1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65 
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION					\
70 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
72 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
73 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77 
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT		(5*HZ)
80 
81 static char version[] =
82 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87 		   "BCM57710/57711/57711E/"
88 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89 		   "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95 
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99 		 " Set number of queues (default is as a number of CPUs)");
100 
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104 
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108 				"(1 INT#x; 2 MSI)");
109 
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113 
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117 
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121 
122 struct workqueue_struct *bnx2x_wq;
123 
124 struct bnx2x_mac_vals {
125 	u32 xmac_addr;
126 	u32 xmac_val;
127 	u32 emac_addr;
128 	u32 emac_val;
129 	u32 umac_addr;
130 	u32 umac_val;
131 	u32 bmac_addr;
132 	u32 bmac_val[2];
133 };
134 
135 enum bnx2x_board_type {
136 	BCM57710 = 0,
137 	BCM57711,
138 	BCM57711E,
139 	BCM57712,
140 	BCM57712_MF,
141 	BCM57712_VF,
142 	BCM57800,
143 	BCM57800_MF,
144 	BCM57800_VF,
145 	BCM57810,
146 	BCM57810_MF,
147 	BCM57810_VF,
148 	BCM57840_4_10,
149 	BCM57840_2_20,
150 	BCM57840_MF,
151 	BCM57840_VF,
152 	BCM57811,
153 	BCM57811_MF,
154 	BCM57840_O,
155 	BCM57840_MFO,
156 	BCM57811_VF
157 };
158 
159 /* indexed by board_type, above */
160 static struct {
161 	char *name;
162 } board_info[] = {
163 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185 
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
248 #endif
249 
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272 	{ 0 }
273 };
274 
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276 
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284 
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286 				       u32 addr, dma_addr_t mapping)
287 {
288 	REG_WR(bp,  addr, U64_LO(mapping));
289 	REG_WR(bp,  addr + 4, U64_HI(mapping));
290 }
291 
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293 				  dma_addr_t mapping, u16 abs_fid)
294 {
295 	u32 addr = XSEM_REG_FAST_MEMORY +
296 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297 
298 	__storm_memset_dma_mapping(bp, addr, mapping);
299 }
300 
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302 				  u16 pf_id)
303 {
304 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305 		pf_id);
306 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307 		pf_id);
308 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309 		pf_id);
310 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311 		pf_id);
312 }
313 
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315 				 u8 enable)
316 {
317 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318 		enable);
319 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320 		enable);
321 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322 		enable);
323 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324 		enable);
325 }
326 
327 static void storm_memset_eq_data(struct bnx2x *bp,
328 				 struct event_ring_data *eq_data,
329 				u16 pfid)
330 {
331 	size_t size = sizeof(struct event_ring_data);
332 
333 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334 
335 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337 
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339 				 u16 pfid)
340 {
341 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342 	REG_WR16(bp, addr, eq_prod);
343 }
344 
345 /* used only at init
346  * locking is done by mcp
347  */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353 			       PCICFG_VENDOR_ID_OFFSET);
354 }
355 
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358 	u32 val;
359 
360 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363 			       PCICFG_VENDOR_ID_OFFSET);
364 
365 	return val;
366 }
367 
368 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE	"dst_addr [none]"
373 
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375 			  struct dmae_command *dmae, int msglvl)
376 {
377 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378 	int i;
379 
380 	switch (dmae->opcode & DMAE_COMMAND_DST) {
381 	case DMAE_CMD_DST_PCI:
382 		if (src_type == DMAE_CMD_SRC_PCI)
383 			DP(msglvl, "DMAE: opcode 0x%08x\n"
384 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
386 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
389 			   dmae->comp_val);
390 		else
391 			DP(msglvl, "DMAE: opcode 0x%08x\n"
392 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
393 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
394 			   dmae->opcode, dmae->src_addr_lo >> 2,
395 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
397 			   dmae->comp_val);
398 		break;
399 	case DMAE_CMD_DST_GRC:
400 		if (src_type == DMAE_CMD_SRC_PCI)
401 			DP(msglvl, "DMAE: opcode 0x%08x\n"
402 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
404 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405 			   dmae->len, dmae->dst_addr_lo >> 2,
406 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
407 			   dmae->comp_val);
408 		else
409 			DP(msglvl, "DMAE: opcode 0x%08x\n"
410 			   "src [%08x], len [%d*4], dst [%08x]\n"
411 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
412 			   dmae->opcode, dmae->src_addr_lo >> 2,
413 			   dmae->len, dmae->dst_addr_lo >> 2,
414 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
415 			   dmae->comp_val);
416 		break;
417 	default:
418 		if (src_type == DMAE_CMD_SRC_PCI)
419 			DP(msglvl, "DMAE: opcode 0x%08x\n"
420 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
421 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
422 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424 			   dmae->comp_val);
425 		else
426 			DP(msglvl, "DMAE: opcode 0x%08x\n"
427 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
428 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429 			   dmae->opcode, dmae->src_addr_lo >> 2,
430 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431 			   dmae->comp_val);
432 		break;
433 	}
434 
435 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437 		   i, *(((u32 *)dmae) + i));
438 }
439 
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443 	u32 cmd_offset;
444 	int i;
445 
446 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449 	}
450 	REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452 
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456 			   DMAE_CMD_C_ENABLE);
457 }
458 
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461 	return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463 
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465 			     bool with_comp, u8 comp_type)
466 {
467 	u32 opcode = 0;
468 
469 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
471 
472 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473 
474 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478 
479 #ifdef __BIG_ENDIAN
480 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484 	if (with_comp)
485 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486 	return opcode;
487 }
488 
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490 				      struct dmae_command *dmae,
491 				      u8 src_type, u8 dst_type)
492 {
493 	memset(dmae, 0, sizeof(struct dmae_command));
494 
495 	/* set the opcode */
496 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497 					 true, DMAE_COMP_PCI);
498 
499 	/* fill in the completion parameters */
500 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502 	dmae->comp_val = DMAE_COMP_VAL;
503 }
504 
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
507 {
508 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
509 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510 	int rc = 0;
511 
512 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513 
514 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
515 	 * as long as this code is called both from syscall context and
516 	 * from ndo_set_rx_mode() flow that may be called from BH.
517 	 */
518 	spin_lock_bh(&bp->dmae_lock);
519 
520 	/* reset completion */
521 	*wb_comp = 0;
522 
523 	/* post the command on the channel used for initializations */
524 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525 
526 	/* wait for completion */
527 	udelay(5);
528 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529 
530 		if (!cnt ||
531 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533 			BNX2X_ERR("DMAE timeout!\n");
534 			rc = DMAE_TIMEOUT;
535 			goto unlock;
536 		}
537 		cnt--;
538 		udelay(50);
539 	}
540 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
541 		BNX2X_ERR("DMAE PCI error!\n");
542 		rc = DMAE_PCI_ERROR;
543 	}
544 
545 unlock:
546 	spin_unlock_bh(&bp->dmae_lock);
547 	return rc;
548 }
549 
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551 		      u32 len32)
552 {
553 	int rc;
554 	struct dmae_command dmae;
555 
556 	if (!bp->dmae_ready) {
557 		u32 *data = bnx2x_sp(bp, wb_data[0]);
558 
559 		if (CHIP_IS_E1(bp))
560 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561 		else
562 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
563 		return;
564 	}
565 
566 	/* set opcode and fixed command fields */
567 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568 
569 	/* fill in addresses and len */
570 	dmae.src_addr_lo = U64_LO(dma_addr);
571 	dmae.src_addr_hi = U64_HI(dma_addr);
572 	dmae.dst_addr_lo = dst_addr >> 2;
573 	dmae.dst_addr_hi = 0;
574 	dmae.len = len32;
575 
576 	/* issue the command and wait for completion */
577 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
578 	if (rc) {
579 		BNX2X_ERR("DMAE returned failure %d\n", rc);
580 		bnx2x_panic();
581 	}
582 }
583 
584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
585 {
586 	int rc;
587 	struct dmae_command dmae;
588 
589 	if (!bp->dmae_ready) {
590 		u32 *data = bnx2x_sp(bp, wb_data[0]);
591 		int i;
592 
593 		if (CHIP_IS_E1(bp))
594 			for (i = 0; i < len32; i++)
595 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
596 		else
597 			for (i = 0; i < len32; i++)
598 				data[i] = REG_RD(bp, src_addr + i*4);
599 
600 		return;
601 	}
602 
603 	/* set opcode and fixed command fields */
604 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
605 
606 	/* fill in addresses and len */
607 	dmae.src_addr_lo = src_addr >> 2;
608 	dmae.src_addr_hi = 0;
609 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
610 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
611 	dmae.len = len32;
612 
613 	/* issue the command and wait for completion */
614 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
615 	if (rc) {
616 		BNX2X_ERR("DMAE returned failure %d\n", rc);
617 		bnx2x_panic();
618 	};
619 }
620 
621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
622 				      u32 addr, u32 len)
623 {
624 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
625 	int offset = 0;
626 
627 	while (len > dmae_wr_max) {
628 		bnx2x_write_dmae(bp, phys_addr + offset,
629 				 addr + offset, dmae_wr_max);
630 		offset += dmae_wr_max * 4;
631 		len -= dmae_wr_max;
632 	}
633 
634 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
635 }
636 
637 static int bnx2x_mc_assert(struct bnx2x *bp)
638 {
639 	char last_idx;
640 	int i, rc = 0;
641 	u32 row0, row1, row2, row3;
642 
643 	/* XSTORM */
644 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
645 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
646 	if (last_idx)
647 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
648 
649 	/* print the asserts */
650 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
651 
652 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
653 			      XSTORM_ASSERT_LIST_OFFSET(i));
654 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
655 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
656 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
658 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
660 
661 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
662 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
663 				  i, row3, row2, row1, row0);
664 			rc++;
665 		} else {
666 			break;
667 		}
668 	}
669 
670 	/* TSTORM */
671 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
672 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
673 	if (last_idx)
674 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
675 
676 	/* print the asserts */
677 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
678 
679 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
680 			      TSTORM_ASSERT_LIST_OFFSET(i));
681 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
682 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
683 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
685 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
687 
688 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
689 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
690 				  i, row3, row2, row1, row0);
691 			rc++;
692 		} else {
693 			break;
694 		}
695 	}
696 
697 	/* CSTORM */
698 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
699 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
700 	if (last_idx)
701 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
702 
703 	/* print the asserts */
704 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
705 
706 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
707 			      CSTORM_ASSERT_LIST_OFFSET(i));
708 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
709 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
710 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
712 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
714 
715 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
716 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
717 				  i, row3, row2, row1, row0);
718 			rc++;
719 		} else {
720 			break;
721 		}
722 	}
723 
724 	/* USTORM */
725 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
726 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
727 	if (last_idx)
728 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
729 
730 	/* print the asserts */
731 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
732 
733 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
734 			      USTORM_ASSERT_LIST_OFFSET(i));
735 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
736 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
737 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
738 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
739 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
740 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
741 
742 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
743 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
744 				  i, row3, row2, row1, row0);
745 			rc++;
746 		} else {
747 			break;
748 		}
749 	}
750 
751 	return rc;
752 }
753 
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755 {
756 	u32 addr, val;
757 	u32 mark, offset;
758 	__be32 data[9];
759 	int word;
760 	u32 trace_shmem_base;
761 	if (BP_NOMCP(bp)) {
762 		BNX2X_ERR("NO MCP - can not dump\n");
763 		return;
764 	}
765 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766 		(bp->common.bc_ver & 0xff0000) >> 16,
767 		(bp->common.bc_ver & 0xff00) >> 8,
768 		(bp->common.bc_ver & 0xff));
769 
770 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773 
774 	if (BP_PATH(bp) == 0)
775 		trace_shmem_base = bp->common.shmem_base;
776 	else
777 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778 	addr = trace_shmem_base - 0x800;
779 
780 	/* validate TRCB signature */
781 	mark = REG_RD(bp, addr);
782 	if (mark != MFW_TRACE_SIGNATURE) {
783 		BNX2X_ERR("Trace buffer signature is missing.");
784 		return ;
785 	}
786 
787 	/* read cyclic buffer pointer */
788 	addr += 4;
789 	mark = REG_RD(bp, addr);
790 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
791 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
792 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
793 
794 	printk("%s", lvl);
795 
796 	/* dump buffer after the mark */
797 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
798 		for (word = 0; word < 8; word++)
799 			data[word] = htonl(REG_RD(bp, offset + 4*word));
800 		data[8] = 0x0;
801 		pr_cont("%s", (char *)data);
802 	}
803 
804 	/* dump buffer before the mark */
805 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
806 		for (word = 0; word < 8; word++)
807 			data[word] = htonl(REG_RD(bp, offset + 4*word));
808 		data[8] = 0x0;
809 		pr_cont("%s", (char *)data);
810 	}
811 	printk("%s" "end of fw dump\n", lvl);
812 }
813 
814 static void bnx2x_fw_dump(struct bnx2x *bp)
815 {
816 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
817 }
818 
819 static void bnx2x_hc_int_disable(struct bnx2x *bp)
820 {
821 	int port = BP_PORT(bp);
822 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
823 	u32 val = REG_RD(bp, addr);
824 
825 	/* in E1 we must use only PCI configuration space to disable
826 	 * MSI/MSIX capability
827 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
828 	 */
829 	if (CHIP_IS_E1(bp)) {
830 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
831 		 * Use mask register to prevent from HC sending interrupts
832 		 * after we exit the function
833 		 */
834 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
835 
836 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
837 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
838 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
839 	} else
840 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
841 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
842 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
843 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
844 
845 	DP(NETIF_MSG_IFDOWN,
846 	   "write %x to HC %d (addr 0x%x)\n",
847 	   val, port, addr);
848 
849 	/* flush all outstanding writes */
850 	mmiowb();
851 
852 	REG_WR(bp, addr, val);
853 	if (REG_RD(bp, addr) != val)
854 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
855 }
856 
857 static void bnx2x_igu_int_disable(struct bnx2x *bp)
858 {
859 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
860 
861 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
862 		 IGU_PF_CONF_INT_LINE_EN |
863 		 IGU_PF_CONF_ATTN_BIT_EN);
864 
865 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
866 
867 	/* flush all outstanding writes */
868 	mmiowb();
869 
870 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
871 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
872 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874 
875 static void bnx2x_int_disable(struct bnx2x *bp)
876 {
877 	if (bp->common.int_block == INT_BLOCK_HC)
878 		bnx2x_hc_int_disable(bp);
879 	else
880 		bnx2x_igu_int_disable(bp);
881 }
882 
883 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
884 {
885 	int i;
886 	u16 j;
887 	struct hc_sp_status_block_data sp_sb_data;
888 	int func = BP_FUNC(bp);
889 #ifdef BNX2X_STOP_ON_ERROR
890 	u16 start = 0, end = 0;
891 	u8 cos;
892 #endif
893 	if (disable_int)
894 		bnx2x_int_disable(bp);
895 
896 	bp->stats_state = STATS_STATE_DISABLED;
897 	bp->eth_stats.unrecoverable_error++;
898 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
899 
900 	BNX2X_ERR("begin crash dump -----------------\n");
901 
902 	/* Indices */
903 	/* Common */
904 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
905 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
906 		  bp->spq_prod_idx, bp->stats_counter);
907 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
908 		  bp->def_status_blk->atten_status_block.attn_bits,
909 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
910 		  bp->def_status_blk->atten_status_block.status_block_id,
911 		  bp->def_status_blk->atten_status_block.attn_bits_index);
912 	BNX2X_ERR("     def (");
913 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
914 		pr_cont("0x%x%s",
915 			bp->def_status_blk->sp_sb.index_values[i],
916 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
917 
918 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
919 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
920 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
921 			i*sizeof(u32));
922 
923 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
924 	       sp_sb_data.igu_sb_id,
925 	       sp_sb_data.igu_seg_id,
926 	       sp_sb_data.p_func.pf_id,
927 	       sp_sb_data.p_func.vnic_id,
928 	       sp_sb_data.p_func.vf_id,
929 	       sp_sb_data.p_func.vf_valid,
930 	       sp_sb_data.state);
931 
932 	for_each_eth_queue(bp, i) {
933 		struct bnx2x_fastpath *fp = &bp->fp[i];
934 		int loop;
935 		struct hc_status_block_data_e2 sb_data_e2;
936 		struct hc_status_block_data_e1x sb_data_e1x;
937 		struct hc_status_block_sm  *hc_sm_p =
938 			CHIP_IS_E1x(bp) ?
939 			sb_data_e1x.common.state_machine :
940 			sb_data_e2.common.state_machine;
941 		struct hc_index_data *hc_index_p =
942 			CHIP_IS_E1x(bp) ?
943 			sb_data_e1x.index_data :
944 			sb_data_e2.index_data;
945 		u8 data_size, cos;
946 		u32 *sb_data_p;
947 		struct bnx2x_fp_txdata txdata;
948 
949 		/* Rx */
950 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
951 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
952 			  fp->rx_comp_prod,
953 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
954 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
955 			  fp->rx_sge_prod, fp->last_max_sge,
956 			  le16_to_cpu(fp->fp_hc_idx));
957 
958 		/* Tx */
959 		for_each_cos_in_tx_queue(fp, cos)
960 		{
961 			txdata = *fp->txdata_ptr[cos];
962 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
963 				  i, txdata.tx_pkt_prod,
964 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
965 				  txdata.tx_bd_cons,
966 				  le16_to_cpu(*txdata.tx_cons_sb));
967 		}
968 
969 		loop = CHIP_IS_E1x(bp) ?
970 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
971 
972 		/* host sb data */
973 
974 		if (IS_FCOE_FP(fp))
975 			continue;
976 
977 		BNX2X_ERR("     run indexes (");
978 		for (j = 0; j < HC_SB_MAX_SM; j++)
979 			pr_cont("0x%x%s",
980 			       fp->sb_running_index[j],
981 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
982 
983 		BNX2X_ERR("     indexes (");
984 		for (j = 0; j < loop; j++)
985 			pr_cont("0x%x%s",
986 			       fp->sb_index_values[j],
987 			       (j == loop - 1) ? ")" : " ");
988 		/* fw sb data */
989 		data_size = CHIP_IS_E1x(bp) ?
990 			sizeof(struct hc_status_block_data_e1x) :
991 			sizeof(struct hc_status_block_data_e2);
992 		data_size /= sizeof(u32);
993 		sb_data_p = CHIP_IS_E1x(bp) ?
994 			(u32 *)&sb_data_e1x :
995 			(u32 *)&sb_data_e2;
996 		/* copy sb data in here */
997 		for (j = 0; j < data_size; j++)
998 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
999 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1000 				j * sizeof(u32));
1001 
1002 		if (!CHIP_IS_E1x(bp)) {
1003 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1004 				sb_data_e2.common.p_func.pf_id,
1005 				sb_data_e2.common.p_func.vf_id,
1006 				sb_data_e2.common.p_func.vf_valid,
1007 				sb_data_e2.common.p_func.vnic_id,
1008 				sb_data_e2.common.same_igu_sb_1b,
1009 				sb_data_e2.common.state);
1010 		} else {
1011 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1012 				sb_data_e1x.common.p_func.pf_id,
1013 				sb_data_e1x.common.p_func.vf_id,
1014 				sb_data_e1x.common.p_func.vf_valid,
1015 				sb_data_e1x.common.p_func.vnic_id,
1016 				sb_data_e1x.common.same_igu_sb_1b,
1017 				sb_data_e1x.common.state);
1018 		}
1019 
1020 		/* SB_SMs data */
1021 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1022 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1023 				j, hc_sm_p[j].__flags,
1024 				hc_sm_p[j].igu_sb_id,
1025 				hc_sm_p[j].igu_seg_id,
1026 				hc_sm_p[j].time_to_expire,
1027 				hc_sm_p[j].timer_value);
1028 		}
1029 
1030 		/* Indices data */
1031 		for (j = 0; j < loop; j++) {
1032 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1033 			       hc_index_p[j].flags,
1034 			       hc_index_p[j].timeout);
1035 		}
1036 	}
1037 
1038 #ifdef BNX2X_STOP_ON_ERROR
1039 
1040 	/* event queue */
1041 	BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1042 	for (i = 0; i < NUM_EQ_DESC; i++) {
1043 		u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1044 
1045 		BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1046 			  i, bp->eq_ring[i].message.opcode,
1047 			  bp->eq_ring[i].message.error);
1048 		BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1049 	}
1050 
1051 	/* Rings */
1052 	/* Rx */
1053 	for_each_valid_rx_queue(bp, i) {
1054 		struct bnx2x_fastpath *fp = &bp->fp[i];
1055 
1056 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1057 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1058 		for (j = start; j != end; j = RX_BD(j + 1)) {
1059 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1060 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1061 
1062 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1063 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1064 		}
1065 
1066 		start = RX_SGE(fp->rx_sge_prod);
1067 		end = RX_SGE(fp->last_max_sge);
1068 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1069 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1070 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1071 
1072 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1073 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1074 		}
1075 
1076 		start = RCQ_BD(fp->rx_comp_cons - 10);
1077 		end = RCQ_BD(fp->rx_comp_cons + 503);
1078 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1079 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1080 
1081 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1082 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1083 		}
1084 	}
1085 
1086 	/* Tx */
1087 	for_each_valid_tx_queue(bp, i) {
1088 		struct bnx2x_fastpath *fp = &bp->fp[i];
1089 		for_each_cos_in_tx_queue(fp, cos) {
1090 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1091 
1092 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1093 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1094 			for (j = start; j != end; j = TX_BD(j + 1)) {
1095 				struct sw_tx_bd *sw_bd =
1096 					&txdata->tx_buf_ring[j];
1097 
1098 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1099 					  i, cos, j, sw_bd->skb,
1100 					  sw_bd->first_bd);
1101 			}
1102 
1103 			start = TX_BD(txdata->tx_bd_cons - 10);
1104 			end = TX_BD(txdata->tx_bd_cons + 254);
1105 			for (j = start; j != end; j = TX_BD(j + 1)) {
1106 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1107 
1108 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1109 					  i, cos, j, tx_bd[0], tx_bd[1],
1110 					  tx_bd[2], tx_bd[3]);
1111 			}
1112 		}
1113 	}
1114 #endif
1115 	bnx2x_fw_dump(bp);
1116 	bnx2x_mc_assert(bp);
1117 	BNX2X_ERR("end crash dump -----------------\n");
1118 }
1119 
1120 /*
1121  * FLR Support for E2
1122  *
1123  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1124  * initialization.
1125  */
1126 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1127 #define FLR_WAIT_INTERVAL	50	/* usec */
1128 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1129 
1130 struct pbf_pN_buf_regs {
1131 	int pN;
1132 	u32 init_crd;
1133 	u32 crd;
1134 	u32 crd_freed;
1135 };
1136 
1137 struct pbf_pN_cmd_regs {
1138 	int pN;
1139 	u32 lines_occup;
1140 	u32 lines_freed;
1141 };
1142 
1143 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1144 				     struct pbf_pN_buf_regs *regs,
1145 				     u32 poll_count)
1146 {
1147 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1148 	u32 cur_cnt = poll_count;
1149 
1150 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1151 	crd = crd_start = REG_RD(bp, regs->crd);
1152 	init_crd = REG_RD(bp, regs->init_crd);
1153 
1154 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1155 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1156 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1157 
1158 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1159 	       (init_crd - crd_start))) {
1160 		if (cur_cnt--) {
1161 			udelay(FLR_WAIT_INTERVAL);
1162 			crd = REG_RD(bp, regs->crd);
1163 			crd_freed = REG_RD(bp, regs->crd_freed);
1164 		} else {
1165 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1166 			   regs->pN);
1167 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1168 			   regs->pN, crd);
1169 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1170 			   regs->pN, crd_freed);
1171 			break;
1172 		}
1173 	}
1174 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1175 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1176 }
1177 
1178 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1179 				     struct pbf_pN_cmd_regs *regs,
1180 				     u32 poll_count)
1181 {
1182 	u32 occup, to_free, freed, freed_start;
1183 	u32 cur_cnt = poll_count;
1184 
1185 	occup = to_free = REG_RD(bp, regs->lines_occup);
1186 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1187 
1188 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1189 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1190 
1191 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1192 		if (cur_cnt--) {
1193 			udelay(FLR_WAIT_INTERVAL);
1194 			occup = REG_RD(bp, regs->lines_occup);
1195 			freed = REG_RD(bp, regs->lines_freed);
1196 		} else {
1197 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1198 			   regs->pN);
1199 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1200 			   regs->pN, occup);
1201 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1202 			   regs->pN, freed);
1203 			break;
1204 		}
1205 	}
1206 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1207 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1208 }
1209 
1210 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1211 				    u32 expected, u32 poll_count)
1212 {
1213 	u32 cur_cnt = poll_count;
1214 	u32 val;
1215 
1216 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1217 		udelay(FLR_WAIT_INTERVAL);
1218 
1219 	return val;
1220 }
1221 
1222 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1223 				    char *msg, u32 poll_cnt)
1224 {
1225 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1226 	if (val != 0) {
1227 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1228 		return 1;
1229 	}
1230 	return 0;
1231 }
1232 
1233 /* Common routines with VF FLR cleanup */
1234 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1235 {
1236 	/* adjust polling timeout */
1237 	if (CHIP_REV_IS_EMUL(bp))
1238 		return FLR_POLL_CNT * 2000;
1239 
1240 	if (CHIP_REV_IS_FPGA(bp))
1241 		return FLR_POLL_CNT * 120;
1242 
1243 	return FLR_POLL_CNT;
1244 }
1245 
1246 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1247 {
1248 	struct pbf_pN_cmd_regs cmd_regs[] = {
1249 		{0, (CHIP_IS_E3B0(bp)) ?
1250 			PBF_REG_TQ_OCCUPANCY_Q0 :
1251 			PBF_REG_P0_TQ_OCCUPANCY,
1252 		    (CHIP_IS_E3B0(bp)) ?
1253 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1254 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1255 		{1, (CHIP_IS_E3B0(bp)) ?
1256 			PBF_REG_TQ_OCCUPANCY_Q1 :
1257 			PBF_REG_P1_TQ_OCCUPANCY,
1258 		    (CHIP_IS_E3B0(bp)) ?
1259 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1260 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1261 		{4, (CHIP_IS_E3B0(bp)) ?
1262 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1263 			PBF_REG_P4_TQ_OCCUPANCY,
1264 		    (CHIP_IS_E3B0(bp)) ?
1265 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1266 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1267 	};
1268 
1269 	struct pbf_pN_buf_regs buf_regs[] = {
1270 		{0, (CHIP_IS_E3B0(bp)) ?
1271 			PBF_REG_INIT_CRD_Q0 :
1272 			PBF_REG_P0_INIT_CRD ,
1273 		    (CHIP_IS_E3B0(bp)) ?
1274 			PBF_REG_CREDIT_Q0 :
1275 			PBF_REG_P0_CREDIT,
1276 		    (CHIP_IS_E3B0(bp)) ?
1277 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1278 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1279 		{1, (CHIP_IS_E3B0(bp)) ?
1280 			PBF_REG_INIT_CRD_Q1 :
1281 			PBF_REG_P1_INIT_CRD,
1282 		    (CHIP_IS_E3B0(bp)) ?
1283 			PBF_REG_CREDIT_Q1 :
1284 			PBF_REG_P1_CREDIT,
1285 		    (CHIP_IS_E3B0(bp)) ?
1286 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1287 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1288 		{4, (CHIP_IS_E3B0(bp)) ?
1289 			PBF_REG_INIT_CRD_LB_Q :
1290 			PBF_REG_P4_INIT_CRD,
1291 		    (CHIP_IS_E3B0(bp)) ?
1292 			PBF_REG_CREDIT_LB_Q :
1293 			PBF_REG_P4_CREDIT,
1294 		    (CHIP_IS_E3B0(bp)) ?
1295 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1296 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1297 	};
1298 
1299 	int i;
1300 
1301 	/* Verify the command queues are flushed P0, P1, P4 */
1302 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1303 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1304 
1305 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1306 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1307 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1308 }
1309 
1310 #define OP_GEN_PARAM(param) \
1311 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1312 
1313 #define OP_GEN_TYPE(type) \
1314 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1315 
1316 #define OP_GEN_AGG_VECT(index) \
1317 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1318 
1319 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1320 {
1321 	u32 op_gen_command = 0;
1322 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1323 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1324 	int ret = 0;
1325 
1326 	if (REG_RD(bp, comp_addr)) {
1327 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1328 		return 1;
1329 	}
1330 
1331 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1332 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1333 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1334 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1335 
1336 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1337 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1338 
1339 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1340 		BNX2X_ERR("FW final cleanup did not succeed\n");
1341 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1342 		   (REG_RD(bp, comp_addr)));
1343 		bnx2x_panic();
1344 		return 1;
1345 	}
1346 	/* Zero completion for next FLR */
1347 	REG_WR(bp, comp_addr, 0);
1348 
1349 	return ret;
1350 }
1351 
1352 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1353 {
1354 	u16 status;
1355 
1356 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1357 	return status & PCI_EXP_DEVSTA_TRPND;
1358 }
1359 
1360 /* PF FLR specific routines
1361 */
1362 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1363 {
1364 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1365 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1367 			"CFC PF usage counter timed out",
1368 			poll_cnt))
1369 		return 1;
1370 
1371 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1372 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373 			DORQ_REG_PF_USAGE_CNT,
1374 			"DQ PF usage counter timed out",
1375 			poll_cnt))
1376 		return 1;
1377 
1378 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1379 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1381 			"QM PF usage counter timed out",
1382 			poll_cnt))
1383 		return 1;
1384 
1385 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1386 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1388 			"Timers VNIC usage counter timed out",
1389 			poll_cnt))
1390 		return 1;
1391 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1393 			"Timers NUM_SCANS usage counter timed out",
1394 			poll_cnt))
1395 		return 1;
1396 
1397 	/* Wait DMAE PF usage counter to zero */
1398 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1399 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1400 			"DMAE command register timed out",
1401 			poll_cnt))
1402 		return 1;
1403 
1404 	return 0;
1405 }
1406 
1407 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1408 {
1409 	u32 val;
1410 
1411 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1412 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1413 
1414 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1415 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1416 
1417 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1418 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1419 
1420 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1421 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1422 
1423 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1424 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1425 
1426 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1427 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1428 
1429 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1430 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1431 
1432 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1433 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1434 	   val);
1435 }
1436 
1437 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1438 {
1439 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1440 
1441 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1442 
1443 	/* Re-enable PF target read access */
1444 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1445 
1446 	/* Poll HW usage counters */
1447 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1448 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1449 		return -EBUSY;
1450 
1451 	/* Zero the igu 'trailing edge' and 'leading edge' */
1452 
1453 	/* Send the FW cleanup command */
1454 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1455 		return -EBUSY;
1456 
1457 	/* ATC cleanup */
1458 
1459 	/* Verify TX hw is flushed */
1460 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1461 
1462 	/* Wait 100ms (not adjusted according to platform) */
1463 	msleep(100);
1464 
1465 	/* Verify no pending pci transactions */
1466 	if (bnx2x_is_pcie_pending(bp->pdev))
1467 		BNX2X_ERR("PCIE Transactions still pending\n");
1468 
1469 	/* Debug */
1470 	bnx2x_hw_enable_status(bp);
1471 
1472 	/*
1473 	 * Master enable - Due to WB DMAE writes performed before this
1474 	 * register is re-initialized as part of the regular function init
1475 	 */
1476 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1477 
1478 	return 0;
1479 }
1480 
1481 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1482 {
1483 	int port = BP_PORT(bp);
1484 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1485 	u32 val = REG_RD(bp, addr);
1486 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1487 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1488 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1489 
1490 	if (msix) {
1491 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1492 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1493 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495 		if (single_msix)
1496 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1497 	} else if (msi) {
1498 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1499 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1500 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1501 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1502 	} else {
1503 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1504 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1505 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1506 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1507 
1508 		if (!CHIP_IS_E1(bp)) {
1509 			DP(NETIF_MSG_IFUP,
1510 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1511 
1512 			REG_WR(bp, addr, val);
1513 
1514 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1515 		}
1516 	}
1517 
1518 	if (CHIP_IS_E1(bp))
1519 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1520 
1521 	DP(NETIF_MSG_IFUP,
1522 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1523 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1524 
1525 	REG_WR(bp, addr, val);
1526 	/*
1527 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1528 	 */
1529 	mmiowb();
1530 	barrier();
1531 
1532 	if (!CHIP_IS_E1(bp)) {
1533 		/* init leading/trailing edge */
1534 		if (IS_MF(bp)) {
1535 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1536 			if (bp->port.pmf)
1537 				/* enable nig and gpio3 attention */
1538 				val |= 0x1100;
1539 		} else
1540 			val = 0xffff;
1541 
1542 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1543 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1544 	}
1545 
1546 	/* Make sure that interrupts are indeed enabled from here on */
1547 	mmiowb();
1548 }
1549 
1550 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1551 {
1552 	u32 val;
1553 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1556 
1557 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1558 
1559 	if (msix) {
1560 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1561 			 IGU_PF_CONF_SINGLE_ISR_EN);
1562 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563 			IGU_PF_CONF_ATTN_BIT_EN);
1564 
1565 		if (single_msix)
1566 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1567 	} else if (msi) {
1568 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1569 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1570 			IGU_PF_CONF_ATTN_BIT_EN |
1571 			IGU_PF_CONF_SINGLE_ISR_EN);
1572 	} else {
1573 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1574 		val |= (IGU_PF_CONF_INT_LINE_EN |
1575 			IGU_PF_CONF_ATTN_BIT_EN |
1576 			IGU_PF_CONF_SINGLE_ISR_EN);
1577 	}
1578 
1579 	/* Clean previous status - need to configure igu prior to ack*/
1580 	if ((!msix) || single_msix) {
1581 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1582 		bnx2x_ack_int(bp);
1583 	}
1584 
1585 	val |= IGU_PF_CONF_FUNC_EN;
1586 
1587 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1588 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589 
1590 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1591 
1592 	if (val & IGU_PF_CONF_INT_LINE_EN)
1593 		pci_intx(bp->pdev, true);
1594 
1595 	barrier();
1596 
1597 	/* init leading/trailing edge */
1598 	if (IS_MF(bp)) {
1599 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600 		if (bp->port.pmf)
1601 			/* enable nig and gpio3 attention */
1602 			val |= 0x1100;
1603 	} else
1604 		val = 0xffff;
1605 
1606 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1607 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1608 
1609 	/* Make sure that interrupts are indeed enabled from here on */
1610 	mmiowb();
1611 }
1612 
1613 void bnx2x_int_enable(struct bnx2x *bp)
1614 {
1615 	if (bp->common.int_block == INT_BLOCK_HC)
1616 		bnx2x_hc_int_enable(bp);
1617 	else
1618 		bnx2x_igu_int_enable(bp);
1619 }
1620 
1621 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1622 {
1623 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1624 	int i, offset;
1625 
1626 	if (disable_hw)
1627 		/* prevent the HW from sending interrupts */
1628 		bnx2x_int_disable(bp);
1629 
1630 	/* make sure all ISRs are done */
1631 	if (msix) {
1632 		synchronize_irq(bp->msix_table[0].vector);
1633 		offset = 1;
1634 		if (CNIC_SUPPORT(bp))
1635 			offset++;
1636 		for_each_eth_queue(bp, i)
1637 			synchronize_irq(bp->msix_table[offset++].vector);
1638 	} else
1639 		synchronize_irq(bp->pdev->irq);
1640 
1641 	/* make sure sp_task is not running */
1642 	cancel_delayed_work(&bp->sp_task);
1643 	cancel_delayed_work(&bp->period_task);
1644 	flush_workqueue(bnx2x_wq);
1645 }
1646 
1647 /* fast path */
1648 
1649 /*
1650  * General service functions
1651  */
1652 
1653 /* Return true if succeeded to acquire the lock */
1654 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1655 {
1656 	u32 lock_status;
1657 	u32 resource_bit = (1 << resource);
1658 	int func = BP_FUNC(bp);
1659 	u32 hw_lock_control_reg;
1660 
1661 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1662 	   "Trying to take a lock on resource %d\n", resource);
1663 
1664 	/* Validating that the resource is within range */
1665 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1666 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1667 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1668 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1669 		return false;
1670 	}
1671 
1672 	if (func <= 5)
1673 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1674 	else
1675 		hw_lock_control_reg =
1676 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1677 
1678 	/* Try to acquire the lock */
1679 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1680 	lock_status = REG_RD(bp, hw_lock_control_reg);
1681 	if (lock_status & resource_bit)
1682 		return true;
1683 
1684 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1685 	   "Failed to get a lock on resource %d\n", resource);
1686 	return false;
1687 }
1688 
1689 /**
1690  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1691  *
1692  * @bp:	driver handle
1693  *
1694  * Returns the recovery leader resource id according to the engine this function
1695  * belongs to. Currently only only 2 engines is supported.
1696  */
1697 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1698 {
1699 	if (BP_PATH(bp))
1700 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1701 	else
1702 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1703 }
1704 
1705 /**
1706  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1707  *
1708  * @bp: driver handle
1709  *
1710  * Tries to acquire a leader lock for current engine.
1711  */
1712 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1713 {
1714 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1715 }
1716 
1717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1718 
1719 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1720 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1721 {
1722 	/* Set the interrupt occurred bit for the sp-task to recognize it
1723 	 * must ack the interrupt and transition according to the IGU
1724 	 * state machine.
1725 	 */
1726 	atomic_set(&bp->interrupt_occurred, 1);
1727 
1728 	/* The sp_task must execute only after this bit
1729 	 * is set, otherwise we will get out of sync and miss all
1730 	 * further interrupts. Hence, the barrier.
1731 	 */
1732 	smp_wmb();
1733 
1734 	/* schedule sp_task to workqueue */
1735 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1736 }
1737 
1738 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1739 {
1740 	struct bnx2x *bp = fp->bp;
1741 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1742 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1743 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1744 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1745 
1746 	DP(BNX2X_MSG_SP,
1747 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1748 	   fp->index, cid, command, bp->state,
1749 	   rr_cqe->ramrod_cqe.ramrod_type);
1750 
1751 	/* If cid is within VF range, replace the slowpath object with the
1752 	 * one corresponding to this VF
1753 	 */
1754 	if (cid >= BNX2X_FIRST_VF_CID  &&
1755 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1756 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1757 
1758 	switch (command) {
1759 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1760 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1761 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1762 		break;
1763 
1764 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1765 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1766 		drv_cmd = BNX2X_Q_CMD_SETUP;
1767 		break;
1768 
1769 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1770 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1771 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1772 		break;
1773 
1774 	case (RAMROD_CMD_ID_ETH_HALT):
1775 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1776 		drv_cmd = BNX2X_Q_CMD_HALT;
1777 		break;
1778 
1779 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1780 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1781 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1782 		break;
1783 
1784 	case (RAMROD_CMD_ID_ETH_EMPTY):
1785 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1786 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1787 		break;
1788 
1789 	default:
1790 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1791 			  command, fp->index);
1792 		return;
1793 	}
1794 
1795 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1796 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1797 		/* q_obj->complete_cmd() failure means that this was
1798 		 * an unexpected completion.
1799 		 *
1800 		 * In this case we don't want to increase the bp->spq_left
1801 		 * because apparently we haven't sent this command the first
1802 		 * place.
1803 		 */
1804 #ifdef BNX2X_STOP_ON_ERROR
1805 		bnx2x_panic();
1806 #else
1807 		return;
1808 #endif
1809 	/* SRIOV: reschedule any 'in_progress' operations */
1810 	bnx2x_iov_sp_event(bp, cid, true);
1811 
1812 	smp_mb__before_atomic_inc();
1813 	atomic_inc(&bp->cq_spq_left);
1814 	/* push the change in bp->spq_left and towards the memory */
1815 	smp_mb__after_atomic_inc();
1816 
1817 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1818 
1819 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1820 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1821 		/* if Q update ramrod is completed for last Q in AFEX vif set
1822 		 * flow, then ACK MCP at the end
1823 		 *
1824 		 * mark pending ACK to MCP bit.
1825 		 * prevent case that both bits are cleared.
1826 		 * At the end of load/unload driver checks that
1827 		 * sp_state is cleared, and this order prevents
1828 		 * races
1829 		 */
1830 		smp_mb__before_clear_bit();
1831 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1832 		wmb();
1833 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1834 		smp_mb__after_clear_bit();
1835 
1836 		/* schedule the sp task as mcp ack is required */
1837 		bnx2x_schedule_sp_task(bp);
1838 	}
1839 
1840 	return;
1841 }
1842 
1843 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1844 {
1845 	struct bnx2x *bp = netdev_priv(dev_instance);
1846 	u16 status = bnx2x_ack_int(bp);
1847 	u16 mask;
1848 	int i;
1849 	u8 cos;
1850 
1851 	/* Return here if interrupt is shared and it's not for us */
1852 	if (unlikely(status == 0)) {
1853 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1854 		return IRQ_NONE;
1855 	}
1856 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1857 
1858 #ifdef BNX2X_STOP_ON_ERROR
1859 	if (unlikely(bp->panic))
1860 		return IRQ_HANDLED;
1861 #endif
1862 
1863 	for_each_eth_queue(bp, i) {
1864 		struct bnx2x_fastpath *fp = &bp->fp[i];
1865 
1866 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1867 		if (status & mask) {
1868 			/* Handle Rx or Tx according to SB id */
1869 			prefetch(fp->rx_cons_sb);
1870 			for_each_cos_in_tx_queue(fp, cos)
1871 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1872 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1873 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1874 			status &= ~mask;
1875 		}
1876 	}
1877 
1878 	if (CNIC_SUPPORT(bp)) {
1879 		mask = 0x2;
1880 		if (status & (mask | 0x1)) {
1881 			struct cnic_ops *c_ops = NULL;
1882 
1883 			rcu_read_lock();
1884 			c_ops = rcu_dereference(bp->cnic_ops);
1885 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1886 				      CNIC_DRV_STATE_HANDLES_IRQ))
1887 				c_ops->cnic_handler(bp->cnic_data, NULL);
1888 			rcu_read_unlock();
1889 
1890 			status &= ~mask;
1891 		}
1892 	}
1893 
1894 	if (unlikely(status & 0x1)) {
1895 
1896 		/* schedule sp task to perform default status block work, ack
1897 		 * attentions and enable interrupts.
1898 		 */
1899 		bnx2x_schedule_sp_task(bp);
1900 
1901 		status &= ~0x1;
1902 		if (!status)
1903 			return IRQ_HANDLED;
1904 	}
1905 
1906 	if (unlikely(status))
1907 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1908 		   status);
1909 
1910 	return IRQ_HANDLED;
1911 }
1912 
1913 /* Link */
1914 
1915 /*
1916  * General service functions
1917  */
1918 
1919 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1920 {
1921 	u32 lock_status;
1922 	u32 resource_bit = (1 << resource);
1923 	int func = BP_FUNC(bp);
1924 	u32 hw_lock_control_reg;
1925 	int cnt;
1926 
1927 	/* Validating that the resource is within range */
1928 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1929 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1930 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1931 		return -EINVAL;
1932 	}
1933 
1934 	if (func <= 5) {
1935 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1936 	} else {
1937 		hw_lock_control_reg =
1938 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1939 	}
1940 
1941 	/* Validating that the resource is not already taken */
1942 	lock_status = REG_RD(bp, hw_lock_control_reg);
1943 	if (lock_status & resource_bit) {
1944 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1945 		   lock_status, resource_bit);
1946 		return -EEXIST;
1947 	}
1948 
1949 	/* Try for 5 second every 5ms */
1950 	for (cnt = 0; cnt < 1000; cnt++) {
1951 		/* Try to acquire the lock */
1952 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1953 		lock_status = REG_RD(bp, hw_lock_control_reg);
1954 		if (lock_status & resource_bit)
1955 			return 0;
1956 
1957 		usleep_range(5000, 10000);
1958 	}
1959 	BNX2X_ERR("Timeout\n");
1960 	return -EAGAIN;
1961 }
1962 
1963 int bnx2x_release_leader_lock(struct bnx2x *bp)
1964 {
1965 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1966 }
1967 
1968 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1969 {
1970 	u32 lock_status;
1971 	u32 resource_bit = (1 << resource);
1972 	int func = BP_FUNC(bp);
1973 	u32 hw_lock_control_reg;
1974 
1975 	/* Validating that the resource is within range */
1976 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1977 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1978 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1979 		return -EINVAL;
1980 	}
1981 
1982 	if (func <= 5) {
1983 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1984 	} else {
1985 		hw_lock_control_reg =
1986 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1987 	}
1988 
1989 	/* Validating that the resource is currently taken */
1990 	lock_status = REG_RD(bp, hw_lock_control_reg);
1991 	if (!(lock_status & resource_bit)) {
1992 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
1993 			  lock_status, resource_bit);
1994 		return -EFAULT;
1995 	}
1996 
1997 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1998 	return 0;
1999 }
2000 
2001 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2002 {
2003 	/* The GPIO should be swapped if swap register is set and active */
2004 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2005 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2006 	int gpio_shift = gpio_num +
2007 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2008 	u32 gpio_mask = (1 << gpio_shift);
2009 	u32 gpio_reg;
2010 	int value;
2011 
2012 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2013 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2014 		return -EINVAL;
2015 	}
2016 
2017 	/* read GPIO value */
2018 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2019 
2020 	/* get the requested pin value */
2021 	if ((gpio_reg & gpio_mask) == gpio_mask)
2022 		value = 1;
2023 	else
2024 		value = 0;
2025 
2026 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2027 
2028 	return value;
2029 }
2030 
2031 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2032 {
2033 	/* The GPIO should be swapped if swap register is set and active */
2034 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2035 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2036 	int gpio_shift = gpio_num +
2037 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2038 	u32 gpio_mask = (1 << gpio_shift);
2039 	u32 gpio_reg;
2040 
2041 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2042 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2043 		return -EINVAL;
2044 	}
2045 
2046 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2047 	/* read GPIO and mask except the float bits */
2048 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2049 
2050 	switch (mode) {
2051 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2052 		DP(NETIF_MSG_LINK,
2053 		   "Set GPIO %d (shift %d) -> output low\n",
2054 		   gpio_num, gpio_shift);
2055 		/* clear FLOAT and set CLR */
2056 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2057 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2058 		break;
2059 
2060 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2061 		DP(NETIF_MSG_LINK,
2062 		   "Set GPIO %d (shift %d) -> output high\n",
2063 		   gpio_num, gpio_shift);
2064 		/* clear FLOAT and set SET */
2065 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2066 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2067 		break;
2068 
2069 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2070 		DP(NETIF_MSG_LINK,
2071 		   "Set GPIO %d (shift %d) -> input\n",
2072 		   gpio_num, gpio_shift);
2073 		/* set FLOAT */
2074 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2075 		break;
2076 
2077 	default:
2078 		break;
2079 	}
2080 
2081 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2082 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2083 
2084 	return 0;
2085 }
2086 
2087 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2088 {
2089 	u32 gpio_reg = 0;
2090 	int rc = 0;
2091 
2092 	/* Any port swapping should be handled by caller. */
2093 
2094 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2095 	/* read GPIO and mask except the float bits */
2096 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2097 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2098 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2099 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2100 
2101 	switch (mode) {
2102 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2103 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2104 		/* set CLR */
2105 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2106 		break;
2107 
2108 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2109 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2110 		/* set SET */
2111 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2112 		break;
2113 
2114 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2115 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2116 		/* set FLOAT */
2117 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2118 		break;
2119 
2120 	default:
2121 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2122 		rc = -EINVAL;
2123 		break;
2124 	}
2125 
2126 	if (rc == 0)
2127 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2128 
2129 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2130 
2131 	return rc;
2132 }
2133 
2134 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2135 {
2136 	/* The GPIO should be swapped if swap register is set and active */
2137 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2138 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2139 	int gpio_shift = gpio_num +
2140 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2141 	u32 gpio_mask = (1 << gpio_shift);
2142 	u32 gpio_reg;
2143 
2144 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2145 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2146 		return -EINVAL;
2147 	}
2148 
2149 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2150 	/* read GPIO int */
2151 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2152 
2153 	switch (mode) {
2154 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2155 		DP(NETIF_MSG_LINK,
2156 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2157 		   gpio_num, gpio_shift);
2158 		/* clear SET and set CLR */
2159 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2160 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2161 		break;
2162 
2163 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2164 		DP(NETIF_MSG_LINK,
2165 		   "Set GPIO INT %d (shift %d) -> output high\n",
2166 		   gpio_num, gpio_shift);
2167 		/* clear CLR and set SET */
2168 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2169 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2170 		break;
2171 
2172 	default:
2173 		break;
2174 	}
2175 
2176 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2177 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2178 
2179 	return 0;
2180 }
2181 
2182 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2183 {
2184 	u32 spio_reg;
2185 
2186 	/* Only 2 SPIOs are configurable */
2187 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2188 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2189 		return -EINVAL;
2190 	}
2191 
2192 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2193 	/* read SPIO and mask except the float bits */
2194 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2195 
2196 	switch (mode) {
2197 	case MISC_SPIO_OUTPUT_LOW:
2198 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2199 		/* clear FLOAT and set CLR */
2200 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2201 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2202 		break;
2203 
2204 	case MISC_SPIO_OUTPUT_HIGH:
2205 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2206 		/* clear FLOAT and set SET */
2207 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2208 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2209 		break;
2210 
2211 	case MISC_SPIO_INPUT_HI_Z:
2212 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2213 		/* set FLOAT */
2214 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2215 		break;
2216 
2217 	default:
2218 		break;
2219 	}
2220 
2221 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2222 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2223 
2224 	return 0;
2225 }
2226 
2227 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2228 {
2229 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2230 	switch (bp->link_vars.ieee_fc &
2231 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2232 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2233 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2234 						   ADVERTISED_Pause);
2235 		break;
2236 
2237 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2238 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2239 						  ADVERTISED_Pause);
2240 		break;
2241 
2242 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2243 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2244 		break;
2245 
2246 	default:
2247 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2248 						   ADVERTISED_Pause);
2249 		break;
2250 	}
2251 }
2252 
2253 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2254 {
2255 	/* Initialize link parameters structure variables
2256 	 * It is recommended to turn off RX FC for jumbo frames
2257 	 *  for better performance
2258 	 */
2259 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2260 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2261 	else
2262 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2263 }
2264 
2265 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2266 {
2267 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2268 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2269 
2270 	if (!BP_NOMCP(bp)) {
2271 		bnx2x_set_requested_fc(bp);
2272 		bnx2x_acquire_phy_lock(bp);
2273 
2274 		if (load_mode == LOAD_DIAG) {
2275 			struct link_params *lp = &bp->link_params;
2276 			lp->loopback_mode = LOOPBACK_XGXS;
2277 			/* do PHY loopback at 10G speed, if possible */
2278 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2279 				if (lp->speed_cap_mask[cfx_idx] &
2280 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2281 					lp->req_line_speed[cfx_idx] =
2282 					SPEED_10000;
2283 				else
2284 					lp->req_line_speed[cfx_idx] =
2285 					SPEED_1000;
2286 			}
2287 		}
2288 
2289 		if (load_mode == LOAD_LOOPBACK_EXT) {
2290 			struct link_params *lp = &bp->link_params;
2291 			lp->loopback_mode = LOOPBACK_EXT;
2292 		}
2293 
2294 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2295 
2296 		bnx2x_release_phy_lock(bp);
2297 
2298 		bnx2x_calc_fc_adv(bp);
2299 
2300 		if (bp->link_vars.link_up) {
2301 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2302 			bnx2x_link_report(bp);
2303 		}
2304 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2305 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2306 		return rc;
2307 	}
2308 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2309 	return -EINVAL;
2310 }
2311 
2312 void bnx2x_link_set(struct bnx2x *bp)
2313 {
2314 	if (!BP_NOMCP(bp)) {
2315 		bnx2x_acquire_phy_lock(bp);
2316 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2317 		bnx2x_release_phy_lock(bp);
2318 
2319 		bnx2x_calc_fc_adv(bp);
2320 	} else
2321 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2322 }
2323 
2324 static void bnx2x__link_reset(struct bnx2x *bp)
2325 {
2326 	if (!BP_NOMCP(bp)) {
2327 		bnx2x_acquire_phy_lock(bp);
2328 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2329 		bnx2x_release_phy_lock(bp);
2330 	} else
2331 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2332 }
2333 
2334 void bnx2x_force_link_reset(struct bnx2x *bp)
2335 {
2336 	bnx2x_acquire_phy_lock(bp);
2337 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2338 	bnx2x_release_phy_lock(bp);
2339 }
2340 
2341 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2342 {
2343 	u8 rc = 0;
2344 
2345 	if (!BP_NOMCP(bp)) {
2346 		bnx2x_acquire_phy_lock(bp);
2347 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2348 				     is_serdes);
2349 		bnx2x_release_phy_lock(bp);
2350 	} else
2351 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2352 
2353 	return rc;
2354 }
2355 
2356 /* Calculates the sum of vn_min_rates.
2357    It's needed for further normalizing of the min_rates.
2358    Returns:
2359      sum of vn_min_rates.
2360        or
2361      0 - if all the min_rates are 0.
2362      In the later case fairness algorithm should be deactivated.
2363      If not all min_rates are zero then those that are zeroes will be set to 1.
2364  */
2365 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2366 				      struct cmng_init_input *input)
2367 {
2368 	int all_zero = 1;
2369 	int vn;
2370 
2371 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2372 		u32 vn_cfg = bp->mf_config[vn];
2373 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2374 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2375 
2376 		/* Skip hidden vns */
2377 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2378 			vn_min_rate = 0;
2379 		/* If min rate is zero - set it to 1 */
2380 		else if (!vn_min_rate)
2381 			vn_min_rate = DEF_MIN_RATE;
2382 		else
2383 			all_zero = 0;
2384 
2385 		input->vnic_min_rate[vn] = vn_min_rate;
2386 	}
2387 
2388 	/* if ETS or all min rates are zeros - disable fairness */
2389 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2390 		input->flags.cmng_enables &=
2391 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2392 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2393 	} else if (all_zero) {
2394 		input->flags.cmng_enables &=
2395 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2396 		DP(NETIF_MSG_IFUP,
2397 		   "All MIN values are zeroes fairness will be disabled\n");
2398 	} else
2399 		input->flags.cmng_enables |=
2400 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2401 }
2402 
2403 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2404 				    struct cmng_init_input *input)
2405 {
2406 	u16 vn_max_rate;
2407 	u32 vn_cfg = bp->mf_config[vn];
2408 
2409 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2410 		vn_max_rate = 0;
2411 	else {
2412 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2413 
2414 		if (IS_MF_SI(bp)) {
2415 			/* maxCfg in percents of linkspeed */
2416 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2417 		} else /* SD modes */
2418 			/* maxCfg is absolute in 100Mb units */
2419 			vn_max_rate = maxCfg * 100;
2420 	}
2421 
2422 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2423 
2424 	input->vnic_max_rate[vn] = vn_max_rate;
2425 }
2426 
2427 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2428 {
2429 	if (CHIP_REV_IS_SLOW(bp))
2430 		return CMNG_FNS_NONE;
2431 	if (IS_MF(bp))
2432 		return CMNG_FNS_MINMAX;
2433 
2434 	return CMNG_FNS_NONE;
2435 }
2436 
2437 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2438 {
2439 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2440 
2441 	if (BP_NOMCP(bp))
2442 		return; /* what should be the default value in this case */
2443 
2444 	/* For 2 port configuration the absolute function number formula
2445 	 * is:
2446 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2447 	 *
2448 	 *      and there are 4 functions per port
2449 	 *
2450 	 * For 4 port configuration it is
2451 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2452 	 *
2453 	 *      and there are 2 functions per port
2454 	 */
2455 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2456 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2457 
2458 		if (func >= E1H_FUNC_MAX)
2459 			break;
2460 
2461 		bp->mf_config[vn] =
2462 			MF_CFG_RD(bp, func_mf_config[func].config);
2463 	}
2464 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2465 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2466 		bp->flags |= MF_FUNC_DIS;
2467 	} else {
2468 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2469 		bp->flags &= ~MF_FUNC_DIS;
2470 	}
2471 }
2472 
2473 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2474 {
2475 	struct cmng_init_input input;
2476 	memset(&input, 0, sizeof(struct cmng_init_input));
2477 
2478 	input.port_rate = bp->link_vars.line_speed;
2479 
2480 	if (cmng_type == CMNG_FNS_MINMAX) {
2481 		int vn;
2482 
2483 		/* read mf conf from shmem */
2484 		if (read_cfg)
2485 			bnx2x_read_mf_cfg(bp);
2486 
2487 		/* vn_weight_sum and enable fairness if not 0 */
2488 		bnx2x_calc_vn_min(bp, &input);
2489 
2490 		/* calculate and set min-max rate for each vn */
2491 		if (bp->port.pmf)
2492 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2493 				bnx2x_calc_vn_max(bp, vn, &input);
2494 
2495 		/* always enable rate shaping and fairness */
2496 		input.flags.cmng_enables |=
2497 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2498 
2499 		bnx2x_init_cmng(&input, &bp->cmng);
2500 		return;
2501 	}
2502 
2503 	/* rate shaping and fairness are disabled */
2504 	DP(NETIF_MSG_IFUP,
2505 	   "rate shaping and fairness are disabled\n");
2506 }
2507 
2508 static void storm_memset_cmng(struct bnx2x *bp,
2509 			      struct cmng_init *cmng,
2510 			      u8 port)
2511 {
2512 	int vn;
2513 	size_t size = sizeof(struct cmng_struct_per_port);
2514 
2515 	u32 addr = BAR_XSTRORM_INTMEM +
2516 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2517 
2518 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2519 
2520 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2521 		int func = func_by_vn(bp, vn);
2522 
2523 		addr = BAR_XSTRORM_INTMEM +
2524 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2525 		size = sizeof(struct rate_shaping_vars_per_vn);
2526 		__storm_memset_struct(bp, addr, size,
2527 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2528 
2529 		addr = BAR_XSTRORM_INTMEM +
2530 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2531 		size = sizeof(struct fairness_vars_per_vn);
2532 		__storm_memset_struct(bp, addr, size,
2533 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2534 	}
2535 }
2536 
2537 /* This function is called upon link interrupt */
2538 static void bnx2x_link_attn(struct bnx2x *bp)
2539 {
2540 	/* Make sure that we are synced with the current statistics */
2541 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2542 
2543 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2544 
2545 	if (bp->link_vars.link_up) {
2546 
2547 		/* dropless flow control */
2548 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2549 			int port = BP_PORT(bp);
2550 			u32 pause_enabled = 0;
2551 
2552 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2553 				pause_enabled = 1;
2554 
2555 			REG_WR(bp, BAR_USTRORM_INTMEM +
2556 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2557 			       pause_enabled);
2558 		}
2559 
2560 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2561 			struct host_port_stats *pstats;
2562 
2563 			pstats = bnx2x_sp(bp, port_stats);
2564 			/* reset old mac stats */
2565 			memset(&(pstats->mac_stx[0]), 0,
2566 			       sizeof(struct mac_stx));
2567 		}
2568 		if (bp->state == BNX2X_STATE_OPEN)
2569 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2570 	}
2571 
2572 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2573 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2574 
2575 		if (cmng_fns != CMNG_FNS_NONE) {
2576 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2577 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2578 		} else
2579 			/* rate shaping and fairness are disabled */
2580 			DP(NETIF_MSG_IFUP,
2581 			   "single function mode without fairness\n");
2582 	}
2583 
2584 	__bnx2x_link_report(bp);
2585 
2586 	if (IS_MF(bp))
2587 		bnx2x_link_sync_notify(bp);
2588 }
2589 
2590 void bnx2x__link_status_update(struct bnx2x *bp)
2591 {
2592 	if (bp->state != BNX2X_STATE_OPEN)
2593 		return;
2594 
2595 	/* read updated dcb configuration */
2596 	if (IS_PF(bp)) {
2597 		bnx2x_dcbx_pmf_update(bp);
2598 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2599 		if (bp->link_vars.link_up)
2600 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2601 		else
2602 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2603 			/* indicate link status */
2604 		bnx2x_link_report(bp);
2605 
2606 	} else { /* VF */
2607 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2608 					  SUPPORTED_10baseT_Full |
2609 					  SUPPORTED_100baseT_Half |
2610 					  SUPPORTED_100baseT_Full |
2611 					  SUPPORTED_1000baseT_Full |
2612 					  SUPPORTED_2500baseX_Full |
2613 					  SUPPORTED_10000baseT_Full |
2614 					  SUPPORTED_TP |
2615 					  SUPPORTED_FIBRE |
2616 					  SUPPORTED_Autoneg |
2617 					  SUPPORTED_Pause |
2618 					  SUPPORTED_Asym_Pause);
2619 		bp->port.advertising[0] = bp->port.supported[0];
2620 
2621 		bp->link_params.bp = bp;
2622 		bp->link_params.port = BP_PORT(bp);
2623 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2624 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2625 		bp->link_params.req_line_speed[0] = SPEED_10000;
2626 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2627 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2628 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2629 		bp->link_vars.line_speed = SPEED_10000;
2630 		bp->link_vars.link_status =
2631 			(LINK_STATUS_LINK_UP |
2632 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2633 		bp->link_vars.link_up = 1;
2634 		bp->link_vars.duplex = DUPLEX_FULL;
2635 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2636 		__bnx2x_link_report(bp);
2637 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2638 	}
2639 }
2640 
2641 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2642 				  u16 vlan_val, u8 allowed_prio)
2643 {
2644 	struct bnx2x_func_state_params func_params = {NULL};
2645 	struct bnx2x_func_afex_update_params *f_update_params =
2646 		&func_params.params.afex_update;
2647 
2648 	func_params.f_obj = &bp->func_obj;
2649 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2650 
2651 	/* no need to wait for RAMROD completion, so don't
2652 	 * set RAMROD_COMP_WAIT flag
2653 	 */
2654 
2655 	f_update_params->vif_id = vifid;
2656 	f_update_params->afex_default_vlan = vlan_val;
2657 	f_update_params->allowed_priorities = allowed_prio;
2658 
2659 	/* if ramrod can not be sent, response to MCP immediately */
2660 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2661 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2662 
2663 	return 0;
2664 }
2665 
2666 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2667 					  u16 vif_index, u8 func_bit_map)
2668 {
2669 	struct bnx2x_func_state_params func_params = {NULL};
2670 	struct bnx2x_func_afex_viflists_params *update_params =
2671 		&func_params.params.afex_viflists;
2672 	int rc;
2673 	u32 drv_msg_code;
2674 
2675 	/* validate only LIST_SET and LIST_GET are received from switch */
2676 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2677 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2678 			  cmd_type);
2679 
2680 	func_params.f_obj = &bp->func_obj;
2681 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2682 
2683 	/* set parameters according to cmd_type */
2684 	update_params->afex_vif_list_command = cmd_type;
2685 	update_params->vif_list_index = vif_index;
2686 	update_params->func_bit_map =
2687 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2688 	update_params->func_to_clear = 0;
2689 	drv_msg_code =
2690 		(cmd_type == VIF_LIST_RULE_GET) ?
2691 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2692 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2693 
2694 	/* if ramrod can not be sent, respond to MCP immediately for
2695 	 * SET and GET requests (other are not triggered from MCP)
2696 	 */
2697 	rc = bnx2x_func_state_change(bp, &func_params);
2698 	if (rc < 0)
2699 		bnx2x_fw_command(bp, drv_msg_code, 0);
2700 
2701 	return 0;
2702 }
2703 
2704 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2705 {
2706 	struct afex_stats afex_stats;
2707 	u32 func = BP_ABS_FUNC(bp);
2708 	u32 mf_config;
2709 	u16 vlan_val;
2710 	u32 vlan_prio;
2711 	u16 vif_id;
2712 	u8 allowed_prio;
2713 	u8 vlan_mode;
2714 	u32 addr_to_write, vifid, addrs, stats_type, i;
2715 
2716 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2717 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2718 		DP(BNX2X_MSG_MCP,
2719 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2720 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2721 	}
2722 
2723 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2724 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2725 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2726 		DP(BNX2X_MSG_MCP,
2727 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2728 		   vifid, addrs);
2729 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2730 					       addrs);
2731 	}
2732 
2733 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2734 		addr_to_write = SHMEM2_RD(bp,
2735 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2736 		stats_type = SHMEM2_RD(bp,
2737 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2738 
2739 		DP(BNX2X_MSG_MCP,
2740 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2741 		   addr_to_write);
2742 
2743 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2744 
2745 		/* write response to scratchpad, for MCP */
2746 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2747 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2748 			       *(((u32 *)(&afex_stats))+i));
2749 
2750 		/* send ack message to MCP */
2751 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2752 	}
2753 
2754 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2755 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2756 		bp->mf_config[BP_VN(bp)] = mf_config;
2757 		DP(BNX2X_MSG_MCP,
2758 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2759 		   mf_config);
2760 
2761 		/* if VIF_SET is "enabled" */
2762 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2763 			/* set rate limit directly to internal RAM */
2764 			struct cmng_init_input cmng_input;
2765 			struct rate_shaping_vars_per_vn m_rs_vn;
2766 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2767 			u32 addr = BAR_XSTRORM_INTMEM +
2768 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2769 
2770 			bp->mf_config[BP_VN(bp)] = mf_config;
2771 
2772 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2773 			m_rs_vn.vn_counter.rate =
2774 				cmng_input.vnic_max_rate[BP_VN(bp)];
2775 			m_rs_vn.vn_counter.quota =
2776 				(m_rs_vn.vn_counter.rate *
2777 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2778 
2779 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2780 
2781 			/* read relevant values from mf_cfg struct in shmem */
2782 			vif_id =
2783 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2784 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2785 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2786 			vlan_val =
2787 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2788 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2789 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2790 			vlan_prio = (mf_config &
2791 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2792 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2793 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2794 			vlan_mode =
2795 				(MF_CFG_RD(bp,
2796 					   func_mf_config[func].afex_config) &
2797 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2798 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2799 			allowed_prio =
2800 				(MF_CFG_RD(bp,
2801 					   func_mf_config[func].afex_config) &
2802 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2803 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2804 
2805 			/* send ramrod to FW, return in case of failure */
2806 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2807 						   allowed_prio))
2808 				return;
2809 
2810 			bp->afex_def_vlan_tag = vlan_val;
2811 			bp->afex_vlan_mode = vlan_mode;
2812 		} else {
2813 			/* notify link down because BP->flags is disabled */
2814 			bnx2x_link_report(bp);
2815 
2816 			/* send INVALID VIF ramrod to FW */
2817 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2818 
2819 			/* Reset the default afex VLAN */
2820 			bp->afex_def_vlan_tag = -1;
2821 		}
2822 	}
2823 }
2824 
2825 static void bnx2x_pmf_update(struct bnx2x *bp)
2826 {
2827 	int port = BP_PORT(bp);
2828 	u32 val;
2829 
2830 	bp->port.pmf = 1;
2831 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2832 
2833 	/*
2834 	 * We need the mb() to ensure the ordering between the writing to
2835 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2836 	 */
2837 	smp_mb();
2838 
2839 	/* queue a periodic task */
2840 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2841 
2842 	bnx2x_dcbx_pmf_update(bp);
2843 
2844 	/* enable nig attention */
2845 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2846 	if (bp->common.int_block == INT_BLOCK_HC) {
2847 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2848 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2849 	} else if (!CHIP_IS_E1x(bp)) {
2850 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2851 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2852 	}
2853 
2854 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2855 }
2856 
2857 /* end of Link */
2858 
2859 /* slow path */
2860 
2861 /*
2862  * General service functions
2863  */
2864 
2865 /* send the MCP a request, block until there is a reply */
2866 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2867 {
2868 	int mb_idx = BP_FW_MB_IDX(bp);
2869 	u32 seq;
2870 	u32 rc = 0;
2871 	u32 cnt = 1;
2872 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2873 
2874 	mutex_lock(&bp->fw_mb_mutex);
2875 	seq = ++bp->fw_seq;
2876 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2877 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2878 
2879 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2880 			(command | seq), param);
2881 
2882 	do {
2883 		/* let the FW do it's magic ... */
2884 		msleep(delay);
2885 
2886 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2887 
2888 		/* Give the FW up to 5 second (500*10ms) */
2889 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2890 
2891 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2892 	   cnt*delay, rc, seq);
2893 
2894 	/* is this a reply to our command? */
2895 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2896 		rc &= FW_MSG_CODE_MASK;
2897 	else {
2898 		/* FW BUG! */
2899 		BNX2X_ERR("FW failed to respond!\n");
2900 		bnx2x_fw_dump(bp);
2901 		rc = 0;
2902 	}
2903 	mutex_unlock(&bp->fw_mb_mutex);
2904 
2905 	return rc;
2906 }
2907 
2908 static void storm_memset_func_cfg(struct bnx2x *bp,
2909 				 struct tstorm_eth_function_common_config *tcfg,
2910 				 u16 abs_fid)
2911 {
2912 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2913 
2914 	u32 addr = BAR_TSTRORM_INTMEM +
2915 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2916 
2917 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2918 }
2919 
2920 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2921 {
2922 	if (CHIP_IS_E1x(bp)) {
2923 		struct tstorm_eth_function_common_config tcfg = {0};
2924 
2925 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2926 	}
2927 
2928 	/* Enable the function in the FW */
2929 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2930 	storm_memset_func_en(bp, p->func_id, 1);
2931 
2932 	/* spq */
2933 	if (p->func_flgs & FUNC_FLG_SPQ) {
2934 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2935 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2936 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2937 	}
2938 }
2939 
2940 /**
2941  * bnx2x_get_common_flags - Return common flags
2942  *
2943  * @bp		device handle
2944  * @fp		queue handle
2945  * @zero_stats	TRUE if statistics zeroing is needed
2946  *
2947  * Return the flags that are common for the Tx-only and not normal connections.
2948  */
2949 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2950 					    struct bnx2x_fastpath *fp,
2951 					    bool zero_stats)
2952 {
2953 	unsigned long flags = 0;
2954 
2955 	/* PF driver will always initialize the Queue to an ACTIVE state */
2956 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2957 
2958 	/* tx only connections collect statistics (on the same index as the
2959 	 * parent connection). The statistics are zeroed when the parent
2960 	 * connection is initialized.
2961 	 */
2962 
2963 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2964 	if (zero_stats)
2965 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2966 
2967 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2968 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2969 
2970 #ifdef BNX2X_STOP_ON_ERROR
2971 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2972 #endif
2973 
2974 	return flags;
2975 }
2976 
2977 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2978 				       struct bnx2x_fastpath *fp,
2979 				       bool leading)
2980 {
2981 	unsigned long flags = 0;
2982 
2983 	/* calculate other queue flags */
2984 	if (IS_MF_SD(bp))
2985 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2986 
2987 	if (IS_FCOE_FP(fp)) {
2988 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2989 		/* For FCoE - force usage of default priority (for afex) */
2990 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2991 	}
2992 
2993 	if (!fp->disable_tpa) {
2994 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2995 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2996 		if (fp->mode == TPA_MODE_GRO)
2997 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2998 	}
2999 
3000 	if (leading) {
3001 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3002 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3003 	}
3004 
3005 	/* Always set HW VLAN stripping */
3006 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3007 
3008 	/* configure silent vlan removal */
3009 	if (IS_MF_AFEX(bp))
3010 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3011 
3012 	return flags | bnx2x_get_common_flags(bp, fp, true);
3013 }
3014 
3015 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3016 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3017 	u8 cos)
3018 {
3019 	gen_init->stat_id = bnx2x_stats_id(fp);
3020 	gen_init->spcl_id = fp->cl_id;
3021 
3022 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3023 	if (IS_FCOE_FP(fp))
3024 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3025 	else
3026 		gen_init->mtu = bp->dev->mtu;
3027 
3028 	gen_init->cos = cos;
3029 }
3030 
3031 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3032 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3033 	struct bnx2x_rxq_setup_params *rxq_init)
3034 {
3035 	u8 max_sge = 0;
3036 	u16 sge_sz = 0;
3037 	u16 tpa_agg_size = 0;
3038 
3039 	if (!fp->disable_tpa) {
3040 		pause->sge_th_lo = SGE_TH_LO(bp);
3041 		pause->sge_th_hi = SGE_TH_HI(bp);
3042 
3043 		/* validate SGE ring has enough to cross high threshold */
3044 		WARN_ON(bp->dropless_fc &&
3045 				pause->sge_th_hi + FW_PREFETCH_CNT >
3046 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3047 
3048 		tpa_agg_size = TPA_AGG_SIZE;
3049 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3050 			SGE_PAGE_SHIFT;
3051 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3052 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3053 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3054 	}
3055 
3056 	/* pause - not for e1 */
3057 	if (!CHIP_IS_E1(bp)) {
3058 		pause->bd_th_lo = BD_TH_LO(bp);
3059 		pause->bd_th_hi = BD_TH_HI(bp);
3060 
3061 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3062 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3063 		/*
3064 		 * validate that rings have enough entries to cross
3065 		 * high thresholds
3066 		 */
3067 		WARN_ON(bp->dropless_fc &&
3068 				pause->bd_th_hi + FW_PREFETCH_CNT >
3069 				bp->rx_ring_size);
3070 		WARN_ON(bp->dropless_fc &&
3071 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3072 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3073 
3074 		pause->pri_map = 1;
3075 	}
3076 
3077 	/* rxq setup */
3078 	rxq_init->dscr_map = fp->rx_desc_mapping;
3079 	rxq_init->sge_map = fp->rx_sge_mapping;
3080 	rxq_init->rcq_map = fp->rx_comp_mapping;
3081 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3082 
3083 	/* This should be a maximum number of data bytes that may be
3084 	 * placed on the BD (not including paddings).
3085 	 */
3086 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3087 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3088 
3089 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3090 	rxq_init->tpa_agg_sz = tpa_agg_size;
3091 	rxq_init->sge_buf_sz = sge_sz;
3092 	rxq_init->max_sges_pkt = max_sge;
3093 	rxq_init->rss_engine_id = BP_FUNC(bp);
3094 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3095 
3096 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3097 	 *
3098 	 * For PF Clients it should be the maximum available number.
3099 	 * VF driver(s) may want to define it to a smaller value.
3100 	 */
3101 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3102 
3103 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3104 	rxq_init->fw_sb_id = fp->fw_sb_id;
3105 
3106 	if (IS_FCOE_FP(fp))
3107 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3108 	else
3109 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3110 	/* configure silent vlan removal
3111 	 * if multi function mode is afex, then mask default vlan
3112 	 */
3113 	if (IS_MF_AFEX(bp)) {
3114 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3115 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3116 	}
3117 }
3118 
3119 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3120 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3121 	u8 cos)
3122 {
3123 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3124 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3125 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3126 	txq_init->fw_sb_id = fp->fw_sb_id;
3127 
3128 	/*
3129 	 * set the tss leading client id for TX classification ==
3130 	 * leading RSS client id
3131 	 */
3132 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3133 
3134 	if (IS_FCOE_FP(fp)) {
3135 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3136 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3137 	}
3138 }
3139 
3140 static void bnx2x_pf_init(struct bnx2x *bp)
3141 {
3142 	struct bnx2x_func_init_params func_init = {0};
3143 	struct event_ring_data eq_data = { {0} };
3144 	u16 flags;
3145 
3146 	if (!CHIP_IS_E1x(bp)) {
3147 		/* reset IGU PF statistics: MSIX + ATTN */
3148 		/* PF */
3149 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3150 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3151 			   (CHIP_MODE_IS_4_PORT(bp) ?
3152 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3153 		/* ATTN */
3154 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3155 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3156 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3157 			   (CHIP_MODE_IS_4_PORT(bp) ?
3158 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3159 	}
3160 
3161 	/* function setup flags */
3162 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3163 
3164 	/* This flag is relevant for E1x only.
3165 	 * E2 doesn't have a TPA configuration in a function level.
3166 	 */
3167 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3168 
3169 	func_init.func_flgs = flags;
3170 	func_init.pf_id = BP_FUNC(bp);
3171 	func_init.func_id = BP_FUNC(bp);
3172 	func_init.spq_map = bp->spq_mapping;
3173 	func_init.spq_prod = bp->spq_prod_idx;
3174 
3175 	bnx2x_func_init(bp, &func_init);
3176 
3177 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3178 
3179 	/*
3180 	 * Congestion management values depend on the link rate
3181 	 * There is no active link so initial link rate is set to 10 Gbps.
3182 	 * When the link comes up The congestion management values are
3183 	 * re-calculated according to the actual link rate.
3184 	 */
3185 	bp->link_vars.line_speed = SPEED_10000;
3186 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3187 
3188 	/* Only the PMF sets the HW */
3189 	if (bp->port.pmf)
3190 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3191 
3192 	/* init Event Queue - PCI bus guarantees correct endianity*/
3193 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3194 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3195 	eq_data.producer = bp->eq_prod;
3196 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3197 	eq_data.sb_id = DEF_SB_ID;
3198 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3199 }
3200 
3201 static void bnx2x_e1h_disable(struct bnx2x *bp)
3202 {
3203 	int port = BP_PORT(bp);
3204 
3205 	bnx2x_tx_disable(bp);
3206 
3207 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3208 }
3209 
3210 static void bnx2x_e1h_enable(struct bnx2x *bp)
3211 {
3212 	int port = BP_PORT(bp);
3213 
3214 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3215 
3216 	/* Tx queue should be only re-enabled */
3217 	netif_tx_wake_all_queues(bp->dev);
3218 
3219 	/*
3220 	 * Should not call netif_carrier_on since it will be called if the link
3221 	 * is up when checking for link state
3222 	 */
3223 }
3224 
3225 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3226 
3227 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3228 {
3229 	struct eth_stats_info *ether_stat =
3230 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3231 	struct bnx2x_vlan_mac_obj *mac_obj =
3232 		&bp->sp_objs->mac_obj;
3233 	int i;
3234 
3235 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3236 		ETH_STAT_INFO_VERSION_LEN);
3237 
3238 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3239 	 * mac_local field in ether_stat struct. The base address is offset by 2
3240 	 * bytes to account for the field being 8 bytes but a mac address is
3241 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3242 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3243 	 * allocated by the ether_stat struct, so the macs will land in their
3244 	 * proper positions.
3245 	 */
3246 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3247 		memset(ether_stat->mac_local + i, 0,
3248 		       sizeof(ether_stat->mac_local[0]));
3249 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3250 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3251 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3252 				ETH_ALEN);
3253 	ether_stat->mtu_size = bp->dev->mtu;
3254 	if (bp->dev->features & NETIF_F_RXCSUM)
3255 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3256 	if (bp->dev->features & NETIF_F_TSO)
3257 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3258 	ether_stat->feature_flags |= bp->common.boot_mode;
3259 
3260 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3261 
3262 	ether_stat->txq_size = bp->tx_ring_size;
3263 	ether_stat->rxq_size = bp->rx_ring_size;
3264 }
3265 
3266 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3267 {
3268 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3269 	struct fcoe_stats_info *fcoe_stat =
3270 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3271 
3272 	if (!CNIC_LOADED(bp))
3273 		return;
3274 
3275 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3276 
3277 	fcoe_stat->qos_priority =
3278 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3279 
3280 	/* insert FCoE stats from ramrod response */
3281 	if (!NO_FCOE(bp)) {
3282 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3283 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3284 			tstorm_queue_statistics;
3285 
3286 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3287 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3288 			xstorm_queue_statistics;
3289 
3290 		struct fcoe_statistics_params *fw_fcoe_stat =
3291 			&bp->fw_stats_data->fcoe;
3292 
3293 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3294 			  fcoe_stat->rx_bytes_lo,
3295 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3296 
3297 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3298 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3299 			  fcoe_stat->rx_bytes_lo,
3300 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3301 
3302 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3303 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3304 			  fcoe_stat->rx_bytes_lo,
3305 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3306 
3307 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3308 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3309 			  fcoe_stat->rx_bytes_lo,
3310 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3311 
3312 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3313 			  fcoe_stat->rx_frames_lo,
3314 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3315 
3316 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3317 			  fcoe_stat->rx_frames_lo,
3318 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3319 
3320 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3321 			  fcoe_stat->rx_frames_lo,
3322 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3323 
3324 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3325 			  fcoe_stat->rx_frames_lo,
3326 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3327 
3328 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3329 			  fcoe_stat->tx_bytes_lo,
3330 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3331 
3332 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3333 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3334 			  fcoe_stat->tx_bytes_lo,
3335 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3336 
3337 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3338 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3339 			  fcoe_stat->tx_bytes_lo,
3340 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3341 
3342 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3343 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3344 			  fcoe_stat->tx_bytes_lo,
3345 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3346 
3347 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3348 			  fcoe_stat->tx_frames_lo,
3349 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3350 
3351 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3352 			  fcoe_stat->tx_frames_lo,
3353 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3354 
3355 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3356 			  fcoe_stat->tx_frames_lo,
3357 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3358 
3359 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3360 			  fcoe_stat->tx_frames_lo,
3361 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3362 	}
3363 
3364 	/* ask L5 driver to add data to the struct */
3365 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3366 }
3367 
3368 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3369 {
3370 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3371 	struct iscsi_stats_info *iscsi_stat =
3372 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3373 
3374 	if (!CNIC_LOADED(bp))
3375 		return;
3376 
3377 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3378 	       ETH_ALEN);
3379 
3380 	iscsi_stat->qos_priority =
3381 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3382 
3383 	/* ask L5 driver to add data to the struct */
3384 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3385 }
3386 
3387 /* called due to MCP event (on pmf):
3388  *	reread new bandwidth configuration
3389  *	configure FW
3390  *	notify others function about the change
3391  */
3392 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3393 {
3394 	if (bp->link_vars.link_up) {
3395 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3396 		bnx2x_link_sync_notify(bp);
3397 	}
3398 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3399 }
3400 
3401 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3402 {
3403 	bnx2x_config_mf_bw(bp);
3404 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3405 }
3406 
3407 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3408 {
3409 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3410 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3411 }
3412 
3413 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3414 {
3415 	enum drv_info_opcode op_code;
3416 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3417 
3418 	/* if drv_info version supported by MFW doesn't match - send NACK */
3419 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3420 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3421 		return;
3422 	}
3423 
3424 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3425 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3426 
3427 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3428 	       sizeof(union drv_info_to_mcp));
3429 
3430 	switch (op_code) {
3431 	case ETH_STATS_OPCODE:
3432 		bnx2x_drv_info_ether_stat(bp);
3433 		break;
3434 	case FCOE_STATS_OPCODE:
3435 		bnx2x_drv_info_fcoe_stat(bp);
3436 		break;
3437 	case ISCSI_STATS_OPCODE:
3438 		bnx2x_drv_info_iscsi_stat(bp);
3439 		break;
3440 	default:
3441 		/* if op code isn't supported - send NACK */
3442 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3443 		return;
3444 	}
3445 
3446 	/* if we got drv_info attn from MFW then these fields are defined in
3447 	 * shmem2 for sure
3448 	 */
3449 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3450 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3451 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3452 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3453 
3454 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3455 }
3456 
3457 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3458 {
3459 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3460 
3461 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3462 
3463 		/*
3464 		 * This is the only place besides the function initialization
3465 		 * where the bp->flags can change so it is done without any
3466 		 * locks
3467 		 */
3468 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3469 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3470 			bp->flags |= MF_FUNC_DIS;
3471 
3472 			bnx2x_e1h_disable(bp);
3473 		} else {
3474 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3475 			bp->flags &= ~MF_FUNC_DIS;
3476 
3477 			bnx2x_e1h_enable(bp);
3478 		}
3479 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3480 	}
3481 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3482 		bnx2x_config_mf_bw(bp);
3483 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3484 	}
3485 
3486 	/* Report results to MCP */
3487 	if (dcc_event)
3488 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3489 	else
3490 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3491 }
3492 
3493 /* must be called under the spq lock */
3494 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3495 {
3496 	struct eth_spe *next_spe = bp->spq_prod_bd;
3497 
3498 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3499 		bp->spq_prod_bd = bp->spq;
3500 		bp->spq_prod_idx = 0;
3501 		DP(BNX2X_MSG_SP, "end of spq\n");
3502 	} else {
3503 		bp->spq_prod_bd++;
3504 		bp->spq_prod_idx++;
3505 	}
3506 	return next_spe;
3507 }
3508 
3509 /* must be called under the spq lock */
3510 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3511 {
3512 	int func = BP_FUNC(bp);
3513 
3514 	/*
3515 	 * Make sure that BD data is updated before writing the producer:
3516 	 * BD data is written to the memory, the producer is read from the
3517 	 * memory, thus we need a full memory barrier to ensure the ordering.
3518 	 */
3519 	mb();
3520 
3521 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3522 		 bp->spq_prod_idx);
3523 	mmiowb();
3524 }
3525 
3526 /**
3527  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3528  *
3529  * @cmd:	command to check
3530  * @cmd_type:	command type
3531  */
3532 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3533 {
3534 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3535 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3536 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3537 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3538 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3539 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3540 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3541 		return true;
3542 	else
3543 		return false;
3544 }
3545 
3546 /**
3547  * bnx2x_sp_post - place a single command on an SP ring
3548  *
3549  * @bp:		driver handle
3550  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3551  * @cid:	SW CID the command is related to
3552  * @data_hi:	command private data address (high 32 bits)
3553  * @data_lo:	command private data address (low 32 bits)
3554  * @cmd_type:	command type (e.g. NONE, ETH)
3555  *
3556  * SP data is handled as if it's always an address pair, thus data fields are
3557  * not swapped to little endian in upper functions. Instead this function swaps
3558  * data as if it's two u32 fields.
3559  */
3560 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3561 		  u32 data_hi, u32 data_lo, int cmd_type)
3562 {
3563 	struct eth_spe *spe;
3564 	u16 type;
3565 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3566 
3567 #ifdef BNX2X_STOP_ON_ERROR
3568 	if (unlikely(bp->panic)) {
3569 		BNX2X_ERR("Can't post SP when there is panic\n");
3570 		return -EIO;
3571 	}
3572 #endif
3573 
3574 	spin_lock_bh(&bp->spq_lock);
3575 
3576 	if (common) {
3577 		if (!atomic_read(&bp->eq_spq_left)) {
3578 			BNX2X_ERR("BUG! EQ ring full!\n");
3579 			spin_unlock_bh(&bp->spq_lock);
3580 			bnx2x_panic();
3581 			return -EBUSY;
3582 		}
3583 	} else if (!atomic_read(&bp->cq_spq_left)) {
3584 			BNX2X_ERR("BUG! SPQ ring full!\n");
3585 			spin_unlock_bh(&bp->spq_lock);
3586 			bnx2x_panic();
3587 			return -EBUSY;
3588 	}
3589 
3590 	spe = bnx2x_sp_get_next(bp);
3591 
3592 	/* CID needs port number to be encoded int it */
3593 	spe->hdr.conn_and_cmd_data =
3594 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3595 				    HW_CID(bp, cid));
3596 
3597 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3598 
3599 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3600 		 SPE_HDR_FUNCTION_ID);
3601 
3602 	spe->hdr.type = cpu_to_le16(type);
3603 
3604 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3605 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3606 
3607 	/*
3608 	 * It's ok if the actual decrement is issued towards the memory
3609 	 * somewhere between the spin_lock and spin_unlock. Thus no
3610 	 * more explicit memory barrier is needed.
3611 	 */
3612 	if (common)
3613 		atomic_dec(&bp->eq_spq_left);
3614 	else
3615 		atomic_dec(&bp->cq_spq_left);
3616 
3617 	DP(BNX2X_MSG_SP,
3618 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3619 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3620 	   (u32)(U64_LO(bp->spq_mapping) +
3621 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3622 	   HW_CID(bp, cid), data_hi, data_lo, type,
3623 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3624 
3625 	bnx2x_sp_prod_update(bp);
3626 	spin_unlock_bh(&bp->spq_lock);
3627 	return 0;
3628 }
3629 
3630 /* acquire split MCP access lock register */
3631 static int bnx2x_acquire_alr(struct bnx2x *bp)
3632 {
3633 	u32 j, val;
3634 	int rc = 0;
3635 
3636 	might_sleep();
3637 	for (j = 0; j < 1000; j++) {
3638 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3639 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3640 		if (val & MCPR_ACCESS_LOCK_LOCK)
3641 			break;
3642 
3643 		usleep_range(5000, 10000);
3644 	}
3645 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3646 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3647 		rc = -EBUSY;
3648 	}
3649 
3650 	return rc;
3651 }
3652 
3653 /* release split MCP access lock register */
3654 static void bnx2x_release_alr(struct bnx2x *bp)
3655 {
3656 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3657 }
3658 
3659 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3660 #define BNX2X_DEF_SB_IDX	0x0002
3661 
3662 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3663 {
3664 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3665 	u16 rc = 0;
3666 
3667 	barrier(); /* status block is written to by the chip */
3668 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3669 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3670 		rc |= BNX2X_DEF_SB_ATT_IDX;
3671 	}
3672 
3673 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3674 		bp->def_idx = def_sb->sp_sb.running_index;
3675 		rc |= BNX2X_DEF_SB_IDX;
3676 	}
3677 
3678 	/* Do not reorder: indices reading should complete before handling */
3679 	barrier();
3680 	return rc;
3681 }
3682 
3683 /*
3684  * slow path service functions
3685  */
3686 
3687 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3688 {
3689 	int port = BP_PORT(bp);
3690 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3691 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3692 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3693 				       NIG_REG_MASK_INTERRUPT_PORT0;
3694 	u32 aeu_mask;
3695 	u32 nig_mask = 0;
3696 	u32 reg_addr;
3697 
3698 	if (bp->attn_state & asserted)
3699 		BNX2X_ERR("IGU ERROR\n");
3700 
3701 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3702 	aeu_mask = REG_RD(bp, aeu_addr);
3703 
3704 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3705 	   aeu_mask, asserted);
3706 	aeu_mask &= ~(asserted & 0x3ff);
3707 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3708 
3709 	REG_WR(bp, aeu_addr, aeu_mask);
3710 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3711 
3712 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3713 	bp->attn_state |= asserted;
3714 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3715 
3716 	if (asserted & ATTN_HARD_WIRED_MASK) {
3717 		if (asserted & ATTN_NIG_FOR_FUNC) {
3718 
3719 			bnx2x_acquire_phy_lock(bp);
3720 
3721 			/* save nig interrupt mask */
3722 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3723 
3724 			/* If nig_mask is not set, no need to call the update
3725 			 * function.
3726 			 */
3727 			if (nig_mask) {
3728 				REG_WR(bp, nig_int_mask_addr, 0);
3729 
3730 				bnx2x_link_attn(bp);
3731 			}
3732 
3733 			/* handle unicore attn? */
3734 		}
3735 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3736 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3737 
3738 		if (asserted & GPIO_2_FUNC)
3739 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3740 
3741 		if (asserted & GPIO_3_FUNC)
3742 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3743 
3744 		if (asserted & GPIO_4_FUNC)
3745 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3746 
3747 		if (port == 0) {
3748 			if (asserted & ATTN_GENERAL_ATTN_1) {
3749 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3750 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3751 			}
3752 			if (asserted & ATTN_GENERAL_ATTN_2) {
3753 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3754 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3755 			}
3756 			if (asserted & ATTN_GENERAL_ATTN_3) {
3757 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3758 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3759 			}
3760 		} else {
3761 			if (asserted & ATTN_GENERAL_ATTN_4) {
3762 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3763 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3764 			}
3765 			if (asserted & ATTN_GENERAL_ATTN_5) {
3766 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3767 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3768 			}
3769 			if (asserted & ATTN_GENERAL_ATTN_6) {
3770 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3771 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3772 			}
3773 		}
3774 
3775 	} /* if hardwired */
3776 
3777 	if (bp->common.int_block == INT_BLOCK_HC)
3778 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3779 			    COMMAND_REG_ATTN_BITS_SET);
3780 	else
3781 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3782 
3783 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3784 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3785 	REG_WR(bp, reg_addr, asserted);
3786 
3787 	/* now set back the mask */
3788 	if (asserted & ATTN_NIG_FOR_FUNC) {
3789 		/* Verify that IGU ack through BAR was written before restoring
3790 		 * NIG mask. This loop should exit after 2-3 iterations max.
3791 		 */
3792 		if (bp->common.int_block != INT_BLOCK_HC) {
3793 			u32 cnt = 0, igu_acked;
3794 			do {
3795 				igu_acked = REG_RD(bp,
3796 						   IGU_REG_ATTENTION_ACK_BITS);
3797 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3798 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3799 			if (!igu_acked)
3800 				DP(NETIF_MSG_HW,
3801 				   "Failed to verify IGU ack on time\n");
3802 			barrier();
3803 		}
3804 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3805 		bnx2x_release_phy_lock(bp);
3806 	}
3807 }
3808 
3809 static void bnx2x_fan_failure(struct bnx2x *bp)
3810 {
3811 	int port = BP_PORT(bp);
3812 	u32 ext_phy_config;
3813 	/* mark the failure */
3814 	ext_phy_config =
3815 		SHMEM_RD(bp,
3816 			 dev_info.port_hw_config[port].external_phy_config);
3817 
3818 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3819 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3820 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3821 		 ext_phy_config);
3822 
3823 	/* log the failure */
3824 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3825 			    "Please contact OEM Support for assistance\n");
3826 
3827 	/* Schedule device reset (unload)
3828 	 * This is due to some boards consuming sufficient power when driver is
3829 	 * up to overheat if fan fails.
3830 	 */
3831 	smp_mb__before_clear_bit();
3832 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3833 	smp_mb__after_clear_bit();
3834 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3835 }
3836 
3837 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3838 {
3839 	int port = BP_PORT(bp);
3840 	int reg_offset;
3841 	u32 val;
3842 
3843 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3844 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3845 
3846 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3847 
3848 		val = REG_RD(bp, reg_offset);
3849 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3850 		REG_WR(bp, reg_offset, val);
3851 
3852 		BNX2X_ERR("SPIO5 hw attention\n");
3853 
3854 		/* Fan failure attention */
3855 		bnx2x_hw_reset_phy(&bp->link_params);
3856 		bnx2x_fan_failure(bp);
3857 	}
3858 
3859 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3860 		bnx2x_acquire_phy_lock(bp);
3861 		bnx2x_handle_module_detect_int(&bp->link_params);
3862 		bnx2x_release_phy_lock(bp);
3863 	}
3864 
3865 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3866 
3867 		val = REG_RD(bp, reg_offset);
3868 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3869 		REG_WR(bp, reg_offset, val);
3870 
3871 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3872 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3873 		bnx2x_panic();
3874 	}
3875 }
3876 
3877 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3878 {
3879 	u32 val;
3880 
3881 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3882 
3883 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3884 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3885 		/* DORQ discard attention */
3886 		if (val & 0x2)
3887 			BNX2X_ERR("FATAL error from DORQ\n");
3888 	}
3889 
3890 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3891 
3892 		int port = BP_PORT(bp);
3893 		int reg_offset;
3894 
3895 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3896 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3897 
3898 		val = REG_RD(bp, reg_offset);
3899 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3900 		REG_WR(bp, reg_offset, val);
3901 
3902 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3903 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3904 		bnx2x_panic();
3905 	}
3906 }
3907 
3908 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3909 {
3910 	u32 val;
3911 
3912 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3913 
3914 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3915 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3916 		/* CFC error attention */
3917 		if (val & 0x2)
3918 			BNX2X_ERR("FATAL error from CFC\n");
3919 	}
3920 
3921 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3922 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3923 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3924 		/* RQ_USDMDP_FIFO_OVERFLOW */
3925 		if (val & 0x18000)
3926 			BNX2X_ERR("FATAL error from PXP\n");
3927 
3928 		if (!CHIP_IS_E1x(bp)) {
3929 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3930 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3931 		}
3932 	}
3933 
3934 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3935 
3936 		int port = BP_PORT(bp);
3937 		int reg_offset;
3938 
3939 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3940 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3941 
3942 		val = REG_RD(bp, reg_offset);
3943 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3944 		REG_WR(bp, reg_offset, val);
3945 
3946 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3947 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3948 		bnx2x_panic();
3949 	}
3950 }
3951 
3952 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3953 {
3954 	u32 val;
3955 
3956 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3957 
3958 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3959 			int func = BP_FUNC(bp);
3960 
3961 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3962 			bnx2x_read_mf_cfg(bp);
3963 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3964 					func_mf_config[BP_ABS_FUNC(bp)].config);
3965 			val = SHMEM_RD(bp,
3966 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3967 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3968 				bnx2x_dcc_event(bp,
3969 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3970 
3971 			if (val & DRV_STATUS_SET_MF_BW)
3972 				bnx2x_set_mf_bw(bp);
3973 
3974 			if (val & DRV_STATUS_DRV_INFO_REQ)
3975 				bnx2x_handle_drv_info_req(bp);
3976 
3977 			if (val & DRV_STATUS_VF_DISABLED)
3978 				bnx2x_vf_handle_flr_event(bp);
3979 
3980 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3981 				bnx2x_pmf_update(bp);
3982 
3983 			if (bp->port.pmf &&
3984 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3985 				bp->dcbx_enabled > 0)
3986 				/* start dcbx state machine */
3987 				bnx2x_dcbx_set_params(bp,
3988 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3989 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
3990 				bnx2x_handle_afex_cmd(bp,
3991 					val & DRV_STATUS_AFEX_EVENT_MASK);
3992 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3993 				bnx2x_handle_eee_event(bp);
3994 			if (bp->link_vars.periodic_flags &
3995 			    PERIODIC_FLAGS_LINK_EVENT) {
3996 				/*  sync with link */
3997 				bnx2x_acquire_phy_lock(bp);
3998 				bp->link_vars.periodic_flags &=
3999 					~PERIODIC_FLAGS_LINK_EVENT;
4000 				bnx2x_release_phy_lock(bp);
4001 				if (IS_MF(bp))
4002 					bnx2x_link_sync_notify(bp);
4003 				bnx2x_link_report(bp);
4004 			}
4005 			/* Always call it here: bnx2x_link_report() will
4006 			 * prevent the link indication duplication.
4007 			 */
4008 			bnx2x__link_status_update(bp);
4009 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4010 
4011 			BNX2X_ERR("MC assert!\n");
4012 			bnx2x_mc_assert(bp);
4013 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4014 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4015 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4016 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4017 			bnx2x_panic();
4018 
4019 		} else if (attn & BNX2X_MCP_ASSERT) {
4020 
4021 			BNX2X_ERR("MCP assert!\n");
4022 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4023 			bnx2x_fw_dump(bp);
4024 
4025 		} else
4026 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4027 	}
4028 
4029 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4030 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4031 		if (attn & BNX2X_GRC_TIMEOUT) {
4032 			val = CHIP_IS_E1(bp) ? 0 :
4033 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4034 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4035 		}
4036 		if (attn & BNX2X_GRC_RSV) {
4037 			val = CHIP_IS_E1(bp) ? 0 :
4038 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4039 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4040 		}
4041 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4042 	}
4043 }
4044 
4045 /*
4046  * Bits map:
4047  * 0-7   - Engine0 load counter.
4048  * 8-15  - Engine1 load counter.
4049  * 16    - Engine0 RESET_IN_PROGRESS bit.
4050  * 17    - Engine1 RESET_IN_PROGRESS bit.
4051  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4052  *         on the engine
4053  * 19    - Engine1 ONE_IS_LOADED.
4054  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4055  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4056  *         just the one belonging to its engine).
4057  *
4058  */
4059 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4060 
4061 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4062 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4063 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4064 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4065 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4066 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4067 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4068 
4069 /*
4070  * Set the GLOBAL_RESET bit.
4071  *
4072  * Should be run under rtnl lock
4073  */
4074 void bnx2x_set_reset_global(struct bnx2x *bp)
4075 {
4076 	u32 val;
4077 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4078 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4079 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4080 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4081 }
4082 
4083 /*
4084  * Clear the GLOBAL_RESET bit.
4085  *
4086  * Should be run under rtnl lock
4087  */
4088 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4089 {
4090 	u32 val;
4091 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4092 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4093 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4094 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4095 }
4096 
4097 /*
4098  * Checks the GLOBAL_RESET bit.
4099  *
4100  * should be run under rtnl lock
4101  */
4102 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4103 {
4104 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4105 
4106 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4107 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4108 }
4109 
4110 /*
4111  * Clear RESET_IN_PROGRESS bit for the current engine.
4112  *
4113  * Should be run under rtnl lock
4114  */
4115 static void bnx2x_set_reset_done(struct bnx2x *bp)
4116 {
4117 	u32 val;
4118 	u32 bit = BP_PATH(bp) ?
4119 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4120 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4121 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4122 
4123 	/* Clear the bit */
4124 	val &= ~bit;
4125 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4126 
4127 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4128 }
4129 
4130 /*
4131  * Set RESET_IN_PROGRESS for the current engine.
4132  *
4133  * should be run under rtnl lock
4134  */
4135 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4136 {
4137 	u32 val;
4138 	u32 bit = BP_PATH(bp) ?
4139 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4140 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4141 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4142 
4143 	/* Set the bit */
4144 	val |= bit;
4145 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4146 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4147 }
4148 
4149 /*
4150  * Checks the RESET_IN_PROGRESS bit for the given engine.
4151  * should be run under rtnl lock
4152  */
4153 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4154 {
4155 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4156 	u32 bit = engine ?
4157 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4158 
4159 	/* return false if bit is set */
4160 	return (val & bit) ? false : true;
4161 }
4162 
4163 /*
4164  * set pf load for the current pf.
4165  *
4166  * should be run under rtnl lock
4167  */
4168 void bnx2x_set_pf_load(struct bnx2x *bp)
4169 {
4170 	u32 val1, val;
4171 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4172 			     BNX2X_PATH0_LOAD_CNT_MASK;
4173 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4174 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4175 
4176 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4177 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4178 
4179 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4180 
4181 	/* get the current counter value */
4182 	val1 = (val & mask) >> shift;
4183 
4184 	/* set bit of that PF */
4185 	val1 |= (1 << bp->pf_num);
4186 
4187 	/* clear the old value */
4188 	val &= ~mask;
4189 
4190 	/* set the new one */
4191 	val |= ((val1 << shift) & mask);
4192 
4193 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4194 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4195 }
4196 
4197 /**
4198  * bnx2x_clear_pf_load - clear pf load mark
4199  *
4200  * @bp:		driver handle
4201  *
4202  * Should be run under rtnl lock.
4203  * Decrements the load counter for the current engine. Returns
4204  * whether other functions are still loaded
4205  */
4206 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4207 {
4208 	u32 val1, val;
4209 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4210 			     BNX2X_PATH0_LOAD_CNT_MASK;
4211 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4212 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4213 
4214 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4215 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4216 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4217 
4218 	/* get the current counter value */
4219 	val1 = (val & mask) >> shift;
4220 
4221 	/* clear bit of that PF */
4222 	val1 &= ~(1 << bp->pf_num);
4223 
4224 	/* clear the old value */
4225 	val &= ~mask;
4226 
4227 	/* set the new one */
4228 	val |= ((val1 << shift) & mask);
4229 
4230 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4231 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4232 	return val1 != 0;
4233 }
4234 
4235 /*
4236  * Read the load status for the current engine.
4237  *
4238  * should be run under rtnl lock
4239  */
4240 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4241 {
4242 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4243 			     BNX2X_PATH0_LOAD_CNT_MASK);
4244 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4245 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4246 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4247 
4248 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4249 
4250 	val = (val & mask) >> shift;
4251 
4252 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4253 	   engine, val);
4254 
4255 	return val != 0;
4256 }
4257 
4258 static void _print_parity(struct bnx2x *bp, u32 reg)
4259 {
4260 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4261 }
4262 
4263 static void _print_next_block(int idx, const char *blk)
4264 {
4265 	pr_cont("%s%s", idx ? ", " : "", blk);
4266 }
4267 
4268 static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4269 					    int par_num, bool print)
4270 {
4271 	int i = 0;
4272 	u32 cur_bit = 0;
4273 	for (i = 0; sig; i++) {
4274 		cur_bit = ((u32)0x1 << i);
4275 		if (sig & cur_bit) {
4276 			switch (cur_bit) {
4277 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4278 				if (print) {
4279 					_print_next_block(par_num++, "BRB");
4280 					_print_parity(bp,
4281 						      BRB1_REG_BRB1_PRTY_STS);
4282 				}
4283 				break;
4284 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4285 				if (print) {
4286 					_print_next_block(par_num++, "PARSER");
4287 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4288 				}
4289 				break;
4290 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4291 				if (print) {
4292 					_print_next_block(par_num++, "TSDM");
4293 					_print_parity(bp,
4294 						      TSDM_REG_TSDM_PRTY_STS);
4295 				}
4296 				break;
4297 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4298 				if (print) {
4299 					_print_next_block(par_num++,
4300 							  "SEARCHER");
4301 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4302 				}
4303 				break;
4304 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4305 				if (print) {
4306 					_print_next_block(par_num++, "TCM");
4307 					_print_parity(bp,
4308 						      TCM_REG_TCM_PRTY_STS);
4309 				}
4310 				break;
4311 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4312 				if (print) {
4313 					_print_next_block(par_num++, "TSEMI");
4314 					_print_parity(bp,
4315 						      TSEM_REG_TSEM_PRTY_STS_0);
4316 					_print_parity(bp,
4317 						      TSEM_REG_TSEM_PRTY_STS_1);
4318 				}
4319 				break;
4320 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4321 				if (print) {
4322 					_print_next_block(par_num++, "XPB");
4323 					_print_parity(bp, GRCBASE_XPB +
4324 							  PB_REG_PB_PRTY_STS);
4325 				}
4326 				break;
4327 			}
4328 
4329 			/* Clear the bit */
4330 			sig &= ~cur_bit;
4331 		}
4332 	}
4333 
4334 	return par_num;
4335 }
4336 
4337 static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4338 					    int par_num, bool *global,
4339 					    bool print)
4340 {
4341 	int i = 0;
4342 	u32 cur_bit = 0;
4343 	for (i = 0; sig; i++) {
4344 		cur_bit = ((u32)0x1 << i);
4345 		if (sig & cur_bit) {
4346 			switch (cur_bit) {
4347 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4348 				if (print) {
4349 					_print_next_block(par_num++, "PBF");
4350 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4351 				}
4352 				break;
4353 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4354 				if (print) {
4355 					_print_next_block(par_num++, "QM");
4356 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4357 				}
4358 				break;
4359 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4360 				if (print) {
4361 					_print_next_block(par_num++, "TM");
4362 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4363 				}
4364 				break;
4365 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4366 				if (print) {
4367 					_print_next_block(par_num++, "XSDM");
4368 					_print_parity(bp,
4369 						      XSDM_REG_XSDM_PRTY_STS);
4370 				}
4371 				break;
4372 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4373 				if (print) {
4374 					_print_next_block(par_num++, "XCM");
4375 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4376 				}
4377 				break;
4378 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4379 				if (print) {
4380 					_print_next_block(par_num++, "XSEMI");
4381 					_print_parity(bp,
4382 						      XSEM_REG_XSEM_PRTY_STS_0);
4383 					_print_parity(bp,
4384 						      XSEM_REG_XSEM_PRTY_STS_1);
4385 				}
4386 				break;
4387 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4388 				if (print) {
4389 					_print_next_block(par_num++,
4390 							  "DOORBELLQ");
4391 					_print_parity(bp,
4392 						      DORQ_REG_DORQ_PRTY_STS);
4393 				}
4394 				break;
4395 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4396 				if (print) {
4397 					_print_next_block(par_num++, "NIG");
4398 					if (CHIP_IS_E1x(bp)) {
4399 						_print_parity(bp,
4400 							NIG_REG_NIG_PRTY_STS);
4401 					} else {
4402 						_print_parity(bp,
4403 							NIG_REG_NIG_PRTY_STS_0);
4404 						_print_parity(bp,
4405 							NIG_REG_NIG_PRTY_STS_1);
4406 					}
4407 				}
4408 				break;
4409 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4410 				if (print)
4411 					_print_next_block(par_num++,
4412 							  "VAUX PCI CORE");
4413 				*global = true;
4414 				break;
4415 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4416 				if (print) {
4417 					_print_next_block(par_num++, "DEBUG");
4418 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4419 				}
4420 				break;
4421 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4422 				if (print) {
4423 					_print_next_block(par_num++, "USDM");
4424 					_print_parity(bp,
4425 						      USDM_REG_USDM_PRTY_STS);
4426 				}
4427 				break;
4428 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4429 				if (print) {
4430 					_print_next_block(par_num++, "UCM");
4431 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4432 				}
4433 				break;
4434 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4435 				if (print) {
4436 					_print_next_block(par_num++, "USEMI");
4437 					_print_parity(bp,
4438 						      USEM_REG_USEM_PRTY_STS_0);
4439 					_print_parity(bp,
4440 						      USEM_REG_USEM_PRTY_STS_1);
4441 				}
4442 				break;
4443 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4444 				if (print) {
4445 					_print_next_block(par_num++, "UPB");
4446 					_print_parity(bp, GRCBASE_UPB +
4447 							  PB_REG_PB_PRTY_STS);
4448 				}
4449 				break;
4450 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4451 				if (print) {
4452 					_print_next_block(par_num++, "CSDM");
4453 					_print_parity(bp,
4454 						      CSDM_REG_CSDM_PRTY_STS);
4455 				}
4456 				break;
4457 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4458 				if (print) {
4459 					_print_next_block(par_num++, "CCM");
4460 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4461 				}
4462 				break;
4463 			}
4464 
4465 			/* Clear the bit */
4466 			sig &= ~cur_bit;
4467 		}
4468 	}
4469 
4470 	return par_num;
4471 }
4472 
4473 static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4474 					    int par_num, bool print)
4475 {
4476 	int i = 0;
4477 	u32 cur_bit = 0;
4478 	for (i = 0; sig; i++) {
4479 		cur_bit = ((u32)0x1 << i);
4480 		if (sig & cur_bit) {
4481 			switch (cur_bit) {
4482 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4483 				if (print) {
4484 					_print_next_block(par_num++, "CSEMI");
4485 					_print_parity(bp,
4486 						      CSEM_REG_CSEM_PRTY_STS_0);
4487 					_print_parity(bp,
4488 						      CSEM_REG_CSEM_PRTY_STS_1);
4489 				}
4490 				break;
4491 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4492 				if (print) {
4493 					_print_next_block(par_num++, "PXP");
4494 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4495 					_print_parity(bp,
4496 						      PXP2_REG_PXP2_PRTY_STS_0);
4497 					_print_parity(bp,
4498 						      PXP2_REG_PXP2_PRTY_STS_1);
4499 				}
4500 				break;
4501 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4502 				if (print)
4503 					_print_next_block(par_num++,
4504 					"PXPPCICLOCKCLIENT");
4505 				break;
4506 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4507 				if (print) {
4508 					_print_next_block(par_num++, "CFC");
4509 					_print_parity(bp,
4510 						      CFC_REG_CFC_PRTY_STS);
4511 				}
4512 				break;
4513 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4514 				if (print) {
4515 					_print_next_block(par_num++, "CDU");
4516 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4517 				}
4518 				break;
4519 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4520 				if (print) {
4521 					_print_next_block(par_num++, "DMAE");
4522 					_print_parity(bp,
4523 						      DMAE_REG_DMAE_PRTY_STS);
4524 				}
4525 				break;
4526 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4527 				if (print) {
4528 					_print_next_block(par_num++, "IGU");
4529 					if (CHIP_IS_E1x(bp))
4530 						_print_parity(bp,
4531 							HC_REG_HC_PRTY_STS);
4532 					else
4533 						_print_parity(bp,
4534 							IGU_REG_IGU_PRTY_STS);
4535 				}
4536 				break;
4537 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4538 				if (print) {
4539 					_print_next_block(par_num++, "MISC");
4540 					_print_parity(bp,
4541 						      MISC_REG_MISC_PRTY_STS);
4542 				}
4543 				break;
4544 			}
4545 
4546 			/* Clear the bit */
4547 			sig &= ~cur_bit;
4548 		}
4549 	}
4550 
4551 	return par_num;
4552 }
4553 
4554 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4555 					   bool *global, bool print)
4556 {
4557 	int i = 0;
4558 	u32 cur_bit = 0;
4559 	for (i = 0; sig; i++) {
4560 		cur_bit = ((u32)0x1 << i);
4561 		if (sig & cur_bit) {
4562 			switch (cur_bit) {
4563 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4564 				if (print)
4565 					_print_next_block(par_num++, "MCP ROM");
4566 				*global = true;
4567 				break;
4568 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4569 				if (print)
4570 					_print_next_block(par_num++,
4571 							  "MCP UMP RX");
4572 				*global = true;
4573 				break;
4574 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4575 				if (print)
4576 					_print_next_block(par_num++,
4577 							  "MCP UMP TX");
4578 				*global = true;
4579 				break;
4580 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4581 				if (print)
4582 					_print_next_block(par_num++,
4583 							  "MCP SCPAD");
4584 				*global = true;
4585 				break;
4586 			}
4587 
4588 			/* Clear the bit */
4589 			sig &= ~cur_bit;
4590 		}
4591 	}
4592 
4593 	return par_num;
4594 }
4595 
4596 static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4597 					    int par_num, bool print)
4598 {
4599 	int i = 0;
4600 	u32 cur_bit = 0;
4601 	for (i = 0; sig; i++) {
4602 		cur_bit = ((u32)0x1 << i);
4603 		if (sig & cur_bit) {
4604 			switch (cur_bit) {
4605 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4606 				if (print) {
4607 					_print_next_block(par_num++, "PGLUE_B");
4608 					_print_parity(bp,
4609 						PGLUE_B_REG_PGLUE_B_PRTY_STS);
4610 				}
4611 				break;
4612 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4613 				if (print) {
4614 					_print_next_block(par_num++, "ATC");
4615 					_print_parity(bp,
4616 						      ATC_REG_ATC_PRTY_STS);
4617 				}
4618 				break;
4619 			}
4620 
4621 			/* Clear the bit */
4622 			sig &= ~cur_bit;
4623 		}
4624 	}
4625 
4626 	return par_num;
4627 }
4628 
4629 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4630 			      u32 *sig)
4631 {
4632 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4633 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4634 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4635 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4636 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4637 		int par_num = 0;
4638 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4639 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4640 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4641 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4642 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4643 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4644 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4645 		if (print)
4646 			netdev_err(bp->dev,
4647 				   "Parity errors detected in blocks: ");
4648 		par_num = bnx2x_check_blocks_with_parity0(bp,
4649 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4650 		par_num = bnx2x_check_blocks_with_parity1(bp,
4651 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4652 		par_num = bnx2x_check_blocks_with_parity2(bp,
4653 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4654 		par_num = bnx2x_check_blocks_with_parity3(
4655 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4656 		par_num = bnx2x_check_blocks_with_parity4(bp,
4657 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4658 
4659 		if (print)
4660 			pr_cont("\n");
4661 
4662 		return true;
4663 	} else
4664 		return false;
4665 }
4666 
4667 /**
4668  * bnx2x_chk_parity_attn - checks for parity attentions.
4669  *
4670  * @bp:		driver handle
4671  * @global:	true if there was a global attention
4672  * @print:	show parity attention in syslog
4673  */
4674 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4675 {
4676 	struct attn_route attn = { {0} };
4677 	int port = BP_PORT(bp);
4678 
4679 	attn.sig[0] = REG_RD(bp,
4680 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4681 			     port*4);
4682 	attn.sig[1] = REG_RD(bp,
4683 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4684 			     port*4);
4685 	attn.sig[2] = REG_RD(bp,
4686 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4687 			     port*4);
4688 	attn.sig[3] = REG_RD(bp,
4689 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4690 			     port*4);
4691 
4692 	if (!CHIP_IS_E1x(bp))
4693 		attn.sig[4] = REG_RD(bp,
4694 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4695 				     port*4);
4696 
4697 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4698 }
4699 
4700 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4701 {
4702 	u32 val;
4703 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4704 
4705 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4706 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4707 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4708 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4709 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4710 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4711 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4712 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4713 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4714 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4715 		if (val &
4716 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4717 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4718 		if (val &
4719 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4720 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4721 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4722 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4723 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4724 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4725 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4726 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4727 	}
4728 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4729 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4730 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4731 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4732 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4733 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4734 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4735 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4736 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4737 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4738 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4739 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4740 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4741 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4742 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4743 	}
4744 
4745 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4746 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4747 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4748 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4749 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4750 	}
4751 }
4752 
4753 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4754 {
4755 	struct attn_route attn, *group_mask;
4756 	int port = BP_PORT(bp);
4757 	int index;
4758 	u32 reg_addr;
4759 	u32 val;
4760 	u32 aeu_mask;
4761 	bool global = false;
4762 
4763 	/* need to take HW lock because MCP or other port might also
4764 	   try to handle this event */
4765 	bnx2x_acquire_alr(bp);
4766 
4767 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4768 #ifndef BNX2X_STOP_ON_ERROR
4769 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4770 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4771 		/* Disable HW interrupts */
4772 		bnx2x_int_disable(bp);
4773 		/* In case of parity errors don't handle attentions so that
4774 		 * other function would "see" parity errors.
4775 		 */
4776 #else
4777 		bnx2x_panic();
4778 #endif
4779 		bnx2x_release_alr(bp);
4780 		return;
4781 	}
4782 
4783 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4784 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4785 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4786 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4787 	if (!CHIP_IS_E1x(bp))
4788 		attn.sig[4] =
4789 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4790 	else
4791 		attn.sig[4] = 0;
4792 
4793 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4794 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4795 
4796 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4797 		if (deasserted & (1 << index)) {
4798 			group_mask = &bp->attn_group[index];
4799 
4800 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4801 			   index,
4802 			   group_mask->sig[0], group_mask->sig[1],
4803 			   group_mask->sig[2], group_mask->sig[3],
4804 			   group_mask->sig[4]);
4805 
4806 			bnx2x_attn_int_deasserted4(bp,
4807 					attn.sig[4] & group_mask->sig[4]);
4808 			bnx2x_attn_int_deasserted3(bp,
4809 					attn.sig[3] & group_mask->sig[3]);
4810 			bnx2x_attn_int_deasserted1(bp,
4811 					attn.sig[1] & group_mask->sig[1]);
4812 			bnx2x_attn_int_deasserted2(bp,
4813 					attn.sig[2] & group_mask->sig[2]);
4814 			bnx2x_attn_int_deasserted0(bp,
4815 					attn.sig[0] & group_mask->sig[0]);
4816 		}
4817 	}
4818 
4819 	bnx2x_release_alr(bp);
4820 
4821 	if (bp->common.int_block == INT_BLOCK_HC)
4822 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4823 			    COMMAND_REG_ATTN_BITS_CLR);
4824 	else
4825 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4826 
4827 	val = ~deasserted;
4828 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4829 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4830 	REG_WR(bp, reg_addr, val);
4831 
4832 	if (~bp->attn_state & deasserted)
4833 		BNX2X_ERR("IGU ERROR\n");
4834 
4835 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4836 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4837 
4838 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4839 	aeu_mask = REG_RD(bp, reg_addr);
4840 
4841 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4842 	   aeu_mask, deasserted);
4843 	aeu_mask |= (deasserted & 0x3ff);
4844 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4845 
4846 	REG_WR(bp, reg_addr, aeu_mask);
4847 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4848 
4849 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4850 	bp->attn_state &= ~deasserted;
4851 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4852 }
4853 
4854 static void bnx2x_attn_int(struct bnx2x *bp)
4855 {
4856 	/* read local copy of bits */
4857 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4858 								attn_bits);
4859 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4860 								attn_bits_ack);
4861 	u32 attn_state = bp->attn_state;
4862 
4863 	/* look for changed bits */
4864 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4865 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4866 
4867 	DP(NETIF_MSG_HW,
4868 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4869 	   attn_bits, attn_ack, asserted, deasserted);
4870 
4871 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4872 		BNX2X_ERR("BAD attention state\n");
4873 
4874 	/* handle bits that were raised */
4875 	if (asserted)
4876 		bnx2x_attn_int_asserted(bp, asserted);
4877 
4878 	if (deasserted)
4879 		bnx2x_attn_int_deasserted(bp, deasserted);
4880 }
4881 
4882 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4883 		      u16 index, u8 op, u8 update)
4884 {
4885 	u32 igu_addr = bp->igu_base_addr;
4886 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4887 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4888 			     igu_addr);
4889 }
4890 
4891 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4892 {
4893 	/* No memory barriers */
4894 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4895 	mmiowb(); /* keep prod updates ordered */
4896 }
4897 
4898 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4899 				      union event_ring_elem *elem)
4900 {
4901 	u8 err = elem->message.error;
4902 
4903 	if (!bp->cnic_eth_dev.starting_cid  ||
4904 	    (cid < bp->cnic_eth_dev.starting_cid &&
4905 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4906 		return 1;
4907 
4908 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4909 
4910 	if (unlikely(err)) {
4911 
4912 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4913 			  cid);
4914 		bnx2x_panic_dump(bp, false);
4915 	}
4916 	bnx2x_cnic_cfc_comp(bp, cid, err);
4917 	return 0;
4918 }
4919 
4920 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4921 {
4922 	struct bnx2x_mcast_ramrod_params rparam;
4923 	int rc;
4924 
4925 	memset(&rparam, 0, sizeof(rparam));
4926 
4927 	rparam.mcast_obj = &bp->mcast_obj;
4928 
4929 	netif_addr_lock_bh(bp->dev);
4930 
4931 	/* Clear pending state for the last command */
4932 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4933 
4934 	/* If there are pending mcast commands - send them */
4935 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4936 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4937 		if (rc < 0)
4938 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4939 				  rc);
4940 	}
4941 
4942 	netif_addr_unlock_bh(bp->dev);
4943 }
4944 
4945 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4946 					    union event_ring_elem *elem)
4947 {
4948 	unsigned long ramrod_flags = 0;
4949 	int rc = 0;
4950 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4951 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4952 
4953 	/* Always push next commands out, don't wait here */
4954 	__set_bit(RAMROD_CONT, &ramrod_flags);
4955 
4956 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4957 			    >> BNX2X_SWCID_SHIFT) {
4958 	case BNX2X_FILTER_MAC_PENDING:
4959 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4960 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4961 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4962 		else
4963 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4964 
4965 		break;
4966 	case BNX2X_FILTER_MCAST_PENDING:
4967 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4968 		/* This is only relevant for 57710 where multicast MACs are
4969 		 * configured as unicast MACs using the same ramrod.
4970 		 */
4971 		bnx2x_handle_mcast_eqe(bp);
4972 		return;
4973 	default:
4974 		BNX2X_ERR("Unsupported classification command: %d\n",
4975 			  elem->message.data.eth_event.echo);
4976 		return;
4977 	}
4978 
4979 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4980 
4981 	if (rc < 0)
4982 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4983 	else if (rc > 0)
4984 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4985 }
4986 
4987 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4988 
4989 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4990 {
4991 	netif_addr_lock_bh(bp->dev);
4992 
4993 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4994 
4995 	/* Send rx_mode command again if was requested */
4996 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4997 		bnx2x_set_storm_rx_mode(bp);
4998 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4999 				    &bp->sp_state))
5000 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5001 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5002 				    &bp->sp_state))
5003 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5004 
5005 	netif_addr_unlock_bh(bp->dev);
5006 }
5007 
5008 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5009 					      union event_ring_elem *elem)
5010 {
5011 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5012 		DP(BNX2X_MSG_SP,
5013 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5014 		   elem->message.data.vif_list_event.func_bit_map);
5015 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5016 			elem->message.data.vif_list_event.func_bit_map);
5017 	} else if (elem->message.data.vif_list_event.echo ==
5018 		   VIF_LIST_RULE_SET) {
5019 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5020 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5021 	}
5022 }
5023 
5024 /* called with rtnl_lock */
5025 static void bnx2x_after_function_update(struct bnx2x *bp)
5026 {
5027 	int q, rc;
5028 	struct bnx2x_fastpath *fp;
5029 	struct bnx2x_queue_state_params queue_params = {NULL};
5030 	struct bnx2x_queue_update_params *q_update_params =
5031 		&queue_params.params.update;
5032 
5033 	/* Send Q update command with afex vlan removal values for all Qs */
5034 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5035 
5036 	/* set silent vlan removal values according to vlan mode */
5037 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5038 		  &q_update_params->update_flags);
5039 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5040 		  &q_update_params->update_flags);
5041 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5042 
5043 	/* in access mode mark mask and value are 0 to strip all vlans */
5044 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5045 		q_update_params->silent_removal_value = 0;
5046 		q_update_params->silent_removal_mask = 0;
5047 	} else {
5048 		q_update_params->silent_removal_value =
5049 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5050 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5051 	}
5052 
5053 	for_each_eth_queue(bp, q) {
5054 		/* Set the appropriate Queue object */
5055 		fp = &bp->fp[q];
5056 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5057 
5058 		/* send the ramrod */
5059 		rc = bnx2x_queue_state_change(bp, &queue_params);
5060 		if (rc < 0)
5061 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5062 				  q);
5063 	}
5064 
5065 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5066 		fp = &bp->fp[FCOE_IDX(bp)];
5067 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5068 
5069 		/* clear pending completion bit */
5070 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5071 
5072 		/* mark latest Q bit */
5073 		smp_mb__before_clear_bit();
5074 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5075 		smp_mb__after_clear_bit();
5076 
5077 		/* send Q update ramrod for FCoE Q */
5078 		rc = bnx2x_queue_state_change(bp, &queue_params);
5079 		if (rc < 0)
5080 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5081 				  q);
5082 	} else {
5083 		/* If no FCoE ring - ACK MCP now */
5084 		bnx2x_link_report(bp);
5085 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5086 	}
5087 }
5088 
5089 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5090 	struct bnx2x *bp, u32 cid)
5091 {
5092 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5093 
5094 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5095 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5096 	else
5097 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5098 }
5099 
5100 static void bnx2x_eq_int(struct bnx2x *bp)
5101 {
5102 	u16 hw_cons, sw_cons, sw_prod;
5103 	union event_ring_elem *elem;
5104 	u8 echo;
5105 	u32 cid;
5106 	u8 opcode;
5107 	int rc, spqe_cnt = 0;
5108 	struct bnx2x_queue_sp_obj *q_obj;
5109 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5110 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5111 
5112 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5113 
5114 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5115 	 * when we get the next-page we need to adjust so the loop
5116 	 * condition below will be met. The next element is the size of a
5117 	 * regular element and hence incrementing by 1
5118 	 */
5119 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5120 		hw_cons++;
5121 
5122 	/* This function may never run in parallel with itself for a
5123 	 * specific bp, thus there is no need in "paired" read memory
5124 	 * barrier here.
5125 	 */
5126 	sw_cons = bp->eq_cons;
5127 	sw_prod = bp->eq_prod;
5128 
5129 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5130 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5131 
5132 	for (; sw_cons != hw_cons;
5133 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5134 
5135 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5136 
5137 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5138 		if (!rc) {
5139 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5140 			   rc);
5141 			goto next_spqe;
5142 		}
5143 
5144 		/* elem CID originates from FW; actually LE */
5145 		cid = SW_CID((__force __le32)
5146 			     elem->message.data.cfc_del_event.cid);
5147 		opcode = elem->message.opcode;
5148 
5149 		/* handle eq element */
5150 		switch (opcode) {
5151 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5152 			DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5153 			bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5154 			continue;
5155 
5156 		case EVENT_RING_OPCODE_STAT_QUERY:
5157 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5158 			   "got statistics comp event %d\n",
5159 			   bp->stats_comp++);
5160 			/* nothing to do with stats comp */
5161 			goto next_spqe;
5162 
5163 		case EVENT_RING_OPCODE_CFC_DEL:
5164 			/* handle according to cid range */
5165 			/*
5166 			 * we may want to verify here that the bp state is
5167 			 * HALTING
5168 			 */
5169 			DP(BNX2X_MSG_SP,
5170 			   "got delete ramrod for MULTI[%d]\n", cid);
5171 
5172 			if (CNIC_LOADED(bp) &&
5173 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5174 				goto next_spqe;
5175 
5176 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5177 
5178 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5179 				break;
5180 
5181 			goto next_spqe;
5182 
5183 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5184 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5185 			if (f_obj->complete_cmd(bp, f_obj,
5186 						BNX2X_F_CMD_TX_STOP))
5187 				break;
5188 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5189 			goto next_spqe;
5190 
5191 		case EVENT_RING_OPCODE_START_TRAFFIC:
5192 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5193 			if (f_obj->complete_cmd(bp, f_obj,
5194 						BNX2X_F_CMD_TX_START))
5195 				break;
5196 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5197 			goto next_spqe;
5198 
5199 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5200 			echo = elem->message.data.function_update_event.echo;
5201 			if (echo == SWITCH_UPDATE) {
5202 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5203 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5204 				if (f_obj->complete_cmd(
5205 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5206 					break;
5207 
5208 			} else {
5209 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5210 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5211 				f_obj->complete_cmd(bp, f_obj,
5212 						    BNX2X_F_CMD_AFEX_UPDATE);
5213 
5214 				/* We will perform the Queues update from
5215 				 * sp_rtnl task as all Queue SP operations
5216 				 * should run under rtnl_lock.
5217 				 */
5218 				smp_mb__before_clear_bit();
5219 				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5220 					&bp->sp_rtnl_state);
5221 				smp_mb__after_clear_bit();
5222 
5223 				schedule_delayed_work(&bp->sp_rtnl_task, 0);
5224 			}
5225 
5226 			goto next_spqe;
5227 
5228 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5229 			f_obj->complete_cmd(bp, f_obj,
5230 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5231 			bnx2x_after_afex_vif_lists(bp, elem);
5232 			goto next_spqe;
5233 		case EVENT_RING_OPCODE_FUNCTION_START:
5234 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5235 			   "got FUNC_START ramrod\n");
5236 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5237 				break;
5238 
5239 			goto next_spqe;
5240 
5241 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5242 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5243 			   "got FUNC_STOP ramrod\n");
5244 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5245 				break;
5246 
5247 			goto next_spqe;
5248 		}
5249 
5250 		switch (opcode | bp->state) {
5251 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5252 		      BNX2X_STATE_OPEN):
5253 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5254 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5255 			cid = elem->message.data.eth_event.echo &
5256 				BNX2X_SWCID_MASK;
5257 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5258 			   cid);
5259 			rss_raw->clear_pending(rss_raw);
5260 			break;
5261 
5262 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5263 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5264 		case (EVENT_RING_OPCODE_SET_MAC |
5265 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5266 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5267 		      BNX2X_STATE_OPEN):
5268 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5269 		      BNX2X_STATE_DIAG):
5270 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5271 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5272 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5273 			bnx2x_handle_classification_eqe(bp, elem);
5274 			break;
5275 
5276 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5277 		      BNX2X_STATE_OPEN):
5278 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5279 		      BNX2X_STATE_DIAG):
5280 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5281 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5282 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5283 			bnx2x_handle_mcast_eqe(bp);
5284 			break;
5285 
5286 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5287 		      BNX2X_STATE_OPEN):
5288 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5289 		      BNX2X_STATE_DIAG):
5290 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5291 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5292 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5293 			bnx2x_handle_rx_mode_eqe(bp);
5294 			break;
5295 		default:
5296 			/* unknown event log error and continue */
5297 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5298 				  elem->message.opcode, bp->state);
5299 		}
5300 next_spqe:
5301 		spqe_cnt++;
5302 	} /* for */
5303 
5304 	smp_mb__before_atomic_inc();
5305 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5306 
5307 	bp->eq_cons = sw_cons;
5308 	bp->eq_prod = sw_prod;
5309 	/* Make sure that above mem writes were issued towards the memory */
5310 	smp_wmb();
5311 
5312 	/* update producer */
5313 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5314 }
5315 
5316 static void bnx2x_sp_task(struct work_struct *work)
5317 {
5318 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5319 
5320 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5321 
5322 	/* make sure the atomic interrupt_occurred has been written */
5323 	smp_rmb();
5324 	if (atomic_read(&bp->interrupt_occurred)) {
5325 
5326 		/* what work needs to be performed? */
5327 		u16 status = bnx2x_update_dsb_idx(bp);
5328 
5329 		DP(BNX2X_MSG_SP, "status %x\n", status);
5330 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5331 		atomic_set(&bp->interrupt_occurred, 0);
5332 
5333 		/* HW attentions */
5334 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5335 			bnx2x_attn_int(bp);
5336 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5337 		}
5338 
5339 		/* SP events: STAT_QUERY and others */
5340 		if (status & BNX2X_DEF_SB_IDX) {
5341 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5342 
5343 		if (FCOE_INIT(bp) &&
5344 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5345 				/* Prevent local bottom-halves from running as
5346 				 * we are going to change the local NAPI list.
5347 				 */
5348 				local_bh_disable();
5349 				napi_schedule(&bnx2x_fcoe(bp, napi));
5350 				local_bh_enable();
5351 			}
5352 
5353 			/* Handle EQ completions */
5354 			bnx2x_eq_int(bp);
5355 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5356 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5357 
5358 			status &= ~BNX2X_DEF_SB_IDX;
5359 		}
5360 
5361 		/* if status is non zero then perhaps something went wrong */
5362 		if (unlikely(status))
5363 			DP(BNX2X_MSG_SP,
5364 			   "got an unknown interrupt! (status 0x%x)\n", status);
5365 
5366 		/* ack status block only if something was actually handled */
5367 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5368 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5369 	}
5370 
5371 	/* must be called after the EQ processing (since eq leads to sriov
5372 	 * ramrod completion flows).
5373 	 * This flow may have been scheduled by the arrival of a ramrod
5374 	 * completion, or by the sriov code rescheduling itself.
5375 	 */
5376 	bnx2x_iov_sp_task(bp);
5377 
5378 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5379 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5380 			       &bp->sp_state)) {
5381 		bnx2x_link_report(bp);
5382 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5383 	}
5384 }
5385 
5386 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5387 {
5388 	struct net_device *dev = dev_instance;
5389 	struct bnx2x *bp = netdev_priv(dev);
5390 
5391 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5392 		     IGU_INT_DISABLE, 0);
5393 
5394 #ifdef BNX2X_STOP_ON_ERROR
5395 	if (unlikely(bp->panic))
5396 		return IRQ_HANDLED;
5397 #endif
5398 
5399 	if (CNIC_LOADED(bp)) {
5400 		struct cnic_ops *c_ops;
5401 
5402 		rcu_read_lock();
5403 		c_ops = rcu_dereference(bp->cnic_ops);
5404 		if (c_ops)
5405 			c_ops->cnic_handler(bp->cnic_data, NULL);
5406 		rcu_read_unlock();
5407 	}
5408 
5409 	/* schedule sp task to perform default status block work, ack
5410 	 * attentions and enable interrupts.
5411 	 */
5412 	bnx2x_schedule_sp_task(bp);
5413 
5414 	return IRQ_HANDLED;
5415 }
5416 
5417 /* end of slow path */
5418 
5419 void bnx2x_drv_pulse(struct bnx2x *bp)
5420 {
5421 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5422 		 bp->fw_drv_pulse_wr_seq);
5423 }
5424 
5425 static void bnx2x_timer(unsigned long data)
5426 {
5427 	struct bnx2x *bp = (struct bnx2x *) data;
5428 
5429 	if (!netif_running(bp->dev))
5430 		return;
5431 
5432 	if (IS_PF(bp) &&
5433 	    !BP_NOMCP(bp)) {
5434 		int mb_idx = BP_FW_MB_IDX(bp);
5435 		u32 drv_pulse;
5436 		u32 mcp_pulse;
5437 
5438 		++bp->fw_drv_pulse_wr_seq;
5439 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5440 		/* TBD - add SYSTEM_TIME */
5441 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5442 		bnx2x_drv_pulse(bp);
5443 
5444 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5445 			     MCP_PULSE_SEQ_MASK);
5446 		/* The delta between driver pulse and mcp response
5447 		 * should be 1 (before mcp response) or 0 (after mcp response)
5448 		 */
5449 		if ((drv_pulse != mcp_pulse) &&
5450 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5451 			/* someone lost a heartbeat... */
5452 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5453 				  drv_pulse, mcp_pulse);
5454 		}
5455 	}
5456 
5457 	if (bp->state == BNX2X_STATE_OPEN)
5458 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5459 
5460 	/* sample pf vf bulletin board for new posts from pf */
5461 	if (IS_VF(bp))
5462 		bnx2x_sample_bulletin(bp);
5463 
5464 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5465 }
5466 
5467 /* end of Statistics */
5468 
5469 /* nic init */
5470 
5471 /*
5472  * nic init service functions
5473  */
5474 
5475 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5476 {
5477 	u32 i;
5478 	if (!(len%4) && !(addr%4))
5479 		for (i = 0; i < len; i += 4)
5480 			REG_WR(bp, addr + i, fill);
5481 	else
5482 		for (i = 0; i < len; i++)
5483 			REG_WR8(bp, addr + i, fill);
5484 }
5485 
5486 /* helper: writes FP SP data to FW - data_size in dwords */
5487 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5488 				int fw_sb_id,
5489 				u32 *sb_data_p,
5490 				u32 data_size)
5491 {
5492 	int index;
5493 	for (index = 0; index < data_size; index++)
5494 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5495 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5496 			sizeof(u32)*index,
5497 			*(sb_data_p + index));
5498 }
5499 
5500 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5501 {
5502 	u32 *sb_data_p;
5503 	u32 data_size = 0;
5504 	struct hc_status_block_data_e2 sb_data_e2;
5505 	struct hc_status_block_data_e1x sb_data_e1x;
5506 
5507 	/* disable the function first */
5508 	if (!CHIP_IS_E1x(bp)) {
5509 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5510 		sb_data_e2.common.state = SB_DISABLED;
5511 		sb_data_e2.common.p_func.vf_valid = false;
5512 		sb_data_p = (u32 *)&sb_data_e2;
5513 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5514 	} else {
5515 		memset(&sb_data_e1x, 0,
5516 		       sizeof(struct hc_status_block_data_e1x));
5517 		sb_data_e1x.common.state = SB_DISABLED;
5518 		sb_data_e1x.common.p_func.vf_valid = false;
5519 		sb_data_p = (u32 *)&sb_data_e1x;
5520 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5521 	}
5522 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5523 
5524 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5525 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5526 			CSTORM_STATUS_BLOCK_SIZE);
5527 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5528 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5529 			CSTORM_SYNC_BLOCK_SIZE);
5530 }
5531 
5532 /* helper:  writes SP SB data to FW */
5533 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5534 		struct hc_sp_status_block_data *sp_sb_data)
5535 {
5536 	int func = BP_FUNC(bp);
5537 	int i;
5538 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5539 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5540 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5541 			i*sizeof(u32),
5542 			*((u32 *)sp_sb_data + i));
5543 }
5544 
5545 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5546 {
5547 	int func = BP_FUNC(bp);
5548 	struct hc_sp_status_block_data sp_sb_data;
5549 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5550 
5551 	sp_sb_data.state = SB_DISABLED;
5552 	sp_sb_data.p_func.vf_valid = false;
5553 
5554 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5555 
5556 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5557 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5558 			CSTORM_SP_STATUS_BLOCK_SIZE);
5559 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5560 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5561 			CSTORM_SP_SYNC_BLOCK_SIZE);
5562 }
5563 
5564 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5565 					   int igu_sb_id, int igu_seg_id)
5566 {
5567 	hc_sm->igu_sb_id = igu_sb_id;
5568 	hc_sm->igu_seg_id = igu_seg_id;
5569 	hc_sm->timer_value = 0xFF;
5570 	hc_sm->time_to_expire = 0xFFFFFFFF;
5571 }
5572 
5573 /* allocates state machine ids. */
5574 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5575 {
5576 	/* zero out state machine indices */
5577 	/* rx indices */
5578 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5579 
5580 	/* tx indices */
5581 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5582 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5583 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5584 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5585 
5586 	/* map indices */
5587 	/* rx indices */
5588 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5589 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5590 
5591 	/* tx indices */
5592 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5593 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5594 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5595 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5596 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5597 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5598 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5599 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5600 }
5601 
5602 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5603 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5604 {
5605 	int igu_seg_id;
5606 
5607 	struct hc_status_block_data_e2 sb_data_e2;
5608 	struct hc_status_block_data_e1x sb_data_e1x;
5609 	struct hc_status_block_sm  *hc_sm_p;
5610 	int data_size;
5611 	u32 *sb_data_p;
5612 
5613 	if (CHIP_INT_MODE_IS_BC(bp))
5614 		igu_seg_id = HC_SEG_ACCESS_NORM;
5615 	else
5616 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5617 
5618 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5619 
5620 	if (!CHIP_IS_E1x(bp)) {
5621 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5622 		sb_data_e2.common.state = SB_ENABLED;
5623 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5624 		sb_data_e2.common.p_func.vf_id = vfid;
5625 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5626 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5627 		sb_data_e2.common.same_igu_sb_1b = true;
5628 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5629 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5630 		hc_sm_p = sb_data_e2.common.state_machine;
5631 		sb_data_p = (u32 *)&sb_data_e2;
5632 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5633 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5634 	} else {
5635 		memset(&sb_data_e1x, 0,
5636 		       sizeof(struct hc_status_block_data_e1x));
5637 		sb_data_e1x.common.state = SB_ENABLED;
5638 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5639 		sb_data_e1x.common.p_func.vf_id = 0xff;
5640 		sb_data_e1x.common.p_func.vf_valid = false;
5641 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5642 		sb_data_e1x.common.same_igu_sb_1b = true;
5643 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5644 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5645 		hc_sm_p = sb_data_e1x.common.state_machine;
5646 		sb_data_p = (u32 *)&sb_data_e1x;
5647 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5648 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5649 	}
5650 
5651 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5652 				       igu_sb_id, igu_seg_id);
5653 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5654 				       igu_sb_id, igu_seg_id);
5655 
5656 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5657 
5658 	/* write indices to HW - PCI guarantees endianity of regpairs */
5659 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5660 }
5661 
5662 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5663 				     u16 tx_usec, u16 rx_usec)
5664 {
5665 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5666 				    false, rx_usec);
5667 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5668 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5669 				       tx_usec);
5670 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5671 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5672 				       tx_usec);
5673 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5674 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5675 				       tx_usec);
5676 }
5677 
5678 static void bnx2x_init_def_sb(struct bnx2x *bp)
5679 {
5680 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5681 	dma_addr_t mapping = bp->def_status_blk_mapping;
5682 	int igu_sp_sb_index;
5683 	int igu_seg_id;
5684 	int port = BP_PORT(bp);
5685 	int func = BP_FUNC(bp);
5686 	int reg_offset, reg_offset_en5;
5687 	u64 section;
5688 	int index;
5689 	struct hc_sp_status_block_data sp_sb_data;
5690 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5691 
5692 	if (CHIP_INT_MODE_IS_BC(bp)) {
5693 		igu_sp_sb_index = DEF_SB_IGU_ID;
5694 		igu_seg_id = HC_SEG_ACCESS_DEF;
5695 	} else {
5696 		igu_sp_sb_index = bp->igu_dsb_id;
5697 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5698 	}
5699 
5700 	/* ATTN */
5701 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5702 					    atten_status_block);
5703 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5704 
5705 	bp->attn_state = 0;
5706 
5707 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5708 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5709 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5710 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5711 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5712 		int sindex;
5713 		/* take care of sig[0]..sig[4] */
5714 		for (sindex = 0; sindex < 4; sindex++)
5715 			bp->attn_group[index].sig[sindex] =
5716 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5717 
5718 		if (!CHIP_IS_E1x(bp))
5719 			/*
5720 			 * enable5 is separate from the rest of the registers,
5721 			 * and therefore the address skip is 4
5722 			 * and not 16 between the different groups
5723 			 */
5724 			bp->attn_group[index].sig[4] = REG_RD(bp,
5725 					reg_offset_en5 + 0x4*index);
5726 		else
5727 			bp->attn_group[index].sig[4] = 0;
5728 	}
5729 
5730 	if (bp->common.int_block == INT_BLOCK_HC) {
5731 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5732 				     HC_REG_ATTN_MSG0_ADDR_L);
5733 
5734 		REG_WR(bp, reg_offset, U64_LO(section));
5735 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5736 	} else if (!CHIP_IS_E1x(bp)) {
5737 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5738 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5739 	}
5740 
5741 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5742 					    sp_sb);
5743 
5744 	bnx2x_zero_sp_sb(bp);
5745 
5746 	/* PCI guarantees endianity of regpairs */
5747 	sp_sb_data.state		= SB_ENABLED;
5748 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5749 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5750 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5751 	sp_sb_data.igu_seg_id		= igu_seg_id;
5752 	sp_sb_data.p_func.pf_id		= func;
5753 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5754 	sp_sb_data.p_func.vf_id		= 0xff;
5755 
5756 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5757 
5758 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5759 }
5760 
5761 void bnx2x_update_coalesce(struct bnx2x *bp)
5762 {
5763 	int i;
5764 
5765 	for_each_eth_queue(bp, i)
5766 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5767 					 bp->tx_ticks, bp->rx_ticks);
5768 }
5769 
5770 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5771 {
5772 	spin_lock_init(&bp->spq_lock);
5773 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5774 
5775 	bp->spq_prod_idx = 0;
5776 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5777 	bp->spq_prod_bd = bp->spq;
5778 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5779 }
5780 
5781 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5782 {
5783 	int i;
5784 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5785 		union event_ring_elem *elem =
5786 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5787 
5788 		elem->next_page.addr.hi =
5789 			cpu_to_le32(U64_HI(bp->eq_mapping +
5790 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5791 		elem->next_page.addr.lo =
5792 			cpu_to_le32(U64_LO(bp->eq_mapping +
5793 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5794 	}
5795 	bp->eq_cons = 0;
5796 	bp->eq_prod = NUM_EQ_DESC;
5797 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5798 	/* we want a warning message before it gets wrought... */
5799 	atomic_set(&bp->eq_spq_left,
5800 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5801 }
5802 
5803 /* called with netif_addr_lock_bh() */
5804 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5805 			unsigned long rx_mode_flags,
5806 			unsigned long rx_accept_flags,
5807 			unsigned long tx_accept_flags,
5808 			unsigned long ramrod_flags)
5809 {
5810 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5811 	int rc;
5812 
5813 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5814 
5815 	/* Prepare ramrod parameters */
5816 	ramrod_param.cid = 0;
5817 	ramrod_param.cl_id = cl_id;
5818 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5819 	ramrod_param.func_id = BP_FUNC(bp);
5820 
5821 	ramrod_param.pstate = &bp->sp_state;
5822 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5823 
5824 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5825 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5826 
5827 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5828 
5829 	ramrod_param.ramrod_flags = ramrod_flags;
5830 	ramrod_param.rx_mode_flags = rx_mode_flags;
5831 
5832 	ramrod_param.rx_accept_flags = rx_accept_flags;
5833 	ramrod_param.tx_accept_flags = tx_accept_flags;
5834 
5835 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5836 	if (rc < 0) {
5837 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5838 		return rc;
5839 	}
5840 
5841 	return 0;
5842 }
5843 
5844 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5845 				   unsigned long *rx_accept_flags,
5846 				   unsigned long *tx_accept_flags)
5847 {
5848 	/* Clear the flags first */
5849 	*rx_accept_flags = 0;
5850 	*tx_accept_flags = 0;
5851 
5852 	switch (rx_mode) {
5853 	case BNX2X_RX_MODE_NONE:
5854 		/*
5855 		 * 'drop all' supersedes any accept flags that may have been
5856 		 * passed to the function.
5857 		 */
5858 		break;
5859 	case BNX2X_RX_MODE_NORMAL:
5860 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5861 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5862 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5863 
5864 		/* internal switching mode */
5865 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5866 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5867 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5868 
5869 		break;
5870 	case BNX2X_RX_MODE_ALLMULTI:
5871 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5872 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5873 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5874 
5875 		/* internal switching mode */
5876 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5877 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5878 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5879 
5880 		break;
5881 	case BNX2X_RX_MODE_PROMISC:
5882 		/* According to definition of SI mode, iface in promisc mode
5883 		 * should receive matched and unmatched (in resolution of port)
5884 		 * unicast packets.
5885 		 */
5886 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5887 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5888 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5889 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5890 
5891 		/* internal switching mode */
5892 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5893 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5894 
5895 		if (IS_MF_SI(bp))
5896 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5897 		else
5898 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5899 
5900 		break;
5901 	default:
5902 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5903 		return -EINVAL;
5904 	}
5905 
5906 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5907 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5908 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5909 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5910 	}
5911 
5912 	return 0;
5913 }
5914 
5915 /* called with netif_addr_lock_bh() */
5916 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5917 {
5918 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5919 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5920 	int rc;
5921 
5922 	if (!NO_FCOE(bp))
5923 		/* Configure rx_mode of FCoE Queue */
5924 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5925 
5926 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5927 				     &tx_accept_flags);
5928 	if (rc)
5929 		return rc;
5930 
5931 	__set_bit(RAMROD_RX, &ramrod_flags);
5932 	__set_bit(RAMROD_TX, &ramrod_flags);
5933 
5934 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5935 				   rx_accept_flags, tx_accept_flags,
5936 				   ramrod_flags);
5937 }
5938 
5939 static void bnx2x_init_internal_common(struct bnx2x *bp)
5940 {
5941 	int i;
5942 
5943 	if (IS_MF_SI(bp))
5944 		/*
5945 		 * In switch independent mode, the TSTORM needs to accept
5946 		 * packets that failed classification, since approximate match
5947 		 * mac addresses aren't written to NIG LLH
5948 		 */
5949 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5950 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5951 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5952 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5953 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5954 
5955 	/* Zero this manually as its initialization is
5956 	   currently missing in the initTool */
5957 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5958 		REG_WR(bp, BAR_USTRORM_INTMEM +
5959 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5960 	if (!CHIP_IS_E1x(bp)) {
5961 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5962 			CHIP_INT_MODE_IS_BC(bp) ?
5963 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5964 	}
5965 }
5966 
5967 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5968 {
5969 	switch (load_code) {
5970 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5971 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5972 		bnx2x_init_internal_common(bp);
5973 		/* no break */
5974 
5975 	case FW_MSG_CODE_DRV_LOAD_PORT:
5976 		/* nothing to do */
5977 		/* no break */
5978 
5979 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5980 		/* internal memory per function is
5981 		   initialized inside bnx2x_pf_init */
5982 		break;
5983 
5984 	default:
5985 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5986 		break;
5987 	}
5988 }
5989 
5990 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5991 {
5992 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5993 }
5994 
5995 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5996 {
5997 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
5998 }
5999 
6000 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6001 {
6002 	if (CHIP_IS_E1x(fp->bp))
6003 		return BP_L_ID(fp->bp) + fp->index;
6004 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6005 		return bnx2x_fp_igu_sb_id(fp);
6006 }
6007 
6008 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6009 {
6010 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6011 	u8 cos;
6012 	unsigned long q_type = 0;
6013 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6014 	fp->rx_queue = fp_idx;
6015 	fp->cid = fp_idx;
6016 	fp->cl_id = bnx2x_fp_cl_id(fp);
6017 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6018 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6019 	/* qZone id equals to FW (per path) client id */
6020 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6021 
6022 	/* init shortcut */
6023 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6024 
6025 	/* Setup SB indices */
6026 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6027 
6028 	/* Configure Queue State object */
6029 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6030 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6031 
6032 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6033 
6034 	/* init tx data */
6035 	for_each_cos_in_tx_queue(fp, cos) {
6036 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6037 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6038 				  FP_COS_TO_TXQ(fp, cos, bp),
6039 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6040 		cids[cos] = fp->txdata_ptr[cos]->cid;
6041 	}
6042 
6043 	/* nothing more for vf to do here */
6044 	if (IS_VF(bp))
6045 		return;
6046 
6047 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6048 		      fp->fw_sb_id, fp->igu_sb_id);
6049 	bnx2x_update_fpsb_idx(fp);
6050 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6051 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6052 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6053 
6054 	/**
6055 	 * Configure classification DBs: Always enable Tx switching
6056 	 */
6057 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6058 
6059 	DP(NETIF_MSG_IFUP,
6060 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6061 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6062 	   fp->igu_sb_id);
6063 }
6064 
6065 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6066 {
6067 	int i;
6068 
6069 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6070 		struct eth_tx_next_bd *tx_next_bd =
6071 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6072 
6073 		tx_next_bd->addr_hi =
6074 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6075 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6076 		tx_next_bd->addr_lo =
6077 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6078 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6079 	}
6080 
6081 	*txdata->tx_cons_sb = cpu_to_le16(0);
6082 
6083 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6084 	txdata->tx_db.data.zero_fill1 = 0;
6085 	txdata->tx_db.data.prod = 0;
6086 
6087 	txdata->tx_pkt_prod = 0;
6088 	txdata->tx_pkt_cons = 0;
6089 	txdata->tx_bd_prod = 0;
6090 	txdata->tx_bd_cons = 0;
6091 	txdata->tx_pkt = 0;
6092 }
6093 
6094 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6095 {
6096 	int i;
6097 
6098 	for_each_tx_queue_cnic(bp, i)
6099 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6100 }
6101 
6102 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6103 {
6104 	int i;
6105 	u8 cos;
6106 
6107 	for_each_eth_queue(bp, i)
6108 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6109 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6110 }
6111 
6112 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6113 {
6114 	if (!NO_FCOE(bp))
6115 		bnx2x_init_fcoe_fp(bp);
6116 
6117 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6118 		      BNX2X_VF_ID_INVALID, false,
6119 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6120 
6121 	/* ensure status block indices were read */
6122 	rmb();
6123 	bnx2x_init_rx_rings_cnic(bp);
6124 	bnx2x_init_tx_rings_cnic(bp);
6125 
6126 	/* flush all */
6127 	mb();
6128 	mmiowb();
6129 }
6130 
6131 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6132 {
6133 	int i;
6134 
6135 	/* Setup NIC internals and enable interrupts */
6136 	for_each_eth_queue(bp, i)
6137 		bnx2x_init_eth_fp(bp, i);
6138 
6139 	/* ensure status block indices were read */
6140 	rmb();
6141 	bnx2x_init_rx_rings(bp);
6142 	bnx2x_init_tx_rings(bp);
6143 
6144 	if (IS_PF(bp)) {
6145 		/* Initialize MOD_ABS interrupts */
6146 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6147 				       bp->common.shmem_base,
6148 				       bp->common.shmem2_base, BP_PORT(bp));
6149 
6150 		/* initialize the default status block and sp ring */
6151 		bnx2x_init_def_sb(bp);
6152 		bnx2x_update_dsb_idx(bp);
6153 		bnx2x_init_sp_ring(bp);
6154 	} else {
6155 		bnx2x_memset_stats(bp);
6156 	}
6157 }
6158 
6159 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6160 {
6161 	bnx2x_init_eq_ring(bp);
6162 	bnx2x_init_internal(bp, load_code);
6163 	bnx2x_pf_init(bp);
6164 	bnx2x_stats_init(bp);
6165 
6166 	/* flush all before enabling interrupts */
6167 	mb();
6168 	mmiowb();
6169 
6170 	bnx2x_int_enable(bp);
6171 
6172 	/* Check for SPIO5 */
6173 	bnx2x_attn_int_deasserted0(bp,
6174 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6175 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6176 }
6177 
6178 /* gzip service functions */
6179 static int bnx2x_gunzip_init(struct bnx2x *bp)
6180 {
6181 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6182 					    &bp->gunzip_mapping, GFP_KERNEL);
6183 	if (bp->gunzip_buf  == NULL)
6184 		goto gunzip_nomem1;
6185 
6186 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6187 	if (bp->strm  == NULL)
6188 		goto gunzip_nomem2;
6189 
6190 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6191 	if (bp->strm->workspace == NULL)
6192 		goto gunzip_nomem3;
6193 
6194 	return 0;
6195 
6196 gunzip_nomem3:
6197 	kfree(bp->strm);
6198 	bp->strm = NULL;
6199 
6200 gunzip_nomem2:
6201 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6202 			  bp->gunzip_mapping);
6203 	bp->gunzip_buf = NULL;
6204 
6205 gunzip_nomem1:
6206 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6207 	return -ENOMEM;
6208 }
6209 
6210 static void bnx2x_gunzip_end(struct bnx2x *bp)
6211 {
6212 	if (bp->strm) {
6213 		vfree(bp->strm->workspace);
6214 		kfree(bp->strm);
6215 		bp->strm = NULL;
6216 	}
6217 
6218 	if (bp->gunzip_buf) {
6219 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6220 				  bp->gunzip_mapping);
6221 		bp->gunzip_buf = NULL;
6222 	}
6223 }
6224 
6225 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6226 {
6227 	int n, rc;
6228 
6229 	/* check gzip header */
6230 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6231 		BNX2X_ERR("Bad gzip header\n");
6232 		return -EINVAL;
6233 	}
6234 
6235 	n = 10;
6236 
6237 #define FNAME				0x8
6238 
6239 	if (zbuf[3] & FNAME)
6240 		while ((zbuf[n++] != 0) && (n < len));
6241 
6242 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6243 	bp->strm->avail_in = len - n;
6244 	bp->strm->next_out = bp->gunzip_buf;
6245 	bp->strm->avail_out = FW_BUF_SIZE;
6246 
6247 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6248 	if (rc != Z_OK)
6249 		return rc;
6250 
6251 	rc = zlib_inflate(bp->strm, Z_FINISH);
6252 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6253 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6254 			   bp->strm->msg);
6255 
6256 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6257 	if (bp->gunzip_outlen & 0x3)
6258 		netdev_err(bp->dev,
6259 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6260 				bp->gunzip_outlen);
6261 	bp->gunzip_outlen >>= 2;
6262 
6263 	zlib_inflateEnd(bp->strm);
6264 
6265 	if (rc == Z_STREAM_END)
6266 		return 0;
6267 
6268 	return rc;
6269 }
6270 
6271 /* nic load/unload */
6272 
6273 /*
6274  * General service functions
6275  */
6276 
6277 /* send a NIG loopback debug packet */
6278 static void bnx2x_lb_pckt(struct bnx2x *bp)
6279 {
6280 	u32 wb_write[3];
6281 
6282 	/* Ethernet source and destination addresses */
6283 	wb_write[0] = 0x55555555;
6284 	wb_write[1] = 0x55555555;
6285 	wb_write[2] = 0x20;		/* SOP */
6286 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6287 
6288 	/* NON-IP protocol */
6289 	wb_write[0] = 0x09000000;
6290 	wb_write[1] = 0x55555555;
6291 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6292 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6293 }
6294 
6295 /* some of the internal memories
6296  * are not directly readable from the driver
6297  * to test them we send debug packets
6298  */
6299 static int bnx2x_int_mem_test(struct bnx2x *bp)
6300 {
6301 	int factor;
6302 	int count, i;
6303 	u32 val = 0;
6304 
6305 	if (CHIP_REV_IS_FPGA(bp))
6306 		factor = 120;
6307 	else if (CHIP_REV_IS_EMUL(bp))
6308 		factor = 200;
6309 	else
6310 		factor = 1;
6311 
6312 	/* Disable inputs of parser neighbor blocks */
6313 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6314 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6315 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6316 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6317 
6318 	/*  Write 0 to parser credits for CFC search request */
6319 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6320 
6321 	/* send Ethernet packet */
6322 	bnx2x_lb_pckt(bp);
6323 
6324 	/* TODO do i reset NIG statistic? */
6325 	/* Wait until NIG register shows 1 packet of size 0x10 */
6326 	count = 1000 * factor;
6327 	while (count) {
6328 
6329 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6330 		val = *bnx2x_sp(bp, wb_data[0]);
6331 		if (val == 0x10)
6332 			break;
6333 
6334 		usleep_range(10000, 20000);
6335 		count--;
6336 	}
6337 	if (val != 0x10) {
6338 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6339 		return -1;
6340 	}
6341 
6342 	/* Wait until PRS register shows 1 packet */
6343 	count = 1000 * factor;
6344 	while (count) {
6345 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6346 		if (val == 1)
6347 			break;
6348 
6349 		usleep_range(10000, 20000);
6350 		count--;
6351 	}
6352 	if (val != 0x1) {
6353 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6354 		return -2;
6355 	}
6356 
6357 	/* Reset and init BRB, PRS */
6358 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6359 	msleep(50);
6360 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6361 	msleep(50);
6362 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6363 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6364 
6365 	DP(NETIF_MSG_HW, "part2\n");
6366 
6367 	/* Disable inputs of parser neighbor blocks */
6368 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6369 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6370 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6371 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6372 
6373 	/* Write 0 to parser credits for CFC search request */
6374 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6375 
6376 	/* send 10 Ethernet packets */
6377 	for (i = 0; i < 10; i++)
6378 		bnx2x_lb_pckt(bp);
6379 
6380 	/* Wait until NIG register shows 10 + 1
6381 	   packets of size 11*0x10 = 0xb0 */
6382 	count = 1000 * factor;
6383 	while (count) {
6384 
6385 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6386 		val = *bnx2x_sp(bp, wb_data[0]);
6387 		if (val == 0xb0)
6388 			break;
6389 
6390 		usleep_range(10000, 20000);
6391 		count--;
6392 	}
6393 	if (val != 0xb0) {
6394 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6395 		return -3;
6396 	}
6397 
6398 	/* Wait until PRS register shows 2 packets */
6399 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6400 	if (val != 2)
6401 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6402 
6403 	/* Write 1 to parser credits for CFC search request */
6404 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6405 
6406 	/* Wait until PRS register shows 3 packets */
6407 	msleep(10 * factor);
6408 	/* Wait until NIG register shows 1 packet of size 0x10 */
6409 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6410 	if (val != 3)
6411 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6412 
6413 	/* clear NIG EOP FIFO */
6414 	for (i = 0; i < 11; i++)
6415 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6416 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6417 	if (val != 1) {
6418 		BNX2X_ERR("clear of NIG failed\n");
6419 		return -4;
6420 	}
6421 
6422 	/* Reset and init BRB, PRS, NIG */
6423 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6424 	msleep(50);
6425 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6426 	msleep(50);
6427 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6428 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6429 	if (!CNIC_SUPPORT(bp))
6430 		/* set NIC mode */
6431 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6432 
6433 	/* Enable inputs of parser neighbor blocks */
6434 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6435 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6436 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6437 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6438 
6439 	DP(NETIF_MSG_HW, "done\n");
6440 
6441 	return 0; /* OK */
6442 }
6443 
6444 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6445 {
6446 	u32 val;
6447 
6448 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6449 	if (!CHIP_IS_E1x(bp))
6450 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6451 	else
6452 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6453 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6454 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6455 	/*
6456 	 * mask read length error interrupts in brb for parser
6457 	 * (parsing unit and 'checksum and crc' unit)
6458 	 * these errors are legal (PU reads fixed length and CAC can cause
6459 	 * read length error on truncated packets)
6460 	 */
6461 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6462 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6463 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6464 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6465 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6466 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6467 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6468 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6469 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6470 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6471 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6472 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6473 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6474 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6475 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6476 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6477 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6478 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6479 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6480 
6481 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6482 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6483 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6484 	if (!CHIP_IS_E1x(bp))
6485 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6486 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6487 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6488 
6489 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6490 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6491 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6492 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6493 
6494 	if (!CHIP_IS_E1x(bp))
6495 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6496 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6497 
6498 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6499 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6500 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6501 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6502 }
6503 
6504 static void bnx2x_reset_common(struct bnx2x *bp)
6505 {
6506 	u32 val = 0x1400;
6507 
6508 	/* reset_common */
6509 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6510 	       0xd3ffff7f);
6511 
6512 	if (CHIP_IS_E3(bp)) {
6513 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6514 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6515 	}
6516 
6517 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6518 }
6519 
6520 static void bnx2x_setup_dmae(struct bnx2x *bp)
6521 {
6522 	bp->dmae_ready = 0;
6523 	spin_lock_init(&bp->dmae_lock);
6524 }
6525 
6526 static void bnx2x_init_pxp(struct bnx2x *bp)
6527 {
6528 	u16 devctl;
6529 	int r_order, w_order;
6530 
6531 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6532 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6533 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6534 	if (bp->mrrs == -1)
6535 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6536 	else {
6537 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6538 		r_order = bp->mrrs;
6539 	}
6540 
6541 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6542 }
6543 
6544 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6545 {
6546 	int is_required;
6547 	u32 val;
6548 	int port;
6549 
6550 	if (BP_NOMCP(bp))
6551 		return;
6552 
6553 	is_required = 0;
6554 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6555 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6556 
6557 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6558 		is_required = 1;
6559 
6560 	/*
6561 	 * The fan failure mechanism is usually related to the PHY type since
6562 	 * the power consumption of the board is affected by the PHY. Currently,
6563 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6564 	 */
6565 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6566 		for (port = PORT_0; port < PORT_MAX; port++) {
6567 			is_required |=
6568 				bnx2x_fan_failure_det_req(
6569 					bp,
6570 					bp->common.shmem_base,
6571 					bp->common.shmem2_base,
6572 					port);
6573 		}
6574 
6575 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6576 
6577 	if (is_required == 0)
6578 		return;
6579 
6580 	/* Fan failure is indicated by SPIO 5 */
6581 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6582 
6583 	/* set to active low mode */
6584 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6585 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6586 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6587 
6588 	/* enable interrupt to signal the IGU */
6589 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6590 	val |= MISC_SPIO_SPIO5;
6591 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6592 }
6593 
6594 void bnx2x_pf_disable(struct bnx2x *bp)
6595 {
6596 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6597 	val &= ~IGU_PF_CONF_FUNC_EN;
6598 
6599 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6600 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6601 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6602 }
6603 
6604 static void bnx2x__common_init_phy(struct bnx2x *bp)
6605 {
6606 	u32 shmem_base[2], shmem2_base[2];
6607 	/* Avoid common init in case MFW supports LFA */
6608 	if (SHMEM2_RD(bp, size) >
6609 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6610 		return;
6611 	shmem_base[0] =  bp->common.shmem_base;
6612 	shmem2_base[0] = bp->common.shmem2_base;
6613 	if (!CHIP_IS_E1x(bp)) {
6614 		shmem_base[1] =
6615 			SHMEM2_RD(bp, other_shmem_base_addr);
6616 		shmem2_base[1] =
6617 			SHMEM2_RD(bp, other_shmem2_base_addr);
6618 	}
6619 	bnx2x_acquire_phy_lock(bp);
6620 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6621 			      bp->common.chip_id);
6622 	bnx2x_release_phy_lock(bp);
6623 }
6624 
6625 /**
6626  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6627  *
6628  * @bp:		driver handle
6629  */
6630 static int bnx2x_init_hw_common(struct bnx2x *bp)
6631 {
6632 	u32 val;
6633 
6634 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6635 
6636 	/*
6637 	 * take the RESET lock to protect undi_unload flow from accessing
6638 	 * registers while we're resetting the chip
6639 	 */
6640 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6641 
6642 	bnx2x_reset_common(bp);
6643 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6644 
6645 	val = 0xfffc;
6646 	if (CHIP_IS_E3(bp)) {
6647 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6648 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6649 	}
6650 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6651 
6652 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6653 
6654 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6655 
6656 	if (!CHIP_IS_E1x(bp)) {
6657 		u8 abs_func_id;
6658 
6659 		/**
6660 		 * 4-port mode or 2-port mode we need to turn of master-enable
6661 		 * for everyone, after that, turn it back on for self.
6662 		 * so, we disregard multi-function or not, and always disable
6663 		 * for all functions on the given path, this means 0,2,4,6 for
6664 		 * path 0 and 1,3,5,7 for path 1
6665 		 */
6666 		for (abs_func_id = BP_PATH(bp);
6667 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6668 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6669 				REG_WR(bp,
6670 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6671 				    1);
6672 				continue;
6673 			}
6674 
6675 			bnx2x_pretend_func(bp, abs_func_id);
6676 			/* clear pf enable */
6677 			bnx2x_pf_disable(bp);
6678 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6679 		}
6680 	}
6681 
6682 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6683 	if (CHIP_IS_E1(bp)) {
6684 		/* enable HW interrupt from PXP on USDM overflow
6685 		   bit 16 on INT_MASK_0 */
6686 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6687 	}
6688 
6689 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6690 	bnx2x_init_pxp(bp);
6691 
6692 #ifdef __BIG_ENDIAN
6693 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6694 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6695 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6696 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6697 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6698 	/* make sure this value is 0 */
6699 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6700 
6701 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6702 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6703 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6704 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6705 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6706 #endif
6707 
6708 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6709 
6710 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6711 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6712 
6713 	/* let the HW do it's magic ... */
6714 	msleep(100);
6715 	/* finish PXP init */
6716 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6717 	if (val != 1) {
6718 		BNX2X_ERR("PXP2 CFG failed\n");
6719 		return -EBUSY;
6720 	}
6721 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6722 	if (val != 1) {
6723 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6724 		return -EBUSY;
6725 	}
6726 
6727 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6728 	 * have entries with value "0" and valid bit on.
6729 	 * This needs to be done by the first PF that is loaded in a path
6730 	 * (i.e. common phase)
6731 	 */
6732 	if (!CHIP_IS_E1x(bp)) {
6733 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6734  * (i.e. vnic3) to start even if it is marked as "scan-off".
6735  * This occurs when a different function (func2,3) is being marked
6736  * as "scan-off". Real-life scenario for example: if a driver is being
6737  * load-unloaded while func6,7 are down. This will cause the timer to access
6738  * the ilt, translate to a logical address and send a request to read/write.
6739  * Since the ilt for the function that is down is not valid, this will cause
6740  * a translation error which is unrecoverable.
6741  * The Workaround is intended to make sure that when this happens nothing fatal
6742  * will occur. The workaround:
6743  *	1.  First PF driver which loads on a path will:
6744  *		a.  After taking the chip out of reset, by using pretend,
6745  *		    it will write "0" to the following registers of
6746  *		    the other vnics.
6747  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6748  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6749  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6750  *		    And for itself it will write '1' to
6751  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6752  *		    dmae-operations (writing to pram for example.)
6753  *		    note: can be done for only function 6,7 but cleaner this
6754  *			  way.
6755  *		b.  Write zero+valid to the entire ILT.
6756  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6757  *		    VNIC3 (of that port). The range allocated will be the
6758  *		    entire ILT. This is needed to prevent  ILT range error.
6759  *	2.  Any PF driver load flow:
6760  *		a.  ILT update with the physical addresses of the allocated
6761  *		    logical pages.
6762  *		b.  Wait 20msec. - note that this timeout is needed to make
6763  *		    sure there are no requests in one of the PXP internal
6764  *		    queues with "old" ILT addresses.
6765  *		c.  PF enable in the PGLC.
6766  *		d.  Clear the was_error of the PF in the PGLC. (could have
6767  *		    occurred while driver was down)
6768  *		e.  PF enable in the CFC (WEAK + STRONG)
6769  *		f.  Timers scan enable
6770  *	3.  PF driver unload flow:
6771  *		a.  Clear the Timers scan_en.
6772  *		b.  Polling for scan_on=0 for that PF.
6773  *		c.  Clear the PF enable bit in the PXP.
6774  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6775  *		e.  Write zero+valid to all ILT entries (The valid bit must
6776  *		    stay set)
6777  *		f.  If this is VNIC 3 of a port then also init
6778  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6779  *		    to the last entry in the ILT.
6780  *
6781  *	Notes:
6782  *	Currently the PF error in the PGLC is non recoverable.
6783  *	In the future the there will be a recovery routine for this error.
6784  *	Currently attention is masked.
6785  *	Having an MCP lock on the load/unload process does not guarantee that
6786  *	there is no Timer disable during Func6/7 enable. This is because the
6787  *	Timers scan is currently being cleared by the MCP on FLR.
6788  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6789  *	there is error before clearing it. But the flow above is simpler and
6790  *	more general.
6791  *	All ILT entries are written by zero+valid and not just PF6/7
6792  *	ILT entries since in the future the ILT entries allocation for
6793  *	PF-s might be dynamic.
6794  */
6795 		struct ilt_client_info ilt_cli;
6796 		struct bnx2x_ilt ilt;
6797 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6798 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6799 
6800 		/* initialize dummy TM client */
6801 		ilt_cli.start = 0;
6802 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6803 		ilt_cli.client_num = ILT_CLIENT_TM;
6804 
6805 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6806 		 * Step 2: set the timers first/last ilt entry to point
6807 		 * to the entire range to prevent ILT range error for 3rd/4th
6808 		 * vnic	(this code assumes existence of the vnic)
6809 		 *
6810 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6811 		 * with dummy TM client
6812 		 *
6813 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6814 		 * and his brother are split registers
6815 		 */
6816 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6817 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6818 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6819 
6820 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6821 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6822 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6823 	}
6824 
6825 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6826 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6827 
6828 	if (!CHIP_IS_E1x(bp)) {
6829 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6830 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6831 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6832 
6833 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6834 
6835 		/* let the HW do it's magic ... */
6836 		do {
6837 			msleep(200);
6838 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6839 		} while (factor-- && (val != 1));
6840 
6841 		if (val != 1) {
6842 			BNX2X_ERR("ATC_INIT failed\n");
6843 			return -EBUSY;
6844 		}
6845 	}
6846 
6847 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6848 
6849 	bnx2x_iov_init_dmae(bp);
6850 
6851 	/* clean the DMAE memory */
6852 	bp->dmae_ready = 1;
6853 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6854 
6855 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6856 
6857 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6858 
6859 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6860 
6861 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6862 
6863 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6864 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6865 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6866 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6867 
6868 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6869 
6870 	/* QM queues pointers table */
6871 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6872 
6873 	/* soft reset pulse */
6874 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6875 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6876 
6877 	if (CNIC_SUPPORT(bp))
6878 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6879 
6880 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6881 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6882 	if (!CHIP_REV_IS_SLOW(bp))
6883 		/* enable hw interrupt from doorbell Q */
6884 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6885 
6886 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6887 
6888 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6889 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6890 
6891 	if (!CHIP_IS_E1(bp))
6892 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6893 
6894 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6895 		if (IS_MF_AFEX(bp)) {
6896 			/* configure that VNTag and VLAN headers must be
6897 			 * received in afex mode
6898 			 */
6899 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6900 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6901 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6902 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6903 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6904 		} else {
6905 			/* Bit-map indicating which L2 hdrs may appear
6906 			 * after the basic Ethernet header
6907 			 */
6908 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6909 			       bp->path_has_ovlan ? 7 : 6);
6910 		}
6911 	}
6912 
6913 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6914 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6915 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6916 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6917 
6918 	if (!CHIP_IS_E1x(bp)) {
6919 		/* reset VFC memories */
6920 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6921 			   VFC_MEMORIES_RST_REG_CAM_RST |
6922 			   VFC_MEMORIES_RST_REG_RAM_RST);
6923 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6924 			   VFC_MEMORIES_RST_REG_CAM_RST |
6925 			   VFC_MEMORIES_RST_REG_RAM_RST);
6926 
6927 		msleep(20);
6928 	}
6929 
6930 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6931 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6932 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6933 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6934 
6935 	/* sync semi rtc */
6936 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6937 	       0x80000000);
6938 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6939 	       0x80000000);
6940 
6941 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6942 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6943 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6944 
6945 	if (!CHIP_IS_E1x(bp)) {
6946 		if (IS_MF_AFEX(bp)) {
6947 			/* configure that VNTag and VLAN headers must be
6948 			 * sent in afex mode
6949 			 */
6950 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6951 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6952 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6953 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6954 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6955 		} else {
6956 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6957 			       bp->path_has_ovlan ? 7 : 6);
6958 		}
6959 	}
6960 
6961 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6962 
6963 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6964 
6965 	if (CNIC_SUPPORT(bp)) {
6966 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6967 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6968 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6969 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6970 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6971 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6972 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6973 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6974 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6975 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6976 	}
6977 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6978 
6979 	if (sizeof(union cdu_context) != 1024)
6980 		/* we currently assume that a context is 1024 bytes */
6981 		dev_alert(&bp->pdev->dev,
6982 			  "please adjust the size of cdu_context(%ld)\n",
6983 			  (long)sizeof(union cdu_context));
6984 
6985 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6986 	val = (4 << 24) + (0 << 12) + 1024;
6987 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6988 
6989 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6990 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6991 	/* enable context validation interrupt from CFC */
6992 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6993 
6994 	/* set the thresholds to prevent CFC/CDU race */
6995 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6996 
6997 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6998 
6999 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7000 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7001 
7002 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7003 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7004 
7005 	/* Reset PCIE errors for debug */
7006 	REG_WR(bp, 0x2814, 0xffffffff);
7007 	REG_WR(bp, 0x3820, 0xffffffff);
7008 
7009 	if (!CHIP_IS_E1x(bp)) {
7010 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7011 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7012 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7013 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7014 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7015 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7016 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7017 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7018 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7019 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7020 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7021 	}
7022 
7023 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7024 	if (!CHIP_IS_E1(bp)) {
7025 		/* in E3 this done in per-port section */
7026 		if (!CHIP_IS_E3(bp))
7027 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7028 	}
7029 	if (CHIP_IS_E1H(bp))
7030 		/* not applicable for E2 (and above ...) */
7031 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7032 
7033 	if (CHIP_REV_IS_SLOW(bp))
7034 		msleep(200);
7035 
7036 	/* finish CFC init */
7037 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7038 	if (val != 1) {
7039 		BNX2X_ERR("CFC LL_INIT failed\n");
7040 		return -EBUSY;
7041 	}
7042 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7043 	if (val != 1) {
7044 		BNX2X_ERR("CFC AC_INIT failed\n");
7045 		return -EBUSY;
7046 	}
7047 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7048 	if (val != 1) {
7049 		BNX2X_ERR("CFC CAM_INIT failed\n");
7050 		return -EBUSY;
7051 	}
7052 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7053 
7054 	if (CHIP_IS_E1(bp)) {
7055 		/* read NIG statistic
7056 		   to see if this is our first up since powerup */
7057 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7058 		val = *bnx2x_sp(bp, wb_data[0]);
7059 
7060 		/* do internal memory self test */
7061 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7062 			BNX2X_ERR("internal mem self test failed\n");
7063 			return -EBUSY;
7064 		}
7065 	}
7066 
7067 	bnx2x_setup_fan_failure_detection(bp);
7068 
7069 	/* clear PXP2 attentions */
7070 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7071 
7072 	bnx2x_enable_blocks_attention(bp);
7073 	bnx2x_enable_blocks_parity(bp);
7074 
7075 	if (!BP_NOMCP(bp)) {
7076 		if (CHIP_IS_E1x(bp))
7077 			bnx2x__common_init_phy(bp);
7078 	} else
7079 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7080 
7081 	return 0;
7082 }
7083 
7084 /**
7085  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7086  *
7087  * @bp:		driver handle
7088  */
7089 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7090 {
7091 	int rc = bnx2x_init_hw_common(bp);
7092 
7093 	if (rc)
7094 		return rc;
7095 
7096 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7097 	if (!BP_NOMCP(bp))
7098 		bnx2x__common_init_phy(bp);
7099 
7100 	return 0;
7101 }
7102 
7103 static int bnx2x_init_hw_port(struct bnx2x *bp)
7104 {
7105 	int port = BP_PORT(bp);
7106 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7107 	u32 low, high;
7108 	u32 val;
7109 
7110 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7111 
7112 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7113 
7114 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7115 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7116 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7117 
7118 	/* Timers bug workaround: disables the pf_master bit in pglue at
7119 	 * common phase, we need to enable it here before any dmae access are
7120 	 * attempted. Therefore we manually added the enable-master to the
7121 	 * port phase (it also happens in the function phase)
7122 	 */
7123 	if (!CHIP_IS_E1x(bp))
7124 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7125 
7126 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7127 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7128 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7129 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7130 
7131 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7132 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7133 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7134 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7135 
7136 	/* QM cid (connection) count */
7137 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7138 
7139 	if (CNIC_SUPPORT(bp)) {
7140 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7141 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7142 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7143 	}
7144 
7145 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7146 
7147 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7148 
7149 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7150 
7151 		if (IS_MF(bp))
7152 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7153 		else if (bp->dev->mtu > 4096) {
7154 			if (bp->flags & ONE_PORT_FLAG)
7155 				low = 160;
7156 			else {
7157 				val = bp->dev->mtu;
7158 				/* (24*1024 + val*4)/256 */
7159 				low = 96 + (val/64) +
7160 						((val % 64) ? 1 : 0);
7161 			}
7162 		} else
7163 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7164 		high = low + 56;	/* 14*1024/256 */
7165 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7166 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7167 	}
7168 
7169 	if (CHIP_MODE_IS_4_PORT(bp))
7170 		REG_WR(bp, (BP_PORT(bp) ?
7171 			    BRB1_REG_MAC_GUARANTIED_1 :
7172 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7173 
7174 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7175 	if (CHIP_IS_E3B0(bp)) {
7176 		if (IS_MF_AFEX(bp)) {
7177 			/* configure headers for AFEX mode */
7178 			REG_WR(bp, BP_PORT(bp) ?
7179 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7180 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7181 			REG_WR(bp, BP_PORT(bp) ?
7182 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7183 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7184 			REG_WR(bp, BP_PORT(bp) ?
7185 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7186 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7187 		} else {
7188 			/* Ovlan exists only if we are in multi-function +
7189 			 * switch-dependent mode, in switch-independent there
7190 			 * is no ovlan headers
7191 			 */
7192 			REG_WR(bp, BP_PORT(bp) ?
7193 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7194 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7195 			       (bp->path_has_ovlan ? 7 : 6));
7196 		}
7197 	}
7198 
7199 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7200 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7201 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7202 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7203 
7204 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7205 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7206 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7207 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7208 
7209 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7210 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7211 
7212 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7213 
7214 	if (CHIP_IS_E1x(bp)) {
7215 		/* configure PBF to work without PAUSE mtu 9000 */
7216 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7217 
7218 		/* update threshold */
7219 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7220 		/* update init credit */
7221 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7222 
7223 		/* probe changes */
7224 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7225 		udelay(50);
7226 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7227 	}
7228 
7229 	if (CNIC_SUPPORT(bp))
7230 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7231 
7232 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7233 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7234 
7235 	if (CHIP_IS_E1(bp)) {
7236 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7237 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7238 	}
7239 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7240 
7241 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7242 
7243 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7244 	/* init aeu_mask_attn_func_0/1:
7245 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7246 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7247 	 *             bits 4-7 are used for "per vn group attention" */
7248 	val = IS_MF(bp) ? 0xF7 : 0x7;
7249 	/* Enable DCBX attention for all but E1 */
7250 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7251 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7252 
7253 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7254 
7255 	if (!CHIP_IS_E1x(bp)) {
7256 		/* Bit-map indicating which L2 hdrs may appear after the
7257 		 * basic Ethernet header
7258 		 */
7259 		if (IS_MF_AFEX(bp))
7260 			REG_WR(bp, BP_PORT(bp) ?
7261 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7262 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7263 		else
7264 			REG_WR(bp, BP_PORT(bp) ?
7265 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7266 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7267 			       IS_MF_SD(bp) ? 7 : 6);
7268 
7269 		if (CHIP_IS_E3(bp))
7270 			REG_WR(bp, BP_PORT(bp) ?
7271 				   NIG_REG_LLH1_MF_MODE :
7272 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7273 	}
7274 	if (!CHIP_IS_E3(bp))
7275 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7276 
7277 	if (!CHIP_IS_E1(bp)) {
7278 		/* 0x2 disable mf_ov, 0x1 enable */
7279 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7280 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7281 
7282 		if (!CHIP_IS_E1x(bp)) {
7283 			val = 0;
7284 			switch (bp->mf_mode) {
7285 			case MULTI_FUNCTION_SD:
7286 				val = 1;
7287 				break;
7288 			case MULTI_FUNCTION_SI:
7289 			case MULTI_FUNCTION_AFEX:
7290 				val = 2;
7291 				break;
7292 			}
7293 
7294 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7295 						  NIG_REG_LLH0_CLS_TYPE), val);
7296 		}
7297 		{
7298 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7299 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7300 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7301 		}
7302 	}
7303 
7304 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7305 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7306 	if (val & MISC_SPIO_SPIO5) {
7307 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7308 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7309 		val = REG_RD(bp, reg_addr);
7310 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7311 		REG_WR(bp, reg_addr, val);
7312 	}
7313 
7314 	return 0;
7315 }
7316 
7317 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7318 {
7319 	int reg;
7320 	u32 wb_write[2];
7321 
7322 	if (CHIP_IS_E1(bp))
7323 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7324 	else
7325 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7326 
7327 	wb_write[0] = ONCHIP_ADDR1(addr);
7328 	wb_write[1] = ONCHIP_ADDR2(addr);
7329 	REG_WR_DMAE(bp, reg, wb_write, 2);
7330 }
7331 
7332 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7333 {
7334 	u32 data, ctl, cnt = 100;
7335 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7336 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7337 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7338 	u32 sb_bit =  1 << (idu_sb_id%32);
7339 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7340 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7341 
7342 	/* Not supported in BC mode */
7343 	if (CHIP_INT_MODE_IS_BC(bp))
7344 		return;
7345 
7346 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7347 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7348 		IGU_REGULAR_CLEANUP_SET				|
7349 		IGU_REGULAR_BCLEANUP;
7350 
7351 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7352 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7353 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7354 
7355 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7356 			 data, igu_addr_data);
7357 	REG_WR(bp, igu_addr_data, data);
7358 	mmiowb();
7359 	barrier();
7360 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7361 			  ctl, igu_addr_ctl);
7362 	REG_WR(bp, igu_addr_ctl, ctl);
7363 	mmiowb();
7364 	barrier();
7365 
7366 	/* wait for clean up to finish */
7367 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7368 		msleep(20);
7369 
7370 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7371 		DP(NETIF_MSG_HW,
7372 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7373 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7374 	}
7375 }
7376 
7377 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7378 {
7379 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7380 }
7381 
7382 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7383 {
7384 	u32 i, base = FUNC_ILT_BASE(func);
7385 	for (i = base; i < base + ILT_PER_FUNC; i++)
7386 		bnx2x_ilt_wr(bp, i, 0);
7387 }
7388 
7389 static void bnx2x_init_searcher(struct bnx2x *bp)
7390 {
7391 	int port = BP_PORT(bp);
7392 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7393 	/* T1 hash bits value determines the T1 number of entries */
7394 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7395 }
7396 
7397 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7398 {
7399 	int rc;
7400 	struct bnx2x_func_state_params func_params = {NULL};
7401 	struct bnx2x_func_switch_update_params *switch_update_params =
7402 		&func_params.params.switch_update;
7403 
7404 	/* Prepare parameters for function state transitions */
7405 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7406 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7407 
7408 	func_params.f_obj = &bp->func_obj;
7409 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7410 
7411 	/* Function parameters */
7412 	switch_update_params->suspend = suspend;
7413 
7414 	rc = bnx2x_func_state_change(bp, &func_params);
7415 
7416 	return rc;
7417 }
7418 
7419 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7420 {
7421 	int rc, i, port = BP_PORT(bp);
7422 	int vlan_en = 0, mac_en[NUM_MACS];
7423 
7424 	/* Close input from network */
7425 	if (bp->mf_mode == SINGLE_FUNCTION) {
7426 		bnx2x_set_rx_filter(&bp->link_params, 0);
7427 	} else {
7428 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7429 				   NIG_REG_LLH0_FUNC_EN);
7430 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7431 			  NIG_REG_LLH0_FUNC_EN, 0);
7432 		for (i = 0; i < NUM_MACS; i++) {
7433 			mac_en[i] = REG_RD(bp, port ?
7434 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7435 					      4 * i) :
7436 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7437 					      4 * i));
7438 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7439 					      4 * i) :
7440 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7441 		}
7442 	}
7443 
7444 	/* Close BMC to host */
7445 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7446 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7447 
7448 	/* Suspend Tx switching to the PF. Completion of this ramrod
7449 	 * further guarantees that all the packets of that PF / child
7450 	 * VFs in BRB were processed by the Parser, so it is safe to
7451 	 * change the NIC_MODE register.
7452 	 */
7453 	rc = bnx2x_func_switch_update(bp, 1);
7454 	if (rc) {
7455 		BNX2X_ERR("Can't suspend tx-switching!\n");
7456 		return rc;
7457 	}
7458 
7459 	/* Change NIC_MODE register */
7460 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7461 
7462 	/* Open input from network */
7463 	if (bp->mf_mode == SINGLE_FUNCTION) {
7464 		bnx2x_set_rx_filter(&bp->link_params, 1);
7465 	} else {
7466 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7467 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7468 		for (i = 0; i < NUM_MACS; i++) {
7469 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7470 					      4 * i) :
7471 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7472 				  mac_en[i]);
7473 		}
7474 	}
7475 
7476 	/* Enable BMC to host */
7477 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7478 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7479 
7480 	/* Resume Tx switching to the PF */
7481 	rc = bnx2x_func_switch_update(bp, 0);
7482 	if (rc) {
7483 		BNX2X_ERR("Can't resume tx-switching!\n");
7484 		return rc;
7485 	}
7486 
7487 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7488 	return 0;
7489 }
7490 
7491 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7492 {
7493 	int rc;
7494 
7495 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7496 
7497 	if (CONFIGURE_NIC_MODE(bp)) {
7498 		/* Configure searcher as part of function hw init */
7499 		bnx2x_init_searcher(bp);
7500 
7501 		/* Reset NIC mode */
7502 		rc = bnx2x_reset_nic_mode(bp);
7503 		if (rc)
7504 			BNX2X_ERR("Can't change NIC mode!\n");
7505 		return rc;
7506 	}
7507 
7508 	return 0;
7509 }
7510 
7511 static int bnx2x_init_hw_func(struct bnx2x *bp)
7512 {
7513 	int port = BP_PORT(bp);
7514 	int func = BP_FUNC(bp);
7515 	int init_phase = PHASE_PF0 + func;
7516 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7517 	u16 cdu_ilt_start;
7518 	u32 addr, val;
7519 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7520 	int i, main_mem_width, rc;
7521 
7522 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7523 
7524 	/* FLR cleanup - hmmm */
7525 	if (!CHIP_IS_E1x(bp)) {
7526 		rc = bnx2x_pf_flr_clnup(bp);
7527 		if (rc) {
7528 			bnx2x_fw_dump(bp);
7529 			return rc;
7530 		}
7531 	}
7532 
7533 	/* set MSI reconfigure capability */
7534 	if (bp->common.int_block == INT_BLOCK_HC) {
7535 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7536 		val = REG_RD(bp, addr);
7537 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7538 		REG_WR(bp, addr, val);
7539 	}
7540 
7541 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7542 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7543 
7544 	ilt = BP_ILT(bp);
7545 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7546 
7547 	if (IS_SRIOV(bp))
7548 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7549 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7550 
7551 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7552 	 * those of the VFs, so start line should be reset
7553 	 */
7554 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7555 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7556 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7557 		ilt->lines[cdu_ilt_start + i].page_mapping =
7558 			bp->context[i].cxt_mapping;
7559 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7560 	}
7561 
7562 	bnx2x_ilt_init_op(bp, INITOP_SET);
7563 
7564 	if (!CONFIGURE_NIC_MODE(bp)) {
7565 		bnx2x_init_searcher(bp);
7566 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7567 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7568 	} else {
7569 		/* Set NIC mode */
7570 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7571 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7572 	}
7573 
7574 	if (!CHIP_IS_E1x(bp)) {
7575 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7576 
7577 		/* Turn on a single ISR mode in IGU if driver is going to use
7578 		 * INT#x or MSI
7579 		 */
7580 		if (!(bp->flags & USING_MSIX_FLAG))
7581 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7582 		/*
7583 		 * Timers workaround bug: function init part.
7584 		 * Need to wait 20msec after initializing ILT,
7585 		 * needed to make sure there are no requests in
7586 		 * one of the PXP internal queues with "old" ILT addresses
7587 		 */
7588 		msleep(20);
7589 		/*
7590 		 * Master enable - Due to WB DMAE writes performed before this
7591 		 * register is re-initialized as part of the regular function
7592 		 * init
7593 		 */
7594 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7595 		/* Enable the function in IGU */
7596 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7597 	}
7598 
7599 	bp->dmae_ready = 1;
7600 
7601 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7602 
7603 	if (!CHIP_IS_E1x(bp))
7604 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7605 
7606 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7607 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7608 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7609 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7610 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7611 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7612 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7613 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7614 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7615 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7616 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7617 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7618 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7619 
7620 	if (!CHIP_IS_E1x(bp))
7621 		REG_WR(bp, QM_REG_PF_EN, 1);
7622 
7623 	if (!CHIP_IS_E1x(bp)) {
7624 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7625 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7626 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7627 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7628 	}
7629 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7630 
7631 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7632 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7633 
7634 	bnx2x_iov_init_dq(bp);
7635 
7636 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7637 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7638 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7639 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7640 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7641 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7642 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7643 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7644 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7645 	if (!CHIP_IS_E1x(bp))
7646 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7647 
7648 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7649 
7650 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7651 
7652 	if (!CHIP_IS_E1x(bp))
7653 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7654 
7655 	if (IS_MF(bp)) {
7656 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7657 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7658 	}
7659 
7660 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7661 
7662 	/* HC init per function */
7663 	if (bp->common.int_block == INT_BLOCK_HC) {
7664 		if (CHIP_IS_E1H(bp)) {
7665 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7666 
7667 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7668 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7669 		}
7670 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7671 
7672 	} else {
7673 		int num_segs, sb_idx, prod_offset;
7674 
7675 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7676 
7677 		if (!CHIP_IS_E1x(bp)) {
7678 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7679 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7680 		}
7681 
7682 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7683 
7684 		if (!CHIP_IS_E1x(bp)) {
7685 			int dsb_idx = 0;
7686 			/**
7687 			 * Producer memory:
7688 			 * E2 mode: address 0-135 match to the mapping memory;
7689 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7690 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7691 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7692 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7693 			 * 144-147 reserved.
7694 			 *
7695 			 * E1.5 mode - In backward compatible mode;
7696 			 * for non default SB; each even line in the memory
7697 			 * holds the U producer and each odd line hold
7698 			 * the C producer. The first 128 producers are for
7699 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7700 			 * producers are for the DSB for each PF.
7701 			 * Each PF has five segments: (the order inside each
7702 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7703 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7704 			 * 144-147 attn prods;
7705 			 */
7706 			/* non-default-status-blocks */
7707 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7708 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7709 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7710 				prod_offset = (bp->igu_base_sb + sb_idx) *
7711 					num_segs;
7712 
7713 				for (i = 0; i < num_segs; i++) {
7714 					addr = IGU_REG_PROD_CONS_MEMORY +
7715 							(prod_offset + i) * 4;
7716 					REG_WR(bp, addr, 0);
7717 				}
7718 				/* send consumer update with value 0 */
7719 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7720 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7721 				bnx2x_igu_clear_sb(bp,
7722 						   bp->igu_base_sb + sb_idx);
7723 			}
7724 
7725 			/* default-status-blocks */
7726 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7727 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7728 
7729 			if (CHIP_MODE_IS_4_PORT(bp))
7730 				dsb_idx = BP_FUNC(bp);
7731 			else
7732 				dsb_idx = BP_VN(bp);
7733 
7734 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7735 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7736 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7737 
7738 			/*
7739 			 * igu prods come in chunks of E1HVN_MAX (4) -
7740 			 * does not matters what is the current chip mode
7741 			 */
7742 			for (i = 0; i < (num_segs * E1HVN_MAX);
7743 			     i += E1HVN_MAX) {
7744 				addr = IGU_REG_PROD_CONS_MEMORY +
7745 							(prod_offset + i)*4;
7746 				REG_WR(bp, addr, 0);
7747 			}
7748 			/* send consumer update with 0 */
7749 			if (CHIP_INT_MODE_IS_BC(bp)) {
7750 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7751 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7752 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7753 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7754 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7755 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7756 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7757 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7758 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7759 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7760 			} else {
7761 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7762 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7763 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7764 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7765 			}
7766 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7767 
7768 			/* !!! These should become driver const once
7769 			   rf-tool supports split-68 const */
7770 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7771 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7772 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7773 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7774 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7775 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7776 		}
7777 	}
7778 
7779 	/* Reset PCIE errors for debug */
7780 	REG_WR(bp, 0x2114, 0xffffffff);
7781 	REG_WR(bp, 0x2120, 0xffffffff);
7782 
7783 	if (CHIP_IS_E1x(bp)) {
7784 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7785 		main_mem_base = HC_REG_MAIN_MEMORY +
7786 				BP_PORT(bp) * (main_mem_size * 4);
7787 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7788 		main_mem_width = 8;
7789 
7790 		val = REG_RD(bp, main_mem_prty_clr);
7791 		if (val)
7792 			DP(NETIF_MSG_HW,
7793 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7794 			   val);
7795 
7796 		/* Clear "false" parity errors in MSI-X table */
7797 		for (i = main_mem_base;
7798 		     i < main_mem_base + main_mem_size * 4;
7799 		     i += main_mem_width) {
7800 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7801 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7802 					 i, main_mem_width / 4);
7803 		}
7804 		/* Clear HC parity attention */
7805 		REG_RD(bp, main_mem_prty_clr);
7806 	}
7807 
7808 #ifdef BNX2X_STOP_ON_ERROR
7809 	/* Enable STORMs SP logging */
7810 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7811 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7812 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7813 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7814 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7815 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7816 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7817 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7818 #endif
7819 
7820 	bnx2x_phy_probe(&bp->link_params);
7821 
7822 	return 0;
7823 }
7824 
7825 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7826 {
7827 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7828 
7829 	if (!CHIP_IS_E1x(bp))
7830 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7831 			       sizeof(struct host_hc_status_block_e2));
7832 	else
7833 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7834 			       sizeof(struct host_hc_status_block_e1x));
7835 
7836 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7837 }
7838 
7839 void bnx2x_free_mem(struct bnx2x *bp)
7840 {
7841 	int i;
7842 
7843 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7844 		       sizeof(struct host_sp_status_block));
7845 
7846 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7847 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7848 
7849 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7850 		       sizeof(struct bnx2x_slowpath));
7851 
7852 	for (i = 0; i < L2_ILT_LINES(bp); i++)
7853 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7854 			       bp->context[i].size);
7855 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7856 
7857 	BNX2X_FREE(bp->ilt->lines);
7858 
7859 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7860 
7861 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7862 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7863 
7864 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7865 
7866 	bnx2x_iov_free_mem(bp);
7867 }
7868 
7869 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7870 {
7871 	if (!CHIP_IS_E1x(bp))
7872 		/* size = the status block + ramrod buffers */
7873 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7874 				sizeof(struct host_hc_status_block_e2));
7875 	else
7876 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7877 				&bp->cnic_sb_mapping,
7878 				sizeof(struct
7879 				       host_hc_status_block_e1x));
7880 
7881 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7882 		/* allocate searcher T2 table, as it wasn't allocated before */
7883 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7884 
7885 	/* write address to which L5 should insert its values */
7886 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
7887 		&bp->slowpath->drv_info_to_mcp;
7888 
7889 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7890 		goto alloc_mem_err;
7891 
7892 	return 0;
7893 
7894 alloc_mem_err:
7895 	bnx2x_free_mem_cnic(bp);
7896 	BNX2X_ERR("Can't allocate memory\n");
7897 	return -ENOMEM;
7898 }
7899 
7900 int bnx2x_alloc_mem(struct bnx2x *bp)
7901 {
7902 	int i, allocated, context_size;
7903 
7904 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7905 		/* allocate searcher T2 table */
7906 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7907 
7908 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7909 			sizeof(struct host_sp_status_block));
7910 
7911 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7912 			sizeof(struct bnx2x_slowpath));
7913 
7914 	/* Allocate memory for CDU context:
7915 	 * This memory is allocated separately and not in the generic ILT
7916 	 * functions because CDU differs in few aspects:
7917 	 * 1. There are multiple entities allocating memory for context -
7918 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7919 	 * its own ILT lines.
7920 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
7921 	 * for the other ILT clients), to be efficient we want to support
7922 	 * allocation of sub-page-size in the last entry.
7923 	 * 3. Context pointers are used by the driver to pass to FW / update
7924 	 * the context (for the other ILT clients the pointers are used just to
7925 	 * free the memory during unload).
7926 	 */
7927 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7928 
7929 	for (i = 0, allocated = 0; allocated < context_size; i++) {
7930 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7931 					  (context_size - allocated));
7932 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7933 				&bp->context[i].cxt_mapping,
7934 				bp->context[i].size);
7935 		allocated += bp->context[i].size;
7936 	}
7937 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7938 
7939 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7940 		goto alloc_mem_err;
7941 
7942 	if (bnx2x_iov_alloc_mem(bp))
7943 		goto alloc_mem_err;
7944 
7945 	/* Slow path ring */
7946 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7947 
7948 	/* EQ */
7949 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7950 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7951 
7952 	return 0;
7953 
7954 alloc_mem_err:
7955 	bnx2x_free_mem(bp);
7956 	BNX2X_ERR("Can't allocate memory\n");
7957 	return -ENOMEM;
7958 }
7959 
7960 /*
7961  * Init service functions
7962  */
7963 
7964 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7965 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7966 		      int mac_type, unsigned long *ramrod_flags)
7967 {
7968 	int rc;
7969 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7970 
7971 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7972 
7973 	/* Fill general parameters */
7974 	ramrod_param.vlan_mac_obj = obj;
7975 	ramrod_param.ramrod_flags = *ramrod_flags;
7976 
7977 	/* Fill a user request section if needed */
7978 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7979 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7980 
7981 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7982 
7983 		/* Set the command: ADD or DEL */
7984 		if (set)
7985 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7986 		else
7987 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7988 	}
7989 
7990 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7991 
7992 	if (rc == -EEXIST) {
7993 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7994 		/* do not treat adding same MAC as error */
7995 		rc = 0;
7996 	} else if (rc < 0)
7997 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7998 
7999 	return rc;
8000 }
8001 
8002 int bnx2x_del_all_macs(struct bnx2x *bp,
8003 		       struct bnx2x_vlan_mac_obj *mac_obj,
8004 		       int mac_type, bool wait_for_comp)
8005 {
8006 	int rc;
8007 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8008 
8009 	/* Wait for completion of requested */
8010 	if (wait_for_comp)
8011 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8012 
8013 	/* Set the mac type of addresses we want to clear */
8014 	__set_bit(mac_type, &vlan_mac_flags);
8015 
8016 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8017 	if (rc < 0)
8018 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8019 
8020 	return rc;
8021 }
8022 
8023 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8024 {
8025 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
8026 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8027 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8028 		   "Ignoring Zero MAC for STORAGE SD mode\n");
8029 		return 0;
8030 	}
8031 
8032 	if (IS_PF(bp)) {
8033 		unsigned long ramrod_flags = 0;
8034 
8035 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8036 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8037 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8038 					 &bp->sp_objs->mac_obj, set,
8039 					 BNX2X_ETH_MAC, &ramrod_flags);
8040 	} else { /* vf */
8041 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8042 					     bp->fp->index, true);
8043 	}
8044 }
8045 
8046 int bnx2x_setup_leading(struct bnx2x *bp)
8047 {
8048 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
8049 }
8050 
8051 /**
8052  * bnx2x_set_int_mode - configure interrupt mode
8053  *
8054  * @bp:		driver handle
8055  *
8056  * In case of MSI-X it will also try to enable MSI-X.
8057  */
8058 int bnx2x_set_int_mode(struct bnx2x *bp)
8059 {
8060 	int rc = 0;
8061 
8062 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX)
8063 		return -EINVAL;
8064 
8065 	switch (int_mode) {
8066 	case BNX2X_INT_MODE_MSIX:
8067 		/* attempt to enable msix */
8068 		rc = bnx2x_enable_msix(bp);
8069 
8070 		/* msix attained */
8071 		if (!rc)
8072 			return 0;
8073 
8074 		/* vfs use only msix */
8075 		if (rc && IS_VF(bp))
8076 			return rc;
8077 
8078 		/* failed to enable multiple MSI-X */
8079 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8080 			       bp->num_queues,
8081 			       1 + bp->num_cnic_queues);
8082 
8083 		/* falling through... */
8084 	case BNX2X_INT_MODE_MSI:
8085 		bnx2x_enable_msi(bp);
8086 
8087 		/* falling through... */
8088 	case BNX2X_INT_MODE_INTX:
8089 		bp->num_ethernet_queues = 1;
8090 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8091 		BNX2X_DEV_INFO("set number of queues to 1\n");
8092 		break;
8093 	default:
8094 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8095 		return -EINVAL;
8096 	}
8097 	return 0;
8098 }
8099 
8100 /* must be called prior to any HW initializations */
8101 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8102 {
8103 	if (IS_SRIOV(bp))
8104 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8105 	return L2_ILT_LINES(bp);
8106 }
8107 
8108 void bnx2x_ilt_set_info(struct bnx2x *bp)
8109 {
8110 	struct ilt_client_info *ilt_client;
8111 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8112 	u16 line = 0;
8113 
8114 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8115 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8116 
8117 	/* CDU */
8118 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8119 	ilt_client->client_num = ILT_CLIENT_CDU;
8120 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8121 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8122 	ilt_client->start = line;
8123 	line += bnx2x_cid_ilt_lines(bp);
8124 
8125 	if (CNIC_SUPPORT(bp))
8126 		line += CNIC_ILT_LINES;
8127 	ilt_client->end = line - 1;
8128 
8129 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8130 	   ilt_client->start,
8131 	   ilt_client->end,
8132 	   ilt_client->page_size,
8133 	   ilt_client->flags,
8134 	   ilog2(ilt_client->page_size >> 12));
8135 
8136 	/* QM */
8137 	if (QM_INIT(bp->qm_cid_count)) {
8138 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8139 		ilt_client->client_num = ILT_CLIENT_QM;
8140 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8141 		ilt_client->flags = 0;
8142 		ilt_client->start = line;
8143 
8144 		/* 4 bytes for each cid */
8145 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8146 							 QM_ILT_PAGE_SZ);
8147 
8148 		ilt_client->end = line - 1;
8149 
8150 		DP(NETIF_MSG_IFUP,
8151 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8152 		   ilt_client->start,
8153 		   ilt_client->end,
8154 		   ilt_client->page_size,
8155 		   ilt_client->flags,
8156 		   ilog2(ilt_client->page_size >> 12));
8157 	}
8158 
8159 	if (CNIC_SUPPORT(bp)) {
8160 		/* SRC */
8161 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8162 		ilt_client->client_num = ILT_CLIENT_SRC;
8163 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8164 		ilt_client->flags = 0;
8165 		ilt_client->start = line;
8166 		line += SRC_ILT_LINES;
8167 		ilt_client->end = line - 1;
8168 
8169 		DP(NETIF_MSG_IFUP,
8170 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8171 		   ilt_client->start,
8172 		   ilt_client->end,
8173 		   ilt_client->page_size,
8174 		   ilt_client->flags,
8175 		   ilog2(ilt_client->page_size >> 12));
8176 
8177 		/* TM */
8178 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8179 		ilt_client->client_num = ILT_CLIENT_TM;
8180 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8181 		ilt_client->flags = 0;
8182 		ilt_client->start = line;
8183 		line += TM_ILT_LINES;
8184 		ilt_client->end = line - 1;
8185 
8186 		DP(NETIF_MSG_IFUP,
8187 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8188 		   ilt_client->start,
8189 		   ilt_client->end,
8190 		   ilt_client->page_size,
8191 		   ilt_client->flags,
8192 		   ilog2(ilt_client->page_size >> 12));
8193 	}
8194 
8195 	BUG_ON(line > ILT_MAX_LINES);
8196 }
8197 
8198 /**
8199  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8200  *
8201  * @bp:			driver handle
8202  * @fp:			pointer to fastpath
8203  * @init_params:	pointer to parameters structure
8204  *
8205  * parameters configured:
8206  *      - HC configuration
8207  *      - Queue's CDU context
8208  */
8209 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8210 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8211 {
8212 	u8 cos;
8213 	int cxt_index, cxt_offset;
8214 
8215 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8216 	if (!IS_FCOE_FP(fp)) {
8217 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8218 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8219 
8220 		/* If HC is supported, enable host coalescing in the transition
8221 		 * to INIT state.
8222 		 */
8223 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8224 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8225 
8226 		/* HC rate */
8227 		init_params->rx.hc_rate = bp->rx_ticks ?
8228 			(1000000 / bp->rx_ticks) : 0;
8229 		init_params->tx.hc_rate = bp->tx_ticks ?
8230 			(1000000 / bp->tx_ticks) : 0;
8231 
8232 		/* FW SB ID */
8233 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8234 			fp->fw_sb_id;
8235 
8236 		/*
8237 		 * CQ index among the SB indices: FCoE clients uses the default
8238 		 * SB, therefore it's different.
8239 		 */
8240 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8241 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8242 	}
8243 
8244 	/* set maximum number of COSs supported by this queue */
8245 	init_params->max_cos = fp->max_cos;
8246 
8247 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8248 	    fp->index, init_params->max_cos);
8249 
8250 	/* set the context pointers queue object */
8251 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8252 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8253 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8254 				ILT_PAGE_CIDS);
8255 		init_params->cxts[cos] =
8256 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8257 	}
8258 }
8259 
8260 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8261 			struct bnx2x_queue_state_params *q_params,
8262 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8263 			int tx_index, bool leading)
8264 {
8265 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8266 
8267 	/* Set the command */
8268 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8269 
8270 	/* Set tx-only QUEUE flags: don't zero statistics */
8271 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8272 
8273 	/* choose the index of the cid to send the slow path on */
8274 	tx_only_params->cid_index = tx_index;
8275 
8276 	/* Set general TX_ONLY_SETUP parameters */
8277 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8278 
8279 	/* Set Tx TX_ONLY_SETUP parameters */
8280 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8281 
8282 	DP(NETIF_MSG_IFUP,
8283 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8284 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8285 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8286 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8287 
8288 	/* send the ramrod */
8289 	return bnx2x_queue_state_change(bp, q_params);
8290 }
8291 
8292 /**
8293  * bnx2x_setup_queue - setup queue
8294  *
8295  * @bp:		driver handle
8296  * @fp:		pointer to fastpath
8297  * @leading:	is leading
8298  *
8299  * This function performs 2 steps in a Queue state machine
8300  *      actually: 1) RESET->INIT 2) INIT->SETUP
8301  */
8302 
8303 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8304 		       bool leading)
8305 {
8306 	struct bnx2x_queue_state_params q_params = {NULL};
8307 	struct bnx2x_queue_setup_params *setup_params =
8308 						&q_params.params.setup;
8309 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8310 						&q_params.params.tx_only;
8311 	int rc;
8312 	u8 tx_index;
8313 
8314 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8315 
8316 	/* reset IGU state skip FCoE L2 queue */
8317 	if (!IS_FCOE_FP(fp))
8318 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8319 			     IGU_INT_ENABLE, 0);
8320 
8321 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8322 	/* We want to wait for completion in this context */
8323 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8324 
8325 	/* Prepare the INIT parameters */
8326 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8327 
8328 	/* Set the command */
8329 	q_params.cmd = BNX2X_Q_CMD_INIT;
8330 
8331 	/* Change the state to INIT */
8332 	rc = bnx2x_queue_state_change(bp, &q_params);
8333 	if (rc) {
8334 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8335 		return rc;
8336 	}
8337 
8338 	DP(NETIF_MSG_IFUP, "init complete\n");
8339 
8340 	/* Now move the Queue to the SETUP state... */
8341 	memset(setup_params, 0, sizeof(*setup_params));
8342 
8343 	/* Set QUEUE flags */
8344 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8345 
8346 	/* Set general SETUP parameters */
8347 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8348 				FIRST_TX_COS_INDEX);
8349 
8350 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8351 			    &setup_params->rxq_params);
8352 
8353 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8354 			   FIRST_TX_COS_INDEX);
8355 
8356 	/* Set the command */
8357 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8358 
8359 	if (IS_FCOE_FP(fp))
8360 		bp->fcoe_init = true;
8361 
8362 	/* Change the state to SETUP */
8363 	rc = bnx2x_queue_state_change(bp, &q_params);
8364 	if (rc) {
8365 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8366 		return rc;
8367 	}
8368 
8369 	/* loop through the relevant tx-only indices */
8370 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8371 	      tx_index < fp->max_cos;
8372 	      tx_index++) {
8373 
8374 		/* prepare and send tx-only ramrod*/
8375 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8376 					  tx_only_params, tx_index, leading);
8377 		if (rc) {
8378 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8379 				  fp->index, tx_index);
8380 			return rc;
8381 		}
8382 	}
8383 
8384 	return rc;
8385 }
8386 
8387 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8388 {
8389 	struct bnx2x_fastpath *fp = &bp->fp[index];
8390 	struct bnx2x_fp_txdata *txdata;
8391 	struct bnx2x_queue_state_params q_params = {NULL};
8392 	int rc, tx_index;
8393 
8394 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8395 
8396 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8397 	/* We want to wait for completion in this context */
8398 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8399 
8400 	/* close tx-only connections */
8401 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8402 	     tx_index < fp->max_cos;
8403 	     tx_index++){
8404 
8405 		/* ascertain this is a normal queue*/
8406 		txdata = fp->txdata_ptr[tx_index];
8407 
8408 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8409 							txdata->txq_index);
8410 
8411 		/* send halt terminate on tx-only connection */
8412 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8413 		memset(&q_params.params.terminate, 0,
8414 		       sizeof(q_params.params.terminate));
8415 		q_params.params.terminate.cid_index = tx_index;
8416 
8417 		rc = bnx2x_queue_state_change(bp, &q_params);
8418 		if (rc)
8419 			return rc;
8420 
8421 		/* send halt terminate on tx-only connection */
8422 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8423 		memset(&q_params.params.cfc_del, 0,
8424 		       sizeof(q_params.params.cfc_del));
8425 		q_params.params.cfc_del.cid_index = tx_index;
8426 		rc = bnx2x_queue_state_change(bp, &q_params);
8427 		if (rc)
8428 			return rc;
8429 	}
8430 	/* Stop the primary connection: */
8431 	/* ...halt the connection */
8432 	q_params.cmd = BNX2X_Q_CMD_HALT;
8433 	rc = bnx2x_queue_state_change(bp, &q_params);
8434 	if (rc)
8435 		return rc;
8436 
8437 	/* ...terminate the connection */
8438 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8439 	memset(&q_params.params.terminate, 0,
8440 	       sizeof(q_params.params.terminate));
8441 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8442 	rc = bnx2x_queue_state_change(bp, &q_params);
8443 	if (rc)
8444 		return rc;
8445 	/* ...delete cfc entry */
8446 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8447 	memset(&q_params.params.cfc_del, 0,
8448 	       sizeof(q_params.params.cfc_del));
8449 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8450 	return bnx2x_queue_state_change(bp, &q_params);
8451 }
8452 
8453 static void bnx2x_reset_func(struct bnx2x *bp)
8454 {
8455 	int port = BP_PORT(bp);
8456 	int func = BP_FUNC(bp);
8457 	int i;
8458 
8459 	/* Disable the function in the FW */
8460 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8461 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8462 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8463 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8464 
8465 	/* FP SBs */
8466 	for_each_eth_queue(bp, i) {
8467 		struct bnx2x_fastpath *fp = &bp->fp[i];
8468 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8469 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8470 			   SB_DISABLED);
8471 	}
8472 
8473 	if (CNIC_LOADED(bp))
8474 		/* CNIC SB */
8475 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8476 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8477 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8478 
8479 	/* SP SB */
8480 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8481 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8482 		SB_DISABLED);
8483 
8484 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8485 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8486 		       0);
8487 
8488 	/* Configure IGU */
8489 	if (bp->common.int_block == INT_BLOCK_HC) {
8490 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8491 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8492 	} else {
8493 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8494 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8495 	}
8496 
8497 	if (CNIC_LOADED(bp)) {
8498 		/* Disable Timer scan */
8499 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8500 		/*
8501 		 * Wait for at least 10ms and up to 2 second for the timers
8502 		 * scan to complete
8503 		 */
8504 		for (i = 0; i < 200; i++) {
8505 			usleep_range(10000, 20000);
8506 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8507 				break;
8508 		}
8509 	}
8510 	/* Clear ILT */
8511 	bnx2x_clear_func_ilt(bp, func);
8512 
8513 	/* Timers workaround bug for E2: if this is vnic-3,
8514 	 * we need to set the entire ilt range for this timers.
8515 	 */
8516 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8517 		struct ilt_client_info ilt_cli;
8518 		/* use dummy TM client */
8519 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8520 		ilt_cli.start = 0;
8521 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8522 		ilt_cli.client_num = ILT_CLIENT_TM;
8523 
8524 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8525 	}
8526 
8527 	/* this assumes that reset_port() called before reset_func()*/
8528 	if (!CHIP_IS_E1x(bp))
8529 		bnx2x_pf_disable(bp);
8530 
8531 	bp->dmae_ready = 0;
8532 }
8533 
8534 static void bnx2x_reset_port(struct bnx2x *bp)
8535 {
8536 	int port = BP_PORT(bp);
8537 	u32 val;
8538 
8539 	/* Reset physical Link */
8540 	bnx2x__link_reset(bp);
8541 
8542 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8543 
8544 	/* Do not rcv packets to BRB */
8545 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8546 	/* Do not direct rcv packets that are not for MCP to the BRB */
8547 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8548 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8549 
8550 	/* Configure AEU */
8551 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8552 
8553 	msleep(100);
8554 	/* Check for BRB port occupancy */
8555 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8556 	if (val)
8557 		DP(NETIF_MSG_IFDOWN,
8558 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8559 
8560 	/* TODO: Close Doorbell port? */
8561 }
8562 
8563 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8564 {
8565 	struct bnx2x_func_state_params func_params = {NULL};
8566 
8567 	/* Prepare parameters for function state transitions */
8568 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8569 
8570 	func_params.f_obj = &bp->func_obj;
8571 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8572 
8573 	func_params.params.hw_init.load_phase = load_code;
8574 
8575 	return bnx2x_func_state_change(bp, &func_params);
8576 }
8577 
8578 static int bnx2x_func_stop(struct bnx2x *bp)
8579 {
8580 	struct bnx2x_func_state_params func_params = {NULL};
8581 	int rc;
8582 
8583 	/* Prepare parameters for function state transitions */
8584 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8585 	func_params.f_obj = &bp->func_obj;
8586 	func_params.cmd = BNX2X_F_CMD_STOP;
8587 
8588 	/*
8589 	 * Try to stop the function the 'good way'. If fails (in case
8590 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8591 	 * not in a debug mode, perform a state transaction in order to
8592 	 * enable further HW_RESET transaction.
8593 	 */
8594 	rc = bnx2x_func_state_change(bp, &func_params);
8595 	if (rc) {
8596 #ifdef BNX2X_STOP_ON_ERROR
8597 		return rc;
8598 #else
8599 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8600 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8601 		return bnx2x_func_state_change(bp, &func_params);
8602 #endif
8603 	}
8604 
8605 	return 0;
8606 }
8607 
8608 /**
8609  * bnx2x_send_unload_req - request unload mode from the MCP.
8610  *
8611  * @bp:			driver handle
8612  * @unload_mode:	requested function's unload mode
8613  *
8614  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8615  */
8616 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8617 {
8618 	u32 reset_code = 0;
8619 	int port = BP_PORT(bp);
8620 
8621 	/* Select the UNLOAD request mode */
8622 	if (unload_mode == UNLOAD_NORMAL)
8623 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8624 
8625 	else if (bp->flags & NO_WOL_FLAG)
8626 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8627 
8628 	else if (bp->wol) {
8629 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8630 		u8 *mac_addr = bp->dev->dev_addr;
8631 		u32 val;
8632 		u16 pmc;
8633 
8634 		/* The mac address is written to entries 1-4 to
8635 		 * preserve entry 0 which is used by the PMF
8636 		 */
8637 		u8 entry = (BP_VN(bp) + 1)*8;
8638 
8639 		val = (mac_addr[0] << 8) | mac_addr[1];
8640 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8641 
8642 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8643 		      (mac_addr[4] << 8) | mac_addr[5];
8644 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8645 
8646 		/* Enable the PME and clear the status */
8647 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8648 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8649 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8650 
8651 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8652 
8653 	} else
8654 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8655 
8656 	/* Send the request to the MCP */
8657 	if (!BP_NOMCP(bp))
8658 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8659 	else {
8660 		int path = BP_PATH(bp);
8661 
8662 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8663 		   path, load_count[path][0], load_count[path][1],
8664 		   load_count[path][2]);
8665 		load_count[path][0]--;
8666 		load_count[path][1 + port]--;
8667 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8668 		   path, load_count[path][0], load_count[path][1],
8669 		   load_count[path][2]);
8670 		if (load_count[path][0] == 0)
8671 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8672 		else if (load_count[path][1 + port] == 0)
8673 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8674 		else
8675 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8676 	}
8677 
8678 	return reset_code;
8679 }
8680 
8681 /**
8682  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8683  *
8684  * @bp:		driver handle
8685  * @keep_link:		true iff link should be kept up
8686  */
8687 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8688 {
8689 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8690 
8691 	/* Report UNLOAD_DONE to MCP */
8692 	if (!BP_NOMCP(bp))
8693 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8694 }
8695 
8696 static int bnx2x_func_wait_started(struct bnx2x *bp)
8697 {
8698 	int tout = 50;
8699 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8700 
8701 	if (!bp->port.pmf)
8702 		return 0;
8703 
8704 	/*
8705 	 * (assumption: No Attention from MCP at this stage)
8706 	 * PMF probably in the middle of TX disable/enable transaction
8707 	 * 1. Sync IRS for default SB
8708 	 * 2. Sync SP queue - this guarantees us that attention handling started
8709 	 * 3. Wait, that TX disable/enable transaction completes
8710 	 *
8711 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8712 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8713 	 * received completion for the transaction the state is TX_STOPPED.
8714 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8715 	 * transaction.
8716 	 */
8717 
8718 	/* make sure default SB ISR is done */
8719 	if (msix)
8720 		synchronize_irq(bp->msix_table[0].vector);
8721 	else
8722 		synchronize_irq(bp->pdev->irq);
8723 
8724 	flush_workqueue(bnx2x_wq);
8725 
8726 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8727 				BNX2X_F_STATE_STARTED && tout--)
8728 		msleep(20);
8729 
8730 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8731 						BNX2X_F_STATE_STARTED) {
8732 #ifdef BNX2X_STOP_ON_ERROR
8733 		BNX2X_ERR("Wrong function state\n");
8734 		return -EBUSY;
8735 #else
8736 		/*
8737 		 * Failed to complete the transaction in a "good way"
8738 		 * Force both transactions with CLR bit
8739 		 */
8740 		struct bnx2x_func_state_params func_params = {NULL};
8741 
8742 		DP(NETIF_MSG_IFDOWN,
8743 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8744 
8745 		func_params.f_obj = &bp->func_obj;
8746 		__set_bit(RAMROD_DRV_CLR_ONLY,
8747 					&func_params.ramrod_flags);
8748 
8749 		/* STARTED-->TX_ST0PPED */
8750 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8751 		bnx2x_func_state_change(bp, &func_params);
8752 
8753 		/* TX_ST0PPED-->STARTED */
8754 		func_params.cmd = BNX2X_F_CMD_TX_START;
8755 		return bnx2x_func_state_change(bp, &func_params);
8756 #endif
8757 	}
8758 
8759 	return 0;
8760 }
8761 
8762 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8763 {
8764 	int port = BP_PORT(bp);
8765 	int i, rc = 0;
8766 	u8 cos;
8767 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8768 	u32 reset_code;
8769 
8770 	/* Wait until tx fastpath tasks complete */
8771 	for_each_tx_queue(bp, i) {
8772 		struct bnx2x_fastpath *fp = &bp->fp[i];
8773 
8774 		for_each_cos_in_tx_queue(fp, cos)
8775 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8776 #ifdef BNX2X_STOP_ON_ERROR
8777 		if (rc)
8778 			return;
8779 #endif
8780 	}
8781 
8782 	/* Give HW time to discard old tx messages */
8783 	usleep_range(1000, 2000);
8784 
8785 	/* Clean all ETH MACs */
8786 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8787 				false);
8788 	if (rc < 0)
8789 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8790 
8791 	/* Clean up UC list  */
8792 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8793 				true);
8794 	if (rc < 0)
8795 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8796 			  rc);
8797 
8798 	/* Disable LLH */
8799 	if (!CHIP_IS_E1(bp))
8800 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8801 
8802 	/* Set "drop all" (stop Rx).
8803 	 * We need to take a netif_addr_lock() here in order to prevent
8804 	 * a race between the completion code and this code.
8805 	 */
8806 	netif_addr_lock_bh(bp->dev);
8807 	/* Schedule the rx_mode command */
8808 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8809 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8810 	else
8811 		bnx2x_set_storm_rx_mode(bp);
8812 
8813 	/* Cleanup multicast configuration */
8814 	rparam.mcast_obj = &bp->mcast_obj;
8815 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8816 	if (rc < 0)
8817 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8818 
8819 	netif_addr_unlock_bh(bp->dev);
8820 
8821 	bnx2x_iov_chip_cleanup(bp);
8822 
8823 	/*
8824 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8825 	 * this function should perform FUNC, PORT or COMMON HW
8826 	 * reset.
8827 	 */
8828 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8829 
8830 	/*
8831 	 * (assumption: No Attention from MCP at this stage)
8832 	 * PMF probably in the middle of TX disable/enable transaction
8833 	 */
8834 	rc = bnx2x_func_wait_started(bp);
8835 	if (rc) {
8836 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8837 #ifdef BNX2X_STOP_ON_ERROR
8838 		return;
8839 #endif
8840 	}
8841 
8842 	/* Close multi and leading connections
8843 	 * Completions for ramrods are collected in a synchronous way
8844 	 */
8845 	for_each_eth_queue(bp, i)
8846 		if (bnx2x_stop_queue(bp, i))
8847 #ifdef BNX2X_STOP_ON_ERROR
8848 			return;
8849 #else
8850 			goto unload_error;
8851 #endif
8852 
8853 	if (CNIC_LOADED(bp)) {
8854 		for_each_cnic_queue(bp, i)
8855 			if (bnx2x_stop_queue(bp, i))
8856 #ifdef BNX2X_STOP_ON_ERROR
8857 				return;
8858 #else
8859 				goto unload_error;
8860 #endif
8861 	}
8862 
8863 	/* If SP settings didn't get completed so far - something
8864 	 * very wrong has happen.
8865 	 */
8866 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8867 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8868 
8869 #ifndef BNX2X_STOP_ON_ERROR
8870 unload_error:
8871 #endif
8872 	rc = bnx2x_func_stop(bp);
8873 	if (rc) {
8874 		BNX2X_ERR("Function stop failed!\n");
8875 #ifdef BNX2X_STOP_ON_ERROR
8876 		return;
8877 #endif
8878 	}
8879 
8880 	/* Disable HW interrupts, NAPI */
8881 	bnx2x_netif_stop(bp, 1);
8882 	/* Delete all NAPI objects */
8883 	bnx2x_del_all_napi(bp);
8884 	if (CNIC_LOADED(bp))
8885 		bnx2x_del_all_napi_cnic(bp);
8886 
8887 	/* Release IRQs */
8888 	bnx2x_free_irq(bp);
8889 
8890 	/* Reset the chip */
8891 	rc = bnx2x_reset_hw(bp, reset_code);
8892 	if (rc)
8893 		BNX2X_ERR("HW_RESET failed\n");
8894 
8895 	/* Report UNLOAD_DONE to MCP */
8896 	bnx2x_send_unload_done(bp, keep_link);
8897 }
8898 
8899 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8900 {
8901 	u32 val;
8902 
8903 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8904 
8905 	if (CHIP_IS_E1(bp)) {
8906 		int port = BP_PORT(bp);
8907 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8908 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8909 
8910 		val = REG_RD(bp, addr);
8911 		val &= ~(0x300);
8912 		REG_WR(bp, addr, val);
8913 	} else {
8914 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8915 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8916 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8917 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8918 	}
8919 }
8920 
8921 /* Close gates #2, #3 and #4: */
8922 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8923 {
8924 	u32 val;
8925 
8926 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8927 	if (!CHIP_IS_E1(bp)) {
8928 		/* #4 */
8929 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8930 		/* #2 */
8931 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8932 	}
8933 
8934 	/* #3 */
8935 	if (CHIP_IS_E1x(bp)) {
8936 		/* Prevent interrupts from HC on both ports */
8937 		val = REG_RD(bp, HC_REG_CONFIG_1);
8938 		REG_WR(bp, HC_REG_CONFIG_1,
8939 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8940 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8941 
8942 		val = REG_RD(bp, HC_REG_CONFIG_0);
8943 		REG_WR(bp, HC_REG_CONFIG_0,
8944 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8945 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8946 	} else {
8947 		/* Prevent incoming interrupts in IGU */
8948 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8949 
8950 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8951 		       (!close) ?
8952 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8953 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8954 	}
8955 
8956 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8957 		close ? "closing" : "opening");
8958 	mmiowb();
8959 }
8960 
8961 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8962 
8963 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8964 {
8965 	/* Do some magic... */
8966 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8967 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8968 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8969 }
8970 
8971 /**
8972  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8973  *
8974  * @bp:		driver handle
8975  * @magic_val:	old value of the `magic' bit.
8976  */
8977 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8978 {
8979 	/* Restore the `magic' bit value... */
8980 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8981 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8982 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8983 }
8984 
8985 /**
8986  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8987  *
8988  * @bp:		driver handle
8989  * @magic_val:	old value of 'magic' bit.
8990  *
8991  * Takes care of CLP configurations.
8992  */
8993 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8994 {
8995 	u32 shmem;
8996 	u32 validity_offset;
8997 
8998 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8999 
9000 	/* Set `magic' bit in order to save MF config */
9001 	if (!CHIP_IS_E1(bp))
9002 		bnx2x_clp_reset_prep(bp, magic_val);
9003 
9004 	/* Get shmem offset */
9005 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9006 	validity_offset =
9007 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9008 
9009 	/* Clear validity map flags */
9010 	if (shmem > 0)
9011 		REG_WR(bp, shmem + validity_offset, 0);
9012 }
9013 
9014 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9015 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9016 
9017 /**
9018  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9019  *
9020  * @bp:	driver handle
9021  */
9022 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9023 {
9024 	/* special handling for emulation and FPGA,
9025 	   wait 10 times longer */
9026 	if (CHIP_REV_IS_SLOW(bp))
9027 		msleep(MCP_ONE_TIMEOUT*10);
9028 	else
9029 		msleep(MCP_ONE_TIMEOUT);
9030 }
9031 
9032 /*
9033  * initializes bp->common.shmem_base and waits for validity signature to appear
9034  */
9035 static int bnx2x_init_shmem(struct bnx2x *bp)
9036 {
9037 	int cnt = 0;
9038 	u32 val = 0;
9039 
9040 	do {
9041 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9042 		if (bp->common.shmem_base) {
9043 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9044 			if (val & SHR_MEM_VALIDITY_MB)
9045 				return 0;
9046 		}
9047 
9048 		bnx2x_mcp_wait_one(bp);
9049 
9050 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9051 
9052 	BNX2X_ERR("BAD MCP validity signature\n");
9053 
9054 	return -ENODEV;
9055 }
9056 
9057 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9058 {
9059 	int rc = bnx2x_init_shmem(bp);
9060 
9061 	/* Restore the `magic' bit value */
9062 	if (!CHIP_IS_E1(bp))
9063 		bnx2x_clp_reset_done(bp, magic_val);
9064 
9065 	return rc;
9066 }
9067 
9068 static void bnx2x_pxp_prep(struct bnx2x *bp)
9069 {
9070 	if (!CHIP_IS_E1(bp)) {
9071 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9072 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9073 		mmiowb();
9074 	}
9075 }
9076 
9077 /*
9078  * Reset the whole chip except for:
9079  *      - PCIE core
9080  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9081  *              one reset bit)
9082  *      - IGU
9083  *      - MISC (including AEU)
9084  *      - GRC
9085  *      - RBCN, RBCP
9086  */
9087 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9088 {
9089 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9090 	u32 global_bits2, stay_reset2;
9091 
9092 	/*
9093 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9094 	 * (per chip) blocks.
9095 	 */
9096 	global_bits2 =
9097 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9098 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9099 
9100 	/* Don't reset the following blocks.
9101 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9102 	 *            reset, as in 4 port device they might still be owned
9103 	 *            by the MCP (there is only one leader per path).
9104 	 */
9105 	not_reset_mask1 =
9106 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9107 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9108 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9109 
9110 	not_reset_mask2 =
9111 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9112 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9113 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9114 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9115 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9116 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9117 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9118 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9119 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9120 		MISC_REGISTERS_RESET_REG_2_PGLC |
9121 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9122 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9123 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9124 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9125 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9126 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9127 
9128 	/*
9129 	 * Keep the following blocks in reset:
9130 	 *  - all xxMACs are handled by the bnx2x_link code.
9131 	 */
9132 	stay_reset2 =
9133 		MISC_REGISTERS_RESET_REG_2_XMAC |
9134 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9135 
9136 	/* Full reset masks according to the chip */
9137 	reset_mask1 = 0xffffffff;
9138 
9139 	if (CHIP_IS_E1(bp))
9140 		reset_mask2 = 0xffff;
9141 	else if (CHIP_IS_E1H(bp))
9142 		reset_mask2 = 0x1ffff;
9143 	else if (CHIP_IS_E2(bp))
9144 		reset_mask2 = 0xfffff;
9145 	else /* CHIP_IS_E3 */
9146 		reset_mask2 = 0x3ffffff;
9147 
9148 	/* Don't reset global blocks unless we need to */
9149 	if (!global)
9150 		reset_mask2 &= ~global_bits2;
9151 
9152 	/*
9153 	 * In case of attention in the QM, we need to reset PXP
9154 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9155 	 * because otherwise QM reset would release 'close the gates' shortly
9156 	 * before resetting the PXP, then the PSWRQ would send a write
9157 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9158 	 * read the payload data from PSWWR, but PSWWR would not
9159 	 * respond. The write queue in PGLUE would stuck, dmae commands
9160 	 * would not return. Therefore it's important to reset the second
9161 	 * reset register (containing the
9162 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9163 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9164 	 * bit).
9165 	 */
9166 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9167 	       reset_mask2 & (~not_reset_mask2));
9168 
9169 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9170 	       reset_mask1 & (~not_reset_mask1));
9171 
9172 	barrier();
9173 	mmiowb();
9174 
9175 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9176 	       reset_mask2 & (~stay_reset2));
9177 
9178 	barrier();
9179 	mmiowb();
9180 
9181 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9182 	mmiowb();
9183 }
9184 
9185 /**
9186  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9187  * It should get cleared in no more than 1s.
9188  *
9189  * @bp:	driver handle
9190  *
9191  * It should get cleared in no more than 1s. Returns 0 if
9192  * pending writes bit gets cleared.
9193  */
9194 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9195 {
9196 	u32 cnt = 1000;
9197 	u32 pend_bits = 0;
9198 
9199 	do {
9200 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9201 
9202 		if (pend_bits == 0)
9203 			break;
9204 
9205 		usleep_range(1000, 2000);
9206 	} while (cnt-- > 0);
9207 
9208 	if (cnt <= 0) {
9209 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9210 			  pend_bits);
9211 		return -EBUSY;
9212 	}
9213 
9214 	return 0;
9215 }
9216 
9217 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9218 {
9219 	int cnt = 1000;
9220 	u32 val = 0;
9221 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9222 	u32 tags_63_32 = 0;
9223 
9224 	/* Empty the Tetris buffer, wait for 1s */
9225 	do {
9226 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9227 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9228 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9229 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9230 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9231 		if (CHIP_IS_E3(bp))
9232 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9233 
9234 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9235 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9236 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9237 		    (pgl_exp_rom2 == 0xffffffff) &&
9238 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9239 			break;
9240 		usleep_range(1000, 2000);
9241 	} while (cnt-- > 0);
9242 
9243 	if (cnt <= 0) {
9244 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9245 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9246 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9247 			  pgl_exp_rom2);
9248 		return -EAGAIN;
9249 	}
9250 
9251 	barrier();
9252 
9253 	/* Close gates #2, #3 and #4 */
9254 	bnx2x_set_234_gates(bp, true);
9255 
9256 	/* Poll for IGU VQs for 57712 and newer chips */
9257 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9258 		return -EAGAIN;
9259 
9260 	/* TBD: Indicate that "process kill" is in progress to MCP */
9261 
9262 	/* Clear "unprepared" bit */
9263 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9264 	barrier();
9265 
9266 	/* Make sure all is written to the chip before the reset */
9267 	mmiowb();
9268 
9269 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9270 	 * PSWHST, GRC and PSWRD Tetris buffer.
9271 	 */
9272 	usleep_range(1000, 2000);
9273 
9274 	/* Prepare to chip reset: */
9275 	/* MCP */
9276 	if (global)
9277 		bnx2x_reset_mcp_prep(bp, &val);
9278 
9279 	/* PXP */
9280 	bnx2x_pxp_prep(bp);
9281 	barrier();
9282 
9283 	/* reset the chip */
9284 	bnx2x_process_kill_chip_reset(bp, global);
9285 	barrier();
9286 
9287 	/* Recover after reset: */
9288 	/* MCP */
9289 	if (global && bnx2x_reset_mcp_comp(bp, val))
9290 		return -EAGAIN;
9291 
9292 	/* TBD: Add resetting the NO_MCP mode DB here */
9293 
9294 	/* Open the gates #2, #3 and #4 */
9295 	bnx2x_set_234_gates(bp, false);
9296 
9297 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9298 	 * reset state, re-enable attentions. */
9299 
9300 	return 0;
9301 }
9302 
9303 static int bnx2x_leader_reset(struct bnx2x *bp)
9304 {
9305 	int rc = 0;
9306 	bool global = bnx2x_reset_is_global(bp);
9307 	u32 load_code;
9308 
9309 	/* if not going to reset MCP - load "fake" driver to reset HW while
9310 	 * driver is owner of the HW
9311 	 */
9312 	if (!global && !BP_NOMCP(bp)) {
9313 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9314 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9315 		if (!load_code) {
9316 			BNX2X_ERR("MCP response failure, aborting\n");
9317 			rc = -EAGAIN;
9318 			goto exit_leader_reset;
9319 		}
9320 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9321 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9322 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9323 			rc = -EAGAIN;
9324 			goto exit_leader_reset2;
9325 		}
9326 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9327 		if (!load_code) {
9328 			BNX2X_ERR("MCP response failure, aborting\n");
9329 			rc = -EAGAIN;
9330 			goto exit_leader_reset2;
9331 		}
9332 	}
9333 
9334 	/* Try to recover after the failure */
9335 	if (bnx2x_process_kill(bp, global)) {
9336 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9337 			  BP_PATH(bp));
9338 		rc = -EAGAIN;
9339 		goto exit_leader_reset2;
9340 	}
9341 
9342 	/*
9343 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9344 	 * state.
9345 	 */
9346 	bnx2x_set_reset_done(bp);
9347 	if (global)
9348 		bnx2x_clear_reset_global(bp);
9349 
9350 exit_leader_reset2:
9351 	/* unload "fake driver" if it was loaded */
9352 	if (!global && !BP_NOMCP(bp)) {
9353 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9354 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9355 	}
9356 exit_leader_reset:
9357 	bp->is_leader = 0;
9358 	bnx2x_release_leader_lock(bp);
9359 	smp_mb();
9360 	return rc;
9361 }
9362 
9363 static void bnx2x_recovery_failed(struct bnx2x *bp)
9364 {
9365 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9366 
9367 	/* Disconnect this device */
9368 	netif_device_detach(bp->dev);
9369 
9370 	/*
9371 	 * Block ifup for all function on this engine until "process kill"
9372 	 * or power cycle.
9373 	 */
9374 	bnx2x_set_reset_in_progress(bp);
9375 
9376 	/* Shut down the power */
9377 	bnx2x_set_power_state(bp, PCI_D3hot);
9378 
9379 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9380 
9381 	smp_mb();
9382 }
9383 
9384 /*
9385  * Assumption: runs under rtnl lock. This together with the fact
9386  * that it's called only from bnx2x_sp_rtnl() ensure that it
9387  * will never be called when netif_running(bp->dev) is false.
9388  */
9389 static void bnx2x_parity_recover(struct bnx2x *bp)
9390 {
9391 	bool global = false;
9392 	u32 error_recovered, error_unrecovered;
9393 	bool is_parity;
9394 
9395 	DP(NETIF_MSG_HW, "Handling parity\n");
9396 	while (1) {
9397 		switch (bp->recovery_state) {
9398 		case BNX2X_RECOVERY_INIT:
9399 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9400 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9401 			WARN_ON(!is_parity);
9402 
9403 			/* Try to get a LEADER_LOCK HW lock */
9404 			if (bnx2x_trylock_leader_lock(bp)) {
9405 				bnx2x_set_reset_in_progress(bp);
9406 				/*
9407 				 * Check if there is a global attention and if
9408 				 * there was a global attention, set the global
9409 				 * reset bit.
9410 				 */
9411 
9412 				if (global)
9413 					bnx2x_set_reset_global(bp);
9414 
9415 				bp->is_leader = 1;
9416 			}
9417 
9418 			/* Stop the driver */
9419 			/* If interface has been removed - break */
9420 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9421 				return;
9422 
9423 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9424 
9425 			/* Ensure "is_leader", MCP command sequence and
9426 			 * "recovery_state" update values are seen on other
9427 			 * CPUs.
9428 			 */
9429 			smp_mb();
9430 			break;
9431 
9432 		case BNX2X_RECOVERY_WAIT:
9433 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9434 			if (bp->is_leader) {
9435 				int other_engine = BP_PATH(bp) ? 0 : 1;
9436 				bool other_load_status =
9437 					bnx2x_get_load_status(bp, other_engine);
9438 				bool load_status =
9439 					bnx2x_get_load_status(bp, BP_PATH(bp));
9440 				global = bnx2x_reset_is_global(bp);
9441 
9442 				/*
9443 				 * In case of a parity in a global block, let
9444 				 * the first leader that performs a
9445 				 * leader_reset() reset the global blocks in
9446 				 * order to clear global attentions. Otherwise
9447 				 * the gates will remain closed for that
9448 				 * engine.
9449 				 */
9450 				if (load_status ||
9451 				    (global && other_load_status)) {
9452 					/* Wait until all other functions get
9453 					 * down.
9454 					 */
9455 					schedule_delayed_work(&bp->sp_rtnl_task,
9456 								HZ/10);
9457 					return;
9458 				} else {
9459 					/* If all other functions got down -
9460 					 * try to bring the chip back to
9461 					 * normal. In any case it's an exit
9462 					 * point for a leader.
9463 					 */
9464 					if (bnx2x_leader_reset(bp)) {
9465 						bnx2x_recovery_failed(bp);
9466 						return;
9467 					}
9468 
9469 					/* If we are here, means that the
9470 					 * leader has succeeded and doesn't
9471 					 * want to be a leader any more. Try
9472 					 * to continue as a none-leader.
9473 					 */
9474 					break;
9475 				}
9476 			} else { /* non-leader */
9477 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9478 					/* Try to get a LEADER_LOCK HW lock as
9479 					 * long as a former leader may have
9480 					 * been unloaded by the user or
9481 					 * released a leadership by another
9482 					 * reason.
9483 					 */
9484 					if (bnx2x_trylock_leader_lock(bp)) {
9485 						/* I'm a leader now! Restart a
9486 						 * switch case.
9487 						 */
9488 						bp->is_leader = 1;
9489 						break;
9490 					}
9491 
9492 					schedule_delayed_work(&bp->sp_rtnl_task,
9493 								HZ/10);
9494 					return;
9495 
9496 				} else {
9497 					/*
9498 					 * If there was a global attention, wait
9499 					 * for it to be cleared.
9500 					 */
9501 					if (bnx2x_reset_is_global(bp)) {
9502 						schedule_delayed_work(
9503 							&bp->sp_rtnl_task,
9504 							HZ/10);
9505 						return;
9506 					}
9507 
9508 					error_recovered =
9509 					  bp->eth_stats.recoverable_error;
9510 					error_unrecovered =
9511 					  bp->eth_stats.unrecoverable_error;
9512 					bp->recovery_state =
9513 						BNX2X_RECOVERY_NIC_LOADING;
9514 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9515 						error_unrecovered++;
9516 						netdev_err(bp->dev,
9517 							   "Recovery failed. Power cycle needed\n");
9518 						/* Disconnect this device */
9519 						netif_device_detach(bp->dev);
9520 						/* Shut down the power */
9521 						bnx2x_set_power_state(
9522 							bp, PCI_D3hot);
9523 						smp_mb();
9524 					} else {
9525 						bp->recovery_state =
9526 							BNX2X_RECOVERY_DONE;
9527 						error_recovered++;
9528 						smp_mb();
9529 					}
9530 					bp->eth_stats.recoverable_error =
9531 						error_recovered;
9532 					bp->eth_stats.unrecoverable_error =
9533 						error_unrecovered;
9534 
9535 					return;
9536 				}
9537 			}
9538 		default:
9539 			return;
9540 		}
9541 	}
9542 }
9543 
9544 static int bnx2x_close(struct net_device *dev);
9545 
9546 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9547  * scheduled on a general queue in order to prevent a dead lock.
9548  */
9549 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9550 {
9551 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9552 
9553 	rtnl_lock();
9554 
9555 	if (!netif_running(bp->dev)) {
9556 		rtnl_unlock();
9557 		return;
9558 	}
9559 
9560 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9561 #ifdef BNX2X_STOP_ON_ERROR
9562 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9563 			  "you will need to reboot when done\n");
9564 		goto sp_rtnl_not_reset;
9565 #endif
9566 		/*
9567 		 * Clear all pending SP commands as we are going to reset the
9568 		 * function anyway.
9569 		 */
9570 		bp->sp_rtnl_state = 0;
9571 		smp_mb();
9572 
9573 		bnx2x_parity_recover(bp);
9574 
9575 		rtnl_unlock();
9576 		return;
9577 	}
9578 
9579 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9580 #ifdef BNX2X_STOP_ON_ERROR
9581 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9582 			  "you will need to reboot when done\n");
9583 		goto sp_rtnl_not_reset;
9584 #endif
9585 
9586 		/*
9587 		 * Clear all pending SP commands as we are going to reset the
9588 		 * function anyway.
9589 		 */
9590 		bp->sp_rtnl_state = 0;
9591 		smp_mb();
9592 
9593 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9594 		bnx2x_nic_load(bp, LOAD_NORMAL);
9595 
9596 		rtnl_unlock();
9597 		return;
9598 	}
9599 #ifdef BNX2X_STOP_ON_ERROR
9600 sp_rtnl_not_reset:
9601 #endif
9602 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9603 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9604 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9605 		bnx2x_after_function_update(bp);
9606 	/*
9607 	 * in case of fan failure we need to reset id if the "stop on error"
9608 	 * debug flag is set, since we trying to prevent permanent overheating
9609 	 * damage
9610 	 */
9611 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9612 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9613 		netif_device_detach(bp->dev);
9614 		bnx2x_close(bp->dev);
9615 		rtnl_unlock();
9616 		return;
9617 	}
9618 
9619 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9620 		DP(BNX2X_MSG_SP,
9621 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
9622 		bnx2x_vfpf_set_mcast(bp->dev);
9623 	}
9624 
9625 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
9626 			       &bp->sp_rtnl_state)) {
9627 		DP(BNX2X_MSG_SP,
9628 		   "sending set storm rx mode vf pf channel message from rtnl sp-task\n");
9629 		bnx2x_vfpf_storm_rx_mode(bp);
9630 	}
9631 
9632 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9633 			       &bp->sp_rtnl_state))
9634 		bnx2x_pf_set_vfs_vlan(bp);
9635 
9636 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
9637 	 * can be called from other contexts as well)
9638 	 */
9639 	rtnl_unlock();
9640 
9641 	/* enable SR-IOV if applicable */
9642 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9643 					       &bp->sp_rtnl_state)) {
9644 		bnx2x_disable_sriov(bp);
9645 		bnx2x_enable_sriov(bp);
9646 	}
9647 }
9648 
9649 static void bnx2x_period_task(struct work_struct *work)
9650 {
9651 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9652 
9653 	if (!netif_running(bp->dev))
9654 		goto period_task_exit;
9655 
9656 	if (CHIP_REV_IS_SLOW(bp)) {
9657 		BNX2X_ERR("period task called on emulation, ignoring\n");
9658 		goto period_task_exit;
9659 	}
9660 
9661 	bnx2x_acquire_phy_lock(bp);
9662 	/*
9663 	 * The barrier is needed to ensure the ordering between the writing to
9664 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9665 	 * the reading here.
9666 	 */
9667 	smp_mb();
9668 	if (bp->port.pmf) {
9669 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9670 
9671 		/* Re-queue task in 1 sec */
9672 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9673 	}
9674 
9675 	bnx2x_release_phy_lock(bp);
9676 period_task_exit:
9677 	return;
9678 }
9679 
9680 /*
9681  * Init service functions
9682  */
9683 
9684 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9685 {
9686 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9687 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9688 	return base + (BP_ABS_FUNC(bp)) * stride;
9689 }
9690 
9691 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9692 					struct bnx2x_mac_vals *vals)
9693 {
9694 	u32 val, base_addr, offset, mask, reset_reg;
9695 	bool mac_stopped = false;
9696 	u8 port = BP_PORT(bp);
9697 
9698 	/* reset addresses as they also mark which values were changed */
9699 	vals->bmac_addr = 0;
9700 	vals->umac_addr = 0;
9701 	vals->xmac_addr = 0;
9702 	vals->emac_addr = 0;
9703 
9704 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9705 
9706 	if (!CHIP_IS_E3(bp)) {
9707 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9708 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9709 		if ((mask & reset_reg) && val) {
9710 			u32 wb_data[2];
9711 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9712 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9713 						: NIG_REG_INGRESS_BMAC0_MEM;
9714 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9715 						: BIGMAC_REGISTER_BMAC_CONTROL;
9716 
9717 			/*
9718 			 * use rd/wr since we cannot use dmae. This is safe
9719 			 * since MCP won't access the bus due to the request
9720 			 * to unload, and no function on the path can be
9721 			 * loaded at this time.
9722 			 */
9723 			wb_data[0] = REG_RD(bp, base_addr + offset);
9724 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9725 			vals->bmac_addr = base_addr + offset;
9726 			vals->bmac_val[0] = wb_data[0];
9727 			vals->bmac_val[1] = wb_data[1];
9728 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9729 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
9730 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9731 		}
9732 		BNX2X_DEV_INFO("Disable emac Rx\n");
9733 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9734 		vals->emac_val = REG_RD(bp, vals->emac_addr);
9735 		REG_WR(bp, vals->emac_addr, 0);
9736 		mac_stopped = true;
9737 	} else {
9738 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9739 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9740 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9741 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9742 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9743 			       val & ~(1 << 1));
9744 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9745 			       val | (1 << 1));
9746 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9747 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9748 			REG_WR(bp, vals->xmac_addr, 0);
9749 			mac_stopped = true;
9750 		}
9751 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9752 		if (mask & reset_reg) {
9753 			BNX2X_DEV_INFO("Disable umac Rx\n");
9754 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9755 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9756 			vals->umac_val = REG_RD(bp, vals->umac_addr);
9757 			REG_WR(bp, vals->umac_addr, 0);
9758 			mac_stopped = true;
9759 		}
9760 	}
9761 
9762 	if (mac_stopped)
9763 		msleep(20);
9764 }
9765 
9766 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9767 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9768 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9769 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9770 
9771 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9772 {
9773 	u16 rcq, bd;
9774 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9775 
9776 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9777 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9778 
9779 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9780 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9781 
9782 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9783 		       port, bd, rcq);
9784 }
9785 
9786 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9787 {
9788 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9789 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9790 	if (!rc) {
9791 		BNX2X_ERR("MCP response failure, aborting\n");
9792 		return -EBUSY;
9793 	}
9794 
9795 	return 0;
9796 }
9797 
9798 static struct bnx2x_prev_path_list *
9799 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
9800 {
9801 	struct bnx2x_prev_path_list *tmp_list;
9802 
9803 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9804 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9805 		    bp->pdev->bus->number == tmp_list->bus &&
9806 		    BP_PATH(bp) == tmp_list->path)
9807 			return tmp_list;
9808 
9809 	return NULL;
9810 }
9811 
9812 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9813 {
9814 	struct bnx2x_prev_path_list *tmp_list;
9815 	int rc;
9816 
9817 	rc = down_interruptible(&bnx2x_prev_sem);
9818 	if (rc) {
9819 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9820 		return rc;
9821 	}
9822 
9823 	tmp_list = bnx2x_prev_path_get_entry(bp);
9824 	if (tmp_list) {
9825 		tmp_list->aer = 1;
9826 		rc = 0;
9827 	} else {
9828 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9829 			  BP_PATH(bp));
9830 	}
9831 
9832 	up(&bnx2x_prev_sem);
9833 
9834 	return rc;
9835 }
9836 
9837 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9838 {
9839 	struct bnx2x_prev_path_list *tmp_list;
9840 	int rc = false;
9841 
9842 	if (down_trylock(&bnx2x_prev_sem))
9843 		return false;
9844 
9845 	tmp_list = bnx2x_prev_path_get_entry(bp);
9846 	if (tmp_list) {
9847 		if (tmp_list->aer) {
9848 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9849 			   BP_PATH(bp));
9850 		} else {
9851 			rc = true;
9852 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9853 				       BP_PATH(bp));
9854 		}
9855 	}
9856 
9857 	up(&bnx2x_prev_sem);
9858 
9859 	return rc;
9860 }
9861 
9862 bool bnx2x_port_after_undi(struct bnx2x *bp)
9863 {
9864 	struct bnx2x_prev_path_list *entry;
9865 	bool val;
9866 
9867 	down(&bnx2x_prev_sem);
9868 
9869 	entry = bnx2x_prev_path_get_entry(bp);
9870 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9871 
9872 	up(&bnx2x_prev_sem);
9873 
9874 	return val;
9875 }
9876 
9877 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9878 {
9879 	struct bnx2x_prev_path_list *tmp_list;
9880 	int rc;
9881 
9882 	rc = down_interruptible(&bnx2x_prev_sem);
9883 	if (rc) {
9884 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9885 		return rc;
9886 	}
9887 
9888 	/* Check whether the entry for this path already exists */
9889 	tmp_list = bnx2x_prev_path_get_entry(bp);
9890 	if (tmp_list) {
9891 		if (!tmp_list->aer) {
9892 			BNX2X_ERR("Re-Marking the path.\n");
9893 		} else {
9894 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9895 			   BP_PATH(bp));
9896 			tmp_list->aer = 0;
9897 		}
9898 		up(&bnx2x_prev_sem);
9899 		return 0;
9900 	}
9901 	up(&bnx2x_prev_sem);
9902 
9903 	/* Create an entry for this path and add it */
9904 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9905 	if (!tmp_list) {
9906 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9907 		return -ENOMEM;
9908 	}
9909 
9910 	tmp_list->bus = bp->pdev->bus->number;
9911 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9912 	tmp_list->path = BP_PATH(bp);
9913 	tmp_list->aer = 0;
9914 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9915 
9916 	rc = down_interruptible(&bnx2x_prev_sem);
9917 	if (rc) {
9918 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9919 		kfree(tmp_list);
9920 	} else {
9921 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9922 		   BP_PATH(bp));
9923 		list_add(&tmp_list->list, &bnx2x_prev_list);
9924 		up(&bnx2x_prev_sem);
9925 	}
9926 
9927 	return rc;
9928 }
9929 
9930 static int bnx2x_do_flr(struct bnx2x *bp)
9931 {
9932 	int i;
9933 	u16 status;
9934 	struct pci_dev *dev = bp->pdev;
9935 
9936 	if (CHIP_IS_E1x(bp)) {
9937 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9938 		return -EINVAL;
9939 	}
9940 
9941 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9942 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9943 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9944 			  bp->common.bc_ver);
9945 		return -EINVAL;
9946 	}
9947 
9948 	/* Wait for Transaction Pending bit clean */
9949 	for (i = 0; i < 4; i++) {
9950 		if (i)
9951 			msleep((1 << (i - 1)) * 100);
9952 
9953 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9954 		if (!(status & PCI_EXP_DEVSTA_TRPND))
9955 			goto clear;
9956 	}
9957 
9958 	dev_err(&dev->dev,
9959 		"transaction is not cleared; proceeding with reset anyway\n");
9960 
9961 clear:
9962 
9963 	BNX2X_DEV_INFO("Initiating FLR\n");
9964 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9965 
9966 	return 0;
9967 }
9968 
9969 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9970 {
9971 	int rc;
9972 
9973 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
9974 
9975 	/* Test if previous unload process was already finished for this path */
9976 	if (bnx2x_prev_is_path_marked(bp))
9977 		return bnx2x_prev_mcp_done(bp);
9978 
9979 	BNX2X_DEV_INFO("Path is unmarked\n");
9980 
9981 	/* If function has FLR capabilities, and existing FW version matches
9982 	 * the one required, then FLR will be sufficient to clean any residue
9983 	 * left by previous driver
9984 	 */
9985 	rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9986 
9987 	if (!rc) {
9988 		/* fw version is good */
9989 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9990 		rc = bnx2x_do_flr(bp);
9991 	}
9992 
9993 	if (!rc) {
9994 		/* FLR was performed */
9995 		BNX2X_DEV_INFO("FLR successful\n");
9996 		return 0;
9997 	}
9998 
9999 	BNX2X_DEV_INFO("Could not FLR\n");
10000 
10001 	/* Close the MCP request, return failure*/
10002 	rc = bnx2x_prev_mcp_done(bp);
10003 	if (!rc)
10004 		rc = BNX2X_PREV_WAIT_NEEDED;
10005 
10006 	return rc;
10007 }
10008 
10009 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10010 {
10011 	u32 reset_reg, tmp_reg = 0, rc;
10012 	bool prev_undi = false;
10013 	struct bnx2x_mac_vals mac_vals;
10014 
10015 	/* It is possible a previous function received 'common' answer,
10016 	 * but hasn't loaded yet, therefore creating a scenario of
10017 	 * multiple functions receiving 'common' on the same path.
10018 	 */
10019 	BNX2X_DEV_INFO("Common unload Flow\n");
10020 
10021 	memset(&mac_vals, 0, sizeof(mac_vals));
10022 
10023 	if (bnx2x_prev_is_path_marked(bp))
10024 		return bnx2x_prev_mcp_done(bp);
10025 
10026 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10027 
10028 	/* Reset should be performed after BRB is emptied */
10029 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10030 		u32 timer_count = 1000;
10031 
10032 		/* Close the MAC Rx to prevent BRB from filling up */
10033 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10034 
10035 		/* close LLH filters towards the BRB */
10036 		bnx2x_set_rx_filter(&bp->link_params, 0);
10037 
10038 		/* Check if the UNDI driver was previously loaded
10039 		 * UNDI driver initializes CID offset for normal bell to 0x7
10040 		 */
10041 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10042 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10043 			if (tmp_reg == 0x7) {
10044 				BNX2X_DEV_INFO("UNDI previously loaded\n");
10045 				prev_undi = true;
10046 				/* clear the UNDI indication */
10047 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10048 				/* clear possible idle check errors */
10049 				REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10050 			}
10051 		}
10052 		if (!CHIP_IS_E1x(bp))
10053 			/* block FW from writing to host */
10054 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10055 
10056 		/* wait until BRB is empty */
10057 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10058 		while (timer_count) {
10059 			u32 prev_brb = tmp_reg;
10060 
10061 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10062 			if (!tmp_reg)
10063 				break;
10064 
10065 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10066 
10067 			/* reset timer as long as BRB actually gets emptied */
10068 			if (prev_brb > tmp_reg)
10069 				timer_count = 1000;
10070 			else
10071 				timer_count--;
10072 
10073 			/* If UNDI resides in memory, manually increment it */
10074 			if (prev_undi)
10075 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10076 
10077 			udelay(10);
10078 		}
10079 
10080 		if (!timer_count)
10081 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10082 	}
10083 
10084 	/* No packets are in the pipeline, path is ready for reset */
10085 	bnx2x_reset_common(bp);
10086 
10087 	if (mac_vals.xmac_addr)
10088 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10089 	if (mac_vals.umac_addr)
10090 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10091 	if (mac_vals.emac_addr)
10092 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10093 	if (mac_vals.bmac_addr) {
10094 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10095 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10096 	}
10097 
10098 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10099 	if (rc) {
10100 		bnx2x_prev_mcp_done(bp);
10101 		return rc;
10102 	}
10103 
10104 	return bnx2x_prev_mcp_done(bp);
10105 }
10106 
10107 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10108  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10109  * the addresses of the transaction, resulting in was-error bit set in the pci
10110  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10111  * to clear the interrupt which detected this from the pglueb and the was done
10112  * bit
10113  */
10114 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10115 {
10116 	if (!CHIP_IS_E1x(bp)) {
10117 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10118 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10119 			DP(BNX2X_MSG_SP,
10120 			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10121 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10122 			       1 << BP_FUNC(bp));
10123 		}
10124 	}
10125 }
10126 
10127 static int bnx2x_prev_unload(struct bnx2x *bp)
10128 {
10129 	int time_counter = 10;
10130 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10131 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10132 
10133 	/* clear hw from errors which may have resulted from an interrupted
10134 	 * dmae transaction.
10135 	 */
10136 	bnx2x_prev_interrupted_dmae(bp);
10137 
10138 	/* Release previously held locks */
10139 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10140 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10141 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10142 
10143 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10144 	if (hw_lock_val) {
10145 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10146 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10147 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10148 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10149 		}
10150 
10151 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10152 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10153 	} else
10154 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10155 
10156 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10157 		BNX2X_DEV_INFO("Release previously held alr\n");
10158 		bnx2x_release_alr(bp);
10159 	}
10160 
10161 	do {
10162 		int aer = 0;
10163 		/* Lock MCP using an unload request */
10164 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10165 		if (!fw) {
10166 			BNX2X_ERR("MCP response failure, aborting\n");
10167 			rc = -EBUSY;
10168 			break;
10169 		}
10170 
10171 		rc = down_interruptible(&bnx2x_prev_sem);
10172 		if (rc) {
10173 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10174 				  rc);
10175 		} else {
10176 			/* If Path is marked by EEH, ignore unload status */
10177 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10178 				 bnx2x_prev_path_get_entry(bp)->aer);
10179 			up(&bnx2x_prev_sem);
10180 		}
10181 
10182 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10183 			rc = bnx2x_prev_unload_common(bp);
10184 			break;
10185 		}
10186 
10187 		/* non-common reply from MCP might require looping */
10188 		rc = bnx2x_prev_unload_uncommon(bp);
10189 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10190 			break;
10191 
10192 		msleep(20);
10193 	} while (--time_counter);
10194 
10195 	if (!time_counter || rc) {
10196 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
10197 		rc = -EBUSY;
10198 	}
10199 
10200 	/* Mark function if its port was used to boot from SAN */
10201 	if (bnx2x_port_after_undi(bp))
10202 		bp->link_params.feature_config_flags |=
10203 			FEATURE_CONFIG_BOOT_FROM_SAN;
10204 
10205 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10206 
10207 	return rc;
10208 }
10209 
10210 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10211 {
10212 	u32 val, val2, val3, val4, id, boot_mode;
10213 	u16 pmc;
10214 
10215 	/* Get the chip revision id and number. */
10216 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10217 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10218 	id = ((val & 0xffff) << 16);
10219 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10220 	id |= ((val & 0xf) << 12);
10221 
10222 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10223 	 * the configuration space (so we need to reg_rd)
10224 	 */
10225 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10226 	id |= (((val >> 24) & 0xf) << 4);
10227 	val = REG_RD(bp, MISC_REG_BOND_ID);
10228 	id |= (val & 0xf);
10229 	bp->common.chip_id = id;
10230 
10231 	/* force 57811 according to MISC register */
10232 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10233 		if (CHIP_IS_57810(bp))
10234 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10235 				(bp->common.chip_id & 0x0000FFFF);
10236 		else if (CHIP_IS_57810_MF(bp))
10237 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10238 				(bp->common.chip_id & 0x0000FFFF);
10239 		bp->common.chip_id |= 0x1;
10240 	}
10241 
10242 	/* Set doorbell size */
10243 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10244 
10245 	if (!CHIP_IS_E1x(bp)) {
10246 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10247 		if ((val & 1) == 0)
10248 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10249 		else
10250 			val = (val >> 1) & 1;
10251 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10252 						       "2_PORT_MODE");
10253 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10254 						 CHIP_2_PORT_MODE;
10255 
10256 		if (CHIP_MODE_IS_4_PORT(bp))
10257 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10258 		else
10259 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10260 	} else {
10261 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10262 		bp->pfid = bp->pf_num;			/* 0..7 */
10263 	}
10264 
10265 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10266 
10267 	bp->link_params.chip_id = bp->common.chip_id;
10268 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10269 
10270 	val = (REG_RD(bp, 0x2874) & 0x55);
10271 	if ((bp->common.chip_id & 0x1) ||
10272 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10273 		bp->flags |= ONE_PORT_FLAG;
10274 		BNX2X_DEV_INFO("single port device\n");
10275 	}
10276 
10277 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10278 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10279 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10280 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10281 		       bp->common.flash_size, bp->common.flash_size);
10282 
10283 	bnx2x_init_shmem(bp);
10284 
10285 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10286 					MISC_REG_GENERIC_CR_1 :
10287 					MISC_REG_GENERIC_CR_0));
10288 
10289 	bp->link_params.shmem_base = bp->common.shmem_base;
10290 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10291 	if (SHMEM2_RD(bp, size) >
10292 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10293 		bp->link_params.lfa_base =
10294 		REG_RD(bp, bp->common.shmem2_base +
10295 		       (u32)offsetof(struct shmem2_region,
10296 				     lfa_host_addr[BP_PORT(bp)]));
10297 	else
10298 		bp->link_params.lfa_base = 0;
10299 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10300 		       bp->common.shmem_base, bp->common.shmem2_base);
10301 
10302 	if (!bp->common.shmem_base) {
10303 		BNX2X_DEV_INFO("MCP not active\n");
10304 		bp->flags |= NO_MCP_FLAG;
10305 		return;
10306 	}
10307 
10308 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10309 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10310 
10311 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10312 					SHARED_HW_CFG_LED_MODE_MASK) >>
10313 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10314 
10315 	bp->link_params.feature_config_flags = 0;
10316 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10317 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10318 		bp->link_params.feature_config_flags |=
10319 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10320 	else
10321 		bp->link_params.feature_config_flags &=
10322 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10323 
10324 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10325 	bp->common.bc_ver = val;
10326 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10327 	if (val < BNX2X_BC_VER) {
10328 		/* for now only warn
10329 		 * later we might need to enforce this */
10330 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10331 			  BNX2X_BC_VER, val);
10332 	}
10333 	bp->link_params.feature_config_flags |=
10334 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10335 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10336 
10337 	bp->link_params.feature_config_flags |=
10338 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10339 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10340 	bp->link_params.feature_config_flags |=
10341 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10342 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10343 	bp->link_params.feature_config_flags |=
10344 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10345 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10346 
10347 	bp->link_params.feature_config_flags |=
10348 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10349 		FEATURE_CONFIG_MT_SUPPORT : 0;
10350 
10351 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10352 			BC_SUPPORTS_PFC_STATS : 0;
10353 
10354 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10355 			BC_SUPPORTS_FCOE_FEATURES : 0;
10356 
10357 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10358 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10359 	boot_mode = SHMEM_RD(bp,
10360 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10361 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10362 	switch (boot_mode) {
10363 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10364 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10365 		break;
10366 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10367 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10368 		break;
10369 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10370 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10371 		break;
10372 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10373 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10374 		break;
10375 	}
10376 
10377 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10378 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10379 
10380 	BNX2X_DEV_INFO("%sWoL capable\n",
10381 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10382 
10383 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10384 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10385 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10386 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10387 
10388 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10389 		 val, val2, val3, val4);
10390 }
10391 
10392 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10393 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10394 
10395 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10396 {
10397 	int pfid = BP_FUNC(bp);
10398 	int igu_sb_id;
10399 	u32 val;
10400 	u8 fid, igu_sb_cnt = 0;
10401 
10402 	bp->igu_base_sb = 0xff;
10403 	if (CHIP_INT_MODE_IS_BC(bp)) {
10404 		int vn = BP_VN(bp);
10405 		igu_sb_cnt = bp->igu_sb_cnt;
10406 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10407 			FP_SB_MAX_E1x;
10408 
10409 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10410 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10411 
10412 		return 0;
10413 	}
10414 
10415 	/* IGU in normal mode - read CAM */
10416 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10417 	     igu_sb_id++) {
10418 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10419 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10420 			continue;
10421 		fid = IGU_FID(val);
10422 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10423 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10424 				continue;
10425 			if (IGU_VEC(val) == 0)
10426 				/* default status block */
10427 				bp->igu_dsb_id = igu_sb_id;
10428 			else {
10429 				if (bp->igu_base_sb == 0xff)
10430 					bp->igu_base_sb = igu_sb_id;
10431 				igu_sb_cnt++;
10432 			}
10433 		}
10434 	}
10435 
10436 #ifdef CONFIG_PCI_MSI
10437 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10438 	 * optional that number of CAM entries will not be equal to the value
10439 	 * advertised in PCI.
10440 	 * Driver should use the minimal value of both as the actual status
10441 	 * block count
10442 	 */
10443 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10444 #endif
10445 
10446 	if (igu_sb_cnt == 0) {
10447 		BNX2X_ERR("CAM configuration error\n");
10448 		return -EINVAL;
10449 	}
10450 
10451 	return 0;
10452 }
10453 
10454 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10455 {
10456 	int cfg_size = 0, idx, port = BP_PORT(bp);
10457 
10458 	/* Aggregation of supported attributes of all external phys */
10459 	bp->port.supported[0] = 0;
10460 	bp->port.supported[1] = 0;
10461 	switch (bp->link_params.num_phys) {
10462 	case 1:
10463 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10464 		cfg_size = 1;
10465 		break;
10466 	case 2:
10467 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10468 		cfg_size = 1;
10469 		break;
10470 	case 3:
10471 		if (bp->link_params.multi_phy_config &
10472 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10473 			bp->port.supported[1] =
10474 				bp->link_params.phy[EXT_PHY1].supported;
10475 			bp->port.supported[0] =
10476 				bp->link_params.phy[EXT_PHY2].supported;
10477 		} else {
10478 			bp->port.supported[0] =
10479 				bp->link_params.phy[EXT_PHY1].supported;
10480 			bp->port.supported[1] =
10481 				bp->link_params.phy[EXT_PHY2].supported;
10482 		}
10483 		cfg_size = 2;
10484 		break;
10485 	}
10486 
10487 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10488 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10489 			   SHMEM_RD(bp,
10490 			   dev_info.port_hw_config[port].external_phy_config),
10491 			   SHMEM_RD(bp,
10492 			   dev_info.port_hw_config[port].external_phy_config2));
10493 			return;
10494 	}
10495 
10496 	if (CHIP_IS_E3(bp))
10497 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10498 	else {
10499 		switch (switch_cfg) {
10500 		case SWITCH_CFG_1G:
10501 			bp->port.phy_addr = REG_RD(
10502 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10503 			break;
10504 		case SWITCH_CFG_10G:
10505 			bp->port.phy_addr = REG_RD(
10506 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10507 			break;
10508 		default:
10509 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10510 				  bp->port.link_config[0]);
10511 			return;
10512 		}
10513 	}
10514 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10515 	/* mask what we support according to speed_cap_mask per configuration */
10516 	for (idx = 0; idx < cfg_size; idx++) {
10517 		if (!(bp->link_params.speed_cap_mask[idx] &
10518 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10519 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10520 
10521 		if (!(bp->link_params.speed_cap_mask[idx] &
10522 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10523 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10524 
10525 		if (!(bp->link_params.speed_cap_mask[idx] &
10526 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10527 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10528 
10529 		if (!(bp->link_params.speed_cap_mask[idx] &
10530 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10531 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10532 
10533 		if (!(bp->link_params.speed_cap_mask[idx] &
10534 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10535 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10536 						     SUPPORTED_1000baseT_Full);
10537 
10538 		if (!(bp->link_params.speed_cap_mask[idx] &
10539 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10540 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10541 
10542 		if (!(bp->link_params.speed_cap_mask[idx] &
10543 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10544 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10545 	}
10546 
10547 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10548 		       bp->port.supported[1]);
10549 }
10550 
10551 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10552 {
10553 	u32 link_config, idx, cfg_size = 0;
10554 	bp->port.advertising[0] = 0;
10555 	bp->port.advertising[1] = 0;
10556 	switch (bp->link_params.num_phys) {
10557 	case 1:
10558 	case 2:
10559 		cfg_size = 1;
10560 		break;
10561 	case 3:
10562 		cfg_size = 2;
10563 		break;
10564 	}
10565 	for (idx = 0; idx < cfg_size; idx++) {
10566 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10567 		link_config = bp->port.link_config[idx];
10568 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10569 		case PORT_FEATURE_LINK_SPEED_AUTO:
10570 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10571 				bp->link_params.req_line_speed[idx] =
10572 					SPEED_AUTO_NEG;
10573 				bp->port.advertising[idx] |=
10574 					bp->port.supported[idx];
10575 				if (bp->link_params.phy[EXT_PHY1].type ==
10576 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10577 					bp->port.advertising[idx] |=
10578 					(SUPPORTED_100baseT_Half |
10579 					 SUPPORTED_100baseT_Full);
10580 			} else {
10581 				/* force 10G, no AN */
10582 				bp->link_params.req_line_speed[idx] =
10583 					SPEED_10000;
10584 				bp->port.advertising[idx] |=
10585 					(ADVERTISED_10000baseT_Full |
10586 					 ADVERTISED_FIBRE);
10587 				continue;
10588 			}
10589 			break;
10590 
10591 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10592 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10593 				bp->link_params.req_line_speed[idx] =
10594 					SPEED_10;
10595 				bp->port.advertising[idx] |=
10596 					(ADVERTISED_10baseT_Full |
10597 					 ADVERTISED_TP);
10598 			} else {
10599 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10600 					    link_config,
10601 				    bp->link_params.speed_cap_mask[idx]);
10602 				return;
10603 			}
10604 			break;
10605 
10606 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10607 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10608 				bp->link_params.req_line_speed[idx] =
10609 					SPEED_10;
10610 				bp->link_params.req_duplex[idx] =
10611 					DUPLEX_HALF;
10612 				bp->port.advertising[idx] |=
10613 					(ADVERTISED_10baseT_Half |
10614 					 ADVERTISED_TP);
10615 			} else {
10616 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10617 					    link_config,
10618 					  bp->link_params.speed_cap_mask[idx]);
10619 				return;
10620 			}
10621 			break;
10622 
10623 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10624 			if (bp->port.supported[idx] &
10625 			    SUPPORTED_100baseT_Full) {
10626 				bp->link_params.req_line_speed[idx] =
10627 					SPEED_100;
10628 				bp->port.advertising[idx] |=
10629 					(ADVERTISED_100baseT_Full |
10630 					 ADVERTISED_TP);
10631 			} else {
10632 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10633 					    link_config,
10634 					  bp->link_params.speed_cap_mask[idx]);
10635 				return;
10636 			}
10637 			break;
10638 
10639 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10640 			if (bp->port.supported[idx] &
10641 			    SUPPORTED_100baseT_Half) {
10642 				bp->link_params.req_line_speed[idx] =
10643 								SPEED_100;
10644 				bp->link_params.req_duplex[idx] =
10645 								DUPLEX_HALF;
10646 				bp->port.advertising[idx] |=
10647 					(ADVERTISED_100baseT_Half |
10648 					 ADVERTISED_TP);
10649 			} else {
10650 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10651 				    link_config,
10652 				    bp->link_params.speed_cap_mask[idx]);
10653 				return;
10654 			}
10655 			break;
10656 
10657 		case PORT_FEATURE_LINK_SPEED_1G:
10658 			if (bp->port.supported[idx] &
10659 			    SUPPORTED_1000baseT_Full) {
10660 				bp->link_params.req_line_speed[idx] =
10661 					SPEED_1000;
10662 				bp->port.advertising[idx] |=
10663 					(ADVERTISED_1000baseT_Full |
10664 					 ADVERTISED_TP);
10665 			} else {
10666 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10667 				    link_config,
10668 				    bp->link_params.speed_cap_mask[idx]);
10669 				return;
10670 			}
10671 			break;
10672 
10673 		case PORT_FEATURE_LINK_SPEED_2_5G:
10674 			if (bp->port.supported[idx] &
10675 			    SUPPORTED_2500baseX_Full) {
10676 				bp->link_params.req_line_speed[idx] =
10677 					SPEED_2500;
10678 				bp->port.advertising[idx] |=
10679 					(ADVERTISED_2500baseX_Full |
10680 						ADVERTISED_TP);
10681 			} else {
10682 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10683 				    link_config,
10684 				    bp->link_params.speed_cap_mask[idx]);
10685 				return;
10686 			}
10687 			break;
10688 
10689 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10690 			if (bp->port.supported[idx] &
10691 			    SUPPORTED_10000baseT_Full) {
10692 				bp->link_params.req_line_speed[idx] =
10693 					SPEED_10000;
10694 				bp->port.advertising[idx] |=
10695 					(ADVERTISED_10000baseT_Full |
10696 						ADVERTISED_FIBRE);
10697 			} else {
10698 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10699 				    link_config,
10700 				    bp->link_params.speed_cap_mask[idx]);
10701 				return;
10702 			}
10703 			break;
10704 		case PORT_FEATURE_LINK_SPEED_20G:
10705 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10706 
10707 			break;
10708 		default:
10709 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10710 				  link_config);
10711 				bp->link_params.req_line_speed[idx] =
10712 							SPEED_AUTO_NEG;
10713 				bp->port.advertising[idx] =
10714 						bp->port.supported[idx];
10715 			break;
10716 		}
10717 
10718 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10719 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10720 		if (bp->link_params.req_flow_ctrl[idx] ==
10721 		    BNX2X_FLOW_CTRL_AUTO) {
10722 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10723 				bp->link_params.req_flow_ctrl[idx] =
10724 							BNX2X_FLOW_CTRL_NONE;
10725 			else
10726 				bnx2x_set_requested_fc(bp);
10727 		}
10728 
10729 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10730 			       bp->link_params.req_line_speed[idx],
10731 			       bp->link_params.req_duplex[idx],
10732 			       bp->link_params.req_flow_ctrl[idx],
10733 			       bp->port.advertising[idx]);
10734 	}
10735 }
10736 
10737 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10738 {
10739 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
10740 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
10741 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10742 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10743 }
10744 
10745 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10746 {
10747 	int port = BP_PORT(bp);
10748 	u32 config;
10749 	u32 ext_phy_type, ext_phy_config, eee_mode;
10750 
10751 	bp->link_params.bp = bp;
10752 	bp->link_params.port = port;
10753 
10754 	bp->link_params.lane_config =
10755 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10756 
10757 	bp->link_params.speed_cap_mask[0] =
10758 		SHMEM_RD(bp,
10759 			 dev_info.port_hw_config[port].speed_capability_mask) &
10760 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10761 	bp->link_params.speed_cap_mask[1] =
10762 		SHMEM_RD(bp,
10763 			 dev_info.port_hw_config[port].speed_capability_mask2) &
10764 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10765 	bp->port.link_config[0] =
10766 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10767 
10768 	bp->port.link_config[1] =
10769 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10770 
10771 	bp->link_params.multi_phy_config =
10772 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10773 	/* If the device is capable of WoL, set the default state according
10774 	 * to the HW
10775 	 */
10776 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10777 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10778 		   (config & PORT_FEATURE_WOL_ENABLED));
10779 
10780 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10781 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10782 		bp->flags |= NO_ISCSI_FLAG;
10783 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10784 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10785 		bp->flags |= NO_FCOE_FLAG;
10786 
10787 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10788 		       bp->link_params.lane_config,
10789 		       bp->link_params.speed_cap_mask[0],
10790 		       bp->port.link_config[0]);
10791 
10792 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10793 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10794 	bnx2x_phy_probe(&bp->link_params);
10795 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10796 
10797 	bnx2x_link_settings_requested(bp);
10798 
10799 	/*
10800 	 * If connected directly, work with the internal PHY, otherwise, work
10801 	 * with the external PHY
10802 	 */
10803 	ext_phy_config =
10804 		SHMEM_RD(bp,
10805 			 dev_info.port_hw_config[port].external_phy_config);
10806 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10807 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10808 		bp->mdio.prtad = bp->port.phy_addr;
10809 
10810 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10811 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10812 		bp->mdio.prtad =
10813 			XGXS_EXT_PHY_ADDR(ext_phy_config);
10814 
10815 	/* Configure link feature according to nvram value */
10816 	eee_mode = (((SHMEM_RD(bp, dev_info.
10817 		      port_feature_config[port].eee_power_mode)) &
10818 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10819 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10820 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10821 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10822 					   EEE_MODE_ENABLE_LPI |
10823 					   EEE_MODE_OUTPUT_TIME;
10824 	} else {
10825 		bp->link_params.eee_mode = 0;
10826 	}
10827 }
10828 
10829 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10830 {
10831 	u32 no_flags = NO_ISCSI_FLAG;
10832 	int port = BP_PORT(bp);
10833 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10834 				drv_lic_key[port].max_iscsi_conn);
10835 
10836 	if (!CNIC_SUPPORT(bp)) {
10837 		bp->flags |= no_flags;
10838 		return;
10839 	}
10840 
10841 	/* Get the number of maximum allowed iSCSI connections */
10842 	bp->cnic_eth_dev.max_iscsi_conn =
10843 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10844 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10845 
10846 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10847 		       bp->cnic_eth_dev.max_iscsi_conn);
10848 
10849 	/*
10850 	 * If maximum allowed number of connections is zero -
10851 	 * disable the feature.
10852 	 */
10853 	if (!bp->cnic_eth_dev.max_iscsi_conn)
10854 		bp->flags |= no_flags;
10855 }
10856 
10857 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10858 {
10859 	/* Port info */
10860 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10861 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10862 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10863 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10864 
10865 	/* Node info */
10866 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10867 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10868 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10869 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10870 }
10871 
10872 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10873 {
10874 	u8 count = 0;
10875 
10876 	if (IS_MF(bp)) {
10877 		u8 fid;
10878 
10879 		/* iterate over absolute function ids for this path: */
10880 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10881 			if (IS_MF_SD(bp)) {
10882 				u32 cfg = MF_CFG_RD(bp,
10883 						    func_mf_config[fid].config);
10884 
10885 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10886 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10887 					    FUNC_MF_CFG_PROTOCOL_FCOE))
10888 					count++;
10889 			} else {
10890 				u32 cfg = MF_CFG_RD(bp,
10891 						    func_ext_config[fid].
10892 								      func_cfg);
10893 
10894 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10895 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10896 					count++;
10897 			}
10898 		}
10899 	} else { /* SF */
10900 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10901 
10902 		for (port = 0; port < port_cnt; port++) {
10903 			u32 lic = SHMEM_RD(bp,
10904 					   drv_lic_key[port].max_fcoe_conn) ^
10905 				  FW_ENCODE_32BIT_PATTERN;
10906 			if (lic)
10907 				count++;
10908 		}
10909 	}
10910 
10911 	return count;
10912 }
10913 
10914 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10915 {
10916 	int port = BP_PORT(bp);
10917 	int func = BP_ABS_FUNC(bp);
10918 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10919 				drv_lic_key[port].max_fcoe_conn);
10920 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
10921 
10922 	if (!CNIC_SUPPORT(bp)) {
10923 		bp->flags |= NO_FCOE_FLAG;
10924 		return;
10925 	}
10926 
10927 	/* Get the number of maximum allowed FCoE connections */
10928 	bp->cnic_eth_dev.max_fcoe_conn =
10929 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10930 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10931 
10932 	/* Calculate the number of maximum allowed FCoE tasks */
10933 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10934 
10935 	/* check if FCoE resources must be shared between different functions */
10936 	if (num_fcoe_func)
10937 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
10938 
10939 	/* Read the WWN: */
10940 	if (!IS_MF(bp)) {
10941 		/* Port info */
10942 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10943 			SHMEM_RD(bp,
10944 				 dev_info.port_hw_config[port].
10945 				 fcoe_wwn_port_name_upper);
10946 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10947 			SHMEM_RD(bp,
10948 				 dev_info.port_hw_config[port].
10949 				 fcoe_wwn_port_name_lower);
10950 
10951 		/* Node info */
10952 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10953 			SHMEM_RD(bp,
10954 				 dev_info.port_hw_config[port].
10955 				 fcoe_wwn_node_name_upper);
10956 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10957 			SHMEM_RD(bp,
10958 				 dev_info.port_hw_config[port].
10959 				 fcoe_wwn_node_name_lower);
10960 	} else if (!IS_MF_SD(bp)) {
10961 		/*
10962 		 * Read the WWN info only if the FCoE feature is enabled for
10963 		 * this function.
10964 		 */
10965 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10966 			bnx2x_get_ext_wwn_info(bp, func);
10967 
10968 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10969 		bnx2x_get_ext_wwn_info(bp, func);
10970 	}
10971 
10972 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10973 
10974 	/*
10975 	 * If maximum allowed number of connections is zero -
10976 	 * disable the feature.
10977 	 */
10978 	if (!bp->cnic_eth_dev.max_fcoe_conn)
10979 		bp->flags |= NO_FCOE_FLAG;
10980 }
10981 
10982 static void bnx2x_get_cnic_info(struct bnx2x *bp)
10983 {
10984 	/*
10985 	 * iSCSI may be dynamically disabled but reading
10986 	 * info here we will decrease memory usage by driver
10987 	 * if the feature is disabled for good
10988 	 */
10989 	bnx2x_get_iscsi_info(bp);
10990 	bnx2x_get_fcoe_info(bp);
10991 }
10992 
10993 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
10994 {
10995 	u32 val, val2;
10996 	int func = BP_ABS_FUNC(bp);
10997 	int port = BP_PORT(bp);
10998 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10999 	u8 *fip_mac = bp->fip_mac;
11000 
11001 	if (IS_MF(bp)) {
11002 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11003 		 * FCoE MAC then the appropriate feature should be disabled.
11004 		 * In non SD mode features configuration comes from struct
11005 		 * func_ext_config.
11006 		 */
11007 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11008 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11009 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11010 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11011 						 iscsi_mac_addr_upper);
11012 				val = MF_CFG_RD(bp, func_ext_config[func].
11013 						iscsi_mac_addr_lower);
11014 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11015 				BNX2X_DEV_INFO
11016 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11017 			} else {
11018 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11019 			}
11020 
11021 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11022 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11023 						 fcoe_mac_addr_upper);
11024 				val = MF_CFG_RD(bp, func_ext_config[func].
11025 						fcoe_mac_addr_lower);
11026 				bnx2x_set_mac_buf(fip_mac, val, val2);
11027 				BNX2X_DEV_INFO
11028 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11029 			} else {
11030 				bp->flags |= NO_FCOE_FLAG;
11031 			}
11032 
11033 			bp->mf_ext_config = cfg;
11034 
11035 		} else { /* SD MODE */
11036 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11037 				/* use primary mac as iscsi mac */
11038 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11039 
11040 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11041 				BNX2X_DEV_INFO
11042 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11043 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11044 				/* use primary mac as fip mac */
11045 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11046 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11047 				BNX2X_DEV_INFO
11048 					("Read FIP MAC: %pM\n", fip_mac);
11049 			}
11050 		}
11051 
11052 		/* If this is a storage-only interface, use SAN mac as
11053 		 * primary MAC. Notice that for SD this is already the case,
11054 		 * as the SAN mac was copied from the primary MAC.
11055 		 */
11056 		if (IS_MF_FCOE_AFEX(bp))
11057 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11058 	} else {
11059 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11060 				iscsi_mac_upper);
11061 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11062 			       iscsi_mac_lower);
11063 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11064 
11065 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11066 				fcoe_fip_mac_upper);
11067 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11068 			       fcoe_fip_mac_lower);
11069 		bnx2x_set_mac_buf(fip_mac, val, val2);
11070 	}
11071 
11072 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11073 	if (!is_valid_ether_addr(iscsi_mac)) {
11074 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11075 		memset(iscsi_mac, 0, ETH_ALEN);
11076 	}
11077 
11078 	/* Disable FCoE if MAC configuration is invalid. */
11079 	if (!is_valid_ether_addr(fip_mac)) {
11080 		bp->flags |= NO_FCOE_FLAG;
11081 		memset(bp->fip_mac, 0, ETH_ALEN);
11082 	}
11083 }
11084 
11085 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11086 {
11087 	u32 val, val2;
11088 	int func = BP_ABS_FUNC(bp);
11089 	int port = BP_PORT(bp);
11090 
11091 	/* Zero primary MAC configuration */
11092 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
11093 
11094 	if (BP_NOMCP(bp)) {
11095 		BNX2X_ERROR("warning: random MAC workaround active\n");
11096 		eth_hw_addr_random(bp->dev);
11097 	} else if (IS_MF(bp)) {
11098 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11099 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11100 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11101 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11102 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11103 
11104 		if (CNIC_SUPPORT(bp))
11105 			bnx2x_get_cnic_mac_hwinfo(bp);
11106 	} else {
11107 		/* in SF read MACs from port configuration */
11108 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11109 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11110 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11111 
11112 		if (CNIC_SUPPORT(bp))
11113 			bnx2x_get_cnic_mac_hwinfo(bp);
11114 	}
11115 
11116 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11117 
11118 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11119 		dev_err(&bp->pdev->dev,
11120 			"bad Ethernet MAC address configuration: %pM\n"
11121 			"change it manually before bringing up the appropriate network interface\n",
11122 			bp->dev->dev_addr);
11123 }
11124 
11125 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11126 {
11127 	int tmp;
11128 	u32 cfg;
11129 
11130 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11131 		/* Take function: tmp = func */
11132 		tmp = BP_ABS_FUNC(bp);
11133 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11134 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11135 	} else {
11136 		/* Take port: tmp = port */
11137 		tmp = BP_PORT(bp);
11138 		cfg = SHMEM_RD(bp,
11139 			       dev_info.port_hw_config[tmp].generic_features);
11140 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11141 	}
11142 	return cfg;
11143 }
11144 
11145 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11146 {
11147 	int /*abs*/func = BP_ABS_FUNC(bp);
11148 	int vn;
11149 	u32 val = 0;
11150 	int rc = 0;
11151 
11152 	bnx2x_get_common_hwinfo(bp);
11153 
11154 	/*
11155 	 * initialize IGU parameters
11156 	 */
11157 	if (CHIP_IS_E1x(bp)) {
11158 		bp->common.int_block = INT_BLOCK_HC;
11159 
11160 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11161 		bp->igu_base_sb = 0;
11162 	} else {
11163 		bp->common.int_block = INT_BLOCK_IGU;
11164 
11165 		/* do not allow device reset during IGU info processing */
11166 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11167 
11168 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11169 
11170 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11171 			int tout = 5000;
11172 
11173 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11174 
11175 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11176 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11177 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11178 
11179 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11180 				tout--;
11181 				usleep_range(1000, 2000);
11182 			}
11183 
11184 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11185 				dev_err(&bp->pdev->dev,
11186 					"FORCING Normal Mode failed!!!\n");
11187 				bnx2x_release_hw_lock(bp,
11188 						      HW_LOCK_RESOURCE_RESET);
11189 				return -EPERM;
11190 			}
11191 		}
11192 
11193 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11194 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11195 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11196 		} else
11197 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11198 
11199 		rc = bnx2x_get_igu_cam_info(bp);
11200 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11201 		if (rc)
11202 			return rc;
11203 	}
11204 
11205 	/*
11206 	 * set base FW non-default (fast path) status block id, this value is
11207 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11208 	 * determine the id used by the FW.
11209 	 */
11210 	if (CHIP_IS_E1x(bp))
11211 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11212 	else /*
11213 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11214 	      * the same queue are indicated on the same IGU SB). So we prefer
11215 	      * FW and IGU SBs to be the same value.
11216 	      */
11217 		bp->base_fw_ndsb = bp->igu_base_sb;
11218 
11219 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11220 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11221 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11222 
11223 	/*
11224 	 * Initialize MF configuration
11225 	 */
11226 
11227 	bp->mf_ov = 0;
11228 	bp->mf_mode = 0;
11229 	vn = BP_VN(bp);
11230 
11231 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11232 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11233 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11234 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11235 
11236 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11237 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11238 		else
11239 			bp->common.mf_cfg_base = bp->common.shmem_base +
11240 				offsetof(struct shmem_region, func_mb) +
11241 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11242 		/*
11243 		 * get mf configuration:
11244 		 * 1. Existence of MF configuration
11245 		 * 2. MAC address must be legal (check only upper bytes)
11246 		 *    for  Switch-Independent mode;
11247 		 *    OVLAN must be legal for Switch-Dependent mode
11248 		 * 3. SF_MODE configures specific MF mode
11249 		 */
11250 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11251 			/* get mf configuration */
11252 			val = SHMEM_RD(bp,
11253 				       dev_info.shared_feature_config.config);
11254 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11255 
11256 			switch (val) {
11257 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11258 				val = MF_CFG_RD(bp, func_mf_config[func].
11259 						mac_upper);
11260 				/* check for legal mac (upper bytes)*/
11261 				if (val != 0xffff) {
11262 					bp->mf_mode = MULTI_FUNCTION_SI;
11263 					bp->mf_config[vn] = MF_CFG_RD(bp,
11264 						   func_mf_config[func].config);
11265 				} else
11266 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
11267 				break;
11268 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11269 				if ((!CHIP_IS_E1x(bp)) &&
11270 				    (MF_CFG_RD(bp, func_mf_config[func].
11271 					       mac_upper) != 0xffff) &&
11272 				    (SHMEM2_HAS(bp,
11273 						afex_driver_support))) {
11274 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11275 					bp->mf_config[vn] = MF_CFG_RD(bp,
11276 						func_mf_config[func].config);
11277 				} else {
11278 					BNX2X_DEV_INFO("can not configure afex mode\n");
11279 				}
11280 				break;
11281 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11282 				/* get OV configuration */
11283 				val = MF_CFG_RD(bp,
11284 					func_mf_config[FUNC_0].e1hov_tag);
11285 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11286 
11287 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11288 					bp->mf_mode = MULTI_FUNCTION_SD;
11289 					bp->mf_config[vn] = MF_CFG_RD(bp,
11290 						func_mf_config[func].config);
11291 				} else
11292 					BNX2X_DEV_INFO("illegal OV for SD\n");
11293 				break;
11294 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11295 				bp->mf_config[vn] = 0;
11296 				break;
11297 			default:
11298 				/* Unknown configuration: reset mf_config */
11299 				bp->mf_config[vn] = 0;
11300 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11301 			}
11302 		}
11303 
11304 		BNX2X_DEV_INFO("%s function mode\n",
11305 			       IS_MF(bp) ? "multi" : "single");
11306 
11307 		switch (bp->mf_mode) {
11308 		case MULTI_FUNCTION_SD:
11309 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11310 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11311 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11312 				bp->mf_ov = val;
11313 				bp->path_has_ovlan = true;
11314 
11315 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11316 					       func, bp->mf_ov, bp->mf_ov);
11317 			} else {
11318 				dev_err(&bp->pdev->dev,
11319 					"No valid MF OV for func %d, aborting\n",
11320 					func);
11321 				return -EPERM;
11322 			}
11323 			break;
11324 		case MULTI_FUNCTION_AFEX:
11325 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11326 			break;
11327 		case MULTI_FUNCTION_SI:
11328 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11329 				       func);
11330 			break;
11331 		default:
11332 			if (vn) {
11333 				dev_err(&bp->pdev->dev,
11334 					"VN %d is in a single function mode, aborting\n",
11335 					vn);
11336 				return -EPERM;
11337 			}
11338 			break;
11339 		}
11340 
11341 		/* check if other port on the path needs ovlan:
11342 		 * Since MF configuration is shared between ports
11343 		 * Possible mixed modes are only
11344 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11345 		 */
11346 		if (CHIP_MODE_IS_4_PORT(bp) &&
11347 		    !bp->path_has_ovlan &&
11348 		    !IS_MF(bp) &&
11349 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11350 			u8 other_port = !BP_PORT(bp);
11351 			u8 other_func = BP_PATH(bp) + 2*other_port;
11352 			val = MF_CFG_RD(bp,
11353 					func_mf_config[other_func].e1hov_tag);
11354 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11355 				bp->path_has_ovlan = true;
11356 		}
11357 	}
11358 
11359 	/* adjust igu_sb_cnt to MF for E1x */
11360 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
11361 		bp->igu_sb_cnt /= E1HVN_MAX;
11362 
11363 	/* port info */
11364 	bnx2x_get_port_hwinfo(bp);
11365 
11366 	/* Get MAC addresses */
11367 	bnx2x_get_mac_hwinfo(bp);
11368 
11369 	bnx2x_get_cnic_info(bp);
11370 
11371 	return rc;
11372 }
11373 
11374 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11375 {
11376 	int cnt, i, block_end, rodi;
11377 	char vpd_start[BNX2X_VPD_LEN+1];
11378 	char str_id_reg[VENDOR_ID_LEN+1];
11379 	char str_id_cap[VENDOR_ID_LEN+1];
11380 	char *vpd_data;
11381 	char *vpd_extended_data = NULL;
11382 	u8 len;
11383 
11384 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11385 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11386 
11387 	if (cnt < BNX2X_VPD_LEN)
11388 		goto out_not_found;
11389 
11390 	/* VPD RO tag should be first tag after identifier string, hence
11391 	 * we should be able to find it in first BNX2X_VPD_LEN chars
11392 	 */
11393 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11394 			     PCI_VPD_LRDT_RO_DATA);
11395 	if (i < 0)
11396 		goto out_not_found;
11397 
11398 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11399 		    pci_vpd_lrdt_size(&vpd_start[i]);
11400 
11401 	i += PCI_VPD_LRDT_TAG_SIZE;
11402 
11403 	if (block_end > BNX2X_VPD_LEN) {
11404 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11405 		if (vpd_extended_data  == NULL)
11406 			goto out_not_found;
11407 
11408 		/* read rest of vpd image into vpd_extended_data */
11409 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11410 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11411 				   block_end - BNX2X_VPD_LEN,
11412 				   vpd_extended_data + BNX2X_VPD_LEN);
11413 		if (cnt < (block_end - BNX2X_VPD_LEN))
11414 			goto out_not_found;
11415 		vpd_data = vpd_extended_data;
11416 	} else
11417 		vpd_data = vpd_start;
11418 
11419 	/* now vpd_data holds full vpd content in both cases */
11420 
11421 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11422 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11423 	if (rodi < 0)
11424 		goto out_not_found;
11425 
11426 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11427 
11428 	if (len != VENDOR_ID_LEN)
11429 		goto out_not_found;
11430 
11431 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11432 
11433 	/* vendor specific info */
11434 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11435 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11436 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11437 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11438 
11439 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11440 						PCI_VPD_RO_KEYWORD_VENDOR0);
11441 		if (rodi >= 0) {
11442 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11443 
11444 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11445 
11446 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11447 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11448 				bp->fw_ver[len] = ' ';
11449 			}
11450 		}
11451 		kfree(vpd_extended_data);
11452 		return;
11453 	}
11454 out_not_found:
11455 	kfree(vpd_extended_data);
11456 	return;
11457 }
11458 
11459 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11460 {
11461 	u32 flags = 0;
11462 
11463 	if (CHIP_REV_IS_FPGA(bp))
11464 		SET_FLAGS(flags, MODE_FPGA);
11465 	else if (CHIP_REV_IS_EMUL(bp))
11466 		SET_FLAGS(flags, MODE_EMUL);
11467 	else
11468 		SET_FLAGS(flags, MODE_ASIC);
11469 
11470 	if (CHIP_MODE_IS_4_PORT(bp))
11471 		SET_FLAGS(flags, MODE_PORT4);
11472 	else
11473 		SET_FLAGS(flags, MODE_PORT2);
11474 
11475 	if (CHIP_IS_E2(bp))
11476 		SET_FLAGS(flags, MODE_E2);
11477 	else if (CHIP_IS_E3(bp)) {
11478 		SET_FLAGS(flags, MODE_E3);
11479 		if (CHIP_REV(bp) == CHIP_REV_Ax)
11480 			SET_FLAGS(flags, MODE_E3_A0);
11481 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11482 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11483 	}
11484 
11485 	if (IS_MF(bp)) {
11486 		SET_FLAGS(flags, MODE_MF);
11487 		switch (bp->mf_mode) {
11488 		case MULTI_FUNCTION_SD:
11489 			SET_FLAGS(flags, MODE_MF_SD);
11490 			break;
11491 		case MULTI_FUNCTION_SI:
11492 			SET_FLAGS(flags, MODE_MF_SI);
11493 			break;
11494 		case MULTI_FUNCTION_AFEX:
11495 			SET_FLAGS(flags, MODE_MF_AFEX);
11496 			break;
11497 		}
11498 	} else
11499 		SET_FLAGS(flags, MODE_SF);
11500 
11501 #if defined(__LITTLE_ENDIAN)
11502 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11503 #else /*(__BIG_ENDIAN)*/
11504 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11505 #endif
11506 	INIT_MODE_FLAGS(bp) = flags;
11507 }
11508 
11509 static int bnx2x_init_bp(struct bnx2x *bp)
11510 {
11511 	int func;
11512 	int rc;
11513 
11514 	mutex_init(&bp->port.phy_mutex);
11515 	mutex_init(&bp->fw_mb_mutex);
11516 	spin_lock_init(&bp->stats_lock);
11517 
11518 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11519 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11520 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11521 	if (IS_PF(bp)) {
11522 		rc = bnx2x_get_hwinfo(bp);
11523 		if (rc)
11524 			return rc;
11525 	} else {
11526 		eth_zero_addr(bp->dev->dev_addr);
11527 	}
11528 
11529 	bnx2x_set_modes_bitmap(bp);
11530 
11531 	rc = bnx2x_alloc_mem_bp(bp);
11532 	if (rc)
11533 		return rc;
11534 
11535 	bnx2x_read_fwinfo(bp);
11536 
11537 	func = BP_FUNC(bp);
11538 
11539 	/* need to reset chip if undi was active */
11540 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
11541 		/* init fw_seq */
11542 		bp->fw_seq =
11543 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11544 							DRV_MSG_SEQ_NUMBER_MASK;
11545 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11546 
11547 		bnx2x_prev_unload(bp);
11548 	}
11549 
11550 	if (CHIP_REV_IS_FPGA(bp))
11551 		dev_err(&bp->pdev->dev, "FPGA detected\n");
11552 
11553 	if (BP_NOMCP(bp) && (func == 0))
11554 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11555 
11556 	bp->disable_tpa = disable_tpa;
11557 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11558 
11559 	/* Set TPA flags */
11560 	if (bp->disable_tpa) {
11561 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11562 		bp->dev->features &= ~NETIF_F_LRO;
11563 	} else {
11564 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11565 		bp->dev->features |= NETIF_F_LRO;
11566 	}
11567 
11568 	if (CHIP_IS_E1(bp))
11569 		bp->dropless_fc = 0;
11570 	else
11571 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11572 
11573 	bp->mrrs = mrrs;
11574 
11575 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11576 	if (IS_VF(bp))
11577 		bp->rx_ring_size = MAX_RX_AVAIL;
11578 
11579 	/* make sure that the numbers are in the right granularity */
11580 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11581 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11582 
11583 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11584 
11585 	init_timer(&bp->timer);
11586 	bp->timer.expires = jiffies + bp->current_interval;
11587 	bp->timer.data = (unsigned long) bp;
11588 	bp->timer.function = bnx2x_timer;
11589 
11590 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11591 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11592 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11593 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11594 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11595 		bnx2x_dcbx_init_params(bp);
11596 	} else {
11597 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11598 	}
11599 
11600 	if (CHIP_IS_E1x(bp))
11601 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11602 	else
11603 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11604 
11605 	/* multiple tx priority */
11606 	if (IS_VF(bp))
11607 		bp->max_cos = 1;
11608 	else if (CHIP_IS_E1x(bp))
11609 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11610 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11611 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11612 	else if (CHIP_IS_E3B0(bp))
11613 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11614 	else
11615 		BNX2X_ERR("unknown chip %x revision %x\n",
11616 			  CHIP_NUM(bp), CHIP_REV(bp));
11617 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11618 
11619 	/* We need at least one default status block for slow-path events,
11620 	 * second status block for the L2 queue, and a third status block for
11621 	 * CNIC if supported.
11622 	 */
11623 	if (CNIC_SUPPORT(bp))
11624 		bp->min_msix_vec_cnt = 3;
11625 	else
11626 		bp->min_msix_vec_cnt = 2;
11627 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11628 
11629 	return rc;
11630 }
11631 
11632 /****************************************************************************
11633 * General service functions
11634 ****************************************************************************/
11635 
11636 /*
11637  * net_device service functions
11638  */
11639 
11640 /* called with rtnl_lock */
11641 static int bnx2x_open(struct net_device *dev)
11642 {
11643 	struct bnx2x *bp = netdev_priv(dev);
11644 	bool global = false;
11645 	int other_engine = BP_PATH(bp) ? 0 : 1;
11646 	bool other_load_status, load_status;
11647 	int rc;
11648 
11649 	bp->stats_init = true;
11650 
11651 	netif_carrier_off(dev);
11652 
11653 	bnx2x_set_power_state(bp, PCI_D0);
11654 
11655 	/* If parity had happen during the unload, then attentions
11656 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11657 	 * want the first function loaded on the current engine to
11658 	 * complete the recovery.
11659 	 * Parity recovery is only relevant for PF driver.
11660 	 */
11661 	if (IS_PF(bp)) {
11662 		other_load_status = bnx2x_get_load_status(bp, other_engine);
11663 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11664 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11665 		    bnx2x_chk_parity_attn(bp, &global, true)) {
11666 			do {
11667 				/* If there are attentions and they are in a
11668 				 * global blocks, set the GLOBAL_RESET bit
11669 				 * regardless whether it will be this function
11670 				 * that will complete the recovery or not.
11671 				 */
11672 				if (global)
11673 					bnx2x_set_reset_global(bp);
11674 
11675 				/* Only the first function on the current
11676 				 * engine should try to recover in open. In case
11677 				 * of attentions in global blocks only the first
11678 				 * in the chip should try to recover.
11679 				 */
11680 				if ((!load_status &&
11681 				     (!global || !other_load_status)) &&
11682 				      bnx2x_trylock_leader_lock(bp) &&
11683 				      !bnx2x_leader_reset(bp)) {
11684 					netdev_info(bp->dev,
11685 						    "Recovered in open\n");
11686 					break;
11687 				}
11688 
11689 				/* recovery has failed... */
11690 				bnx2x_set_power_state(bp, PCI_D3hot);
11691 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
11692 
11693 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11694 					  "If you still see this message after a few retries then power cycle is required.\n");
11695 
11696 				return -EAGAIN;
11697 			} while (0);
11698 		}
11699 	}
11700 
11701 	bp->recovery_state = BNX2X_RECOVERY_DONE;
11702 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
11703 	if (rc)
11704 		return rc;
11705 	return bnx2x_open_epilog(bp);
11706 }
11707 
11708 /* called with rtnl_lock */
11709 static int bnx2x_close(struct net_device *dev)
11710 {
11711 	struct bnx2x *bp = netdev_priv(dev);
11712 
11713 	/* Unload the driver, release IRQs */
11714 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11715 
11716 	return 0;
11717 }
11718 
11719 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11720 				      struct bnx2x_mcast_ramrod_params *p)
11721 {
11722 	int mc_count = netdev_mc_count(bp->dev);
11723 	struct bnx2x_mcast_list_elem *mc_mac =
11724 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11725 	struct netdev_hw_addr *ha;
11726 
11727 	if (!mc_mac)
11728 		return -ENOMEM;
11729 
11730 	INIT_LIST_HEAD(&p->mcast_list);
11731 
11732 	netdev_for_each_mc_addr(ha, bp->dev) {
11733 		mc_mac->mac = bnx2x_mc_addr(ha);
11734 		list_add_tail(&mc_mac->link, &p->mcast_list);
11735 		mc_mac++;
11736 	}
11737 
11738 	p->mcast_list_len = mc_count;
11739 
11740 	return 0;
11741 }
11742 
11743 static void bnx2x_free_mcast_macs_list(
11744 	struct bnx2x_mcast_ramrod_params *p)
11745 {
11746 	struct bnx2x_mcast_list_elem *mc_mac =
11747 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11748 				 link);
11749 
11750 	WARN_ON(!mc_mac);
11751 	kfree(mc_mac);
11752 }
11753 
11754 /**
11755  * bnx2x_set_uc_list - configure a new unicast MACs list.
11756  *
11757  * @bp: driver handle
11758  *
11759  * We will use zero (0) as a MAC type for these MACs.
11760  */
11761 static int bnx2x_set_uc_list(struct bnx2x *bp)
11762 {
11763 	int rc;
11764 	struct net_device *dev = bp->dev;
11765 	struct netdev_hw_addr *ha;
11766 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11767 	unsigned long ramrod_flags = 0;
11768 
11769 	/* First schedule a cleanup up of old configuration */
11770 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11771 	if (rc < 0) {
11772 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11773 		return rc;
11774 	}
11775 
11776 	netdev_for_each_uc_addr(ha, dev) {
11777 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11778 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11779 		if (rc == -EEXIST) {
11780 			DP(BNX2X_MSG_SP,
11781 			   "Failed to schedule ADD operations: %d\n", rc);
11782 			/* do not treat adding same MAC as error */
11783 			rc = 0;
11784 
11785 		} else if (rc < 0) {
11786 
11787 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11788 				  rc);
11789 			return rc;
11790 		}
11791 	}
11792 
11793 	/* Execute the pending commands */
11794 	__set_bit(RAMROD_CONT, &ramrod_flags);
11795 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11796 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
11797 }
11798 
11799 static int bnx2x_set_mc_list(struct bnx2x *bp)
11800 {
11801 	struct net_device *dev = bp->dev;
11802 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
11803 	int rc = 0;
11804 
11805 	rparam.mcast_obj = &bp->mcast_obj;
11806 
11807 	/* first, clear all configured multicast MACs */
11808 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11809 	if (rc < 0) {
11810 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11811 		return rc;
11812 	}
11813 
11814 	/* then, configure a new MACs list */
11815 	if (netdev_mc_count(dev)) {
11816 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11817 		if (rc) {
11818 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11819 				  rc);
11820 			return rc;
11821 		}
11822 
11823 		/* Now add the new MACs */
11824 		rc = bnx2x_config_mcast(bp, &rparam,
11825 					BNX2X_MCAST_CMD_ADD);
11826 		if (rc < 0)
11827 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11828 				  rc);
11829 
11830 		bnx2x_free_mcast_macs_list(&rparam);
11831 	}
11832 
11833 	return rc;
11834 }
11835 
11836 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11837 void bnx2x_set_rx_mode(struct net_device *dev)
11838 {
11839 	struct bnx2x *bp = netdev_priv(dev);
11840 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11841 
11842 	if (bp->state != BNX2X_STATE_OPEN) {
11843 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11844 		return;
11845 	}
11846 
11847 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11848 
11849 	if (dev->flags & IFF_PROMISC)
11850 		rx_mode = BNX2X_RX_MODE_PROMISC;
11851 	else if ((dev->flags & IFF_ALLMULTI) ||
11852 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11853 		  CHIP_IS_E1(bp)))
11854 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
11855 	else {
11856 		if (IS_PF(bp)) {
11857 			/* some multicasts */
11858 			if (bnx2x_set_mc_list(bp) < 0)
11859 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
11860 
11861 			if (bnx2x_set_uc_list(bp) < 0)
11862 				rx_mode = BNX2X_RX_MODE_PROMISC;
11863 		} else {
11864 			/* configuring mcast to a vf involves sleeping (when we
11865 			 * wait for the pf's response). Since this function is
11866 			 * called from non sleepable context we must schedule
11867 			 * a work item for this purpose
11868 			 */
11869 			smp_mb__before_clear_bit();
11870 			set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11871 				&bp->sp_rtnl_state);
11872 			smp_mb__after_clear_bit();
11873 			schedule_delayed_work(&bp->sp_rtnl_task, 0);
11874 		}
11875 	}
11876 
11877 	bp->rx_mode = rx_mode;
11878 	/* handle ISCSI SD mode */
11879 	if (IS_MF_ISCSI_SD(bp))
11880 		bp->rx_mode = BNX2X_RX_MODE_NONE;
11881 
11882 	/* Schedule the rx_mode command */
11883 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11884 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11885 		return;
11886 	}
11887 
11888 	if (IS_PF(bp)) {
11889 		bnx2x_set_storm_rx_mode(bp);
11890 	} else {
11891 		/* configuring rx mode to storms in a vf involves sleeping (when
11892 		 * we wait for the pf's response). Since this function is
11893 		 * called from non sleepable context we must schedule
11894 		 * a work item for this purpose
11895 		 */
11896 		smp_mb__before_clear_bit();
11897 		set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
11898 			&bp->sp_rtnl_state);
11899 		smp_mb__after_clear_bit();
11900 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
11901 	}
11902 }
11903 
11904 /* called with rtnl_lock */
11905 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11906 			   int devad, u16 addr)
11907 {
11908 	struct bnx2x *bp = netdev_priv(netdev);
11909 	u16 value;
11910 	int rc;
11911 
11912 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11913 	   prtad, devad, addr);
11914 
11915 	/* The HW expects different devad if CL22 is used */
11916 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11917 
11918 	bnx2x_acquire_phy_lock(bp);
11919 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11920 	bnx2x_release_phy_lock(bp);
11921 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11922 
11923 	if (!rc)
11924 		rc = value;
11925 	return rc;
11926 }
11927 
11928 /* called with rtnl_lock */
11929 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11930 			    u16 addr, u16 value)
11931 {
11932 	struct bnx2x *bp = netdev_priv(netdev);
11933 	int rc;
11934 
11935 	DP(NETIF_MSG_LINK,
11936 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11937 	   prtad, devad, addr, value);
11938 
11939 	/* The HW expects different devad if CL22 is used */
11940 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11941 
11942 	bnx2x_acquire_phy_lock(bp);
11943 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11944 	bnx2x_release_phy_lock(bp);
11945 	return rc;
11946 }
11947 
11948 /* called with rtnl_lock */
11949 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11950 {
11951 	struct bnx2x *bp = netdev_priv(dev);
11952 	struct mii_ioctl_data *mdio = if_mii(ifr);
11953 
11954 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11955 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
11956 
11957 	if (!netif_running(dev))
11958 		return -EAGAIN;
11959 
11960 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11961 }
11962 
11963 #ifdef CONFIG_NET_POLL_CONTROLLER
11964 static void poll_bnx2x(struct net_device *dev)
11965 {
11966 	struct bnx2x *bp = netdev_priv(dev);
11967 	int i;
11968 
11969 	for_each_eth_queue(bp, i) {
11970 		struct bnx2x_fastpath *fp = &bp->fp[i];
11971 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11972 	}
11973 }
11974 #endif
11975 
11976 static int bnx2x_validate_addr(struct net_device *dev)
11977 {
11978 	struct bnx2x *bp = netdev_priv(dev);
11979 
11980 	/* query the bulletin board for mac address configured by the PF */
11981 	if (IS_VF(bp))
11982 		bnx2x_sample_bulletin(bp);
11983 
11984 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11985 		BNX2X_ERR("Non-valid Ethernet address\n");
11986 		return -EADDRNOTAVAIL;
11987 	}
11988 	return 0;
11989 }
11990 
11991 static const struct net_device_ops bnx2x_netdev_ops = {
11992 	.ndo_open		= bnx2x_open,
11993 	.ndo_stop		= bnx2x_close,
11994 	.ndo_start_xmit		= bnx2x_start_xmit,
11995 	.ndo_select_queue	= bnx2x_select_queue,
11996 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
11997 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
11998 	.ndo_validate_addr	= bnx2x_validate_addr,
11999 	.ndo_do_ioctl		= bnx2x_ioctl,
12000 	.ndo_change_mtu		= bnx2x_change_mtu,
12001 	.ndo_fix_features	= bnx2x_fix_features,
12002 	.ndo_set_features	= bnx2x_set_features,
12003 	.ndo_tx_timeout		= bnx2x_tx_timeout,
12004 #ifdef CONFIG_NET_POLL_CONTROLLER
12005 	.ndo_poll_controller	= poll_bnx2x,
12006 #endif
12007 	.ndo_setup_tc		= bnx2x_setup_tc,
12008 #ifdef CONFIG_BNX2X_SRIOV
12009 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12010 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12011 	.ndo_get_vf_config	= bnx2x_get_vf_config,
12012 #endif
12013 #ifdef NETDEV_FCOE_WWNN
12014 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12015 #endif
12016 };
12017 
12018 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12019 {
12020 	struct device *dev = &bp->pdev->dev;
12021 
12022 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
12023 		bp->flags |= USING_DAC_FLAG;
12024 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
12025 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
12026 			return -EIO;
12027 		}
12028 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
12029 		dev_err(dev, "System does not support DMA, aborting\n");
12030 		return -EIO;
12031 	}
12032 
12033 	return 0;
12034 }
12035 
12036 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12037 			  struct net_device *dev, unsigned long board_type)
12038 {
12039 	int rc;
12040 	u32 pci_cfg_dword;
12041 	bool chip_is_e1x = (board_type == BCM57710 ||
12042 			    board_type == BCM57711 ||
12043 			    board_type == BCM57711E);
12044 
12045 	SET_NETDEV_DEV(dev, &pdev->dev);
12046 
12047 	bp->dev = dev;
12048 	bp->pdev = pdev;
12049 
12050 	rc = pci_enable_device(pdev);
12051 	if (rc) {
12052 		dev_err(&bp->pdev->dev,
12053 			"Cannot enable PCI device, aborting\n");
12054 		goto err_out;
12055 	}
12056 
12057 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12058 		dev_err(&bp->pdev->dev,
12059 			"Cannot find PCI device base address, aborting\n");
12060 		rc = -ENODEV;
12061 		goto err_out_disable;
12062 	}
12063 
12064 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12065 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12066 		rc = -ENODEV;
12067 		goto err_out_disable;
12068 	}
12069 
12070 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12071 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12072 	    PCICFG_REVESION_ID_ERROR_VAL) {
12073 		pr_err("PCI device error, probably due to fan failure, aborting\n");
12074 		rc = -ENODEV;
12075 		goto err_out_disable;
12076 	}
12077 
12078 	if (atomic_read(&pdev->enable_cnt) == 1) {
12079 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12080 		if (rc) {
12081 			dev_err(&bp->pdev->dev,
12082 				"Cannot obtain PCI resources, aborting\n");
12083 			goto err_out_disable;
12084 		}
12085 
12086 		pci_set_master(pdev);
12087 		pci_save_state(pdev);
12088 	}
12089 
12090 	if (IS_PF(bp)) {
12091 		bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
12092 		if (bp->pm_cap == 0) {
12093 			dev_err(&bp->pdev->dev,
12094 				"Cannot find power management capability, aborting\n");
12095 			rc = -EIO;
12096 			goto err_out_release;
12097 		}
12098 	}
12099 
12100 	if (!pci_is_pcie(pdev)) {
12101 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12102 		rc = -EIO;
12103 		goto err_out_release;
12104 	}
12105 
12106 	rc = bnx2x_set_coherency_mask(bp);
12107 	if (rc)
12108 		goto err_out_release;
12109 
12110 	dev->mem_start = pci_resource_start(pdev, 0);
12111 	dev->base_addr = dev->mem_start;
12112 	dev->mem_end = pci_resource_end(pdev, 0);
12113 
12114 	dev->irq = pdev->irq;
12115 
12116 	bp->regview = pci_ioremap_bar(pdev, 0);
12117 	if (!bp->regview) {
12118 		dev_err(&bp->pdev->dev,
12119 			"Cannot map register space, aborting\n");
12120 		rc = -ENOMEM;
12121 		goto err_out_release;
12122 	}
12123 
12124 	/* In E1/E1H use pci device function given by kernel.
12125 	 * In E2/E3 read physical function from ME register since these chips
12126 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12127 	 * (depending on hypervisor).
12128 	 */
12129 	if (chip_is_e1x) {
12130 		bp->pf_num = PCI_FUNC(pdev->devfn);
12131 	} else {
12132 		/* chip is E2/3*/
12133 		pci_read_config_dword(bp->pdev,
12134 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12135 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12136 				  ME_REG_ABS_PF_NUM_SHIFT);
12137 	}
12138 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12139 
12140 	bnx2x_set_power_state(bp, PCI_D0);
12141 
12142 	/* clean indirect addresses */
12143 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12144 			       PCICFG_VENDOR_ID_OFFSET);
12145 	/*
12146 	 * Clean the following indirect addresses for all functions since it
12147 	 * is not used by the driver.
12148 	 */
12149 	if (IS_PF(bp)) {
12150 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12151 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12152 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12153 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12154 
12155 		if (chip_is_e1x) {
12156 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12157 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12158 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12159 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12160 		}
12161 
12162 		/* Enable internal target-read (in case we are probed after PF
12163 		 * FLR). Must be done prior to any BAR read access. Only for
12164 		 * 57712 and up
12165 		 */
12166 		if (!chip_is_e1x)
12167 			REG_WR(bp,
12168 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12169 	}
12170 
12171 	dev->watchdog_timeo = TX_TIMEOUT;
12172 
12173 	dev->netdev_ops = &bnx2x_netdev_ops;
12174 	bnx2x_set_ethtool_ops(bp, dev);
12175 
12176 	dev->priv_flags |= IFF_UNICAST_FLT;
12177 
12178 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12179 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12180 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12181 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12182 	if (!CHIP_IS_E1x(bp)) {
12183 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12184 		dev->hw_enc_features =
12185 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12186 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12187 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12188 	}
12189 
12190 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12191 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12192 
12193 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12194 	if (bp->flags & USING_DAC_FLAG)
12195 		dev->features |= NETIF_F_HIGHDMA;
12196 
12197 	/* Add Loopback capability to the device */
12198 	dev->hw_features |= NETIF_F_LOOPBACK;
12199 
12200 #ifdef BCM_DCBNL
12201 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12202 #endif
12203 
12204 	/* get_port_hwinfo() will set prtad and mmds properly */
12205 	bp->mdio.prtad = MDIO_PRTAD_NONE;
12206 	bp->mdio.mmds = 0;
12207 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12208 	bp->mdio.dev = dev;
12209 	bp->mdio.mdio_read = bnx2x_mdio_read;
12210 	bp->mdio.mdio_write = bnx2x_mdio_write;
12211 
12212 	return 0;
12213 
12214 err_out_release:
12215 	if (atomic_read(&pdev->enable_cnt) == 1)
12216 		pci_release_regions(pdev);
12217 
12218 err_out_disable:
12219 	pci_disable_device(pdev);
12220 	pci_set_drvdata(pdev, NULL);
12221 
12222 err_out:
12223 	return rc;
12224 }
12225 
12226 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width,
12227 				       enum bnx2x_pci_bus_speed *speed)
12228 {
12229 	u32 link_speed, val = 0;
12230 
12231 	pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12232 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12233 
12234 	link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12235 
12236 	switch (link_speed) {
12237 	case 3:
12238 		*speed = BNX2X_PCI_LINK_SPEED_8000;
12239 		break;
12240 	case 2:
12241 		*speed = BNX2X_PCI_LINK_SPEED_5000;
12242 		break;
12243 	default:
12244 		*speed = BNX2X_PCI_LINK_SPEED_2500;
12245 	}
12246 }
12247 
12248 static int bnx2x_check_firmware(struct bnx2x *bp)
12249 {
12250 	const struct firmware *firmware = bp->firmware;
12251 	struct bnx2x_fw_file_hdr *fw_hdr;
12252 	struct bnx2x_fw_file_section *sections;
12253 	u32 offset, len, num_ops;
12254 	__be16 *ops_offsets;
12255 	int i;
12256 	const u8 *fw_ver;
12257 
12258 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12259 		BNX2X_ERR("Wrong FW size\n");
12260 		return -EINVAL;
12261 	}
12262 
12263 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12264 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12265 
12266 	/* Make sure none of the offsets and sizes make us read beyond
12267 	 * the end of the firmware data */
12268 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12269 		offset = be32_to_cpu(sections[i].offset);
12270 		len = be32_to_cpu(sections[i].len);
12271 		if (offset + len > firmware->size) {
12272 			BNX2X_ERR("Section %d length is out of bounds\n", i);
12273 			return -EINVAL;
12274 		}
12275 	}
12276 
12277 	/* Likewise for the init_ops offsets */
12278 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12279 	ops_offsets = (__force __be16 *)(firmware->data + offset);
12280 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12281 
12282 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12283 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12284 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12285 			return -EINVAL;
12286 		}
12287 	}
12288 
12289 	/* Check FW version */
12290 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12291 	fw_ver = firmware->data + offset;
12292 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12293 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12294 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12295 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12296 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12297 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12298 		       BCM_5710_FW_MAJOR_VERSION,
12299 		       BCM_5710_FW_MINOR_VERSION,
12300 		       BCM_5710_FW_REVISION_VERSION,
12301 		       BCM_5710_FW_ENGINEERING_VERSION);
12302 		return -EINVAL;
12303 	}
12304 
12305 	return 0;
12306 }
12307 
12308 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12309 {
12310 	const __be32 *source = (const __be32 *)_source;
12311 	u32 *target = (u32 *)_target;
12312 	u32 i;
12313 
12314 	for (i = 0; i < n/4; i++)
12315 		target[i] = be32_to_cpu(source[i]);
12316 }
12317 
12318 /*
12319    Ops array is stored in the following format:
12320    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12321  */
12322 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12323 {
12324 	const __be32 *source = (const __be32 *)_source;
12325 	struct raw_op *target = (struct raw_op *)_target;
12326 	u32 i, j, tmp;
12327 
12328 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12329 		tmp = be32_to_cpu(source[j]);
12330 		target[i].op = (tmp >> 24) & 0xff;
12331 		target[i].offset = tmp & 0xffffff;
12332 		target[i].raw_data = be32_to_cpu(source[j + 1]);
12333 	}
12334 }
12335 
12336 /* IRO array is stored in the following format:
12337  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12338  */
12339 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12340 {
12341 	const __be32 *source = (const __be32 *)_source;
12342 	struct iro *target = (struct iro *)_target;
12343 	u32 i, j, tmp;
12344 
12345 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12346 		target[i].base = be32_to_cpu(source[j]);
12347 		j++;
12348 		tmp = be32_to_cpu(source[j]);
12349 		target[i].m1 = (tmp >> 16) & 0xffff;
12350 		target[i].m2 = tmp & 0xffff;
12351 		j++;
12352 		tmp = be32_to_cpu(source[j]);
12353 		target[i].m3 = (tmp >> 16) & 0xffff;
12354 		target[i].size = tmp & 0xffff;
12355 		j++;
12356 	}
12357 }
12358 
12359 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12360 {
12361 	const __be16 *source = (const __be16 *)_source;
12362 	u16 *target = (u16 *)_target;
12363 	u32 i;
12364 
12365 	for (i = 0; i < n/2; i++)
12366 		target[i] = be16_to_cpu(source[i]);
12367 }
12368 
12369 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12370 do {									\
12371 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12372 	bp->arr = kmalloc(len, GFP_KERNEL);				\
12373 	if (!bp->arr)							\
12374 		goto lbl;						\
12375 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12376 	     (u8 *)bp->arr, len);					\
12377 } while (0)
12378 
12379 static int bnx2x_init_firmware(struct bnx2x *bp)
12380 {
12381 	const char *fw_file_name;
12382 	struct bnx2x_fw_file_hdr *fw_hdr;
12383 	int rc;
12384 
12385 	if (bp->firmware)
12386 		return 0;
12387 
12388 	if (CHIP_IS_E1(bp))
12389 		fw_file_name = FW_FILE_NAME_E1;
12390 	else if (CHIP_IS_E1H(bp))
12391 		fw_file_name = FW_FILE_NAME_E1H;
12392 	else if (!CHIP_IS_E1x(bp))
12393 		fw_file_name = FW_FILE_NAME_E2;
12394 	else {
12395 		BNX2X_ERR("Unsupported chip revision\n");
12396 		return -EINVAL;
12397 	}
12398 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12399 
12400 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12401 	if (rc) {
12402 		BNX2X_ERR("Can't load firmware file %s\n",
12403 			  fw_file_name);
12404 		goto request_firmware_exit;
12405 	}
12406 
12407 	rc = bnx2x_check_firmware(bp);
12408 	if (rc) {
12409 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12410 		goto request_firmware_exit;
12411 	}
12412 
12413 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12414 
12415 	/* Initialize the pointers to the init arrays */
12416 	/* Blob */
12417 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12418 
12419 	/* Opcodes */
12420 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12421 
12422 	/* Offsets */
12423 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12424 			    be16_to_cpu_n);
12425 
12426 	/* STORMs firmware */
12427 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12428 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12429 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12430 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12431 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12432 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12433 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12434 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12435 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12436 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12437 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12438 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12439 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12440 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12441 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12442 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12443 	/* IRO */
12444 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12445 
12446 	return 0;
12447 
12448 iro_alloc_err:
12449 	kfree(bp->init_ops_offsets);
12450 init_offsets_alloc_err:
12451 	kfree(bp->init_ops);
12452 init_ops_alloc_err:
12453 	kfree(bp->init_data);
12454 request_firmware_exit:
12455 	release_firmware(bp->firmware);
12456 	bp->firmware = NULL;
12457 
12458 	return rc;
12459 }
12460 
12461 static void bnx2x_release_firmware(struct bnx2x *bp)
12462 {
12463 	kfree(bp->init_ops_offsets);
12464 	kfree(bp->init_ops);
12465 	kfree(bp->init_data);
12466 	release_firmware(bp->firmware);
12467 	bp->firmware = NULL;
12468 }
12469 
12470 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12471 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12472 	.init_hw_cmn      = bnx2x_init_hw_common,
12473 	.init_hw_port     = bnx2x_init_hw_port,
12474 	.init_hw_func     = bnx2x_init_hw_func,
12475 
12476 	.reset_hw_cmn     = bnx2x_reset_common,
12477 	.reset_hw_port    = bnx2x_reset_port,
12478 	.reset_hw_func    = bnx2x_reset_func,
12479 
12480 	.gunzip_init      = bnx2x_gunzip_init,
12481 	.gunzip_end       = bnx2x_gunzip_end,
12482 
12483 	.init_fw          = bnx2x_init_firmware,
12484 	.release_fw       = bnx2x_release_firmware,
12485 };
12486 
12487 void bnx2x__init_func_obj(struct bnx2x *bp)
12488 {
12489 	/* Prepare DMAE related driver resources */
12490 	bnx2x_setup_dmae(bp);
12491 
12492 	bnx2x_init_func_obj(bp, &bp->func_obj,
12493 			    bnx2x_sp(bp, func_rdata),
12494 			    bnx2x_sp_mapping(bp, func_rdata),
12495 			    bnx2x_sp(bp, func_afex_rdata),
12496 			    bnx2x_sp_mapping(bp, func_afex_rdata),
12497 			    &bnx2x_func_sp_drv);
12498 }
12499 
12500 /* must be called after sriov-enable */
12501 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12502 {
12503 	int cid_count = BNX2X_L2_MAX_CID(bp);
12504 
12505 	if (IS_SRIOV(bp))
12506 		cid_count += BNX2X_VF_CIDS;
12507 
12508 	if (CNIC_SUPPORT(bp))
12509 		cid_count += CNIC_CID_MAX;
12510 
12511 	return roundup(cid_count, QM_CID_ROUND);
12512 }
12513 
12514 /**
12515  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12516  *
12517  * @dev:	pci device
12518  *
12519  */
12520 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12521 				     int cnic_cnt, bool is_vf)
12522 {
12523 	int pos, index;
12524 	u16 control = 0;
12525 
12526 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12527 
12528 	/*
12529 	 * If MSI-X is not supported - return number of SBs needed to support
12530 	 * one fast path queue: one FP queue + SB for CNIC
12531 	 */
12532 	if (!pos) {
12533 		dev_info(&pdev->dev, "no msix capability found\n");
12534 		return 1 + cnic_cnt;
12535 	}
12536 	dev_info(&pdev->dev, "msix capability found\n");
12537 
12538 	/*
12539 	 * The value in the PCI configuration space is the index of the last
12540 	 * entry, namely one less than the actual size of the table, which is
12541 	 * exactly what we want to return from this function: number of all SBs
12542 	 * without the default SB.
12543 	 * For VFs there is no default SB, then we return (index+1).
12544 	 */
12545 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
12546 
12547 	index = control & PCI_MSIX_FLAGS_QSIZE;
12548 
12549 	return is_vf ? index + 1 : index;
12550 }
12551 
12552 static int set_max_cos_est(int chip_id)
12553 {
12554 	switch (chip_id) {
12555 	case BCM57710:
12556 	case BCM57711:
12557 	case BCM57711E:
12558 		return BNX2X_MULTI_TX_COS_E1X;
12559 	case BCM57712:
12560 	case BCM57712_MF:
12561 	case BCM57712_VF:
12562 		return BNX2X_MULTI_TX_COS_E2_E3A0;
12563 	case BCM57800:
12564 	case BCM57800_MF:
12565 	case BCM57800_VF:
12566 	case BCM57810:
12567 	case BCM57810_MF:
12568 	case BCM57840_4_10:
12569 	case BCM57840_2_20:
12570 	case BCM57840_O:
12571 	case BCM57840_MFO:
12572 	case BCM57810_VF:
12573 	case BCM57840_MF:
12574 	case BCM57840_VF:
12575 	case BCM57811:
12576 	case BCM57811_MF:
12577 	case BCM57811_VF:
12578 		return BNX2X_MULTI_TX_COS_E3B0;
12579 		return 1;
12580 	default:
12581 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
12582 		return -ENODEV;
12583 	}
12584 }
12585 
12586 static int set_is_vf(int chip_id)
12587 {
12588 	switch (chip_id) {
12589 	case BCM57712_VF:
12590 	case BCM57800_VF:
12591 	case BCM57810_VF:
12592 	case BCM57840_VF:
12593 	case BCM57811_VF:
12594 		return true;
12595 	default:
12596 		return false;
12597 	}
12598 }
12599 
12600 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12601 
12602 static int bnx2x_init_one(struct pci_dev *pdev,
12603 				    const struct pci_device_id *ent)
12604 {
12605 	struct net_device *dev = NULL;
12606 	struct bnx2x *bp;
12607 	int pcie_width;
12608 	enum bnx2x_pci_bus_speed pcie_speed;
12609 	int rc, max_non_def_sbs;
12610 	int rx_count, tx_count, rss_count, doorbell_size;
12611 	int max_cos_est;
12612 	bool is_vf;
12613 	int cnic_cnt;
12614 
12615 	/* An estimated maximum supported CoS number according to the chip
12616 	 * version.
12617 	 * We will try to roughly estimate the maximum number of CoSes this chip
12618 	 * may support in order to minimize the memory allocated for Tx
12619 	 * netdev_queue's. This number will be accurately calculated during the
12620 	 * initialization of bp->max_cos based on the chip versions AND chip
12621 	 * revision in the bnx2x_init_bp().
12622 	 */
12623 	max_cos_est = set_max_cos_est(ent->driver_data);
12624 	if (max_cos_est < 0)
12625 		return max_cos_est;
12626 	is_vf = set_is_vf(ent->driver_data);
12627 	cnic_cnt = is_vf ? 0 : 1;
12628 
12629 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf);
12630 
12631 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
12632 	rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt;
12633 
12634 	if (rss_count < 1)
12635 		return -EINVAL;
12636 
12637 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12638 	rx_count = rss_count + cnic_cnt;
12639 
12640 	/* Maximum number of netdev Tx queues:
12641 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12642 	 */
12643 	tx_count = rss_count * max_cos_est + cnic_cnt;
12644 
12645 	/* dev zeroed in init_etherdev */
12646 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12647 	if (!dev)
12648 		return -ENOMEM;
12649 
12650 	bp = netdev_priv(dev);
12651 
12652 	bp->flags = 0;
12653 	if (is_vf)
12654 		bp->flags |= IS_VF_FLAG;
12655 
12656 	bp->igu_sb_cnt = max_non_def_sbs;
12657 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12658 	bp->msg_enable = debug;
12659 	bp->cnic_support = cnic_cnt;
12660 	bp->cnic_probe = bnx2x_cnic_probe;
12661 
12662 	pci_set_drvdata(pdev, dev);
12663 
12664 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12665 	if (rc < 0) {
12666 		free_netdev(dev);
12667 		return rc;
12668 	}
12669 
12670 	BNX2X_DEV_INFO("This is a %s function\n",
12671 		       IS_PF(bp) ? "physical" : "virtual");
12672 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12673 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12674 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12675 		       tx_count, rx_count);
12676 
12677 	rc = bnx2x_init_bp(bp);
12678 	if (rc)
12679 		goto init_one_exit;
12680 
12681 	/* Map doorbells here as we need the real value of bp->max_cos which
12682 	 * is initialized in bnx2x_init_bp() to determine the number of
12683 	 * l2 connections.
12684 	 */
12685 	if (IS_VF(bp)) {
12686 		bp->doorbells = bnx2x_vf_doorbells(bp);
12687 		rc = bnx2x_vf_pci_alloc(bp);
12688 		if (rc)
12689 			goto init_one_exit;
12690 	} else {
12691 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12692 		if (doorbell_size > pci_resource_len(pdev, 2)) {
12693 			dev_err(&bp->pdev->dev,
12694 				"Cannot map doorbells, bar size too small, aborting\n");
12695 			rc = -ENOMEM;
12696 			goto init_one_exit;
12697 		}
12698 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12699 						doorbell_size);
12700 	}
12701 	if (!bp->doorbells) {
12702 		dev_err(&bp->pdev->dev,
12703 			"Cannot map doorbell space, aborting\n");
12704 		rc = -ENOMEM;
12705 		goto init_one_exit;
12706 	}
12707 
12708 	if (IS_VF(bp)) {
12709 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12710 		if (rc)
12711 			goto init_one_exit;
12712 	}
12713 
12714 	/* Enable SRIOV if capability found in configuration space */
12715 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12716 	if (rc)
12717 		goto init_one_exit;
12718 
12719 	/* calc qm_cid_count */
12720 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12721 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12722 
12723 	/* disable FCOE L2 queue for E1x*/
12724 	if (CHIP_IS_E1x(bp))
12725 		bp->flags |= NO_FCOE_FLAG;
12726 
12727 	/* Set bp->num_queues for MSI-X mode*/
12728 	bnx2x_set_num_queues(bp);
12729 
12730 	/* Configure interrupt mode: try to enable MSI-X/MSI if
12731 	 * needed.
12732 	 */
12733 	rc = bnx2x_set_int_mode(bp);
12734 	if (rc) {
12735 		dev_err(&pdev->dev, "Cannot set interrupts\n");
12736 		goto init_one_exit;
12737 	}
12738 	BNX2X_DEV_INFO("set interrupts successfully\n");
12739 
12740 	/* register the net device */
12741 	rc = register_netdev(dev);
12742 	if (rc) {
12743 		dev_err(&pdev->dev, "Cannot register net device\n");
12744 		goto init_one_exit;
12745 	}
12746 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12747 
12748 	if (!NO_FCOE(bp)) {
12749 		/* Add storage MAC address */
12750 		rtnl_lock();
12751 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12752 		rtnl_unlock();
12753 	}
12754 
12755 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12756 	BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12757 		       pcie_width, pcie_speed);
12758 
12759 	BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12760 		       board_info[ent->driver_data].name,
12761 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12762 		       pcie_width,
12763 		       pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" :
12764 		       pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" :
12765 		       pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" :
12766 		       "Unknown",
12767 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
12768 
12769 	return 0;
12770 
12771 init_one_exit:
12772 	if (bp->regview)
12773 		iounmap(bp->regview);
12774 
12775 	if (IS_PF(bp) && bp->doorbells)
12776 		iounmap(bp->doorbells);
12777 
12778 	free_netdev(dev);
12779 
12780 	if (atomic_read(&pdev->enable_cnt) == 1)
12781 		pci_release_regions(pdev);
12782 
12783 	pci_disable_device(pdev);
12784 	pci_set_drvdata(pdev, NULL);
12785 
12786 	return rc;
12787 }
12788 
12789 static void __bnx2x_remove(struct pci_dev *pdev,
12790 			   struct net_device *dev,
12791 			   struct bnx2x *bp,
12792 			   bool remove_netdev)
12793 {
12794 	/* Delete storage MAC address */
12795 	if (!NO_FCOE(bp)) {
12796 		rtnl_lock();
12797 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12798 		rtnl_unlock();
12799 	}
12800 
12801 #ifdef BCM_DCBNL
12802 	/* Delete app tlvs from dcbnl */
12803 	bnx2x_dcbnl_update_applist(bp, true);
12804 #endif
12805 
12806 	/* Close the interface - either directly or implicitly */
12807 	if (remove_netdev) {
12808 		unregister_netdev(dev);
12809 	} else {
12810 		rtnl_lock();
12811 		if (netif_running(dev))
12812 			bnx2x_close(dev);
12813 		rtnl_unlock();
12814 	}
12815 
12816 	/* Power on: we can't let PCI layer write to us while we are in D3 */
12817 	if (IS_PF(bp))
12818 		bnx2x_set_power_state(bp, PCI_D0);
12819 
12820 	/* Disable MSI/MSI-X */
12821 	bnx2x_disable_msi(bp);
12822 
12823 	/* Power off */
12824 	if (IS_PF(bp))
12825 		bnx2x_set_power_state(bp, PCI_D3hot);
12826 
12827 	/* Make sure RESET task is not scheduled before continuing */
12828 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
12829 
12830 	bnx2x_iov_remove_one(bp);
12831 
12832 	/* send message via vfpf channel to release the resources of this vf */
12833 	if (IS_VF(bp))
12834 		bnx2x_vfpf_release(bp);
12835 
12836 	/* Assumes no further PCIe PM changes will occur */
12837 	if (system_state == SYSTEM_POWER_OFF) {
12838 		pci_wake_from_d3(pdev, bp->wol);
12839 		pci_set_power_state(pdev, PCI_D3hot);
12840 	}
12841 
12842 	if (bp->regview)
12843 		iounmap(bp->regview);
12844 
12845 	/* for vf doorbells are part of the regview and were unmapped along with
12846 	 * it. FW is only loaded by PF.
12847 	 */
12848 	if (IS_PF(bp)) {
12849 		if (bp->doorbells)
12850 			iounmap(bp->doorbells);
12851 
12852 		bnx2x_release_firmware(bp);
12853 	}
12854 	bnx2x_free_mem_bp(bp);
12855 
12856 	if (remove_netdev)
12857 		free_netdev(dev);
12858 
12859 	if (atomic_read(&pdev->enable_cnt) == 1)
12860 		pci_release_regions(pdev);
12861 
12862 	pci_disable_device(pdev);
12863 	pci_set_drvdata(pdev, NULL);
12864 }
12865 
12866 static void bnx2x_remove_one(struct pci_dev *pdev)
12867 {
12868 	struct net_device *dev = pci_get_drvdata(pdev);
12869 	struct bnx2x *bp;
12870 
12871 	if (!dev) {
12872 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12873 		return;
12874 	}
12875 	bp = netdev_priv(dev);
12876 
12877 	__bnx2x_remove(pdev, dev, bp, true);
12878 }
12879 
12880 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12881 {
12882 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12883 
12884 	bp->rx_mode = BNX2X_RX_MODE_NONE;
12885 
12886 	if (CNIC_LOADED(bp))
12887 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12888 
12889 	/* Stop Tx */
12890 	bnx2x_tx_disable(bp);
12891 	/* Delete all NAPI objects */
12892 	bnx2x_del_all_napi(bp);
12893 	if (CNIC_LOADED(bp))
12894 		bnx2x_del_all_napi_cnic(bp);
12895 	netdev_reset_tc(bp->dev);
12896 
12897 	del_timer_sync(&bp->timer);
12898 	cancel_delayed_work(&bp->sp_task);
12899 	cancel_delayed_work(&bp->period_task);
12900 
12901 	spin_lock_bh(&bp->stats_lock);
12902 	bp->stats_state = STATS_STATE_DISABLED;
12903 	spin_unlock_bh(&bp->stats_lock);
12904 
12905 	bnx2x_save_statistics(bp);
12906 
12907 	netif_carrier_off(bp->dev);
12908 
12909 	return 0;
12910 }
12911 
12912 /**
12913  * bnx2x_io_error_detected - called when PCI error is detected
12914  * @pdev: Pointer to PCI device
12915  * @state: The current pci connection state
12916  *
12917  * This function is called after a PCI bus error affecting
12918  * this device has been detected.
12919  */
12920 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12921 						pci_channel_state_t state)
12922 {
12923 	struct net_device *dev = pci_get_drvdata(pdev);
12924 	struct bnx2x *bp = netdev_priv(dev);
12925 
12926 	rtnl_lock();
12927 
12928 	BNX2X_ERR("IO error detected\n");
12929 
12930 	netif_device_detach(dev);
12931 
12932 	if (state == pci_channel_io_perm_failure) {
12933 		rtnl_unlock();
12934 		return PCI_ERS_RESULT_DISCONNECT;
12935 	}
12936 
12937 	if (netif_running(dev))
12938 		bnx2x_eeh_nic_unload(bp);
12939 
12940 	bnx2x_prev_path_mark_eeh(bp);
12941 
12942 	pci_disable_device(pdev);
12943 
12944 	rtnl_unlock();
12945 
12946 	/* Request a slot reset */
12947 	return PCI_ERS_RESULT_NEED_RESET;
12948 }
12949 
12950 /**
12951  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12952  * @pdev: Pointer to PCI device
12953  *
12954  * Restart the card from scratch, as if from a cold-boot.
12955  */
12956 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12957 {
12958 	struct net_device *dev = pci_get_drvdata(pdev);
12959 	struct bnx2x *bp = netdev_priv(dev);
12960 	int i;
12961 
12962 	rtnl_lock();
12963 	BNX2X_ERR("IO slot reset initializing...\n");
12964 	if (pci_enable_device(pdev)) {
12965 		dev_err(&pdev->dev,
12966 			"Cannot re-enable PCI device after reset\n");
12967 		rtnl_unlock();
12968 		return PCI_ERS_RESULT_DISCONNECT;
12969 	}
12970 
12971 	pci_set_master(pdev);
12972 	pci_restore_state(pdev);
12973 	pci_save_state(pdev);
12974 
12975 	if (netif_running(dev))
12976 		bnx2x_set_power_state(bp, PCI_D0);
12977 
12978 	if (netif_running(dev)) {
12979 		BNX2X_ERR("IO slot reset --> driver unload\n");
12980 
12981 		/* MCP should have been reset; Need to wait for validity */
12982 		bnx2x_init_shmem(bp);
12983 
12984 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
12985 			u32 v;
12986 
12987 			v = SHMEM2_RD(bp,
12988 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
12989 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
12990 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
12991 		}
12992 		bnx2x_drain_tx_queues(bp);
12993 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
12994 		bnx2x_netif_stop(bp, 1);
12995 		bnx2x_free_irq(bp);
12996 
12997 		/* Report UNLOAD_DONE to MCP */
12998 		bnx2x_send_unload_done(bp, true);
12999 
13000 		bp->sp_state = 0;
13001 		bp->port.pmf = 0;
13002 
13003 		bnx2x_prev_unload(bp);
13004 
13005 		/* We should have reseted the engine, so It's fair to
13006 		 * assume the FW will no longer write to the bnx2x driver.
13007 		 */
13008 		bnx2x_squeeze_objects(bp);
13009 		bnx2x_free_skbs(bp);
13010 		for_each_rx_queue(bp, i)
13011 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13012 		bnx2x_free_fp_mem(bp);
13013 		bnx2x_free_mem(bp);
13014 
13015 		bp->state = BNX2X_STATE_CLOSED;
13016 	}
13017 
13018 	rtnl_unlock();
13019 
13020 	return PCI_ERS_RESULT_RECOVERED;
13021 }
13022 
13023 /**
13024  * bnx2x_io_resume - called when traffic can start flowing again
13025  * @pdev: Pointer to PCI device
13026  *
13027  * This callback is called when the error recovery driver tells us that
13028  * its OK to resume normal operation.
13029  */
13030 static void bnx2x_io_resume(struct pci_dev *pdev)
13031 {
13032 	struct net_device *dev = pci_get_drvdata(pdev);
13033 	struct bnx2x *bp = netdev_priv(dev);
13034 
13035 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13036 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13037 		return;
13038 	}
13039 
13040 	rtnl_lock();
13041 
13042 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13043 							DRV_MSG_SEQ_NUMBER_MASK;
13044 
13045 	if (netif_running(dev))
13046 		bnx2x_nic_load(bp, LOAD_NORMAL);
13047 
13048 	netif_device_attach(dev);
13049 
13050 	rtnl_unlock();
13051 }
13052 
13053 static const struct pci_error_handlers bnx2x_err_handler = {
13054 	.error_detected = bnx2x_io_error_detected,
13055 	.slot_reset     = bnx2x_io_slot_reset,
13056 	.resume         = bnx2x_io_resume,
13057 };
13058 
13059 static void bnx2x_shutdown(struct pci_dev *pdev)
13060 {
13061 	struct net_device *dev = pci_get_drvdata(pdev);
13062 	struct bnx2x *bp;
13063 
13064 	if (!dev)
13065 		return;
13066 
13067 	bp = netdev_priv(dev);
13068 	if (!bp)
13069 		return;
13070 
13071 	rtnl_lock();
13072 	netif_device_detach(dev);
13073 	rtnl_unlock();
13074 
13075 	/* Don't remove the netdevice, as there are scenarios which will cause
13076 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13077 	 * rootfs is mounted from SAN.
13078 	 */
13079 	__bnx2x_remove(pdev, dev, bp, false);
13080 }
13081 
13082 static struct pci_driver bnx2x_pci_driver = {
13083 	.name        = DRV_MODULE_NAME,
13084 	.id_table    = bnx2x_pci_tbl,
13085 	.probe       = bnx2x_init_one,
13086 	.remove      = bnx2x_remove_one,
13087 	.suspend     = bnx2x_suspend,
13088 	.resume      = bnx2x_resume,
13089 	.err_handler = &bnx2x_err_handler,
13090 #ifdef CONFIG_BNX2X_SRIOV
13091 	.sriov_configure = bnx2x_sriov_configure,
13092 #endif
13093 	.shutdown    = bnx2x_shutdown,
13094 };
13095 
13096 static int __init bnx2x_init(void)
13097 {
13098 	int ret;
13099 
13100 	pr_info("%s", version);
13101 
13102 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13103 	if (bnx2x_wq == NULL) {
13104 		pr_err("Cannot create workqueue\n");
13105 		return -ENOMEM;
13106 	}
13107 
13108 	ret = pci_register_driver(&bnx2x_pci_driver);
13109 	if (ret) {
13110 		pr_err("Cannot register driver\n");
13111 		destroy_workqueue(bnx2x_wq);
13112 	}
13113 	return ret;
13114 }
13115 
13116 static void __exit bnx2x_cleanup(void)
13117 {
13118 	struct list_head *pos, *q;
13119 
13120 	pci_unregister_driver(&bnx2x_pci_driver);
13121 
13122 	destroy_workqueue(bnx2x_wq);
13123 
13124 	/* Free globally allocated resources */
13125 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13126 		struct bnx2x_prev_path_list *tmp =
13127 			list_entry(pos, struct bnx2x_prev_path_list, list);
13128 		list_del(pos);
13129 		kfree(tmp);
13130 	}
13131 }
13132 
13133 void bnx2x_notify_link_changed(struct bnx2x *bp)
13134 {
13135 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13136 }
13137 
13138 module_init(bnx2x_init);
13139 module_exit(bnx2x_cleanup);
13140 
13141 /**
13142  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13143  *
13144  * @bp:		driver handle
13145  * @set:	set or clear the CAM entry
13146  *
13147  * This function will wait until the ramrod completion returns.
13148  * Return 0 if success, -ENODEV if ramrod doesn't return.
13149  */
13150 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13151 {
13152 	unsigned long ramrod_flags = 0;
13153 
13154 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13155 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13156 				 &bp->iscsi_l2_mac_obj, true,
13157 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13158 }
13159 
13160 /* count denotes the number of new completions we have seen */
13161 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13162 {
13163 	struct eth_spe *spe;
13164 	int cxt_index, cxt_offset;
13165 
13166 #ifdef BNX2X_STOP_ON_ERROR
13167 	if (unlikely(bp->panic))
13168 		return;
13169 #endif
13170 
13171 	spin_lock_bh(&bp->spq_lock);
13172 	BUG_ON(bp->cnic_spq_pending < count);
13173 	bp->cnic_spq_pending -= count;
13174 
13175 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13176 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13177 				& SPE_HDR_CONN_TYPE) >>
13178 				SPE_HDR_CONN_TYPE_SHIFT;
13179 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13180 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13181 
13182 		/* Set validation for iSCSI L2 client before sending SETUP
13183 		 *  ramrod
13184 		 */
13185 		if (type == ETH_CONNECTION_TYPE) {
13186 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13187 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13188 					ILT_PAGE_CIDS;
13189 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13190 					(cxt_index * ILT_PAGE_CIDS);
13191 				bnx2x_set_ctx_validation(bp,
13192 					&bp->context[cxt_index].
13193 							 vcxt[cxt_offset].eth,
13194 					BNX2X_ISCSI_ETH_CID(bp));
13195 			}
13196 		}
13197 
13198 		/*
13199 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13200 		 * and in the air. We also check that number of outstanding
13201 		 * COMMON ramrods is not more than the EQ and SPQ can
13202 		 * accommodate.
13203 		 */
13204 		if (type == ETH_CONNECTION_TYPE) {
13205 			if (!atomic_read(&bp->cq_spq_left))
13206 				break;
13207 			else
13208 				atomic_dec(&bp->cq_spq_left);
13209 		} else if (type == NONE_CONNECTION_TYPE) {
13210 			if (!atomic_read(&bp->eq_spq_left))
13211 				break;
13212 			else
13213 				atomic_dec(&bp->eq_spq_left);
13214 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13215 			   (type == FCOE_CONNECTION_TYPE)) {
13216 			if (bp->cnic_spq_pending >=
13217 			    bp->cnic_eth_dev.max_kwqe_pending)
13218 				break;
13219 			else
13220 				bp->cnic_spq_pending++;
13221 		} else {
13222 			BNX2X_ERR("Unknown SPE type: %d\n", type);
13223 			bnx2x_panic();
13224 			break;
13225 		}
13226 
13227 		spe = bnx2x_sp_get_next(bp);
13228 		*spe = *bp->cnic_kwq_cons;
13229 
13230 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13231 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13232 
13233 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13234 			bp->cnic_kwq_cons = bp->cnic_kwq;
13235 		else
13236 			bp->cnic_kwq_cons++;
13237 	}
13238 	bnx2x_sp_prod_update(bp);
13239 	spin_unlock_bh(&bp->spq_lock);
13240 }
13241 
13242 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13243 			       struct kwqe_16 *kwqes[], u32 count)
13244 {
13245 	struct bnx2x *bp = netdev_priv(dev);
13246 	int i;
13247 
13248 #ifdef BNX2X_STOP_ON_ERROR
13249 	if (unlikely(bp->panic)) {
13250 		BNX2X_ERR("Can't post to SP queue while panic\n");
13251 		return -EIO;
13252 	}
13253 #endif
13254 
13255 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13256 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13257 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
13258 		return -EAGAIN;
13259 	}
13260 
13261 	spin_lock_bh(&bp->spq_lock);
13262 
13263 	for (i = 0; i < count; i++) {
13264 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13265 
13266 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13267 			break;
13268 
13269 		*bp->cnic_kwq_prod = *spe;
13270 
13271 		bp->cnic_kwq_pending++;
13272 
13273 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13274 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
13275 		   spe->data.update_data_addr.hi,
13276 		   spe->data.update_data_addr.lo,
13277 		   bp->cnic_kwq_pending);
13278 
13279 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13280 			bp->cnic_kwq_prod = bp->cnic_kwq;
13281 		else
13282 			bp->cnic_kwq_prod++;
13283 	}
13284 
13285 	spin_unlock_bh(&bp->spq_lock);
13286 
13287 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13288 		bnx2x_cnic_sp_post(bp, 0);
13289 
13290 	return i;
13291 }
13292 
13293 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13294 {
13295 	struct cnic_ops *c_ops;
13296 	int rc = 0;
13297 
13298 	mutex_lock(&bp->cnic_mutex);
13299 	c_ops = rcu_dereference_protected(bp->cnic_ops,
13300 					  lockdep_is_held(&bp->cnic_mutex));
13301 	if (c_ops)
13302 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13303 	mutex_unlock(&bp->cnic_mutex);
13304 
13305 	return rc;
13306 }
13307 
13308 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13309 {
13310 	struct cnic_ops *c_ops;
13311 	int rc = 0;
13312 
13313 	rcu_read_lock();
13314 	c_ops = rcu_dereference(bp->cnic_ops);
13315 	if (c_ops)
13316 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13317 	rcu_read_unlock();
13318 
13319 	return rc;
13320 }
13321 
13322 /*
13323  * for commands that have no data
13324  */
13325 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13326 {
13327 	struct cnic_ctl_info ctl = {0};
13328 
13329 	ctl.cmd = cmd;
13330 
13331 	return bnx2x_cnic_ctl_send(bp, &ctl);
13332 }
13333 
13334 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13335 {
13336 	struct cnic_ctl_info ctl = {0};
13337 
13338 	/* first we tell CNIC and only then we count this as a completion */
13339 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13340 	ctl.data.comp.cid = cid;
13341 	ctl.data.comp.error = err;
13342 
13343 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
13344 	bnx2x_cnic_sp_post(bp, 0);
13345 }
13346 
13347 /* Called with netif_addr_lock_bh() taken.
13348  * Sets an rx_mode config for an iSCSI ETH client.
13349  * Doesn't block.
13350  * Completion should be checked outside.
13351  */
13352 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13353 {
13354 	unsigned long accept_flags = 0, ramrod_flags = 0;
13355 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13356 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13357 
13358 	if (start) {
13359 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
13360 		 * because it's the only way for UIO Queue to accept
13361 		 * multicasts (in non-promiscuous mode only one Queue per
13362 		 * function will receive multicast packets (leading in our
13363 		 * case).
13364 		 */
13365 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13366 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13367 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13368 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13369 
13370 		/* Clear STOP_PENDING bit if START is requested */
13371 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13372 
13373 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13374 	} else
13375 		/* Clear START_PENDING bit if STOP is requested */
13376 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13377 
13378 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13379 		set_bit(sched_state, &bp->sp_state);
13380 	else {
13381 		__set_bit(RAMROD_RX, &ramrod_flags);
13382 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13383 				    ramrod_flags);
13384 	}
13385 }
13386 
13387 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13388 {
13389 	struct bnx2x *bp = netdev_priv(dev);
13390 	int rc = 0;
13391 
13392 	switch (ctl->cmd) {
13393 	case DRV_CTL_CTXTBL_WR_CMD: {
13394 		u32 index = ctl->data.io.offset;
13395 		dma_addr_t addr = ctl->data.io.dma_addr;
13396 
13397 		bnx2x_ilt_wr(bp, index, addr);
13398 		break;
13399 	}
13400 
13401 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13402 		int count = ctl->data.credit.credit_count;
13403 
13404 		bnx2x_cnic_sp_post(bp, count);
13405 		break;
13406 	}
13407 
13408 	/* rtnl_lock is held.  */
13409 	case DRV_CTL_START_L2_CMD: {
13410 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13411 		unsigned long sp_bits = 0;
13412 
13413 		/* Configure the iSCSI classification object */
13414 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13415 				   cp->iscsi_l2_client_id,
13416 				   cp->iscsi_l2_cid, BP_FUNC(bp),
13417 				   bnx2x_sp(bp, mac_rdata),
13418 				   bnx2x_sp_mapping(bp, mac_rdata),
13419 				   BNX2X_FILTER_MAC_PENDING,
13420 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13421 				   &bp->macs_pool);
13422 
13423 		/* Set iSCSI MAC address */
13424 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13425 		if (rc)
13426 			break;
13427 
13428 		mmiowb();
13429 		barrier();
13430 
13431 		/* Start accepting on iSCSI L2 ring */
13432 
13433 		netif_addr_lock_bh(dev);
13434 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
13435 		netif_addr_unlock_bh(dev);
13436 
13437 		/* bits to wait on */
13438 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13439 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13440 
13441 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13442 			BNX2X_ERR("rx_mode completion timed out!\n");
13443 
13444 		break;
13445 	}
13446 
13447 	/* rtnl_lock is held.  */
13448 	case DRV_CTL_STOP_L2_CMD: {
13449 		unsigned long sp_bits = 0;
13450 
13451 		/* Stop accepting on iSCSI L2 ring */
13452 		netif_addr_lock_bh(dev);
13453 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
13454 		netif_addr_unlock_bh(dev);
13455 
13456 		/* bits to wait on */
13457 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13458 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13459 
13460 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13461 			BNX2X_ERR("rx_mode completion timed out!\n");
13462 
13463 		mmiowb();
13464 		barrier();
13465 
13466 		/* Unset iSCSI L2 MAC */
13467 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13468 					BNX2X_ISCSI_ETH_MAC, true);
13469 		break;
13470 	}
13471 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13472 		int count = ctl->data.credit.credit_count;
13473 
13474 		smp_mb__before_atomic_inc();
13475 		atomic_add(count, &bp->cq_spq_left);
13476 		smp_mb__after_atomic_inc();
13477 		break;
13478 	}
13479 	case DRV_CTL_ULP_REGISTER_CMD: {
13480 		int ulp_type = ctl->data.register_data.ulp_type;
13481 
13482 		if (CHIP_IS_E3(bp)) {
13483 			int idx = BP_FW_MB_IDX(bp);
13484 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13485 			int path = BP_PATH(bp);
13486 			int port = BP_PORT(bp);
13487 			int i;
13488 			u32 scratch_offset;
13489 			u32 *host_addr;
13490 
13491 			/* first write capability to shmem2 */
13492 			if (ulp_type == CNIC_ULP_ISCSI)
13493 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13494 			else if (ulp_type == CNIC_ULP_FCOE)
13495 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13496 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13497 
13498 			if ((ulp_type != CNIC_ULP_FCOE) ||
13499 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13500 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13501 				break;
13502 
13503 			/* if reached here - should write fcoe capabilities */
13504 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13505 			if (!scratch_offset)
13506 				break;
13507 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
13508 						   fcoe_features[path][port]);
13509 			host_addr = (u32 *) &(ctl->data.register_data.
13510 					      fcoe_features);
13511 			for (i = 0; i < sizeof(struct fcoe_capabilities);
13512 			     i += 4)
13513 				REG_WR(bp, scratch_offset + i,
13514 				       *(host_addr + i/4));
13515 		}
13516 		break;
13517 	}
13518 
13519 	case DRV_CTL_ULP_UNREGISTER_CMD: {
13520 		int ulp_type = ctl->data.ulp_type;
13521 
13522 		if (CHIP_IS_E3(bp)) {
13523 			int idx = BP_FW_MB_IDX(bp);
13524 			u32 cap;
13525 
13526 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13527 			if (ulp_type == CNIC_ULP_ISCSI)
13528 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13529 			else if (ulp_type == CNIC_ULP_FCOE)
13530 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13531 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13532 		}
13533 		break;
13534 	}
13535 
13536 	default:
13537 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
13538 		rc = -EINVAL;
13539 	}
13540 
13541 	return rc;
13542 }
13543 
13544 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13545 {
13546 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13547 
13548 	if (bp->flags & USING_MSIX_FLAG) {
13549 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13550 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13551 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
13552 	} else {
13553 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13554 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13555 	}
13556 	if (!CHIP_IS_E1x(bp))
13557 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13558 	else
13559 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13560 
13561 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13562 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13563 	cp->irq_arr[1].status_blk = bp->def_status_blk;
13564 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13565 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13566 
13567 	cp->num_irq = 2;
13568 }
13569 
13570 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13571 {
13572 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13573 
13574 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13575 			     bnx2x_cid_ilt_lines(bp);
13576 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13577 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13578 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13579 
13580 	if (NO_ISCSI_OOO(bp))
13581 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13582 }
13583 
13584 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13585 			       void *data)
13586 {
13587 	struct bnx2x *bp = netdev_priv(dev);
13588 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13589 	int rc;
13590 
13591 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13592 
13593 	if (ops == NULL) {
13594 		BNX2X_ERR("NULL ops received\n");
13595 		return -EINVAL;
13596 	}
13597 
13598 	if (!CNIC_SUPPORT(bp)) {
13599 		BNX2X_ERR("Can't register CNIC when not supported\n");
13600 		return -EOPNOTSUPP;
13601 	}
13602 
13603 	if (!CNIC_LOADED(bp)) {
13604 		rc = bnx2x_load_cnic(bp);
13605 		if (rc) {
13606 			BNX2X_ERR("CNIC-related load failed\n");
13607 			return rc;
13608 		}
13609 	}
13610 
13611 	bp->cnic_enabled = true;
13612 
13613 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13614 	if (!bp->cnic_kwq)
13615 		return -ENOMEM;
13616 
13617 	bp->cnic_kwq_cons = bp->cnic_kwq;
13618 	bp->cnic_kwq_prod = bp->cnic_kwq;
13619 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13620 
13621 	bp->cnic_spq_pending = 0;
13622 	bp->cnic_kwq_pending = 0;
13623 
13624 	bp->cnic_data = data;
13625 
13626 	cp->num_irq = 0;
13627 	cp->drv_state |= CNIC_DRV_STATE_REGD;
13628 	cp->iro_arr = bp->iro_arr;
13629 
13630 	bnx2x_setup_cnic_irq_info(bp);
13631 
13632 	rcu_assign_pointer(bp->cnic_ops, ops);
13633 
13634 	return 0;
13635 }
13636 
13637 static int bnx2x_unregister_cnic(struct net_device *dev)
13638 {
13639 	struct bnx2x *bp = netdev_priv(dev);
13640 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13641 
13642 	mutex_lock(&bp->cnic_mutex);
13643 	cp->drv_state = 0;
13644 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
13645 	mutex_unlock(&bp->cnic_mutex);
13646 	synchronize_rcu();
13647 	bp->cnic_enabled = false;
13648 	kfree(bp->cnic_kwq);
13649 	bp->cnic_kwq = NULL;
13650 
13651 	return 0;
13652 }
13653 
13654 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13655 {
13656 	struct bnx2x *bp = netdev_priv(dev);
13657 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13658 
13659 	/* If both iSCSI and FCoE are disabled - return NULL in
13660 	 * order to indicate CNIC that it should not try to work
13661 	 * with this device.
13662 	 */
13663 	if (NO_ISCSI(bp) && NO_FCOE(bp))
13664 		return NULL;
13665 
13666 	cp->drv_owner = THIS_MODULE;
13667 	cp->chip_id = CHIP_ID(bp);
13668 	cp->pdev = bp->pdev;
13669 	cp->io_base = bp->regview;
13670 	cp->io_base2 = bp->doorbells;
13671 	cp->max_kwqe_pending = 8;
13672 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13673 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13674 			     bnx2x_cid_ilt_lines(bp);
13675 	cp->ctx_tbl_len = CNIC_ILT_LINES;
13676 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13677 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13678 	cp->drv_ctl = bnx2x_drv_ctl;
13679 	cp->drv_register_cnic = bnx2x_register_cnic;
13680 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13681 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13682 	cp->iscsi_l2_client_id =
13683 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13684 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13685 
13686 	if (NO_ISCSI_OOO(bp))
13687 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13688 
13689 	if (NO_ISCSI(bp))
13690 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13691 
13692 	if (NO_FCOE(bp))
13693 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13694 
13695 	BNX2X_DEV_INFO(
13696 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13697 	   cp->ctx_blk_size,
13698 	   cp->ctx_tbl_offset,
13699 	   cp->ctx_tbl_len,
13700 	   cp->starting_cid);
13701 	return cp;
13702 }
13703 
13704 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13705 {
13706 	struct bnx2x *bp = fp->bp;
13707 	u32 offset = BAR_USTRORM_INTMEM;
13708 
13709 	if (IS_VF(bp))
13710 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
13711 	else if (!CHIP_IS_E1x(bp))
13712 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13713 	else
13714 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13715 
13716 	return offset;
13717 }
13718 
13719 /* called only on E1H or E2.
13720  * When pretending to be PF, the pretend value is the function number 0...7
13721  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13722  * combination
13723  */
13724 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13725 {
13726 	u32 pretend_reg;
13727 
13728 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13729 		return -1;
13730 
13731 	/* get my own pretend register */
13732 	pretend_reg = bnx2x_get_pretend_reg(bp);
13733 	REG_WR(bp, pretend_reg, pretend_func_val);
13734 	REG_RD(bp, pretend_reg);
13735 	return 0;
13736 }
13737