1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/aer.h>
31 #include <linux/init.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/bitops.h>
37 #include <linux/irq.h>
38 #include <linux/delay.h>
39 #include <asm/byteorder.h>
40 #include <linux/time.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <linux/crash_dump.h>
45 #include <net/ip.h>
46 #include <net/ipv6.h>
47 #include <net/tcp.h>
48 #include <net/checksum.h>
49 #include <net/ip6_checksum.h>
50 #include <linux/workqueue.h>
51 #include <linux/crc32.h>
52 #include <linux/crc32c.h>
53 #include <linux/prefetch.h>
54 #include <linux/zlib.h>
55 #include <linux/io.h>
56 #include <linux/semaphore.h>
57 #include <linux/stringify.h>
58 #include <linux/vmalloc.h>
59 
60 #include "bnx2x.h"
61 #include "bnx2x_init.h"
62 #include "bnx2x_init_ops.h"
63 #include "bnx2x_cmn.h"
64 #include "bnx2x_vfpf.h"
65 #include "bnx2x_dcb.h"
66 #include "bnx2x_sp.h"
67 #include <linux/firmware.h>
68 #include "bnx2x_fw_file_hdr.h"
69 /* FW files */
70 #define FW_FILE_VERSION					\
71 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
72 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
73 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
74 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
75 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78 
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT		(5*HZ)
81 
82 static char version[] =
83 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85 
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88 		   "BCM57710/57711/57711E/"
89 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90 		   "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96 
97 int bnx2x_num_queues;
98 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
99 MODULE_PARM_DESC(num_queues,
100 		 " Set number of queues (default is as a number of CPUs)");
101 
102 static int disable_tpa;
103 module_param(disable_tpa, int, S_IRUGO);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105 
106 static int int_mode;
107 module_param(int_mode, int, S_IRUGO);
108 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
109 				"(1 INT#x; 2 MSI)");
110 
111 static int dropless_fc;
112 module_param(dropless_fc, int, S_IRUGO);
113 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114 
115 static int mrrs = -1;
116 module_param(mrrs, int, S_IRUGO);
117 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118 
119 static int debug;
120 module_param(debug, int, S_IRUGO);
121 MODULE_PARM_DESC(debug, " Default debug msglevel");
122 
123 static struct workqueue_struct *bnx2x_wq;
124 struct workqueue_struct *bnx2x_iov_wq;
125 
126 struct bnx2x_mac_vals {
127 	u32 xmac_addr;
128 	u32 xmac_val;
129 	u32 emac_addr;
130 	u32 emac_val;
131 	u32 umac_addr;
132 	u32 umac_val;
133 	u32 bmac_addr;
134 	u32 bmac_val[2];
135 };
136 
137 enum bnx2x_board_type {
138 	BCM57710 = 0,
139 	BCM57711,
140 	BCM57711E,
141 	BCM57712,
142 	BCM57712_MF,
143 	BCM57712_VF,
144 	BCM57800,
145 	BCM57800_MF,
146 	BCM57800_VF,
147 	BCM57810,
148 	BCM57810_MF,
149 	BCM57810_VF,
150 	BCM57840_4_10,
151 	BCM57840_2_20,
152 	BCM57840_MF,
153 	BCM57840_VF,
154 	BCM57811,
155 	BCM57811_MF,
156 	BCM57840_O,
157 	BCM57840_MFO,
158 	BCM57811_VF
159 };
160 
161 /* indexed by board_type, above */
162 static struct {
163 	char *name;
164 } board_info[] = {
165 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
166 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
167 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
168 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
169 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
170 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
171 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
172 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
173 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
174 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
175 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
176 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
177 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
178 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
179 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
180 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
181 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
182 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
183 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
184 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
185 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
186 };
187 
188 #ifndef PCI_DEVICE_ID_NX2_57710
189 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57711
192 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57711E
195 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57712
198 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712_MF
201 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57712_VF
204 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57800
207 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800_MF
210 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57800_VF
213 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57810
216 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57810_MF
219 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57840_O
222 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57810_VF
225 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
228 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
231 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
234 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_MF
237 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_VF
240 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57811
243 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811_MF
246 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57811_VF
249 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
250 #endif
251 
252 static const struct pci_device_id bnx2x_pci_tbl[] = {
253 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
254 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
273 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
274 	{ 0 }
275 };
276 
277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
278 
279 /* Global resources for unloading a previously loaded device */
280 #define BNX2X_PREV_WAIT_NEEDED 1
281 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
282 static LIST_HEAD(bnx2x_prev_list);
283 
284 /* Forward declaration */
285 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
286 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
287 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
288 
289 /****************************************************************************
290 * General service functions
291 ****************************************************************************/
292 
293 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
294 
295 static void __storm_memset_dma_mapping(struct bnx2x *bp,
296 				       u32 addr, dma_addr_t mapping)
297 {
298 	REG_WR(bp,  addr, U64_LO(mapping));
299 	REG_WR(bp,  addr + 4, U64_HI(mapping));
300 }
301 
302 static void storm_memset_spq_addr(struct bnx2x *bp,
303 				  dma_addr_t mapping, u16 abs_fid)
304 {
305 	u32 addr = XSEM_REG_FAST_MEMORY +
306 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
307 
308 	__storm_memset_dma_mapping(bp, addr, mapping);
309 }
310 
311 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
312 				  u16 pf_id)
313 {
314 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
315 		pf_id);
316 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
317 		pf_id);
318 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
319 		pf_id);
320 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
321 		pf_id);
322 }
323 
324 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
325 				 u8 enable)
326 {
327 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
328 		enable);
329 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
330 		enable);
331 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
332 		enable);
333 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
334 		enable);
335 }
336 
337 static void storm_memset_eq_data(struct bnx2x *bp,
338 				 struct event_ring_data *eq_data,
339 				u16 pfid)
340 {
341 	size_t size = sizeof(struct event_ring_data);
342 
343 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
344 
345 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
346 }
347 
348 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
349 				 u16 pfid)
350 {
351 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
352 	REG_WR16(bp, addr, eq_prod);
353 }
354 
355 /* used only at init
356  * locking is done by mcp
357  */
358 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
359 {
360 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
362 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363 			       PCICFG_VENDOR_ID_OFFSET);
364 }
365 
366 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
367 {
368 	u32 val;
369 
370 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
371 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
372 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
373 			       PCICFG_VENDOR_ID_OFFSET);
374 
375 	return val;
376 }
377 
378 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
379 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
380 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
381 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
382 #define DMAE_DP_DST_NONE	"dst_addr [none]"
383 
384 static void bnx2x_dp_dmae(struct bnx2x *bp,
385 			  struct dmae_command *dmae, int msglvl)
386 {
387 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
388 	int i;
389 
390 	switch (dmae->opcode & DMAE_COMMAND_DST) {
391 	case DMAE_CMD_DST_PCI:
392 		if (src_type == DMAE_CMD_SRC_PCI)
393 			DP(msglvl, "DMAE: opcode 0x%08x\n"
394 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
395 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
396 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
397 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
398 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
399 			   dmae->comp_val);
400 		else
401 			DP(msglvl, "DMAE: opcode 0x%08x\n"
402 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
403 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
404 			   dmae->opcode, dmae->src_addr_lo >> 2,
405 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
406 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
407 			   dmae->comp_val);
408 		break;
409 	case DMAE_CMD_DST_GRC:
410 		if (src_type == DMAE_CMD_SRC_PCI)
411 			DP(msglvl, "DMAE: opcode 0x%08x\n"
412 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
413 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
414 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
415 			   dmae->len, dmae->dst_addr_lo >> 2,
416 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
417 			   dmae->comp_val);
418 		else
419 			DP(msglvl, "DMAE: opcode 0x%08x\n"
420 			   "src [%08x], len [%d*4], dst [%08x]\n"
421 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
422 			   dmae->opcode, dmae->src_addr_lo >> 2,
423 			   dmae->len, dmae->dst_addr_lo >> 2,
424 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
425 			   dmae->comp_val);
426 		break;
427 	default:
428 		if (src_type == DMAE_CMD_SRC_PCI)
429 			DP(msglvl, "DMAE: opcode 0x%08x\n"
430 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
431 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
432 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
433 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
434 			   dmae->comp_val);
435 		else
436 			DP(msglvl, "DMAE: opcode 0x%08x\n"
437 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
438 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
439 			   dmae->opcode, dmae->src_addr_lo >> 2,
440 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
441 			   dmae->comp_val);
442 		break;
443 	}
444 
445 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
446 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
447 		   i, *(((u32 *)dmae) + i));
448 }
449 
450 /* copy command into DMAE command memory and set DMAE command go */
451 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
452 {
453 	u32 cmd_offset;
454 	int i;
455 
456 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
457 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
458 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
459 	}
460 	REG_WR(bp, dmae_reg_go_c[idx], 1);
461 }
462 
463 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
464 {
465 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
466 			   DMAE_CMD_C_ENABLE);
467 }
468 
469 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
470 {
471 	return opcode & ~DMAE_CMD_SRC_RESET;
472 }
473 
474 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
475 			     bool with_comp, u8 comp_type)
476 {
477 	u32 opcode = 0;
478 
479 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
480 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
481 
482 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
483 
484 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
485 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
486 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
487 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
488 
489 #ifdef __BIG_ENDIAN
490 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
491 #else
492 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
493 #endif
494 	if (with_comp)
495 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
496 	return opcode;
497 }
498 
499 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
500 				      struct dmae_command *dmae,
501 				      u8 src_type, u8 dst_type)
502 {
503 	memset(dmae, 0, sizeof(struct dmae_command));
504 
505 	/* set the opcode */
506 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
507 					 true, DMAE_COMP_PCI);
508 
509 	/* fill in the completion parameters */
510 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
511 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
512 	dmae->comp_val = DMAE_COMP_VAL;
513 }
514 
515 /* issue a dmae command over the init-channel and wait for completion */
516 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
517 			       u32 *comp)
518 {
519 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
520 	int rc = 0;
521 
522 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
523 
524 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
525 	 * as long as this code is called both from syscall context and
526 	 * from ndo_set_rx_mode() flow that may be called from BH.
527 	 */
528 
529 	spin_lock_bh(&bp->dmae_lock);
530 
531 	/* reset completion */
532 	*comp = 0;
533 
534 	/* post the command on the channel used for initializations */
535 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
536 
537 	/* wait for completion */
538 	udelay(5);
539 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
540 
541 		if (!cnt ||
542 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
543 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
544 			BNX2X_ERR("DMAE timeout!\n");
545 			rc = DMAE_TIMEOUT;
546 			goto unlock;
547 		}
548 		cnt--;
549 		udelay(50);
550 	}
551 	if (*comp & DMAE_PCI_ERR_FLAG) {
552 		BNX2X_ERR("DMAE PCI error!\n");
553 		rc = DMAE_PCI_ERROR;
554 	}
555 
556 unlock:
557 
558 	spin_unlock_bh(&bp->dmae_lock);
559 
560 	return rc;
561 }
562 
563 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
564 		      u32 len32)
565 {
566 	int rc;
567 	struct dmae_command dmae;
568 
569 	if (!bp->dmae_ready) {
570 		u32 *data = bnx2x_sp(bp, wb_data[0]);
571 
572 		if (CHIP_IS_E1(bp))
573 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
574 		else
575 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
576 		return;
577 	}
578 
579 	/* set opcode and fixed command fields */
580 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
581 
582 	/* fill in addresses and len */
583 	dmae.src_addr_lo = U64_LO(dma_addr);
584 	dmae.src_addr_hi = U64_HI(dma_addr);
585 	dmae.dst_addr_lo = dst_addr >> 2;
586 	dmae.dst_addr_hi = 0;
587 	dmae.len = len32;
588 
589 	/* issue the command and wait for completion */
590 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
591 	if (rc) {
592 		BNX2X_ERR("DMAE returned failure %d\n", rc);
593 #ifdef BNX2X_STOP_ON_ERROR
594 		bnx2x_panic();
595 #endif
596 	}
597 }
598 
599 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
600 {
601 	int rc;
602 	struct dmae_command dmae;
603 
604 	if (!bp->dmae_ready) {
605 		u32 *data = bnx2x_sp(bp, wb_data[0]);
606 		int i;
607 
608 		if (CHIP_IS_E1(bp))
609 			for (i = 0; i < len32; i++)
610 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
611 		else
612 			for (i = 0; i < len32; i++)
613 				data[i] = REG_RD(bp, src_addr + i*4);
614 
615 		return;
616 	}
617 
618 	/* set opcode and fixed command fields */
619 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
620 
621 	/* fill in addresses and len */
622 	dmae.src_addr_lo = src_addr >> 2;
623 	dmae.src_addr_hi = 0;
624 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
625 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
626 	dmae.len = len32;
627 
628 	/* issue the command and wait for completion */
629 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
630 	if (rc) {
631 		BNX2X_ERR("DMAE returned failure %d\n", rc);
632 #ifdef BNX2X_STOP_ON_ERROR
633 		bnx2x_panic();
634 #endif
635 	}
636 }
637 
638 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
639 				      u32 addr, u32 len)
640 {
641 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
642 	int offset = 0;
643 
644 	while (len > dmae_wr_max) {
645 		bnx2x_write_dmae(bp, phys_addr + offset,
646 				 addr + offset, dmae_wr_max);
647 		offset += dmae_wr_max * 4;
648 		len -= dmae_wr_max;
649 	}
650 
651 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
652 }
653 
654 enum storms {
655 	   XSTORM,
656 	   TSTORM,
657 	   CSTORM,
658 	   USTORM,
659 	   MAX_STORMS
660 };
661 
662 #define STORMS_NUM 4
663 #define REGS_IN_ENTRY 4
664 
665 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
666 					      enum storms storm,
667 					      int entry)
668 {
669 	switch (storm) {
670 	case XSTORM:
671 		return XSTORM_ASSERT_LIST_OFFSET(entry);
672 	case TSTORM:
673 		return TSTORM_ASSERT_LIST_OFFSET(entry);
674 	case CSTORM:
675 		return CSTORM_ASSERT_LIST_OFFSET(entry);
676 	case USTORM:
677 		return USTORM_ASSERT_LIST_OFFSET(entry);
678 	case MAX_STORMS:
679 	default:
680 		BNX2X_ERR("unknown storm\n");
681 	}
682 	return -EINVAL;
683 }
684 
685 static int bnx2x_mc_assert(struct bnx2x *bp)
686 {
687 	char last_idx;
688 	int i, j, rc = 0;
689 	enum storms storm;
690 	u32 regs[REGS_IN_ENTRY];
691 	u32 bar_storm_intmem[STORMS_NUM] = {
692 		BAR_XSTRORM_INTMEM,
693 		BAR_TSTRORM_INTMEM,
694 		BAR_CSTRORM_INTMEM,
695 		BAR_USTRORM_INTMEM
696 	};
697 	u32 storm_assert_list_index[STORMS_NUM] = {
698 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
699 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
700 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
701 		USTORM_ASSERT_LIST_INDEX_OFFSET
702 	};
703 	char *storms_string[STORMS_NUM] = {
704 		"XSTORM",
705 		"TSTORM",
706 		"CSTORM",
707 		"USTORM"
708 	};
709 
710 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
711 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
712 				   storm_assert_list_index[storm]);
713 		if (last_idx)
714 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
715 				  storms_string[storm], last_idx);
716 
717 		/* print the asserts */
718 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
719 			/* read a single assert entry */
720 			for (j = 0; j < REGS_IN_ENTRY; j++)
721 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
722 					  bnx2x_get_assert_list_entry(bp,
723 								      storm,
724 								      i) +
725 					  sizeof(u32) * j);
726 
727 			/* log entry if it contains a valid assert */
728 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
729 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
730 					  storms_string[storm], i, regs[3],
731 					  regs[2], regs[1], regs[0]);
732 				rc++;
733 			} else {
734 				break;
735 			}
736 		}
737 	}
738 
739 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
740 		  CHIP_IS_E1(bp) ? "everest1" :
741 		  CHIP_IS_E1H(bp) ? "everest1h" :
742 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
743 		  BCM_5710_FW_MAJOR_VERSION,
744 		  BCM_5710_FW_MINOR_VERSION,
745 		  BCM_5710_FW_REVISION_VERSION);
746 
747 	return rc;
748 }
749 
750 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
751 #define SCRATCH_BUFFER_SIZE(bp)	\
752 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
753 
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755 {
756 	u32 addr, val;
757 	u32 mark, offset;
758 	__be32 data[9];
759 	int word;
760 	u32 trace_shmem_base;
761 	if (BP_NOMCP(bp)) {
762 		BNX2X_ERR("NO MCP - can not dump\n");
763 		return;
764 	}
765 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766 		(bp->common.bc_ver & 0xff0000) >> 16,
767 		(bp->common.bc_ver & 0xff00) >> 8,
768 		(bp->common.bc_ver & 0xff));
769 
770 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773 
774 	if (BP_PATH(bp) == 0)
775 		trace_shmem_base = bp->common.shmem_base;
776 	else
777 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778 
779 	/* sanity */
780 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
781 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
782 				SCRATCH_BUFFER_SIZE(bp)) {
783 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
784 			  trace_shmem_base);
785 		return;
786 	}
787 
788 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
789 
790 	/* validate TRCB signature */
791 	mark = REG_RD(bp, addr);
792 	if (mark != MFW_TRACE_SIGNATURE) {
793 		BNX2X_ERR("Trace buffer signature is missing.");
794 		return ;
795 	}
796 
797 	/* read cyclic buffer pointer */
798 	addr += 4;
799 	mark = REG_RD(bp, addr);
800 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
801 	if (mark >= trace_shmem_base || mark < addr + 4) {
802 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
803 		return;
804 	}
805 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
806 
807 	printk("%s", lvl);
808 
809 	/* dump buffer after the mark */
810 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
811 		for (word = 0; word < 8; word++)
812 			data[word] = htonl(REG_RD(bp, offset + 4*word));
813 		data[8] = 0x0;
814 		pr_cont("%s", (char *)data);
815 	}
816 
817 	/* dump buffer before the mark */
818 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
819 		for (word = 0; word < 8; word++)
820 			data[word] = htonl(REG_RD(bp, offset + 4*word));
821 		data[8] = 0x0;
822 		pr_cont("%s", (char *)data);
823 	}
824 	printk("%s" "end of fw dump\n", lvl);
825 }
826 
827 static void bnx2x_fw_dump(struct bnx2x *bp)
828 {
829 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
830 }
831 
832 static void bnx2x_hc_int_disable(struct bnx2x *bp)
833 {
834 	int port = BP_PORT(bp);
835 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
836 	u32 val = REG_RD(bp, addr);
837 
838 	/* in E1 we must use only PCI configuration space to disable
839 	 * MSI/MSIX capability
840 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
841 	 */
842 	if (CHIP_IS_E1(bp)) {
843 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
844 		 * Use mask register to prevent from HC sending interrupts
845 		 * after we exit the function
846 		 */
847 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
848 
849 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
850 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
851 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
852 	} else
853 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
854 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
855 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
856 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
857 
858 	DP(NETIF_MSG_IFDOWN,
859 	   "write %x to HC %d (addr 0x%x)\n",
860 	   val, port, addr);
861 
862 	/* flush all outstanding writes */
863 	mmiowb();
864 
865 	REG_WR(bp, addr, val);
866 	if (REG_RD(bp, addr) != val)
867 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
868 }
869 
870 static void bnx2x_igu_int_disable(struct bnx2x *bp)
871 {
872 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
873 
874 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
875 		 IGU_PF_CONF_INT_LINE_EN |
876 		 IGU_PF_CONF_ATTN_BIT_EN);
877 
878 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
879 
880 	/* flush all outstanding writes */
881 	mmiowb();
882 
883 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
884 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
885 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
886 }
887 
888 static void bnx2x_int_disable(struct bnx2x *bp)
889 {
890 	if (bp->common.int_block == INT_BLOCK_HC)
891 		bnx2x_hc_int_disable(bp);
892 	else
893 		bnx2x_igu_int_disable(bp);
894 }
895 
896 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
897 {
898 	int i;
899 	u16 j;
900 	struct hc_sp_status_block_data sp_sb_data;
901 	int func = BP_FUNC(bp);
902 #ifdef BNX2X_STOP_ON_ERROR
903 	u16 start = 0, end = 0;
904 	u8 cos;
905 #endif
906 	if (IS_PF(bp) && disable_int)
907 		bnx2x_int_disable(bp);
908 
909 	bp->stats_state = STATS_STATE_DISABLED;
910 	bp->eth_stats.unrecoverable_error++;
911 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
912 
913 	BNX2X_ERR("begin crash dump -----------------\n");
914 
915 	/* Indices */
916 	/* Common */
917 	if (IS_PF(bp)) {
918 		struct host_sp_status_block *def_sb = bp->def_status_blk;
919 		int data_size, cstorm_offset;
920 
921 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
922 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
923 			  bp->spq_prod_idx, bp->stats_counter);
924 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
925 			  def_sb->atten_status_block.attn_bits,
926 			  def_sb->atten_status_block.attn_bits_ack,
927 			  def_sb->atten_status_block.status_block_id,
928 			  def_sb->atten_status_block.attn_bits_index);
929 		BNX2X_ERR("     def (");
930 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
931 			pr_cont("0x%x%s",
932 				def_sb->sp_sb.index_values[i],
933 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
934 
935 		data_size = sizeof(struct hc_sp_status_block_data) /
936 			    sizeof(u32);
937 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
938 		for (i = 0; i < data_size; i++)
939 			*((u32 *)&sp_sb_data + i) =
940 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
941 					   i * sizeof(u32));
942 
943 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
944 			sp_sb_data.igu_sb_id,
945 			sp_sb_data.igu_seg_id,
946 			sp_sb_data.p_func.pf_id,
947 			sp_sb_data.p_func.vnic_id,
948 			sp_sb_data.p_func.vf_id,
949 			sp_sb_data.p_func.vf_valid,
950 			sp_sb_data.state);
951 	}
952 
953 	for_each_eth_queue(bp, i) {
954 		struct bnx2x_fastpath *fp = &bp->fp[i];
955 		int loop;
956 		struct hc_status_block_data_e2 sb_data_e2;
957 		struct hc_status_block_data_e1x sb_data_e1x;
958 		struct hc_status_block_sm  *hc_sm_p =
959 			CHIP_IS_E1x(bp) ?
960 			sb_data_e1x.common.state_machine :
961 			sb_data_e2.common.state_machine;
962 		struct hc_index_data *hc_index_p =
963 			CHIP_IS_E1x(bp) ?
964 			sb_data_e1x.index_data :
965 			sb_data_e2.index_data;
966 		u8 data_size, cos;
967 		u32 *sb_data_p;
968 		struct bnx2x_fp_txdata txdata;
969 
970 		if (!bp->fp)
971 			break;
972 
973 		if (!fp->rx_cons_sb)
974 			continue;
975 
976 		/* Rx */
977 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
978 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
979 			  fp->rx_comp_prod,
980 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
981 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
982 			  fp->rx_sge_prod, fp->last_max_sge,
983 			  le16_to_cpu(fp->fp_hc_idx));
984 
985 		/* Tx */
986 		for_each_cos_in_tx_queue(fp, cos)
987 		{
988 			if (!fp->txdata_ptr[cos])
989 				break;
990 
991 			txdata = *fp->txdata_ptr[cos];
992 
993 			if (!txdata.tx_cons_sb)
994 				continue;
995 
996 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
997 				  i, txdata.tx_pkt_prod,
998 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
999 				  txdata.tx_bd_cons,
1000 				  le16_to_cpu(*txdata.tx_cons_sb));
1001 		}
1002 
1003 		loop = CHIP_IS_E1x(bp) ?
1004 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1005 
1006 		/* host sb data */
1007 
1008 		if (IS_FCOE_FP(fp))
1009 			continue;
1010 
1011 		BNX2X_ERR("     run indexes (");
1012 		for (j = 0; j < HC_SB_MAX_SM; j++)
1013 			pr_cont("0x%x%s",
1014 			       fp->sb_running_index[j],
1015 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1016 
1017 		BNX2X_ERR("     indexes (");
1018 		for (j = 0; j < loop; j++)
1019 			pr_cont("0x%x%s",
1020 			       fp->sb_index_values[j],
1021 			       (j == loop - 1) ? ")" : " ");
1022 
1023 		/* VF cannot access FW refelection for status block */
1024 		if (IS_VF(bp))
1025 			continue;
1026 
1027 		/* fw sb data */
1028 		data_size = CHIP_IS_E1x(bp) ?
1029 			sizeof(struct hc_status_block_data_e1x) :
1030 			sizeof(struct hc_status_block_data_e2);
1031 		data_size /= sizeof(u32);
1032 		sb_data_p = CHIP_IS_E1x(bp) ?
1033 			(u32 *)&sb_data_e1x :
1034 			(u32 *)&sb_data_e2;
1035 		/* copy sb data in here */
1036 		for (j = 0; j < data_size; j++)
1037 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1038 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1039 				j * sizeof(u32));
1040 
1041 		if (!CHIP_IS_E1x(bp)) {
1042 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1043 				sb_data_e2.common.p_func.pf_id,
1044 				sb_data_e2.common.p_func.vf_id,
1045 				sb_data_e2.common.p_func.vf_valid,
1046 				sb_data_e2.common.p_func.vnic_id,
1047 				sb_data_e2.common.same_igu_sb_1b,
1048 				sb_data_e2.common.state);
1049 		} else {
1050 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1051 				sb_data_e1x.common.p_func.pf_id,
1052 				sb_data_e1x.common.p_func.vf_id,
1053 				sb_data_e1x.common.p_func.vf_valid,
1054 				sb_data_e1x.common.p_func.vnic_id,
1055 				sb_data_e1x.common.same_igu_sb_1b,
1056 				sb_data_e1x.common.state);
1057 		}
1058 
1059 		/* SB_SMs data */
1060 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1061 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1062 				j, hc_sm_p[j].__flags,
1063 				hc_sm_p[j].igu_sb_id,
1064 				hc_sm_p[j].igu_seg_id,
1065 				hc_sm_p[j].time_to_expire,
1066 				hc_sm_p[j].timer_value);
1067 		}
1068 
1069 		/* Indices data */
1070 		for (j = 0; j < loop; j++) {
1071 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1072 			       hc_index_p[j].flags,
1073 			       hc_index_p[j].timeout);
1074 		}
1075 	}
1076 
1077 #ifdef BNX2X_STOP_ON_ERROR
1078 	if (IS_PF(bp)) {
1079 		/* event queue */
1080 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1081 		for (i = 0; i < NUM_EQ_DESC; i++) {
1082 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1083 
1084 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1085 				  i, bp->eq_ring[i].message.opcode,
1086 				  bp->eq_ring[i].message.error);
1087 			BNX2X_ERR("data: %x %x %x\n",
1088 				  data[0], data[1], data[2]);
1089 		}
1090 	}
1091 
1092 	/* Rings */
1093 	/* Rx */
1094 	for_each_valid_rx_queue(bp, i) {
1095 		struct bnx2x_fastpath *fp = &bp->fp[i];
1096 
1097 		if (!bp->fp)
1098 			break;
1099 
1100 		if (!fp->rx_cons_sb)
1101 			continue;
1102 
1103 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1104 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1105 		for (j = start; j != end; j = RX_BD(j + 1)) {
1106 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1107 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1108 
1109 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1110 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1111 		}
1112 
1113 		start = RX_SGE(fp->rx_sge_prod);
1114 		end = RX_SGE(fp->last_max_sge);
1115 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1116 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1117 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1118 
1119 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1120 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1121 		}
1122 
1123 		start = RCQ_BD(fp->rx_comp_cons - 10);
1124 		end = RCQ_BD(fp->rx_comp_cons + 503);
1125 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1126 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1127 
1128 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1129 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1130 		}
1131 	}
1132 
1133 	/* Tx */
1134 	for_each_valid_tx_queue(bp, i) {
1135 		struct bnx2x_fastpath *fp = &bp->fp[i];
1136 
1137 		if (!bp->fp)
1138 			break;
1139 
1140 		for_each_cos_in_tx_queue(fp, cos) {
1141 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1142 
1143 			if (!fp->txdata_ptr[cos])
1144 				break;
1145 
1146 			if (!txdata->tx_cons_sb)
1147 				continue;
1148 
1149 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1150 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1151 			for (j = start; j != end; j = TX_BD(j + 1)) {
1152 				struct sw_tx_bd *sw_bd =
1153 					&txdata->tx_buf_ring[j];
1154 
1155 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1156 					  i, cos, j, sw_bd->skb,
1157 					  sw_bd->first_bd);
1158 			}
1159 
1160 			start = TX_BD(txdata->tx_bd_cons - 10);
1161 			end = TX_BD(txdata->tx_bd_cons + 254);
1162 			for (j = start; j != end; j = TX_BD(j + 1)) {
1163 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1164 
1165 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1166 					  i, cos, j, tx_bd[0], tx_bd[1],
1167 					  tx_bd[2], tx_bd[3]);
1168 			}
1169 		}
1170 	}
1171 #endif
1172 	if (IS_PF(bp)) {
1173 		bnx2x_fw_dump(bp);
1174 		bnx2x_mc_assert(bp);
1175 	}
1176 	BNX2X_ERR("end crash dump -----------------\n");
1177 }
1178 
1179 /*
1180  * FLR Support for E2
1181  *
1182  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1183  * initialization.
1184  */
1185 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1186 #define FLR_WAIT_INTERVAL	50	/* usec */
1187 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1188 
1189 struct pbf_pN_buf_regs {
1190 	int pN;
1191 	u32 init_crd;
1192 	u32 crd;
1193 	u32 crd_freed;
1194 };
1195 
1196 struct pbf_pN_cmd_regs {
1197 	int pN;
1198 	u32 lines_occup;
1199 	u32 lines_freed;
1200 };
1201 
1202 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1203 				     struct pbf_pN_buf_regs *regs,
1204 				     u32 poll_count)
1205 {
1206 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1207 	u32 cur_cnt = poll_count;
1208 
1209 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1210 	crd = crd_start = REG_RD(bp, regs->crd);
1211 	init_crd = REG_RD(bp, regs->init_crd);
1212 
1213 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1214 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1215 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1216 
1217 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1218 	       (init_crd - crd_start))) {
1219 		if (cur_cnt--) {
1220 			udelay(FLR_WAIT_INTERVAL);
1221 			crd = REG_RD(bp, regs->crd);
1222 			crd_freed = REG_RD(bp, regs->crd_freed);
1223 		} else {
1224 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1225 			   regs->pN);
1226 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1227 			   regs->pN, crd);
1228 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1229 			   regs->pN, crd_freed);
1230 			break;
1231 		}
1232 	}
1233 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1234 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1235 }
1236 
1237 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1238 				     struct pbf_pN_cmd_regs *regs,
1239 				     u32 poll_count)
1240 {
1241 	u32 occup, to_free, freed, freed_start;
1242 	u32 cur_cnt = poll_count;
1243 
1244 	occup = to_free = REG_RD(bp, regs->lines_occup);
1245 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1246 
1247 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1248 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1249 
1250 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1251 		if (cur_cnt--) {
1252 			udelay(FLR_WAIT_INTERVAL);
1253 			occup = REG_RD(bp, regs->lines_occup);
1254 			freed = REG_RD(bp, regs->lines_freed);
1255 		} else {
1256 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1257 			   regs->pN);
1258 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1259 			   regs->pN, occup);
1260 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1261 			   regs->pN, freed);
1262 			break;
1263 		}
1264 	}
1265 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1266 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1267 }
1268 
1269 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1270 				    u32 expected, u32 poll_count)
1271 {
1272 	u32 cur_cnt = poll_count;
1273 	u32 val;
1274 
1275 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1276 		udelay(FLR_WAIT_INTERVAL);
1277 
1278 	return val;
1279 }
1280 
1281 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1282 				    char *msg, u32 poll_cnt)
1283 {
1284 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1285 	if (val != 0) {
1286 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1287 		return 1;
1288 	}
1289 	return 0;
1290 }
1291 
1292 /* Common routines with VF FLR cleanup */
1293 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1294 {
1295 	/* adjust polling timeout */
1296 	if (CHIP_REV_IS_EMUL(bp))
1297 		return FLR_POLL_CNT * 2000;
1298 
1299 	if (CHIP_REV_IS_FPGA(bp))
1300 		return FLR_POLL_CNT * 120;
1301 
1302 	return FLR_POLL_CNT;
1303 }
1304 
1305 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1306 {
1307 	struct pbf_pN_cmd_regs cmd_regs[] = {
1308 		{0, (CHIP_IS_E3B0(bp)) ?
1309 			PBF_REG_TQ_OCCUPANCY_Q0 :
1310 			PBF_REG_P0_TQ_OCCUPANCY,
1311 		    (CHIP_IS_E3B0(bp)) ?
1312 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1313 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1314 		{1, (CHIP_IS_E3B0(bp)) ?
1315 			PBF_REG_TQ_OCCUPANCY_Q1 :
1316 			PBF_REG_P1_TQ_OCCUPANCY,
1317 		    (CHIP_IS_E3B0(bp)) ?
1318 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1319 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1320 		{4, (CHIP_IS_E3B0(bp)) ?
1321 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1322 			PBF_REG_P4_TQ_OCCUPANCY,
1323 		    (CHIP_IS_E3B0(bp)) ?
1324 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1325 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1326 	};
1327 
1328 	struct pbf_pN_buf_regs buf_regs[] = {
1329 		{0, (CHIP_IS_E3B0(bp)) ?
1330 			PBF_REG_INIT_CRD_Q0 :
1331 			PBF_REG_P0_INIT_CRD ,
1332 		    (CHIP_IS_E3B0(bp)) ?
1333 			PBF_REG_CREDIT_Q0 :
1334 			PBF_REG_P0_CREDIT,
1335 		    (CHIP_IS_E3B0(bp)) ?
1336 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1337 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1338 		{1, (CHIP_IS_E3B0(bp)) ?
1339 			PBF_REG_INIT_CRD_Q1 :
1340 			PBF_REG_P1_INIT_CRD,
1341 		    (CHIP_IS_E3B0(bp)) ?
1342 			PBF_REG_CREDIT_Q1 :
1343 			PBF_REG_P1_CREDIT,
1344 		    (CHIP_IS_E3B0(bp)) ?
1345 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1346 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1347 		{4, (CHIP_IS_E3B0(bp)) ?
1348 			PBF_REG_INIT_CRD_LB_Q :
1349 			PBF_REG_P4_INIT_CRD,
1350 		    (CHIP_IS_E3B0(bp)) ?
1351 			PBF_REG_CREDIT_LB_Q :
1352 			PBF_REG_P4_CREDIT,
1353 		    (CHIP_IS_E3B0(bp)) ?
1354 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1355 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1356 	};
1357 
1358 	int i;
1359 
1360 	/* Verify the command queues are flushed P0, P1, P4 */
1361 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1362 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1363 
1364 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1365 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1366 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1367 }
1368 
1369 #define OP_GEN_PARAM(param) \
1370 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1371 
1372 #define OP_GEN_TYPE(type) \
1373 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1374 
1375 #define OP_GEN_AGG_VECT(index) \
1376 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1377 
1378 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1379 {
1380 	u32 op_gen_command = 0;
1381 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1382 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1383 	int ret = 0;
1384 
1385 	if (REG_RD(bp, comp_addr)) {
1386 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1387 		return 1;
1388 	}
1389 
1390 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1391 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1392 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1393 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1394 
1395 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1396 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1397 
1398 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1399 		BNX2X_ERR("FW final cleanup did not succeed\n");
1400 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1401 		   (REG_RD(bp, comp_addr)));
1402 		bnx2x_panic();
1403 		return 1;
1404 	}
1405 	/* Zero completion for next FLR */
1406 	REG_WR(bp, comp_addr, 0);
1407 
1408 	return ret;
1409 }
1410 
1411 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1412 {
1413 	u16 status;
1414 
1415 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1416 	return status & PCI_EXP_DEVSTA_TRPND;
1417 }
1418 
1419 /* PF FLR specific routines
1420 */
1421 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1422 {
1423 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1424 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1425 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1426 			"CFC PF usage counter timed out",
1427 			poll_cnt))
1428 		return 1;
1429 
1430 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1431 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1432 			DORQ_REG_PF_USAGE_CNT,
1433 			"DQ PF usage counter timed out",
1434 			poll_cnt))
1435 		return 1;
1436 
1437 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1438 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1439 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1440 			"QM PF usage counter timed out",
1441 			poll_cnt))
1442 		return 1;
1443 
1444 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1445 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1446 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1447 			"Timers VNIC usage counter timed out",
1448 			poll_cnt))
1449 		return 1;
1450 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1451 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1452 			"Timers NUM_SCANS usage counter timed out",
1453 			poll_cnt))
1454 		return 1;
1455 
1456 	/* Wait DMAE PF usage counter to zero */
1457 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1458 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1459 			"DMAE command register timed out",
1460 			poll_cnt))
1461 		return 1;
1462 
1463 	return 0;
1464 }
1465 
1466 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1467 {
1468 	u32 val;
1469 
1470 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1471 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1472 
1473 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1474 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1475 
1476 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1477 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1478 
1479 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1480 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1481 
1482 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1483 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1484 
1485 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1486 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1487 
1488 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1489 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1490 
1491 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1492 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1493 	   val);
1494 }
1495 
1496 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1497 {
1498 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1499 
1500 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1501 
1502 	/* Re-enable PF target read access */
1503 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1504 
1505 	/* Poll HW usage counters */
1506 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1507 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1508 		return -EBUSY;
1509 
1510 	/* Zero the igu 'trailing edge' and 'leading edge' */
1511 
1512 	/* Send the FW cleanup command */
1513 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1514 		return -EBUSY;
1515 
1516 	/* ATC cleanup */
1517 
1518 	/* Verify TX hw is flushed */
1519 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1520 
1521 	/* Wait 100ms (not adjusted according to platform) */
1522 	msleep(100);
1523 
1524 	/* Verify no pending pci transactions */
1525 	if (bnx2x_is_pcie_pending(bp->pdev))
1526 		BNX2X_ERR("PCIE Transactions still pending\n");
1527 
1528 	/* Debug */
1529 	bnx2x_hw_enable_status(bp);
1530 
1531 	/*
1532 	 * Master enable - Due to WB DMAE writes performed before this
1533 	 * register is re-initialized as part of the regular function init
1534 	 */
1535 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1536 
1537 	return 0;
1538 }
1539 
1540 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1541 {
1542 	int port = BP_PORT(bp);
1543 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1544 	u32 val = REG_RD(bp, addr);
1545 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1546 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1547 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1548 
1549 	if (msix) {
1550 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1551 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1552 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1553 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1554 		if (single_msix)
1555 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1556 	} else if (msi) {
1557 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1558 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1559 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1560 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1561 	} else {
1562 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1563 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1564 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1565 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1566 
1567 		if (!CHIP_IS_E1(bp)) {
1568 			DP(NETIF_MSG_IFUP,
1569 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1570 
1571 			REG_WR(bp, addr, val);
1572 
1573 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1574 		}
1575 	}
1576 
1577 	if (CHIP_IS_E1(bp))
1578 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1579 
1580 	DP(NETIF_MSG_IFUP,
1581 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1582 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1583 
1584 	REG_WR(bp, addr, val);
1585 	/*
1586 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1587 	 */
1588 	mmiowb();
1589 	barrier();
1590 
1591 	if (!CHIP_IS_E1(bp)) {
1592 		/* init leading/trailing edge */
1593 		if (IS_MF(bp)) {
1594 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1595 			if (bp->port.pmf)
1596 				/* enable nig and gpio3 attention */
1597 				val |= 0x1100;
1598 		} else
1599 			val = 0xffff;
1600 
1601 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1602 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1603 	}
1604 
1605 	/* Make sure that interrupts are indeed enabled from here on */
1606 	mmiowb();
1607 }
1608 
1609 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1610 {
1611 	u32 val;
1612 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1613 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1614 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1615 
1616 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1617 
1618 	if (msix) {
1619 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1620 			 IGU_PF_CONF_SINGLE_ISR_EN);
1621 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1622 			IGU_PF_CONF_ATTN_BIT_EN);
1623 
1624 		if (single_msix)
1625 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1626 	} else if (msi) {
1627 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1628 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1629 			IGU_PF_CONF_ATTN_BIT_EN |
1630 			IGU_PF_CONF_SINGLE_ISR_EN);
1631 	} else {
1632 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1633 		val |= (IGU_PF_CONF_INT_LINE_EN |
1634 			IGU_PF_CONF_ATTN_BIT_EN |
1635 			IGU_PF_CONF_SINGLE_ISR_EN);
1636 	}
1637 
1638 	/* Clean previous status - need to configure igu prior to ack*/
1639 	if ((!msix) || single_msix) {
1640 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1641 		bnx2x_ack_int(bp);
1642 	}
1643 
1644 	val |= IGU_PF_CONF_FUNC_EN;
1645 
1646 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1647 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1648 
1649 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1650 
1651 	if (val & IGU_PF_CONF_INT_LINE_EN)
1652 		pci_intx(bp->pdev, true);
1653 
1654 	barrier();
1655 
1656 	/* init leading/trailing edge */
1657 	if (IS_MF(bp)) {
1658 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1659 		if (bp->port.pmf)
1660 			/* enable nig and gpio3 attention */
1661 			val |= 0x1100;
1662 	} else
1663 		val = 0xffff;
1664 
1665 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1666 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1667 
1668 	/* Make sure that interrupts are indeed enabled from here on */
1669 	mmiowb();
1670 }
1671 
1672 void bnx2x_int_enable(struct bnx2x *bp)
1673 {
1674 	if (bp->common.int_block == INT_BLOCK_HC)
1675 		bnx2x_hc_int_enable(bp);
1676 	else
1677 		bnx2x_igu_int_enable(bp);
1678 }
1679 
1680 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1681 {
1682 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1683 	int i, offset;
1684 
1685 	if (disable_hw)
1686 		/* prevent the HW from sending interrupts */
1687 		bnx2x_int_disable(bp);
1688 
1689 	/* make sure all ISRs are done */
1690 	if (msix) {
1691 		synchronize_irq(bp->msix_table[0].vector);
1692 		offset = 1;
1693 		if (CNIC_SUPPORT(bp))
1694 			offset++;
1695 		for_each_eth_queue(bp, i)
1696 			synchronize_irq(bp->msix_table[offset++].vector);
1697 	} else
1698 		synchronize_irq(bp->pdev->irq);
1699 
1700 	/* make sure sp_task is not running */
1701 	cancel_delayed_work(&bp->sp_task);
1702 	cancel_delayed_work(&bp->period_task);
1703 	flush_workqueue(bnx2x_wq);
1704 }
1705 
1706 /* fast path */
1707 
1708 /*
1709  * General service functions
1710  */
1711 
1712 /* Return true if succeeded to acquire the lock */
1713 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1714 {
1715 	u32 lock_status;
1716 	u32 resource_bit = (1 << resource);
1717 	int func = BP_FUNC(bp);
1718 	u32 hw_lock_control_reg;
1719 
1720 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1721 	   "Trying to take a lock on resource %d\n", resource);
1722 
1723 	/* Validating that the resource is within range */
1724 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1725 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1726 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1727 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1728 		return false;
1729 	}
1730 
1731 	if (func <= 5)
1732 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1733 	else
1734 		hw_lock_control_reg =
1735 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1736 
1737 	/* Try to acquire the lock */
1738 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1739 	lock_status = REG_RD(bp, hw_lock_control_reg);
1740 	if (lock_status & resource_bit)
1741 		return true;
1742 
1743 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1744 	   "Failed to get a lock on resource %d\n", resource);
1745 	return false;
1746 }
1747 
1748 /**
1749  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1750  *
1751  * @bp:	driver handle
1752  *
1753  * Returns the recovery leader resource id according to the engine this function
1754  * belongs to. Currently only only 2 engines is supported.
1755  */
1756 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1757 {
1758 	if (BP_PATH(bp))
1759 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1760 	else
1761 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1762 }
1763 
1764 /**
1765  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1766  *
1767  * @bp: driver handle
1768  *
1769  * Tries to acquire a leader lock for current engine.
1770  */
1771 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1772 {
1773 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1774 }
1775 
1776 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1777 
1778 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1779 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1780 {
1781 	/* Set the interrupt occurred bit for the sp-task to recognize it
1782 	 * must ack the interrupt and transition according to the IGU
1783 	 * state machine.
1784 	 */
1785 	atomic_set(&bp->interrupt_occurred, 1);
1786 
1787 	/* The sp_task must execute only after this bit
1788 	 * is set, otherwise we will get out of sync and miss all
1789 	 * further interrupts. Hence, the barrier.
1790 	 */
1791 	smp_wmb();
1792 
1793 	/* schedule sp_task to workqueue */
1794 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1795 }
1796 
1797 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1798 {
1799 	struct bnx2x *bp = fp->bp;
1800 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1801 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1802 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1803 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1804 
1805 	DP(BNX2X_MSG_SP,
1806 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1807 	   fp->index, cid, command, bp->state,
1808 	   rr_cqe->ramrod_cqe.ramrod_type);
1809 
1810 	/* If cid is within VF range, replace the slowpath object with the
1811 	 * one corresponding to this VF
1812 	 */
1813 	if (cid >= BNX2X_FIRST_VF_CID  &&
1814 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1815 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1816 
1817 	switch (command) {
1818 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1819 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1820 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1821 		break;
1822 
1823 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1824 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1825 		drv_cmd = BNX2X_Q_CMD_SETUP;
1826 		break;
1827 
1828 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1829 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1830 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1831 		break;
1832 
1833 	case (RAMROD_CMD_ID_ETH_HALT):
1834 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1835 		drv_cmd = BNX2X_Q_CMD_HALT;
1836 		break;
1837 
1838 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1839 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1840 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1841 		break;
1842 
1843 	case (RAMROD_CMD_ID_ETH_EMPTY):
1844 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1845 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1846 		break;
1847 
1848 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1849 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1850 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1851 		break;
1852 
1853 	default:
1854 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1855 			  command, fp->index);
1856 		return;
1857 	}
1858 
1859 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1860 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1861 		/* q_obj->complete_cmd() failure means that this was
1862 		 * an unexpected completion.
1863 		 *
1864 		 * In this case we don't want to increase the bp->spq_left
1865 		 * because apparently we haven't sent this command the first
1866 		 * place.
1867 		 */
1868 #ifdef BNX2X_STOP_ON_ERROR
1869 		bnx2x_panic();
1870 #else
1871 		return;
1872 #endif
1873 
1874 	smp_mb__before_atomic();
1875 	atomic_inc(&bp->cq_spq_left);
1876 	/* push the change in bp->spq_left and towards the memory */
1877 	smp_mb__after_atomic();
1878 
1879 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1880 
1881 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1882 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1883 		/* if Q update ramrod is completed for last Q in AFEX vif set
1884 		 * flow, then ACK MCP at the end
1885 		 *
1886 		 * mark pending ACK to MCP bit.
1887 		 * prevent case that both bits are cleared.
1888 		 * At the end of load/unload driver checks that
1889 		 * sp_state is cleared, and this order prevents
1890 		 * races
1891 		 */
1892 		smp_mb__before_atomic();
1893 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1894 		wmb();
1895 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1896 		smp_mb__after_atomic();
1897 
1898 		/* schedule the sp task as mcp ack is required */
1899 		bnx2x_schedule_sp_task(bp);
1900 	}
1901 
1902 	return;
1903 }
1904 
1905 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1906 {
1907 	struct bnx2x *bp = netdev_priv(dev_instance);
1908 	u16 status = bnx2x_ack_int(bp);
1909 	u16 mask;
1910 	int i;
1911 	u8 cos;
1912 
1913 	/* Return here if interrupt is shared and it's not for us */
1914 	if (unlikely(status == 0)) {
1915 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1916 		return IRQ_NONE;
1917 	}
1918 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1919 
1920 #ifdef BNX2X_STOP_ON_ERROR
1921 	if (unlikely(bp->panic))
1922 		return IRQ_HANDLED;
1923 #endif
1924 
1925 	for_each_eth_queue(bp, i) {
1926 		struct bnx2x_fastpath *fp = &bp->fp[i];
1927 
1928 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1929 		if (status & mask) {
1930 			/* Handle Rx or Tx according to SB id */
1931 			for_each_cos_in_tx_queue(fp, cos)
1932 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1933 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1934 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1935 			status &= ~mask;
1936 		}
1937 	}
1938 
1939 	if (CNIC_SUPPORT(bp)) {
1940 		mask = 0x2;
1941 		if (status & (mask | 0x1)) {
1942 			struct cnic_ops *c_ops = NULL;
1943 
1944 			rcu_read_lock();
1945 			c_ops = rcu_dereference(bp->cnic_ops);
1946 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1947 				      CNIC_DRV_STATE_HANDLES_IRQ))
1948 				c_ops->cnic_handler(bp->cnic_data, NULL);
1949 			rcu_read_unlock();
1950 
1951 			status &= ~mask;
1952 		}
1953 	}
1954 
1955 	if (unlikely(status & 0x1)) {
1956 
1957 		/* schedule sp task to perform default status block work, ack
1958 		 * attentions and enable interrupts.
1959 		 */
1960 		bnx2x_schedule_sp_task(bp);
1961 
1962 		status &= ~0x1;
1963 		if (!status)
1964 			return IRQ_HANDLED;
1965 	}
1966 
1967 	if (unlikely(status))
1968 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1969 		   status);
1970 
1971 	return IRQ_HANDLED;
1972 }
1973 
1974 /* Link */
1975 
1976 /*
1977  * General service functions
1978  */
1979 
1980 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1981 {
1982 	u32 lock_status;
1983 	u32 resource_bit = (1 << resource);
1984 	int func = BP_FUNC(bp);
1985 	u32 hw_lock_control_reg;
1986 	int cnt;
1987 
1988 	/* Validating that the resource is within range */
1989 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1990 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1991 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1992 		return -EINVAL;
1993 	}
1994 
1995 	if (func <= 5) {
1996 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1997 	} else {
1998 		hw_lock_control_reg =
1999 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2000 	}
2001 
2002 	/* Validating that the resource is not already taken */
2003 	lock_status = REG_RD(bp, hw_lock_control_reg);
2004 	if (lock_status & resource_bit) {
2005 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2006 		   lock_status, resource_bit);
2007 		return -EEXIST;
2008 	}
2009 
2010 	/* Try for 5 second every 5ms */
2011 	for (cnt = 0; cnt < 1000; cnt++) {
2012 		/* Try to acquire the lock */
2013 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2014 		lock_status = REG_RD(bp, hw_lock_control_reg);
2015 		if (lock_status & resource_bit)
2016 			return 0;
2017 
2018 		usleep_range(5000, 10000);
2019 	}
2020 	BNX2X_ERR("Timeout\n");
2021 	return -EAGAIN;
2022 }
2023 
2024 int bnx2x_release_leader_lock(struct bnx2x *bp)
2025 {
2026 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2027 }
2028 
2029 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2030 {
2031 	u32 lock_status;
2032 	u32 resource_bit = (1 << resource);
2033 	int func = BP_FUNC(bp);
2034 	u32 hw_lock_control_reg;
2035 
2036 	/* Validating that the resource is within range */
2037 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2038 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2039 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2040 		return -EINVAL;
2041 	}
2042 
2043 	if (func <= 5) {
2044 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2045 	} else {
2046 		hw_lock_control_reg =
2047 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2048 	}
2049 
2050 	/* Validating that the resource is currently taken */
2051 	lock_status = REG_RD(bp, hw_lock_control_reg);
2052 	if (!(lock_status & resource_bit)) {
2053 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2054 			  lock_status, resource_bit);
2055 		return -EFAULT;
2056 	}
2057 
2058 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2059 	return 0;
2060 }
2061 
2062 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2063 {
2064 	/* The GPIO should be swapped if swap register is set and active */
2065 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2066 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2067 	int gpio_shift = gpio_num +
2068 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2069 	u32 gpio_mask = (1 << gpio_shift);
2070 	u32 gpio_reg;
2071 	int value;
2072 
2073 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2074 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2075 		return -EINVAL;
2076 	}
2077 
2078 	/* read GPIO value */
2079 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2080 
2081 	/* get the requested pin value */
2082 	if ((gpio_reg & gpio_mask) == gpio_mask)
2083 		value = 1;
2084 	else
2085 		value = 0;
2086 
2087 	return value;
2088 }
2089 
2090 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2091 {
2092 	/* The GPIO should be swapped if swap register is set and active */
2093 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2094 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2095 	int gpio_shift = gpio_num +
2096 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2097 	u32 gpio_mask = (1 << gpio_shift);
2098 	u32 gpio_reg;
2099 
2100 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2101 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2102 		return -EINVAL;
2103 	}
2104 
2105 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2106 	/* read GPIO and mask except the float bits */
2107 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2108 
2109 	switch (mode) {
2110 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2111 		DP(NETIF_MSG_LINK,
2112 		   "Set GPIO %d (shift %d) -> output low\n",
2113 		   gpio_num, gpio_shift);
2114 		/* clear FLOAT and set CLR */
2115 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2116 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2117 		break;
2118 
2119 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2120 		DP(NETIF_MSG_LINK,
2121 		   "Set GPIO %d (shift %d) -> output high\n",
2122 		   gpio_num, gpio_shift);
2123 		/* clear FLOAT and set SET */
2124 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2125 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2126 		break;
2127 
2128 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2129 		DP(NETIF_MSG_LINK,
2130 		   "Set GPIO %d (shift %d) -> input\n",
2131 		   gpio_num, gpio_shift);
2132 		/* set FLOAT */
2133 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2134 		break;
2135 
2136 	default:
2137 		break;
2138 	}
2139 
2140 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2141 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2142 
2143 	return 0;
2144 }
2145 
2146 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2147 {
2148 	u32 gpio_reg = 0;
2149 	int rc = 0;
2150 
2151 	/* Any port swapping should be handled by caller. */
2152 
2153 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2154 	/* read GPIO and mask except the float bits */
2155 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2156 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2157 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2158 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2159 
2160 	switch (mode) {
2161 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2162 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2163 		/* set CLR */
2164 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2165 		break;
2166 
2167 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2168 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2169 		/* set SET */
2170 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2171 		break;
2172 
2173 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2174 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2175 		/* set FLOAT */
2176 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2177 		break;
2178 
2179 	default:
2180 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2181 		rc = -EINVAL;
2182 		break;
2183 	}
2184 
2185 	if (rc == 0)
2186 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2187 
2188 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2189 
2190 	return rc;
2191 }
2192 
2193 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2194 {
2195 	/* The GPIO should be swapped if swap register is set and active */
2196 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2197 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2198 	int gpio_shift = gpio_num +
2199 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2200 	u32 gpio_mask = (1 << gpio_shift);
2201 	u32 gpio_reg;
2202 
2203 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2204 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2205 		return -EINVAL;
2206 	}
2207 
2208 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2209 	/* read GPIO int */
2210 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2211 
2212 	switch (mode) {
2213 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2214 		DP(NETIF_MSG_LINK,
2215 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2216 		   gpio_num, gpio_shift);
2217 		/* clear SET and set CLR */
2218 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2219 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2220 		break;
2221 
2222 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2223 		DP(NETIF_MSG_LINK,
2224 		   "Set GPIO INT %d (shift %d) -> output high\n",
2225 		   gpio_num, gpio_shift);
2226 		/* clear CLR and set SET */
2227 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2228 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2229 		break;
2230 
2231 	default:
2232 		break;
2233 	}
2234 
2235 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2236 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2237 
2238 	return 0;
2239 }
2240 
2241 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2242 {
2243 	u32 spio_reg;
2244 
2245 	/* Only 2 SPIOs are configurable */
2246 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2247 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2248 		return -EINVAL;
2249 	}
2250 
2251 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2252 	/* read SPIO and mask except the float bits */
2253 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2254 
2255 	switch (mode) {
2256 	case MISC_SPIO_OUTPUT_LOW:
2257 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2258 		/* clear FLOAT and set CLR */
2259 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2260 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2261 		break;
2262 
2263 	case MISC_SPIO_OUTPUT_HIGH:
2264 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2265 		/* clear FLOAT and set SET */
2266 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2267 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2268 		break;
2269 
2270 	case MISC_SPIO_INPUT_HI_Z:
2271 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2272 		/* set FLOAT */
2273 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2274 		break;
2275 
2276 	default:
2277 		break;
2278 	}
2279 
2280 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2281 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2282 
2283 	return 0;
2284 }
2285 
2286 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2287 {
2288 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2289 	switch (bp->link_vars.ieee_fc &
2290 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2291 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2292 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2293 						   ADVERTISED_Pause);
2294 		break;
2295 
2296 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2297 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2298 						  ADVERTISED_Pause);
2299 		break;
2300 
2301 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2302 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2303 		break;
2304 
2305 	default:
2306 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2307 						   ADVERTISED_Pause);
2308 		break;
2309 	}
2310 }
2311 
2312 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2313 {
2314 	/* Initialize link parameters structure variables
2315 	 * It is recommended to turn off RX FC for jumbo frames
2316 	 *  for better performance
2317 	 */
2318 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2319 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2320 	else
2321 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2322 }
2323 
2324 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2325 {
2326 	u32 pause_enabled = 0;
2327 
2328 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2329 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2330 			pause_enabled = 1;
2331 
2332 		REG_WR(bp, BAR_USTRORM_INTMEM +
2333 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2334 		       pause_enabled);
2335 	}
2336 
2337 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2338 	   pause_enabled ? "enabled" : "disabled");
2339 }
2340 
2341 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2342 {
2343 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2344 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2345 
2346 	if (!BP_NOMCP(bp)) {
2347 		bnx2x_set_requested_fc(bp);
2348 		bnx2x_acquire_phy_lock(bp);
2349 
2350 		if (load_mode == LOAD_DIAG) {
2351 			struct link_params *lp = &bp->link_params;
2352 			lp->loopback_mode = LOOPBACK_XGXS;
2353 			/* do PHY loopback at 10G speed, if possible */
2354 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2355 				if (lp->speed_cap_mask[cfx_idx] &
2356 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2357 					lp->req_line_speed[cfx_idx] =
2358 					SPEED_10000;
2359 				else
2360 					lp->req_line_speed[cfx_idx] =
2361 					SPEED_1000;
2362 			}
2363 		}
2364 
2365 		if (load_mode == LOAD_LOOPBACK_EXT) {
2366 			struct link_params *lp = &bp->link_params;
2367 			lp->loopback_mode = LOOPBACK_EXT;
2368 		}
2369 
2370 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2371 
2372 		bnx2x_release_phy_lock(bp);
2373 
2374 		bnx2x_init_dropless_fc(bp);
2375 
2376 		bnx2x_calc_fc_adv(bp);
2377 
2378 		if (bp->link_vars.link_up) {
2379 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2380 			bnx2x_link_report(bp);
2381 		}
2382 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2383 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2384 		return rc;
2385 	}
2386 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2387 	return -EINVAL;
2388 }
2389 
2390 void bnx2x_link_set(struct bnx2x *bp)
2391 {
2392 	if (!BP_NOMCP(bp)) {
2393 		bnx2x_acquire_phy_lock(bp);
2394 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2395 		bnx2x_release_phy_lock(bp);
2396 
2397 		bnx2x_init_dropless_fc(bp);
2398 
2399 		bnx2x_calc_fc_adv(bp);
2400 	} else
2401 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2402 }
2403 
2404 static void bnx2x__link_reset(struct bnx2x *bp)
2405 {
2406 	if (!BP_NOMCP(bp)) {
2407 		bnx2x_acquire_phy_lock(bp);
2408 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2409 		bnx2x_release_phy_lock(bp);
2410 	} else
2411 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2412 }
2413 
2414 void bnx2x_force_link_reset(struct bnx2x *bp)
2415 {
2416 	bnx2x_acquire_phy_lock(bp);
2417 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2418 	bnx2x_release_phy_lock(bp);
2419 }
2420 
2421 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2422 {
2423 	u8 rc = 0;
2424 
2425 	if (!BP_NOMCP(bp)) {
2426 		bnx2x_acquire_phy_lock(bp);
2427 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2428 				     is_serdes);
2429 		bnx2x_release_phy_lock(bp);
2430 	} else
2431 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2432 
2433 	return rc;
2434 }
2435 
2436 /* Calculates the sum of vn_min_rates.
2437    It's needed for further normalizing of the min_rates.
2438    Returns:
2439      sum of vn_min_rates.
2440        or
2441      0 - if all the min_rates are 0.
2442      In the later case fairness algorithm should be deactivated.
2443      If not all min_rates are zero then those that are zeroes will be set to 1.
2444  */
2445 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2446 				      struct cmng_init_input *input)
2447 {
2448 	int all_zero = 1;
2449 	int vn;
2450 
2451 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2452 		u32 vn_cfg = bp->mf_config[vn];
2453 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2454 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2455 
2456 		/* Skip hidden vns */
2457 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2458 			vn_min_rate = 0;
2459 		/* If min rate is zero - set it to 1 */
2460 		else if (!vn_min_rate)
2461 			vn_min_rate = DEF_MIN_RATE;
2462 		else
2463 			all_zero = 0;
2464 
2465 		input->vnic_min_rate[vn] = vn_min_rate;
2466 	}
2467 
2468 	/* if ETS or all min rates are zeros - disable fairness */
2469 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2470 		input->flags.cmng_enables &=
2471 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2472 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2473 	} else if (all_zero) {
2474 		input->flags.cmng_enables &=
2475 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2476 		DP(NETIF_MSG_IFUP,
2477 		   "All MIN values are zeroes fairness will be disabled\n");
2478 	} else
2479 		input->flags.cmng_enables |=
2480 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2481 }
2482 
2483 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2484 				    struct cmng_init_input *input)
2485 {
2486 	u16 vn_max_rate;
2487 	u32 vn_cfg = bp->mf_config[vn];
2488 
2489 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2490 		vn_max_rate = 0;
2491 	else {
2492 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2493 
2494 		if (IS_MF_SI(bp)) {
2495 			/* maxCfg in percents of linkspeed */
2496 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2497 		} else /* SD modes */
2498 			/* maxCfg is absolute in 100Mb units */
2499 			vn_max_rate = maxCfg * 100;
2500 	}
2501 
2502 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2503 
2504 	input->vnic_max_rate[vn] = vn_max_rate;
2505 }
2506 
2507 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2508 {
2509 	if (CHIP_REV_IS_SLOW(bp))
2510 		return CMNG_FNS_NONE;
2511 	if (IS_MF(bp))
2512 		return CMNG_FNS_MINMAX;
2513 
2514 	return CMNG_FNS_NONE;
2515 }
2516 
2517 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2518 {
2519 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2520 
2521 	if (BP_NOMCP(bp))
2522 		return; /* what should be the default value in this case */
2523 
2524 	/* For 2 port configuration the absolute function number formula
2525 	 * is:
2526 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2527 	 *
2528 	 *      and there are 4 functions per port
2529 	 *
2530 	 * For 4 port configuration it is
2531 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2532 	 *
2533 	 *      and there are 2 functions per port
2534 	 */
2535 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2536 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2537 
2538 		if (func >= E1H_FUNC_MAX)
2539 			break;
2540 
2541 		bp->mf_config[vn] =
2542 			MF_CFG_RD(bp, func_mf_config[func].config);
2543 	}
2544 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2545 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2546 		bp->flags |= MF_FUNC_DIS;
2547 	} else {
2548 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2549 		bp->flags &= ~MF_FUNC_DIS;
2550 	}
2551 }
2552 
2553 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2554 {
2555 	struct cmng_init_input input;
2556 	memset(&input, 0, sizeof(struct cmng_init_input));
2557 
2558 	input.port_rate = bp->link_vars.line_speed;
2559 
2560 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2561 		int vn;
2562 
2563 		/* read mf conf from shmem */
2564 		if (read_cfg)
2565 			bnx2x_read_mf_cfg(bp);
2566 
2567 		/* vn_weight_sum and enable fairness if not 0 */
2568 		bnx2x_calc_vn_min(bp, &input);
2569 
2570 		/* calculate and set min-max rate for each vn */
2571 		if (bp->port.pmf)
2572 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2573 				bnx2x_calc_vn_max(bp, vn, &input);
2574 
2575 		/* always enable rate shaping and fairness */
2576 		input.flags.cmng_enables |=
2577 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2578 
2579 		bnx2x_init_cmng(&input, &bp->cmng);
2580 		return;
2581 	}
2582 
2583 	/* rate shaping and fairness are disabled */
2584 	DP(NETIF_MSG_IFUP,
2585 	   "rate shaping and fairness are disabled\n");
2586 }
2587 
2588 static void storm_memset_cmng(struct bnx2x *bp,
2589 			      struct cmng_init *cmng,
2590 			      u8 port)
2591 {
2592 	int vn;
2593 	size_t size = sizeof(struct cmng_struct_per_port);
2594 
2595 	u32 addr = BAR_XSTRORM_INTMEM +
2596 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2597 
2598 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2599 
2600 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2601 		int func = func_by_vn(bp, vn);
2602 
2603 		addr = BAR_XSTRORM_INTMEM +
2604 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2605 		size = sizeof(struct rate_shaping_vars_per_vn);
2606 		__storm_memset_struct(bp, addr, size,
2607 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2608 
2609 		addr = BAR_XSTRORM_INTMEM +
2610 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2611 		size = sizeof(struct fairness_vars_per_vn);
2612 		__storm_memset_struct(bp, addr, size,
2613 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2614 	}
2615 }
2616 
2617 /* init cmng mode in HW according to local configuration */
2618 void bnx2x_set_local_cmng(struct bnx2x *bp)
2619 {
2620 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2621 
2622 	if (cmng_fns != CMNG_FNS_NONE) {
2623 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2624 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2625 	} else {
2626 		/* rate shaping and fairness are disabled */
2627 		DP(NETIF_MSG_IFUP,
2628 		   "single function mode without fairness\n");
2629 	}
2630 }
2631 
2632 /* This function is called upon link interrupt */
2633 static void bnx2x_link_attn(struct bnx2x *bp)
2634 {
2635 	/* Make sure that we are synced with the current statistics */
2636 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2637 
2638 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2639 
2640 	bnx2x_init_dropless_fc(bp);
2641 
2642 	if (bp->link_vars.link_up) {
2643 
2644 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2645 			struct host_port_stats *pstats;
2646 
2647 			pstats = bnx2x_sp(bp, port_stats);
2648 			/* reset old mac stats */
2649 			memset(&(pstats->mac_stx[0]), 0,
2650 			       sizeof(struct mac_stx));
2651 		}
2652 		if (bp->state == BNX2X_STATE_OPEN)
2653 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2654 	}
2655 
2656 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2657 		bnx2x_set_local_cmng(bp);
2658 
2659 	__bnx2x_link_report(bp);
2660 
2661 	if (IS_MF(bp))
2662 		bnx2x_link_sync_notify(bp);
2663 }
2664 
2665 void bnx2x__link_status_update(struct bnx2x *bp)
2666 {
2667 	if (bp->state != BNX2X_STATE_OPEN)
2668 		return;
2669 
2670 	/* read updated dcb configuration */
2671 	if (IS_PF(bp)) {
2672 		bnx2x_dcbx_pmf_update(bp);
2673 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2674 		if (bp->link_vars.link_up)
2675 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2676 		else
2677 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2678 			/* indicate link status */
2679 		bnx2x_link_report(bp);
2680 
2681 	} else { /* VF */
2682 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2683 					  SUPPORTED_10baseT_Full |
2684 					  SUPPORTED_100baseT_Half |
2685 					  SUPPORTED_100baseT_Full |
2686 					  SUPPORTED_1000baseT_Full |
2687 					  SUPPORTED_2500baseX_Full |
2688 					  SUPPORTED_10000baseT_Full |
2689 					  SUPPORTED_TP |
2690 					  SUPPORTED_FIBRE |
2691 					  SUPPORTED_Autoneg |
2692 					  SUPPORTED_Pause |
2693 					  SUPPORTED_Asym_Pause);
2694 		bp->port.advertising[0] = bp->port.supported[0];
2695 
2696 		bp->link_params.bp = bp;
2697 		bp->link_params.port = BP_PORT(bp);
2698 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2699 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2700 		bp->link_params.req_line_speed[0] = SPEED_10000;
2701 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2702 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2703 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2704 		bp->link_vars.line_speed = SPEED_10000;
2705 		bp->link_vars.link_status =
2706 			(LINK_STATUS_LINK_UP |
2707 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2708 		bp->link_vars.link_up = 1;
2709 		bp->link_vars.duplex = DUPLEX_FULL;
2710 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2711 		__bnx2x_link_report(bp);
2712 
2713 		bnx2x_sample_bulletin(bp);
2714 
2715 		/* if bulletin board did not have an update for link status
2716 		 * __bnx2x_link_report will report current status
2717 		 * but it will NOT duplicate report in case of already reported
2718 		 * during sampling bulletin board.
2719 		 */
2720 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2721 	}
2722 }
2723 
2724 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2725 				  u16 vlan_val, u8 allowed_prio)
2726 {
2727 	struct bnx2x_func_state_params func_params = {NULL};
2728 	struct bnx2x_func_afex_update_params *f_update_params =
2729 		&func_params.params.afex_update;
2730 
2731 	func_params.f_obj = &bp->func_obj;
2732 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2733 
2734 	/* no need to wait for RAMROD completion, so don't
2735 	 * set RAMROD_COMP_WAIT flag
2736 	 */
2737 
2738 	f_update_params->vif_id = vifid;
2739 	f_update_params->afex_default_vlan = vlan_val;
2740 	f_update_params->allowed_priorities = allowed_prio;
2741 
2742 	/* if ramrod can not be sent, response to MCP immediately */
2743 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2744 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2745 
2746 	return 0;
2747 }
2748 
2749 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2750 					  u16 vif_index, u8 func_bit_map)
2751 {
2752 	struct bnx2x_func_state_params func_params = {NULL};
2753 	struct bnx2x_func_afex_viflists_params *update_params =
2754 		&func_params.params.afex_viflists;
2755 	int rc;
2756 	u32 drv_msg_code;
2757 
2758 	/* validate only LIST_SET and LIST_GET are received from switch */
2759 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2760 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2761 			  cmd_type);
2762 
2763 	func_params.f_obj = &bp->func_obj;
2764 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2765 
2766 	/* set parameters according to cmd_type */
2767 	update_params->afex_vif_list_command = cmd_type;
2768 	update_params->vif_list_index = vif_index;
2769 	update_params->func_bit_map =
2770 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2771 	update_params->func_to_clear = 0;
2772 	drv_msg_code =
2773 		(cmd_type == VIF_LIST_RULE_GET) ?
2774 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2775 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2776 
2777 	/* if ramrod can not be sent, respond to MCP immediately for
2778 	 * SET and GET requests (other are not triggered from MCP)
2779 	 */
2780 	rc = bnx2x_func_state_change(bp, &func_params);
2781 	if (rc < 0)
2782 		bnx2x_fw_command(bp, drv_msg_code, 0);
2783 
2784 	return 0;
2785 }
2786 
2787 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2788 {
2789 	struct afex_stats afex_stats;
2790 	u32 func = BP_ABS_FUNC(bp);
2791 	u32 mf_config;
2792 	u16 vlan_val;
2793 	u32 vlan_prio;
2794 	u16 vif_id;
2795 	u8 allowed_prio;
2796 	u8 vlan_mode;
2797 	u32 addr_to_write, vifid, addrs, stats_type, i;
2798 
2799 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2800 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2801 		DP(BNX2X_MSG_MCP,
2802 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2803 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2804 	}
2805 
2806 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2807 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2808 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2809 		DP(BNX2X_MSG_MCP,
2810 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2811 		   vifid, addrs);
2812 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2813 					       addrs);
2814 	}
2815 
2816 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2817 		addr_to_write = SHMEM2_RD(bp,
2818 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2819 		stats_type = SHMEM2_RD(bp,
2820 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2821 
2822 		DP(BNX2X_MSG_MCP,
2823 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2824 		   addr_to_write);
2825 
2826 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2827 
2828 		/* write response to scratchpad, for MCP */
2829 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2830 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2831 			       *(((u32 *)(&afex_stats))+i));
2832 
2833 		/* send ack message to MCP */
2834 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2835 	}
2836 
2837 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2838 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2839 		bp->mf_config[BP_VN(bp)] = mf_config;
2840 		DP(BNX2X_MSG_MCP,
2841 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2842 		   mf_config);
2843 
2844 		/* if VIF_SET is "enabled" */
2845 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2846 			/* set rate limit directly to internal RAM */
2847 			struct cmng_init_input cmng_input;
2848 			struct rate_shaping_vars_per_vn m_rs_vn;
2849 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2850 			u32 addr = BAR_XSTRORM_INTMEM +
2851 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2852 
2853 			bp->mf_config[BP_VN(bp)] = mf_config;
2854 
2855 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2856 			m_rs_vn.vn_counter.rate =
2857 				cmng_input.vnic_max_rate[BP_VN(bp)];
2858 			m_rs_vn.vn_counter.quota =
2859 				(m_rs_vn.vn_counter.rate *
2860 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2861 
2862 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2863 
2864 			/* read relevant values from mf_cfg struct in shmem */
2865 			vif_id =
2866 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2867 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2868 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2869 			vlan_val =
2870 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2871 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2872 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2873 			vlan_prio = (mf_config &
2874 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2875 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2876 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2877 			vlan_mode =
2878 				(MF_CFG_RD(bp,
2879 					   func_mf_config[func].afex_config) &
2880 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2881 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2882 			allowed_prio =
2883 				(MF_CFG_RD(bp,
2884 					   func_mf_config[func].afex_config) &
2885 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2886 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2887 
2888 			/* send ramrod to FW, return in case of failure */
2889 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2890 						   allowed_prio))
2891 				return;
2892 
2893 			bp->afex_def_vlan_tag = vlan_val;
2894 			bp->afex_vlan_mode = vlan_mode;
2895 		} else {
2896 			/* notify link down because BP->flags is disabled */
2897 			bnx2x_link_report(bp);
2898 
2899 			/* send INVALID VIF ramrod to FW */
2900 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2901 
2902 			/* Reset the default afex VLAN */
2903 			bp->afex_def_vlan_tag = -1;
2904 		}
2905 	}
2906 }
2907 
2908 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2909 {
2910 	struct bnx2x_func_switch_update_params *switch_update_params;
2911 	struct bnx2x_func_state_params func_params;
2912 
2913 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2914 	switch_update_params = &func_params.params.switch_update;
2915 	func_params.f_obj = &bp->func_obj;
2916 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2917 
2918 	if (IS_MF_UFP(bp)) {
2919 		int func = BP_ABS_FUNC(bp);
2920 		u32 val;
2921 
2922 		/* Re-learn the S-tag from shmem */
2923 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2924 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2925 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2926 			bp->mf_ov = val;
2927 		} else {
2928 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2929 			goto fail;
2930 		}
2931 
2932 		/* Configure new S-tag in LLH */
2933 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2934 		       bp->mf_ov);
2935 
2936 		/* Send Ramrod to update FW of change */
2937 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2938 			  &switch_update_params->changes);
2939 		switch_update_params->vlan = bp->mf_ov;
2940 
2941 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2942 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2943 				  bp->mf_ov);
2944 			goto fail;
2945 		}
2946 
2947 		DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", bp->mf_ov);
2948 
2949 		bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2950 
2951 		return;
2952 	}
2953 
2954 	/* not supported by SW yet */
2955 fail:
2956 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2957 }
2958 
2959 static void bnx2x_pmf_update(struct bnx2x *bp)
2960 {
2961 	int port = BP_PORT(bp);
2962 	u32 val;
2963 
2964 	bp->port.pmf = 1;
2965 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2966 
2967 	/*
2968 	 * We need the mb() to ensure the ordering between the writing to
2969 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2970 	 */
2971 	smp_mb();
2972 
2973 	/* queue a periodic task */
2974 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2975 
2976 	bnx2x_dcbx_pmf_update(bp);
2977 
2978 	/* enable nig attention */
2979 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2980 	if (bp->common.int_block == INT_BLOCK_HC) {
2981 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2982 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2983 	} else if (!CHIP_IS_E1x(bp)) {
2984 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2985 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2986 	}
2987 
2988 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2989 }
2990 
2991 /* end of Link */
2992 
2993 /* slow path */
2994 
2995 /*
2996  * General service functions
2997  */
2998 
2999 /* send the MCP a request, block until there is a reply */
3000 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3001 {
3002 	int mb_idx = BP_FW_MB_IDX(bp);
3003 	u32 seq;
3004 	u32 rc = 0;
3005 	u32 cnt = 1;
3006 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3007 
3008 	mutex_lock(&bp->fw_mb_mutex);
3009 	seq = ++bp->fw_seq;
3010 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3011 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3012 
3013 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3014 			(command | seq), param);
3015 
3016 	do {
3017 		/* let the FW do it's magic ... */
3018 		msleep(delay);
3019 
3020 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3021 
3022 		/* Give the FW up to 5 second (500*10ms) */
3023 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3024 
3025 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3026 	   cnt*delay, rc, seq);
3027 
3028 	/* is this a reply to our command? */
3029 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3030 		rc &= FW_MSG_CODE_MASK;
3031 	else {
3032 		/* FW BUG! */
3033 		BNX2X_ERR("FW failed to respond!\n");
3034 		bnx2x_fw_dump(bp);
3035 		rc = 0;
3036 	}
3037 	mutex_unlock(&bp->fw_mb_mutex);
3038 
3039 	return rc;
3040 }
3041 
3042 static void storm_memset_func_cfg(struct bnx2x *bp,
3043 				 struct tstorm_eth_function_common_config *tcfg,
3044 				 u16 abs_fid)
3045 {
3046 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3047 
3048 	u32 addr = BAR_TSTRORM_INTMEM +
3049 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3050 
3051 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3052 }
3053 
3054 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3055 {
3056 	if (CHIP_IS_E1x(bp)) {
3057 		struct tstorm_eth_function_common_config tcfg = {0};
3058 
3059 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3060 	}
3061 
3062 	/* Enable the function in the FW */
3063 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3064 	storm_memset_func_en(bp, p->func_id, 1);
3065 
3066 	/* spq */
3067 	if (p->func_flgs & FUNC_FLG_SPQ) {
3068 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3069 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3070 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3071 	}
3072 }
3073 
3074 /**
3075  * bnx2x_get_common_flags - Return common flags
3076  *
3077  * @bp		device handle
3078  * @fp		queue handle
3079  * @zero_stats	TRUE if statistics zeroing is needed
3080  *
3081  * Return the flags that are common for the Tx-only and not normal connections.
3082  */
3083 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3084 					    struct bnx2x_fastpath *fp,
3085 					    bool zero_stats)
3086 {
3087 	unsigned long flags = 0;
3088 
3089 	/* PF driver will always initialize the Queue to an ACTIVE state */
3090 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3091 
3092 	/* tx only connections collect statistics (on the same index as the
3093 	 * parent connection). The statistics are zeroed when the parent
3094 	 * connection is initialized.
3095 	 */
3096 
3097 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3098 	if (zero_stats)
3099 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3100 
3101 	if (bp->flags & TX_SWITCHING)
3102 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3103 
3104 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3105 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3106 
3107 #ifdef BNX2X_STOP_ON_ERROR
3108 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3109 #endif
3110 
3111 	return flags;
3112 }
3113 
3114 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3115 				       struct bnx2x_fastpath *fp,
3116 				       bool leading)
3117 {
3118 	unsigned long flags = 0;
3119 
3120 	/* calculate other queue flags */
3121 	if (IS_MF_SD(bp))
3122 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3123 
3124 	if (IS_FCOE_FP(fp)) {
3125 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3126 		/* For FCoE - force usage of default priority (for afex) */
3127 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3128 	}
3129 
3130 	if (!fp->disable_tpa) {
3131 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3132 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3133 		if (fp->mode == TPA_MODE_GRO)
3134 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3135 	}
3136 
3137 	if (leading) {
3138 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3139 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3140 	}
3141 
3142 	/* Always set HW VLAN stripping */
3143 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3144 
3145 	/* configure silent vlan removal */
3146 	if (IS_MF_AFEX(bp))
3147 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3148 
3149 	return flags | bnx2x_get_common_flags(bp, fp, true);
3150 }
3151 
3152 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3153 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3154 	u8 cos)
3155 {
3156 	gen_init->stat_id = bnx2x_stats_id(fp);
3157 	gen_init->spcl_id = fp->cl_id;
3158 
3159 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3160 	if (IS_FCOE_FP(fp))
3161 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3162 	else
3163 		gen_init->mtu = bp->dev->mtu;
3164 
3165 	gen_init->cos = cos;
3166 }
3167 
3168 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3169 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3170 	struct bnx2x_rxq_setup_params *rxq_init)
3171 {
3172 	u8 max_sge = 0;
3173 	u16 sge_sz = 0;
3174 	u16 tpa_agg_size = 0;
3175 
3176 	if (!fp->disable_tpa) {
3177 		pause->sge_th_lo = SGE_TH_LO(bp);
3178 		pause->sge_th_hi = SGE_TH_HI(bp);
3179 
3180 		/* validate SGE ring has enough to cross high threshold */
3181 		WARN_ON(bp->dropless_fc &&
3182 				pause->sge_th_hi + FW_PREFETCH_CNT >
3183 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3184 
3185 		tpa_agg_size = TPA_AGG_SIZE;
3186 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3187 			SGE_PAGE_SHIFT;
3188 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3189 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3190 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3191 	}
3192 
3193 	/* pause - not for e1 */
3194 	if (!CHIP_IS_E1(bp)) {
3195 		pause->bd_th_lo = BD_TH_LO(bp);
3196 		pause->bd_th_hi = BD_TH_HI(bp);
3197 
3198 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3199 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3200 		/*
3201 		 * validate that rings have enough entries to cross
3202 		 * high thresholds
3203 		 */
3204 		WARN_ON(bp->dropless_fc &&
3205 				pause->bd_th_hi + FW_PREFETCH_CNT >
3206 				bp->rx_ring_size);
3207 		WARN_ON(bp->dropless_fc &&
3208 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3209 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3210 
3211 		pause->pri_map = 1;
3212 	}
3213 
3214 	/* rxq setup */
3215 	rxq_init->dscr_map = fp->rx_desc_mapping;
3216 	rxq_init->sge_map = fp->rx_sge_mapping;
3217 	rxq_init->rcq_map = fp->rx_comp_mapping;
3218 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3219 
3220 	/* This should be a maximum number of data bytes that may be
3221 	 * placed on the BD (not including paddings).
3222 	 */
3223 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3224 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3225 
3226 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3227 	rxq_init->tpa_agg_sz = tpa_agg_size;
3228 	rxq_init->sge_buf_sz = sge_sz;
3229 	rxq_init->max_sges_pkt = max_sge;
3230 	rxq_init->rss_engine_id = BP_FUNC(bp);
3231 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3232 
3233 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3234 	 *
3235 	 * For PF Clients it should be the maximum available number.
3236 	 * VF driver(s) may want to define it to a smaller value.
3237 	 */
3238 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3239 
3240 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3241 	rxq_init->fw_sb_id = fp->fw_sb_id;
3242 
3243 	if (IS_FCOE_FP(fp))
3244 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3245 	else
3246 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3247 	/* configure silent vlan removal
3248 	 * if multi function mode is afex, then mask default vlan
3249 	 */
3250 	if (IS_MF_AFEX(bp)) {
3251 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3252 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3253 	}
3254 }
3255 
3256 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3257 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3258 	u8 cos)
3259 {
3260 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3261 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3262 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3263 	txq_init->fw_sb_id = fp->fw_sb_id;
3264 
3265 	/*
3266 	 * set the tss leading client id for TX classification ==
3267 	 * leading RSS client id
3268 	 */
3269 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3270 
3271 	if (IS_FCOE_FP(fp)) {
3272 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3273 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3274 	}
3275 }
3276 
3277 static void bnx2x_pf_init(struct bnx2x *bp)
3278 {
3279 	struct bnx2x_func_init_params func_init = {0};
3280 	struct event_ring_data eq_data = { {0} };
3281 	u16 flags;
3282 
3283 	if (!CHIP_IS_E1x(bp)) {
3284 		/* reset IGU PF statistics: MSIX + ATTN */
3285 		/* PF */
3286 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3287 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3288 			   (CHIP_MODE_IS_4_PORT(bp) ?
3289 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3290 		/* ATTN */
3291 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3292 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3293 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3294 			   (CHIP_MODE_IS_4_PORT(bp) ?
3295 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3296 	}
3297 
3298 	/* function setup flags */
3299 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3300 
3301 	/* This flag is relevant for E1x only.
3302 	 * E2 doesn't have a TPA configuration in a function level.
3303 	 */
3304 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3305 
3306 	func_init.func_flgs = flags;
3307 	func_init.pf_id = BP_FUNC(bp);
3308 	func_init.func_id = BP_FUNC(bp);
3309 	func_init.spq_map = bp->spq_mapping;
3310 	func_init.spq_prod = bp->spq_prod_idx;
3311 
3312 	bnx2x_func_init(bp, &func_init);
3313 
3314 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3315 
3316 	/*
3317 	 * Congestion management values depend on the link rate
3318 	 * There is no active link so initial link rate is set to 10 Gbps.
3319 	 * When the link comes up The congestion management values are
3320 	 * re-calculated according to the actual link rate.
3321 	 */
3322 	bp->link_vars.line_speed = SPEED_10000;
3323 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3324 
3325 	/* Only the PMF sets the HW */
3326 	if (bp->port.pmf)
3327 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3328 
3329 	/* init Event Queue - PCI bus guarantees correct endianity*/
3330 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3331 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3332 	eq_data.producer = bp->eq_prod;
3333 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3334 	eq_data.sb_id = DEF_SB_ID;
3335 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3336 }
3337 
3338 static void bnx2x_e1h_disable(struct bnx2x *bp)
3339 {
3340 	int port = BP_PORT(bp);
3341 
3342 	bnx2x_tx_disable(bp);
3343 
3344 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3345 }
3346 
3347 static void bnx2x_e1h_enable(struct bnx2x *bp)
3348 {
3349 	int port = BP_PORT(bp);
3350 
3351 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3352 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3353 
3354 	/* Tx queue should be only re-enabled */
3355 	netif_tx_wake_all_queues(bp->dev);
3356 
3357 	/*
3358 	 * Should not call netif_carrier_on since it will be called if the link
3359 	 * is up when checking for link state
3360 	 */
3361 }
3362 
3363 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3364 
3365 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3366 {
3367 	struct eth_stats_info *ether_stat =
3368 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3369 	struct bnx2x_vlan_mac_obj *mac_obj =
3370 		&bp->sp_objs->mac_obj;
3371 	int i;
3372 
3373 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3374 		ETH_STAT_INFO_VERSION_LEN);
3375 
3376 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3377 	 * mac_local field in ether_stat struct. The base address is offset by 2
3378 	 * bytes to account for the field being 8 bytes but a mac address is
3379 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3380 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3381 	 * allocated by the ether_stat struct, so the macs will land in their
3382 	 * proper positions.
3383 	 */
3384 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3385 		memset(ether_stat->mac_local + i, 0,
3386 		       sizeof(ether_stat->mac_local[0]));
3387 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3388 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3389 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3390 				ETH_ALEN);
3391 	ether_stat->mtu_size = bp->dev->mtu;
3392 	if (bp->dev->features & NETIF_F_RXCSUM)
3393 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3394 	if (bp->dev->features & NETIF_F_TSO)
3395 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3396 	ether_stat->feature_flags |= bp->common.boot_mode;
3397 
3398 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3399 
3400 	ether_stat->txq_size = bp->tx_ring_size;
3401 	ether_stat->rxq_size = bp->rx_ring_size;
3402 
3403 #ifdef CONFIG_BNX2X_SRIOV
3404 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3405 #endif
3406 }
3407 
3408 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3409 {
3410 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3411 	struct fcoe_stats_info *fcoe_stat =
3412 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3413 
3414 	if (!CNIC_LOADED(bp))
3415 		return;
3416 
3417 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3418 
3419 	fcoe_stat->qos_priority =
3420 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3421 
3422 	/* insert FCoE stats from ramrod response */
3423 	if (!NO_FCOE(bp)) {
3424 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3425 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3426 			tstorm_queue_statistics;
3427 
3428 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3429 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3430 			xstorm_queue_statistics;
3431 
3432 		struct fcoe_statistics_params *fw_fcoe_stat =
3433 			&bp->fw_stats_data->fcoe;
3434 
3435 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3436 			  fcoe_stat->rx_bytes_lo,
3437 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3438 
3439 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3440 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3441 			  fcoe_stat->rx_bytes_lo,
3442 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3443 
3444 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3445 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3446 			  fcoe_stat->rx_bytes_lo,
3447 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3448 
3449 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3450 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3451 			  fcoe_stat->rx_bytes_lo,
3452 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3453 
3454 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3455 			  fcoe_stat->rx_frames_lo,
3456 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3457 
3458 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3459 			  fcoe_stat->rx_frames_lo,
3460 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3461 
3462 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3463 			  fcoe_stat->rx_frames_lo,
3464 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3465 
3466 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3467 			  fcoe_stat->rx_frames_lo,
3468 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3469 
3470 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3471 			  fcoe_stat->tx_bytes_lo,
3472 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3473 
3474 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3475 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3476 			  fcoe_stat->tx_bytes_lo,
3477 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3478 
3479 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3480 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3481 			  fcoe_stat->tx_bytes_lo,
3482 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3483 
3484 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3485 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3486 			  fcoe_stat->tx_bytes_lo,
3487 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3488 
3489 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3490 			  fcoe_stat->tx_frames_lo,
3491 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3492 
3493 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3494 			  fcoe_stat->tx_frames_lo,
3495 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3496 
3497 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3498 			  fcoe_stat->tx_frames_lo,
3499 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3500 
3501 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3502 			  fcoe_stat->tx_frames_lo,
3503 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3504 	}
3505 
3506 	/* ask L5 driver to add data to the struct */
3507 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3508 }
3509 
3510 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3511 {
3512 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3513 	struct iscsi_stats_info *iscsi_stat =
3514 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3515 
3516 	if (!CNIC_LOADED(bp))
3517 		return;
3518 
3519 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3520 	       ETH_ALEN);
3521 
3522 	iscsi_stat->qos_priority =
3523 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3524 
3525 	/* ask L5 driver to add data to the struct */
3526 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3527 }
3528 
3529 /* called due to MCP event (on pmf):
3530  *	reread new bandwidth configuration
3531  *	configure FW
3532  *	notify others function about the change
3533  */
3534 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3535 {
3536 	if (bp->link_vars.link_up) {
3537 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3538 		bnx2x_link_sync_notify(bp);
3539 	}
3540 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3541 }
3542 
3543 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3544 {
3545 	bnx2x_config_mf_bw(bp);
3546 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3547 }
3548 
3549 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3550 {
3551 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3552 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3553 }
3554 
3555 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3556 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3557 
3558 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3559 {
3560 	enum drv_info_opcode op_code;
3561 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3562 	bool release = false;
3563 	int wait;
3564 
3565 	/* if drv_info version supported by MFW doesn't match - send NACK */
3566 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3567 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3568 		return;
3569 	}
3570 
3571 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3572 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3573 
3574 	/* Must prevent other flows from accessing drv_info_to_mcp */
3575 	mutex_lock(&bp->drv_info_mutex);
3576 
3577 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3578 	       sizeof(union drv_info_to_mcp));
3579 
3580 	switch (op_code) {
3581 	case ETH_STATS_OPCODE:
3582 		bnx2x_drv_info_ether_stat(bp);
3583 		break;
3584 	case FCOE_STATS_OPCODE:
3585 		bnx2x_drv_info_fcoe_stat(bp);
3586 		break;
3587 	case ISCSI_STATS_OPCODE:
3588 		bnx2x_drv_info_iscsi_stat(bp);
3589 		break;
3590 	default:
3591 		/* if op code isn't supported - send NACK */
3592 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3593 		goto out;
3594 	}
3595 
3596 	/* if we got drv_info attn from MFW then these fields are defined in
3597 	 * shmem2 for sure
3598 	 */
3599 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3600 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3601 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3602 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3603 
3604 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3605 
3606 	/* Since possible management wants both this and get_driver_version
3607 	 * need to wait until management notifies us it finished utilizing
3608 	 * the buffer.
3609 	 */
3610 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3611 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3612 	} else if (!bp->drv_info_mng_owner) {
3613 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3614 
3615 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3616 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3617 
3618 			/* Management is done; need to clear indication */
3619 			if (indication & bit) {
3620 				SHMEM2_WR(bp, mfw_drv_indication,
3621 					  indication & ~bit);
3622 				release = true;
3623 				break;
3624 			}
3625 
3626 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3627 		}
3628 	}
3629 	if (!release) {
3630 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3631 		bp->drv_info_mng_owner = true;
3632 	}
3633 
3634 out:
3635 	mutex_unlock(&bp->drv_info_mutex);
3636 }
3637 
3638 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3639 {
3640 	u8 vals[4];
3641 	int i = 0;
3642 
3643 	if (bnx2x_format) {
3644 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3645 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3646 		if (i > 0)
3647 			vals[0] -= '0';
3648 	} else {
3649 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3650 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3651 	}
3652 
3653 	while (i < 4)
3654 		vals[i++] = 0;
3655 
3656 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3657 }
3658 
3659 void bnx2x_update_mng_version(struct bnx2x *bp)
3660 {
3661 	u32 iscsiver = DRV_VER_NOT_LOADED;
3662 	u32 fcoever = DRV_VER_NOT_LOADED;
3663 	u32 ethver = DRV_VER_NOT_LOADED;
3664 	int idx = BP_FW_MB_IDX(bp);
3665 	u8 *version;
3666 
3667 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3668 		return;
3669 
3670 	mutex_lock(&bp->drv_info_mutex);
3671 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3672 	if (bp->drv_info_mng_owner)
3673 		goto out;
3674 
3675 	if (bp->state != BNX2X_STATE_OPEN)
3676 		goto out;
3677 
3678 	/* Parse ethernet driver version */
3679 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3680 	if (!CNIC_LOADED(bp))
3681 		goto out;
3682 
3683 	/* Try getting storage driver version via cnic */
3684 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3685 	       sizeof(union drv_info_to_mcp));
3686 	bnx2x_drv_info_iscsi_stat(bp);
3687 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3688 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3689 
3690 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3691 	       sizeof(union drv_info_to_mcp));
3692 	bnx2x_drv_info_fcoe_stat(bp);
3693 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3694 	fcoever = bnx2x_update_mng_version_utility(version, false);
3695 
3696 out:
3697 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3698 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3699 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3700 
3701 	mutex_unlock(&bp->drv_info_mutex);
3702 
3703 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3704 	   ethver, iscsiver, fcoever);
3705 }
3706 
3707 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3708 {
3709 	u32 cmd_ok, cmd_fail;
3710 
3711 	/* sanity */
3712 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3713 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3714 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3715 		return;
3716 	}
3717 
3718 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3719 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3720 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3721 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3722 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3723 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3724 	}
3725 
3726 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3727 
3728 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3729 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3730 		/* This is the only place besides the function initialization
3731 		 * where the bp->flags can change so it is done without any
3732 		 * locks
3733 		 */
3734 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3735 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3736 			bp->flags |= MF_FUNC_DIS;
3737 
3738 			bnx2x_e1h_disable(bp);
3739 		} else {
3740 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3741 			bp->flags &= ~MF_FUNC_DIS;
3742 
3743 			bnx2x_e1h_enable(bp);
3744 		}
3745 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3746 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3747 	}
3748 
3749 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3750 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3751 		bnx2x_config_mf_bw(bp);
3752 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3753 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3754 	}
3755 
3756 	/* Report results to MCP */
3757 	if (event)
3758 		bnx2x_fw_command(bp, cmd_fail, 0);
3759 	else
3760 		bnx2x_fw_command(bp, cmd_ok, 0);
3761 }
3762 
3763 /* must be called under the spq lock */
3764 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3765 {
3766 	struct eth_spe *next_spe = bp->spq_prod_bd;
3767 
3768 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3769 		bp->spq_prod_bd = bp->spq;
3770 		bp->spq_prod_idx = 0;
3771 		DP(BNX2X_MSG_SP, "end of spq\n");
3772 	} else {
3773 		bp->spq_prod_bd++;
3774 		bp->spq_prod_idx++;
3775 	}
3776 	return next_spe;
3777 }
3778 
3779 /* must be called under the spq lock */
3780 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3781 {
3782 	int func = BP_FUNC(bp);
3783 
3784 	/*
3785 	 * Make sure that BD data is updated before writing the producer:
3786 	 * BD data is written to the memory, the producer is read from the
3787 	 * memory, thus we need a full memory barrier to ensure the ordering.
3788 	 */
3789 	mb();
3790 
3791 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3792 		 bp->spq_prod_idx);
3793 	mmiowb();
3794 }
3795 
3796 /**
3797  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3798  *
3799  * @cmd:	command to check
3800  * @cmd_type:	command type
3801  */
3802 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3803 {
3804 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3805 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3806 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3807 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3808 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3809 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3810 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3811 		return true;
3812 	else
3813 		return false;
3814 }
3815 
3816 /**
3817  * bnx2x_sp_post - place a single command on an SP ring
3818  *
3819  * @bp:		driver handle
3820  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3821  * @cid:	SW CID the command is related to
3822  * @data_hi:	command private data address (high 32 bits)
3823  * @data_lo:	command private data address (low 32 bits)
3824  * @cmd_type:	command type (e.g. NONE, ETH)
3825  *
3826  * SP data is handled as if it's always an address pair, thus data fields are
3827  * not swapped to little endian in upper functions. Instead this function swaps
3828  * data as if it's two u32 fields.
3829  */
3830 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3831 		  u32 data_hi, u32 data_lo, int cmd_type)
3832 {
3833 	struct eth_spe *spe;
3834 	u16 type;
3835 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3836 
3837 #ifdef BNX2X_STOP_ON_ERROR
3838 	if (unlikely(bp->panic)) {
3839 		BNX2X_ERR("Can't post SP when there is panic\n");
3840 		return -EIO;
3841 	}
3842 #endif
3843 
3844 	spin_lock_bh(&bp->spq_lock);
3845 
3846 	if (common) {
3847 		if (!atomic_read(&bp->eq_spq_left)) {
3848 			BNX2X_ERR("BUG! EQ ring full!\n");
3849 			spin_unlock_bh(&bp->spq_lock);
3850 			bnx2x_panic();
3851 			return -EBUSY;
3852 		}
3853 	} else if (!atomic_read(&bp->cq_spq_left)) {
3854 			BNX2X_ERR("BUG! SPQ ring full!\n");
3855 			spin_unlock_bh(&bp->spq_lock);
3856 			bnx2x_panic();
3857 			return -EBUSY;
3858 	}
3859 
3860 	spe = bnx2x_sp_get_next(bp);
3861 
3862 	/* CID needs port number to be encoded int it */
3863 	spe->hdr.conn_and_cmd_data =
3864 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3865 				    HW_CID(bp, cid));
3866 
3867 	/* In some cases, type may already contain the func-id
3868 	 * mainly in SRIOV related use cases, so we add it here only
3869 	 * if it's not already set.
3870 	 */
3871 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3872 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3873 			SPE_HDR_CONN_TYPE;
3874 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3875 			 SPE_HDR_FUNCTION_ID);
3876 	} else {
3877 		type = cmd_type;
3878 	}
3879 
3880 	spe->hdr.type = cpu_to_le16(type);
3881 
3882 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3883 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3884 
3885 	/*
3886 	 * It's ok if the actual decrement is issued towards the memory
3887 	 * somewhere between the spin_lock and spin_unlock. Thus no
3888 	 * more explicit memory barrier is needed.
3889 	 */
3890 	if (common)
3891 		atomic_dec(&bp->eq_spq_left);
3892 	else
3893 		atomic_dec(&bp->cq_spq_left);
3894 
3895 	DP(BNX2X_MSG_SP,
3896 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3897 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3898 	   (u32)(U64_LO(bp->spq_mapping) +
3899 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3900 	   HW_CID(bp, cid), data_hi, data_lo, type,
3901 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3902 
3903 	bnx2x_sp_prod_update(bp);
3904 	spin_unlock_bh(&bp->spq_lock);
3905 	return 0;
3906 }
3907 
3908 /* acquire split MCP access lock register */
3909 static int bnx2x_acquire_alr(struct bnx2x *bp)
3910 {
3911 	u32 j, val;
3912 	int rc = 0;
3913 
3914 	might_sleep();
3915 	for (j = 0; j < 1000; j++) {
3916 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3917 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3918 		if (val & MCPR_ACCESS_LOCK_LOCK)
3919 			break;
3920 
3921 		usleep_range(5000, 10000);
3922 	}
3923 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3924 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3925 		rc = -EBUSY;
3926 	}
3927 
3928 	return rc;
3929 }
3930 
3931 /* release split MCP access lock register */
3932 static void bnx2x_release_alr(struct bnx2x *bp)
3933 {
3934 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3935 }
3936 
3937 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3938 #define BNX2X_DEF_SB_IDX	0x0002
3939 
3940 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3941 {
3942 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3943 	u16 rc = 0;
3944 
3945 	barrier(); /* status block is written to by the chip */
3946 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3947 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3948 		rc |= BNX2X_DEF_SB_ATT_IDX;
3949 	}
3950 
3951 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3952 		bp->def_idx = def_sb->sp_sb.running_index;
3953 		rc |= BNX2X_DEF_SB_IDX;
3954 	}
3955 
3956 	/* Do not reorder: indices reading should complete before handling */
3957 	barrier();
3958 	return rc;
3959 }
3960 
3961 /*
3962  * slow path service functions
3963  */
3964 
3965 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3966 {
3967 	int port = BP_PORT(bp);
3968 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3969 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3970 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3971 				       NIG_REG_MASK_INTERRUPT_PORT0;
3972 	u32 aeu_mask;
3973 	u32 nig_mask = 0;
3974 	u32 reg_addr;
3975 
3976 	if (bp->attn_state & asserted)
3977 		BNX2X_ERR("IGU ERROR\n");
3978 
3979 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3980 	aeu_mask = REG_RD(bp, aeu_addr);
3981 
3982 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3983 	   aeu_mask, asserted);
3984 	aeu_mask &= ~(asserted & 0x3ff);
3985 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3986 
3987 	REG_WR(bp, aeu_addr, aeu_mask);
3988 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3989 
3990 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3991 	bp->attn_state |= asserted;
3992 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3993 
3994 	if (asserted & ATTN_HARD_WIRED_MASK) {
3995 		if (asserted & ATTN_NIG_FOR_FUNC) {
3996 
3997 			bnx2x_acquire_phy_lock(bp);
3998 
3999 			/* save nig interrupt mask */
4000 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4001 
4002 			/* If nig_mask is not set, no need to call the update
4003 			 * function.
4004 			 */
4005 			if (nig_mask) {
4006 				REG_WR(bp, nig_int_mask_addr, 0);
4007 
4008 				bnx2x_link_attn(bp);
4009 			}
4010 
4011 			/* handle unicore attn? */
4012 		}
4013 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4014 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4015 
4016 		if (asserted & GPIO_2_FUNC)
4017 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4018 
4019 		if (asserted & GPIO_3_FUNC)
4020 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4021 
4022 		if (asserted & GPIO_4_FUNC)
4023 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4024 
4025 		if (port == 0) {
4026 			if (asserted & ATTN_GENERAL_ATTN_1) {
4027 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4028 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4029 			}
4030 			if (asserted & ATTN_GENERAL_ATTN_2) {
4031 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4032 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4033 			}
4034 			if (asserted & ATTN_GENERAL_ATTN_3) {
4035 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4036 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4037 			}
4038 		} else {
4039 			if (asserted & ATTN_GENERAL_ATTN_4) {
4040 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4041 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4042 			}
4043 			if (asserted & ATTN_GENERAL_ATTN_5) {
4044 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4045 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4046 			}
4047 			if (asserted & ATTN_GENERAL_ATTN_6) {
4048 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4049 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4050 			}
4051 		}
4052 
4053 	} /* if hardwired */
4054 
4055 	if (bp->common.int_block == INT_BLOCK_HC)
4056 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4057 			    COMMAND_REG_ATTN_BITS_SET);
4058 	else
4059 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4060 
4061 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4062 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4063 	REG_WR(bp, reg_addr, asserted);
4064 
4065 	/* now set back the mask */
4066 	if (asserted & ATTN_NIG_FOR_FUNC) {
4067 		/* Verify that IGU ack through BAR was written before restoring
4068 		 * NIG mask. This loop should exit after 2-3 iterations max.
4069 		 */
4070 		if (bp->common.int_block != INT_BLOCK_HC) {
4071 			u32 cnt = 0, igu_acked;
4072 			do {
4073 				igu_acked = REG_RD(bp,
4074 						   IGU_REG_ATTENTION_ACK_BITS);
4075 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4076 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4077 			if (!igu_acked)
4078 				DP(NETIF_MSG_HW,
4079 				   "Failed to verify IGU ack on time\n");
4080 			barrier();
4081 		}
4082 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4083 		bnx2x_release_phy_lock(bp);
4084 	}
4085 }
4086 
4087 static void bnx2x_fan_failure(struct bnx2x *bp)
4088 {
4089 	int port = BP_PORT(bp);
4090 	u32 ext_phy_config;
4091 	/* mark the failure */
4092 	ext_phy_config =
4093 		SHMEM_RD(bp,
4094 			 dev_info.port_hw_config[port].external_phy_config);
4095 
4096 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4097 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4098 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4099 		 ext_phy_config);
4100 
4101 	/* log the failure */
4102 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4103 			    "Please contact OEM Support for assistance\n");
4104 
4105 	/* Schedule device reset (unload)
4106 	 * This is due to some boards consuming sufficient power when driver is
4107 	 * up to overheat if fan fails.
4108 	 */
4109 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4110 }
4111 
4112 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4113 {
4114 	int port = BP_PORT(bp);
4115 	int reg_offset;
4116 	u32 val;
4117 
4118 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4119 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4120 
4121 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4122 
4123 		val = REG_RD(bp, reg_offset);
4124 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4125 		REG_WR(bp, reg_offset, val);
4126 
4127 		BNX2X_ERR("SPIO5 hw attention\n");
4128 
4129 		/* Fan failure attention */
4130 		bnx2x_hw_reset_phy(&bp->link_params);
4131 		bnx2x_fan_failure(bp);
4132 	}
4133 
4134 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4135 		bnx2x_acquire_phy_lock(bp);
4136 		bnx2x_handle_module_detect_int(&bp->link_params);
4137 		bnx2x_release_phy_lock(bp);
4138 	}
4139 
4140 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
4141 
4142 		val = REG_RD(bp, reg_offset);
4143 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4144 		REG_WR(bp, reg_offset, val);
4145 
4146 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4147 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4148 		bnx2x_panic();
4149 	}
4150 }
4151 
4152 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4153 {
4154 	u32 val;
4155 
4156 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4157 
4158 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4159 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4160 		/* DORQ discard attention */
4161 		if (val & 0x2)
4162 			BNX2X_ERR("FATAL error from DORQ\n");
4163 	}
4164 
4165 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
4166 
4167 		int port = BP_PORT(bp);
4168 		int reg_offset;
4169 
4170 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4171 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4172 
4173 		val = REG_RD(bp, reg_offset);
4174 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4175 		REG_WR(bp, reg_offset, val);
4176 
4177 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4178 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4179 		bnx2x_panic();
4180 	}
4181 }
4182 
4183 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4184 {
4185 	u32 val;
4186 
4187 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4188 
4189 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4190 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4191 		/* CFC error attention */
4192 		if (val & 0x2)
4193 			BNX2X_ERR("FATAL error from CFC\n");
4194 	}
4195 
4196 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4197 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4198 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4199 		/* RQ_USDMDP_FIFO_OVERFLOW */
4200 		if (val & 0x18000)
4201 			BNX2X_ERR("FATAL error from PXP\n");
4202 
4203 		if (!CHIP_IS_E1x(bp)) {
4204 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4205 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4206 		}
4207 	}
4208 
4209 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
4210 
4211 		int port = BP_PORT(bp);
4212 		int reg_offset;
4213 
4214 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4215 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4216 
4217 		val = REG_RD(bp, reg_offset);
4218 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4219 		REG_WR(bp, reg_offset, val);
4220 
4221 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4222 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4223 		bnx2x_panic();
4224 	}
4225 }
4226 
4227 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4228 {
4229 	u32 val;
4230 
4231 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4232 
4233 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4234 			int func = BP_FUNC(bp);
4235 
4236 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4237 			bnx2x_read_mf_cfg(bp);
4238 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4239 					func_mf_config[BP_ABS_FUNC(bp)].config);
4240 			val = SHMEM_RD(bp,
4241 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4242 
4243 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4244 				   DRV_STATUS_OEM_EVENT_MASK))
4245 				bnx2x_oem_event(bp,
4246 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4247 						DRV_STATUS_OEM_EVENT_MASK)));
4248 
4249 			if (val & DRV_STATUS_SET_MF_BW)
4250 				bnx2x_set_mf_bw(bp);
4251 
4252 			if (val & DRV_STATUS_DRV_INFO_REQ)
4253 				bnx2x_handle_drv_info_req(bp);
4254 
4255 			if (val & DRV_STATUS_VF_DISABLED)
4256 				bnx2x_schedule_iov_task(bp,
4257 							BNX2X_IOV_HANDLE_FLR);
4258 
4259 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4260 				bnx2x_pmf_update(bp);
4261 
4262 			if (bp->port.pmf &&
4263 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4264 				bp->dcbx_enabled > 0)
4265 				/* start dcbx state machine */
4266 				bnx2x_dcbx_set_params(bp,
4267 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4268 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4269 				bnx2x_handle_afex_cmd(bp,
4270 					val & DRV_STATUS_AFEX_EVENT_MASK);
4271 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4272 				bnx2x_handle_eee_event(bp);
4273 
4274 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4275 				bnx2x_handle_update_svid_cmd(bp);
4276 
4277 			if (bp->link_vars.periodic_flags &
4278 			    PERIODIC_FLAGS_LINK_EVENT) {
4279 				/*  sync with link */
4280 				bnx2x_acquire_phy_lock(bp);
4281 				bp->link_vars.periodic_flags &=
4282 					~PERIODIC_FLAGS_LINK_EVENT;
4283 				bnx2x_release_phy_lock(bp);
4284 				if (IS_MF(bp))
4285 					bnx2x_link_sync_notify(bp);
4286 				bnx2x_link_report(bp);
4287 			}
4288 			/* Always call it here: bnx2x_link_report() will
4289 			 * prevent the link indication duplication.
4290 			 */
4291 			bnx2x__link_status_update(bp);
4292 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4293 
4294 			BNX2X_ERR("MC assert!\n");
4295 			bnx2x_mc_assert(bp);
4296 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4297 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4298 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4299 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4300 			bnx2x_panic();
4301 
4302 		} else if (attn & BNX2X_MCP_ASSERT) {
4303 
4304 			BNX2X_ERR("MCP assert!\n");
4305 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4306 			bnx2x_fw_dump(bp);
4307 
4308 		} else
4309 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4310 	}
4311 
4312 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4313 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4314 		if (attn & BNX2X_GRC_TIMEOUT) {
4315 			val = CHIP_IS_E1(bp) ? 0 :
4316 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4317 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4318 		}
4319 		if (attn & BNX2X_GRC_RSV) {
4320 			val = CHIP_IS_E1(bp) ? 0 :
4321 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4322 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4323 		}
4324 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4325 	}
4326 }
4327 
4328 /*
4329  * Bits map:
4330  * 0-7   - Engine0 load counter.
4331  * 8-15  - Engine1 load counter.
4332  * 16    - Engine0 RESET_IN_PROGRESS bit.
4333  * 17    - Engine1 RESET_IN_PROGRESS bit.
4334  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4335  *         on the engine
4336  * 19    - Engine1 ONE_IS_LOADED.
4337  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4338  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4339  *         just the one belonging to its engine).
4340  *
4341  */
4342 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4343 
4344 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4345 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4346 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4347 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4348 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4349 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4350 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4351 
4352 /*
4353  * Set the GLOBAL_RESET bit.
4354  *
4355  * Should be run under rtnl lock
4356  */
4357 void bnx2x_set_reset_global(struct bnx2x *bp)
4358 {
4359 	u32 val;
4360 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4361 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4362 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4363 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4364 }
4365 
4366 /*
4367  * Clear the GLOBAL_RESET bit.
4368  *
4369  * Should be run under rtnl lock
4370  */
4371 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4372 {
4373 	u32 val;
4374 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4375 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4376 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4377 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4378 }
4379 
4380 /*
4381  * Checks the GLOBAL_RESET bit.
4382  *
4383  * should be run under rtnl lock
4384  */
4385 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4386 {
4387 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4388 
4389 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4390 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4391 }
4392 
4393 /*
4394  * Clear RESET_IN_PROGRESS bit for the current engine.
4395  *
4396  * Should be run under rtnl lock
4397  */
4398 static void bnx2x_set_reset_done(struct bnx2x *bp)
4399 {
4400 	u32 val;
4401 	u32 bit = BP_PATH(bp) ?
4402 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4403 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4404 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4405 
4406 	/* Clear the bit */
4407 	val &= ~bit;
4408 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4409 
4410 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4411 }
4412 
4413 /*
4414  * Set RESET_IN_PROGRESS for the current engine.
4415  *
4416  * should be run under rtnl lock
4417  */
4418 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4419 {
4420 	u32 val;
4421 	u32 bit = BP_PATH(bp) ?
4422 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4423 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4424 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4425 
4426 	/* Set the bit */
4427 	val |= bit;
4428 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4429 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4430 }
4431 
4432 /*
4433  * Checks the RESET_IN_PROGRESS bit for the given engine.
4434  * should be run under rtnl lock
4435  */
4436 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4437 {
4438 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4439 	u32 bit = engine ?
4440 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4441 
4442 	/* return false if bit is set */
4443 	return (val & bit) ? false : true;
4444 }
4445 
4446 /*
4447  * set pf load for the current pf.
4448  *
4449  * should be run under rtnl lock
4450  */
4451 void bnx2x_set_pf_load(struct bnx2x *bp)
4452 {
4453 	u32 val1, val;
4454 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4455 			     BNX2X_PATH0_LOAD_CNT_MASK;
4456 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4457 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4458 
4459 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4460 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4461 
4462 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4463 
4464 	/* get the current counter value */
4465 	val1 = (val & mask) >> shift;
4466 
4467 	/* set bit of that PF */
4468 	val1 |= (1 << bp->pf_num);
4469 
4470 	/* clear the old value */
4471 	val &= ~mask;
4472 
4473 	/* set the new one */
4474 	val |= ((val1 << shift) & mask);
4475 
4476 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4477 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4478 }
4479 
4480 /**
4481  * bnx2x_clear_pf_load - clear pf load mark
4482  *
4483  * @bp:		driver handle
4484  *
4485  * Should be run under rtnl lock.
4486  * Decrements the load counter for the current engine. Returns
4487  * whether other functions are still loaded
4488  */
4489 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4490 {
4491 	u32 val1, val;
4492 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4493 			     BNX2X_PATH0_LOAD_CNT_MASK;
4494 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4495 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4496 
4497 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4498 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4499 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4500 
4501 	/* get the current counter value */
4502 	val1 = (val & mask) >> shift;
4503 
4504 	/* clear bit of that PF */
4505 	val1 &= ~(1 << bp->pf_num);
4506 
4507 	/* clear the old value */
4508 	val &= ~mask;
4509 
4510 	/* set the new one */
4511 	val |= ((val1 << shift) & mask);
4512 
4513 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4514 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4515 	return val1 != 0;
4516 }
4517 
4518 /*
4519  * Read the load status for the current engine.
4520  *
4521  * should be run under rtnl lock
4522  */
4523 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4524 {
4525 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4526 			     BNX2X_PATH0_LOAD_CNT_MASK);
4527 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4528 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4529 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4530 
4531 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4532 
4533 	val = (val & mask) >> shift;
4534 
4535 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4536 	   engine, val);
4537 
4538 	return val != 0;
4539 }
4540 
4541 static void _print_parity(struct bnx2x *bp, u32 reg)
4542 {
4543 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4544 }
4545 
4546 static void _print_next_block(int idx, const char *blk)
4547 {
4548 	pr_cont("%s%s", idx ? ", " : "", blk);
4549 }
4550 
4551 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4552 					    int *par_num, bool print)
4553 {
4554 	u32 cur_bit;
4555 	bool res;
4556 	int i;
4557 
4558 	res = false;
4559 
4560 	for (i = 0; sig; i++) {
4561 		cur_bit = (0x1UL << i);
4562 		if (sig & cur_bit) {
4563 			res |= true; /* Each bit is real error! */
4564 
4565 			if (print) {
4566 				switch (cur_bit) {
4567 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4568 					_print_next_block((*par_num)++, "BRB");
4569 					_print_parity(bp,
4570 						      BRB1_REG_BRB1_PRTY_STS);
4571 					break;
4572 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4573 					_print_next_block((*par_num)++,
4574 							  "PARSER");
4575 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4576 					break;
4577 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4578 					_print_next_block((*par_num)++, "TSDM");
4579 					_print_parity(bp,
4580 						      TSDM_REG_TSDM_PRTY_STS);
4581 					break;
4582 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4583 					_print_next_block((*par_num)++,
4584 							  "SEARCHER");
4585 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4586 					break;
4587 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4588 					_print_next_block((*par_num)++, "TCM");
4589 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4590 					break;
4591 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4592 					_print_next_block((*par_num)++,
4593 							  "TSEMI");
4594 					_print_parity(bp,
4595 						      TSEM_REG_TSEM_PRTY_STS_0);
4596 					_print_parity(bp,
4597 						      TSEM_REG_TSEM_PRTY_STS_1);
4598 					break;
4599 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4600 					_print_next_block((*par_num)++, "XPB");
4601 					_print_parity(bp, GRCBASE_XPB +
4602 							  PB_REG_PB_PRTY_STS);
4603 					break;
4604 				}
4605 			}
4606 
4607 			/* Clear the bit */
4608 			sig &= ~cur_bit;
4609 		}
4610 	}
4611 
4612 	return res;
4613 }
4614 
4615 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4616 					    int *par_num, bool *global,
4617 					    bool print)
4618 {
4619 	u32 cur_bit;
4620 	bool res;
4621 	int i;
4622 
4623 	res = false;
4624 
4625 	for (i = 0; sig; i++) {
4626 		cur_bit = (0x1UL << i);
4627 		if (sig & cur_bit) {
4628 			res |= true; /* Each bit is real error! */
4629 			switch (cur_bit) {
4630 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4631 				if (print) {
4632 					_print_next_block((*par_num)++, "PBF");
4633 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4634 				}
4635 				break;
4636 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4637 				if (print) {
4638 					_print_next_block((*par_num)++, "QM");
4639 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4640 				}
4641 				break;
4642 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4643 				if (print) {
4644 					_print_next_block((*par_num)++, "TM");
4645 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4646 				}
4647 				break;
4648 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4649 				if (print) {
4650 					_print_next_block((*par_num)++, "XSDM");
4651 					_print_parity(bp,
4652 						      XSDM_REG_XSDM_PRTY_STS);
4653 				}
4654 				break;
4655 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4656 				if (print) {
4657 					_print_next_block((*par_num)++, "XCM");
4658 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4659 				}
4660 				break;
4661 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4662 				if (print) {
4663 					_print_next_block((*par_num)++,
4664 							  "XSEMI");
4665 					_print_parity(bp,
4666 						      XSEM_REG_XSEM_PRTY_STS_0);
4667 					_print_parity(bp,
4668 						      XSEM_REG_XSEM_PRTY_STS_1);
4669 				}
4670 				break;
4671 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4672 				if (print) {
4673 					_print_next_block((*par_num)++,
4674 							  "DOORBELLQ");
4675 					_print_parity(bp,
4676 						      DORQ_REG_DORQ_PRTY_STS);
4677 				}
4678 				break;
4679 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4680 				if (print) {
4681 					_print_next_block((*par_num)++, "NIG");
4682 					if (CHIP_IS_E1x(bp)) {
4683 						_print_parity(bp,
4684 							NIG_REG_NIG_PRTY_STS);
4685 					} else {
4686 						_print_parity(bp,
4687 							NIG_REG_NIG_PRTY_STS_0);
4688 						_print_parity(bp,
4689 							NIG_REG_NIG_PRTY_STS_1);
4690 					}
4691 				}
4692 				break;
4693 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4694 				if (print)
4695 					_print_next_block((*par_num)++,
4696 							  "VAUX PCI CORE");
4697 				*global = true;
4698 				break;
4699 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4700 				if (print) {
4701 					_print_next_block((*par_num)++,
4702 							  "DEBUG");
4703 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4704 				}
4705 				break;
4706 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4707 				if (print) {
4708 					_print_next_block((*par_num)++, "USDM");
4709 					_print_parity(bp,
4710 						      USDM_REG_USDM_PRTY_STS);
4711 				}
4712 				break;
4713 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4714 				if (print) {
4715 					_print_next_block((*par_num)++, "UCM");
4716 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4717 				}
4718 				break;
4719 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4720 				if (print) {
4721 					_print_next_block((*par_num)++,
4722 							  "USEMI");
4723 					_print_parity(bp,
4724 						      USEM_REG_USEM_PRTY_STS_0);
4725 					_print_parity(bp,
4726 						      USEM_REG_USEM_PRTY_STS_1);
4727 				}
4728 				break;
4729 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4730 				if (print) {
4731 					_print_next_block((*par_num)++, "UPB");
4732 					_print_parity(bp, GRCBASE_UPB +
4733 							  PB_REG_PB_PRTY_STS);
4734 				}
4735 				break;
4736 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4737 				if (print) {
4738 					_print_next_block((*par_num)++, "CSDM");
4739 					_print_parity(bp,
4740 						      CSDM_REG_CSDM_PRTY_STS);
4741 				}
4742 				break;
4743 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4744 				if (print) {
4745 					_print_next_block((*par_num)++, "CCM");
4746 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4747 				}
4748 				break;
4749 			}
4750 
4751 			/* Clear the bit */
4752 			sig &= ~cur_bit;
4753 		}
4754 	}
4755 
4756 	return res;
4757 }
4758 
4759 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4760 					    int *par_num, bool print)
4761 {
4762 	u32 cur_bit;
4763 	bool res;
4764 	int i;
4765 
4766 	res = false;
4767 
4768 	for (i = 0; sig; i++) {
4769 		cur_bit = (0x1UL << i);
4770 		if (sig & cur_bit) {
4771 			res = true; /* Each bit is real error! */
4772 			if (print) {
4773 				switch (cur_bit) {
4774 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4775 					_print_next_block((*par_num)++,
4776 							  "CSEMI");
4777 					_print_parity(bp,
4778 						      CSEM_REG_CSEM_PRTY_STS_0);
4779 					_print_parity(bp,
4780 						      CSEM_REG_CSEM_PRTY_STS_1);
4781 					break;
4782 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4783 					_print_next_block((*par_num)++, "PXP");
4784 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4785 					_print_parity(bp,
4786 						      PXP2_REG_PXP2_PRTY_STS_0);
4787 					_print_parity(bp,
4788 						      PXP2_REG_PXP2_PRTY_STS_1);
4789 					break;
4790 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4791 					_print_next_block((*par_num)++,
4792 							  "PXPPCICLOCKCLIENT");
4793 					break;
4794 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4795 					_print_next_block((*par_num)++, "CFC");
4796 					_print_parity(bp,
4797 						      CFC_REG_CFC_PRTY_STS);
4798 					break;
4799 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4800 					_print_next_block((*par_num)++, "CDU");
4801 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4802 					break;
4803 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4804 					_print_next_block((*par_num)++, "DMAE");
4805 					_print_parity(bp,
4806 						      DMAE_REG_DMAE_PRTY_STS);
4807 					break;
4808 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4809 					_print_next_block((*par_num)++, "IGU");
4810 					if (CHIP_IS_E1x(bp))
4811 						_print_parity(bp,
4812 							HC_REG_HC_PRTY_STS);
4813 					else
4814 						_print_parity(bp,
4815 							IGU_REG_IGU_PRTY_STS);
4816 					break;
4817 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4818 					_print_next_block((*par_num)++, "MISC");
4819 					_print_parity(bp,
4820 						      MISC_REG_MISC_PRTY_STS);
4821 					break;
4822 				}
4823 			}
4824 
4825 			/* Clear the bit */
4826 			sig &= ~cur_bit;
4827 		}
4828 	}
4829 
4830 	return res;
4831 }
4832 
4833 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4834 					    int *par_num, bool *global,
4835 					    bool print)
4836 {
4837 	bool res = false;
4838 	u32 cur_bit;
4839 	int i;
4840 
4841 	for (i = 0; sig; i++) {
4842 		cur_bit = (0x1UL << i);
4843 		if (sig & cur_bit) {
4844 			switch (cur_bit) {
4845 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4846 				if (print)
4847 					_print_next_block((*par_num)++,
4848 							  "MCP ROM");
4849 				*global = true;
4850 				res = true;
4851 				break;
4852 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4853 				if (print)
4854 					_print_next_block((*par_num)++,
4855 							  "MCP UMP RX");
4856 				*global = true;
4857 				res = true;
4858 				break;
4859 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4860 				if (print)
4861 					_print_next_block((*par_num)++,
4862 							  "MCP UMP TX");
4863 				*global = true;
4864 				res = true;
4865 				break;
4866 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4867 				if (print)
4868 					_print_next_block((*par_num)++,
4869 							  "MCP SCPAD");
4870 				/* clear latched SCPAD PATIRY from MCP */
4871 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4872 				       1UL << 10);
4873 				break;
4874 			}
4875 
4876 			/* Clear the bit */
4877 			sig &= ~cur_bit;
4878 		}
4879 	}
4880 
4881 	return res;
4882 }
4883 
4884 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4885 					    int *par_num, bool print)
4886 {
4887 	u32 cur_bit;
4888 	bool res;
4889 	int i;
4890 
4891 	res = false;
4892 
4893 	for (i = 0; sig; i++) {
4894 		cur_bit = (0x1UL << i);
4895 		if (sig & cur_bit) {
4896 			res = true; /* Each bit is real error! */
4897 			if (print) {
4898 				switch (cur_bit) {
4899 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4900 					_print_next_block((*par_num)++,
4901 							  "PGLUE_B");
4902 					_print_parity(bp,
4903 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4904 					break;
4905 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4906 					_print_next_block((*par_num)++, "ATC");
4907 					_print_parity(bp,
4908 						      ATC_REG_ATC_PRTY_STS);
4909 					break;
4910 				}
4911 			}
4912 			/* Clear the bit */
4913 			sig &= ~cur_bit;
4914 		}
4915 	}
4916 
4917 	return res;
4918 }
4919 
4920 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4921 			      u32 *sig)
4922 {
4923 	bool res = false;
4924 
4925 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4926 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4927 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4928 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4929 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4930 		int par_num = 0;
4931 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4932 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4933 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4934 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4935 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4936 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4937 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4938 		if (print)
4939 			netdev_err(bp->dev,
4940 				   "Parity errors detected in blocks: ");
4941 		res |= bnx2x_check_blocks_with_parity0(bp,
4942 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4943 		res |= bnx2x_check_blocks_with_parity1(bp,
4944 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4945 		res |= bnx2x_check_blocks_with_parity2(bp,
4946 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4947 		res |= bnx2x_check_blocks_with_parity3(bp,
4948 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4949 		res |= bnx2x_check_blocks_with_parity4(bp,
4950 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4951 
4952 		if (print)
4953 			pr_cont("\n");
4954 	}
4955 
4956 	return res;
4957 }
4958 
4959 /**
4960  * bnx2x_chk_parity_attn - checks for parity attentions.
4961  *
4962  * @bp:		driver handle
4963  * @global:	true if there was a global attention
4964  * @print:	show parity attention in syslog
4965  */
4966 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4967 {
4968 	struct attn_route attn = { {0} };
4969 	int port = BP_PORT(bp);
4970 
4971 	attn.sig[0] = REG_RD(bp,
4972 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4973 			     port*4);
4974 	attn.sig[1] = REG_RD(bp,
4975 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4976 			     port*4);
4977 	attn.sig[2] = REG_RD(bp,
4978 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4979 			     port*4);
4980 	attn.sig[3] = REG_RD(bp,
4981 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4982 			     port*4);
4983 	/* Since MCP attentions can't be disabled inside the block, we need to
4984 	 * read AEU registers to see whether they're currently disabled
4985 	 */
4986 	attn.sig[3] &= ((REG_RD(bp,
4987 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4988 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4989 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4990 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4991 
4992 	if (!CHIP_IS_E1x(bp))
4993 		attn.sig[4] = REG_RD(bp,
4994 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4995 				     port*4);
4996 
4997 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4998 }
4999 
5000 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5001 {
5002 	u32 val;
5003 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5004 
5005 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5006 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5007 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5008 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5009 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5010 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5011 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5012 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5013 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5014 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5015 		if (val &
5016 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5017 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5018 		if (val &
5019 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5020 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5021 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5022 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5023 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5024 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5025 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5026 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5027 	}
5028 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5029 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5030 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5031 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5032 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5033 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5034 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5035 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5036 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5037 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5038 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5039 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5040 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5041 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5042 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5043 	}
5044 
5045 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5046 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5047 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5048 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5049 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5050 	}
5051 }
5052 
5053 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5054 {
5055 	struct attn_route attn, *group_mask;
5056 	int port = BP_PORT(bp);
5057 	int index;
5058 	u32 reg_addr;
5059 	u32 val;
5060 	u32 aeu_mask;
5061 	bool global = false;
5062 
5063 	/* need to take HW lock because MCP or other port might also
5064 	   try to handle this event */
5065 	bnx2x_acquire_alr(bp);
5066 
5067 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5068 #ifndef BNX2X_STOP_ON_ERROR
5069 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5070 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5071 		/* Disable HW interrupts */
5072 		bnx2x_int_disable(bp);
5073 		/* In case of parity errors don't handle attentions so that
5074 		 * other function would "see" parity errors.
5075 		 */
5076 #else
5077 		bnx2x_panic();
5078 #endif
5079 		bnx2x_release_alr(bp);
5080 		return;
5081 	}
5082 
5083 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5084 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5085 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5086 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5087 	if (!CHIP_IS_E1x(bp))
5088 		attn.sig[4] =
5089 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5090 	else
5091 		attn.sig[4] = 0;
5092 
5093 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5094 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5095 
5096 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5097 		if (deasserted & (1 << index)) {
5098 			group_mask = &bp->attn_group[index];
5099 
5100 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5101 			   index,
5102 			   group_mask->sig[0], group_mask->sig[1],
5103 			   group_mask->sig[2], group_mask->sig[3],
5104 			   group_mask->sig[4]);
5105 
5106 			bnx2x_attn_int_deasserted4(bp,
5107 					attn.sig[4] & group_mask->sig[4]);
5108 			bnx2x_attn_int_deasserted3(bp,
5109 					attn.sig[3] & group_mask->sig[3]);
5110 			bnx2x_attn_int_deasserted1(bp,
5111 					attn.sig[1] & group_mask->sig[1]);
5112 			bnx2x_attn_int_deasserted2(bp,
5113 					attn.sig[2] & group_mask->sig[2]);
5114 			bnx2x_attn_int_deasserted0(bp,
5115 					attn.sig[0] & group_mask->sig[0]);
5116 		}
5117 	}
5118 
5119 	bnx2x_release_alr(bp);
5120 
5121 	if (bp->common.int_block == INT_BLOCK_HC)
5122 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5123 			    COMMAND_REG_ATTN_BITS_CLR);
5124 	else
5125 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5126 
5127 	val = ~deasserted;
5128 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5129 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5130 	REG_WR(bp, reg_addr, val);
5131 
5132 	if (~bp->attn_state & deasserted)
5133 		BNX2X_ERR("IGU ERROR\n");
5134 
5135 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5136 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5137 
5138 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5139 	aeu_mask = REG_RD(bp, reg_addr);
5140 
5141 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5142 	   aeu_mask, deasserted);
5143 	aeu_mask |= (deasserted & 0x3ff);
5144 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5145 
5146 	REG_WR(bp, reg_addr, aeu_mask);
5147 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5148 
5149 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5150 	bp->attn_state &= ~deasserted;
5151 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5152 }
5153 
5154 static void bnx2x_attn_int(struct bnx2x *bp)
5155 {
5156 	/* read local copy of bits */
5157 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5158 								attn_bits);
5159 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5160 								attn_bits_ack);
5161 	u32 attn_state = bp->attn_state;
5162 
5163 	/* look for changed bits */
5164 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5165 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5166 
5167 	DP(NETIF_MSG_HW,
5168 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5169 	   attn_bits, attn_ack, asserted, deasserted);
5170 
5171 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5172 		BNX2X_ERR("BAD attention state\n");
5173 
5174 	/* handle bits that were raised */
5175 	if (asserted)
5176 		bnx2x_attn_int_asserted(bp, asserted);
5177 
5178 	if (deasserted)
5179 		bnx2x_attn_int_deasserted(bp, deasserted);
5180 }
5181 
5182 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5183 		      u16 index, u8 op, u8 update)
5184 {
5185 	u32 igu_addr = bp->igu_base_addr;
5186 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5187 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5188 			     igu_addr);
5189 }
5190 
5191 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5192 {
5193 	/* No memory barriers */
5194 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5195 	mmiowb(); /* keep prod updates ordered */
5196 }
5197 
5198 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5199 				      union event_ring_elem *elem)
5200 {
5201 	u8 err = elem->message.error;
5202 
5203 	if (!bp->cnic_eth_dev.starting_cid  ||
5204 	    (cid < bp->cnic_eth_dev.starting_cid &&
5205 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5206 		return 1;
5207 
5208 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5209 
5210 	if (unlikely(err)) {
5211 
5212 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5213 			  cid);
5214 		bnx2x_panic_dump(bp, false);
5215 	}
5216 	bnx2x_cnic_cfc_comp(bp, cid, err);
5217 	return 0;
5218 }
5219 
5220 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5221 {
5222 	struct bnx2x_mcast_ramrod_params rparam;
5223 	int rc;
5224 
5225 	memset(&rparam, 0, sizeof(rparam));
5226 
5227 	rparam.mcast_obj = &bp->mcast_obj;
5228 
5229 	netif_addr_lock_bh(bp->dev);
5230 
5231 	/* Clear pending state for the last command */
5232 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5233 
5234 	/* If there are pending mcast commands - send them */
5235 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5236 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5237 		if (rc < 0)
5238 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5239 				  rc);
5240 	}
5241 
5242 	netif_addr_unlock_bh(bp->dev);
5243 }
5244 
5245 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5246 					    union event_ring_elem *elem)
5247 {
5248 	unsigned long ramrod_flags = 0;
5249 	int rc = 0;
5250 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5251 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5252 
5253 	/* Always push next commands out, don't wait here */
5254 	__set_bit(RAMROD_CONT, &ramrod_flags);
5255 
5256 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5257 			    >> BNX2X_SWCID_SHIFT) {
5258 	case BNX2X_FILTER_MAC_PENDING:
5259 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5260 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5261 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5262 		else
5263 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5264 
5265 		break;
5266 	case BNX2X_FILTER_MCAST_PENDING:
5267 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5268 		/* This is only relevant for 57710 where multicast MACs are
5269 		 * configured as unicast MACs using the same ramrod.
5270 		 */
5271 		bnx2x_handle_mcast_eqe(bp);
5272 		return;
5273 	default:
5274 		BNX2X_ERR("Unsupported classification command: %d\n",
5275 			  elem->message.data.eth_event.echo);
5276 		return;
5277 	}
5278 
5279 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5280 
5281 	if (rc < 0)
5282 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5283 	else if (rc > 0)
5284 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5285 }
5286 
5287 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5288 
5289 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5290 {
5291 	netif_addr_lock_bh(bp->dev);
5292 
5293 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5294 
5295 	/* Send rx_mode command again if was requested */
5296 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5297 		bnx2x_set_storm_rx_mode(bp);
5298 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5299 				    &bp->sp_state))
5300 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5301 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5302 				    &bp->sp_state))
5303 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5304 
5305 	netif_addr_unlock_bh(bp->dev);
5306 }
5307 
5308 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5309 					      union event_ring_elem *elem)
5310 {
5311 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5312 		DP(BNX2X_MSG_SP,
5313 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5314 		   elem->message.data.vif_list_event.func_bit_map);
5315 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5316 			elem->message.data.vif_list_event.func_bit_map);
5317 	} else if (elem->message.data.vif_list_event.echo ==
5318 		   VIF_LIST_RULE_SET) {
5319 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5320 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5321 	}
5322 }
5323 
5324 /* called with rtnl_lock */
5325 static void bnx2x_after_function_update(struct bnx2x *bp)
5326 {
5327 	int q, rc;
5328 	struct bnx2x_fastpath *fp;
5329 	struct bnx2x_queue_state_params queue_params = {NULL};
5330 	struct bnx2x_queue_update_params *q_update_params =
5331 		&queue_params.params.update;
5332 
5333 	/* Send Q update command with afex vlan removal values for all Qs */
5334 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5335 
5336 	/* set silent vlan removal values according to vlan mode */
5337 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5338 		  &q_update_params->update_flags);
5339 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5340 		  &q_update_params->update_flags);
5341 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5342 
5343 	/* in access mode mark mask and value are 0 to strip all vlans */
5344 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5345 		q_update_params->silent_removal_value = 0;
5346 		q_update_params->silent_removal_mask = 0;
5347 	} else {
5348 		q_update_params->silent_removal_value =
5349 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5350 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5351 	}
5352 
5353 	for_each_eth_queue(bp, q) {
5354 		/* Set the appropriate Queue object */
5355 		fp = &bp->fp[q];
5356 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5357 
5358 		/* send the ramrod */
5359 		rc = bnx2x_queue_state_change(bp, &queue_params);
5360 		if (rc < 0)
5361 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5362 				  q);
5363 	}
5364 
5365 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5366 		fp = &bp->fp[FCOE_IDX(bp)];
5367 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5368 
5369 		/* clear pending completion bit */
5370 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5371 
5372 		/* mark latest Q bit */
5373 		smp_mb__before_atomic();
5374 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5375 		smp_mb__after_atomic();
5376 
5377 		/* send Q update ramrod for FCoE Q */
5378 		rc = bnx2x_queue_state_change(bp, &queue_params);
5379 		if (rc < 0)
5380 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5381 				  q);
5382 	} else {
5383 		/* If no FCoE ring - ACK MCP now */
5384 		bnx2x_link_report(bp);
5385 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5386 	}
5387 }
5388 
5389 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5390 	struct bnx2x *bp, u32 cid)
5391 {
5392 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5393 
5394 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5395 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5396 	else
5397 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5398 }
5399 
5400 static void bnx2x_eq_int(struct bnx2x *bp)
5401 {
5402 	u16 hw_cons, sw_cons, sw_prod;
5403 	union event_ring_elem *elem;
5404 	u8 echo;
5405 	u32 cid;
5406 	u8 opcode;
5407 	int rc, spqe_cnt = 0;
5408 	struct bnx2x_queue_sp_obj *q_obj;
5409 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5410 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5411 
5412 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5413 
5414 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5415 	 * when we get the next-page we need to adjust so the loop
5416 	 * condition below will be met. The next element is the size of a
5417 	 * regular element and hence incrementing by 1
5418 	 */
5419 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5420 		hw_cons++;
5421 
5422 	/* This function may never run in parallel with itself for a
5423 	 * specific bp, thus there is no need in "paired" read memory
5424 	 * barrier here.
5425 	 */
5426 	sw_cons = bp->eq_cons;
5427 	sw_prod = bp->eq_prod;
5428 
5429 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5430 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5431 
5432 	for (; sw_cons != hw_cons;
5433 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5434 
5435 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5436 
5437 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5438 		if (!rc) {
5439 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5440 			   rc);
5441 			goto next_spqe;
5442 		}
5443 
5444 		/* elem CID originates from FW; actually LE */
5445 		cid = SW_CID((__force __le32)
5446 			     elem->message.data.cfc_del_event.cid);
5447 		opcode = elem->message.opcode;
5448 
5449 		/* handle eq element */
5450 		switch (opcode) {
5451 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5452 			bnx2x_vf_mbx_schedule(bp,
5453 					      &elem->message.data.vf_pf_event);
5454 			continue;
5455 
5456 		case EVENT_RING_OPCODE_STAT_QUERY:
5457 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5458 			       "got statistics comp event %d\n",
5459 			       bp->stats_comp++);
5460 			/* nothing to do with stats comp */
5461 			goto next_spqe;
5462 
5463 		case EVENT_RING_OPCODE_CFC_DEL:
5464 			/* handle according to cid range */
5465 			/*
5466 			 * we may want to verify here that the bp state is
5467 			 * HALTING
5468 			 */
5469 			DP(BNX2X_MSG_SP,
5470 			   "got delete ramrod for MULTI[%d]\n", cid);
5471 
5472 			if (CNIC_LOADED(bp) &&
5473 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5474 				goto next_spqe;
5475 
5476 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5477 
5478 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5479 				break;
5480 
5481 			goto next_spqe;
5482 
5483 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5484 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5485 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5486 			if (f_obj->complete_cmd(bp, f_obj,
5487 						BNX2X_F_CMD_TX_STOP))
5488 				break;
5489 			goto next_spqe;
5490 
5491 		case EVENT_RING_OPCODE_START_TRAFFIC:
5492 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5493 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5494 			if (f_obj->complete_cmd(bp, f_obj,
5495 						BNX2X_F_CMD_TX_START))
5496 				break;
5497 			goto next_spqe;
5498 
5499 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5500 			echo = elem->message.data.function_update_event.echo;
5501 			if (echo == SWITCH_UPDATE) {
5502 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5503 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5504 				if (f_obj->complete_cmd(
5505 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5506 					break;
5507 
5508 			} else {
5509 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5510 
5511 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5512 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5513 				f_obj->complete_cmd(bp, f_obj,
5514 						    BNX2X_F_CMD_AFEX_UPDATE);
5515 
5516 				/* We will perform the Queues update from
5517 				 * sp_rtnl task as all Queue SP operations
5518 				 * should run under rtnl_lock.
5519 				 */
5520 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5521 			}
5522 
5523 			goto next_spqe;
5524 
5525 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5526 			f_obj->complete_cmd(bp, f_obj,
5527 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5528 			bnx2x_after_afex_vif_lists(bp, elem);
5529 			goto next_spqe;
5530 		case EVENT_RING_OPCODE_FUNCTION_START:
5531 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5532 			   "got FUNC_START ramrod\n");
5533 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5534 				break;
5535 
5536 			goto next_spqe;
5537 
5538 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5539 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5540 			   "got FUNC_STOP ramrod\n");
5541 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5542 				break;
5543 
5544 			goto next_spqe;
5545 
5546 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5547 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5548 			   "got set_timesync ramrod completion\n");
5549 			if (f_obj->complete_cmd(bp, f_obj,
5550 						BNX2X_F_CMD_SET_TIMESYNC))
5551 				break;
5552 			goto next_spqe;
5553 		}
5554 
5555 		switch (opcode | bp->state) {
5556 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5557 		      BNX2X_STATE_OPEN):
5558 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5559 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5560 			cid = elem->message.data.eth_event.echo &
5561 				BNX2X_SWCID_MASK;
5562 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5563 			   cid);
5564 			rss_raw->clear_pending(rss_raw);
5565 			break;
5566 
5567 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5568 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5569 		case (EVENT_RING_OPCODE_SET_MAC |
5570 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5571 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5572 		      BNX2X_STATE_OPEN):
5573 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5574 		      BNX2X_STATE_DIAG):
5575 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5576 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5577 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5578 			bnx2x_handle_classification_eqe(bp, elem);
5579 			break;
5580 
5581 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5582 		      BNX2X_STATE_OPEN):
5583 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5584 		      BNX2X_STATE_DIAG):
5585 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5586 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5587 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5588 			bnx2x_handle_mcast_eqe(bp);
5589 			break;
5590 
5591 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5592 		      BNX2X_STATE_OPEN):
5593 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5594 		      BNX2X_STATE_DIAG):
5595 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5596 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5597 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5598 			bnx2x_handle_rx_mode_eqe(bp);
5599 			break;
5600 		default:
5601 			/* unknown event log error and continue */
5602 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5603 				  elem->message.opcode, bp->state);
5604 		}
5605 next_spqe:
5606 		spqe_cnt++;
5607 	} /* for */
5608 
5609 	smp_mb__before_atomic();
5610 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5611 
5612 	bp->eq_cons = sw_cons;
5613 	bp->eq_prod = sw_prod;
5614 	/* Make sure that above mem writes were issued towards the memory */
5615 	smp_wmb();
5616 
5617 	/* update producer */
5618 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5619 }
5620 
5621 static void bnx2x_sp_task(struct work_struct *work)
5622 {
5623 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5624 
5625 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5626 
5627 	/* make sure the atomic interrupt_occurred has been written */
5628 	smp_rmb();
5629 	if (atomic_read(&bp->interrupt_occurred)) {
5630 
5631 		/* what work needs to be performed? */
5632 		u16 status = bnx2x_update_dsb_idx(bp);
5633 
5634 		DP(BNX2X_MSG_SP, "status %x\n", status);
5635 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5636 		atomic_set(&bp->interrupt_occurred, 0);
5637 
5638 		/* HW attentions */
5639 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5640 			bnx2x_attn_int(bp);
5641 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5642 		}
5643 
5644 		/* SP events: STAT_QUERY and others */
5645 		if (status & BNX2X_DEF_SB_IDX) {
5646 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5647 
5648 		if (FCOE_INIT(bp) &&
5649 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5650 				/* Prevent local bottom-halves from running as
5651 				 * we are going to change the local NAPI list.
5652 				 */
5653 				local_bh_disable();
5654 				napi_schedule(&bnx2x_fcoe(bp, napi));
5655 				local_bh_enable();
5656 			}
5657 
5658 			/* Handle EQ completions */
5659 			bnx2x_eq_int(bp);
5660 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5661 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5662 
5663 			status &= ~BNX2X_DEF_SB_IDX;
5664 		}
5665 
5666 		/* if status is non zero then perhaps something went wrong */
5667 		if (unlikely(status))
5668 			DP(BNX2X_MSG_SP,
5669 			   "got an unknown interrupt! (status 0x%x)\n", status);
5670 
5671 		/* ack status block only if something was actually handled */
5672 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5673 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5674 	}
5675 
5676 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5677 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5678 			       &bp->sp_state)) {
5679 		bnx2x_link_report(bp);
5680 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5681 	}
5682 }
5683 
5684 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5685 {
5686 	struct net_device *dev = dev_instance;
5687 	struct bnx2x *bp = netdev_priv(dev);
5688 
5689 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5690 		     IGU_INT_DISABLE, 0);
5691 
5692 #ifdef BNX2X_STOP_ON_ERROR
5693 	if (unlikely(bp->panic))
5694 		return IRQ_HANDLED;
5695 #endif
5696 
5697 	if (CNIC_LOADED(bp)) {
5698 		struct cnic_ops *c_ops;
5699 
5700 		rcu_read_lock();
5701 		c_ops = rcu_dereference(bp->cnic_ops);
5702 		if (c_ops)
5703 			c_ops->cnic_handler(bp->cnic_data, NULL);
5704 		rcu_read_unlock();
5705 	}
5706 
5707 	/* schedule sp task to perform default status block work, ack
5708 	 * attentions and enable interrupts.
5709 	 */
5710 	bnx2x_schedule_sp_task(bp);
5711 
5712 	return IRQ_HANDLED;
5713 }
5714 
5715 /* end of slow path */
5716 
5717 void bnx2x_drv_pulse(struct bnx2x *bp)
5718 {
5719 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5720 		 bp->fw_drv_pulse_wr_seq);
5721 }
5722 
5723 static void bnx2x_timer(unsigned long data)
5724 {
5725 	struct bnx2x *bp = (struct bnx2x *) data;
5726 
5727 	if (!netif_running(bp->dev))
5728 		return;
5729 
5730 	if (IS_PF(bp) &&
5731 	    !BP_NOMCP(bp)) {
5732 		int mb_idx = BP_FW_MB_IDX(bp);
5733 		u16 drv_pulse;
5734 		u16 mcp_pulse;
5735 
5736 		++bp->fw_drv_pulse_wr_seq;
5737 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5738 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5739 		bnx2x_drv_pulse(bp);
5740 
5741 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5742 			     MCP_PULSE_SEQ_MASK);
5743 		/* The delta between driver pulse and mcp response
5744 		 * should not get too big. If the MFW is more than 5 pulses
5745 		 * behind, we should worry about it enough to generate an error
5746 		 * log.
5747 		 */
5748 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5749 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5750 				  drv_pulse, mcp_pulse);
5751 	}
5752 
5753 	if (bp->state == BNX2X_STATE_OPEN)
5754 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5755 
5756 	/* sample pf vf bulletin board for new posts from pf */
5757 	if (IS_VF(bp))
5758 		bnx2x_timer_sriov(bp);
5759 
5760 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5761 }
5762 
5763 /* end of Statistics */
5764 
5765 /* nic init */
5766 
5767 /*
5768  * nic init service functions
5769  */
5770 
5771 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5772 {
5773 	u32 i;
5774 	if (!(len%4) && !(addr%4))
5775 		for (i = 0; i < len; i += 4)
5776 			REG_WR(bp, addr + i, fill);
5777 	else
5778 		for (i = 0; i < len; i++)
5779 			REG_WR8(bp, addr + i, fill);
5780 }
5781 
5782 /* helper: writes FP SP data to FW - data_size in dwords */
5783 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5784 				int fw_sb_id,
5785 				u32 *sb_data_p,
5786 				u32 data_size)
5787 {
5788 	int index;
5789 	for (index = 0; index < data_size; index++)
5790 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5791 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5792 			sizeof(u32)*index,
5793 			*(sb_data_p + index));
5794 }
5795 
5796 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5797 {
5798 	u32 *sb_data_p;
5799 	u32 data_size = 0;
5800 	struct hc_status_block_data_e2 sb_data_e2;
5801 	struct hc_status_block_data_e1x sb_data_e1x;
5802 
5803 	/* disable the function first */
5804 	if (!CHIP_IS_E1x(bp)) {
5805 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5806 		sb_data_e2.common.state = SB_DISABLED;
5807 		sb_data_e2.common.p_func.vf_valid = false;
5808 		sb_data_p = (u32 *)&sb_data_e2;
5809 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5810 	} else {
5811 		memset(&sb_data_e1x, 0,
5812 		       sizeof(struct hc_status_block_data_e1x));
5813 		sb_data_e1x.common.state = SB_DISABLED;
5814 		sb_data_e1x.common.p_func.vf_valid = false;
5815 		sb_data_p = (u32 *)&sb_data_e1x;
5816 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5817 	}
5818 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5819 
5820 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5821 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5822 			CSTORM_STATUS_BLOCK_SIZE);
5823 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5824 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5825 			CSTORM_SYNC_BLOCK_SIZE);
5826 }
5827 
5828 /* helper:  writes SP SB data to FW */
5829 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5830 		struct hc_sp_status_block_data *sp_sb_data)
5831 {
5832 	int func = BP_FUNC(bp);
5833 	int i;
5834 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5835 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5836 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5837 			i*sizeof(u32),
5838 			*((u32 *)sp_sb_data + i));
5839 }
5840 
5841 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5842 {
5843 	int func = BP_FUNC(bp);
5844 	struct hc_sp_status_block_data sp_sb_data;
5845 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5846 
5847 	sp_sb_data.state = SB_DISABLED;
5848 	sp_sb_data.p_func.vf_valid = false;
5849 
5850 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5851 
5852 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5853 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5854 			CSTORM_SP_STATUS_BLOCK_SIZE);
5855 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5856 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5857 			CSTORM_SP_SYNC_BLOCK_SIZE);
5858 }
5859 
5860 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5861 					   int igu_sb_id, int igu_seg_id)
5862 {
5863 	hc_sm->igu_sb_id = igu_sb_id;
5864 	hc_sm->igu_seg_id = igu_seg_id;
5865 	hc_sm->timer_value = 0xFF;
5866 	hc_sm->time_to_expire = 0xFFFFFFFF;
5867 }
5868 
5869 /* allocates state machine ids. */
5870 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5871 {
5872 	/* zero out state machine indices */
5873 	/* rx indices */
5874 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5875 
5876 	/* tx indices */
5877 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5878 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5879 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5880 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5881 
5882 	/* map indices */
5883 	/* rx indices */
5884 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5885 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5886 
5887 	/* tx indices */
5888 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5889 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5890 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5891 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5892 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5893 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5894 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5895 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5896 }
5897 
5898 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5899 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5900 {
5901 	int igu_seg_id;
5902 
5903 	struct hc_status_block_data_e2 sb_data_e2;
5904 	struct hc_status_block_data_e1x sb_data_e1x;
5905 	struct hc_status_block_sm  *hc_sm_p;
5906 	int data_size;
5907 	u32 *sb_data_p;
5908 
5909 	if (CHIP_INT_MODE_IS_BC(bp))
5910 		igu_seg_id = HC_SEG_ACCESS_NORM;
5911 	else
5912 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5913 
5914 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5915 
5916 	if (!CHIP_IS_E1x(bp)) {
5917 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5918 		sb_data_e2.common.state = SB_ENABLED;
5919 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5920 		sb_data_e2.common.p_func.vf_id = vfid;
5921 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5922 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5923 		sb_data_e2.common.same_igu_sb_1b = true;
5924 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5925 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5926 		hc_sm_p = sb_data_e2.common.state_machine;
5927 		sb_data_p = (u32 *)&sb_data_e2;
5928 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5929 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5930 	} else {
5931 		memset(&sb_data_e1x, 0,
5932 		       sizeof(struct hc_status_block_data_e1x));
5933 		sb_data_e1x.common.state = SB_ENABLED;
5934 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5935 		sb_data_e1x.common.p_func.vf_id = 0xff;
5936 		sb_data_e1x.common.p_func.vf_valid = false;
5937 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5938 		sb_data_e1x.common.same_igu_sb_1b = true;
5939 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5940 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5941 		hc_sm_p = sb_data_e1x.common.state_machine;
5942 		sb_data_p = (u32 *)&sb_data_e1x;
5943 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5944 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5945 	}
5946 
5947 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5948 				       igu_sb_id, igu_seg_id);
5949 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5950 				       igu_sb_id, igu_seg_id);
5951 
5952 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5953 
5954 	/* write indices to HW - PCI guarantees endianity of regpairs */
5955 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5956 }
5957 
5958 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5959 				     u16 tx_usec, u16 rx_usec)
5960 {
5961 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5962 				    false, rx_usec);
5963 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5964 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5965 				       tx_usec);
5966 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5967 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5968 				       tx_usec);
5969 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5970 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5971 				       tx_usec);
5972 }
5973 
5974 static void bnx2x_init_def_sb(struct bnx2x *bp)
5975 {
5976 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5977 	dma_addr_t mapping = bp->def_status_blk_mapping;
5978 	int igu_sp_sb_index;
5979 	int igu_seg_id;
5980 	int port = BP_PORT(bp);
5981 	int func = BP_FUNC(bp);
5982 	int reg_offset, reg_offset_en5;
5983 	u64 section;
5984 	int index;
5985 	struct hc_sp_status_block_data sp_sb_data;
5986 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5987 
5988 	if (CHIP_INT_MODE_IS_BC(bp)) {
5989 		igu_sp_sb_index = DEF_SB_IGU_ID;
5990 		igu_seg_id = HC_SEG_ACCESS_DEF;
5991 	} else {
5992 		igu_sp_sb_index = bp->igu_dsb_id;
5993 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5994 	}
5995 
5996 	/* ATTN */
5997 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5998 					    atten_status_block);
5999 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6000 
6001 	bp->attn_state = 0;
6002 
6003 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6004 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6005 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6006 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6007 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6008 		int sindex;
6009 		/* take care of sig[0]..sig[4] */
6010 		for (sindex = 0; sindex < 4; sindex++)
6011 			bp->attn_group[index].sig[sindex] =
6012 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6013 
6014 		if (!CHIP_IS_E1x(bp))
6015 			/*
6016 			 * enable5 is separate from the rest of the registers,
6017 			 * and therefore the address skip is 4
6018 			 * and not 16 between the different groups
6019 			 */
6020 			bp->attn_group[index].sig[4] = REG_RD(bp,
6021 					reg_offset_en5 + 0x4*index);
6022 		else
6023 			bp->attn_group[index].sig[4] = 0;
6024 	}
6025 
6026 	if (bp->common.int_block == INT_BLOCK_HC) {
6027 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6028 				     HC_REG_ATTN_MSG0_ADDR_L);
6029 
6030 		REG_WR(bp, reg_offset, U64_LO(section));
6031 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6032 	} else if (!CHIP_IS_E1x(bp)) {
6033 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6034 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6035 	}
6036 
6037 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6038 					    sp_sb);
6039 
6040 	bnx2x_zero_sp_sb(bp);
6041 
6042 	/* PCI guarantees endianity of regpairs */
6043 	sp_sb_data.state		= SB_ENABLED;
6044 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6045 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6046 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6047 	sp_sb_data.igu_seg_id		= igu_seg_id;
6048 	sp_sb_data.p_func.pf_id		= func;
6049 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6050 	sp_sb_data.p_func.vf_id		= 0xff;
6051 
6052 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6053 
6054 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6055 }
6056 
6057 void bnx2x_update_coalesce(struct bnx2x *bp)
6058 {
6059 	int i;
6060 
6061 	for_each_eth_queue(bp, i)
6062 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6063 					 bp->tx_ticks, bp->rx_ticks);
6064 }
6065 
6066 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6067 {
6068 	spin_lock_init(&bp->spq_lock);
6069 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6070 
6071 	bp->spq_prod_idx = 0;
6072 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6073 	bp->spq_prod_bd = bp->spq;
6074 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6075 }
6076 
6077 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6078 {
6079 	int i;
6080 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6081 		union event_ring_elem *elem =
6082 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6083 
6084 		elem->next_page.addr.hi =
6085 			cpu_to_le32(U64_HI(bp->eq_mapping +
6086 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6087 		elem->next_page.addr.lo =
6088 			cpu_to_le32(U64_LO(bp->eq_mapping +
6089 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6090 	}
6091 	bp->eq_cons = 0;
6092 	bp->eq_prod = NUM_EQ_DESC;
6093 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6094 	/* we want a warning message before it gets wrought... */
6095 	atomic_set(&bp->eq_spq_left,
6096 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6097 }
6098 
6099 /* called with netif_addr_lock_bh() */
6100 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6101 			       unsigned long rx_mode_flags,
6102 			       unsigned long rx_accept_flags,
6103 			       unsigned long tx_accept_flags,
6104 			       unsigned long ramrod_flags)
6105 {
6106 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6107 	int rc;
6108 
6109 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6110 
6111 	/* Prepare ramrod parameters */
6112 	ramrod_param.cid = 0;
6113 	ramrod_param.cl_id = cl_id;
6114 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6115 	ramrod_param.func_id = BP_FUNC(bp);
6116 
6117 	ramrod_param.pstate = &bp->sp_state;
6118 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6119 
6120 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6121 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6122 
6123 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6124 
6125 	ramrod_param.ramrod_flags = ramrod_flags;
6126 	ramrod_param.rx_mode_flags = rx_mode_flags;
6127 
6128 	ramrod_param.rx_accept_flags = rx_accept_flags;
6129 	ramrod_param.tx_accept_flags = tx_accept_flags;
6130 
6131 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6132 	if (rc < 0) {
6133 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6134 		return rc;
6135 	}
6136 
6137 	return 0;
6138 }
6139 
6140 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6141 				   unsigned long *rx_accept_flags,
6142 				   unsigned long *tx_accept_flags)
6143 {
6144 	/* Clear the flags first */
6145 	*rx_accept_flags = 0;
6146 	*tx_accept_flags = 0;
6147 
6148 	switch (rx_mode) {
6149 	case BNX2X_RX_MODE_NONE:
6150 		/*
6151 		 * 'drop all' supersedes any accept flags that may have been
6152 		 * passed to the function.
6153 		 */
6154 		break;
6155 	case BNX2X_RX_MODE_NORMAL:
6156 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6157 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6158 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6159 
6160 		/* internal switching mode */
6161 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6162 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6163 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6164 
6165 		break;
6166 	case BNX2X_RX_MODE_ALLMULTI:
6167 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6168 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6169 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6170 
6171 		/* internal switching mode */
6172 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6173 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6174 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6175 
6176 		break;
6177 	case BNX2X_RX_MODE_PROMISC:
6178 		/* According to definition of SI mode, iface in promisc mode
6179 		 * should receive matched and unmatched (in resolution of port)
6180 		 * unicast packets.
6181 		 */
6182 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6183 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6184 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6185 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6186 
6187 		/* internal switching mode */
6188 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6189 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6190 
6191 		if (IS_MF_SI(bp))
6192 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6193 		else
6194 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6195 
6196 		break;
6197 	default:
6198 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6199 		return -EINVAL;
6200 	}
6201 
6202 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6203 	if (rx_mode != BNX2X_RX_MODE_NONE) {
6204 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6205 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6206 	}
6207 
6208 	return 0;
6209 }
6210 
6211 /* called with netif_addr_lock_bh() */
6212 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6213 {
6214 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6215 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6216 	int rc;
6217 
6218 	if (!NO_FCOE(bp))
6219 		/* Configure rx_mode of FCoE Queue */
6220 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6221 
6222 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6223 				     &tx_accept_flags);
6224 	if (rc)
6225 		return rc;
6226 
6227 	__set_bit(RAMROD_RX, &ramrod_flags);
6228 	__set_bit(RAMROD_TX, &ramrod_flags);
6229 
6230 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6231 				   rx_accept_flags, tx_accept_flags,
6232 				   ramrod_flags);
6233 }
6234 
6235 static void bnx2x_init_internal_common(struct bnx2x *bp)
6236 {
6237 	int i;
6238 
6239 	/* Zero this manually as its initialization is
6240 	   currently missing in the initTool */
6241 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6242 		REG_WR(bp, BAR_USTRORM_INTMEM +
6243 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6244 	if (!CHIP_IS_E1x(bp)) {
6245 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6246 			CHIP_INT_MODE_IS_BC(bp) ?
6247 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6248 	}
6249 }
6250 
6251 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6252 {
6253 	switch (load_code) {
6254 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6255 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6256 		bnx2x_init_internal_common(bp);
6257 		/* no break */
6258 
6259 	case FW_MSG_CODE_DRV_LOAD_PORT:
6260 		/* nothing to do */
6261 		/* no break */
6262 
6263 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6264 		/* internal memory per function is
6265 		   initialized inside bnx2x_pf_init */
6266 		break;
6267 
6268 	default:
6269 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6270 		break;
6271 	}
6272 }
6273 
6274 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6275 {
6276 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6277 }
6278 
6279 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6280 {
6281 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6282 }
6283 
6284 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6285 {
6286 	if (CHIP_IS_E1x(fp->bp))
6287 		return BP_L_ID(fp->bp) + fp->index;
6288 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6289 		return bnx2x_fp_igu_sb_id(fp);
6290 }
6291 
6292 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6293 {
6294 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6295 	u8 cos;
6296 	unsigned long q_type = 0;
6297 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6298 	fp->rx_queue = fp_idx;
6299 	fp->cid = fp_idx;
6300 	fp->cl_id = bnx2x_fp_cl_id(fp);
6301 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6302 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6303 	/* qZone id equals to FW (per path) client id */
6304 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6305 
6306 	/* init shortcut */
6307 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6308 
6309 	/* Setup SB indices */
6310 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6311 
6312 	/* Configure Queue State object */
6313 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6314 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6315 
6316 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6317 
6318 	/* init tx data */
6319 	for_each_cos_in_tx_queue(fp, cos) {
6320 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6321 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6322 				  FP_COS_TO_TXQ(fp, cos, bp),
6323 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6324 		cids[cos] = fp->txdata_ptr[cos]->cid;
6325 	}
6326 
6327 	/* nothing more for vf to do here */
6328 	if (IS_VF(bp))
6329 		return;
6330 
6331 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6332 		      fp->fw_sb_id, fp->igu_sb_id);
6333 	bnx2x_update_fpsb_idx(fp);
6334 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6335 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6336 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6337 
6338 	/**
6339 	 * Configure classification DBs: Always enable Tx switching
6340 	 */
6341 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6342 
6343 	DP(NETIF_MSG_IFUP,
6344 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6345 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6346 	   fp->igu_sb_id);
6347 }
6348 
6349 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6350 {
6351 	int i;
6352 
6353 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6354 		struct eth_tx_next_bd *tx_next_bd =
6355 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6356 
6357 		tx_next_bd->addr_hi =
6358 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6359 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6360 		tx_next_bd->addr_lo =
6361 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6362 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6363 	}
6364 
6365 	*txdata->tx_cons_sb = cpu_to_le16(0);
6366 
6367 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6368 	txdata->tx_db.data.zero_fill1 = 0;
6369 	txdata->tx_db.data.prod = 0;
6370 
6371 	txdata->tx_pkt_prod = 0;
6372 	txdata->tx_pkt_cons = 0;
6373 	txdata->tx_bd_prod = 0;
6374 	txdata->tx_bd_cons = 0;
6375 	txdata->tx_pkt = 0;
6376 }
6377 
6378 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6379 {
6380 	int i;
6381 
6382 	for_each_tx_queue_cnic(bp, i)
6383 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6384 }
6385 
6386 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6387 {
6388 	int i;
6389 	u8 cos;
6390 
6391 	for_each_eth_queue(bp, i)
6392 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6393 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6394 }
6395 
6396 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6397 {
6398 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6399 	unsigned long q_type = 0;
6400 
6401 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6402 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6403 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6404 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6405 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6406 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6407 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6408 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6409 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6410 			  fp);
6411 
6412 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6413 
6414 	/* qZone id equals to FW (per path) client id */
6415 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6416 	/* init shortcut */
6417 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6418 		bnx2x_rx_ustorm_prods_offset(fp);
6419 
6420 	/* Configure Queue State object */
6421 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6422 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6423 
6424 	/* No multi-CoS for FCoE L2 client */
6425 	BUG_ON(fp->max_cos != 1);
6426 
6427 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6428 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6429 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6430 
6431 	DP(NETIF_MSG_IFUP,
6432 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6433 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6434 	   fp->igu_sb_id);
6435 }
6436 
6437 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6438 {
6439 	if (!NO_FCOE(bp))
6440 		bnx2x_init_fcoe_fp(bp);
6441 
6442 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6443 		      BNX2X_VF_ID_INVALID, false,
6444 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6445 
6446 	/* ensure status block indices were read */
6447 	rmb();
6448 	bnx2x_init_rx_rings_cnic(bp);
6449 	bnx2x_init_tx_rings_cnic(bp);
6450 
6451 	/* flush all */
6452 	mb();
6453 	mmiowb();
6454 }
6455 
6456 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6457 {
6458 	int i;
6459 
6460 	/* Setup NIC internals and enable interrupts */
6461 	for_each_eth_queue(bp, i)
6462 		bnx2x_init_eth_fp(bp, i);
6463 
6464 	/* ensure status block indices were read */
6465 	rmb();
6466 	bnx2x_init_rx_rings(bp);
6467 	bnx2x_init_tx_rings(bp);
6468 
6469 	if (IS_PF(bp)) {
6470 		/* Initialize MOD_ABS interrupts */
6471 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6472 				       bp->common.shmem_base,
6473 				       bp->common.shmem2_base, BP_PORT(bp));
6474 
6475 		/* initialize the default status block and sp ring */
6476 		bnx2x_init_def_sb(bp);
6477 		bnx2x_update_dsb_idx(bp);
6478 		bnx2x_init_sp_ring(bp);
6479 	} else {
6480 		bnx2x_memset_stats(bp);
6481 	}
6482 }
6483 
6484 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6485 {
6486 	bnx2x_init_eq_ring(bp);
6487 	bnx2x_init_internal(bp, load_code);
6488 	bnx2x_pf_init(bp);
6489 	bnx2x_stats_init(bp);
6490 
6491 	/* flush all before enabling interrupts */
6492 	mb();
6493 	mmiowb();
6494 
6495 	bnx2x_int_enable(bp);
6496 
6497 	/* Check for SPIO5 */
6498 	bnx2x_attn_int_deasserted0(bp,
6499 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6500 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6501 }
6502 
6503 /* gzip service functions */
6504 static int bnx2x_gunzip_init(struct bnx2x *bp)
6505 {
6506 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6507 					    &bp->gunzip_mapping, GFP_KERNEL);
6508 	if (bp->gunzip_buf  == NULL)
6509 		goto gunzip_nomem1;
6510 
6511 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6512 	if (bp->strm  == NULL)
6513 		goto gunzip_nomem2;
6514 
6515 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6516 	if (bp->strm->workspace == NULL)
6517 		goto gunzip_nomem3;
6518 
6519 	return 0;
6520 
6521 gunzip_nomem3:
6522 	kfree(bp->strm);
6523 	bp->strm = NULL;
6524 
6525 gunzip_nomem2:
6526 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6527 			  bp->gunzip_mapping);
6528 	bp->gunzip_buf = NULL;
6529 
6530 gunzip_nomem1:
6531 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6532 	return -ENOMEM;
6533 }
6534 
6535 static void bnx2x_gunzip_end(struct bnx2x *bp)
6536 {
6537 	if (bp->strm) {
6538 		vfree(bp->strm->workspace);
6539 		kfree(bp->strm);
6540 		bp->strm = NULL;
6541 	}
6542 
6543 	if (bp->gunzip_buf) {
6544 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6545 				  bp->gunzip_mapping);
6546 		bp->gunzip_buf = NULL;
6547 	}
6548 }
6549 
6550 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6551 {
6552 	int n, rc;
6553 
6554 	/* check gzip header */
6555 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6556 		BNX2X_ERR("Bad gzip header\n");
6557 		return -EINVAL;
6558 	}
6559 
6560 	n = 10;
6561 
6562 #define FNAME				0x8
6563 
6564 	if (zbuf[3] & FNAME)
6565 		while ((zbuf[n++] != 0) && (n < len));
6566 
6567 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6568 	bp->strm->avail_in = len - n;
6569 	bp->strm->next_out = bp->gunzip_buf;
6570 	bp->strm->avail_out = FW_BUF_SIZE;
6571 
6572 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6573 	if (rc != Z_OK)
6574 		return rc;
6575 
6576 	rc = zlib_inflate(bp->strm, Z_FINISH);
6577 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6578 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6579 			   bp->strm->msg);
6580 
6581 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6582 	if (bp->gunzip_outlen & 0x3)
6583 		netdev_err(bp->dev,
6584 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6585 				bp->gunzip_outlen);
6586 	bp->gunzip_outlen >>= 2;
6587 
6588 	zlib_inflateEnd(bp->strm);
6589 
6590 	if (rc == Z_STREAM_END)
6591 		return 0;
6592 
6593 	return rc;
6594 }
6595 
6596 /* nic load/unload */
6597 
6598 /*
6599  * General service functions
6600  */
6601 
6602 /* send a NIG loopback debug packet */
6603 static void bnx2x_lb_pckt(struct bnx2x *bp)
6604 {
6605 	u32 wb_write[3];
6606 
6607 	/* Ethernet source and destination addresses */
6608 	wb_write[0] = 0x55555555;
6609 	wb_write[1] = 0x55555555;
6610 	wb_write[2] = 0x20;		/* SOP */
6611 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6612 
6613 	/* NON-IP protocol */
6614 	wb_write[0] = 0x09000000;
6615 	wb_write[1] = 0x55555555;
6616 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6617 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6618 }
6619 
6620 /* some of the internal memories
6621  * are not directly readable from the driver
6622  * to test them we send debug packets
6623  */
6624 static int bnx2x_int_mem_test(struct bnx2x *bp)
6625 {
6626 	int factor;
6627 	int count, i;
6628 	u32 val = 0;
6629 
6630 	if (CHIP_REV_IS_FPGA(bp))
6631 		factor = 120;
6632 	else if (CHIP_REV_IS_EMUL(bp))
6633 		factor = 200;
6634 	else
6635 		factor = 1;
6636 
6637 	/* Disable inputs of parser neighbor blocks */
6638 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6639 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6640 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6641 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6642 
6643 	/*  Write 0 to parser credits for CFC search request */
6644 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6645 
6646 	/* send Ethernet packet */
6647 	bnx2x_lb_pckt(bp);
6648 
6649 	/* TODO do i reset NIG statistic? */
6650 	/* Wait until NIG register shows 1 packet of size 0x10 */
6651 	count = 1000 * factor;
6652 	while (count) {
6653 
6654 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6655 		val = *bnx2x_sp(bp, wb_data[0]);
6656 		if (val == 0x10)
6657 			break;
6658 
6659 		usleep_range(10000, 20000);
6660 		count--;
6661 	}
6662 	if (val != 0x10) {
6663 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6664 		return -1;
6665 	}
6666 
6667 	/* Wait until PRS register shows 1 packet */
6668 	count = 1000 * factor;
6669 	while (count) {
6670 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6671 		if (val == 1)
6672 			break;
6673 
6674 		usleep_range(10000, 20000);
6675 		count--;
6676 	}
6677 	if (val != 0x1) {
6678 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6679 		return -2;
6680 	}
6681 
6682 	/* Reset and init BRB, PRS */
6683 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6684 	msleep(50);
6685 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6686 	msleep(50);
6687 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6688 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6689 
6690 	DP(NETIF_MSG_HW, "part2\n");
6691 
6692 	/* Disable inputs of parser neighbor blocks */
6693 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6694 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6695 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6696 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6697 
6698 	/* Write 0 to parser credits for CFC search request */
6699 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6700 
6701 	/* send 10 Ethernet packets */
6702 	for (i = 0; i < 10; i++)
6703 		bnx2x_lb_pckt(bp);
6704 
6705 	/* Wait until NIG register shows 10 + 1
6706 	   packets of size 11*0x10 = 0xb0 */
6707 	count = 1000 * factor;
6708 	while (count) {
6709 
6710 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6711 		val = *bnx2x_sp(bp, wb_data[0]);
6712 		if (val == 0xb0)
6713 			break;
6714 
6715 		usleep_range(10000, 20000);
6716 		count--;
6717 	}
6718 	if (val != 0xb0) {
6719 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6720 		return -3;
6721 	}
6722 
6723 	/* Wait until PRS register shows 2 packets */
6724 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6725 	if (val != 2)
6726 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6727 
6728 	/* Write 1 to parser credits for CFC search request */
6729 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6730 
6731 	/* Wait until PRS register shows 3 packets */
6732 	msleep(10 * factor);
6733 	/* Wait until NIG register shows 1 packet of size 0x10 */
6734 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6735 	if (val != 3)
6736 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6737 
6738 	/* clear NIG EOP FIFO */
6739 	for (i = 0; i < 11; i++)
6740 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6741 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6742 	if (val != 1) {
6743 		BNX2X_ERR("clear of NIG failed\n");
6744 		return -4;
6745 	}
6746 
6747 	/* Reset and init BRB, PRS, NIG */
6748 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6749 	msleep(50);
6750 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6751 	msleep(50);
6752 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6753 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6754 	if (!CNIC_SUPPORT(bp))
6755 		/* set NIC mode */
6756 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6757 
6758 	/* Enable inputs of parser neighbor blocks */
6759 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6760 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6761 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6762 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6763 
6764 	DP(NETIF_MSG_HW, "done\n");
6765 
6766 	return 0; /* OK */
6767 }
6768 
6769 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6770 {
6771 	u32 val;
6772 
6773 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6774 	if (!CHIP_IS_E1x(bp))
6775 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6776 	else
6777 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6778 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6779 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6780 	/*
6781 	 * mask read length error interrupts in brb for parser
6782 	 * (parsing unit and 'checksum and crc' unit)
6783 	 * these errors are legal (PU reads fixed length and CAC can cause
6784 	 * read length error on truncated packets)
6785 	 */
6786 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6787 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6788 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6789 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6790 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6791 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6792 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6793 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6794 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6795 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6796 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6797 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6798 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6799 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6800 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6801 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6802 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6803 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6804 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6805 
6806 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6807 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6808 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6809 	if (!CHIP_IS_E1x(bp))
6810 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6811 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6812 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6813 
6814 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6815 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6816 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6817 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6818 
6819 	if (!CHIP_IS_E1x(bp))
6820 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6821 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6822 
6823 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6824 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6825 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6826 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6827 }
6828 
6829 static void bnx2x_reset_common(struct bnx2x *bp)
6830 {
6831 	u32 val = 0x1400;
6832 
6833 	/* reset_common */
6834 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6835 	       0xd3ffff7f);
6836 
6837 	if (CHIP_IS_E3(bp)) {
6838 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6839 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6840 	}
6841 
6842 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6843 }
6844 
6845 static void bnx2x_setup_dmae(struct bnx2x *bp)
6846 {
6847 	bp->dmae_ready = 0;
6848 	spin_lock_init(&bp->dmae_lock);
6849 }
6850 
6851 static void bnx2x_init_pxp(struct bnx2x *bp)
6852 {
6853 	u16 devctl;
6854 	int r_order, w_order;
6855 
6856 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6857 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6858 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6859 	if (bp->mrrs == -1)
6860 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6861 	else {
6862 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6863 		r_order = bp->mrrs;
6864 	}
6865 
6866 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6867 }
6868 
6869 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6870 {
6871 	int is_required;
6872 	u32 val;
6873 	int port;
6874 
6875 	if (BP_NOMCP(bp))
6876 		return;
6877 
6878 	is_required = 0;
6879 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6880 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6881 
6882 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6883 		is_required = 1;
6884 
6885 	/*
6886 	 * The fan failure mechanism is usually related to the PHY type since
6887 	 * the power consumption of the board is affected by the PHY. Currently,
6888 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6889 	 */
6890 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6891 		for (port = PORT_0; port < PORT_MAX; port++) {
6892 			is_required |=
6893 				bnx2x_fan_failure_det_req(
6894 					bp,
6895 					bp->common.shmem_base,
6896 					bp->common.shmem2_base,
6897 					port);
6898 		}
6899 
6900 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6901 
6902 	if (is_required == 0)
6903 		return;
6904 
6905 	/* Fan failure is indicated by SPIO 5 */
6906 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6907 
6908 	/* set to active low mode */
6909 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6910 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6911 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6912 
6913 	/* enable interrupt to signal the IGU */
6914 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6915 	val |= MISC_SPIO_SPIO5;
6916 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6917 }
6918 
6919 void bnx2x_pf_disable(struct bnx2x *bp)
6920 {
6921 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6922 	val &= ~IGU_PF_CONF_FUNC_EN;
6923 
6924 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6925 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6926 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6927 }
6928 
6929 static void bnx2x__common_init_phy(struct bnx2x *bp)
6930 {
6931 	u32 shmem_base[2], shmem2_base[2];
6932 	/* Avoid common init in case MFW supports LFA */
6933 	if (SHMEM2_RD(bp, size) >
6934 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6935 		return;
6936 	shmem_base[0] =  bp->common.shmem_base;
6937 	shmem2_base[0] = bp->common.shmem2_base;
6938 	if (!CHIP_IS_E1x(bp)) {
6939 		shmem_base[1] =
6940 			SHMEM2_RD(bp, other_shmem_base_addr);
6941 		shmem2_base[1] =
6942 			SHMEM2_RD(bp, other_shmem2_base_addr);
6943 	}
6944 	bnx2x_acquire_phy_lock(bp);
6945 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6946 			      bp->common.chip_id);
6947 	bnx2x_release_phy_lock(bp);
6948 }
6949 
6950 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6951 {
6952 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6953 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
6954 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
6955 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
6956 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
6957 
6958 	/* make sure this value is 0 */
6959 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6960 
6961 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
6962 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
6963 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
6964 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
6965 }
6966 
6967 static void bnx2x_set_endianity(struct bnx2x *bp)
6968 {
6969 #ifdef __BIG_ENDIAN
6970 	bnx2x_config_endianity(bp, 1);
6971 #else
6972 	bnx2x_config_endianity(bp, 0);
6973 #endif
6974 }
6975 
6976 static void bnx2x_reset_endianity(struct bnx2x *bp)
6977 {
6978 	bnx2x_config_endianity(bp, 0);
6979 }
6980 
6981 /**
6982  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6983  *
6984  * @bp:		driver handle
6985  */
6986 static int bnx2x_init_hw_common(struct bnx2x *bp)
6987 {
6988 	u32 val;
6989 
6990 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6991 
6992 	/*
6993 	 * take the RESET lock to protect undi_unload flow from accessing
6994 	 * registers while we're resetting the chip
6995 	 */
6996 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6997 
6998 	bnx2x_reset_common(bp);
6999 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7000 
7001 	val = 0xfffc;
7002 	if (CHIP_IS_E3(bp)) {
7003 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7004 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7005 	}
7006 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7007 
7008 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7009 
7010 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7011 
7012 	if (!CHIP_IS_E1x(bp)) {
7013 		u8 abs_func_id;
7014 
7015 		/**
7016 		 * 4-port mode or 2-port mode we need to turn of master-enable
7017 		 * for everyone, after that, turn it back on for self.
7018 		 * so, we disregard multi-function or not, and always disable
7019 		 * for all functions on the given path, this means 0,2,4,6 for
7020 		 * path 0 and 1,3,5,7 for path 1
7021 		 */
7022 		for (abs_func_id = BP_PATH(bp);
7023 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7024 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7025 				REG_WR(bp,
7026 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7027 				    1);
7028 				continue;
7029 			}
7030 
7031 			bnx2x_pretend_func(bp, abs_func_id);
7032 			/* clear pf enable */
7033 			bnx2x_pf_disable(bp);
7034 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7035 		}
7036 	}
7037 
7038 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7039 	if (CHIP_IS_E1(bp)) {
7040 		/* enable HW interrupt from PXP on USDM overflow
7041 		   bit 16 on INT_MASK_0 */
7042 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7043 	}
7044 
7045 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7046 	bnx2x_init_pxp(bp);
7047 	bnx2x_set_endianity(bp);
7048 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7049 
7050 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7051 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7052 
7053 	/* let the HW do it's magic ... */
7054 	msleep(100);
7055 	/* finish PXP init */
7056 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7057 	if (val != 1) {
7058 		BNX2X_ERR("PXP2 CFG failed\n");
7059 		return -EBUSY;
7060 	}
7061 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7062 	if (val != 1) {
7063 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7064 		return -EBUSY;
7065 	}
7066 
7067 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7068 	 * have entries with value "0" and valid bit on.
7069 	 * This needs to be done by the first PF that is loaded in a path
7070 	 * (i.e. common phase)
7071 	 */
7072 	if (!CHIP_IS_E1x(bp)) {
7073 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7074  * (i.e. vnic3) to start even if it is marked as "scan-off".
7075  * This occurs when a different function (func2,3) is being marked
7076  * as "scan-off". Real-life scenario for example: if a driver is being
7077  * load-unloaded while func6,7 are down. This will cause the timer to access
7078  * the ilt, translate to a logical address and send a request to read/write.
7079  * Since the ilt for the function that is down is not valid, this will cause
7080  * a translation error which is unrecoverable.
7081  * The Workaround is intended to make sure that when this happens nothing fatal
7082  * will occur. The workaround:
7083  *	1.  First PF driver which loads on a path will:
7084  *		a.  After taking the chip out of reset, by using pretend,
7085  *		    it will write "0" to the following registers of
7086  *		    the other vnics.
7087  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7088  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7089  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7090  *		    And for itself it will write '1' to
7091  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7092  *		    dmae-operations (writing to pram for example.)
7093  *		    note: can be done for only function 6,7 but cleaner this
7094  *			  way.
7095  *		b.  Write zero+valid to the entire ILT.
7096  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7097  *		    VNIC3 (of that port). The range allocated will be the
7098  *		    entire ILT. This is needed to prevent  ILT range error.
7099  *	2.  Any PF driver load flow:
7100  *		a.  ILT update with the physical addresses of the allocated
7101  *		    logical pages.
7102  *		b.  Wait 20msec. - note that this timeout is needed to make
7103  *		    sure there are no requests in one of the PXP internal
7104  *		    queues with "old" ILT addresses.
7105  *		c.  PF enable in the PGLC.
7106  *		d.  Clear the was_error of the PF in the PGLC. (could have
7107  *		    occurred while driver was down)
7108  *		e.  PF enable in the CFC (WEAK + STRONG)
7109  *		f.  Timers scan enable
7110  *	3.  PF driver unload flow:
7111  *		a.  Clear the Timers scan_en.
7112  *		b.  Polling for scan_on=0 for that PF.
7113  *		c.  Clear the PF enable bit in the PXP.
7114  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7115  *		e.  Write zero+valid to all ILT entries (The valid bit must
7116  *		    stay set)
7117  *		f.  If this is VNIC 3 of a port then also init
7118  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7119  *		    to the last entry in the ILT.
7120  *
7121  *	Notes:
7122  *	Currently the PF error in the PGLC is non recoverable.
7123  *	In the future the there will be a recovery routine for this error.
7124  *	Currently attention is masked.
7125  *	Having an MCP lock on the load/unload process does not guarantee that
7126  *	there is no Timer disable during Func6/7 enable. This is because the
7127  *	Timers scan is currently being cleared by the MCP on FLR.
7128  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7129  *	there is error before clearing it. But the flow above is simpler and
7130  *	more general.
7131  *	All ILT entries are written by zero+valid and not just PF6/7
7132  *	ILT entries since in the future the ILT entries allocation for
7133  *	PF-s might be dynamic.
7134  */
7135 		struct ilt_client_info ilt_cli;
7136 		struct bnx2x_ilt ilt;
7137 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7138 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7139 
7140 		/* initialize dummy TM client */
7141 		ilt_cli.start = 0;
7142 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7143 		ilt_cli.client_num = ILT_CLIENT_TM;
7144 
7145 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7146 		 * Step 2: set the timers first/last ilt entry to point
7147 		 * to the entire range to prevent ILT range error for 3rd/4th
7148 		 * vnic	(this code assumes existence of the vnic)
7149 		 *
7150 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7151 		 * with dummy TM client
7152 		 *
7153 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7154 		 * and his brother are split registers
7155 		 */
7156 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7157 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7158 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7159 
7160 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7161 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7162 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7163 	}
7164 
7165 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7166 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7167 
7168 	if (!CHIP_IS_E1x(bp)) {
7169 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7170 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7171 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7172 
7173 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7174 
7175 		/* let the HW do it's magic ... */
7176 		do {
7177 			msleep(200);
7178 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7179 		} while (factor-- && (val != 1));
7180 
7181 		if (val != 1) {
7182 			BNX2X_ERR("ATC_INIT failed\n");
7183 			return -EBUSY;
7184 		}
7185 	}
7186 
7187 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7188 
7189 	bnx2x_iov_init_dmae(bp);
7190 
7191 	/* clean the DMAE memory */
7192 	bp->dmae_ready = 1;
7193 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7194 
7195 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7196 
7197 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7198 
7199 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7200 
7201 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7202 
7203 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7204 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7205 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7206 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7207 
7208 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7209 
7210 	/* QM queues pointers table */
7211 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7212 
7213 	/* soft reset pulse */
7214 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7215 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7216 
7217 	if (CNIC_SUPPORT(bp))
7218 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7219 
7220 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7221 
7222 	if (!CHIP_REV_IS_SLOW(bp))
7223 		/* enable hw interrupt from doorbell Q */
7224 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7225 
7226 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7227 
7228 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7229 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7230 
7231 	if (!CHIP_IS_E1(bp))
7232 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7233 
7234 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7235 		if (IS_MF_AFEX(bp)) {
7236 			/* configure that VNTag and VLAN headers must be
7237 			 * received in afex mode
7238 			 */
7239 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7240 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7241 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7242 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7243 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7244 		} else {
7245 			/* Bit-map indicating which L2 hdrs may appear
7246 			 * after the basic Ethernet header
7247 			 */
7248 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7249 			       bp->path_has_ovlan ? 7 : 6);
7250 		}
7251 	}
7252 
7253 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7254 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7255 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7256 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7257 
7258 	if (!CHIP_IS_E1x(bp)) {
7259 		/* reset VFC memories */
7260 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7261 			   VFC_MEMORIES_RST_REG_CAM_RST |
7262 			   VFC_MEMORIES_RST_REG_RAM_RST);
7263 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7264 			   VFC_MEMORIES_RST_REG_CAM_RST |
7265 			   VFC_MEMORIES_RST_REG_RAM_RST);
7266 
7267 		msleep(20);
7268 	}
7269 
7270 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7271 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7272 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7273 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7274 
7275 	/* sync semi rtc */
7276 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7277 	       0x80000000);
7278 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7279 	       0x80000000);
7280 
7281 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7282 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7283 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7284 
7285 	if (!CHIP_IS_E1x(bp)) {
7286 		if (IS_MF_AFEX(bp)) {
7287 			/* configure that VNTag and VLAN headers must be
7288 			 * sent in afex mode
7289 			 */
7290 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7291 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7292 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7293 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7294 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7295 		} else {
7296 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7297 			       bp->path_has_ovlan ? 7 : 6);
7298 		}
7299 	}
7300 
7301 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7302 
7303 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7304 
7305 	if (CNIC_SUPPORT(bp)) {
7306 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7307 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7308 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7309 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7310 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7311 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7312 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7313 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7314 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7315 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7316 	}
7317 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7318 
7319 	if (sizeof(union cdu_context) != 1024)
7320 		/* we currently assume that a context is 1024 bytes */
7321 		dev_alert(&bp->pdev->dev,
7322 			  "please adjust the size of cdu_context(%ld)\n",
7323 			  (long)sizeof(union cdu_context));
7324 
7325 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7326 	val = (4 << 24) + (0 << 12) + 1024;
7327 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7328 
7329 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7330 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7331 	/* enable context validation interrupt from CFC */
7332 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7333 
7334 	/* set the thresholds to prevent CFC/CDU race */
7335 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7336 
7337 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7338 
7339 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7340 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7341 
7342 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7343 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7344 
7345 	/* Reset PCIE errors for debug */
7346 	REG_WR(bp, 0x2814, 0xffffffff);
7347 	REG_WR(bp, 0x3820, 0xffffffff);
7348 
7349 	if (!CHIP_IS_E1x(bp)) {
7350 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7351 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7352 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7353 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7354 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7355 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7356 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7357 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7358 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7359 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7360 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7361 	}
7362 
7363 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7364 	if (!CHIP_IS_E1(bp)) {
7365 		/* in E3 this done in per-port section */
7366 		if (!CHIP_IS_E3(bp))
7367 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7368 	}
7369 	if (CHIP_IS_E1H(bp))
7370 		/* not applicable for E2 (and above ...) */
7371 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7372 
7373 	if (CHIP_REV_IS_SLOW(bp))
7374 		msleep(200);
7375 
7376 	/* finish CFC init */
7377 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7378 	if (val != 1) {
7379 		BNX2X_ERR("CFC LL_INIT failed\n");
7380 		return -EBUSY;
7381 	}
7382 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7383 	if (val != 1) {
7384 		BNX2X_ERR("CFC AC_INIT failed\n");
7385 		return -EBUSY;
7386 	}
7387 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7388 	if (val != 1) {
7389 		BNX2X_ERR("CFC CAM_INIT failed\n");
7390 		return -EBUSY;
7391 	}
7392 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7393 
7394 	if (CHIP_IS_E1(bp)) {
7395 		/* read NIG statistic
7396 		   to see if this is our first up since powerup */
7397 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7398 		val = *bnx2x_sp(bp, wb_data[0]);
7399 
7400 		/* do internal memory self test */
7401 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7402 			BNX2X_ERR("internal mem self test failed\n");
7403 			return -EBUSY;
7404 		}
7405 	}
7406 
7407 	bnx2x_setup_fan_failure_detection(bp);
7408 
7409 	/* clear PXP2 attentions */
7410 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7411 
7412 	bnx2x_enable_blocks_attention(bp);
7413 	bnx2x_enable_blocks_parity(bp);
7414 
7415 	if (!BP_NOMCP(bp)) {
7416 		if (CHIP_IS_E1x(bp))
7417 			bnx2x__common_init_phy(bp);
7418 	} else
7419 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7420 
7421 	return 0;
7422 }
7423 
7424 /**
7425  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7426  *
7427  * @bp:		driver handle
7428  */
7429 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7430 {
7431 	int rc = bnx2x_init_hw_common(bp);
7432 
7433 	if (rc)
7434 		return rc;
7435 
7436 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7437 	if (!BP_NOMCP(bp))
7438 		bnx2x__common_init_phy(bp);
7439 
7440 	return 0;
7441 }
7442 
7443 static int bnx2x_init_hw_port(struct bnx2x *bp)
7444 {
7445 	int port = BP_PORT(bp);
7446 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7447 	u32 low, high;
7448 	u32 val, reg;
7449 
7450 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7451 
7452 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7453 
7454 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7455 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7456 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7457 
7458 	/* Timers bug workaround: disables the pf_master bit in pglue at
7459 	 * common phase, we need to enable it here before any dmae access are
7460 	 * attempted. Therefore we manually added the enable-master to the
7461 	 * port phase (it also happens in the function phase)
7462 	 */
7463 	if (!CHIP_IS_E1x(bp))
7464 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7465 
7466 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7467 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7468 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7469 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7470 
7471 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7472 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7473 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7474 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7475 
7476 	/* QM cid (connection) count */
7477 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7478 
7479 	if (CNIC_SUPPORT(bp)) {
7480 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7481 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7482 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7483 	}
7484 
7485 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7486 
7487 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7488 
7489 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7490 
7491 		if (IS_MF(bp))
7492 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7493 		else if (bp->dev->mtu > 4096) {
7494 			if (bp->flags & ONE_PORT_FLAG)
7495 				low = 160;
7496 			else {
7497 				val = bp->dev->mtu;
7498 				/* (24*1024 + val*4)/256 */
7499 				low = 96 + (val/64) +
7500 						((val % 64) ? 1 : 0);
7501 			}
7502 		} else
7503 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7504 		high = low + 56;	/* 14*1024/256 */
7505 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7506 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7507 	}
7508 
7509 	if (CHIP_MODE_IS_4_PORT(bp))
7510 		REG_WR(bp, (BP_PORT(bp) ?
7511 			    BRB1_REG_MAC_GUARANTIED_1 :
7512 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7513 
7514 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7515 	if (CHIP_IS_E3B0(bp)) {
7516 		if (IS_MF_AFEX(bp)) {
7517 			/* configure headers for AFEX mode */
7518 			REG_WR(bp, BP_PORT(bp) ?
7519 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7520 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7521 			REG_WR(bp, BP_PORT(bp) ?
7522 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7523 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7524 			REG_WR(bp, BP_PORT(bp) ?
7525 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7526 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7527 		} else {
7528 			/* Ovlan exists only if we are in multi-function +
7529 			 * switch-dependent mode, in switch-independent there
7530 			 * is no ovlan headers
7531 			 */
7532 			REG_WR(bp, BP_PORT(bp) ?
7533 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7534 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7535 			       (bp->path_has_ovlan ? 7 : 6));
7536 		}
7537 	}
7538 
7539 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7540 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7541 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7542 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7543 
7544 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7545 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7546 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7547 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7548 
7549 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7550 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7551 
7552 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7553 
7554 	if (CHIP_IS_E1x(bp)) {
7555 		/* configure PBF to work without PAUSE mtu 9000 */
7556 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7557 
7558 		/* update threshold */
7559 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7560 		/* update init credit */
7561 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7562 
7563 		/* probe changes */
7564 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7565 		udelay(50);
7566 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7567 	}
7568 
7569 	if (CNIC_SUPPORT(bp))
7570 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7571 
7572 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7573 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7574 
7575 	if (CHIP_IS_E1(bp)) {
7576 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7577 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7578 	}
7579 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7580 
7581 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7582 
7583 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7584 	/* init aeu_mask_attn_func_0/1:
7585 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7586 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7587 	 *             bits 4-7 are used for "per vn group attention" */
7588 	val = IS_MF(bp) ? 0xF7 : 0x7;
7589 	/* Enable DCBX attention for all but E1 */
7590 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7591 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7592 
7593 	/* SCPAD_PARITY should NOT trigger close the gates */
7594 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7595 	REG_WR(bp, reg,
7596 	       REG_RD(bp, reg) &
7597 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7598 
7599 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7600 	REG_WR(bp, reg,
7601 	       REG_RD(bp, reg) &
7602 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7603 
7604 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7605 
7606 	if (!CHIP_IS_E1x(bp)) {
7607 		/* Bit-map indicating which L2 hdrs may appear after the
7608 		 * basic Ethernet header
7609 		 */
7610 		if (IS_MF_AFEX(bp))
7611 			REG_WR(bp, BP_PORT(bp) ?
7612 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7613 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7614 		else
7615 			REG_WR(bp, BP_PORT(bp) ?
7616 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7617 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7618 			       IS_MF_SD(bp) ? 7 : 6);
7619 
7620 		if (CHIP_IS_E3(bp))
7621 			REG_WR(bp, BP_PORT(bp) ?
7622 				   NIG_REG_LLH1_MF_MODE :
7623 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7624 	}
7625 	if (!CHIP_IS_E3(bp))
7626 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7627 
7628 	if (!CHIP_IS_E1(bp)) {
7629 		/* 0x2 disable mf_ov, 0x1 enable */
7630 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7631 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7632 
7633 		if (!CHIP_IS_E1x(bp)) {
7634 			val = 0;
7635 			switch (bp->mf_mode) {
7636 			case MULTI_FUNCTION_SD:
7637 				val = 1;
7638 				break;
7639 			case MULTI_FUNCTION_SI:
7640 			case MULTI_FUNCTION_AFEX:
7641 				val = 2;
7642 				break;
7643 			}
7644 
7645 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7646 						  NIG_REG_LLH0_CLS_TYPE), val);
7647 		}
7648 		{
7649 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7650 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7651 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7652 		}
7653 	}
7654 
7655 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7656 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7657 	if (val & MISC_SPIO_SPIO5) {
7658 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7659 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7660 		val = REG_RD(bp, reg_addr);
7661 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7662 		REG_WR(bp, reg_addr, val);
7663 	}
7664 
7665 	return 0;
7666 }
7667 
7668 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7669 {
7670 	int reg;
7671 	u32 wb_write[2];
7672 
7673 	if (CHIP_IS_E1(bp))
7674 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7675 	else
7676 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7677 
7678 	wb_write[0] = ONCHIP_ADDR1(addr);
7679 	wb_write[1] = ONCHIP_ADDR2(addr);
7680 	REG_WR_DMAE(bp, reg, wb_write, 2);
7681 }
7682 
7683 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7684 {
7685 	u32 data, ctl, cnt = 100;
7686 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7687 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7688 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7689 	u32 sb_bit =  1 << (idu_sb_id%32);
7690 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7691 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7692 
7693 	/* Not supported in BC mode */
7694 	if (CHIP_INT_MODE_IS_BC(bp))
7695 		return;
7696 
7697 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7698 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7699 		IGU_REGULAR_CLEANUP_SET				|
7700 		IGU_REGULAR_BCLEANUP;
7701 
7702 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7703 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7704 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7705 
7706 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7707 			 data, igu_addr_data);
7708 	REG_WR(bp, igu_addr_data, data);
7709 	mmiowb();
7710 	barrier();
7711 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7712 			  ctl, igu_addr_ctl);
7713 	REG_WR(bp, igu_addr_ctl, ctl);
7714 	mmiowb();
7715 	barrier();
7716 
7717 	/* wait for clean up to finish */
7718 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7719 		msleep(20);
7720 
7721 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7722 		DP(NETIF_MSG_HW,
7723 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7724 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7725 	}
7726 }
7727 
7728 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7729 {
7730 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7731 }
7732 
7733 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7734 {
7735 	u32 i, base = FUNC_ILT_BASE(func);
7736 	for (i = base; i < base + ILT_PER_FUNC; i++)
7737 		bnx2x_ilt_wr(bp, i, 0);
7738 }
7739 
7740 static void bnx2x_init_searcher(struct bnx2x *bp)
7741 {
7742 	int port = BP_PORT(bp);
7743 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7744 	/* T1 hash bits value determines the T1 number of entries */
7745 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7746 }
7747 
7748 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7749 {
7750 	int rc;
7751 	struct bnx2x_func_state_params func_params = {NULL};
7752 	struct bnx2x_func_switch_update_params *switch_update_params =
7753 		&func_params.params.switch_update;
7754 
7755 	/* Prepare parameters for function state transitions */
7756 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7757 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7758 
7759 	func_params.f_obj = &bp->func_obj;
7760 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7761 
7762 	/* Function parameters */
7763 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7764 		  &switch_update_params->changes);
7765 	if (suspend)
7766 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7767 			  &switch_update_params->changes);
7768 
7769 	rc = bnx2x_func_state_change(bp, &func_params);
7770 
7771 	return rc;
7772 }
7773 
7774 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7775 {
7776 	int rc, i, port = BP_PORT(bp);
7777 	int vlan_en = 0, mac_en[NUM_MACS];
7778 
7779 	/* Close input from network */
7780 	if (bp->mf_mode == SINGLE_FUNCTION) {
7781 		bnx2x_set_rx_filter(&bp->link_params, 0);
7782 	} else {
7783 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7784 				   NIG_REG_LLH0_FUNC_EN);
7785 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7786 			  NIG_REG_LLH0_FUNC_EN, 0);
7787 		for (i = 0; i < NUM_MACS; i++) {
7788 			mac_en[i] = REG_RD(bp, port ?
7789 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7790 					      4 * i) :
7791 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7792 					      4 * i));
7793 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7794 					      4 * i) :
7795 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7796 		}
7797 	}
7798 
7799 	/* Close BMC to host */
7800 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7801 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7802 
7803 	/* Suspend Tx switching to the PF. Completion of this ramrod
7804 	 * further guarantees that all the packets of that PF / child
7805 	 * VFs in BRB were processed by the Parser, so it is safe to
7806 	 * change the NIC_MODE register.
7807 	 */
7808 	rc = bnx2x_func_switch_update(bp, 1);
7809 	if (rc) {
7810 		BNX2X_ERR("Can't suspend tx-switching!\n");
7811 		return rc;
7812 	}
7813 
7814 	/* Change NIC_MODE register */
7815 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7816 
7817 	/* Open input from network */
7818 	if (bp->mf_mode == SINGLE_FUNCTION) {
7819 		bnx2x_set_rx_filter(&bp->link_params, 1);
7820 	} else {
7821 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7822 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7823 		for (i = 0; i < NUM_MACS; i++) {
7824 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7825 					      4 * i) :
7826 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7827 				  mac_en[i]);
7828 		}
7829 	}
7830 
7831 	/* Enable BMC to host */
7832 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7833 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7834 
7835 	/* Resume Tx switching to the PF */
7836 	rc = bnx2x_func_switch_update(bp, 0);
7837 	if (rc) {
7838 		BNX2X_ERR("Can't resume tx-switching!\n");
7839 		return rc;
7840 	}
7841 
7842 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7843 	return 0;
7844 }
7845 
7846 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7847 {
7848 	int rc;
7849 
7850 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7851 
7852 	if (CONFIGURE_NIC_MODE(bp)) {
7853 		/* Configure searcher as part of function hw init */
7854 		bnx2x_init_searcher(bp);
7855 
7856 		/* Reset NIC mode */
7857 		rc = bnx2x_reset_nic_mode(bp);
7858 		if (rc)
7859 			BNX2X_ERR("Can't change NIC mode!\n");
7860 		return rc;
7861 	}
7862 
7863 	return 0;
7864 }
7865 
7866 static int bnx2x_init_hw_func(struct bnx2x *bp)
7867 {
7868 	int port = BP_PORT(bp);
7869 	int func = BP_FUNC(bp);
7870 	int init_phase = PHASE_PF0 + func;
7871 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7872 	u16 cdu_ilt_start;
7873 	u32 addr, val;
7874 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7875 	int i, main_mem_width, rc;
7876 
7877 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7878 
7879 	/* FLR cleanup - hmmm */
7880 	if (!CHIP_IS_E1x(bp)) {
7881 		rc = bnx2x_pf_flr_clnup(bp);
7882 		if (rc) {
7883 			bnx2x_fw_dump(bp);
7884 			return rc;
7885 		}
7886 	}
7887 
7888 	/* set MSI reconfigure capability */
7889 	if (bp->common.int_block == INT_BLOCK_HC) {
7890 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7891 		val = REG_RD(bp, addr);
7892 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7893 		REG_WR(bp, addr, val);
7894 	}
7895 
7896 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7897 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7898 
7899 	ilt = BP_ILT(bp);
7900 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7901 
7902 	if (IS_SRIOV(bp))
7903 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7904 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7905 
7906 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7907 	 * those of the VFs, so start line should be reset
7908 	 */
7909 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7910 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7911 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7912 		ilt->lines[cdu_ilt_start + i].page_mapping =
7913 			bp->context[i].cxt_mapping;
7914 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7915 	}
7916 
7917 	bnx2x_ilt_init_op(bp, INITOP_SET);
7918 
7919 	if (!CONFIGURE_NIC_MODE(bp)) {
7920 		bnx2x_init_searcher(bp);
7921 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7922 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7923 	} else {
7924 		/* Set NIC mode */
7925 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7926 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7927 	}
7928 
7929 	if (!CHIP_IS_E1x(bp)) {
7930 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7931 
7932 		/* Turn on a single ISR mode in IGU if driver is going to use
7933 		 * INT#x or MSI
7934 		 */
7935 		if (!(bp->flags & USING_MSIX_FLAG))
7936 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7937 		/*
7938 		 * Timers workaround bug: function init part.
7939 		 * Need to wait 20msec after initializing ILT,
7940 		 * needed to make sure there are no requests in
7941 		 * one of the PXP internal queues with "old" ILT addresses
7942 		 */
7943 		msleep(20);
7944 		/*
7945 		 * Master enable - Due to WB DMAE writes performed before this
7946 		 * register is re-initialized as part of the regular function
7947 		 * init
7948 		 */
7949 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7950 		/* Enable the function in IGU */
7951 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7952 	}
7953 
7954 	bp->dmae_ready = 1;
7955 
7956 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7957 
7958 	if (!CHIP_IS_E1x(bp))
7959 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7960 
7961 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7962 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7963 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7964 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7965 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7966 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7967 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7968 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7969 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7970 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7971 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7972 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7973 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7974 
7975 	if (!CHIP_IS_E1x(bp))
7976 		REG_WR(bp, QM_REG_PF_EN, 1);
7977 
7978 	if (!CHIP_IS_E1x(bp)) {
7979 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7980 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7981 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7982 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7983 	}
7984 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7985 
7986 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7987 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7988 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7989 
7990 	bnx2x_iov_init_dq(bp);
7991 
7992 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7993 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7994 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7995 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7996 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7997 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7998 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7999 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8000 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8001 	if (!CHIP_IS_E1x(bp))
8002 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8003 
8004 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8005 
8006 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8007 
8008 	if (!CHIP_IS_E1x(bp))
8009 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8010 
8011 	if (IS_MF(bp)) {
8012 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8013 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8014 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8015 			       bp->mf_ov);
8016 		}
8017 	}
8018 
8019 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8020 
8021 	/* HC init per function */
8022 	if (bp->common.int_block == INT_BLOCK_HC) {
8023 		if (CHIP_IS_E1H(bp)) {
8024 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8025 
8026 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8027 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8028 		}
8029 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8030 
8031 	} else {
8032 		int num_segs, sb_idx, prod_offset;
8033 
8034 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8035 
8036 		if (!CHIP_IS_E1x(bp)) {
8037 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8038 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8039 		}
8040 
8041 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8042 
8043 		if (!CHIP_IS_E1x(bp)) {
8044 			int dsb_idx = 0;
8045 			/**
8046 			 * Producer memory:
8047 			 * E2 mode: address 0-135 match to the mapping memory;
8048 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8049 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8050 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8051 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8052 			 * 144-147 reserved.
8053 			 *
8054 			 * E1.5 mode - In backward compatible mode;
8055 			 * for non default SB; each even line in the memory
8056 			 * holds the U producer and each odd line hold
8057 			 * the C producer. The first 128 producers are for
8058 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8059 			 * producers are for the DSB for each PF.
8060 			 * Each PF has five segments: (the order inside each
8061 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8062 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8063 			 * 144-147 attn prods;
8064 			 */
8065 			/* non-default-status-blocks */
8066 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8067 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8068 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8069 				prod_offset = (bp->igu_base_sb + sb_idx) *
8070 					num_segs;
8071 
8072 				for (i = 0; i < num_segs; i++) {
8073 					addr = IGU_REG_PROD_CONS_MEMORY +
8074 							(prod_offset + i) * 4;
8075 					REG_WR(bp, addr, 0);
8076 				}
8077 				/* send consumer update with value 0 */
8078 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8079 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8080 				bnx2x_igu_clear_sb(bp,
8081 						   bp->igu_base_sb + sb_idx);
8082 			}
8083 
8084 			/* default-status-blocks */
8085 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8086 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8087 
8088 			if (CHIP_MODE_IS_4_PORT(bp))
8089 				dsb_idx = BP_FUNC(bp);
8090 			else
8091 				dsb_idx = BP_VN(bp);
8092 
8093 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8094 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8095 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8096 
8097 			/*
8098 			 * igu prods come in chunks of E1HVN_MAX (4) -
8099 			 * does not matters what is the current chip mode
8100 			 */
8101 			for (i = 0; i < (num_segs * E1HVN_MAX);
8102 			     i += E1HVN_MAX) {
8103 				addr = IGU_REG_PROD_CONS_MEMORY +
8104 							(prod_offset + i)*4;
8105 				REG_WR(bp, addr, 0);
8106 			}
8107 			/* send consumer update with 0 */
8108 			if (CHIP_INT_MODE_IS_BC(bp)) {
8109 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8110 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8111 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8112 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8113 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8114 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8115 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8116 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8117 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8118 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8119 			} else {
8120 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8121 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8122 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8123 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8124 			}
8125 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8126 
8127 			/* !!! These should become driver const once
8128 			   rf-tool supports split-68 const */
8129 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8130 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8131 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8132 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8133 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8134 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8135 		}
8136 	}
8137 
8138 	/* Reset PCIE errors for debug */
8139 	REG_WR(bp, 0x2114, 0xffffffff);
8140 	REG_WR(bp, 0x2120, 0xffffffff);
8141 
8142 	if (CHIP_IS_E1x(bp)) {
8143 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8144 		main_mem_base = HC_REG_MAIN_MEMORY +
8145 				BP_PORT(bp) * (main_mem_size * 4);
8146 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8147 		main_mem_width = 8;
8148 
8149 		val = REG_RD(bp, main_mem_prty_clr);
8150 		if (val)
8151 			DP(NETIF_MSG_HW,
8152 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8153 			   val);
8154 
8155 		/* Clear "false" parity errors in MSI-X table */
8156 		for (i = main_mem_base;
8157 		     i < main_mem_base + main_mem_size * 4;
8158 		     i += main_mem_width) {
8159 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8160 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8161 					 i, main_mem_width / 4);
8162 		}
8163 		/* Clear HC parity attention */
8164 		REG_RD(bp, main_mem_prty_clr);
8165 	}
8166 
8167 #ifdef BNX2X_STOP_ON_ERROR
8168 	/* Enable STORMs SP logging */
8169 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8170 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8171 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8172 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8173 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8174 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8175 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8176 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8177 #endif
8178 
8179 	bnx2x_phy_probe(&bp->link_params);
8180 
8181 	return 0;
8182 }
8183 
8184 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8185 {
8186 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8187 
8188 	if (!CHIP_IS_E1x(bp))
8189 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8190 			       sizeof(struct host_hc_status_block_e2));
8191 	else
8192 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8193 			       sizeof(struct host_hc_status_block_e1x));
8194 
8195 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8196 }
8197 
8198 void bnx2x_free_mem(struct bnx2x *bp)
8199 {
8200 	int i;
8201 
8202 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8203 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8204 
8205 	if (IS_VF(bp))
8206 		return;
8207 
8208 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8209 		       sizeof(struct host_sp_status_block));
8210 
8211 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8212 		       sizeof(struct bnx2x_slowpath));
8213 
8214 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8215 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8216 			       bp->context[i].size);
8217 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8218 
8219 	BNX2X_FREE(bp->ilt->lines);
8220 
8221 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8222 
8223 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8224 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8225 
8226 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8227 
8228 	bnx2x_iov_free_mem(bp);
8229 }
8230 
8231 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8232 {
8233 	if (!CHIP_IS_E1x(bp)) {
8234 		/* size = the status block + ramrod buffers */
8235 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8236 						    sizeof(struct host_hc_status_block_e2));
8237 		if (!bp->cnic_sb.e2_sb)
8238 			goto alloc_mem_err;
8239 	} else {
8240 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8241 						     sizeof(struct host_hc_status_block_e1x));
8242 		if (!bp->cnic_sb.e1x_sb)
8243 			goto alloc_mem_err;
8244 	}
8245 
8246 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8247 		/* allocate searcher T2 table, as it wasn't allocated before */
8248 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8249 		if (!bp->t2)
8250 			goto alloc_mem_err;
8251 	}
8252 
8253 	/* write address to which L5 should insert its values */
8254 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8255 		&bp->slowpath->drv_info_to_mcp;
8256 
8257 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8258 		goto alloc_mem_err;
8259 
8260 	return 0;
8261 
8262 alloc_mem_err:
8263 	bnx2x_free_mem_cnic(bp);
8264 	BNX2X_ERR("Can't allocate memory\n");
8265 	return -ENOMEM;
8266 }
8267 
8268 int bnx2x_alloc_mem(struct bnx2x *bp)
8269 {
8270 	int i, allocated, context_size;
8271 
8272 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8273 		/* allocate searcher T2 table */
8274 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8275 		if (!bp->t2)
8276 			goto alloc_mem_err;
8277 	}
8278 
8279 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8280 					     sizeof(struct host_sp_status_block));
8281 	if (!bp->def_status_blk)
8282 		goto alloc_mem_err;
8283 
8284 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8285 				       sizeof(struct bnx2x_slowpath));
8286 	if (!bp->slowpath)
8287 		goto alloc_mem_err;
8288 
8289 	/* Allocate memory for CDU context:
8290 	 * This memory is allocated separately and not in the generic ILT
8291 	 * functions because CDU differs in few aspects:
8292 	 * 1. There are multiple entities allocating memory for context -
8293 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8294 	 * its own ILT lines.
8295 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8296 	 * for the other ILT clients), to be efficient we want to support
8297 	 * allocation of sub-page-size in the last entry.
8298 	 * 3. Context pointers are used by the driver to pass to FW / update
8299 	 * the context (for the other ILT clients the pointers are used just to
8300 	 * free the memory during unload).
8301 	 */
8302 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8303 
8304 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8305 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8306 					  (context_size - allocated));
8307 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8308 						      bp->context[i].size);
8309 		if (!bp->context[i].vcxt)
8310 			goto alloc_mem_err;
8311 		allocated += bp->context[i].size;
8312 	}
8313 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8314 				 GFP_KERNEL);
8315 	if (!bp->ilt->lines)
8316 		goto alloc_mem_err;
8317 
8318 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8319 		goto alloc_mem_err;
8320 
8321 	if (bnx2x_iov_alloc_mem(bp))
8322 		goto alloc_mem_err;
8323 
8324 	/* Slow path ring */
8325 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8326 	if (!bp->spq)
8327 		goto alloc_mem_err;
8328 
8329 	/* EQ */
8330 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8331 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8332 	if (!bp->eq_ring)
8333 		goto alloc_mem_err;
8334 
8335 	return 0;
8336 
8337 alloc_mem_err:
8338 	bnx2x_free_mem(bp);
8339 	BNX2X_ERR("Can't allocate memory\n");
8340 	return -ENOMEM;
8341 }
8342 
8343 /*
8344  * Init service functions
8345  */
8346 
8347 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8348 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8349 		      int mac_type, unsigned long *ramrod_flags)
8350 {
8351 	int rc;
8352 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8353 
8354 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8355 
8356 	/* Fill general parameters */
8357 	ramrod_param.vlan_mac_obj = obj;
8358 	ramrod_param.ramrod_flags = *ramrod_flags;
8359 
8360 	/* Fill a user request section if needed */
8361 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8362 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8363 
8364 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8365 
8366 		/* Set the command: ADD or DEL */
8367 		if (set)
8368 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8369 		else
8370 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8371 	}
8372 
8373 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8374 
8375 	if (rc == -EEXIST) {
8376 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8377 		/* do not treat adding same MAC as error */
8378 		rc = 0;
8379 	} else if (rc < 0)
8380 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8381 
8382 	return rc;
8383 }
8384 
8385 int bnx2x_del_all_macs(struct bnx2x *bp,
8386 		       struct bnx2x_vlan_mac_obj *mac_obj,
8387 		       int mac_type, bool wait_for_comp)
8388 {
8389 	int rc;
8390 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8391 
8392 	/* Wait for completion of requested */
8393 	if (wait_for_comp)
8394 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8395 
8396 	/* Set the mac type of addresses we want to clear */
8397 	__set_bit(mac_type, &vlan_mac_flags);
8398 
8399 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8400 	if (rc < 0)
8401 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8402 
8403 	return rc;
8404 }
8405 
8406 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8407 {
8408 	if (IS_PF(bp)) {
8409 		unsigned long ramrod_flags = 0;
8410 
8411 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8412 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8413 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8414 					 &bp->sp_objs->mac_obj, set,
8415 					 BNX2X_ETH_MAC, &ramrod_flags);
8416 	} else { /* vf */
8417 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8418 					     bp->fp->index, true);
8419 	}
8420 }
8421 
8422 int bnx2x_setup_leading(struct bnx2x *bp)
8423 {
8424 	if (IS_PF(bp))
8425 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8426 	else /* VF */
8427 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8428 }
8429 
8430 /**
8431  * bnx2x_set_int_mode - configure interrupt mode
8432  *
8433  * @bp:		driver handle
8434  *
8435  * In case of MSI-X it will also try to enable MSI-X.
8436  */
8437 int bnx2x_set_int_mode(struct bnx2x *bp)
8438 {
8439 	int rc = 0;
8440 
8441 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8442 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8443 		return -EINVAL;
8444 	}
8445 
8446 	switch (int_mode) {
8447 	case BNX2X_INT_MODE_MSIX:
8448 		/* attempt to enable msix */
8449 		rc = bnx2x_enable_msix(bp);
8450 
8451 		/* msix attained */
8452 		if (!rc)
8453 			return 0;
8454 
8455 		/* vfs use only msix */
8456 		if (rc && IS_VF(bp))
8457 			return rc;
8458 
8459 		/* failed to enable multiple MSI-X */
8460 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8461 			       bp->num_queues,
8462 			       1 + bp->num_cnic_queues);
8463 
8464 		/* falling through... */
8465 	case BNX2X_INT_MODE_MSI:
8466 		bnx2x_enable_msi(bp);
8467 
8468 		/* falling through... */
8469 	case BNX2X_INT_MODE_INTX:
8470 		bp->num_ethernet_queues = 1;
8471 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8472 		BNX2X_DEV_INFO("set number of queues to 1\n");
8473 		break;
8474 	default:
8475 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8476 		return -EINVAL;
8477 	}
8478 	return 0;
8479 }
8480 
8481 /* must be called prior to any HW initializations */
8482 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8483 {
8484 	if (IS_SRIOV(bp))
8485 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8486 	return L2_ILT_LINES(bp);
8487 }
8488 
8489 void bnx2x_ilt_set_info(struct bnx2x *bp)
8490 {
8491 	struct ilt_client_info *ilt_client;
8492 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8493 	u16 line = 0;
8494 
8495 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8496 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8497 
8498 	/* CDU */
8499 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8500 	ilt_client->client_num = ILT_CLIENT_CDU;
8501 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8502 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8503 	ilt_client->start = line;
8504 	line += bnx2x_cid_ilt_lines(bp);
8505 
8506 	if (CNIC_SUPPORT(bp))
8507 		line += CNIC_ILT_LINES;
8508 	ilt_client->end = line - 1;
8509 
8510 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8511 	   ilt_client->start,
8512 	   ilt_client->end,
8513 	   ilt_client->page_size,
8514 	   ilt_client->flags,
8515 	   ilog2(ilt_client->page_size >> 12));
8516 
8517 	/* QM */
8518 	if (QM_INIT(bp->qm_cid_count)) {
8519 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8520 		ilt_client->client_num = ILT_CLIENT_QM;
8521 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8522 		ilt_client->flags = 0;
8523 		ilt_client->start = line;
8524 
8525 		/* 4 bytes for each cid */
8526 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8527 							 QM_ILT_PAGE_SZ);
8528 
8529 		ilt_client->end = line - 1;
8530 
8531 		DP(NETIF_MSG_IFUP,
8532 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8533 		   ilt_client->start,
8534 		   ilt_client->end,
8535 		   ilt_client->page_size,
8536 		   ilt_client->flags,
8537 		   ilog2(ilt_client->page_size >> 12));
8538 	}
8539 
8540 	if (CNIC_SUPPORT(bp)) {
8541 		/* SRC */
8542 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8543 		ilt_client->client_num = ILT_CLIENT_SRC;
8544 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8545 		ilt_client->flags = 0;
8546 		ilt_client->start = line;
8547 		line += SRC_ILT_LINES;
8548 		ilt_client->end = line - 1;
8549 
8550 		DP(NETIF_MSG_IFUP,
8551 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8552 		   ilt_client->start,
8553 		   ilt_client->end,
8554 		   ilt_client->page_size,
8555 		   ilt_client->flags,
8556 		   ilog2(ilt_client->page_size >> 12));
8557 
8558 		/* TM */
8559 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8560 		ilt_client->client_num = ILT_CLIENT_TM;
8561 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8562 		ilt_client->flags = 0;
8563 		ilt_client->start = line;
8564 		line += TM_ILT_LINES;
8565 		ilt_client->end = line - 1;
8566 
8567 		DP(NETIF_MSG_IFUP,
8568 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8569 		   ilt_client->start,
8570 		   ilt_client->end,
8571 		   ilt_client->page_size,
8572 		   ilt_client->flags,
8573 		   ilog2(ilt_client->page_size >> 12));
8574 	}
8575 
8576 	BUG_ON(line > ILT_MAX_LINES);
8577 }
8578 
8579 /**
8580  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8581  *
8582  * @bp:			driver handle
8583  * @fp:			pointer to fastpath
8584  * @init_params:	pointer to parameters structure
8585  *
8586  * parameters configured:
8587  *      - HC configuration
8588  *      - Queue's CDU context
8589  */
8590 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8591 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8592 {
8593 	u8 cos;
8594 	int cxt_index, cxt_offset;
8595 
8596 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8597 	if (!IS_FCOE_FP(fp)) {
8598 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8599 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8600 
8601 		/* If HC is supported, enable host coalescing in the transition
8602 		 * to INIT state.
8603 		 */
8604 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8605 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8606 
8607 		/* HC rate */
8608 		init_params->rx.hc_rate = bp->rx_ticks ?
8609 			(1000000 / bp->rx_ticks) : 0;
8610 		init_params->tx.hc_rate = bp->tx_ticks ?
8611 			(1000000 / bp->tx_ticks) : 0;
8612 
8613 		/* FW SB ID */
8614 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8615 			fp->fw_sb_id;
8616 
8617 		/*
8618 		 * CQ index among the SB indices: FCoE clients uses the default
8619 		 * SB, therefore it's different.
8620 		 */
8621 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8622 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8623 	}
8624 
8625 	/* set maximum number of COSs supported by this queue */
8626 	init_params->max_cos = fp->max_cos;
8627 
8628 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8629 	    fp->index, init_params->max_cos);
8630 
8631 	/* set the context pointers queue object */
8632 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8633 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8634 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8635 				ILT_PAGE_CIDS);
8636 		init_params->cxts[cos] =
8637 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8638 	}
8639 }
8640 
8641 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8642 			struct bnx2x_queue_state_params *q_params,
8643 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8644 			int tx_index, bool leading)
8645 {
8646 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8647 
8648 	/* Set the command */
8649 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8650 
8651 	/* Set tx-only QUEUE flags: don't zero statistics */
8652 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8653 
8654 	/* choose the index of the cid to send the slow path on */
8655 	tx_only_params->cid_index = tx_index;
8656 
8657 	/* Set general TX_ONLY_SETUP parameters */
8658 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8659 
8660 	/* Set Tx TX_ONLY_SETUP parameters */
8661 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8662 
8663 	DP(NETIF_MSG_IFUP,
8664 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8665 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8666 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8667 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8668 
8669 	/* send the ramrod */
8670 	return bnx2x_queue_state_change(bp, q_params);
8671 }
8672 
8673 /**
8674  * bnx2x_setup_queue - setup queue
8675  *
8676  * @bp:		driver handle
8677  * @fp:		pointer to fastpath
8678  * @leading:	is leading
8679  *
8680  * This function performs 2 steps in a Queue state machine
8681  *      actually: 1) RESET->INIT 2) INIT->SETUP
8682  */
8683 
8684 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8685 		       bool leading)
8686 {
8687 	struct bnx2x_queue_state_params q_params = {NULL};
8688 	struct bnx2x_queue_setup_params *setup_params =
8689 						&q_params.params.setup;
8690 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8691 						&q_params.params.tx_only;
8692 	int rc;
8693 	u8 tx_index;
8694 
8695 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8696 
8697 	/* reset IGU state skip FCoE L2 queue */
8698 	if (!IS_FCOE_FP(fp))
8699 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8700 			     IGU_INT_ENABLE, 0);
8701 
8702 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8703 	/* We want to wait for completion in this context */
8704 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8705 
8706 	/* Prepare the INIT parameters */
8707 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8708 
8709 	/* Set the command */
8710 	q_params.cmd = BNX2X_Q_CMD_INIT;
8711 
8712 	/* Change the state to INIT */
8713 	rc = bnx2x_queue_state_change(bp, &q_params);
8714 	if (rc) {
8715 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8716 		return rc;
8717 	}
8718 
8719 	DP(NETIF_MSG_IFUP, "init complete\n");
8720 
8721 	/* Now move the Queue to the SETUP state... */
8722 	memset(setup_params, 0, sizeof(*setup_params));
8723 
8724 	/* Set QUEUE flags */
8725 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8726 
8727 	/* Set general SETUP parameters */
8728 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8729 				FIRST_TX_COS_INDEX);
8730 
8731 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8732 			    &setup_params->rxq_params);
8733 
8734 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8735 			   FIRST_TX_COS_INDEX);
8736 
8737 	/* Set the command */
8738 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8739 
8740 	if (IS_FCOE_FP(fp))
8741 		bp->fcoe_init = true;
8742 
8743 	/* Change the state to SETUP */
8744 	rc = bnx2x_queue_state_change(bp, &q_params);
8745 	if (rc) {
8746 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8747 		return rc;
8748 	}
8749 
8750 	/* loop through the relevant tx-only indices */
8751 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8752 	      tx_index < fp->max_cos;
8753 	      tx_index++) {
8754 
8755 		/* prepare and send tx-only ramrod*/
8756 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8757 					  tx_only_params, tx_index, leading);
8758 		if (rc) {
8759 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8760 				  fp->index, tx_index);
8761 			return rc;
8762 		}
8763 	}
8764 
8765 	return rc;
8766 }
8767 
8768 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8769 {
8770 	struct bnx2x_fastpath *fp = &bp->fp[index];
8771 	struct bnx2x_fp_txdata *txdata;
8772 	struct bnx2x_queue_state_params q_params = {NULL};
8773 	int rc, tx_index;
8774 
8775 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8776 
8777 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8778 	/* We want to wait for completion in this context */
8779 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8780 
8781 	/* close tx-only connections */
8782 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8783 	     tx_index < fp->max_cos;
8784 	     tx_index++){
8785 
8786 		/* ascertain this is a normal queue*/
8787 		txdata = fp->txdata_ptr[tx_index];
8788 
8789 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8790 							txdata->txq_index);
8791 
8792 		/* send halt terminate on tx-only connection */
8793 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8794 		memset(&q_params.params.terminate, 0,
8795 		       sizeof(q_params.params.terminate));
8796 		q_params.params.terminate.cid_index = tx_index;
8797 
8798 		rc = bnx2x_queue_state_change(bp, &q_params);
8799 		if (rc)
8800 			return rc;
8801 
8802 		/* send halt terminate on tx-only connection */
8803 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8804 		memset(&q_params.params.cfc_del, 0,
8805 		       sizeof(q_params.params.cfc_del));
8806 		q_params.params.cfc_del.cid_index = tx_index;
8807 		rc = bnx2x_queue_state_change(bp, &q_params);
8808 		if (rc)
8809 			return rc;
8810 	}
8811 	/* Stop the primary connection: */
8812 	/* ...halt the connection */
8813 	q_params.cmd = BNX2X_Q_CMD_HALT;
8814 	rc = bnx2x_queue_state_change(bp, &q_params);
8815 	if (rc)
8816 		return rc;
8817 
8818 	/* ...terminate the connection */
8819 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8820 	memset(&q_params.params.terminate, 0,
8821 	       sizeof(q_params.params.terminate));
8822 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8823 	rc = bnx2x_queue_state_change(bp, &q_params);
8824 	if (rc)
8825 		return rc;
8826 	/* ...delete cfc entry */
8827 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8828 	memset(&q_params.params.cfc_del, 0,
8829 	       sizeof(q_params.params.cfc_del));
8830 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8831 	return bnx2x_queue_state_change(bp, &q_params);
8832 }
8833 
8834 static void bnx2x_reset_func(struct bnx2x *bp)
8835 {
8836 	int port = BP_PORT(bp);
8837 	int func = BP_FUNC(bp);
8838 	int i;
8839 
8840 	/* Disable the function in the FW */
8841 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8842 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8843 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8844 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8845 
8846 	/* FP SBs */
8847 	for_each_eth_queue(bp, i) {
8848 		struct bnx2x_fastpath *fp = &bp->fp[i];
8849 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8850 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8851 			   SB_DISABLED);
8852 	}
8853 
8854 	if (CNIC_LOADED(bp))
8855 		/* CNIC SB */
8856 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8857 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8858 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8859 
8860 	/* SP SB */
8861 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8862 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8863 		SB_DISABLED);
8864 
8865 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8866 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8867 		       0);
8868 
8869 	/* Configure IGU */
8870 	if (bp->common.int_block == INT_BLOCK_HC) {
8871 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8872 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8873 	} else {
8874 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8875 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8876 	}
8877 
8878 	if (CNIC_LOADED(bp)) {
8879 		/* Disable Timer scan */
8880 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8881 		/*
8882 		 * Wait for at least 10ms and up to 2 second for the timers
8883 		 * scan to complete
8884 		 */
8885 		for (i = 0; i < 200; i++) {
8886 			usleep_range(10000, 20000);
8887 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8888 				break;
8889 		}
8890 	}
8891 	/* Clear ILT */
8892 	bnx2x_clear_func_ilt(bp, func);
8893 
8894 	/* Timers workaround bug for E2: if this is vnic-3,
8895 	 * we need to set the entire ilt range for this timers.
8896 	 */
8897 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8898 		struct ilt_client_info ilt_cli;
8899 		/* use dummy TM client */
8900 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8901 		ilt_cli.start = 0;
8902 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8903 		ilt_cli.client_num = ILT_CLIENT_TM;
8904 
8905 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8906 	}
8907 
8908 	/* this assumes that reset_port() called before reset_func()*/
8909 	if (!CHIP_IS_E1x(bp))
8910 		bnx2x_pf_disable(bp);
8911 
8912 	bp->dmae_ready = 0;
8913 }
8914 
8915 static void bnx2x_reset_port(struct bnx2x *bp)
8916 {
8917 	int port = BP_PORT(bp);
8918 	u32 val;
8919 
8920 	/* Reset physical Link */
8921 	bnx2x__link_reset(bp);
8922 
8923 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8924 
8925 	/* Do not rcv packets to BRB */
8926 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8927 	/* Do not direct rcv packets that are not for MCP to the BRB */
8928 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8929 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8930 
8931 	/* Configure AEU */
8932 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8933 
8934 	msleep(100);
8935 	/* Check for BRB port occupancy */
8936 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8937 	if (val)
8938 		DP(NETIF_MSG_IFDOWN,
8939 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8940 
8941 	/* TODO: Close Doorbell port? */
8942 }
8943 
8944 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8945 {
8946 	struct bnx2x_func_state_params func_params = {NULL};
8947 
8948 	/* Prepare parameters for function state transitions */
8949 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8950 
8951 	func_params.f_obj = &bp->func_obj;
8952 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8953 
8954 	func_params.params.hw_init.load_phase = load_code;
8955 
8956 	return bnx2x_func_state_change(bp, &func_params);
8957 }
8958 
8959 static int bnx2x_func_stop(struct bnx2x *bp)
8960 {
8961 	struct bnx2x_func_state_params func_params = {NULL};
8962 	int rc;
8963 
8964 	/* Prepare parameters for function state transitions */
8965 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8966 	func_params.f_obj = &bp->func_obj;
8967 	func_params.cmd = BNX2X_F_CMD_STOP;
8968 
8969 	/*
8970 	 * Try to stop the function the 'good way'. If fails (in case
8971 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8972 	 * not in a debug mode, perform a state transaction in order to
8973 	 * enable further HW_RESET transaction.
8974 	 */
8975 	rc = bnx2x_func_state_change(bp, &func_params);
8976 	if (rc) {
8977 #ifdef BNX2X_STOP_ON_ERROR
8978 		return rc;
8979 #else
8980 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8981 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8982 		return bnx2x_func_state_change(bp, &func_params);
8983 #endif
8984 	}
8985 
8986 	return 0;
8987 }
8988 
8989 /**
8990  * bnx2x_send_unload_req - request unload mode from the MCP.
8991  *
8992  * @bp:			driver handle
8993  * @unload_mode:	requested function's unload mode
8994  *
8995  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8996  */
8997 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8998 {
8999 	u32 reset_code = 0;
9000 	int port = BP_PORT(bp);
9001 
9002 	/* Select the UNLOAD request mode */
9003 	if (unload_mode == UNLOAD_NORMAL)
9004 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9005 
9006 	else if (bp->flags & NO_WOL_FLAG)
9007 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9008 
9009 	else if (bp->wol) {
9010 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9011 		u8 *mac_addr = bp->dev->dev_addr;
9012 		struct pci_dev *pdev = bp->pdev;
9013 		u32 val;
9014 		u16 pmc;
9015 
9016 		/* The mac address is written to entries 1-4 to
9017 		 * preserve entry 0 which is used by the PMF
9018 		 */
9019 		u8 entry = (BP_VN(bp) + 1)*8;
9020 
9021 		val = (mac_addr[0] << 8) | mac_addr[1];
9022 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9023 
9024 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9025 		      (mac_addr[4] << 8) | mac_addr[5];
9026 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9027 
9028 		/* Enable the PME and clear the status */
9029 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9030 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9031 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9032 
9033 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9034 
9035 	} else
9036 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9037 
9038 	/* Send the request to the MCP */
9039 	if (!BP_NOMCP(bp))
9040 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9041 	else {
9042 		int path = BP_PATH(bp);
9043 
9044 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9045 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9046 		   bnx2x_load_count[path][2]);
9047 		bnx2x_load_count[path][0]--;
9048 		bnx2x_load_count[path][1 + port]--;
9049 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9050 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9051 		   bnx2x_load_count[path][2]);
9052 		if (bnx2x_load_count[path][0] == 0)
9053 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9054 		else if (bnx2x_load_count[path][1 + port] == 0)
9055 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9056 		else
9057 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9058 	}
9059 
9060 	return reset_code;
9061 }
9062 
9063 /**
9064  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9065  *
9066  * @bp:		driver handle
9067  * @keep_link:		true iff link should be kept up
9068  */
9069 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9070 {
9071 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9072 
9073 	/* Report UNLOAD_DONE to MCP */
9074 	if (!BP_NOMCP(bp))
9075 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9076 }
9077 
9078 static int bnx2x_func_wait_started(struct bnx2x *bp)
9079 {
9080 	int tout = 50;
9081 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9082 
9083 	if (!bp->port.pmf)
9084 		return 0;
9085 
9086 	/*
9087 	 * (assumption: No Attention from MCP at this stage)
9088 	 * PMF probably in the middle of TX disable/enable transaction
9089 	 * 1. Sync IRS for default SB
9090 	 * 2. Sync SP queue - this guarantees us that attention handling started
9091 	 * 3. Wait, that TX disable/enable transaction completes
9092 	 *
9093 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9094 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9095 	 * received completion for the transaction the state is TX_STOPPED.
9096 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9097 	 * transaction.
9098 	 */
9099 
9100 	/* make sure default SB ISR is done */
9101 	if (msix)
9102 		synchronize_irq(bp->msix_table[0].vector);
9103 	else
9104 		synchronize_irq(bp->pdev->irq);
9105 
9106 	flush_workqueue(bnx2x_wq);
9107 	flush_workqueue(bnx2x_iov_wq);
9108 
9109 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9110 				BNX2X_F_STATE_STARTED && tout--)
9111 		msleep(20);
9112 
9113 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9114 						BNX2X_F_STATE_STARTED) {
9115 #ifdef BNX2X_STOP_ON_ERROR
9116 		BNX2X_ERR("Wrong function state\n");
9117 		return -EBUSY;
9118 #else
9119 		/*
9120 		 * Failed to complete the transaction in a "good way"
9121 		 * Force both transactions with CLR bit
9122 		 */
9123 		struct bnx2x_func_state_params func_params = {NULL};
9124 
9125 		DP(NETIF_MSG_IFDOWN,
9126 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9127 
9128 		func_params.f_obj = &bp->func_obj;
9129 		__set_bit(RAMROD_DRV_CLR_ONLY,
9130 					&func_params.ramrod_flags);
9131 
9132 		/* STARTED-->TX_ST0PPED */
9133 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9134 		bnx2x_func_state_change(bp, &func_params);
9135 
9136 		/* TX_ST0PPED-->STARTED */
9137 		func_params.cmd = BNX2X_F_CMD_TX_START;
9138 		return bnx2x_func_state_change(bp, &func_params);
9139 #endif
9140 	}
9141 
9142 	return 0;
9143 }
9144 
9145 static void bnx2x_disable_ptp(struct bnx2x *bp)
9146 {
9147 	int port = BP_PORT(bp);
9148 
9149 	/* Disable sending PTP packets to host */
9150 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9151 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9152 
9153 	/* Reset PTP event detection rules */
9154 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9155 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9156 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9157 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9158 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9159 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9160 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9161 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9162 
9163 	/* Disable the PTP feature */
9164 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9165 	       NIG_REG_P0_PTP_EN, 0x0);
9166 }
9167 
9168 /* Called during unload, to stop PTP-related stuff */
9169 void bnx2x_stop_ptp(struct bnx2x *bp)
9170 {
9171 	/* Cancel PTP work queue. Should be done after the Tx queues are
9172 	 * drained to prevent additional scheduling.
9173 	 */
9174 	cancel_work_sync(&bp->ptp_task);
9175 
9176 	if (bp->ptp_tx_skb) {
9177 		dev_kfree_skb_any(bp->ptp_tx_skb);
9178 		bp->ptp_tx_skb = NULL;
9179 	}
9180 
9181 	/* Disable PTP in HW */
9182 	bnx2x_disable_ptp(bp);
9183 
9184 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9185 }
9186 
9187 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9188 {
9189 	int port = BP_PORT(bp);
9190 	int i, rc = 0;
9191 	u8 cos;
9192 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9193 	u32 reset_code;
9194 
9195 	/* Wait until tx fastpath tasks complete */
9196 	for_each_tx_queue(bp, i) {
9197 		struct bnx2x_fastpath *fp = &bp->fp[i];
9198 
9199 		for_each_cos_in_tx_queue(fp, cos)
9200 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9201 #ifdef BNX2X_STOP_ON_ERROR
9202 		if (rc)
9203 			return;
9204 #endif
9205 	}
9206 
9207 	/* Give HW time to discard old tx messages */
9208 	usleep_range(1000, 2000);
9209 
9210 	/* Clean all ETH MACs */
9211 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9212 				false);
9213 	if (rc < 0)
9214 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9215 
9216 	/* Clean up UC list  */
9217 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9218 				true);
9219 	if (rc < 0)
9220 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9221 			  rc);
9222 
9223 	/* Disable LLH */
9224 	if (!CHIP_IS_E1(bp))
9225 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9226 
9227 	/* Set "drop all" (stop Rx).
9228 	 * We need to take a netif_addr_lock() here in order to prevent
9229 	 * a race between the completion code and this code.
9230 	 */
9231 	netif_addr_lock_bh(bp->dev);
9232 	/* Schedule the rx_mode command */
9233 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9234 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9235 	else
9236 		bnx2x_set_storm_rx_mode(bp);
9237 
9238 	/* Cleanup multicast configuration */
9239 	rparam.mcast_obj = &bp->mcast_obj;
9240 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9241 	if (rc < 0)
9242 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9243 
9244 	netif_addr_unlock_bh(bp->dev);
9245 
9246 	bnx2x_iov_chip_cleanup(bp);
9247 
9248 	/*
9249 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9250 	 * this function should perform FUNC, PORT or COMMON HW
9251 	 * reset.
9252 	 */
9253 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9254 
9255 	/*
9256 	 * (assumption: No Attention from MCP at this stage)
9257 	 * PMF probably in the middle of TX disable/enable transaction
9258 	 */
9259 	rc = bnx2x_func_wait_started(bp);
9260 	if (rc) {
9261 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9262 #ifdef BNX2X_STOP_ON_ERROR
9263 		return;
9264 #endif
9265 	}
9266 
9267 	/* Close multi and leading connections
9268 	 * Completions for ramrods are collected in a synchronous way
9269 	 */
9270 	for_each_eth_queue(bp, i)
9271 		if (bnx2x_stop_queue(bp, i))
9272 #ifdef BNX2X_STOP_ON_ERROR
9273 			return;
9274 #else
9275 			goto unload_error;
9276 #endif
9277 
9278 	if (CNIC_LOADED(bp)) {
9279 		for_each_cnic_queue(bp, i)
9280 			if (bnx2x_stop_queue(bp, i))
9281 #ifdef BNX2X_STOP_ON_ERROR
9282 				return;
9283 #else
9284 				goto unload_error;
9285 #endif
9286 	}
9287 
9288 	/* If SP settings didn't get completed so far - something
9289 	 * very wrong has happen.
9290 	 */
9291 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9292 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9293 
9294 #ifndef BNX2X_STOP_ON_ERROR
9295 unload_error:
9296 #endif
9297 	rc = bnx2x_func_stop(bp);
9298 	if (rc) {
9299 		BNX2X_ERR("Function stop failed!\n");
9300 #ifdef BNX2X_STOP_ON_ERROR
9301 		return;
9302 #endif
9303 	}
9304 
9305 	/* stop_ptp should be after the Tx queues are drained to prevent
9306 	 * scheduling to the cancelled PTP work queue. It should also be after
9307 	 * function stop ramrod is sent, since as part of this ramrod FW access
9308 	 * PTP registers.
9309 	 */
9310 	bnx2x_stop_ptp(bp);
9311 
9312 	/* Disable HW interrupts, NAPI */
9313 	bnx2x_netif_stop(bp, 1);
9314 	/* Delete all NAPI objects */
9315 	bnx2x_del_all_napi(bp);
9316 	if (CNIC_LOADED(bp))
9317 		bnx2x_del_all_napi_cnic(bp);
9318 
9319 	/* Release IRQs */
9320 	bnx2x_free_irq(bp);
9321 
9322 	/* Reset the chip */
9323 	rc = bnx2x_reset_hw(bp, reset_code);
9324 	if (rc)
9325 		BNX2X_ERR("HW_RESET failed\n");
9326 
9327 	/* Report UNLOAD_DONE to MCP */
9328 	bnx2x_send_unload_done(bp, keep_link);
9329 }
9330 
9331 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9332 {
9333 	u32 val;
9334 
9335 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9336 
9337 	if (CHIP_IS_E1(bp)) {
9338 		int port = BP_PORT(bp);
9339 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9340 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9341 
9342 		val = REG_RD(bp, addr);
9343 		val &= ~(0x300);
9344 		REG_WR(bp, addr, val);
9345 	} else {
9346 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9347 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9348 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9349 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9350 	}
9351 }
9352 
9353 /* Close gates #2, #3 and #4: */
9354 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9355 {
9356 	u32 val;
9357 
9358 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9359 	if (!CHIP_IS_E1(bp)) {
9360 		/* #4 */
9361 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9362 		/* #2 */
9363 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9364 	}
9365 
9366 	/* #3 */
9367 	if (CHIP_IS_E1x(bp)) {
9368 		/* Prevent interrupts from HC on both ports */
9369 		val = REG_RD(bp, HC_REG_CONFIG_1);
9370 		REG_WR(bp, HC_REG_CONFIG_1,
9371 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9372 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9373 
9374 		val = REG_RD(bp, HC_REG_CONFIG_0);
9375 		REG_WR(bp, HC_REG_CONFIG_0,
9376 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9377 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9378 	} else {
9379 		/* Prevent incoming interrupts in IGU */
9380 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9381 
9382 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9383 		       (!close) ?
9384 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9385 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9386 	}
9387 
9388 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9389 		close ? "closing" : "opening");
9390 	mmiowb();
9391 }
9392 
9393 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9394 
9395 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9396 {
9397 	/* Do some magic... */
9398 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9399 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9400 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9401 }
9402 
9403 /**
9404  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9405  *
9406  * @bp:		driver handle
9407  * @magic_val:	old value of the `magic' bit.
9408  */
9409 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9410 {
9411 	/* Restore the `magic' bit value... */
9412 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9413 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9414 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9415 }
9416 
9417 /**
9418  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9419  *
9420  * @bp:		driver handle
9421  * @magic_val:	old value of 'magic' bit.
9422  *
9423  * Takes care of CLP configurations.
9424  */
9425 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9426 {
9427 	u32 shmem;
9428 	u32 validity_offset;
9429 
9430 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9431 
9432 	/* Set `magic' bit in order to save MF config */
9433 	if (!CHIP_IS_E1(bp))
9434 		bnx2x_clp_reset_prep(bp, magic_val);
9435 
9436 	/* Get shmem offset */
9437 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9438 	validity_offset =
9439 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9440 
9441 	/* Clear validity map flags */
9442 	if (shmem > 0)
9443 		REG_WR(bp, shmem + validity_offset, 0);
9444 }
9445 
9446 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9447 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9448 
9449 /**
9450  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9451  *
9452  * @bp:	driver handle
9453  */
9454 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9455 {
9456 	/* special handling for emulation and FPGA,
9457 	   wait 10 times longer */
9458 	if (CHIP_REV_IS_SLOW(bp))
9459 		msleep(MCP_ONE_TIMEOUT*10);
9460 	else
9461 		msleep(MCP_ONE_TIMEOUT);
9462 }
9463 
9464 /*
9465  * initializes bp->common.shmem_base and waits for validity signature to appear
9466  */
9467 static int bnx2x_init_shmem(struct bnx2x *bp)
9468 {
9469 	int cnt = 0;
9470 	u32 val = 0;
9471 
9472 	do {
9473 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9474 		if (bp->common.shmem_base) {
9475 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9476 			if (val & SHR_MEM_VALIDITY_MB)
9477 				return 0;
9478 		}
9479 
9480 		bnx2x_mcp_wait_one(bp);
9481 
9482 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9483 
9484 	BNX2X_ERR("BAD MCP validity signature\n");
9485 
9486 	return -ENODEV;
9487 }
9488 
9489 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9490 {
9491 	int rc = bnx2x_init_shmem(bp);
9492 
9493 	/* Restore the `magic' bit value */
9494 	if (!CHIP_IS_E1(bp))
9495 		bnx2x_clp_reset_done(bp, magic_val);
9496 
9497 	return rc;
9498 }
9499 
9500 static void bnx2x_pxp_prep(struct bnx2x *bp)
9501 {
9502 	if (!CHIP_IS_E1(bp)) {
9503 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9504 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9505 		mmiowb();
9506 	}
9507 }
9508 
9509 /*
9510  * Reset the whole chip except for:
9511  *      - PCIE core
9512  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9513  *              one reset bit)
9514  *      - IGU
9515  *      - MISC (including AEU)
9516  *      - GRC
9517  *      - RBCN, RBCP
9518  */
9519 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9520 {
9521 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9522 	u32 global_bits2, stay_reset2;
9523 
9524 	/*
9525 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9526 	 * (per chip) blocks.
9527 	 */
9528 	global_bits2 =
9529 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9530 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9531 
9532 	/* Don't reset the following blocks.
9533 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9534 	 *            reset, as in 4 port device they might still be owned
9535 	 *            by the MCP (there is only one leader per path).
9536 	 */
9537 	not_reset_mask1 =
9538 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9539 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9540 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9541 
9542 	not_reset_mask2 =
9543 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9544 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9545 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9546 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9547 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9548 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9549 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9550 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9551 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9552 		MISC_REGISTERS_RESET_REG_2_PGLC |
9553 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9554 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9555 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9556 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9557 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9558 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9559 
9560 	/*
9561 	 * Keep the following blocks in reset:
9562 	 *  - all xxMACs are handled by the bnx2x_link code.
9563 	 */
9564 	stay_reset2 =
9565 		MISC_REGISTERS_RESET_REG_2_XMAC |
9566 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9567 
9568 	/* Full reset masks according to the chip */
9569 	reset_mask1 = 0xffffffff;
9570 
9571 	if (CHIP_IS_E1(bp))
9572 		reset_mask2 = 0xffff;
9573 	else if (CHIP_IS_E1H(bp))
9574 		reset_mask2 = 0x1ffff;
9575 	else if (CHIP_IS_E2(bp))
9576 		reset_mask2 = 0xfffff;
9577 	else /* CHIP_IS_E3 */
9578 		reset_mask2 = 0x3ffffff;
9579 
9580 	/* Don't reset global blocks unless we need to */
9581 	if (!global)
9582 		reset_mask2 &= ~global_bits2;
9583 
9584 	/*
9585 	 * In case of attention in the QM, we need to reset PXP
9586 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9587 	 * because otherwise QM reset would release 'close the gates' shortly
9588 	 * before resetting the PXP, then the PSWRQ would send a write
9589 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9590 	 * read the payload data from PSWWR, but PSWWR would not
9591 	 * respond. The write queue in PGLUE would stuck, dmae commands
9592 	 * would not return. Therefore it's important to reset the second
9593 	 * reset register (containing the
9594 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9595 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9596 	 * bit).
9597 	 */
9598 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9599 	       reset_mask2 & (~not_reset_mask2));
9600 
9601 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9602 	       reset_mask1 & (~not_reset_mask1));
9603 
9604 	barrier();
9605 	mmiowb();
9606 
9607 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9608 	       reset_mask2 & (~stay_reset2));
9609 
9610 	barrier();
9611 	mmiowb();
9612 
9613 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9614 	mmiowb();
9615 }
9616 
9617 /**
9618  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9619  * It should get cleared in no more than 1s.
9620  *
9621  * @bp:	driver handle
9622  *
9623  * It should get cleared in no more than 1s. Returns 0 if
9624  * pending writes bit gets cleared.
9625  */
9626 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9627 {
9628 	u32 cnt = 1000;
9629 	u32 pend_bits = 0;
9630 
9631 	do {
9632 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9633 
9634 		if (pend_bits == 0)
9635 			break;
9636 
9637 		usleep_range(1000, 2000);
9638 	} while (cnt-- > 0);
9639 
9640 	if (cnt <= 0) {
9641 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9642 			  pend_bits);
9643 		return -EBUSY;
9644 	}
9645 
9646 	return 0;
9647 }
9648 
9649 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9650 {
9651 	int cnt = 1000;
9652 	u32 val = 0;
9653 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9654 	u32 tags_63_32 = 0;
9655 
9656 	/* Empty the Tetris buffer, wait for 1s */
9657 	do {
9658 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9659 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9660 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9661 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9662 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9663 		if (CHIP_IS_E3(bp))
9664 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9665 
9666 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9667 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9668 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9669 		    (pgl_exp_rom2 == 0xffffffff) &&
9670 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9671 			break;
9672 		usleep_range(1000, 2000);
9673 	} while (cnt-- > 0);
9674 
9675 	if (cnt <= 0) {
9676 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9677 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9678 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9679 			  pgl_exp_rom2);
9680 		return -EAGAIN;
9681 	}
9682 
9683 	barrier();
9684 
9685 	/* Close gates #2, #3 and #4 */
9686 	bnx2x_set_234_gates(bp, true);
9687 
9688 	/* Poll for IGU VQs for 57712 and newer chips */
9689 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9690 		return -EAGAIN;
9691 
9692 	/* TBD: Indicate that "process kill" is in progress to MCP */
9693 
9694 	/* Clear "unprepared" bit */
9695 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9696 	barrier();
9697 
9698 	/* Make sure all is written to the chip before the reset */
9699 	mmiowb();
9700 
9701 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9702 	 * PSWHST, GRC and PSWRD Tetris buffer.
9703 	 */
9704 	usleep_range(1000, 2000);
9705 
9706 	/* Prepare to chip reset: */
9707 	/* MCP */
9708 	if (global)
9709 		bnx2x_reset_mcp_prep(bp, &val);
9710 
9711 	/* PXP */
9712 	bnx2x_pxp_prep(bp);
9713 	barrier();
9714 
9715 	/* reset the chip */
9716 	bnx2x_process_kill_chip_reset(bp, global);
9717 	barrier();
9718 
9719 	/* clear errors in PGB */
9720 	if (!CHIP_IS_E1x(bp))
9721 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9722 
9723 	/* Recover after reset: */
9724 	/* MCP */
9725 	if (global && bnx2x_reset_mcp_comp(bp, val))
9726 		return -EAGAIN;
9727 
9728 	/* TBD: Add resetting the NO_MCP mode DB here */
9729 
9730 	/* Open the gates #2, #3 and #4 */
9731 	bnx2x_set_234_gates(bp, false);
9732 
9733 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9734 	 * reset state, re-enable attentions. */
9735 
9736 	return 0;
9737 }
9738 
9739 static int bnx2x_leader_reset(struct bnx2x *bp)
9740 {
9741 	int rc = 0;
9742 	bool global = bnx2x_reset_is_global(bp);
9743 	u32 load_code;
9744 
9745 	/* if not going to reset MCP - load "fake" driver to reset HW while
9746 	 * driver is owner of the HW
9747 	 */
9748 	if (!global && !BP_NOMCP(bp)) {
9749 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9750 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9751 		if (!load_code) {
9752 			BNX2X_ERR("MCP response failure, aborting\n");
9753 			rc = -EAGAIN;
9754 			goto exit_leader_reset;
9755 		}
9756 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9757 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9758 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9759 			rc = -EAGAIN;
9760 			goto exit_leader_reset2;
9761 		}
9762 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9763 		if (!load_code) {
9764 			BNX2X_ERR("MCP response failure, aborting\n");
9765 			rc = -EAGAIN;
9766 			goto exit_leader_reset2;
9767 		}
9768 	}
9769 
9770 	/* Try to recover after the failure */
9771 	if (bnx2x_process_kill(bp, global)) {
9772 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9773 			  BP_PATH(bp));
9774 		rc = -EAGAIN;
9775 		goto exit_leader_reset2;
9776 	}
9777 
9778 	/*
9779 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9780 	 * state.
9781 	 */
9782 	bnx2x_set_reset_done(bp);
9783 	if (global)
9784 		bnx2x_clear_reset_global(bp);
9785 
9786 exit_leader_reset2:
9787 	/* unload "fake driver" if it was loaded */
9788 	if (!global && !BP_NOMCP(bp)) {
9789 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9790 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9791 	}
9792 exit_leader_reset:
9793 	bp->is_leader = 0;
9794 	bnx2x_release_leader_lock(bp);
9795 	smp_mb();
9796 	return rc;
9797 }
9798 
9799 static void bnx2x_recovery_failed(struct bnx2x *bp)
9800 {
9801 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9802 
9803 	/* Disconnect this device */
9804 	netif_device_detach(bp->dev);
9805 
9806 	/*
9807 	 * Block ifup for all function on this engine until "process kill"
9808 	 * or power cycle.
9809 	 */
9810 	bnx2x_set_reset_in_progress(bp);
9811 
9812 	/* Shut down the power */
9813 	bnx2x_set_power_state(bp, PCI_D3hot);
9814 
9815 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9816 
9817 	smp_mb();
9818 }
9819 
9820 /*
9821  * Assumption: runs under rtnl lock. This together with the fact
9822  * that it's called only from bnx2x_sp_rtnl() ensure that it
9823  * will never be called when netif_running(bp->dev) is false.
9824  */
9825 static void bnx2x_parity_recover(struct bnx2x *bp)
9826 {
9827 	bool global = false;
9828 	u32 error_recovered, error_unrecovered;
9829 	bool is_parity;
9830 
9831 	DP(NETIF_MSG_HW, "Handling parity\n");
9832 	while (1) {
9833 		switch (bp->recovery_state) {
9834 		case BNX2X_RECOVERY_INIT:
9835 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9836 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9837 			WARN_ON(!is_parity);
9838 
9839 			/* Try to get a LEADER_LOCK HW lock */
9840 			if (bnx2x_trylock_leader_lock(bp)) {
9841 				bnx2x_set_reset_in_progress(bp);
9842 				/*
9843 				 * Check if there is a global attention and if
9844 				 * there was a global attention, set the global
9845 				 * reset bit.
9846 				 */
9847 
9848 				if (global)
9849 					bnx2x_set_reset_global(bp);
9850 
9851 				bp->is_leader = 1;
9852 			}
9853 
9854 			/* Stop the driver */
9855 			/* If interface has been removed - break */
9856 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9857 				return;
9858 
9859 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9860 
9861 			/* Ensure "is_leader", MCP command sequence and
9862 			 * "recovery_state" update values are seen on other
9863 			 * CPUs.
9864 			 */
9865 			smp_mb();
9866 			break;
9867 
9868 		case BNX2X_RECOVERY_WAIT:
9869 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9870 			if (bp->is_leader) {
9871 				int other_engine = BP_PATH(bp) ? 0 : 1;
9872 				bool other_load_status =
9873 					bnx2x_get_load_status(bp, other_engine);
9874 				bool load_status =
9875 					bnx2x_get_load_status(bp, BP_PATH(bp));
9876 				global = bnx2x_reset_is_global(bp);
9877 
9878 				/*
9879 				 * In case of a parity in a global block, let
9880 				 * the first leader that performs a
9881 				 * leader_reset() reset the global blocks in
9882 				 * order to clear global attentions. Otherwise
9883 				 * the gates will remain closed for that
9884 				 * engine.
9885 				 */
9886 				if (load_status ||
9887 				    (global && other_load_status)) {
9888 					/* Wait until all other functions get
9889 					 * down.
9890 					 */
9891 					schedule_delayed_work(&bp->sp_rtnl_task,
9892 								HZ/10);
9893 					return;
9894 				} else {
9895 					/* If all other functions got down -
9896 					 * try to bring the chip back to
9897 					 * normal. In any case it's an exit
9898 					 * point for a leader.
9899 					 */
9900 					if (bnx2x_leader_reset(bp)) {
9901 						bnx2x_recovery_failed(bp);
9902 						return;
9903 					}
9904 
9905 					/* If we are here, means that the
9906 					 * leader has succeeded and doesn't
9907 					 * want to be a leader any more. Try
9908 					 * to continue as a none-leader.
9909 					 */
9910 					break;
9911 				}
9912 			} else { /* non-leader */
9913 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9914 					/* Try to get a LEADER_LOCK HW lock as
9915 					 * long as a former leader may have
9916 					 * been unloaded by the user or
9917 					 * released a leadership by another
9918 					 * reason.
9919 					 */
9920 					if (bnx2x_trylock_leader_lock(bp)) {
9921 						/* I'm a leader now! Restart a
9922 						 * switch case.
9923 						 */
9924 						bp->is_leader = 1;
9925 						break;
9926 					}
9927 
9928 					schedule_delayed_work(&bp->sp_rtnl_task,
9929 								HZ/10);
9930 					return;
9931 
9932 				} else {
9933 					/*
9934 					 * If there was a global attention, wait
9935 					 * for it to be cleared.
9936 					 */
9937 					if (bnx2x_reset_is_global(bp)) {
9938 						schedule_delayed_work(
9939 							&bp->sp_rtnl_task,
9940 							HZ/10);
9941 						return;
9942 					}
9943 
9944 					error_recovered =
9945 					  bp->eth_stats.recoverable_error;
9946 					error_unrecovered =
9947 					  bp->eth_stats.unrecoverable_error;
9948 					bp->recovery_state =
9949 						BNX2X_RECOVERY_NIC_LOADING;
9950 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9951 						error_unrecovered++;
9952 						netdev_err(bp->dev,
9953 							   "Recovery failed. Power cycle needed\n");
9954 						/* Disconnect this device */
9955 						netif_device_detach(bp->dev);
9956 						/* Shut down the power */
9957 						bnx2x_set_power_state(
9958 							bp, PCI_D3hot);
9959 						smp_mb();
9960 					} else {
9961 						bp->recovery_state =
9962 							BNX2X_RECOVERY_DONE;
9963 						error_recovered++;
9964 						smp_mb();
9965 					}
9966 					bp->eth_stats.recoverable_error =
9967 						error_recovered;
9968 					bp->eth_stats.unrecoverable_error =
9969 						error_unrecovered;
9970 
9971 					return;
9972 				}
9973 			}
9974 		default:
9975 			return;
9976 		}
9977 	}
9978 }
9979 
9980 static int bnx2x_close(struct net_device *dev);
9981 
9982 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9983  * scheduled on a general queue in order to prevent a dead lock.
9984  */
9985 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9986 {
9987 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9988 
9989 	rtnl_lock();
9990 
9991 	if (!netif_running(bp->dev)) {
9992 		rtnl_unlock();
9993 		return;
9994 	}
9995 
9996 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9997 #ifdef BNX2X_STOP_ON_ERROR
9998 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9999 			  "you will need to reboot when done\n");
10000 		goto sp_rtnl_not_reset;
10001 #endif
10002 		/*
10003 		 * Clear all pending SP commands as we are going to reset the
10004 		 * function anyway.
10005 		 */
10006 		bp->sp_rtnl_state = 0;
10007 		smp_mb();
10008 
10009 		bnx2x_parity_recover(bp);
10010 
10011 		rtnl_unlock();
10012 		return;
10013 	}
10014 
10015 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10016 #ifdef BNX2X_STOP_ON_ERROR
10017 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10018 			  "you will need to reboot when done\n");
10019 		goto sp_rtnl_not_reset;
10020 #endif
10021 
10022 		/*
10023 		 * Clear all pending SP commands as we are going to reset the
10024 		 * function anyway.
10025 		 */
10026 		bp->sp_rtnl_state = 0;
10027 		smp_mb();
10028 
10029 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10030 		bnx2x_nic_load(bp, LOAD_NORMAL);
10031 
10032 		rtnl_unlock();
10033 		return;
10034 	}
10035 #ifdef BNX2X_STOP_ON_ERROR
10036 sp_rtnl_not_reset:
10037 #endif
10038 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10039 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10040 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10041 		bnx2x_after_function_update(bp);
10042 	/*
10043 	 * in case of fan failure we need to reset id if the "stop on error"
10044 	 * debug flag is set, since we trying to prevent permanent overheating
10045 	 * damage
10046 	 */
10047 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10048 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10049 		netif_device_detach(bp->dev);
10050 		bnx2x_close(bp->dev);
10051 		rtnl_unlock();
10052 		return;
10053 	}
10054 
10055 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10056 		DP(BNX2X_MSG_SP,
10057 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10058 		bnx2x_vfpf_set_mcast(bp->dev);
10059 	}
10060 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10061 			       &bp->sp_rtnl_state)){
10062 		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10063 			bnx2x_tx_disable(bp);
10064 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10065 		}
10066 	}
10067 
10068 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10069 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10070 		bnx2x_set_rx_mode_inner(bp);
10071 	}
10072 
10073 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10074 			       &bp->sp_rtnl_state))
10075 		bnx2x_pf_set_vfs_vlan(bp);
10076 
10077 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10078 		bnx2x_dcbx_stop_hw_tx(bp);
10079 		bnx2x_dcbx_resume_hw_tx(bp);
10080 	}
10081 
10082 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10083 			       &bp->sp_rtnl_state))
10084 		bnx2x_update_mng_version(bp);
10085 
10086 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10087 	 * can be called from other contexts as well)
10088 	 */
10089 	rtnl_unlock();
10090 
10091 	/* enable SR-IOV if applicable */
10092 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10093 					       &bp->sp_rtnl_state)) {
10094 		bnx2x_disable_sriov(bp);
10095 		bnx2x_enable_sriov(bp);
10096 	}
10097 }
10098 
10099 static void bnx2x_period_task(struct work_struct *work)
10100 {
10101 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10102 
10103 	if (!netif_running(bp->dev))
10104 		goto period_task_exit;
10105 
10106 	if (CHIP_REV_IS_SLOW(bp)) {
10107 		BNX2X_ERR("period task called on emulation, ignoring\n");
10108 		goto period_task_exit;
10109 	}
10110 
10111 	bnx2x_acquire_phy_lock(bp);
10112 	/*
10113 	 * The barrier is needed to ensure the ordering between the writing to
10114 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10115 	 * the reading here.
10116 	 */
10117 	smp_mb();
10118 	if (bp->port.pmf) {
10119 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10120 
10121 		/* Re-queue task in 1 sec */
10122 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10123 	}
10124 
10125 	bnx2x_release_phy_lock(bp);
10126 period_task_exit:
10127 	return;
10128 }
10129 
10130 /*
10131  * Init service functions
10132  */
10133 
10134 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10135 {
10136 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10137 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10138 	return base + (BP_ABS_FUNC(bp)) * stride;
10139 }
10140 
10141 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10142 					struct bnx2x_mac_vals *vals)
10143 {
10144 	u32 val, base_addr, offset, mask, reset_reg;
10145 	bool mac_stopped = false;
10146 	u8 port = BP_PORT(bp);
10147 
10148 	/* reset addresses as they also mark which values were changed */
10149 	vals->bmac_addr = 0;
10150 	vals->umac_addr = 0;
10151 	vals->xmac_addr = 0;
10152 	vals->emac_addr = 0;
10153 
10154 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10155 
10156 	if (!CHIP_IS_E3(bp)) {
10157 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10158 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10159 		if ((mask & reset_reg) && val) {
10160 			u32 wb_data[2];
10161 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10162 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10163 						: NIG_REG_INGRESS_BMAC0_MEM;
10164 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10165 						: BIGMAC_REGISTER_BMAC_CONTROL;
10166 
10167 			/*
10168 			 * use rd/wr since we cannot use dmae. This is safe
10169 			 * since MCP won't access the bus due to the request
10170 			 * to unload, and no function on the path can be
10171 			 * loaded at this time.
10172 			 */
10173 			wb_data[0] = REG_RD(bp, base_addr + offset);
10174 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10175 			vals->bmac_addr = base_addr + offset;
10176 			vals->bmac_val[0] = wb_data[0];
10177 			vals->bmac_val[1] = wb_data[1];
10178 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10179 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10180 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10181 		}
10182 		BNX2X_DEV_INFO("Disable emac Rx\n");
10183 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10184 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10185 		REG_WR(bp, vals->emac_addr, 0);
10186 		mac_stopped = true;
10187 	} else {
10188 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10189 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10190 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10191 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10192 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10193 			       val & ~(1 << 1));
10194 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10195 			       val | (1 << 1));
10196 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10197 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10198 			REG_WR(bp, vals->xmac_addr, 0);
10199 			mac_stopped = true;
10200 		}
10201 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10202 		if (mask & reset_reg) {
10203 			BNX2X_DEV_INFO("Disable umac Rx\n");
10204 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10205 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
10206 			vals->umac_val = REG_RD(bp, vals->umac_addr);
10207 			REG_WR(bp, vals->umac_addr, 0);
10208 			mac_stopped = true;
10209 		}
10210 	}
10211 
10212 	if (mac_stopped)
10213 		msleep(20);
10214 }
10215 
10216 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10217 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10218 					0x1848 + ((f) << 4))
10219 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10220 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10221 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10222 
10223 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10224 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10225 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10226 
10227 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10228 {
10229 	/* UNDI marks its presence in DORQ -
10230 	 * it initializes CID offset for normal bell to 0x7
10231 	 */
10232 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10233 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10234 		return false;
10235 
10236 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10237 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10238 		return true;
10239 	}
10240 
10241 	return false;
10242 }
10243 
10244 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10245 {
10246 	u16 rcq, bd;
10247 	u32 addr, tmp_reg;
10248 
10249 	if (BP_FUNC(bp) < 2)
10250 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10251 	else
10252 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10253 
10254 	tmp_reg = REG_RD(bp, addr);
10255 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10256 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10257 
10258 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10259 	REG_WR(bp, addr, tmp_reg);
10260 
10261 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10262 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10263 }
10264 
10265 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10266 {
10267 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10268 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10269 	if (!rc) {
10270 		BNX2X_ERR("MCP response failure, aborting\n");
10271 		return -EBUSY;
10272 	}
10273 
10274 	return 0;
10275 }
10276 
10277 static struct bnx2x_prev_path_list *
10278 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10279 {
10280 	struct bnx2x_prev_path_list *tmp_list;
10281 
10282 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10283 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10284 		    bp->pdev->bus->number == tmp_list->bus &&
10285 		    BP_PATH(bp) == tmp_list->path)
10286 			return tmp_list;
10287 
10288 	return NULL;
10289 }
10290 
10291 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10292 {
10293 	struct bnx2x_prev_path_list *tmp_list;
10294 	int rc;
10295 
10296 	rc = down_interruptible(&bnx2x_prev_sem);
10297 	if (rc) {
10298 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10299 		return rc;
10300 	}
10301 
10302 	tmp_list = bnx2x_prev_path_get_entry(bp);
10303 	if (tmp_list) {
10304 		tmp_list->aer = 1;
10305 		rc = 0;
10306 	} else {
10307 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10308 			  BP_PATH(bp));
10309 	}
10310 
10311 	up(&bnx2x_prev_sem);
10312 
10313 	return rc;
10314 }
10315 
10316 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10317 {
10318 	struct bnx2x_prev_path_list *tmp_list;
10319 	bool rc = false;
10320 
10321 	if (down_trylock(&bnx2x_prev_sem))
10322 		return false;
10323 
10324 	tmp_list = bnx2x_prev_path_get_entry(bp);
10325 	if (tmp_list) {
10326 		if (tmp_list->aer) {
10327 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10328 			   BP_PATH(bp));
10329 		} else {
10330 			rc = true;
10331 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10332 				       BP_PATH(bp));
10333 		}
10334 	}
10335 
10336 	up(&bnx2x_prev_sem);
10337 
10338 	return rc;
10339 }
10340 
10341 bool bnx2x_port_after_undi(struct bnx2x *bp)
10342 {
10343 	struct bnx2x_prev_path_list *entry;
10344 	bool val;
10345 
10346 	down(&bnx2x_prev_sem);
10347 
10348 	entry = bnx2x_prev_path_get_entry(bp);
10349 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10350 
10351 	up(&bnx2x_prev_sem);
10352 
10353 	return val;
10354 }
10355 
10356 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10357 {
10358 	struct bnx2x_prev_path_list *tmp_list;
10359 	int rc;
10360 
10361 	rc = down_interruptible(&bnx2x_prev_sem);
10362 	if (rc) {
10363 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10364 		return rc;
10365 	}
10366 
10367 	/* Check whether the entry for this path already exists */
10368 	tmp_list = bnx2x_prev_path_get_entry(bp);
10369 	if (tmp_list) {
10370 		if (!tmp_list->aer) {
10371 			BNX2X_ERR("Re-Marking the path.\n");
10372 		} else {
10373 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10374 			   BP_PATH(bp));
10375 			tmp_list->aer = 0;
10376 		}
10377 		up(&bnx2x_prev_sem);
10378 		return 0;
10379 	}
10380 	up(&bnx2x_prev_sem);
10381 
10382 	/* Create an entry for this path and add it */
10383 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10384 	if (!tmp_list) {
10385 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10386 		return -ENOMEM;
10387 	}
10388 
10389 	tmp_list->bus = bp->pdev->bus->number;
10390 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10391 	tmp_list->path = BP_PATH(bp);
10392 	tmp_list->aer = 0;
10393 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10394 
10395 	rc = down_interruptible(&bnx2x_prev_sem);
10396 	if (rc) {
10397 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10398 		kfree(tmp_list);
10399 	} else {
10400 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10401 		   BP_PATH(bp));
10402 		list_add(&tmp_list->list, &bnx2x_prev_list);
10403 		up(&bnx2x_prev_sem);
10404 	}
10405 
10406 	return rc;
10407 }
10408 
10409 static int bnx2x_do_flr(struct bnx2x *bp)
10410 {
10411 	struct pci_dev *dev = bp->pdev;
10412 
10413 	if (CHIP_IS_E1x(bp)) {
10414 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10415 		return -EINVAL;
10416 	}
10417 
10418 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10419 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10420 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10421 			  bp->common.bc_ver);
10422 		return -EINVAL;
10423 	}
10424 
10425 	if (!pci_wait_for_pending_transaction(dev))
10426 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10427 
10428 	BNX2X_DEV_INFO("Initiating FLR\n");
10429 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10430 
10431 	return 0;
10432 }
10433 
10434 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10435 {
10436 	int rc;
10437 
10438 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10439 
10440 	/* Test if previous unload process was already finished for this path */
10441 	if (bnx2x_prev_is_path_marked(bp))
10442 		return bnx2x_prev_mcp_done(bp);
10443 
10444 	BNX2X_DEV_INFO("Path is unmarked\n");
10445 
10446 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10447 	if (bnx2x_prev_is_after_undi(bp))
10448 		goto out;
10449 
10450 	/* If function has FLR capabilities, and existing FW version matches
10451 	 * the one required, then FLR will be sufficient to clean any residue
10452 	 * left by previous driver
10453 	 */
10454 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10455 
10456 	if (!rc) {
10457 		/* fw version is good */
10458 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10459 		rc = bnx2x_do_flr(bp);
10460 	}
10461 
10462 	if (!rc) {
10463 		/* FLR was performed */
10464 		BNX2X_DEV_INFO("FLR successful\n");
10465 		return 0;
10466 	}
10467 
10468 	BNX2X_DEV_INFO("Could not FLR\n");
10469 
10470 out:
10471 	/* Close the MCP request, return failure*/
10472 	rc = bnx2x_prev_mcp_done(bp);
10473 	if (!rc)
10474 		rc = BNX2X_PREV_WAIT_NEEDED;
10475 
10476 	return rc;
10477 }
10478 
10479 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10480 {
10481 	u32 reset_reg, tmp_reg = 0, rc;
10482 	bool prev_undi = false;
10483 	struct bnx2x_mac_vals mac_vals;
10484 
10485 	/* It is possible a previous function received 'common' answer,
10486 	 * but hasn't loaded yet, therefore creating a scenario of
10487 	 * multiple functions receiving 'common' on the same path.
10488 	 */
10489 	BNX2X_DEV_INFO("Common unload Flow\n");
10490 
10491 	memset(&mac_vals, 0, sizeof(mac_vals));
10492 
10493 	if (bnx2x_prev_is_path_marked(bp))
10494 		return bnx2x_prev_mcp_done(bp);
10495 
10496 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10497 
10498 	/* Reset should be performed after BRB is emptied */
10499 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10500 		u32 timer_count = 1000;
10501 
10502 		/* Close the MAC Rx to prevent BRB from filling up */
10503 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10504 
10505 		/* close LLH filters towards the BRB */
10506 		bnx2x_set_rx_filter(&bp->link_params, 0);
10507 
10508 		/* Check if the UNDI driver was previously loaded */
10509 		if (bnx2x_prev_is_after_undi(bp)) {
10510 			prev_undi = true;
10511 			/* clear the UNDI indication */
10512 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10513 			/* clear possible idle check errors */
10514 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10515 		}
10516 		if (!CHIP_IS_E1x(bp))
10517 			/* block FW from writing to host */
10518 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10519 
10520 		/* wait until BRB is empty */
10521 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10522 		while (timer_count) {
10523 			u32 prev_brb = tmp_reg;
10524 
10525 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10526 			if (!tmp_reg)
10527 				break;
10528 
10529 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10530 
10531 			/* reset timer as long as BRB actually gets emptied */
10532 			if (prev_brb > tmp_reg)
10533 				timer_count = 1000;
10534 			else
10535 				timer_count--;
10536 
10537 			/* If UNDI resides in memory, manually increment it */
10538 			if (prev_undi)
10539 				bnx2x_prev_unload_undi_inc(bp, 1);
10540 
10541 			udelay(10);
10542 		}
10543 
10544 		if (!timer_count)
10545 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10546 	}
10547 
10548 	/* No packets are in the pipeline, path is ready for reset */
10549 	bnx2x_reset_common(bp);
10550 
10551 	if (mac_vals.xmac_addr)
10552 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10553 	if (mac_vals.umac_addr)
10554 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10555 	if (mac_vals.emac_addr)
10556 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10557 	if (mac_vals.bmac_addr) {
10558 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10559 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10560 	}
10561 
10562 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10563 	if (rc) {
10564 		bnx2x_prev_mcp_done(bp);
10565 		return rc;
10566 	}
10567 
10568 	return bnx2x_prev_mcp_done(bp);
10569 }
10570 
10571 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10572  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10573  * the addresses of the transaction, resulting in was-error bit set in the pci
10574  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10575  * to clear the interrupt which detected this from the pglueb and the was done
10576  * bit
10577  */
10578 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10579 {
10580 	if (!CHIP_IS_E1x(bp)) {
10581 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10582 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10583 			DP(BNX2X_MSG_SP,
10584 			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10585 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10586 			       1 << BP_FUNC(bp));
10587 		}
10588 	}
10589 }
10590 
10591 static int bnx2x_prev_unload(struct bnx2x *bp)
10592 {
10593 	int time_counter = 10;
10594 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10595 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10596 
10597 	/* clear hw from errors which may have resulted from an interrupted
10598 	 * dmae transaction.
10599 	 */
10600 	bnx2x_prev_interrupted_dmae(bp);
10601 
10602 	/* Release previously held locks */
10603 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10604 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10605 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10606 
10607 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10608 	if (hw_lock_val) {
10609 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10610 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10611 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10612 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10613 		}
10614 
10615 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10616 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10617 	} else
10618 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10619 
10620 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10621 		BNX2X_DEV_INFO("Release previously held alr\n");
10622 		bnx2x_release_alr(bp);
10623 	}
10624 
10625 	do {
10626 		int aer = 0;
10627 		/* Lock MCP using an unload request */
10628 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10629 		if (!fw) {
10630 			BNX2X_ERR("MCP response failure, aborting\n");
10631 			rc = -EBUSY;
10632 			break;
10633 		}
10634 
10635 		rc = down_interruptible(&bnx2x_prev_sem);
10636 		if (rc) {
10637 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10638 				  rc);
10639 		} else {
10640 			/* If Path is marked by EEH, ignore unload status */
10641 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10642 				 bnx2x_prev_path_get_entry(bp)->aer);
10643 			up(&bnx2x_prev_sem);
10644 		}
10645 
10646 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10647 			rc = bnx2x_prev_unload_common(bp);
10648 			break;
10649 		}
10650 
10651 		/* non-common reply from MCP might require looping */
10652 		rc = bnx2x_prev_unload_uncommon(bp);
10653 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10654 			break;
10655 
10656 		msleep(20);
10657 	} while (--time_counter);
10658 
10659 	if (!time_counter || rc) {
10660 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10661 		rc = -EPROBE_DEFER;
10662 	}
10663 
10664 	/* Mark function if its port was used to boot from SAN */
10665 	if (bnx2x_port_after_undi(bp))
10666 		bp->link_params.feature_config_flags |=
10667 			FEATURE_CONFIG_BOOT_FROM_SAN;
10668 
10669 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10670 
10671 	return rc;
10672 }
10673 
10674 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10675 {
10676 	u32 val, val2, val3, val4, id, boot_mode;
10677 	u16 pmc;
10678 
10679 	/* Get the chip revision id and number. */
10680 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10681 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10682 	id = ((val & 0xffff) << 16);
10683 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10684 	id |= ((val & 0xf) << 12);
10685 
10686 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10687 	 * the configuration space (so we need to reg_rd)
10688 	 */
10689 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10690 	id |= (((val >> 24) & 0xf) << 4);
10691 	val = REG_RD(bp, MISC_REG_BOND_ID);
10692 	id |= (val & 0xf);
10693 	bp->common.chip_id = id;
10694 
10695 	/* force 57811 according to MISC register */
10696 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10697 		if (CHIP_IS_57810(bp))
10698 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10699 				(bp->common.chip_id & 0x0000FFFF);
10700 		else if (CHIP_IS_57810_MF(bp))
10701 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10702 				(bp->common.chip_id & 0x0000FFFF);
10703 		bp->common.chip_id |= 0x1;
10704 	}
10705 
10706 	/* Set doorbell size */
10707 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10708 
10709 	if (!CHIP_IS_E1x(bp)) {
10710 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10711 		if ((val & 1) == 0)
10712 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10713 		else
10714 			val = (val >> 1) & 1;
10715 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10716 						       "2_PORT_MODE");
10717 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10718 						 CHIP_2_PORT_MODE;
10719 
10720 		if (CHIP_MODE_IS_4_PORT(bp))
10721 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10722 		else
10723 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10724 	} else {
10725 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10726 		bp->pfid = bp->pf_num;			/* 0..7 */
10727 	}
10728 
10729 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10730 
10731 	bp->link_params.chip_id = bp->common.chip_id;
10732 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10733 
10734 	val = (REG_RD(bp, 0x2874) & 0x55);
10735 	if ((bp->common.chip_id & 0x1) ||
10736 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10737 		bp->flags |= ONE_PORT_FLAG;
10738 		BNX2X_DEV_INFO("single port device\n");
10739 	}
10740 
10741 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10742 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10743 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10744 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10745 		       bp->common.flash_size, bp->common.flash_size);
10746 
10747 	bnx2x_init_shmem(bp);
10748 
10749 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10750 					MISC_REG_GENERIC_CR_1 :
10751 					MISC_REG_GENERIC_CR_0));
10752 
10753 	bp->link_params.shmem_base = bp->common.shmem_base;
10754 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10755 	if (SHMEM2_RD(bp, size) >
10756 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10757 		bp->link_params.lfa_base =
10758 		REG_RD(bp, bp->common.shmem2_base +
10759 		       (u32)offsetof(struct shmem2_region,
10760 				     lfa_host_addr[BP_PORT(bp)]));
10761 	else
10762 		bp->link_params.lfa_base = 0;
10763 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10764 		       bp->common.shmem_base, bp->common.shmem2_base);
10765 
10766 	if (!bp->common.shmem_base) {
10767 		BNX2X_DEV_INFO("MCP not active\n");
10768 		bp->flags |= NO_MCP_FLAG;
10769 		return;
10770 	}
10771 
10772 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10773 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10774 
10775 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10776 					SHARED_HW_CFG_LED_MODE_MASK) >>
10777 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10778 
10779 	bp->link_params.feature_config_flags = 0;
10780 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10781 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10782 		bp->link_params.feature_config_flags |=
10783 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10784 	else
10785 		bp->link_params.feature_config_flags &=
10786 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10787 
10788 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10789 	bp->common.bc_ver = val;
10790 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10791 	if (val < BNX2X_BC_VER) {
10792 		/* for now only warn
10793 		 * later we might need to enforce this */
10794 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10795 			  BNX2X_BC_VER, val);
10796 	}
10797 	bp->link_params.feature_config_flags |=
10798 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10799 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10800 
10801 	bp->link_params.feature_config_flags |=
10802 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10803 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10804 	bp->link_params.feature_config_flags |=
10805 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10806 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10807 	bp->link_params.feature_config_flags |=
10808 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10809 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10810 
10811 	bp->link_params.feature_config_flags |=
10812 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10813 		FEATURE_CONFIG_MT_SUPPORT : 0;
10814 
10815 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10816 			BC_SUPPORTS_PFC_STATS : 0;
10817 
10818 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10819 			BC_SUPPORTS_FCOE_FEATURES : 0;
10820 
10821 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10822 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10823 
10824 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10825 			BC_SUPPORTS_RMMOD_CMD : 0;
10826 
10827 	boot_mode = SHMEM_RD(bp,
10828 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10829 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10830 	switch (boot_mode) {
10831 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10832 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10833 		break;
10834 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10835 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10836 		break;
10837 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10838 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10839 		break;
10840 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10841 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10842 		break;
10843 	}
10844 
10845 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10846 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10847 
10848 	BNX2X_DEV_INFO("%sWoL capable\n",
10849 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10850 
10851 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10852 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10853 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10854 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10855 
10856 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10857 		 val, val2, val3, val4);
10858 }
10859 
10860 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10861 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10862 
10863 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10864 {
10865 	int pfid = BP_FUNC(bp);
10866 	int igu_sb_id;
10867 	u32 val;
10868 	u8 fid, igu_sb_cnt = 0;
10869 
10870 	bp->igu_base_sb = 0xff;
10871 	if (CHIP_INT_MODE_IS_BC(bp)) {
10872 		int vn = BP_VN(bp);
10873 		igu_sb_cnt = bp->igu_sb_cnt;
10874 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10875 			FP_SB_MAX_E1x;
10876 
10877 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10878 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10879 
10880 		return 0;
10881 	}
10882 
10883 	/* IGU in normal mode - read CAM */
10884 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10885 	     igu_sb_id++) {
10886 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10887 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10888 			continue;
10889 		fid = IGU_FID(val);
10890 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10891 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10892 				continue;
10893 			if (IGU_VEC(val) == 0)
10894 				/* default status block */
10895 				bp->igu_dsb_id = igu_sb_id;
10896 			else {
10897 				if (bp->igu_base_sb == 0xff)
10898 					bp->igu_base_sb = igu_sb_id;
10899 				igu_sb_cnt++;
10900 			}
10901 		}
10902 	}
10903 
10904 #ifdef CONFIG_PCI_MSI
10905 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10906 	 * optional that number of CAM entries will not be equal to the value
10907 	 * advertised in PCI.
10908 	 * Driver should use the minimal value of both as the actual status
10909 	 * block count
10910 	 */
10911 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10912 #endif
10913 
10914 	if (igu_sb_cnt == 0) {
10915 		BNX2X_ERR("CAM configuration error\n");
10916 		return -EINVAL;
10917 	}
10918 
10919 	return 0;
10920 }
10921 
10922 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10923 {
10924 	int cfg_size = 0, idx, port = BP_PORT(bp);
10925 
10926 	/* Aggregation of supported attributes of all external phys */
10927 	bp->port.supported[0] = 0;
10928 	bp->port.supported[1] = 0;
10929 	switch (bp->link_params.num_phys) {
10930 	case 1:
10931 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10932 		cfg_size = 1;
10933 		break;
10934 	case 2:
10935 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10936 		cfg_size = 1;
10937 		break;
10938 	case 3:
10939 		if (bp->link_params.multi_phy_config &
10940 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10941 			bp->port.supported[1] =
10942 				bp->link_params.phy[EXT_PHY1].supported;
10943 			bp->port.supported[0] =
10944 				bp->link_params.phy[EXT_PHY2].supported;
10945 		} else {
10946 			bp->port.supported[0] =
10947 				bp->link_params.phy[EXT_PHY1].supported;
10948 			bp->port.supported[1] =
10949 				bp->link_params.phy[EXT_PHY2].supported;
10950 		}
10951 		cfg_size = 2;
10952 		break;
10953 	}
10954 
10955 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10956 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10957 			   SHMEM_RD(bp,
10958 			   dev_info.port_hw_config[port].external_phy_config),
10959 			   SHMEM_RD(bp,
10960 			   dev_info.port_hw_config[port].external_phy_config2));
10961 			return;
10962 	}
10963 
10964 	if (CHIP_IS_E3(bp))
10965 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10966 	else {
10967 		switch (switch_cfg) {
10968 		case SWITCH_CFG_1G:
10969 			bp->port.phy_addr = REG_RD(
10970 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10971 			break;
10972 		case SWITCH_CFG_10G:
10973 			bp->port.phy_addr = REG_RD(
10974 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10975 			break;
10976 		default:
10977 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10978 				  bp->port.link_config[0]);
10979 			return;
10980 		}
10981 	}
10982 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10983 	/* mask what we support according to speed_cap_mask per configuration */
10984 	for (idx = 0; idx < cfg_size; idx++) {
10985 		if (!(bp->link_params.speed_cap_mask[idx] &
10986 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10987 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10988 
10989 		if (!(bp->link_params.speed_cap_mask[idx] &
10990 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10991 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10992 
10993 		if (!(bp->link_params.speed_cap_mask[idx] &
10994 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10995 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10996 
10997 		if (!(bp->link_params.speed_cap_mask[idx] &
10998 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10999 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11000 
11001 		if (!(bp->link_params.speed_cap_mask[idx] &
11002 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11003 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11004 						     SUPPORTED_1000baseT_Full);
11005 
11006 		if (!(bp->link_params.speed_cap_mask[idx] &
11007 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11008 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11009 
11010 		if (!(bp->link_params.speed_cap_mask[idx] &
11011 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11012 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11013 
11014 		if (!(bp->link_params.speed_cap_mask[idx] &
11015 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11016 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11017 	}
11018 
11019 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11020 		       bp->port.supported[1]);
11021 }
11022 
11023 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11024 {
11025 	u32 link_config, idx, cfg_size = 0;
11026 	bp->port.advertising[0] = 0;
11027 	bp->port.advertising[1] = 0;
11028 	switch (bp->link_params.num_phys) {
11029 	case 1:
11030 	case 2:
11031 		cfg_size = 1;
11032 		break;
11033 	case 3:
11034 		cfg_size = 2;
11035 		break;
11036 	}
11037 	for (idx = 0; idx < cfg_size; idx++) {
11038 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11039 		link_config = bp->port.link_config[idx];
11040 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11041 		case PORT_FEATURE_LINK_SPEED_AUTO:
11042 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11043 				bp->link_params.req_line_speed[idx] =
11044 					SPEED_AUTO_NEG;
11045 				bp->port.advertising[idx] |=
11046 					bp->port.supported[idx];
11047 				if (bp->link_params.phy[EXT_PHY1].type ==
11048 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11049 					bp->port.advertising[idx] |=
11050 					(SUPPORTED_100baseT_Half |
11051 					 SUPPORTED_100baseT_Full);
11052 			} else {
11053 				/* force 10G, no AN */
11054 				bp->link_params.req_line_speed[idx] =
11055 					SPEED_10000;
11056 				bp->port.advertising[idx] |=
11057 					(ADVERTISED_10000baseT_Full |
11058 					 ADVERTISED_FIBRE);
11059 				continue;
11060 			}
11061 			break;
11062 
11063 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11064 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11065 				bp->link_params.req_line_speed[idx] =
11066 					SPEED_10;
11067 				bp->port.advertising[idx] |=
11068 					(ADVERTISED_10baseT_Full |
11069 					 ADVERTISED_TP);
11070 			} else {
11071 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11072 					    link_config,
11073 				    bp->link_params.speed_cap_mask[idx]);
11074 				return;
11075 			}
11076 			break;
11077 
11078 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11079 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11080 				bp->link_params.req_line_speed[idx] =
11081 					SPEED_10;
11082 				bp->link_params.req_duplex[idx] =
11083 					DUPLEX_HALF;
11084 				bp->port.advertising[idx] |=
11085 					(ADVERTISED_10baseT_Half |
11086 					 ADVERTISED_TP);
11087 			} else {
11088 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11089 					    link_config,
11090 					  bp->link_params.speed_cap_mask[idx]);
11091 				return;
11092 			}
11093 			break;
11094 
11095 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11096 			if (bp->port.supported[idx] &
11097 			    SUPPORTED_100baseT_Full) {
11098 				bp->link_params.req_line_speed[idx] =
11099 					SPEED_100;
11100 				bp->port.advertising[idx] |=
11101 					(ADVERTISED_100baseT_Full |
11102 					 ADVERTISED_TP);
11103 			} else {
11104 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11105 					    link_config,
11106 					  bp->link_params.speed_cap_mask[idx]);
11107 				return;
11108 			}
11109 			break;
11110 
11111 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11112 			if (bp->port.supported[idx] &
11113 			    SUPPORTED_100baseT_Half) {
11114 				bp->link_params.req_line_speed[idx] =
11115 								SPEED_100;
11116 				bp->link_params.req_duplex[idx] =
11117 								DUPLEX_HALF;
11118 				bp->port.advertising[idx] |=
11119 					(ADVERTISED_100baseT_Half |
11120 					 ADVERTISED_TP);
11121 			} else {
11122 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11123 				    link_config,
11124 				    bp->link_params.speed_cap_mask[idx]);
11125 				return;
11126 			}
11127 			break;
11128 
11129 		case PORT_FEATURE_LINK_SPEED_1G:
11130 			if (bp->port.supported[idx] &
11131 			    SUPPORTED_1000baseT_Full) {
11132 				bp->link_params.req_line_speed[idx] =
11133 					SPEED_1000;
11134 				bp->port.advertising[idx] |=
11135 					(ADVERTISED_1000baseT_Full |
11136 					 ADVERTISED_TP);
11137 			} else {
11138 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11139 				    link_config,
11140 				    bp->link_params.speed_cap_mask[idx]);
11141 				return;
11142 			}
11143 			break;
11144 
11145 		case PORT_FEATURE_LINK_SPEED_2_5G:
11146 			if (bp->port.supported[idx] &
11147 			    SUPPORTED_2500baseX_Full) {
11148 				bp->link_params.req_line_speed[idx] =
11149 					SPEED_2500;
11150 				bp->port.advertising[idx] |=
11151 					(ADVERTISED_2500baseX_Full |
11152 						ADVERTISED_TP);
11153 			} else {
11154 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11155 				    link_config,
11156 				    bp->link_params.speed_cap_mask[idx]);
11157 				return;
11158 			}
11159 			break;
11160 
11161 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11162 			if (bp->port.supported[idx] &
11163 			    SUPPORTED_10000baseT_Full) {
11164 				bp->link_params.req_line_speed[idx] =
11165 					SPEED_10000;
11166 				bp->port.advertising[idx] |=
11167 					(ADVERTISED_10000baseT_Full |
11168 						ADVERTISED_FIBRE);
11169 			} else {
11170 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11171 				    link_config,
11172 				    bp->link_params.speed_cap_mask[idx]);
11173 				return;
11174 			}
11175 			break;
11176 		case PORT_FEATURE_LINK_SPEED_20G:
11177 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11178 
11179 			break;
11180 		default:
11181 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11182 				  link_config);
11183 				bp->link_params.req_line_speed[idx] =
11184 							SPEED_AUTO_NEG;
11185 				bp->port.advertising[idx] =
11186 						bp->port.supported[idx];
11187 			break;
11188 		}
11189 
11190 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11191 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11192 		if (bp->link_params.req_flow_ctrl[idx] ==
11193 		    BNX2X_FLOW_CTRL_AUTO) {
11194 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11195 				bp->link_params.req_flow_ctrl[idx] =
11196 							BNX2X_FLOW_CTRL_NONE;
11197 			else
11198 				bnx2x_set_requested_fc(bp);
11199 		}
11200 
11201 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11202 			       bp->link_params.req_line_speed[idx],
11203 			       bp->link_params.req_duplex[idx],
11204 			       bp->link_params.req_flow_ctrl[idx],
11205 			       bp->port.advertising[idx]);
11206 	}
11207 }
11208 
11209 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11210 {
11211 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11212 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11213 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11214 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11215 }
11216 
11217 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11218 {
11219 	int port = BP_PORT(bp);
11220 	u32 config;
11221 	u32 ext_phy_type, ext_phy_config, eee_mode;
11222 
11223 	bp->link_params.bp = bp;
11224 	bp->link_params.port = port;
11225 
11226 	bp->link_params.lane_config =
11227 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11228 
11229 	bp->link_params.speed_cap_mask[0] =
11230 		SHMEM_RD(bp,
11231 			 dev_info.port_hw_config[port].speed_capability_mask) &
11232 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11233 	bp->link_params.speed_cap_mask[1] =
11234 		SHMEM_RD(bp,
11235 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11236 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11237 	bp->port.link_config[0] =
11238 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11239 
11240 	bp->port.link_config[1] =
11241 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11242 
11243 	bp->link_params.multi_phy_config =
11244 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11245 	/* If the device is capable of WoL, set the default state according
11246 	 * to the HW
11247 	 */
11248 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11249 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11250 		   (config & PORT_FEATURE_WOL_ENABLED));
11251 
11252 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11253 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11254 		bp->flags |= NO_ISCSI_FLAG;
11255 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11256 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11257 		bp->flags |= NO_FCOE_FLAG;
11258 
11259 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11260 		       bp->link_params.lane_config,
11261 		       bp->link_params.speed_cap_mask[0],
11262 		       bp->port.link_config[0]);
11263 
11264 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11265 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11266 	bnx2x_phy_probe(&bp->link_params);
11267 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11268 
11269 	bnx2x_link_settings_requested(bp);
11270 
11271 	/*
11272 	 * If connected directly, work with the internal PHY, otherwise, work
11273 	 * with the external PHY
11274 	 */
11275 	ext_phy_config =
11276 		SHMEM_RD(bp,
11277 			 dev_info.port_hw_config[port].external_phy_config);
11278 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11279 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11280 		bp->mdio.prtad = bp->port.phy_addr;
11281 
11282 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11283 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11284 		bp->mdio.prtad =
11285 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11286 
11287 	/* Configure link feature according to nvram value */
11288 	eee_mode = (((SHMEM_RD(bp, dev_info.
11289 		      port_feature_config[port].eee_power_mode)) &
11290 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11291 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11292 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11293 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11294 					   EEE_MODE_ENABLE_LPI |
11295 					   EEE_MODE_OUTPUT_TIME;
11296 	} else {
11297 		bp->link_params.eee_mode = 0;
11298 	}
11299 }
11300 
11301 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11302 {
11303 	u32 no_flags = NO_ISCSI_FLAG;
11304 	int port = BP_PORT(bp);
11305 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11306 				drv_lic_key[port].max_iscsi_conn);
11307 
11308 	if (!CNIC_SUPPORT(bp)) {
11309 		bp->flags |= no_flags;
11310 		return;
11311 	}
11312 
11313 	/* Get the number of maximum allowed iSCSI connections */
11314 	bp->cnic_eth_dev.max_iscsi_conn =
11315 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11316 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11317 
11318 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11319 		       bp->cnic_eth_dev.max_iscsi_conn);
11320 
11321 	/*
11322 	 * If maximum allowed number of connections is zero -
11323 	 * disable the feature.
11324 	 */
11325 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11326 		bp->flags |= no_flags;
11327 }
11328 
11329 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11330 {
11331 	/* Port info */
11332 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11333 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11334 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11335 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11336 
11337 	/* Node info */
11338 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11339 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11340 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11341 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11342 }
11343 
11344 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11345 {
11346 	u8 count = 0;
11347 
11348 	if (IS_MF(bp)) {
11349 		u8 fid;
11350 
11351 		/* iterate over absolute function ids for this path: */
11352 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11353 			if (IS_MF_SD(bp)) {
11354 				u32 cfg = MF_CFG_RD(bp,
11355 						    func_mf_config[fid].config);
11356 
11357 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11358 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11359 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11360 					count++;
11361 			} else {
11362 				u32 cfg = MF_CFG_RD(bp,
11363 						    func_ext_config[fid].
11364 								      func_cfg);
11365 
11366 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11367 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11368 					count++;
11369 			}
11370 		}
11371 	} else { /* SF */
11372 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11373 
11374 		for (port = 0; port < port_cnt; port++) {
11375 			u32 lic = SHMEM_RD(bp,
11376 					   drv_lic_key[port].max_fcoe_conn) ^
11377 				  FW_ENCODE_32BIT_PATTERN;
11378 			if (lic)
11379 				count++;
11380 		}
11381 	}
11382 
11383 	return count;
11384 }
11385 
11386 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11387 {
11388 	int port = BP_PORT(bp);
11389 	int func = BP_ABS_FUNC(bp);
11390 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11391 				drv_lic_key[port].max_fcoe_conn);
11392 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11393 
11394 	if (!CNIC_SUPPORT(bp)) {
11395 		bp->flags |= NO_FCOE_FLAG;
11396 		return;
11397 	}
11398 
11399 	/* Get the number of maximum allowed FCoE connections */
11400 	bp->cnic_eth_dev.max_fcoe_conn =
11401 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11402 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11403 
11404 	/* Calculate the number of maximum allowed FCoE tasks */
11405 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11406 
11407 	/* check if FCoE resources must be shared between different functions */
11408 	if (num_fcoe_func)
11409 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11410 
11411 	/* Read the WWN: */
11412 	if (!IS_MF(bp)) {
11413 		/* Port info */
11414 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11415 			SHMEM_RD(bp,
11416 				 dev_info.port_hw_config[port].
11417 				 fcoe_wwn_port_name_upper);
11418 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11419 			SHMEM_RD(bp,
11420 				 dev_info.port_hw_config[port].
11421 				 fcoe_wwn_port_name_lower);
11422 
11423 		/* Node info */
11424 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11425 			SHMEM_RD(bp,
11426 				 dev_info.port_hw_config[port].
11427 				 fcoe_wwn_node_name_upper);
11428 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11429 			SHMEM_RD(bp,
11430 				 dev_info.port_hw_config[port].
11431 				 fcoe_wwn_node_name_lower);
11432 	} else if (!IS_MF_SD(bp)) {
11433 		/* Read the WWN info only if the FCoE feature is enabled for
11434 		 * this function.
11435 		 */
11436 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11437 			bnx2x_get_ext_wwn_info(bp, func);
11438 	} else {
11439 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11440 			bnx2x_get_ext_wwn_info(bp, func);
11441 	}
11442 
11443 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11444 
11445 	/*
11446 	 * If maximum allowed number of connections is zero -
11447 	 * disable the feature.
11448 	 */
11449 	if (!bp->cnic_eth_dev.max_fcoe_conn)
11450 		bp->flags |= NO_FCOE_FLAG;
11451 }
11452 
11453 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11454 {
11455 	/*
11456 	 * iSCSI may be dynamically disabled but reading
11457 	 * info here we will decrease memory usage by driver
11458 	 * if the feature is disabled for good
11459 	 */
11460 	bnx2x_get_iscsi_info(bp);
11461 	bnx2x_get_fcoe_info(bp);
11462 }
11463 
11464 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11465 {
11466 	u32 val, val2;
11467 	int func = BP_ABS_FUNC(bp);
11468 	int port = BP_PORT(bp);
11469 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11470 	u8 *fip_mac = bp->fip_mac;
11471 
11472 	if (IS_MF(bp)) {
11473 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11474 		 * FCoE MAC then the appropriate feature should be disabled.
11475 		 * In non SD mode features configuration comes from struct
11476 		 * func_ext_config.
11477 		 */
11478 		if (!IS_MF_SD(bp)) {
11479 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11480 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11481 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11482 						 iscsi_mac_addr_upper);
11483 				val = MF_CFG_RD(bp, func_ext_config[func].
11484 						iscsi_mac_addr_lower);
11485 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11486 				BNX2X_DEV_INFO
11487 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11488 			} else {
11489 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11490 			}
11491 
11492 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11493 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11494 						 fcoe_mac_addr_upper);
11495 				val = MF_CFG_RD(bp, func_ext_config[func].
11496 						fcoe_mac_addr_lower);
11497 				bnx2x_set_mac_buf(fip_mac, val, val2);
11498 				BNX2X_DEV_INFO
11499 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11500 			} else {
11501 				bp->flags |= NO_FCOE_FLAG;
11502 			}
11503 
11504 			bp->mf_ext_config = cfg;
11505 
11506 		} else { /* SD MODE */
11507 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11508 				/* use primary mac as iscsi mac */
11509 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11510 
11511 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11512 				BNX2X_DEV_INFO
11513 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11514 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11515 				/* use primary mac as fip mac */
11516 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11517 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11518 				BNX2X_DEV_INFO
11519 					("Read FIP MAC: %pM\n", fip_mac);
11520 			}
11521 		}
11522 
11523 		/* If this is a storage-only interface, use SAN mac as
11524 		 * primary MAC. Notice that for SD this is already the case,
11525 		 * as the SAN mac was copied from the primary MAC.
11526 		 */
11527 		if (IS_MF_FCOE_AFEX(bp))
11528 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11529 	} else {
11530 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11531 				iscsi_mac_upper);
11532 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11533 			       iscsi_mac_lower);
11534 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11535 
11536 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11537 				fcoe_fip_mac_upper);
11538 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11539 			       fcoe_fip_mac_lower);
11540 		bnx2x_set_mac_buf(fip_mac, val, val2);
11541 	}
11542 
11543 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11544 	if (!is_valid_ether_addr(iscsi_mac)) {
11545 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11546 		memset(iscsi_mac, 0, ETH_ALEN);
11547 	}
11548 
11549 	/* Disable FCoE if MAC configuration is invalid. */
11550 	if (!is_valid_ether_addr(fip_mac)) {
11551 		bp->flags |= NO_FCOE_FLAG;
11552 		memset(bp->fip_mac, 0, ETH_ALEN);
11553 	}
11554 }
11555 
11556 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11557 {
11558 	u32 val, val2;
11559 	int func = BP_ABS_FUNC(bp);
11560 	int port = BP_PORT(bp);
11561 
11562 	/* Zero primary MAC configuration */
11563 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
11564 
11565 	if (BP_NOMCP(bp)) {
11566 		BNX2X_ERROR("warning: random MAC workaround active\n");
11567 		eth_hw_addr_random(bp->dev);
11568 	} else if (IS_MF(bp)) {
11569 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11570 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11571 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11572 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11573 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11574 
11575 		if (CNIC_SUPPORT(bp))
11576 			bnx2x_get_cnic_mac_hwinfo(bp);
11577 	} else {
11578 		/* in SF read MACs from port configuration */
11579 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11580 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11581 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11582 
11583 		if (CNIC_SUPPORT(bp))
11584 			bnx2x_get_cnic_mac_hwinfo(bp);
11585 	}
11586 
11587 	if (!BP_NOMCP(bp)) {
11588 		/* Read physical port identifier from shmem */
11589 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11590 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11591 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11592 		bp->flags |= HAS_PHYS_PORT_ID;
11593 	}
11594 
11595 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11596 
11597 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11598 		dev_err(&bp->pdev->dev,
11599 			"bad Ethernet MAC address configuration: %pM\n"
11600 			"change it manually before bringing up the appropriate network interface\n",
11601 			bp->dev->dev_addr);
11602 }
11603 
11604 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11605 {
11606 	int tmp;
11607 	u32 cfg;
11608 
11609 	if (IS_VF(bp))
11610 		return 0;
11611 
11612 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11613 		/* Take function: tmp = func */
11614 		tmp = BP_ABS_FUNC(bp);
11615 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11616 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11617 	} else {
11618 		/* Take port: tmp = port */
11619 		tmp = BP_PORT(bp);
11620 		cfg = SHMEM_RD(bp,
11621 			       dev_info.port_hw_config[tmp].generic_features);
11622 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11623 	}
11624 	return cfg;
11625 }
11626 
11627 static void validate_set_si_mode(struct bnx2x *bp)
11628 {
11629 	u8 func = BP_ABS_FUNC(bp);
11630 	u32 val;
11631 
11632 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11633 
11634 	/* check for legal mac (upper bytes) */
11635 	if (val != 0xffff) {
11636 		bp->mf_mode = MULTI_FUNCTION_SI;
11637 		bp->mf_config[BP_VN(bp)] =
11638 			MF_CFG_RD(bp, func_mf_config[func].config);
11639 	} else
11640 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11641 }
11642 
11643 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11644 {
11645 	int /*abs*/func = BP_ABS_FUNC(bp);
11646 	int vn;
11647 	u32 val = 0, val2 = 0;
11648 	int rc = 0;
11649 
11650 	bnx2x_get_common_hwinfo(bp);
11651 
11652 	/*
11653 	 * initialize IGU parameters
11654 	 */
11655 	if (CHIP_IS_E1x(bp)) {
11656 		bp->common.int_block = INT_BLOCK_HC;
11657 
11658 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11659 		bp->igu_base_sb = 0;
11660 	} else {
11661 		bp->common.int_block = INT_BLOCK_IGU;
11662 
11663 		/* do not allow device reset during IGU info processing */
11664 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11665 
11666 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11667 
11668 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11669 			int tout = 5000;
11670 
11671 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11672 
11673 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11674 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11675 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11676 
11677 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11678 				tout--;
11679 				usleep_range(1000, 2000);
11680 			}
11681 
11682 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11683 				dev_err(&bp->pdev->dev,
11684 					"FORCING Normal Mode failed!!!\n");
11685 				bnx2x_release_hw_lock(bp,
11686 						      HW_LOCK_RESOURCE_RESET);
11687 				return -EPERM;
11688 			}
11689 		}
11690 
11691 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11692 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11693 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11694 		} else
11695 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11696 
11697 		rc = bnx2x_get_igu_cam_info(bp);
11698 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11699 		if (rc)
11700 			return rc;
11701 	}
11702 
11703 	/*
11704 	 * set base FW non-default (fast path) status block id, this value is
11705 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11706 	 * determine the id used by the FW.
11707 	 */
11708 	if (CHIP_IS_E1x(bp))
11709 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11710 	else /*
11711 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11712 	      * the same queue are indicated on the same IGU SB). So we prefer
11713 	      * FW and IGU SBs to be the same value.
11714 	      */
11715 		bp->base_fw_ndsb = bp->igu_base_sb;
11716 
11717 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11718 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11719 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11720 
11721 	/*
11722 	 * Initialize MF configuration
11723 	 */
11724 
11725 	bp->mf_ov = 0;
11726 	bp->mf_mode = 0;
11727 	bp->mf_sub_mode = 0;
11728 	vn = BP_VN(bp);
11729 
11730 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11731 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11732 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11733 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11734 
11735 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11736 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11737 		else
11738 			bp->common.mf_cfg_base = bp->common.shmem_base +
11739 				offsetof(struct shmem_region, func_mb) +
11740 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11741 		/*
11742 		 * get mf configuration:
11743 		 * 1. Existence of MF configuration
11744 		 * 2. MAC address must be legal (check only upper bytes)
11745 		 *    for  Switch-Independent mode;
11746 		 *    OVLAN must be legal for Switch-Dependent mode
11747 		 * 3. SF_MODE configures specific MF mode
11748 		 */
11749 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11750 			/* get mf configuration */
11751 			val = SHMEM_RD(bp,
11752 				       dev_info.shared_feature_config.config);
11753 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11754 
11755 			switch (val) {
11756 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11757 				validate_set_si_mode(bp);
11758 				break;
11759 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11760 				if ((!CHIP_IS_E1x(bp)) &&
11761 				    (MF_CFG_RD(bp, func_mf_config[func].
11762 					       mac_upper) != 0xffff) &&
11763 				    (SHMEM2_HAS(bp,
11764 						afex_driver_support))) {
11765 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11766 					bp->mf_config[vn] = MF_CFG_RD(bp,
11767 						func_mf_config[func].config);
11768 				} else {
11769 					BNX2X_DEV_INFO("can not configure afex mode\n");
11770 				}
11771 				break;
11772 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11773 				/* get OV configuration */
11774 				val = MF_CFG_RD(bp,
11775 					func_mf_config[FUNC_0].e1hov_tag);
11776 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11777 
11778 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11779 					bp->mf_mode = MULTI_FUNCTION_SD;
11780 					bp->mf_config[vn] = MF_CFG_RD(bp,
11781 						func_mf_config[func].config);
11782 				} else
11783 					BNX2X_DEV_INFO("illegal OV for SD\n");
11784 				break;
11785 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
11786 				bp->mf_mode = MULTI_FUNCTION_SD;
11787 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
11788 				bp->mf_config[vn] =
11789 					MF_CFG_RD(bp,
11790 						  func_mf_config[func].config);
11791 				break;
11792 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11793 				bp->mf_config[vn] = 0;
11794 				break;
11795 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
11796 				val2 = SHMEM_RD(bp,
11797 					dev_info.shared_hw_config.config_3);
11798 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
11799 				switch (val2) {
11800 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
11801 					validate_set_si_mode(bp);
11802 					bp->mf_sub_mode =
11803 							SUB_MF_MODE_NPAR1_DOT_5;
11804 					break;
11805 				default:
11806 					/* Unknown configuration */
11807 					bp->mf_config[vn] = 0;
11808 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
11809 						       val);
11810 				}
11811 				break;
11812 			default:
11813 				/* Unknown configuration: reset mf_config */
11814 				bp->mf_config[vn] = 0;
11815 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11816 			}
11817 		}
11818 
11819 		BNX2X_DEV_INFO("%s function mode\n",
11820 			       IS_MF(bp) ? "multi" : "single");
11821 
11822 		switch (bp->mf_mode) {
11823 		case MULTI_FUNCTION_SD:
11824 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11825 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11826 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11827 				bp->mf_ov = val;
11828 				bp->path_has_ovlan = true;
11829 
11830 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11831 					       func, bp->mf_ov, bp->mf_ov);
11832 			} else if (bp->mf_sub_mode == SUB_MF_MODE_UFP) {
11833 				dev_err(&bp->pdev->dev,
11834 					"Unexpected - no valid MF OV for func %d in UFP mode\n",
11835 					func);
11836 				bp->path_has_ovlan = true;
11837 			} else {
11838 				dev_err(&bp->pdev->dev,
11839 					"No valid MF OV for func %d, aborting\n",
11840 					func);
11841 				return -EPERM;
11842 			}
11843 			break;
11844 		case MULTI_FUNCTION_AFEX:
11845 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11846 			break;
11847 		case MULTI_FUNCTION_SI:
11848 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11849 				       func);
11850 			break;
11851 		default:
11852 			if (vn) {
11853 				dev_err(&bp->pdev->dev,
11854 					"VN %d is in a single function mode, aborting\n",
11855 					vn);
11856 				return -EPERM;
11857 			}
11858 			break;
11859 		}
11860 
11861 		/* check if other port on the path needs ovlan:
11862 		 * Since MF configuration is shared between ports
11863 		 * Possible mixed modes are only
11864 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11865 		 */
11866 		if (CHIP_MODE_IS_4_PORT(bp) &&
11867 		    !bp->path_has_ovlan &&
11868 		    !IS_MF(bp) &&
11869 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11870 			u8 other_port = !BP_PORT(bp);
11871 			u8 other_func = BP_PATH(bp) + 2*other_port;
11872 			val = MF_CFG_RD(bp,
11873 					func_mf_config[other_func].e1hov_tag);
11874 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11875 				bp->path_has_ovlan = true;
11876 		}
11877 	}
11878 
11879 	/* adjust igu_sb_cnt to MF for E1H */
11880 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
11881 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11882 
11883 	/* port info */
11884 	bnx2x_get_port_hwinfo(bp);
11885 
11886 	/* Get MAC addresses */
11887 	bnx2x_get_mac_hwinfo(bp);
11888 
11889 	bnx2x_get_cnic_info(bp);
11890 
11891 	return rc;
11892 }
11893 
11894 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11895 {
11896 	int cnt, i, block_end, rodi;
11897 	char vpd_start[BNX2X_VPD_LEN+1];
11898 	char str_id_reg[VENDOR_ID_LEN+1];
11899 	char str_id_cap[VENDOR_ID_LEN+1];
11900 	char *vpd_data;
11901 	char *vpd_extended_data = NULL;
11902 	u8 len;
11903 
11904 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11905 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11906 
11907 	if (cnt < BNX2X_VPD_LEN)
11908 		goto out_not_found;
11909 
11910 	/* VPD RO tag should be first tag after identifier string, hence
11911 	 * we should be able to find it in first BNX2X_VPD_LEN chars
11912 	 */
11913 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11914 			     PCI_VPD_LRDT_RO_DATA);
11915 	if (i < 0)
11916 		goto out_not_found;
11917 
11918 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11919 		    pci_vpd_lrdt_size(&vpd_start[i]);
11920 
11921 	i += PCI_VPD_LRDT_TAG_SIZE;
11922 
11923 	if (block_end > BNX2X_VPD_LEN) {
11924 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11925 		if (vpd_extended_data  == NULL)
11926 			goto out_not_found;
11927 
11928 		/* read rest of vpd image into vpd_extended_data */
11929 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11930 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11931 				   block_end - BNX2X_VPD_LEN,
11932 				   vpd_extended_data + BNX2X_VPD_LEN);
11933 		if (cnt < (block_end - BNX2X_VPD_LEN))
11934 			goto out_not_found;
11935 		vpd_data = vpd_extended_data;
11936 	} else
11937 		vpd_data = vpd_start;
11938 
11939 	/* now vpd_data holds full vpd content in both cases */
11940 
11941 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11942 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11943 	if (rodi < 0)
11944 		goto out_not_found;
11945 
11946 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11947 
11948 	if (len != VENDOR_ID_LEN)
11949 		goto out_not_found;
11950 
11951 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11952 
11953 	/* vendor specific info */
11954 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11955 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11956 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11957 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11958 
11959 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11960 						PCI_VPD_RO_KEYWORD_VENDOR0);
11961 		if (rodi >= 0) {
11962 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11963 
11964 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11965 
11966 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11967 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11968 				bp->fw_ver[len] = ' ';
11969 			}
11970 		}
11971 		kfree(vpd_extended_data);
11972 		return;
11973 	}
11974 out_not_found:
11975 	kfree(vpd_extended_data);
11976 	return;
11977 }
11978 
11979 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11980 {
11981 	u32 flags = 0;
11982 
11983 	if (CHIP_REV_IS_FPGA(bp))
11984 		SET_FLAGS(flags, MODE_FPGA);
11985 	else if (CHIP_REV_IS_EMUL(bp))
11986 		SET_FLAGS(flags, MODE_EMUL);
11987 	else
11988 		SET_FLAGS(flags, MODE_ASIC);
11989 
11990 	if (CHIP_MODE_IS_4_PORT(bp))
11991 		SET_FLAGS(flags, MODE_PORT4);
11992 	else
11993 		SET_FLAGS(flags, MODE_PORT2);
11994 
11995 	if (CHIP_IS_E2(bp))
11996 		SET_FLAGS(flags, MODE_E2);
11997 	else if (CHIP_IS_E3(bp)) {
11998 		SET_FLAGS(flags, MODE_E3);
11999 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12000 			SET_FLAGS(flags, MODE_E3_A0);
12001 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12002 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12003 	}
12004 
12005 	if (IS_MF(bp)) {
12006 		SET_FLAGS(flags, MODE_MF);
12007 		switch (bp->mf_mode) {
12008 		case MULTI_FUNCTION_SD:
12009 			SET_FLAGS(flags, MODE_MF_SD);
12010 			break;
12011 		case MULTI_FUNCTION_SI:
12012 			SET_FLAGS(flags, MODE_MF_SI);
12013 			break;
12014 		case MULTI_FUNCTION_AFEX:
12015 			SET_FLAGS(flags, MODE_MF_AFEX);
12016 			break;
12017 		}
12018 	} else
12019 		SET_FLAGS(flags, MODE_SF);
12020 
12021 #if defined(__LITTLE_ENDIAN)
12022 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12023 #else /*(__BIG_ENDIAN)*/
12024 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12025 #endif
12026 	INIT_MODE_FLAGS(bp) = flags;
12027 }
12028 
12029 static int bnx2x_init_bp(struct bnx2x *bp)
12030 {
12031 	int func;
12032 	int rc;
12033 
12034 	mutex_init(&bp->port.phy_mutex);
12035 	mutex_init(&bp->fw_mb_mutex);
12036 	mutex_init(&bp->drv_info_mutex);
12037 	bp->drv_info_mng_owner = false;
12038 	spin_lock_init(&bp->stats_lock);
12039 	sema_init(&bp->stats_sema, 1);
12040 
12041 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12042 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12043 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12044 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12045 	if (IS_PF(bp)) {
12046 		rc = bnx2x_get_hwinfo(bp);
12047 		if (rc)
12048 			return rc;
12049 	} else {
12050 		eth_zero_addr(bp->dev->dev_addr);
12051 	}
12052 
12053 	bnx2x_set_modes_bitmap(bp);
12054 
12055 	rc = bnx2x_alloc_mem_bp(bp);
12056 	if (rc)
12057 		return rc;
12058 
12059 	bnx2x_read_fwinfo(bp);
12060 
12061 	func = BP_FUNC(bp);
12062 
12063 	/* need to reset chip if undi was active */
12064 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12065 		/* init fw_seq */
12066 		bp->fw_seq =
12067 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12068 							DRV_MSG_SEQ_NUMBER_MASK;
12069 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12070 
12071 		rc = bnx2x_prev_unload(bp);
12072 		if (rc) {
12073 			bnx2x_free_mem_bp(bp);
12074 			return rc;
12075 		}
12076 	}
12077 
12078 	if (CHIP_REV_IS_FPGA(bp))
12079 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12080 
12081 	if (BP_NOMCP(bp) && (func == 0))
12082 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12083 
12084 	bp->disable_tpa = disable_tpa;
12085 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12086 	/* Reduce memory usage in kdump environment by disabling TPA */
12087 	bp->disable_tpa |= is_kdump_kernel();
12088 
12089 	/* Set TPA flags */
12090 	if (bp->disable_tpa) {
12091 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
12092 		bp->dev->features &= ~NETIF_F_LRO;
12093 	} else {
12094 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
12095 		bp->dev->features |= NETIF_F_LRO;
12096 	}
12097 
12098 	if (CHIP_IS_E1(bp))
12099 		bp->dropless_fc = 0;
12100 	else
12101 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12102 
12103 	bp->mrrs = mrrs;
12104 
12105 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12106 	if (IS_VF(bp))
12107 		bp->rx_ring_size = MAX_RX_AVAIL;
12108 
12109 	/* make sure that the numbers are in the right granularity */
12110 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12111 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12112 
12113 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12114 
12115 	init_timer(&bp->timer);
12116 	bp->timer.expires = jiffies + bp->current_interval;
12117 	bp->timer.data = (unsigned long) bp;
12118 	bp->timer.function = bnx2x_timer;
12119 
12120 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12121 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12122 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12123 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
12124 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12125 		bnx2x_dcbx_init_params(bp);
12126 	} else {
12127 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12128 	}
12129 
12130 	if (CHIP_IS_E1x(bp))
12131 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12132 	else
12133 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12134 
12135 	/* multiple tx priority */
12136 	if (IS_VF(bp))
12137 		bp->max_cos = 1;
12138 	else if (CHIP_IS_E1x(bp))
12139 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12140 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12141 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12142 	else if (CHIP_IS_E3B0(bp))
12143 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12144 	else
12145 		BNX2X_ERR("unknown chip %x revision %x\n",
12146 			  CHIP_NUM(bp), CHIP_REV(bp));
12147 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12148 
12149 	/* We need at least one default status block for slow-path events,
12150 	 * second status block for the L2 queue, and a third status block for
12151 	 * CNIC if supported.
12152 	 */
12153 	if (IS_VF(bp))
12154 		bp->min_msix_vec_cnt = 1;
12155 	else if (CNIC_SUPPORT(bp))
12156 		bp->min_msix_vec_cnt = 3;
12157 	else /* PF w/o cnic */
12158 		bp->min_msix_vec_cnt = 2;
12159 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12160 
12161 	bp->dump_preset_idx = 1;
12162 
12163 	if (CHIP_IS_E3B0(bp))
12164 		bp->flags |= PTP_SUPPORTED;
12165 
12166 	return rc;
12167 }
12168 
12169 /****************************************************************************
12170 * General service functions
12171 ****************************************************************************/
12172 
12173 /*
12174  * net_device service functions
12175  */
12176 
12177 /* called with rtnl_lock */
12178 static int bnx2x_open(struct net_device *dev)
12179 {
12180 	struct bnx2x *bp = netdev_priv(dev);
12181 	int rc;
12182 
12183 	bp->stats_init = true;
12184 
12185 	netif_carrier_off(dev);
12186 
12187 	bnx2x_set_power_state(bp, PCI_D0);
12188 
12189 	/* If parity had happen during the unload, then attentions
12190 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12191 	 * want the first function loaded on the current engine to
12192 	 * complete the recovery.
12193 	 * Parity recovery is only relevant for PF driver.
12194 	 */
12195 	if (IS_PF(bp)) {
12196 		int other_engine = BP_PATH(bp) ? 0 : 1;
12197 		bool other_load_status, load_status;
12198 		bool global = false;
12199 
12200 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12201 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12202 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12203 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12204 			do {
12205 				/* If there are attentions and they are in a
12206 				 * global blocks, set the GLOBAL_RESET bit
12207 				 * regardless whether it will be this function
12208 				 * that will complete the recovery or not.
12209 				 */
12210 				if (global)
12211 					bnx2x_set_reset_global(bp);
12212 
12213 				/* Only the first function on the current
12214 				 * engine should try to recover in open. In case
12215 				 * of attentions in global blocks only the first
12216 				 * in the chip should try to recover.
12217 				 */
12218 				if ((!load_status &&
12219 				     (!global || !other_load_status)) &&
12220 				      bnx2x_trylock_leader_lock(bp) &&
12221 				      !bnx2x_leader_reset(bp)) {
12222 					netdev_info(bp->dev,
12223 						    "Recovered in open\n");
12224 					break;
12225 				}
12226 
12227 				/* recovery has failed... */
12228 				bnx2x_set_power_state(bp, PCI_D3hot);
12229 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12230 
12231 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12232 					  "If you still see this message after a few retries then power cycle is required.\n");
12233 
12234 				return -EAGAIN;
12235 			} while (0);
12236 		}
12237 	}
12238 
12239 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12240 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12241 	if (rc)
12242 		return rc;
12243 	return 0;
12244 }
12245 
12246 /* called with rtnl_lock */
12247 static int bnx2x_close(struct net_device *dev)
12248 {
12249 	struct bnx2x *bp = netdev_priv(dev);
12250 
12251 	/* Unload the driver, release IRQs */
12252 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12253 
12254 	return 0;
12255 }
12256 
12257 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12258 				      struct bnx2x_mcast_ramrod_params *p)
12259 {
12260 	int mc_count = netdev_mc_count(bp->dev);
12261 	struct bnx2x_mcast_list_elem *mc_mac =
12262 		kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12263 	struct netdev_hw_addr *ha;
12264 
12265 	if (!mc_mac)
12266 		return -ENOMEM;
12267 
12268 	INIT_LIST_HEAD(&p->mcast_list);
12269 
12270 	netdev_for_each_mc_addr(ha, bp->dev) {
12271 		mc_mac->mac = bnx2x_mc_addr(ha);
12272 		list_add_tail(&mc_mac->link, &p->mcast_list);
12273 		mc_mac++;
12274 	}
12275 
12276 	p->mcast_list_len = mc_count;
12277 
12278 	return 0;
12279 }
12280 
12281 static void bnx2x_free_mcast_macs_list(
12282 	struct bnx2x_mcast_ramrod_params *p)
12283 {
12284 	struct bnx2x_mcast_list_elem *mc_mac =
12285 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12286 				 link);
12287 
12288 	WARN_ON(!mc_mac);
12289 	kfree(mc_mac);
12290 }
12291 
12292 /**
12293  * bnx2x_set_uc_list - configure a new unicast MACs list.
12294  *
12295  * @bp: driver handle
12296  *
12297  * We will use zero (0) as a MAC type for these MACs.
12298  */
12299 static int bnx2x_set_uc_list(struct bnx2x *bp)
12300 {
12301 	int rc;
12302 	struct net_device *dev = bp->dev;
12303 	struct netdev_hw_addr *ha;
12304 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12305 	unsigned long ramrod_flags = 0;
12306 
12307 	/* First schedule a cleanup up of old configuration */
12308 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12309 	if (rc < 0) {
12310 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12311 		return rc;
12312 	}
12313 
12314 	netdev_for_each_uc_addr(ha, dev) {
12315 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12316 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12317 		if (rc == -EEXIST) {
12318 			DP(BNX2X_MSG_SP,
12319 			   "Failed to schedule ADD operations: %d\n", rc);
12320 			/* do not treat adding same MAC as error */
12321 			rc = 0;
12322 
12323 		} else if (rc < 0) {
12324 
12325 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12326 				  rc);
12327 			return rc;
12328 		}
12329 	}
12330 
12331 	/* Execute the pending commands */
12332 	__set_bit(RAMROD_CONT, &ramrod_flags);
12333 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12334 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12335 }
12336 
12337 static int bnx2x_set_mc_list(struct bnx2x *bp)
12338 {
12339 	struct net_device *dev = bp->dev;
12340 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12341 	int rc = 0;
12342 
12343 	rparam.mcast_obj = &bp->mcast_obj;
12344 
12345 	/* first, clear all configured multicast MACs */
12346 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12347 	if (rc < 0) {
12348 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12349 		return rc;
12350 	}
12351 
12352 	/* then, configure a new MACs list */
12353 	if (netdev_mc_count(dev)) {
12354 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12355 		if (rc) {
12356 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12357 				  rc);
12358 			return rc;
12359 		}
12360 
12361 		/* Now add the new MACs */
12362 		rc = bnx2x_config_mcast(bp, &rparam,
12363 					BNX2X_MCAST_CMD_ADD);
12364 		if (rc < 0)
12365 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12366 				  rc);
12367 
12368 		bnx2x_free_mcast_macs_list(&rparam);
12369 	}
12370 
12371 	return rc;
12372 }
12373 
12374 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12375 static void bnx2x_set_rx_mode(struct net_device *dev)
12376 {
12377 	struct bnx2x *bp = netdev_priv(dev);
12378 
12379 	if (bp->state != BNX2X_STATE_OPEN) {
12380 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12381 		return;
12382 	} else {
12383 		/* Schedule an SP task to handle rest of change */
12384 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12385 				       NETIF_MSG_IFUP);
12386 	}
12387 }
12388 
12389 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12390 {
12391 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12392 
12393 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12394 
12395 	netif_addr_lock_bh(bp->dev);
12396 
12397 	if (bp->dev->flags & IFF_PROMISC) {
12398 		rx_mode = BNX2X_RX_MODE_PROMISC;
12399 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12400 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12401 		    CHIP_IS_E1(bp))) {
12402 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12403 	} else {
12404 		if (IS_PF(bp)) {
12405 			/* some multicasts */
12406 			if (bnx2x_set_mc_list(bp) < 0)
12407 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12408 
12409 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12410 			netif_addr_unlock_bh(bp->dev);
12411 			if (bnx2x_set_uc_list(bp) < 0)
12412 				rx_mode = BNX2X_RX_MODE_PROMISC;
12413 			netif_addr_lock_bh(bp->dev);
12414 		} else {
12415 			/* configuring mcast to a vf involves sleeping (when we
12416 			 * wait for the pf's response).
12417 			 */
12418 			bnx2x_schedule_sp_rtnl(bp,
12419 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12420 		}
12421 	}
12422 
12423 	bp->rx_mode = rx_mode;
12424 	/* handle ISCSI SD mode */
12425 	if (IS_MF_ISCSI_ONLY(bp))
12426 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12427 
12428 	/* Schedule the rx_mode command */
12429 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12430 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12431 		netif_addr_unlock_bh(bp->dev);
12432 		return;
12433 	}
12434 
12435 	if (IS_PF(bp)) {
12436 		bnx2x_set_storm_rx_mode(bp);
12437 		netif_addr_unlock_bh(bp->dev);
12438 	} else {
12439 		/* VF will need to request the PF to make this change, and so
12440 		 * the VF needs to release the bottom-half lock prior to the
12441 		 * request (as it will likely require sleep on the VF side)
12442 		 */
12443 		netif_addr_unlock_bh(bp->dev);
12444 		bnx2x_vfpf_storm_rx_mode(bp);
12445 	}
12446 }
12447 
12448 /* called with rtnl_lock */
12449 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12450 			   int devad, u16 addr)
12451 {
12452 	struct bnx2x *bp = netdev_priv(netdev);
12453 	u16 value;
12454 	int rc;
12455 
12456 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12457 	   prtad, devad, addr);
12458 
12459 	/* The HW expects different devad if CL22 is used */
12460 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12461 
12462 	bnx2x_acquire_phy_lock(bp);
12463 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12464 	bnx2x_release_phy_lock(bp);
12465 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12466 
12467 	if (!rc)
12468 		rc = value;
12469 	return rc;
12470 }
12471 
12472 /* called with rtnl_lock */
12473 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12474 			    u16 addr, u16 value)
12475 {
12476 	struct bnx2x *bp = netdev_priv(netdev);
12477 	int rc;
12478 
12479 	DP(NETIF_MSG_LINK,
12480 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12481 	   prtad, devad, addr, value);
12482 
12483 	/* The HW expects different devad if CL22 is used */
12484 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12485 
12486 	bnx2x_acquire_phy_lock(bp);
12487 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12488 	bnx2x_release_phy_lock(bp);
12489 	return rc;
12490 }
12491 
12492 /* called with rtnl_lock */
12493 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12494 {
12495 	struct bnx2x *bp = netdev_priv(dev);
12496 	struct mii_ioctl_data *mdio = if_mii(ifr);
12497 
12498 	if (!netif_running(dev))
12499 		return -EAGAIN;
12500 
12501 	switch (cmd) {
12502 	case SIOCSHWTSTAMP:
12503 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12504 	default:
12505 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12506 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12507 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12508 	}
12509 }
12510 
12511 #ifdef CONFIG_NET_POLL_CONTROLLER
12512 static void poll_bnx2x(struct net_device *dev)
12513 {
12514 	struct bnx2x *bp = netdev_priv(dev);
12515 	int i;
12516 
12517 	for_each_eth_queue(bp, i) {
12518 		struct bnx2x_fastpath *fp = &bp->fp[i];
12519 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12520 	}
12521 }
12522 #endif
12523 
12524 static int bnx2x_validate_addr(struct net_device *dev)
12525 {
12526 	struct bnx2x *bp = netdev_priv(dev);
12527 
12528 	/* query the bulletin board for mac address configured by the PF */
12529 	if (IS_VF(bp))
12530 		bnx2x_sample_bulletin(bp);
12531 
12532 	if (!is_valid_ether_addr(dev->dev_addr)) {
12533 		BNX2X_ERR("Non-valid Ethernet address\n");
12534 		return -EADDRNOTAVAIL;
12535 	}
12536 	return 0;
12537 }
12538 
12539 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12540 				  struct netdev_phys_port_id *ppid)
12541 {
12542 	struct bnx2x *bp = netdev_priv(netdev);
12543 
12544 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12545 		return -EOPNOTSUPP;
12546 
12547 	ppid->id_len = sizeof(bp->phys_port_id);
12548 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12549 
12550 	return 0;
12551 }
12552 
12553 static const struct net_device_ops bnx2x_netdev_ops = {
12554 	.ndo_open		= bnx2x_open,
12555 	.ndo_stop		= bnx2x_close,
12556 	.ndo_start_xmit		= bnx2x_start_xmit,
12557 	.ndo_select_queue	= bnx2x_select_queue,
12558 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12559 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12560 	.ndo_validate_addr	= bnx2x_validate_addr,
12561 	.ndo_do_ioctl		= bnx2x_ioctl,
12562 	.ndo_change_mtu		= bnx2x_change_mtu,
12563 	.ndo_fix_features	= bnx2x_fix_features,
12564 	.ndo_set_features	= bnx2x_set_features,
12565 	.ndo_tx_timeout		= bnx2x_tx_timeout,
12566 #ifdef CONFIG_NET_POLL_CONTROLLER
12567 	.ndo_poll_controller	= poll_bnx2x,
12568 #endif
12569 	.ndo_setup_tc		= bnx2x_setup_tc,
12570 #ifdef CONFIG_BNX2X_SRIOV
12571 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12572 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12573 	.ndo_get_vf_config	= bnx2x_get_vf_config,
12574 #endif
12575 #ifdef NETDEV_FCOE_WWNN
12576 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12577 #endif
12578 
12579 #ifdef CONFIG_NET_RX_BUSY_POLL
12580 	.ndo_busy_poll		= bnx2x_low_latency_recv,
12581 #endif
12582 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
12583 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
12584 };
12585 
12586 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12587 {
12588 	struct device *dev = &bp->pdev->dev;
12589 
12590 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12591 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12592 		dev_err(dev, "System does not support DMA, aborting\n");
12593 		return -EIO;
12594 	}
12595 
12596 	return 0;
12597 }
12598 
12599 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12600 {
12601 	if (bp->flags & AER_ENABLED) {
12602 		pci_disable_pcie_error_reporting(bp->pdev);
12603 		bp->flags &= ~AER_ENABLED;
12604 	}
12605 }
12606 
12607 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12608 			  struct net_device *dev, unsigned long board_type)
12609 {
12610 	int rc;
12611 	u32 pci_cfg_dword;
12612 	bool chip_is_e1x = (board_type == BCM57710 ||
12613 			    board_type == BCM57711 ||
12614 			    board_type == BCM57711E);
12615 
12616 	SET_NETDEV_DEV(dev, &pdev->dev);
12617 
12618 	bp->dev = dev;
12619 	bp->pdev = pdev;
12620 
12621 	rc = pci_enable_device(pdev);
12622 	if (rc) {
12623 		dev_err(&bp->pdev->dev,
12624 			"Cannot enable PCI device, aborting\n");
12625 		goto err_out;
12626 	}
12627 
12628 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12629 		dev_err(&bp->pdev->dev,
12630 			"Cannot find PCI device base address, aborting\n");
12631 		rc = -ENODEV;
12632 		goto err_out_disable;
12633 	}
12634 
12635 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12636 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12637 		rc = -ENODEV;
12638 		goto err_out_disable;
12639 	}
12640 
12641 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12642 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12643 	    PCICFG_REVESION_ID_ERROR_VAL) {
12644 		pr_err("PCI device error, probably due to fan failure, aborting\n");
12645 		rc = -ENODEV;
12646 		goto err_out_disable;
12647 	}
12648 
12649 	if (atomic_read(&pdev->enable_cnt) == 1) {
12650 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12651 		if (rc) {
12652 			dev_err(&bp->pdev->dev,
12653 				"Cannot obtain PCI resources, aborting\n");
12654 			goto err_out_disable;
12655 		}
12656 
12657 		pci_set_master(pdev);
12658 		pci_save_state(pdev);
12659 	}
12660 
12661 	if (IS_PF(bp)) {
12662 		if (!pdev->pm_cap) {
12663 			dev_err(&bp->pdev->dev,
12664 				"Cannot find power management capability, aborting\n");
12665 			rc = -EIO;
12666 			goto err_out_release;
12667 		}
12668 	}
12669 
12670 	if (!pci_is_pcie(pdev)) {
12671 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12672 		rc = -EIO;
12673 		goto err_out_release;
12674 	}
12675 
12676 	rc = bnx2x_set_coherency_mask(bp);
12677 	if (rc)
12678 		goto err_out_release;
12679 
12680 	dev->mem_start = pci_resource_start(pdev, 0);
12681 	dev->base_addr = dev->mem_start;
12682 	dev->mem_end = pci_resource_end(pdev, 0);
12683 
12684 	dev->irq = pdev->irq;
12685 
12686 	bp->regview = pci_ioremap_bar(pdev, 0);
12687 	if (!bp->regview) {
12688 		dev_err(&bp->pdev->dev,
12689 			"Cannot map register space, aborting\n");
12690 		rc = -ENOMEM;
12691 		goto err_out_release;
12692 	}
12693 
12694 	/* In E1/E1H use pci device function given by kernel.
12695 	 * In E2/E3 read physical function from ME register since these chips
12696 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12697 	 * (depending on hypervisor).
12698 	 */
12699 	if (chip_is_e1x) {
12700 		bp->pf_num = PCI_FUNC(pdev->devfn);
12701 	} else {
12702 		/* chip is E2/3*/
12703 		pci_read_config_dword(bp->pdev,
12704 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12705 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12706 				  ME_REG_ABS_PF_NUM_SHIFT);
12707 	}
12708 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12709 
12710 	/* clean indirect addresses */
12711 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12712 			       PCICFG_VENDOR_ID_OFFSET);
12713 
12714 	/* AER (Advanced Error reporting) configuration */
12715 	rc = pci_enable_pcie_error_reporting(pdev);
12716 	if (!rc)
12717 		bp->flags |= AER_ENABLED;
12718 	else
12719 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12720 
12721 	/*
12722 	 * Clean the following indirect addresses for all functions since it
12723 	 * is not used by the driver.
12724 	 */
12725 	if (IS_PF(bp)) {
12726 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12727 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12728 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12729 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12730 
12731 		if (chip_is_e1x) {
12732 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12733 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12734 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12735 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12736 		}
12737 
12738 		/* Enable internal target-read (in case we are probed after PF
12739 		 * FLR). Must be done prior to any BAR read access. Only for
12740 		 * 57712 and up
12741 		 */
12742 		if (!chip_is_e1x)
12743 			REG_WR(bp,
12744 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12745 	}
12746 
12747 	dev->watchdog_timeo = TX_TIMEOUT;
12748 
12749 	dev->netdev_ops = &bnx2x_netdev_ops;
12750 	bnx2x_set_ethtool_ops(bp, dev);
12751 
12752 	dev->priv_flags |= IFF_UNICAST_FLT;
12753 
12754 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12755 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12756 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12757 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12758 	if (!CHIP_IS_E1x(bp)) {
12759 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12760 				    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12761 		dev->hw_enc_features =
12762 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12763 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12764 			NETIF_F_GSO_IPIP |
12765 			NETIF_F_GSO_SIT |
12766 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12767 	}
12768 
12769 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12770 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12771 
12772 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12773 	dev->features |= NETIF_F_HIGHDMA;
12774 
12775 	/* Add Loopback capability to the device */
12776 	dev->hw_features |= NETIF_F_LOOPBACK;
12777 
12778 #ifdef BCM_DCBNL
12779 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12780 #endif
12781 
12782 	/* get_port_hwinfo() will set prtad and mmds properly */
12783 	bp->mdio.prtad = MDIO_PRTAD_NONE;
12784 	bp->mdio.mmds = 0;
12785 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12786 	bp->mdio.dev = dev;
12787 	bp->mdio.mdio_read = bnx2x_mdio_read;
12788 	bp->mdio.mdio_write = bnx2x_mdio_write;
12789 
12790 	return 0;
12791 
12792 err_out_release:
12793 	if (atomic_read(&pdev->enable_cnt) == 1)
12794 		pci_release_regions(pdev);
12795 
12796 err_out_disable:
12797 	pci_disable_device(pdev);
12798 
12799 err_out:
12800 	return rc;
12801 }
12802 
12803 static int bnx2x_check_firmware(struct bnx2x *bp)
12804 {
12805 	const struct firmware *firmware = bp->firmware;
12806 	struct bnx2x_fw_file_hdr *fw_hdr;
12807 	struct bnx2x_fw_file_section *sections;
12808 	u32 offset, len, num_ops;
12809 	__be16 *ops_offsets;
12810 	int i;
12811 	const u8 *fw_ver;
12812 
12813 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12814 		BNX2X_ERR("Wrong FW size\n");
12815 		return -EINVAL;
12816 	}
12817 
12818 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12819 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12820 
12821 	/* Make sure none of the offsets and sizes make us read beyond
12822 	 * the end of the firmware data */
12823 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12824 		offset = be32_to_cpu(sections[i].offset);
12825 		len = be32_to_cpu(sections[i].len);
12826 		if (offset + len > firmware->size) {
12827 			BNX2X_ERR("Section %d length is out of bounds\n", i);
12828 			return -EINVAL;
12829 		}
12830 	}
12831 
12832 	/* Likewise for the init_ops offsets */
12833 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12834 	ops_offsets = (__force __be16 *)(firmware->data + offset);
12835 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12836 
12837 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12838 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12839 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12840 			return -EINVAL;
12841 		}
12842 	}
12843 
12844 	/* Check FW version */
12845 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12846 	fw_ver = firmware->data + offset;
12847 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12848 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12849 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12850 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12851 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12852 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12853 		       BCM_5710_FW_MAJOR_VERSION,
12854 		       BCM_5710_FW_MINOR_VERSION,
12855 		       BCM_5710_FW_REVISION_VERSION,
12856 		       BCM_5710_FW_ENGINEERING_VERSION);
12857 		return -EINVAL;
12858 	}
12859 
12860 	return 0;
12861 }
12862 
12863 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12864 {
12865 	const __be32 *source = (const __be32 *)_source;
12866 	u32 *target = (u32 *)_target;
12867 	u32 i;
12868 
12869 	for (i = 0; i < n/4; i++)
12870 		target[i] = be32_to_cpu(source[i]);
12871 }
12872 
12873 /*
12874    Ops array is stored in the following format:
12875    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12876  */
12877 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12878 {
12879 	const __be32 *source = (const __be32 *)_source;
12880 	struct raw_op *target = (struct raw_op *)_target;
12881 	u32 i, j, tmp;
12882 
12883 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12884 		tmp = be32_to_cpu(source[j]);
12885 		target[i].op = (tmp >> 24) & 0xff;
12886 		target[i].offset = tmp & 0xffffff;
12887 		target[i].raw_data = be32_to_cpu(source[j + 1]);
12888 	}
12889 }
12890 
12891 /* IRO array is stored in the following format:
12892  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12893  */
12894 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12895 {
12896 	const __be32 *source = (const __be32 *)_source;
12897 	struct iro *target = (struct iro *)_target;
12898 	u32 i, j, tmp;
12899 
12900 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12901 		target[i].base = be32_to_cpu(source[j]);
12902 		j++;
12903 		tmp = be32_to_cpu(source[j]);
12904 		target[i].m1 = (tmp >> 16) & 0xffff;
12905 		target[i].m2 = tmp & 0xffff;
12906 		j++;
12907 		tmp = be32_to_cpu(source[j]);
12908 		target[i].m3 = (tmp >> 16) & 0xffff;
12909 		target[i].size = tmp & 0xffff;
12910 		j++;
12911 	}
12912 }
12913 
12914 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12915 {
12916 	const __be16 *source = (const __be16 *)_source;
12917 	u16 *target = (u16 *)_target;
12918 	u32 i;
12919 
12920 	for (i = 0; i < n/2; i++)
12921 		target[i] = be16_to_cpu(source[i]);
12922 }
12923 
12924 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12925 do {									\
12926 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12927 	bp->arr = kmalloc(len, GFP_KERNEL);				\
12928 	if (!bp->arr)							\
12929 		goto lbl;						\
12930 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12931 	     (u8 *)bp->arr, len);					\
12932 } while (0)
12933 
12934 static int bnx2x_init_firmware(struct bnx2x *bp)
12935 {
12936 	const char *fw_file_name;
12937 	struct bnx2x_fw_file_hdr *fw_hdr;
12938 	int rc;
12939 
12940 	if (bp->firmware)
12941 		return 0;
12942 
12943 	if (CHIP_IS_E1(bp))
12944 		fw_file_name = FW_FILE_NAME_E1;
12945 	else if (CHIP_IS_E1H(bp))
12946 		fw_file_name = FW_FILE_NAME_E1H;
12947 	else if (!CHIP_IS_E1x(bp))
12948 		fw_file_name = FW_FILE_NAME_E2;
12949 	else {
12950 		BNX2X_ERR("Unsupported chip revision\n");
12951 		return -EINVAL;
12952 	}
12953 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12954 
12955 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12956 	if (rc) {
12957 		BNX2X_ERR("Can't load firmware file %s\n",
12958 			  fw_file_name);
12959 		goto request_firmware_exit;
12960 	}
12961 
12962 	rc = bnx2x_check_firmware(bp);
12963 	if (rc) {
12964 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12965 		goto request_firmware_exit;
12966 	}
12967 
12968 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12969 
12970 	/* Initialize the pointers to the init arrays */
12971 	/* Blob */
12972 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12973 
12974 	/* Opcodes */
12975 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12976 
12977 	/* Offsets */
12978 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12979 			    be16_to_cpu_n);
12980 
12981 	/* STORMs firmware */
12982 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12983 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12984 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12985 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12986 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12987 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12988 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12989 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12990 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12991 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12992 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12993 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12994 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12995 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12996 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12997 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12998 	/* IRO */
12999 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13000 
13001 	return 0;
13002 
13003 iro_alloc_err:
13004 	kfree(bp->init_ops_offsets);
13005 init_offsets_alloc_err:
13006 	kfree(bp->init_ops);
13007 init_ops_alloc_err:
13008 	kfree(bp->init_data);
13009 request_firmware_exit:
13010 	release_firmware(bp->firmware);
13011 	bp->firmware = NULL;
13012 
13013 	return rc;
13014 }
13015 
13016 static void bnx2x_release_firmware(struct bnx2x *bp)
13017 {
13018 	kfree(bp->init_ops_offsets);
13019 	kfree(bp->init_ops);
13020 	kfree(bp->init_data);
13021 	release_firmware(bp->firmware);
13022 	bp->firmware = NULL;
13023 }
13024 
13025 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13026 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13027 	.init_hw_cmn      = bnx2x_init_hw_common,
13028 	.init_hw_port     = bnx2x_init_hw_port,
13029 	.init_hw_func     = bnx2x_init_hw_func,
13030 
13031 	.reset_hw_cmn     = bnx2x_reset_common,
13032 	.reset_hw_port    = bnx2x_reset_port,
13033 	.reset_hw_func    = bnx2x_reset_func,
13034 
13035 	.gunzip_init      = bnx2x_gunzip_init,
13036 	.gunzip_end       = bnx2x_gunzip_end,
13037 
13038 	.init_fw          = bnx2x_init_firmware,
13039 	.release_fw       = bnx2x_release_firmware,
13040 };
13041 
13042 void bnx2x__init_func_obj(struct bnx2x *bp)
13043 {
13044 	/* Prepare DMAE related driver resources */
13045 	bnx2x_setup_dmae(bp);
13046 
13047 	bnx2x_init_func_obj(bp, &bp->func_obj,
13048 			    bnx2x_sp(bp, func_rdata),
13049 			    bnx2x_sp_mapping(bp, func_rdata),
13050 			    bnx2x_sp(bp, func_afex_rdata),
13051 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13052 			    &bnx2x_func_sp_drv);
13053 }
13054 
13055 /* must be called after sriov-enable */
13056 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13057 {
13058 	int cid_count = BNX2X_L2_MAX_CID(bp);
13059 
13060 	if (IS_SRIOV(bp))
13061 		cid_count += BNX2X_VF_CIDS;
13062 
13063 	if (CNIC_SUPPORT(bp))
13064 		cid_count += CNIC_CID_MAX;
13065 
13066 	return roundup(cid_count, QM_CID_ROUND);
13067 }
13068 
13069 /**
13070  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13071  *
13072  * @dev:	pci device
13073  *
13074  */
13075 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13076 {
13077 	int index;
13078 	u16 control = 0;
13079 
13080 	/*
13081 	 * If MSI-X is not supported - return number of SBs needed to support
13082 	 * one fast path queue: one FP queue + SB for CNIC
13083 	 */
13084 	if (!pdev->msix_cap) {
13085 		dev_info(&pdev->dev, "no msix capability found\n");
13086 		return 1 + cnic_cnt;
13087 	}
13088 	dev_info(&pdev->dev, "msix capability found\n");
13089 
13090 	/*
13091 	 * The value in the PCI configuration space is the index of the last
13092 	 * entry, namely one less than the actual size of the table, which is
13093 	 * exactly what we want to return from this function: number of all SBs
13094 	 * without the default SB.
13095 	 * For VFs there is no default SB, then we return (index+1).
13096 	 */
13097 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13098 
13099 	index = control & PCI_MSIX_FLAGS_QSIZE;
13100 
13101 	return index;
13102 }
13103 
13104 static int set_max_cos_est(int chip_id)
13105 {
13106 	switch (chip_id) {
13107 	case BCM57710:
13108 	case BCM57711:
13109 	case BCM57711E:
13110 		return BNX2X_MULTI_TX_COS_E1X;
13111 	case BCM57712:
13112 	case BCM57712_MF:
13113 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13114 	case BCM57800:
13115 	case BCM57800_MF:
13116 	case BCM57810:
13117 	case BCM57810_MF:
13118 	case BCM57840_4_10:
13119 	case BCM57840_2_20:
13120 	case BCM57840_O:
13121 	case BCM57840_MFO:
13122 	case BCM57840_MF:
13123 	case BCM57811:
13124 	case BCM57811_MF:
13125 		return BNX2X_MULTI_TX_COS_E3B0;
13126 	case BCM57712_VF:
13127 	case BCM57800_VF:
13128 	case BCM57810_VF:
13129 	case BCM57840_VF:
13130 	case BCM57811_VF:
13131 		return 1;
13132 	default:
13133 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13134 		return -ENODEV;
13135 	}
13136 }
13137 
13138 static int set_is_vf(int chip_id)
13139 {
13140 	switch (chip_id) {
13141 	case BCM57712_VF:
13142 	case BCM57800_VF:
13143 	case BCM57810_VF:
13144 	case BCM57840_VF:
13145 	case BCM57811_VF:
13146 		return true;
13147 	default:
13148 		return false;
13149 	}
13150 }
13151 
13152 /* nig_tsgen registers relative address */
13153 #define tsgen_ctrl 0x0
13154 #define tsgen_freecount 0x10
13155 #define tsgen_synctime_t0 0x20
13156 #define tsgen_offset_t0 0x28
13157 #define tsgen_drift_t0 0x30
13158 #define tsgen_synctime_t1 0x58
13159 #define tsgen_offset_t1 0x60
13160 #define tsgen_drift_t1 0x68
13161 
13162 /* FW workaround for setting drift */
13163 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13164 					  int best_val, int best_period)
13165 {
13166 	struct bnx2x_func_state_params func_params = {NULL};
13167 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13168 		&func_params.params.set_timesync;
13169 
13170 	/* Prepare parameters for function state transitions */
13171 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13172 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13173 
13174 	func_params.f_obj = &bp->func_obj;
13175 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13176 
13177 	/* Function parameters */
13178 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13179 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13180 	set_timesync_params->add_sub_drift_adjust_value =
13181 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13182 	set_timesync_params->drift_adjust_value = best_val;
13183 	set_timesync_params->drift_adjust_period = best_period;
13184 
13185 	return bnx2x_func_state_change(bp, &func_params);
13186 }
13187 
13188 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13189 {
13190 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13191 	int rc;
13192 	int drift_dir = 1;
13193 	int val, period, period1, period2, dif, dif1, dif2;
13194 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13195 
13196 	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13197 
13198 	if (!netif_running(bp->dev)) {
13199 		DP(BNX2X_MSG_PTP,
13200 		   "PTP adjfreq called while the interface is down\n");
13201 		return -EFAULT;
13202 	}
13203 
13204 	if (ppb < 0) {
13205 		ppb = -ppb;
13206 		drift_dir = 0;
13207 	}
13208 
13209 	if (ppb == 0) {
13210 		best_val = 1;
13211 		best_period = 0x1FFFFFF;
13212 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13213 		best_val = 31;
13214 		best_period = 1;
13215 	} else {
13216 		/* Changed not to allow val = 8, 16, 24 as these values
13217 		 * are not supported in workaround.
13218 		 */
13219 		for (val = 0; val <= 31; val++) {
13220 			if ((val & 0x7) == 0)
13221 				continue;
13222 			period1 = val * 1000000 / ppb;
13223 			period2 = period1 + 1;
13224 			if (period1 != 0)
13225 				dif1 = ppb - (val * 1000000 / period1);
13226 			else
13227 				dif1 = BNX2X_MAX_PHC_DRIFT;
13228 			if (dif1 < 0)
13229 				dif1 = -dif1;
13230 			dif2 = ppb - (val * 1000000 / period2);
13231 			if (dif2 < 0)
13232 				dif2 = -dif2;
13233 			dif = (dif1 < dif2) ? dif1 : dif2;
13234 			period = (dif1 < dif2) ? period1 : period2;
13235 			if (dif < best_dif) {
13236 				best_dif = dif;
13237 				best_val = val;
13238 				best_period = period;
13239 			}
13240 		}
13241 	}
13242 
13243 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13244 					    best_period);
13245 	if (rc) {
13246 		BNX2X_ERR("Failed to set drift\n");
13247 		return -EFAULT;
13248 	}
13249 
13250 	DP(BNX2X_MSG_PTP, "Configrued val = %d, period = %d\n", best_val,
13251 	   best_period);
13252 
13253 	return 0;
13254 }
13255 
13256 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13257 {
13258 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13259 	u64 now;
13260 
13261 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13262 
13263 	now = timecounter_read(&bp->timecounter);
13264 	now += delta;
13265 	/* Re-init the timecounter */
13266 	timecounter_init(&bp->timecounter, &bp->cyclecounter, now);
13267 
13268 	return 0;
13269 }
13270 
13271 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
13272 {
13273 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13274 	u64 ns;
13275 	u32 remainder;
13276 
13277 	ns = timecounter_read(&bp->timecounter);
13278 
13279 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13280 
13281 	ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
13282 	ts->tv_nsec = remainder;
13283 
13284 	return 0;
13285 }
13286 
13287 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13288 			     const struct timespec *ts)
13289 {
13290 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13291 	u64 ns;
13292 
13293 	ns = ts->tv_sec * 1000000000ULL;
13294 	ns += ts->tv_nsec;
13295 
13296 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13297 
13298 	/* Re-init the timecounter */
13299 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13300 
13301 	return 0;
13302 }
13303 
13304 /* Enable (or disable) ancillary features of the phc subsystem */
13305 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13306 			    struct ptp_clock_request *rq, int on)
13307 {
13308 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13309 
13310 	BNX2X_ERR("PHC ancillary features are not supported\n");
13311 	return -ENOTSUPP;
13312 }
13313 
13314 void bnx2x_register_phc(struct bnx2x *bp)
13315 {
13316 	/* Fill the ptp_clock_info struct and register PTP clock*/
13317 	bp->ptp_clock_info.owner = THIS_MODULE;
13318 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13319 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13320 	bp->ptp_clock_info.n_alarm = 0;
13321 	bp->ptp_clock_info.n_ext_ts = 0;
13322 	bp->ptp_clock_info.n_per_out = 0;
13323 	bp->ptp_clock_info.pps = 0;
13324 	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13325 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13326 	bp->ptp_clock_info.gettime = bnx2x_ptp_gettime;
13327 	bp->ptp_clock_info.settime = bnx2x_ptp_settime;
13328 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13329 
13330 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13331 	if (IS_ERR(bp->ptp_clock)) {
13332 		bp->ptp_clock = NULL;
13333 		BNX2X_ERR("PTP clock registeration failed\n");
13334 	}
13335 }
13336 
13337 static int bnx2x_init_one(struct pci_dev *pdev,
13338 				    const struct pci_device_id *ent)
13339 {
13340 	struct net_device *dev = NULL;
13341 	struct bnx2x *bp;
13342 	enum pcie_link_width pcie_width;
13343 	enum pci_bus_speed pcie_speed;
13344 	int rc, max_non_def_sbs;
13345 	int rx_count, tx_count, rss_count, doorbell_size;
13346 	int max_cos_est;
13347 	bool is_vf;
13348 	int cnic_cnt;
13349 
13350 	/* An estimated maximum supported CoS number according to the chip
13351 	 * version.
13352 	 * We will try to roughly estimate the maximum number of CoSes this chip
13353 	 * may support in order to minimize the memory allocated for Tx
13354 	 * netdev_queue's. This number will be accurately calculated during the
13355 	 * initialization of bp->max_cos based on the chip versions AND chip
13356 	 * revision in the bnx2x_init_bp().
13357 	 */
13358 	max_cos_est = set_max_cos_est(ent->driver_data);
13359 	if (max_cos_est < 0)
13360 		return max_cos_est;
13361 	is_vf = set_is_vf(ent->driver_data);
13362 	cnic_cnt = is_vf ? 0 : 1;
13363 
13364 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13365 
13366 	/* add another SB for VF as it has no default SB */
13367 	max_non_def_sbs += is_vf ? 1 : 0;
13368 
13369 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13370 	rss_count = max_non_def_sbs - cnic_cnt;
13371 
13372 	if (rss_count < 1)
13373 		return -EINVAL;
13374 
13375 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13376 	rx_count = rss_count + cnic_cnt;
13377 
13378 	/* Maximum number of netdev Tx queues:
13379 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13380 	 */
13381 	tx_count = rss_count * max_cos_est + cnic_cnt;
13382 
13383 	/* dev zeroed in init_etherdev */
13384 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13385 	if (!dev)
13386 		return -ENOMEM;
13387 
13388 	bp = netdev_priv(dev);
13389 
13390 	bp->flags = 0;
13391 	if (is_vf)
13392 		bp->flags |= IS_VF_FLAG;
13393 
13394 	bp->igu_sb_cnt = max_non_def_sbs;
13395 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13396 	bp->msg_enable = debug;
13397 	bp->cnic_support = cnic_cnt;
13398 	bp->cnic_probe = bnx2x_cnic_probe;
13399 
13400 	pci_set_drvdata(pdev, dev);
13401 
13402 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13403 	if (rc < 0) {
13404 		free_netdev(dev);
13405 		return rc;
13406 	}
13407 
13408 	BNX2X_DEV_INFO("This is a %s function\n",
13409 		       IS_PF(bp) ? "physical" : "virtual");
13410 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13411 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13412 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13413 		       tx_count, rx_count);
13414 
13415 	rc = bnx2x_init_bp(bp);
13416 	if (rc)
13417 		goto init_one_exit;
13418 
13419 	/* Map doorbells here as we need the real value of bp->max_cos which
13420 	 * is initialized in bnx2x_init_bp() to determine the number of
13421 	 * l2 connections.
13422 	 */
13423 	if (IS_VF(bp)) {
13424 		bp->doorbells = bnx2x_vf_doorbells(bp);
13425 		rc = bnx2x_vf_pci_alloc(bp);
13426 		if (rc)
13427 			goto init_one_exit;
13428 	} else {
13429 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13430 		if (doorbell_size > pci_resource_len(pdev, 2)) {
13431 			dev_err(&bp->pdev->dev,
13432 				"Cannot map doorbells, bar size too small, aborting\n");
13433 			rc = -ENOMEM;
13434 			goto init_one_exit;
13435 		}
13436 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13437 						doorbell_size);
13438 	}
13439 	if (!bp->doorbells) {
13440 		dev_err(&bp->pdev->dev,
13441 			"Cannot map doorbell space, aborting\n");
13442 		rc = -ENOMEM;
13443 		goto init_one_exit;
13444 	}
13445 
13446 	if (IS_VF(bp)) {
13447 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13448 		if (rc)
13449 			goto init_one_exit;
13450 	}
13451 
13452 	/* Enable SRIOV if capability found in configuration space */
13453 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13454 	if (rc)
13455 		goto init_one_exit;
13456 
13457 	/* calc qm_cid_count */
13458 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13459 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13460 
13461 	/* disable FCOE L2 queue for E1x*/
13462 	if (CHIP_IS_E1x(bp))
13463 		bp->flags |= NO_FCOE_FLAG;
13464 
13465 	/* Set bp->num_queues for MSI-X mode*/
13466 	bnx2x_set_num_queues(bp);
13467 
13468 	/* Configure interrupt mode: try to enable MSI-X/MSI if
13469 	 * needed.
13470 	 */
13471 	rc = bnx2x_set_int_mode(bp);
13472 	if (rc) {
13473 		dev_err(&pdev->dev, "Cannot set interrupts\n");
13474 		goto init_one_exit;
13475 	}
13476 	BNX2X_DEV_INFO("set interrupts successfully\n");
13477 
13478 	/* register the net device */
13479 	rc = register_netdev(dev);
13480 	if (rc) {
13481 		dev_err(&pdev->dev, "Cannot register net device\n");
13482 		goto init_one_exit;
13483 	}
13484 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13485 
13486 	if (!NO_FCOE(bp)) {
13487 		/* Add storage MAC address */
13488 		rtnl_lock();
13489 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13490 		rtnl_unlock();
13491 	}
13492 	if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13493 	    pcie_speed == PCI_SPEED_UNKNOWN ||
13494 	    pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13495 		BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13496 	else
13497 		BNX2X_DEV_INFO(
13498 		       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13499 		       board_info[ent->driver_data].name,
13500 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13501 		       pcie_width,
13502 		       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13503 		       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13504 		       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13505 		       "Unknown",
13506 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13507 
13508 	bnx2x_register_phc(bp);
13509 
13510 	return 0;
13511 
13512 init_one_exit:
13513 	bnx2x_disable_pcie_error_reporting(bp);
13514 
13515 	if (bp->regview)
13516 		iounmap(bp->regview);
13517 
13518 	if (IS_PF(bp) && bp->doorbells)
13519 		iounmap(bp->doorbells);
13520 
13521 	free_netdev(dev);
13522 
13523 	if (atomic_read(&pdev->enable_cnt) == 1)
13524 		pci_release_regions(pdev);
13525 
13526 	pci_disable_device(pdev);
13527 
13528 	return rc;
13529 }
13530 
13531 static void __bnx2x_remove(struct pci_dev *pdev,
13532 			   struct net_device *dev,
13533 			   struct bnx2x *bp,
13534 			   bool remove_netdev)
13535 {
13536 	if (bp->ptp_clock) {
13537 		ptp_clock_unregister(bp->ptp_clock);
13538 		bp->ptp_clock = NULL;
13539 	}
13540 
13541 	/* Delete storage MAC address */
13542 	if (!NO_FCOE(bp)) {
13543 		rtnl_lock();
13544 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13545 		rtnl_unlock();
13546 	}
13547 
13548 #ifdef BCM_DCBNL
13549 	/* Delete app tlvs from dcbnl */
13550 	bnx2x_dcbnl_update_applist(bp, true);
13551 #endif
13552 
13553 	if (IS_PF(bp) &&
13554 	    !BP_NOMCP(bp) &&
13555 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13556 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13557 
13558 	/* Close the interface - either directly or implicitly */
13559 	if (remove_netdev) {
13560 		unregister_netdev(dev);
13561 	} else {
13562 		rtnl_lock();
13563 		dev_close(dev);
13564 		rtnl_unlock();
13565 	}
13566 
13567 	bnx2x_iov_remove_one(bp);
13568 
13569 	/* Power on: we can't let PCI layer write to us while we are in D3 */
13570 	if (IS_PF(bp)) {
13571 		bnx2x_set_power_state(bp, PCI_D0);
13572 
13573 		/* Set endianity registers to reset values in case next driver
13574 		 * boots in different endianty environment.
13575 		 */
13576 		bnx2x_reset_endianity(bp);
13577 	}
13578 
13579 	/* Disable MSI/MSI-X */
13580 	bnx2x_disable_msi(bp);
13581 
13582 	/* Power off */
13583 	if (IS_PF(bp))
13584 		bnx2x_set_power_state(bp, PCI_D3hot);
13585 
13586 	/* Make sure RESET task is not scheduled before continuing */
13587 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
13588 
13589 	/* send message via vfpf channel to release the resources of this vf */
13590 	if (IS_VF(bp))
13591 		bnx2x_vfpf_release(bp);
13592 
13593 	/* Assumes no further PCIe PM changes will occur */
13594 	if (system_state == SYSTEM_POWER_OFF) {
13595 		pci_wake_from_d3(pdev, bp->wol);
13596 		pci_set_power_state(pdev, PCI_D3hot);
13597 	}
13598 
13599 	bnx2x_disable_pcie_error_reporting(bp);
13600 	if (remove_netdev) {
13601 		if (bp->regview)
13602 			iounmap(bp->regview);
13603 
13604 		/* For vfs, doorbells are part of the regview and were unmapped
13605 		 * along with it. FW is only loaded by PF.
13606 		 */
13607 		if (IS_PF(bp)) {
13608 			if (bp->doorbells)
13609 				iounmap(bp->doorbells);
13610 
13611 			bnx2x_release_firmware(bp);
13612 		} else {
13613 			bnx2x_vf_pci_dealloc(bp);
13614 		}
13615 		bnx2x_free_mem_bp(bp);
13616 
13617 		free_netdev(dev);
13618 
13619 		if (atomic_read(&pdev->enable_cnt) == 1)
13620 			pci_release_regions(pdev);
13621 
13622 		pci_disable_device(pdev);
13623 	}
13624 }
13625 
13626 static void bnx2x_remove_one(struct pci_dev *pdev)
13627 {
13628 	struct net_device *dev = pci_get_drvdata(pdev);
13629 	struct bnx2x *bp;
13630 
13631 	if (!dev) {
13632 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13633 		return;
13634 	}
13635 	bp = netdev_priv(dev);
13636 
13637 	__bnx2x_remove(pdev, dev, bp, true);
13638 }
13639 
13640 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13641 {
13642 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13643 
13644 	bp->rx_mode = BNX2X_RX_MODE_NONE;
13645 
13646 	if (CNIC_LOADED(bp))
13647 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13648 
13649 	/* Stop Tx */
13650 	bnx2x_tx_disable(bp);
13651 	/* Delete all NAPI objects */
13652 	bnx2x_del_all_napi(bp);
13653 	if (CNIC_LOADED(bp))
13654 		bnx2x_del_all_napi_cnic(bp);
13655 	netdev_reset_tc(bp->dev);
13656 
13657 	del_timer_sync(&bp->timer);
13658 	cancel_delayed_work_sync(&bp->sp_task);
13659 	cancel_delayed_work_sync(&bp->period_task);
13660 
13661 	spin_lock_bh(&bp->stats_lock);
13662 	bp->stats_state = STATS_STATE_DISABLED;
13663 	spin_unlock_bh(&bp->stats_lock);
13664 
13665 	bnx2x_save_statistics(bp);
13666 
13667 	netif_carrier_off(bp->dev);
13668 
13669 	return 0;
13670 }
13671 
13672 /**
13673  * bnx2x_io_error_detected - called when PCI error is detected
13674  * @pdev: Pointer to PCI device
13675  * @state: The current pci connection state
13676  *
13677  * This function is called after a PCI bus error affecting
13678  * this device has been detected.
13679  */
13680 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13681 						pci_channel_state_t state)
13682 {
13683 	struct net_device *dev = pci_get_drvdata(pdev);
13684 	struct bnx2x *bp = netdev_priv(dev);
13685 
13686 	rtnl_lock();
13687 
13688 	BNX2X_ERR("IO error detected\n");
13689 
13690 	netif_device_detach(dev);
13691 
13692 	if (state == pci_channel_io_perm_failure) {
13693 		rtnl_unlock();
13694 		return PCI_ERS_RESULT_DISCONNECT;
13695 	}
13696 
13697 	if (netif_running(dev))
13698 		bnx2x_eeh_nic_unload(bp);
13699 
13700 	bnx2x_prev_path_mark_eeh(bp);
13701 
13702 	pci_disable_device(pdev);
13703 
13704 	rtnl_unlock();
13705 
13706 	/* Request a slot reset */
13707 	return PCI_ERS_RESULT_NEED_RESET;
13708 }
13709 
13710 /**
13711  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13712  * @pdev: Pointer to PCI device
13713  *
13714  * Restart the card from scratch, as if from a cold-boot.
13715  */
13716 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13717 {
13718 	struct net_device *dev = pci_get_drvdata(pdev);
13719 	struct bnx2x *bp = netdev_priv(dev);
13720 	int i;
13721 
13722 	rtnl_lock();
13723 	BNX2X_ERR("IO slot reset initializing...\n");
13724 	if (pci_enable_device(pdev)) {
13725 		dev_err(&pdev->dev,
13726 			"Cannot re-enable PCI device after reset\n");
13727 		rtnl_unlock();
13728 		return PCI_ERS_RESULT_DISCONNECT;
13729 	}
13730 
13731 	pci_set_master(pdev);
13732 	pci_restore_state(pdev);
13733 	pci_save_state(pdev);
13734 
13735 	if (netif_running(dev))
13736 		bnx2x_set_power_state(bp, PCI_D0);
13737 
13738 	if (netif_running(dev)) {
13739 		BNX2X_ERR("IO slot reset --> driver unload\n");
13740 
13741 		/* MCP should have been reset; Need to wait for validity */
13742 		bnx2x_init_shmem(bp);
13743 
13744 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13745 			u32 v;
13746 
13747 			v = SHMEM2_RD(bp,
13748 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13749 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13750 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13751 		}
13752 		bnx2x_drain_tx_queues(bp);
13753 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13754 		bnx2x_netif_stop(bp, 1);
13755 		bnx2x_free_irq(bp);
13756 
13757 		/* Report UNLOAD_DONE to MCP */
13758 		bnx2x_send_unload_done(bp, true);
13759 
13760 		bp->sp_state = 0;
13761 		bp->port.pmf = 0;
13762 
13763 		bnx2x_prev_unload(bp);
13764 
13765 		/* We should have reseted the engine, so It's fair to
13766 		 * assume the FW will no longer write to the bnx2x driver.
13767 		 */
13768 		bnx2x_squeeze_objects(bp);
13769 		bnx2x_free_skbs(bp);
13770 		for_each_rx_queue(bp, i)
13771 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13772 		bnx2x_free_fp_mem(bp);
13773 		bnx2x_free_mem(bp);
13774 
13775 		bp->state = BNX2X_STATE_CLOSED;
13776 	}
13777 
13778 	rtnl_unlock();
13779 
13780 	/* If AER, perform cleanup of the PCIe registers */
13781 	if (bp->flags & AER_ENABLED) {
13782 		if (pci_cleanup_aer_uncorrect_error_status(pdev))
13783 			BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13784 		else
13785 			DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13786 	}
13787 
13788 	return PCI_ERS_RESULT_RECOVERED;
13789 }
13790 
13791 /**
13792  * bnx2x_io_resume - called when traffic can start flowing again
13793  * @pdev: Pointer to PCI device
13794  *
13795  * This callback is called when the error recovery driver tells us that
13796  * its OK to resume normal operation.
13797  */
13798 static void bnx2x_io_resume(struct pci_dev *pdev)
13799 {
13800 	struct net_device *dev = pci_get_drvdata(pdev);
13801 	struct bnx2x *bp = netdev_priv(dev);
13802 
13803 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13804 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13805 		return;
13806 	}
13807 
13808 	rtnl_lock();
13809 
13810 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13811 							DRV_MSG_SEQ_NUMBER_MASK;
13812 
13813 	if (netif_running(dev))
13814 		bnx2x_nic_load(bp, LOAD_NORMAL);
13815 
13816 	netif_device_attach(dev);
13817 
13818 	rtnl_unlock();
13819 }
13820 
13821 static const struct pci_error_handlers bnx2x_err_handler = {
13822 	.error_detected = bnx2x_io_error_detected,
13823 	.slot_reset     = bnx2x_io_slot_reset,
13824 	.resume         = bnx2x_io_resume,
13825 };
13826 
13827 static void bnx2x_shutdown(struct pci_dev *pdev)
13828 {
13829 	struct net_device *dev = pci_get_drvdata(pdev);
13830 	struct bnx2x *bp;
13831 
13832 	if (!dev)
13833 		return;
13834 
13835 	bp = netdev_priv(dev);
13836 	if (!bp)
13837 		return;
13838 
13839 	rtnl_lock();
13840 	netif_device_detach(dev);
13841 	rtnl_unlock();
13842 
13843 	/* Don't remove the netdevice, as there are scenarios which will cause
13844 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13845 	 * rootfs is mounted from SAN.
13846 	 */
13847 	__bnx2x_remove(pdev, dev, bp, false);
13848 }
13849 
13850 static struct pci_driver bnx2x_pci_driver = {
13851 	.name        = DRV_MODULE_NAME,
13852 	.id_table    = bnx2x_pci_tbl,
13853 	.probe       = bnx2x_init_one,
13854 	.remove      = bnx2x_remove_one,
13855 	.suspend     = bnx2x_suspend,
13856 	.resume      = bnx2x_resume,
13857 	.err_handler = &bnx2x_err_handler,
13858 #ifdef CONFIG_BNX2X_SRIOV
13859 	.sriov_configure = bnx2x_sriov_configure,
13860 #endif
13861 	.shutdown    = bnx2x_shutdown,
13862 };
13863 
13864 static int __init bnx2x_init(void)
13865 {
13866 	int ret;
13867 
13868 	pr_info("%s", version);
13869 
13870 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13871 	if (bnx2x_wq == NULL) {
13872 		pr_err("Cannot create workqueue\n");
13873 		return -ENOMEM;
13874 	}
13875 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13876 	if (!bnx2x_iov_wq) {
13877 		pr_err("Cannot create iov workqueue\n");
13878 		destroy_workqueue(bnx2x_wq);
13879 		return -ENOMEM;
13880 	}
13881 
13882 	ret = pci_register_driver(&bnx2x_pci_driver);
13883 	if (ret) {
13884 		pr_err("Cannot register driver\n");
13885 		destroy_workqueue(bnx2x_wq);
13886 		destroy_workqueue(bnx2x_iov_wq);
13887 	}
13888 	return ret;
13889 }
13890 
13891 static void __exit bnx2x_cleanup(void)
13892 {
13893 	struct list_head *pos, *q;
13894 
13895 	pci_unregister_driver(&bnx2x_pci_driver);
13896 
13897 	destroy_workqueue(bnx2x_wq);
13898 	destroy_workqueue(bnx2x_iov_wq);
13899 
13900 	/* Free globally allocated resources */
13901 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13902 		struct bnx2x_prev_path_list *tmp =
13903 			list_entry(pos, struct bnx2x_prev_path_list, list);
13904 		list_del(pos);
13905 		kfree(tmp);
13906 	}
13907 }
13908 
13909 void bnx2x_notify_link_changed(struct bnx2x *bp)
13910 {
13911 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13912 }
13913 
13914 module_init(bnx2x_init);
13915 module_exit(bnx2x_cleanup);
13916 
13917 /**
13918  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13919  *
13920  * @bp:		driver handle
13921  * @set:	set or clear the CAM entry
13922  *
13923  * This function will wait until the ramrod completion returns.
13924  * Return 0 if success, -ENODEV if ramrod doesn't return.
13925  */
13926 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13927 {
13928 	unsigned long ramrod_flags = 0;
13929 
13930 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13931 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13932 				 &bp->iscsi_l2_mac_obj, true,
13933 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13934 }
13935 
13936 /* count denotes the number of new completions we have seen */
13937 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13938 {
13939 	struct eth_spe *spe;
13940 	int cxt_index, cxt_offset;
13941 
13942 #ifdef BNX2X_STOP_ON_ERROR
13943 	if (unlikely(bp->panic))
13944 		return;
13945 #endif
13946 
13947 	spin_lock_bh(&bp->spq_lock);
13948 	BUG_ON(bp->cnic_spq_pending < count);
13949 	bp->cnic_spq_pending -= count;
13950 
13951 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13952 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13953 				& SPE_HDR_CONN_TYPE) >>
13954 				SPE_HDR_CONN_TYPE_SHIFT;
13955 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13956 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13957 
13958 		/* Set validation for iSCSI L2 client before sending SETUP
13959 		 *  ramrod
13960 		 */
13961 		if (type == ETH_CONNECTION_TYPE) {
13962 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13963 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13964 					ILT_PAGE_CIDS;
13965 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13966 					(cxt_index * ILT_PAGE_CIDS);
13967 				bnx2x_set_ctx_validation(bp,
13968 					&bp->context[cxt_index].
13969 							 vcxt[cxt_offset].eth,
13970 					BNX2X_ISCSI_ETH_CID(bp));
13971 			}
13972 		}
13973 
13974 		/*
13975 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13976 		 * and in the air. We also check that number of outstanding
13977 		 * COMMON ramrods is not more than the EQ and SPQ can
13978 		 * accommodate.
13979 		 */
13980 		if (type == ETH_CONNECTION_TYPE) {
13981 			if (!atomic_read(&bp->cq_spq_left))
13982 				break;
13983 			else
13984 				atomic_dec(&bp->cq_spq_left);
13985 		} else if (type == NONE_CONNECTION_TYPE) {
13986 			if (!atomic_read(&bp->eq_spq_left))
13987 				break;
13988 			else
13989 				atomic_dec(&bp->eq_spq_left);
13990 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13991 			   (type == FCOE_CONNECTION_TYPE)) {
13992 			if (bp->cnic_spq_pending >=
13993 			    bp->cnic_eth_dev.max_kwqe_pending)
13994 				break;
13995 			else
13996 				bp->cnic_spq_pending++;
13997 		} else {
13998 			BNX2X_ERR("Unknown SPE type: %d\n", type);
13999 			bnx2x_panic();
14000 			break;
14001 		}
14002 
14003 		spe = bnx2x_sp_get_next(bp);
14004 		*spe = *bp->cnic_kwq_cons;
14005 
14006 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14007 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14008 
14009 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14010 			bp->cnic_kwq_cons = bp->cnic_kwq;
14011 		else
14012 			bp->cnic_kwq_cons++;
14013 	}
14014 	bnx2x_sp_prod_update(bp);
14015 	spin_unlock_bh(&bp->spq_lock);
14016 }
14017 
14018 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14019 			       struct kwqe_16 *kwqes[], u32 count)
14020 {
14021 	struct bnx2x *bp = netdev_priv(dev);
14022 	int i;
14023 
14024 #ifdef BNX2X_STOP_ON_ERROR
14025 	if (unlikely(bp->panic)) {
14026 		BNX2X_ERR("Can't post to SP queue while panic\n");
14027 		return -EIO;
14028 	}
14029 #endif
14030 
14031 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14032 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14033 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14034 		return -EAGAIN;
14035 	}
14036 
14037 	spin_lock_bh(&bp->spq_lock);
14038 
14039 	for (i = 0; i < count; i++) {
14040 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14041 
14042 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14043 			break;
14044 
14045 		*bp->cnic_kwq_prod = *spe;
14046 
14047 		bp->cnic_kwq_pending++;
14048 
14049 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14050 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14051 		   spe->data.update_data_addr.hi,
14052 		   spe->data.update_data_addr.lo,
14053 		   bp->cnic_kwq_pending);
14054 
14055 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14056 			bp->cnic_kwq_prod = bp->cnic_kwq;
14057 		else
14058 			bp->cnic_kwq_prod++;
14059 	}
14060 
14061 	spin_unlock_bh(&bp->spq_lock);
14062 
14063 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14064 		bnx2x_cnic_sp_post(bp, 0);
14065 
14066 	return i;
14067 }
14068 
14069 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14070 {
14071 	struct cnic_ops *c_ops;
14072 	int rc = 0;
14073 
14074 	mutex_lock(&bp->cnic_mutex);
14075 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14076 					  lockdep_is_held(&bp->cnic_mutex));
14077 	if (c_ops)
14078 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14079 	mutex_unlock(&bp->cnic_mutex);
14080 
14081 	return rc;
14082 }
14083 
14084 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14085 {
14086 	struct cnic_ops *c_ops;
14087 	int rc = 0;
14088 
14089 	rcu_read_lock();
14090 	c_ops = rcu_dereference(bp->cnic_ops);
14091 	if (c_ops)
14092 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14093 	rcu_read_unlock();
14094 
14095 	return rc;
14096 }
14097 
14098 /*
14099  * for commands that have no data
14100  */
14101 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14102 {
14103 	struct cnic_ctl_info ctl = {0};
14104 
14105 	ctl.cmd = cmd;
14106 
14107 	return bnx2x_cnic_ctl_send(bp, &ctl);
14108 }
14109 
14110 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14111 {
14112 	struct cnic_ctl_info ctl = {0};
14113 
14114 	/* first we tell CNIC and only then we count this as a completion */
14115 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14116 	ctl.data.comp.cid = cid;
14117 	ctl.data.comp.error = err;
14118 
14119 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14120 	bnx2x_cnic_sp_post(bp, 0);
14121 }
14122 
14123 /* Called with netif_addr_lock_bh() taken.
14124  * Sets an rx_mode config for an iSCSI ETH client.
14125  * Doesn't block.
14126  * Completion should be checked outside.
14127  */
14128 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14129 {
14130 	unsigned long accept_flags = 0, ramrod_flags = 0;
14131 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14132 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14133 
14134 	if (start) {
14135 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14136 		 * because it's the only way for UIO Queue to accept
14137 		 * multicasts (in non-promiscuous mode only one Queue per
14138 		 * function will receive multicast packets (leading in our
14139 		 * case).
14140 		 */
14141 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14142 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14143 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14144 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14145 
14146 		/* Clear STOP_PENDING bit if START is requested */
14147 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14148 
14149 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14150 	} else
14151 		/* Clear START_PENDING bit if STOP is requested */
14152 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14153 
14154 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14155 		set_bit(sched_state, &bp->sp_state);
14156 	else {
14157 		__set_bit(RAMROD_RX, &ramrod_flags);
14158 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14159 				    ramrod_flags);
14160 	}
14161 }
14162 
14163 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14164 {
14165 	struct bnx2x *bp = netdev_priv(dev);
14166 	int rc = 0;
14167 
14168 	switch (ctl->cmd) {
14169 	case DRV_CTL_CTXTBL_WR_CMD: {
14170 		u32 index = ctl->data.io.offset;
14171 		dma_addr_t addr = ctl->data.io.dma_addr;
14172 
14173 		bnx2x_ilt_wr(bp, index, addr);
14174 		break;
14175 	}
14176 
14177 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14178 		int count = ctl->data.credit.credit_count;
14179 
14180 		bnx2x_cnic_sp_post(bp, count);
14181 		break;
14182 	}
14183 
14184 	/* rtnl_lock is held.  */
14185 	case DRV_CTL_START_L2_CMD: {
14186 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14187 		unsigned long sp_bits = 0;
14188 
14189 		/* Configure the iSCSI classification object */
14190 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14191 				   cp->iscsi_l2_client_id,
14192 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14193 				   bnx2x_sp(bp, mac_rdata),
14194 				   bnx2x_sp_mapping(bp, mac_rdata),
14195 				   BNX2X_FILTER_MAC_PENDING,
14196 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14197 				   &bp->macs_pool);
14198 
14199 		/* Set iSCSI MAC address */
14200 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14201 		if (rc)
14202 			break;
14203 
14204 		mmiowb();
14205 		barrier();
14206 
14207 		/* Start accepting on iSCSI L2 ring */
14208 
14209 		netif_addr_lock_bh(dev);
14210 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14211 		netif_addr_unlock_bh(dev);
14212 
14213 		/* bits to wait on */
14214 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14215 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14216 
14217 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14218 			BNX2X_ERR("rx_mode completion timed out!\n");
14219 
14220 		break;
14221 	}
14222 
14223 	/* rtnl_lock is held.  */
14224 	case DRV_CTL_STOP_L2_CMD: {
14225 		unsigned long sp_bits = 0;
14226 
14227 		/* Stop accepting on iSCSI L2 ring */
14228 		netif_addr_lock_bh(dev);
14229 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14230 		netif_addr_unlock_bh(dev);
14231 
14232 		/* bits to wait on */
14233 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14234 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14235 
14236 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14237 			BNX2X_ERR("rx_mode completion timed out!\n");
14238 
14239 		mmiowb();
14240 		barrier();
14241 
14242 		/* Unset iSCSI L2 MAC */
14243 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14244 					BNX2X_ISCSI_ETH_MAC, true);
14245 		break;
14246 	}
14247 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14248 		int count = ctl->data.credit.credit_count;
14249 
14250 		smp_mb__before_atomic();
14251 		atomic_add(count, &bp->cq_spq_left);
14252 		smp_mb__after_atomic();
14253 		break;
14254 	}
14255 	case DRV_CTL_ULP_REGISTER_CMD: {
14256 		int ulp_type = ctl->data.register_data.ulp_type;
14257 
14258 		if (CHIP_IS_E3(bp)) {
14259 			int idx = BP_FW_MB_IDX(bp);
14260 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14261 			int path = BP_PATH(bp);
14262 			int port = BP_PORT(bp);
14263 			int i;
14264 			u32 scratch_offset;
14265 			u32 *host_addr;
14266 
14267 			/* first write capability to shmem2 */
14268 			if (ulp_type == CNIC_ULP_ISCSI)
14269 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14270 			else if (ulp_type == CNIC_ULP_FCOE)
14271 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14272 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14273 
14274 			if ((ulp_type != CNIC_ULP_FCOE) ||
14275 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14276 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14277 				break;
14278 
14279 			/* if reached here - should write fcoe capabilities */
14280 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14281 			if (!scratch_offset)
14282 				break;
14283 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14284 						   fcoe_features[path][port]);
14285 			host_addr = (u32 *) &(ctl->data.register_data.
14286 					      fcoe_features);
14287 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14288 			     i += 4)
14289 				REG_WR(bp, scratch_offset + i,
14290 				       *(host_addr + i/4));
14291 		}
14292 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14293 		break;
14294 	}
14295 
14296 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14297 		int ulp_type = ctl->data.ulp_type;
14298 
14299 		if (CHIP_IS_E3(bp)) {
14300 			int idx = BP_FW_MB_IDX(bp);
14301 			u32 cap;
14302 
14303 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14304 			if (ulp_type == CNIC_ULP_ISCSI)
14305 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14306 			else if (ulp_type == CNIC_ULP_FCOE)
14307 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14308 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14309 		}
14310 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14311 		break;
14312 	}
14313 
14314 	default:
14315 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14316 		rc = -EINVAL;
14317 	}
14318 
14319 	return rc;
14320 }
14321 
14322 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14323 {
14324 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14325 
14326 	if (bp->flags & USING_MSIX_FLAG) {
14327 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14328 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14329 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14330 	} else {
14331 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14332 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14333 	}
14334 	if (!CHIP_IS_E1x(bp))
14335 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14336 	else
14337 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14338 
14339 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14340 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14341 	cp->irq_arr[1].status_blk = bp->def_status_blk;
14342 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14343 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14344 
14345 	cp->num_irq = 2;
14346 }
14347 
14348 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14349 {
14350 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14351 
14352 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14353 			     bnx2x_cid_ilt_lines(bp);
14354 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14355 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14356 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14357 
14358 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14359 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14360 	   cp->iscsi_l2_cid);
14361 
14362 	if (NO_ISCSI_OOO(bp))
14363 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14364 }
14365 
14366 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14367 			       void *data)
14368 {
14369 	struct bnx2x *bp = netdev_priv(dev);
14370 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14371 	int rc;
14372 
14373 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14374 
14375 	if (ops == NULL) {
14376 		BNX2X_ERR("NULL ops received\n");
14377 		return -EINVAL;
14378 	}
14379 
14380 	if (!CNIC_SUPPORT(bp)) {
14381 		BNX2X_ERR("Can't register CNIC when not supported\n");
14382 		return -EOPNOTSUPP;
14383 	}
14384 
14385 	if (!CNIC_LOADED(bp)) {
14386 		rc = bnx2x_load_cnic(bp);
14387 		if (rc) {
14388 			BNX2X_ERR("CNIC-related load failed\n");
14389 			return rc;
14390 		}
14391 	}
14392 
14393 	bp->cnic_enabled = true;
14394 
14395 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14396 	if (!bp->cnic_kwq)
14397 		return -ENOMEM;
14398 
14399 	bp->cnic_kwq_cons = bp->cnic_kwq;
14400 	bp->cnic_kwq_prod = bp->cnic_kwq;
14401 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14402 
14403 	bp->cnic_spq_pending = 0;
14404 	bp->cnic_kwq_pending = 0;
14405 
14406 	bp->cnic_data = data;
14407 
14408 	cp->num_irq = 0;
14409 	cp->drv_state |= CNIC_DRV_STATE_REGD;
14410 	cp->iro_arr = bp->iro_arr;
14411 
14412 	bnx2x_setup_cnic_irq_info(bp);
14413 
14414 	rcu_assign_pointer(bp->cnic_ops, ops);
14415 
14416 	/* Schedule driver to read CNIC driver versions */
14417 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14418 
14419 	return 0;
14420 }
14421 
14422 static int bnx2x_unregister_cnic(struct net_device *dev)
14423 {
14424 	struct bnx2x *bp = netdev_priv(dev);
14425 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14426 
14427 	mutex_lock(&bp->cnic_mutex);
14428 	cp->drv_state = 0;
14429 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
14430 	mutex_unlock(&bp->cnic_mutex);
14431 	synchronize_rcu();
14432 	bp->cnic_enabled = false;
14433 	kfree(bp->cnic_kwq);
14434 	bp->cnic_kwq = NULL;
14435 
14436 	return 0;
14437 }
14438 
14439 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14440 {
14441 	struct bnx2x *bp = netdev_priv(dev);
14442 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14443 
14444 	/* If both iSCSI and FCoE are disabled - return NULL in
14445 	 * order to indicate CNIC that it should not try to work
14446 	 * with this device.
14447 	 */
14448 	if (NO_ISCSI(bp) && NO_FCOE(bp))
14449 		return NULL;
14450 
14451 	cp->drv_owner = THIS_MODULE;
14452 	cp->chip_id = CHIP_ID(bp);
14453 	cp->pdev = bp->pdev;
14454 	cp->io_base = bp->regview;
14455 	cp->io_base2 = bp->doorbells;
14456 	cp->max_kwqe_pending = 8;
14457 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14458 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14459 			     bnx2x_cid_ilt_lines(bp);
14460 	cp->ctx_tbl_len = CNIC_ILT_LINES;
14461 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14462 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14463 	cp->drv_ctl = bnx2x_drv_ctl;
14464 	cp->drv_register_cnic = bnx2x_register_cnic;
14465 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14466 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14467 	cp->iscsi_l2_client_id =
14468 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14469 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14470 
14471 	if (NO_ISCSI_OOO(bp))
14472 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14473 
14474 	if (NO_ISCSI(bp))
14475 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14476 
14477 	if (NO_FCOE(bp))
14478 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14479 
14480 	BNX2X_DEV_INFO(
14481 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14482 	   cp->ctx_blk_size,
14483 	   cp->ctx_tbl_offset,
14484 	   cp->ctx_tbl_len,
14485 	   cp->starting_cid);
14486 	return cp;
14487 }
14488 
14489 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14490 {
14491 	struct bnx2x *bp = fp->bp;
14492 	u32 offset = BAR_USTRORM_INTMEM;
14493 
14494 	if (IS_VF(bp))
14495 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
14496 	else if (!CHIP_IS_E1x(bp))
14497 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14498 	else
14499 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14500 
14501 	return offset;
14502 }
14503 
14504 /* called only on E1H or E2.
14505  * When pretending to be PF, the pretend value is the function number 0...7
14506  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14507  * combination
14508  */
14509 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14510 {
14511 	u32 pretend_reg;
14512 
14513 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14514 		return -1;
14515 
14516 	/* get my own pretend register */
14517 	pretend_reg = bnx2x_get_pretend_reg(bp);
14518 	REG_WR(bp, pretend_reg, pretend_func_val);
14519 	REG_RD(bp, pretend_reg);
14520 	return 0;
14521 }
14522 
14523 static void bnx2x_ptp_task(struct work_struct *work)
14524 {
14525 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
14526 	int port = BP_PORT(bp);
14527 	u32 val_seq;
14528 	u64 timestamp, ns;
14529 	struct skb_shared_hwtstamps shhwtstamps;
14530 
14531 	/* Read Tx timestamp registers */
14532 	val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14533 			 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
14534 	if (val_seq & 0x10000) {
14535 		/* There is a valid timestamp value */
14536 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
14537 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
14538 		timestamp <<= 32;
14539 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
14540 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
14541 		/* Reset timestamp register to allow new timestamp */
14542 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14543 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14544 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14545 
14546 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
14547 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
14548 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
14549 		dev_kfree_skb_any(bp->ptp_tx_skb);
14550 		bp->ptp_tx_skb = NULL;
14551 
14552 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
14553 		   timestamp, ns);
14554 	} else {
14555 		DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
14556 		/* Reschedule to keep checking for a valid timestamp value */
14557 		schedule_work(&bp->ptp_task);
14558 	}
14559 }
14560 
14561 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
14562 {
14563 	int port = BP_PORT(bp);
14564 	u64 timestamp, ns;
14565 
14566 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
14567 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
14568 	timestamp <<= 32;
14569 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
14570 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
14571 
14572 	/* Reset timestamp register to allow new timestamp */
14573 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14574 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14575 
14576 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
14577 
14578 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
14579 
14580 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
14581 	   timestamp, ns);
14582 }
14583 
14584 /* Read the PHC */
14585 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
14586 {
14587 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
14588 	int port = BP_PORT(bp);
14589 	u32 wb_data[2];
14590 	u64 phc_cycles;
14591 
14592 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
14593 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
14594 	phc_cycles = wb_data[1];
14595 	phc_cycles = (phc_cycles << 32) + wb_data[0];
14596 
14597 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
14598 
14599 	return phc_cycles;
14600 }
14601 
14602 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
14603 {
14604 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
14605 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
14606 	bp->cyclecounter.mask = CLOCKSOURCE_MASK(64);
14607 	bp->cyclecounter.shift = 1;
14608 	bp->cyclecounter.mult = 1;
14609 }
14610 
14611 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
14612 {
14613 	struct bnx2x_func_state_params func_params = {NULL};
14614 	struct bnx2x_func_set_timesync_params *set_timesync_params =
14615 		&func_params.params.set_timesync;
14616 
14617 	/* Prepare parameters for function state transitions */
14618 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
14619 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
14620 
14621 	func_params.f_obj = &bp->func_obj;
14622 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
14623 
14624 	/* Function parameters */
14625 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
14626 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
14627 
14628 	return bnx2x_func_state_change(bp, &func_params);
14629 }
14630 
14631 int bnx2x_enable_ptp_packets(struct bnx2x *bp)
14632 {
14633 	struct bnx2x_queue_state_params q_params;
14634 	int rc, i;
14635 
14636 	/* send queue update ramrod to enable PTP packets */
14637 	memset(&q_params, 0, sizeof(q_params));
14638 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
14639 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
14640 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
14641 		  &q_params.params.update.update_flags);
14642 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
14643 		  &q_params.params.update.update_flags);
14644 
14645 	/* send the ramrod on all the queues of the PF */
14646 	for_each_eth_queue(bp, i) {
14647 		struct bnx2x_fastpath *fp = &bp->fp[i];
14648 
14649 		/* Set the appropriate Queue object */
14650 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
14651 
14652 		/* Update the Queue state */
14653 		rc = bnx2x_queue_state_change(bp, &q_params);
14654 		if (rc) {
14655 			BNX2X_ERR("Failed to enable PTP packets\n");
14656 			return rc;
14657 		}
14658 	}
14659 
14660 	return 0;
14661 }
14662 
14663 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
14664 {
14665 	int port = BP_PORT(bp);
14666 	int rc;
14667 
14668 	if (!bp->hwtstamp_ioctl_called)
14669 		return 0;
14670 
14671 	switch (bp->tx_type) {
14672 	case HWTSTAMP_TX_ON:
14673 		bp->flags |= TX_TIMESTAMPING_EN;
14674 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14675 		       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
14676 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14677 		       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
14678 		break;
14679 	case HWTSTAMP_TX_ONESTEP_SYNC:
14680 		BNX2X_ERR("One-step timestamping is not supported\n");
14681 		return -ERANGE;
14682 	}
14683 
14684 	switch (bp->rx_filter) {
14685 	case HWTSTAMP_FILTER_NONE:
14686 		break;
14687 	case HWTSTAMP_FILTER_ALL:
14688 	case HWTSTAMP_FILTER_SOME:
14689 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
14690 		break;
14691 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
14692 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
14693 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
14694 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
14695 		/* Initialize PTP detection for UDP/IPv4 events */
14696 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14697 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
14698 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14699 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
14700 		break;
14701 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
14702 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
14703 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
14704 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
14705 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
14706 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14707 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
14708 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14709 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
14710 		break;
14711 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
14712 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
14713 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
14714 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
14715 		/* Initialize PTP detection L2 events */
14716 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14717 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
14718 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14719 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
14720 
14721 		break;
14722 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
14723 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
14724 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
14725 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
14726 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
14727 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14728 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
14729 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14730 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
14731 		break;
14732 	}
14733 
14734 	/* Indicate to FW that this PF expects recorded PTP packets */
14735 	rc = bnx2x_enable_ptp_packets(bp);
14736 	if (rc)
14737 		return rc;
14738 
14739 	/* Enable sending PTP packets to host */
14740 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14741 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
14742 
14743 	return 0;
14744 }
14745 
14746 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
14747 {
14748 	struct hwtstamp_config config;
14749 	int rc;
14750 
14751 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
14752 
14753 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
14754 		return -EFAULT;
14755 
14756 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
14757 	   config.tx_type, config.rx_filter);
14758 
14759 	if (config.flags) {
14760 		BNX2X_ERR("config.flags is reserved for future use\n");
14761 		return -EINVAL;
14762 	}
14763 
14764 	bp->hwtstamp_ioctl_called = 1;
14765 	bp->tx_type = config.tx_type;
14766 	bp->rx_filter = config.rx_filter;
14767 
14768 	rc = bnx2x_configure_ptp_filters(bp);
14769 	if (rc)
14770 		return rc;
14771 
14772 	config.rx_filter = bp->rx_filter;
14773 
14774 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
14775 		-EFAULT : 0;
14776 }
14777 
14778 /* Configrues HW for PTP */
14779 static int bnx2x_configure_ptp(struct bnx2x *bp)
14780 {
14781 	int rc, port = BP_PORT(bp);
14782 	u32 wb_data[2];
14783 
14784 	/* Reset PTP event detection rules - will be configured in the IOCTL */
14785 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
14786 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
14787 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
14788 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
14789 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
14790 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
14791 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
14792 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
14793 
14794 	/* Disable PTP packets to host - will be configured in the IOCTL*/
14795 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
14796 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
14797 
14798 	/* Enable the PTP feature */
14799 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
14800 	       NIG_REG_P0_PTP_EN, 0x3F);
14801 
14802 	/* Enable the free-running counter */
14803 	wb_data[0] = 0;
14804 	wb_data[1] = 0;
14805 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
14806 
14807 	/* Reset drift register (offset register is not reset) */
14808 	rc = bnx2x_send_reset_timesync_ramrod(bp);
14809 	if (rc) {
14810 		BNX2X_ERR("Failed to reset PHC drift register\n");
14811 		return -EFAULT;
14812 	}
14813 
14814 	/* Reset possibly old timestamps */
14815 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
14816 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
14817 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
14818 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
14819 
14820 	return 0;
14821 }
14822 
14823 /* Called during load, to initialize PTP-related stuff */
14824 void bnx2x_init_ptp(struct bnx2x *bp)
14825 {
14826 	int rc;
14827 
14828 	/* Configure PTP in HW */
14829 	rc = bnx2x_configure_ptp(bp);
14830 	if (rc) {
14831 		BNX2X_ERR("Stopping PTP initialization\n");
14832 		return;
14833 	}
14834 
14835 	/* Init work queue for Tx timestamping */
14836 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
14837 
14838 	/* Init cyclecounter and timecounter. This is done only in the first
14839 	 * load. If done in every load, PTP application will fail when doing
14840 	 * unload / load (e.g. MTU change) while it is running.
14841 	 */
14842 	if (!bp->timecounter_init_done) {
14843 		bnx2x_init_cyclecounter(bp);
14844 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
14845 				 ktime_to_ns(ktime_get_real()));
14846 		bp->timecounter_init_done = 1;
14847 	}
14848 
14849 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
14850 }
14851