 */ 11749 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 11750 /* get mf configuration */ 11751 val = SHMEM_RD(bp, 11752 dev_info.shared_feature_config.config); 11753 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; 11754 11755 switch (val) { 11756 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 11757 validate_set_si_mode(bp); 11758 break; 11759 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 11760 if ((!CHIP_IS_E1x(bp)) && 11761 (MF_CFG_RD(bp, func_mf_config[func]. 11762 mac_upper) != 0xffff) && 11763 (SHMEM2_HAS(bp, 11764 afex_driver_support))) { 11765 bp->mf_mode = MULTI_FUNCTION_AFEX; 11766 bp->mf_config[vn] = MF_CFG_RD(bp, 11767 func_mf_config[func].config); 11768 } else { 11769 BNX2X_DEV_INFO("can not configure afex mode\n"); 11770 } 11771 break; 11772 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 11773 /* get OV configuration */ 11774 val = MF_CFG_RD(bp, 11775 func_mf_config[FUNC_0].e1hov_tag); 11776 val &= FUNC_MF_CFG_E1HOV_TAG_MASK; 11777 11778 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 11779 bp->mf_mode = MULTI_FUNCTION_SD; 11780 bp->mf_config[vn] = MF_CFG_RD(bp, 11781 func_mf_config[func].config); 11782 } else 11783 BNX2X_DEV_INFO("illegal OV for SD\n"); 11784 break; 11785 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE: 11786 bp->mf_mode = MULTI_FUNCTION_SD; 11787 bp->mf_sub_mode = SUB_MF_MODE_UFP; 11788 bp->mf_config[vn] = 11789 MF_CFG_RD(bp, 11790 func_mf_config[func].config); 11791 break; 11792 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 11793 bp->mf_config[vn] = 0; 11794 break; 11795 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE: 11796 val2 = SHMEM_RD(bp, 11797 dev_info.shared_hw_config.config_3); 11798 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK; 11799 switch (val2) { 11800 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5: 11801 validate_set_si_mode(bp); 11802 bp->mf_sub_mode = 11803 SUB_MF_MODE_NPAR1_DOT_5; 11804 break; 11805 default: 11806 /* Unknown configuration */ 11807 bp->mf_config[vn] = 0; 11808 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n", 11809 val); 11810 } 11811 break; 11812 default: 11813 /* Unknown configuration: reset mf_config */ 11814 bp->mf_config[vn] = 0; 11815 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); 11816 } 11817 } 11818 11819 BNX2X_DEV_INFO("%s function mode\n", 11820 IS_MF(bp) ? "multi" : "single"); 11821 11822 switch (bp->mf_mode) { 11823 case MULTI_FUNCTION_SD: 11824 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 11825 FUNC_MF_CFG_E1HOV_TAG_MASK; 11826 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 11827 bp->mf_ov = val; 11828 bp->path_has_ovlan = true; 11829 11830 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", 11831 func, bp->mf_ov, bp->mf_ov); 11832 } else if (bp->mf_sub_mode == SUB_MF_MODE_UFP) { 11833 dev_err(&bp->pdev->dev, 11834 "Unexpected - no valid MF OV for func %d in UFP mode\n", 11835 func); 11836 bp->path_has_ovlan = true; 11837 } else { 11838 dev_err(&bp->pdev->dev, 11839 "No valid MF OV for func %d, aborting\n", 11840 func); 11841 return -EPERM; 11842 } 11843 break; 11844 case MULTI_FUNCTION_AFEX: 11845 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); 11846 break; 11847 case MULTI_FUNCTION_SI: 11848 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", 11849 func); 11850 break; 11851 default: 11852 if (vn) { 11853 dev_err(&bp->pdev->dev, 11854 "VN %d is in a single function mode, aborting\n", 11855 vn); 11856 return -EPERM; 11857 } 11858 break; 11859 } 11860 11861 /* check if other port on the path needs ovlan: 11862 * Since MF configuration is shared between ports 11863 * Possible mixed modes are only 11864 * {SF, SI} {SF, SD} {SD, SF} {SI, SF} 11865 */ 11866 if (CHIP_MODE_IS_4_PORT(bp) && 11867 !bp->path_has_ovlan && 11868 !IS_MF(bp) && 11869 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 11870 u8 other_port = !BP_PORT(bp); 11871 u8 other_func = BP_PATH(bp) + 2*other_port; 11872 val = MF_CFG_RD(bp, 11873 func_mf_config[other_func].e1hov_tag); 11874 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) 11875 bp->path_has_ovlan = true; 11876 } 11877 } 11878 11879 /* adjust igu_sb_cnt to MF for E1H */ 11880 if (CHIP_IS_E1H(bp) && IS_MF(bp)) 11881 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT); 11882 11883 /* port info */ 11884 bnx2x_get_port_hwinfo(bp); 11885 11886 /* Get MAC addresses */ 11887 bnx2x_get_mac_hwinfo(bp); 11888 11889 bnx2x_get_cnic_info(bp); 11890 11891 return rc; 11892 } 11893 11894 static void bnx2x_read_fwinfo(struct bnx2x *bp) 11895 { 11896 int cnt, i, block_end, rodi; 11897 char vpd_start[BNX2X_VPD_LEN+1]; 11898 char str_id_reg[VENDOR_ID_LEN+1]; 11899 char str_id_cap[VENDOR_ID_LEN+1]; 11900 char *vpd_data; 11901 char *vpd_extended_data = NULL; 11902 u8 len; 11903 11904 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); 11905 memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); 11906 11907 if (cnt < BNX2X_VPD_LEN) 11908 goto out_not_found; 11909 11910 /* VPD RO tag should be first tag after identifier string, hence 11911 * we should be able to find it in first BNX2X_VPD_LEN chars 11912 */ 11913 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, 11914 PCI_VPD_LRDT_RO_DATA); 11915 if (i < 0) 11916 goto out_not_found; 11917 11918 block_end = i + PCI_VPD_LRDT_TAG_SIZE + 11919 pci_vpd_lrdt_size(&vpd_start[i]); 11920 11921 i += PCI_VPD_LRDT_TAG_SIZE; 11922 11923 if (block_end > BNX2X_VPD_LEN) { 11924 vpd_extended_data = kmalloc(block_end, GFP_KERNEL); 11925 if (vpd_extended_data == NULL) 11926 goto out_not_found; 11927 11928 /* read rest of vpd image into vpd_extended_data */ 11929 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); 11930 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, 11931 block_end - BNX2X_VPD_LEN, 11932 vpd_extended_data + BNX2X_VPD_LEN); 11933 if (cnt < (block_end - BNX2X_VPD_LEN)) 11934 goto out_not_found; 11935 vpd_data = vpd_extended_data; 11936 } else 11937 vpd_data = vpd_start; 11938 11939 /* now vpd_data holds full vpd content in both cases */ 11940 11941 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 11942 PCI_VPD_RO_KEYWORD_MFR_ID); 11943 if (rodi < 0) 11944 goto out_not_found; 11945 11946 len = pci_vpd_info_field_size(&vpd_data[rodi]); 11947 11948 if (len != VENDOR_ID_LEN) 11949 goto out_not_found; 11950 11951 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 11952 11953 /* vendor specific info */ 11954 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); 11955 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); 11956 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || 11957 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { 11958 11959 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 11960 PCI_VPD_RO_KEYWORD_VENDOR0); 11961 if (rodi >= 0) { 11962 len = pci_vpd_info_field_size(&vpd_data[rodi]); 11963 11964 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 11965 11966 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { 11967 memcpy(bp->fw_ver, &vpd_data[rodi], len); 11968 bp->fw_ver[len] = ' '; 11969 } 11970 } 11971 kfree(vpd_extended_data); 11972 return; 11973 } 11974 out_not_found: 11975 kfree(vpd_extended_data); 11976 return; 11977 } 11978 11979 static void bnx2x_set_modes_bitmap(struct bnx2x *bp) 11980 { 11981 u32 flags = 0; 11982 11983 if (CHIP_REV_IS_FPGA(bp)) 11984 SET_FLAGS(flags, MODE_FPGA); 11985 else if (CHIP_REV_IS_EMUL(bp)) 11986 SET_FLAGS(flags, MODE_EMUL); 11987 else 11988 SET_FLAGS(flags, MODE_ASIC); 11989 11990 if (CHIP_MODE_IS_4_PORT(bp)) 11991 SET_FLAGS(flags, MODE_PORT4); 11992 else 11993 SET_FLAGS(flags, MODE_PORT2); 11994 11995 if (CHIP_IS_E2(bp)) 11996 SET_FLAGS(flags, MODE_E2); 11997 else if (CHIP_IS_E3(bp)) { 11998 SET_FLAGS(flags, MODE_E3); 11999 if (CHIP_REV(bp) == CHIP_REV_Ax) 12000 SET_FLAGS(flags, MODE_E3_A0); 12001 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ 12002 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 12003 } 12004 12005 if (IS_MF(bp)) { 12006 SET_FLAGS(flags, MODE_MF); 12007 switch (bp->mf_mode) { 12008 case MULTI_FUNCTION_SD: 12009 SET_FLAGS(flags, MODE_MF_SD); 12010 break; 12011 case MULTI_FUNCTION_SI: 12012 SET_FLAGS(flags, MODE_MF_SI); 12013 break; 12014 case MULTI_FUNCTION_AFEX: 12015 SET_FLAGS(flags, MODE_MF_AFEX); 12016 break; 12017 } 12018 } else 12019 SET_FLAGS(flags, MODE_SF); 12020 12021 #if defined(__LITTLE_ENDIAN) 12022 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 12023 #else /*(__BIG_ENDIAN)*/ 12024 SET_FLAGS(flags, MODE_BIG_ENDIAN); 12025 #endif 12026 INIT_MODE_FLAGS(bp) = flags; 12027 } 12028 12029 static int bnx2x_init_bp(struct bnx2x *bp) 12030 { 12031 int func; 12032 int rc; 12033 12034 mutex_init(&bp->port.phy_mutex); 12035 mutex_init(&bp->fw_mb_mutex); 12036 mutex_init(&bp->drv_info_mutex); 12037 bp->drv_info_mng_owner = false; 12038 spin_lock_init(&bp->stats_lock); 12039 sema_init(&bp->stats_sema, 1); 12040 12041 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); 12042 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); 12043 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); 12044 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task); 12045 if (IS_PF(bp)) { 12046 rc = bnx2x_get_hwinfo(bp); 12047 if (rc) 12048 return rc; 12049 } else { 12050 eth_zero_addr(bp->dev->dev_addr); 12051 } 12052 12053 bnx2x_set_modes_bitmap(bp); 12054 12055 rc = bnx2x_alloc_mem_bp(bp); 12056 if (rc) 12057 return rc; 12058 12059 bnx2x_read_fwinfo(bp); 12060 12061 func = BP_FUNC(bp); 12062 12063 /* need to reset chip if undi was active */ 12064 if (IS_PF(bp) && !BP_NOMCP(bp)) { 12065 /* init fw_seq */ 12066 bp->fw_seq = 12067 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 12068 DRV_MSG_SEQ_NUMBER_MASK; 12069 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 12070 12071 rc = bnx2x_prev_unload(bp); 12072 if (rc) { 12073 bnx2x_free_mem_bp(bp); 12074 return rc; 12075 } 12076 } 12077 12078 if (CHIP_REV_IS_FPGA(bp)) 12079 dev_err(&bp->pdev->dev, "FPGA detected\n"); 12080 12081 if (BP_NOMCP(bp) && (func == 0)) 12082 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); 12083 12084 bp->disable_tpa = disable_tpa; 12085 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp); 12086 /* Reduce memory usage in kdump environment by disabling TPA */ 12087 bp->disable_tpa |= is_kdump_kernel(); 12088 12089 /* Set TPA flags */ 12090 if (bp->disable_tpa) { 12091 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); 12092 bp->dev->features &= ~NETIF_F_LRO; 12093 } else { 12094 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); 12095 bp->dev->features |= NETIF_F_LRO; 12096 } 12097 12098 if (CHIP_IS_E1(bp)) 12099 bp->dropless_fc = 0; 12100 else 12101 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); 12102 12103 bp->mrrs = mrrs; 12104 12105 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL; 12106 if (IS_VF(bp)) 12107 bp->rx_ring_size = MAX_RX_AVAIL; 12108 12109 /* make sure that the numbers are in the right granularity */ 12110 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; 12111 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; 12112 12113 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; 12114 12115 init_timer(&bp->timer); 12116 bp->timer.expires = jiffies + bp->current_interval; 12117 bp->timer.data = (unsigned long) bp; 12118 bp->timer.function = bnx2x_timer; 12119 12120 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && 12121 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && 12122 SHMEM2_RD(bp, dcbx_lldp_params_offset) && 12123 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) { 12124 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); 12125 bnx2x_dcbx_init_params(bp); 12126 } else { 12127 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); 12128 } 12129 12130 if (CHIP_IS_E1x(bp)) 12131 bp->cnic_base_cl_id = FP_SB_MAX_E1x; 12132 else 12133 bp->cnic_base_cl_id = FP_SB_MAX_E2; 12134 12135 /* multiple tx priority */ 12136 if (IS_VF(bp)) 12137 bp->max_cos = 1; 12138 else if (CHIP_IS_E1x(bp)) 12139 bp->max_cos = BNX2X_MULTI_TX_COS_E1X; 12140 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) 12141 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; 12142 else if (CHIP_IS_E3B0(bp)) 12143 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; 12144 else 12145 BNX2X_ERR("unknown chip %x revision %x\n", 12146 CHIP_NUM(bp), CHIP_REV(bp)); 12147 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); 12148 12149 /* We need at least one default status block for slow-path events, 12150 * second status block for the L2 queue, and a third status block for 12151 * CNIC if supported. 12152 */ 12153 if (IS_VF(bp)) 12154 bp->min_msix_vec_cnt = 1; 12155 else if (CNIC_SUPPORT(bp)) 12156 bp->min_msix_vec_cnt = 3; 12157 else /* PF w/o cnic */ 12158 bp->min_msix_vec_cnt = 2; 12159 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); 12160 12161 bp->dump_preset_idx = 1; 12162 12163 if (CHIP_IS_E3B0(bp)) 12164 bp->flags |= PTP_SUPPORTED; 12165 12166 return rc; 12167 } 12168 12169 /**************************************************************************** 12170 * General service functions 12171 ****************************************************************************/ 12172 12173 /* 12174 * net_device service functions 12175 */ 12176 12177 /* called with rtnl_lock */ 12178 static int bnx2x_open(struct net_device *dev) 12179 { 12180 struct bnx2x *bp = netdev_priv(dev); 12181 int rc; 12182 12183 bp->stats_init = true; 12184 12185 netif_carrier_off(dev); 12186 12187 bnx2x_set_power_state(bp, PCI_D0); 12188 12189 /* If parity had happen during the unload, then attentions 12190 * and/or RECOVERY_IN_PROGRES may still be set. In this case we 12191 * want the first function loaded on the current engine to 12192 * complete the recovery. 12193 * Parity recovery is only relevant for PF driver. 12194 */ 12195 if (IS_PF(bp)) { 12196 int other_engine = BP_PATH(bp) ? 0 : 1; 12197 bool other_load_status, load_status; 12198 bool global = false; 12199 12200 other_load_status = bnx2x_get_load_status(bp, other_engine); 12201 load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); 12202 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || 12203 bnx2x_chk_parity_attn(bp, &global, true)) { 12204 do { 12205 /* If there are attentions and they are in a 12206 * global blocks, set the GLOBAL_RESET bit 12207 * regardless whether it will be this function 12208 * that will complete the recovery or not. 12209 */ 12210 if (global) 12211 bnx2x_set_reset_global(bp); 12212 12213 /* Only the first function on the current 12214 * engine should try to recover in open. In case 12215 * of attentions in global blocks only the first 12216 * in the chip should try to recover. 12217 */ 12218 if ((!load_status && 12219 (!global || !other_load_status)) && 12220 bnx2x_trylock_leader_lock(bp) && 12221 !bnx2x_leader_reset(bp)) { 12222 netdev_info(bp->dev, 12223 "Recovered in open\n"); 12224 break; 12225 } 12226 12227 /* recovery has failed... */ 12228 bnx2x_set_power_state(bp, PCI_D3hot); 12229 bp->recovery_state = BNX2X_RECOVERY_FAILED; 12230 12231 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" 12232 "If you still see this message after a few retries then power cycle is required.\n"); 12233 12234 return -EAGAIN; 12235 } while (0); 12236 } 12237 } 12238 12239 bp->recovery_state = BNX2X_RECOVERY_DONE; 12240 rc = bnx2x_nic_load(bp, LOAD_OPEN); 12241 if (rc) 12242 return rc; 12243 return 0; 12244 } 12245 12246 /* called with rtnl_lock */ 12247 static int bnx2x_close(struct net_device *dev) 12248 { 12249 struct bnx2x *bp = netdev_priv(dev); 12250 12251 /* Unload the driver, release IRQs */ 12252 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 12253 12254 return 0; 12255 } 12256 12257 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, 12258 struct bnx2x_mcast_ramrod_params *p) 12259 { 12260 int mc_count = netdev_mc_count(bp->dev); 12261 struct bnx2x_mcast_list_elem *mc_mac = 12262 kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC); 12263 struct netdev_hw_addr *ha; 12264 12265 if (!mc_mac) 12266 return -ENOMEM; 12267 12268 INIT_LIST_HEAD(&p->mcast_list); 12269 12270 netdev_for_each_mc_addr(ha, bp->dev) { 12271 mc_mac->mac = bnx2x_mc_addr(ha); 12272 list_add_tail(&mc_mac->link, &p->mcast_list); 12273 mc_mac++; 12274 } 12275 12276 p->mcast_list_len = mc_count; 12277 12278 return 0; 12279 } 12280 12281 static void bnx2x_free_mcast_macs_list( 12282 struct bnx2x_mcast_ramrod_params *p) 12283 { 12284 struct bnx2x_mcast_list_elem *mc_mac = 12285 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem, 12286 link); 12287 12288 WARN_ON(!mc_mac); 12289 kfree(mc_mac); 12290 } 12291 12292 /** 12293 * bnx2x_set_uc_list - configure a new unicast MACs list. 12294 * 12295 * @bp: driver handle 12296 * 12297 * We will use zero (0) as a MAC type for these MACs. 12298 */ 12299 static int bnx2x_set_uc_list(struct bnx2x *bp) 12300 { 12301 int rc; 12302 struct net_device *dev = bp->dev; 12303 struct netdev_hw_addr *ha; 12304 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 12305 unsigned long ramrod_flags = 0; 12306 12307 /* First schedule a cleanup up of old configuration */ 12308 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); 12309 if (rc < 0) { 12310 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); 12311 return rc; 12312 } 12313 12314 netdev_for_each_uc_addr(ha, dev) { 12315 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, 12316 BNX2X_UC_LIST_MAC, &ramrod_flags); 12317 if (rc == -EEXIST) { 12318 DP(BNX2X_MSG_SP, 12319 "Failed to schedule ADD operations: %d\n", rc); 12320 /* do not treat adding same MAC as error */ 12321 rc = 0; 12322 12323 } else if (rc < 0) { 12324 12325 BNX2X_ERR("Failed to schedule ADD operations: %d\n", 12326 rc); 12327 return rc; 12328 } 12329 } 12330 12331 /* Execute the pending commands */ 12332 __set_bit(RAMROD_CONT, &ramrod_flags); 12333 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, 12334 BNX2X_UC_LIST_MAC, &ramrod_flags); 12335 } 12336 12337 static int bnx2x_set_mc_list(struct bnx2x *bp) 12338 { 12339 struct net_device *dev = bp->dev; 12340 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12341 int rc = 0; 12342 12343 rparam.mcast_obj = &bp->mcast_obj; 12344 12345 /* first, clear all configured multicast MACs */ 12346 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12347 if (rc < 0) { 12348 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); 12349 return rc; 12350 } 12351 12352 /* then, configure a new MACs list */ 12353 if (netdev_mc_count(dev)) { 12354 rc = bnx2x_init_mcast_macs_list(bp, &rparam); 12355 if (rc) { 12356 BNX2X_ERR("Failed to create multicast MACs list: %d\n", 12357 rc); 12358 return rc; 12359 } 12360 12361 /* Now add the new MACs */ 12362 rc = bnx2x_config_mcast(bp, &rparam, 12363 BNX2X_MCAST_CMD_ADD); 12364 if (rc < 0) 12365 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12366 rc); 12367 12368 bnx2x_free_mcast_macs_list(&rparam); 12369 } 12370 12371 return rc; 12372 } 12373 12374 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ 12375 static void bnx2x_set_rx_mode(struct net_device *dev) 12376 { 12377 struct bnx2x *bp = netdev_priv(dev); 12378 12379 if (bp->state != BNX2X_STATE_OPEN) { 12380 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); 12381 return; 12382 } else { 12383 /* Schedule an SP task to handle rest of change */ 12384 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE, 12385 NETIF_MSG_IFUP); 12386 } 12387 } 12388 12389 void bnx2x_set_rx_mode_inner(struct bnx2x *bp) 12390 { 12391 u32 rx_mode = BNX2X_RX_MODE_NORMAL; 12392 12393 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); 12394 12395 netif_addr_lock_bh(bp->dev); 12396 12397 if (bp->dev->flags & IFF_PROMISC) { 12398 rx_mode = BNX2X_RX_MODE_PROMISC; 12399 } else if ((bp->dev->flags & IFF_ALLMULTI) || 12400 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) && 12401 CHIP_IS_E1(bp))) { 12402 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12403 } else { 12404 if (IS_PF(bp)) { 12405 /* some multicasts */ 12406 if (bnx2x_set_mc_list(bp) < 0) 12407 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12408 12409 /* release bh lock, as bnx2x_set_uc_list might sleep */ 12410 netif_addr_unlock_bh(bp->dev); 12411 if (bnx2x_set_uc_list(bp) < 0) 12412 rx_mode = BNX2X_RX_MODE_PROMISC; 12413 netif_addr_lock_bh(bp->dev); 12414 } else { 12415 /* configuring mcast to a vf involves sleeping (when we 12416 * wait for the pf's response). 12417 */ 12418 bnx2x_schedule_sp_rtnl(bp, 12419 BNX2X_SP_RTNL_VFPF_MCAST, 0); 12420 } 12421 } 12422 12423 bp->rx_mode = rx_mode; 12424 /* handle ISCSI SD mode */ 12425 if (IS_MF_ISCSI_ONLY(bp)) 12426 bp->rx_mode = BNX2X_RX_MODE_NONE; 12427 12428 /* Schedule the rx_mode command */ 12429 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { 12430 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 12431 netif_addr_unlock_bh(bp->dev); 12432 return; 12433 } 12434 12435 if (IS_PF(bp)) { 12436 bnx2x_set_storm_rx_mode(bp); 12437 netif_addr_unlock_bh(bp->dev); 12438 } else { 12439 /* VF will need to request the PF to make this change, and so 12440 * the VF needs to release the bottom-half lock prior to the 12441 * request (as it will likely require sleep on the VF side) 12442 */ 12443 netif_addr_unlock_bh(bp->dev); 12444 bnx2x_vfpf_storm_rx_mode(bp); 12445 } 12446 } 12447 12448 /* called with rtnl_lock */ 12449 static int bnx2x_mdio_read(struct net_device *netdev, int prtad, 12450 int devad, u16 addr) 12451 { 12452 struct bnx2x *bp = netdev_priv(netdev); 12453 u16 value; 12454 int rc; 12455 12456 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", 12457 prtad, devad, addr); 12458 12459 /* The HW expects different devad if CL22 is used */ 12460 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12461 12462 bnx2x_acquire_phy_lock(bp); 12463 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); 12464 bnx2x_release_phy_lock(bp); 12465 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); 12466 12467 if (!rc) 12468 rc = value; 12469 return rc; 12470 } 12471 12472 /* called with rtnl_lock */ 12473 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, 12474 u16 addr, u16 value) 12475 { 12476 struct bnx2x *bp = netdev_priv(netdev); 12477 int rc; 12478 12479 DP(NETIF_MSG_LINK, 12480 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", 12481 prtad, devad, addr, value); 12482 12483 /* The HW expects different devad if CL22 is used */ 12484 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12485 12486 bnx2x_acquire_phy_lock(bp); 12487 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); 12488 bnx2x_release_phy_lock(bp); 12489 return rc; 12490 } 12491 12492 /* called with rtnl_lock */ 12493 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12494 { 12495 struct bnx2x *bp = netdev_priv(dev); 12496 struct mii_ioctl_data *mdio = if_mii(ifr); 12497 12498 if (!netif_running(dev)) 12499 return -EAGAIN; 12500 12501 switch (cmd) { 12502 case SIOCSHWTSTAMP: 12503 return bnx2x_hwtstamp_ioctl(bp, ifr); 12504 default: 12505 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", 12506 mdio->phy_id, mdio->reg_num, mdio->val_in); 12507 return mdio_mii_ioctl(&bp->mdio, mdio, cmd); 12508 } 12509 } 12510 12511 #ifdef CONFIG_NET_POLL_CONTROLLER 12512 static void poll_bnx2x(struct net_device *dev) 12513 { 12514 struct bnx2x *bp = netdev_priv(dev); 12515 int i; 12516 12517 for_each_eth_queue(bp, i) { 12518 struct bnx2x_fastpath *fp = &bp->fp[i]; 12519 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 12520 } 12521 } 12522 #endif 12523 12524 static int bnx2x_validate_addr(struct net_device *dev) 12525 { 12526 struct bnx2x *bp = netdev_priv(dev); 12527 12528 /* query the bulletin board for mac address configured by the PF */ 12529 if (IS_VF(bp)) 12530 bnx2x_sample_bulletin(bp); 12531 12532 if (!is_valid_ether_addr(dev->dev_addr)) { 12533 BNX2X_ERR("Non-valid Ethernet address\n"); 12534 return -EADDRNOTAVAIL; 12535 } 12536 return 0; 12537 } 12538 12539 static int bnx2x_get_phys_port_id(struct net_device *netdev, 12540 struct netdev_phys_port_id *ppid) 12541 { 12542 struct bnx2x *bp = netdev_priv(netdev); 12543 12544 if (!(bp->flags & HAS_PHYS_PORT_ID)) 12545 return -EOPNOTSUPP; 12546 12547 ppid->id_len = sizeof(bp->phys_port_id); 12548 memcpy(ppid->id, bp->phys_port_id, ppid->id_len); 12549 12550 return 0; 12551 } 12552 12553 static const struct net_device_ops bnx2x_netdev_ops = { 12554 .ndo_open = bnx2x_open, 12555 .ndo_stop = bnx2x_close, 12556 .ndo_start_xmit = bnx2x_start_xmit, 12557 .ndo_select_queue = bnx2x_select_queue, 12558 .ndo_set_rx_mode = bnx2x_set_rx_mode, 12559 .ndo_set_mac_address = bnx2x_change_mac_addr, 12560 .ndo_validate_addr = bnx2x_validate_addr, 12561 .ndo_do_ioctl = bnx2x_ioctl, 12562 .ndo_change_mtu = bnx2x_change_mtu, 12563 .ndo_fix_features = bnx2x_fix_features, 12564 .ndo_set_features = bnx2x_set_features, 12565 .ndo_tx_timeout = bnx2x_tx_timeout, 12566 #ifdef CONFIG_NET_POLL_CONTROLLER 12567 .ndo_poll_controller = poll_bnx2x, 12568 #endif 12569 .ndo_setup_tc = bnx2x_setup_tc, 12570 #ifdef CONFIG_BNX2X_SRIOV 12571 .ndo_set_vf_mac = bnx2x_set_vf_mac, 12572 .ndo_set_vf_vlan = bnx2x_set_vf_vlan, 12573 .ndo_get_vf_config = bnx2x_get_vf_config, 12574 #endif 12575 #ifdef NETDEV_FCOE_WWNN 12576 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, 12577 #endif 12578 12579 #ifdef CONFIG_NET_RX_BUSY_POLL 12580 .ndo_busy_poll = bnx2x_low_latency_recv, 12581 #endif 12582 .ndo_get_phys_port_id = bnx2x_get_phys_port_id, 12583 .ndo_set_vf_link_state = bnx2x_set_vf_link_state, 12584 }; 12585 12586 static int bnx2x_set_coherency_mask(struct bnx2x *bp) 12587 { 12588 struct device *dev = &bp->pdev->dev; 12589 12590 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 && 12591 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) { 12592 dev_err(dev, "System does not support DMA, aborting\n"); 12593 return -EIO; 12594 } 12595 12596 return 0; 12597 } 12598 12599 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp) 12600 { 12601 if (bp->flags & AER_ENABLED) { 12602 pci_disable_pcie_error_reporting(bp->pdev); 12603 bp->flags &= ~AER_ENABLED; 12604 } 12605 } 12606 12607 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, 12608 struct net_device *dev, unsigned long board_type) 12609 { 12610 int rc; 12611 u32 pci_cfg_dword; 12612 bool chip_is_e1x = (board_type == BCM57710 || 12613 board_type == BCM57711 || 12614 board_type == BCM57711E); 12615 12616 SET_NETDEV_DEV(dev, &pdev->dev); 12617 12618 bp->dev = dev; 12619 bp->pdev = pdev; 12620 12621 rc = pci_enable_device(pdev); 12622 if (rc) { 12623 dev_err(&bp->pdev->dev, 12624 "Cannot enable PCI device, aborting\n"); 12625 goto err_out; 12626 } 12627 12628 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 12629 dev_err(&bp->pdev->dev, 12630 "Cannot find PCI device base address, aborting\n"); 12631 rc = -ENODEV; 12632 goto err_out_disable; 12633 } 12634 12635 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { 12636 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); 12637 rc = -ENODEV; 12638 goto err_out_disable; 12639 } 12640 12641 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); 12642 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == 12643 PCICFG_REVESION_ID_ERROR_VAL) { 12644 pr_err("PCI device error, probably due to fan failure, aborting\n"); 12645 rc = -ENODEV; 12646 goto err_out_disable; 12647 } 12648 12649 if (atomic_read(&pdev->enable_cnt) == 1) { 12650 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 12651 if (rc) { 12652 dev_err(&bp->pdev->dev, 12653 "Cannot obtain PCI resources, aborting\n"); 12654 goto err_out_disable; 12655 } 12656 12657 pci_set_master(pdev); 12658 pci_save_state(pdev); 12659 } 12660 12661 if (IS_PF(bp)) { 12662 if (!pdev->pm_cap) { 12663 dev_err(&bp->pdev->dev, 12664 "Cannot find power management capability, aborting\n"); 12665 rc = -EIO; 12666 goto err_out_release; 12667 } 12668 } 12669 12670 if (!pci_is_pcie(pdev)) { 12671 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); 12672 rc = -EIO; 12673 goto err_out_release; 12674 } 12675 12676 rc = bnx2x_set_coherency_mask(bp); 12677 if (rc) 12678 goto err_out_release; 12679 12680 dev->mem_start = pci_resource_start(pdev, 0); 12681 dev->base_addr = dev->mem_start; 12682 dev->mem_end = pci_resource_end(pdev, 0); 12683 12684 dev->irq = pdev->irq; 12685 12686 bp->regview = pci_ioremap_bar(pdev, 0); 12687 if (!bp->regview) { 12688 dev_err(&bp->pdev->dev, 12689 "Cannot map register space, aborting\n"); 12690 rc = -ENOMEM; 12691 goto err_out_release; 12692 } 12693 12694 /* In E1/E1H use pci device function given by kernel. 12695 * In E2/E3 read physical function from ME register since these chips 12696 * support Physical Device Assignment where kernel BDF maybe arbitrary 12697 * (depending on hypervisor). 12698 */ 12699 if (chip_is_e1x) { 12700 bp->pf_num = PCI_FUNC(pdev->devfn); 12701 } else { 12702 /* chip is E2/3*/ 12703 pci_read_config_dword(bp->pdev, 12704 PCICFG_ME_REGISTER, &pci_cfg_dword); 12705 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> 12706 ME_REG_ABS_PF_NUM_SHIFT); 12707 } 12708 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); 12709 12710 /* clean indirect addresses */ 12711 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 12712 PCICFG_VENDOR_ID_OFFSET); 12713 12714 /* AER (Advanced Error reporting) configuration */ 12715 rc = pci_enable_pcie_error_reporting(pdev); 12716 if (!rc) 12717 bp->flags |= AER_ENABLED; 12718 else 12719 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc); 12720 12721 /* 12722 * Clean the following indirect addresses for all functions since it 12723 * is not used by the driver. 12724 */ 12725 if (IS_PF(bp)) { 12726 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); 12727 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); 12728 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); 12729 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); 12730 12731 if (chip_is_e1x) { 12732 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); 12733 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); 12734 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); 12735 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); 12736 } 12737 12738 /* Enable internal target-read (in case we are probed after PF 12739 * FLR). Must be done prior to any BAR read access. Only for 12740 * 57712 and up 12741 */ 12742 if (!chip_is_e1x) 12743 REG_WR(bp, 12744 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 12745 } 12746 12747 dev->watchdog_timeo = TX_TIMEOUT; 12748 12749 dev->netdev_ops = &bnx2x_netdev_ops; 12750 bnx2x_set_ethtool_ops(bp, dev); 12751 12752 dev->priv_flags |= IFF_UNICAST_FLT; 12753 12754 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 12755 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 12756 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | 12757 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; 12758 if (!CHIP_IS_E1x(bp)) { 12759 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL | 12760 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT; 12761 dev->hw_enc_features = 12762 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 12763 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 12764 NETIF_F_GSO_IPIP | 12765 NETIF_F_GSO_SIT | 12766 NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL; 12767 } 12768 12769 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 12770 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; 12771 12772 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; 12773 dev->features |= NETIF_F_HIGHDMA; 12774 12775 /* Add Loopback capability to the device */ 12776 dev->hw_features |= NETIF_F_LOOPBACK; 12777 12778 #ifdef BCM_DCBNL 12779 dev->dcbnl_ops = &bnx2x_dcbnl_ops; 12780 #endif 12781 12782 /* get_port_hwinfo() will set prtad and mmds properly */ 12783 bp->mdio.prtad = MDIO_PRTAD_NONE; 12784 bp->mdio.mmds = 0; 12785 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; 12786 bp->mdio.dev = dev; 12787 bp->mdio.mdio_read = bnx2x_mdio_read; 12788 bp->mdio.mdio_write = bnx2x_mdio_write; 12789 12790 return 0; 12791 12792 err_out_release: 12793 if (atomic_read(&pdev->enable_cnt) == 1) 12794 pci_release_regions(pdev); 12795 12796 err_out_disable: 12797 pci_disable_device(pdev); 12798 12799 err_out: 12800 return rc; 12801 } 12802 12803 static int bnx2x_check_firmware(struct bnx2x *bp) 12804 { 12805 const struct firmware *firmware = bp->firmware; 12806 struct bnx2x_fw_file_hdr *fw_hdr; 12807 struct bnx2x_fw_file_section *sections; 12808 u32 offset, len, num_ops; 12809 __be16 *ops_offsets; 12810 int i; 12811 const u8 *fw_ver; 12812 12813 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { 12814 BNX2X_ERR("Wrong FW size\n"); 12815 return -EINVAL; 12816 } 12817 12818 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; 12819 sections = (struct bnx2x_fw_file_section *)fw_hdr; 12820 12821 /* Make sure none of the offsets and sizes make us read beyond 12822 * the end of the firmware data */ 12823 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { 12824 offset = be32_to_cpu(sections[i].offset); 12825 len = be32_to_cpu(sections[i].len); 12826 if (offset + len > firmware->size) { 12827 BNX2X_ERR("Section %d length is out of bounds\n", i); 12828 return -EINVAL; 12829 } 12830 } 12831 12832 /* Likewise for the init_ops offsets */ 12833 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); 12834 ops_offsets = (__force __be16 *)(firmware->data + offset); 12835 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); 12836 12837 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { 12838 if (be16_to_cpu(ops_offsets[i]) > num_ops) { 12839 BNX2X_ERR("Section offset %d is out of bounds\n", i); 12840 return -EINVAL; 12841 } 12842 } 12843 12844 /* Check FW version */ 12845 offset = be32_to_cpu(fw_hdr->fw_version.offset); 12846 fw_ver = firmware->data + offset; 12847 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || 12848 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || 12849 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || 12850 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { 12851 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", 12852 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], 12853 BCM_5710_FW_MAJOR_VERSION, 12854 BCM_5710_FW_MINOR_VERSION, 12855 BCM_5710_FW_REVISION_VERSION, 12856 BCM_5710_FW_ENGINEERING_VERSION); 12857 return -EINVAL; 12858 } 12859 12860 return 0; 12861 } 12862 12863 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 12864 { 12865 const __be32 *source = (const __be32 *)_source; 12866 u32 *target = (u32 *)_target; 12867 u32 i; 12868 12869 for (i = 0; i < n/4; i++) 12870 target[i] = be32_to_cpu(source[i]); 12871 } 12872 12873 /* 12874 Ops array is stored in the following format: 12875 {op(8bit), offset(24bit, big endian), data(32bit, big endian)} 12876 */ 12877 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) 12878 { 12879 const __be32 *source = (const __be32 *)_source; 12880 struct raw_op *target = (struct raw_op *)_target; 12881 u32 i, j, tmp; 12882 12883 for (i = 0, j = 0; i < n/8; i++, j += 2) { 12884 tmp = be32_to_cpu(source[j]); 12885 target[i].op = (tmp >> 24) & 0xff; 12886 target[i].offset = tmp & 0xffffff; 12887 target[i].raw_data = be32_to_cpu(source[j + 1]); 12888 } 12889 } 12890 12891 /* IRO array is stored in the following format: 12892 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } 12893 */ 12894 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) 12895 { 12896 const __be32 *source = (const __be32 *)_source; 12897 struct iro *target = (struct iro *)_target; 12898 u32 i, j, tmp; 12899 12900 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { 12901 target[i].base = be32_to_cpu(source[j]); 12902 j++; 12903 tmp = be32_to_cpu(source[j]); 12904 target[i].m1 = (tmp >> 16) & 0xffff; 12905 target[i].m2 = tmp & 0xffff; 12906 j++; 12907 tmp = be32_to_cpu(source[j]); 12908 target[i].m3 = (tmp >> 16) & 0xffff; 12909 target[i].size = tmp & 0xffff; 12910 j++; 12911 } 12912 } 12913 12914 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 12915 { 12916 const __be16 *source = (const __be16 *)_source; 12917 u16 *target = (u16 *)_target; 12918 u32 i; 12919 12920 for (i = 0; i < n/2; i++) 12921 target[i] = be16_to_cpu(source[i]); 12922 } 12923 12924 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ 12925 do { \ 12926 u32 len = be32_to_cpu(fw_hdr->arr.len); \ 12927 bp->arr = kmalloc(len, GFP_KERNEL); \ 12928 if (!bp->arr) \ 12929 goto lbl; \ 12930 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ 12931 (u8 *)bp->arr, len); \ 12932 } while (0) 12933 12934 static int bnx2x_init_firmware(struct bnx2x *bp) 12935 { 12936 const char *fw_file_name; 12937 struct bnx2x_fw_file_hdr *fw_hdr; 12938 int rc; 12939 12940 if (bp->firmware) 12941 return 0; 12942 12943 if (CHIP_IS_E1(bp)) 12944 fw_file_name = FW_FILE_NAME_E1; 12945 else if (CHIP_IS_E1H(bp)) 12946 fw_file_name = FW_FILE_NAME_E1H; 12947 else if (!CHIP_IS_E1x(bp)) 12948 fw_file_name = FW_FILE_NAME_E2; 12949 else { 12950 BNX2X_ERR("Unsupported chip revision\n"); 12951 return -EINVAL; 12952 } 12953 BNX2X_DEV_INFO("Loading %s\n", fw_file_name); 12954 12955 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); 12956 if (rc) { 12957 BNX2X_ERR("Can't load firmware file %s\n", 12958 fw_file_name); 12959 goto request_firmware_exit; 12960 } 12961 12962 rc = bnx2x_check_firmware(bp); 12963 if (rc) { 12964 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); 12965 goto request_firmware_exit; 12966 } 12967 12968 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; 12969 12970 /* Initialize the pointers to the init arrays */ 12971 /* Blob */ 12972 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); 12973 12974 /* Opcodes */ 12975 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); 12976 12977 /* Offsets */ 12978 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, 12979 be16_to_cpu_n); 12980 12981 /* STORMs firmware */ 12982 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12983 be32_to_cpu(fw_hdr->tsem_int_table_data.offset); 12984 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + 12985 be32_to_cpu(fw_hdr->tsem_pram_data.offset); 12986 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12987 be32_to_cpu(fw_hdr->usem_int_table_data.offset); 12988 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + 12989 be32_to_cpu(fw_hdr->usem_pram_data.offset); 12990 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12991 be32_to_cpu(fw_hdr->xsem_int_table_data.offset); 12992 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + 12993 be32_to_cpu(fw_hdr->xsem_pram_data.offset); 12994 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 12995 be32_to_cpu(fw_hdr->csem_int_table_data.offset); 12996 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + 12997 be32_to_cpu(fw_hdr->csem_pram_data.offset); 12998 /* IRO */ 12999 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); 13000 13001 return 0; 13002 13003 iro_alloc_err: 13004 kfree(bp->init_ops_offsets); 13005 init_offsets_alloc_err: 13006 kfree(bp->init_ops); 13007 init_ops_alloc_err: 13008 kfree(bp->init_data); 13009 request_firmware_exit: 13010 release_firmware(bp->firmware); 13011 bp->firmware = NULL; 13012 13013 return rc; 13014 } 13015 13016 static void bnx2x_release_firmware(struct bnx2x *bp) 13017 { 13018 kfree(bp->init_ops_offsets); 13019 kfree(bp->init_ops); 13020 kfree(bp->init_data); 13021 release_firmware(bp->firmware); 13022 bp->firmware = NULL; 13023 } 13024 13025 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { 13026 .init_hw_cmn_chip = bnx2x_init_hw_common_chip, 13027 .init_hw_cmn = bnx2x_init_hw_common, 13028 .init_hw_port = bnx2x_init_hw_port, 13029 .init_hw_func = bnx2x_init_hw_func, 13030 13031 .reset_hw_cmn = bnx2x_reset_common, 13032 .reset_hw_port = bnx2x_reset_port, 13033 .reset_hw_func = bnx2x_reset_func, 13034 13035 .gunzip_init = bnx2x_gunzip_init, 13036 .gunzip_end = bnx2x_gunzip_end, 13037 13038 .init_fw = bnx2x_init_firmware, 13039 .release_fw = bnx2x_release_firmware, 13040 }; 13041 13042 void bnx2x__init_func_obj(struct bnx2x *bp) 13043 { 13044 /* Prepare DMAE related driver resources */ 13045 bnx2x_setup_dmae(bp); 13046 13047 bnx2x_init_func_obj(bp, &bp->func_obj, 13048 bnx2x_sp(bp, func_rdata), 13049 bnx2x_sp_mapping(bp, func_rdata), 13050 bnx2x_sp(bp, func_afex_rdata), 13051 bnx2x_sp_mapping(bp, func_afex_rdata), 13052 &bnx2x_func_sp_drv); 13053 } 13054 13055 /* must be called after sriov-enable */ 13056 static int bnx2x_set_qm_cid_count(struct bnx2x *bp) 13057 { 13058 int cid_count = BNX2X_L2_MAX_CID(bp); 13059 13060 if (IS_SRIOV(bp)) 13061 cid_count += BNX2X_VF_CIDS; 13062 13063 if (CNIC_SUPPORT(bp)) 13064 cid_count += CNIC_CID_MAX; 13065 13066 return roundup(cid_count, QM_CID_ROUND); 13067 } 13068 13069 /** 13070 * bnx2x_get_num_none_def_sbs - return the number of none default SBs 13071 * 13072 * @dev: pci device 13073 * 13074 */ 13075 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt) 13076 { 13077 int index; 13078 u16 control = 0; 13079 13080 /* 13081 * If MSI-X is not supported - return number of SBs needed to support 13082 * one fast path queue: one FP queue + SB for CNIC 13083 */ 13084 if (!pdev->msix_cap) { 13085 dev_info(&pdev->dev, "no msix capability found\n"); 13086 return 1 + cnic_cnt; 13087 } 13088 dev_info(&pdev->dev, "msix capability found\n"); 13089 13090 /* 13091 * The value in the PCI configuration space is the index of the last 13092 * entry, namely one less than the actual size of the table, which is 13093 * exactly what we want to return from this function: number of all SBs 13094 * without the default SB. 13095 * For VFs there is no default SB, then we return (index+1). 13096 */ 13097 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control); 13098 13099 index = control & PCI_MSIX_FLAGS_QSIZE; 13100 13101 return index; 13102 } 13103 13104 static int set_max_cos_est(int chip_id) 13105 { 13106 switch (chip_id) { 13107 case BCM57710: 13108 case BCM57711: 13109 case BCM57711E: 13110 return BNX2X_MULTI_TX_COS_E1X; 13111 case BCM57712: 13112 case BCM57712_MF: 13113 return BNX2X_MULTI_TX_COS_E2_E3A0; 13114 case BCM57800: 13115 case BCM57800_MF: 13116 case BCM57810: 13117 case BCM57810_MF: 13118 case BCM57840_4_10: 13119 case BCM57840_2_20: 13120 case BCM57840_O: 13121 case BCM57840_MFO: 13122 case BCM57840_MF: 13123 case BCM57811: 13124 case BCM57811_MF: 13125 return BNX2X_MULTI_TX_COS_E3B0; 13126 case BCM57712_VF: 13127 case BCM57800_VF: 13128 case BCM57810_VF: 13129 case BCM57840_VF: 13130 case BCM57811_VF: 13131 return 1; 13132 default: 13133 pr_err("Unknown board_type (%d), aborting\n", chip_id); 13134 return -ENODEV; 13135 } 13136 } 13137 13138 static int set_is_vf(int chip_id) 13139 { 13140 switch (chip_id) { 13141 case BCM57712_VF: 13142 case BCM57800_VF: 13143 case BCM57810_VF: 13144 case BCM57840_VF: 13145 case BCM57811_VF: 13146 return true; 13147 default: 13148 return false; 13149 } 13150 } 13151 13152 /* nig_tsgen registers relative address */ 13153 #define tsgen_ctrl 0x0 13154 #define tsgen_freecount 0x10 13155 #define tsgen_synctime_t0 0x20 13156 #define tsgen_offset_t0 0x28 13157 #define tsgen_drift_t0 0x30 13158 #define tsgen_synctime_t1 0x58 13159 #define tsgen_offset_t1 0x60 13160 #define tsgen_drift_t1 0x68 13161 13162 /* FW workaround for setting drift */ 13163 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir, 13164 int best_val, int best_period) 13165 { 13166 struct bnx2x_func_state_params func_params = {NULL}; 13167 struct bnx2x_func_set_timesync_params *set_timesync_params = 13168 &func_params.params.set_timesync; 13169 13170 /* Prepare parameters for function state transitions */ 13171 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 13172 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 13173 13174 func_params.f_obj = &bp->func_obj; 13175 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 13176 13177 /* Function parameters */ 13178 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET; 13179 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 13180 set_timesync_params->add_sub_drift_adjust_value = 13181 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE; 13182 set_timesync_params->drift_adjust_value = best_val; 13183 set_timesync_params->drift_adjust_period = best_period; 13184 13185 return bnx2x_func_state_change(bp, &func_params); 13186 } 13187 13188 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 13189 { 13190 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13191 int rc; 13192 int drift_dir = 1; 13193 int val, period, period1, period2, dif, dif1, dif2; 13194 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0; 13195 13196 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb); 13197 13198 if (!netif_running(bp->dev)) { 13199 DP(BNX2X_MSG_PTP, 13200 "PTP adjfreq called while the interface is down\n"); 13201 return -EFAULT; 13202 } 13203 13204 if (ppb < 0) { 13205 ppb = -ppb; 13206 drift_dir = 0; 13207 } 13208 13209 if (ppb == 0) { 13210 best_val = 1; 13211 best_period = 0x1FFFFFF; 13212 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) { 13213 best_val = 31; 13214 best_period = 1; 13215 } else { 13216 /* Changed not to allow val = 8, 16, 24 as these values 13217 * are not supported in workaround. 13218 */ 13219 for (val = 0; val <= 31; val++) { 13220 if ((val & 0x7) == 0) 13221 continue; 13222 period1 = val * 1000000 / ppb; 13223 period2 = period1 + 1; 13224 if (period1 != 0) 13225 dif1 = ppb - (val * 1000000 / period1); 13226 else 13227 dif1 = BNX2X_MAX_PHC_DRIFT; 13228 if (dif1 < 0) 13229 dif1 = -dif1; 13230 dif2 = ppb - (val * 1000000 / period2); 13231 if (dif2 < 0) 13232 dif2 = -dif2; 13233 dif = (dif1 < dif2) ? dif1 : dif2; 13234 period = (dif1 < dif2) ? period1 : period2; 13235 if (dif < best_dif) { 13236 best_dif = dif; 13237 best_val = val; 13238 best_period = period; 13239 } 13240 } 13241 } 13242 13243 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val, 13244 best_period); 13245 if (rc) { 13246 BNX2X_ERR("Failed to set drift\n"); 13247 return -EFAULT; 13248 } 13249 13250 DP(BNX2X_MSG_PTP, "Configrued val = %d, period = %d\n", best_val, 13251 best_period); 13252 13253 return 0; 13254 } 13255 13256 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 13257 { 13258 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13259 u64 now; 13260 13261 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta); 13262 13263 now = timecounter_read(&bp->timecounter); 13264 now += delta; 13265 /* Re-init the timecounter */ 13266 timecounter_init(&bp->timecounter, &bp->cyclecounter, now); 13267 13268 return 0; 13269 } 13270 13271 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts) 13272 { 13273 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13274 u64 ns; 13275 u32 remainder; 13276 13277 ns = timecounter_read(&bp->timecounter); 13278 13279 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns); 13280 13281 ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder); 13282 ts->tv_nsec = remainder; 13283 13284 return 0; 13285 } 13286 13287 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp, 13288 const struct timespec *ts) 13289 { 13290 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13291 u64 ns; 13292 13293 ns = ts->tv_sec * 1000000000ULL; 13294 ns += ts->tv_nsec; 13295 13296 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns); 13297 13298 /* Re-init the timecounter */ 13299 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns); 13300 13301 return 0; 13302 } 13303 13304 /* Enable (or disable) ancillary features of the phc subsystem */ 13305 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp, 13306 struct ptp_clock_request *rq, int on) 13307 { 13308 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13309 13310 BNX2X_ERR("PHC ancillary features are not supported\n"); 13311 return -ENOTSUPP; 13312 } 13313 13314 void bnx2x_register_phc(struct bnx2x *bp) 13315 { 13316 /* Fill the ptp_clock_info struct and register PTP clock*/ 13317 bp->ptp_clock_info.owner = THIS_MODULE; 13318 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name); 13319 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */ 13320 bp->ptp_clock_info.n_alarm = 0; 13321 bp->ptp_clock_info.n_ext_ts = 0; 13322 bp->ptp_clock_info.n_per_out = 0; 13323 bp->ptp_clock_info.pps = 0; 13324 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq; 13325 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime; 13326 bp->ptp_clock_info.gettime = bnx2x_ptp_gettime; 13327 bp->ptp_clock_info.settime = bnx2x_ptp_settime; 13328 bp->ptp_clock_info.enable = bnx2x_ptp_enable; 13329 13330 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev); 13331 if (IS_ERR(bp->ptp_clock)) { 13332 bp->ptp_clock = NULL; 13333 BNX2X_ERR("PTP clock registeration failed\n"); 13334 } 13335 } 13336 13337 static int bnx2x_init_one(struct pci_dev *pdev, 13338 const struct pci_device_id *ent) 13339 { 13340 struct net_device *dev = NULL; 13341 struct bnx2x *bp; 13342 enum pcie_link_width pcie_width; 13343 enum pci_bus_speed pcie_speed; 13344 int rc, max_non_def_sbs; 13345 int rx_count, tx_count, rss_count, doorbell_size; 13346 int max_cos_est; 13347 bool is_vf; 13348 int cnic_cnt; 13349 13350 /* An estimated maximum supported CoS number according to the chip 13351 * version. 13352 * We will try to roughly estimate the maximum number of CoSes this chip 13353 * may support in order to minimize the memory allocated for Tx 13354 * netdev_queue's. This number will be accurately calculated during the 13355 * initialization of bp->max_cos based on the chip versions AND chip 13356 * revision in the bnx2x_init_bp(). 13357 */ 13358 max_cos_est = set_max_cos_est(ent->driver_data); 13359 if (max_cos_est < 0) 13360 return max_cos_est; 13361 is_vf = set_is_vf(ent->driver_data); 13362 cnic_cnt = is_vf ? 0 : 1; 13363 13364 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt); 13365 13366 /* add another SB for VF as it has no default SB */ 13367 max_non_def_sbs += is_vf ? 1 : 0; 13368 13369 /* Maximum number of RSS queues: one IGU SB goes to CNIC */ 13370 rss_count = max_non_def_sbs - cnic_cnt; 13371 13372 if (rss_count < 1) 13373 return -EINVAL; 13374 13375 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ 13376 rx_count = rss_count + cnic_cnt; 13377 13378 /* Maximum number of netdev Tx queues: 13379 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 13380 */ 13381 tx_count = rss_count * max_cos_est + cnic_cnt; 13382 13383 /* dev zeroed in init_etherdev */ 13384 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); 13385 if (!dev) 13386 return -ENOMEM; 13387 13388 bp = netdev_priv(dev); 13389 13390 bp->flags = 0; 13391 if (is_vf) 13392 bp->flags |= IS_VF_FLAG; 13393 13394 bp->igu_sb_cnt = max_non_def_sbs; 13395 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; 13396 bp->msg_enable = debug; 13397 bp->cnic_support = cnic_cnt; 13398 bp->cnic_probe = bnx2x_cnic_probe; 13399 13400 pci_set_drvdata(pdev, dev); 13401 13402 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); 13403 if (rc < 0) { 13404 free_netdev(dev); 13405 return rc; 13406 } 13407 13408 BNX2X_DEV_INFO("This is a %s function\n", 13409 IS_PF(bp) ? "physical" : "virtual"); 13410 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); 13411 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); 13412 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", 13413 tx_count, rx_count); 13414 13415 rc = bnx2x_init_bp(bp); 13416 if (rc) 13417 goto init_one_exit; 13418 13419 /* Map doorbells here as we need the real value of bp->max_cos which 13420 * is initialized in bnx2x_init_bp() to determine the number of 13421 * l2 connections. 13422 */ 13423 if (IS_VF(bp)) { 13424 bp->doorbells = bnx2x_vf_doorbells(bp); 13425 rc = bnx2x_vf_pci_alloc(bp); 13426 if (rc) 13427 goto init_one_exit; 13428 } else { 13429 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); 13430 if (doorbell_size > pci_resource_len(pdev, 2)) { 13431 dev_err(&bp->pdev->dev, 13432 "Cannot map doorbells, bar size too small, aborting\n"); 13433 rc = -ENOMEM; 13434 goto init_one_exit; 13435 } 13436 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2), 13437 doorbell_size); 13438 } 13439 if (!bp->doorbells) { 13440 dev_err(&bp->pdev->dev, 13441 "Cannot map doorbell space, aborting\n"); 13442 rc = -ENOMEM; 13443 goto init_one_exit; 13444 } 13445 13446 if (IS_VF(bp)) { 13447 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); 13448 if (rc) 13449 goto init_one_exit; 13450 } 13451 13452 /* Enable SRIOV if capability found in configuration space */ 13453 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); 13454 if (rc) 13455 goto init_one_exit; 13456 13457 /* calc qm_cid_count */ 13458 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); 13459 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); 13460 13461 /* disable FCOE L2 queue for E1x*/ 13462 if (CHIP_IS_E1x(bp)) 13463 bp->flags |= NO_FCOE_FLAG; 13464 13465 /* Set bp->num_queues for MSI-X mode*/ 13466 bnx2x_set_num_queues(bp); 13467 13468 /* Configure interrupt mode: try to enable MSI-X/MSI if 13469 * needed. 13470 */ 13471 rc = bnx2x_set_int_mode(bp); 13472 if (rc) { 13473 dev_err(&pdev->dev, "Cannot set interrupts\n"); 13474 goto init_one_exit; 13475 } 13476 BNX2X_DEV_INFO("set interrupts successfully\n"); 13477 13478 /* register the net device */ 13479 rc = register_netdev(dev); 13480 if (rc) { 13481 dev_err(&pdev->dev, "Cannot register net device\n"); 13482 goto init_one_exit; 13483 } 13484 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); 13485 13486 if (!NO_FCOE(bp)) { 13487 /* Add storage MAC address */ 13488 rtnl_lock(); 13489 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 13490 rtnl_unlock(); 13491 } 13492 if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) || 13493 pcie_speed == PCI_SPEED_UNKNOWN || 13494 pcie_width == PCIE_LNK_WIDTH_UNKNOWN) 13495 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n"); 13496 else 13497 BNX2X_DEV_INFO( 13498 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n", 13499 board_info[ent->driver_data].name, 13500 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), 13501 pcie_width, 13502 pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" : 13503 pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" : 13504 pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" : 13505 "Unknown", 13506 dev->base_addr, bp->pdev->irq, dev->dev_addr); 13507 13508 bnx2x_register_phc(bp); 13509 13510 return 0; 13511 13512 init_one_exit: 13513 bnx2x_disable_pcie_error_reporting(bp); 13514 13515 if (bp->regview) 13516 iounmap(bp->regview); 13517 13518 if (IS_PF(bp) && bp->doorbells) 13519 iounmap(bp->doorbells); 13520 13521 free_netdev(dev); 13522 13523 if (atomic_read(&pdev->enable_cnt) == 1) 13524 pci_release_regions(pdev); 13525 13526 pci_disable_device(pdev); 13527 13528 return rc; 13529 } 13530 13531 static void __bnx2x_remove(struct pci_dev *pdev, 13532 struct net_device *dev, 13533 struct bnx2x *bp, 13534 bool remove_netdev) 13535 { 13536 if (bp->ptp_clock) { 13537 ptp_clock_unregister(bp->ptp_clock); 13538 bp->ptp_clock = NULL; 13539 } 13540 13541 /* Delete storage MAC address */ 13542 if (!NO_FCOE(bp)) { 13543 rtnl_lock(); 13544 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 13545 rtnl_unlock(); 13546 } 13547 13548 #ifdef BCM_DCBNL 13549 /* Delete app tlvs from dcbnl */ 13550 bnx2x_dcbnl_update_applist(bp, true); 13551 #endif 13552 13553 if (IS_PF(bp) && 13554 !BP_NOMCP(bp) && 13555 (bp->flags & BC_SUPPORTS_RMMOD_CMD)) 13556 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); 13557 13558 /* Close the interface - either directly or implicitly */ 13559 if (remove_netdev) { 13560 unregister_netdev(dev); 13561 } else { 13562 rtnl_lock(); 13563 dev_close(dev); 13564 rtnl_unlock(); 13565 } 13566 13567 bnx2x_iov_remove_one(bp); 13568 13569 /* Power on: we can't let PCI layer write to us while we are in D3 */ 13570 if (IS_PF(bp)) { 13571 bnx2x_set_power_state(bp, PCI_D0); 13572 13573 /* Set endianity registers to reset values in case next driver 13574 * boots in different endianty environment. 13575 */ 13576 bnx2x_reset_endianity(bp); 13577 } 13578 13579 /* Disable MSI/MSI-X */ 13580 bnx2x_disable_msi(bp); 13581 13582 /* Power off */ 13583 if (IS_PF(bp)) 13584 bnx2x_set_power_state(bp, PCI_D3hot); 13585 13586 /* Make sure RESET task is not scheduled before continuing */ 13587 cancel_delayed_work_sync(&bp->sp_rtnl_task); 13588 13589 /* send message via vfpf channel to release the resources of this vf */ 13590 if (IS_VF(bp)) 13591 bnx2x_vfpf_release(bp); 13592 13593 /* Assumes no further PCIe PM changes will occur */ 13594 if (system_state == SYSTEM_POWER_OFF) { 13595 pci_wake_from_d3(pdev, bp->wol); 13596 pci_set_power_state(pdev, PCI_D3hot); 13597 } 13598 13599 bnx2x_disable_pcie_error_reporting(bp); 13600 if (remove_netdev) { 13601 if (bp->regview) 13602 iounmap(bp->regview); 13603 13604 /* For vfs, doorbells are part of the regview and were unmapped 13605 * along with it. FW is only loaded by PF. 13606 */ 13607 if (IS_PF(bp)) { 13608 if (bp->doorbells) 13609 iounmap(bp->doorbells); 13610 13611 bnx2x_release_firmware(bp); 13612 } else { 13613 bnx2x_vf_pci_dealloc(bp); 13614 } 13615 bnx2x_free_mem_bp(bp); 13616 13617 free_netdev(dev); 13618 13619 if (atomic_read(&pdev->enable_cnt) == 1) 13620 pci_release_regions(pdev); 13621 13622 pci_disable_device(pdev); 13623 } 13624 } 13625 13626 static void bnx2x_remove_one(struct pci_dev *pdev) 13627 { 13628 struct net_device *dev = pci_get_drvdata(pdev); 13629 struct bnx2x *bp; 13630 13631 if (!dev) { 13632 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 13633 return; 13634 } 13635 bp = netdev_priv(dev); 13636 13637 __bnx2x_remove(pdev, dev, bp, true); 13638 } 13639 13640 static int bnx2x_eeh_nic_unload(struct bnx2x *bp) 13641 { 13642 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 13643 13644 bp->rx_mode = BNX2X_RX_MODE_NONE; 13645 13646 if (CNIC_LOADED(bp)) 13647 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 13648 13649 /* Stop Tx */ 13650 bnx2x_tx_disable(bp); 13651 /* Delete all NAPI objects */ 13652 bnx2x_del_all_napi(bp); 13653 if (CNIC_LOADED(bp)) 13654 bnx2x_del_all_napi_cnic(bp); 13655 netdev_reset_tc(bp->dev); 13656 13657 del_timer_sync(&bp->timer); 13658 cancel_delayed_work_sync(&bp->sp_task); 13659 cancel_delayed_work_sync(&bp->period_task); 13660 13661 spin_lock_bh(&bp->stats_lock); 13662 bp->stats_state = STATS_STATE_DISABLED; 13663 spin_unlock_bh(&bp->stats_lock); 13664 13665 bnx2x_save_statistics(bp); 13666 13667 netif_carrier_off(bp->dev); 13668 13669 return 0; 13670 } 13671 13672 /** 13673 * bnx2x_io_error_detected - called when PCI error is detected 13674 * @pdev: Pointer to PCI device 13675 * @state: The current pci connection state 13676 * 13677 * This function is called after a PCI bus error affecting 13678 * this device has been detected. 13679 */ 13680 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, 13681 pci_channel_state_t state) 13682 { 13683 struct net_device *dev = pci_get_drvdata(pdev); 13684 struct bnx2x *bp = netdev_priv(dev); 13685 13686 rtnl_lock(); 13687 13688 BNX2X_ERR("IO error detected\n"); 13689 13690 netif_device_detach(dev); 13691 13692 if (state == pci_channel_io_perm_failure) { 13693 rtnl_unlock(); 13694 return PCI_ERS_RESULT_DISCONNECT; 13695 } 13696 13697 if (netif_running(dev)) 13698 bnx2x_eeh_nic_unload(bp); 13699 13700 bnx2x_prev_path_mark_eeh(bp); 13701 13702 pci_disable_device(pdev); 13703 13704 rtnl_unlock(); 13705 13706 /* Request a slot reset */ 13707 return PCI_ERS_RESULT_NEED_RESET; 13708 } 13709 13710 /** 13711 * bnx2x_io_slot_reset - called after the PCI bus has been reset 13712 * @pdev: Pointer to PCI device 13713 * 13714 * Restart the card from scratch, as if from a cold-boot. 13715 */ 13716 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) 13717 { 13718 struct net_device *dev = pci_get_drvdata(pdev); 13719 struct bnx2x *bp = netdev_priv(dev); 13720 int i; 13721 13722 rtnl_lock(); 13723 BNX2X_ERR("IO slot reset initializing...\n"); 13724 if (pci_enable_device(pdev)) { 13725 dev_err(&pdev->dev, 13726 "Cannot re-enable PCI device after reset\n"); 13727 rtnl_unlock(); 13728 return PCI_ERS_RESULT_DISCONNECT; 13729 } 13730 13731 pci_set_master(pdev); 13732 pci_restore_state(pdev); 13733 pci_save_state(pdev); 13734 13735 if (netif_running(dev)) 13736 bnx2x_set_power_state(bp, PCI_D0); 13737 13738 if (netif_running(dev)) { 13739 BNX2X_ERR("IO slot reset --> driver unload\n"); 13740 13741 /* MCP should have been reset; Need to wait for validity */ 13742 bnx2x_init_shmem(bp); 13743 13744 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 13745 u32 v; 13746 13747 v = SHMEM2_RD(bp, 13748 drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 13749 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 13750 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 13751 } 13752 bnx2x_drain_tx_queues(bp); 13753 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); 13754 bnx2x_netif_stop(bp, 1); 13755 bnx2x_free_irq(bp); 13756 13757 /* Report UNLOAD_DONE to MCP */ 13758 bnx2x_send_unload_done(bp, true); 13759 13760 bp->sp_state = 0; 13761 bp->port.pmf = 0; 13762 13763 bnx2x_prev_unload(bp); 13764 13765 /* We should have reseted the engine, so It's fair to 13766 * assume the FW will no longer write to the bnx2x driver. 13767 */ 13768 bnx2x_squeeze_objects(bp); 13769 bnx2x_free_skbs(bp); 13770 for_each_rx_queue(bp, i) 13771 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 13772 bnx2x_free_fp_mem(bp); 13773 bnx2x_free_mem(bp); 13774 13775 bp->state = BNX2X_STATE_CLOSED; 13776 } 13777 13778 rtnl_unlock(); 13779 13780 /* If AER, perform cleanup of the PCIe registers */ 13781 if (bp->flags & AER_ENABLED) { 13782 if (pci_cleanup_aer_uncorrect_error_status(pdev)) 13783 BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n"); 13784 else 13785 DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n"); 13786 } 13787 13788 return PCI_ERS_RESULT_RECOVERED; 13789 } 13790 13791 /** 13792 * bnx2x_io_resume - called when traffic can start flowing again 13793 * @pdev: Pointer to PCI device 13794 * 13795 * This callback is called when the error recovery driver tells us that 13796 * its OK to resume normal operation. 13797 */ 13798 static void bnx2x_io_resume(struct pci_dev *pdev) 13799 { 13800 struct net_device *dev = pci_get_drvdata(pdev); 13801 struct bnx2x *bp = netdev_priv(dev); 13802 13803 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 13804 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); 13805 return; 13806 } 13807 13808 rtnl_lock(); 13809 13810 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 13811 DRV_MSG_SEQ_NUMBER_MASK; 13812 13813 if (netif_running(dev)) 13814 bnx2x_nic_load(bp, LOAD_NORMAL); 13815 13816 netif_device_attach(dev); 13817 13818 rtnl_unlock(); 13819 } 13820 13821 static const struct pci_error_handlers bnx2x_err_handler = { 13822 .error_detected = bnx2x_io_error_detected, 13823 .slot_reset = bnx2x_io_slot_reset, 13824 .resume = bnx2x_io_resume, 13825 }; 13826 13827 static void bnx2x_shutdown(struct pci_dev *pdev) 13828 { 13829 struct net_device *dev = pci_get_drvdata(pdev); 13830 struct bnx2x *bp; 13831 13832 if (!dev) 13833 return; 13834 13835 bp = netdev_priv(dev); 13836 if (!bp) 13837 return; 13838 13839 rtnl_lock(); 13840 netif_device_detach(dev); 13841 rtnl_unlock(); 13842 13843 /* Don't remove the netdevice, as there are scenarios which will cause 13844 * the kernel to hang, e.g., when trying to remove bnx2i while the 13845 * rootfs is mounted from SAN. 13846 */ 13847 __bnx2x_remove(pdev, dev, bp, false); 13848 } 13849 13850 static struct pci_driver bnx2x_pci_driver = { 13851 .name = DRV_MODULE_NAME, 13852 .id_table = bnx2x_pci_tbl, 13853 .probe = bnx2x_init_one, 13854 .remove = bnx2x_remove_one, 13855 .suspend = bnx2x_suspend, 13856 .resume = bnx2x_resume, 13857 .err_handler = &bnx2x_err_handler, 13858 #ifdef CONFIG_BNX2X_SRIOV 13859 .sriov_configure = bnx2x_sriov_configure, 13860 #endif 13861 .shutdown = bnx2x_shutdown, 13862 }; 13863 13864 static int __init bnx2x_init(void) 13865 { 13866 int ret; 13867 13868 pr_info("%s", version); 13869 13870 bnx2x_wq = create_singlethread_workqueue("bnx2x"); 13871 if (bnx2x_wq == NULL) { 13872 pr_err("Cannot create workqueue\n"); 13873 return -ENOMEM; 13874 } 13875 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov"); 13876 if (!bnx2x_iov_wq) { 13877 pr_err("Cannot create iov workqueue\n"); 13878 destroy_workqueue(bnx2x_wq); 13879 return -ENOMEM; 13880 } 13881 13882 ret = pci_register_driver(&bnx2x_pci_driver); 13883 if (ret) { 13884 pr_err("Cannot register driver\n"); 13885 destroy_workqueue(bnx2x_wq); 13886 destroy_workqueue(bnx2x_iov_wq); 13887 } 13888 return ret; 13889 } 13890 13891 static void __exit bnx2x_cleanup(void) 13892 { 13893 struct list_head *pos, *q; 13894 13895 pci_unregister_driver(&bnx2x_pci_driver); 13896 13897 destroy_workqueue(bnx2x_wq); 13898 destroy_workqueue(bnx2x_iov_wq); 13899 13900 /* Free globally allocated resources */ 13901 list_for_each_safe(pos, q, &bnx2x_prev_list) { 13902 struct bnx2x_prev_path_list *tmp = 13903 list_entry(pos, struct bnx2x_prev_path_list, list); 13904 list_del(pos); 13905 kfree(tmp); 13906 } 13907 } 13908 13909 void bnx2x_notify_link_changed(struct bnx2x *bp) 13910 { 13911 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); 13912 } 13913 13914 module_init(bnx2x_init); 13915 module_exit(bnx2x_cleanup); 13916 13917 /** 13918 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). 13919 * 13920 * @bp: driver handle 13921 * @set: set or clear the CAM entry 13922 * 13923 * This function will wait until the ramrod completion returns. 13924 * Return 0 if success, -ENODEV if ramrod doesn't return. 13925 */ 13926 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) 13927 { 13928 unsigned long ramrod_flags = 0; 13929 13930 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 13931 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, 13932 &bp->iscsi_l2_mac_obj, true, 13933 BNX2X_ISCSI_ETH_MAC, &ramrod_flags); 13934 } 13935 13936 /* count denotes the number of new completions we have seen */ 13937 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) 13938 { 13939 struct eth_spe *spe; 13940 int cxt_index, cxt_offset; 13941 13942 #ifdef BNX2X_STOP_ON_ERROR 13943 if (unlikely(bp->panic)) 13944 return; 13945 #endif 13946 13947 spin_lock_bh(&bp->spq_lock); 13948 BUG_ON(bp->cnic_spq_pending < count); 13949 bp->cnic_spq_pending -= count; 13950 13951 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { 13952 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) 13953 & SPE_HDR_CONN_TYPE) >> 13954 SPE_HDR_CONN_TYPE_SHIFT; 13955 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) 13956 >> SPE_HDR_CMD_ID_SHIFT) & 0xff; 13957 13958 /* Set validation for iSCSI L2 client before sending SETUP 13959 * ramrod 13960 */ 13961 if (type == ETH_CONNECTION_TYPE) { 13962 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { 13963 cxt_index = BNX2X_ISCSI_ETH_CID(bp) / 13964 ILT_PAGE_CIDS; 13965 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - 13966 (cxt_index * ILT_PAGE_CIDS); 13967 bnx2x_set_ctx_validation(bp, 13968 &bp->context[cxt_index]. 13969 vcxt[cxt_offset].eth, 13970 BNX2X_ISCSI_ETH_CID(bp)); 13971 } 13972 } 13973 13974 /* 13975 * There may be not more than 8 L2, not more than 8 L5 SPEs 13976 * and in the air. We also check that number of outstanding 13977 * COMMON ramrods is not more than the EQ and SPQ can 13978 * accommodate. 13979 */ 13980 if (type == ETH_CONNECTION_TYPE) { 13981 if (!atomic_read(&bp->cq_spq_left)) 13982 break; 13983 else 13984 atomic_dec(&bp->cq_spq_left); 13985 } else if (type == NONE_CONNECTION_TYPE) { 13986 if (!atomic_read(&bp->eq_spq_left)) 13987 break; 13988 else 13989 atomic_dec(&bp->eq_spq_left); 13990 } else if ((type == ISCSI_CONNECTION_TYPE) || 13991 (type == FCOE_CONNECTION_TYPE)) { 13992 if (bp->cnic_spq_pending >= 13993 bp->cnic_eth_dev.max_kwqe_pending) 13994 break; 13995 else 13996 bp->cnic_spq_pending++; 13997 } else { 13998 BNX2X_ERR("Unknown SPE type: %d\n", type); 13999 bnx2x_panic(); 14000 break; 14001 } 14002 14003 spe = bnx2x_sp_get_next(bp); 14004 *spe = *bp->cnic_kwq_cons; 14005 14006 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", 14007 bp->cnic_spq_pending, bp->cnic_kwq_pending, count); 14008 14009 if (bp->cnic_kwq_cons == bp->cnic_kwq_last) 14010 bp->cnic_kwq_cons = bp->cnic_kwq; 14011 else 14012 bp->cnic_kwq_cons++; 14013 } 14014 bnx2x_sp_prod_update(bp); 14015 spin_unlock_bh(&bp->spq_lock); 14016 } 14017 14018 static int bnx2x_cnic_sp_queue(struct net_device *dev, 14019 struct kwqe_16 *kwqes[], u32 count) 14020 { 14021 struct bnx2x *bp = netdev_priv(dev); 14022 int i; 14023 14024 #ifdef BNX2X_STOP_ON_ERROR 14025 if (unlikely(bp->panic)) { 14026 BNX2X_ERR("Can't post to SP queue while panic\n"); 14027 return -EIO; 14028 } 14029 #endif 14030 14031 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && 14032 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 14033 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 14034 return -EAGAIN; 14035 } 14036 14037 spin_lock_bh(&bp->spq_lock); 14038 14039 for (i = 0; i < count; i++) { 14040 struct eth_spe *spe = (struct eth_spe *)kwqes[i]; 14041 14042 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) 14043 break; 14044 14045 *bp->cnic_kwq_prod = *spe; 14046 14047 bp->cnic_kwq_pending++; 14048 14049 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", 14050 spe->hdr.conn_and_cmd_data, spe->hdr.type, 14051 spe->data.update_data_addr.hi, 14052 spe->data.update_data_addr.lo, 14053 bp->cnic_kwq_pending); 14054 14055 if (bp->cnic_kwq_prod == bp->cnic_kwq_last) 14056 bp->cnic_kwq_prod = bp->cnic_kwq; 14057 else 14058 bp->cnic_kwq_prod++; 14059 } 14060 14061 spin_unlock_bh(&bp->spq_lock); 14062 14063 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) 14064 bnx2x_cnic_sp_post(bp, 0); 14065 14066 return i; 14067 } 14068 14069 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14070 { 14071 struct cnic_ops *c_ops; 14072 int rc = 0; 14073 14074 mutex_lock(&bp->cnic_mutex); 14075 c_ops = rcu_dereference_protected(bp->cnic_ops, 14076 lockdep_is_held(&bp->cnic_mutex)); 14077 if (c_ops) 14078 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14079 mutex_unlock(&bp->cnic_mutex); 14080 14081 return rc; 14082 } 14083 14084 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14085 { 14086 struct cnic_ops *c_ops; 14087 int rc = 0; 14088 14089 rcu_read_lock(); 14090 c_ops = rcu_dereference(bp->cnic_ops); 14091 if (c_ops) 14092 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14093 rcu_read_unlock(); 14094 14095 return rc; 14096 } 14097 14098 /* 14099 * for commands that have no data 14100 */ 14101 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) 14102 { 14103 struct cnic_ctl_info ctl = {0}; 14104 14105 ctl.cmd = cmd; 14106 14107 return bnx2x_cnic_ctl_send(bp, &ctl); 14108 } 14109 14110 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) 14111 { 14112 struct cnic_ctl_info ctl = {0}; 14113 14114 /* first we tell CNIC and only then we count this as a completion */ 14115 ctl.cmd = CNIC_CTL_COMPLETION_CMD; 14116 ctl.data.comp.cid = cid; 14117 ctl.data.comp.error = err; 14118 14119 bnx2x_cnic_ctl_send_bh(bp, &ctl); 14120 bnx2x_cnic_sp_post(bp, 0); 14121 } 14122 14123 /* Called with netif_addr_lock_bh() taken. 14124 * Sets an rx_mode config for an iSCSI ETH client. 14125 * Doesn't block. 14126 * Completion should be checked outside. 14127 */ 14128 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) 14129 { 14130 unsigned long accept_flags = 0, ramrod_flags = 0; 14131 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 14132 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; 14133 14134 if (start) { 14135 /* Start accepting on iSCSI L2 ring. Accept all multicasts 14136 * because it's the only way for UIO Queue to accept 14137 * multicasts (in non-promiscuous mode only one Queue per 14138 * function will receive multicast packets (leading in our 14139 * case). 14140 */ 14141 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); 14142 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); 14143 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); 14144 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 14145 14146 /* Clear STOP_PENDING bit if START is requested */ 14147 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); 14148 14149 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; 14150 } else 14151 /* Clear START_PENDING bit if STOP is requested */ 14152 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); 14153 14154 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 14155 set_bit(sched_state, &bp->sp_state); 14156 else { 14157 __set_bit(RAMROD_RX, &ramrod_flags); 14158 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, 14159 ramrod_flags); 14160 } 14161 } 14162 14163 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) 14164 { 14165 struct bnx2x *bp = netdev_priv(dev); 14166 int rc = 0; 14167 14168 switch (ctl->cmd) { 14169 case DRV_CTL_CTXTBL_WR_CMD: { 14170 u32 index = ctl->data.io.offset; 14171 dma_addr_t addr = ctl->data.io.dma_addr; 14172 14173 bnx2x_ilt_wr(bp, index, addr); 14174 break; 14175 } 14176 14177 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { 14178 int count = ctl->data.credit.credit_count; 14179 14180 bnx2x_cnic_sp_post(bp, count); 14181 break; 14182 } 14183 14184 /* rtnl_lock is held. */ 14185 case DRV_CTL_START_L2_CMD: { 14186 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14187 unsigned long sp_bits = 0; 14188 14189 /* Configure the iSCSI classification object */ 14190 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, 14191 cp->iscsi_l2_client_id, 14192 cp->iscsi_l2_cid, BP_FUNC(bp), 14193 bnx2x_sp(bp, mac_rdata), 14194 bnx2x_sp_mapping(bp, mac_rdata), 14195 BNX2X_FILTER_MAC_PENDING, 14196 &bp->sp_state, BNX2X_OBJ_TYPE_RX, 14197 &bp->macs_pool); 14198 14199 /* Set iSCSI MAC address */ 14200 rc = bnx2x_set_iscsi_eth_mac_addr(bp); 14201 if (rc) 14202 break; 14203 14204 mmiowb(); 14205 barrier(); 14206 14207 /* Start accepting on iSCSI L2 ring */ 14208 14209 netif_addr_lock_bh(dev); 14210 bnx2x_set_iscsi_eth_rx_mode(bp, true); 14211 netif_addr_unlock_bh(dev); 14212 14213 /* bits to wait on */ 14214 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14215 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); 14216 14217 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14218 BNX2X_ERR("rx_mode completion timed out!\n"); 14219 14220 break; 14221 } 14222 14223 /* rtnl_lock is held. */ 14224 case DRV_CTL_STOP_L2_CMD: { 14225 unsigned long sp_bits = 0; 14226 14227 /* Stop accepting on iSCSI L2 ring */ 14228 netif_addr_lock_bh(dev); 14229 bnx2x_set_iscsi_eth_rx_mode(bp, false); 14230 netif_addr_unlock_bh(dev); 14231 14232 /* bits to wait on */ 14233 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14234 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); 14235 14236 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14237 BNX2X_ERR("rx_mode completion timed out!\n"); 14238 14239 mmiowb(); 14240 barrier(); 14241 14242 /* Unset iSCSI L2 MAC */ 14243 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, 14244 BNX2X_ISCSI_ETH_MAC, true); 14245 break; 14246 } 14247 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { 14248 int count = ctl->data.credit.credit_count; 14249 14250 smp_mb__before_atomic(); 14251 atomic_add(count, &bp->cq_spq_left); 14252 smp_mb__after_atomic(); 14253 break; 14254 } 14255 case DRV_CTL_ULP_REGISTER_CMD: { 14256 int ulp_type = ctl->data.register_data.ulp_type; 14257 14258 if (CHIP_IS_E3(bp)) { 14259 int idx = BP_FW_MB_IDX(bp); 14260 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14261 int path = BP_PATH(bp); 14262 int port = BP_PORT(bp); 14263 int i; 14264 u32 scratch_offset; 14265 u32 *host_addr; 14266 14267 /* first write capability to shmem2 */ 14268 if (ulp_type == CNIC_ULP_ISCSI) 14269 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14270 else if (ulp_type == CNIC_ULP_FCOE) 14271 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14272 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14273 14274 if ((ulp_type != CNIC_ULP_FCOE) || 14275 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || 14276 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) 14277 break; 14278 14279 /* if reached here - should write fcoe capabilities */ 14280 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); 14281 if (!scratch_offset) 14282 break; 14283 scratch_offset += offsetof(struct glob_ncsi_oem_data, 14284 fcoe_features[path][port]); 14285 host_addr = (u32 *) &(ctl->data.register_data. 14286 fcoe_features); 14287 for (i = 0; i < sizeof(struct fcoe_capabilities); 14288 i += 4) 14289 REG_WR(bp, scratch_offset + i, 14290 *(host_addr + i/4)); 14291 } 14292 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14293 break; 14294 } 14295 14296 case DRV_CTL_ULP_UNREGISTER_CMD: { 14297 int ulp_type = ctl->data.ulp_type; 14298 14299 if (CHIP_IS_E3(bp)) { 14300 int idx = BP_FW_MB_IDX(bp); 14301 u32 cap; 14302 14303 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14304 if (ulp_type == CNIC_ULP_ISCSI) 14305 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14306 else if (ulp_type == CNIC_ULP_FCOE) 14307 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14308 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14309 } 14310 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14311 break; 14312 } 14313 14314 default: 14315 BNX2X_ERR("unknown command %x\n", ctl->cmd); 14316 rc = -EINVAL; 14317 } 14318 14319 return rc; 14320 } 14321 14322 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) 14323 { 14324 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14325 14326 if (bp->flags & USING_MSIX_FLAG) { 14327 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; 14328 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; 14329 cp->irq_arr[0].vector = bp->msix_table[1].vector; 14330 } else { 14331 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; 14332 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; 14333 } 14334 if (!CHIP_IS_E1x(bp)) 14335 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; 14336 else 14337 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; 14338 14339 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); 14340 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); 14341 cp->irq_arr[1].status_blk = bp->def_status_blk; 14342 cp->irq_arr[1].status_blk_num = DEF_SB_ID; 14343 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; 14344 14345 cp->num_irq = 2; 14346 } 14347 14348 void bnx2x_setup_cnic_info(struct bnx2x *bp) 14349 { 14350 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14351 14352 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 14353 bnx2x_cid_ilt_lines(bp); 14354 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 14355 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 14356 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 14357 14358 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n", 14359 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid, 14360 cp->iscsi_l2_cid); 14361 14362 if (NO_ISCSI_OOO(bp)) 14363 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 14364 } 14365 14366 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, 14367 void *data) 14368 { 14369 struct bnx2x *bp = netdev_priv(dev); 14370 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14371 int rc; 14372 14373 DP(NETIF_MSG_IFUP, "Register_cnic called\n"); 14374 14375 if (ops == NULL) { 14376 BNX2X_ERR("NULL ops received\n"); 14377 return -EINVAL; 14378 } 14379 14380 if (!CNIC_SUPPORT(bp)) { 14381 BNX2X_ERR("Can't register CNIC when not supported\n"); 14382 return -EOPNOTSUPP; 14383 } 14384 14385 if (!CNIC_LOADED(bp)) { 14386 rc = bnx2x_load_cnic(bp); 14387 if (rc) { 14388 BNX2X_ERR("CNIC-related load failed\n"); 14389 return rc; 14390 } 14391 } 14392 14393 bp->cnic_enabled = true; 14394 14395 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); 14396 if (!bp->cnic_kwq) 14397 return -ENOMEM; 14398 14399 bp->cnic_kwq_cons = bp->cnic_kwq; 14400 bp->cnic_kwq_prod = bp->cnic_kwq; 14401 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; 14402 14403 bp->cnic_spq_pending = 0; 14404 bp->cnic_kwq_pending = 0; 14405 14406 bp->cnic_data = data; 14407 14408 cp->num_irq = 0; 14409 cp->drv_state |= CNIC_DRV_STATE_REGD; 14410 cp->iro_arr = bp->iro_arr; 14411 14412 bnx2x_setup_cnic_irq_info(bp); 14413 14414 rcu_assign_pointer(bp->cnic_ops, ops); 14415 14416 /* Schedule driver to read CNIC driver versions */ 14417 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14418 14419 return 0; 14420 } 14421 14422 static int bnx2x_unregister_cnic(struct net_device *dev) 14423 { 14424 struct bnx2x *bp = netdev_priv(dev); 14425 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14426 14427 mutex_lock(&bp->cnic_mutex); 14428 cp->drv_state = 0; 14429 RCU_INIT_POINTER(bp->cnic_ops, NULL); 14430 mutex_unlock(&bp->cnic_mutex); 14431 synchronize_rcu(); 14432 bp->cnic_enabled = false; 14433 kfree(bp->cnic_kwq); 14434 bp->cnic_kwq = NULL; 14435 14436 return 0; 14437 } 14438 14439 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) 14440 { 14441 struct bnx2x *bp = netdev_priv(dev); 14442 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14443 14444 /* If both iSCSI and FCoE are disabled - return NULL in 14445 * order to indicate CNIC that it should not try to work 14446 * with this device. 14447 */ 14448 if (NO_ISCSI(bp) && NO_FCOE(bp)) 14449 return NULL; 14450 14451 cp->drv_owner = THIS_MODULE; 14452 cp->chip_id = CHIP_ID(bp); 14453 cp->pdev = bp->pdev; 14454 cp->io_base = bp->regview; 14455 cp->io_base2 = bp->doorbells; 14456 cp->max_kwqe_pending = 8; 14457 cp->ctx_blk_size = CDU_ILT_PAGE_SZ; 14458 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 14459 bnx2x_cid_ilt_lines(bp); 14460 cp->ctx_tbl_len = CNIC_ILT_LINES; 14461 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 14462 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; 14463 cp->drv_ctl = bnx2x_drv_ctl; 14464 cp->drv_register_cnic = bnx2x_register_cnic; 14465 cp->drv_unregister_cnic = bnx2x_unregister_cnic; 14466 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 14467 cp->iscsi_l2_client_id = 14468 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 14469 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 14470 14471 if (NO_ISCSI_OOO(bp)) 14472 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 14473 14474 if (NO_ISCSI(bp)) 14475 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; 14476 14477 if (NO_FCOE(bp)) 14478 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; 14479 14480 BNX2X_DEV_INFO( 14481 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", 14482 cp->ctx_blk_size, 14483 cp->ctx_tbl_offset, 14484 cp->ctx_tbl_len, 14485 cp->starting_cid); 14486 return cp; 14487 } 14488 14489 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) 14490 { 14491 struct bnx2x *bp = fp->bp; 14492 u32 offset = BAR_USTRORM_INTMEM; 14493 14494 if (IS_VF(bp)) 14495 return bnx2x_vf_ustorm_prods_offset(bp, fp); 14496 else if (!CHIP_IS_E1x(bp)) 14497 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 14498 else 14499 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); 14500 14501 return offset; 14502 } 14503 14504 /* called only on E1H or E2. 14505 * When pretending to be PF, the pretend value is the function number 0...7 14506 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 14507 * combination 14508 */ 14509 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) 14510 { 14511 u32 pretend_reg; 14512 14513 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) 14514 return -1; 14515 14516 /* get my own pretend register */ 14517 pretend_reg = bnx2x_get_pretend_reg(bp); 14518 REG_WR(bp, pretend_reg, pretend_func_val); 14519 REG_RD(bp, pretend_reg); 14520 return 0; 14521 } 14522 14523 static void bnx2x_ptp_task(struct work_struct *work) 14524 { 14525 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task); 14526 int port = BP_PORT(bp); 14527 u32 val_seq; 14528 u64 timestamp, ns; 14529 struct skb_shared_hwtstamps shhwtstamps; 14530 14531 /* Read Tx timestamp registers */ 14532 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 14533 NIG_REG_P0_TLLH_PTP_BUF_SEQID); 14534 if (val_seq & 0x10000) { 14535 /* There is a valid timestamp value */ 14536 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB : 14537 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB); 14538 timestamp <<= 32; 14539 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB : 14540 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB); 14541 /* Reset timestamp register to allow new timestamp */ 14542 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 14543 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 14544 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 14545 14546 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 14547 shhwtstamps.hwtstamp = ns_to_ktime(ns); 14548 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps); 14549 dev_kfree_skb_any(bp->ptp_tx_skb); 14550 bp->ptp_tx_skb = NULL; 14551 14552 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n", 14553 timestamp, ns); 14554 } else { 14555 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n"); 14556 /* Reschedule to keep checking for a valid timestamp value */ 14557 schedule_work(&bp->ptp_task); 14558 } 14559 } 14560 14561 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb) 14562 { 14563 int port = BP_PORT(bp); 14564 u64 timestamp, ns; 14565 14566 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB : 14567 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB); 14568 timestamp <<= 32; 14569 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB : 14570 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB); 14571 14572 /* Reset timestamp register to allow new timestamp */ 14573 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 14574 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 14575 14576 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 14577 14578 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 14579 14580 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n", 14581 timestamp, ns); 14582 } 14583 14584 /* Read the PHC */ 14585 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc) 14586 { 14587 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter); 14588 int port = BP_PORT(bp); 14589 u32 wb_data[2]; 14590 u64 phc_cycles; 14591 14592 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 : 14593 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2); 14594 phc_cycles = wb_data[1]; 14595 phc_cycles = (phc_cycles << 32) + wb_data[0]; 14596 14597 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles); 14598 14599 return phc_cycles; 14600 } 14601 14602 static void bnx2x_init_cyclecounter(struct bnx2x *bp) 14603 { 14604 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter)); 14605 bp->cyclecounter.read = bnx2x_cyclecounter_read; 14606 bp->cyclecounter.mask = CLOCKSOURCE_MASK(64); 14607 bp->cyclecounter.shift = 1; 14608 bp->cyclecounter.mult = 1; 14609 } 14610 14611 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp) 14612 { 14613 struct bnx2x_func_state_params func_params = {NULL}; 14614 struct bnx2x_func_set_timesync_params *set_timesync_params = 14615 &func_params.params.set_timesync; 14616 14617 /* Prepare parameters for function state transitions */ 14618 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 14619 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 14620 14621 func_params.f_obj = &bp->func_obj; 14622 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 14623 14624 /* Function parameters */ 14625 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET; 14626 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 14627 14628 return bnx2x_func_state_change(bp, &func_params); 14629 } 14630 14631 int bnx2x_enable_ptp_packets(struct bnx2x *bp) 14632 { 14633 struct bnx2x_queue_state_params q_params; 14634 int rc, i; 14635 14636 /* send queue update ramrod to enable PTP packets */ 14637 memset(&q_params, 0, sizeof(q_params)); 14638 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 14639 q_params.cmd = BNX2X_Q_CMD_UPDATE; 14640 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, 14641 &q_params.params.update.update_flags); 14642 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS, 14643 &q_params.params.update.update_flags); 14644 14645 /* send the ramrod on all the queues of the PF */ 14646 for_each_eth_queue(bp, i) { 14647 struct bnx2x_fastpath *fp = &bp->fp[i]; 14648 14649 /* Set the appropriate Queue object */ 14650 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 14651 14652 /* Update the Queue state */ 14653 rc = bnx2x_queue_state_change(bp, &q_params); 14654 if (rc) { 14655 BNX2X_ERR("Failed to enable PTP packets\n"); 14656 return rc; 14657 } 14658 } 14659 14660 return 0; 14661 } 14662 14663 int bnx2x_configure_ptp_filters(struct bnx2x *bp) 14664 { 14665 int port = BP_PORT(bp); 14666 int rc; 14667 14668 if (!bp->hwtstamp_ioctl_called) 14669 return 0; 14670 14671 switch (bp->tx_type) { 14672 case HWTSTAMP_TX_ON: 14673 bp->flags |= TX_TIMESTAMPING_EN; 14674 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 14675 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA); 14676 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 14677 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE); 14678 break; 14679 case HWTSTAMP_TX_ONESTEP_SYNC: 14680 BNX2X_ERR("One-step timestamping is not supported\n"); 14681 return -ERANGE; 14682 } 14683 14684 switch (bp->rx_filter) { 14685 case HWTSTAMP_FILTER_NONE: 14686 break; 14687 case HWTSTAMP_FILTER_ALL: 14688 case HWTSTAMP_FILTER_SOME: 14689 bp->rx_filter = HWTSTAMP_FILTER_NONE; 14690 break; 14691 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 14692 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 14693 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 14694 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 14695 /* Initialize PTP detection for UDP/IPv4 events */ 14696 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 14697 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE); 14698 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 14699 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE); 14700 break; 14701 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 14702 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 14703 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 14704 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 14705 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */ 14706 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 14707 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA); 14708 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 14709 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE); 14710 break; 14711 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 14712 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 14713 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 14714 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 14715 /* Initialize PTP detection L2 events */ 14716 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 14717 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF); 14718 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 14719 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF); 14720 14721 break; 14722 case HWTSTAMP_FILTER_PTP_V2_EVENT: 14723 case HWTSTAMP_FILTER_PTP_V2_SYNC: 14724 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 14725 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 14726 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */ 14727 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 14728 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA); 14729 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 14730 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE); 14731 break; 14732 } 14733 14734 /* Indicate to FW that this PF expects recorded PTP packets */ 14735 rc = bnx2x_enable_ptp_packets(bp); 14736 if (rc) 14737 return rc; 14738 14739 /* Enable sending PTP packets to host */ 14740 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 14741 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1); 14742 14743 return 0; 14744 } 14745 14746 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr) 14747 { 14748 struct hwtstamp_config config; 14749 int rc; 14750 14751 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n"); 14752 14753 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 14754 return -EFAULT; 14755 14756 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n", 14757 config.tx_type, config.rx_filter); 14758 14759 if (config.flags) { 14760 BNX2X_ERR("config.flags is reserved for future use\n"); 14761 return -EINVAL; 14762 } 14763 14764 bp->hwtstamp_ioctl_called = 1; 14765 bp->tx_type = config.tx_type; 14766 bp->rx_filter = config.rx_filter; 14767 14768 rc = bnx2x_configure_ptp_filters(bp); 14769 if (rc) 14770 return rc; 14771 14772 config.rx_filter = bp->rx_filter; 14773 14774 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 14775 -EFAULT : 0; 14776 } 14777 14778 /* Configrues HW for PTP */ 14779 static int bnx2x_configure_ptp(struct bnx2x *bp) 14780 { 14781 int rc, port = BP_PORT(bp); 14782 u32 wb_data[2]; 14783 14784 /* Reset PTP event detection rules - will be configured in the IOCTL */ 14785 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 14786 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 14787 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 14788 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 14789 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 14790 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 14791 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 14792 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 14793 14794 /* Disable PTP packets to host - will be configured in the IOCTL*/ 14795 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 14796 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 14797 14798 /* Enable the PTP feature */ 14799 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 14800 NIG_REG_P0_PTP_EN, 0x3F); 14801 14802 /* Enable the free-running counter */ 14803 wb_data[0] = 0; 14804 wb_data[1] = 0; 14805 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2); 14806 14807 /* Reset drift register (offset register is not reset) */ 14808 rc = bnx2x_send_reset_timesync_ramrod(bp); 14809 if (rc) { 14810 BNX2X_ERR("Failed to reset PHC drift register\n"); 14811 return -EFAULT; 14812 } 14813 14814 /* Reset possibly old timestamps */ 14815 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 14816 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 14817 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 14818 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 14819 14820 return 0; 14821 } 14822 14823 /* Called during load, to initialize PTP-related stuff */ 14824 void bnx2x_init_ptp(struct bnx2x *bp) 14825 { 14826 int rc; 14827 14828 /* Configure PTP in HW */ 14829 rc = bnx2x_configure_ptp(bp); 14830 if (rc) { 14831 BNX2X_ERR("Stopping PTP initialization\n"); 14832 return; 14833 } 14834 14835 /* Init work queue for Tx timestamping */ 14836 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task); 14837 14838 /* Init cyclecounter and timecounter. This is done only in the first 14839 * load. If done in every load, PTP application will fail when doing 14840 * unload / load (e.g. MTU change) while it is running. 14841 */ 14842 if (!bp->timecounter_init_done) { 14843 bnx2x_init_cyclecounter(bp); 14844 timecounter_init(&bp->timecounter, &bp->cyclecounter, 14845 ktime_to_ns(ktime_get_real())); 14846 bp->timecounter_init_done = 1; 14847 } 14848 14849 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n"); 14850 } 14851