1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2012 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/semaphore.h>
56 #include <linux/stringify.h>
57 #include <linux/vmalloc.h>
58 
59 #include "bnx2x.h"
60 #include "bnx2x_init.h"
61 #include "bnx2x_init_ops.h"
62 #include "bnx2x_cmn.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65 
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION					\
70 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
72 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
73 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77 
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT		(5*HZ)
80 
81 static char version[] __devinitdata =
82 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87 		   "BCM57710/57711/57711E/"
88 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89 		   "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95 
96 static int multi_mode = 1;
97 module_param(multi_mode, int, 0);
98 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
99 			     "(0 Disable; 1 Enable (default))");
100 
101 int num_queues;
102 module_param(num_queues, int, 0);
103 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
104 				" (default is as a number of CPUs)");
105 
106 static int disable_tpa;
107 module_param(disable_tpa, int, 0);
108 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
109 
110 #define INT_MODE_INTx			1
111 #define INT_MODE_MSI			2
112 static int int_mode;
113 module_param(int_mode, int, 0);
114 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
115 				"(1 INT#x; 2 MSI)");
116 
117 static int dropless_fc;
118 module_param(dropless_fc, int, 0);
119 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
120 
121 static int mrrs = -1;
122 module_param(mrrs, int, 0);
123 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
124 
125 static int debug;
126 module_param(debug, int, 0);
127 MODULE_PARM_DESC(debug, " Default debug msglevel");
128 
129 
130 
131 struct workqueue_struct *bnx2x_wq;
132 
133 enum bnx2x_board_type {
134 	BCM57710 = 0,
135 	BCM57711,
136 	BCM57711E,
137 	BCM57712,
138 	BCM57712_MF,
139 	BCM57800,
140 	BCM57800_MF,
141 	BCM57810,
142 	BCM57810_MF,
143 	BCM57840,
144 	BCM57840_MF
145 };
146 
147 /* indexed by board_type, above */
148 static struct {
149 	char *name;
150 } board_info[] __devinitdata = {
151 	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
152 	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
153 	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
154 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
155 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
156 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
157 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
158 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
159 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
160 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
161 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
162 						"Ethernet Multi Function"}
163 };
164 
165 #ifndef PCI_DEVICE_ID_NX2_57710
166 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
167 #endif
168 #ifndef PCI_DEVICE_ID_NX2_57711
169 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
170 #endif
171 #ifndef PCI_DEVICE_ID_NX2_57711E
172 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57712
175 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57712_MF
178 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57800
181 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57800_MF
184 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57810
187 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57810_MF
190 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57840
193 #define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57840_MF
196 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
197 #endif
198 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
199 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
200 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
201 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
202 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
203 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
204 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
205 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
206 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
207 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
208 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
209 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
210 	{ 0 }
211 };
212 
213 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
214 
215 /* Global resources for unloading a previously loaded device */
216 #define BNX2X_PREV_WAIT_NEEDED 1
217 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
218 static LIST_HEAD(bnx2x_prev_list);
219 /****************************************************************************
220 * General service functions
221 ****************************************************************************/
222 
223 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
224 				       u32 addr, dma_addr_t mapping)
225 {
226 	REG_WR(bp,  addr, U64_LO(mapping));
227 	REG_WR(bp,  addr + 4, U64_HI(mapping));
228 }
229 
230 static inline void storm_memset_spq_addr(struct bnx2x *bp,
231 					 dma_addr_t mapping, u16 abs_fid)
232 {
233 	u32 addr = XSEM_REG_FAST_MEMORY +
234 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
235 
236 	__storm_memset_dma_mapping(bp, addr, mapping);
237 }
238 
239 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
240 					 u16 pf_id)
241 {
242 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
243 		pf_id);
244 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
245 		pf_id);
246 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
247 		pf_id);
248 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
249 		pf_id);
250 }
251 
252 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
253 					u8 enable)
254 {
255 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
256 		enable);
257 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
258 		enable);
259 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
260 		enable);
261 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
262 		enable);
263 }
264 
265 static inline void storm_memset_eq_data(struct bnx2x *bp,
266 				struct event_ring_data *eq_data,
267 				u16 pfid)
268 {
269 	size_t size = sizeof(struct event_ring_data);
270 
271 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
272 
273 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
274 }
275 
276 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
277 					u16 pfid)
278 {
279 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
280 	REG_WR16(bp, addr, eq_prod);
281 }
282 
283 /* used only at init
284  * locking is done by mcp
285  */
286 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
287 {
288 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
289 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
290 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
291 			       PCICFG_VENDOR_ID_OFFSET);
292 }
293 
294 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
295 {
296 	u32 val;
297 
298 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
299 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
300 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
301 			       PCICFG_VENDOR_ID_OFFSET);
302 
303 	return val;
304 }
305 
306 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
307 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
308 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
309 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
310 #define DMAE_DP_DST_NONE	"dst_addr [none]"
311 
312 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
313 			  int msglvl)
314 {
315 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
316 
317 	switch (dmae->opcode & DMAE_COMMAND_DST) {
318 	case DMAE_CMD_DST_PCI:
319 		if (src_type == DMAE_CMD_SRC_PCI)
320 			DP(msglvl, "DMAE: opcode 0x%08x\n"
321 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
322 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
323 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
324 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
325 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
326 			   dmae->comp_val);
327 		else
328 			DP(msglvl, "DMAE: opcode 0x%08x\n"
329 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
330 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
331 			   dmae->opcode, dmae->src_addr_lo >> 2,
332 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
333 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
334 			   dmae->comp_val);
335 		break;
336 	case DMAE_CMD_DST_GRC:
337 		if (src_type == DMAE_CMD_SRC_PCI)
338 			DP(msglvl, "DMAE: opcode 0x%08x\n"
339 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
340 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
341 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
342 			   dmae->len, dmae->dst_addr_lo >> 2,
343 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
344 			   dmae->comp_val);
345 		else
346 			DP(msglvl, "DMAE: opcode 0x%08x\n"
347 			   "src [%08x], len [%d*4], dst [%08x]\n"
348 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
349 			   dmae->opcode, dmae->src_addr_lo >> 2,
350 			   dmae->len, dmae->dst_addr_lo >> 2,
351 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
352 			   dmae->comp_val);
353 		break;
354 	default:
355 		if (src_type == DMAE_CMD_SRC_PCI)
356 			DP(msglvl, "DMAE: opcode 0x%08x\n"
357 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
358 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
359 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
360 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
361 			   dmae->comp_val);
362 		else
363 			DP(msglvl, "DMAE: opcode 0x%08x\n"
364 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
365 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
366 			   dmae->opcode, dmae->src_addr_lo >> 2,
367 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
368 			   dmae->comp_val);
369 		break;
370 	}
371 
372 }
373 
374 /* copy command into DMAE command memory and set DMAE command go */
375 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
376 {
377 	u32 cmd_offset;
378 	int i;
379 
380 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
381 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
382 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
383 	}
384 	REG_WR(bp, dmae_reg_go_c[idx], 1);
385 }
386 
387 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
388 {
389 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
390 			   DMAE_CMD_C_ENABLE);
391 }
392 
393 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
394 {
395 	return opcode & ~DMAE_CMD_SRC_RESET;
396 }
397 
398 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
399 			     bool with_comp, u8 comp_type)
400 {
401 	u32 opcode = 0;
402 
403 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
404 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
405 
406 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
407 
408 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
409 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
410 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
411 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
412 
413 #ifdef __BIG_ENDIAN
414 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
415 #else
416 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
417 #endif
418 	if (with_comp)
419 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
420 	return opcode;
421 }
422 
423 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
424 				      struct dmae_command *dmae,
425 				      u8 src_type, u8 dst_type)
426 {
427 	memset(dmae, 0, sizeof(struct dmae_command));
428 
429 	/* set the opcode */
430 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
431 					 true, DMAE_COMP_PCI);
432 
433 	/* fill in the completion parameters */
434 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
435 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
436 	dmae->comp_val = DMAE_COMP_VAL;
437 }
438 
439 /* issue a dmae command over the init-channel and wailt for completion */
440 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
441 				      struct dmae_command *dmae)
442 {
443 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
444 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
445 	int rc = 0;
446 
447 	/*
448 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
449 	 * as long as this code is called both from syscall context and
450 	 * from ndo_set_rx_mode() flow that may be called from BH.
451 	 */
452 	spin_lock_bh(&bp->dmae_lock);
453 
454 	/* reset completion */
455 	*wb_comp = 0;
456 
457 	/* post the command on the channel used for initializations */
458 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
459 
460 	/* wait for completion */
461 	udelay(5);
462 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
463 
464 		if (!cnt ||
465 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
466 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
467 			BNX2X_ERR("DMAE timeout!\n");
468 			rc = DMAE_TIMEOUT;
469 			goto unlock;
470 		}
471 		cnt--;
472 		udelay(50);
473 	}
474 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
475 		BNX2X_ERR("DMAE PCI error!\n");
476 		rc = DMAE_PCI_ERROR;
477 	}
478 
479 unlock:
480 	spin_unlock_bh(&bp->dmae_lock);
481 	return rc;
482 }
483 
484 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
485 		      u32 len32)
486 {
487 	struct dmae_command dmae;
488 
489 	if (!bp->dmae_ready) {
490 		u32 *data = bnx2x_sp(bp, wb_data[0]);
491 
492 		if (CHIP_IS_E1(bp))
493 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
494 		else
495 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
496 		return;
497 	}
498 
499 	/* set opcode and fixed command fields */
500 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
501 
502 	/* fill in addresses and len */
503 	dmae.src_addr_lo = U64_LO(dma_addr);
504 	dmae.src_addr_hi = U64_HI(dma_addr);
505 	dmae.dst_addr_lo = dst_addr >> 2;
506 	dmae.dst_addr_hi = 0;
507 	dmae.len = len32;
508 
509 	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
510 
511 	/* issue the command and wait for completion */
512 	bnx2x_issue_dmae_with_comp(bp, &dmae);
513 }
514 
515 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
516 {
517 	struct dmae_command dmae;
518 
519 	if (!bp->dmae_ready) {
520 		u32 *data = bnx2x_sp(bp, wb_data[0]);
521 		int i;
522 
523 		if (CHIP_IS_E1(bp))
524 			for (i = 0; i < len32; i++)
525 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
526 		else
527 			for (i = 0; i < len32; i++)
528 				data[i] = REG_RD(bp, src_addr + i*4);
529 
530 		return;
531 	}
532 
533 	/* set opcode and fixed command fields */
534 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
535 
536 	/* fill in addresses and len */
537 	dmae.src_addr_lo = src_addr >> 2;
538 	dmae.src_addr_hi = 0;
539 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
540 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
541 	dmae.len = len32;
542 
543 	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
544 
545 	/* issue the command and wait for completion */
546 	bnx2x_issue_dmae_with_comp(bp, &dmae);
547 }
548 
549 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
550 				      u32 addr, u32 len)
551 {
552 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
553 	int offset = 0;
554 
555 	while (len > dmae_wr_max) {
556 		bnx2x_write_dmae(bp, phys_addr + offset,
557 				 addr + offset, dmae_wr_max);
558 		offset += dmae_wr_max * 4;
559 		len -= dmae_wr_max;
560 	}
561 
562 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
563 }
564 
565 /* used only for slowpath so not inlined */
566 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
567 {
568 	u32 wb_write[2];
569 
570 	wb_write[0] = val_hi;
571 	wb_write[1] = val_lo;
572 	REG_WR_DMAE(bp, reg, wb_write, 2);
573 }
574 
575 #ifdef USE_WB_RD
576 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
577 {
578 	u32 wb_data[2];
579 
580 	REG_RD_DMAE(bp, reg, wb_data, 2);
581 
582 	return HILO_U64(wb_data[0], wb_data[1]);
583 }
584 #endif
585 
586 static int bnx2x_mc_assert(struct bnx2x *bp)
587 {
588 	char last_idx;
589 	int i, rc = 0;
590 	u32 row0, row1, row2, row3;
591 
592 	/* XSTORM */
593 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
594 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
595 	if (last_idx)
596 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
597 
598 	/* print the asserts */
599 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
600 
601 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
602 			      XSTORM_ASSERT_LIST_OFFSET(i));
603 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
604 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
605 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
606 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
607 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
608 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
609 
610 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
611 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
612 				  i, row3, row2, row1, row0);
613 			rc++;
614 		} else {
615 			break;
616 		}
617 	}
618 
619 	/* TSTORM */
620 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
621 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
622 	if (last_idx)
623 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
624 
625 	/* print the asserts */
626 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
627 
628 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
629 			      TSTORM_ASSERT_LIST_OFFSET(i));
630 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
631 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
632 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
633 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
634 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
635 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
636 
637 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
638 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
639 				  i, row3, row2, row1, row0);
640 			rc++;
641 		} else {
642 			break;
643 		}
644 	}
645 
646 	/* CSTORM */
647 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
648 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
649 	if (last_idx)
650 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
651 
652 	/* print the asserts */
653 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
654 
655 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
656 			      CSTORM_ASSERT_LIST_OFFSET(i));
657 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
658 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
659 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
660 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
661 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
662 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
663 
664 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
665 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
666 				  i, row3, row2, row1, row0);
667 			rc++;
668 		} else {
669 			break;
670 		}
671 	}
672 
673 	/* USTORM */
674 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
675 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
676 	if (last_idx)
677 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
678 
679 	/* print the asserts */
680 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
681 
682 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
683 			      USTORM_ASSERT_LIST_OFFSET(i));
684 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
685 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
686 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
687 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
688 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
689 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
690 
691 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
692 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
693 				  i, row3, row2, row1, row0);
694 			rc++;
695 		} else {
696 			break;
697 		}
698 	}
699 
700 	return rc;
701 }
702 
703 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
704 {
705 	u32 addr, val;
706 	u32 mark, offset;
707 	__be32 data[9];
708 	int word;
709 	u32 trace_shmem_base;
710 	if (BP_NOMCP(bp)) {
711 		BNX2X_ERR("NO MCP - can not dump\n");
712 		return;
713 	}
714 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
715 		(bp->common.bc_ver & 0xff0000) >> 16,
716 		(bp->common.bc_ver & 0xff00) >> 8,
717 		(bp->common.bc_ver & 0xff));
718 
719 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
720 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
721 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
722 
723 	if (BP_PATH(bp) == 0)
724 		trace_shmem_base = bp->common.shmem_base;
725 	else
726 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
727 	addr = trace_shmem_base - 0x800;
728 
729 	/* validate TRCB signature */
730 	mark = REG_RD(bp, addr);
731 	if (mark != MFW_TRACE_SIGNATURE) {
732 		BNX2X_ERR("Trace buffer signature is missing.");
733 		return ;
734 	}
735 
736 	/* read cyclic buffer pointer */
737 	addr += 4;
738 	mark = REG_RD(bp, addr);
739 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
740 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
741 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
742 
743 	printk("%s", lvl);
744 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
745 		for (word = 0; word < 8; word++)
746 			data[word] = htonl(REG_RD(bp, offset + 4*word));
747 		data[8] = 0x0;
748 		pr_cont("%s", (char *)data);
749 	}
750 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
751 		for (word = 0; word < 8; word++)
752 			data[word] = htonl(REG_RD(bp, offset + 4*word));
753 		data[8] = 0x0;
754 		pr_cont("%s", (char *)data);
755 	}
756 	printk("%s" "end of fw dump\n", lvl);
757 }
758 
759 static inline void bnx2x_fw_dump(struct bnx2x *bp)
760 {
761 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
762 }
763 
764 void bnx2x_panic_dump(struct bnx2x *bp)
765 {
766 	int i;
767 	u16 j;
768 	struct hc_sp_status_block_data sp_sb_data;
769 	int func = BP_FUNC(bp);
770 #ifdef BNX2X_STOP_ON_ERROR
771 	u16 start = 0, end = 0;
772 	u8 cos;
773 #endif
774 
775 	bp->stats_state = STATS_STATE_DISABLED;
776 	bp->eth_stats.unrecoverable_error++;
777 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
778 
779 	BNX2X_ERR("begin crash dump -----------------\n");
780 
781 	/* Indices */
782 	/* Common */
783 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
784 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
785 		  bp->spq_prod_idx, bp->stats_counter);
786 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
787 		  bp->def_status_blk->atten_status_block.attn_bits,
788 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
789 		  bp->def_status_blk->atten_status_block.status_block_id,
790 		  bp->def_status_blk->atten_status_block.attn_bits_index);
791 	BNX2X_ERR("     def (");
792 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
793 		pr_cont("0x%x%s",
794 			bp->def_status_blk->sp_sb.index_values[i],
795 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
796 
797 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
798 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
799 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
800 			i*sizeof(u32));
801 
802 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
803 	       sp_sb_data.igu_sb_id,
804 	       sp_sb_data.igu_seg_id,
805 	       sp_sb_data.p_func.pf_id,
806 	       sp_sb_data.p_func.vnic_id,
807 	       sp_sb_data.p_func.vf_id,
808 	       sp_sb_data.p_func.vf_valid,
809 	       sp_sb_data.state);
810 
811 
812 	for_each_eth_queue(bp, i) {
813 		struct bnx2x_fastpath *fp = &bp->fp[i];
814 		int loop;
815 		struct hc_status_block_data_e2 sb_data_e2;
816 		struct hc_status_block_data_e1x sb_data_e1x;
817 		struct hc_status_block_sm  *hc_sm_p =
818 			CHIP_IS_E1x(bp) ?
819 			sb_data_e1x.common.state_machine :
820 			sb_data_e2.common.state_machine;
821 		struct hc_index_data *hc_index_p =
822 			CHIP_IS_E1x(bp) ?
823 			sb_data_e1x.index_data :
824 			sb_data_e2.index_data;
825 		u8 data_size, cos;
826 		u32 *sb_data_p;
827 		struct bnx2x_fp_txdata txdata;
828 
829 		/* Rx */
830 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
831 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
832 			  fp->rx_comp_prod,
833 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
834 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
835 			  fp->rx_sge_prod, fp->last_max_sge,
836 			  le16_to_cpu(fp->fp_hc_idx));
837 
838 		/* Tx */
839 		for_each_cos_in_tx_queue(fp, cos)
840 		{
841 			txdata = fp->txdata[cos];
842 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
843 				  i, txdata.tx_pkt_prod,
844 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
845 				  txdata.tx_bd_cons,
846 				  le16_to_cpu(*txdata.tx_cons_sb));
847 		}
848 
849 		loop = CHIP_IS_E1x(bp) ?
850 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
851 
852 		/* host sb data */
853 
854 #ifdef BCM_CNIC
855 		if (IS_FCOE_FP(fp))
856 			continue;
857 #endif
858 		BNX2X_ERR("     run indexes (");
859 		for (j = 0; j < HC_SB_MAX_SM; j++)
860 			pr_cont("0x%x%s",
861 			       fp->sb_running_index[j],
862 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
863 
864 		BNX2X_ERR("     indexes (");
865 		for (j = 0; j < loop; j++)
866 			pr_cont("0x%x%s",
867 			       fp->sb_index_values[j],
868 			       (j == loop - 1) ? ")" : " ");
869 		/* fw sb data */
870 		data_size = CHIP_IS_E1x(bp) ?
871 			sizeof(struct hc_status_block_data_e1x) :
872 			sizeof(struct hc_status_block_data_e2);
873 		data_size /= sizeof(u32);
874 		sb_data_p = CHIP_IS_E1x(bp) ?
875 			(u32 *)&sb_data_e1x :
876 			(u32 *)&sb_data_e2;
877 		/* copy sb data in here */
878 		for (j = 0; j < data_size; j++)
879 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
880 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
881 				j * sizeof(u32));
882 
883 		if (!CHIP_IS_E1x(bp)) {
884 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
885 				sb_data_e2.common.p_func.pf_id,
886 				sb_data_e2.common.p_func.vf_id,
887 				sb_data_e2.common.p_func.vf_valid,
888 				sb_data_e2.common.p_func.vnic_id,
889 				sb_data_e2.common.same_igu_sb_1b,
890 				sb_data_e2.common.state);
891 		} else {
892 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
893 				sb_data_e1x.common.p_func.pf_id,
894 				sb_data_e1x.common.p_func.vf_id,
895 				sb_data_e1x.common.p_func.vf_valid,
896 				sb_data_e1x.common.p_func.vnic_id,
897 				sb_data_e1x.common.same_igu_sb_1b,
898 				sb_data_e1x.common.state);
899 		}
900 
901 		/* SB_SMs data */
902 		for (j = 0; j < HC_SB_MAX_SM; j++) {
903 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
904 				j, hc_sm_p[j].__flags,
905 				hc_sm_p[j].igu_sb_id,
906 				hc_sm_p[j].igu_seg_id,
907 				hc_sm_p[j].time_to_expire,
908 				hc_sm_p[j].timer_value);
909 		}
910 
911 		/* Indecies data */
912 		for (j = 0; j < loop; j++) {
913 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
914 			       hc_index_p[j].flags,
915 			       hc_index_p[j].timeout);
916 		}
917 	}
918 
919 #ifdef BNX2X_STOP_ON_ERROR
920 	/* Rings */
921 	/* Rx */
922 	for_each_rx_queue(bp, i) {
923 		struct bnx2x_fastpath *fp = &bp->fp[i];
924 
925 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
926 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
927 		for (j = start; j != end; j = RX_BD(j + 1)) {
928 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
929 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
930 
931 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
932 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
933 		}
934 
935 		start = RX_SGE(fp->rx_sge_prod);
936 		end = RX_SGE(fp->last_max_sge);
937 		for (j = start; j != end; j = RX_SGE(j + 1)) {
938 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
939 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
940 
941 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
942 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
943 		}
944 
945 		start = RCQ_BD(fp->rx_comp_cons - 10);
946 		end = RCQ_BD(fp->rx_comp_cons + 503);
947 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
948 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
949 
950 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
951 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
952 		}
953 	}
954 
955 	/* Tx */
956 	for_each_tx_queue(bp, i) {
957 		struct bnx2x_fastpath *fp = &bp->fp[i];
958 		for_each_cos_in_tx_queue(fp, cos) {
959 			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
960 
961 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
962 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
963 			for (j = start; j != end; j = TX_BD(j + 1)) {
964 				struct sw_tx_bd *sw_bd =
965 					&txdata->tx_buf_ring[j];
966 
967 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
968 					  i, cos, j, sw_bd->skb,
969 					  sw_bd->first_bd);
970 			}
971 
972 			start = TX_BD(txdata->tx_bd_cons - 10);
973 			end = TX_BD(txdata->tx_bd_cons + 254);
974 			for (j = start; j != end; j = TX_BD(j + 1)) {
975 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
976 
977 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
978 					  i, cos, j, tx_bd[0], tx_bd[1],
979 					  tx_bd[2], tx_bd[3]);
980 			}
981 		}
982 	}
983 #endif
984 	bnx2x_fw_dump(bp);
985 	bnx2x_mc_assert(bp);
986 	BNX2X_ERR("end crash dump -----------------\n");
987 }
988 
989 /*
990  * FLR Support for E2
991  *
992  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
993  * initialization.
994  */
995 #define FLR_WAIT_USEC		10000	/* 10 miliseconds */
996 #define FLR_WAIT_INTERVAL	50	/* usec */
997 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
998 
999 struct pbf_pN_buf_regs {
1000 	int pN;
1001 	u32 init_crd;
1002 	u32 crd;
1003 	u32 crd_freed;
1004 };
1005 
1006 struct pbf_pN_cmd_regs {
1007 	int pN;
1008 	u32 lines_occup;
1009 	u32 lines_freed;
1010 };
1011 
1012 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1013 				     struct pbf_pN_buf_regs *regs,
1014 				     u32 poll_count)
1015 {
1016 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1017 	u32 cur_cnt = poll_count;
1018 
1019 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1020 	crd = crd_start = REG_RD(bp, regs->crd);
1021 	init_crd = REG_RD(bp, regs->init_crd);
1022 
1023 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1024 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1025 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1026 
1027 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1028 	       (init_crd - crd_start))) {
1029 		if (cur_cnt--) {
1030 			udelay(FLR_WAIT_INTERVAL);
1031 			crd = REG_RD(bp, regs->crd);
1032 			crd_freed = REG_RD(bp, regs->crd_freed);
1033 		} else {
1034 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1035 			   regs->pN);
1036 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1037 			   regs->pN, crd);
1038 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1039 			   regs->pN, crd_freed);
1040 			break;
1041 		}
1042 	}
1043 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1044 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1045 }
1046 
1047 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1048 				     struct pbf_pN_cmd_regs *regs,
1049 				     u32 poll_count)
1050 {
1051 	u32 occup, to_free, freed, freed_start;
1052 	u32 cur_cnt = poll_count;
1053 
1054 	occup = to_free = REG_RD(bp, regs->lines_occup);
1055 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1056 
1057 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1058 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1059 
1060 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1061 		if (cur_cnt--) {
1062 			udelay(FLR_WAIT_INTERVAL);
1063 			occup = REG_RD(bp, regs->lines_occup);
1064 			freed = REG_RD(bp, regs->lines_freed);
1065 		} else {
1066 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1067 			   regs->pN);
1068 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1069 			   regs->pN, occup);
1070 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1071 			   regs->pN, freed);
1072 			break;
1073 		}
1074 	}
1075 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1076 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1077 }
1078 
1079 static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1080 				     u32 expected, u32 poll_count)
1081 {
1082 	u32 cur_cnt = poll_count;
1083 	u32 val;
1084 
1085 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1086 		udelay(FLR_WAIT_INTERVAL);
1087 
1088 	return val;
1089 }
1090 
1091 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1092 						  char *msg, u32 poll_cnt)
1093 {
1094 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1095 	if (val != 0) {
1096 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1097 		return 1;
1098 	}
1099 	return 0;
1100 }
1101 
1102 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1103 {
1104 	/* adjust polling timeout */
1105 	if (CHIP_REV_IS_EMUL(bp))
1106 		return FLR_POLL_CNT * 2000;
1107 
1108 	if (CHIP_REV_IS_FPGA(bp))
1109 		return FLR_POLL_CNT * 120;
1110 
1111 	return FLR_POLL_CNT;
1112 }
1113 
1114 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1115 {
1116 	struct pbf_pN_cmd_regs cmd_regs[] = {
1117 		{0, (CHIP_IS_E3B0(bp)) ?
1118 			PBF_REG_TQ_OCCUPANCY_Q0 :
1119 			PBF_REG_P0_TQ_OCCUPANCY,
1120 		    (CHIP_IS_E3B0(bp)) ?
1121 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1122 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1123 		{1, (CHIP_IS_E3B0(bp)) ?
1124 			PBF_REG_TQ_OCCUPANCY_Q1 :
1125 			PBF_REG_P1_TQ_OCCUPANCY,
1126 		    (CHIP_IS_E3B0(bp)) ?
1127 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1128 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1129 		{4, (CHIP_IS_E3B0(bp)) ?
1130 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1131 			PBF_REG_P4_TQ_OCCUPANCY,
1132 		    (CHIP_IS_E3B0(bp)) ?
1133 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1134 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1135 	};
1136 
1137 	struct pbf_pN_buf_regs buf_regs[] = {
1138 		{0, (CHIP_IS_E3B0(bp)) ?
1139 			PBF_REG_INIT_CRD_Q0 :
1140 			PBF_REG_P0_INIT_CRD ,
1141 		    (CHIP_IS_E3B0(bp)) ?
1142 			PBF_REG_CREDIT_Q0 :
1143 			PBF_REG_P0_CREDIT,
1144 		    (CHIP_IS_E3B0(bp)) ?
1145 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1146 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1147 		{1, (CHIP_IS_E3B0(bp)) ?
1148 			PBF_REG_INIT_CRD_Q1 :
1149 			PBF_REG_P1_INIT_CRD,
1150 		    (CHIP_IS_E3B0(bp)) ?
1151 			PBF_REG_CREDIT_Q1 :
1152 			PBF_REG_P1_CREDIT,
1153 		    (CHIP_IS_E3B0(bp)) ?
1154 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1155 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1156 		{4, (CHIP_IS_E3B0(bp)) ?
1157 			PBF_REG_INIT_CRD_LB_Q :
1158 			PBF_REG_P4_INIT_CRD,
1159 		    (CHIP_IS_E3B0(bp)) ?
1160 			PBF_REG_CREDIT_LB_Q :
1161 			PBF_REG_P4_CREDIT,
1162 		    (CHIP_IS_E3B0(bp)) ?
1163 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1164 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1165 	};
1166 
1167 	int i;
1168 
1169 	/* Verify the command queues are flushed P0, P1, P4 */
1170 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1171 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1172 
1173 
1174 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1175 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1176 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1177 }
1178 
1179 #define OP_GEN_PARAM(param) \
1180 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1181 
1182 #define OP_GEN_TYPE(type) \
1183 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1184 
1185 #define OP_GEN_AGG_VECT(index) \
1186 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1187 
1188 
1189 static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1190 					 u32 poll_cnt)
1191 {
1192 	struct sdm_op_gen op_gen = {0};
1193 
1194 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1195 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1196 	int ret = 0;
1197 
1198 	if (REG_RD(bp, comp_addr)) {
1199 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1200 		return 1;
1201 	}
1202 
1203 	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1204 	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1205 	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1206 	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1207 
1208 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1209 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1210 
1211 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1212 		BNX2X_ERR("FW final cleanup did not succeed\n");
1213 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1214 		   (REG_RD(bp, comp_addr)));
1215 		ret = 1;
1216 	}
1217 	/* Zero completion for nxt FLR */
1218 	REG_WR(bp, comp_addr, 0);
1219 
1220 	return ret;
1221 }
1222 
1223 static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1224 {
1225 	int pos;
1226 	u16 status;
1227 
1228 	pos = pci_pcie_cap(dev);
1229 	if (!pos)
1230 		return false;
1231 
1232 	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1233 	return status & PCI_EXP_DEVSTA_TRPND;
1234 }
1235 
1236 /* PF FLR specific routines
1237 */
1238 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1239 {
1240 
1241 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1242 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1243 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1244 			"CFC PF usage counter timed out",
1245 			poll_cnt))
1246 		return 1;
1247 
1248 
1249 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1250 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1251 			DORQ_REG_PF_USAGE_CNT,
1252 			"DQ PF usage counter timed out",
1253 			poll_cnt))
1254 		return 1;
1255 
1256 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1257 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1258 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1259 			"QM PF usage counter timed out",
1260 			poll_cnt))
1261 		return 1;
1262 
1263 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1264 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1265 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1266 			"Timers VNIC usage counter timed out",
1267 			poll_cnt))
1268 		return 1;
1269 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1270 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1271 			"Timers NUM_SCANS usage counter timed out",
1272 			poll_cnt))
1273 		return 1;
1274 
1275 	/* Wait DMAE PF usage counter to zero */
1276 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1277 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1278 			"DMAE dommand register timed out",
1279 			poll_cnt))
1280 		return 1;
1281 
1282 	return 0;
1283 }
1284 
1285 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1286 {
1287 	u32 val;
1288 
1289 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1290 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1291 
1292 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1293 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1294 
1295 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1296 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1297 
1298 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1299 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1300 
1301 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1302 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1303 
1304 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1305 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1306 
1307 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1308 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1309 
1310 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1311 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1312 	   val);
1313 }
1314 
1315 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1316 {
1317 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1318 
1319 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1320 
1321 	/* Re-enable PF target read access */
1322 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1323 
1324 	/* Poll HW usage counters */
1325 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1326 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1327 		return -EBUSY;
1328 
1329 	/* Zero the igu 'trailing edge' and 'leading edge' */
1330 
1331 	/* Send the FW cleanup command */
1332 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1333 		return -EBUSY;
1334 
1335 	/* ATC cleanup */
1336 
1337 	/* Verify TX hw is flushed */
1338 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1339 
1340 	/* Wait 100ms (not adjusted according to platform) */
1341 	msleep(100);
1342 
1343 	/* Verify no pending pci transactions */
1344 	if (bnx2x_is_pcie_pending(bp->pdev))
1345 		BNX2X_ERR("PCIE Transactions still pending\n");
1346 
1347 	/* Debug */
1348 	bnx2x_hw_enable_status(bp);
1349 
1350 	/*
1351 	 * Master enable - Due to WB DMAE writes performed before this
1352 	 * register is re-initialized as part of the regular function init
1353 	 */
1354 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1355 
1356 	return 0;
1357 }
1358 
1359 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1360 {
1361 	int port = BP_PORT(bp);
1362 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1363 	u32 val = REG_RD(bp, addr);
1364 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1365 	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1366 
1367 	if (msix) {
1368 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1369 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1370 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1371 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1372 	} else if (msi) {
1373 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1374 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1375 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1376 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1377 	} else {
1378 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1379 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1380 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1381 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1382 
1383 		if (!CHIP_IS_E1(bp)) {
1384 			DP(NETIF_MSG_IFUP,
1385 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1386 
1387 			REG_WR(bp, addr, val);
1388 
1389 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1390 		}
1391 	}
1392 
1393 	if (CHIP_IS_E1(bp))
1394 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1395 
1396 	DP(NETIF_MSG_IFUP,
1397 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1398 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1399 
1400 	REG_WR(bp, addr, val);
1401 	/*
1402 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1403 	 */
1404 	mmiowb();
1405 	barrier();
1406 
1407 	if (!CHIP_IS_E1(bp)) {
1408 		/* init leading/trailing edge */
1409 		if (IS_MF(bp)) {
1410 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1411 			if (bp->port.pmf)
1412 				/* enable nig and gpio3 attention */
1413 				val |= 0x1100;
1414 		} else
1415 			val = 0xffff;
1416 
1417 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1418 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1419 	}
1420 
1421 	/* Make sure that interrupts are indeed enabled from here on */
1422 	mmiowb();
1423 }
1424 
1425 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1426 {
1427 	u32 val;
1428 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1429 	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1430 
1431 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1432 
1433 	if (msix) {
1434 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1435 			 IGU_PF_CONF_SINGLE_ISR_EN);
1436 		val |= (IGU_PF_CONF_FUNC_EN |
1437 			IGU_PF_CONF_MSI_MSIX_EN |
1438 			IGU_PF_CONF_ATTN_BIT_EN);
1439 	} else if (msi) {
1440 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1441 		val |= (IGU_PF_CONF_FUNC_EN |
1442 			IGU_PF_CONF_MSI_MSIX_EN |
1443 			IGU_PF_CONF_ATTN_BIT_EN |
1444 			IGU_PF_CONF_SINGLE_ISR_EN);
1445 	} else {
1446 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1447 		val |= (IGU_PF_CONF_FUNC_EN |
1448 			IGU_PF_CONF_INT_LINE_EN |
1449 			IGU_PF_CONF_ATTN_BIT_EN |
1450 			IGU_PF_CONF_SINGLE_ISR_EN);
1451 	}
1452 
1453 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1454 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1455 
1456 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1457 
1458 	barrier();
1459 
1460 	/* init leading/trailing edge */
1461 	if (IS_MF(bp)) {
1462 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1463 		if (bp->port.pmf)
1464 			/* enable nig and gpio3 attention */
1465 			val |= 0x1100;
1466 	} else
1467 		val = 0xffff;
1468 
1469 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1470 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1471 
1472 	/* Make sure that interrupts are indeed enabled from here on */
1473 	mmiowb();
1474 }
1475 
1476 void bnx2x_int_enable(struct bnx2x *bp)
1477 {
1478 	if (bp->common.int_block == INT_BLOCK_HC)
1479 		bnx2x_hc_int_enable(bp);
1480 	else
1481 		bnx2x_igu_int_enable(bp);
1482 }
1483 
1484 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1485 {
1486 	int port = BP_PORT(bp);
1487 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1488 	u32 val = REG_RD(bp, addr);
1489 
1490 	/*
1491 	 * in E1 we must use only PCI configuration space to disable
1492 	 * MSI/MSIX capablility
1493 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1494 	 */
1495 	if (CHIP_IS_E1(bp)) {
1496 		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1497 		 *  Use mask register to prevent from HC sending interrupts
1498 		 *  after we exit the function
1499 		 */
1500 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1501 
1502 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1503 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1504 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1505 	} else
1506 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1507 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1508 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1509 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1510 
1511 	DP(NETIF_MSG_IFDOWN,
1512 	   "write %x to HC %d (addr 0x%x)\n",
1513 	   val, port, addr);
1514 
1515 	/* flush all outstanding writes */
1516 	mmiowb();
1517 
1518 	REG_WR(bp, addr, val);
1519 	if (REG_RD(bp, addr) != val)
1520 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1521 }
1522 
1523 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1524 {
1525 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1526 
1527 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1528 		 IGU_PF_CONF_INT_LINE_EN |
1529 		 IGU_PF_CONF_ATTN_BIT_EN);
1530 
1531 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1532 
1533 	/* flush all outstanding writes */
1534 	mmiowb();
1535 
1536 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1537 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1538 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1539 }
1540 
1541 void bnx2x_int_disable(struct bnx2x *bp)
1542 {
1543 	if (bp->common.int_block == INT_BLOCK_HC)
1544 		bnx2x_hc_int_disable(bp);
1545 	else
1546 		bnx2x_igu_int_disable(bp);
1547 }
1548 
1549 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1550 {
1551 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1552 	int i, offset;
1553 
1554 	if (disable_hw)
1555 		/* prevent the HW from sending interrupts */
1556 		bnx2x_int_disable(bp);
1557 
1558 	/* make sure all ISRs are done */
1559 	if (msix) {
1560 		synchronize_irq(bp->msix_table[0].vector);
1561 		offset = 1;
1562 #ifdef BCM_CNIC
1563 		offset++;
1564 #endif
1565 		for_each_eth_queue(bp, i)
1566 			synchronize_irq(bp->msix_table[offset++].vector);
1567 	} else
1568 		synchronize_irq(bp->pdev->irq);
1569 
1570 	/* make sure sp_task is not running */
1571 	cancel_delayed_work(&bp->sp_task);
1572 	cancel_delayed_work(&bp->period_task);
1573 	flush_workqueue(bnx2x_wq);
1574 }
1575 
1576 /* fast path */
1577 
1578 /*
1579  * General service functions
1580  */
1581 
1582 /* Return true if succeeded to acquire the lock */
1583 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1584 {
1585 	u32 lock_status;
1586 	u32 resource_bit = (1 << resource);
1587 	int func = BP_FUNC(bp);
1588 	u32 hw_lock_control_reg;
1589 
1590 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1591 	   "Trying to take a lock on resource %d\n", resource);
1592 
1593 	/* Validating that the resource is within range */
1594 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1595 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1596 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1597 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1598 		return false;
1599 	}
1600 
1601 	if (func <= 5)
1602 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1603 	else
1604 		hw_lock_control_reg =
1605 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1606 
1607 	/* Try to acquire the lock */
1608 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1609 	lock_status = REG_RD(bp, hw_lock_control_reg);
1610 	if (lock_status & resource_bit)
1611 		return true;
1612 
1613 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1614 	   "Failed to get a lock on resource %d\n", resource);
1615 	return false;
1616 }
1617 
1618 /**
1619  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1620  *
1621  * @bp:	driver handle
1622  *
1623  * Returns the recovery leader resource id according to the engine this function
1624  * belongs to. Currently only only 2 engines is supported.
1625  */
1626 static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1627 {
1628 	if (BP_PATH(bp))
1629 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1630 	else
1631 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1632 }
1633 
1634 /**
1635  * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1636  *
1637  * @bp: driver handle
1638  *
1639  * Tries to aquire a leader lock for cuurent engine.
1640  */
1641 static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1642 {
1643 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1644 }
1645 
1646 #ifdef BCM_CNIC
1647 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1648 #endif
1649 
1650 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1651 {
1652 	struct bnx2x *bp = fp->bp;
1653 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1654 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1655 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1656 	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1657 
1658 	DP(BNX2X_MSG_SP,
1659 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1660 	   fp->index, cid, command, bp->state,
1661 	   rr_cqe->ramrod_cqe.ramrod_type);
1662 
1663 	switch (command) {
1664 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1665 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1666 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1667 		break;
1668 
1669 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1670 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1671 		drv_cmd = BNX2X_Q_CMD_SETUP;
1672 		break;
1673 
1674 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1675 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1676 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1677 		break;
1678 
1679 	case (RAMROD_CMD_ID_ETH_HALT):
1680 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1681 		drv_cmd = BNX2X_Q_CMD_HALT;
1682 		break;
1683 
1684 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1685 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1686 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1687 		break;
1688 
1689 	case (RAMROD_CMD_ID_ETH_EMPTY):
1690 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1691 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1692 		break;
1693 
1694 	default:
1695 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1696 			  command, fp->index);
1697 		return;
1698 	}
1699 
1700 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1701 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1702 		/* q_obj->complete_cmd() failure means that this was
1703 		 * an unexpected completion.
1704 		 *
1705 		 * In this case we don't want to increase the bp->spq_left
1706 		 * because apparently we haven't sent this command the first
1707 		 * place.
1708 		 */
1709 #ifdef BNX2X_STOP_ON_ERROR
1710 		bnx2x_panic();
1711 #else
1712 		return;
1713 #endif
1714 
1715 	smp_mb__before_atomic_inc();
1716 	atomic_inc(&bp->cq_spq_left);
1717 	/* push the change in bp->spq_left and towards the memory */
1718 	smp_mb__after_atomic_inc();
1719 
1720 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1721 
1722 	return;
1723 }
1724 
1725 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1726 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1727 {
1728 	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1729 
1730 	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1731 				 start);
1732 }
1733 
1734 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1735 {
1736 	struct bnx2x *bp = netdev_priv(dev_instance);
1737 	u16 status = bnx2x_ack_int(bp);
1738 	u16 mask;
1739 	int i;
1740 	u8 cos;
1741 
1742 	/* Return here if interrupt is shared and it's not for us */
1743 	if (unlikely(status == 0)) {
1744 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1745 		return IRQ_NONE;
1746 	}
1747 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1748 
1749 #ifdef BNX2X_STOP_ON_ERROR
1750 	if (unlikely(bp->panic))
1751 		return IRQ_HANDLED;
1752 #endif
1753 
1754 	for_each_eth_queue(bp, i) {
1755 		struct bnx2x_fastpath *fp = &bp->fp[i];
1756 
1757 		mask = 0x2 << (fp->index + CNIC_PRESENT);
1758 		if (status & mask) {
1759 			/* Handle Rx or Tx according to SB id */
1760 			prefetch(fp->rx_cons_sb);
1761 			for_each_cos_in_tx_queue(fp, cos)
1762 				prefetch(fp->txdata[cos].tx_cons_sb);
1763 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1764 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1765 			status &= ~mask;
1766 		}
1767 	}
1768 
1769 #ifdef BCM_CNIC
1770 	mask = 0x2;
1771 	if (status & (mask | 0x1)) {
1772 		struct cnic_ops *c_ops = NULL;
1773 
1774 		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1775 			rcu_read_lock();
1776 			c_ops = rcu_dereference(bp->cnic_ops);
1777 			if (c_ops)
1778 				c_ops->cnic_handler(bp->cnic_data, NULL);
1779 			rcu_read_unlock();
1780 		}
1781 
1782 		status &= ~mask;
1783 	}
1784 #endif
1785 
1786 	if (unlikely(status & 0x1)) {
1787 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1788 
1789 		status &= ~0x1;
1790 		if (!status)
1791 			return IRQ_HANDLED;
1792 	}
1793 
1794 	if (unlikely(status))
1795 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1796 		   status);
1797 
1798 	return IRQ_HANDLED;
1799 }
1800 
1801 /* Link */
1802 
1803 /*
1804  * General service functions
1805  */
1806 
1807 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1808 {
1809 	u32 lock_status;
1810 	u32 resource_bit = (1 << resource);
1811 	int func = BP_FUNC(bp);
1812 	u32 hw_lock_control_reg;
1813 	int cnt;
1814 
1815 	/* Validating that the resource is within range */
1816 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1817 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1818 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1819 		return -EINVAL;
1820 	}
1821 
1822 	if (func <= 5) {
1823 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1824 	} else {
1825 		hw_lock_control_reg =
1826 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1827 	}
1828 
1829 	/* Validating that the resource is not already taken */
1830 	lock_status = REG_RD(bp, hw_lock_control_reg);
1831 	if (lock_status & resource_bit) {
1832 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1833 		   lock_status, resource_bit);
1834 		return -EEXIST;
1835 	}
1836 
1837 	/* Try for 5 second every 5ms */
1838 	for (cnt = 0; cnt < 1000; cnt++) {
1839 		/* Try to acquire the lock */
1840 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1841 		lock_status = REG_RD(bp, hw_lock_control_reg);
1842 		if (lock_status & resource_bit)
1843 			return 0;
1844 
1845 		msleep(5);
1846 	}
1847 	BNX2X_ERR("Timeout\n");
1848 	return -EAGAIN;
1849 }
1850 
1851 int bnx2x_release_leader_lock(struct bnx2x *bp)
1852 {
1853 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1854 }
1855 
1856 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1857 {
1858 	u32 lock_status;
1859 	u32 resource_bit = (1 << resource);
1860 	int func = BP_FUNC(bp);
1861 	u32 hw_lock_control_reg;
1862 
1863 	/* Validating that the resource is within range */
1864 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1865 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1866 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1867 		return -EINVAL;
1868 	}
1869 
1870 	if (func <= 5) {
1871 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1872 	} else {
1873 		hw_lock_control_reg =
1874 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1875 	}
1876 
1877 	/* Validating that the resource is currently taken */
1878 	lock_status = REG_RD(bp, hw_lock_control_reg);
1879 	if (!(lock_status & resource_bit)) {
1880 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1881 		   lock_status, resource_bit);
1882 		return -EFAULT;
1883 	}
1884 
1885 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1886 	return 0;
1887 }
1888 
1889 
1890 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1891 {
1892 	/* The GPIO should be swapped if swap register is set and active */
1893 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1894 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1895 	int gpio_shift = gpio_num +
1896 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1897 	u32 gpio_mask = (1 << gpio_shift);
1898 	u32 gpio_reg;
1899 	int value;
1900 
1901 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1902 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1903 		return -EINVAL;
1904 	}
1905 
1906 	/* read GPIO value */
1907 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1908 
1909 	/* get the requested pin value */
1910 	if ((gpio_reg & gpio_mask) == gpio_mask)
1911 		value = 1;
1912 	else
1913 		value = 0;
1914 
1915 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1916 
1917 	return value;
1918 }
1919 
1920 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1921 {
1922 	/* The GPIO should be swapped if swap register is set and active */
1923 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1924 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1925 	int gpio_shift = gpio_num +
1926 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1927 	u32 gpio_mask = (1 << gpio_shift);
1928 	u32 gpio_reg;
1929 
1930 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1931 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1932 		return -EINVAL;
1933 	}
1934 
1935 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1936 	/* read GPIO and mask except the float bits */
1937 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1938 
1939 	switch (mode) {
1940 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1941 		DP(NETIF_MSG_LINK,
1942 		   "Set GPIO %d (shift %d) -> output low\n",
1943 		   gpio_num, gpio_shift);
1944 		/* clear FLOAT and set CLR */
1945 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1946 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1947 		break;
1948 
1949 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1950 		DP(NETIF_MSG_LINK,
1951 		   "Set GPIO %d (shift %d) -> output high\n",
1952 		   gpio_num, gpio_shift);
1953 		/* clear FLOAT and set SET */
1954 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1955 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1956 		break;
1957 
1958 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1959 		DP(NETIF_MSG_LINK,
1960 		   "Set GPIO %d (shift %d) -> input\n",
1961 		   gpio_num, gpio_shift);
1962 		/* set FLOAT */
1963 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1964 		break;
1965 
1966 	default:
1967 		break;
1968 	}
1969 
1970 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1971 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1972 
1973 	return 0;
1974 }
1975 
1976 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1977 {
1978 	u32 gpio_reg = 0;
1979 	int rc = 0;
1980 
1981 	/* Any port swapping should be handled by caller. */
1982 
1983 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1984 	/* read GPIO and mask except the float bits */
1985 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1986 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1987 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1988 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1989 
1990 	switch (mode) {
1991 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1992 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1993 		/* set CLR */
1994 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1995 		break;
1996 
1997 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1998 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1999 		/* set SET */
2000 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2001 		break;
2002 
2003 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2004 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2005 		/* set FLOAT */
2006 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2007 		break;
2008 
2009 	default:
2010 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2011 		rc = -EINVAL;
2012 		break;
2013 	}
2014 
2015 	if (rc == 0)
2016 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2017 
2018 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2019 
2020 	return rc;
2021 }
2022 
2023 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2024 {
2025 	/* The GPIO should be swapped if swap register is set and active */
2026 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2027 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2028 	int gpio_shift = gpio_num +
2029 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2030 	u32 gpio_mask = (1 << gpio_shift);
2031 	u32 gpio_reg;
2032 
2033 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2034 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2035 		return -EINVAL;
2036 	}
2037 
2038 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2039 	/* read GPIO int */
2040 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2041 
2042 	switch (mode) {
2043 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2044 		DP(NETIF_MSG_LINK,
2045 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2046 		   gpio_num, gpio_shift);
2047 		/* clear SET and set CLR */
2048 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2049 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2050 		break;
2051 
2052 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2053 		DP(NETIF_MSG_LINK,
2054 		   "Set GPIO INT %d (shift %d) -> output high\n",
2055 		   gpio_num, gpio_shift);
2056 		/* clear CLR and set SET */
2057 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2058 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2059 		break;
2060 
2061 	default:
2062 		break;
2063 	}
2064 
2065 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2066 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2067 
2068 	return 0;
2069 }
2070 
2071 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2072 {
2073 	u32 spio_mask = (1 << spio_num);
2074 	u32 spio_reg;
2075 
2076 	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2077 	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2078 		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2079 		return -EINVAL;
2080 	}
2081 
2082 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2083 	/* read SPIO and mask except the float bits */
2084 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2085 
2086 	switch (mode) {
2087 	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2088 		DP(NETIF_MSG_HW, "Set SPIO %d -> output low\n", spio_num);
2089 		/* clear FLOAT and set CLR */
2090 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2091 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2092 		break;
2093 
2094 	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2095 		DP(NETIF_MSG_HW, "Set SPIO %d -> output high\n", spio_num);
2096 		/* clear FLOAT and set SET */
2097 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2098 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2099 		break;
2100 
2101 	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2102 		DP(NETIF_MSG_HW, "Set SPIO %d -> input\n", spio_num);
2103 		/* set FLOAT */
2104 		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2105 		break;
2106 
2107 	default:
2108 		break;
2109 	}
2110 
2111 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2112 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2113 
2114 	return 0;
2115 }
2116 
2117 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2118 {
2119 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2120 	switch (bp->link_vars.ieee_fc &
2121 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2122 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2123 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2124 						   ADVERTISED_Pause);
2125 		break;
2126 
2127 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2128 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2129 						  ADVERTISED_Pause);
2130 		break;
2131 
2132 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2133 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2134 		break;
2135 
2136 	default:
2137 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2138 						   ADVERTISED_Pause);
2139 		break;
2140 	}
2141 }
2142 
2143 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2144 {
2145 	if (!BP_NOMCP(bp)) {
2146 		u8 rc;
2147 		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2148 		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2149 		/*
2150 		 * Initialize link parameters structure variables
2151 		 * It is recommended to turn off RX FC for jumbo frames
2152 		 * for better performance
2153 		 */
2154 		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2155 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2156 		else
2157 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2158 
2159 		bnx2x_acquire_phy_lock(bp);
2160 
2161 		if (load_mode == LOAD_DIAG) {
2162 			struct link_params *lp = &bp->link_params;
2163 			lp->loopback_mode = LOOPBACK_XGXS;
2164 			/* do PHY loopback at 10G speed, if possible */
2165 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2166 				if (lp->speed_cap_mask[cfx_idx] &
2167 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2168 					lp->req_line_speed[cfx_idx] =
2169 					SPEED_10000;
2170 				else
2171 					lp->req_line_speed[cfx_idx] =
2172 					SPEED_1000;
2173 			}
2174 		}
2175 
2176 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2177 
2178 		bnx2x_release_phy_lock(bp);
2179 
2180 		bnx2x_calc_fc_adv(bp);
2181 
2182 		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2183 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2184 			bnx2x_link_report(bp);
2185 		} else
2186 			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2187 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2188 		return rc;
2189 	}
2190 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2191 	return -EINVAL;
2192 }
2193 
2194 void bnx2x_link_set(struct bnx2x *bp)
2195 {
2196 	if (!BP_NOMCP(bp)) {
2197 		bnx2x_acquire_phy_lock(bp);
2198 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2199 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2200 		bnx2x_release_phy_lock(bp);
2201 
2202 		bnx2x_calc_fc_adv(bp);
2203 	} else
2204 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2205 }
2206 
2207 static void bnx2x__link_reset(struct bnx2x *bp)
2208 {
2209 	if (!BP_NOMCP(bp)) {
2210 		bnx2x_acquire_phy_lock(bp);
2211 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2212 		bnx2x_release_phy_lock(bp);
2213 	} else
2214 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2215 }
2216 
2217 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2218 {
2219 	u8 rc = 0;
2220 
2221 	if (!BP_NOMCP(bp)) {
2222 		bnx2x_acquire_phy_lock(bp);
2223 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2224 				     is_serdes);
2225 		bnx2x_release_phy_lock(bp);
2226 	} else
2227 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2228 
2229 	return rc;
2230 }
2231 
2232 static void bnx2x_init_port_minmax(struct bnx2x *bp)
2233 {
2234 	u32 r_param = bp->link_vars.line_speed / 8;
2235 	u32 fair_periodic_timeout_usec;
2236 	u32 t_fair;
2237 
2238 	memset(&(bp->cmng.rs_vars), 0,
2239 	       sizeof(struct rate_shaping_vars_per_port));
2240 	memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2241 
2242 	/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2243 	bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2244 
2245 	/* this is the threshold below which no timer arming will occur
2246 	   1.25 coefficient is for the threshold to be a little bigger
2247 	   than the real time, to compensate for timer in-accuracy */
2248 	bp->cmng.rs_vars.rs_threshold =
2249 				(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2250 
2251 	/* resolution of fairness timer */
2252 	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2253 	/* for 10G it is 1000usec. for 1G it is 10000usec. */
2254 	t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2255 
2256 	/* this is the threshold below which we won't arm the timer anymore */
2257 	bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2258 
2259 	/* we multiply by 1e3/8 to get bytes/msec.
2260 	   We don't want the credits to pass a credit
2261 	   of the t_fair*FAIR_MEM (algorithm resolution) */
2262 	bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2263 	/* since each tick is 4 usec */
2264 	bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2265 }
2266 
2267 /* Calculates the sum of vn_min_rates.
2268    It's needed for further normalizing of the min_rates.
2269    Returns:
2270      sum of vn_min_rates.
2271        or
2272      0 - if all the min_rates are 0.
2273      In the later case fainess algorithm should be deactivated.
2274      If not all min_rates are zero then those that are zeroes will be set to 1.
2275  */
2276 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2277 {
2278 	int all_zero = 1;
2279 	int vn;
2280 
2281 	bp->vn_weight_sum = 0;
2282 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2283 		u32 vn_cfg = bp->mf_config[vn];
2284 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2285 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2286 
2287 		/* Skip hidden vns */
2288 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2289 			continue;
2290 
2291 		/* If min rate is zero - set it to 1 */
2292 		if (!vn_min_rate)
2293 			vn_min_rate = DEF_MIN_RATE;
2294 		else
2295 			all_zero = 0;
2296 
2297 		bp->vn_weight_sum += vn_min_rate;
2298 	}
2299 
2300 	/* if ETS or all min rates are zeros - disable fairness */
2301 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2302 		bp->cmng.flags.cmng_enables &=
2303 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2304 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2305 	} else if (all_zero) {
2306 		bp->cmng.flags.cmng_enables &=
2307 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2308 		DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2309 		   "  fairness will be disabled\n");
2310 	} else
2311 		bp->cmng.flags.cmng_enables |=
2312 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2313 }
2314 
2315 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2316 {
2317 	struct rate_shaping_vars_per_vn m_rs_vn;
2318 	struct fairness_vars_per_vn m_fair_vn;
2319 	u32 vn_cfg = bp->mf_config[vn];
2320 	int func = func_by_vn(bp, vn);
2321 	u16 vn_min_rate, vn_max_rate;
2322 	int i;
2323 
2324 	/* If function is hidden - set min and max to zeroes */
2325 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2326 		vn_min_rate = 0;
2327 		vn_max_rate = 0;
2328 
2329 	} else {
2330 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2331 
2332 		vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2333 				FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2334 		/* If fairness is enabled (not all min rates are zeroes) and
2335 		   if current min rate is zero - set it to 1.
2336 		   This is a requirement of the algorithm. */
2337 		if (bp->vn_weight_sum && (vn_min_rate == 0))
2338 			vn_min_rate = DEF_MIN_RATE;
2339 
2340 		if (IS_MF_SI(bp))
2341 			/* maxCfg in percents of linkspeed */
2342 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2343 		else
2344 			/* maxCfg is absolute in 100Mb units */
2345 			vn_max_rate = maxCfg * 100;
2346 	}
2347 
2348 	DP(NETIF_MSG_IFUP,
2349 	   "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
2350 	   func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2351 
2352 	memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2353 	memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2354 
2355 	/* global vn counter - maximal Mbps for this vn */
2356 	m_rs_vn.vn_counter.rate = vn_max_rate;
2357 
2358 	/* quota - number of bytes transmitted in this period */
2359 	m_rs_vn.vn_counter.quota =
2360 				(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2361 
2362 	if (bp->vn_weight_sum) {
2363 		/* credit for each period of the fairness algorithm:
2364 		   number of bytes in T_FAIR (the vn share the port rate).
2365 		   vn_weight_sum should not be larger than 10000, thus
2366 		   T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2367 		   than zero */
2368 		m_fair_vn.vn_credit_delta =
2369 			max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2370 						   (8 * bp->vn_weight_sum))),
2371 			      (bp->cmng.fair_vars.fair_threshold +
2372 							MIN_ABOVE_THRESH));
2373 		DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2374 		   m_fair_vn.vn_credit_delta);
2375 	}
2376 
2377 	/* Store it to internal memory */
2378 	for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2379 		REG_WR(bp, BAR_XSTRORM_INTMEM +
2380 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2381 		       ((u32 *)(&m_rs_vn))[i]);
2382 
2383 	for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2384 		REG_WR(bp, BAR_XSTRORM_INTMEM +
2385 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2386 		       ((u32 *)(&m_fair_vn))[i]);
2387 }
2388 
2389 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2390 {
2391 	if (CHIP_REV_IS_SLOW(bp))
2392 		return CMNG_FNS_NONE;
2393 	if (IS_MF(bp))
2394 		return CMNG_FNS_MINMAX;
2395 
2396 	return CMNG_FNS_NONE;
2397 }
2398 
2399 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2400 {
2401 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2402 
2403 	if (BP_NOMCP(bp))
2404 		return; /* what should be the default bvalue in this case */
2405 
2406 	/* For 2 port configuration the absolute function number formula
2407 	 * is:
2408 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2409 	 *
2410 	 *      and there are 4 functions per port
2411 	 *
2412 	 * For 4 port configuration it is
2413 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2414 	 *
2415 	 *      and there are 2 functions per port
2416 	 */
2417 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2418 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2419 
2420 		if (func >= E1H_FUNC_MAX)
2421 			break;
2422 
2423 		bp->mf_config[vn] =
2424 			MF_CFG_RD(bp, func_mf_config[func].config);
2425 	}
2426 }
2427 
2428 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2429 {
2430 
2431 	if (cmng_type == CMNG_FNS_MINMAX) {
2432 		int vn;
2433 
2434 		/* clear cmng_enables */
2435 		bp->cmng.flags.cmng_enables = 0;
2436 
2437 		/* read mf conf from shmem */
2438 		if (read_cfg)
2439 			bnx2x_read_mf_cfg(bp);
2440 
2441 		/* Init rate shaping and fairness contexts */
2442 		bnx2x_init_port_minmax(bp);
2443 
2444 		/* vn_weight_sum and enable fairness if not 0 */
2445 		bnx2x_calc_vn_weight_sum(bp);
2446 
2447 		/* calculate and set min-max rate for each vn */
2448 		if (bp->port.pmf)
2449 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2450 				bnx2x_init_vn_minmax(bp, vn);
2451 
2452 		/* always enable rate shaping and fairness */
2453 		bp->cmng.flags.cmng_enables |=
2454 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2455 		if (!bp->vn_weight_sum)
2456 			DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2457 				   "  fairness will be disabled\n");
2458 		return;
2459 	}
2460 
2461 	/* rate shaping and fairness are disabled */
2462 	DP(NETIF_MSG_IFUP,
2463 	   "rate shaping and fairness are disabled\n");
2464 }
2465 
2466 /* This function is called upon link interrupt */
2467 static void bnx2x_link_attn(struct bnx2x *bp)
2468 {
2469 	/* Make sure that we are synced with the current statistics */
2470 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2471 
2472 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2473 
2474 	if (bp->link_vars.link_up) {
2475 
2476 		/* dropless flow control */
2477 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2478 			int port = BP_PORT(bp);
2479 			u32 pause_enabled = 0;
2480 
2481 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2482 				pause_enabled = 1;
2483 
2484 			REG_WR(bp, BAR_USTRORM_INTMEM +
2485 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2486 			       pause_enabled);
2487 		}
2488 
2489 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2490 			struct host_port_stats *pstats;
2491 
2492 			pstats = bnx2x_sp(bp, port_stats);
2493 			/* reset old mac stats */
2494 			memset(&(pstats->mac_stx[0]), 0,
2495 			       sizeof(struct mac_stx));
2496 		}
2497 		if (bp->state == BNX2X_STATE_OPEN)
2498 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2499 	}
2500 
2501 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2502 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2503 
2504 		if (cmng_fns != CMNG_FNS_NONE) {
2505 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2506 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2507 		} else
2508 			/* rate shaping and fairness are disabled */
2509 			DP(NETIF_MSG_IFUP,
2510 			   "single function mode without fairness\n");
2511 	}
2512 
2513 	__bnx2x_link_report(bp);
2514 
2515 	if (IS_MF(bp))
2516 		bnx2x_link_sync_notify(bp);
2517 }
2518 
2519 void bnx2x__link_status_update(struct bnx2x *bp)
2520 {
2521 	if (bp->state != BNX2X_STATE_OPEN)
2522 		return;
2523 
2524 	/* read updated dcb configuration */
2525 	bnx2x_dcbx_pmf_update(bp);
2526 
2527 	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2528 
2529 	if (bp->link_vars.link_up)
2530 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2531 	else
2532 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2533 
2534 	/* indicate link status */
2535 	bnx2x_link_report(bp);
2536 }
2537 
2538 static void bnx2x_pmf_update(struct bnx2x *bp)
2539 {
2540 	int port = BP_PORT(bp);
2541 	u32 val;
2542 
2543 	bp->port.pmf = 1;
2544 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2545 
2546 	/*
2547 	 * We need the mb() to ensure the ordering between the writing to
2548 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2549 	 */
2550 	smp_mb();
2551 
2552 	/* queue a periodic task */
2553 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2554 
2555 	bnx2x_dcbx_pmf_update(bp);
2556 
2557 	/* enable nig attention */
2558 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2559 	if (bp->common.int_block == INT_BLOCK_HC) {
2560 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2561 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2562 	} else if (!CHIP_IS_E1x(bp)) {
2563 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2564 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2565 	}
2566 
2567 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2568 }
2569 
2570 /* end of Link */
2571 
2572 /* slow path */
2573 
2574 /*
2575  * General service functions
2576  */
2577 
2578 /* send the MCP a request, block until there is a reply */
2579 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2580 {
2581 	int mb_idx = BP_FW_MB_IDX(bp);
2582 	u32 seq;
2583 	u32 rc = 0;
2584 	u32 cnt = 1;
2585 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2586 
2587 	mutex_lock(&bp->fw_mb_mutex);
2588 	seq = ++bp->fw_seq;
2589 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2590 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2591 
2592 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2593 			(command | seq), param);
2594 
2595 	do {
2596 		/* let the FW do it's magic ... */
2597 		msleep(delay);
2598 
2599 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2600 
2601 		/* Give the FW up to 5 second (500*10ms) */
2602 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2603 
2604 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2605 	   cnt*delay, rc, seq);
2606 
2607 	/* is this a reply to our command? */
2608 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2609 		rc &= FW_MSG_CODE_MASK;
2610 	else {
2611 		/* FW BUG! */
2612 		BNX2X_ERR("FW failed to respond!\n");
2613 		bnx2x_fw_dump(bp);
2614 		rc = 0;
2615 	}
2616 	mutex_unlock(&bp->fw_mb_mutex);
2617 
2618 	return rc;
2619 }
2620 
2621 
2622 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2623 {
2624 	if (CHIP_IS_E1x(bp)) {
2625 		struct tstorm_eth_function_common_config tcfg = {0};
2626 
2627 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2628 	}
2629 
2630 	/* Enable the function in the FW */
2631 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2632 	storm_memset_func_en(bp, p->func_id, 1);
2633 
2634 	/* spq */
2635 	if (p->func_flgs & FUNC_FLG_SPQ) {
2636 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2637 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2638 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2639 	}
2640 }
2641 
2642 /**
2643  * bnx2x_get_tx_only_flags - Return common flags
2644  *
2645  * @bp		device handle
2646  * @fp		queue handle
2647  * @zero_stats	TRUE if statistics zeroing is needed
2648  *
2649  * Return the flags that are common for the Tx-only and not normal connections.
2650  */
2651 static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2652 						   struct bnx2x_fastpath *fp,
2653 						   bool zero_stats)
2654 {
2655 	unsigned long flags = 0;
2656 
2657 	/* PF driver will always initialize the Queue to an ACTIVE state */
2658 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2659 
2660 	/* tx only connections collect statistics (on the same index as the
2661 	 *  parent connection). The statistics are zeroed when the parent
2662 	 *  connection is initialized.
2663 	 */
2664 
2665 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2666 	if (zero_stats)
2667 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2668 
2669 
2670 	return flags;
2671 }
2672 
2673 static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2674 					      struct bnx2x_fastpath *fp,
2675 					      bool leading)
2676 {
2677 	unsigned long flags = 0;
2678 
2679 	/* calculate other queue flags */
2680 	if (IS_MF_SD(bp))
2681 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2682 
2683 	if (IS_FCOE_FP(fp))
2684 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2685 
2686 	if (!fp->disable_tpa) {
2687 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2688 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2689 		if (fp->mode == TPA_MODE_GRO)
2690 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2691 	}
2692 
2693 	if (leading) {
2694 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2695 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2696 	}
2697 
2698 	/* Always set HW VLAN stripping */
2699 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2700 
2701 
2702 	return flags | bnx2x_get_common_flags(bp, fp, true);
2703 }
2704 
2705 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2706 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2707 	u8 cos)
2708 {
2709 	gen_init->stat_id = bnx2x_stats_id(fp);
2710 	gen_init->spcl_id = fp->cl_id;
2711 
2712 	/* Always use mini-jumbo MTU for FCoE L2 ring */
2713 	if (IS_FCOE_FP(fp))
2714 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2715 	else
2716 		gen_init->mtu = bp->dev->mtu;
2717 
2718 	gen_init->cos = cos;
2719 }
2720 
2721 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2722 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2723 	struct bnx2x_rxq_setup_params *rxq_init)
2724 {
2725 	u8 max_sge = 0;
2726 	u16 sge_sz = 0;
2727 	u16 tpa_agg_size = 0;
2728 
2729 	if (!fp->disable_tpa) {
2730 		pause->sge_th_lo = SGE_TH_LO(bp);
2731 		pause->sge_th_hi = SGE_TH_HI(bp);
2732 
2733 		/* validate SGE ring has enough to cross high threshold */
2734 		WARN_ON(bp->dropless_fc &&
2735 				pause->sge_th_hi + FW_PREFETCH_CNT >
2736 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2737 
2738 		tpa_agg_size = min_t(u32,
2739 			(min_t(u32, 8, MAX_SKB_FRAGS) *
2740 			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2741 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2742 			SGE_PAGE_SHIFT;
2743 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2744 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2745 		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2746 				    0xffff);
2747 	}
2748 
2749 	/* pause - not for e1 */
2750 	if (!CHIP_IS_E1(bp)) {
2751 		pause->bd_th_lo = BD_TH_LO(bp);
2752 		pause->bd_th_hi = BD_TH_HI(bp);
2753 
2754 		pause->rcq_th_lo = RCQ_TH_LO(bp);
2755 		pause->rcq_th_hi = RCQ_TH_HI(bp);
2756 		/*
2757 		 * validate that rings have enough entries to cross
2758 		 * high thresholds
2759 		 */
2760 		WARN_ON(bp->dropless_fc &&
2761 				pause->bd_th_hi + FW_PREFETCH_CNT >
2762 				bp->rx_ring_size);
2763 		WARN_ON(bp->dropless_fc &&
2764 				pause->rcq_th_hi + FW_PREFETCH_CNT >
2765 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2766 
2767 		pause->pri_map = 1;
2768 	}
2769 
2770 	/* rxq setup */
2771 	rxq_init->dscr_map = fp->rx_desc_mapping;
2772 	rxq_init->sge_map = fp->rx_sge_mapping;
2773 	rxq_init->rcq_map = fp->rx_comp_mapping;
2774 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2775 
2776 	/* This should be a maximum number of data bytes that may be
2777 	 * placed on the BD (not including paddings).
2778 	 */
2779 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2780 		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2781 
2782 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2783 	rxq_init->tpa_agg_sz = tpa_agg_size;
2784 	rxq_init->sge_buf_sz = sge_sz;
2785 	rxq_init->max_sges_pkt = max_sge;
2786 	rxq_init->rss_engine_id = BP_FUNC(bp);
2787 	rxq_init->mcast_engine_id = BP_FUNC(bp);
2788 
2789 	/* Maximum number or simultaneous TPA aggregation for this Queue.
2790 	 *
2791 	 * For PF Clients it should be the maximum avaliable number.
2792 	 * VF driver(s) may want to define it to a smaller value.
2793 	 */
2794 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2795 
2796 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2797 	rxq_init->fw_sb_id = fp->fw_sb_id;
2798 
2799 	if (IS_FCOE_FP(fp))
2800 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2801 	else
2802 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2803 }
2804 
2805 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2806 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2807 	u8 cos)
2808 {
2809 	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2810 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2811 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2812 	txq_init->fw_sb_id = fp->fw_sb_id;
2813 
2814 	/*
2815 	 * set the tss leading client id for TX classfication ==
2816 	 * leading RSS client id
2817 	 */
2818 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2819 
2820 	if (IS_FCOE_FP(fp)) {
2821 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2822 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2823 	}
2824 }
2825 
2826 static void bnx2x_pf_init(struct bnx2x *bp)
2827 {
2828 	struct bnx2x_func_init_params func_init = {0};
2829 	struct event_ring_data eq_data = { {0} };
2830 	u16 flags;
2831 
2832 	if (!CHIP_IS_E1x(bp)) {
2833 		/* reset IGU PF statistics: MSIX + ATTN */
2834 		/* PF */
2835 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2836 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2837 			   (CHIP_MODE_IS_4_PORT(bp) ?
2838 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2839 		/* ATTN */
2840 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2841 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2842 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2843 			   (CHIP_MODE_IS_4_PORT(bp) ?
2844 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2845 	}
2846 
2847 	/* function setup flags */
2848 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2849 
2850 	/* This flag is relevant for E1x only.
2851 	 * E2 doesn't have a TPA configuration in a function level.
2852 	 */
2853 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2854 
2855 	func_init.func_flgs = flags;
2856 	func_init.pf_id = BP_FUNC(bp);
2857 	func_init.func_id = BP_FUNC(bp);
2858 	func_init.spq_map = bp->spq_mapping;
2859 	func_init.spq_prod = bp->spq_prod_idx;
2860 
2861 	bnx2x_func_init(bp, &func_init);
2862 
2863 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2864 
2865 	/*
2866 	 * Congestion management values depend on the link rate
2867 	 * There is no active link so initial link rate is set to 10 Gbps.
2868 	 * When the link comes up The congestion management values are
2869 	 * re-calculated according to the actual link rate.
2870 	 */
2871 	bp->link_vars.line_speed = SPEED_10000;
2872 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2873 
2874 	/* Only the PMF sets the HW */
2875 	if (bp->port.pmf)
2876 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2877 
2878 	/* init Event Queue */
2879 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2880 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2881 	eq_data.producer = bp->eq_prod;
2882 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2883 	eq_data.sb_id = DEF_SB_ID;
2884 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2885 }
2886 
2887 
2888 static void bnx2x_e1h_disable(struct bnx2x *bp)
2889 {
2890 	int port = BP_PORT(bp);
2891 
2892 	bnx2x_tx_disable(bp);
2893 
2894 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2895 }
2896 
2897 static void bnx2x_e1h_enable(struct bnx2x *bp)
2898 {
2899 	int port = BP_PORT(bp);
2900 
2901 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2902 
2903 	/* Tx queue should be only reenabled */
2904 	netif_tx_wake_all_queues(bp->dev);
2905 
2906 	/*
2907 	 * Should not call netif_carrier_on since it will be called if the link
2908 	 * is up when checking for link state
2909 	 */
2910 }
2911 
2912 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2913 
2914 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
2915 {
2916 	struct eth_stats_info *ether_stat =
2917 		&bp->slowpath->drv_info_to_mcp.ether_stat;
2918 
2919 	/* leave last char as NULL */
2920 	memcpy(ether_stat->version, DRV_MODULE_VERSION,
2921 	       ETH_STAT_INFO_VERSION_LEN - 1);
2922 
2923 	bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
2924 					 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
2925 					 ether_stat->mac_local);
2926 
2927 	ether_stat->mtu_size = bp->dev->mtu;
2928 
2929 	if (bp->dev->features & NETIF_F_RXCSUM)
2930 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
2931 	if (bp->dev->features & NETIF_F_TSO)
2932 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
2933 	ether_stat->feature_flags |= bp->common.boot_mode;
2934 
2935 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
2936 
2937 	ether_stat->txq_size = bp->tx_ring_size;
2938 	ether_stat->rxq_size = bp->rx_ring_size;
2939 }
2940 
2941 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
2942 {
2943 #ifdef BCM_CNIC
2944 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
2945 	struct fcoe_stats_info *fcoe_stat =
2946 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
2947 
2948 	memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
2949 
2950 	fcoe_stat->qos_priority =
2951 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
2952 
2953 	/* insert FCoE stats from ramrod response */
2954 	if (!NO_FCOE(bp)) {
2955 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
2956 			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2957 			tstorm_queue_statistics;
2958 
2959 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
2960 			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2961 			xstorm_queue_statistics;
2962 
2963 		struct fcoe_statistics_params *fw_fcoe_stat =
2964 			&bp->fw_stats_data->fcoe;
2965 
2966 		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
2967 		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
2968 
2969 		ADD_64(fcoe_stat->rx_bytes_hi,
2970 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
2971 		       fcoe_stat->rx_bytes_lo,
2972 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
2973 
2974 		ADD_64(fcoe_stat->rx_bytes_hi,
2975 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
2976 		       fcoe_stat->rx_bytes_lo,
2977 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
2978 
2979 		ADD_64(fcoe_stat->rx_bytes_hi,
2980 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
2981 		       fcoe_stat->rx_bytes_lo,
2982 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
2983 
2984 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2985 		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
2986 
2987 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2988 		       fcoe_q_tstorm_stats->rcv_ucast_pkts);
2989 
2990 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2991 		       fcoe_q_tstorm_stats->rcv_bcast_pkts);
2992 
2993 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2994 		       fcoe_q_tstorm_stats->rcv_mcast_pkts);
2995 
2996 		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
2997 		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
2998 
2999 		ADD_64(fcoe_stat->tx_bytes_hi,
3000 		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3001 		       fcoe_stat->tx_bytes_lo,
3002 		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3003 
3004 		ADD_64(fcoe_stat->tx_bytes_hi,
3005 		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3006 		       fcoe_stat->tx_bytes_lo,
3007 		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3008 
3009 		ADD_64(fcoe_stat->tx_bytes_hi,
3010 		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3011 		       fcoe_stat->tx_bytes_lo,
3012 		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3013 
3014 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3015 		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3016 
3017 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3018 		       fcoe_q_xstorm_stats->ucast_pkts_sent);
3019 
3020 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3021 		       fcoe_q_xstorm_stats->bcast_pkts_sent);
3022 
3023 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3024 		       fcoe_q_xstorm_stats->mcast_pkts_sent);
3025 	}
3026 
3027 	/* ask L5 driver to add data to the struct */
3028 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3029 #endif
3030 }
3031 
3032 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3033 {
3034 #ifdef BCM_CNIC
3035 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3036 	struct iscsi_stats_info *iscsi_stat =
3037 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3038 
3039 	memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3040 
3041 	iscsi_stat->qos_priority =
3042 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3043 
3044 	/* ask L5 driver to add data to the struct */
3045 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3046 #endif
3047 }
3048 
3049 /* called due to MCP event (on pmf):
3050  *	reread new bandwidth configuration
3051  *	configure FW
3052  *	notify others function about the change
3053  */
3054 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
3055 {
3056 	if (bp->link_vars.link_up) {
3057 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3058 		bnx2x_link_sync_notify(bp);
3059 	}
3060 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3061 }
3062 
3063 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
3064 {
3065 	bnx2x_config_mf_bw(bp);
3066 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3067 }
3068 
3069 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3070 {
3071 	enum drv_info_opcode op_code;
3072 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3073 
3074 	/* if drv_info version supported by MFW doesn't match - send NACK */
3075 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3076 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3077 		return;
3078 	}
3079 
3080 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3081 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3082 
3083 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3084 	       sizeof(union drv_info_to_mcp));
3085 
3086 	switch (op_code) {
3087 	case ETH_STATS_OPCODE:
3088 		bnx2x_drv_info_ether_stat(bp);
3089 		break;
3090 	case FCOE_STATS_OPCODE:
3091 		bnx2x_drv_info_fcoe_stat(bp);
3092 		break;
3093 	case ISCSI_STATS_OPCODE:
3094 		bnx2x_drv_info_iscsi_stat(bp);
3095 		break;
3096 	default:
3097 		/* if op code isn't supported - send NACK */
3098 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3099 		return;
3100 	}
3101 
3102 	/* if we got drv_info attn from MFW then these fields are defined in
3103 	 * shmem2 for sure
3104 	 */
3105 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3106 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3107 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3108 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3109 
3110 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3111 }
3112 
3113 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3114 {
3115 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3116 
3117 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3118 
3119 		/*
3120 		 * This is the only place besides the function initialization
3121 		 * where the bp->flags can change so it is done without any
3122 		 * locks
3123 		 */
3124 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3125 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3126 			bp->flags |= MF_FUNC_DIS;
3127 
3128 			bnx2x_e1h_disable(bp);
3129 		} else {
3130 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3131 			bp->flags &= ~MF_FUNC_DIS;
3132 
3133 			bnx2x_e1h_enable(bp);
3134 		}
3135 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3136 	}
3137 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3138 		bnx2x_config_mf_bw(bp);
3139 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3140 	}
3141 
3142 	/* Report results to MCP */
3143 	if (dcc_event)
3144 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3145 	else
3146 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3147 }
3148 
3149 /* must be called under the spq lock */
3150 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3151 {
3152 	struct eth_spe *next_spe = bp->spq_prod_bd;
3153 
3154 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3155 		bp->spq_prod_bd = bp->spq;
3156 		bp->spq_prod_idx = 0;
3157 		DP(BNX2X_MSG_SP, "end of spq\n");
3158 	} else {
3159 		bp->spq_prod_bd++;
3160 		bp->spq_prod_idx++;
3161 	}
3162 	return next_spe;
3163 }
3164 
3165 /* must be called under the spq lock */
3166 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3167 {
3168 	int func = BP_FUNC(bp);
3169 
3170 	/*
3171 	 * Make sure that BD data is updated before writing the producer:
3172 	 * BD data is written to the memory, the producer is read from the
3173 	 * memory, thus we need a full memory barrier to ensure the ordering.
3174 	 */
3175 	mb();
3176 
3177 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3178 		 bp->spq_prod_idx);
3179 	mmiowb();
3180 }
3181 
3182 /**
3183  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3184  *
3185  * @cmd:	command to check
3186  * @cmd_type:	command type
3187  */
3188 static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3189 {
3190 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3191 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3192 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3193 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3194 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3195 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3196 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3197 		return true;
3198 	else
3199 		return false;
3200 
3201 }
3202 
3203 
3204 /**
3205  * bnx2x_sp_post - place a single command on an SP ring
3206  *
3207  * @bp:		driver handle
3208  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3209  * @cid:	SW CID the command is related to
3210  * @data_hi:	command private data address (high 32 bits)
3211  * @data_lo:	command private data address (low 32 bits)
3212  * @cmd_type:	command type (e.g. NONE, ETH)
3213  *
3214  * SP data is handled as if it's always an address pair, thus data fields are
3215  * not swapped to little endian in upper functions. Instead this function swaps
3216  * data as if it's two u32 fields.
3217  */
3218 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3219 		  u32 data_hi, u32 data_lo, int cmd_type)
3220 {
3221 	struct eth_spe *spe;
3222 	u16 type;
3223 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3224 
3225 #ifdef BNX2X_STOP_ON_ERROR
3226 	if (unlikely(bp->panic)) {
3227 		BNX2X_ERR("Can't post SP when there is panic\n");
3228 		return -EIO;
3229 	}
3230 #endif
3231 
3232 	spin_lock_bh(&bp->spq_lock);
3233 
3234 	if (common) {
3235 		if (!atomic_read(&bp->eq_spq_left)) {
3236 			BNX2X_ERR("BUG! EQ ring full!\n");
3237 			spin_unlock_bh(&bp->spq_lock);
3238 			bnx2x_panic();
3239 			return -EBUSY;
3240 		}
3241 	} else if (!atomic_read(&bp->cq_spq_left)) {
3242 			BNX2X_ERR("BUG! SPQ ring full!\n");
3243 			spin_unlock_bh(&bp->spq_lock);
3244 			bnx2x_panic();
3245 			return -EBUSY;
3246 	}
3247 
3248 	spe = bnx2x_sp_get_next(bp);
3249 
3250 	/* CID needs port number to be encoded int it */
3251 	spe->hdr.conn_and_cmd_data =
3252 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3253 				    HW_CID(bp, cid));
3254 
3255 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3256 
3257 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3258 		 SPE_HDR_FUNCTION_ID);
3259 
3260 	spe->hdr.type = cpu_to_le16(type);
3261 
3262 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3263 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3264 
3265 	/*
3266 	 * It's ok if the actual decrement is issued towards the memory
3267 	 * somewhere between the spin_lock and spin_unlock. Thus no
3268 	 * more explict memory barrier is needed.
3269 	 */
3270 	if (common)
3271 		atomic_dec(&bp->eq_spq_left);
3272 	else
3273 		atomic_dec(&bp->cq_spq_left);
3274 
3275 
3276 	DP(BNX2X_MSG_SP,
3277 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3278 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3279 	   (u32)(U64_LO(bp->spq_mapping) +
3280 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3281 	   HW_CID(bp, cid), data_hi, data_lo, type,
3282 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3283 
3284 	bnx2x_sp_prod_update(bp);
3285 	spin_unlock_bh(&bp->spq_lock);
3286 	return 0;
3287 }
3288 
3289 /* acquire split MCP access lock register */
3290 static int bnx2x_acquire_alr(struct bnx2x *bp)
3291 {
3292 	u32 j, val;
3293 	int rc = 0;
3294 
3295 	might_sleep();
3296 	for (j = 0; j < 1000; j++) {
3297 		val = (1UL << 31);
3298 		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3299 		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3300 		if (val & (1L << 31))
3301 			break;
3302 
3303 		msleep(5);
3304 	}
3305 	if (!(val & (1L << 31))) {
3306 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3307 		rc = -EBUSY;
3308 	}
3309 
3310 	return rc;
3311 }
3312 
3313 /* release split MCP access lock register */
3314 static void bnx2x_release_alr(struct bnx2x *bp)
3315 {
3316 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3317 }
3318 
3319 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3320 #define BNX2X_DEF_SB_IDX	0x0002
3321 
3322 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3323 {
3324 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3325 	u16 rc = 0;
3326 
3327 	barrier(); /* status block is written to by the chip */
3328 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3329 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3330 		rc |= BNX2X_DEF_SB_ATT_IDX;
3331 	}
3332 
3333 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3334 		bp->def_idx = def_sb->sp_sb.running_index;
3335 		rc |= BNX2X_DEF_SB_IDX;
3336 	}
3337 
3338 	/* Do not reorder: indecies reading should complete before handling */
3339 	barrier();
3340 	return rc;
3341 }
3342 
3343 /*
3344  * slow path service functions
3345  */
3346 
3347 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3348 {
3349 	int port = BP_PORT(bp);
3350 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3351 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3352 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3353 				       NIG_REG_MASK_INTERRUPT_PORT0;
3354 	u32 aeu_mask;
3355 	u32 nig_mask = 0;
3356 	u32 reg_addr;
3357 
3358 	if (bp->attn_state & asserted)
3359 		BNX2X_ERR("IGU ERROR\n");
3360 
3361 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3362 	aeu_mask = REG_RD(bp, aeu_addr);
3363 
3364 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3365 	   aeu_mask, asserted);
3366 	aeu_mask &= ~(asserted & 0x3ff);
3367 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3368 
3369 	REG_WR(bp, aeu_addr, aeu_mask);
3370 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3371 
3372 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3373 	bp->attn_state |= asserted;
3374 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3375 
3376 	if (asserted & ATTN_HARD_WIRED_MASK) {
3377 		if (asserted & ATTN_NIG_FOR_FUNC) {
3378 
3379 			bnx2x_acquire_phy_lock(bp);
3380 
3381 			/* save nig interrupt mask */
3382 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3383 
3384 			/* If nig_mask is not set, no need to call the update
3385 			 * function.
3386 			 */
3387 			if (nig_mask) {
3388 				REG_WR(bp, nig_int_mask_addr, 0);
3389 
3390 				bnx2x_link_attn(bp);
3391 			}
3392 
3393 			/* handle unicore attn? */
3394 		}
3395 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3396 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3397 
3398 		if (asserted & GPIO_2_FUNC)
3399 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3400 
3401 		if (asserted & GPIO_3_FUNC)
3402 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3403 
3404 		if (asserted & GPIO_4_FUNC)
3405 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3406 
3407 		if (port == 0) {
3408 			if (asserted & ATTN_GENERAL_ATTN_1) {
3409 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3410 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3411 			}
3412 			if (asserted & ATTN_GENERAL_ATTN_2) {
3413 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3414 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3415 			}
3416 			if (asserted & ATTN_GENERAL_ATTN_3) {
3417 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3418 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3419 			}
3420 		} else {
3421 			if (asserted & ATTN_GENERAL_ATTN_4) {
3422 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3423 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3424 			}
3425 			if (asserted & ATTN_GENERAL_ATTN_5) {
3426 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3427 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3428 			}
3429 			if (asserted & ATTN_GENERAL_ATTN_6) {
3430 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3431 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3432 			}
3433 		}
3434 
3435 	} /* if hardwired */
3436 
3437 	if (bp->common.int_block == INT_BLOCK_HC)
3438 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3439 			    COMMAND_REG_ATTN_BITS_SET);
3440 	else
3441 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3442 
3443 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3444 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3445 	REG_WR(bp, reg_addr, asserted);
3446 
3447 	/* now set back the mask */
3448 	if (asserted & ATTN_NIG_FOR_FUNC) {
3449 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3450 		bnx2x_release_phy_lock(bp);
3451 	}
3452 }
3453 
3454 static inline void bnx2x_fan_failure(struct bnx2x *bp)
3455 {
3456 	int port = BP_PORT(bp);
3457 	u32 ext_phy_config;
3458 	/* mark the failure */
3459 	ext_phy_config =
3460 		SHMEM_RD(bp,
3461 			 dev_info.port_hw_config[port].external_phy_config);
3462 
3463 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3464 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3465 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3466 		 ext_phy_config);
3467 
3468 	/* log the failure */
3469 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3470 			    "Please contact OEM Support for assistance\n");
3471 
3472 	/*
3473 	 * Scheudle device reset (unload)
3474 	 * This is due to some boards consuming sufficient power when driver is
3475 	 * up to overheat if fan fails.
3476 	 */
3477 	smp_mb__before_clear_bit();
3478 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3479 	smp_mb__after_clear_bit();
3480 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3481 
3482 }
3483 
3484 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3485 {
3486 	int port = BP_PORT(bp);
3487 	int reg_offset;
3488 	u32 val;
3489 
3490 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3491 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3492 
3493 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3494 
3495 		val = REG_RD(bp, reg_offset);
3496 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3497 		REG_WR(bp, reg_offset, val);
3498 
3499 		BNX2X_ERR("SPIO5 hw attention\n");
3500 
3501 		/* Fan failure attention */
3502 		bnx2x_hw_reset_phy(&bp->link_params);
3503 		bnx2x_fan_failure(bp);
3504 	}
3505 
3506 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3507 		bnx2x_acquire_phy_lock(bp);
3508 		bnx2x_handle_module_detect_int(&bp->link_params);
3509 		bnx2x_release_phy_lock(bp);
3510 	}
3511 
3512 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3513 
3514 		val = REG_RD(bp, reg_offset);
3515 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3516 		REG_WR(bp, reg_offset, val);
3517 
3518 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3519 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3520 		bnx2x_panic();
3521 	}
3522 }
3523 
3524 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3525 {
3526 	u32 val;
3527 
3528 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3529 
3530 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3531 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3532 		/* DORQ discard attention */
3533 		if (val & 0x2)
3534 			BNX2X_ERR("FATAL error from DORQ\n");
3535 	}
3536 
3537 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3538 
3539 		int port = BP_PORT(bp);
3540 		int reg_offset;
3541 
3542 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3543 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3544 
3545 		val = REG_RD(bp, reg_offset);
3546 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3547 		REG_WR(bp, reg_offset, val);
3548 
3549 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3550 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3551 		bnx2x_panic();
3552 	}
3553 }
3554 
3555 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3556 {
3557 	u32 val;
3558 
3559 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3560 
3561 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3562 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3563 		/* CFC error attention */
3564 		if (val & 0x2)
3565 			BNX2X_ERR("FATAL error from CFC\n");
3566 	}
3567 
3568 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3569 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3570 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3571 		/* RQ_USDMDP_FIFO_OVERFLOW */
3572 		if (val & 0x18000)
3573 			BNX2X_ERR("FATAL error from PXP\n");
3574 
3575 		if (!CHIP_IS_E1x(bp)) {
3576 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3577 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3578 		}
3579 	}
3580 
3581 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3582 
3583 		int port = BP_PORT(bp);
3584 		int reg_offset;
3585 
3586 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3587 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3588 
3589 		val = REG_RD(bp, reg_offset);
3590 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3591 		REG_WR(bp, reg_offset, val);
3592 
3593 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3594 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3595 		bnx2x_panic();
3596 	}
3597 }
3598 
3599 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3600 {
3601 	u32 val;
3602 
3603 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3604 
3605 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3606 			int func = BP_FUNC(bp);
3607 
3608 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3609 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3610 					func_mf_config[BP_ABS_FUNC(bp)].config);
3611 			val = SHMEM_RD(bp,
3612 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3613 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3614 				bnx2x_dcc_event(bp,
3615 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3616 
3617 			if (val & DRV_STATUS_SET_MF_BW)
3618 				bnx2x_set_mf_bw(bp);
3619 
3620 			if (val & DRV_STATUS_DRV_INFO_REQ)
3621 				bnx2x_handle_drv_info_req(bp);
3622 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3623 				bnx2x_pmf_update(bp);
3624 
3625 			if (bp->port.pmf &&
3626 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3627 				bp->dcbx_enabled > 0)
3628 				/* start dcbx state machine */
3629 				bnx2x_dcbx_set_params(bp,
3630 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3631 			if (bp->link_vars.periodic_flags &
3632 			    PERIODIC_FLAGS_LINK_EVENT) {
3633 				/*  sync with link */
3634 				bnx2x_acquire_phy_lock(bp);
3635 				bp->link_vars.periodic_flags &=
3636 					~PERIODIC_FLAGS_LINK_EVENT;
3637 				bnx2x_release_phy_lock(bp);
3638 				if (IS_MF(bp))
3639 					bnx2x_link_sync_notify(bp);
3640 				bnx2x_link_report(bp);
3641 			}
3642 			/* Always call it here: bnx2x_link_report() will
3643 			 * prevent the link indication duplication.
3644 			 */
3645 			bnx2x__link_status_update(bp);
3646 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3647 
3648 			BNX2X_ERR("MC assert!\n");
3649 			bnx2x_mc_assert(bp);
3650 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3651 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3652 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3653 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3654 			bnx2x_panic();
3655 
3656 		} else if (attn & BNX2X_MCP_ASSERT) {
3657 
3658 			BNX2X_ERR("MCP assert!\n");
3659 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3660 			bnx2x_fw_dump(bp);
3661 
3662 		} else
3663 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3664 	}
3665 
3666 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3667 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3668 		if (attn & BNX2X_GRC_TIMEOUT) {
3669 			val = CHIP_IS_E1(bp) ? 0 :
3670 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3671 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3672 		}
3673 		if (attn & BNX2X_GRC_RSV) {
3674 			val = CHIP_IS_E1(bp) ? 0 :
3675 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3676 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3677 		}
3678 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3679 	}
3680 }
3681 
3682 /*
3683  * Bits map:
3684  * 0-7   - Engine0 load counter.
3685  * 8-15  - Engine1 load counter.
3686  * 16    - Engine0 RESET_IN_PROGRESS bit.
3687  * 17    - Engine1 RESET_IN_PROGRESS bit.
3688  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3689  *         on the engine
3690  * 19    - Engine1 ONE_IS_LOADED.
3691  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3692  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3693  *         just the one belonging to its engine).
3694  *
3695  */
3696 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3697 
3698 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3699 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3700 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3701 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3702 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3703 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3704 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
3705 
3706 /*
3707  * Set the GLOBAL_RESET bit.
3708  *
3709  * Should be run under rtnl lock
3710  */
3711 void bnx2x_set_reset_global(struct bnx2x *bp)
3712 {
3713 	u32 val;
3714 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3715 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3716 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3717 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3718 }
3719 
3720 /*
3721  * Clear the GLOBAL_RESET bit.
3722  *
3723  * Should be run under rtnl lock
3724  */
3725 static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3726 {
3727 	u32 val;
3728 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3729 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3730 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3731 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3732 }
3733 
3734 /*
3735  * Checks the GLOBAL_RESET bit.
3736  *
3737  * should be run under rtnl lock
3738  */
3739 static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3740 {
3741 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3742 
3743 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3744 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3745 }
3746 
3747 /*
3748  * Clear RESET_IN_PROGRESS bit for the current engine.
3749  *
3750  * Should be run under rtnl lock
3751  */
3752 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3753 {
3754 	u32 val;
3755 	u32 bit = BP_PATH(bp) ?
3756 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3757 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3758 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3759 
3760 	/* Clear the bit */
3761 	val &= ~bit;
3762 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3763 
3764 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3765 }
3766 
3767 /*
3768  * Set RESET_IN_PROGRESS for the current engine.
3769  *
3770  * should be run under rtnl lock
3771  */
3772 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3773 {
3774 	u32 val;
3775 	u32 bit = BP_PATH(bp) ?
3776 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3777 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3778 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3779 
3780 	/* Set the bit */
3781 	val |= bit;
3782 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3783 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3784 }
3785 
3786 /*
3787  * Checks the RESET_IN_PROGRESS bit for the given engine.
3788  * should be run under rtnl lock
3789  */
3790 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3791 {
3792 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3793 	u32 bit = engine ?
3794 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3795 
3796 	/* return false if bit is set */
3797 	return (val & bit) ? false : true;
3798 }
3799 
3800 /*
3801  * set pf load for the current pf.
3802  *
3803  * should be run under rtnl lock
3804  */
3805 void bnx2x_set_pf_load(struct bnx2x *bp)
3806 {
3807 	u32 val1, val;
3808 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3809 			     BNX2X_PATH0_LOAD_CNT_MASK;
3810 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3811 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3812 
3813 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3814 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3815 
3816 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
3817 
3818 	/* get the current counter value */
3819 	val1 = (val & mask) >> shift;
3820 
3821 	/* set bit of that PF */
3822 	val1 |= (1 << bp->pf_num);
3823 
3824 	/* clear the old value */
3825 	val &= ~mask;
3826 
3827 	/* set the new one */
3828 	val |= ((val1 << shift) & mask);
3829 
3830 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3831 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3832 }
3833 
3834 /**
3835  * bnx2x_clear_pf_load - clear pf load mark
3836  *
3837  * @bp:		driver handle
3838  *
3839  * Should be run under rtnl lock.
3840  * Decrements the load counter for the current engine. Returns
3841  * whether other functions are still loaded
3842  */
3843 bool bnx2x_clear_pf_load(struct bnx2x *bp)
3844 {
3845 	u32 val1, val;
3846 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3847 			     BNX2X_PATH0_LOAD_CNT_MASK;
3848 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3849 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3850 
3851 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3852 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3853 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
3854 
3855 	/* get the current counter value */
3856 	val1 = (val & mask) >> shift;
3857 
3858 	/* clear bit of that PF */
3859 	val1 &= ~(1 << bp->pf_num);
3860 
3861 	/* clear the old value */
3862 	val &= ~mask;
3863 
3864 	/* set the new one */
3865 	val |= ((val1 << shift) & mask);
3866 
3867 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3868 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3869 	return val1 != 0;
3870 }
3871 
3872 /*
3873  * Read the load status for the current engine.
3874  *
3875  * should be run under rtnl lock
3876  */
3877 static inline bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
3878 {
3879 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3880 			     BNX2X_PATH0_LOAD_CNT_MASK);
3881 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3882 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
3883 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3884 
3885 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
3886 
3887 	val = (val & mask) >> shift;
3888 
3889 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
3890 	   engine, val);
3891 
3892 	return val != 0;
3893 }
3894 
3895 /*
3896  * Reset the load status for the current engine.
3897  */
3898 static inline void bnx2x_clear_load_status(struct bnx2x *bp)
3899 {
3900 	u32 val;
3901 	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3902 		    BNX2X_PATH0_LOAD_CNT_MASK);
3903 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3904 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3905 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3906 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3907 }
3908 
3909 static inline void _print_next_block(int idx, const char *blk)
3910 {
3911 	pr_cont("%s%s", idx ? ", " : "", blk);
3912 }
3913 
3914 static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3915 						  bool print)
3916 {
3917 	int i = 0;
3918 	u32 cur_bit = 0;
3919 	for (i = 0; sig; i++) {
3920 		cur_bit = ((u32)0x1 << i);
3921 		if (sig & cur_bit) {
3922 			switch (cur_bit) {
3923 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3924 				if (print)
3925 					_print_next_block(par_num++, "BRB");
3926 				break;
3927 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3928 				if (print)
3929 					_print_next_block(par_num++, "PARSER");
3930 				break;
3931 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3932 				if (print)
3933 					_print_next_block(par_num++, "TSDM");
3934 				break;
3935 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3936 				if (print)
3937 					_print_next_block(par_num++,
3938 							  "SEARCHER");
3939 				break;
3940 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3941 				if (print)
3942 					_print_next_block(par_num++, "TCM");
3943 				break;
3944 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3945 				if (print)
3946 					_print_next_block(par_num++, "TSEMI");
3947 				break;
3948 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3949 				if (print)
3950 					_print_next_block(par_num++, "XPB");
3951 				break;
3952 			}
3953 
3954 			/* Clear the bit */
3955 			sig &= ~cur_bit;
3956 		}
3957 	}
3958 
3959 	return par_num;
3960 }
3961 
3962 static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3963 						  bool *global, bool print)
3964 {
3965 	int i = 0;
3966 	u32 cur_bit = 0;
3967 	for (i = 0; sig; i++) {
3968 		cur_bit = ((u32)0x1 << i);
3969 		if (sig & cur_bit) {
3970 			switch (cur_bit) {
3971 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3972 				if (print)
3973 					_print_next_block(par_num++, "PBF");
3974 				break;
3975 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3976 				if (print)
3977 					_print_next_block(par_num++, "QM");
3978 				break;
3979 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3980 				if (print)
3981 					_print_next_block(par_num++, "TM");
3982 				break;
3983 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3984 				if (print)
3985 					_print_next_block(par_num++, "XSDM");
3986 				break;
3987 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3988 				if (print)
3989 					_print_next_block(par_num++, "XCM");
3990 				break;
3991 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3992 				if (print)
3993 					_print_next_block(par_num++, "XSEMI");
3994 				break;
3995 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3996 				if (print)
3997 					_print_next_block(par_num++,
3998 							  "DOORBELLQ");
3999 				break;
4000 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4001 				if (print)
4002 					_print_next_block(par_num++, "NIG");
4003 				break;
4004 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4005 				if (print)
4006 					_print_next_block(par_num++,
4007 							  "VAUX PCI CORE");
4008 				*global = true;
4009 				break;
4010 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4011 				if (print)
4012 					_print_next_block(par_num++, "DEBUG");
4013 				break;
4014 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4015 				if (print)
4016 					_print_next_block(par_num++, "USDM");
4017 				break;
4018 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4019 				if (print)
4020 					_print_next_block(par_num++, "UCM");
4021 				break;
4022 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4023 				if (print)
4024 					_print_next_block(par_num++, "USEMI");
4025 				break;
4026 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4027 				if (print)
4028 					_print_next_block(par_num++, "UPB");
4029 				break;
4030 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4031 				if (print)
4032 					_print_next_block(par_num++, "CSDM");
4033 				break;
4034 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4035 				if (print)
4036 					_print_next_block(par_num++, "CCM");
4037 				break;
4038 			}
4039 
4040 			/* Clear the bit */
4041 			sig &= ~cur_bit;
4042 		}
4043 	}
4044 
4045 	return par_num;
4046 }
4047 
4048 static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4049 						  bool print)
4050 {
4051 	int i = 0;
4052 	u32 cur_bit = 0;
4053 	for (i = 0; sig; i++) {
4054 		cur_bit = ((u32)0x1 << i);
4055 		if (sig & cur_bit) {
4056 			switch (cur_bit) {
4057 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4058 				if (print)
4059 					_print_next_block(par_num++, "CSEMI");
4060 				break;
4061 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4062 				if (print)
4063 					_print_next_block(par_num++, "PXP");
4064 				break;
4065 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4066 				if (print)
4067 					_print_next_block(par_num++,
4068 					"PXPPCICLOCKCLIENT");
4069 				break;
4070 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4071 				if (print)
4072 					_print_next_block(par_num++, "CFC");
4073 				break;
4074 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4075 				if (print)
4076 					_print_next_block(par_num++, "CDU");
4077 				break;
4078 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4079 				if (print)
4080 					_print_next_block(par_num++, "DMAE");
4081 				break;
4082 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4083 				if (print)
4084 					_print_next_block(par_num++, "IGU");
4085 				break;
4086 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4087 				if (print)
4088 					_print_next_block(par_num++, "MISC");
4089 				break;
4090 			}
4091 
4092 			/* Clear the bit */
4093 			sig &= ~cur_bit;
4094 		}
4095 	}
4096 
4097 	return par_num;
4098 }
4099 
4100 static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4101 						  bool *global, bool print)
4102 {
4103 	int i = 0;
4104 	u32 cur_bit = 0;
4105 	for (i = 0; sig; i++) {
4106 		cur_bit = ((u32)0x1 << i);
4107 		if (sig & cur_bit) {
4108 			switch (cur_bit) {
4109 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4110 				if (print)
4111 					_print_next_block(par_num++, "MCP ROM");
4112 				*global = true;
4113 				break;
4114 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4115 				if (print)
4116 					_print_next_block(par_num++,
4117 							  "MCP UMP RX");
4118 				*global = true;
4119 				break;
4120 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4121 				if (print)
4122 					_print_next_block(par_num++,
4123 							  "MCP UMP TX");
4124 				*global = true;
4125 				break;
4126 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4127 				if (print)
4128 					_print_next_block(par_num++,
4129 							  "MCP SCPAD");
4130 				*global = true;
4131 				break;
4132 			}
4133 
4134 			/* Clear the bit */
4135 			sig &= ~cur_bit;
4136 		}
4137 	}
4138 
4139 	return par_num;
4140 }
4141 
4142 static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4143 						  bool print)
4144 {
4145 	int i = 0;
4146 	u32 cur_bit = 0;
4147 	for (i = 0; sig; i++) {
4148 		cur_bit = ((u32)0x1 << i);
4149 		if (sig & cur_bit) {
4150 			switch (cur_bit) {
4151 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4152 				if (print)
4153 					_print_next_block(par_num++, "PGLUE_B");
4154 				break;
4155 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4156 				if (print)
4157 					_print_next_block(par_num++, "ATC");
4158 				break;
4159 			}
4160 
4161 			/* Clear the bit */
4162 			sig &= ~cur_bit;
4163 		}
4164 	}
4165 
4166 	return par_num;
4167 }
4168 
4169 static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4170 				     u32 *sig)
4171 {
4172 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4173 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4174 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4175 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4176 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4177 		int par_num = 0;
4178 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4179 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4180 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4181 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4182 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4183 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4184 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4185 		if (print)
4186 			netdev_err(bp->dev,
4187 				   "Parity errors detected in blocks: ");
4188 		par_num = bnx2x_check_blocks_with_parity0(
4189 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4190 		par_num = bnx2x_check_blocks_with_parity1(
4191 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4192 		par_num = bnx2x_check_blocks_with_parity2(
4193 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4194 		par_num = bnx2x_check_blocks_with_parity3(
4195 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4196 		par_num = bnx2x_check_blocks_with_parity4(
4197 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4198 
4199 		if (print)
4200 			pr_cont("\n");
4201 
4202 		return true;
4203 	} else
4204 		return false;
4205 }
4206 
4207 /**
4208  * bnx2x_chk_parity_attn - checks for parity attentions.
4209  *
4210  * @bp:		driver handle
4211  * @global:	true if there was a global attention
4212  * @print:	show parity attention in syslog
4213  */
4214 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4215 {
4216 	struct attn_route attn = { {0} };
4217 	int port = BP_PORT(bp);
4218 
4219 	attn.sig[0] = REG_RD(bp,
4220 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4221 			     port*4);
4222 	attn.sig[1] = REG_RD(bp,
4223 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4224 			     port*4);
4225 	attn.sig[2] = REG_RD(bp,
4226 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4227 			     port*4);
4228 	attn.sig[3] = REG_RD(bp,
4229 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4230 			     port*4);
4231 
4232 	if (!CHIP_IS_E1x(bp))
4233 		attn.sig[4] = REG_RD(bp,
4234 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4235 				     port*4);
4236 
4237 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4238 }
4239 
4240 
4241 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4242 {
4243 	u32 val;
4244 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4245 
4246 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4247 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4248 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4249 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4250 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4251 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4252 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4253 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4254 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4255 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4256 		if (val &
4257 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4258 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4259 		if (val &
4260 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4261 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4262 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4263 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4264 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4265 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4266 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4267 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4268 	}
4269 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4270 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4271 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4272 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4273 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4274 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4275 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4276 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4277 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4278 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4279 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4280 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4281 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4282 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4283 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4284 	}
4285 
4286 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4287 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4288 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4289 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4290 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4291 	}
4292 
4293 }
4294 
4295 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4296 {
4297 	struct attn_route attn, *group_mask;
4298 	int port = BP_PORT(bp);
4299 	int index;
4300 	u32 reg_addr;
4301 	u32 val;
4302 	u32 aeu_mask;
4303 	bool global = false;
4304 
4305 	/* need to take HW lock because MCP or other port might also
4306 	   try to handle this event */
4307 	bnx2x_acquire_alr(bp);
4308 
4309 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4310 #ifndef BNX2X_STOP_ON_ERROR
4311 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4312 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4313 		/* Disable HW interrupts */
4314 		bnx2x_int_disable(bp);
4315 		/* In case of parity errors don't handle attentions so that
4316 		 * other function would "see" parity errors.
4317 		 */
4318 #else
4319 		bnx2x_panic();
4320 #endif
4321 		bnx2x_release_alr(bp);
4322 		return;
4323 	}
4324 
4325 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4326 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4327 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4328 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4329 	if (!CHIP_IS_E1x(bp))
4330 		attn.sig[4] =
4331 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4332 	else
4333 		attn.sig[4] = 0;
4334 
4335 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4336 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4337 
4338 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4339 		if (deasserted & (1 << index)) {
4340 			group_mask = &bp->attn_group[index];
4341 
4342 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4343 			   index,
4344 			   group_mask->sig[0], group_mask->sig[1],
4345 			   group_mask->sig[2], group_mask->sig[3],
4346 			   group_mask->sig[4]);
4347 
4348 			bnx2x_attn_int_deasserted4(bp,
4349 					attn.sig[4] & group_mask->sig[4]);
4350 			bnx2x_attn_int_deasserted3(bp,
4351 					attn.sig[3] & group_mask->sig[3]);
4352 			bnx2x_attn_int_deasserted1(bp,
4353 					attn.sig[1] & group_mask->sig[1]);
4354 			bnx2x_attn_int_deasserted2(bp,
4355 					attn.sig[2] & group_mask->sig[2]);
4356 			bnx2x_attn_int_deasserted0(bp,
4357 					attn.sig[0] & group_mask->sig[0]);
4358 		}
4359 	}
4360 
4361 	bnx2x_release_alr(bp);
4362 
4363 	if (bp->common.int_block == INT_BLOCK_HC)
4364 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4365 			    COMMAND_REG_ATTN_BITS_CLR);
4366 	else
4367 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4368 
4369 	val = ~deasserted;
4370 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4371 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4372 	REG_WR(bp, reg_addr, val);
4373 
4374 	if (~bp->attn_state & deasserted)
4375 		BNX2X_ERR("IGU ERROR\n");
4376 
4377 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4378 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4379 
4380 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4381 	aeu_mask = REG_RD(bp, reg_addr);
4382 
4383 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4384 	   aeu_mask, deasserted);
4385 	aeu_mask |= (deasserted & 0x3ff);
4386 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4387 
4388 	REG_WR(bp, reg_addr, aeu_mask);
4389 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4390 
4391 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4392 	bp->attn_state &= ~deasserted;
4393 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4394 }
4395 
4396 static void bnx2x_attn_int(struct bnx2x *bp)
4397 {
4398 	/* read local copy of bits */
4399 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4400 								attn_bits);
4401 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4402 								attn_bits_ack);
4403 	u32 attn_state = bp->attn_state;
4404 
4405 	/* look for changed bits */
4406 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4407 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4408 
4409 	DP(NETIF_MSG_HW,
4410 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4411 	   attn_bits, attn_ack, asserted, deasserted);
4412 
4413 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4414 		BNX2X_ERR("BAD attention state\n");
4415 
4416 	/* handle bits that were raised */
4417 	if (asserted)
4418 		bnx2x_attn_int_asserted(bp, asserted);
4419 
4420 	if (deasserted)
4421 		bnx2x_attn_int_deasserted(bp, deasserted);
4422 }
4423 
4424 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4425 		      u16 index, u8 op, u8 update)
4426 {
4427 	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4428 
4429 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4430 			     igu_addr);
4431 }
4432 
4433 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4434 {
4435 	/* No memory barriers */
4436 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4437 	mmiowb(); /* keep prod updates ordered */
4438 }
4439 
4440 #ifdef BCM_CNIC
4441 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4442 				      union event_ring_elem *elem)
4443 {
4444 	u8 err = elem->message.error;
4445 
4446 	if (!bp->cnic_eth_dev.starting_cid  ||
4447 	    (cid < bp->cnic_eth_dev.starting_cid &&
4448 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4449 		return 1;
4450 
4451 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4452 
4453 	if (unlikely(err)) {
4454 
4455 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4456 			  cid);
4457 		bnx2x_panic_dump(bp);
4458 	}
4459 	bnx2x_cnic_cfc_comp(bp, cid, err);
4460 	return 0;
4461 }
4462 #endif
4463 
4464 static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4465 {
4466 	struct bnx2x_mcast_ramrod_params rparam;
4467 	int rc;
4468 
4469 	memset(&rparam, 0, sizeof(rparam));
4470 
4471 	rparam.mcast_obj = &bp->mcast_obj;
4472 
4473 	netif_addr_lock_bh(bp->dev);
4474 
4475 	/* Clear pending state for the last command */
4476 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4477 
4478 	/* If there are pending mcast commands - send them */
4479 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4480 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4481 		if (rc < 0)
4482 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4483 				  rc);
4484 	}
4485 
4486 	netif_addr_unlock_bh(bp->dev);
4487 }
4488 
4489 static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4490 						   union event_ring_elem *elem)
4491 {
4492 	unsigned long ramrod_flags = 0;
4493 	int rc = 0;
4494 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4495 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4496 
4497 	/* Always push next commands out, don't wait here */
4498 	__set_bit(RAMROD_CONT, &ramrod_flags);
4499 
4500 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4501 	case BNX2X_FILTER_MAC_PENDING:
4502 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4503 #ifdef BCM_CNIC
4504 		if (cid == BNX2X_ISCSI_ETH_CID)
4505 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4506 		else
4507 #endif
4508 			vlan_mac_obj = &bp->fp[cid].mac_obj;
4509 
4510 		break;
4511 	case BNX2X_FILTER_MCAST_PENDING:
4512 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4513 		/* This is only relevant for 57710 where multicast MACs are
4514 		 * configured as unicast MACs using the same ramrod.
4515 		 */
4516 		bnx2x_handle_mcast_eqe(bp);
4517 		return;
4518 	default:
4519 		BNX2X_ERR("Unsupported classification command: %d\n",
4520 			  elem->message.data.eth_event.echo);
4521 		return;
4522 	}
4523 
4524 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4525 
4526 	if (rc < 0)
4527 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4528 	else if (rc > 0)
4529 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4530 
4531 }
4532 
4533 #ifdef BCM_CNIC
4534 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4535 #endif
4536 
4537 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4538 {
4539 	netif_addr_lock_bh(bp->dev);
4540 
4541 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4542 
4543 	/* Send rx_mode command again if was requested */
4544 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4545 		bnx2x_set_storm_rx_mode(bp);
4546 #ifdef BCM_CNIC
4547 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4548 				    &bp->sp_state))
4549 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4550 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4551 				    &bp->sp_state))
4552 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4553 #endif
4554 
4555 	netif_addr_unlock_bh(bp->dev);
4556 }
4557 
4558 static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4559 	struct bnx2x *bp, u32 cid)
4560 {
4561 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4562 #ifdef BCM_CNIC
4563 	if (cid == BNX2X_FCOE_ETH_CID)
4564 		return &bnx2x_fcoe(bp, q_obj);
4565 	else
4566 #endif
4567 		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4568 }
4569 
4570 static void bnx2x_eq_int(struct bnx2x *bp)
4571 {
4572 	u16 hw_cons, sw_cons, sw_prod;
4573 	union event_ring_elem *elem;
4574 	u32 cid;
4575 	u8 opcode;
4576 	int spqe_cnt = 0;
4577 	struct bnx2x_queue_sp_obj *q_obj;
4578 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4579 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4580 
4581 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4582 
4583 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4584 	 * when we get the the next-page we nned to adjust so the loop
4585 	 * condition below will be met. The next element is the size of a
4586 	 * regular element and hence incrementing by 1
4587 	 */
4588 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4589 		hw_cons++;
4590 
4591 	/* This function may never run in parallel with itself for a
4592 	 * specific bp, thus there is no need in "paired" read memory
4593 	 * barrier here.
4594 	 */
4595 	sw_cons = bp->eq_cons;
4596 	sw_prod = bp->eq_prod;
4597 
4598 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4599 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4600 
4601 	for (; sw_cons != hw_cons;
4602 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4603 
4604 
4605 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4606 
4607 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4608 		opcode = elem->message.opcode;
4609 
4610 
4611 		/* handle eq element */
4612 		switch (opcode) {
4613 		case EVENT_RING_OPCODE_STAT_QUERY:
4614 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4615 			   "got statistics comp event %d\n",
4616 			   bp->stats_comp++);
4617 			/* nothing to do with stats comp */
4618 			goto next_spqe;
4619 
4620 		case EVENT_RING_OPCODE_CFC_DEL:
4621 			/* handle according to cid range */
4622 			/*
4623 			 * we may want to verify here that the bp state is
4624 			 * HALTING
4625 			 */
4626 			DP(BNX2X_MSG_SP,
4627 			   "got delete ramrod for MULTI[%d]\n", cid);
4628 #ifdef BCM_CNIC
4629 			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4630 				goto next_spqe;
4631 #endif
4632 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4633 
4634 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4635 				break;
4636 
4637 
4638 
4639 			goto next_spqe;
4640 
4641 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4642 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4643 			if (f_obj->complete_cmd(bp, f_obj,
4644 						BNX2X_F_CMD_TX_STOP))
4645 				break;
4646 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4647 			goto next_spqe;
4648 
4649 		case EVENT_RING_OPCODE_START_TRAFFIC:
4650 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4651 			if (f_obj->complete_cmd(bp, f_obj,
4652 						BNX2X_F_CMD_TX_START))
4653 				break;
4654 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4655 			goto next_spqe;
4656 		case EVENT_RING_OPCODE_FUNCTION_START:
4657 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4658 			   "got FUNC_START ramrod\n");
4659 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4660 				break;
4661 
4662 			goto next_spqe;
4663 
4664 		case EVENT_RING_OPCODE_FUNCTION_STOP:
4665 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4666 			   "got FUNC_STOP ramrod\n");
4667 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4668 				break;
4669 
4670 			goto next_spqe;
4671 		}
4672 
4673 		switch (opcode | bp->state) {
4674 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4675 		      BNX2X_STATE_OPEN):
4676 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4677 		      BNX2X_STATE_OPENING_WAIT4_PORT):
4678 			cid = elem->message.data.eth_event.echo &
4679 				BNX2X_SWCID_MASK;
4680 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4681 			   cid);
4682 			rss_raw->clear_pending(rss_raw);
4683 			break;
4684 
4685 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4686 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4687 		case (EVENT_RING_OPCODE_SET_MAC |
4688 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4689 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4690 		      BNX2X_STATE_OPEN):
4691 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4692 		      BNX2X_STATE_DIAG):
4693 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4694 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4695 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4696 			bnx2x_handle_classification_eqe(bp, elem);
4697 			break;
4698 
4699 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4700 		      BNX2X_STATE_OPEN):
4701 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4702 		      BNX2X_STATE_DIAG):
4703 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4704 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4705 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4706 			bnx2x_handle_mcast_eqe(bp);
4707 			break;
4708 
4709 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4710 		      BNX2X_STATE_OPEN):
4711 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4712 		      BNX2X_STATE_DIAG):
4713 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4714 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4715 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4716 			bnx2x_handle_rx_mode_eqe(bp);
4717 			break;
4718 		default:
4719 			/* unknown event log error and continue */
4720 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4721 				  elem->message.opcode, bp->state);
4722 		}
4723 next_spqe:
4724 		spqe_cnt++;
4725 	} /* for */
4726 
4727 	smp_mb__before_atomic_inc();
4728 	atomic_add(spqe_cnt, &bp->eq_spq_left);
4729 
4730 	bp->eq_cons = sw_cons;
4731 	bp->eq_prod = sw_prod;
4732 	/* Make sure that above mem writes were issued towards the memory */
4733 	smp_wmb();
4734 
4735 	/* update producer */
4736 	bnx2x_update_eq_prod(bp, bp->eq_prod);
4737 }
4738 
4739 static void bnx2x_sp_task(struct work_struct *work)
4740 {
4741 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4742 	u16 status;
4743 
4744 	status = bnx2x_update_dsb_idx(bp);
4745 /*	if (status == 0)				     */
4746 /*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4747 
4748 	DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
4749 
4750 	/* HW attentions */
4751 	if (status & BNX2X_DEF_SB_ATT_IDX) {
4752 		bnx2x_attn_int(bp);
4753 		status &= ~BNX2X_DEF_SB_ATT_IDX;
4754 	}
4755 
4756 	/* SP events: STAT_QUERY and others */
4757 	if (status & BNX2X_DEF_SB_IDX) {
4758 #ifdef BCM_CNIC
4759 		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4760 
4761 		if ((!NO_FCOE(bp)) &&
4762 			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4763 			/*
4764 			 * Prevent local bottom-halves from running as
4765 			 * we are going to change the local NAPI list.
4766 			 */
4767 			local_bh_disable();
4768 			napi_schedule(&bnx2x_fcoe(bp, napi));
4769 			local_bh_enable();
4770 		}
4771 #endif
4772 		/* Handle EQ completions */
4773 		bnx2x_eq_int(bp);
4774 
4775 		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4776 			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4777 
4778 		status &= ~BNX2X_DEF_SB_IDX;
4779 	}
4780 
4781 	if (unlikely(status))
4782 		DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
4783 		   status);
4784 
4785 	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4786 	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4787 }
4788 
4789 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4790 {
4791 	struct net_device *dev = dev_instance;
4792 	struct bnx2x *bp = netdev_priv(dev);
4793 
4794 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4795 		     IGU_INT_DISABLE, 0);
4796 
4797 #ifdef BNX2X_STOP_ON_ERROR
4798 	if (unlikely(bp->panic))
4799 		return IRQ_HANDLED;
4800 #endif
4801 
4802 #ifdef BCM_CNIC
4803 	{
4804 		struct cnic_ops *c_ops;
4805 
4806 		rcu_read_lock();
4807 		c_ops = rcu_dereference(bp->cnic_ops);
4808 		if (c_ops)
4809 			c_ops->cnic_handler(bp->cnic_data, NULL);
4810 		rcu_read_unlock();
4811 	}
4812 #endif
4813 	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4814 
4815 	return IRQ_HANDLED;
4816 }
4817 
4818 /* end of slow path */
4819 
4820 
4821 void bnx2x_drv_pulse(struct bnx2x *bp)
4822 {
4823 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4824 		 bp->fw_drv_pulse_wr_seq);
4825 }
4826 
4827 
4828 static void bnx2x_timer(unsigned long data)
4829 {
4830 	struct bnx2x *bp = (struct bnx2x *) data;
4831 
4832 	if (!netif_running(bp->dev))
4833 		return;
4834 
4835 	if (!BP_NOMCP(bp)) {
4836 		int mb_idx = BP_FW_MB_IDX(bp);
4837 		u32 drv_pulse;
4838 		u32 mcp_pulse;
4839 
4840 		++bp->fw_drv_pulse_wr_seq;
4841 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4842 		/* TBD - add SYSTEM_TIME */
4843 		drv_pulse = bp->fw_drv_pulse_wr_seq;
4844 		bnx2x_drv_pulse(bp);
4845 
4846 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4847 			     MCP_PULSE_SEQ_MASK);
4848 		/* The delta between driver pulse and mcp response
4849 		 * should be 1 (before mcp response) or 0 (after mcp response)
4850 		 */
4851 		if ((drv_pulse != mcp_pulse) &&
4852 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4853 			/* someone lost a heartbeat... */
4854 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4855 				  drv_pulse, mcp_pulse);
4856 		}
4857 	}
4858 
4859 	if (bp->state == BNX2X_STATE_OPEN)
4860 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4861 
4862 	mod_timer(&bp->timer, jiffies + bp->current_interval);
4863 }
4864 
4865 /* end of Statistics */
4866 
4867 /* nic init */
4868 
4869 /*
4870  * nic init service functions
4871  */
4872 
4873 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4874 {
4875 	u32 i;
4876 	if (!(len%4) && !(addr%4))
4877 		for (i = 0; i < len; i += 4)
4878 			REG_WR(bp, addr + i, fill);
4879 	else
4880 		for (i = 0; i < len; i++)
4881 			REG_WR8(bp, addr + i, fill);
4882 
4883 }
4884 
4885 /* helper: writes FP SP data to FW - data_size in dwords */
4886 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4887 				       int fw_sb_id,
4888 				       u32 *sb_data_p,
4889 				       u32 data_size)
4890 {
4891 	int index;
4892 	for (index = 0; index < data_size; index++)
4893 		REG_WR(bp, BAR_CSTRORM_INTMEM +
4894 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4895 			sizeof(u32)*index,
4896 			*(sb_data_p + index));
4897 }
4898 
4899 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4900 {
4901 	u32 *sb_data_p;
4902 	u32 data_size = 0;
4903 	struct hc_status_block_data_e2 sb_data_e2;
4904 	struct hc_status_block_data_e1x sb_data_e1x;
4905 
4906 	/* disable the function first */
4907 	if (!CHIP_IS_E1x(bp)) {
4908 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4909 		sb_data_e2.common.state = SB_DISABLED;
4910 		sb_data_e2.common.p_func.vf_valid = false;
4911 		sb_data_p = (u32 *)&sb_data_e2;
4912 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4913 	} else {
4914 		memset(&sb_data_e1x, 0,
4915 		       sizeof(struct hc_status_block_data_e1x));
4916 		sb_data_e1x.common.state = SB_DISABLED;
4917 		sb_data_e1x.common.p_func.vf_valid = false;
4918 		sb_data_p = (u32 *)&sb_data_e1x;
4919 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4920 	}
4921 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4922 
4923 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4924 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4925 			CSTORM_STATUS_BLOCK_SIZE);
4926 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4927 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4928 			CSTORM_SYNC_BLOCK_SIZE);
4929 }
4930 
4931 /* helper:  writes SP SB data to FW */
4932 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4933 		struct hc_sp_status_block_data *sp_sb_data)
4934 {
4935 	int func = BP_FUNC(bp);
4936 	int i;
4937 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4938 		REG_WR(bp, BAR_CSTRORM_INTMEM +
4939 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4940 			i*sizeof(u32),
4941 			*((u32 *)sp_sb_data + i));
4942 }
4943 
4944 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4945 {
4946 	int func = BP_FUNC(bp);
4947 	struct hc_sp_status_block_data sp_sb_data;
4948 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4949 
4950 	sp_sb_data.state = SB_DISABLED;
4951 	sp_sb_data.p_func.vf_valid = false;
4952 
4953 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4954 
4955 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4956 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4957 			CSTORM_SP_STATUS_BLOCK_SIZE);
4958 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4959 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4960 			CSTORM_SP_SYNC_BLOCK_SIZE);
4961 
4962 }
4963 
4964 
4965 static inline
4966 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4967 					   int igu_sb_id, int igu_seg_id)
4968 {
4969 	hc_sm->igu_sb_id = igu_sb_id;
4970 	hc_sm->igu_seg_id = igu_seg_id;
4971 	hc_sm->timer_value = 0xFF;
4972 	hc_sm->time_to_expire = 0xFFFFFFFF;
4973 }
4974 
4975 
4976 /* allocates state machine ids. */
4977 static inline
4978 void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4979 {
4980 	/* zero out state machine indices */
4981 	/* rx indices */
4982 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4983 
4984 	/* tx indices */
4985 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4986 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4987 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4988 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4989 
4990 	/* map indices */
4991 	/* rx indices */
4992 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4993 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4994 
4995 	/* tx indices */
4996 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4997 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4998 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4999 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5000 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5001 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5002 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5003 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5004 }
5005 
5006 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5007 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5008 {
5009 	int igu_seg_id;
5010 
5011 	struct hc_status_block_data_e2 sb_data_e2;
5012 	struct hc_status_block_data_e1x sb_data_e1x;
5013 	struct hc_status_block_sm  *hc_sm_p;
5014 	int data_size;
5015 	u32 *sb_data_p;
5016 
5017 	if (CHIP_INT_MODE_IS_BC(bp))
5018 		igu_seg_id = HC_SEG_ACCESS_NORM;
5019 	else
5020 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5021 
5022 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5023 
5024 	if (!CHIP_IS_E1x(bp)) {
5025 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5026 		sb_data_e2.common.state = SB_ENABLED;
5027 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5028 		sb_data_e2.common.p_func.vf_id = vfid;
5029 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5030 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5031 		sb_data_e2.common.same_igu_sb_1b = true;
5032 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5033 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5034 		hc_sm_p = sb_data_e2.common.state_machine;
5035 		sb_data_p = (u32 *)&sb_data_e2;
5036 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5037 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5038 	} else {
5039 		memset(&sb_data_e1x, 0,
5040 		       sizeof(struct hc_status_block_data_e1x));
5041 		sb_data_e1x.common.state = SB_ENABLED;
5042 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5043 		sb_data_e1x.common.p_func.vf_id = 0xff;
5044 		sb_data_e1x.common.p_func.vf_valid = false;
5045 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5046 		sb_data_e1x.common.same_igu_sb_1b = true;
5047 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5048 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5049 		hc_sm_p = sb_data_e1x.common.state_machine;
5050 		sb_data_p = (u32 *)&sb_data_e1x;
5051 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5052 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5053 	}
5054 
5055 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5056 				       igu_sb_id, igu_seg_id);
5057 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5058 				       igu_sb_id, igu_seg_id);
5059 
5060 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5061 
5062 	/* write indecies to HW */
5063 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5064 }
5065 
5066 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5067 				     u16 tx_usec, u16 rx_usec)
5068 {
5069 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5070 				    false, rx_usec);
5071 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5072 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5073 				       tx_usec);
5074 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5075 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5076 				       tx_usec);
5077 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5078 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5079 				       tx_usec);
5080 }
5081 
5082 static void bnx2x_init_def_sb(struct bnx2x *bp)
5083 {
5084 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5085 	dma_addr_t mapping = bp->def_status_blk_mapping;
5086 	int igu_sp_sb_index;
5087 	int igu_seg_id;
5088 	int port = BP_PORT(bp);
5089 	int func = BP_FUNC(bp);
5090 	int reg_offset, reg_offset_en5;
5091 	u64 section;
5092 	int index;
5093 	struct hc_sp_status_block_data sp_sb_data;
5094 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5095 
5096 	if (CHIP_INT_MODE_IS_BC(bp)) {
5097 		igu_sp_sb_index = DEF_SB_IGU_ID;
5098 		igu_seg_id = HC_SEG_ACCESS_DEF;
5099 	} else {
5100 		igu_sp_sb_index = bp->igu_dsb_id;
5101 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5102 	}
5103 
5104 	/* ATTN */
5105 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5106 					    atten_status_block);
5107 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5108 
5109 	bp->attn_state = 0;
5110 
5111 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5112 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5113 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5114 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5115 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5116 		int sindex;
5117 		/* take care of sig[0]..sig[4] */
5118 		for (sindex = 0; sindex < 4; sindex++)
5119 			bp->attn_group[index].sig[sindex] =
5120 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5121 
5122 		if (!CHIP_IS_E1x(bp))
5123 			/*
5124 			 * enable5 is separate from the rest of the registers,
5125 			 * and therefore the address skip is 4
5126 			 * and not 16 between the different groups
5127 			 */
5128 			bp->attn_group[index].sig[4] = REG_RD(bp,
5129 					reg_offset_en5 + 0x4*index);
5130 		else
5131 			bp->attn_group[index].sig[4] = 0;
5132 	}
5133 
5134 	if (bp->common.int_block == INT_BLOCK_HC) {
5135 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5136 				     HC_REG_ATTN_MSG0_ADDR_L);
5137 
5138 		REG_WR(bp, reg_offset, U64_LO(section));
5139 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5140 	} else if (!CHIP_IS_E1x(bp)) {
5141 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5142 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5143 	}
5144 
5145 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5146 					    sp_sb);
5147 
5148 	bnx2x_zero_sp_sb(bp);
5149 
5150 	sp_sb_data.state		= SB_ENABLED;
5151 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5152 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5153 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5154 	sp_sb_data.igu_seg_id		= igu_seg_id;
5155 	sp_sb_data.p_func.pf_id		= func;
5156 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5157 	sp_sb_data.p_func.vf_id		= 0xff;
5158 
5159 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5160 
5161 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5162 }
5163 
5164 void bnx2x_update_coalesce(struct bnx2x *bp)
5165 {
5166 	int i;
5167 
5168 	for_each_eth_queue(bp, i)
5169 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5170 					 bp->tx_ticks, bp->rx_ticks);
5171 }
5172 
5173 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5174 {
5175 	spin_lock_init(&bp->spq_lock);
5176 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5177 
5178 	bp->spq_prod_idx = 0;
5179 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5180 	bp->spq_prod_bd = bp->spq;
5181 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5182 }
5183 
5184 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5185 {
5186 	int i;
5187 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5188 		union event_ring_elem *elem =
5189 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5190 
5191 		elem->next_page.addr.hi =
5192 			cpu_to_le32(U64_HI(bp->eq_mapping +
5193 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5194 		elem->next_page.addr.lo =
5195 			cpu_to_le32(U64_LO(bp->eq_mapping +
5196 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5197 	}
5198 	bp->eq_cons = 0;
5199 	bp->eq_prod = NUM_EQ_DESC;
5200 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5201 	/* we want a warning message before it gets rought... */
5202 	atomic_set(&bp->eq_spq_left,
5203 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5204 }
5205 
5206 
5207 /* called with netif_addr_lock_bh() */
5208 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5209 			 unsigned long rx_mode_flags,
5210 			 unsigned long rx_accept_flags,
5211 			 unsigned long tx_accept_flags,
5212 			 unsigned long ramrod_flags)
5213 {
5214 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5215 	int rc;
5216 
5217 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5218 
5219 	/* Prepare ramrod parameters */
5220 	ramrod_param.cid = 0;
5221 	ramrod_param.cl_id = cl_id;
5222 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5223 	ramrod_param.func_id = BP_FUNC(bp);
5224 
5225 	ramrod_param.pstate = &bp->sp_state;
5226 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5227 
5228 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5229 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5230 
5231 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5232 
5233 	ramrod_param.ramrod_flags = ramrod_flags;
5234 	ramrod_param.rx_mode_flags = rx_mode_flags;
5235 
5236 	ramrod_param.rx_accept_flags = rx_accept_flags;
5237 	ramrod_param.tx_accept_flags = tx_accept_flags;
5238 
5239 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5240 	if (rc < 0) {
5241 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5242 		return;
5243 	}
5244 }
5245 
5246 /* called with netif_addr_lock_bh() */
5247 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5248 {
5249 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5250 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5251 
5252 #ifdef BCM_CNIC
5253 	if (!NO_FCOE(bp))
5254 
5255 		/* Configure rx_mode of FCoE Queue */
5256 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5257 #endif
5258 
5259 	switch (bp->rx_mode) {
5260 	case BNX2X_RX_MODE_NONE:
5261 		/*
5262 		 * 'drop all' supersedes any accept flags that may have been
5263 		 * passed to the function.
5264 		 */
5265 		break;
5266 	case BNX2X_RX_MODE_NORMAL:
5267 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5268 		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5269 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5270 
5271 		/* internal switching mode */
5272 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5273 		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5274 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5275 
5276 		break;
5277 	case BNX2X_RX_MODE_ALLMULTI:
5278 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5279 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5280 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5281 
5282 		/* internal switching mode */
5283 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5284 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5285 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5286 
5287 		break;
5288 	case BNX2X_RX_MODE_PROMISC:
5289 		/* According to deffinition of SI mode, iface in promisc mode
5290 		 * should receive matched and unmatched (in resolution of port)
5291 		 * unicast packets.
5292 		 */
5293 		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5294 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5295 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5296 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5297 
5298 		/* internal switching mode */
5299 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5300 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5301 
5302 		if (IS_MF_SI(bp))
5303 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5304 		else
5305 			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5306 
5307 		break;
5308 	default:
5309 		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5310 		return;
5311 	}
5312 
5313 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5314 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5315 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5316 	}
5317 
5318 	__set_bit(RAMROD_RX, &ramrod_flags);
5319 	__set_bit(RAMROD_TX, &ramrod_flags);
5320 
5321 	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5322 			    tx_accept_flags, ramrod_flags);
5323 }
5324 
5325 static void bnx2x_init_internal_common(struct bnx2x *bp)
5326 {
5327 	int i;
5328 
5329 	if (IS_MF_SI(bp))
5330 		/*
5331 		 * In switch independent mode, the TSTORM needs to accept
5332 		 * packets that failed classification, since approximate match
5333 		 * mac addresses aren't written to NIG LLH
5334 		 */
5335 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5336 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5337 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5338 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5339 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5340 
5341 	/* Zero this manually as its initialization is
5342 	   currently missing in the initTool */
5343 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5344 		REG_WR(bp, BAR_USTRORM_INTMEM +
5345 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5346 	if (!CHIP_IS_E1x(bp)) {
5347 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5348 			CHIP_INT_MODE_IS_BC(bp) ?
5349 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5350 	}
5351 }
5352 
5353 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5354 {
5355 	switch (load_code) {
5356 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5357 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5358 		bnx2x_init_internal_common(bp);
5359 		/* no break */
5360 
5361 	case FW_MSG_CODE_DRV_LOAD_PORT:
5362 		/* nothing to do */
5363 		/* no break */
5364 
5365 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5366 		/* internal memory per function is
5367 		   initialized inside bnx2x_pf_init */
5368 		break;
5369 
5370 	default:
5371 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5372 		break;
5373 	}
5374 }
5375 
5376 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5377 {
5378 	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5379 }
5380 
5381 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5382 {
5383 	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5384 }
5385 
5386 static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5387 {
5388 	if (CHIP_IS_E1x(fp->bp))
5389 		return BP_L_ID(fp->bp) + fp->index;
5390 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5391 		return bnx2x_fp_igu_sb_id(fp);
5392 }
5393 
5394 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5395 {
5396 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5397 	u8 cos;
5398 	unsigned long q_type = 0;
5399 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5400 	fp->rx_queue = fp_idx;
5401 	fp->cid = fp_idx;
5402 	fp->cl_id = bnx2x_fp_cl_id(fp);
5403 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5404 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5405 	/* qZone id equals to FW (per path) client id */
5406 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5407 
5408 	/* init shortcut */
5409 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5410 
5411 	/* Setup SB indicies */
5412 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5413 
5414 	/* Configure Queue State object */
5415 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5416 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5417 
5418 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5419 
5420 	/* init tx data */
5421 	for_each_cos_in_tx_queue(fp, cos) {
5422 		bnx2x_init_txdata(bp, &fp->txdata[cos],
5423 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5424 				  FP_COS_TO_TXQ(fp, cos),
5425 				  BNX2X_TX_SB_INDEX_BASE + cos);
5426 		cids[cos] = fp->txdata[cos].cid;
5427 	}
5428 
5429 	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5430 			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5431 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5432 
5433 	/**
5434 	 * Configure classification DBs: Always enable Tx switching
5435 	 */
5436 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5437 
5438 	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5439 		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5440 		   fp->igu_sb_id);
5441 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5442 		      fp->fw_sb_id, fp->igu_sb_id);
5443 
5444 	bnx2x_update_fpsb_idx(fp);
5445 }
5446 
5447 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5448 {
5449 	int i;
5450 
5451 	for_each_eth_queue(bp, i)
5452 		bnx2x_init_eth_fp(bp, i);
5453 #ifdef BCM_CNIC
5454 	if (!NO_FCOE(bp))
5455 		bnx2x_init_fcoe_fp(bp);
5456 
5457 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5458 		      BNX2X_VF_ID_INVALID, false,
5459 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5460 
5461 #endif
5462 
5463 	/* Initialize MOD_ABS interrupts */
5464 	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5465 			       bp->common.shmem_base, bp->common.shmem2_base,
5466 			       BP_PORT(bp));
5467 	/* ensure status block indices were read */
5468 	rmb();
5469 
5470 	bnx2x_init_def_sb(bp);
5471 	bnx2x_update_dsb_idx(bp);
5472 	bnx2x_init_rx_rings(bp);
5473 	bnx2x_init_tx_rings(bp);
5474 	bnx2x_init_sp_ring(bp);
5475 	bnx2x_init_eq_ring(bp);
5476 	bnx2x_init_internal(bp, load_code);
5477 	bnx2x_pf_init(bp);
5478 	bnx2x_stats_init(bp);
5479 
5480 	/* flush all before enabling interrupts */
5481 	mb();
5482 	mmiowb();
5483 
5484 	bnx2x_int_enable(bp);
5485 
5486 	/* Check for SPIO5 */
5487 	bnx2x_attn_int_deasserted0(bp,
5488 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5489 				   AEU_INPUTS_ATTN_BITS_SPIO5);
5490 }
5491 
5492 /* end of nic init */
5493 
5494 /*
5495  * gzip service functions
5496  */
5497 
5498 static int bnx2x_gunzip_init(struct bnx2x *bp)
5499 {
5500 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5501 					    &bp->gunzip_mapping, GFP_KERNEL);
5502 	if (bp->gunzip_buf  == NULL)
5503 		goto gunzip_nomem1;
5504 
5505 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5506 	if (bp->strm  == NULL)
5507 		goto gunzip_nomem2;
5508 
5509 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5510 	if (bp->strm->workspace == NULL)
5511 		goto gunzip_nomem3;
5512 
5513 	return 0;
5514 
5515 gunzip_nomem3:
5516 	kfree(bp->strm);
5517 	bp->strm = NULL;
5518 
5519 gunzip_nomem2:
5520 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5521 			  bp->gunzip_mapping);
5522 	bp->gunzip_buf = NULL;
5523 
5524 gunzip_nomem1:
5525 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5526 	return -ENOMEM;
5527 }
5528 
5529 static void bnx2x_gunzip_end(struct bnx2x *bp)
5530 {
5531 	if (bp->strm) {
5532 		vfree(bp->strm->workspace);
5533 		kfree(bp->strm);
5534 		bp->strm = NULL;
5535 	}
5536 
5537 	if (bp->gunzip_buf) {
5538 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5539 				  bp->gunzip_mapping);
5540 		bp->gunzip_buf = NULL;
5541 	}
5542 }
5543 
5544 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5545 {
5546 	int n, rc;
5547 
5548 	/* check gzip header */
5549 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5550 		BNX2X_ERR("Bad gzip header\n");
5551 		return -EINVAL;
5552 	}
5553 
5554 	n = 10;
5555 
5556 #define FNAME				0x8
5557 
5558 	if (zbuf[3] & FNAME)
5559 		while ((zbuf[n++] != 0) && (n < len));
5560 
5561 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5562 	bp->strm->avail_in = len - n;
5563 	bp->strm->next_out = bp->gunzip_buf;
5564 	bp->strm->avail_out = FW_BUF_SIZE;
5565 
5566 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5567 	if (rc != Z_OK)
5568 		return rc;
5569 
5570 	rc = zlib_inflate(bp->strm, Z_FINISH);
5571 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5572 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5573 			   bp->strm->msg);
5574 
5575 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5576 	if (bp->gunzip_outlen & 0x3)
5577 		netdev_err(bp->dev,
5578 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5579 				bp->gunzip_outlen);
5580 	bp->gunzip_outlen >>= 2;
5581 
5582 	zlib_inflateEnd(bp->strm);
5583 
5584 	if (rc == Z_STREAM_END)
5585 		return 0;
5586 
5587 	return rc;
5588 }
5589 
5590 /* nic load/unload */
5591 
5592 /*
5593  * General service functions
5594  */
5595 
5596 /* send a NIG loopback debug packet */
5597 static void bnx2x_lb_pckt(struct bnx2x *bp)
5598 {
5599 	u32 wb_write[3];
5600 
5601 	/* Ethernet source and destination addresses */
5602 	wb_write[0] = 0x55555555;
5603 	wb_write[1] = 0x55555555;
5604 	wb_write[2] = 0x20;		/* SOP */
5605 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5606 
5607 	/* NON-IP protocol */
5608 	wb_write[0] = 0x09000000;
5609 	wb_write[1] = 0x55555555;
5610 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5611 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5612 }
5613 
5614 /* some of the internal memories
5615  * are not directly readable from the driver
5616  * to test them we send debug packets
5617  */
5618 static int bnx2x_int_mem_test(struct bnx2x *bp)
5619 {
5620 	int factor;
5621 	int count, i;
5622 	u32 val = 0;
5623 
5624 	if (CHIP_REV_IS_FPGA(bp))
5625 		factor = 120;
5626 	else if (CHIP_REV_IS_EMUL(bp))
5627 		factor = 200;
5628 	else
5629 		factor = 1;
5630 
5631 	/* Disable inputs of parser neighbor blocks */
5632 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5633 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5634 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5635 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5636 
5637 	/*  Write 0 to parser credits for CFC search request */
5638 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5639 
5640 	/* send Ethernet packet */
5641 	bnx2x_lb_pckt(bp);
5642 
5643 	/* TODO do i reset NIG statistic? */
5644 	/* Wait until NIG register shows 1 packet of size 0x10 */
5645 	count = 1000 * factor;
5646 	while (count) {
5647 
5648 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5649 		val = *bnx2x_sp(bp, wb_data[0]);
5650 		if (val == 0x10)
5651 			break;
5652 
5653 		msleep(10);
5654 		count--;
5655 	}
5656 	if (val != 0x10) {
5657 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5658 		return -1;
5659 	}
5660 
5661 	/* Wait until PRS register shows 1 packet */
5662 	count = 1000 * factor;
5663 	while (count) {
5664 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5665 		if (val == 1)
5666 			break;
5667 
5668 		msleep(10);
5669 		count--;
5670 	}
5671 	if (val != 0x1) {
5672 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5673 		return -2;
5674 	}
5675 
5676 	/* Reset and init BRB, PRS */
5677 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5678 	msleep(50);
5679 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5680 	msleep(50);
5681 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5682 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5683 
5684 	DP(NETIF_MSG_HW, "part2\n");
5685 
5686 	/* Disable inputs of parser neighbor blocks */
5687 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5688 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5689 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5690 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5691 
5692 	/* Write 0 to parser credits for CFC search request */
5693 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5694 
5695 	/* send 10 Ethernet packets */
5696 	for (i = 0; i < 10; i++)
5697 		bnx2x_lb_pckt(bp);
5698 
5699 	/* Wait until NIG register shows 10 + 1
5700 	   packets of size 11*0x10 = 0xb0 */
5701 	count = 1000 * factor;
5702 	while (count) {
5703 
5704 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5705 		val = *bnx2x_sp(bp, wb_data[0]);
5706 		if (val == 0xb0)
5707 			break;
5708 
5709 		msleep(10);
5710 		count--;
5711 	}
5712 	if (val != 0xb0) {
5713 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5714 		return -3;
5715 	}
5716 
5717 	/* Wait until PRS register shows 2 packets */
5718 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5719 	if (val != 2)
5720 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5721 
5722 	/* Write 1 to parser credits for CFC search request */
5723 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5724 
5725 	/* Wait until PRS register shows 3 packets */
5726 	msleep(10 * factor);
5727 	/* Wait until NIG register shows 1 packet of size 0x10 */
5728 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5729 	if (val != 3)
5730 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5731 
5732 	/* clear NIG EOP FIFO */
5733 	for (i = 0; i < 11; i++)
5734 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5735 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5736 	if (val != 1) {
5737 		BNX2X_ERR("clear of NIG failed\n");
5738 		return -4;
5739 	}
5740 
5741 	/* Reset and init BRB, PRS, NIG */
5742 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5743 	msleep(50);
5744 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5745 	msleep(50);
5746 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5747 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5748 #ifndef BCM_CNIC
5749 	/* set NIC mode */
5750 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
5751 #endif
5752 
5753 	/* Enable inputs of parser neighbor blocks */
5754 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5755 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5756 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5757 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5758 
5759 	DP(NETIF_MSG_HW, "done\n");
5760 
5761 	return 0; /* OK */
5762 }
5763 
5764 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5765 {
5766 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5767 	if (!CHIP_IS_E1x(bp))
5768 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5769 	else
5770 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5771 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5772 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5773 	/*
5774 	 * mask read length error interrupts in brb for parser
5775 	 * (parsing unit and 'checksum and crc' unit)
5776 	 * these errors are legal (PU reads fixed length and CAC can cause
5777 	 * read length error on truncated packets)
5778 	 */
5779 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5780 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5781 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5782 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5783 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5784 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5785 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5786 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5787 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5788 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5789 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5790 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5791 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5792 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5793 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5794 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5795 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5796 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5797 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5798 
5799 	if (CHIP_REV_IS_FPGA(bp))
5800 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5801 	else if (!CHIP_IS_E1x(bp))
5802 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5803 			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5804 				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5805 				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5806 				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5807 				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5808 	else
5809 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5810 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5811 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5812 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5813 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5814 
5815 	if (!CHIP_IS_E1x(bp))
5816 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5817 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5818 
5819 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5820 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5821 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5822 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
5823 }
5824 
5825 static void bnx2x_reset_common(struct bnx2x *bp)
5826 {
5827 	u32 val = 0x1400;
5828 
5829 	/* reset_common */
5830 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5831 	       0xd3ffff7f);
5832 
5833 	if (CHIP_IS_E3(bp)) {
5834 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5835 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5836 	}
5837 
5838 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5839 }
5840 
5841 static void bnx2x_setup_dmae(struct bnx2x *bp)
5842 {
5843 	bp->dmae_ready = 0;
5844 	spin_lock_init(&bp->dmae_lock);
5845 }
5846 
5847 static void bnx2x_init_pxp(struct bnx2x *bp)
5848 {
5849 	u16 devctl;
5850 	int r_order, w_order;
5851 
5852 	pci_read_config_word(bp->pdev,
5853 			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5854 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5855 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5856 	if (bp->mrrs == -1)
5857 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5858 	else {
5859 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5860 		r_order = bp->mrrs;
5861 	}
5862 
5863 	bnx2x_init_pxp_arb(bp, r_order, w_order);
5864 }
5865 
5866 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5867 {
5868 	int is_required;
5869 	u32 val;
5870 	int port;
5871 
5872 	if (BP_NOMCP(bp))
5873 		return;
5874 
5875 	is_required = 0;
5876 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5877 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
5878 
5879 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5880 		is_required = 1;
5881 
5882 	/*
5883 	 * The fan failure mechanism is usually related to the PHY type since
5884 	 * the power consumption of the board is affected by the PHY. Currently,
5885 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5886 	 */
5887 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5888 		for (port = PORT_0; port < PORT_MAX; port++) {
5889 			is_required |=
5890 				bnx2x_fan_failure_det_req(
5891 					bp,
5892 					bp->common.shmem_base,
5893 					bp->common.shmem2_base,
5894 					port);
5895 		}
5896 
5897 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5898 
5899 	if (is_required == 0)
5900 		return;
5901 
5902 	/* Fan failure is indicated by SPIO 5 */
5903 	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5904 		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
5905 
5906 	/* set to active low mode */
5907 	val = REG_RD(bp, MISC_REG_SPIO_INT);
5908 	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5909 					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5910 	REG_WR(bp, MISC_REG_SPIO_INT, val);
5911 
5912 	/* enable interrupt to signal the IGU */
5913 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5914 	val |= (1 << MISC_REGISTERS_SPIO_5);
5915 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5916 }
5917 
5918 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5919 {
5920 	u32 offset = 0;
5921 
5922 	if (CHIP_IS_E1(bp))
5923 		return;
5924 	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5925 		return;
5926 
5927 	switch (BP_ABS_FUNC(bp)) {
5928 	case 0:
5929 		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5930 		break;
5931 	case 1:
5932 		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5933 		break;
5934 	case 2:
5935 		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5936 		break;
5937 	case 3:
5938 		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5939 		break;
5940 	case 4:
5941 		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5942 		break;
5943 	case 5:
5944 		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5945 		break;
5946 	case 6:
5947 		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5948 		break;
5949 	case 7:
5950 		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5951 		break;
5952 	default:
5953 		return;
5954 	}
5955 
5956 	REG_WR(bp, offset, pretend_func_num);
5957 	REG_RD(bp, offset);
5958 	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5959 }
5960 
5961 void bnx2x_pf_disable(struct bnx2x *bp)
5962 {
5963 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5964 	val &= ~IGU_PF_CONF_FUNC_EN;
5965 
5966 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5967 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5968 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5969 }
5970 
5971 static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5972 {
5973 	u32 shmem_base[2], shmem2_base[2];
5974 	shmem_base[0] =  bp->common.shmem_base;
5975 	shmem2_base[0] = bp->common.shmem2_base;
5976 	if (!CHIP_IS_E1x(bp)) {
5977 		shmem_base[1] =
5978 			SHMEM2_RD(bp, other_shmem_base_addr);
5979 		shmem2_base[1] =
5980 			SHMEM2_RD(bp, other_shmem2_base_addr);
5981 	}
5982 	bnx2x_acquire_phy_lock(bp);
5983 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5984 			      bp->common.chip_id);
5985 	bnx2x_release_phy_lock(bp);
5986 }
5987 
5988 /**
5989  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5990  *
5991  * @bp:		driver handle
5992  */
5993 static int bnx2x_init_hw_common(struct bnx2x *bp)
5994 {
5995 	u32 val;
5996 
5997 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
5998 
5999 	/*
6000 	 * take the UNDI lock to protect undi_unload flow from accessing
6001 	 * registers while we're resetting the chip
6002 	 */
6003 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6004 
6005 	bnx2x_reset_common(bp);
6006 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6007 
6008 	val = 0xfffc;
6009 	if (CHIP_IS_E3(bp)) {
6010 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6011 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6012 	}
6013 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6014 
6015 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6016 
6017 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6018 
6019 	if (!CHIP_IS_E1x(bp)) {
6020 		u8 abs_func_id;
6021 
6022 		/**
6023 		 * 4-port mode or 2-port mode we need to turn of master-enable
6024 		 * for everyone, after that, turn it back on for self.
6025 		 * so, we disregard multi-function or not, and always disable
6026 		 * for all functions on the given path, this means 0,2,4,6 for
6027 		 * path 0 and 1,3,5,7 for path 1
6028 		 */
6029 		for (abs_func_id = BP_PATH(bp);
6030 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6031 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6032 				REG_WR(bp,
6033 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6034 				    1);
6035 				continue;
6036 			}
6037 
6038 			bnx2x_pretend_func(bp, abs_func_id);
6039 			/* clear pf enable */
6040 			bnx2x_pf_disable(bp);
6041 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6042 		}
6043 	}
6044 
6045 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6046 	if (CHIP_IS_E1(bp)) {
6047 		/* enable HW interrupt from PXP on USDM overflow
6048 		   bit 16 on INT_MASK_0 */
6049 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6050 	}
6051 
6052 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6053 	bnx2x_init_pxp(bp);
6054 
6055 #ifdef __BIG_ENDIAN
6056 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6057 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6058 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6059 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6060 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6061 	/* make sure this value is 0 */
6062 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6063 
6064 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6065 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6066 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6067 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6068 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6069 #endif
6070 
6071 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6072 
6073 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6074 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6075 
6076 	/* let the HW do it's magic ... */
6077 	msleep(100);
6078 	/* finish PXP init */
6079 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6080 	if (val != 1) {
6081 		BNX2X_ERR("PXP2 CFG failed\n");
6082 		return -EBUSY;
6083 	}
6084 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6085 	if (val != 1) {
6086 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6087 		return -EBUSY;
6088 	}
6089 
6090 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6091 	 * have entries with value "0" and valid bit on.
6092 	 * This needs to be done by the first PF that is loaded in a path
6093 	 * (i.e. common phase)
6094 	 */
6095 	if (!CHIP_IS_E1x(bp)) {
6096 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6097  * (i.e. vnic3) to start even if it is marked as "scan-off".
6098  * This occurs when a different function (func2,3) is being marked
6099  * as "scan-off". Real-life scenario for example: if a driver is being
6100  * load-unloaded while func6,7 are down. This will cause the timer to access
6101  * the ilt, translate to a logical address and send a request to read/write.
6102  * Since the ilt for the function that is down is not valid, this will cause
6103  * a translation error which is unrecoverable.
6104  * The Workaround is intended to make sure that when this happens nothing fatal
6105  * will occur. The workaround:
6106  *	1.  First PF driver which loads on a path will:
6107  *		a.  After taking the chip out of reset, by using pretend,
6108  *		    it will write "0" to the following registers of
6109  *		    the other vnics.
6110  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6111  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6112  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6113  *		    And for itself it will write '1' to
6114  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6115  *		    dmae-operations (writing to pram for example.)
6116  *		    note: can be done for only function 6,7 but cleaner this
6117  *			  way.
6118  *		b.  Write zero+valid to the entire ILT.
6119  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6120  *		    VNIC3 (of that port). The range allocated will be the
6121  *		    entire ILT. This is needed to prevent  ILT range error.
6122  *	2.  Any PF driver load flow:
6123  *		a.  ILT update with the physical addresses of the allocated
6124  *		    logical pages.
6125  *		b.  Wait 20msec. - note that this timeout is needed to make
6126  *		    sure there are no requests in one of the PXP internal
6127  *		    queues with "old" ILT addresses.
6128  *		c.  PF enable in the PGLC.
6129  *		d.  Clear the was_error of the PF in the PGLC. (could have
6130  *		    occured while driver was down)
6131  *		e.  PF enable in the CFC (WEAK + STRONG)
6132  *		f.  Timers scan enable
6133  *	3.  PF driver unload flow:
6134  *		a.  Clear the Timers scan_en.
6135  *		b.  Polling for scan_on=0 for that PF.
6136  *		c.  Clear the PF enable bit in the PXP.
6137  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6138  *		e.  Write zero+valid to all ILT entries (The valid bit must
6139  *		    stay set)
6140  *		f.  If this is VNIC 3 of a port then also init
6141  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6142  *		    to the last enrty in the ILT.
6143  *
6144  *	Notes:
6145  *	Currently the PF error in the PGLC is non recoverable.
6146  *	In the future the there will be a recovery routine for this error.
6147  *	Currently attention is masked.
6148  *	Having an MCP lock on the load/unload process does not guarantee that
6149  *	there is no Timer disable during Func6/7 enable. This is because the
6150  *	Timers scan is currently being cleared by the MCP on FLR.
6151  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6152  *	there is error before clearing it. But the flow above is simpler and
6153  *	more general.
6154  *	All ILT entries are written by zero+valid and not just PF6/7
6155  *	ILT entries since in the future the ILT entries allocation for
6156  *	PF-s might be dynamic.
6157  */
6158 		struct ilt_client_info ilt_cli;
6159 		struct bnx2x_ilt ilt;
6160 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6161 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6162 
6163 		/* initialize dummy TM client */
6164 		ilt_cli.start = 0;
6165 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6166 		ilt_cli.client_num = ILT_CLIENT_TM;
6167 
6168 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6169 		 * Step 2: set the timers first/last ilt entry to point
6170 		 * to the entire range to prevent ILT range error for 3rd/4th
6171 		 * vnic	(this code assumes existance of the vnic)
6172 		 *
6173 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6174 		 * with dummy TM client
6175 		 *
6176 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6177 		 * and his brother are split registers
6178 		 */
6179 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6180 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6181 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6182 
6183 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6184 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6185 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6186 	}
6187 
6188 
6189 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6190 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6191 
6192 	if (!CHIP_IS_E1x(bp)) {
6193 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6194 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6195 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6196 
6197 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6198 
6199 		/* let the HW do it's magic ... */
6200 		do {
6201 			msleep(200);
6202 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6203 		} while (factor-- && (val != 1));
6204 
6205 		if (val != 1) {
6206 			BNX2X_ERR("ATC_INIT failed\n");
6207 			return -EBUSY;
6208 		}
6209 	}
6210 
6211 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6212 
6213 	/* clean the DMAE memory */
6214 	bp->dmae_ready = 1;
6215 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6216 
6217 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6218 
6219 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6220 
6221 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6222 
6223 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6224 
6225 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6226 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6227 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6228 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6229 
6230 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6231 
6232 
6233 	/* QM queues pointers table */
6234 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6235 
6236 	/* soft reset pulse */
6237 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6238 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6239 
6240 #ifdef BCM_CNIC
6241 	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6242 #endif
6243 
6244 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6245 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6246 	if (!CHIP_REV_IS_SLOW(bp))
6247 		/* enable hw interrupt from doorbell Q */
6248 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6249 
6250 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6251 
6252 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6253 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6254 
6255 	if (!CHIP_IS_E1(bp))
6256 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6257 
6258 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6259 		/* Bit-map indicating which L2 hdrs may appear
6260 		 * after the basic Ethernet header
6261 		 */
6262 		REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6263 		       bp->path_has_ovlan ? 7 : 6);
6264 
6265 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6266 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6267 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6268 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6269 
6270 	if (!CHIP_IS_E1x(bp)) {
6271 		/* reset VFC memories */
6272 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6273 			   VFC_MEMORIES_RST_REG_CAM_RST |
6274 			   VFC_MEMORIES_RST_REG_RAM_RST);
6275 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6276 			   VFC_MEMORIES_RST_REG_CAM_RST |
6277 			   VFC_MEMORIES_RST_REG_RAM_RST);
6278 
6279 		msleep(20);
6280 	}
6281 
6282 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6283 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6284 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6285 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6286 
6287 	/* sync semi rtc */
6288 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6289 	       0x80000000);
6290 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6291 	       0x80000000);
6292 
6293 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6294 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6295 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6296 
6297 	if (!CHIP_IS_E1x(bp))
6298 		REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6299 		       bp->path_has_ovlan ? 7 : 6);
6300 
6301 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6302 
6303 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6304 
6305 #ifdef BCM_CNIC
6306 	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6307 	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6308 	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6309 	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6310 	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6311 	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6312 	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6313 	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6314 	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6315 	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6316 #endif
6317 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6318 
6319 	if (sizeof(union cdu_context) != 1024)
6320 		/* we currently assume that a context is 1024 bytes */
6321 		dev_alert(&bp->pdev->dev,
6322 			  "please adjust the size of cdu_context(%ld)\n",
6323 			  (long)sizeof(union cdu_context));
6324 
6325 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6326 	val = (4 << 24) + (0 << 12) + 1024;
6327 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6328 
6329 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6330 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6331 	/* enable context validation interrupt from CFC */
6332 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6333 
6334 	/* set the thresholds to prevent CFC/CDU race */
6335 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6336 
6337 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6338 
6339 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6340 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6341 
6342 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6343 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6344 
6345 	/* Reset PCIE errors for debug */
6346 	REG_WR(bp, 0x2814, 0xffffffff);
6347 	REG_WR(bp, 0x3820, 0xffffffff);
6348 
6349 	if (!CHIP_IS_E1x(bp)) {
6350 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6351 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6352 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6353 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6354 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6355 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6356 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6357 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6358 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6359 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6360 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6361 	}
6362 
6363 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6364 	if (!CHIP_IS_E1(bp)) {
6365 		/* in E3 this done in per-port section */
6366 		if (!CHIP_IS_E3(bp))
6367 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6368 	}
6369 	if (CHIP_IS_E1H(bp))
6370 		/* not applicable for E2 (and above ...) */
6371 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6372 
6373 	if (CHIP_REV_IS_SLOW(bp))
6374 		msleep(200);
6375 
6376 	/* finish CFC init */
6377 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6378 	if (val != 1) {
6379 		BNX2X_ERR("CFC LL_INIT failed\n");
6380 		return -EBUSY;
6381 	}
6382 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6383 	if (val != 1) {
6384 		BNX2X_ERR("CFC AC_INIT failed\n");
6385 		return -EBUSY;
6386 	}
6387 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6388 	if (val != 1) {
6389 		BNX2X_ERR("CFC CAM_INIT failed\n");
6390 		return -EBUSY;
6391 	}
6392 	REG_WR(bp, CFC_REG_DEBUG0, 0);
6393 
6394 	if (CHIP_IS_E1(bp)) {
6395 		/* read NIG statistic
6396 		   to see if this is our first up since powerup */
6397 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6398 		val = *bnx2x_sp(bp, wb_data[0]);
6399 
6400 		/* do internal memory self test */
6401 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6402 			BNX2X_ERR("internal mem self test failed\n");
6403 			return -EBUSY;
6404 		}
6405 	}
6406 
6407 	bnx2x_setup_fan_failure_detection(bp);
6408 
6409 	/* clear PXP2 attentions */
6410 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6411 
6412 	bnx2x_enable_blocks_attention(bp);
6413 	bnx2x_enable_blocks_parity(bp);
6414 
6415 	if (!BP_NOMCP(bp)) {
6416 		if (CHIP_IS_E1x(bp))
6417 			bnx2x__common_init_phy(bp);
6418 	} else
6419 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6420 
6421 	return 0;
6422 }
6423 
6424 /**
6425  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6426  *
6427  * @bp:		driver handle
6428  */
6429 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6430 {
6431 	int rc = bnx2x_init_hw_common(bp);
6432 
6433 	if (rc)
6434 		return rc;
6435 
6436 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6437 	if (!BP_NOMCP(bp))
6438 		bnx2x__common_init_phy(bp);
6439 
6440 	return 0;
6441 }
6442 
6443 static int bnx2x_init_hw_port(struct bnx2x *bp)
6444 {
6445 	int port = BP_PORT(bp);
6446 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6447 	u32 low, high;
6448 	u32 val;
6449 
6450 	bnx2x__link_reset(bp);
6451 
6452 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
6453 
6454 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6455 
6456 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6457 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6458 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6459 
6460 	/* Timers bug workaround: disables the pf_master bit in pglue at
6461 	 * common phase, we need to enable it here before any dmae access are
6462 	 * attempted. Therefore we manually added the enable-master to the
6463 	 * port phase (it also happens in the function phase)
6464 	 */
6465 	if (!CHIP_IS_E1x(bp))
6466 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6467 
6468 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6469 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6470 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6471 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6472 
6473 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6474 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6475 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6476 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6477 
6478 	/* QM cid (connection) count */
6479 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6480 
6481 #ifdef BCM_CNIC
6482 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6483 	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6484 	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6485 #endif
6486 
6487 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6488 
6489 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6490 		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6491 
6492 		if (IS_MF(bp))
6493 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6494 		else if (bp->dev->mtu > 4096) {
6495 			if (bp->flags & ONE_PORT_FLAG)
6496 				low = 160;
6497 			else {
6498 				val = bp->dev->mtu;
6499 				/* (24*1024 + val*4)/256 */
6500 				low = 96 + (val/64) +
6501 						((val % 64) ? 1 : 0);
6502 			}
6503 		} else
6504 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6505 		high = low + 56;	/* 14*1024/256 */
6506 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6507 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6508 	}
6509 
6510 	if (CHIP_MODE_IS_4_PORT(bp))
6511 		REG_WR(bp, (BP_PORT(bp) ?
6512 			    BRB1_REG_MAC_GUARANTIED_1 :
6513 			    BRB1_REG_MAC_GUARANTIED_0), 40);
6514 
6515 
6516 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6517 	if (CHIP_IS_E3B0(bp))
6518 		/* Ovlan exists only if we are in multi-function +
6519 		 * switch-dependent mode, in switch-independent there
6520 		 * is no ovlan headers
6521 		 */
6522 		REG_WR(bp, BP_PORT(bp) ?
6523 		       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6524 		       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6525 		       (bp->path_has_ovlan ? 7 : 6));
6526 
6527 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6528 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6529 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6530 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6531 
6532 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6533 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6534 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6535 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6536 
6537 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6538 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6539 
6540 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6541 
6542 	if (CHIP_IS_E1x(bp)) {
6543 		/* configure PBF to work without PAUSE mtu 9000 */
6544 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6545 
6546 		/* update threshold */
6547 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6548 		/* update init credit */
6549 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6550 
6551 		/* probe changes */
6552 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6553 		udelay(50);
6554 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6555 	}
6556 
6557 #ifdef BCM_CNIC
6558 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6559 #endif
6560 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6561 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6562 
6563 	if (CHIP_IS_E1(bp)) {
6564 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6565 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6566 	}
6567 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6568 
6569 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6570 
6571 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6572 	/* init aeu_mask_attn_func_0/1:
6573 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6574 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6575 	 *             bits 4-7 are used for "per vn group attention" */
6576 	val = IS_MF(bp) ? 0xF7 : 0x7;
6577 	/* Enable DCBX attention for all but E1 */
6578 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6579 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6580 
6581 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6582 
6583 	if (!CHIP_IS_E1x(bp)) {
6584 		/* Bit-map indicating which L2 hdrs may appear after the
6585 		 * basic Ethernet header
6586 		 */
6587 		REG_WR(bp, BP_PORT(bp) ?
6588 			   NIG_REG_P1_HDRS_AFTER_BASIC :
6589 			   NIG_REG_P0_HDRS_AFTER_BASIC,
6590 			   IS_MF_SD(bp) ? 7 : 6);
6591 
6592 		if (CHIP_IS_E3(bp))
6593 			REG_WR(bp, BP_PORT(bp) ?
6594 				   NIG_REG_LLH1_MF_MODE :
6595 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6596 	}
6597 	if (!CHIP_IS_E3(bp))
6598 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6599 
6600 	if (!CHIP_IS_E1(bp)) {
6601 		/* 0x2 disable mf_ov, 0x1 enable */
6602 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6603 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6604 
6605 		if (!CHIP_IS_E1x(bp)) {
6606 			val = 0;
6607 			switch (bp->mf_mode) {
6608 			case MULTI_FUNCTION_SD:
6609 				val = 1;
6610 				break;
6611 			case MULTI_FUNCTION_SI:
6612 				val = 2;
6613 				break;
6614 			}
6615 
6616 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6617 						  NIG_REG_LLH0_CLS_TYPE), val);
6618 		}
6619 		{
6620 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6621 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6622 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6623 		}
6624 	}
6625 
6626 
6627 	/* If SPIO5 is set to generate interrupts, enable it for this port */
6628 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6629 	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6630 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6631 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6632 		val = REG_RD(bp, reg_addr);
6633 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6634 		REG_WR(bp, reg_addr, val);
6635 	}
6636 
6637 	return 0;
6638 }
6639 
6640 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6641 {
6642 	int reg;
6643 
6644 	if (CHIP_IS_E1(bp))
6645 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6646 	else
6647 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6648 
6649 	bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6650 }
6651 
6652 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6653 {
6654 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6655 }
6656 
6657 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6658 {
6659 	u32 i, base = FUNC_ILT_BASE(func);
6660 	for (i = base; i < base + ILT_PER_FUNC; i++)
6661 		bnx2x_ilt_wr(bp, i, 0);
6662 }
6663 
6664 static int bnx2x_init_hw_func(struct bnx2x *bp)
6665 {
6666 	int port = BP_PORT(bp);
6667 	int func = BP_FUNC(bp);
6668 	int init_phase = PHASE_PF0 + func;
6669 	struct bnx2x_ilt *ilt = BP_ILT(bp);
6670 	u16 cdu_ilt_start;
6671 	u32 addr, val;
6672 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6673 	int i, main_mem_width, rc;
6674 
6675 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
6676 
6677 	/* FLR cleanup - hmmm */
6678 	if (!CHIP_IS_E1x(bp)) {
6679 		rc = bnx2x_pf_flr_clnup(bp);
6680 		if (rc)
6681 			return rc;
6682 	}
6683 
6684 	/* set MSI reconfigure capability */
6685 	if (bp->common.int_block == INT_BLOCK_HC) {
6686 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6687 		val = REG_RD(bp, addr);
6688 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6689 		REG_WR(bp, addr, val);
6690 	}
6691 
6692 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6693 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6694 
6695 	ilt = BP_ILT(bp);
6696 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6697 
6698 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
6699 		ilt->lines[cdu_ilt_start + i].page =
6700 			bp->context.vcxt + (ILT_PAGE_CIDS * i);
6701 		ilt->lines[cdu_ilt_start + i].page_mapping =
6702 			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6703 		/* cdu ilt pages are allocated manually so there's no need to
6704 		set the size */
6705 	}
6706 	bnx2x_ilt_init_op(bp, INITOP_SET);
6707 
6708 #ifdef BCM_CNIC
6709 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6710 
6711 	/* T1 hash bits value determines the T1 number of entries */
6712 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6713 #endif
6714 
6715 #ifndef BCM_CNIC
6716 	/* set NIC mode */
6717 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6718 #endif  /* BCM_CNIC */
6719 
6720 	if (!CHIP_IS_E1x(bp)) {
6721 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6722 
6723 		/* Turn on a single ISR mode in IGU if driver is going to use
6724 		 * INT#x or MSI
6725 		 */
6726 		if (!(bp->flags & USING_MSIX_FLAG))
6727 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6728 		/*
6729 		 * Timers workaround bug: function init part.
6730 		 * Need to wait 20msec after initializing ILT,
6731 		 * needed to make sure there are no requests in
6732 		 * one of the PXP internal queues with "old" ILT addresses
6733 		 */
6734 		msleep(20);
6735 		/*
6736 		 * Master enable - Due to WB DMAE writes performed before this
6737 		 * register is re-initialized as part of the regular function
6738 		 * init
6739 		 */
6740 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6741 		/* Enable the function in IGU */
6742 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6743 	}
6744 
6745 	bp->dmae_ready = 1;
6746 
6747 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6748 
6749 	if (!CHIP_IS_E1x(bp))
6750 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6751 
6752 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6753 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6754 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6755 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6756 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6757 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6758 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6759 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6760 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6761 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6762 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6763 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6764 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6765 
6766 	if (!CHIP_IS_E1x(bp))
6767 		REG_WR(bp, QM_REG_PF_EN, 1);
6768 
6769 	if (!CHIP_IS_E1x(bp)) {
6770 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6771 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6772 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6773 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6774 	}
6775 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6776 
6777 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6778 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6779 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6780 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6781 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6782 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6783 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6784 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6785 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6786 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6787 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6788 	if (!CHIP_IS_E1x(bp))
6789 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6790 
6791 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6792 
6793 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6794 
6795 	if (!CHIP_IS_E1x(bp))
6796 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6797 
6798 	if (IS_MF(bp)) {
6799 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6800 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6801 	}
6802 
6803 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6804 
6805 	/* HC init per function */
6806 	if (bp->common.int_block == INT_BLOCK_HC) {
6807 		if (CHIP_IS_E1H(bp)) {
6808 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6809 
6810 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6811 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6812 		}
6813 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
6814 
6815 	} else {
6816 		int num_segs, sb_idx, prod_offset;
6817 
6818 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6819 
6820 		if (!CHIP_IS_E1x(bp)) {
6821 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6822 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6823 		}
6824 
6825 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6826 
6827 		if (!CHIP_IS_E1x(bp)) {
6828 			int dsb_idx = 0;
6829 			/**
6830 			 * Producer memory:
6831 			 * E2 mode: address 0-135 match to the mapping memory;
6832 			 * 136 - PF0 default prod; 137 - PF1 default prod;
6833 			 * 138 - PF2 default prod; 139 - PF3 default prod;
6834 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
6835 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
6836 			 * 144-147 reserved.
6837 			 *
6838 			 * E1.5 mode - In backward compatible mode;
6839 			 * for non default SB; each even line in the memory
6840 			 * holds the U producer and each odd line hold
6841 			 * the C producer. The first 128 producers are for
6842 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6843 			 * producers are for the DSB for each PF.
6844 			 * Each PF has five segments: (the order inside each
6845 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6846 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6847 			 * 144-147 attn prods;
6848 			 */
6849 			/* non-default-status-blocks */
6850 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6851 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6852 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6853 				prod_offset = (bp->igu_base_sb + sb_idx) *
6854 					num_segs;
6855 
6856 				for (i = 0; i < num_segs; i++) {
6857 					addr = IGU_REG_PROD_CONS_MEMORY +
6858 							(prod_offset + i) * 4;
6859 					REG_WR(bp, addr, 0);
6860 				}
6861 				/* send consumer update with value 0 */
6862 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6863 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6864 				bnx2x_igu_clear_sb(bp,
6865 						   bp->igu_base_sb + sb_idx);
6866 			}
6867 
6868 			/* default-status-blocks */
6869 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6870 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6871 
6872 			if (CHIP_MODE_IS_4_PORT(bp))
6873 				dsb_idx = BP_FUNC(bp);
6874 			else
6875 				dsb_idx = BP_VN(bp);
6876 
6877 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6878 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
6879 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
6880 
6881 			/*
6882 			 * igu prods come in chunks of E1HVN_MAX (4) -
6883 			 * does not matters what is the current chip mode
6884 			 */
6885 			for (i = 0; i < (num_segs * E1HVN_MAX);
6886 			     i += E1HVN_MAX) {
6887 				addr = IGU_REG_PROD_CONS_MEMORY +
6888 							(prod_offset + i)*4;
6889 				REG_WR(bp, addr, 0);
6890 			}
6891 			/* send consumer update with 0 */
6892 			if (CHIP_INT_MODE_IS_BC(bp)) {
6893 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6894 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6895 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6896 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
6897 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6898 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
6899 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6900 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
6901 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6902 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6903 			} else {
6904 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6905 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6906 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6907 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6908 			}
6909 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6910 
6911 			/* !!! these should become driver const once
6912 			   rf-tool supports split-68 const */
6913 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6914 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6915 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6916 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6917 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6918 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6919 		}
6920 	}
6921 
6922 	/* Reset PCIE errors for debug */
6923 	REG_WR(bp, 0x2114, 0xffffffff);
6924 	REG_WR(bp, 0x2120, 0xffffffff);
6925 
6926 	if (CHIP_IS_E1x(bp)) {
6927 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6928 		main_mem_base = HC_REG_MAIN_MEMORY +
6929 				BP_PORT(bp) * (main_mem_size * 4);
6930 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6931 		main_mem_width = 8;
6932 
6933 		val = REG_RD(bp, main_mem_prty_clr);
6934 		if (val)
6935 			DP(NETIF_MSG_HW,
6936 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
6937 			   val);
6938 
6939 		/* Clear "false" parity errors in MSI-X table */
6940 		for (i = main_mem_base;
6941 		     i < main_mem_base + main_mem_size * 4;
6942 		     i += main_mem_width) {
6943 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
6944 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6945 					 i, main_mem_width / 4);
6946 		}
6947 		/* Clear HC parity attention */
6948 		REG_RD(bp, main_mem_prty_clr);
6949 	}
6950 
6951 #ifdef BNX2X_STOP_ON_ERROR
6952 	/* Enable STORMs SP logging */
6953 	REG_WR8(bp, BAR_USTRORM_INTMEM +
6954 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6955 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
6956 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6957 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
6958 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6959 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
6960 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6961 #endif
6962 
6963 	bnx2x_phy_probe(&bp->link_params);
6964 
6965 	return 0;
6966 }
6967 
6968 
6969 void bnx2x_free_mem(struct bnx2x *bp)
6970 {
6971 	/* fastpath */
6972 	bnx2x_free_fp_mem(bp);
6973 	/* end of fastpath */
6974 
6975 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6976 		       sizeof(struct host_sp_status_block));
6977 
6978 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6979 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6980 
6981 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6982 		       sizeof(struct bnx2x_slowpath));
6983 
6984 	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6985 		       bp->context.size);
6986 
6987 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
6988 
6989 	BNX2X_FREE(bp->ilt->lines);
6990 
6991 #ifdef BCM_CNIC
6992 	if (!CHIP_IS_E1x(bp))
6993 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
6994 			       sizeof(struct host_hc_status_block_e2));
6995 	else
6996 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
6997 			       sizeof(struct host_hc_status_block_e1x));
6998 
6999 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7000 #endif
7001 
7002 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7003 
7004 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7005 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7006 }
7007 
7008 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7009 {
7010 	int num_groups;
7011 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7012 
7013 	/* number of queues for statistics is number of eth queues + FCoE */
7014 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7015 
7016 	/* Total number of FW statistics requests =
7017 	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7018 	 * num of queues
7019 	 */
7020 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7021 
7022 
7023 	/* Request is built from stats_query_header and an array of
7024 	 * stats_query_cmd_group each of which contains
7025 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7026 	 * configured in the stats_query_header.
7027 	 */
7028 	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7029 		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7030 
7031 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7032 			num_groups * sizeof(struct stats_query_cmd_group);
7033 
7034 	/* Data for statistics requests + stats_conter
7035 	 *
7036 	 * stats_counter holds per-STORM counters that are incremented
7037 	 * when STORM has finished with the current request.
7038 	 *
7039 	 * memory for FCoE offloaded statistics are counted anyway,
7040 	 * even if they will not be sent.
7041 	 */
7042 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7043 		sizeof(struct per_pf_stats) +
7044 		sizeof(struct fcoe_statistics_params) +
7045 		sizeof(struct per_queue_stats) * num_queue_stats +
7046 		sizeof(struct stats_counter);
7047 
7048 	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7049 			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7050 
7051 	/* Set shortcuts */
7052 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7053 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7054 
7055 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7056 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7057 
7058 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7059 				   bp->fw_stats_req_sz;
7060 	return 0;
7061 
7062 alloc_mem_err:
7063 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7064 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7065 	BNX2X_ERR("Can't allocate memory\n");
7066 	return -ENOMEM;
7067 }
7068 
7069 
7070 int bnx2x_alloc_mem(struct bnx2x *bp)
7071 {
7072 #ifdef BCM_CNIC
7073 	if (!CHIP_IS_E1x(bp))
7074 		/* size = the status block + ramrod buffers */
7075 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7076 				sizeof(struct host_hc_status_block_e2));
7077 	else
7078 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7079 				sizeof(struct host_hc_status_block_e1x));
7080 
7081 	/* allocate searcher T2 table */
7082 	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7083 #endif
7084 
7085 
7086 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7087 			sizeof(struct host_sp_status_block));
7088 
7089 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7090 			sizeof(struct bnx2x_slowpath));
7091 
7092 #ifdef BCM_CNIC
7093 	/* write address to which L5 should insert its values */
7094 	bp->cnic_eth_dev.addr_drv_info_to_mcp = &bp->slowpath->drv_info_to_mcp;
7095 #endif
7096 
7097 	/* Allocated memory for FW statistics  */
7098 	if (bnx2x_alloc_fw_stats_mem(bp))
7099 		goto alloc_mem_err;
7100 
7101 	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7102 
7103 	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7104 			bp->context.size);
7105 
7106 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7107 
7108 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7109 		goto alloc_mem_err;
7110 
7111 	/* Slow path ring */
7112 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7113 
7114 	/* EQ */
7115 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7116 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7117 
7118 
7119 	/* fastpath */
7120 	/* need to be done at the end, since it's self adjusting to amount
7121 	 * of memory available for RSS queues
7122 	 */
7123 	if (bnx2x_alloc_fp_mem(bp))
7124 		goto alloc_mem_err;
7125 	return 0;
7126 
7127 alloc_mem_err:
7128 	bnx2x_free_mem(bp);
7129 	BNX2X_ERR("Can't allocate memory\n");
7130 	return -ENOMEM;
7131 }
7132 
7133 /*
7134  * Init service functions
7135  */
7136 
7137 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7138 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7139 		      int mac_type, unsigned long *ramrod_flags)
7140 {
7141 	int rc;
7142 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7143 
7144 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7145 
7146 	/* Fill general parameters */
7147 	ramrod_param.vlan_mac_obj = obj;
7148 	ramrod_param.ramrod_flags = *ramrod_flags;
7149 
7150 	/* Fill a user request section if needed */
7151 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7152 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7153 
7154 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7155 
7156 		/* Set the command: ADD or DEL */
7157 		if (set)
7158 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7159 		else
7160 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7161 	}
7162 
7163 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7164 	if (rc < 0)
7165 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7166 	return rc;
7167 }
7168 
7169 int bnx2x_del_all_macs(struct bnx2x *bp,
7170 		       struct bnx2x_vlan_mac_obj *mac_obj,
7171 		       int mac_type, bool wait_for_comp)
7172 {
7173 	int rc;
7174 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7175 
7176 	/* Wait for completion of requested */
7177 	if (wait_for_comp)
7178 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7179 
7180 	/* Set the mac type of addresses we want to clear */
7181 	__set_bit(mac_type, &vlan_mac_flags);
7182 
7183 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7184 	if (rc < 0)
7185 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7186 
7187 	return rc;
7188 }
7189 
7190 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7191 {
7192 	unsigned long ramrod_flags = 0;
7193 
7194 #ifdef BCM_CNIC
7195 	if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_STORAGE_SD(bp)) {
7196 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7197 		   "Ignoring Zero MAC for STORAGE SD mode\n");
7198 		return 0;
7199 	}
7200 #endif
7201 
7202 	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7203 
7204 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7205 	/* Eth MAC is set on RSS leading client (fp[0]) */
7206 	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7207 				 BNX2X_ETH_MAC, &ramrod_flags);
7208 }
7209 
7210 int bnx2x_setup_leading(struct bnx2x *bp)
7211 {
7212 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7213 }
7214 
7215 /**
7216  * bnx2x_set_int_mode - configure interrupt mode
7217  *
7218  * @bp:		driver handle
7219  *
7220  * In case of MSI-X it will also try to enable MSI-X.
7221  */
7222 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7223 {
7224 	switch (int_mode) {
7225 	case INT_MODE_MSI:
7226 		bnx2x_enable_msi(bp);
7227 		/* falling through... */
7228 	case INT_MODE_INTx:
7229 		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7230 		BNX2X_DEV_INFO("set number of queues to 1\n");
7231 		break;
7232 	default:
7233 		/* Set number of queues according to bp->multi_mode value */
7234 		bnx2x_set_num_queues(bp);
7235 
7236 		BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
7237 
7238 		/* if we can't use MSI-X we only need one fp,
7239 		 * so try to enable MSI-X with the requested number of fp's
7240 		 * and fallback to MSI or legacy INTx with one fp
7241 		 */
7242 		if (bnx2x_enable_msix(bp)) {
7243 			/* failed to enable MSI-X */
7244 			BNX2X_DEV_INFO("Failed to enable MSI-X (%d), set number of queues to %d\n",
7245 				       bp->num_queues, 1 + NON_ETH_CONTEXT_USE);
7246 
7247 			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7248 
7249 			/* Try to enable MSI */
7250 			if (!(bp->flags & DISABLE_MSI_FLAG))
7251 				bnx2x_enable_msi(bp);
7252 		}
7253 		break;
7254 	}
7255 }
7256 
7257 /* must be called prioir to any HW initializations */
7258 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7259 {
7260 	return L2_ILT_LINES(bp);
7261 }
7262 
7263 void bnx2x_ilt_set_info(struct bnx2x *bp)
7264 {
7265 	struct ilt_client_info *ilt_client;
7266 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7267 	u16 line = 0;
7268 
7269 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7270 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7271 
7272 	/* CDU */
7273 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7274 	ilt_client->client_num = ILT_CLIENT_CDU;
7275 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7276 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7277 	ilt_client->start = line;
7278 	line += bnx2x_cid_ilt_lines(bp);
7279 #ifdef BCM_CNIC
7280 	line += CNIC_ILT_LINES;
7281 #endif
7282 	ilt_client->end = line - 1;
7283 
7284 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7285 	   ilt_client->start,
7286 	   ilt_client->end,
7287 	   ilt_client->page_size,
7288 	   ilt_client->flags,
7289 	   ilog2(ilt_client->page_size >> 12));
7290 
7291 	/* QM */
7292 	if (QM_INIT(bp->qm_cid_count)) {
7293 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7294 		ilt_client->client_num = ILT_CLIENT_QM;
7295 		ilt_client->page_size = QM_ILT_PAGE_SZ;
7296 		ilt_client->flags = 0;
7297 		ilt_client->start = line;
7298 
7299 		/* 4 bytes for each cid */
7300 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7301 							 QM_ILT_PAGE_SZ);
7302 
7303 		ilt_client->end = line - 1;
7304 
7305 		DP(NETIF_MSG_IFUP,
7306 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7307 		   ilt_client->start,
7308 		   ilt_client->end,
7309 		   ilt_client->page_size,
7310 		   ilt_client->flags,
7311 		   ilog2(ilt_client->page_size >> 12));
7312 
7313 	}
7314 	/* SRC */
7315 	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7316 #ifdef BCM_CNIC
7317 	ilt_client->client_num = ILT_CLIENT_SRC;
7318 	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7319 	ilt_client->flags = 0;
7320 	ilt_client->start = line;
7321 	line += SRC_ILT_LINES;
7322 	ilt_client->end = line - 1;
7323 
7324 	DP(NETIF_MSG_IFUP,
7325 	   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7326 	   ilt_client->start,
7327 	   ilt_client->end,
7328 	   ilt_client->page_size,
7329 	   ilt_client->flags,
7330 	   ilog2(ilt_client->page_size >> 12));
7331 
7332 #else
7333 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7334 #endif
7335 
7336 	/* TM */
7337 	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7338 #ifdef BCM_CNIC
7339 	ilt_client->client_num = ILT_CLIENT_TM;
7340 	ilt_client->page_size = TM_ILT_PAGE_SZ;
7341 	ilt_client->flags = 0;
7342 	ilt_client->start = line;
7343 	line += TM_ILT_LINES;
7344 	ilt_client->end = line - 1;
7345 
7346 	DP(NETIF_MSG_IFUP,
7347 	   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7348 	   ilt_client->start,
7349 	   ilt_client->end,
7350 	   ilt_client->page_size,
7351 	   ilt_client->flags,
7352 	   ilog2(ilt_client->page_size >> 12));
7353 
7354 #else
7355 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7356 #endif
7357 	BUG_ON(line > ILT_MAX_LINES);
7358 }
7359 
7360 /**
7361  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7362  *
7363  * @bp:			driver handle
7364  * @fp:			pointer to fastpath
7365  * @init_params:	pointer to parameters structure
7366  *
7367  * parameters configured:
7368  *      - HC configuration
7369  *      - Queue's CDU context
7370  */
7371 static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7372 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7373 {
7374 
7375 	u8 cos;
7376 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7377 	if (!IS_FCOE_FP(fp)) {
7378 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7379 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7380 
7381 		/* If HC is supporterd, enable host coalescing in the transition
7382 		 * to INIT state.
7383 		 */
7384 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7385 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7386 
7387 		/* HC rate */
7388 		init_params->rx.hc_rate = bp->rx_ticks ?
7389 			(1000000 / bp->rx_ticks) : 0;
7390 		init_params->tx.hc_rate = bp->tx_ticks ?
7391 			(1000000 / bp->tx_ticks) : 0;
7392 
7393 		/* FW SB ID */
7394 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7395 			fp->fw_sb_id;
7396 
7397 		/*
7398 		 * CQ index among the SB indices: FCoE clients uses the default
7399 		 * SB, therefore it's different.
7400 		 */
7401 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7402 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7403 	}
7404 
7405 	/* set maximum number of COSs supported by this queue */
7406 	init_params->max_cos = fp->max_cos;
7407 
7408 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
7409 	    fp->index, init_params->max_cos);
7410 
7411 	/* set the context pointers queue object */
7412 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7413 		init_params->cxts[cos] =
7414 			&bp->context.vcxt[fp->txdata[cos].cid].eth;
7415 }
7416 
7417 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7418 			struct bnx2x_queue_state_params *q_params,
7419 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7420 			int tx_index, bool leading)
7421 {
7422 	memset(tx_only_params, 0, sizeof(*tx_only_params));
7423 
7424 	/* Set the command */
7425 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7426 
7427 	/* Set tx-only QUEUE flags: don't zero statistics */
7428 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7429 
7430 	/* choose the index of the cid to send the slow path on */
7431 	tx_only_params->cid_index = tx_index;
7432 
7433 	/* Set general TX_ONLY_SETUP parameters */
7434 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7435 
7436 	/* Set Tx TX_ONLY_SETUP parameters */
7437 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7438 
7439 	DP(NETIF_MSG_IFUP,
7440 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
7441 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7442 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7443 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7444 
7445 	/* send the ramrod */
7446 	return bnx2x_queue_state_change(bp, q_params);
7447 }
7448 
7449 
7450 /**
7451  * bnx2x_setup_queue - setup queue
7452  *
7453  * @bp:		driver handle
7454  * @fp:		pointer to fastpath
7455  * @leading:	is leading
7456  *
7457  * This function performs 2 steps in a Queue state machine
7458  *      actually: 1) RESET->INIT 2) INIT->SETUP
7459  */
7460 
7461 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7462 		       bool leading)
7463 {
7464 	struct bnx2x_queue_state_params q_params = {NULL};
7465 	struct bnx2x_queue_setup_params *setup_params =
7466 						&q_params.params.setup;
7467 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7468 						&q_params.params.tx_only;
7469 	int rc;
7470 	u8 tx_index;
7471 
7472 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
7473 
7474 	/* reset IGU state skip FCoE L2 queue */
7475 	if (!IS_FCOE_FP(fp))
7476 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7477 			     IGU_INT_ENABLE, 0);
7478 
7479 	q_params.q_obj = &fp->q_obj;
7480 	/* We want to wait for completion in this context */
7481 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7482 
7483 	/* Prepare the INIT parameters */
7484 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7485 
7486 	/* Set the command */
7487 	q_params.cmd = BNX2X_Q_CMD_INIT;
7488 
7489 	/* Change the state to INIT */
7490 	rc = bnx2x_queue_state_change(bp, &q_params);
7491 	if (rc) {
7492 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7493 		return rc;
7494 	}
7495 
7496 	DP(NETIF_MSG_IFUP, "init complete\n");
7497 
7498 
7499 	/* Now move the Queue to the SETUP state... */
7500 	memset(setup_params, 0, sizeof(*setup_params));
7501 
7502 	/* Set QUEUE flags */
7503 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7504 
7505 	/* Set general SETUP parameters */
7506 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7507 				FIRST_TX_COS_INDEX);
7508 
7509 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7510 			    &setup_params->rxq_params);
7511 
7512 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7513 			   FIRST_TX_COS_INDEX);
7514 
7515 	/* Set the command */
7516 	q_params.cmd = BNX2X_Q_CMD_SETUP;
7517 
7518 	/* Change the state to SETUP */
7519 	rc = bnx2x_queue_state_change(bp, &q_params);
7520 	if (rc) {
7521 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7522 		return rc;
7523 	}
7524 
7525 	/* loop through the relevant tx-only indices */
7526 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7527 	      tx_index < fp->max_cos;
7528 	      tx_index++) {
7529 
7530 		/* prepare and send tx-only ramrod*/
7531 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7532 					  tx_only_params, tx_index, leading);
7533 		if (rc) {
7534 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7535 				  fp->index, tx_index);
7536 			return rc;
7537 		}
7538 	}
7539 
7540 	return rc;
7541 }
7542 
7543 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7544 {
7545 	struct bnx2x_fastpath *fp = &bp->fp[index];
7546 	struct bnx2x_fp_txdata *txdata;
7547 	struct bnx2x_queue_state_params q_params = {NULL};
7548 	int rc, tx_index;
7549 
7550 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
7551 
7552 	q_params.q_obj = &fp->q_obj;
7553 	/* We want to wait for completion in this context */
7554 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7555 
7556 
7557 	/* close tx-only connections */
7558 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7559 	     tx_index < fp->max_cos;
7560 	     tx_index++){
7561 
7562 		/* ascertain this is a normal queue*/
7563 		txdata = &fp->txdata[tx_index];
7564 
7565 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
7566 							txdata->txq_index);
7567 
7568 		/* send halt terminate on tx-only connection */
7569 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7570 		memset(&q_params.params.terminate, 0,
7571 		       sizeof(q_params.params.terminate));
7572 		q_params.params.terminate.cid_index = tx_index;
7573 
7574 		rc = bnx2x_queue_state_change(bp, &q_params);
7575 		if (rc)
7576 			return rc;
7577 
7578 		/* send halt terminate on tx-only connection */
7579 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7580 		memset(&q_params.params.cfc_del, 0,
7581 		       sizeof(q_params.params.cfc_del));
7582 		q_params.params.cfc_del.cid_index = tx_index;
7583 		rc = bnx2x_queue_state_change(bp, &q_params);
7584 		if (rc)
7585 			return rc;
7586 	}
7587 	/* Stop the primary connection: */
7588 	/* ...halt the connection */
7589 	q_params.cmd = BNX2X_Q_CMD_HALT;
7590 	rc = bnx2x_queue_state_change(bp, &q_params);
7591 	if (rc)
7592 		return rc;
7593 
7594 	/* ...terminate the connection */
7595 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7596 	memset(&q_params.params.terminate, 0,
7597 	       sizeof(q_params.params.terminate));
7598 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7599 	rc = bnx2x_queue_state_change(bp, &q_params);
7600 	if (rc)
7601 		return rc;
7602 	/* ...delete cfc entry */
7603 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7604 	memset(&q_params.params.cfc_del, 0,
7605 	       sizeof(q_params.params.cfc_del));
7606 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7607 	return bnx2x_queue_state_change(bp, &q_params);
7608 }
7609 
7610 
7611 static void bnx2x_reset_func(struct bnx2x *bp)
7612 {
7613 	int port = BP_PORT(bp);
7614 	int func = BP_FUNC(bp);
7615 	int i;
7616 
7617 	/* Disable the function in the FW */
7618 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7619 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7620 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7621 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7622 
7623 	/* FP SBs */
7624 	for_each_eth_queue(bp, i) {
7625 		struct bnx2x_fastpath *fp = &bp->fp[i];
7626 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
7627 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7628 			   SB_DISABLED);
7629 	}
7630 
7631 #ifdef BCM_CNIC
7632 	/* CNIC SB */
7633 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7634 		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7635 		SB_DISABLED);
7636 #endif
7637 	/* SP SB */
7638 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7639 		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7640 		   SB_DISABLED);
7641 
7642 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7643 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7644 		       0);
7645 
7646 	/* Configure IGU */
7647 	if (bp->common.int_block == INT_BLOCK_HC) {
7648 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7649 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7650 	} else {
7651 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7652 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7653 	}
7654 
7655 #ifdef BCM_CNIC
7656 	/* Disable Timer scan */
7657 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7658 	/*
7659 	 * Wait for at least 10ms and up to 2 second for the timers scan to
7660 	 * complete
7661 	 */
7662 	for (i = 0; i < 200; i++) {
7663 		msleep(10);
7664 		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7665 			break;
7666 	}
7667 #endif
7668 	/* Clear ILT */
7669 	bnx2x_clear_func_ilt(bp, func);
7670 
7671 	/* Timers workaround bug for E2: if this is vnic-3,
7672 	 * we need to set the entire ilt range for this timers.
7673 	 */
7674 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7675 		struct ilt_client_info ilt_cli;
7676 		/* use dummy TM client */
7677 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7678 		ilt_cli.start = 0;
7679 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7680 		ilt_cli.client_num = ILT_CLIENT_TM;
7681 
7682 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7683 	}
7684 
7685 	/* this assumes that reset_port() called before reset_func()*/
7686 	if (!CHIP_IS_E1x(bp))
7687 		bnx2x_pf_disable(bp);
7688 
7689 	bp->dmae_ready = 0;
7690 }
7691 
7692 static void bnx2x_reset_port(struct bnx2x *bp)
7693 {
7694 	int port = BP_PORT(bp);
7695 	u32 val;
7696 
7697 	/* Reset physical Link */
7698 	bnx2x__link_reset(bp);
7699 
7700 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7701 
7702 	/* Do not rcv packets to BRB */
7703 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7704 	/* Do not direct rcv packets that are not for MCP to the BRB */
7705 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7706 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7707 
7708 	/* Configure AEU */
7709 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7710 
7711 	msleep(100);
7712 	/* Check for BRB port occupancy */
7713 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7714 	if (val)
7715 		DP(NETIF_MSG_IFDOWN,
7716 		   "BRB1 is not empty  %d blocks are occupied\n", val);
7717 
7718 	/* TODO: Close Doorbell port? */
7719 }
7720 
7721 static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7722 {
7723 	struct bnx2x_func_state_params func_params = {NULL};
7724 
7725 	/* Prepare parameters for function state transitions */
7726 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7727 
7728 	func_params.f_obj = &bp->func_obj;
7729 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
7730 
7731 	func_params.params.hw_init.load_phase = load_code;
7732 
7733 	return bnx2x_func_state_change(bp, &func_params);
7734 }
7735 
7736 static inline int bnx2x_func_stop(struct bnx2x *bp)
7737 {
7738 	struct bnx2x_func_state_params func_params = {NULL};
7739 	int rc;
7740 
7741 	/* Prepare parameters for function state transitions */
7742 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7743 	func_params.f_obj = &bp->func_obj;
7744 	func_params.cmd = BNX2X_F_CMD_STOP;
7745 
7746 	/*
7747 	 * Try to stop the function the 'good way'. If fails (in case
7748 	 * of a parity error during bnx2x_chip_cleanup()) and we are
7749 	 * not in a debug mode, perform a state transaction in order to
7750 	 * enable further HW_RESET transaction.
7751 	 */
7752 	rc = bnx2x_func_state_change(bp, &func_params);
7753 	if (rc) {
7754 #ifdef BNX2X_STOP_ON_ERROR
7755 		return rc;
7756 #else
7757 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
7758 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7759 		return bnx2x_func_state_change(bp, &func_params);
7760 #endif
7761 	}
7762 
7763 	return 0;
7764 }
7765 
7766 /**
7767  * bnx2x_send_unload_req - request unload mode from the MCP.
7768  *
7769  * @bp:			driver handle
7770  * @unload_mode:	requested function's unload mode
7771  *
7772  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7773  */
7774 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7775 {
7776 	u32 reset_code = 0;
7777 	int port = BP_PORT(bp);
7778 
7779 	/* Select the UNLOAD request mode */
7780 	if (unload_mode == UNLOAD_NORMAL)
7781 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7782 
7783 	else if (bp->flags & NO_WOL_FLAG)
7784 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7785 
7786 	else if (bp->wol) {
7787 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7788 		u8 *mac_addr = bp->dev->dev_addr;
7789 		u32 val;
7790 		u16 pmc;
7791 
7792 		/* The mac address is written to entries 1-4 to
7793 		 * preserve entry 0 which is used by the PMF
7794 		 */
7795 		u8 entry = (BP_VN(bp) + 1)*8;
7796 
7797 		val = (mac_addr[0] << 8) | mac_addr[1];
7798 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7799 
7800 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7801 		      (mac_addr[4] << 8) | mac_addr[5];
7802 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7803 
7804 		/* Enable the PME and clear the status */
7805 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7806 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7807 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7808 
7809 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7810 
7811 	} else
7812 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7813 
7814 	/* Send the request to the MCP */
7815 	if (!BP_NOMCP(bp))
7816 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
7817 	else {
7818 		int path = BP_PATH(bp);
7819 
7820 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
7821 		   path, load_count[path][0], load_count[path][1],
7822 		   load_count[path][2]);
7823 		load_count[path][0]--;
7824 		load_count[path][1 + port]--;
7825 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
7826 		   path, load_count[path][0], load_count[path][1],
7827 		   load_count[path][2]);
7828 		if (load_count[path][0] == 0)
7829 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7830 		else if (load_count[path][1 + port] == 0)
7831 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7832 		else
7833 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7834 	}
7835 
7836 	return reset_code;
7837 }
7838 
7839 /**
7840  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7841  *
7842  * @bp:		driver handle
7843  */
7844 void bnx2x_send_unload_done(struct bnx2x *bp)
7845 {
7846 	/* Report UNLOAD_DONE to MCP */
7847 	if (!BP_NOMCP(bp))
7848 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7849 }
7850 
7851 static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7852 {
7853 	int tout = 50;
7854 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7855 
7856 	if (!bp->port.pmf)
7857 		return 0;
7858 
7859 	/*
7860 	 * (assumption: No Attention from MCP at this stage)
7861 	 * PMF probably in the middle of TXdisable/enable transaction
7862 	 * 1. Sync IRS for default SB
7863 	 * 2. Sync SP queue - this guarantes us that attention handling started
7864 	 * 3. Wait, that TXdisable/enable transaction completes
7865 	 *
7866 	 * 1+2 guranty that if DCBx attention was scheduled it already changed
7867 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7868 	 * received complettion for the transaction the state is TX_STOPPED.
7869 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7870 	 * transaction.
7871 	 */
7872 
7873 	/* make sure default SB ISR is done */
7874 	if (msix)
7875 		synchronize_irq(bp->msix_table[0].vector);
7876 	else
7877 		synchronize_irq(bp->pdev->irq);
7878 
7879 	flush_workqueue(bnx2x_wq);
7880 
7881 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7882 				BNX2X_F_STATE_STARTED && tout--)
7883 		msleep(20);
7884 
7885 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7886 						BNX2X_F_STATE_STARTED) {
7887 #ifdef BNX2X_STOP_ON_ERROR
7888 		BNX2X_ERR("Wrong function state\n");
7889 		return -EBUSY;
7890 #else
7891 		/*
7892 		 * Failed to complete the transaction in a "good way"
7893 		 * Force both transactions with CLR bit
7894 		 */
7895 		struct bnx2x_func_state_params func_params = {NULL};
7896 
7897 		DP(NETIF_MSG_IFDOWN,
7898 		   "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7899 
7900 		func_params.f_obj = &bp->func_obj;
7901 		__set_bit(RAMROD_DRV_CLR_ONLY,
7902 					&func_params.ramrod_flags);
7903 
7904 		/* STARTED-->TX_ST0PPED */
7905 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
7906 		bnx2x_func_state_change(bp, &func_params);
7907 
7908 		/* TX_ST0PPED-->STARTED */
7909 		func_params.cmd = BNX2X_F_CMD_TX_START;
7910 		return bnx2x_func_state_change(bp, &func_params);
7911 #endif
7912 	}
7913 
7914 	return 0;
7915 }
7916 
7917 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7918 {
7919 	int port = BP_PORT(bp);
7920 	int i, rc = 0;
7921 	u8 cos;
7922 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
7923 	u32 reset_code;
7924 
7925 	/* Wait until tx fastpath tasks complete */
7926 	for_each_tx_queue(bp, i) {
7927 		struct bnx2x_fastpath *fp = &bp->fp[i];
7928 
7929 		for_each_cos_in_tx_queue(fp, cos)
7930 			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7931 #ifdef BNX2X_STOP_ON_ERROR
7932 		if (rc)
7933 			return;
7934 #endif
7935 	}
7936 
7937 	/* Give HW time to discard old tx messages */
7938 	usleep_range(1000, 1000);
7939 
7940 	/* Clean all ETH MACs */
7941 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7942 	if (rc < 0)
7943 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7944 
7945 	/* Clean up UC list  */
7946 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7947 				true);
7948 	if (rc < 0)
7949 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
7950 			  rc);
7951 
7952 	/* Disable LLH */
7953 	if (!CHIP_IS_E1(bp))
7954 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7955 
7956 	/* Set "drop all" (stop Rx).
7957 	 * We need to take a netif_addr_lock() here in order to prevent
7958 	 * a race between the completion code and this code.
7959 	 */
7960 	netif_addr_lock_bh(bp->dev);
7961 	/* Schedule the rx_mode command */
7962 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7963 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7964 	else
7965 		bnx2x_set_storm_rx_mode(bp);
7966 
7967 	/* Cleanup multicast configuration */
7968 	rparam.mcast_obj = &bp->mcast_obj;
7969 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7970 	if (rc < 0)
7971 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7972 
7973 	netif_addr_unlock_bh(bp->dev);
7974 
7975 
7976 
7977 	/*
7978 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
7979 	 * this function should perform FUNC, PORT or COMMON HW
7980 	 * reset.
7981 	 */
7982 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
7983 
7984 	/*
7985 	 * (assumption: No Attention from MCP at this stage)
7986 	 * PMF probably in the middle of TXdisable/enable transaction
7987 	 */
7988 	rc = bnx2x_func_wait_started(bp);
7989 	if (rc) {
7990 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
7991 #ifdef BNX2X_STOP_ON_ERROR
7992 		return;
7993 #endif
7994 	}
7995 
7996 	/* Close multi and leading connections
7997 	 * Completions for ramrods are collected in a synchronous way
7998 	 */
7999 	for_each_queue(bp, i)
8000 		if (bnx2x_stop_queue(bp, i))
8001 #ifdef BNX2X_STOP_ON_ERROR
8002 			return;
8003 #else
8004 			goto unload_error;
8005 #endif
8006 	/* If SP settings didn't get completed so far - something
8007 	 * very wrong has happen.
8008 	 */
8009 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8010 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8011 
8012 #ifndef BNX2X_STOP_ON_ERROR
8013 unload_error:
8014 #endif
8015 	rc = bnx2x_func_stop(bp);
8016 	if (rc) {
8017 		BNX2X_ERR("Function stop failed!\n");
8018 #ifdef BNX2X_STOP_ON_ERROR
8019 		return;
8020 #endif
8021 	}
8022 
8023 	/* Disable HW interrupts, NAPI */
8024 	bnx2x_netif_stop(bp, 1);
8025 
8026 	/* Release IRQs */
8027 	bnx2x_free_irq(bp);
8028 
8029 	/* Reset the chip */
8030 	rc = bnx2x_reset_hw(bp, reset_code);
8031 	if (rc)
8032 		BNX2X_ERR("HW_RESET failed\n");
8033 
8034 
8035 	/* Report UNLOAD_DONE to MCP */
8036 	bnx2x_send_unload_done(bp);
8037 }
8038 
8039 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8040 {
8041 	u32 val;
8042 
8043 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8044 
8045 	if (CHIP_IS_E1(bp)) {
8046 		int port = BP_PORT(bp);
8047 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8048 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8049 
8050 		val = REG_RD(bp, addr);
8051 		val &= ~(0x300);
8052 		REG_WR(bp, addr, val);
8053 	} else {
8054 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8055 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8056 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8057 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8058 	}
8059 }
8060 
8061 /* Close gates #2, #3 and #4: */
8062 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8063 {
8064 	u32 val;
8065 
8066 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8067 	if (!CHIP_IS_E1(bp)) {
8068 		/* #4 */
8069 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8070 		/* #2 */
8071 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8072 	}
8073 
8074 	/* #3 */
8075 	if (CHIP_IS_E1x(bp)) {
8076 		/* Prevent interrupts from HC on both ports */
8077 		val = REG_RD(bp, HC_REG_CONFIG_1);
8078 		REG_WR(bp, HC_REG_CONFIG_1,
8079 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8080 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8081 
8082 		val = REG_RD(bp, HC_REG_CONFIG_0);
8083 		REG_WR(bp, HC_REG_CONFIG_0,
8084 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8085 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8086 	} else {
8087 		/* Prevent incomming interrupts in IGU */
8088 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8089 
8090 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8091 		       (!close) ?
8092 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8093 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8094 	}
8095 
8096 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8097 		close ? "closing" : "opening");
8098 	mmiowb();
8099 }
8100 
8101 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8102 
8103 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8104 {
8105 	/* Do some magic... */
8106 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8107 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8108 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8109 }
8110 
8111 /**
8112  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8113  *
8114  * @bp:		driver handle
8115  * @magic_val:	old value of the `magic' bit.
8116  */
8117 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8118 {
8119 	/* Restore the `magic' bit value... */
8120 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8121 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8122 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8123 }
8124 
8125 /**
8126  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8127  *
8128  * @bp:		driver handle
8129  * @magic_val:	old value of 'magic' bit.
8130  *
8131  * Takes care of CLP configurations.
8132  */
8133 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8134 {
8135 	u32 shmem;
8136 	u32 validity_offset;
8137 
8138 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8139 
8140 	/* Set `magic' bit in order to save MF config */
8141 	if (!CHIP_IS_E1(bp))
8142 		bnx2x_clp_reset_prep(bp, magic_val);
8143 
8144 	/* Get shmem offset */
8145 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8146 	validity_offset = offsetof(struct shmem_region, validity_map[0]);
8147 
8148 	/* Clear validity map flags */
8149 	if (shmem > 0)
8150 		REG_WR(bp, shmem + validity_offset, 0);
8151 }
8152 
8153 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8154 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8155 
8156 /**
8157  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8158  *
8159  * @bp:	driver handle
8160  */
8161 static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
8162 {
8163 	/* special handling for emulation and FPGA,
8164 	   wait 10 times longer */
8165 	if (CHIP_REV_IS_SLOW(bp))
8166 		msleep(MCP_ONE_TIMEOUT*10);
8167 	else
8168 		msleep(MCP_ONE_TIMEOUT);
8169 }
8170 
8171 /*
8172  * initializes bp->common.shmem_base and waits for validity signature to appear
8173  */
8174 static int bnx2x_init_shmem(struct bnx2x *bp)
8175 {
8176 	int cnt = 0;
8177 	u32 val = 0;
8178 
8179 	do {
8180 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8181 		if (bp->common.shmem_base) {
8182 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8183 			if (val & SHR_MEM_VALIDITY_MB)
8184 				return 0;
8185 		}
8186 
8187 		bnx2x_mcp_wait_one(bp);
8188 
8189 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8190 
8191 	BNX2X_ERR("BAD MCP validity signature\n");
8192 
8193 	return -ENODEV;
8194 }
8195 
8196 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8197 {
8198 	int rc = bnx2x_init_shmem(bp);
8199 
8200 	/* Restore the `magic' bit value */
8201 	if (!CHIP_IS_E1(bp))
8202 		bnx2x_clp_reset_done(bp, magic_val);
8203 
8204 	return rc;
8205 }
8206 
8207 static void bnx2x_pxp_prep(struct bnx2x *bp)
8208 {
8209 	if (!CHIP_IS_E1(bp)) {
8210 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8211 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8212 		mmiowb();
8213 	}
8214 }
8215 
8216 /*
8217  * Reset the whole chip except for:
8218  *      - PCIE core
8219  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8220  *              one reset bit)
8221  *      - IGU
8222  *      - MISC (including AEU)
8223  *      - GRC
8224  *      - RBCN, RBCP
8225  */
8226 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8227 {
8228 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8229 	u32 global_bits2, stay_reset2;
8230 
8231 	/*
8232 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8233 	 * (per chip) blocks.
8234 	 */
8235 	global_bits2 =
8236 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8237 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8238 
8239 	/* Don't reset the following blocks */
8240 	not_reset_mask1 =
8241 		MISC_REGISTERS_RESET_REG_1_RST_HC |
8242 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8243 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8244 
8245 	not_reset_mask2 =
8246 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8247 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8248 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8249 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8250 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8251 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8252 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8253 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8254 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8255 		MISC_REGISTERS_RESET_REG_2_PGLC;
8256 
8257 	/*
8258 	 * Keep the following blocks in reset:
8259 	 *  - all xxMACs are handled by the bnx2x_link code.
8260 	 */
8261 	stay_reset2 =
8262 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8263 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8264 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8265 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8266 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8267 		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8268 		MISC_REGISTERS_RESET_REG_2_XMAC |
8269 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8270 
8271 	/* Full reset masks according to the chip */
8272 	reset_mask1 = 0xffffffff;
8273 
8274 	if (CHIP_IS_E1(bp))
8275 		reset_mask2 = 0xffff;
8276 	else if (CHIP_IS_E1H(bp))
8277 		reset_mask2 = 0x1ffff;
8278 	else if (CHIP_IS_E2(bp))
8279 		reset_mask2 = 0xfffff;
8280 	else /* CHIP_IS_E3 */
8281 		reset_mask2 = 0x3ffffff;
8282 
8283 	/* Don't reset global blocks unless we need to */
8284 	if (!global)
8285 		reset_mask2 &= ~global_bits2;
8286 
8287 	/*
8288 	 * In case of attention in the QM, we need to reset PXP
8289 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8290 	 * because otherwise QM reset would release 'close the gates' shortly
8291 	 * before resetting the PXP, then the PSWRQ would send a write
8292 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8293 	 * read the payload data from PSWWR, but PSWWR would not
8294 	 * respond. The write queue in PGLUE would stuck, dmae commands
8295 	 * would not return. Therefore it's important to reset the second
8296 	 * reset register (containing the
8297 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8298 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8299 	 * bit).
8300 	 */
8301 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8302 	       reset_mask2 & (~not_reset_mask2));
8303 
8304 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8305 	       reset_mask1 & (~not_reset_mask1));
8306 
8307 	barrier();
8308 	mmiowb();
8309 
8310 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8311 	       reset_mask2 & (~stay_reset2));
8312 
8313 	barrier();
8314 	mmiowb();
8315 
8316 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8317 	mmiowb();
8318 }
8319 
8320 /**
8321  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8322  * It should get cleared in no more than 1s.
8323  *
8324  * @bp:	driver handle
8325  *
8326  * It should get cleared in no more than 1s. Returns 0 if
8327  * pending writes bit gets cleared.
8328  */
8329 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8330 {
8331 	u32 cnt = 1000;
8332 	u32 pend_bits = 0;
8333 
8334 	do {
8335 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8336 
8337 		if (pend_bits == 0)
8338 			break;
8339 
8340 		usleep_range(1000, 1000);
8341 	} while (cnt-- > 0);
8342 
8343 	if (cnt <= 0) {
8344 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8345 			  pend_bits);
8346 		return -EBUSY;
8347 	}
8348 
8349 	return 0;
8350 }
8351 
8352 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8353 {
8354 	int cnt = 1000;
8355 	u32 val = 0;
8356 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8357 
8358 
8359 	/* Empty the Tetris buffer, wait for 1s */
8360 	do {
8361 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8362 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8363 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8364 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8365 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8366 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8367 		    ((port_is_idle_0 & 0x1) == 0x1) &&
8368 		    ((port_is_idle_1 & 0x1) == 0x1) &&
8369 		    (pgl_exp_rom2 == 0xffffffff))
8370 			break;
8371 		usleep_range(1000, 1000);
8372 	} while (cnt-- > 0);
8373 
8374 	if (cnt <= 0) {
8375 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
8376 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8377 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8378 			  pgl_exp_rom2);
8379 		return -EAGAIN;
8380 	}
8381 
8382 	barrier();
8383 
8384 	/* Close gates #2, #3 and #4 */
8385 	bnx2x_set_234_gates(bp, true);
8386 
8387 	/* Poll for IGU VQs for 57712 and newer chips */
8388 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8389 		return -EAGAIN;
8390 
8391 
8392 	/* TBD: Indicate that "process kill" is in progress to MCP */
8393 
8394 	/* Clear "unprepared" bit */
8395 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8396 	barrier();
8397 
8398 	/* Make sure all is written to the chip before the reset */
8399 	mmiowb();
8400 
8401 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8402 	 * PSWHST, GRC and PSWRD Tetris buffer.
8403 	 */
8404 	usleep_range(1000, 1000);
8405 
8406 	/* Prepare to chip reset: */
8407 	/* MCP */
8408 	if (global)
8409 		bnx2x_reset_mcp_prep(bp, &val);
8410 
8411 	/* PXP */
8412 	bnx2x_pxp_prep(bp);
8413 	barrier();
8414 
8415 	/* reset the chip */
8416 	bnx2x_process_kill_chip_reset(bp, global);
8417 	barrier();
8418 
8419 	/* Recover after reset: */
8420 	/* MCP */
8421 	if (global && bnx2x_reset_mcp_comp(bp, val))
8422 		return -EAGAIN;
8423 
8424 	/* TBD: Add resetting the NO_MCP mode DB here */
8425 
8426 	/* PXP */
8427 	bnx2x_pxp_prep(bp);
8428 
8429 	/* Open the gates #2, #3 and #4 */
8430 	bnx2x_set_234_gates(bp, false);
8431 
8432 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8433 	 * reset state, re-enable attentions. */
8434 
8435 	return 0;
8436 }
8437 
8438 int bnx2x_leader_reset(struct bnx2x *bp)
8439 {
8440 	int rc = 0;
8441 	bool global = bnx2x_reset_is_global(bp);
8442 	u32 load_code;
8443 
8444 	/* if not going to reset MCP - load "fake" driver to reset HW while
8445 	 * driver is owner of the HW
8446 	 */
8447 	if (!global && !BP_NOMCP(bp)) {
8448 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 0);
8449 		if (!load_code) {
8450 			BNX2X_ERR("MCP response failure, aborting\n");
8451 			rc = -EAGAIN;
8452 			goto exit_leader_reset;
8453 		}
8454 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
8455 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
8456 			BNX2X_ERR("MCP unexpected resp, aborting\n");
8457 			rc = -EAGAIN;
8458 			goto exit_leader_reset2;
8459 		}
8460 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
8461 		if (!load_code) {
8462 			BNX2X_ERR("MCP response failure, aborting\n");
8463 			rc = -EAGAIN;
8464 			goto exit_leader_reset2;
8465 		}
8466 	}
8467 
8468 	/* Try to recover after the failure */
8469 	if (bnx2x_process_kill(bp, global)) {
8470 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
8471 			  BP_PATH(bp));
8472 		rc = -EAGAIN;
8473 		goto exit_leader_reset2;
8474 	}
8475 
8476 	/*
8477 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8478 	 * state.
8479 	 */
8480 	bnx2x_set_reset_done(bp);
8481 	if (global)
8482 		bnx2x_clear_reset_global(bp);
8483 
8484 exit_leader_reset2:
8485 	/* unload "fake driver" if it was loaded */
8486 	if (!global && !BP_NOMCP(bp)) {
8487 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
8488 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8489 	}
8490 exit_leader_reset:
8491 	bp->is_leader = 0;
8492 	bnx2x_release_leader_lock(bp);
8493 	smp_mb();
8494 	return rc;
8495 }
8496 
8497 static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8498 {
8499 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8500 
8501 	/* Disconnect this device */
8502 	netif_device_detach(bp->dev);
8503 
8504 	/*
8505 	 * Block ifup for all function on this engine until "process kill"
8506 	 * or power cycle.
8507 	 */
8508 	bnx2x_set_reset_in_progress(bp);
8509 
8510 	/* Shut down the power */
8511 	bnx2x_set_power_state(bp, PCI_D3hot);
8512 
8513 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8514 
8515 	smp_mb();
8516 }
8517 
8518 /*
8519  * Assumption: runs under rtnl lock. This together with the fact
8520  * that it's called only from bnx2x_sp_rtnl() ensure that it
8521  * will never be called when netif_running(bp->dev) is false.
8522  */
8523 static void bnx2x_parity_recover(struct bnx2x *bp)
8524 {
8525 	bool global = false;
8526 	u32 error_recovered, error_unrecovered;
8527 	bool is_parity;
8528 
8529 	DP(NETIF_MSG_HW, "Handling parity\n");
8530 	while (1) {
8531 		switch (bp->recovery_state) {
8532 		case BNX2X_RECOVERY_INIT:
8533 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8534 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
8535 			WARN_ON(!is_parity);
8536 
8537 			/* Try to get a LEADER_LOCK HW lock */
8538 			if (bnx2x_trylock_leader_lock(bp)) {
8539 				bnx2x_set_reset_in_progress(bp);
8540 				/*
8541 				 * Check if there is a global attention and if
8542 				 * there was a global attention, set the global
8543 				 * reset bit.
8544 				 */
8545 
8546 				if (global)
8547 					bnx2x_set_reset_global(bp);
8548 
8549 				bp->is_leader = 1;
8550 			}
8551 
8552 			/* Stop the driver */
8553 			/* If interface has been removed - break */
8554 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8555 				return;
8556 
8557 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8558 
8559 			/* Ensure "is_leader", MCP command sequence and
8560 			 * "recovery_state" update values are seen on other
8561 			 * CPUs.
8562 			 */
8563 			smp_mb();
8564 			break;
8565 
8566 		case BNX2X_RECOVERY_WAIT:
8567 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8568 			if (bp->is_leader) {
8569 				int other_engine = BP_PATH(bp) ? 0 : 1;
8570 				bool other_load_status =
8571 					bnx2x_get_load_status(bp, other_engine);
8572 				bool load_status =
8573 					bnx2x_get_load_status(bp, BP_PATH(bp));
8574 				global = bnx2x_reset_is_global(bp);
8575 
8576 				/*
8577 				 * In case of a parity in a global block, let
8578 				 * the first leader that performs a
8579 				 * leader_reset() reset the global blocks in
8580 				 * order to clear global attentions. Otherwise
8581 				 * the the gates will remain closed for that
8582 				 * engine.
8583 				 */
8584 				if (load_status ||
8585 				    (global && other_load_status)) {
8586 					/* Wait until all other functions get
8587 					 * down.
8588 					 */
8589 					schedule_delayed_work(&bp->sp_rtnl_task,
8590 								HZ/10);
8591 					return;
8592 				} else {
8593 					/* If all other functions got down -
8594 					 * try to bring the chip back to
8595 					 * normal. In any case it's an exit
8596 					 * point for a leader.
8597 					 */
8598 					if (bnx2x_leader_reset(bp)) {
8599 						bnx2x_recovery_failed(bp);
8600 						return;
8601 					}
8602 
8603 					/* If we are here, means that the
8604 					 * leader has succeeded and doesn't
8605 					 * want to be a leader any more. Try
8606 					 * to continue as a none-leader.
8607 					 */
8608 					break;
8609 				}
8610 			} else { /* non-leader */
8611 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8612 					/* Try to get a LEADER_LOCK HW lock as
8613 					 * long as a former leader may have
8614 					 * been unloaded by the user or
8615 					 * released a leadership by another
8616 					 * reason.
8617 					 */
8618 					if (bnx2x_trylock_leader_lock(bp)) {
8619 						/* I'm a leader now! Restart a
8620 						 * switch case.
8621 						 */
8622 						bp->is_leader = 1;
8623 						break;
8624 					}
8625 
8626 					schedule_delayed_work(&bp->sp_rtnl_task,
8627 								HZ/10);
8628 					return;
8629 
8630 				} else {
8631 					/*
8632 					 * If there was a global attention, wait
8633 					 * for it to be cleared.
8634 					 */
8635 					if (bnx2x_reset_is_global(bp)) {
8636 						schedule_delayed_work(
8637 							&bp->sp_rtnl_task,
8638 							HZ/10);
8639 						return;
8640 					}
8641 
8642 					error_recovered =
8643 					  bp->eth_stats.recoverable_error;
8644 					error_unrecovered =
8645 					  bp->eth_stats.unrecoverable_error;
8646 					bp->recovery_state =
8647 						BNX2X_RECOVERY_NIC_LOADING;
8648 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
8649 						error_unrecovered++;
8650 						netdev_err(bp->dev,
8651 							   "Recovery failed. Power cycle needed\n");
8652 						/* Disconnect this device */
8653 						netif_device_detach(bp->dev);
8654 						/* Shut down the power */
8655 						bnx2x_set_power_state(
8656 							bp, PCI_D3hot);
8657 						smp_mb();
8658 					} else {
8659 						bp->recovery_state =
8660 							BNX2X_RECOVERY_DONE;
8661 						error_recovered++;
8662 						smp_mb();
8663 					}
8664 					bp->eth_stats.recoverable_error =
8665 						error_recovered;
8666 					bp->eth_stats.unrecoverable_error =
8667 						error_unrecovered;
8668 
8669 					return;
8670 				}
8671 			}
8672 		default:
8673 			return;
8674 		}
8675 	}
8676 }
8677 
8678 static int bnx2x_close(struct net_device *dev);
8679 
8680 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8681  * scheduled on a general queue in order to prevent a dead lock.
8682  */
8683 static void bnx2x_sp_rtnl_task(struct work_struct *work)
8684 {
8685 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8686 
8687 	rtnl_lock();
8688 
8689 	if (!netif_running(bp->dev))
8690 		goto sp_rtnl_exit;
8691 
8692 	/* if stop on error is defined no recovery flows should be executed */
8693 #ifdef BNX2X_STOP_ON_ERROR
8694 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
8695 		  "you will need to reboot when done\n");
8696 	goto sp_rtnl_not_reset;
8697 #endif
8698 
8699 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8700 		/*
8701 		 * Clear all pending SP commands as we are going to reset the
8702 		 * function anyway.
8703 		 */
8704 		bp->sp_rtnl_state = 0;
8705 		smp_mb();
8706 
8707 		bnx2x_parity_recover(bp);
8708 
8709 		goto sp_rtnl_exit;
8710 	}
8711 
8712 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8713 		/*
8714 		 * Clear all pending SP commands as we are going to reset the
8715 		 * function anyway.
8716 		 */
8717 		bp->sp_rtnl_state = 0;
8718 		smp_mb();
8719 
8720 		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8721 		bnx2x_nic_load(bp, LOAD_NORMAL);
8722 
8723 		goto sp_rtnl_exit;
8724 	}
8725 #ifdef BNX2X_STOP_ON_ERROR
8726 sp_rtnl_not_reset:
8727 #endif
8728 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8729 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8730 
8731 	/*
8732 	 * in case of fan failure we need to reset id if the "stop on error"
8733 	 * debug flag is set, since we trying to prevent permanent overheating
8734 	 * damage
8735 	 */
8736 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8737 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
8738 		netif_device_detach(bp->dev);
8739 		bnx2x_close(bp->dev);
8740 	}
8741 
8742 sp_rtnl_exit:
8743 	rtnl_unlock();
8744 }
8745 
8746 /* end of nic load/unload */
8747 
8748 static void bnx2x_period_task(struct work_struct *work)
8749 {
8750 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8751 
8752 	if (!netif_running(bp->dev))
8753 		goto period_task_exit;
8754 
8755 	if (CHIP_REV_IS_SLOW(bp)) {
8756 		BNX2X_ERR("period task called on emulation, ignoring\n");
8757 		goto period_task_exit;
8758 	}
8759 
8760 	bnx2x_acquire_phy_lock(bp);
8761 	/*
8762 	 * The barrier is needed to ensure the ordering between the writing to
8763 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8764 	 * the reading here.
8765 	 */
8766 	smp_mb();
8767 	if (bp->port.pmf) {
8768 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
8769 
8770 		/* Re-queue task in 1 sec */
8771 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8772 	}
8773 
8774 	bnx2x_release_phy_lock(bp);
8775 period_task_exit:
8776 	return;
8777 }
8778 
8779 /*
8780  * Init service functions
8781  */
8782 
8783 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8784 {
8785 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8786 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8787 	return base + (BP_ABS_FUNC(bp)) * stride;
8788 }
8789 
8790 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8791 {
8792 	u32 reg = bnx2x_get_pretend_reg(bp);
8793 
8794 	/* Flush all outstanding writes */
8795 	mmiowb();
8796 
8797 	/* Pretend to be function 0 */
8798 	REG_WR(bp, reg, 0);
8799 	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
8800 
8801 	/* From now we are in the "like-E1" mode */
8802 	bnx2x_int_disable(bp);
8803 
8804 	/* Flush all outstanding writes */
8805 	mmiowb();
8806 
8807 	/* Restore the original function */
8808 	REG_WR(bp, reg, BP_ABS_FUNC(bp));
8809 	REG_RD(bp, reg);
8810 }
8811 
8812 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8813 {
8814 	if (CHIP_IS_E1(bp))
8815 		bnx2x_int_disable(bp);
8816 	else
8817 		bnx2x_undi_int_disable_e1h(bp);
8818 }
8819 
8820 static void __devinit bnx2x_prev_unload_close_mac(struct bnx2x *bp)
8821 {
8822 	u32 val, base_addr, offset, mask, reset_reg;
8823 	bool mac_stopped = false;
8824 	u8 port = BP_PORT(bp);
8825 
8826 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
8827 
8828 	if (!CHIP_IS_E3(bp)) {
8829 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
8830 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
8831 		if ((mask & reset_reg) && val) {
8832 			u32 wb_data[2];
8833 			BNX2X_DEV_INFO("Disable bmac Rx\n");
8834 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
8835 						: NIG_REG_INGRESS_BMAC0_MEM;
8836 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
8837 						: BIGMAC_REGISTER_BMAC_CONTROL;
8838 
8839 			/*
8840 			 * use rd/wr since we cannot use dmae. This is safe
8841 			 * since MCP won't access the bus due to the request
8842 			 * to unload, and no function on the path can be
8843 			 * loaded at this time.
8844 			 */
8845 			wb_data[0] = REG_RD(bp, base_addr + offset);
8846 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
8847 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
8848 			REG_WR(bp, base_addr + offset, wb_data[0]);
8849 			REG_WR(bp, base_addr + offset + 0x4, wb_data[1]);
8850 
8851 		}
8852 		BNX2X_DEV_INFO("Disable emac Rx\n");
8853 		REG_WR(bp, NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4, 0);
8854 
8855 		mac_stopped = true;
8856 	} else {
8857 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
8858 			BNX2X_DEV_INFO("Disable xmac Rx\n");
8859 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
8860 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
8861 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
8862 			       val & ~(1 << 1));
8863 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
8864 			       val | (1 << 1));
8865 			REG_WR(bp, base_addr + XMAC_REG_CTRL, 0);
8866 			mac_stopped = true;
8867 		}
8868 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
8869 		if (mask & reset_reg) {
8870 			BNX2X_DEV_INFO("Disable umac Rx\n");
8871 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
8872 			REG_WR(bp, base_addr + UMAC_REG_COMMAND_CONFIG, 0);
8873 			mac_stopped = true;
8874 		}
8875 	}
8876 
8877 	if (mac_stopped)
8878 		msleep(20);
8879 
8880 }
8881 
8882 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
8883 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
8884 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
8885 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
8886 
8887 static void __devinit bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port,
8888 						 u8 inc)
8889 {
8890 	u16 rcq, bd;
8891 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
8892 
8893 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
8894 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
8895 
8896 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
8897 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
8898 
8899 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
8900 		       port, bd, rcq);
8901 }
8902 
8903 static int __devinit bnx2x_prev_mcp_done(struct bnx2x *bp)
8904 {
8905 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8906 	if (!rc) {
8907 		BNX2X_ERR("MCP response failure, aborting\n");
8908 		return -EBUSY;
8909 	}
8910 
8911 	return 0;
8912 }
8913 
8914 static bool __devinit bnx2x_prev_is_path_marked(struct bnx2x *bp)
8915 {
8916 	struct bnx2x_prev_path_list *tmp_list;
8917 	int rc = false;
8918 
8919 	if (down_trylock(&bnx2x_prev_sem))
8920 		return false;
8921 
8922 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
8923 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
8924 		    bp->pdev->bus->number == tmp_list->bus &&
8925 		    BP_PATH(bp) == tmp_list->path) {
8926 			rc = true;
8927 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
8928 				       BP_PATH(bp));
8929 			break;
8930 		}
8931 	}
8932 
8933 	up(&bnx2x_prev_sem);
8934 
8935 	return rc;
8936 }
8937 
8938 static int __devinit bnx2x_prev_mark_path(struct bnx2x *bp)
8939 {
8940 	struct bnx2x_prev_path_list *tmp_list;
8941 	int rc;
8942 
8943 	tmp_list = (struct bnx2x_prev_path_list *)
8944 		    kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
8945 	if (!tmp_list) {
8946 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
8947 		return -ENOMEM;
8948 	}
8949 
8950 	tmp_list->bus = bp->pdev->bus->number;
8951 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
8952 	tmp_list->path = BP_PATH(bp);
8953 
8954 	rc = down_interruptible(&bnx2x_prev_sem);
8955 	if (rc) {
8956 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
8957 		kfree(tmp_list);
8958 	} else {
8959 		BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
8960 				BP_PATH(bp));
8961 		list_add(&tmp_list->list, &bnx2x_prev_list);
8962 		up(&bnx2x_prev_sem);
8963 	}
8964 
8965 	return rc;
8966 }
8967 
8968 static bool __devinit bnx2x_can_flr(struct bnx2x *bp)
8969 {
8970 	int pos;
8971 	u32 cap;
8972 	struct pci_dev *dev = bp->pdev;
8973 
8974 	pos = pci_pcie_cap(dev);
8975 	if (!pos)
8976 		return false;
8977 
8978 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
8979 	if (!(cap & PCI_EXP_DEVCAP_FLR))
8980 		return false;
8981 
8982 	return true;
8983 }
8984 
8985 static int __devinit bnx2x_do_flr(struct bnx2x *bp)
8986 {
8987 	int i, pos;
8988 	u16 status;
8989 	struct pci_dev *dev = bp->pdev;
8990 
8991 	/* probe the capability first */
8992 	if (bnx2x_can_flr(bp))
8993 		return -ENOTTY;
8994 
8995 	pos = pci_pcie_cap(dev);
8996 	if (!pos)
8997 		return -ENOTTY;
8998 
8999 	/* Wait for Transaction Pending bit clean */
9000 	for (i = 0; i < 4; i++) {
9001 		if (i)
9002 			msleep((1 << (i - 1)) * 100);
9003 
9004 		pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
9005 		if (!(status & PCI_EXP_DEVSTA_TRPND))
9006 			goto clear;
9007 	}
9008 
9009 	dev_err(&dev->dev,
9010 		"transaction is not cleared; proceeding with reset anyway\n");
9011 
9012 clear:
9013 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9014 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9015 			  bp->common.bc_ver);
9016 		return -EINVAL;
9017 	}
9018 
9019 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9020 
9021 	return 0;
9022 }
9023 
9024 static int __devinit bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9025 {
9026 	int rc;
9027 
9028 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
9029 
9030 	/* Test if previous unload process was already finished for this path */
9031 	if (bnx2x_prev_is_path_marked(bp))
9032 		return bnx2x_prev_mcp_done(bp);
9033 
9034 	/* If function has FLR capabilities, and existing FW version matches
9035 	 * the one required, then FLR will be sufficient to clean any residue
9036 	 * left by previous driver
9037 	 */
9038 	if (bnx2x_test_firmware_version(bp, false) && bnx2x_can_flr(bp))
9039 		return bnx2x_do_flr(bp);
9040 
9041 	/* Close the MCP request, return failure*/
9042 	rc = bnx2x_prev_mcp_done(bp);
9043 	if (!rc)
9044 		rc = BNX2X_PREV_WAIT_NEEDED;
9045 
9046 	return rc;
9047 }
9048 
9049 static int __devinit bnx2x_prev_unload_common(struct bnx2x *bp)
9050 {
9051 	u32 reset_reg, tmp_reg = 0, rc;
9052 	/* It is possible a previous function received 'common' answer,
9053 	 * but hasn't loaded yet, therefore creating a scenario of
9054 	 * multiple functions receiving 'common' on the same path.
9055 	 */
9056 	BNX2X_DEV_INFO("Common unload Flow\n");
9057 
9058 	if (bnx2x_prev_is_path_marked(bp))
9059 		return bnx2x_prev_mcp_done(bp);
9060 
9061 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9062 
9063 	/* Reset should be performed after BRB is emptied */
9064 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9065 		u32 timer_count = 1000;
9066 		bool prev_undi = false;
9067 
9068 		/* Close the MAC Rx to prevent BRB from filling up */
9069 		bnx2x_prev_unload_close_mac(bp);
9070 
9071 		/* Check if the UNDI driver was previously loaded
9072 		 * UNDI driver initializes CID offset for normal bell to 0x7
9073 		 */
9074 		reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9075 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9076 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9077 			if (tmp_reg == 0x7) {
9078 				BNX2X_DEV_INFO("UNDI previously loaded\n");
9079 				prev_undi = true;
9080 				/* clear the UNDI indication */
9081 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9082 			}
9083 		}
9084 		/* wait until BRB is empty */
9085 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9086 		while (timer_count) {
9087 			u32 prev_brb = tmp_reg;
9088 
9089 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9090 			if (!tmp_reg)
9091 				break;
9092 
9093 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9094 
9095 			/* reset timer as long as BRB actually gets emptied */
9096 			if (prev_brb > tmp_reg)
9097 				timer_count = 1000;
9098 			else
9099 				timer_count--;
9100 
9101 			/* If UNDI resides in memory, manually increment it */
9102 			if (prev_undi)
9103 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9104 
9105 			udelay(10);
9106 		}
9107 
9108 		if (!timer_count)
9109 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9110 
9111 	}
9112 
9113 	/* No packets are in the pipeline, path is ready for reset */
9114 	bnx2x_reset_common(bp);
9115 
9116 	rc = bnx2x_prev_mark_path(bp);
9117 	if (rc) {
9118 		bnx2x_prev_mcp_done(bp);
9119 		return rc;
9120 	}
9121 
9122 	return bnx2x_prev_mcp_done(bp);
9123 }
9124 
9125 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
9126  * and boot began, or when kdump kernel was loaded. Either case would invalidate
9127  * the addresses of the transaction, resulting in was-error bit set in the pci
9128  * causing all hw-to-host pcie transactions to timeout. If this happened we want
9129  * to clear the interrupt which detected this from the pglueb and the was done
9130  * bit
9131  */
9132 static void __devinit bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
9133 {
9134 	u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
9135 	if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9136 		BNX2X_ERR("was error bit was found to be set in pglueb upon startup. Clearing");
9137 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << BP_FUNC(bp));
9138 	}
9139 }
9140 
9141 static int __devinit bnx2x_prev_unload(struct bnx2x *bp)
9142 {
9143 	int time_counter = 10;
9144 	u32 rc, fw, hw_lock_reg, hw_lock_val;
9145 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
9146 
9147 	/* clear hw from errors which may have resulted from an interrupted
9148 	 * dmae transaction.
9149 	 */
9150 	bnx2x_prev_interrupted_dmae(bp);
9151 
9152 	/* Release previously held locks */
9153 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
9154 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
9155 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
9156 
9157 	hw_lock_val = (REG_RD(bp, hw_lock_reg));
9158 	if (hw_lock_val) {
9159 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9160 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
9161 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
9162 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
9163 		}
9164 
9165 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
9166 		REG_WR(bp, hw_lock_reg, 0xffffffff);
9167 	} else
9168 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
9169 
9170 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
9171 		BNX2X_DEV_INFO("Release previously held alr\n");
9172 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
9173 	}
9174 
9175 
9176 	do {
9177 		/* Lock MCP using an unload request */
9178 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9179 		if (!fw) {
9180 			BNX2X_ERR("MCP response failure, aborting\n");
9181 			rc = -EBUSY;
9182 			break;
9183 		}
9184 
9185 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9186 			rc = bnx2x_prev_unload_common(bp);
9187 			break;
9188 		}
9189 
9190 		/* non-common reply from MCP night require looping */
9191 		rc = bnx2x_prev_unload_uncommon(bp);
9192 		if (rc != BNX2X_PREV_WAIT_NEEDED)
9193 			break;
9194 
9195 		msleep(20);
9196 	} while (--time_counter);
9197 
9198 	if (!time_counter || rc) {
9199 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
9200 		rc = -EBUSY;
9201 	}
9202 
9203 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
9204 
9205 	return rc;
9206 }
9207 
9208 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
9209 {
9210 	u32 val, val2, val3, val4, id, boot_mode;
9211 	u16 pmc;
9212 
9213 	/* Get the chip revision id and number. */
9214 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
9215 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
9216 	id = ((val & 0xffff) << 16);
9217 	val = REG_RD(bp, MISC_REG_CHIP_REV);
9218 	id |= ((val & 0xf) << 12);
9219 	val = REG_RD(bp, MISC_REG_CHIP_METAL);
9220 	id |= ((val & 0xff) << 4);
9221 	val = REG_RD(bp, MISC_REG_BOND_ID);
9222 	id |= (val & 0xf);
9223 	bp->common.chip_id = id;
9224 
9225 	/* Set doorbell size */
9226 	bp->db_size = (1 << BNX2X_DB_SHIFT);
9227 
9228 	if (!CHIP_IS_E1x(bp)) {
9229 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
9230 		if ((val & 1) == 0)
9231 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
9232 		else
9233 			val = (val >> 1) & 1;
9234 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
9235 						       "2_PORT_MODE");
9236 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
9237 						 CHIP_2_PORT_MODE;
9238 
9239 		if (CHIP_MODE_IS_4_PORT(bp))
9240 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
9241 		else
9242 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
9243 	} else {
9244 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9245 		bp->pfid = bp->pf_num;			/* 0..7 */
9246 	}
9247 
9248 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
9249 
9250 	bp->link_params.chip_id = bp->common.chip_id;
9251 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9252 
9253 	val = (REG_RD(bp, 0x2874) & 0x55);
9254 	if ((bp->common.chip_id & 0x1) ||
9255 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9256 		bp->flags |= ONE_PORT_FLAG;
9257 		BNX2X_DEV_INFO("single port device\n");
9258 	}
9259 
9260 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9261 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9262 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
9263 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9264 		       bp->common.flash_size, bp->common.flash_size);
9265 
9266 	bnx2x_init_shmem(bp);
9267 
9268 
9269 
9270 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9271 					MISC_REG_GENERIC_CR_1 :
9272 					MISC_REG_GENERIC_CR_0));
9273 
9274 	bp->link_params.shmem_base = bp->common.shmem_base;
9275 	bp->link_params.shmem2_base = bp->common.shmem2_base;
9276 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
9277 		       bp->common.shmem_base, bp->common.shmem2_base);
9278 
9279 	if (!bp->common.shmem_base) {
9280 		BNX2X_DEV_INFO("MCP not active\n");
9281 		bp->flags |= NO_MCP_FLAG;
9282 		return;
9283 	}
9284 
9285 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
9286 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
9287 
9288 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
9289 					SHARED_HW_CFG_LED_MODE_MASK) >>
9290 				       SHARED_HW_CFG_LED_MODE_SHIFT);
9291 
9292 	bp->link_params.feature_config_flags = 0;
9293 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9294 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9295 		bp->link_params.feature_config_flags |=
9296 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9297 	else
9298 		bp->link_params.feature_config_flags &=
9299 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9300 
9301 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9302 	bp->common.bc_ver = val;
9303 	BNX2X_DEV_INFO("bc_ver %X\n", val);
9304 	if (val < BNX2X_BC_VER) {
9305 		/* for now only warn
9306 		 * later we might need to enforce this */
9307 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
9308 			  BNX2X_BC_VER, val);
9309 	}
9310 	bp->link_params.feature_config_flags |=
9311 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9312 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9313 
9314 	bp->link_params.feature_config_flags |=
9315 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9316 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9317 
9318 	bp->link_params.feature_config_flags |=
9319 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9320 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9321 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9322 			BC_SUPPORTS_PFC_STATS : 0;
9323 
9324 	boot_mode = SHMEM_RD(bp,
9325 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9326 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9327 	switch (boot_mode) {
9328 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9329 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9330 		break;
9331 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9332 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9333 		break;
9334 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9335 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9336 		break;
9337 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9338 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9339 		break;
9340 	}
9341 
9342 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9343 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9344 
9345 	BNX2X_DEV_INFO("%sWoL capable\n",
9346 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
9347 
9348 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9349 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9350 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9351 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9352 
9353 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9354 		 val, val2, val3, val4);
9355 }
9356 
9357 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9358 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9359 
9360 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9361 {
9362 	int pfid = BP_FUNC(bp);
9363 	int igu_sb_id;
9364 	u32 val;
9365 	u8 fid, igu_sb_cnt = 0;
9366 
9367 	bp->igu_base_sb = 0xff;
9368 	if (CHIP_INT_MODE_IS_BC(bp)) {
9369 		int vn = BP_VN(bp);
9370 		igu_sb_cnt = bp->igu_sb_cnt;
9371 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9372 			FP_SB_MAX_E1x;
9373 
9374 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
9375 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9376 
9377 		return;
9378 	}
9379 
9380 	/* IGU in normal mode - read CAM */
9381 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9382 	     igu_sb_id++) {
9383 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9384 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9385 			continue;
9386 		fid = IGU_FID(val);
9387 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
9388 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9389 				continue;
9390 			if (IGU_VEC(val) == 0)
9391 				/* default status block */
9392 				bp->igu_dsb_id = igu_sb_id;
9393 			else {
9394 				if (bp->igu_base_sb == 0xff)
9395 					bp->igu_base_sb = igu_sb_id;
9396 				igu_sb_cnt++;
9397 			}
9398 		}
9399 	}
9400 
9401 #ifdef CONFIG_PCI_MSI
9402 	/*
9403 	 * It's expected that number of CAM entries for this functions is equal
9404 	 * to the number evaluated based on the MSI-X table size. We want a
9405 	 * harsh warning if these values are different!
9406 	 */
9407 	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9408 #endif
9409 
9410 	if (igu_sb_cnt == 0)
9411 		BNX2X_ERR("CAM configuration error\n");
9412 }
9413 
9414 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9415 						    u32 switch_cfg)
9416 {
9417 	int cfg_size = 0, idx, port = BP_PORT(bp);
9418 
9419 	/* Aggregation of supported attributes of all external phys */
9420 	bp->port.supported[0] = 0;
9421 	bp->port.supported[1] = 0;
9422 	switch (bp->link_params.num_phys) {
9423 	case 1:
9424 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9425 		cfg_size = 1;
9426 		break;
9427 	case 2:
9428 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9429 		cfg_size = 1;
9430 		break;
9431 	case 3:
9432 		if (bp->link_params.multi_phy_config &
9433 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9434 			bp->port.supported[1] =
9435 				bp->link_params.phy[EXT_PHY1].supported;
9436 			bp->port.supported[0] =
9437 				bp->link_params.phy[EXT_PHY2].supported;
9438 		} else {
9439 			bp->port.supported[0] =
9440 				bp->link_params.phy[EXT_PHY1].supported;
9441 			bp->port.supported[1] =
9442 				bp->link_params.phy[EXT_PHY2].supported;
9443 		}
9444 		cfg_size = 2;
9445 		break;
9446 	}
9447 
9448 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
9449 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
9450 			   SHMEM_RD(bp,
9451 			   dev_info.port_hw_config[port].external_phy_config),
9452 			   SHMEM_RD(bp,
9453 			   dev_info.port_hw_config[port].external_phy_config2));
9454 			return;
9455 	}
9456 
9457 	if (CHIP_IS_E3(bp))
9458 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9459 	else {
9460 		switch (switch_cfg) {
9461 		case SWITCH_CFG_1G:
9462 			bp->port.phy_addr = REG_RD(
9463 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9464 			break;
9465 		case SWITCH_CFG_10G:
9466 			bp->port.phy_addr = REG_RD(
9467 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9468 			break;
9469 		default:
9470 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9471 				  bp->port.link_config[0]);
9472 			return;
9473 		}
9474 	}
9475 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9476 	/* mask what we support according to speed_cap_mask per configuration */
9477 	for (idx = 0; idx < cfg_size; idx++) {
9478 		if (!(bp->link_params.speed_cap_mask[idx] &
9479 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9480 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9481 
9482 		if (!(bp->link_params.speed_cap_mask[idx] &
9483 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9484 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9485 
9486 		if (!(bp->link_params.speed_cap_mask[idx] &
9487 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9488 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9489 
9490 		if (!(bp->link_params.speed_cap_mask[idx] &
9491 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9492 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9493 
9494 		if (!(bp->link_params.speed_cap_mask[idx] &
9495 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9496 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9497 						     SUPPORTED_1000baseT_Full);
9498 
9499 		if (!(bp->link_params.speed_cap_mask[idx] &
9500 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9501 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9502 
9503 		if (!(bp->link_params.speed_cap_mask[idx] &
9504 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9505 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9506 
9507 	}
9508 
9509 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9510 		       bp->port.supported[1]);
9511 }
9512 
9513 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9514 {
9515 	u32 link_config, idx, cfg_size = 0;
9516 	bp->port.advertising[0] = 0;
9517 	bp->port.advertising[1] = 0;
9518 	switch (bp->link_params.num_phys) {
9519 	case 1:
9520 	case 2:
9521 		cfg_size = 1;
9522 		break;
9523 	case 3:
9524 		cfg_size = 2;
9525 		break;
9526 	}
9527 	for (idx = 0; idx < cfg_size; idx++) {
9528 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9529 		link_config = bp->port.link_config[idx];
9530 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9531 		case PORT_FEATURE_LINK_SPEED_AUTO:
9532 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9533 				bp->link_params.req_line_speed[idx] =
9534 					SPEED_AUTO_NEG;
9535 				bp->port.advertising[idx] |=
9536 					bp->port.supported[idx];
9537 				if (bp->link_params.phy[EXT_PHY1].type ==
9538 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
9539 					bp->port.advertising[idx] |=
9540 					(SUPPORTED_100baseT_Half |
9541 					 SUPPORTED_100baseT_Full);
9542 			} else {
9543 				/* force 10G, no AN */
9544 				bp->link_params.req_line_speed[idx] =
9545 					SPEED_10000;
9546 				bp->port.advertising[idx] |=
9547 					(ADVERTISED_10000baseT_Full |
9548 					 ADVERTISED_FIBRE);
9549 				continue;
9550 			}
9551 			break;
9552 
9553 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9554 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9555 				bp->link_params.req_line_speed[idx] =
9556 					SPEED_10;
9557 				bp->port.advertising[idx] |=
9558 					(ADVERTISED_10baseT_Full |
9559 					 ADVERTISED_TP);
9560 			} else {
9561 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9562 					    link_config,
9563 				    bp->link_params.speed_cap_mask[idx]);
9564 				return;
9565 			}
9566 			break;
9567 
9568 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
9569 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9570 				bp->link_params.req_line_speed[idx] =
9571 					SPEED_10;
9572 				bp->link_params.req_duplex[idx] =
9573 					DUPLEX_HALF;
9574 				bp->port.advertising[idx] |=
9575 					(ADVERTISED_10baseT_Half |
9576 					 ADVERTISED_TP);
9577 			} else {
9578 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9579 					    link_config,
9580 					  bp->link_params.speed_cap_mask[idx]);
9581 				return;
9582 			}
9583 			break;
9584 
9585 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
9586 			if (bp->port.supported[idx] &
9587 			    SUPPORTED_100baseT_Full) {
9588 				bp->link_params.req_line_speed[idx] =
9589 					SPEED_100;
9590 				bp->port.advertising[idx] |=
9591 					(ADVERTISED_100baseT_Full |
9592 					 ADVERTISED_TP);
9593 			} else {
9594 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9595 					    link_config,
9596 					  bp->link_params.speed_cap_mask[idx]);
9597 				return;
9598 			}
9599 			break;
9600 
9601 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
9602 			if (bp->port.supported[idx] &
9603 			    SUPPORTED_100baseT_Half) {
9604 				bp->link_params.req_line_speed[idx] =
9605 								SPEED_100;
9606 				bp->link_params.req_duplex[idx] =
9607 								DUPLEX_HALF;
9608 				bp->port.advertising[idx] |=
9609 					(ADVERTISED_100baseT_Half |
9610 					 ADVERTISED_TP);
9611 			} else {
9612 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9613 				    link_config,
9614 				    bp->link_params.speed_cap_mask[idx]);
9615 				return;
9616 			}
9617 			break;
9618 
9619 		case PORT_FEATURE_LINK_SPEED_1G:
9620 			if (bp->port.supported[idx] &
9621 			    SUPPORTED_1000baseT_Full) {
9622 				bp->link_params.req_line_speed[idx] =
9623 					SPEED_1000;
9624 				bp->port.advertising[idx] |=
9625 					(ADVERTISED_1000baseT_Full |
9626 					 ADVERTISED_TP);
9627 			} else {
9628 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9629 				    link_config,
9630 				    bp->link_params.speed_cap_mask[idx]);
9631 				return;
9632 			}
9633 			break;
9634 
9635 		case PORT_FEATURE_LINK_SPEED_2_5G:
9636 			if (bp->port.supported[idx] &
9637 			    SUPPORTED_2500baseX_Full) {
9638 				bp->link_params.req_line_speed[idx] =
9639 					SPEED_2500;
9640 				bp->port.advertising[idx] |=
9641 					(ADVERTISED_2500baseX_Full |
9642 						ADVERTISED_TP);
9643 			} else {
9644 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9645 				    link_config,
9646 				    bp->link_params.speed_cap_mask[idx]);
9647 				return;
9648 			}
9649 			break;
9650 
9651 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
9652 			if (bp->port.supported[idx] &
9653 			    SUPPORTED_10000baseT_Full) {
9654 				bp->link_params.req_line_speed[idx] =
9655 					SPEED_10000;
9656 				bp->port.advertising[idx] |=
9657 					(ADVERTISED_10000baseT_Full |
9658 						ADVERTISED_FIBRE);
9659 			} else {
9660 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9661 				    link_config,
9662 				    bp->link_params.speed_cap_mask[idx]);
9663 				return;
9664 			}
9665 			break;
9666 		case PORT_FEATURE_LINK_SPEED_20G:
9667 			bp->link_params.req_line_speed[idx] = SPEED_20000;
9668 
9669 			break;
9670 		default:
9671 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
9672 				  link_config);
9673 				bp->link_params.req_line_speed[idx] =
9674 							SPEED_AUTO_NEG;
9675 				bp->port.advertising[idx] =
9676 						bp->port.supported[idx];
9677 			break;
9678 		}
9679 
9680 		bp->link_params.req_flow_ctrl[idx] = (link_config &
9681 					 PORT_FEATURE_FLOW_CONTROL_MASK);
9682 		if ((bp->link_params.req_flow_ctrl[idx] ==
9683 		     BNX2X_FLOW_CTRL_AUTO) &&
9684 		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9685 			bp->link_params.req_flow_ctrl[idx] =
9686 				BNX2X_FLOW_CTRL_NONE;
9687 		}
9688 
9689 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
9690 			       bp->link_params.req_line_speed[idx],
9691 			       bp->link_params.req_duplex[idx],
9692 			       bp->link_params.req_flow_ctrl[idx],
9693 			       bp->port.advertising[idx]);
9694 	}
9695 }
9696 
9697 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9698 {
9699 	mac_hi = cpu_to_be16(mac_hi);
9700 	mac_lo = cpu_to_be32(mac_lo);
9701 	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9702 	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9703 }
9704 
9705 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9706 {
9707 	int port = BP_PORT(bp);
9708 	u32 config;
9709 	u32 ext_phy_type, ext_phy_config;
9710 
9711 	bp->link_params.bp = bp;
9712 	bp->link_params.port = port;
9713 
9714 	bp->link_params.lane_config =
9715 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9716 
9717 	bp->link_params.speed_cap_mask[0] =
9718 		SHMEM_RD(bp,
9719 			 dev_info.port_hw_config[port].speed_capability_mask);
9720 	bp->link_params.speed_cap_mask[1] =
9721 		SHMEM_RD(bp,
9722 			 dev_info.port_hw_config[port].speed_capability_mask2);
9723 	bp->port.link_config[0] =
9724 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9725 
9726 	bp->port.link_config[1] =
9727 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9728 
9729 	bp->link_params.multi_phy_config =
9730 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9731 	/* If the device is capable of WoL, set the default state according
9732 	 * to the HW
9733 	 */
9734 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9735 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9736 		   (config & PORT_FEATURE_WOL_ENABLED));
9737 
9738 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
9739 		       bp->link_params.lane_config,
9740 		       bp->link_params.speed_cap_mask[0],
9741 		       bp->port.link_config[0]);
9742 
9743 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
9744 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
9745 	bnx2x_phy_probe(&bp->link_params);
9746 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9747 
9748 	bnx2x_link_settings_requested(bp);
9749 
9750 	/*
9751 	 * If connected directly, work with the internal PHY, otherwise, work
9752 	 * with the external PHY
9753 	 */
9754 	ext_phy_config =
9755 		SHMEM_RD(bp,
9756 			 dev_info.port_hw_config[port].external_phy_config);
9757 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9758 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9759 		bp->mdio.prtad = bp->port.phy_addr;
9760 
9761 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9762 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9763 		bp->mdio.prtad =
9764 			XGXS_EXT_PHY_ADDR(ext_phy_config);
9765 
9766 	/*
9767 	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9768 	 * In MF mode, it is set to cover self test cases
9769 	 */
9770 	if (IS_MF(bp))
9771 		bp->port.need_hw_lock = 1;
9772 	else
9773 		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9774 							bp->common.shmem_base,
9775 							bp->common.shmem2_base);
9776 }
9777 
9778 void bnx2x_get_iscsi_info(struct bnx2x *bp)
9779 {
9780 	u32 no_flags = NO_ISCSI_FLAG;
9781 #ifdef BCM_CNIC
9782 	int port = BP_PORT(bp);
9783 
9784 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9785 				drv_lic_key[port].max_iscsi_conn);
9786 
9787 	/* Get the number of maximum allowed iSCSI connections */
9788 	bp->cnic_eth_dev.max_iscsi_conn =
9789 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9790 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9791 
9792 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9793 		       bp->cnic_eth_dev.max_iscsi_conn);
9794 
9795 	/*
9796 	 * If maximum allowed number of connections is zero -
9797 	 * disable the feature.
9798 	 */
9799 	if (!bp->cnic_eth_dev.max_iscsi_conn)
9800 		bp->flags |= no_flags;
9801 #else
9802 	bp->flags |= no_flags;
9803 #endif
9804 }
9805 
9806 #ifdef BCM_CNIC
9807 static void __devinit bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
9808 {
9809 	/* Port info */
9810 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9811 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
9812 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9813 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
9814 
9815 	/* Node info */
9816 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9817 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
9818 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9819 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
9820 }
9821 #endif
9822 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9823 {
9824 #ifdef BCM_CNIC
9825 	int port = BP_PORT(bp);
9826 	int func = BP_ABS_FUNC(bp);
9827 
9828 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9829 				drv_lic_key[port].max_fcoe_conn);
9830 
9831 	/* Get the number of maximum allowed FCoE connections */
9832 	bp->cnic_eth_dev.max_fcoe_conn =
9833 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9834 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9835 
9836 	/* Read the WWN: */
9837 	if (!IS_MF(bp)) {
9838 		/* Port info */
9839 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9840 			SHMEM_RD(bp,
9841 				dev_info.port_hw_config[port].
9842 				 fcoe_wwn_port_name_upper);
9843 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9844 			SHMEM_RD(bp,
9845 				dev_info.port_hw_config[port].
9846 				 fcoe_wwn_port_name_lower);
9847 
9848 		/* Node info */
9849 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9850 			SHMEM_RD(bp,
9851 				dev_info.port_hw_config[port].
9852 				 fcoe_wwn_node_name_upper);
9853 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9854 			SHMEM_RD(bp,
9855 				dev_info.port_hw_config[port].
9856 				 fcoe_wwn_node_name_lower);
9857 	} else if (!IS_MF_SD(bp)) {
9858 		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9859 
9860 		/*
9861 		 * Read the WWN info only if the FCoE feature is enabled for
9862 		 * this function.
9863 		 */
9864 		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
9865 			bnx2x_get_ext_wwn_info(bp, func);
9866 
9867 	} else if (IS_MF_FCOE_SD(bp))
9868 		bnx2x_get_ext_wwn_info(bp, func);
9869 
9870 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9871 
9872 	/*
9873 	 * If maximum allowed number of connections is zero -
9874 	 * disable the feature.
9875 	 */
9876 	if (!bp->cnic_eth_dev.max_fcoe_conn)
9877 		bp->flags |= NO_FCOE_FLAG;
9878 #else
9879 	bp->flags |= NO_FCOE_FLAG;
9880 #endif
9881 }
9882 
9883 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9884 {
9885 	/*
9886 	 * iSCSI may be dynamically disabled but reading
9887 	 * info here we will decrease memory usage by driver
9888 	 * if the feature is disabled for good
9889 	 */
9890 	bnx2x_get_iscsi_info(bp);
9891 	bnx2x_get_fcoe_info(bp);
9892 }
9893 
9894 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9895 {
9896 	u32 val, val2;
9897 	int func = BP_ABS_FUNC(bp);
9898 	int port = BP_PORT(bp);
9899 #ifdef BCM_CNIC
9900 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9901 	u8 *fip_mac = bp->fip_mac;
9902 #endif
9903 
9904 	/* Zero primary MAC configuration */
9905 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
9906 
9907 	if (BP_NOMCP(bp)) {
9908 		BNX2X_ERROR("warning: random MAC workaround active\n");
9909 		eth_hw_addr_random(bp->dev);
9910 	} else if (IS_MF(bp)) {
9911 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9912 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9913 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9914 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9915 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9916 
9917 #ifdef BCM_CNIC
9918 		/*
9919 		 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9920 		 * FCoE MAC then the appropriate feature should be disabled.
9921 		 *
9922 		 * In non SD mode features configuration comes from
9923 		 * struct func_ext_config.
9924 		 */
9925 		if (!IS_MF_SD(bp)) {
9926 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9927 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9928 				val2 = MF_CFG_RD(bp, func_ext_config[func].
9929 						     iscsi_mac_addr_upper);
9930 				val = MF_CFG_RD(bp, func_ext_config[func].
9931 						    iscsi_mac_addr_lower);
9932 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
9933 				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9934 					       iscsi_mac);
9935 			} else
9936 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9937 
9938 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9939 				val2 = MF_CFG_RD(bp, func_ext_config[func].
9940 						     fcoe_mac_addr_upper);
9941 				val = MF_CFG_RD(bp, func_ext_config[func].
9942 						    fcoe_mac_addr_lower);
9943 				bnx2x_set_mac_buf(fip_mac, val, val2);
9944 				BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9945 					       fip_mac);
9946 
9947 			} else
9948 				bp->flags |= NO_FCOE_FLAG;
9949 		} else { /* SD MODE */
9950 			if (IS_MF_STORAGE_SD(bp)) {
9951 				if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
9952 					/* use primary mac as iscsi mac */
9953 					memcpy(iscsi_mac, bp->dev->dev_addr,
9954 					       ETH_ALEN);
9955 
9956 					BNX2X_DEV_INFO("SD ISCSI MODE\n");
9957 					BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9958 						       iscsi_mac);
9959 				} else { /* FCoE */
9960 					memcpy(fip_mac, bp->dev->dev_addr,
9961 					       ETH_ALEN);
9962 					BNX2X_DEV_INFO("SD FCoE MODE\n");
9963 					BNX2X_DEV_INFO("Read FIP MAC: %pM\n",
9964 						       fip_mac);
9965 				}
9966 				/* Zero primary MAC configuration */
9967 				memset(bp->dev->dev_addr, 0, ETH_ALEN);
9968 			}
9969 		}
9970 #endif
9971 	} else {
9972 		/* in SF read MACs from port configuration */
9973 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9974 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9975 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9976 
9977 #ifdef BCM_CNIC
9978 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9979 				    iscsi_mac_upper);
9980 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9981 				   iscsi_mac_lower);
9982 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
9983 
9984 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9985 				    fcoe_fip_mac_upper);
9986 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9987 				   fcoe_fip_mac_lower);
9988 		bnx2x_set_mac_buf(fip_mac, val, val2);
9989 #endif
9990 	}
9991 
9992 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9993 	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9994 
9995 #ifdef BCM_CNIC
9996 	/* Disable iSCSI if MAC configuration is
9997 	 * invalid.
9998 	 */
9999 	if (!is_valid_ether_addr(iscsi_mac)) {
10000 		bp->flags |= NO_ISCSI_FLAG;
10001 		memset(iscsi_mac, 0, ETH_ALEN);
10002 	}
10003 
10004 	/* Disable FCoE if MAC configuration is
10005 	 * invalid.
10006 	 */
10007 	if (!is_valid_ether_addr(fip_mac)) {
10008 		bp->flags |= NO_FCOE_FLAG;
10009 		memset(bp->fip_mac, 0, ETH_ALEN);
10010 	}
10011 #endif
10012 
10013 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10014 		dev_err(&bp->pdev->dev,
10015 			"bad Ethernet MAC address configuration: %pM\n"
10016 			"change it manually before bringing up the appropriate network interface\n",
10017 			bp->dev->dev_addr);
10018 
10019 
10020 }
10021 
10022 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
10023 {
10024 	int /*abs*/func = BP_ABS_FUNC(bp);
10025 	int vn;
10026 	u32 val = 0;
10027 	int rc = 0;
10028 
10029 	bnx2x_get_common_hwinfo(bp);
10030 
10031 	/*
10032 	 * initialize IGU parameters
10033 	 */
10034 	if (CHIP_IS_E1x(bp)) {
10035 		bp->common.int_block = INT_BLOCK_HC;
10036 
10037 		bp->igu_dsb_id = DEF_SB_IGU_ID;
10038 		bp->igu_base_sb = 0;
10039 	} else {
10040 		bp->common.int_block = INT_BLOCK_IGU;
10041 
10042 		/* do not allow device reset during IGU info preocessing */
10043 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10044 
10045 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
10046 
10047 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10048 			int tout = 5000;
10049 
10050 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
10051 
10052 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
10053 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
10054 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
10055 
10056 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10057 				tout--;
10058 				usleep_range(1000, 1000);
10059 			}
10060 
10061 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10062 				dev_err(&bp->pdev->dev,
10063 					"FORCING Normal Mode failed!!!\n");
10064 				return -EPERM;
10065 			}
10066 		}
10067 
10068 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10069 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
10070 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
10071 		} else
10072 			BNX2X_DEV_INFO("IGU Normal Mode\n");
10073 
10074 		bnx2x_get_igu_cam_info(bp);
10075 
10076 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10077 	}
10078 
10079 	/*
10080 	 * set base FW non-default (fast path) status block id, this value is
10081 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
10082 	 * determine the id used by the FW.
10083 	 */
10084 	if (CHIP_IS_E1x(bp))
10085 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
10086 	else /*
10087 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
10088 	      * the same queue are indicated on the same IGU SB). So we prefer
10089 	      * FW and IGU SBs to be the same value.
10090 	      */
10091 		bp->base_fw_ndsb = bp->igu_base_sb;
10092 
10093 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
10094 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
10095 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
10096 
10097 	/*
10098 	 * Initialize MF configuration
10099 	 */
10100 
10101 	bp->mf_ov = 0;
10102 	bp->mf_mode = 0;
10103 	vn = BP_VN(bp);
10104 
10105 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
10106 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
10107 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
10108 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
10109 
10110 		if (SHMEM2_HAS(bp, mf_cfg_addr))
10111 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
10112 		else
10113 			bp->common.mf_cfg_base = bp->common.shmem_base +
10114 				offsetof(struct shmem_region, func_mb) +
10115 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
10116 		/*
10117 		 * get mf configuration:
10118 		 * 1. existence of MF configuration
10119 		 * 2. MAC address must be legal (check only upper bytes)
10120 		 *    for  Switch-Independent mode;
10121 		 *    OVLAN must be legal for Switch-Dependent mode
10122 		 * 3. SF_MODE configures specific MF mode
10123 		 */
10124 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10125 			/* get mf configuration */
10126 			val = SHMEM_RD(bp,
10127 				       dev_info.shared_feature_config.config);
10128 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
10129 
10130 			switch (val) {
10131 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
10132 				val = MF_CFG_RD(bp, func_mf_config[func].
10133 						mac_upper);
10134 				/* check for legal mac (upper bytes)*/
10135 				if (val != 0xffff) {
10136 					bp->mf_mode = MULTI_FUNCTION_SI;
10137 					bp->mf_config[vn] = MF_CFG_RD(bp,
10138 						   func_mf_config[func].config);
10139 				} else
10140 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
10141 				break;
10142 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
10143 				/* get OV configuration */
10144 				val = MF_CFG_RD(bp,
10145 					func_mf_config[FUNC_0].e1hov_tag);
10146 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
10147 
10148 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10149 					bp->mf_mode = MULTI_FUNCTION_SD;
10150 					bp->mf_config[vn] = MF_CFG_RD(bp,
10151 						func_mf_config[func].config);
10152 				} else
10153 					BNX2X_DEV_INFO("illegal OV for SD\n");
10154 				break;
10155 			default:
10156 				/* Unknown configuration: reset mf_config */
10157 				bp->mf_config[vn] = 0;
10158 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
10159 			}
10160 		}
10161 
10162 		BNX2X_DEV_INFO("%s function mode\n",
10163 			       IS_MF(bp) ? "multi" : "single");
10164 
10165 		switch (bp->mf_mode) {
10166 		case MULTI_FUNCTION_SD:
10167 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
10168 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
10169 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10170 				bp->mf_ov = val;
10171 				bp->path_has_ovlan = true;
10172 
10173 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
10174 					       func, bp->mf_ov, bp->mf_ov);
10175 			} else {
10176 				dev_err(&bp->pdev->dev,
10177 					"No valid MF OV for func %d, aborting\n",
10178 					func);
10179 				return -EPERM;
10180 			}
10181 			break;
10182 		case MULTI_FUNCTION_SI:
10183 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
10184 				       func);
10185 			break;
10186 		default:
10187 			if (vn) {
10188 				dev_err(&bp->pdev->dev,
10189 					"VN %d is in a single function mode, aborting\n",
10190 					vn);
10191 				return -EPERM;
10192 			}
10193 			break;
10194 		}
10195 
10196 		/* check if other port on the path needs ovlan:
10197 		 * Since MF configuration is shared between ports
10198 		 * Possible mixed modes are only
10199 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
10200 		 */
10201 		if (CHIP_MODE_IS_4_PORT(bp) &&
10202 		    !bp->path_has_ovlan &&
10203 		    !IS_MF(bp) &&
10204 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10205 			u8 other_port = !BP_PORT(bp);
10206 			u8 other_func = BP_PATH(bp) + 2*other_port;
10207 			val = MF_CFG_RD(bp,
10208 					func_mf_config[other_func].e1hov_tag);
10209 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
10210 				bp->path_has_ovlan = true;
10211 		}
10212 	}
10213 
10214 	/* adjust igu_sb_cnt to MF for E1x */
10215 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
10216 		bp->igu_sb_cnt /= E1HVN_MAX;
10217 
10218 	/* port info */
10219 	bnx2x_get_port_hwinfo(bp);
10220 
10221 	/* Get MAC addresses */
10222 	bnx2x_get_mac_hwinfo(bp);
10223 
10224 	bnx2x_get_cnic_info(bp);
10225 
10226 	return rc;
10227 }
10228 
10229 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
10230 {
10231 	int cnt, i, block_end, rodi;
10232 	char vpd_start[BNX2X_VPD_LEN+1];
10233 	char str_id_reg[VENDOR_ID_LEN+1];
10234 	char str_id_cap[VENDOR_ID_LEN+1];
10235 	char *vpd_data;
10236 	char *vpd_extended_data = NULL;
10237 	u8 len;
10238 
10239 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
10240 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
10241 
10242 	if (cnt < BNX2X_VPD_LEN)
10243 		goto out_not_found;
10244 
10245 	/* VPD RO tag should be first tag after identifier string, hence
10246 	 * we should be able to find it in first BNX2X_VPD_LEN chars
10247 	 */
10248 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
10249 			     PCI_VPD_LRDT_RO_DATA);
10250 	if (i < 0)
10251 		goto out_not_found;
10252 
10253 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
10254 		    pci_vpd_lrdt_size(&vpd_start[i]);
10255 
10256 	i += PCI_VPD_LRDT_TAG_SIZE;
10257 
10258 	if (block_end > BNX2X_VPD_LEN) {
10259 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
10260 		if (vpd_extended_data  == NULL)
10261 			goto out_not_found;
10262 
10263 		/* read rest of vpd image into vpd_extended_data */
10264 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
10265 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
10266 				   block_end - BNX2X_VPD_LEN,
10267 				   vpd_extended_data + BNX2X_VPD_LEN);
10268 		if (cnt < (block_end - BNX2X_VPD_LEN))
10269 			goto out_not_found;
10270 		vpd_data = vpd_extended_data;
10271 	} else
10272 		vpd_data = vpd_start;
10273 
10274 	/* now vpd_data holds full vpd content in both cases */
10275 
10276 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10277 				   PCI_VPD_RO_KEYWORD_MFR_ID);
10278 	if (rodi < 0)
10279 		goto out_not_found;
10280 
10281 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
10282 
10283 	if (len != VENDOR_ID_LEN)
10284 		goto out_not_found;
10285 
10286 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10287 
10288 	/* vendor specific info */
10289 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10290 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10291 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10292 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
10293 
10294 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10295 						PCI_VPD_RO_KEYWORD_VENDOR0);
10296 		if (rodi >= 0) {
10297 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
10298 
10299 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10300 
10301 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10302 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
10303 				bp->fw_ver[len] = ' ';
10304 			}
10305 		}
10306 		kfree(vpd_extended_data);
10307 		return;
10308 	}
10309 out_not_found:
10310 	kfree(vpd_extended_data);
10311 	return;
10312 }
10313 
10314 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10315 {
10316 	u32 flags = 0;
10317 
10318 	if (CHIP_REV_IS_FPGA(bp))
10319 		SET_FLAGS(flags, MODE_FPGA);
10320 	else if (CHIP_REV_IS_EMUL(bp))
10321 		SET_FLAGS(flags, MODE_EMUL);
10322 	else
10323 		SET_FLAGS(flags, MODE_ASIC);
10324 
10325 	if (CHIP_MODE_IS_4_PORT(bp))
10326 		SET_FLAGS(flags, MODE_PORT4);
10327 	else
10328 		SET_FLAGS(flags, MODE_PORT2);
10329 
10330 	if (CHIP_IS_E2(bp))
10331 		SET_FLAGS(flags, MODE_E2);
10332 	else if (CHIP_IS_E3(bp)) {
10333 		SET_FLAGS(flags, MODE_E3);
10334 		if (CHIP_REV(bp) == CHIP_REV_Ax)
10335 			SET_FLAGS(flags, MODE_E3_A0);
10336 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10337 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10338 	}
10339 
10340 	if (IS_MF(bp)) {
10341 		SET_FLAGS(flags, MODE_MF);
10342 		switch (bp->mf_mode) {
10343 		case MULTI_FUNCTION_SD:
10344 			SET_FLAGS(flags, MODE_MF_SD);
10345 			break;
10346 		case MULTI_FUNCTION_SI:
10347 			SET_FLAGS(flags, MODE_MF_SI);
10348 			break;
10349 		}
10350 	} else
10351 		SET_FLAGS(flags, MODE_SF);
10352 
10353 #if defined(__LITTLE_ENDIAN)
10354 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10355 #else /*(__BIG_ENDIAN)*/
10356 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
10357 #endif
10358 	INIT_MODE_FLAGS(bp) = flags;
10359 }
10360 
10361 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10362 {
10363 	int func;
10364 	int rc;
10365 
10366 	mutex_init(&bp->port.phy_mutex);
10367 	mutex_init(&bp->fw_mb_mutex);
10368 	spin_lock_init(&bp->stats_lock);
10369 #ifdef BCM_CNIC
10370 	mutex_init(&bp->cnic_mutex);
10371 #endif
10372 
10373 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10374 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10375 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10376 	rc = bnx2x_get_hwinfo(bp);
10377 	if (rc)
10378 		return rc;
10379 
10380 	bnx2x_set_modes_bitmap(bp);
10381 
10382 	rc = bnx2x_alloc_mem_bp(bp);
10383 	if (rc)
10384 		return rc;
10385 
10386 	bnx2x_read_fwinfo(bp);
10387 
10388 	func = BP_FUNC(bp);
10389 
10390 	/* need to reset chip if undi was active */
10391 	if (!BP_NOMCP(bp)) {
10392 		/* init fw_seq */
10393 		bp->fw_seq =
10394 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10395 							DRV_MSG_SEQ_NUMBER_MASK;
10396 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10397 
10398 		bnx2x_prev_unload(bp);
10399 	}
10400 
10401 
10402 	if (CHIP_REV_IS_FPGA(bp))
10403 		dev_err(&bp->pdev->dev, "FPGA detected\n");
10404 
10405 	if (BP_NOMCP(bp) && (func == 0))
10406 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
10407 
10408 	bp->multi_mode = multi_mode;
10409 
10410 	bp->disable_tpa = disable_tpa;
10411 
10412 #ifdef BCM_CNIC
10413 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp);
10414 #endif
10415 
10416 	/* Set TPA flags */
10417 	if (bp->disable_tpa) {
10418 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10419 		bp->dev->features &= ~NETIF_F_LRO;
10420 	} else {
10421 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10422 		bp->dev->features |= NETIF_F_LRO;
10423 	}
10424 
10425 	if (CHIP_IS_E1(bp))
10426 		bp->dropless_fc = 0;
10427 	else
10428 		bp->dropless_fc = dropless_fc;
10429 
10430 	bp->mrrs = mrrs;
10431 
10432 	bp->tx_ring_size = MAX_TX_AVAIL;
10433 
10434 	/* make sure that the numbers are in the right granularity */
10435 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10436 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10437 
10438 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
10439 
10440 	init_timer(&bp->timer);
10441 	bp->timer.expires = jiffies + bp->current_interval;
10442 	bp->timer.data = (unsigned long) bp;
10443 	bp->timer.function = bnx2x_timer;
10444 
10445 	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10446 	bnx2x_dcbx_init_params(bp);
10447 
10448 #ifdef BCM_CNIC
10449 	if (CHIP_IS_E1x(bp))
10450 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10451 	else
10452 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
10453 #endif
10454 
10455 	/* multiple tx priority */
10456 	if (CHIP_IS_E1x(bp))
10457 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10458 	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10459 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10460 	if (CHIP_IS_E3B0(bp))
10461 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10462 
10463 	bp->gro_check = bnx2x_need_gro_check(bp->dev->mtu);
10464 
10465 	return rc;
10466 }
10467 
10468 
10469 /****************************************************************************
10470 * General service functions
10471 ****************************************************************************/
10472 
10473 /*
10474  * net_device service functions
10475  */
10476 
10477 /* called with rtnl_lock */
10478 static int bnx2x_open(struct net_device *dev)
10479 {
10480 	struct bnx2x *bp = netdev_priv(dev);
10481 	bool global = false;
10482 	int other_engine = BP_PATH(bp) ? 0 : 1;
10483 	bool other_load_status, load_status;
10484 
10485 	bp->stats_init = true;
10486 
10487 	netif_carrier_off(dev);
10488 
10489 	bnx2x_set_power_state(bp, PCI_D0);
10490 
10491 	other_load_status = bnx2x_get_load_status(bp, other_engine);
10492 	load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
10493 
10494 	/*
10495 	 * If parity had happen during the unload, then attentions
10496 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10497 	 * want the first function loaded on the current engine to
10498 	 * complete the recovery.
10499 	 */
10500 	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10501 	    bnx2x_chk_parity_attn(bp, &global, true))
10502 		do {
10503 			/*
10504 			 * If there are attentions and they are in a global
10505 			 * blocks, set the GLOBAL_RESET bit regardless whether
10506 			 * it will be this function that will complete the
10507 			 * recovery or not.
10508 			 */
10509 			if (global)
10510 				bnx2x_set_reset_global(bp);
10511 
10512 			/*
10513 			 * Only the first function on the current engine should
10514 			 * try to recover in open. In case of attentions in
10515 			 * global blocks only the first in the chip should try
10516 			 * to recover.
10517 			 */
10518 			if ((!load_status &&
10519 			     (!global || !other_load_status)) &&
10520 			    bnx2x_trylock_leader_lock(bp) &&
10521 			    !bnx2x_leader_reset(bp)) {
10522 				netdev_info(bp->dev, "Recovered in open\n");
10523 				break;
10524 			}
10525 
10526 			/* recovery has failed... */
10527 			bnx2x_set_power_state(bp, PCI_D3hot);
10528 			bp->recovery_state = BNX2X_RECOVERY_FAILED;
10529 
10530 			BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
10531 				  "If you still see this message after a few retries then power cycle is required.\n");
10532 
10533 			return -EAGAIN;
10534 		} while (0);
10535 
10536 	bp->recovery_state = BNX2X_RECOVERY_DONE;
10537 	return bnx2x_nic_load(bp, LOAD_OPEN);
10538 }
10539 
10540 /* called with rtnl_lock */
10541 static int bnx2x_close(struct net_device *dev)
10542 {
10543 	struct bnx2x *bp = netdev_priv(dev);
10544 
10545 	/* Unload the driver, release IRQs */
10546 	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10547 
10548 	/* Power off */
10549 	bnx2x_set_power_state(bp, PCI_D3hot);
10550 
10551 	return 0;
10552 }
10553 
10554 static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10555 					 struct bnx2x_mcast_ramrod_params *p)
10556 {
10557 	int mc_count = netdev_mc_count(bp->dev);
10558 	struct bnx2x_mcast_list_elem *mc_mac =
10559 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10560 	struct netdev_hw_addr *ha;
10561 
10562 	if (!mc_mac)
10563 		return -ENOMEM;
10564 
10565 	INIT_LIST_HEAD(&p->mcast_list);
10566 
10567 	netdev_for_each_mc_addr(ha, bp->dev) {
10568 		mc_mac->mac = bnx2x_mc_addr(ha);
10569 		list_add_tail(&mc_mac->link, &p->mcast_list);
10570 		mc_mac++;
10571 	}
10572 
10573 	p->mcast_list_len = mc_count;
10574 
10575 	return 0;
10576 }
10577 
10578 static inline void bnx2x_free_mcast_macs_list(
10579 	struct bnx2x_mcast_ramrod_params *p)
10580 {
10581 	struct bnx2x_mcast_list_elem *mc_mac =
10582 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10583 				 link);
10584 
10585 	WARN_ON(!mc_mac);
10586 	kfree(mc_mac);
10587 }
10588 
10589 /**
10590  * bnx2x_set_uc_list - configure a new unicast MACs list.
10591  *
10592  * @bp: driver handle
10593  *
10594  * We will use zero (0) as a MAC type for these MACs.
10595  */
10596 static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10597 {
10598 	int rc;
10599 	struct net_device *dev = bp->dev;
10600 	struct netdev_hw_addr *ha;
10601 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10602 	unsigned long ramrod_flags = 0;
10603 
10604 	/* First schedule a cleanup up of old configuration */
10605 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10606 	if (rc < 0) {
10607 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10608 		return rc;
10609 	}
10610 
10611 	netdev_for_each_uc_addr(ha, dev) {
10612 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10613 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
10614 		if (rc < 0) {
10615 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10616 				  rc);
10617 			return rc;
10618 		}
10619 	}
10620 
10621 	/* Execute the pending commands */
10622 	__set_bit(RAMROD_CONT, &ramrod_flags);
10623 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10624 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
10625 }
10626 
10627 static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10628 {
10629 	struct net_device *dev = bp->dev;
10630 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
10631 	int rc = 0;
10632 
10633 	rparam.mcast_obj = &bp->mcast_obj;
10634 
10635 	/* first, clear all configured multicast MACs */
10636 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10637 	if (rc < 0) {
10638 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
10639 		return rc;
10640 	}
10641 
10642 	/* then, configure a new MACs list */
10643 	if (netdev_mc_count(dev)) {
10644 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10645 		if (rc) {
10646 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
10647 				  rc);
10648 			return rc;
10649 		}
10650 
10651 		/* Now add the new MACs */
10652 		rc = bnx2x_config_mcast(bp, &rparam,
10653 					BNX2X_MCAST_CMD_ADD);
10654 		if (rc < 0)
10655 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
10656 				  rc);
10657 
10658 		bnx2x_free_mcast_macs_list(&rparam);
10659 	}
10660 
10661 	return rc;
10662 }
10663 
10664 
10665 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10666 void bnx2x_set_rx_mode(struct net_device *dev)
10667 {
10668 	struct bnx2x *bp = netdev_priv(dev);
10669 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10670 
10671 	if (bp->state != BNX2X_STATE_OPEN) {
10672 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10673 		return;
10674 	}
10675 
10676 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10677 
10678 	if (dev->flags & IFF_PROMISC)
10679 		rx_mode = BNX2X_RX_MODE_PROMISC;
10680 	else if ((dev->flags & IFF_ALLMULTI) ||
10681 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10682 		  CHIP_IS_E1(bp)))
10683 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
10684 	else {
10685 		/* some multicasts */
10686 		if (bnx2x_set_mc_list(bp) < 0)
10687 			rx_mode = BNX2X_RX_MODE_ALLMULTI;
10688 
10689 		if (bnx2x_set_uc_list(bp) < 0)
10690 			rx_mode = BNX2X_RX_MODE_PROMISC;
10691 	}
10692 
10693 	bp->rx_mode = rx_mode;
10694 #ifdef BCM_CNIC
10695 	/* handle ISCSI SD mode */
10696 	if (IS_MF_ISCSI_SD(bp))
10697 		bp->rx_mode = BNX2X_RX_MODE_NONE;
10698 #endif
10699 
10700 	/* Schedule the rx_mode command */
10701 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10702 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10703 		return;
10704 	}
10705 
10706 	bnx2x_set_storm_rx_mode(bp);
10707 }
10708 
10709 /* called with rtnl_lock */
10710 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10711 			   int devad, u16 addr)
10712 {
10713 	struct bnx2x *bp = netdev_priv(netdev);
10714 	u16 value;
10715 	int rc;
10716 
10717 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10718 	   prtad, devad, addr);
10719 
10720 	/* The HW expects different devad if CL22 is used */
10721 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10722 
10723 	bnx2x_acquire_phy_lock(bp);
10724 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10725 	bnx2x_release_phy_lock(bp);
10726 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10727 
10728 	if (!rc)
10729 		rc = value;
10730 	return rc;
10731 }
10732 
10733 /* called with rtnl_lock */
10734 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10735 			    u16 addr, u16 value)
10736 {
10737 	struct bnx2x *bp = netdev_priv(netdev);
10738 	int rc;
10739 
10740 	DP(NETIF_MSG_LINK,
10741 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
10742 	   prtad, devad, addr, value);
10743 
10744 	/* The HW expects different devad if CL22 is used */
10745 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10746 
10747 	bnx2x_acquire_phy_lock(bp);
10748 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10749 	bnx2x_release_phy_lock(bp);
10750 	return rc;
10751 }
10752 
10753 /* called with rtnl_lock */
10754 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10755 {
10756 	struct bnx2x *bp = netdev_priv(dev);
10757 	struct mii_ioctl_data *mdio = if_mii(ifr);
10758 
10759 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10760 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
10761 
10762 	if (!netif_running(dev))
10763 		return -EAGAIN;
10764 
10765 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10766 }
10767 
10768 #ifdef CONFIG_NET_POLL_CONTROLLER
10769 static void poll_bnx2x(struct net_device *dev)
10770 {
10771 	struct bnx2x *bp = netdev_priv(dev);
10772 
10773 	disable_irq(bp->pdev->irq);
10774 	bnx2x_interrupt(bp->pdev->irq, dev);
10775 	enable_irq(bp->pdev->irq);
10776 }
10777 #endif
10778 
10779 static int bnx2x_validate_addr(struct net_device *dev)
10780 {
10781 	struct bnx2x *bp = netdev_priv(dev);
10782 
10783 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
10784 		BNX2X_ERR("Non-valid Ethernet address\n");
10785 		return -EADDRNOTAVAIL;
10786 	}
10787 	return 0;
10788 }
10789 
10790 static const struct net_device_ops bnx2x_netdev_ops = {
10791 	.ndo_open		= bnx2x_open,
10792 	.ndo_stop		= bnx2x_close,
10793 	.ndo_start_xmit		= bnx2x_start_xmit,
10794 	.ndo_select_queue	= bnx2x_select_queue,
10795 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
10796 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
10797 	.ndo_validate_addr	= bnx2x_validate_addr,
10798 	.ndo_do_ioctl		= bnx2x_ioctl,
10799 	.ndo_change_mtu		= bnx2x_change_mtu,
10800 	.ndo_fix_features	= bnx2x_fix_features,
10801 	.ndo_set_features	= bnx2x_set_features,
10802 	.ndo_tx_timeout		= bnx2x_tx_timeout,
10803 #ifdef CONFIG_NET_POLL_CONTROLLER
10804 	.ndo_poll_controller	= poll_bnx2x,
10805 #endif
10806 	.ndo_setup_tc		= bnx2x_setup_tc,
10807 
10808 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10809 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
10810 #endif
10811 };
10812 
10813 static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10814 {
10815 	struct device *dev = &bp->pdev->dev;
10816 
10817 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10818 		bp->flags |= USING_DAC_FLAG;
10819 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10820 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
10821 			return -EIO;
10822 		}
10823 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10824 		dev_err(dev, "System does not support DMA, aborting\n");
10825 		return -EIO;
10826 	}
10827 
10828 	return 0;
10829 }
10830 
10831 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10832 				    struct net_device *dev,
10833 				    unsigned long board_type)
10834 {
10835 	struct bnx2x *bp;
10836 	int rc;
10837 	u32 pci_cfg_dword;
10838 	bool chip_is_e1x = (board_type == BCM57710 ||
10839 			    board_type == BCM57711 ||
10840 			    board_type == BCM57711E);
10841 
10842 	SET_NETDEV_DEV(dev, &pdev->dev);
10843 	bp = netdev_priv(dev);
10844 
10845 	bp->dev = dev;
10846 	bp->pdev = pdev;
10847 	bp->flags = 0;
10848 
10849 	rc = pci_enable_device(pdev);
10850 	if (rc) {
10851 		dev_err(&bp->pdev->dev,
10852 			"Cannot enable PCI device, aborting\n");
10853 		goto err_out;
10854 	}
10855 
10856 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10857 		dev_err(&bp->pdev->dev,
10858 			"Cannot find PCI device base address, aborting\n");
10859 		rc = -ENODEV;
10860 		goto err_out_disable;
10861 	}
10862 
10863 	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10864 		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10865 		       " base address, aborting\n");
10866 		rc = -ENODEV;
10867 		goto err_out_disable;
10868 	}
10869 
10870 	if (atomic_read(&pdev->enable_cnt) == 1) {
10871 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10872 		if (rc) {
10873 			dev_err(&bp->pdev->dev,
10874 				"Cannot obtain PCI resources, aborting\n");
10875 			goto err_out_disable;
10876 		}
10877 
10878 		pci_set_master(pdev);
10879 		pci_save_state(pdev);
10880 	}
10881 
10882 	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10883 	if (bp->pm_cap == 0) {
10884 		dev_err(&bp->pdev->dev,
10885 			"Cannot find power management capability, aborting\n");
10886 		rc = -EIO;
10887 		goto err_out_release;
10888 	}
10889 
10890 	if (!pci_is_pcie(pdev)) {
10891 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
10892 		rc = -EIO;
10893 		goto err_out_release;
10894 	}
10895 
10896 	rc = bnx2x_set_coherency_mask(bp);
10897 	if (rc)
10898 		goto err_out_release;
10899 
10900 	dev->mem_start = pci_resource_start(pdev, 0);
10901 	dev->base_addr = dev->mem_start;
10902 	dev->mem_end = pci_resource_end(pdev, 0);
10903 
10904 	dev->irq = pdev->irq;
10905 
10906 	bp->regview = pci_ioremap_bar(pdev, 0);
10907 	if (!bp->regview) {
10908 		dev_err(&bp->pdev->dev,
10909 			"Cannot map register space, aborting\n");
10910 		rc = -ENOMEM;
10911 		goto err_out_release;
10912 	}
10913 
10914 	/* In E1/E1H use pci device function given by kernel.
10915 	 * In E2/E3 read physical function from ME register since these chips
10916 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
10917 	 * (depending on hypervisor).
10918 	 */
10919 	if (chip_is_e1x)
10920 		bp->pf_num = PCI_FUNC(pdev->devfn);
10921 	else {/* chip is E2/3*/
10922 		pci_read_config_dword(bp->pdev,
10923 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
10924 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
10925 		    ME_REG_ABS_PF_NUM_SHIFT);
10926 	}
10927 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
10928 
10929 	bnx2x_set_power_state(bp, PCI_D0);
10930 
10931 	/* clean indirect addresses */
10932 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10933 			       PCICFG_VENDOR_ID_OFFSET);
10934 	/*
10935 	 * Clean the following indirect addresses for all functions since it
10936 	 * is not used by the driver.
10937 	 */
10938 	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10939 	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10940 	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10941 	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10942 
10943 	if (chip_is_e1x) {
10944 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10945 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10946 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10947 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10948 	}
10949 
10950 	/*
10951 	 * Enable internal target-read (in case we are probed after PF FLR).
10952 	 * Must be done prior to any BAR read access. Only for 57712 and up
10953 	 */
10954 	if (!chip_is_e1x)
10955 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10956 
10957 	/* Reset the load counter */
10958 	bnx2x_clear_load_status(bp);
10959 
10960 	dev->watchdog_timeo = TX_TIMEOUT;
10961 
10962 	dev->netdev_ops = &bnx2x_netdev_ops;
10963 	bnx2x_set_ethtool_ops(dev);
10964 
10965 	dev->priv_flags |= IFF_UNICAST_FLT;
10966 
10967 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10968 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
10969 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
10970 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10971 
10972 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10973 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10974 
10975 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10976 	if (bp->flags & USING_DAC_FLAG)
10977 		dev->features |= NETIF_F_HIGHDMA;
10978 
10979 	/* Add Loopback capability to the device */
10980 	dev->hw_features |= NETIF_F_LOOPBACK;
10981 
10982 #ifdef BCM_DCBNL
10983 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10984 #endif
10985 
10986 	/* get_port_hwinfo() will set prtad and mmds properly */
10987 	bp->mdio.prtad = MDIO_PRTAD_NONE;
10988 	bp->mdio.mmds = 0;
10989 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10990 	bp->mdio.dev = dev;
10991 	bp->mdio.mdio_read = bnx2x_mdio_read;
10992 	bp->mdio.mdio_write = bnx2x_mdio_write;
10993 
10994 	return 0;
10995 
10996 err_out_release:
10997 	if (atomic_read(&pdev->enable_cnt) == 1)
10998 		pci_release_regions(pdev);
10999 
11000 err_out_disable:
11001 	pci_disable_device(pdev);
11002 	pci_set_drvdata(pdev, NULL);
11003 
11004 err_out:
11005 	return rc;
11006 }
11007 
11008 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
11009 						 int *width, int *speed)
11010 {
11011 	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
11012 
11013 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
11014 
11015 	/* return value of 1=2.5GHz 2=5GHz */
11016 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
11017 }
11018 
11019 static int bnx2x_check_firmware(struct bnx2x *bp)
11020 {
11021 	const struct firmware *firmware = bp->firmware;
11022 	struct bnx2x_fw_file_hdr *fw_hdr;
11023 	struct bnx2x_fw_file_section *sections;
11024 	u32 offset, len, num_ops;
11025 	u16 *ops_offsets;
11026 	int i;
11027 	const u8 *fw_ver;
11028 
11029 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
11030 		BNX2X_ERR("Wrong FW size\n");
11031 		return -EINVAL;
11032 	}
11033 
11034 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
11035 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
11036 
11037 	/* Make sure none of the offsets and sizes make us read beyond
11038 	 * the end of the firmware data */
11039 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
11040 		offset = be32_to_cpu(sections[i].offset);
11041 		len = be32_to_cpu(sections[i].len);
11042 		if (offset + len > firmware->size) {
11043 			BNX2X_ERR("Section %d length is out of bounds\n", i);
11044 			return -EINVAL;
11045 		}
11046 	}
11047 
11048 	/* Likewise for the init_ops offsets */
11049 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
11050 	ops_offsets = (u16 *)(firmware->data + offset);
11051 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
11052 
11053 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
11054 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
11055 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
11056 			return -EINVAL;
11057 		}
11058 	}
11059 
11060 	/* Check FW version */
11061 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
11062 	fw_ver = firmware->data + offset;
11063 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
11064 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
11065 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
11066 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
11067 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
11068 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
11069 		       BCM_5710_FW_MAJOR_VERSION,
11070 		       BCM_5710_FW_MINOR_VERSION,
11071 		       BCM_5710_FW_REVISION_VERSION,
11072 		       BCM_5710_FW_ENGINEERING_VERSION);
11073 		return -EINVAL;
11074 	}
11075 
11076 	return 0;
11077 }
11078 
11079 static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11080 {
11081 	const __be32 *source = (const __be32 *)_source;
11082 	u32 *target = (u32 *)_target;
11083 	u32 i;
11084 
11085 	for (i = 0; i < n/4; i++)
11086 		target[i] = be32_to_cpu(source[i]);
11087 }
11088 
11089 /*
11090    Ops array is stored in the following format:
11091    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
11092  */
11093 static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
11094 {
11095 	const __be32 *source = (const __be32 *)_source;
11096 	struct raw_op *target = (struct raw_op *)_target;
11097 	u32 i, j, tmp;
11098 
11099 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
11100 		tmp = be32_to_cpu(source[j]);
11101 		target[i].op = (tmp >> 24) & 0xff;
11102 		target[i].offset = tmp & 0xffffff;
11103 		target[i].raw_data = be32_to_cpu(source[j + 1]);
11104 	}
11105 }
11106 
11107 /**
11108  * IRO array is stored in the following format:
11109  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
11110  */
11111 static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
11112 {
11113 	const __be32 *source = (const __be32 *)_source;
11114 	struct iro *target = (struct iro *)_target;
11115 	u32 i, j, tmp;
11116 
11117 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
11118 		target[i].base = be32_to_cpu(source[j]);
11119 		j++;
11120 		tmp = be32_to_cpu(source[j]);
11121 		target[i].m1 = (tmp >> 16) & 0xffff;
11122 		target[i].m2 = tmp & 0xffff;
11123 		j++;
11124 		tmp = be32_to_cpu(source[j]);
11125 		target[i].m3 = (tmp >> 16) & 0xffff;
11126 		target[i].size = tmp & 0xffff;
11127 		j++;
11128 	}
11129 }
11130 
11131 static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11132 {
11133 	const __be16 *source = (const __be16 *)_source;
11134 	u16 *target = (u16 *)_target;
11135 	u32 i;
11136 
11137 	for (i = 0; i < n/2; i++)
11138 		target[i] = be16_to_cpu(source[i]);
11139 }
11140 
11141 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
11142 do {									\
11143 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
11144 	bp->arr = kmalloc(len, GFP_KERNEL);				\
11145 	if (!bp->arr)							\
11146 		goto lbl;						\
11147 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
11148 	     (u8 *)bp->arr, len);					\
11149 } while (0)
11150 
11151 static int bnx2x_init_firmware(struct bnx2x *bp)
11152 {
11153 	const char *fw_file_name;
11154 	struct bnx2x_fw_file_hdr *fw_hdr;
11155 	int rc;
11156 
11157 	if (bp->firmware)
11158 		return 0;
11159 
11160 	if (CHIP_IS_E1(bp))
11161 		fw_file_name = FW_FILE_NAME_E1;
11162 	else if (CHIP_IS_E1H(bp))
11163 		fw_file_name = FW_FILE_NAME_E1H;
11164 	else if (!CHIP_IS_E1x(bp))
11165 		fw_file_name = FW_FILE_NAME_E2;
11166 	else {
11167 		BNX2X_ERR("Unsupported chip revision\n");
11168 		return -EINVAL;
11169 	}
11170 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
11171 
11172 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
11173 	if (rc) {
11174 		BNX2X_ERR("Can't load firmware file %s\n",
11175 			  fw_file_name);
11176 		goto request_firmware_exit;
11177 	}
11178 
11179 	rc = bnx2x_check_firmware(bp);
11180 	if (rc) {
11181 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
11182 		goto request_firmware_exit;
11183 	}
11184 
11185 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
11186 
11187 	/* Initialize the pointers to the init arrays */
11188 	/* Blob */
11189 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
11190 
11191 	/* Opcodes */
11192 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
11193 
11194 	/* Offsets */
11195 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
11196 			    be16_to_cpu_n);
11197 
11198 	/* STORMs firmware */
11199 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11200 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
11201 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
11202 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
11203 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11204 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
11205 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
11206 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
11207 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11208 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
11209 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
11210 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
11211 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11212 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
11213 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
11214 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
11215 	/* IRO */
11216 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
11217 
11218 	return 0;
11219 
11220 iro_alloc_err:
11221 	kfree(bp->init_ops_offsets);
11222 init_offsets_alloc_err:
11223 	kfree(bp->init_ops);
11224 init_ops_alloc_err:
11225 	kfree(bp->init_data);
11226 request_firmware_exit:
11227 	release_firmware(bp->firmware);
11228 	bp->firmware = NULL;
11229 
11230 	return rc;
11231 }
11232 
11233 static void bnx2x_release_firmware(struct bnx2x *bp)
11234 {
11235 	kfree(bp->init_ops_offsets);
11236 	kfree(bp->init_ops);
11237 	kfree(bp->init_data);
11238 	release_firmware(bp->firmware);
11239 	bp->firmware = NULL;
11240 }
11241 
11242 
11243 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
11244 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
11245 	.init_hw_cmn      = bnx2x_init_hw_common,
11246 	.init_hw_port     = bnx2x_init_hw_port,
11247 	.init_hw_func     = bnx2x_init_hw_func,
11248 
11249 	.reset_hw_cmn     = bnx2x_reset_common,
11250 	.reset_hw_port    = bnx2x_reset_port,
11251 	.reset_hw_func    = bnx2x_reset_func,
11252 
11253 	.gunzip_init      = bnx2x_gunzip_init,
11254 	.gunzip_end       = bnx2x_gunzip_end,
11255 
11256 	.init_fw          = bnx2x_init_firmware,
11257 	.release_fw       = bnx2x_release_firmware,
11258 };
11259 
11260 void bnx2x__init_func_obj(struct bnx2x *bp)
11261 {
11262 	/* Prepare DMAE related driver resources */
11263 	bnx2x_setup_dmae(bp);
11264 
11265 	bnx2x_init_func_obj(bp, &bp->func_obj,
11266 			    bnx2x_sp(bp, func_rdata),
11267 			    bnx2x_sp_mapping(bp, func_rdata),
11268 			    &bnx2x_func_sp_drv);
11269 }
11270 
11271 /* must be called after sriov-enable */
11272 static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
11273 {
11274 	int cid_count = BNX2X_L2_CID_COUNT(bp);
11275 
11276 #ifdef BCM_CNIC
11277 	cid_count += CNIC_CID_MAX;
11278 #endif
11279 	return roundup(cid_count, QM_CID_ROUND);
11280 }
11281 
11282 /**
11283  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
11284  *
11285  * @dev:	pci device
11286  *
11287  */
11288 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
11289 {
11290 	int pos;
11291 	u16 control;
11292 
11293 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
11294 
11295 	/*
11296 	 * If MSI-X is not supported - return number of SBs needed to support
11297 	 * one fast path queue: one FP queue + SB for CNIC
11298 	 */
11299 	if (!pos)
11300 		return 1 + CNIC_PRESENT;
11301 
11302 	/*
11303 	 * The value in the PCI configuration space is the index of the last
11304 	 * entry, namely one less than the actual size of the table, which is
11305 	 * exactly what we want to return from this function: number of all SBs
11306 	 * without the default SB.
11307 	 */
11308 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
11309 	return control & PCI_MSIX_FLAGS_QSIZE;
11310 }
11311 
11312 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11313 				    const struct pci_device_id *ent)
11314 {
11315 	struct net_device *dev = NULL;
11316 	struct bnx2x *bp;
11317 	int pcie_width, pcie_speed;
11318 	int rc, max_non_def_sbs;
11319 	int rx_count, tx_count, rss_count;
11320 	/*
11321 	 * An estimated maximum supported CoS number according to the chip
11322 	 * version.
11323 	 * We will try to roughly estimate the maximum number of CoSes this chip
11324 	 * may support in order to minimize the memory allocated for Tx
11325 	 * netdev_queue's. This number will be accurately calculated during the
11326 	 * initialization of bp->max_cos based on the chip versions AND chip
11327 	 * revision in the bnx2x_init_bp().
11328 	 */
11329 	u8 max_cos_est = 0;
11330 
11331 	switch (ent->driver_data) {
11332 	case BCM57710:
11333 	case BCM57711:
11334 	case BCM57711E:
11335 		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11336 		break;
11337 
11338 	case BCM57712:
11339 	case BCM57712_MF:
11340 		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11341 		break;
11342 
11343 	case BCM57800:
11344 	case BCM57800_MF:
11345 	case BCM57810:
11346 	case BCM57810_MF:
11347 	case BCM57840:
11348 	case BCM57840_MF:
11349 		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11350 		break;
11351 
11352 	default:
11353 		pr_err("Unknown board_type (%ld), aborting\n",
11354 			   ent->driver_data);
11355 		return -ENODEV;
11356 	}
11357 
11358 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11359 
11360 	/* !!! FIXME !!!
11361 	 * Do not allow the maximum SB count to grow above 16
11362 	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11363 	 * We will use the FP_SB_MAX_E1x macro for this matter.
11364 	 */
11365 	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11366 
11367 	WARN_ON(!max_non_def_sbs);
11368 
11369 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
11370 	rss_count = max_non_def_sbs - CNIC_PRESENT;
11371 
11372 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11373 	rx_count = rss_count + FCOE_PRESENT;
11374 
11375 	/*
11376 	 * Maximum number of netdev Tx queues:
11377 	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
11378 	 */
11379 	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11380 
11381 	/* dev zeroed in init_etherdev */
11382 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11383 	if (!dev)
11384 		return -ENOMEM;
11385 
11386 	bp = netdev_priv(dev);
11387 
11388 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
11389 			  tx_count, rx_count);
11390 
11391 	bp->igu_sb_cnt = max_non_def_sbs;
11392 	bp->msg_enable = debug;
11393 	pci_set_drvdata(pdev, dev);
11394 
11395 	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11396 	if (rc < 0) {
11397 		free_netdev(dev);
11398 		return rc;
11399 	}
11400 
11401 	BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs);
11402 
11403 	rc = bnx2x_init_bp(bp);
11404 	if (rc)
11405 		goto init_one_exit;
11406 
11407 	/*
11408 	 * Map doorbels here as we need the real value of bp->max_cos which
11409 	 * is initialized in bnx2x_init_bp().
11410 	 */
11411 	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11412 					min_t(u64, BNX2X_DB_SIZE(bp),
11413 					      pci_resource_len(pdev, 2)));
11414 	if (!bp->doorbells) {
11415 		dev_err(&bp->pdev->dev,
11416 			"Cannot map doorbell space, aborting\n");
11417 		rc = -ENOMEM;
11418 		goto init_one_exit;
11419 	}
11420 
11421 	/* calc qm_cid_count */
11422 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11423 
11424 #ifdef BCM_CNIC
11425 	/* disable FCOE L2 queue for E1x */
11426 	if (CHIP_IS_E1x(bp))
11427 		bp->flags |= NO_FCOE_FLAG;
11428 
11429 #endif
11430 
11431 	/* Configure interrupt mode: try to enable MSI-X/MSI if
11432 	 * needed, set bp->num_queues appropriately.
11433 	 */
11434 	bnx2x_set_int_mode(bp);
11435 
11436 	/* Add all NAPI objects */
11437 	bnx2x_add_all_napi(bp);
11438 
11439 	rc = register_netdev(dev);
11440 	if (rc) {
11441 		dev_err(&pdev->dev, "Cannot register net device\n");
11442 		goto init_one_exit;
11443 	}
11444 
11445 #ifdef BCM_CNIC
11446 	if (!NO_FCOE(bp)) {
11447 		/* Add storage MAC address */
11448 		rtnl_lock();
11449 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11450 		rtnl_unlock();
11451 	}
11452 #endif
11453 
11454 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11455 
11456 	BNX2X_DEV_INFO(
11457 		"%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11458 		    board_info[ent->driver_data].name,
11459 		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11460 		    pcie_width,
11461 		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11462 		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11463 		    "5GHz (Gen2)" : "2.5GHz",
11464 		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
11465 
11466 	return 0;
11467 
11468 init_one_exit:
11469 	if (bp->regview)
11470 		iounmap(bp->regview);
11471 
11472 	if (bp->doorbells)
11473 		iounmap(bp->doorbells);
11474 
11475 	free_netdev(dev);
11476 
11477 	if (atomic_read(&pdev->enable_cnt) == 1)
11478 		pci_release_regions(pdev);
11479 
11480 	pci_disable_device(pdev);
11481 	pci_set_drvdata(pdev, NULL);
11482 
11483 	return rc;
11484 }
11485 
11486 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11487 {
11488 	struct net_device *dev = pci_get_drvdata(pdev);
11489 	struct bnx2x *bp;
11490 
11491 	if (!dev) {
11492 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11493 		return;
11494 	}
11495 	bp = netdev_priv(dev);
11496 
11497 #ifdef BCM_CNIC
11498 	/* Delete storage MAC address */
11499 	if (!NO_FCOE(bp)) {
11500 		rtnl_lock();
11501 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11502 		rtnl_unlock();
11503 	}
11504 #endif
11505 
11506 #ifdef BCM_DCBNL
11507 	/* Delete app tlvs from dcbnl */
11508 	bnx2x_dcbnl_update_applist(bp, true);
11509 #endif
11510 
11511 	unregister_netdev(dev);
11512 
11513 	/* Delete all NAPI objects */
11514 	bnx2x_del_all_napi(bp);
11515 
11516 	/* Power on: we can't let PCI layer write to us while we are in D3 */
11517 	bnx2x_set_power_state(bp, PCI_D0);
11518 
11519 	/* Disable MSI/MSI-X */
11520 	bnx2x_disable_msi(bp);
11521 
11522 	/* Power off */
11523 	bnx2x_set_power_state(bp, PCI_D3hot);
11524 
11525 	/* Make sure RESET task is not scheduled before continuing */
11526 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
11527 
11528 	if (bp->regview)
11529 		iounmap(bp->regview);
11530 
11531 	if (bp->doorbells)
11532 		iounmap(bp->doorbells);
11533 
11534 	bnx2x_release_firmware(bp);
11535 
11536 	bnx2x_free_mem_bp(bp);
11537 
11538 	free_netdev(dev);
11539 
11540 	if (atomic_read(&pdev->enable_cnt) == 1)
11541 		pci_release_regions(pdev);
11542 
11543 	pci_disable_device(pdev);
11544 	pci_set_drvdata(pdev, NULL);
11545 }
11546 
11547 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11548 {
11549 	int i;
11550 
11551 	bp->state = BNX2X_STATE_ERROR;
11552 
11553 	bp->rx_mode = BNX2X_RX_MODE_NONE;
11554 
11555 #ifdef BCM_CNIC
11556 	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11557 #endif
11558 	/* Stop Tx */
11559 	bnx2x_tx_disable(bp);
11560 
11561 	bnx2x_netif_stop(bp, 0);
11562 
11563 	del_timer_sync(&bp->timer);
11564 
11565 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11566 
11567 	/* Release IRQs */
11568 	bnx2x_free_irq(bp);
11569 
11570 	/* Free SKBs, SGEs, TPA pool and driver internals */
11571 	bnx2x_free_skbs(bp);
11572 
11573 	for_each_rx_queue(bp, i)
11574 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11575 
11576 	bnx2x_free_mem(bp);
11577 
11578 	bp->state = BNX2X_STATE_CLOSED;
11579 
11580 	netif_carrier_off(bp->dev);
11581 
11582 	return 0;
11583 }
11584 
11585 static void bnx2x_eeh_recover(struct bnx2x *bp)
11586 {
11587 	u32 val;
11588 
11589 	mutex_init(&bp->port.phy_mutex);
11590 
11591 
11592 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11593 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11594 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11595 		BNX2X_ERR("BAD MCP validity signature\n");
11596 }
11597 
11598 /**
11599  * bnx2x_io_error_detected - called when PCI error is detected
11600  * @pdev: Pointer to PCI device
11601  * @state: The current pci connection state
11602  *
11603  * This function is called after a PCI bus error affecting
11604  * this device has been detected.
11605  */
11606 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11607 						pci_channel_state_t state)
11608 {
11609 	struct net_device *dev = pci_get_drvdata(pdev);
11610 	struct bnx2x *bp = netdev_priv(dev);
11611 
11612 	rtnl_lock();
11613 
11614 	netif_device_detach(dev);
11615 
11616 	if (state == pci_channel_io_perm_failure) {
11617 		rtnl_unlock();
11618 		return PCI_ERS_RESULT_DISCONNECT;
11619 	}
11620 
11621 	if (netif_running(dev))
11622 		bnx2x_eeh_nic_unload(bp);
11623 
11624 	pci_disable_device(pdev);
11625 
11626 	rtnl_unlock();
11627 
11628 	/* Request a slot reset */
11629 	return PCI_ERS_RESULT_NEED_RESET;
11630 }
11631 
11632 /**
11633  * bnx2x_io_slot_reset - called after the PCI bus has been reset
11634  * @pdev: Pointer to PCI device
11635  *
11636  * Restart the card from scratch, as if from a cold-boot.
11637  */
11638 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11639 {
11640 	struct net_device *dev = pci_get_drvdata(pdev);
11641 	struct bnx2x *bp = netdev_priv(dev);
11642 
11643 	rtnl_lock();
11644 
11645 	if (pci_enable_device(pdev)) {
11646 		dev_err(&pdev->dev,
11647 			"Cannot re-enable PCI device after reset\n");
11648 		rtnl_unlock();
11649 		return PCI_ERS_RESULT_DISCONNECT;
11650 	}
11651 
11652 	pci_set_master(pdev);
11653 	pci_restore_state(pdev);
11654 
11655 	if (netif_running(dev))
11656 		bnx2x_set_power_state(bp, PCI_D0);
11657 
11658 	rtnl_unlock();
11659 
11660 	return PCI_ERS_RESULT_RECOVERED;
11661 }
11662 
11663 /**
11664  * bnx2x_io_resume - called when traffic can start flowing again
11665  * @pdev: Pointer to PCI device
11666  *
11667  * This callback is called when the error recovery driver tells us that
11668  * its OK to resume normal operation.
11669  */
11670 static void bnx2x_io_resume(struct pci_dev *pdev)
11671 {
11672 	struct net_device *dev = pci_get_drvdata(pdev);
11673 	struct bnx2x *bp = netdev_priv(dev);
11674 
11675 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11676 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
11677 		return;
11678 	}
11679 
11680 	rtnl_lock();
11681 
11682 	bnx2x_eeh_recover(bp);
11683 
11684 	if (netif_running(dev))
11685 		bnx2x_nic_load(bp, LOAD_NORMAL);
11686 
11687 	netif_device_attach(dev);
11688 
11689 	rtnl_unlock();
11690 }
11691 
11692 static struct pci_error_handlers bnx2x_err_handler = {
11693 	.error_detected = bnx2x_io_error_detected,
11694 	.slot_reset     = bnx2x_io_slot_reset,
11695 	.resume         = bnx2x_io_resume,
11696 };
11697 
11698 static struct pci_driver bnx2x_pci_driver = {
11699 	.name        = DRV_MODULE_NAME,
11700 	.id_table    = bnx2x_pci_tbl,
11701 	.probe       = bnx2x_init_one,
11702 	.remove      = __devexit_p(bnx2x_remove_one),
11703 	.suspend     = bnx2x_suspend,
11704 	.resume      = bnx2x_resume,
11705 	.err_handler = &bnx2x_err_handler,
11706 };
11707 
11708 static int __init bnx2x_init(void)
11709 {
11710 	int ret;
11711 
11712 	pr_info("%s", version);
11713 
11714 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
11715 	if (bnx2x_wq == NULL) {
11716 		pr_err("Cannot create workqueue\n");
11717 		return -ENOMEM;
11718 	}
11719 
11720 	ret = pci_register_driver(&bnx2x_pci_driver);
11721 	if (ret) {
11722 		pr_err("Cannot register driver\n");
11723 		destroy_workqueue(bnx2x_wq);
11724 	}
11725 	return ret;
11726 }
11727 
11728 static void __exit bnx2x_cleanup(void)
11729 {
11730 	struct list_head *pos, *q;
11731 	pci_unregister_driver(&bnx2x_pci_driver);
11732 
11733 	destroy_workqueue(bnx2x_wq);
11734 
11735 	/* Free globablly allocated resources */
11736 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
11737 		struct bnx2x_prev_path_list *tmp =
11738 			list_entry(pos, struct bnx2x_prev_path_list, list);
11739 		list_del(pos);
11740 		kfree(tmp);
11741 	}
11742 }
11743 
11744 void bnx2x_notify_link_changed(struct bnx2x *bp)
11745 {
11746 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11747 }
11748 
11749 module_init(bnx2x_init);
11750 module_exit(bnx2x_cleanup);
11751 
11752 #ifdef BCM_CNIC
11753 /**
11754  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11755  *
11756  * @bp:		driver handle
11757  * @set:	set or clear the CAM entry
11758  *
11759  * This function will wait until the ramdord completion returns.
11760  * Return 0 if success, -ENODEV if ramrod doesn't return.
11761  */
11762 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11763 {
11764 	unsigned long ramrod_flags = 0;
11765 
11766 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11767 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11768 				 &bp->iscsi_l2_mac_obj, true,
11769 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11770 }
11771 
11772 /* count denotes the number of new completions we have seen */
11773 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11774 {
11775 	struct eth_spe *spe;
11776 
11777 #ifdef BNX2X_STOP_ON_ERROR
11778 	if (unlikely(bp->panic))
11779 		return;
11780 #endif
11781 
11782 	spin_lock_bh(&bp->spq_lock);
11783 	BUG_ON(bp->cnic_spq_pending < count);
11784 	bp->cnic_spq_pending -= count;
11785 
11786 
11787 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11788 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11789 				& SPE_HDR_CONN_TYPE) >>
11790 				SPE_HDR_CONN_TYPE_SHIFT;
11791 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11792 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11793 
11794 		/* Set validation for iSCSI L2 client before sending SETUP
11795 		 *  ramrod
11796 		 */
11797 		if (type == ETH_CONNECTION_TYPE) {
11798 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11799 				bnx2x_set_ctx_validation(bp, &bp->context.
11800 					vcxt[BNX2X_ISCSI_ETH_CID].eth,
11801 					BNX2X_ISCSI_ETH_CID);
11802 		}
11803 
11804 		/*
11805 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
11806 		 * and in the air. We also check that number of outstanding
11807 		 * COMMON ramrods is not more than the EQ and SPQ can
11808 		 * accommodate.
11809 		 */
11810 		if (type == ETH_CONNECTION_TYPE) {
11811 			if (!atomic_read(&bp->cq_spq_left))
11812 				break;
11813 			else
11814 				atomic_dec(&bp->cq_spq_left);
11815 		} else if (type == NONE_CONNECTION_TYPE) {
11816 			if (!atomic_read(&bp->eq_spq_left))
11817 				break;
11818 			else
11819 				atomic_dec(&bp->eq_spq_left);
11820 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
11821 			   (type == FCOE_CONNECTION_TYPE)) {
11822 			if (bp->cnic_spq_pending >=
11823 			    bp->cnic_eth_dev.max_kwqe_pending)
11824 				break;
11825 			else
11826 				bp->cnic_spq_pending++;
11827 		} else {
11828 			BNX2X_ERR("Unknown SPE type: %d\n", type);
11829 			bnx2x_panic();
11830 			break;
11831 		}
11832 
11833 		spe = bnx2x_sp_get_next(bp);
11834 		*spe = *bp->cnic_kwq_cons;
11835 
11836 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
11837 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11838 
11839 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11840 			bp->cnic_kwq_cons = bp->cnic_kwq;
11841 		else
11842 			bp->cnic_kwq_cons++;
11843 	}
11844 	bnx2x_sp_prod_update(bp);
11845 	spin_unlock_bh(&bp->spq_lock);
11846 }
11847 
11848 static int bnx2x_cnic_sp_queue(struct net_device *dev,
11849 			       struct kwqe_16 *kwqes[], u32 count)
11850 {
11851 	struct bnx2x *bp = netdev_priv(dev);
11852 	int i;
11853 
11854 #ifdef BNX2X_STOP_ON_ERROR
11855 	if (unlikely(bp->panic)) {
11856 		BNX2X_ERR("Can't post to SP queue while panic\n");
11857 		return -EIO;
11858 	}
11859 #endif
11860 
11861 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
11862 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
11863 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
11864 		return -EAGAIN;
11865 	}
11866 
11867 	spin_lock_bh(&bp->spq_lock);
11868 
11869 	for (i = 0; i < count; i++) {
11870 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11871 
11872 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11873 			break;
11874 
11875 		*bp->cnic_kwq_prod = *spe;
11876 
11877 		bp->cnic_kwq_pending++;
11878 
11879 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
11880 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
11881 		   spe->data.update_data_addr.hi,
11882 		   spe->data.update_data_addr.lo,
11883 		   bp->cnic_kwq_pending);
11884 
11885 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11886 			bp->cnic_kwq_prod = bp->cnic_kwq;
11887 		else
11888 			bp->cnic_kwq_prod++;
11889 	}
11890 
11891 	spin_unlock_bh(&bp->spq_lock);
11892 
11893 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11894 		bnx2x_cnic_sp_post(bp, 0);
11895 
11896 	return i;
11897 }
11898 
11899 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11900 {
11901 	struct cnic_ops *c_ops;
11902 	int rc = 0;
11903 
11904 	mutex_lock(&bp->cnic_mutex);
11905 	c_ops = rcu_dereference_protected(bp->cnic_ops,
11906 					  lockdep_is_held(&bp->cnic_mutex));
11907 	if (c_ops)
11908 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11909 	mutex_unlock(&bp->cnic_mutex);
11910 
11911 	return rc;
11912 }
11913 
11914 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11915 {
11916 	struct cnic_ops *c_ops;
11917 	int rc = 0;
11918 
11919 	rcu_read_lock();
11920 	c_ops = rcu_dereference(bp->cnic_ops);
11921 	if (c_ops)
11922 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11923 	rcu_read_unlock();
11924 
11925 	return rc;
11926 }
11927 
11928 /*
11929  * for commands that have no data
11930  */
11931 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11932 {
11933 	struct cnic_ctl_info ctl = {0};
11934 
11935 	ctl.cmd = cmd;
11936 
11937 	return bnx2x_cnic_ctl_send(bp, &ctl);
11938 }
11939 
11940 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11941 {
11942 	struct cnic_ctl_info ctl = {0};
11943 
11944 	/* first we tell CNIC and only then we count this as a completion */
11945 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11946 	ctl.data.comp.cid = cid;
11947 	ctl.data.comp.error = err;
11948 
11949 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
11950 	bnx2x_cnic_sp_post(bp, 0);
11951 }
11952 
11953 
11954 /* Called with netif_addr_lock_bh() taken.
11955  * Sets an rx_mode config for an iSCSI ETH client.
11956  * Doesn't block.
11957  * Completion should be checked outside.
11958  */
11959 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11960 {
11961 	unsigned long accept_flags = 0, ramrod_flags = 0;
11962 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11963 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11964 
11965 	if (start) {
11966 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
11967 		 * because it's the only way for UIO Queue to accept
11968 		 * multicasts (in non-promiscuous mode only one Queue per
11969 		 * function will receive multicast packets (leading in our
11970 		 * case).
11971 		 */
11972 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11973 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11974 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11975 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11976 
11977 		/* Clear STOP_PENDING bit if START is requested */
11978 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11979 
11980 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11981 	} else
11982 		/* Clear START_PENDING bit if STOP is requested */
11983 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11984 
11985 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11986 		set_bit(sched_state, &bp->sp_state);
11987 	else {
11988 		__set_bit(RAMROD_RX, &ramrod_flags);
11989 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11990 				    ramrod_flags);
11991 	}
11992 }
11993 
11994 
11995 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11996 {
11997 	struct bnx2x *bp = netdev_priv(dev);
11998 	int rc = 0;
11999 
12000 	switch (ctl->cmd) {
12001 	case DRV_CTL_CTXTBL_WR_CMD: {
12002 		u32 index = ctl->data.io.offset;
12003 		dma_addr_t addr = ctl->data.io.dma_addr;
12004 
12005 		bnx2x_ilt_wr(bp, index, addr);
12006 		break;
12007 	}
12008 
12009 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
12010 		int count = ctl->data.credit.credit_count;
12011 
12012 		bnx2x_cnic_sp_post(bp, count);
12013 		break;
12014 	}
12015 
12016 	/* rtnl_lock is held.  */
12017 	case DRV_CTL_START_L2_CMD: {
12018 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12019 		unsigned long sp_bits = 0;
12020 
12021 		/* Configure the iSCSI classification object */
12022 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
12023 				   cp->iscsi_l2_client_id,
12024 				   cp->iscsi_l2_cid, BP_FUNC(bp),
12025 				   bnx2x_sp(bp, mac_rdata),
12026 				   bnx2x_sp_mapping(bp, mac_rdata),
12027 				   BNX2X_FILTER_MAC_PENDING,
12028 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
12029 				   &bp->macs_pool);
12030 
12031 		/* Set iSCSI MAC address */
12032 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
12033 		if (rc)
12034 			break;
12035 
12036 		mmiowb();
12037 		barrier();
12038 
12039 		/* Start accepting on iSCSI L2 ring */
12040 
12041 		netif_addr_lock_bh(dev);
12042 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
12043 		netif_addr_unlock_bh(dev);
12044 
12045 		/* bits to wait on */
12046 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12047 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
12048 
12049 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
12050 			BNX2X_ERR("rx_mode completion timed out!\n");
12051 
12052 		break;
12053 	}
12054 
12055 	/* rtnl_lock is held.  */
12056 	case DRV_CTL_STOP_L2_CMD: {
12057 		unsigned long sp_bits = 0;
12058 
12059 		/* Stop accepting on iSCSI L2 ring */
12060 		netif_addr_lock_bh(dev);
12061 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
12062 		netif_addr_unlock_bh(dev);
12063 
12064 		/* bits to wait on */
12065 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12066 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
12067 
12068 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
12069 			BNX2X_ERR("rx_mode completion timed out!\n");
12070 
12071 		mmiowb();
12072 		barrier();
12073 
12074 		/* Unset iSCSI L2 MAC */
12075 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
12076 					BNX2X_ISCSI_ETH_MAC, true);
12077 		break;
12078 	}
12079 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
12080 		int count = ctl->data.credit.credit_count;
12081 
12082 		smp_mb__before_atomic_inc();
12083 		atomic_add(count, &bp->cq_spq_left);
12084 		smp_mb__after_atomic_inc();
12085 		break;
12086 	}
12087 	case DRV_CTL_ULP_REGISTER_CMD: {
12088 		int ulp_type = ctl->data.ulp_type;
12089 
12090 		if (CHIP_IS_E3(bp)) {
12091 			int idx = BP_FW_MB_IDX(bp);
12092 			u32 cap;
12093 
12094 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12095 			if (ulp_type == CNIC_ULP_ISCSI)
12096 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12097 			else if (ulp_type == CNIC_ULP_FCOE)
12098 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12099 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12100 		}
12101 		break;
12102 	}
12103 	case DRV_CTL_ULP_UNREGISTER_CMD: {
12104 		int ulp_type = ctl->data.ulp_type;
12105 
12106 		if (CHIP_IS_E3(bp)) {
12107 			int idx = BP_FW_MB_IDX(bp);
12108 			u32 cap;
12109 
12110 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12111 			if (ulp_type == CNIC_ULP_ISCSI)
12112 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12113 			else if (ulp_type == CNIC_ULP_FCOE)
12114 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12115 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12116 		}
12117 		break;
12118 	}
12119 
12120 	default:
12121 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
12122 		rc = -EINVAL;
12123 	}
12124 
12125 	return rc;
12126 }
12127 
12128 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
12129 {
12130 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12131 
12132 	if (bp->flags & USING_MSIX_FLAG) {
12133 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
12134 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
12135 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
12136 	} else {
12137 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
12138 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
12139 	}
12140 	if (!CHIP_IS_E1x(bp))
12141 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
12142 	else
12143 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
12144 
12145 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
12146 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
12147 	cp->irq_arr[1].status_blk = bp->def_status_blk;
12148 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
12149 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
12150 
12151 	cp->num_irq = 2;
12152 }
12153 
12154 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
12155 			       void *data)
12156 {
12157 	struct bnx2x *bp = netdev_priv(dev);
12158 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12159 
12160 	if (ops == NULL) {
12161 		BNX2X_ERR("NULL ops received\n");
12162 		return -EINVAL;
12163 	}
12164 
12165 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
12166 	if (!bp->cnic_kwq)
12167 		return -ENOMEM;
12168 
12169 	bp->cnic_kwq_cons = bp->cnic_kwq;
12170 	bp->cnic_kwq_prod = bp->cnic_kwq;
12171 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
12172 
12173 	bp->cnic_spq_pending = 0;
12174 	bp->cnic_kwq_pending = 0;
12175 
12176 	bp->cnic_data = data;
12177 
12178 	cp->num_irq = 0;
12179 	cp->drv_state |= CNIC_DRV_STATE_REGD;
12180 	cp->iro_arr = bp->iro_arr;
12181 
12182 	bnx2x_setup_cnic_irq_info(bp);
12183 
12184 	rcu_assign_pointer(bp->cnic_ops, ops);
12185 
12186 	return 0;
12187 }
12188 
12189 static int bnx2x_unregister_cnic(struct net_device *dev)
12190 {
12191 	struct bnx2x *bp = netdev_priv(dev);
12192 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12193 
12194 	mutex_lock(&bp->cnic_mutex);
12195 	cp->drv_state = 0;
12196 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
12197 	mutex_unlock(&bp->cnic_mutex);
12198 	synchronize_rcu();
12199 	kfree(bp->cnic_kwq);
12200 	bp->cnic_kwq = NULL;
12201 
12202 	return 0;
12203 }
12204 
12205 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
12206 {
12207 	struct bnx2x *bp = netdev_priv(dev);
12208 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12209 
12210 	/* If both iSCSI and FCoE are disabled - return NULL in
12211 	 * order to indicate CNIC that it should not try to work
12212 	 * with this device.
12213 	 */
12214 	if (NO_ISCSI(bp) && NO_FCOE(bp))
12215 		return NULL;
12216 
12217 	cp->drv_owner = THIS_MODULE;
12218 	cp->chip_id = CHIP_ID(bp);
12219 	cp->pdev = bp->pdev;
12220 	cp->io_base = bp->regview;
12221 	cp->io_base2 = bp->doorbells;
12222 	cp->max_kwqe_pending = 8;
12223 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
12224 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12225 			     bnx2x_cid_ilt_lines(bp);
12226 	cp->ctx_tbl_len = CNIC_ILT_LINES;
12227 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12228 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
12229 	cp->drv_ctl = bnx2x_drv_ctl;
12230 	cp->drv_register_cnic = bnx2x_register_cnic;
12231 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
12232 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
12233 	cp->iscsi_l2_client_id =
12234 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12235 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
12236 
12237 	if (NO_ISCSI_OOO(bp))
12238 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12239 
12240 	if (NO_ISCSI(bp))
12241 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
12242 
12243 	if (NO_FCOE(bp))
12244 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
12245 
12246 	BNX2X_DEV_INFO(
12247 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
12248 	   cp->ctx_blk_size,
12249 	   cp->ctx_tbl_offset,
12250 	   cp->ctx_tbl_len,
12251 	   cp->starting_cid);
12252 	return cp;
12253 }
12254 EXPORT_SYMBOL(bnx2x_cnic_probe);
12255 
12256 #endif /* BCM_CNIC */
12257 
12258