1 /* bnx2x_main.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/module.h> 23 #include <linux/moduleparam.h> 24 #include <linux/kernel.h> 25 #include <linux/device.h> /* for dev_info() */ 26 #include <linux/timer.h> 27 #include <linux/errno.h> 28 #include <linux/ioport.h> 29 #include <linux/slab.h> 30 #include <linux/interrupt.h> 31 #include <linux/pci.h> 32 #include <linux/aer.h> 33 #include <linux/init.h> 34 #include <linux/netdevice.h> 35 #include <linux/etherdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/bitops.h> 39 #include <linux/irq.h> 40 #include <linux/delay.h> 41 #include <asm/byteorder.h> 42 #include <linux/time.h> 43 #include <linux/ethtool.h> 44 #include <linux/mii.h> 45 #include <linux/if_vlan.h> 46 #include <linux/crash_dump.h> 47 #include <net/ip.h> 48 #include <net/ipv6.h> 49 #include <net/tcp.h> 50 #include <net/vxlan.h> 51 #include <net/checksum.h> 52 #include <net/ip6_checksum.h> 53 #include <linux/workqueue.h> 54 #include <linux/crc32.h> 55 #include <linux/crc32c.h> 56 #include <linux/prefetch.h> 57 #include <linux/zlib.h> 58 #include <linux/io.h> 59 #include <linux/semaphore.h> 60 #include <linux/stringify.h> 61 #include <linux/vmalloc.h> 62 #include "bnx2x.h" 63 #include "bnx2x_init.h" 64 #include "bnx2x_init_ops.h" 65 #include "bnx2x_cmn.h" 66 #include "bnx2x_vfpf.h" 67 #include "bnx2x_dcb.h" 68 #include "bnx2x_sp.h" 69 #include <linux/firmware.h> 70 #include "bnx2x_fw_file_hdr.h" 71 /* FW files */ 72 #define FW_FILE_VERSION \ 73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ 74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \ 75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \ 76 __stringify(BCM_5710_FW_ENGINEERING_VERSION) 77 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" 78 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" 79 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" 80 81 /* Time in jiffies before concluding the transmitter is hung */ 82 #define TX_TIMEOUT (5*HZ) 83 84 static char version[] = 85 "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver " 86 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 87 88 MODULE_AUTHOR("Eliezer Tamir"); 89 MODULE_DESCRIPTION("QLogic " 90 "BCM57710/57711/57711E/" 91 "57712/57712_MF/57800/57800_MF/57810/57810_MF/" 92 "57840/57840_MF Driver"); 93 MODULE_LICENSE("GPL"); 94 MODULE_VERSION(DRV_MODULE_VERSION); 95 MODULE_FIRMWARE(FW_FILE_NAME_E1); 96 MODULE_FIRMWARE(FW_FILE_NAME_E1H); 97 MODULE_FIRMWARE(FW_FILE_NAME_E2); 98 99 int bnx2x_num_queues; 100 module_param_named(num_queues, bnx2x_num_queues, int, 0444); 101 MODULE_PARM_DESC(num_queues, 102 " Set number of queues (default is as a number of CPUs)"); 103 104 static int disable_tpa; 105 module_param(disable_tpa, int, 0444); 106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); 107 108 static int int_mode; 109 module_param(int_mode, int, 0444); 110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " 111 "(1 INT#x; 2 MSI)"); 112 113 static int dropless_fc; 114 module_param(dropless_fc, int, 0444); 115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); 116 117 static int mrrs = -1; 118 module_param(mrrs, int, 0444); 119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); 120 121 static int debug; 122 module_param(debug, int, 0444); 123 MODULE_PARM_DESC(debug, " Default debug msglevel"); 124 125 static struct workqueue_struct *bnx2x_wq; 126 struct workqueue_struct *bnx2x_iov_wq; 127 128 struct bnx2x_mac_vals { 129 u32 xmac_addr; 130 u32 xmac_val; 131 u32 emac_addr; 132 u32 emac_val; 133 u32 umac_addr[2]; 134 u32 umac_val[2]; 135 u32 bmac_addr; 136 u32 bmac_val[2]; 137 }; 138 139 enum bnx2x_board_type { 140 BCM57710 = 0, 141 BCM57711, 142 BCM57711E, 143 BCM57712, 144 BCM57712_MF, 145 BCM57712_VF, 146 BCM57800, 147 BCM57800_MF, 148 BCM57800_VF, 149 BCM57810, 150 BCM57810_MF, 151 BCM57810_VF, 152 BCM57840_4_10, 153 BCM57840_2_20, 154 BCM57840_MF, 155 BCM57840_VF, 156 BCM57811, 157 BCM57811_MF, 158 BCM57840_O, 159 BCM57840_MFO, 160 BCM57811_VF 161 }; 162 163 /* indexed by board_type, above */ 164 static struct { 165 char *name; 166 } board_info[] = { 167 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" }, 168 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" }, 169 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" }, 170 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" }, 171 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" }, 172 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" }, 173 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" }, 174 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" }, 175 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" }, 176 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" }, 177 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" }, 178 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" }, 179 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" }, 180 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" }, 181 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 182 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }, 183 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" }, 184 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" }, 185 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" }, 186 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 187 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" } 188 }; 189 190 #ifndef PCI_DEVICE_ID_NX2_57710 191 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 192 #endif 193 #ifndef PCI_DEVICE_ID_NX2_57711 194 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 195 #endif 196 #ifndef PCI_DEVICE_ID_NX2_57711E 197 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E 198 #endif 199 #ifndef PCI_DEVICE_ID_NX2_57712 200 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 201 #endif 202 #ifndef PCI_DEVICE_ID_NX2_57712_MF 203 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF 204 #endif 205 #ifndef PCI_DEVICE_ID_NX2_57712_VF 206 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF 207 #endif 208 #ifndef PCI_DEVICE_ID_NX2_57800 209 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 210 #endif 211 #ifndef PCI_DEVICE_ID_NX2_57800_MF 212 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF 213 #endif 214 #ifndef PCI_DEVICE_ID_NX2_57800_VF 215 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF 216 #endif 217 #ifndef PCI_DEVICE_ID_NX2_57810 218 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 219 #endif 220 #ifndef PCI_DEVICE_ID_NX2_57810_MF 221 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF 222 #endif 223 #ifndef PCI_DEVICE_ID_NX2_57840_O 224 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE 225 #endif 226 #ifndef PCI_DEVICE_ID_NX2_57810_VF 227 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF 228 #endif 229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10 230 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 231 #endif 232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20 233 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 234 #endif 235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO 236 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE 237 #endif 238 #ifndef PCI_DEVICE_ID_NX2_57840_MF 239 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF 240 #endif 241 #ifndef PCI_DEVICE_ID_NX2_57840_VF 242 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF 243 #endif 244 #ifndef PCI_DEVICE_ID_NX2_57811 245 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 246 #endif 247 #ifndef PCI_DEVICE_ID_NX2_57811_MF 248 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF 249 #endif 250 #ifndef PCI_DEVICE_ID_NX2_57811_VF 251 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF 252 #endif 253 254 static const struct pci_device_id bnx2x_pci_tbl[] = { 255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, 256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, 257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, 258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, 259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, 260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, 261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, 262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, 263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, 264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, 265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, 266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, 267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 268 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, 270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, 271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, 272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 273 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 275 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 276 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, 277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, 278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, 279 { 0 } 280 }; 281 282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); 283 284 /* Global resources for unloading a previously loaded device */ 285 #define BNX2X_PREV_WAIT_NEEDED 1 286 static DEFINE_SEMAPHORE(bnx2x_prev_sem); 287 static LIST_HEAD(bnx2x_prev_list); 288 289 /* Forward declaration */ 290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); 291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp); 292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp); 293 294 /**************************************************************************** 295 * General service functions 296 ****************************************************************************/ 297 298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr); 299 300 static void __storm_memset_dma_mapping(struct bnx2x *bp, 301 u32 addr, dma_addr_t mapping) 302 { 303 REG_WR(bp, addr, U64_LO(mapping)); 304 REG_WR(bp, addr + 4, U64_HI(mapping)); 305 } 306 307 static void storm_memset_spq_addr(struct bnx2x *bp, 308 dma_addr_t mapping, u16 abs_fid) 309 { 310 u32 addr = XSEM_REG_FAST_MEMORY + 311 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); 312 313 __storm_memset_dma_mapping(bp, addr, mapping); 314 } 315 316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 317 u16 pf_id) 318 { 319 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 320 pf_id); 321 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 322 pf_id); 323 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 324 pf_id); 325 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 326 pf_id); 327 } 328 329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 330 u8 enable) 331 { 332 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 333 enable); 334 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 335 enable); 336 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 337 enable); 338 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 339 enable); 340 } 341 342 static void storm_memset_eq_data(struct bnx2x *bp, 343 struct event_ring_data *eq_data, 344 u16 pfid) 345 { 346 size_t size = sizeof(struct event_ring_data); 347 348 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); 349 350 __storm_memset_struct(bp, addr, size, (u32 *)eq_data); 351 } 352 353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, 354 u16 pfid) 355 { 356 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); 357 REG_WR16(bp, addr, eq_prod); 358 } 359 360 /* used only at init 361 * locking is done by mcp 362 */ 363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) 364 { 365 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 366 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); 367 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 368 PCICFG_VENDOR_ID_OFFSET); 369 } 370 371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) 372 { 373 u32 val; 374 375 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 376 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); 377 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 378 PCICFG_VENDOR_ID_OFFSET); 379 380 return val; 381 } 382 383 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" 384 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" 385 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" 386 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" 387 #define DMAE_DP_DST_NONE "dst_addr [none]" 388 389 static void bnx2x_dp_dmae(struct bnx2x *bp, 390 struct dmae_command *dmae, int msglvl) 391 { 392 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; 393 int i; 394 395 switch (dmae->opcode & DMAE_COMMAND_DST) { 396 case DMAE_CMD_DST_PCI: 397 if (src_type == DMAE_CMD_SRC_PCI) 398 DP(msglvl, "DMAE: opcode 0x%08x\n" 399 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 400 "comp_addr [%x:%08x], comp_val 0x%08x\n", 401 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 402 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 403 dmae->comp_addr_hi, dmae->comp_addr_lo, 404 dmae->comp_val); 405 else 406 DP(msglvl, "DMAE: opcode 0x%08x\n" 407 "src [%08x], len [%d*4], dst [%x:%08x]\n" 408 "comp_addr [%x:%08x], comp_val 0x%08x\n", 409 dmae->opcode, dmae->src_addr_lo >> 2, 410 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 411 dmae->comp_addr_hi, dmae->comp_addr_lo, 412 dmae->comp_val); 413 break; 414 case DMAE_CMD_DST_GRC: 415 if (src_type == DMAE_CMD_SRC_PCI) 416 DP(msglvl, "DMAE: opcode 0x%08x\n" 417 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 418 "comp_addr [%x:%08x], comp_val 0x%08x\n", 419 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 420 dmae->len, dmae->dst_addr_lo >> 2, 421 dmae->comp_addr_hi, dmae->comp_addr_lo, 422 dmae->comp_val); 423 else 424 DP(msglvl, "DMAE: opcode 0x%08x\n" 425 "src [%08x], len [%d*4], dst [%08x]\n" 426 "comp_addr [%x:%08x], comp_val 0x%08x\n", 427 dmae->opcode, dmae->src_addr_lo >> 2, 428 dmae->len, dmae->dst_addr_lo >> 2, 429 dmae->comp_addr_hi, dmae->comp_addr_lo, 430 dmae->comp_val); 431 break; 432 default: 433 if (src_type == DMAE_CMD_SRC_PCI) 434 DP(msglvl, "DMAE: opcode 0x%08x\n" 435 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 436 "comp_addr [%x:%08x] comp_val 0x%08x\n", 437 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 438 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 439 dmae->comp_val); 440 else 441 DP(msglvl, "DMAE: opcode 0x%08x\n" 442 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 443 "comp_addr [%x:%08x] comp_val 0x%08x\n", 444 dmae->opcode, dmae->src_addr_lo >> 2, 445 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 446 dmae->comp_val); 447 break; 448 } 449 450 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) 451 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", 452 i, *(((u32 *)dmae) + i)); 453 } 454 455 /* copy command into DMAE command memory and set DMAE command go */ 456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) 457 { 458 u32 cmd_offset; 459 int i; 460 461 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); 462 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { 463 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); 464 } 465 REG_WR(bp, dmae_reg_go_c[idx], 1); 466 } 467 468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) 469 { 470 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 471 DMAE_CMD_C_ENABLE); 472 } 473 474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) 475 { 476 return opcode & ~DMAE_CMD_SRC_RESET; 477 } 478 479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 480 bool with_comp, u8 comp_type) 481 { 482 u32 opcode = 0; 483 484 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 485 (dst_type << DMAE_COMMAND_DST_SHIFT)); 486 487 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 488 489 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 490 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | 491 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); 492 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 493 494 #ifdef __BIG_ENDIAN 495 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 496 #else 497 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 498 #endif 499 if (with_comp) 500 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); 501 return opcode; 502 } 503 504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, 505 struct dmae_command *dmae, 506 u8 src_type, u8 dst_type) 507 { 508 memset(dmae, 0, sizeof(struct dmae_command)); 509 510 /* set the opcode */ 511 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, 512 true, DMAE_COMP_PCI); 513 514 /* fill in the completion parameters */ 515 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); 516 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); 517 dmae->comp_val = DMAE_COMP_VAL; 518 } 519 520 /* issue a dmae command over the init-channel and wait for completion */ 521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 522 u32 *comp) 523 { 524 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; 525 int rc = 0; 526 527 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); 528 529 /* Lock the dmae channel. Disable BHs to prevent a dead-lock 530 * as long as this code is called both from syscall context and 531 * from ndo_set_rx_mode() flow that may be called from BH. 532 */ 533 534 spin_lock_bh(&bp->dmae_lock); 535 536 /* reset completion */ 537 *comp = 0; 538 539 /* post the command on the channel used for initializations */ 540 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); 541 542 /* wait for completion */ 543 udelay(5); 544 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 545 546 if (!cnt || 547 (bp->recovery_state != BNX2X_RECOVERY_DONE && 548 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 549 BNX2X_ERR("DMAE timeout!\n"); 550 rc = DMAE_TIMEOUT; 551 goto unlock; 552 } 553 cnt--; 554 udelay(50); 555 } 556 if (*comp & DMAE_PCI_ERR_FLAG) { 557 BNX2X_ERR("DMAE PCI error!\n"); 558 rc = DMAE_PCI_ERROR; 559 } 560 561 unlock: 562 563 spin_unlock_bh(&bp->dmae_lock); 564 565 return rc; 566 } 567 568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 569 u32 len32) 570 { 571 int rc; 572 struct dmae_command dmae; 573 574 if (!bp->dmae_ready) { 575 u32 *data = bnx2x_sp(bp, wb_data[0]); 576 577 if (CHIP_IS_E1(bp)) 578 bnx2x_init_ind_wr(bp, dst_addr, data, len32); 579 else 580 bnx2x_init_str_wr(bp, dst_addr, data, len32); 581 return; 582 } 583 584 /* set opcode and fixed command fields */ 585 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 586 587 /* fill in addresses and len */ 588 dmae.src_addr_lo = U64_LO(dma_addr); 589 dmae.src_addr_hi = U64_HI(dma_addr); 590 dmae.dst_addr_lo = dst_addr >> 2; 591 dmae.dst_addr_hi = 0; 592 dmae.len = len32; 593 594 /* issue the command and wait for completion */ 595 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 596 if (rc) { 597 BNX2X_ERR("DMAE returned failure %d\n", rc); 598 #ifdef BNX2X_STOP_ON_ERROR 599 bnx2x_panic(); 600 #endif 601 } 602 } 603 604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) 605 { 606 int rc; 607 struct dmae_command dmae; 608 609 if (!bp->dmae_ready) { 610 u32 *data = bnx2x_sp(bp, wb_data[0]); 611 int i; 612 613 if (CHIP_IS_E1(bp)) 614 for (i = 0; i < len32; i++) 615 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); 616 else 617 for (i = 0; i < len32; i++) 618 data[i] = REG_RD(bp, src_addr + i*4); 619 620 return; 621 } 622 623 /* set opcode and fixed command fields */ 624 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 625 626 /* fill in addresses and len */ 627 dmae.src_addr_lo = src_addr >> 2; 628 dmae.src_addr_hi = 0; 629 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); 630 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); 631 dmae.len = len32; 632 633 /* issue the command and wait for completion */ 634 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 635 if (rc) { 636 BNX2X_ERR("DMAE returned failure %d\n", rc); 637 #ifdef BNX2X_STOP_ON_ERROR 638 bnx2x_panic(); 639 #endif 640 } 641 } 642 643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, 644 u32 addr, u32 len) 645 { 646 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); 647 int offset = 0; 648 649 while (len > dmae_wr_max) { 650 bnx2x_write_dmae(bp, phys_addr + offset, 651 addr + offset, dmae_wr_max); 652 offset += dmae_wr_max * 4; 653 len -= dmae_wr_max; 654 } 655 656 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); 657 } 658 659 enum storms { 660 XSTORM, 661 TSTORM, 662 CSTORM, 663 USTORM, 664 MAX_STORMS 665 }; 666 667 #define STORMS_NUM 4 668 #define REGS_IN_ENTRY 4 669 670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp, 671 enum storms storm, 672 int entry) 673 { 674 switch (storm) { 675 case XSTORM: 676 return XSTORM_ASSERT_LIST_OFFSET(entry); 677 case TSTORM: 678 return TSTORM_ASSERT_LIST_OFFSET(entry); 679 case CSTORM: 680 return CSTORM_ASSERT_LIST_OFFSET(entry); 681 case USTORM: 682 return USTORM_ASSERT_LIST_OFFSET(entry); 683 case MAX_STORMS: 684 default: 685 BNX2X_ERR("unknown storm\n"); 686 } 687 return -EINVAL; 688 } 689 690 static int bnx2x_mc_assert(struct bnx2x *bp) 691 { 692 char last_idx; 693 int i, j, rc = 0; 694 enum storms storm; 695 u32 regs[REGS_IN_ENTRY]; 696 u32 bar_storm_intmem[STORMS_NUM] = { 697 BAR_XSTRORM_INTMEM, 698 BAR_TSTRORM_INTMEM, 699 BAR_CSTRORM_INTMEM, 700 BAR_USTRORM_INTMEM 701 }; 702 u32 storm_assert_list_index[STORMS_NUM] = { 703 XSTORM_ASSERT_LIST_INDEX_OFFSET, 704 TSTORM_ASSERT_LIST_INDEX_OFFSET, 705 CSTORM_ASSERT_LIST_INDEX_OFFSET, 706 USTORM_ASSERT_LIST_INDEX_OFFSET 707 }; 708 char *storms_string[STORMS_NUM] = { 709 "XSTORM", 710 "TSTORM", 711 "CSTORM", 712 "USTORM" 713 }; 714 715 for (storm = XSTORM; storm < MAX_STORMS; storm++) { 716 last_idx = REG_RD8(bp, bar_storm_intmem[storm] + 717 storm_assert_list_index[storm]); 718 if (last_idx) 719 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n", 720 storms_string[storm], last_idx); 721 722 /* print the asserts */ 723 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 724 /* read a single assert entry */ 725 for (j = 0; j < REGS_IN_ENTRY; j++) 726 regs[j] = REG_RD(bp, bar_storm_intmem[storm] + 727 bnx2x_get_assert_list_entry(bp, 728 storm, 729 i) + 730 sizeof(u32) * j); 731 732 /* log entry if it contains a valid assert */ 733 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) { 734 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 735 storms_string[storm], i, regs[3], 736 regs[2], regs[1], regs[0]); 737 rc++; 738 } else { 739 break; 740 } 741 } 742 } 743 744 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n", 745 CHIP_IS_E1(bp) ? "everest1" : 746 CHIP_IS_E1H(bp) ? "everest1h" : 747 CHIP_IS_E2(bp) ? "everest2" : "everest3", 748 BCM_5710_FW_MAJOR_VERSION, 749 BCM_5710_FW_MINOR_VERSION, 750 BCM_5710_FW_REVISION_VERSION); 751 752 return rc; 753 } 754 755 #define MCPR_TRACE_BUFFER_SIZE (0x800) 756 #define SCRATCH_BUFFER_SIZE(bp) \ 757 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000)) 758 759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) 760 { 761 u32 addr, val; 762 u32 mark, offset; 763 __be32 data[9]; 764 int word; 765 u32 trace_shmem_base; 766 if (BP_NOMCP(bp)) { 767 BNX2X_ERR("NO MCP - can not dump\n"); 768 return; 769 } 770 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", 771 (bp->common.bc_ver & 0xff0000) >> 16, 772 (bp->common.bc_ver & 0xff00) >> 8, 773 (bp->common.bc_ver & 0xff)); 774 775 if (pci_channel_offline(bp->pdev)) { 776 BNX2X_ERR("Cannot dump MCP info while in PCI error\n"); 777 return; 778 } 779 780 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); 781 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) 782 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); 783 784 if (BP_PATH(bp) == 0) 785 trace_shmem_base = bp->common.shmem_base; 786 else 787 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); 788 789 /* sanity */ 790 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE || 791 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) + 792 SCRATCH_BUFFER_SIZE(bp)) { 793 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n", 794 trace_shmem_base); 795 return; 796 } 797 798 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE; 799 800 /* validate TRCB signature */ 801 mark = REG_RD(bp, addr); 802 if (mark != MFW_TRACE_SIGNATURE) { 803 BNX2X_ERR("Trace buffer signature is missing."); 804 return ; 805 } 806 807 /* read cyclic buffer pointer */ 808 addr += 4; 809 mark = REG_RD(bp, addr); 810 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000; 811 if (mark >= trace_shmem_base || mark < addr + 4) { 812 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n"); 813 return; 814 } 815 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); 816 817 printk("%s", lvl); 818 819 /* dump buffer after the mark */ 820 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) { 821 for (word = 0; word < 8; word++) 822 data[word] = htonl(REG_RD(bp, offset + 4*word)); 823 data[8] = 0x0; 824 pr_cont("%s", (char *)data); 825 } 826 827 /* dump buffer before the mark */ 828 for (offset = addr + 4; offset <= mark; offset += 0x8*4) { 829 for (word = 0; word < 8; word++) 830 data[word] = htonl(REG_RD(bp, offset + 4*word)); 831 data[8] = 0x0; 832 pr_cont("%s", (char *)data); 833 } 834 printk("%s" "end of fw dump\n", lvl); 835 } 836 837 static void bnx2x_fw_dump(struct bnx2x *bp) 838 { 839 bnx2x_fw_dump_lvl(bp, KERN_ERR); 840 } 841 842 static void bnx2x_hc_int_disable(struct bnx2x *bp) 843 { 844 int port = BP_PORT(bp); 845 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 846 u32 val = REG_RD(bp, addr); 847 848 /* in E1 we must use only PCI configuration space to disable 849 * MSI/MSIX capability 850 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block 851 */ 852 if (CHIP_IS_E1(bp)) { 853 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on 854 * Use mask register to prevent from HC sending interrupts 855 * after we exit the function 856 */ 857 REG_WR(bp, HC_REG_INT_MASK + port*4, 0); 858 859 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 860 HC_CONFIG_0_REG_INT_LINE_EN_0 | 861 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 862 } else 863 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 864 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 865 HC_CONFIG_0_REG_INT_LINE_EN_0 | 866 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 867 868 DP(NETIF_MSG_IFDOWN, 869 "write %x to HC %d (addr 0x%x)\n", 870 val, port, addr); 871 872 /* flush all outstanding writes */ 873 mmiowb(); 874 875 REG_WR(bp, addr, val); 876 if (REG_RD(bp, addr) != val) 877 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 878 } 879 880 static void bnx2x_igu_int_disable(struct bnx2x *bp) 881 { 882 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 883 884 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 885 IGU_PF_CONF_INT_LINE_EN | 886 IGU_PF_CONF_ATTN_BIT_EN); 887 888 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); 889 890 /* flush all outstanding writes */ 891 mmiowb(); 892 893 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 894 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) 895 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 896 } 897 898 static void bnx2x_int_disable(struct bnx2x *bp) 899 { 900 if (bp->common.int_block == INT_BLOCK_HC) 901 bnx2x_hc_int_disable(bp); 902 else 903 bnx2x_igu_int_disable(bp); 904 } 905 906 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) 907 { 908 int i; 909 u16 j; 910 struct hc_sp_status_block_data sp_sb_data; 911 int func = BP_FUNC(bp); 912 #ifdef BNX2X_STOP_ON_ERROR 913 u16 start = 0, end = 0; 914 u8 cos; 915 #endif 916 if (IS_PF(bp) && disable_int) 917 bnx2x_int_disable(bp); 918 919 bp->stats_state = STATS_STATE_DISABLED; 920 bp->eth_stats.unrecoverable_error++; 921 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); 922 923 BNX2X_ERR("begin crash dump -----------------\n"); 924 925 /* Indices */ 926 /* Common */ 927 if (IS_PF(bp)) { 928 struct host_sp_status_block *def_sb = bp->def_status_blk; 929 int data_size, cstorm_offset; 930 931 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", 932 bp->def_idx, bp->def_att_idx, bp->attn_state, 933 bp->spq_prod_idx, bp->stats_counter); 934 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", 935 def_sb->atten_status_block.attn_bits, 936 def_sb->atten_status_block.attn_bits_ack, 937 def_sb->atten_status_block.status_block_id, 938 def_sb->atten_status_block.attn_bits_index); 939 BNX2X_ERR(" def ("); 940 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) 941 pr_cont("0x%x%s", 942 def_sb->sp_sb.index_values[i], 943 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); 944 945 data_size = sizeof(struct hc_sp_status_block_data) / 946 sizeof(u32); 947 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func); 948 for (i = 0; i < data_size; i++) 949 *((u32 *)&sp_sb_data + i) = 950 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset + 951 i * sizeof(u32)); 952 953 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", 954 sp_sb_data.igu_sb_id, 955 sp_sb_data.igu_seg_id, 956 sp_sb_data.p_func.pf_id, 957 sp_sb_data.p_func.vnic_id, 958 sp_sb_data.p_func.vf_id, 959 sp_sb_data.p_func.vf_valid, 960 sp_sb_data.state); 961 } 962 963 for_each_eth_queue(bp, i) { 964 struct bnx2x_fastpath *fp = &bp->fp[i]; 965 int loop; 966 struct hc_status_block_data_e2 sb_data_e2; 967 struct hc_status_block_data_e1x sb_data_e1x; 968 struct hc_status_block_sm *hc_sm_p = 969 CHIP_IS_E1x(bp) ? 970 sb_data_e1x.common.state_machine : 971 sb_data_e2.common.state_machine; 972 struct hc_index_data *hc_index_p = 973 CHIP_IS_E1x(bp) ? 974 sb_data_e1x.index_data : 975 sb_data_e2.index_data; 976 u8 data_size, cos; 977 u32 *sb_data_p; 978 struct bnx2x_fp_txdata txdata; 979 980 if (!bp->fp) 981 break; 982 983 if (!fp->rx_cons_sb) 984 continue; 985 986 /* Rx */ 987 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", 988 i, fp->rx_bd_prod, fp->rx_bd_cons, 989 fp->rx_comp_prod, 990 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); 991 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", 992 fp->rx_sge_prod, fp->last_max_sge, 993 le16_to_cpu(fp->fp_hc_idx)); 994 995 /* Tx */ 996 for_each_cos_in_tx_queue(fp, cos) 997 { 998 if (!fp->txdata_ptr[cos]) 999 break; 1000 1001 txdata = *fp->txdata_ptr[cos]; 1002 1003 if (!txdata.tx_cons_sb) 1004 continue; 1005 1006 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", 1007 i, txdata.tx_pkt_prod, 1008 txdata.tx_pkt_cons, txdata.tx_bd_prod, 1009 txdata.tx_bd_cons, 1010 le16_to_cpu(*txdata.tx_cons_sb)); 1011 } 1012 1013 loop = CHIP_IS_E1x(bp) ? 1014 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; 1015 1016 /* host sb data */ 1017 1018 if (IS_FCOE_FP(fp)) 1019 continue; 1020 1021 BNX2X_ERR(" run indexes ("); 1022 for (j = 0; j < HC_SB_MAX_SM; j++) 1023 pr_cont("0x%x%s", 1024 fp->sb_running_index[j], 1025 (j == HC_SB_MAX_SM - 1) ? ")" : " "); 1026 1027 BNX2X_ERR(" indexes ("); 1028 for (j = 0; j < loop; j++) 1029 pr_cont("0x%x%s", 1030 fp->sb_index_values[j], 1031 (j == loop - 1) ? ")" : " "); 1032 1033 /* VF cannot access FW refelection for status block */ 1034 if (IS_VF(bp)) 1035 continue; 1036 1037 /* fw sb data */ 1038 data_size = CHIP_IS_E1x(bp) ? 1039 sizeof(struct hc_status_block_data_e1x) : 1040 sizeof(struct hc_status_block_data_e2); 1041 data_size /= sizeof(u32); 1042 sb_data_p = CHIP_IS_E1x(bp) ? 1043 (u32 *)&sb_data_e1x : 1044 (u32 *)&sb_data_e2; 1045 /* copy sb data in here */ 1046 for (j = 0; j < data_size; j++) 1047 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + 1048 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + 1049 j * sizeof(u32)); 1050 1051 if (!CHIP_IS_E1x(bp)) { 1052 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1053 sb_data_e2.common.p_func.pf_id, 1054 sb_data_e2.common.p_func.vf_id, 1055 sb_data_e2.common.p_func.vf_valid, 1056 sb_data_e2.common.p_func.vnic_id, 1057 sb_data_e2.common.same_igu_sb_1b, 1058 sb_data_e2.common.state); 1059 } else { 1060 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1061 sb_data_e1x.common.p_func.pf_id, 1062 sb_data_e1x.common.p_func.vf_id, 1063 sb_data_e1x.common.p_func.vf_valid, 1064 sb_data_e1x.common.p_func.vnic_id, 1065 sb_data_e1x.common.same_igu_sb_1b, 1066 sb_data_e1x.common.state); 1067 } 1068 1069 /* SB_SMs data */ 1070 for (j = 0; j < HC_SB_MAX_SM; j++) { 1071 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", 1072 j, hc_sm_p[j].__flags, 1073 hc_sm_p[j].igu_sb_id, 1074 hc_sm_p[j].igu_seg_id, 1075 hc_sm_p[j].time_to_expire, 1076 hc_sm_p[j].timer_value); 1077 } 1078 1079 /* Indices data */ 1080 for (j = 0; j < loop; j++) { 1081 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, 1082 hc_index_p[j].flags, 1083 hc_index_p[j].timeout); 1084 } 1085 } 1086 1087 #ifdef BNX2X_STOP_ON_ERROR 1088 if (IS_PF(bp)) { 1089 /* event queue */ 1090 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); 1091 for (i = 0; i < NUM_EQ_DESC; i++) { 1092 u32 *data = (u32 *)&bp->eq_ring[i].message.data; 1093 1094 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", 1095 i, bp->eq_ring[i].message.opcode, 1096 bp->eq_ring[i].message.error); 1097 BNX2X_ERR("data: %x %x %x\n", 1098 data[0], data[1], data[2]); 1099 } 1100 } 1101 1102 /* Rings */ 1103 /* Rx */ 1104 for_each_valid_rx_queue(bp, i) { 1105 struct bnx2x_fastpath *fp = &bp->fp[i]; 1106 1107 if (!bp->fp) 1108 break; 1109 1110 if (!fp->rx_cons_sb) 1111 continue; 1112 1113 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); 1114 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); 1115 for (j = start; j != end; j = RX_BD(j + 1)) { 1116 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; 1117 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; 1118 1119 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", 1120 i, j, rx_bd[1], rx_bd[0], sw_bd->data); 1121 } 1122 1123 start = RX_SGE(fp->rx_sge_prod); 1124 end = RX_SGE(fp->last_max_sge); 1125 for (j = start; j != end; j = RX_SGE(j + 1)) { 1126 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; 1127 struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; 1128 1129 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", 1130 i, j, rx_sge[1], rx_sge[0], sw_page->page); 1131 } 1132 1133 start = RCQ_BD(fp->rx_comp_cons - 10); 1134 end = RCQ_BD(fp->rx_comp_cons + 503); 1135 for (j = start; j != end; j = RCQ_BD(j + 1)) { 1136 u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; 1137 1138 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", 1139 i, j, cqe[0], cqe[1], cqe[2], cqe[3]); 1140 } 1141 } 1142 1143 /* Tx */ 1144 for_each_valid_tx_queue(bp, i) { 1145 struct bnx2x_fastpath *fp = &bp->fp[i]; 1146 1147 if (!bp->fp) 1148 break; 1149 1150 for_each_cos_in_tx_queue(fp, cos) { 1151 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1152 1153 if (!fp->txdata_ptr[cos]) 1154 break; 1155 1156 if (!txdata->tx_cons_sb) 1157 continue; 1158 1159 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); 1160 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); 1161 for (j = start; j != end; j = TX_BD(j + 1)) { 1162 struct sw_tx_bd *sw_bd = 1163 &txdata->tx_buf_ring[j]; 1164 1165 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", 1166 i, cos, j, sw_bd->skb, 1167 sw_bd->first_bd); 1168 } 1169 1170 start = TX_BD(txdata->tx_bd_cons - 10); 1171 end = TX_BD(txdata->tx_bd_cons + 254); 1172 for (j = start; j != end; j = TX_BD(j + 1)) { 1173 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; 1174 1175 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", 1176 i, cos, j, tx_bd[0], tx_bd[1], 1177 tx_bd[2], tx_bd[3]); 1178 } 1179 } 1180 } 1181 #endif 1182 if (IS_PF(bp)) { 1183 bnx2x_fw_dump(bp); 1184 bnx2x_mc_assert(bp); 1185 } 1186 BNX2X_ERR("end crash dump -----------------\n"); 1187 } 1188 1189 /* 1190 * FLR Support for E2 1191 * 1192 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW 1193 * initialization. 1194 */ 1195 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */ 1196 #define FLR_WAIT_INTERVAL 50 /* usec */ 1197 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ 1198 1199 struct pbf_pN_buf_regs { 1200 int pN; 1201 u32 init_crd; 1202 u32 crd; 1203 u32 crd_freed; 1204 }; 1205 1206 struct pbf_pN_cmd_regs { 1207 int pN; 1208 u32 lines_occup; 1209 u32 lines_freed; 1210 }; 1211 1212 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, 1213 struct pbf_pN_buf_regs *regs, 1214 u32 poll_count) 1215 { 1216 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; 1217 u32 cur_cnt = poll_count; 1218 1219 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); 1220 crd = crd_start = REG_RD(bp, regs->crd); 1221 init_crd = REG_RD(bp, regs->init_crd); 1222 1223 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 1224 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); 1225 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 1226 1227 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < 1228 (init_crd - crd_start))) { 1229 if (cur_cnt--) { 1230 udelay(FLR_WAIT_INTERVAL); 1231 crd = REG_RD(bp, regs->crd); 1232 crd_freed = REG_RD(bp, regs->crd_freed); 1233 } else { 1234 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", 1235 regs->pN); 1236 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", 1237 regs->pN, crd); 1238 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", 1239 regs->pN, crd_freed); 1240 break; 1241 } 1242 } 1243 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", 1244 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1245 } 1246 1247 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, 1248 struct pbf_pN_cmd_regs *regs, 1249 u32 poll_count) 1250 { 1251 u32 occup, to_free, freed, freed_start; 1252 u32 cur_cnt = poll_count; 1253 1254 occup = to_free = REG_RD(bp, regs->lines_occup); 1255 freed = freed_start = REG_RD(bp, regs->lines_freed); 1256 1257 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 1258 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 1259 1260 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { 1261 if (cur_cnt--) { 1262 udelay(FLR_WAIT_INTERVAL); 1263 occup = REG_RD(bp, regs->lines_occup); 1264 freed = REG_RD(bp, regs->lines_freed); 1265 } else { 1266 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", 1267 regs->pN); 1268 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", 1269 regs->pN, occup); 1270 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", 1271 regs->pN, freed); 1272 break; 1273 } 1274 } 1275 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", 1276 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1277 } 1278 1279 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, 1280 u32 expected, u32 poll_count) 1281 { 1282 u32 cur_cnt = poll_count; 1283 u32 val; 1284 1285 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) 1286 udelay(FLR_WAIT_INTERVAL); 1287 1288 return val; 1289 } 1290 1291 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 1292 char *msg, u32 poll_cnt) 1293 { 1294 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); 1295 if (val != 0) { 1296 BNX2X_ERR("%s usage count=%d\n", msg, val); 1297 return 1; 1298 } 1299 return 0; 1300 } 1301 1302 /* Common routines with VF FLR cleanup */ 1303 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) 1304 { 1305 /* adjust polling timeout */ 1306 if (CHIP_REV_IS_EMUL(bp)) 1307 return FLR_POLL_CNT * 2000; 1308 1309 if (CHIP_REV_IS_FPGA(bp)) 1310 return FLR_POLL_CNT * 120; 1311 1312 return FLR_POLL_CNT; 1313 } 1314 1315 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) 1316 { 1317 struct pbf_pN_cmd_regs cmd_regs[] = { 1318 {0, (CHIP_IS_E3B0(bp)) ? 1319 PBF_REG_TQ_OCCUPANCY_Q0 : 1320 PBF_REG_P0_TQ_OCCUPANCY, 1321 (CHIP_IS_E3B0(bp)) ? 1322 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 1323 PBF_REG_P0_TQ_LINES_FREED_CNT}, 1324 {1, (CHIP_IS_E3B0(bp)) ? 1325 PBF_REG_TQ_OCCUPANCY_Q1 : 1326 PBF_REG_P1_TQ_OCCUPANCY, 1327 (CHIP_IS_E3B0(bp)) ? 1328 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 1329 PBF_REG_P1_TQ_LINES_FREED_CNT}, 1330 {4, (CHIP_IS_E3B0(bp)) ? 1331 PBF_REG_TQ_OCCUPANCY_LB_Q : 1332 PBF_REG_P4_TQ_OCCUPANCY, 1333 (CHIP_IS_E3B0(bp)) ? 1334 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 1335 PBF_REG_P4_TQ_LINES_FREED_CNT} 1336 }; 1337 1338 struct pbf_pN_buf_regs buf_regs[] = { 1339 {0, (CHIP_IS_E3B0(bp)) ? 1340 PBF_REG_INIT_CRD_Q0 : 1341 PBF_REG_P0_INIT_CRD , 1342 (CHIP_IS_E3B0(bp)) ? 1343 PBF_REG_CREDIT_Q0 : 1344 PBF_REG_P0_CREDIT, 1345 (CHIP_IS_E3B0(bp)) ? 1346 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 1347 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 1348 {1, (CHIP_IS_E3B0(bp)) ? 1349 PBF_REG_INIT_CRD_Q1 : 1350 PBF_REG_P1_INIT_CRD, 1351 (CHIP_IS_E3B0(bp)) ? 1352 PBF_REG_CREDIT_Q1 : 1353 PBF_REG_P1_CREDIT, 1354 (CHIP_IS_E3B0(bp)) ? 1355 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 1356 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 1357 {4, (CHIP_IS_E3B0(bp)) ? 1358 PBF_REG_INIT_CRD_LB_Q : 1359 PBF_REG_P4_INIT_CRD, 1360 (CHIP_IS_E3B0(bp)) ? 1361 PBF_REG_CREDIT_LB_Q : 1362 PBF_REG_P4_CREDIT, 1363 (CHIP_IS_E3B0(bp)) ? 1364 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 1365 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 1366 }; 1367 1368 int i; 1369 1370 /* Verify the command queues are flushed P0, P1, P4 */ 1371 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) 1372 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); 1373 1374 /* Verify the transmission buffers are flushed P0, P1, P4 */ 1375 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) 1376 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); 1377 } 1378 1379 #define OP_GEN_PARAM(param) \ 1380 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 1381 1382 #define OP_GEN_TYPE(type) \ 1383 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 1384 1385 #define OP_GEN_AGG_VECT(index) \ 1386 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 1387 1388 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) 1389 { 1390 u32 op_gen_command = 0; 1391 u32 comp_addr = BAR_CSTRORM_INTMEM + 1392 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); 1393 int ret = 0; 1394 1395 if (REG_RD(bp, comp_addr)) { 1396 BNX2X_ERR("Cleanup complete was not 0 before sending\n"); 1397 return 1; 1398 } 1399 1400 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 1401 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 1402 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 1403 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 1404 1405 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); 1406 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); 1407 1408 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { 1409 BNX2X_ERR("FW final cleanup did not succeed\n"); 1410 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", 1411 (REG_RD(bp, comp_addr))); 1412 bnx2x_panic(); 1413 return 1; 1414 } 1415 /* Zero completion for next FLR */ 1416 REG_WR(bp, comp_addr, 0); 1417 1418 return ret; 1419 } 1420 1421 u8 bnx2x_is_pcie_pending(struct pci_dev *dev) 1422 { 1423 u16 status; 1424 1425 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 1426 return status & PCI_EXP_DEVSTA_TRPND; 1427 } 1428 1429 /* PF FLR specific routines 1430 */ 1431 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) 1432 { 1433 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 1434 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1435 CFC_REG_NUM_LCIDS_INSIDE_PF, 1436 "CFC PF usage counter timed out", 1437 poll_cnt)) 1438 return 1; 1439 1440 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 1441 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1442 DORQ_REG_PF_USAGE_CNT, 1443 "DQ PF usage counter timed out", 1444 poll_cnt)) 1445 return 1; 1446 1447 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 1448 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1449 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), 1450 "QM PF usage counter timed out", 1451 poll_cnt)) 1452 return 1; 1453 1454 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 1455 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1456 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), 1457 "Timers VNIC usage counter timed out", 1458 poll_cnt)) 1459 return 1; 1460 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1461 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), 1462 "Timers NUM_SCANS usage counter timed out", 1463 poll_cnt)) 1464 return 1; 1465 1466 /* Wait DMAE PF usage counter to zero */ 1467 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1468 dmae_reg_go_c[INIT_DMAE_C(bp)], 1469 "DMAE command register timed out", 1470 poll_cnt)) 1471 return 1; 1472 1473 return 0; 1474 } 1475 1476 static void bnx2x_hw_enable_status(struct bnx2x *bp) 1477 { 1478 u32 val; 1479 1480 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); 1481 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 1482 1483 val = REG_RD(bp, PBF_REG_DISABLE_PF); 1484 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); 1485 1486 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); 1487 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 1488 1489 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); 1490 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 1491 1492 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 1493 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 1494 1495 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 1496 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 1497 1498 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 1499 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 1500 1501 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1502 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", 1503 val); 1504 } 1505 1506 static int bnx2x_pf_flr_clnup(struct bnx2x *bp) 1507 { 1508 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 1509 1510 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); 1511 1512 /* Re-enable PF target read access */ 1513 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 1514 1515 /* Poll HW usage counters */ 1516 DP(BNX2X_MSG_SP, "Polling usage counters\n"); 1517 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) 1518 return -EBUSY; 1519 1520 /* Zero the igu 'trailing edge' and 'leading edge' */ 1521 1522 /* Send the FW cleanup command */ 1523 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) 1524 return -EBUSY; 1525 1526 /* ATC cleanup */ 1527 1528 /* Verify TX hw is flushed */ 1529 bnx2x_tx_hw_flushed(bp, poll_cnt); 1530 1531 /* Wait 100ms (not adjusted according to platform) */ 1532 msleep(100); 1533 1534 /* Verify no pending pci transactions */ 1535 if (bnx2x_is_pcie_pending(bp->pdev)) 1536 BNX2X_ERR("PCIE Transactions still pending\n"); 1537 1538 /* Debug */ 1539 bnx2x_hw_enable_status(bp); 1540 1541 /* 1542 * Master enable - Due to WB DMAE writes performed before this 1543 * register is re-initialized as part of the regular function init 1544 */ 1545 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 1546 1547 return 0; 1548 } 1549 1550 static void bnx2x_hc_int_enable(struct bnx2x *bp) 1551 { 1552 int port = BP_PORT(bp); 1553 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 1554 u32 val = REG_RD(bp, addr); 1555 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1556 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1557 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1558 1559 if (msix) { 1560 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1561 HC_CONFIG_0_REG_INT_LINE_EN_0); 1562 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1563 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1564 if (single_msix) 1565 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 1566 } else if (msi) { 1567 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 1568 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1569 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1570 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1571 } else { 1572 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1573 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1574 HC_CONFIG_0_REG_INT_LINE_EN_0 | 1575 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1576 1577 if (!CHIP_IS_E1(bp)) { 1578 DP(NETIF_MSG_IFUP, 1579 "write %x to HC %d (addr 0x%x)\n", val, port, addr); 1580 1581 REG_WR(bp, addr, val); 1582 1583 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 1584 } 1585 } 1586 1587 if (CHIP_IS_E1(bp)) 1588 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); 1589 1590 DP(NETIF_MSG_IFUP, 1591 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, 1592 (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1593 1594 REG_WR(bp, addr, val); 1595 /* 1596 * Ensure that HC_CONFIG is written before leading/trailing edge config 1597 */ 1598 mmiowb(); 1599 barrier(); 1600 1601 if (!CHIP_IS_E1(bp)) { 1602 /* init leading/trailing edge */ 1603 if (IS_MF(bp)) { 1604 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1605 if (bp->port.pmf) 1606 /* enable nig and gpio3 attention */ 1607 val |= 0x1100; 1608 } else 1609 val = 0xffff; 1610 1611 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 1612 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 1613 } 1614 1615 /* Make sure that interrupts are indeed enabled from here on */ 1616 mmiowb(); 1617 } 1618 1619 static void bnx2x_igu_int_enable(struct bnx2x *bp) 1620 { 1621 u32 val; 1622 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1623 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1624 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1625 1626 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 1627 1628 if (msix) { 1629 val &= ~(IGU_PF_CONF_INT_LINE_EN | 1630 IGU_PF_CONF_SINGLE_ISR_EN); 1631 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1632 IGU_PF_CONF_ATTN_BIT_EN); 1633 1634 if (single_msix) 1635 val |= IGU_PF_CONF_SINGLE_ISR_EN; 1636 } else if (msi) { 1637 val &= ~IGU_PF_CONF_INT_LINE_EN; 1638 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1639 IGU_PF_CONF_ATTN_BIT_EN | 1640 IGU_PF_CONF_SINGLE_ISR_EN); 1641 } else { 1642 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 1643 val |= (IGU_PF_CONF_INT_LINE_EN | 1644 IGU_PF_CONF_ATTN_BIT_EN | 1645 IGU_PF_CONF_SINGLE_ISR_EN); 1646 } 1647 1648 /* Clean previous status - need to configure igu prior to ack*/ 1649 if ((!msix) || single_msix) { 1650 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1651 bnx2x_ack_int(bp); 1652 } 1653 1654 val |= IGU_PF_CONF_FUNC_EN; 1655 1656 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", 1657 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1658 1659 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1660 1661 if (val & IGU_PF_CONF_INT_LINE_EN) 1662 pci_intx(bp->pdev, true); 1663 1664 barrier(); 1665 1666 /* init leading/trailing edge */ 1667 if (IS_MF(bp)) { 1668 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1669 if (bp->port.pmf) 1670 /* enable nig and gpio3 attention */ 1671 val |= 0x1100; 1672 } else 1673 val = 0xffff; 1674 1675 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 1676 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 1677 1678 /* Make sure that interrupts are indeed enabled from here on */ 1679 mmiowb(); 1680 } 1681 1682 void bnx2x_int_enable(struct bnx2x *bp) 1683 { 1684 if (bp->common.int_block == INT_BLOCK_HC) 1685 bnx2x_hc_int_enable(bp); 1686 else 1687 bnx2x_igu_int_enable(bp); 1688 } 1689 1690 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) 1691 { 1692 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 1693 int i, offset; 1694 1695 if (disable_hw) 1696 /* prevent the HW from sending interrupts */ 1697 bnx2x_int_disable(bp); 1698 1699 /* make sure all ISRs are done */ 1700 if (msix) { 1701 synchronize_irq(bp->msix_table[0].vector); 1702 offset = 1; 1703 if (CNIC_SUPPORT(bp)) 1704 offset++; 1705 for_each_eth_queue(bp, i) 1706 synchronize_irq(bp->msix_table[offset++].vector); 1707 } else 1708 synchronize_irq(bp->pdev->irq); 1709 1710 /* make sure sp_task is not running */ 1711 cancel_delayed_work(&bp->sp_task); 1712 cancel_delayed_work(&bp->period_task); 1713 flush_workqueue(bnx2x_wq); 1714 } 1715 1716 /* fast path */ 1717 1718 /* 1719 * General service functions 1720 */ 1721 1722 /* Return true if succeeded to acquire the lock */ 1723 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) 1724 { 1725 u32 lock_status; 1726 u32 resource_bit = (1 << resource); 1727 int func = BP_FUNC(bp); 1728 u32 hw_lock_control_reg; 1729 1730 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1731 "Trying to take a lock on resource %d\n", resource); 1732 1733 /* Validating that the resource is within range */ 1734 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1735 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1736 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1737 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1738 return false; 1739 } 1740 1741 if (func <= 5) 1742 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1743 else 1744 hw_lock_control_reg = 1745 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1746 1747 /* Try to acquire the lock */ 1748 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1749 lock_status = REG_RD(bp, hw_lock_control_reg); 1750 if (lock_status & resource_bit) 1751 return true; 1752 1753 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1754 "Failed to get a lock on resource %d\n", resource); 1755 return false; 1756 } 1757 1758 /** 1759 * bnx2x_get_leader_lock_resource - get the recovery leader resource id 1760 * 1761 * @bp: driver handle 1762 * 1763 * Returns the recovery leader resource id according to the engine this function 1764 * belongs to. Currently only only 2 engines is supported. 1765 */ 1766 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) 1767 { 1768 if (BP_PATH(bp)) 1769 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; 1770 else 1771 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; 1772 } 1773 1774 /** 1775 * bnx2x_trylock_leader_lock- try to acquire a leader lock. 1776 * 1777 * @bp: driver handle 1778 * 1779 * Tries to acquire a leader lock for current engine. 1780 */ 1781 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) 1782 { 1783 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1784 } 1785 1786 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); 1787 1788 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ 1789 static int bnx2x_schedule_sp_task(struct bnx2x *bp) 1790 { 1791 /* Set the interrupt occurred bit for the sp-task to recognize it 1792 * must ack the interrupt and transition according to the IGU 1793 * state machine. 1794 */ 1795 atomic_set(&bp->interrupt_occurred, 1); 1796 1797 /* The sp_task must execute only after this bit 1798 * is set, otherwise we will get out of sync and miss all 1799 * further interrupts. Hence, the barrier. 1800 */ 1801 smp_wmb(); 1802 1803 /* schedule sp_task to workqueue */ 1804 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); 1805 } 1806 1807 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) 1808 { 1809 struct bnx2x *bp = fp->bp; 1810 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1811 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1812 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; 1813 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 1814 1815 DP(BNX2X_MSG_SP, 1816 "fp %d cid %d got ramrod #%d state is %x type is %d\n", 1817 fp->index, cid, command, bp->state, 1818 rr_cqe->ramrod_cqe.ramrod_type); 1819 1820 /* If cid is within VF range, replace the slowpath object with the 1821 * one corresponding to this VF 1822 */ 1823 if (cid >= BNX2X_FIRST_VF_CID && 1824 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) 1825 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); 1826 1827 switch (command) { 1828 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 1829 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); 1830 drv_cmd = BNX2X_Q_CMD_UPDATE; 1831 break; 1832 1833 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 1834 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); 1835 drv_cmd = BNX2X_Q_CMD_SETUP; 1836 break; 1837 1838 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 1839 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 1840 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 1841 break; 1842 1843 case (RAMROD_CMD_ID_ETH_HALT): 1844 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); 1845 drv_cmd = BNX2X_Q_CMD_HALT; 1846 break; 1847 1848 case (RAMROD_CMD_ID_ETH_TERMINATE): 1849 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); 1850 drv_cmd = BNX2X_Q_CMD_TERMINATE; 1851 break; 1852 1853 case (RAMROD_CMD_ID_ETH_EMPTY): 1854 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); 1855 drv_cmd = BNX2X_Q_CMD_EMPTY; 1856 break; 1857 1858 case (RAMROD_CMD_ID_ETH_TPA_UPDATE): 1859 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid); 1860 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA; 1861 break; 1862 1863 default: 1864 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", 1865 command, fp->index); 1866 return; 1867 } 1868 1869 if ((drv_cmd != BNX2X_Q_CMD_MAX) && 1870 q_obj->complete_cmd(bp, q_obj, drv_cmd)) 1871 /* q_obj->complete_cmd() failure means that this was 1872 * an unexpected completion. 1873 * 1874 * In this case we don't want to increase the bp->spq_left 1875 * because apparently we haven't sent this command the first 1876 * place. 1877 */ 1878 #ifdef BNX2X_STOP_ON_ERROR 1879 bnx2x_panic(); 1880 #else 1881 return; 1882 #endif 1883 1884 smp_mb__before_atomic(); 1885 atomic_inc(&bp->cq_spq_left); 1886 /* push the change in bp->spq_left and towards the memory */ 1887 smp_mb__after_atomic(); 1888 1889 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); 1890 1891 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 1892 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { 1893 /* if Q update ramrod is completed for last Q in AFEX vif set 1894 * flow, then ACK MCP at the end 1895 * 1896 * mark pending ACK to MCP bit. 1897 * prevent case that both bits are cleared. 1898 * At the end of load/unload driver checks that 1899 * sp_state is cleared, and this order prevents 1900 * races 1901 */ 1902 smp_mb__before_atomic(); 1903 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); 1904 wmb(); 1905 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 1906 smp_mb__after_atomic(); 1907 1908 /* schedule the sp task as mcp ack is required */ 1909 bnx2x_schedule_sp_task(bp); 1910 } 1911 1912 return; 1913 } 1914 1915 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) 1916 { 1917 struct bnx2x *bp = netdev_priv(dev_instance); 1918 u16 status = bnx2x_ack_int(bp); 1919 u16 mask; 1920 int i; 1921 u8 cos; 1922 1923 /* Return here if interrupt is shared and it's not for us */ 1924 if (unlikely(status == 0)) { 1925 DP(NETIF_MSG_INTR, "not our interrupt!\n"); 1926 return IRQ_NONE; 1927 } 1928 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); 1929 1930 #ifdef BNX2X_STOP_ON_ERROR 1931 if (unlikely(bp->panic)) 1932 return IRQ_HANDLED; 1933 #endif 1934 1935 for_each_eth_queue(bp, i) { 1936 struct bnx2x_fastpath *fp = &bp->fp[i]; 1937 1938 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); 1939 if (status & mask) { 1940 /* Handle Rx or Tx according to SB id */ 1941 for_each_cos_in_tx_queue(fp, cos) 1942 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1943 prefetch(&fp->sb_running_index[SM_RX_ID]); 1944 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1945 status &= ~mask; 1946 } 1947 } 1948 1949 if (CNIC_SUPPORT(bp)) { 1950 mask = 0x2; 1951 if (status & (mask | 0x1)) { 1952 struct cnic_ops *c_ops = NULL; 1953 1954 rcu_read_lock(); 1955 c_ops = rcu_dereference(bp->cnic_ops); 1956 if (c_ops && (bp->cnic_eth_dev.drv_state & 1957 CNIC_DRV_STATE_HANDLES_IRQ)) 1958 c_ops->cnic_handler(bp->cnic_data, NULL); 1959 rcu_read_unlock(); 1960 1961 status &= ~mask; 1962 } 1963 } 1964 1965 if (unlikely(status & 0x1)) { 1966 1967 /* schedule sp task to perform default status block work, ack 1968 * attentions and enable interrupts. 1969 */ 1970 bnx2x_schedule_sp_task(bp); 1971 1972 status &= ~0x1; 1973 if (!status) 1974 return IRQ_HANDLED; 1975 } 1976 1977 if (unlikely(status)) 1978 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", 1979 status); 1980 1981 return IRQ_HANDLED; 1982 } 1983 1984 /* Link */ 1985 1986 /* 1987 * General service functions 1988 */ 1989 1990 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) 1991 { 1992 u32 lock_status; 1993 u32 resource_bit = (1 << resource); 1994 int func = BP_FUNC(bp); 1995 u32 hw_lock_control_reg; 1996 int cnt; 1997 1998 /* Validating that the resource is within range */ 1999 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 2000 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 2001 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2002 return -EINVAL; 2003 } 2004 2005 if (func <= 5) { 2006 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2007 } else { 2008 hw_lock_control_reg = 2009 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2010 } 2011 2012 /* Validating that the resource is not already taken */ 2013 lock_status = REG_RD(bp, hw_lock_control_reg); 2014 if (lock_status & resource_bit) { 2015 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", 2016 lock_status, resource_bit); 2017 return -EEXIST; 2018 } 2019 2020 /* Try for 5 second every 5ms */ 2021 for (cnt = 0; cnt < 1000; cnt++) { 2022 /* Try to acquire the lock */ 2023 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 2024 lock_status = REG_RD(bp, hw_lock_control_reg); 2025 if (lock_status & resource_bit) 2026 return 0; 2027 2028 usleep_range(5000, 10000); 2029 } 2030 BNX2X_ERR("Timeout\n"); 2031 return -EAGAIN; 2032 } 2033 2034 int bnx2x_release_leader_lock(struct bnx2x *bp) 2035 { 2036 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 2037 } 2038 2039 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) 2040 { 2041 u32 lock_status; 2042 u32 resource_bit = (1 << resource); 2043 int func = BP_FUNC(bp); 2044 u32 hw_lock_control_reg; 2045 2046 /* Validating that the resource is within range */ 2047 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 2048 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 2049 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2050 return -EINVAL; 2051 } 2052 2053 if (func <= 5) { 2054 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2055 } else { 2056 hw_lock_control_reg = 2057 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2058 } 2059 2060 /* Validating that the resource is currently taken */ 2061 lock_status = REG_RD(bp, hw_lock_control_reg); 2062 if (!(lock_status & resource_bit)) { 2063 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", 2064 lock_status, resource_bit); 2065 return -EFAULT; 2066 } 2067 2068 REG_WR(bp, hw_lock_control_reg, resource_bit); 2069 return 0; 2070 } 2071 2072 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) 2073 { 2074 /* The GPIO should be swapped if swap register is set and active */ 2075 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2076 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2077 int gpio_shift = gpio_num + 2078 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2079 u32 gpio_mask = (1 << gpio_shift); 2080 u32 gpio_reg; 2081 int value; 2082 2083 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2084 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2085 return -EINVAL; 2086 } 2087 2088 /* read GPIO value */ 2089 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2090 2091 /* get the requested pin value */ 2092 if ((gpio_reg & gpio_mask) == gpio_mask) 2093 value = 1; 2094 else 2095 value = 0; 2096 2097 return value; 2098 } 2099 2100 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2101 { 2102 /* The GPIO should be swapped if swap register is set and active */ 2103 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2104 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2105 int gpio_shift = gpio_num + 2106 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2107 u32 gpio_mask = (1 << gpio_shift); 2108 u32 gpio_reg; 2109 2110 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2111 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2112 return -EINVAL; 2113 } 2114 2115 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2116 /* read GPIO and mask except the float bits */ 2117 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2118 2119 switch (mode) { 2120 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2121 DP(NETIF_MSG_LINK, 2122 "Set GPIO %d (shift %d) -> output low\n", 2123 gpio_num, gpio_shift); 2124 /* clear FLOAT and set CLR */ 2125 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2126 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2127 break; 2128 2129 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2130 DP(NETIF_MSG_LINK, 2131 "Set GPIO %d (shift %d) -> output high\n", 2132 gpio_num, gpio_shift); 2133 /* clear FLOAT and set SET */ 2134 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2135 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2136 break; 2137 2138 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2139 DP(NETIF_MSG_LINK, 2140 "Set GPIO %d (shift %d) -> input\n", 2141 gpio_num, gpio_shift); 2142 /* set FLOAT */ 2143 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2144 break; 2145 2146 default: 2147 break; 2148 } 2149 2150 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2151 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2152 2153 return 0; 2154 } 2155 2156 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) 2157 { 2158 u32 gpio_reg = 0; 2159 int rc = 0; 2160 2161 /* Any port swapping should be handled by caller. */ 2162 2163 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2164 /* read GPIO and mask except the float bits */ 2165 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2166 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2167 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2168 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2169 2170 switch (mode) { 2171 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2172 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); 2173 /* set CLR */ 2174 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2175 break; 2176 2177 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2178 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); 2179 /* set SET */ 2180 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2181 break; 2182 2183 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2184 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); 2185 /* set FLOAT */ 2186 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2187 break; 2188 2189 default: 2190 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); 2191 rc = -EINVAL; 2192 break; 2193 } 2194 2195 if (rc == 0) 2196 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2197 2198 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2199 2200 return rc; 2201 } 2202 2203 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2204 { 2205 /* The GPIO should be swapped if swap register is set and active */ 2206 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2207 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2208 int gpio_shift = gpio_num + 2209 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2210 u32 gpio_mask = (1 << gpio_shift); 2211 u32 gpio_reg; 2212 2213 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2214 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2215 return -EINVAL; 2216 } 2217 2218 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2219 /* read GPIO int */ 2220 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); 2221 2222 switch (mode) { 2223 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2224 DP(NETIF_MSG_LINK, 2225 "Clear GPIO INT %d (shift %d) -> output low\n", 2226 gpio_num, gpio_shift); 2227 /* clear SET and set CLR */ 2228 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2229 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2230 break; 2231 2232 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2233 DP(NETIF_MSG_LINK, 2234 "Set GPIO INT %d (shift %d) -> output high\n", 2235 gpio_num, gpio_shift); 2236 /* clear CLR and set SET */ 2237 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2238 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2239 break; 2240 2241 default: 2242 break; 2243 } 2244 2245 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); 2246 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2247 2248 return 0; 2249 } 2250 2251 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) 2252 { 2253 u32 spio_reg; 2254 2255 /* Only 2 SPIOs are configurable */ 2256 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 2257 BNX2X_ERR("Invalid SPIO 0x%x\n", spio); 2258 return -EINVAL; 2259 } 2260 2261 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2262 /* read SPIO and mask except the float bits */ 2263 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 2264 2265 switch (mode) { 2266 case MISC_SPIO_OUTPUT_LOW: 2267 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); 2268 /* clear FLOAT and set CLR */ 2269 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2270 spio_reg |= (spio << MISC_SPIO_CLR_POS); 2271 break; 2272 2273 case MISC_SPIO_OUTPUT_HIGH: 2274 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); 2275 /* clear FLOAT and set SET */ 2276 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2277 spio_reg |= (spio << MISC_SPIO_SET_POS); 2278 break; 2279 2280 case MISC_SPIO_INPUT_HI_Z: 2281 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); 2282 /* set FLOAT */ 2283 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 2284 break; 2285 2286 default: 2287 break; 2288 } 2289 2290 REG_WR(bp, MISC_REG_SPIO, spio_reg); 2291 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2292 2293 return 0; 2294 } 2295 2296 void bnx2x_calc_fc_adv(struct bnx2x *bp) 2297 { 2298 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); 2299 2300 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2301 ADVERTISED_Pause); 2302 switch (bp->link_vars.ieee_fc & 2303 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 2304 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 2305 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 2306 ADVERTISED_Pause); 2307 break; 2308 2309 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 2310 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 2311 break; 2312 2313 default: 2314 break; 2315 } 2316 } 2317 2318 static void bnx2x_set_requested_fc(struct bnx2x *bp) 2319 { 2320 /* Initialize link parameters structure variables 2321 * It is recommended to turn off RX FC for jumbo frames 2322 * for better performance 2323 */ 2324 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) 2325 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; 2326 else 2327 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; 2328 } 2329 2330 static void bnx2x_init_dropless_fc(struct bnx2x *bp) 2331 { 2332 u32 pause_enabled = 0; 2333 2334 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { 2335 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 2336 pause_enabled = 1; 2337 2338 REG_WR(bp, BAR_USTRORM_INTMEM + 2339 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), 2340 pause_enabled); 2341 } 2342 2343 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", 2344 pause_enabled ? "enabled" : "disabled"); 2345 } 2346 2347 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) 2348 { 2349 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); 2350 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; 2351 2352 if (!BP_NOMCP(bp)) { 2353 bnx2x_set_requested_fc(bp); 2354 bnx2x_acquire_phy_lock(bp); 2355 2356 if (load_mode == LOAD_DIAG) { 2357 struct link_params *lp = &bp->link_params; 2358 lp->loopback_mode = LOOPBACK_XGXS; 2359 /* Prefer doing PHY loopback at highest speed */ 2360 if (lp->req_line_speed[cfx_idx] < SPEED_20000) { 2361 if (lp->speed_cap_mask[cfx_idx] & 2362 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G) 2363 lp->req_line_speed[cfx_idx] = 2364 SPEED_20000; 2365 else if (lp->speed_cap_mask[cfx_idx] & 2366 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) 2367 lp->req_line_speed[cfx_idx] = 2368 SPEED_10000; 2369 else 2370 lp->req_line_speed[cfx_idx] = 2371 SPEED_1000; 2372 } 2373 } 2374 2375 if (load_mode == LOAD_LOOPBACK_EXT) { 2376 struct link_params *lp = &bp->link_params; 2377 lp->loopback_mode = LOOPBACK_EXT; 2378 } 2379 2380 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2381 2382 bnx2x_release_phy_lock(bp); 2383 2384 bnx2x_init_dropless_fc(bp); 2385 2386 bnx2x_calc_fc_adv(bp); 2387 2388 if (bp->link_vars.link_up) { 2389 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2390 bnx2x_link_report(bp); 2391 } 2392 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2393 bp->link_params.req_line_speed[cfx_idx] = req_line_speed; 2394 return rc; 2395 } 2396 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 2397 return -EINVAL; 2398 } 2399 2400 void bnx2x_link_set(struct bnx2x *bp) 2401 { 2402 if (!BP_NOMCP(bp)) { 2403 bnx2x_acquire_phy_lock(bp); 2404 bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2405 bnx2x_release_phy_lock(bp); 2406 2407 bnx2x_init_dropless_fc(bp); 2408 2409 bnx2x_calc_fc_adv(bp); 2410 } else 2411 BNX2X_ERR("Bootcode is missing - can not set link\n"); 2412 } 2413 2414 static void bnx2x__link_reset(struct bnx2x *bp) 2415 { 2416 if (!BP_NOMCP(bp)) { 2417 bnx2x_acquire_phy_lock(bp); 2418 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); 2419 bnx2x_release_phy_lock(bp); 2420 } else 2421 BNX2X_ERR("Bootcode is missing - can not reset link\n"); 2422 } 2423 2424 void bnx2x_force_link_reset(struct bnx2x *bp) 2425 { 2426 bnx2x_acquire_phy_lock(bp); 2427 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); 2428 bnx2x_release_phy_lock(bp); 2429 } 2430 2431 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) 2432 { 2433 u8 rc = 0; 2434 2435 if (!BP_NOMCP(bp)) { 2436 bnx2x_acquire_phy_lock(bp); 2437 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, 2438 is_serdes); 2439 bnx2x_release_phy_lock(bp); 2440 } else 2441 BNX2X_ERR("Bootcode is missing - can not test link\n"); 2442 2443 return rc; 2444 } 2445 2446 /* Calculates the sum of vn_min_rates. 2447 It's needed for further normalizing of the min_rates. 2448 Returns: 2449 sum of vn_min_rates. 2450 or 2451 0 - if all the min_rates are 0. 2452 In the later case fairness algorithm should be deactivated. 2453 If not all min_rates are zero then those that are zeroes will be set to 1. 2454 */ 2455 static void bnx2x_calc_vn_min(struct bnx2x *bp, 2456 struct cmng_init_input *input) 2457 { 2458 int all_zero = 1; 2459 int vn; 2460 2461 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2462 u32 vn_cfg = bp->mf_config[vn]; 2463 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 2464 FUNC_MF_CFG_MIN_BW_SHIFT) * 100; 2465 2466 /* Skip hidden vns */ 2467 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2468 vn_min_rate = 0; 2469 /* If min rate is zero - set it to 1 */ 2470 else if (!vn_min_rate) 2471 vn_min_rate = DEF_MIN_RATE; 2472 else 2473 all_zero = 0; 2474 2475 input->vnic_min_rate[vn] = vn_min_rate; 2476 } 2477 2478 /* if ETS or all min rates are zeros - disable fairness */ 2479 if (BNX2X_IS_ETS_ENABLED(bp)) { 2480 input->flags.cmng_enables &= 2481 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2482 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); 2483 } else if (all_zero) { 2484 input->flags.cmng_enables &= 2485 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2486 DP(NETIF_MSG_IFUP, 2487 "All MIN values are zeroes fairness will be disabled\n"); 2488 } else 2489 input->flags.cmng_enables |= 2490 CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2491 } 2492 2493 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, 2494 struct cmng_init_input *input) 2495 { 2496 u16 vn_max_rate; 2497 u32 vn_cfg = bp->mf_config[vn]; 2498 2499 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2500 vn_max_rate = 0; 2501 else { 2502 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); 2503 2504 if (IS_MF_PERCENT_BW(bp)) { 2505 /* maxCfg in percents of linkspeed */ 2506 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; 2507 } else /* SD modes */ 2508 /* maxCfg is absolute in 100Mb units */ 2509 vn_max_rate = maxCfg * 100; 2510 } 2511 2512 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 2513 2514 input->vnic_max_rate[vn] = vn_max_rate; 2515 } 2516 2517 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) 2518 { 2519 if (CHIP_REV_IS_SLOW(bp)) 2520 return CMNG_FNS_NONE; 2521 if (IS_MF(bp)) 2522 return CMNG_FNS_MINMAX; 2523 2524 return CMNG_FNS_NONE; 2525 } 2526 2527 void bnx2x_read_mf_cfg(struct bnx2x *bp) 2528 { 2529 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); 2530 2531 if (BP_NOMCP(bp)) 2532 return; /* what should be the default value in this case */ 2533 2534 /* For 2 port configuration the absolute function number formula 2535 * is: 2536 * abs_func = 2 * vn + BP_PORT + BP_PATH 2537 * 2538 * and there are 4 functions per port 2539 * 2540 * For 4 port configuration it is 2541 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH 2542 * 2543 * and there are 2 functions per port 2544 */ 2545 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2546 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); 2547 2548 if (func >= E1H_FUNC_MAX) 2549 break; 2550 2551 bp->mf_config[vn] = 2552 MF_CFG_RD(bp, func_mf_config[func].config); 2553 } 2554 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 2555 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); 2556 bp->flags |= MF_FUNC_DIS; 2557 } else { 2558 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); 2559 bp->flags &= ~MF_FUNC_DIS; 2560 } 2561 } 2562 2563 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) 2564 { 2565 struct cmng_init_input input; 2566 memset(&input, 0, sizeof(struct cmng_init_input)); 2567 2568 input.port_rate = bp->link_vars.line_speed; 2569 2570 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { 2571 int vn; 2572 2573 /* read mf conf from shmem */ 2574 if (read_cfg) 2575 bnx2x_read_mf_cfg(bp); 2576 2577 /* vn_weight_sum and enable fairness if not 0 */ 2578 bnx2x_calc_vn_min(bp, &input); 2579 2580 /* calculate and set min-max rate for each vn */ 2581 if (bp->port.pmf) 2582 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) 2583 bnx2x_calc_vn_max(bp, vn, &input); 2584 2585 /* always enable rate shaping and fairness */ 2586 input.flags.cmng_enables |= 2587 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 2588 2589 bnx2x_init_cmng(&input, &bp->cmng); 2590 return; 2591 } 2592 2593 /* rate shaping and fairness are disabled */ 2594 DP(NETIF_MSG_IFUP, 2595 "rate shaping and fairness are disabled\n"); 2596 } 2597 2598 static void storm_memset_cmng(struct bnx2x *bp, 2599 struct cmng_init *cmng, 2600 u8 port) 2601 { 2602 int vn; 2603 size_t size = sizeof(struct cmng_struct_per_port); 2604 2605 u32 addr = BAR_XSTRORM_INTMEM + 2606 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); 2607 2608 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); 2609 2610 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2611 int func = func_by_vn(bp, vn); 2612 2613 addr = BAR_XSTRORM_INTMEM + 2614 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); 2615 size = sizeof(struct rate_shaping_vars_per_vn); 2616 __storm_memset_struct(bp, addr, size, 2617 (u32 *)&cmng->vnic.vnic_max_rate[vn]); 2618 2619 addr = BAR_XSTRORM_INTMEM + 2620 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); 2621 size = sizeof(struct fairness_vars_per_vn); 2622 __storm_memset_struct(bp, addr, size, 2623 (u32 *)&cmng->vnic.vnic_min_rate[vn]); 2624 } 2625 } 2626 2627 /* init cmng mode in HW according to local configuration */ 2628 void bnx2x_set_local_cmng(struct bnx2x *bp) 2629 { 2630 int cmng_fns = bnx2x_get_cmng_fns_mode(bp); 2631 2632 if (cmng_fns != CMNG_FNS_NONE) { 2633 bnx2x_cmng_fns_init(bp, false, cmng_fns); 2634 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 2635 } else { 2636 /* rate shaping and fairness are disabled */ 2637 DP(NETIF_MSG_IFUP, 2638 "single function mode without fairness\n"); 2639 } 2640 } 2641 2642 /* This function is called upon link interrupt */ 2643 static void bnx2x_link_attn(struct bnx2x *bp) 2644 { 2645 /* Make sure that we are synced with the current statistics */ 2646 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2647 2648 bnx2x_link_update(&bp->link_params, &bp->link_vars); 2649 2650 bnx2x_init_dropless_fc(bp); 2651 2652 if (bp->link_vars.link_up) { 2653 2654 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { 2655 struct host_port_stats *pstats; 2656 2657 pstats = bnx2x_sp(bp, port_stats); 2658 /* reset old mac stats */ 2659 memset(&(pstats->mac_stx[0]), 0, 2660 sizeof(struct mac_stx)); 2661 } 2662 if (bp->state == BNX2X_STATE_OPEN) 2663 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2664 } 2665 2666 if (bp->link_vars.link_up && bp->link_vars.line_speed) 2667 bnx2x_set_local_cmng(bp); 2668 2669 __bnx2x_link_report(bp); 2670 2671 if (IS_MF(bp)) 2672 bnx2x_link_sync_notify(bp); 2673 } 2674 2675 void bnx2x__link_status_update(struct bnx2x *bp) 2676 { 2677 if (bp->state != BNX2X_STATE_OPEN) 2678 return; 2679 2680 /* read updated dcb configuration */ 2681 if (IS_PF(bp)) { 2682 bnx2x_dcbx_pmf_update(bp); 2683 bnx2x_link_status_update(&bp->link_params, &bp->link_vars); 2684 if (bp->link_vars.link_up) 2685 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2686 else 2687 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2688 /* indicate link status */ 2689 bnx2x_link_report(bp); 2690 2691 } else { /* VF */ 2692 bp->port.supported[0] |= (SUPPORTED_10baseT_Half | 2693 SUPPORTED_10baseT_Full | 2694 SUPPORTED_100baseT_Half | 2695 SUPPORTED_100baseT_Full | 2696 SUPPORTED_1000baseT_Full | 2697 SUPPORTED_2500baseX_Full | 2698 SUPPORTED_10000baseT_Full | 2699 SUPPORTED_TP | 2700 SUPPORTED_FIBRE | 2701 SUPPORTED_Autoneg | 2702 SUPPORTED_Pause | 2703 SUPPORTED_Asym_Pause); 2704 bp->port.advertising[0] = bp->port.supported[0]; 2705 2706 bp->link_params.bp = bp; 2707 bp->link_params.port = BP_PORT(bp); 2708 bp->link_params.req_duplex[0] = DUPLEX_FULL; 2709 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; 2710 bp->link_params.req_line_speed[0] = SPEED_10000; 2711 bp->link_params.speed_cap_mask[0] = 0x7f0000; 2712 bp->link_params.switch_cfg = SWITCH_CFG_10G; 2713 bp->link_vars.mac_type = MAC_TYPE_BMAC; 2714 bp->link_vars.line_speed = SPEED_10000; 2715 bp->link_vars.link_status = 2716 (LINK_STATUS_LINK_UP | 2717 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 2718 bp->link_vars.link_up = 1; 2719 bp->link_vars.duplex = DUPLEX_FULL; 2720 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; 2721 __bnx2x_link_report(bp); 2722 2723 bnx2x_sample_bulletin(bp); 2724 2725 /* if bulletin board did not have an update for link status 2726 * __bnx2x_link_report will report current status 2727 * but it will NOT duplicate report in case of already reported 2728 * during sampling bulletin board. 2729 */ 2730 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2731 } 2732 } 2733 2734 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, 2735 u16 vlan_val, u8 allowed_prio) 2736 { 2737 struct bnx2x_func_state_params func_params = {NULL}; 2738 struct bnx2x_func_afex_update_params *f_update_params = 2739 &func_params.params.afex_update; 2740 2741 func_params.f_obj = &bp->func_obj; 2742 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; 2743 2744 /* no need to wait for RAMROD completion, so don't 2745 * set RAMROD_COMP_WAIT flag 2746 */ 2747 2748 f_update_params->vif_id = vifid; 2749 f_update_params->afex_default_vlan = vlan_val; 2750 f_update_params->allowed_priorities = allowed_prio; 2751 2752 /* if ramrod can not be sent, response to MCP immediately */ 2753 if (bnx2x_func_state_change(bp, &func_params) < 0) 2754 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 2755 2756 return 0; 2757 } 2758 2759 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, 2760 u16 vif_index, u8 func_bit_map) 2761 { 2762 struct bnx2x_func_state_params func_params = {NULL}; 2763 struct bnx2x_func_afex_viflists_params *update_params = 2764 &func_params.params.afex_viflists; 2765 int rc; 2766 u32 drv_msg_code; 2767 2768 /* validate only LIST_SET and LIST_GET are received from switch */ 2769 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) 2770 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", 2771 cmd_type); 2772 2773 func_params.f_obj = &bp->func_obj; 2774 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; 2775 2776 /* set parameters according to cmd_type */ 2777 update_params->afex_vif_list_command = cmd_type; 2778 update_params->vif_list_index = vif_index; 2779 update_params->func_bit_map = 2780 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; 2781 update_params->func_to_clear = 0; 2782 drv_msg_code = 2783 (cmd_type == VIF_LIST_RULE_GET) ? 2784 DRV_MSG_CODE_AFEX_LISTGET_ACK : 2785 DRV_MSG_CODE_AFEX_LISTSET_ACK; 2786 2787 /* if ramrod can not be sent, respond to MCP immediately for 2788 * SET and GET requests (other are not triggered from MCP) 2789 */ 2790 rc = bnx2x_func_state_change(bp, &func_params); 2791 if (rc < 0) 2792 bnx2x_fw_command(bp, drv_msg_code, 0); 2793 2794 return 0; 2795 } 2796 2797 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) 2798 { 2799 struct afex_stats afex_stats; 2800 u32 func = BP_ABS_FUNC(bp); 2801 u32 mf_config; 2802 u16 vlan_val; 2803 u32 vlan_prio; 2804 u16 vif_id; 2805 u8 allowed_prio; 2806 u8 vlan_mode; 2807 u32 addr_to_write, vifid, addrs, stats_type, i; 2808 2809 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { 2810 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2811 DP(BNX2X_MSG_MCP, 2812 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); 2813 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); 2814 } 2815 2816 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { 2817 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2818 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); 2819 DP(BNX2X_MSG_MCP, 2820 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", 2821 vifid, addrs); 2822 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, 2823 addrs); 2824 } 2825 2826 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { 2827 addr_to_write = SHMEM2_RD(bp, 2828 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); 2829 stats_type = SHMEM2_RD(bp, 2830 afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2831 2832 DP(BNX2X_MSG_MCP, 2833 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", 2834 addr_to_write); 2835 2836 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); 2837 2838 /* write response to scratchpad, for MCP */ 2839 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) 2840 REG_WR(bp, addr_to_write + i*sizeof(u32), 2841 *(((u32 *)(&afex_stats))+i)); 2842 2843 /* send ack message to MCP */ 2844 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); 2845 } 2846 2847 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { 2848 mf_config = MF_CFG_RD(bp, func_mf_config[func].config); 2849 bp->mf_config[BP_VN(bp)] = mf_config; 2850 DP(BNX2X_MSG_MCP, 2851 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", 2852 mf_config); 2853 2854 /* if VIF_SET is "enabled" */ 2855 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { 2856 /* set rate limit directly to internal RAM */ 2857 struct cmng_init_input cmng_input; 2858 struct rate_shaping_vars_per_vn m_rs_vn; 2859 size_t size = sizeof(struct rate_shaping_vars_per_vn); 2860 u32 addr = BAR_XSTRORM_INTMEM + 2861 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); 2862 2863 bp->mf_config[BP_VN(bp)] = mf_config; 2864 2865 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); 2866 m_rs_vn.vn_counter.rate = 2867 cmng_input.vnic_max_rate[BP_VN(bp)]; 2868 m_rs_vn.vn_counter.quota = 2869 (m_rs_vn.vn_counter.rate * 2870 RS_PERIODIC_TIMEOUT_USEC) / 8; 2871 2872 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); 2873 2874 /* read relevant values from mf_cfg struct in shmem */ 2875 vif_id = 2876 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2877 FUNC_MF_CFG_E1HOV_TAG_MASK) >> 2878 FUNC_MF_CFG_E1HOV_TAG_SHIFT; 2879 vlan_val = 2880 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2881 FUNC_MF_CFG_AFEX_VLAN_MASK) >> 2882 FUNC_MF_CFG_AFEX_VLAN_SHIFT; 2883 vlan_prio = (mf_config & 2884 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 2885 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; 2886 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); 2887 vlan_mode = 2888 (MF_CFG_RD(bp, 2889 func_mf_config[func].afex_config) & 2890 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 2891 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; 2892 allowed_prio = 2893 (MF_CFG_RD(bp, 2894 func_mf_config[func].afex_config) & 2895 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 2896 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; 2897 2898 /* send ramrod to FW, return in case of failure */ 2899 if (bnx2x_afex_func_update(bp, vif_id, vlan_val, 2900 allowed_prio)) 2901 return; 2902 2903 bp->afex_def_vlan_tag = vlan_val; 2904 bp->afex_vlan_mode = vlan_mode; 2905 } else { 2906 /* notify link down because BP->flags is disabled */ 2907 bnx2x_link_report(bp); 2908 2909 /* send INVALID VIF ramrod to FW */ 2910 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); 2911 2912 /* Reset the default afex VLAN */ 2913 bp->afex_def_vlan_tag = -1; 2914 } 2915 } 2916 } 2917 2918 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp) 2919 { 2920 struct bnx2x_func_switch_update_params *switch_update_params; 2921 struct bnx2x_func_state_params func_params; 2922 2923 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params)); 2924 switch_update_params = &func_params.params.switch_update; 2925 func_params.f_obj = &bp->func_obj; 2926 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 2927 2928 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) { 2929 int func = BP_ABS_FUNC(bp); 2930 u32 val; 2931 2932 /* Re-learn the S-tag from shmem */ 2933 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2934 FUNC_MF_CFG_E1HOV_TAG_MASK; 2935 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 2936 bp->mf_ov = val; 2937 } else { 2938 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n"); 2939 goto fail; 2940 } 2941 2942 /* Configure new S-tag in LLH */ 2943 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8, 2944 bp->mf_ov); 2945 2946 /* Send Ramrod to update FW of change */ 2947 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG, 2948 &switch_update_params->changes); 2949 switch_update_params->vlan = bp->mf_ov; 2950 2951 if (bnx2x_func_state_change(bp, &func_params) < 0) { 2952 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n", 2953 bp->mf_ov); 2954 goto fail; 2955 } else { 2956 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", 2957 bp->mf_ov); 2958 } 2959 } else { 2960 goto fail; 2961 } 2962 2963 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0); 2964 return; 2965 fail: 2966 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0); 2967 } 2968 2969 static void bnx2x_pmf_update(struct bnx2x *bp) 2970 { 2971 int port = BP_PORT(bp); 2972 u32 val; 2973 2974 bp->port.pmf = 1; 2975 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); 2976 2977 /* 2978 * We need the mb() to ensure the ordering between the writing to 2979 * bp->port.pmf here and reading it from the bnx2x_periodic_task(). 2980 */ 2981 smp_mb(); 2982 2983 /* queue a periodic task */ 2984 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2985 2986 bnx2x_dcbx_pmf_update(bp); 2987 2988 /* enable nig attention */ 2989 val = (0xff0f | (1 << (BP_VN(bp) + 4))); 2990 if (bp->common.int_block == INT_BLOCK_HC) { 2991 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 2992 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 2993 } else if (!CHIP_IS_E1x(bp)) { 2994 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 2995 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 2996 } 2997 2998 bnx2x_stats_handle(bp, STATS_EVENT_PMF); 2999 } 3000 3001 /* end of Link */ 3002 3003 /* slow path */ 3004 3005 /* 3006 * General service functions 3007 */ 3008 3009 /* send the MCP a request, block until there is a reply */ 3010 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) 3011 { 3012 int mb_idx = BP_FW_MB_IDX(bp); 3013 u32 seq; 3014 u32 rc = 0; 3015 u32 cnt = 1; 3016 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; 3017 3018 mutex_lock(&bp->fw_mb_mutex); 3019 seq = ++bp->fw_seq; 3020 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); 3021 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); 3022 3023 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", 3024 (command | seq), param); 3025 3026 do { 3027 /* let the FW do it's magic ... */ 3028 msleep(delay); 3029 3030 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); 3031 3032 /* Give the FW up to 5 second (500*10ms) */ 3033 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 3034 3035 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", 3036 cnt*delay, rc, seq); 3037 3038 /* is this a reply to our command? */ 3039 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) 3040 rc &= FW_MSG_CODE_MASK; 3041 else { 3042 /* FW BUG! */ 3043 BNX2X_ERR("FW failed to respond!\n"); 3044 bnx2x_fw_dump(bp); 3045 rc = 0; 3046 } 3047 mutex_unlock(&bp->fw_mb_mutex); 3048 3049 return rc; 3050 } 3051 3052 static void storm_memset_func_cfg(struct bnx2x *bp, 3053 struct tstorm_eth_function_common_config *tcfg, 3054 u16 abs_fid) 3055 { 3056 size_t size = sizeof(struct tstorm_eth_function_common_config); 3057 3058 u32 addr = BAR_TSTRORM_INTMEM + 3059 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); 3060 3061 __storm_memset_struct(bp, addr, size, (u32 *)tcfg); 3062 } 3063 3064 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) 3065 { 3066 if (CHIP_IS_E1x(bp)) { 3067 struct tstorm_eth_function_common_config tcfg = {0}; 3068 3069 storm_memset_func_cfg(bp, &tcfg, p->func_id); 3070 } 3071 3072 /* Enable the function in the FW */ 3073 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); 3074 storm_memset_func_en(bp, p->func_id, 1); 3075 3076 /* spq */ 3077 if (p->spq_active) { 3078 storm_memset_spq_addr(bp, p->spq_map, p->func_id); 3079 REG_WR(bp, XSEM_REG_FAST_MEMORY + 3080 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); 3081 } 3082 } 3083 3084 /** 3085 * bnx2x_get_common_flags - Return common flags 3086 * 3087 * @bp device handle 3088 * @fp queue handle 3089 * @zero_stats TRUE if statistics zeroing is needed 3090 * 3091 * Return the flags that are common for the Tx-only and not normal connections. 3092 */ 3093 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, 3094 struct bnx2x_fastpath *fp, 3095 bool zero_stats) 3096 { 3097 unsigned long flags = 0; 3098 3099 /* PF driver will always initialize the Queue to an ACTIVE state */ 3100 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); 3101 3102 /* tx only connections collect statistics (on the same index as the 3103 * parent connection). The statistics are zeroed when the parent 3104 * connection is initialized. 3105 */ 3106 3107 __set_bit(BNX2X_Q_FLG_STATS, &flags); 3108 if (zero_stats) 3109 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); 3110 3111 if (bp->flags & TX_SWITCHING) 3112 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags); 3113 3114 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); 3115 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); 3116 3117 #ifdef BNX2X_STOP_ON_ERROR 3118 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); 3119 #endif 3120 3121 return flags; 3122 } 3123 3124 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, 3125 struct bnx2x_fastpath *fp, 3126 bool leading) 3127 { 3128 unsigned long flags = 0; 3129 3130 /* calculate other queue flags */ 3131 if (IS_MF_SD(bp)) 3132 __set_bit(BNX2X_Q_FLG_OV, &flags); 3133 3134 if (IS_FCOE_FP(fp)) { 3135 __set_bit(BNX2X_Q_FLG_FCOE, &flags); 3136 /* For FCoE - force usage of default priority (for afex) */ 3137 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); 3138 } 3139 3140 if (fp->mode != TPA_MODE_DISABLED) { 3141 __set_bit(BNX2X_Q_FLG_TPA, &flags); 3142 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); 3143 if (fp->mode == TPA_MODE_GRO) 3144 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); 3145 } 3146 3147 if (leading) { 3148 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); 3149 __set_bit(BNX2X_Q_FLG_MCAST, &flags); 3150 } 3151 3152 /* Always set HW VLAN stripping */ 3153 __set_bit(BNX2X_Q_FLG_VLAN, &flags); 3154 3155 /* configure silent vlan removal */ 3156 if (IS_MF_AFEX(bp)) 3157 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); 3158 3159 return flags | bnx2x_get_common_flags(bp, fp, true); 3160 } 3161 3162 static void bnx2x_pf_q_prep_general(struct bnx2x *bp, 3163 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, 3164 u8 cos) 3165 { 3166 gen_init->stat_id = bnx2x_stats_id(fp); 3167 gen_init->spcl_id = fp->cl_id; 3168 3169 /* Always use mini-jumbo MTU for FCoE L2 ring */ 3170 if (IS_FCOE_FP(fp)) 3171 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 3172 else 3173 gen_init->mtu = bp->dev->mtu; 3174 3175 gen_init->cos = cos; 3176 3177 gen_init->fp_hsi = ETH_FP_HSI_VERSION; 3178 } 3179 3180 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, 3181 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, 3182 struct bnx2x_rxq_setup_params *rxq_init) 3183 { 3184 u8 max_sge = 0; 3185 u16 sge_sz = 0; 3186 u16 tpa_agg_size = 0; 3187 3188 if (fp->mode != TPA_MODE_DISABLED) { 3189 pause->sge_th_lo = SGE_TH_LO(bp); 3190 pause->sge_th_hi = SGE_TH_HI(bp); 3191 3192 /* validate SGE ring has enough to cross high threshold */ 3193 WARN_ON(bp->dropless_fc && 3194 pause->sge_th_hi + FW_PREFETCH_CNT > 3195 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); 3196 3197 tpa_agg_size = TPA_AGG_SIZE; 3198 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> 3199 SGE_PAGE_SHIFT; 3200 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 3201 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; 3202 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); 3203 } 3204 3205 /* pause - not for e1 */ 3206 if (!CHIP_IS_E1(bp)) { 3207 pause->bd_th_lo = BD_TH_LO(bp); 3208 pause->bd_th_hi = BD_TH_HI(bp); 3209 3210 pause->rcq_th_lo = RCQ_TH_LO(bp); 3211 pause->rcq_th_hi = RCQ_TH_HI(bp); 3212 /* 3213 * validate that rings have enough entries to cross 3214 * high thresholds 3215 */ 3216 WARN_ON(bp->dropless_fc && 3217 pause->bd_th_hi + FW_PREFETCH_CNT > 3218 bp->rx_ring_size); 3219 WARN_ON(bp->dropless_fc && 3220 pause->rcq_th_hi + FW_PREFETCH_CNT > 3221 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); 3222 3223 pause->pri_map = 1; 3224 } 3225 3226 /* rxq setup */ 3227 rxq_init->dscr_map = fp->rx_desc_mapping; 3228 rxq_init->sge_map = fp->rx_sge_mapping; 3229 rxq_init->rcq_map = fp->rx_comp_mapping; 3230 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; 3231 3232 /* This should be a maximum number of data bytes that may be 3233 * placed on the BD (not including paddings). 3234 */ 3235 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - 3236 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; 3237 3238 rxq_init->cl_qzone_id = fp->cl_qzone_id; 3239 rxq_init->tpa_agg_sz = tpa_agg_size; 3240 rxq_init->sge_buf_sz = sge_sz; 3241 rxq_init->max_sges_pkt = max_sge; 3242 rxq_init->rss_engine_id = BP_FUNC(bp); 3243 rxq_init->mcast_engine_id = BP_FUNC(bp); 3244 3245 /* Maximum number or simultaneous TPA aggregation for this Queue. 3246 * 3247 * For PF Clients it should be the maximum available number. 3248 * VF driver(s) may want to define it to a smaller value. 3249 */ 3250 rxq_init->max_tpa_queues = MAX_AGG_QS(bp); 3251 3252 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; 3253 rxq_init->fw_sb_id = fp->fw_sb_id; 3254 3255 if (IS_FCOE_FP(fp)) 3256 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; 3257 else 3258 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 3259 /* configure silent vlan removal 3260 * if multi function mode is afex, then mask default vlan 3261 */ 3262 if (IS_MF_AFEX(bp)) { 3263 rxq_init->silent_removal_value = bp->afex_def_vlan_tag; 3264 rxq_init->silent_removal_mask = VLAN_VID_MASK; 3265 } 3266 } 3267 3268 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, 3269 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, 3270 u8 cos) 3271 { 3272 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; 3273 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 3274 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 3275 txq_init->fw_sb_id = fp->fw_sb_id; 3276 3277 /* 3278 * set the tss leading client id for TX classification == 3279 * leading RSS client id 3280 */ 3281 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); 3282 3283 if (IS_FCOE_FP(fp)) { 3284 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; 3285 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; 3286 } 3287 } 3288 3289 static void bnx2x_pf_init(struct bnx2x *bp) 3290 { 3291 struct bnx2x_func_init_params func_init = {0}; 3292 struct event_ring_data eq_data = { {0} }; 3293 3294 if (!CHIP_IS_E1x(bp)) { 3295 /* reset IGU PF statistics: MSIX + ATTN */ 3296 /* PF */ 3297 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3298 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3299 (CHIP_MODE_IS_4_PORT(bp) ? 3300 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3301 /* ATTN */ 3302 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3303 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3304 BNX2X_IGU_STAS_MSG_PF_CNT*4 + 3305 (CHIP_MODE_IS_4_PORT(bp) ? 3306 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3307 } 3308 3309 func_init.spq_active = true; 3310 func_init.pf_id = BP_FUNC(bp); 3311 func_init.func_id = BP_FUNC(bp); 3312 func_init.spq_map = bp->spq_mapping; 3313 func_init.spq_prod = bp->spq_prod_idx; 3314 3315 bnx2x_func_init(bp, &func_init); 3316 3317 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); 3318 3319 /* 3320 * Congestion management values depend on the link rate 3321 * There is no active link so initial link rate is set to 10 Gbps. 3322 * When the link comes up The congestion management values are 3323 * re-calculated according to the actual link rate. 3324 */ 3325 bp->link_vars.line_speed = SPEED_10000; 3326 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); 3327 3328 /* Only the PMF sets the HW */ 3329 if (bp->port.pmf) 3330 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3331 3332 /* init Event Queue - PCI bus guarantees correct endianity*/ 3333 eq_data.base_addr.hi = U64_HI(bp->eq_mapping); 3334 eq_data.base_addr.lo = U64_LO(bp->eq_mapping); 3335 eq_data.producer = bp->eq_prod; 3336 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 3337 eq_data.sb_id = DEF_SB_ID; 3338 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); 3339 } 3340 3341 static void bnx2x_e1h_disable(struct bnx2x *bp) 3342 { 3343 int port = BP_PORT(bp); 3344 3345 bnx2x_tx_disable(bp); 3346 3347 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 3348 } 3349 3350 static void bnx2x_e1h_enable(struct bnx2x *bp) 3351 { 3352 int port = BP_PORT(bp); 3353 3354 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 3355 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 3356 3357 /* Tx queue should be only re-enabled */ 3358 netif_tx_wake_all_queues(bp->dev); 3359 3360 /* 3361 * Should not call netif_carrier_on since it will be called if the link 3362 * is up when checking for link state 3363 */ 3364 } 3365 3366 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 3367 3368 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) 3369 { 3370 struct eth_stats_info *ether_stat = 3371 &bp->slowpath->drv_info_to_mcp.ether_stat; 3372 struct bnx2x_vlan_mac_obj *mac_obj = 3373 &bp->sp_objs->mac_obj; 3374 int i; 3375 3376 strlcpy(ether_stat->version, DRV_MODULE_VERSION, 3377 ETH_STAT_INFO_VERSION_LEN); 3378 3379 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the 3380 * mac_local field in ether_stat struct. The base address is offset by 2 3381 * bytes to account for the field being 8 bytes but a mac address is 3382 * only 6 bytes. Likewise, the stride for the get_n_elements function is 3383 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes 3384 * allocated by the ether_stat struct, so the macs will land in their 3385 * proper positions. 3386 */ 3387 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) 3388 memset(ether_stat->mac_local + i, 0, 3389 sizeof(ether_stat->mac_local[0])); 3390 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, 3391 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 3392 ether_stat->mac_local + MAC_PAD, MAC_PAD, 3393 ETH_ALEN); 3394 ether_stat->mtu_size = bp->dev->mtu; 3395 if (bp->dev->features & NETIF_F_RXCSUM) 3396 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 3397 if (bp->dev->features & NETIF_F_TSO) 3398 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 3399 ether_stat->feature_flags |= bp->common.boot_mode; 3400 3401 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; 3402 3403 ether_stat->txq_size = bp->tx_ring_size; 3404 ether_stat->rxq_size = bp->rx_ring_size; 3405 3406 #ifdef CONFIG_BNX2X_SRIOV 3407 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0; 3408 #endif 3409 } 3410 3411 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) 3412 { 3413 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3414 struct fcoe_stats_info *fcoe_stat = 3415 &bp->slowpath->drv_info_to_mcp.fcoe_stat; 3416 3417 if (!CNIC_LOADED(bp)) 3418 return; 3419 3420 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN); 3421 3422 fcoe_stat->qos_priority = 3423 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; 3424 3425 /* insert FCoE stats from ramrod response */ 3426 if (!NO_FCOE(bp)) { 3427 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = 3428 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3429 tstorm_queue_statistics; 3430 3431 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = 3432 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3433 xstorm_queue_statistics; 3434 3435 struct fcoe_statistics_params *fw_fcoe_stat = 3436 &bp->fw_stats_data->fcoe; 3437 3438 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, 3439 fcoe_stat->rx_bytes_lo, 3440 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); 3441 3442 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3443 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, 3444 fcoe_stat->rx_bytes_lo, 3445 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); 3446 3447 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3448 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, 3449 fcoe_stat->rx_bytes_lo, 3450 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); 3451 3452 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3453 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, 3454 fcoe_stat->rx_bytes_lo, 3455 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); 3456 3457 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3458 fcoe_stat->rx_frames_lo, 3459 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); 3460 3461 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3462 fcoe_stat->rx_frames_lo, 3463 fcoe_q_tstorm_stats->rcv_ucast_pkts); 3464 3465 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3466 fcoe_stat->rx_frames_lo, 3467 fcoe_q_tstorm_stats->rcv_bcast_pkts); 3468 3469 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3470 fcoe_stat->rx_frames_lo, 3471 fcoe_q_tstorm_stats->rcv_mcast_pkts); 3472 3473 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, 3474 fcoe_stat->tx_bytes_lo, 3475 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); 3476 3477 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3478 fcoe_q_xstorm_stats->ucast_bytes_sent.hi, 3479 fcoe_stat->tx_bytes_lo, 3480 fcoe_q_xstorm_stats->ucast_bytes_sent.lo); 3481 3482 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3483 fcoe_q_xstorm_stats->bcast_bytes_sent.hi, 3484 fcoe_stat->tx_bytes_lo, 3485 fcoe_q_xstorm_stats->bcast_bytes_sent.lo); 3486 3487 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3488 fcoe_q_xstorm_stats->mcast_bytes_sent.hi, 3489 fcoe_stat->tx_bytes_lo, 3490 fcoe_q_xstorm_stats->mcast_bytes_sent.lo); 3491 3492 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3493 fcoe_stat->tx_frames_lo, 3494 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); 3495 3496 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3497 fcoe_stat->tx_frames_lo, 3498 fcoe_q_xstorm_stats->ucast_pkts_sent); 3499 3500 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3501 fcoe_stat->tx_frames_lo, 3502 fcoe_q_xstorm_stats->bcast_pkts_sent); 3503 3504 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3505 fcoe_stat->tx_frames_lo, 3506 fcoe_q_xstorm_stats->mcast_pkts_sent); 3507 } 3508 3509 /* ask L5 driver to add data to the struct */ 3510 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); 3511 } 3512 3513 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) 3514 { 3515 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3516 struct iscsi_stats_info *iscsi_stat = 3517 &bp->slowpath->drv_info_to_mcp.iscsi_stat; 3518 3519 if (!CNIC_LOADED(bp)) 3520 return; 3521 3522 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, 3523 ETH_ALEN); 3524 3525 iscsi_stat->qos_priority = 3526 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; 3527 3528 /* ask L5 driver to add data to the struct */ 3529 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); 3530 } 3531 3532 /* called due to MCP event (on pmf): 3533 * reread new bandwidth configuration 3534 * configure FW 3535 * notify others function about the change 3536 */ 3537 static void bnx2x_config_mf_bw(struct bnx2x *bp) 3538 { 3539 /* Workaround for MFW bug. 3540 * MFW is not supposed to generate BW attention in 3541 * single function mode. 3542 */ 3543 if (!IS_MF(bp)) { 3544 DP(BNX2X_MSG_MCP, 3545 "Ignoring MF BW config in single function mode\n"); 3546 return; 3547 } 3548 3549 if (bp->link_vars.link_up) { 3550 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); 3551 bnx2x_link_sync_notify(bp); 3552 } 3553 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3554 } 3555 3556 static void bnx2x_set_mf_bw(struct bnx2x *bp) 3557 { 3558 bnx2x_config_mf_bw(bp); 3559 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 3560 } 3561 3562 static void bnx2x_handle_eee_event(struct bnx2x *bp) 3563 { 3564 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); 3565 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 3566 } 3567 3568 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20) 3569 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25) 3570 3571 static void bnx2x_handle_drv_info_req(struct bnx2x *bp) 3572 { 3573 enum drv_info_opcode op_code; 3574 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); 3575 bool release = false; 3576 int wait; 3577 3578 /* if drv_info version supported by MFW doesn't match - send NACK */ 3579 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 3580 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3581 return; 3582 } 3583 3584 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 3585 DRV_INFO_CONTROL_OP_CODE_SHIFT; 3586 3587 /* Must prevent other flows from accessing drv_info_to_mcp */ 3588 mutex_lock(&bp->drv_info_mutex); 3589 3590 memset(&bp->slowpath->drv_info_to_mcp, 0, 3591 sizeof(union drv_info_to_mcp)); 3592 3593 switch (op_code) { 3594 case ETH_STATS_OPCODE: 3595 bnx2x_drv_info_ether_stat(bp); 3596 break; 3597 case FCOE_STATS_OPCODE: 3598 bnx2x_drv_info_fcoe_stat(bp); 3599 break; 3600 case ISCSI_STATS_OPCODE: 3601 bnx2x_drv_info_iscsi_stat(bp); 3602 break; 3603 default: 3604 /* if op code isn't supported - send NACK */ 3605 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3606 goto out; 3607 } 3608 3609 /* if we got drv_info attn from MFW then these fields are defined in 3610 * shmem2 for sure 3611 */ 3612 SHMEM2_WR(bp, drv_info_host_addr_lo, 3613 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3614 SHMEM2_WR(bp, drv_info_host_addr_hi, 3615 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3616 3617 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); 3618 3619 /* Since possible management wants both this and get_driver_version 3620 * need to wait until management notifies us it finished utilizing 3621 * the buffer. 3622 */ 3623 if (!SHMEM2_HAS(bp, mfw_drv_indication)) { 3624 DP(BNX2X_MSG_MCP, "Management does not support indication\n"); 3625 } else if (!bp->drv_info_mng_owner) { 3626 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1)); 3627 3628 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) { 3629 u32 indication = SHMEM2_RD(bp, mfw_drv_indication); 3630 3631 /* Management is done; need to clear indication */ 3632 if (indication & bit) { 3633 SHMEM2_WR(bp, mfw_drv_indication, 3634 indication & ~bit); 3635 release = true; 3636 break; 3637 } 3638 3639 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH); 3640 } 3641 } 3642 if (!release) { 3643 DP(BNX2X_MSG_MCP, "Management did not release indication\n"); 3644 bp->drv_info_mng_owner = true; 3645 } 3646 3647 out: 3648 mutex_unlock(&bp->drv_info_mutex); 3649 } 3650 3651 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format) 3652 { 3653 u8 vals[4]; 3654 int i = 0; 3655 3656 if (bnx2x_format) { 3657 i = sscanf(version, "1.%c%hhd.%hhd.%hhd", 3658 &vals[0], &vals[1], &vals[2], &vals[3]); 3659 if (i > 0) 3660 vals[0] -= '0'; 3661 } else { 3662 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd", 3663 &vals[0], &vals[1], &vals[2], &vals[3]); 3664 } 3665 3666 while (i < 4) 3667 vals[i++] = 0; 3668 3669 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3]; 3670 } 3671 3672 void bnx2x_update_mng_version(struct bnx2x *bp) 3673 { 3674 u32 iscsiver = DRV_VER_NOT_LOADED; 3675 u32 fcoever = DRV_VER_NOT_LOADED; 3676 u32 ethver = DRV_VER_NOT_LOADED; 3677 int idx = BP_FW_MB_IDX(bp); 3678 u8 *version; 3679 3680 if (!SHMEM2_HAS(bp, func_os_drv_ver)) 3681 return; 3682 3683 mutex_lock(&bp->drv_info_mutex); 3684 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */ 3685 if (bp->drv_info_mng_owner) 3686 goto out; 3687 3688 if (bp->state != BNX2X_STATE_OPEN) 3689 goto out; 3690 3691 /* Parse ethernet driver version */ 3692 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3693 if (!CNIC_LOADED(bp)) 3694 goto out; 3695 3696 /* Try getting storage driver version via cnic */ 3697 memset(&bp->slowpath->drv_info_to_mcp, 0, 3698 sizeof(union drv_info_to_mcp)); 3699 bnx2x_drv_info_iscsi_stat(bp); 3700 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version; 3701 iscsiver = bnx2x_update_mng_version_utility(version, false); 3702 3703 memset(&bp->slowpath->drv_info_to_mcp, 0, 3704 sizeof(union drv_info_to_mcp)); 3705 bnx2x_drv_info_fcoe_stat(bp); 3706 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version; 3707 fcoever = bnx2x_update_mng_version_utility(version, false); 3708 3709 out: 3710 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver); 3711 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver); 3712 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever); 3713 3714 mutex_unlock(&bp->drv_info_mutex); 3715 3716 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n", 3717 ethver, iscsiver, fcoever); 3718 } 3719 3720 void bnx2x_update_mfw_dump(struct bnx2x *bp) 3721 { 3722 u32 drv_ver; 3723 u32 valid_dump; 3724 3725 if (!SHMEM2_HAS(bp, drv_info)) 3726 return; 3727 3728 /* Update Driver load time, possibly broken in y2038 */ 3729 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds()); 3730 3731 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3732 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver); 3733 3734 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 3735 3736 /* Check & notify On-Chip dump. */ 3737 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump); 3738 3739 if (valid_dump & FIRST_DUMP_VALID) 3740 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n"); 3741 3742 if (valid_dump & SECOND_DUMP_VALID) 3743 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n"); 3744 } 3745 3746 static void bnx2x_oem_event(struct bnx2x *bp, u32 event) 3747 { 3748 u32 cmd_ok, cmd_fail; 3749 3750 /* sanity */ 3751 if (event & DRV_STATUS_DCC_EVENT_MASK && 3752 event & DRV_STATUS_OEM_EVENT_MASK) { 3753 BNX2X_ERR("Received simultaneous events %08x\n", event); 3754 return; 3755 } 3756 3757 if (event & DRV_STATUS_DCC_EVENT_MASK) { 3758 cmd_fail = DRV_MSG_CODE_DCC_FAILURE; 3759 cmd_ok = DRV_MSG_CODE_DCC_OK; 3760 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ { 3761 cmd_fail = DRV_MSG_CODE_OEM_FAILURE; 3762 cmd_ok = DRV_MSG_CODE_OEM_OK; 3763 } 3764 3765 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event); 3766 3767 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3768 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) { 3769 /* This is the only place besides the function initialization 3770 * where the bp->flags can change so it is done without any 3771 * locks 3772 */ 3773 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 3774 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); 3775 bp->flags |= MF_FUNC_DIS; 3776 3777 bnx2x_e1h_disable(bp); 3778 } else { 3779 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); 3780 bp->flags &= ~MF_FUNC_DIS; 3781 3782 bnx2x_e1h_enable(bp); 3783 } 3784 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3785 DRV_STATUS_OEM_DISABLE_ENABLE_PF); 3786 } 3787 3788 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3789 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) { 3790 bnx2x_config_mf_bw(bp); 3791 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3792 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION); 3793 } 3794 3795 /* Report results to MCP */ 3796 if (event) 3797 bnx2x_fw_command(bp, cmd_fail, 0); 3798 else 3799 bnx2x_fw_command(bp, cmd_ok, 0); 3800 } 3801 3802 /* must be called under the spq lock */ 3803 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) 3804 { 3805 struct eth_spe *next_spe = bp->spq_prod_bd; 3806 3807 if (bp->spq_prod_bd == bp->spq_last_bd) { 3808 bp->spq_prod_bd = bp->spq; 3809 bp->spq_prod_idx = 0; 3810 DP(BNX2X_MSG_SP, "end of spq\n"); 3811 } else { 3812 bp->spq_prod_bd++; 3813 bp->spq_prod_idx++; 3814 } 3815 return next_spe; 3816 } 3817 3818 /* must be called under the spq lock */ 3819 static void bnx2x_sp_prod_update(struct bnx2x *bp) 3820 { 3821 int func = BP_FUNC(bp); 3822 3823 /* 3824 * Make sure that BD data is updated before writing the producer: 3825 * BD data is written to the memory, the producer is read from the 3826 * memory, thus we need a full memory barrier to ensure the ordering. 3827 */ 3828 mb(); 3829 3830 REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), 3831 bp->spq_prod_idx); 3832 mmiowb(); 3833 } 3834 3835 /** 3836 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ 3837 * 3838 * @cmd: command to check 3839 * @cmd_type: command type 3840 */ 3841 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) 3842 { 3843 if ((cmd_type == NONE_CONNECTION_TYPE) || 3844 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 3845 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 3846 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 3847 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 3848 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 3849 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) 3850 return true; 3851 else 3852 return false; 3853 } 3854 3855 /** 3856 * bnx2x_sp_post - place a single command on an SP ring 3857 * 3858 * @bp: driver handle 3859 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 3860 * @cid: SW CID the command is related to 3861 * @data_hi: command private data address (high 32 bits) 3862 * @data_lo: command private data address (low 32 bits) 3863 * @cmd_type: command type (e.g. NONE, ETH) 3864 * 3865 * SP data is handled as if it's always an address pair, thus data fields are 3866 * not swapped to little endian in upper functions. Instead this function swaps 3867 * data as if it's two u32 fields. 3868 */ 3869 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 3870 u32 data_hi, u32 data_lo, int cmd_type) 3871 { 3872 struct eth_spe *spe; 3873 u16 type; 3874 bool common = bnx2x_is_contextless_ramrod(command, cmd_type); 3875 3876 #ifdef BNX2X_STOP_ON_ERROR 3877 if (unlikely(bp->panic)) { 3878 BNX2X_ERR("Can't post SP when there is panic\n"); 3879 return -EIO; 3880 } 3881 #endif 3882 3883 spin_lock_bh(&bp->spq_lock); 3884 3885 if (common) { 3886 if (!atomic_read(&bp->eq_spq_left)) { 3887 BNX2X_ERR("BUG! EQ ring full!\n"); 3888 spin_unlock_bh(&bp->spq_lock); 3889 bnx2x_panic(); 3890 return -EBUSY; 3891 } 3892 } else if (!atomic_read(&bp->cq_spq_left)) { 3893 BNX2X_ERR("BUG! SPQ ring full!\n"); 3894 spin_unlock_bh(&bp->spq_lock); 3895 bnx2x_panic(); 3896 return -EBUSY; 3897 } 3898 3899 spe = bnx2x_sp_get_next(bp); 3900 3901 /* CID needs port number to be encoded int it */ 3902 spe->hdr.conn_and_cmd_data = 3903 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | 3904 HW_CID(bp, cid)); 3905 3906 /* In some cases, type may already contain the func-id 3907 * mainly in SRIOV related use cases, so we add it here only 3908 * if it's not already set. 3909 */ 3910 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) { 3911 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & 3912 SPE_HDR_CONN_TYPE; 3913 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & 3914 SPE_HDR_FUNCTION_ID); 3915 } else { 3916 type = cmd_type; 3917 } 3918 3919 spe->hdr.type = cpu_to_le16(type); 3920 3921 spe->data.update_data_addr.hi = cpu_to_le32(data_hi); 3922 spe->data.update_data_addr.lo = cpu_to_le32(data_lo); 3923 3924 /* 3925 * It's ok if the actual decrement is issued towards the memory 3926 * somewhere between the spin_lock and spin_unlock. Thus no 3927 * more explicit memory barrier is needed. 3928 */ 3929 if (common) 3930 atomic_dec(&bp->eq_spq_left); 3931 else 3932 atomic_dec(&bp->cq_spq_left); 3933 3934 DP(BNX2X_MSG_SP, 3935 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", 3936 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), 3937 (u32)(U64_LO(bp->spq_mapping) + 3938 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, 3939 HW_CID(bp, cid), data_hi, data_lo, type, 3940 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); 3941 3942 bnx2x_sp_prod_update(bp); 3943 spin_unlock_bh(&bp->spq_lock); 3944 return 0; 3945 } 3946 3947 /* acquire split MCP access lock register */ 3948 static int bnx2x_acquire_alr(struct bnx2x *bp) 3949 { 3950 u32 j, val; 3951 int rc = 0; 3952 3953 might_sleep(); 3954 for (j = 0; j < 1000; j++) { 3955 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); 3956 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); 3957 if (val & MCPR_ACCESS_LOCK_LOCK) 3958 break; 3959 3960 usleep_range(5000, 10000); 3961 } 3962 if (!(val & MCPR_ACCESS_LOCK_LOCK)) { 3963 BNX2X_ERR("Cannot acquire MCP access lock register\n"); 3964 rc = -EBUSY; 3965 } 3966 3967 return rc; 3968 } 3969 3970 /* release split MCP access lock register */ 3971 static void bnx2x_release_alr(struct bnx2x *bp) 3972 { 3973 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); 3974 } 3975 3976 #define BNX2X_DEF_SB_ATT_IDX 0x0001 3977 #define BNX2X_DEF_SB_IDX 0x0002 3978 3979 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) 3980 { 3981 struct host_sp_status_block *def_sb = bp->def_status_blk; 3982 u16 rc = 0; 3983 3984 barrier(); /* status block is written to by the chip */ 3985 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 3986 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; 3987 rc |= BNX2X_DEF_SB_ATT_IDX; 3988 } 3989 3990 if (bp->def_idx != def_sb->sp_sb.running_index) { 3991 bp->def_idx = def_sb->sp_sb.running_index; 3992 rc |= BNX2X_DEF_SB_IDX; 3993 } 3994 3995 /* Do not reorder: indices reading should complete before handling */ 3996 barrier(); 3997 return rc; 3998 } 3999 4000 /* 4001 * slow path service functions 4002 */ 4003 4004 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) 4005 { 4006 int port = BP_PORT(bp); 4007 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4008 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4009 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 4010 NIG_REG_MASK_INTERRUPT_PORT0; 4011 u32 aeu_mask; 4012 u32 nig_mask = 0; 4013 u32 reg_addr; 4014 4015 if (bp->attn_state & asserted) 4016 BNX2X_ERR("IGU ERROR\n"); 4017 4018 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4019 aeu_mask = REG_RD(bp, aeu_addr); 4020 4021 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", 4022 aeu_mask, asserted); 4023 aeu_mask &= ~(asserted & 0x3ff); 4024 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 4025 4026 REG_WR(bp, aeu_addr, aeu_mask); 4027 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4028 4029 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 4030 bp->attn_state |= asserted; 4031 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 4032 4033 if (asserted & ATTN_HARD_WIRED_MASK) { 4034 if (asserted & ATTN_NIG_FOR_FUNC) { 4035 4036 bnx2x_acquire_phy_lock(bp); 4037 4038 /* save nig interrupt mask */ 4039 nig_mask = REG_RD(bp, nig_int_mask_addr); 4040 4041 /* If nig_mask is not set, no need to call the update 4042 * function. 4043 */ 4044 if (nig_mask) { 4045 REG_WR(bp, nig_int_mask_addr, 0); 4046 4047 bnx2x_link_attn(bp); 4048 } 4049 4050 /* handle unicore attn? */ 4051 } 4052 if (asserted & ATTN_SW_TIMER_4_FUNC) 4053 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); 4054 4055 if (asserted & GPIO_2_FUNC) 4056 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); 4057 4058 if (asserted & GPIO_3_FUNC) 4059 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); 4060 4061 if (asserted & GPIO_4_FUNC) 4062 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); 4063 4064 if (port == 0) { 4065 if (asserted & ATTN_GENERAL_ATTN_1) { 4066 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); 4067 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 4068 } 4069 if (asserted & ATTN_GENERAL_ATTN_2) { 4070 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); 4071 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 4072 } 4073 if (asserted & ATTN_GENERAL_ATTN_3) { 4074 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); 4075 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 4076 } 4077 } else { 4078 if (asserted & ATTN_GENERAL_ATTN_4) { 4079 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); 4080 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 4081 } 4082 if (asserted & ATTN_GENERAL_ATTN_5) { 4083 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); 4084 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 4085 } 4086 if (asserted & ATTN_GENERAL_ATTN_6) { 4087 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); 4088 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 4089 } 4090 } 4091 4092 } /* if hardwired */ 4093 4094 if (bp->common.int_block == INT_BLOCK_HC) 4095 reg_addr = (HC_REG_COMMAND_REG + port*32 + 4096 COMMAND_REG_ATTN_BITS_SET); 4097 else 4098 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 4099 4100 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, 4101 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 4102 REG_WR(bp, reg_addr, asserted); 4103 4104 /* now set back the mask */ 4105 if (asserted & ATTN_NIG_FOR_FUNC) { 4106 /* Verify that IGU ack through BAR was written before restoring 4107 * NIG mask. This loop should exit after 2-3 iterations max. 4108 */ 4109 if (bp->common.int_block != INT_BLOCK_HC) { 4110 u32 cnt = 0, igu_acked; 4111 do { 4112 igu_acked = REG_RD(bp, 4113 IGU_REG_ATTENTION_ACK_BITS); 4114 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 4115 (++cnt < MAX_IGU_ATTN_ACK_TO)); 4116 if (!igu_acked) 4117 DP(NETIF_MSG_HW, 4118 "Failed to verify IGU ack on time\n"); 4119 barrier(); 4120 } 4121 REG_WR(bp, nig_int_mask_addr, nig_mask); 4122 bnx2x_release_phy_lock(bp); 4123 } 4124 } 4125 4126 static void bnx2x_fan_failure(struct bnx2x *bp) 4127 { 4128 int port = BP_PORT(bp); 4129 u32 ext_phy_config; 4130 /* mark the failure */ 4131 ext_phy_config = 4132 SHMEM_RD(bp, 4133 dev_info.port_hw_config[port].external_phy_config); 4134 4135 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 4136 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 4137 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, 4138 ext_phy_config); 4139 4140 /* log the failure */ 4141 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" 4142 "Please contact OEM Support for assistance\n"); 4143 4144 /* Schedule device reset (unload) 4145 * This is due to some boards consuming sufficient power when driver is 4146 * up to overheat if fan fails. 4147 */ 4148 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0); 4149 } 4150 4151 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) 4152 { 4153 int port = BP_PORT(bp); 4154 int reg_offset; 4155 u32 val; 4156 4157 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 4158 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 4159 4160 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 4161 4162 val = REG_RD(bp, reg_offset); 4163 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 4164 REG_WR(bp, reg_offset, val); 4165 4166 BNX2X_ERR("SPIO5 hw attention\n"); 4167 4168 /* Fan failure attention */ 4169 bnx2x_hw_reset_phy(&bp->link_params); 4170 bnx2x_fan_failure(bp); 4171 } 4172 4173 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { 4174 bnx2x_acquire_phy_lock(bp); 4175 bnx2x_handle_module_detect_int(&bp->link_params); 4176 bnx2x_release_phy_lock(bp); 4177 } 4178 4179 if (attn & HW_INTERRUPT_ASSERT_SET_0) { 4180 4181 val = REG_RD(bp, reg_offset); 4182 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0); 4183 REG_WR(bp, reg_offset, val); 4184 4185 BNX2X_ERR("FATAL HW block attention set0 0x%x\n", 4186 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0)); 4187 bnx2x_panic(); 4188 } 4189 } 4190 4191 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) 4192 { 4193 u32 val; 4194 4195 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 4196 4197 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); 4198 BNX2X_ERR("DB hw attention 0x%x\n", val); 4199 /* DORQ discard attention */ 4200 if (val & 0x2) 4201 BNX2X_ERR("FATAL error from DORQ\n"); 4202 } 4203 4204 if (attn & HW_INTERRUPT_ASSERT_SET_1) { 4205 4206 int port = BP_PORT(bp); 4207 int reg_offset; 4208 4209 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 4210 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 4211 4212 val = REG_RD(bp, reg_offset); 4213 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1); 4214 REG_WR(bp, reg_offset, val); 4215 4216 BNX2X_ERR("FATAL HW block attention set1 0x%x\n", 4217 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1)); 4218 bnx2x_panic(); 4219 } 4220 } 4221 4222 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) 4223 { 4224 u32 val; 4225 4226 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 4227 4228 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); 4229 BNX2X_ERR("CFC hw attention 0x%x\n", val); 4230 /* CFC error attention */ 4231 if (val & 0x2) 4232 BNX2X_ERR("FATAL error from CFC\n"); 4233 } 4234 4235 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 4236 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); 4237 BNX2X_ERR("PXP hw attention-0 0x%x\n", val); 4238 /* RQ_USDMDP_FIFO_OVERFLOW */ 4239 if (val & 0x18000) 4240 BNX2X_ERR("FATAL error from PXP\n"); 4241 4242 if (!CHIP_IS_E1x(bp)) { 4243 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); 4244 BNX2X_ERR("PXP hw attention-1 0x%x\n", val); 4245 } 4246 } 4247 4248 if (attn & HW_INTERRUPT_ASSERT_SET_2) { 4249 4250 int port = BP_PORT(bp); 4251 int reg_offset; 4252 4253 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 4254 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 4255 4256 val = REG_RD(bp, reg_offset); 4257 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2); 4258 REG_WR(bp, reg_offset, val); 4259 4260 BNX2X_ERR("FATAL HW block attention set2 0x%x\n", 4261 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2)); 4262 bnx2x_panic(); 4263 } 4264 } 4265 4266 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) 4267 { 4268 u32 val; 4269 4270 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 4271 4272 if (attn & BNX2X_PMF_LINK_ASSERT) { 4273 int func = BP_FUNC(bp); 4274 4275 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 4276 bnx2x_read_mf_cfg(bp); 4277 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, 4278 func_mf_config[BP_ABS_FUNC(bp)].config); 4279 val = SHMEM_RD(bp, 4280 func_mb[BP_FW_MB_IDX(bp)].drv_status); 4281 4282 if (val & (DRV_STATUS_DCC_EVENT_MASK | 4283 DRV_STATUS_OEM_EVENT_MASK)) 4284 bnx2x_oem_event(bp, 4285 (val & (DRV_STATUS_DCC_EVENT_MASK | 4286 DRV_STATUS_OEM_EVENT_MASK))); 4287 4288 if (val & DRV_STATUS_SET_MF_BW) 4289 bnx2x_set_mf_bw(bp); 4290 4291 if (val & DRV_STATUS_DRV_INFO_REQ) 4292 bnx2x_handle_drv_info_req(bp); 4293 4294 if (val & DRV_STATUS_VF_DISABLED) 4295 bnx2x_schedule_iov_task(bp, 4296 BNX2X_IOV_HANDLE_FLR); 4297 4298 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) 4299 bnx2x_pmf_update(bp); 4300 4301 if (bp->port.pmf && 4302 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 4303 bp->dcbx_enabled > 0) 4304 /* start dcbx state machine */ 4305 bnx2x_dcbx_set_params(bp, 4306 BNX2X_DCBX_STATE_NEG_RECEIVED); 4307 if (val & DRV_STATUS_AFEX_EVENT_MASK) 4308 bnx2x_handle_afex_cmd(bp, 4309 val & DRV_STATUS_AFEX_EVENT_MASK); 4310 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 4311 bnx2x_handle_eee_event(bp); 4312 4313 if (val & DRV_STATUS_OEM_UPDATE_SVID) 4314 bnx2x_handle_update_svid_cmd(bp); 4315 4316 if (bp->link_vars.periodic_flags & 4317 PERIODIC_FLAGS_LINK_EVENT) { 4318 /* sync with link */ 4319 bnx2x_acquire_phy_lock(bp); 4320 bp->link_vars.periodic_flags &= 4321 ~PERIODIC_FLAGS_LINK_EVENT; 4322 bnx2x_release_phy_lock(bp); 4323 if (IS_MF(bp)) 4324 bnx2x_link_sync_notify(bp); 4325 bnx2x_link_report(bp); 4326 } 4327 /* Always call it here: bnx2x_link_report() will 4328 * prevent the link indication duplication. 4329 */ 4330 bnx2x__link_status_update(bp); 4331 } else if (attn & BNX2X_MC_ASSERT_BITS) { 4332 4333 BNX2X_ERR("MC assert!\n"); 4334 bnx2x_mc_assert(bp); 4335 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); 4336 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); 4337 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); 4338 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); 4339 bnx2x_panic(); 4340 4341 } else if (attn & BNX2X_MCP_ASSERT) { 4342 4343 BNX2X_ERR("MCP assert!\n"); 4344 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); 4345 bnx2x_fw_dump(bp); 4346 4347 } else 4348 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); 4349 } 4350 4351 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 4352 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); 4353 if (attn & BNX2X_GRC_TIMEOUT) { 4354 val = CHIP_IS_E1(bp) ? 0 : 4355 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); 4356 BNX2X_ERR("GRC time-out 0x%08x\n", val); 4357 } 4358 if (attn & BNX2X_GRC_RSV) { 4359 val = CHIP_IS_E1(bp) ? 0 : 4360 REG_RD(bp, MISC_REG_GRC_RSV_ATTN); 4361 BNX2X_ERR("GRC reserved 0x%08x\n", val); 4362 } 4363 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 4364 } 4365 } 4366 4367 /* 4368 * Bits map: 4369 * 0-7 - Engine0 load counter. 4370 * 8-15 - Engine1 load counter. 4371 * 16 - Engine0 RESET_IN_PROGRESS bit. 4372 * 17 - Engine1 RESET_IN_PROGRESS bit. 4373 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function 4374 * on the engine 4375 * 19 - Engine1 ONE_IS_LOADED. 4376 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 4377 * leader to complete (check for both RESET_IN_PROGRESS bits and not for 4378 * just the one belonging to its engine). 4379 * 4380 */ 4381 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 4382 4383 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff 4384 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 4385 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 4386 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 4387 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 4388 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 4389 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 4390 4391 /* 4392 * Set the GLOBAL_RESET bit. 4393 * 4394 * Should be run under rtnl lock 4395 */ 4396 void bnx2x_set_reset_global(struct bnx2x *bp) 4397 { 4398 u32 val; 4399 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4400 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4401 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); 4402 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4403 } 4404 4405 /* 4406 * Clear the GLOBAL_RESET bit. 4407 * 4408 * Should be run under rtnl lock 4409 */ 4410 static void bnx2x_clear_reset_global(struct bnx2x *bp) 4411 { 4412 u32 val; 4413 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4414 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4415 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); 4416 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4417 } 4418 4419 /* 4420 * Checks the GLOBAL_RESET bit. 4421 * 4422 * should be run under rtnl lock 4423 */ 4424 static bool bnx2x_reset_is_global(struct bnx2x *bp) 4425 { 4426 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4427 4428 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); 4429 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; 4430 } 4431 4432 /* 4433 * Clear RESET_IN_PROGRESS bit for the current engine. 4434 * 4435 * Should be run under rtnl lock 4436 */ 4437 static void bnx2x_set_reset_done(struct bnx2x *bp) 4438 { 4439 u32 val; 4440 u32 bit = BP_PATH(bp) ? 4441 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4442 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4443 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4444 4445 /* Clear the bit */ 4446 val &= ~bit; 4447 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4448 4449 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4450 } 4451 4452 /* 4453 * Set RESET_IN_PROGRESS for the current engine. 4454 * 4455 * should be run under rtnl lock 4456 */ 4457 void bnx2x_set_reset_in_progress(struct bnx2x *bp) 4458 { 4459 u32 val; 4460 u32 bit = BP_PATH(bp) ? 4461 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4462 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4463 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4464 4465 /* Set the bit */ 4466 val |= bit; 4467 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4468 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4469 } 4470 4471 /* 4472 * Checks the RESET_IN_PROGRESS bit for the given engine. 4473 * should be run under rtnl lock 4474 */ 4475 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) 4476 { 4477 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4478 u32 bit = engine ? 4479 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4480 4481 /* return false if bit is set */ 4482 return (val & bit) ? false : true; 4483 } 4484 4485 /* 4486 * set pf load for the current pf. 4487 * 4488 * should be run under rtnl lock 4489 */ 4490 void bnx2x_set_pf_load(struct bnx2x *bp) 4491 { 4492 u32 val1, val; 4493 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4494 BNX2X_PATH0_LOAD_CNT_MASK; 4495 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4496 BNX2X_PATH0_LOAD_CNT_SHIFT; 4497 4498 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4499 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4500 4501 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); 4502 4503 /* get the current counter value */ 4504 val1 = (val & mask) >> shift; 4505 4506 /* set bit of that PF */ 4507 val1 |= (1 << bp->pf_num); 4508 4509 /* clear the old value */ 4510 val &= ~mask; 4511 4512 /* set the new one */ 4513 val |= ((val1 << shift) & mask); 4514 4515 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4516 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4517 } 4518 4519 /** 4520 * bnx2x_clear_pf_load - clear pf load mark 4521 * 4522 * @bp: driver handle 4523 * 4524 * Should be run under rtnl lock. 4525 * Decrements the load counter for the current engine. Returns 4526 * whether other functions are still loaded 4527 */ 4528 bool bnx2x_clear_pf_load(struct bnx2x *bp) 4529 { 4530 u32 val1, val; 4531 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4532 BNX2X_PATH0_LOAD_CNT_MASK; 4533 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4534 BNX2X_PATH0_LOAD_CNT_SHIFT; 4535 4536 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4537 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4538 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); 4539 4540 /* get the current counter value */ 4541 val1 = (val & mask) >> shift; 4542 4543 /* clear bit of that PF */ 4544 val1 &= ~(1 << bp->pf_num); 4545 4546 /* clear the old value */ 4547 val &= ~mask; 4548 4549 /* set the new one */ 4550 val |= ((val1 << shift) & mask); 4551 4552 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4553 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4554 return val1 != 0; 4555 } 4556 4557 /* 4558 * Read the load status for the current engine. 4559 * 4560 * should be run under rtnl lock 4561 */ 4562 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) 4563 { 4564 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : 4565 BNX2X_PATH0_LOAD_CNT_MASK); 4566 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4567 BNX2X_PATH0_LOAD_CNT_SHIFT); 4568 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4569 4570 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); 4571 4572 val = (val & mask) >> shift; 4573 4574 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", 4575 engine, val); 4576 4577 return val != 0; 4578 } 4579 4580 static void _print_parity(struct bnx2x *bp, u32 reg) 4581 { 4582 pr_cont(" [0x%08x] ", REG_RD(bp, reg)); 4583 } 4584 4585 static void _print_next_block(int idx, const char *blk) 4586 { 4587 pr_cont("%s%s", idx ? ", " : "", blk); 4588 } 4589 4590 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig, 4591 int *par_num, bool print) 4592 { 4593 u32 cur_bit; 4594 bool res; 4595 int i; 4596 4597 res = false; 4598 4599 for (i = 0; sig; i++) { 4600 cur_bit = (0x1UL << i); 4601 if (sig & cur_bit) { 4602 res |= true; /* Each bit is real error! */ 4603 4604 if (print) { 4605 switch (cur_bit) { 4606 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 4607 _print_next_block((*par_num)++, "BRB"); 4608 _print_parity(bp, 4609 BRB1_REG_BRB1_PRTY_STS); 4610 break; 4611 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 4612 _print_next_block((*par_num)++, 4613 "PARSER"); 4614 _print_parity(bp, PRS_REG_PRS_PRTY_STS); 4615 break; 4616 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 4617 _print_next_block((*par_num)++, "TSDM"); 4618 _print_parity(bp, 4619 TSDM_REG_TSDM_PRTY_STS); 4620 break; 4621 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 4622 _print_next_block((*par_num)++, 4623 "SEARCHER"); 4624 _print_parity(bp, SRC_REG_SRC_PRTY_STS); 4625 break; 4626 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 4627 _print_next_block((*par_num)++, "TCM"); 4628 _print_parity(bp, TCM_REG_TCM_PRTY_STS); 4629 break; 4630 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 4631 _print_next_block((*par_num)++, 4632 "TSEMI"); 4633 _print_parity(bp, 4634 TSEM_REG_TSEM_PRTY_STS_0); 4635 _print_parity(bp, 4636 TSEM_REG_TSEM_PRTY_STS_1); 4637 break; 4638 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 4639 _print_next_block((*par_num)++, "XPB"); 4640 _print_parity(bp, GRCBASE_XPB + 4641 PB_REG_PB_PRTY_STS); 4642 break; 4643 } 4644 } 4645 4646 /* Clear the bit */ 4647 sig &= ~cur_bit; 4648 } 4649 } 4650 4651 return res; 4652 } 4653 4654 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig, 4655 int *par_num, bool *global, 4656 bool print) 4657 { 4658 u32 cur_bit; 4659 bool res; 4660 int i; 4661 4662 res = false; 4663 4664 for (i = 0; sig; i++) { 4665 cur_bit = (0x1UL << i); 4666 if (sig & cur_bit) { 4667 res |= true; /* Each bit is real error! */ 4668 switch (cur_bit) { 4669 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 4670 if (print) { 4671 _print_next_block((*par_num)++, "PBF"); 4672 _print_parity(bp, PBF_REG_PBF_PRTY_STS); 4673 } 4674 break; 4675 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 4676 if (print) { 4677 _print_next_block((*par_num)++, "QM"); 4678 _print_parity(bp, QM_REG_QM_PRTY_STS); 4679 } 4680 break; 4681 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 4682 if (print) { 4683 _print_next_block((*par_num)++, "TM"); 4684 _print_parity(bp, TM_REG_TM_PRTY_STS); 4685 } 4686 break; 4687 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 4688 if (print) { 4689 _print_next_block((*par_num)++, "XSDM"); 4690 _print_parity(bp, 4691 XSDM_REG_XSDM_PRTY_STS); 4692 } 4693 break; 4694 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 4695 if (print) { 4696 _print_next_block((*par_num)++, "XCM"); 4697 _print_parity(bp, XCM_REG_XCM_PRTY_STS); 4698 } 4699 break; 4700 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 4701 if (print) { 4702 _print_next_block((*par_num)++, 4703 "XSEMI"); 4704 _print_parity(bp, 4705 XSEM_REG_XSEM_PRTY_STS_0); 4706 _print_parity(bp, 4707 XSEM_REG_XSEM_PRTY_STS_1); 4708 } 4709 break; 4710 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 4711 if (print) { 4712 _print_next_block((*par_num)++, 4713 "DOORBELLQ"); 4714 _print_parity(bp, 4715 DORQ_REG_DORQ_PRTY_STS); 4716 } 4717 break; 4718 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 4719 if (print) { 4720 _print_next_block((*par_num)++, "NIG"); 4721 if (CHIP_IS_E1x(bp)) { 4722 _print_parity(bp, 4723 NIG_REG_NIG_PRTY_STS); 4724 } else { 4725 _print_parity(bp, 4726 NIG_REG_NIG_PRTY_STS_0); 4727 _print_parity(bp, 4728 NIG_REG_NIG_PRTY_STS_1); 4729 } 4730 } 4731 break; 4732 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 4733 if (print) 4734 _print_next_block((*par_num)++, 4735 "VAUX PCI CORE"); 4736 *global = true; 4737 break; 4738 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 4739 if (print) { 4740 _print_next_block((*par_num)++, 4741 "DEBUG"); 4742 _print_parity(bp, DBG_REG_DBG_PRTY_STS); 4743 } 4744 break; 4745 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 4746 if (print) { 4747 _print_next_block((*par_num)++, "USDM"); 4748 _print_parity(bp, 4749 USDM_REG_USDM_PRTY_STS); 4750 } 4751 break; 4752 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 4753 if (print) { 4754 _print_next_block((*par_num)++, "UCM"); 4755 _print_parity(bp, UCM_REG_UCM_PRTY_STS); 4756 } 4757 break; 4758 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 4759 if (print) { 4760 _print_next_block((*par_num)++, 4761 "USEMI"); 4762 _print_parity(bp, 4763 USEM_REG_USEM_PRTY_STS_0); 4764 _print_parity(bp, 4765 USEM_REG_USEM_PRTY_STS_1); 4766 } 4767 break; 4768 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 4769 if (print) { 4770 _print_next_block((*par_num)++, "UPB"); 4771 _print_parity(bp, GRCBASE_UPB + 4772 PB_REG_PB_PRTY_STS); 4773 } 4774 break; 4775 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 4776 if (print) { 4777 _print_next_block((*par_num)++, "CSDM"); 4778 _print_parity(bp, 4779 CSDM_REG_CSDM_PRTY_STS); 4780 } 4781 break; 4782 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 4783 if (print) { 4784 _print_next_block((*par_num)++, "CCM"); 4785 _print_parity(bp, CCM_REG_CCM_PRTY_STS); 4786 } 4787 break; 4788 } 4789 4790 /* Clear the bit */ 4791 sig &= ~cur_bit; 4792 } 4793 } 4794 4795 return res; 4796 } 4797 4798 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig, 4799 int *par_num, bool print) 4800 { 4801 u32 cur_bit; 4802 bool res; 4803 int i; 4804 4805 res = false; 4806 4807 for (i = 0; sig; i++) { 4808 cur_bit = (0x1UL << i); 4809 if (sig & cur_bit) { 4810 res = true; /* Each bit is real error! */ 4811 if (print) { 4812 switch (cur_bit) { 4813 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 4814 _print_next_block((*par_num)++, 4815 "CSEMI"); 4816 _print_parity(bp, 4817 CSEM_REG_CSEM_PRTY_STS_0); 4818 _print_parity(bp, 4819 CSEM_REG_CSEM_PRTY_STS_1); 4820 break; 4821 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 4822 _print_next_block((*par_num)++, "PXP"); 4823 _print_parity(bp, PXP_REG_PXP_PRTY_STS); 4824 _print_parity(bp, 4825 PXP2_REG_PXP2_PRTY_STS_0); 4826 _print_parity(bp, 4827 PXP2_REG_PXP2_PRTY_STS_1); 4828 break; 4829 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 4830 _print_next_block((*par_num)++, 4831 "PXPPCICLOCKCLIENT"); 4832 break; 4833 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 4834 _print_next_block((*par_num)++, "CFC"); 4835 _print_parity(bp, 4836 CFC_REG_CFC_PRTY_STS); 4837 break; 4838 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 4839 _print_next_block((*par_num)++, "CDU"); 4840 _print_parity(bp, CDU_REG_CDU_PRTY_STS); 4841 break; 4842 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 4843 _print_next_block((*par_num)++, "DMAE"); 4844 _print_parity(bp, 4845 DMAE_REG_DMAE_PRTY_STS); 4846 break; 4847 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 4848 _print_next_block((*par_num)++, "IGU"); 4849 if (CHIP_IS_E1x(bp)) 4850 _print_parity(bp, 4851 HC_REG_HC_PRTY_STS); 4852 else 4853 _print_parity(bp, 4854 IGU_REG_IGU_PRTY_STS); 4855 break; 4856 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 4857 _print_next_block((*par_num)++, "MISC"); 4858 _print_parity(bp, 4859 MISC_REG_MISC_PRTY_STS); 4860 break; 4861 } 4862 } 4863 4864 /* Clear the bit */ 4865 sig &= ~cur_bit; 4866 } 4867 } 4868 4869 return res; 4870 } 4871 4872 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig, 4873 int *par_num, bool *global, 4874 bool print) 4875 { 4876 bool res = false; 4877 u32 cur_bit; 4878 int i; 4879 4880 for (i = 0; sig; i++) { 4881 cur_bit = (0x1UL << i); 4882 if (sig & cur_bit) { 4883 switch (cur_bit) { 4884 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 4885 if (print) 4886 _print_next_block((*par_num)++, 4887 "MCP ROM"); 4888 *global = true; 4889 res = true; 4890 break; 4891 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 4892 if (print) 4893 _print_next_block((*par_num)++, 4894 "MCP UMP RX"); 4895 *global = true; 4896 res = true; 4897 break; 4898 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 4899 if (print) 4900 _print_next_block((*par_num)++, 4901 "MCP UMP TX"); 4902 *global = true; 4903 res = true; 4904 break; 4905 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 4906 (*par_num)++; 4907 /* clear latched SCPAD PATIRY from MCP */ 4908 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 4909 1UL << 10); 4910 break; 4911 } 4912 4913 /* Clear the bit */ 4914 sig &= ~cur_bit; 4915 } 4916 } 4917 4918 return res; 4919 } 4920 4921 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig, 4922 int *par_num, bool print) 4923 { 4924 u32 cur_bit; 4925 bool res; 4926 int i; 4927 4928 res = false; 4929 4930 for (i = 0; sig; i++) { 4931 cur_bit = (0x1UL << i); 4932 if (sig & cur_bit) { 4933 res = true; /* Each bit is real error! */ 4934 if (print) { 4935 switch (cur_bit) { 4936 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 4937 _print_next_block((*par_num)++, 4938 "PGLUE_B"); 4939 _print_parity(bp, 4940 PGLUE_B_REG_PGLUE_B_PRTY_STS); 4941 break; 4942 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 4943 _print_next_block((*par_num)++, "ATC"); 4944 _print_parity(bp, 4945 ATC_REG_ATC_PRTY_STS); 4946 break; 4947 } 4948 } 4949 /* Clear the bit */ 4950 sig &= ~cur_bit; 4951 } 4952 } 4953 4954 return res; 4955 } 4956 4957 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, 4958 u32 *sig) 4959 { 4960 bool res = false; 4961 4962 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 4963 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4964 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4965 (sig[3] & HW_PRTY_ASSERT_SET_3) || 4966 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 4967 int par_num = 0; 4968 4969 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" 4970 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 4971 sig[0] & HW_PRTY_ASSERT_SET_0, 4972 sig[1] & HW_PRTY_ASSERT_SET_1, 4973 sig[2] & HW_PRTY_ASSERT_SET_2, 4974 sig[3] & HW_PRTY_ASSERT_SET_3, 4975 sig[4] & HW_PRTY_ASSERT_SET_4); 4976 if (print) { 4977 if (((sig[0] & HW_PRTY_ASSERT_SET_0) || 4978 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4979 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4980 (sig[4] & HW_PRTY_ASSERT_SET_4)) || 4981 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) { 4982 netdev_err(bp->dev, 4983 "Parity errors detected in blocks: "); 4984 } else { 4985 print = false; 4986 } 4987 } 4988 res |= bnx2x_check_blocks_with_parity0(bp, 4989 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print); 4990 res |= bnx2x_check_blocks_with_parity1(bp, 4991 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print); 4992 res |= bnx2x_check_blocks_with_parity2(bp, 4993 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print); 4994 res |= bnx2x_check_blocks_with_parity3(bp, 4995 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print); 4996 res |= bnx2x_check_blocks_with_parity4(bp, 4997 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print); 4998 4999 if (print) 5000 pr_cont("\n"); 5001 } 5002 5003 return res; 5004 } 5005 5006 /** 5007 * bnx2x_chk_parity_attn - checks for parity attentions. 5008 * 5009 * @bp: driver handle 5010 * @global: true if there was a global attention 5011 * @print: show parity attention in syslog 5012 */ 5013 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) 5014 { 5015 struct attn_route attn = { {0} }; 5016 int port = BP_PORT(bp); 5017 5018 attn.sig[0] = REG_RD(bp, 5019 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 5020 port*4); 5021 attn.sig[1] = REG_RD(bp, 5022 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + 5023 port*4); 5024 attn.sig[2] = REG_RD(bp, 5025 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + 5026 port*4); 5027 attn.sig[3] = REG_RD(bp, 5028 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + 5029 port*4); 5030 /* Since MCP attentions can't be disabled inside the block, we need to 5031 * read AEU registers to see whether they're currently disabled 5032 */ 5033 attn.sig[3] &= ((REG_RD(bp, 5034 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 5035 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) & 5036 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 5037 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 5038 5039 if (!CHIP_IS_E1x(bp)) 5040 attn.sig[4] = REG_RD(bp, 5041 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + 5042 port*4); 5043 5044 return bnx2x_parity_attn(bp, global, print, attn.sig); 5045 } 5046 5047 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) 5048 { 5049 u32 val; 5050 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 5051 5052 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 5053 BNX2X_ERR("PGLUE hw attention 0x%x\n", val); 5054 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 5055 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 5056 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 5057 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 5058 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 5059 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 5060 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 5061 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 5062 if (val & 5063 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 5064 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 5065 if (val & 5066 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 5067 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 5068 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 5069 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 5070 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 5071 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 5072 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 5073 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 5074 } 5075 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 5076 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); 5077 BNX2X_ERR("ATC hw attention 0x%x\n", val); 5078 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 5079 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 5080 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 5081 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 5082 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 5083 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 5084 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 5085 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 5086 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 5087 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 5088 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 5089 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 5090 } 5091 5092 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5093 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 5094 BNX2X_ERR("FATAL parity attention set4 0x%x\n", 5095 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5096 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 5097 } 5098 } 5099 5100 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) 5101 { 5102 struct attn_route attn, *group_mask; 5103 int port = BP_PORT(bp); 5104 int index; 5105 u32 reg_addr; 5106 u32 val; 5107 u32 aeu_mask; 5108 bool global = false; 5109 5110 /* need to take HW lock because MCP or other port might also 5111 try to handle this event */ 5112 bnx2x_acquire_alr(bp); 5113 5114 if (bnx2x_chk_parity_attn(bp, &global, true)) { 5115 #ifndef BNX2X_STOP_ON_ERROR 5116 bp->recovery_state = BNX2X_RECOVERY_INIT; 5117 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5118 /* Disable HW interrupts */ 5119 bnx2x_int_disable(bp); 5120 /* In case of parity errors don't handle attentions so that 5121 * other function would "see" parity errors. 5122 */ 5123 #else 5124 bnx2x_panic(); 5125 #endif 5126 bnx2x_release_alr(bp); 5127 return; 5128 } 5129 5130 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 5131 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 5132 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 5133 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 5134 if (!CHIP_IS_E1x(bp)) 5135 attn.sig[4] = 5136 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 5137 else 5138 attn.sig[4] = 0; 5139 5140 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", 5141 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 5142 5143 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 5144 if (deasserted & (1 << index)) { 5145 group_mask = &bp->attn_group[index]; 5146 5147 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", 5148 index, 5149 group_mask->sig[0], group_mask->sig[1], 5150 group_mask->sig[2], group_mask->sig[3], 5151 group_mask->sig[4]); 5152 5153 bnx2x_attn_int_deasserted4(bp, 5154 attn.sig[4] & group_mask->sig[4]); 5155 bnx2x_attn_int_deasserted3(bp, 5156 attn.sig[3] & group_mask->sig[3]); 5157 bnx2x_attn_int_deasserted1(bp, 5158 attn.sig[1] & group_mask->sig[1]); 5159 bnx2x_attn_int_deasserted2(bp, 5160 attn.sig[2] & group_mask->sig[2]); 5161 bnx2x_attn_int_deasserted0(bp, 5162 attn.sig[0] & group_mask->sig[0]); 5163 } 5164 } 5165 5166 bnx2x_release_alr(bp); 5167 5168 if (bp->common.int_block == INT_BLOCK_HC) 5169 reg_addr = (HC_REG_COMMAND_REG + port*32 + 5170 COMMAND_REG_ATTN_BITS_CLR); 5171 else 5172 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 5173 5174 val = ~deasserted; 5175 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, 5176 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 5177 REG_WR(bp, reg_addr, val); 5178 5179 if (~bp->attn_state & deasserted) 5180 BNX2X_ERR("IGU ERROR\n"); 5181 5182 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 5183 MISC_REG_AEU_MASK_ATTN_FUNC_0; 5184 5185 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5186 aeu_mask = REG_RD(bp, reg_addr); 5187 5188 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", 5189 aeu_mask, deasserted); 5190 aeu_mask |= (deasserted & 0x3ff); 5191 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 5192 5193 REG_WR(bp, reg_addr, aeu_mask); 5194 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5195 5196 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 5197 bp->attn_state &= ~deasserted; 5198 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 5199 } 5200 5201 static void bnx2x_attn_int(struct bnx2x *bp) 5202 { 5203 /* read local copy of bits */ 5204 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. 5205 attn_bits); 5206 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. 5207 attn_bits_ack); 5208 u32 attn_state = bp->attn_state; 5209 5210 /* look for changed bits */ 5211 u32 asserted = attn_bits & ~attn_ack & ~attn_state; 5212 u32 deasserted = ~attn_bits & attn_ack & attn_state; 5213 5214 DP(NETIF_MSG_HW, 5215 "attn_bits %x attn_ack %x asserted %x deasserted %x\n", 5216 attn_bits, attn_ack, asserted, deasserted); 5217 5218 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) 5219 BNX2X_ERR("BAD attention state\n"); 5220 5221 /* handle bits that were raised */ 5222 if (asserted) 5223 bnx2x_attn_int_asserted(bp, asserted); 5224 5225 if (deasserted) 5226 bnx2x_attn_int_deasserted(bp, deasserted); 5227 } 5228 5229 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, 5230 u16 index, u8 op, u8 update) 5231 { 5232 u32 igu_addr = bp->igu_base_addr; 5233 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 5234 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, 5235 igu_addr); 5236 } 5237 5238 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) 5239 { 5240 /* No memory barriers */ 5241 storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); 5242 mmiowb(); /* keep prod updates ordered */ 5243 } 5244 5245 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, 5246 union event_ring_elem *elem) 5247 { 5248 u8 err = elem->message.error; 5249 5250 if (!bp->cnic_eth_dev.starting_cid || 5251 (cid < bp->cnic_eth_dev.starting_cid && 5252 cid != bp->cnic_eth_dev.iscsi_l2_cid)) 5253 return 1; 5254 5255 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); 5256 5257 if (unlikely(err)) { 5258 5259 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", 5260 cid); 5261 bnx2x_panic_dump(bp, false); 5262 } 5263 bnx2x_cnic_cfc_comp(bp, cid, err); 5264 return 0; 5265 } 5266 5267 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) 5268 { 5269 struct bnx2x_mcast_ramrod_params rparam; 5270 int rc; 5271 5272 memset(&rparam, 0, sizeof(rparam)); 5273 5274 rparam.mcast_obj = &bp->mcast_obj; 5275 5276 netif_addr_lock_bh(bp->dev); 5277 5278 /* Clear pending state for the last command */ 5279 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); 5280 5281 /* If there are pending mcast commands - send them */ 5282 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { 5283 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 5284 if (rc < 0) 5285 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 5286 rc); 5287 } 5288 5289 netif_addr_unlock_bh(bp->dev); 5290 } 5291 5292 static void bnx2x_handle_classification_eqe(struct bnx2x *bp, 5293 union event_ring_elem *elem) 5294 { 5295 unsigned long ramrod_flags = 0; 5296 int rc = 0; 5297 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 5298 u32 cid = echo & BNX2X_SWCID_MASK; 5299 struct bnx2x_vlan_mac_obj *vlan_mac_obj; 5300 5301 /* Always push next commands out, don't wait here */ 5302 __set_bit(RAMROD_CONT, &ramrod_flags); 5303 5304 switch (echo >> BNX2X_SWCID_SHIFT) { 5305 case BNX2X_FILTER_MAC_PENDING: 5306 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); 5307 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) 5308 vlan_mac_obj = &bp->iscsi_l2_mac_obj; 5309 else 5310 vlan_mac_obj = &bp->sp_objs[cid].mac_obj; 5311 5312 break; 5313 case BNX2X_FILTER_VLAN_PENDING: 5314 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n"); 5315 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj; 5316 break; 5317 case BNX2X_FILTER_MCAST_PENDING: 5318 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); 5319 /* This is only relevant for 57710 where multicast MACs are 5320 * configured as unicast MACs using the same ramrod. 5321 */ 5322 bnx2x_handle_mcast_eqe(bp); 5323 return; 5324 default: 5325 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 5326 return; 5327 } 5328 5329 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); 5330 5331 if (rc < 0) 5332 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 5333 else if (rc > 0) 5334 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); 5335 } 5336 5337 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); 5338 5339 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) 5340 { 5341 netif_addr_lock_bh(bp->dev); 5342 5343 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5344 5345 /* Send rx_mode command again if was requested */ 5346 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) 5347 bnx2x_set_storm_rx_mode(bp); 5348 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, 5349 &bp->sp_state)) 5350 bnx2x_set_iscsi_eth_rx_mode(bp, true); 5351 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, 5352 &bp->sp_state)) 5353 bnx2x_set_iscsi_eth_rx_mode(bp, false); 5354 5355 netif_addr_unlock_bh(bp->dev); 5356 } 5357 5358 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, 5359 union event_ring_elem *elem) 5360 { 5361 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { 5362 DP(BNX2X_MSG_SP, 5363 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", 5364 elem->message.data.vif_list_event.func_bit_map); 5365 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, 5366 elem->message.data.vif_list_event.func_bit_map); 5367 } else if (elem->message.data.vif_list_event.echo == 5368 VIF_LIST_RULE_SET) { 5369 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); 5370 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); 5371 } 5372 } 5373 5374 /* called with rtnl_lock */ 5375 static void bnx2x_after_function_update(struct bnx2x *bp) 5376 { 5377 int q, rc; 5378 struct bnx2x_fastpath *fp; 5379 struct bnx2x_queue_state_params queue_params = {NULL}; 5380 struct bnx2x_queue_update_params *q_update_params = 5381 &queue_params.params.update; 5382 5383 /* Send Q update command with afex vlan removal values for all Qs */ 5384 queue_params.cmd = BNX2X_Q_CMD_UPDATE; 5385 5386 /* set silent vlan removal values according to vlan mode */ 5387 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 5388 &q_update_params->update_flags); 5389 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 5390 &q_update_params->update_flags); 5391 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5392 5393 /* in access mode mark mask and value are 0 to strip all vlans */ 5394 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { 5395 q_update_params->silent_removal_value = 0; 5396 q_update_params->silent_removal_mask = 0; 5397 } else { 5398 q_update_params->silent_removal_value = 5399 (bp->afex_def_vlan_tag & VLAN_VID_MASK); 5400 q_update_params->silent_removal_mask = VLAN_VID_MASK; 5401 } 5402 5403 for_each_eth_queue(bp, q) { 5404 /* Set the appropriate Queue object */ 5405 fp = &bp->fp[q]; 5406 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5407 5408 /* send the ramrod */ 5409 rc = bnx2x_queue_state_change(bp, &queue_params); 5410 if (rc < 0) 5411 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5412 q); 5413 } 5414 5415 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { 5416 fp = &bp->fp[FCOE_IDX(bp)]; 5417 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5418 5419 /* clear pending completion bit */ 5420 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5421 5422 /* mark latest Q bit */ 5423 smp_mb__before_atomic(); 5424 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 5425 smp_mb__after_atomic(); 5426 5427 /* send Q update ramrod for FCoE Q */ 5428 rc = bnx2x_queue_state_change(bp, &queue_params); 5429 if (rc < 0) 5430 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5431 q); 5432 } else { 5433 /* If no FCoE ring - ACK MCP now */ 5434 bnx2x_link_report(bp); 5435 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5436 } 5437 } 5438 5439 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( 5440 struct bnx2x *bp, u32 cid) 5441 { 5442 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); 5443 5444 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) 5445 return &bnx2x_fcoe_sp_obj(bp, q_obj); 5446 else 5447 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; 5448 } 5449 5450 static void bnx2x_eq_int(struct bnx2x *bp) 5451 { 5452 u16 hw_cons, sw_cons, sw_prod; 5453 union event_ring_elem *elem; 5454 u8 echo; 5455 u32 cid; 5456 u8 opcode; 5457 int rc, spqe_cnt = 0; 5458 struct bnx2x_queue_sp_obj *q_obj; 5459 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; 5460 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; 5461 5462 hw_cons = le16_to_cpu(*bp->eq_cons_sb); 5463 5464 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. 5465 * when we get the next-page we need to adjust so the loop 5466 * condition below will be met. The next element is the size of a 5467 * regular element and hence incrementing by 1 5468 */ 5469 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) 5470 hw_cons++; 5471 5472 /* This function may never run in parallel with itself for a 5473 * specific bp, thus there is no need in "paired" read memory 5474 * barrier here. 5475 */ 5476 sw_cons = bp->eq_cons; 5477 sw_prod = bp->eq_prod; 5478 5479 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", 5480 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); 5481 5482 for (; sw_cons != hw_cons; 5483 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 5484 5485 elem = &bp->eq_ring[EQ_DESC(sw_cons)]; 5486 5487 rc = bnx2x_iov_eq_sp_event(bp, elem); 5488 if (!rc) { 5489 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", 5490 rc); 5491 goto next_spqe; 5492 } 5493 5494 opcode = elem->message.opcode; 5495 5496 /* handle eq element */ 5497 switch (opcode) { 5498 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 5499 bnx2x_vf_mbx_schedule(bp, 5500 &elem->message.data.vf_pf_event); 5501 continue; 5502 5503 case EVENT_RING_OPCODE_STAT_QUERY: 5504 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS), 5505 "got statistics comp event %d\n", 5506 bp->stats_comp++); 5507 /* nothing to do with stats comp */ 5508 goto next_spqe; 5509 5510 case EVENT_RING_OPCODE_CFC_DEL: 5511 /* handle according to cid range */ 5512 /* 5513 * we may want to verify here that the bp state is 5514 * HALTING 5515 */ 5516 5517 /* elem CID originates from FW; actually LE */ 5518 cid = SW_CID(elem->message.data.cfc_del_event.cid); 5519 5520 DP(BNX2X_MSG_SP, 5521 "got delete ramrod for MULTI[%d]\n", cid); 5522 5523 if (CNIC_LOADED(bp) && 5524 !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) 5525 goto next_spqe; 5526 5527 q_obj = bnx2x_cid_to_q_obj(bp, cid); 5528 5529 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) 5530 break; 5531 5532 goto next_spqe; 5533 5534 case EVENT_RING_OPCODE_STOP_TRAFFIC: 5535 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); 5536 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); 5537 if (f_obj->complete_cmd(bp, f_obj, 5538 BNX2X_F_CMD_TX_STOP)) 5539 break; 5540 goto next_spqe; 5541 5542 case EVENT_RING_OPCODE_START_TRAFFIC: 5543 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); 5544 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); 5545 if (f_obj->complete_cmd(bp, f_obj, 5546 BNX2X_F_CMD_TX_START)) 5547 break; 5548 goto next_spqe; 5549 5550 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 5551 echo = elem->message.data.function_update_event.echo; 5552 if (echo == SWITCH_UPDATE) { 5553 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5554 "got FUNC_SWITCH_UPDATE ramrod\n"); 5555 if (f_obj->complete_cmd( 5556 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) 5557 break; 5558 5559 } else { 5560 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE; 5561 5562 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, 5563 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 5564 f_obj->complete_cmd(bp, f_obj, 5565 BNX2X_F_CMD_AFEX_UPDATE); 5566 5567 /* We will perform the Queues update from 5568 * sp_rtnl task as all Queue SP operations 5569 * should run under rtnl_lock. 5570 */ 5571 bnx2x_schedule_sp_rtnl(bp, cmd, 0); 5572 } 5573 5574 goto next_spqe; 5575 5576 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 5577 f_obj->complete_cmd(bp, f_obj, 5578 BNX2X_F_CMD_AFEX_VIFLISTS); 5579 bnx2x_after_afex_vif_lists(bp, elem); 5580 goto next_spqe; 5581 case EVENT_RING_OPCODE_FUNCTION_START: 5582 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5583 "got FUNC_START ramrod\n"); 5584 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) 5585 break; 5586 5587 goto next_spqe; 5588 5589 case EVENT_RING_OPCODE_FUNCTION_STOP: 5590 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5591 "got FUNC_STOP ramrod\n"); 5592 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) 5593 break; 5594 5595 goto next_spqe; 5596 5597 case EVENT_RING_OPCODE_SET_TIMESYNC: 5598 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP, 5599 "got set_timesync ramrod completion\n"); 5600 if (f_obj->complete_cmd(bp, f_obj, 5601 BNX2X_F_CMD_SET_TIMESYNC)) 5602 break; 5603 goto next_spqe; 5604 } 5605 5606 switch (opcode | bp->state) { 5607 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5608 BNX2X_STATE_OPEN): 5609 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5610 BNX2X_STATE_OPENING_WAIT4_PORT): 5611 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5612 BNX2X_STATE_CLOSING_WAIT4_HALT): 5613 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", 5614 SW_CID(elem->message.data.eth_event.echo)); 5615 rss_raw->clear_pending(rss_raw); 5616 break; 5617 5618 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): 5619 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): 5620 case (EVENT_RING_OPCODE_SET_MAC | 5621 BNX2X_STATE_CLOSING_WAIT4_HALT): 5622 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5623 BNX2X_STATE_OPEN): 5624 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5625 BNX2X_STATE_DIAG): 5626 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5627 BNX2X_STATE_CLOSING_WAIT4_HALT): 5628 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n"); 5629 bnx2x_handle_classification_eqe(bp, elem); 5630 break; 5631 5632 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5633 BNX2X_STATE_OPEN): 5634 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5635 BNX2X_STATE_DIAG): 5636 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5637 BNX2X_STATE_CLOSING_WAIT4_HALT): 5638 DP(BNX2X_MSG_SP, "got mcast ramrod\n"); 5639 bnx2x_handle_mcast_eqe(bp); 5640 break; 5641 5642 case (EVENT_RING_OPCODE_FILTERS_RULES | 5643 BNX2X_STATE_OPEN): 5644 case (EVENT_RING_OPCODE_FILTERS_RULES | 5645 BNX2X_STATE_DIAG): 5646 case (EVENT_RING_OPCODE_FILTERS_RULES | 5647 BNX2X_STATE_CLOSING_WAIT4_HALT): 5648 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); 5649 bnx2x_handle_rx_mode_eqe(bp); 5650 break; 5651 default: 5652 /* unknown event log error and continue */ 5653 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", 5654 elem->message.opcode, bp->state); 5655 } 5656 next_spqe: 5657 spqe_cnt++; 5658 } /* for */ 5659 5660 smp_mb__before_atomic(); 5661 atomic_add(spqe_cnt, &bp->eq_spq_left); 5662 5663 bp->eq_cons = sw_cons; 5664 bp->eq_prod = sw_prod; 5665 /* Make sure that above mem writes were issued towards the memory */ 5666 smp_wmb(); 5667 5668 /* update producer */ 5669 bnx2x_update_eq_prod(bp, bp->eq_prod); 5670 } 5671 5672 static void bnx2x_sp_task(struct work_struct *work) 5673 { 5674 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); 5675 5676 DP(BNX2X_MSG_SP, "sp task invoked\n"); 5677 5678 /* make sure the atomic interrupt_occurred has been written */ 5679 smp_rmb(); 5680 if (atomic_read(&bp->interrupt_occurred)) { 5681 5682 /* what work needs to be performed? */ 5683 u16 status = bnx2x_update_dsb_idx(bp); 5684 5685 DP(BNX2X_MSG_SP, "status %x\n", status); 5686 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); 5687 atomic_set(&bp->interrupt_occurred, 0); 5688 5689 /* HW attentions */ 5690 if (status & BNX2X_DEF_SB_ATT_IDX) { 5691 bnx2x_attn_int(bp); 5692 status &= ~BNX2X_DEF_SB_ATT_IDX; 5693 } 5694 5695 /* SP events: STAT_QUERY and others */ 5696 if (status & BNX2X_DEF_SB_IDX) { 5697 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 5698 5699 if (FCOE_INIT(bp) && 5700 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 5701 /* Prevent local bottom-halves from running as 5702 * we are going to change the local NAPI list. 5703 */ 5704 local_bh_disable(); 5705 napi_schedule(&bnx2x_fcoe(bp, napi)); 5706 local_bh_enable(); 5707 } 5708 5709 /* Handle EQ completions */ 5710 bnx2x_eq_int(bp); 5711 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 5712 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); 5713 5714 status &= ~BNX2X_DEF_SB_IDX; 5715 } 5716 5717 /* if status is non zero then perhaps something went wrong */ 5718 if (unlikely(status)) 5719 DP(BNX2X_MSG_SP, 5720 "got an unknown interrupt! (status 0x%x)\n", status); 5721 5722 /* ack status block only if something was actually handled */ 5723 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 5724 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); 5725 } 5726 5727 /* afex - poll to check if VIFSET_ACK should be sent to MFW */ 5728 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, 5729 &bp->sp_state)) { 5730 bnx2x_link_report(bp); 5731 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5732 } 5733 } 5734 5735 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) 5736 { 5737 struct net_device *dev = dev_instance; 5738 struct bnx2x *bp = netdev_priv(dev); 5739 5740 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, 5741 IGU_INT_DISABLE, 0); 5742 5743 #ifdef BNX2X_STOP_ON_ERROR 5744 if (unlikely(bp->panic)) 5745 return IRQ_HANDLED; 5746 #endif 5747 5748 if (CNIC_LOADED(bp)) { 5749 struct cnic_ops *c_ops; 5750 5751 rcu_read_lock(); 5752 c_ops = rcu_dereference(bp->cnic_ops); 5753 if (c_ops) 5754 c_ops->cnic_handler(bp->cnic_data, NULL); 5755 rcu_read_unlock(); 5756 } 5757 5758 /* schedule sp task to perform default status block work, ack 5759 * attentions and enable interrupts. 5760 */ 5761 bnx2x_schedule_sp_task(bp); 5762 5763 return IRQ_HANDLED; 5764 } 5765 5766 /* end of slow path */ 5767 5768 void bnx2x_drv_pulse(struct bnx2x *bp) 5769 { 5770 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, 5771 bp->fw_drv_pulse_wr_seq); 5772 } 5773 5774 static void bnx2x_timer(struct timer_list *t) 5775 { 5776 struct bnx2x *bp = from_timer(bp, t, timer); 5777 5778 if (!netif_running(bp->dev)) 5779 return; 5780 5781 if (IS_PF(bp) && 5782 !BP_NOMCP(bp)) { 5783 int mb_idx = BP_FW_MB_IDX(bp); 5784 u16 drv_pulse; 5785 u16 mcp_pulse; 5786 5787 ++bp->fw_drv_pulse_wr_seq; 5788 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 5789 drv_pulse = bp->fw_drv_pulse_wr_seq; 5790 bnx2x_drv_pulse(bp); 5791 5792 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & 5793 MCP_PULSE_SEQ_MASK); 5794 /* The delta between driver pulse and mcp response 5795 * should not get too big. If the MFW is more than 5 pulses 5796 * behind, we should worry about it enough to generate an error 5797 * log. 5798 */ 5799 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5) 5800 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 5801 drv_pulse, mcp_pulse); 5802 } 5803 5804 if (bp->state == BNX2X_STATE_OPEN) 5805 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); 5806 5807 /* sample pf vf bulletin board for new posts from pf */ 5808 if (IS_VF(bp)) 5809 bnx2x_timer_sriov(bp); 5810 5811 mod_timer(&bp->timer, jiffies + bp->current_interval); 5812 } 5813 5814 /* end of Statistics */ 5815 5816 /* nic init */ 5817 5818 /* 5819 * nic init service functions 5820 */ 5821 5822 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) 5823 { 5824 u32 i; 5825 if (!(len%4) && !(addr%4)) 5826 for (i = 0; i < len; i += 4) 5827 REG_WR(bp, addr + i, fill); 5828 else 5829 for (i = 0; i < len; i++) 5830 REG_WR8(bp, addr + i, fill); 5831 } 5832 5833 /* helper: writes FP SP data to FW - data_size in dwords */ 5834 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, 5835 int fw_sb_id, 5836 u32 *sb_data_p, 5837 u32 data_size) 5838 { 5839 int index; 5840 for (index = 0; index < data_size; index++) 5841 REG_WR(bp, BAR_CSTRORM_INTMEM + 5842 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 5843 sizeof(u32)*index, 5844 *(sb_data_p + index)); 5845 } 5846 5847 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) 5848 { 5849 u32 *sb_data_p; 5850 u32 data_size = 0; 5851 struct hc_status_block_data_e2 sb_data_e2; 5852 struct hc_status_block_data_e1x sb_data_e1x; 5853 5854 /* disable the function first */ 5855 if (!CHIP_IS_E1x(bp)) { 5856 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5857 sb_data_e2.common.state = SB_DISABLED; 5858 sb_data_e2.common.p_func.vf_valid = false; 5859 sb_data_p = (u32 *)&sb_data_e2; 5860 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5861 } else { 5862 memset(&sb_data_e1x, 0, 5863 sizeof(struct hc_status_block_data_e1x)); 5864 sb_data_e1x.common.state = SB_DISABLED; 5865 sb_data_e1x.common.p_func.vf_valid = false; 5866 sb_data_p = (u32 *)&sb_data_e1x; 5867 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5868 } 5869 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5870 5871 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5872 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, 5873 CSTORM_STATUS_BLOCK_SIZE); 5874 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5875 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, 5876 CSTORM_SYNC_BLOCK_SIZE); 5877 } 5878 5879 /* helper: writes SP SB data to FW */ 5880 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, 5881 struct hc_sp_status_block_data *sp_sb_data) 5882 { 5883 int func = BP_FUNC(bp); 5884 int i; 5885 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 5886 REG_WR(bp, BAR_CSTRORM_INTMEM + 5887 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 5888 i*sizeof(u32), 5889 *((u32 *)sp_sb_data + i)); 5890 } 5891 5892 static void bnx2x_zero_sp_sb(struct bnx2x *bp) 5893 { 5894 int func = BP_FUNC(bp); 5895 struct hc_sp_status_block_data sp_sb_data; 5896 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5897 5898 sp_sb_data.state = SB_DISABLED; 5899 sp_sb_data.p_func.vf_valid = false; 5900 5901 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5902 5903 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5904 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, 5905 CSTORM_SP_STATUS_BLOCK_SIZE); 5906 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5907 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, 5908 CSTORM_SP_SYNC_BLOCK_SIZE); 5909 } 5910 5911 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 5912 int igu_sb_id, int igu_seg_id) 5913 { 5914 hc_sm->igu_sb_id = igu_sb_id; 5915 hc_sm->igu_seg_id = igu_seg_id; 5916 hc_sm->timer_value = 0xFF; 5917 hc_sm->time_to_expire = 0xFFFFFFFF; 5918 } 5919 5920 /* allocates state machine ids. */ 5921 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) 5922 { 5923 /* zero out state machine indices */ 5924 /* rx indices */ 5925 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5926 5927 /* tx indices */ 5928 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5929 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 5930 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 5931 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 5932 5933 /* map indices */ 5934 /* rx indices */ 5935 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 5936 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5937 5938 /* tx indices */ 5939 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 5940 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5941 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 5942 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5943 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 5944 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5945 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 5946 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5947 } 5948 5949 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 5950 u8 vf_valid, int fw_sb_id, int igu_sb_id) 5951 { 5952 int igu_seg_id; 5953 5954 struct hc_status_block_data_e2 sb_data_e2; 5955 struct hc_status_block_data_e1x sb_data_e1x; 5956 struct hc_status_block_sm *hc_sm_p; 5957 int data_size; 5958 u32 *sb_data_p; 5959 5960 if (CHIP_INT_MODE_IS_BC(bp)) 5961 igu_seg_id = HC_SEG_ACCESS_NORM; 5962 else 5963 igu_seg_id = IGU_SEG_ACCESS_NORM; 5964 5965 bnx2x_zero_fp_sb(bp, fw_sb_id); 5966 5967 if (!CHIP_IS_E1x(bp)) { 5968 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5969 sb_data_e2.common.state = SB_ENABLED; 5970 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); 5971 sb_data_e2.common.p_func.vf_id = vfid; 5972 sb_data_e2.common.p_func.vf_valid = vf_valid; 5973 sb_data_e2.common.p_func.vnic_id = BP_VN(bp); 5974 sb_data_e2.common.same_igu_sb_1b = true; 5975 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); 5976 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); 5977 hc_sm_p = sb_data_e2.common.state_machine; 5978 sb_data_p = (u32 *)&sb_data_e2; 5979 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5980 bnx2x_map_sb_state_machines(sb_data_e2.index_data); 5981 } else { 5982 memset(&sb_data_e1x, 0, 5983 sizeof(struct hc_status_block_data_e1x)); 5984 sb_data_e1x.common.state = SB_ENABLED; 5985 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); 5986 sb_data_e1x.common.p_func.vf_id = 0xff; 5987 sb_data_e1x.common.p_func.vf_valid = false; 5988 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); 5989 sb_data_e1x.common.same_igu_sb_1b = true; 5990 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); 5991 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); 5992 hc_sm_p = sb_data_e1x.common.state_machine; 5993 sb_data_p = (u32 *)&sb_data_e1x; 5994 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5995 bnx2x_map_sb_state_machines(sb_data_e1x.index_data); 5996 } 5997 5998 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], 5999 igu_sb_id, igu_seg_id); 6000 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], 6001 igu_sb_id, igu_seg_id); 6002 6003 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); 6004 6005 /* write indices to HW - PCI guarantees endianity of regpairs */ 6006 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 6007 } 6008 6009 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, 6010 u16 tx_usec, u16 rx_usec) 6011 { 6012 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, 6013 false, rx_usec); 6014 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6015 HC_INDEX_ETH_TX_CQ_CONS_COS0, false, 6016 tx_usec); 6017 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6018 HC_INDEX_ETH_TX_CQ_CONS_COS1, false, 6019 tx_usec); 6020 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6021 HC_INDEX_ETH_TX_CQ_CONS_COS2, false, 6022 tx_usec); 6023 } 6024 6025 static void bnx2x_init_def_sb(struct bnx2x *bp) 6026 { 6027 struct host_sp_status_block *def_sb = bp->def_status_blk; 6028 dma_addr_t mapping = bp->def_status_blk_mapping; 6029 int igu_sp_sb_index; 6030 int igu_seg_id; 6031 int port = BP_PORT(bp); 6032 int func = BP_FUNC(bp); 6033 int reg_offset, reg_offset_en5; 6034 u64 section; 6035 int index; 6036 struct hc_sp_status_block_data sp_sb_data; 6037 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 6038 6039 if (CHIP_INT_MODE_IS_BC(bp)) { 6040 igu_sp_sb_index = DEF_SB_IGU_ID; 6041 igu_seg_id = HC_SEG_ACCESS_DEF; 6042 } else { 6043 igu_sp_sb_index = bp->igu_dsb_id; 6044 igu_seg_id = IGU_SEG_ACCESS_DEF; 6045 } 6046 6047 /* ATTN */ 6048 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6049 atten_status_block); 6050 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 6051 6052 bp->attn_state = 0; 6053 6054 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 6055 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 6056 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 6057 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); 6058 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 6059 int sindex; 6060 /* take care of sig[0]..sig[4] */ 6061 for (sindex = 0; sindex < 4; sindex++) 6062 bp->attn_group[index].sig[sindex] = 6063 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); 6064 6065 if (!CHIP_IS_E1x(bp)) 6066 /* 6067 * enable5 is separate from the rest of the registers, 6068 * and therefore the address skip is 4 6069 * and not 16 between the different groups 6070 */ 6071 bp->attn_group[index].sig[4] = REG_RD(bp, 6072 reg_offset_en5 + 0x4*index); 6073 else 6074 bp->attn_group[index].sig[4] = 0; 6075 } 6076 6077 if (bp->common.int_block == INT_BLOCK_HC) { 6078 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : 6079 HC_REG_ATTN_MSG0_ADDR_L); 6080 6081 REG_WR(bp, reg_offset, U64_LO(section)); 6082 REG_WR(bp, reg_offset + 4, U64_HI(section)); 6083 } else if (!CHIP_IS_E1x(bp)) { 6084 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 6085 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 6086 } 6087 6088 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6089 sp_sb); 6090 6091 bnx2x_zero_sp_sb(bp); 6092 6093 /* PCI guarantees endianity of regpairs */ 6094 sp_sb_data.state = SB_ENABLED; 6095 sp_sb_data.host_sb_addr.lo = U64_LO(section); 6096 sp_sb_data.host_sb_addr.hi = U64_HI(section); 6097 sp_sb_data.igu_sb_id = igu_sp_sb_index; 6098 sp_sb_data.igu_seg_id = igu_seg_id; 6099 sp_sb_data.p_func.pf_id = func; 6100 sp_sb_data.p_func.vnic_id = BP_VN(bp); 6101 sp_sb_data.p_func.vf_id = 0xff; 6102 6103 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 6104 6105 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 6106 } 6107 6108 void bnx2x_update_coalesce(struct bnx2x *bp) 6109 { 6110 int i; 6111 6112 for_each_eth_queue(bp, i) 6113 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, 6114 bp->tx_ticks, bp->rx_ticks); 6115 } 6116 6117 static void bnx2x_init_sp_ring(struct bnx2x *bp) 6118 { 6119 spin_lock_init(&bp->spq_lock); 6120 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); 6121 6122 bp->spq_prod_idx = 0; 6123 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; 6124 bp->spq_prod_bd = bp->spq; 6125 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; 6126 } 6127 6128 static void bnx2x_init_eq_ring(struct bnx2x *bp) 6129 { 6130 int i; 6131 for (i = 1; i <= NUM_EQ_PAGES; i++) { 6132 union event_ring_elem *elem = 6133 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; 6134 6135 elem->next_page.addr.hi = 6136 cpu_to_le32(U64_HI(bp->eq_mapping + 6137 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); 6138 elem->next_page.addr.lo = 6139 cpu_to_le32(U64_LO(bp->eq_mapping + 6140 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); 6141 } 6142 bp->eq_cons = 0; 6143 bp->eq_prod = NUM_EQ_DESC; 6144 bp->eq_cons_sb = BNX2X_EQ_INDEX; 6145 /* we want a warning message before it gets wrought... */ 6146 atomic_set(&bp->eq_spq_left, 6147 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); 6148 } 6149 6150 /* called with netif_addr_lock_bh() */ 6151 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, 6152 unsigned long rx_mode_flags, 6153 unsigned long rx_accept_flags, 6154 unsigned long tx_accept_flags, 6155 unsigned long ramrod_flags) 6156 { 6157 struct bnx2x_rx_mode_ramrod_params ramrod_param; 6158 int rc; 6159 6160 memset(&ramrod_param, 0, sizeof(ramrod_param)); 6161 6162 /* Prepare ramrod parameters */ 6163 ramrod_param.cid = 0; 6164 ramrod_param.cl_id = cl_id; 6165 ramrod_param.rx_mode_obj = &bp->rx_mode_obj; 6166 ramrod_param.func_id = BP_FUNC(bp); 6167 6168 ramrod_param.pstate = &bp->sp_state; 6169 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; 6170 6171 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); 6172 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); 6173 6174 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 6175 6176 ramrod_param.ramrod_flags = ramrod_flags; 6177 ramrod_param.rx_mode_flags = rx_mode_flags; 6178 6179 ramrod_param.rx_accept_flags = rx_accept_flags; 6180 ramrod_param.tx_accept_flags = tx_accept_flags; 6181 6182 rc = bnx2x_config_rx_mode(bp, &ramrod_param); 6183 if (rc < 0) { 6184 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); 6185 return rc; 6186 } 6187 6188 return 0; 6189 } 6190 6191 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, 6192 unsigned long *rx_accept_flags, 6193 unsigned long *tx_accept_flags) 6194 { 6195 /* Clear the flags first */ 6196 *rx_accept_flags = 0; 6197 *tx_accept_flags = 0; 6198 6199 switch (rx_mode) { 6200 case BNX2X_RX_MODE_NONE: 6201 /* 6202 * 'drop all' supersedes any accept flags that may have been 6203 * passed to the function. 6204 */ 6205 break; 6206 case BNX2X_RX_MODE_NORMAL: 6207 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6208 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); 6209 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6210 6211 /* internal switching mode */ 6212 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6213 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); 6214 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6215 6216 if (bp->accept_any_vlan) { 6217 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6218 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6219 } 6220 6221 break; 6222 case BNX2X_RX_MODE_ALLMULTI: 6223 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6224 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6225 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6226 6227 /* internal switching mode */ 6228 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6229 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6230 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6231 6232 if (bp->accept_any_vlan) { 6233 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6234 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6235 } 6236 6237 break; 6238 case BNX2X_RX_MODE_PROMISC: 6239 /* According to definition of SI mode, iface in promisc mode 6240 * should receive matched and unmatched (in resolution of port) 6241 * unicast packets. 6242 */ 6243 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); 6244 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6245 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6246 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6247 6248 /* internal switching mode */ 6249 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6250 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6251 6252 if (IS_MF_SI(bp)) 6253 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); 6254 else 6255 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6256 6257 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6258 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6259 6260 break; 6261 default: 6262 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); 6263 return -EINVAL; 6264 } 6265 6266 return 0; 6267 } 6268 6269 /* called with netif_addr_lock_bh() */ 6270 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp) 6271 { 6272 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 6273 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 6274 int rc; 6275 6276 if (!NO_FCOE(bp)) 6277 /* Configure rx_mode of FCoE Queue */ 6278 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); 6279 6280 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, 6281 &tx_accept_flags); 6282 if (rc) 6283 return rc; 6284 6285 __set_bit(RAMROD_RX, &ramrod_flags); 6286 __set_bit(RAMROD_TX, &ramrod_flags); 6287 6288 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, 6289 rx_accept_flags, tx_accept_flags, 6290 ramrod_flags); 6291 } 6292 6293 static void bnx2x_init_internal_common(struct bnx2x *bp) 6294 { 6295 int i; 6296 6297 /* Zero this manually as its initialization is 6298 currently missing in the initTool */ 6299 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) 6300 REG_WR(bp, BAR_USTRORM_INTMEM + 6301 USTORM_AGG_DATA_OFFSET + i * 4, 0); 6302 if (!CHIP_IS_E1x(bp)) { 6303 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, 6304 CHIP_INT_MODE_IS_BC(bp) ? 6305 HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 6306 } 6307 } 6308 6309 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) 6310 { 6311 switch (load_code) { 6312 case FW_MSG_CODE_DRV_LOAD_COMMON: 6313 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 6314 bnx2x_init_internal_common(bp); 6315 /* no break */ 6316 6317 case FW_MSG_CODE_DRV_LOAD_PORT: 6318 /* nothing to do */ 6319 /* no break */ 6320 6321 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 6322 /* internal memory per function is 6323 initialized inside bnx2x_pf_init */ 6324 break; 6325 6326 default: 6327 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); 6328 break; 6329 } 6330 } 6331 6332 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) 6333 { 6334 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); 6335 } 6336 6337 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) 6338 { 6339 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); 6340 } 6341 6342 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) 6343 { 6344 if (CHIP_IS_E1x(fp->bp)) 6345 return BP_L_ID(fp->bp) + fp->index; 6346 else /* We want Client ID to be the same as IGU SB ID for 57712 */ 6347 return bnx2x_fp_igu_sb_id(fp); 6348 } 6349 6350 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) 6351 { 6352 struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; 6353 u8 cos; 6354 unsigned long q_type = 0; 6355 u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; 6356 fp->rx_queue = fp_idx; 6357 fp->cid = fp_idx; 6358 fp->cl_id = bnx2x_fp_cl_id(fp); 6359 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); 6360 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); 6361 /* qZone id equals to FW (per path) client id */ 6362 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); 6363 6364 /* init shortcut */ 6365 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); 6366 6367 /* Setup SB indices */ 6368 fp->rx_cons_sb = BNX2X_RX_SB_INDEX; 6369 6370 /* Configure Queue State object */ 6371 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6372 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6373 6374 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); 6375 6376 /* init tx data */ 6377 for_each_cos_in_tx_queue(fp, cos) { 6378 bnx2x_init_txdata(bp, fp->txdata_ptr[cos], 6379 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), 6380 FP_COS_TO_TXQ(fp, cos, bp), 6381 BNX2X_TX_SB_INDEX_BASE + cos, fp); 6382 cids[cos] = fp->txdata_ptr[cos]->cid; 6383 } 6384 6385 /* nothing more for vf to do here */ 6386 if (IS_VF(bp)) 6387 return; 6388 6389 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, 6390 fp->fw_sb_id, fp->igu_sb_id); 6391 bnx2x_update_fpsb_idx(fp); 6392 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, 6393 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6394 bnx2x_sp_mapping(bp, q_rdata), q_type); 6395 6396 /** 6397 * Configure classification DBs: Always enable Tx switching 6398 */ 6399 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); 6400 6401 DP(NETIF_MSG_IFUP, 6402 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6403 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6404 fp->igu_sb_id); 6405 } 6406 6407 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) 6408 { 6409 int i; 6410 6411 for (i = 1; i <= NUM_TX_RINGS; i++) { 6412 struct eth_tx_next_bd *tx_next_bd = 6413 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; 6414 6415 tx_next_bd->addr_hi = 6416 cpu_to_le32(U64_HI(txdata->tx_desc_mapping + 6417 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6418 tx_next_bd->addr_lo = 6419 cpu_to_le32(U64_LO(txdata->tx_desc_mapping + 6420 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6421 } 6422 6423 *txdata->tx_cons_sb = cpu_to_le16(0); 6424 6425 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 6426 txdata->tx_db.data.zero_fill1 = 0; 6427 txdata->tx_db.data.prod = 0; 6428 6429 txdata->tx_pkt_prod = 0; 6430 txdata->tx_pkt_cons = 0; 6431 txdata->tx_bd_prod = 0; 6432 txdata->tx_bd_cons = 0; 6433 txdata->tx_pkt = 0; 6434 } 6435 6436 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) 6437 { 6438 int i; 6439 6440 for_each_tx_queue_cnic(bp, i) 6441 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); 6442 } 6443 6444 static void bnx2x_init_tx_rings(struct bnx2x *bp) 6445 { 6446 int i; 6447 u8 cos; 6448 6449 for_each_eth_queue(bp, i) 6450 for_each_cos_in_tx_queue(&bp->fp[i], cos) 6451 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); 6452 } 6453 6454 static void bnx2x_init_fcoe_fp(struct bnx2x *bp) 6455 { 6456 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 6457 unsigned long q_type = 0; 6458 6459 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp); 6460 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp, 6461 BNX2X_FCOE_ETH_CL_ID_IDX); 6462 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp); 6463 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID; 6464 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id; 6465 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX; 6466 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]), 6467 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX, 6468 fp); 6469 6470 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index); 6471 6472 /* qZone id equals to FW (per path) client id */ 6473 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp); 6474 /* init shortcut */ 6475 bnx2x_fcoe(bp, ustorm_rx_prods_offset) = 6476 bnx2x_rx_ustorm_prods_offset(fp); 6477 6478 /* Configure Queue State object */ 6479 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6480 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6481 6482 /* No multi-CoS for FCoE L2 client */ 6483 BUG_ON(fp->max_cos != 1); 6484 6485 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, 6486 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6487 bnx2x_sp_mapping(bp, q_rdata), q_type); 6488 6489 DP(NETIF_MSG_IFUP, 6490 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6491 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6492 fp->igu_sb_id); 6493 } 6494 6495 void bnx2x_nic_init_cnic(struct bnx2x *bp) 6496 { 6497 if (!NO_FCOE(bp)) 6498 bnx2x_init_fcoe_fp(bp); 6499 6500 bnx2x_init_sb(bp, bp->cnic_sb_mapping, 6501 BNX2X_VF_ID_INVALID, false, 6502 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); 6503 6504 /* ensure status block indices were read */ 6505 rmb(); 6506 bnx2x_init_rx_rings_cnic(bp); 6507 bnx2x_init_tx_rings_cnic(bp); 6508 6509 /* flush all */ 6510 mb(); 6511 mmiowb(); 6512 } 6513 6514 void bnx2x_pre_irq_nic_init(struct bnx2x *bp) 6515 { 6516 int i; 6517 6518 /* Setup NIC internals and enable interrupts */ 6519 for_each_eth_queue(bp, i) 6520 bnx2x_init_eth_fp(bp, i); 6521 6522 /* ensure status block indices were read */ 6523 rmb(); 6524 bnx2x_init_rx_rings(bp); 6525 bnx2x_init_tx_rings(bp); 6526 6527 if (IS_PF(bp)) { 6528 /* Initialize MOD_ABS interrupts */ 6529 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, 6530 bp->common.shmem_base, 6531 bp->common.shmem2_base, BP_PORT(bp)); 6532 6533 /* initialize the default status block and sp ring */ 6534 bnx2x_init_def_sb(bp); 6535 bnx2x_update_dsb_idx(bp); 6536 bnx2x_init_sp_ring(bp); 6537 } else { 6538 bnx2x_memset_stats(bp); 6539 } 6540 } 6541 6542 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code) 6543 { 6544 bnx2x_init_eq_ring(bp); 6545 bnx2x_init_internal(bp, load_code); 6546 bnx2x_pf_init(bp); 6547 bnx2x_stats_init(bp); 6548 6549 /* flush all before enabling interrupts */ 6550 mb(); 6551 mmiowb(); 6552 6553 bnx2x_int_enable(bp); 6554 6555 /* Check for SPIO5 */ 6556 bnx2x_attn_int_deasserted0(bp, 6557 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & 6558 AEU_INPUTS_ATTN_BITS_SPIO5); 6559 } 6560 6561 /* gzip service functions */ 6562 static int bnx2x_gunzip_init(struct bnx2x *bp) 6563 { 6564 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, 6565 &bp->gunzip_mapping, GFP_KERNEL); 6566 if (bp->gunzip_buf == NULL) 6567 goto gunzip_nomem1; 6568 6569 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); 6570 if (bp->strm == NULL) 6571 goto gunzip_nomem2; 6572 6573 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); 6574 if (bp->strm->workspace == NULL) 6575 goto gunzip_nomem3; 6576 6577 return 0; 6578 6579 gunzip_nomem3: 6580 kfree(bp->strm); 6581 bp->strm = NULL; 6582 6583 gunzip_nomem2: 6584 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6585 bp->gunzip_mapping); 6586 bp->gunzip_buf = NULL; 6587 6588 gunzip_nomem1: 6589 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); 6590 return -ENOMEM; 6591 } 6592 6593 static void bnx2x_gunzip_end(struct bnx2x *bp) 6594 { 6595 if (bp->strm) { 6596 vfree(bp->strm->workspace); 6597 kfree(bp->strm); 6598 bp->strm = NULL; 6599 } 6600 6601 if (bp->gunzip_buf) { 6602 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6603 bp->gunzip_mapping); 6604 bp->gunzip_buf = NULL; 6605 } 6606 } 6607 6608 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) 6609 { 6610 int n, rc; 6611 6612 /* check gzip header */ 6613 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { 6614 BNX2X_ERR("Bad gzip header\n"); 6615 return -EINVAL; 6616 } 6617 6618 n = 10; 6619 6620 #define FNAME 0x8 6621 6622 if (zbuf[3] & FNAME) 6623 while ((zbuf[n++] != 0) && (n < len)); 6624 6625 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; 6626 bp->strm->avail_in = len - n; 6627 bp->strm->next_out = bp->gunzip_buf; 6628 bp->strm->avail_out = FW_BUF_SIZE; 6629 6630 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); 6631 if (rc != Z_OK) 6632 return rc; 6633 6634 rc = zlib_inflate(bp->strm, Z_FINISH); 6635 if ((rc != Z_OK) && (rc != Z_STREAM_END)) 6636 netdev_err(bp->dev, "Firmware decompression error: %s\n", 6637 bp->strm->msg); 6638 6639 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); 6640 if (bp->gunzip_outlen & 0x3) 6641 netdev_err(bp->dev, 6642 "Firmware decompression error: gunzip_outlen (%d) not aligned\n", 6643 bp->gunzip_outlen); 6644 bp->gunzip_outlen >>= 2; 6645 6646 zlib_inflateEnd(bp->strm); 6647 6648 if (rc == Z_STREAM_END) 6649 return 0; 6650 6651 return rc; 6652 } 6653 6654 /* nic load/unload */ 6655 6656 /* 6657 * General service functions 6658 */ 6659 6660 /* send a NIG loopback debug packet */ 6661 static void bnx2x_lb_pckt(struct bnx2x *bp) 6662 { 6663 u32 wb_write[3]; 6664 6665 /* Ethernet source and destination addresses */ 6666 wb_write[0] = 0x55555555; 6667 wb_write[1] = 0x55555555; 6668 wb_write[2] = 0x20; /* SOP */ 6669 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6670 6671 /* NON-IP protocol */ 6672 wb_write[0] = 0x09000000; 6673 wb_write[1] = 0x55555555; 6674 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 6675 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6676 } 6677 6678 /* some of the internal memories 6679 * are not directly readable from the driver 6680 * to test them we send debug packets 6681 */ 6682 static int bnx2x_int_mem_test(struct bnx2x *bp) 6683 { 6684 int factor; 6685 int count, i; 6686 u32 val = 0; 6687 6688 if (CHIP_REV_IS_FPGA(bp)) 6689 factor = 120; 6690 else if (CHIP_REV_IS_EMUL(bp)) 6691 factor = 200; 6692 else 6693 factor = 1; 6694 6695 /* Disable inputs of parser neighbor blocks */ 6696 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6697 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6698 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6699 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6700 6701 /* Write 0 to parser credits for CFC search request */ 6702 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6703 6704 /* send Ethernet packet */ 6705 bnx2x_lb_pckt(bp); 6706 6707 /* TODO do i reset NIG statistic? */ 6708 /* Wait until NIG register shows 1 packet of size 0x10 */ 6709 count = 1000 * factor; 6710 while (count) { 6711 6712 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6713 val = *bnx2x_sp(bp, wb_data[0]); 6714 if (val == 0x10) 6715 break; 6716 6717 usleep_range(10000, 20000); 6718 count--; 6719 } 6720 if (val != 0x10) { 6721 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6722 return -1; 6723 } 6724 6725 /* Wait until PRS register shows 1 packet */ 6726 count = 1000 * factor; 6727 while (count) { 6728 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6729 if (val == 1) 6730 break; 6731 6732 usleep_range(10000, 20000); 6733 count--; 6734 } 6735 if (val != 0x1) { 6736 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6737 return -2; 6738 } 6739 6740 /* Reset and init BRB, PRS */ 6741 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6742 msleep(50); 6743 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6744 msleep(50); 6745 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6746 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6747 6748 DP(NETIF_MSG_HW, "part2\n"); 6749 6750 /* Disable inputs of parser neighbor blocks */ 6751 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6752 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6753 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6754 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6755 6756 /* Write 0 to parser credits for CFC search request */ 6757 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6758 6759 /* send 10 Ethernet packets */ 6760 for (i = 0; i < 10; i++) 6761 bnx2x_lb_pckt(bp); 6762 6763 /* Wait until NIG register shows 10 + 1 6764 packets of size 11*0x10 = 0xb0 */ 6765 count = 1000 * factor; 6766 while (count) { 6767 6768 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6769 val = *bnx2x_sp(bp, wb_data[0]); 6770 if (val == 0xb0) 6771 break; 6772 6773 usleep_range(10000, 20000); 6774 count--; 6775 } 6776 if (val != 0xb0) { 6777 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6778 return -3; 6779 } 6780 6781 /* Wait until PRS register shows 2 packets */ 6782 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6783 if (val != 2) 6784 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6785 6786 /* Write 1 to parser credits for CFC search request */ 6787 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 6788 6789 /* Wait until PRS register shows 3 packets */ 6790 msleep(10 * factor); 6791 /* Wait until NIG register shows 1 packet of size 0x10 */ 6792 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6793 if (val != 3) 6794 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6795 6796 /* clear NIG EOP FIFO */ 6797 for (i = 0; i < 11; i++) 6798 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); 6799 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); 6800 if (val != 1) { 6801 BNX2X_ERR("clear of NIG failed\n"); 6802 return -4; 6803 } 6804 6805 /* Reset and init BRB, PRS, NIG */ 6806 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6807 msleep(50); 6808 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6809 msleep(50); 6810 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6811 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6812 if (!CNIC_SUPPORT(bp)) 6813 /* set NIC mode */ 6814 REG_WR(bp, PRS_REG_NIC_MODE, 1); 6815 6816 /* Enable inputs of parser neighbor blocks */ 6817 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); 6818 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); 6819 REG_WR(bp, CFC_REG_DEBUG0, 0x0); 6820 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); 6821 6822 DP(NETIF_MSG_HW, "done\n"); 6823 6824 return 0; /* OK */ 6825 } 6826 6827 static void bnx2x_enable_blocks_attention(struct bnx2x *bp) 6828 { 6829 u32 val; 6830 6831 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6832 if (!CHIP_IS_E1x(bp)) 6833 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); 6834 else 6835 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); 6836 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6837 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 6838 /* 6839 * mask read length error interrupts in brb for parser 6840 * (parsing unit and 'checksum and crc' unit) 6841 * these errors are legal (PU reads fixed length and CAC can cause 6842 * read length error on truncated packets) 6843 */ 6844 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); 6845 REG_WR(bp, QM_REG_QM_INT_MASK, 0); 6846 REG_WR(bp, TM_REG_TM_INT_MASK, 0); 6847 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); 6848 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); 6849 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); 6850 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ 6851 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ 6852 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); 6853 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); 6854 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); 6855 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ 6856 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ 6857 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 6858 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); 6859 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); 6860 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); 6861 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ 6862 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ 6863 6864 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 6865 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 6866 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; 6867 if (!CHIP_IS_E1x(bp)) 6868 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 6869 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; 6870 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); 6871 6872 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); 6873 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); 6874 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); 6875 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ 6876 6877 if (!CHIP_IS_E1x(bp)) 6878 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 6879 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 6880 6881 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); 6882 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); 6883 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ 6884 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 6885 } 6886 6887 static void bnx2x_reset_common(struct bnx2x *bp) 6888 { 6889 u32 val = 0x1400; 6890 6891 /* reset_common */ 6892 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6893 0xd3ffff7f); 6894 6895 if (CHIP_IS_E3(bp)) { 6896 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6897 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6898 } 6899 6900 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); 6901 } 6902 6903 static void bnx2x_setup_dmae(struct bnx2x *bp) 6904 { 6905 bp->dmae_ready = 0; 6906 spin_lock_init(&bp->dmae_lock); 6907 } 6908 6909 static void bnx2x_init_pxp(struct bnx2x *bp) 6910 { 6911 u16 devctl; 6912 int r_order, w_order; 6913 6914 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); 6915 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); 6916 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6917 if (bp->mrrs == -1) 6918 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6919 else { 6920 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); 6921 r_order = bp->mrrs; 6922 } 6923 6924 bnx2x_init_pxp_arb(bp, r_order, w_order); 6925 } 6926 6927 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) 6928 { 6929 int is_required; 6930 u32 val; 6931 int port; 6932 6933 if (BP_NOMCP(bp)) 6934 return; 6935 6936 is_required = 0; 6937 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & 6938 SHARED_HW_CFG_FAN_FAILURE_MASK; 6939 6940 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) 6941 is_required = 1; 6942 6943 /* 6944 * The fan failure mechanism is usually related to the PHY type since 6945 * the power consumption of the board is affected by the PHY. Currently, 6946 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 6947 */ 6948 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) 6949 for (port = PORT_0; port < PORT_MAX; port++) { 6950 is_required |= 6951 bnx2x_fan_failure_det_req( 6952 bp, 6953 bp->common.shmem_base, 6954 bp->common.shmem2_base, 6955 port); 6956 } 6957 6958 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); 6959 6960 if (is_required == 0) 6961 return; 6962 6963 /* Fan failure is indicated by SPIO 5 */ 6964 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 6965 6966 /* set to active low mode */ 6967 val = REG_RD(bp, MISC_REG_SPIO_INT); 6968 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 6969 REG_WR(bp, MISC_REG_SPIO_INT, val); 6970 6971 /* enable interrupt to signal the IGU */ 6972 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 6973 val |= MISC_SPIO_SPIO5; 6974 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); 6975 } 6976 6977 void bnx2x_pf_disable(struct bnx2x *bp) 6978 { 6979 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 6980 val &= ~IGU_PF_CONF_FUNC_EN; 6981 6982 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 6983 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6984 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); 6985 } 6986 6987 static void bnx2x__common_init_phy(struct bnx2x *bp) 6988 { 6989 u32 shmem_base[2], shmem2_base[2]; 6990 /* Avoid common init in case MFW supports LFA */ 6991 if (SHMEM2_RD(bp, size) > 6992 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 6993 return; 6994 shmem_base[0] = bp->common.shmem_base; 6995 shmem2_base[0] = bp->common.shmem2_base; 6996 if (!CHIP_IS_E1x(bp)) { 6997 shmem_base[1] = 6998 SHMEM2_RD(bp, other_shmem_base_addr); 6999 shmem2_base[1] = 7000 SHMEM2_RD(bp, other_shmem2_base_addr); 7001 } 7002 bnx2x_acquire_phy_lock(bp); 7003 bnx2x_common_init_phy(bp, shmem_base, shmem2_base, 7004 bp->common.chip_id); 7005 bnx2x_release_phy_lock(bp); 7006 } 7007 7008 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val) 7009 { 7010 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val); 7011 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val); 7012 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val); 7013 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val); 7014 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val); 7015 7016 /* make sure this value is 0 */ 7017 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); 7018 7019 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val); 7020 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val); 7021 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val); 7022 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val); 7023 } 7024 7025 static void bnx2x_set_endianity(struct bnx2x *bp) 7026 { 7027 #ifdef __BIG_ENDIAN 7028 bnx2x_config_endianity(bp, 1); 7029 #else 7030 bnx2x_config_endianity(bp, 0); 7031 #endif 7032 } 7033 7034 static void bnx2x_reset_endianity(struct bnx2x *bp) 7035 { 7036 bnx2x_config_endianity(bp, 0); 7037 } 7038 7039 /** 7040 * bnx2x_init_hw_common - initialize the HW at the COMMON phase. 7041 * 7042 * @bp: driver handle 7043 */ 7044 static int bnx2x_init_hw_common(struct bnx2x *bp) 7045 { 7046 u32 val; 7047 7048 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); 7049 7050 /* 7051 * take the RESET lock to protect undi_unload flow from accessing 7052 * registers while we're resetting the chip 7053 */ 7054 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7055 7056 bnx2x_reset_common(bp); 7057 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); 7058 7059 val = 0xfffc; 7060 if (CHIP_IS_E3(bp)) { 7061 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 7062 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 7063 } 7064 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); 7065 7066 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7067 7068 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); 7069 7070 if (!CHIP_IS_E1x(bp)) { 7071 u8 abs_func_id; 7072 7073 /** 7074 * 4-port mode or 2-port mode we need to turn of master-enable 7075 * for everyone, after that, turn it back on for self. 7076 * so, we disregard multi-function or not, and always disable 7077 * for all functions on the given path, this means 0,2,4,6 for 7078 * path 0 and 1,3,5,7 for path 1 7079 */ 7080 for (abs_func_id = BP_PATH(bp); 7081 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { 7082 if (abs_func_id == BP_ABS_FUNC(bp)) { 7083 REG_WR(bp, 7084 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 7085 1); 7086 continue; 7087 } 7088 7089 bnx2x_pretend_func(bp, abs_func_id); 7090 /* clear pf enable */ 7091 bnx2x_pf_disable(bp); 7092 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7093 } 7094 } 7095 7096 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); 7097 if (CHIP_IS_E1(bp)) { 7098 /* enable HW interrupt from PXP on USDM overflow 7099 bit 16 on INT_MASK_0 */ 7100 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 7101 } 7102 7103 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); 7104 bnx2x_init_pxp(bp); 7105 bnx2x_set_endianity(bp); 7106 bnx2x_ilt_init_page_size(bp, INITOP_SET); 7107 7108 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) 7109 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 7110 7111 /* let the HW do it's magic ... */ 7112 msleep(100); 7113 /* finish PXP init */ 7114 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); 7115 if (val != 1) { 7116 BNX2X_ERR("PXP2 CFG failed\n"); 7117 return -EBUSY; 7118 } 7119 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); 7120 if (val != 1) { 7121 BNX2X_ERR("PXP2 RD_INIT failed\n"); 7122 return -EBUSY; 7123 } 7124 7125 /* Timers bug workaround E2 only. We need to set the entire ILT to 7126 * have entries with value "0" and valid bit on. 7127 * This needs to be done by the first PF that is loaded in a path 7128 * (i.e. common phase) 7129 */ 7130 if (!CHIP_IS_E1x(bp)) { 7131 /* In E2 there is a bug in the timers block that can cause function 6 / 7 7132 * (i.e. vnic3) to start even if it is marked as "scan-off". 7133 * This occurs when a different function (func2,3) is being marked 7134 * as "scan-off". Real-life scenario for example: if a driver is being 7135 * load-unloaded while func6,7 are down. This will cause the timer to access 7136 * the ilt, translate to a logical address and send a request to read/write. 7137 * Since the ilt for the function that is down is not valid, this will cause 7138 * a translation error which is unrecoverable. 7139 * The Workaround is intended to make sure that when this happens nothing fatal 7140 * will occur. The workaround: 7141 * 1. First PF driver which loads on a path will: 7142 * a. After taking the chip out of reset, by using pretend, 7143 * it will write "0" to the following registers of 7144 * the other vnics. 7145 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 7146 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 7147 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 7148 * And for itself it will write '1' to 7149 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 7150 * dmae-operations (writing to pram for example.) 7151 * note: can be done for only function 6,7 but cleaner this 7152 * way. 7153 * b. Write zero+valid to the entire ILT. 7154 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 7155 * VNIC3 (of that port). The range allocated will be the 7156 * entire ILT. This is needed to prevent ILT range error. 7157 * 2. Any PF driver load flow: 7158 * a. ILT update with the physical addresses of the allocated 7159 * logical pages. 7160 * b. Wait 20msec. - note that this timeout is needed to make 7161 * sure there are no requests in one of the PXP internal 7162 * queues with "old" ILT addresses. 7163 * c. PF enable in the PGLC. 7164 * d. Clear the was_error of the PF in the PGLC. (could have 7165 * occurred while driver was down) 7166 * e. PF enable in the CFC (WEAK + STRONG) 7167 * f. Timers scan enable 7168 * 3. PF driver unload flow: 7169 * a. Clear the Timers scan_en. 7170 * b. Polling for scan_on=0 for that PF. 7171 * c. Clear the PF enable bit in the PXP. 7172 * d. Clear the PF enable in the CFC (WEAK + STRONG) 7173 * e. Write zero+valid to all ILT entries (The valid bit must 7174 * stay set) 7175 * f. If this is VNIC 3 of a port then also init 7176 * first_timers_ilt_entry to zero and last_timers_ilt_entry 7177 * to the last entry in the ILT. 7178 * 7179 * Notes: 7180 * Currently the PF error in the PGLC is non recoverable. 7181 * In the future the there will be a recovery routine for this error. 7182 * Currently attention is masked. 7183 * Having an MCP lock on the load/unload process does not guarantee that 7184 * there is no Timer disable during Func6/7 enable. This is because the 7185 * Timers scan is currently being cleared by the MCP on FLR. 7186 * Step 2.d can be done only for PF6/7 and the driver can also check if 7187 * there is error before clearing it. But the flow above is simpler and 7188 * more general. 7189 * All ILT entries are written by zero+valid and not just PF6/7 7190 * ILT entries since in the future the ILT entries allocation for 7191 * PF-s might be dynamic. 7192 */ 7193 struct ilt_client_info ilt_cli; 7194 struct bnx2x_ilt ilt; 7195 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 7196 memset(&ilt, 0, sizeof(struct bnx2x_ilt)); 7197 7198 /* initialize dummy TM client */ 7199 ilt_cli.start = 0; 7200 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 7201 ilt_cli.client_num = ILT_CLIENT_TM; 7202 7203 /* Step 1: set zeroes to all ilt page entries with valid bit on 7204 * Step 2: set the timers first/last ilt entry to point 7205 * to the entire range to prevent ILT range error for 3rd/4th 7206 * vnic (this code assumes existence of the vnic) 7207 * 7208 * both steps performed by call to bnx2x_ilt_client_init_op() 7209 * with dummy TM client 7210 * 7211 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 7212 * and his brother are split registers 7213 */ 7214 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); 7215 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); 7216 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7217 7218 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); 7219 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); 7220 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 7221 } 7222 7223 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); 7224 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); 7225 7226 if (!CHIP_IS_E1x(bp)) { 7227 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : 7228 (CHIP_REV_IS_FPGA(bp) ? 400 : 0); 7229 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); 7230 7231 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); 7232 7233 /* let the HW do it's magic ... */ 7234 do { 7235 msleep(200); 7236 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); 7237 } while (factor-- && (val != 1)); 7238 7239 if (val != 1) { 7240 BNX2X_ERR("ATC_INIT failed\n"); 7241 return -EBUSY; 7242 } 7243 } 7244 7245 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); 7246 7247 bnx2x_iov_init_dmae(bp); 7248 7249 /* clean the DMAE memory */ 7250 bp->dmae_ready = 1; 7251 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); 7252 7253 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); 7254 7255 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); 7256 7257 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); 7258 7259 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); 7260 7261 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); 7262 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); 7263 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); 7264 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); 7265 7266 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); 7267 7268 /* QM queues pointers table */ 7269 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); 7270 7271 /* soft reset pulse */ 7272 REG_WR(bp, QM_REG_SOFT_RESET, 1); 7273 REG_WR(bp, QM_REG_SOFT_RESET, 0); 7274 7275 if (CNIC_SUPPORT(bp)) 7276 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); 7277 7278 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); 7279 7280 if (!CHIP_REV_IS_SLOW(bp)) 7281 /* enable hw interrupt from doorbell Q */ 7282 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 7283 7284 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 7285 7286 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 7287 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); 7288 7289 if (!CHIP_IS_E1(bp)) 7290 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); 7291 7292 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { 7293 if (IS_MF_AFEX(bp)) { 7294 /* configure that VNTag and VLAN headers must be 7295 * received in afex mode 7296 */ 7297 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); 7298 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); 7299 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 7300 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 7301 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); 7302 } else { 7303 /* Bit-map indicating which L2 hdrs may appear 7304 * after the basic Ethernet header 7305 */ 7306 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 7307 bp->path_has_ovlan ? 7 : 6); 7308 } 7309 } 7310 7311 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); 7312 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); 7313 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); 7314 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); 7315 7316 if (!CHIP_IS_E1x(bp)) { 7317 /* reset VFC memories */ 7318 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7319 VFC_MEMORIES_RST_REG_CAM_RST | 7320 VFC_MEMORIES_RST_REG_RAM_RST); 7321 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7322 VFC_MEMORIES_RST_REG_CAM_RST | 7323 VFC_MEMORIES_RST_REG_RAM_RST); 7324 7325 msleep(20); 7326 } 7327 7328 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); 7329 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); 7330 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); 7331 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); 7332 7333 /* sync semi rtc */ 7334 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 7335 0x80000000); 7336 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 7337 0x80000000); 7338 7339 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); 7340 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); 7341 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); 7342 7343 if (!CHIP_IS_E1x(bp)) { 7344 if (IS_MF_AFEX(bp)) { 7345 /* configure that VNTag and VLAN headers must be 7346 * sent in afex mode 7347 */ 7348 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); 7349 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); 7350 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 7351 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 7352 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); 7353 } else { 7354 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 7355 bp->path_has_ovlan ? 7 : 6); 7356 } 7357 } 7358 7359 REG_WR(bp, SRC_REG_SOFT_RST, 1); 7360 7361 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); 7362 7363 if (CNIC_SUPPORT(bp)) { 7364 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); 7365 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 7366 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); 7367 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); 7368 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); 7369 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 7370 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); 7371 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 7372 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); 7373 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); 7374 } 7375 REG_WR(bp, SRC_REG_SOFT_RST, 0); 7376 7377 if (sizeof(union cdu_context) != 1024) 7378 /* we currently assume that a context is 1024 bytes */ 7379 dev_alert(&bp->pdev->dev, 7380 "please adjust the size of cdu_context(%ld)\n", 7381 (long)sizeof(union cdu_context)); 7382 7383 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); 7384 val = (4 << 24) + (0 << 12) + 1024; 7385 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); 7386 7387 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); 7388 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); 7389 /* enable context validation interrupt from CFC */ 7390 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 7391 7392 /* set the thresholds to prevent CFC/CDU race */ 7393 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); 7394 7395 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); 7396 7397 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) 7398 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); 7399 7400 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); 7401 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); 7402 7403 /* Reset PCIE errors for debug */ 7404 REG_WR(bp, 0x2814, 0xffffffff); 7405 REG_WR(bp, 0x3820, 0xffffffff); 7406 7407 if (!CHIP_IS_E1x(bp)) { 7408 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 7409 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 7410 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 7411 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 7412 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 7413 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 7414 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 7415 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 7416 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 7417 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 7418 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 7419 } 7420 7421 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); 7422 if (!CHIP_IS_E1(bp)) { 7423 /* in E3 this done in per-port section */ 7424 if (!CHIP_IS_E3(bp)) 7425 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7426 } 7427 if (CHIP_IS_E1H(bp)) 7428 /* not applicable for E2 (and above ...) */ 7429 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); 7430 7431 if (CHIP_REV_IS_SLOW(bp)) 7432 msleep(200); 7433 7434 /* finish CFC init */ 7435 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); 7436 if (val != 1) { 7437 BNX2X_ERR("CFC LL_INIT failed\n"); 7438 return -EBUSY; 7439 } 7440 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); 7441 if (val != 1) { 7442 BNX2X_ERR("CFC AC_INIT failed\n"); 7443 return -EBUSY; 7444 } 7445 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 7446 if (val != 1) { 7447 BNX2X_ERR("CFC CAM_INIT failed\n"); 7448 return -EBUSY; 7449 } 7450 REG_WR(bp, CFC_REG_DEBUG0, 0); 7451 7452 if (CHIP_IS_E1(bp)) { 7453 /* read NIG statistic 7454 to see if this is our first up since powerup */ 7455 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 7456 val = *bnx2x_sp(bp, wb_data[0]); 7457 7458 /* do internal memory self test */ 7459 if ((val == 0) && bnx2x_int_mem_test(bp)) { 7460 BNX2X_ERR("internal mem self test failed\n"); 7461 return -EBUSY; 7462 } 7463 } 7464 7465 bnx2x_setup_fan_failure_detection(bp); 7466 7467 /* clear PXP2 attentions */ 7468 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); 7469 7470 bnx2x_enable_blocks_attention(bp); 7471 bnx2x_enable_blocks_parity(bp); 7472 7473 if (!BP_NOMCP(bp)) { 7474 if (CHIP_IS_E1x(bp)) 7475 bnx2x__common_init_phy(bp); 7476 } else 7477 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 7478 7479 if (SHMEM2_HAS(bp, netproc_fw_ver)) 7480 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 7481 7482 return 0; 7483 } 7484 7485 /** 7486 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. 7487 * 7488 * @bp: driver handle 7489 */ 7490 static int bnx2x_init_hw_common_chip(struct bnx2x *bp) 7491 { 7492 int rc = bnx2x_init_hw_common(bp); 7493 7494 if (rc) 7495 return rc; 7496 7497 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 7498 if (!BP_NOMCP(bp)) 7499 bnx2x__common_init_phy(bp); 7500 7501 return 0; 7502 } 7503 7504 static int bnx2x_init_hw_port(struct bnx2x *bp) 7505 { 7506 int port = BP_PORT(bp); 7507 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 7508 u32 low, high; 7509 u32 val, reg; 7510 7511 DP(NETIF_MSG_HW, "starting port init port %d\n", port); 7512 7513 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 7514 7515 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7516 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7517 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7518 7519 /* Timers bug workaround: disables the pf_master bit in pglue at 7520 * common phase, we need to enable it here before any dmae access are 7521 * attempted. Therefore we manually added the enable-master to the 7522 * port phase (it also happens in the function phase) 7523 */ 7524 if (!CHIP_IS_E1x(bp)) 7525 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7526 7527 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7528 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7529 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7530 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7531 7532 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7533 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7534 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7535 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7536 7537 /* QM cid (connection) count */ 7538 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); 7539 7540 if (CNIC_SUPPORT(bp)) { 7541 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7542 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); 7543 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 7544 } 7545 7546 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7547 7548 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7549 7550 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { 7551 7552 if (IS_MF(bp)) 7553 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); 7554 else if (bp->dev->mtu > 4096) { 7555 if (bp->flags & ONE_PORT_FLAG) 7556 low = 160; 7557 else { 7558 val = bp->dev->mtu; 7559 /* (24*1024 + val*4)/256 */ 7560 low = 96 + (val/64) + 7561 ((val % 64) ? 1 : 0); 7562 } 7563 } else 7564 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); 7565 high = low + 56; /* 14*1024/256 */ 7566 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 7567 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 7568 } 7569 7570 if (CHIP_MODE_IS_4_PORT(bp)) 7571 REG_WR(bp, (BP_PORT(bp) ? 7572 BRB1_REG_MAC_GUARANTIED_1 : 7573 BRB1_REG_MAC_GUARANTIED_0), 40); 7574 7575 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7576 if (CHIP_IS_E3B0(bp)) { 7577 if (IS_MF_AFEX(bp)) { 7578 /* configure headers for AFEX mode */ 7579 REG_WR(bp, BP_PORT(bp) ? 7580 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7581 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 7582 REG_WR(bp, BP_PORT(bp) ? 7583 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 7584 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 7585 REG_WR(bp, BP_PORT(bp) ? 7586 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 7587 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 7588 } else { 7589 /* Ovlan exists only if we are in multi-function + 7590 * switch-dependent mode, in switch-independent there 7591 * is no ovlan headers 7592 */ 7593 REG_WR(bp, BP_PORT(bp) ? 7594 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7595 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 7596 (bp->path_has_ovlan ? 7 : 6)); 7597 } 7598 } 7599 7600 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7601 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7602 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7603 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7604 7605 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7606 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7607 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7608 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7609 7610 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7611 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7612 7613 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7614 7615 if (CHIP_IS_E1x(bp)) { 7616 /* configure PBF to work without PAUSE mtu 9000 */ 7617 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 7618 7619 /* update threshold */ 7620 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 7621 /* update init credit */ 7622 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 7623 7624 /* probe changes */ 7625 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); 7626 udelay(50); 7627 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); 7628 } 7629 7630 if (CNIC_SUPPORT(bp)) 7631 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7632 7633 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7634 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7635 7636 if (CHIP_IS_E1(bp)) { 7637 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7638 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7639 } 7640 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7641 7642 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7643 7644 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7645 /* init aeu_mask_attn_func_0/1: 7646 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use 7647 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF 7648 * bits 4-7 are used for "per vn group attention" */ 7649 val = IS_MF(bp) ? 0xF7 : 0x7; 7650 /* Enable DCBX attention for all but E1 */ 7651 val |= CHIP_IS_E1(bp) ? 0 : 0x10; 7652 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 7653 7654 /* SCPAD_PARITY should NOT trigger close the gates */ 7655 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0; 7656 REG_WR(bp, reg, 7657 REG_RD(bp, reg) & 7658 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7659 7660 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0; 7661 REG_WR(bp, reg, 7662 REG_RD(bp, reg) & 7663 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7664 7665 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7666 7667 if (!CHIP_IS_E1x(bp)) { 7668 /* Bit-map indicating which L2 hdrs may appear after the 7669 * basic Ethernet header 7670 */ 7671 if (IS_MF_AFEX(bp)) 7672 REG_WR(bp, BP_PORT(bp) ? 7673 NIG_REG_P1_HDRS_AFTER_BASIC : 7674 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 7675 else 7676 REG_WR(bp, BP_PORT(bp) ? 7677 NIG_REG_P1_HDRS_AFTER_BASIC : 7678 NIG_REG_P0_HDRS_AFTER_BASIC, 7679 IS_MF_SD(bp) ? 7 : 6); 7680 7681 if (CHIP_IS_E3(bp)) 7682 REG_WR(bp, BP_PORT(bp) ? 7683 NIG_REG_LLH1_MF_MODE : 7684 NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7685 } 7686 if (!CHIP_IS_E3(bp)) 7687 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 7688 7689 if (!CHIP_IS_E1(bp)) { 7690 /* 0x2 disable mf_ov, 0x1 enable */ 7691 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 7692 (IS_MF_SD(bp) ? 0x1 : 0x2)); 7693 7694 if (!CHIP_IS_E1x(bp)) { 7695 val = 0; 7696 switch (bp->mf_mode) { 7697 case MULTI_FUNCTION_SD: 7698 val = 1; 7699 break; 7700 case MULTI_FUNCTION_SI: 7701 case MULTI_FUNCTION_AFEX: 7702 val = 2; 7703 break; 7704 } 7705 7706 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : 7707 NIG_REG_LLH0_CLS_TYPE), val); 7708 } 7709 { 7710 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 7711 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 7712 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 7713 } 7714 } 7715 7716 /* If SPIO5 is set to generate interrupts, enable it for this port */ 7717 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 7718 if (val & MISC_SPIO_SPIO5) { 7719 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 7720 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 7721 val = REG_RD(bp, reg_addr); 7722 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 7723 REG_WR(bp, reg_addr, val); 7724 } 7725 7726 return 0; 7727 } 7728 7729 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) 7730 { 7731 int reg; 7732 u32 wb_write[2]; 7733 7734 if (CHIP_IS_E1(bp)) 7735 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 7736 else 7737 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 7738 7739 wb_write[0] = ONCHIP_ADDR1(addr); 7740 wb_write[1] = ONCHIP_ADDR2(addr); 7741 REG_WR_DMAE(bp, reg, wb_write, 2); 7742 } 7743 7744 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) 7745 { 7746 u32 data, ctl, cnt = 100; 7747 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 7748 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 7749 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 7750 u32 sb_bit = 1 << (idu_sb_id%32); 7751 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 7752 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 7753 7754 /* Not supported in BC mode */ 7755 if (CHIP_INT_MODE_IS_BC(bp)) 7756 return; 7757 7758 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup 7759 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 7760 IGU_REGULAR_CLEANUP_SET | 7761 IGU_REGULAR_BCLEANUP; 7762 7763 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 7764 func_encode << IGU_CTRL_REG_FID_SHIFT | 7765 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 7766 7767 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7768 data, igu_addr_data); 7769 REG_WR(bp, igu_addr_data, data); 7770 mmiowb(); 7771 barrier(); 7772 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7773 ctl, igu_addr_ctl); 7774 REG_WR(bp, igu_addr_ctl, ctl); 7775 mmiowb(); 7776 barrier(); 7777 7778 /* wait for clean up to finish */ 7779 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) 7780 msleep(20); 7781 7782 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { 7783 DP(NETIF_MSG_HW, 7784 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", 7785 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 7786 } 7787 } 7788 7789 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) 7790 { 7791 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); 7792 } 7793 7794 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) 7795 { 7796 u32 i, base = FUNC_ILT_BASE(func); 7797 for (i = base; i < base + ILT_PER_FUNC; i++) 7798 bnx2x_ilt_wr(bp, i, 0); 7799 } 7800 7801 static void bnx2x_init_searcher(struct bnx2x *bp) 7802 { 7803 int port = BP_PORT(bp); 7804 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); 7805 /* T1 hash bits value determines the T1 number of entries */ 7806 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 7807 } 7808 7809 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) 7810 { 7811 int rc; 7812 struct bnx2x_func_state_params func_params = {NULL}; 7813 struct bnx2x_func_switch_update_params *switch_update_params = 7814 &func_params.params.switch_update; 7815 7816 /* Prepare parameters for function state transitions */ 7817 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 7818 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 7819 7820 func_params.f_obj = &bp->func_obj; 7821 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 7822 7823 /* Function parameters */ 7824 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG, 7825 &switch_update_params->changes); 7826 if (suspend) 7827 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND, 7828 &switch_update_params->changes); 7829 7830 rc = bnx2x_func_state_change(bp, &func_params); 7831 7832 return rc; 7833 } 7834 7835 static int bnx2x_reset_nic_mode(struct bnx2x *bp) 7836 { 7837 int rc, i, port = BP_PORT(bp); 7838 int vlan_en = 0, mac_en[NUM_MACS]; 7839 7840 /* Close input from network */ 7841 if (bp->mf_mode == SINGLE_FUNCTION) { 7842 bnx2x_set_rx_filter(&bp->link_params, 0); 7843 } else { 7844 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : 7845 NIG_REG_LLH0_FUNC_EN); 7846 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7847 NIG_REG_LLH0_FUNC_EN, 0); 7848 for (i = 0; i < NUM_MACS; i++) { 7849 mac_en[i] = REG_RD(bp, port ? 7850 (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7851 4 * i) : 7852 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 7853 4 * i)); 7854 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7855 4 * i) : 7856 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); 7857 } 7858 } 7859 7860 /* Close BMC to host */ 7861 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7862 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); 7863 7864 /* Suspend Tx switching to the PF. Completion of this ramrod 7865 * further guarantees that all the packets of that PF / child 7866 * VFs in BRB were processed by the Parser, so it is safe to 7867 * change the NIC_MODE register. 7868 */ 7869 rc = bnx2x_func_switch_update(bp, 1); 7870 if (rc) { 7871 BNX2X_ERR("Can't suspend tx-switching!\n"); 7872 return rc; 7873 } 7874 7875 /* Change NIC_MODE register */ 7876 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7877 7878 /* Open input from network */ 7879 if (bp->mf_mode == SINGLE_FUNCTION) { 7880 bnx2x_set_rx_filter(&bp->link_params, 1); 7881 } else { 7882 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7883 NIG_REG_LLH0_FUNC_EN, vlan_en); 7884 for (i = 0; i < NUM_MACS; i++) { 7885 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7886 4 * i) : 7887 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 7888 mac_en[i]); 7889 } 7890 } 7891 7892 /* Enable BMC to host */ 7893 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7894 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); 7895 7896 /* Resume Tx switching to the PF */ 7897 rc = bnx2x_func_switch_update(bp, 0); 7898 if (rc) { 7899 BNX2X_ERR("Can't resume tx-switching!\n"); 7900 return rc; 7901 } 7902 7903 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7904 return 0; 7905 } 7906 7907 int bnx2x_init_hw_func_cnic(struct bnx2x *bp) 7908 { 7909 int rc; 7910 7911 bnx2x_ilt_init_op_cnic(bp, INITOP_SET); 7912 7913 if (CONFIGURE_NIC_MODE(bp)) { 7914 /* Configure searcher as part of function hw init */ 7915 bnx2x_init_searcher(bp); 7916 7917 /* Reset NIC mode */ 7918 rc = bnx2x_reset_nic_mode(bp); 7919 if (rc) 7920 BNX2X_ERR("Can't change NIC mode!\n"); 7921 return rc; 7922 } 7923 7924 return 0; 7925 } 7926 7927 /* previous driver DMAE transaction may have occurred when pre-boot stage ended 7928 * and boot began, or when kdump kernel was loaded. Either case would invalidate 7929 * the addresses of the transaction, resulting in was-error bit set in the pci 7930 * causing all hw-to-host pcie transactions to timeout. If this happened we want 7931 * to clear the interrupt which detected this from the pglueb and the was done 7932 * bit 7933 */ 7934 static void bnx2x_clean_pglue_errors(struct bnx2x *bp) 7935 { 7936 if (!CHIP_IS_E1x(bp)) 7937 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 7938 1 << BP_ABS_FUNC(bp)); 7939 } 7940 7941 static int bnx2x_init_hw_func(struct bnx2x *bp) 7942 { 7943 int port = BP_PORT(bp); 7944 int func = BP_FUNC(bp); 7945 int init_phase = PHASE_PF0 + func; 7946 struct bnx2x_ilt *ilt = BP_ILT(bp); 7947 u16 cdu_ilt_start; 7948 u32 addr, val; 7949 u32 main_mem_base, main_mem_size, main_mem_prty_clr; 7950 int i, main_mem_width, rc; 7951 7952 DP(NETIF_MSG_HW, "starting func init func %d\n", func); 7953 7954 /* FLR cleanup - hmmm */ 7955 if (!CHIP_IS_E1x(bp)) { 7956 rc = bnx2x_pf_flr_clnup(bp); 7957 if (rc) { 7958 bnx2x_fw_dump(bp); 7959 return rc; 7960 } 7961 } 7962 7963 /* set MSI reconfigure capability */ 7964 if (bp->common.int_block == INT_BLOCK_HC) { 7965 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 7966 val = REG_RD(bp, addr); 7967 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 7968 REG_WR(bp, addr, val); 7969 } 7970 7971 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7972 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7973 7974 ilt = BP_ILT(bp); 7975 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7976 7977 if (IS_SRIOV(bp)) 7978 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; 7979 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); 7980 7981 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes 7982 * those of the VFs, so start line should be reset 7983 */ 7984 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7985 for (i = 0; i < L2_ILT_LINES(bp); i++) { 7986 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; 7987 ilt->lines[cdu_ilt_start + i].page_mapping = 7988 bp->context[i].cxt_mapping; 7989 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; 7990 } 7991 7992 bnx2x_ilt_init_op(bp, INITOP_SET); 7993 7994 if (!CONFIGURE_NIC_MODE(bp)) { 7995 bnx2x_init_searcher(bp); 7996 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7997 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7998 } else { 7999 /* Set NIC mode */ 8000 REG_WR(bp, PRS_REG_NIC_MODE, 1); 8001 DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); 8002 } 8003 8004 if (!CHIP_IS_E1x(bp)) { 8005 u32 pf_conf = IGU_PF_CONF_FUNC_EN; 8006 8007 /* Turn on a single ISR mode in IGU if driver is going to use 8008 * INT#x or MSI 8009 */ 8010 if (!(bp->flags & USING_MSIX_FLAG)) 8011 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 8012 /* 8013 * Timers workaround bug: function init part. 8014 * Need to wait 20msec after initializing ILT, 8015 * needed to make sure there are no requests in 8016 * one of the PXP internal queues with "old" ILT addresses 8017 */ 8018 msleep(20); 8019 /* 8020 * Master enable - Due to WB DMAE writes performed before this 8021 * register is re-initialized as part of the regular function 8022 * init 8023 */ 8024 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 8025 /* Enable the function in IGU */ 8026 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); 8027 } 8028 8029 bp->dmae_ready = 1; 8030 8031 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 8032 8033 bnx2x_clean_pglue_errors(bp); 8034 8035 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 8036 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 8037 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 8038 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 8039 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 8040 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 8041 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 8042 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 8043 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 8044 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 8045 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 8046 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 8047 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 8048 8049 if (!CHIP_IS_E1x(bp)) 8050 REG_WR(bp, QM_REG_PF_EN, 1); 8051 8052 if (!CHIP_IS_E1x(bp)) { 8053 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8054 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8055 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8056 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8057 } 8058 bnx2x_init_block(bp, BLOCK_QM, init_phase); 8059 8060 bnx2x_init_block(bp, BLOCK_TM, init_phase); 8061 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 8062 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */ 8063 8064 bnx2x_iov_init_dq(bp); 8065 8066 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 8067 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 8068 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 8069 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 8070 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 8071 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 8072 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 8073 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 8074 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 8075 if (!CHIP_IS_E1x(bp)) 8076 REG_WR(bp, PBF_REG_DISABLE_PF, 0); 8077 8078 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 8079 8080 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 8081 8082 if (!CHIP_IS_E1x(bp)) 8083 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); 8084 8085 if (IS_MF(bp)) { 8086 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) { 8087 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 8088 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, 8089 bp->mf_ov); 8090 } 8091 } 8092 8093 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 8094 8095 /* HC init per function */ 8096 if (bp->common.int_block == INT_BLOCK_HC) { 8097 if (CHIP_IS_E1H(bp)) { 8098 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8099 8100 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8101 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8102 } 8103 bnx2x_init_block(bp, BLOCK_HC, init_phase); 8104 8105 } else { 8106 int num_segs, sb_idx, prod_offset; 8107 8108 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8109 8110 if (!CHIP_IS_E1x(bp)) { 8111 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8112 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8113 } 8114 8115 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 8116 8117 if (!CHIP_IS_E1x(bp)) { 8118 int dsb_idx = 0; 8119 /** 8120 * Producer memory: 8121 * E2 mode: address 0-135 match to the mapping memory; 8122 * 136 - PF0 default prod; 137 - PF1 default prod; 8123 * 138 - PF2 default prod; 139 - PF3 default prod; 8124 * 140 - PF0 attn prod; 141 - PF1 attn prod; 8125 * 142 - PF2 attn prod; 143 - PF3 attn prod; 8126 * 144-147 reserved. 8127 * 8128 * E1.5 mode - In backward compatible mode; 8129 * for non default SB; each even line in the memory 8130 * holds the U producer and each odd line hold 8131 * the C producer. The first 128 producers are for 8132 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 8133 * producers are for the DSB for each PF. 8134 * Each PF has five segments: (the order inside each 8135 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 8136 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 8137 * 144-147 attn prods; 8138 */ 8139 /* non-default-status-blocks */ 8140 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8141 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 8142 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { 8143 prod_offset = (bp->igu_base_sb + sb_idx) * 8144 num_segs; 8145 8146 for (i = 0; i < num_segs; i++) { 8147 addr = IGU_REG_PROD_CONS_MEMORY + 8148 (prod_offset + i) * 4; 8149 REG_WR(bp, addr, 0); 8150 } 8151 /* send consumer update with value 0 */ 8152 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, 8153 USTORM_ID, 0, IGU_INT_NOP, 1); 8154 bnx2x_igu_clear_sb(bp, 8155 bp->igu_base_sb + sb_idx); 8156 } 8157 8158 /* default-status-blocks */ 8159 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8160 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 8161 8162 if (CHIP_MODE_IS_4_PORT(bp)) 8163 dsb_idx = BP_FUNC(bp); 8164 else 8165 dsb_idx = BP_VN(bp); 8166 8167 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? 8168 IGU_BC_BASE_DSB_PROD + dsb_idx : 8169 IGU_NORM_BASE_DSB_PROD + dsb_idx); 8170 8171 /* 8172 * igu prods come in chunks of E1HVN_MAX (4) - 8173 * does not matters what is the current chip mode 8174 */ 8175 for (i = 0; i < (num_segs * E1HVN_MAX); 8176 i += E1HVN_MAX) { 8177 addr = IGU_REG_PROD_CONS_MEMORY + 8178 (prod_offset + i)*4; 8179 REG_WR(bp, addr, 0); 8180 } 8181 /* send consumer update with 0 */ 8182 if (CHIP_INT_MODE_IS_BC(bp)) { 8183 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8184 USTORM_ID, 0, IGU_INT_NOP, 1); 8185 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8186 CSTORM_ID, 0, IGU_INT_NOP, 1); 8187 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8188 XSTORM_ID, 0, IGU_INT_NOP, 1); 8189 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8190 TSTORM_ID, 0, IGU_INT_NOP, 1); 8191 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8192 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8193 } else { 8194 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8195 USTORM_ID, 0, IGU_INT_NOP, 1); 8196 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8197 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8198 } 8199 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); 8200 8201 /* !!! These should become driver const once 8202 rf-tool supports split-68 const */ 8203 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 8204 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 8205 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 8206 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 8207 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 8208 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 8209 } 8210 } 8211 8212 /* Reset PCIE errors for debug */ 8213 REG_WR(bp, 0x2114, 0xffffffff); 8214 REG_WR(bp, 0x2120, 0xffffffff); 8215 8216 if (CHIP_IS_E1x(bp)) { 8217 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 8218 main_mem_base = HC_REG_MAIN_MEMORY + 8219 BP_PORT(bp) * (main_mem_size * 4); 8220 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 8221 main_mem_width = 8; 8222 8223 val = REG_RD(bp, main_mem_prty_clr); 8224 if (val) 8225 DP(NETIF_MSG_HW, 8226 "Hmmm... Parity errors in HC block during function init (0x%x)!\n", 8227 val); 8228 8229 /* Clear "false" parity errors in MSI-X table */ 8230 for (i = main_mem_base; 8231 i < main_mem_base + main_mem_size * 4; 8232 i += main_mem_width) { 8233 bnx2x_read_dmae(bp, i, main_mem_width / 4); 8234 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), 8235 i, main_mem_width / 4); 8236 } 8237 /* Clear HC parity attention */ 8238 REG_RD(bp, main_mem_prty_clr); 8239 } 8240 8241 #ifdef BNX2X_STOP_ON_ERROR 8242 /* Enable STORMs SP logging */ 8243 REG_WR8(bp, BAR_USTRORM_INTMEM + 8244 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8245 REG_WR8(bp, BAR_TSTRORM_INTMEM + 8246 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8247 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8248 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8249 REG_WR8(bp, BAR_XSTRORM_INTMEM + 8250 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8251 #endif 8252 8253 bnx2x_phy_probe(&bp->link_params); 8254 8255 return 0; 8256 } 8257 8258 void bnx2x_free_mem_cnic(struct bnx2x *bp) 8259 { 8260 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); 8261 8262 if (!CHIP_IS_E1x(bp)) 8263 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, 8264 sizeof(struct host_hc_status_block_e2)); 8265 else 8266 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, 8267 sizeof(struct host_hc_status_block_e1x)); 8268 8269 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8270 } 8271 8272 void bnx2x_free_mem(struct bnx2x *bp) 8273 { 8274 int i; 8275 8276 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 8277 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 8278 8279 if (IS_VF(bp)) 8280 return; 8281 8282 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, 8283 sizeof(struct host_sp_status_block)); 8284 8285 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, 8286 sizeof(struct bnx2x_slowpath)); 8287 8288 for (i = 0; i < L2_ILT_LINES(bp); i++) 8289 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, 8290 bp->context[i].size); 8291 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); 8292 8293 BNX2X_FREE(bp->ilt->lines); 8294 8295 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); 8296 8297 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, 8298 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8299 8300 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8301 8302 bnx2x_iov_free_mem(bp); 8303 } 8304 8305 int bnx2x_alloc_mem_cnic(struct bnx2x *bp) 8306 { 8307 if (!CHIP_IS_E1x(bp)) { 8308 /* size = the status block + ramrod buffers */ 8309 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8310 sizeof(struct host_hc_status_block_e2)); 8311 if (!bp->cnic_sb.e2_sb) 8312 goto alloc_mem_err; 8313 } else { 8314 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8315 sizeof(struct host_hc_status_block_e1x)); 8316 if (!bp->cnic_sb.e1x_sb) 8317 goto alloc_mem_err; 8318 } 8319 8320 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8321 /* allocate searcher T2 table, as it wasn't allocated before */ 8322 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8323 if (!bp->t2) 8324 goto alloc_mem_err; 8325 } 8326 8327 /* write address to which L5 should insert its values */ 8328 bp->cnic_eth_dev.addr_drv_info_to_mcp = 8329 &bp->slowpath->drv_info_to_mcp; 8330 8331 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) 8332 goto alloc_mem_err; 8333 8334 return 0; 8335 8336 alloc_mem_err: 8337 bnx2x_free_mem_cnic(bp); 8338 BNX2X_ERR("Can't allocate memory\n"); 8339 return -ENOMEM; 8340 } 8341 8342 int bnx2x_alloc_mem(struct bnx2x *bp) 8343 { 8344 int i, allocated, context_size; 8345 8346 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8347 /* allocate searcher T2 table */ 8348 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8349 if (!bp->t2) 8350 goto alloc_mem_err; 8351 } 8352 8353 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping, 8354 sizeof(struct host_sp_status_block)); 8355 if (!bp->def_status_blk) 8356 goto alloc_mem_err; 8357 8358 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping, 8359 sizeof(struct bnx2x_slowpath)); 8360 if (!bp->slowpath) 8361 goto alloc_mem_err; 8362 8363 /* Allocate memory for CDU context: 8364 * This memory is allocated separately and not in the generic ILT 8365 * functions because CDU differs in few aspects: 8366 * 1. There are multiple entities allocating memory for context - 8367 * 'regular' driver, CNIC and SRIOV driver. Each separately controls 8368 * its own ILT lines. 8369 * 2. Since CDU page-size is not a single 4KB page (which is the case 8370 * for the other ILT clients), to be efficient we want to support 8371 * allocation of sub-page-size in the last entry. 8372 * 3. Context pointers are used by the driver to pass to FW / update 8373 * the context (for the other ILT clients the pointers are used just to 8374 * free the memory during unload). 8375 */ 8376 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); 8377 8378 for (i = 0, allocated = 0; allocated < context_size; i++) { 8379 bp->context[i].size = min(CDU_ILT_PAGE_SZ, 8380 (context_size - allocated)); 8381 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping, 8382 bp->context[i].size); 8383 if (!bp->context[i].vcxt) 8384 goto alloc_mem_err; 8385 allocated += bp->context[i].size; 8386 } 8387 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line), 8388 GFP_KERNEL); 8389 if (!bp->ilt->lines) 8390 goto alloc_mem_err; 8391 8392 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) 8393 goto alloc_mem_err; 8394 8395 if (bnx2x_iov_alloc_mem(bp)) 8396 goto alloc_mem_err; 8397 8398 /* Slow path ring */ 8399 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE); 8400 if (!bp->spq) 8401 goto alloc_mem_err; 8402 8403 /* EQ */ 8404 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping, 8405 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8406 if (!bp->eq_ring) 8407 goto alloc_mem_err; 8408 8409 return 0; 8410 8411 alloc_mem_err: 8412 bnx2x_free_mem(bp); 8413 BNX2X_ERR("Can't allocate memory\n"); 8414 return -ENOMEM; 8415 } 8416 8417 /* 8418 * Init service functions 8419 */ 8420 8421 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 8422 struct bnx2x_vlan_mac_obj *obj, bool set, 8423 int mac_type, unsigned long *ramrod_flags) 8424 { 8425 int rc; 8426 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8427 8428 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8429 8430 /* Fill general parameters */ 8431 ramrod_param.vlan_mac_obj = obj; 8432 ramrod_param.ramrod_flags = *ramrod_flags; 8433 8434 /* Fill a user request section if needed */ 8435 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8436 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 8437 8438 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 8439 8440 /* Set the command: ADD or DEL */ 8441 if (set) 8442 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8443 else 8444 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8445 } 8446 8447 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8448 8449 if (rc == -EEXIST) { 8450 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8451 /* do not treat adding same MAC as error */ 8452 rc = 0; 8453 } else if (rc < 0) 8454 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); 8455 8456 return rc; 8457 } 8458 8459 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan, 8460 struct bnx2x_vlan_mac_obj *obj, bool set, 8461 unsigned long *ramrod_flags) 8462 { 8463 int rc; 8464 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8465 8466 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8467 8468 /* Fill general parameters */ 8469 ramrod_param.vlan_mac_obj = obj; 8470 ramrod_param.ramrod_flags = *ramrod_flags; 8471 8472 /* Fill a user request section if needed */ 8473 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8474 ramrod_param.user_req.u.vlan.vlan = vlan; 8475 /* Set the command: ADD or DEL */ 8476 if (set) 8477 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8478 else 8479 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8480 } 8481 8482 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8483 8484 if (rc == -EEXIST) { 8485 /* Do not treat adding same vlan as error. */ 8486 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8487 rc = 0; 8488 } else if (rc < 0) { 8489 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del")); 8490 } 8491 8492 return rc; 8493 } 8494 8495 int bnx2x_del_all_macs(struct bnx2x *bp, 8496 struct bnx2x_vlan_mac_obj *mac_obj, 8497 int mac_type, bool wait_for_comp) 8498 { 8499 int rc; 8500 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 8501 8502 /* Wait for completion of requested */ 8503 if (wait_for_comp) 8504 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8505 8506 /* Set the mac type of addresses we want to clear */ 8507 __set_bit(mac_type, &vlan_mac_flags); 8508 8509 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); 8510 if (rc < 0) 8511 BNX2X_ERR("Failed to delete MACs: %d\n", rc); 8512 8513 return rc; 8514 } 8515 8516 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) 8517 { 8518 if (IS_PF(bp)) { 8519 unsigned long ramrod_flags = 0; 8520 8521 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); 8522 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8523 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, 8524 &bp->sp_objs->mac_obj, set, 8525 BNX2X_ETH_MAC, &ramrod_flags); 8526 } else { /* vf */ 8527 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, 8528 bp->fp->index, set); 8529 } 8530 } 8531 8532 int bnx2x_setup_leading(struct bnx2x *bp) 8533 { 8534 if (IS_PF(bp)) 8535 return bnx2x_setup_queue(bp, &bp->fp[0], true); 8536 else /* VF */ 8537 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true); 8538 } 8539 8540 /** 8541 * bnx2x_set_int_mode - configure interrupt mode 8542 * 8543 * @bp: driver handle 8544 * 8545 * In case of MSI-X it will also try to enable MSI-X. 8546 */ 8547 int bnx2x_set_int_mode(struct bnx2x *bp) 8548 { 8549 int rc = 0; 8550 8551 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) { 8552 BNX2X_ERR("VF not loaded since interrupt mode not msix\n"); 8553 return -EINVAL; 8554 } 8555 8556 switch (int_mode) { 8557 case BNX2X_INT_MODE_MSIX: 8558 /* attempt to enable msix */ 8559 rc = bnx2x_enable_msix(bp); 8560 8561 /* msix attained */ 8562 if (!rc) 8563 return 0; 8564 8565 /* vfs use only msix */ 8566 if (rc && IS_VF(bp)) 8567 return rc; 8568 8569 /* failed to enable multiple MSI-X */ 8570 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", 8571 bp->num_queues, 8572 1 + bp->num_cnic_queues); 8573 8574 /* fall through */ 8575 case BNX2X_INT_MODE_MSI: 8576 bnx2x_enable_msi(bp); 8577 8578 /* fall through */ 8579 case BNX2X_INT_MODE_INTX: 8580 bp->num_ethernet_queues = 1; 8581 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 8582 BNX2X_DEV_INFO("set number of queues to 1\n"); 8583 break; 8584 default: 8585 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); 8586 return -EINVAL; 8587 } 8588 return 0; 8589 } 8590 8591 /* must be called prior to any HW initializations */ 8592 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) 8593 { 8594 if (IS_SRIOV(bp)) 8595 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; 8596 return L2_ILT_LINES(bp); 8597 } 8598 8599 void bnx2x_ilt_set_info(struct bnx2x *bp) 8600 { 8601 struct ilt_client_info *ilt_client; 8602 struct bnx2x_ilt *ilt = BP_ILT(bp); 8603 u16 line = 0; 8604 8605 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); 8606 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); 8607 8608 /* CDU */ 8609 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 8610 ilt_client->client_num = ILT_CLIENT_CDU; 8611 ilt_client->page_size = CDU_ILT_PAGE_SZ; 8612 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 8613 ilt_client->start = line; 8614 line += bnx2x_cid_ilt_lines(bp); 8615 8616 if (CNIC_SUPPORT(bp)) 8617 line += CNIC_ILT_LINES; 8618 ilt_client->end = line - 1; 8619 8620 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8621 ilt_client->start, 8622 ilt_client->end, 8623 ilt_client->page_size, 8624 ilt_client->flags, 8625 ilog2(ilt_client->page_size >> 12)); 8626 8627 /* QM */ 8628 if (QM_INIT(bp->qm_cid_count)) { 8629 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 8630 ilt_client->client_num = ILT_CLIENT_QM; 8631 ilt_client->page_size = QM_ILT_PAGE_SZ; 8632 ilt_client->flags = 0; 8633 ilt_client->start = line; 8634 8635 /* 4 bytes for each cid */ 8636 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 8637 QM_ILT_PAGE_SZ); 8638 8639 ilt_client->end = line - 1; 8640 8641 DP(NETIF_MSG_IFUP, 8642 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8643 ilt_client->start, 8644 ilt_client->end, 8645 ilt_client->page_size, 8646 ilt_client->flags, 8647 ilog2(ilt_client->page_size >> 12)); 8648 } 8649 8650 if (CNIC_SUPPORT(bp)) { 8651 /* SRC */ 8652 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 8653 ilt_client->client_num = ILT_CLIENT_SRC; 8654 ilt_client->page_size = SRC_ILT_PAGE_SZ; 8655 ilt_client->flags = 0; 8656 ilt_client->start = line; 8657 line += SRC_ILT_LINES; 8658 ilt_client->end = line - 1; 8659 8660 DP(NETIF_MSG_IFUP, 8661 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8662 ilt_client->start, 8663 ilt_client->end, 8664 ilt_client->page_size, 8665 ilt_client->flags, 8666 ilog2(ilt_client->page_size >> 12)); 8667 8668 /* TM */ 8669 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 8670 ilt_client->client_num = ILT_CLIENT_TM; 8671 ilt_client->page_size = TM_ILT_PAGE_SZ; 8672 ilt_client->flags = 0; 8673 ilt_client->start = line; 8674 line += TM_ILT_LINES; 8675 ilt_client->end = line - 1; 8676 8677 DP(NETIF_MSG_IFUP, 8678 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8679 ilt_client->start, 8680 ilt_client->end, 8681 ilt_client->page_size, 8682 ilt_client->flags, 8683 ilog2(ilt_client->page_size >> 12)); 8684 } 8685 8686 BUG_ON(line > ILT_MAX_LINES); 8687 } 8688 8689 /** 8690 * bnx2x_pf_q_prep_init - prepare INIT transition parameters 8691 * 8692 * @bp: driver handle 8693 * @fp: pointer to fastpath 8694 * @init_params: pointer to parameters structure 8695 * 8696 * parameters configured: 8697 * - HC configuration 8698 * - Queue's CDU context 8699 */ 8700 static void bnx2x_pf_q_prep_init(struct bnx2x *bp, 8701 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) 8702 { 8703 u8 cos; 8704 int cxt_index, cxt_offset; 8705 8706 /* FCoE Queue uses Default SB, thus has no HC capabilities */ 8707 if (!IS_FCOE_FP(fp)) { 8708 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); 8709 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); 8710 8711 /* If HC is supported, enable host coalescing in the transition 8712 * to INIT state. 8713 */ 8714 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); 8715 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); 8716 8717 /* HC rate */ 8718 init_params->rx.hc_rate = bp->rx_ticks ? 8719 (1000000 / bp->rx_ticks) : 0; 8720 init_params->tx.hc_rate = bp->tx_ticks ? 8721 (1000000 / bp->tx_ticks) : 0; 8722 8723 /* FW SB ID */ 8724 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = 8725 fp->fw_sb_id; 8726 8727 /* 8728 * CQ index among the SB indices: FCoE clients uses the default 8729 * SB, therefore it's different. 8730 */ 8731 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 8732 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 8733 } 8734 8735 /* set maximum number of COSs supported by this queue */ 8736 init_params->max_cos = fp->max_cos; 8737 8738 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", 8739 fp->index, init_params->max_cos); 8740 8741 /* set the context pointers queue object */ 8742 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 8743 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; 8744 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * 8745 ILT_PAGE_CIDS); 8746 init_params->cxts[cos] = 8747 &bp->context[cxt_index].vcxt[cxt_offset].eth; 8748 } 8749 } 8750 8751 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8752 struct bnx2x_queue_state_params *q_params, 8753 struct bnx2x_queue_setup_tx_only_params *tx_only_params, 8754 int tx_index, bool leading) 8755 { 8756 memset(tx_only_params, 0, sizeof(*tx_only_params)); 8757 8758 /* Set the command */ 8759 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 8760 8761 /* Set tx-only QUEUE flags: don't zero statistics */ 8762 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); 8763 8764 /* choose the index of the cid to send the slow path on */ 8765 tx_only_params->cid_index = tx_index; 8766 8767 /* Set general TX_ONLY_SETUP parameters */ 8768 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); 8769 8770 /* Set Tx TX_ONLY_SETUP parameters */ 8771 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); 8772 8773 DP(NETIF_MSG_IFUP, 8774 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", 8775 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], 8776 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, 8777 tx_only_params->gen_params.spcl_id, tx_only_params->flags); 8778 8779 /* send the ramrod */ 8780 return bnx2x_queue_state_change(bp, q_params); 8781 } 8782 8783 /** 8784 * bnx2x_setup_queue - setup queue 8785 * 8786 * @bp: driver handle 8787 * @fp: pointer to fastpath 8788 * @leading: is leading 8789 * 8790 * This function performs 2 steps in a Queue state machine 8791 * actually: 1) RESET->INIT 2) INIT->SETUP 8792 */ 8793 8794 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8795 bool leading) 8796 { 8797 struct bnx2x_queue_state_params q_params = {NULL}; 8798 struct bnx2x_queue_setup_params *setup_params = 8799 &q_params.params.setup; 8800 struct bnx2x_queue_setup_tx_only_params *tx_only_params = 8801 &q_params.params.tx_only; 8802 int rc; 8803 u8 tx_index; 8804 8805 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); 8806 8807 /* reset IGU state skip FCoE L2 queue */ 8808 if (!IS_FCOE_FP(fp)) 8809 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, 8810 IGU_INT_ENABLE, 0); 8811 8812 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8813 /* We want to wait for completion in this context */ 8814 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8815 8816 /* Prepare the INIT parameters */ 8817 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); 8818 8819 /* Set the command */ 8820 q_params.cmd = BNX2X_Q_CMD_INIT; 8821 8822 /* Change the state to INIT */ 8823 rc = bnx2x_queue_state_change(bp, &q_params); 8824 if (rc) { 8825 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); 8826 return rc; 8827 } 8828 8829 DP(NETIF_MSG_IFUP, "init complete\n"); 8830 8831 /* Now move the Queue to the SETUP state... */ 8832 memset(setup_params, 0, sizeof(*setup_params)); 8833 8834 /* Set QUEUE flags */ 8835 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); 8836 8837 /* Set general SETUP parameters */ 8838 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, 8839 FIRST_TX_COS_INDEX); 8840 8841 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, 8842 &setup_params->rxq_params); 8843 8844 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, 8845 FIRST_TX_COS_INDEX); 8846 8847 /* Set the command */ 8848 q_params.cmd = BNX2X_Q_CMD_SETUP; 8849 8850 if (IS_FCOE_FP(fp)) 8851 bp->fcoe_init = true; 8852 8853 /* Change the state to SETUP */ 8854 rc = bnx2x_queue_state_change(bp, &q_params); 8855 if (rc) { 8856 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); 8857 return rc; 8858 } 8859 8860 /* loop through the relevant tx-only indices */ 8861 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8862 tx_index < fp->max_cos; 8863 tx_index++) { 8864 8865 /* prepare and send tx-only ramrod*/ 8866 rc = bnx2x_setup_tx_only(bp, fp, &q_params, 8867 tx_only_params, tx_index, leading); 8868 if (rc) { 8869 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", 8870 fp->index, tx_index); 8871 return rc; 8872 } 8873 } 8874 8875 return rc; 8876 } 8877 8878 static int bnx2x_stop_queue(struct bnx2x *bp, int index) 8879 { 8880 struct bnx2x_fastpath *fp = &bp->fp[index]; 8881 struct bnx2x_fp_txdata *txdata; 8882 struct bnx2x_queue_state_params q_params = {NULL}; 8883 int rc, tx_index; 8884 8885 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); 8886 8887 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8888 /* We want to wait for completion in this context */ 8889 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8890 8891 /* close tx-only connections */ 8892 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8893 tx_index < fp->max_cos; 8894 tx_index++){ 8895 8896 /* ascertain this is a normal queue*/ 8897 txdata = fp->txdata_ptr[tx_index]; 8898 8899 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", 8900 txdata->txq_index); 8901 8902 /* send halt terminate on tx-only connection */ 8903 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8904 memset(&q_params.params.terminate, 0, 8905 sizeof(q_params.params.terminate)); 8906 q_params.params.terminate.cid_index = tx_index; 8907 8908 rc = bnx2x_queue_state_change(bp, &q_params); 8909 if (rc) 8910 return rc; 8911 8912 /* send halt terminate on tx-only connection */ 8913 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8914 memset(&q_params.params.cfc_del, 0, 8915 sizeof(q_params.params.cfc_del)); 8916 q_params.params.cfc_del.cid_index = tx_index; 8917 rc = bnx2x_queue_state_change(bp, &q_params); 8918 if (rc) 8919 return rc; 8920 } 8921 /* Stop the primary connection: */ 8922 /* ...halt the connection */ 8923 q_params.cmd = BNX2X_Q_CMD_HALT; 8924 rc = bnx2x_queue_state_change(bp, &q_params); 8925 if (rc) 8926 return rc; 8927 8928 /* ...terminate the connection */ 8929 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8930 memset(&q_params.params.terminate, 0, 8931 sizeof(q_params.params.terminate)); 8932 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 8933 rc = bnx2x_queue_state_change(bp, &q_params); 8934 if (rc) 8935 return rc; 8936 /* ...delete cfc entry */ 8937 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8938 memset(&q_params.params.cfc_del, 0, 8939 sizeof(q_params.params.cfc_del)); 8940 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 8941 return bnx2x_queue_state_change(bp, &q_params); 8942 } 8943 8944 static void bnx2x_reset_func(struct bnx2x *bp) 8945 { 8946 int port = BP_PORT(bp); 8947 int func = BP_FUNC(bp); 8948 int i; 8949 8950 /* Disable the function in the FW */ 8951 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 8952 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 8953 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 8954 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 8955 8956 /* FP SBs */ 8957 for_each_eth_queue(bp, i) { 8958 struct bnx2x_fastpath *fp = &bp->fp[i]; 8959 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8960 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 8961 SB_DISABLED); 8962 } 8963 8964 if (CNIC_LOADED(bp)) 8965 /* CNIC SB */ 8966 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8967 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 8968 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); 8969 8970 /* SP SB */ 8971 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8972 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 8973 SB_DISABLED); 8974 8975 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) 8976 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 8977 0); 8978 8979 /* Configure IGU */ 8980 if (bp->common.int_block == INT_BLOCK_HC) { 8981 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8982 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8983 } else { 8984 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8985 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8986 } 8987 8988 if (CNIC_LOADED(bp)) { 8989 /* Disable Timer scan */ 8990 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 8991 /* 8992 * Wait for at least 10ms and up to 2 second for the timers 8993 * scan to complete 8994 */ 8995 for (i = 0; i < 200; i++) { 8996 usleep_range(10000, 20000); 8997 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) 8998 break; 8999 } 9000 } 9001 /* Clear ILT */ 9002 bnx2x_clear_func_ilt(bp, func); 9003 9004 /* Timers workaround bug for E2: if this is vnic-3, 9005 * we need to set the entire ilt range for this timers. 9006 */ 9007 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { 9008 struct ilt_client_info ilt_cli; 9009 /* use dummy TM client */ 9010 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 9011 ilt_cli.start = 0; 9012 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 9013 ilt_cli.client_num = ILT_CLIENT_TM; 9014 9015 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); 9016 } 9017 9018 /* this assumes that reset_port() called before reset_func()*/ 9019 if (!CHIP_IS_E1x(bp)) 9020 bnx2x_pf_disable(bp); 9021 9022 bp->dmae_ready = 0; 9023 } 9024 9025 static void bnx2x_reset_port(struct bnx2x *bp) 9026 { 9027 int port = BP_PORT(bp); 9028 u32 val; 9029 9030 /* Reset physical Link */ 9031 bnx2x__link_reset(bp); 9032 9033 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 9034 9035 /* Do not rcv packets to BRB */ 9036 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 9037 /* Do not direct rcv packets that are not for MCP to the BRB */ 9038 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 9039 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 9040 9041 /* Configure AEU */ 9042 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 9043 9044 msleep(100); 9045 /* Check for BRB port occupancy */ 9046 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 9047 if (val) 9048 DP(NETIF_MSG_IFDOWN, 9049 "BRB1 is not empty %d blocks are occupied\n", val); 9050 9051 /* TODO: Close Doorbell port? */ 9052 } 9053 9054 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) 9055 { 9056 struct bnx2x_func_state_params func_params = {NULL}; 9057 9058 /* Prepare parameters for function state transitions */ 9059 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9060 9061 func_params.f_obj = &bp->func_obj; 9062 func_params.cmd = BNX2X_F_CMD_HW_RESET; 9063 9064 func_params.params.hw_init.load_phase = load_code; 9065 9066 return bnx2x_func_state_change(bp, &func_params); 9067 } 9068 9069 static int bnx2x_func_stop(struct bnx2x *bp) 9070 { 9071 struct bnx2x_func_state_params func_params = {NULL}; 9072 int rc; 9073 9074 /* Prepare parameters for function state transitions */ 9075 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9076 func_params.f_obj = &bp->func_obj; 9077 func_params.cmd = BNX2X_F_CMD_STOP; 9078 9079 /* 9080 * Try to stop the function the 'good way'. If fails (in case 9081 * of a parity error during bnx2x_chip_cleanup()) and we are 9082 * not in a debug mode, perform a state transaction in order to 9083 * enable further HW_RESET transaction. 9084 */ 9085 rc = bnx2x_func_state_change(bp, &func_params); 9086 if (rc) { 9087 #ifdef BNX2X_STOP_ON_ERROR 9088 return rc; 9089 #else 9090 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); 9091 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 9092 return bnx2x_func_state_change(bp, &func_params); 9093 #endif 9094 } 9095 9096 return 0; 9097 } 9098 9099 /** 9100 * bnx2x_send_unload_req - request unload mode from the MCP. 9101 * 9102 * @bp: driver handle 9103 * @unload_mode: requested function's unload mode 9104 * 9105 * Return unload mode returned by the MCP: COMMON, PORT or FUNC. 9106 */ 9107 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) 9108 { 9109 u32 reset_code = 0; 9110 int port = BP_PORT(bp); 9111 9112 /* Select the UNLOAD request mode */ 9113 if (unload_mode == UNLOAD_NORMAL) 9114 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9115 9116 else if (bp->flags & NO_WOL_FLAG) 9117 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 9118 9119 else if (bp->wol) { 9120 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 9121 u8 *mac_addr = bp->dev->dev_addr; 9122 struct pci_dev *pdev = bp->pdev; 9123 u32 val; 9124 u16 pmc; 9125 9126 /* The mac address is written to entries 1-4 to 9127 * preserve entry 0 which is used by the PMF 9128 */ 9129 u8 entry = (BP_VN(bp) + 1)*8; 9130 9131 val = (mac_addr[0] << 8) | mac_addr[1]; 9132 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); 9133 9134 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 9135 (mac_addr[4] << 8) | mac_addr[5]; 9136 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 9137 9138 /* Enable the PME and clear the status */ 9139 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc); 9140 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; 9141 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc); 9142 9143 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 9144 9145 } else 9146 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9147 9148 /* Send the request to the MCP */ 9149 if (!BP_NOMCP(bp)) 9150 reset_code = bnx2x_fw_command(bp, reset_code, 0); 9151 else { 9152 int path = BP_PATH(bp); 9153 9154 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", 9155 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9156 bnx2x_load_count[path][2]); 9157 bnx2x_load_count[path][0]--; 9158 bnx2x_load_count[path][1 + port]--; 9159 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", 9160 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9161 bnx2x_load_count[path][2]); 9162 if (bnx2x_load_count[path][0] == 0) 9163 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; 9164 else if (bnx2x_load_count[path][1 + port] == 0) 9165 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; 9166 else 9167 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; 9168 } 9169 9170 return reset_code; 9171 } 9172 9173 /** 9174 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. 9175 * 9176 * @bp: driver handle 9177 * @keep_link: true iff link should be kept up 9178 */ 9179 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) 9180 { 9181 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 9182 9183 /* Report UNLOAD_DONE to MCP */ 9184 if (!BP_NOMCP(bp)) 9185 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 9186 } 9187 9188 static int bnx2x_func_wait_started(struct bnx2x *bp) 9189 { 9190 int tout = 50; 9191 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 9192 9193 if (!bp->port.pmf) 9194 return 0; 9195 9196 /* 9197 * (assumption: No Attention from MCP at this stage) 9198 * PMF probably in the middle of TX disable/enable transaction 9199 * 1. Sync IRS for default SB 9200 * 2. Sync SP queue - this guarantees us that attention handling started 9201 * 3. Wait, that TX disable/enable transaction completes 9202 * 9203 * 1+2 guarantee that if DCBx attention was scheduled it already changed 9204 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 9205 * received completion for the transaction the state is TX_STOPPED. 9206 * State will return to STARTED after completion of TX_STOPPED-->STARTED 9207 * transaction. 9208 */ 9209 9210 /* make sure default SB ISR is done */ 9211 if (msix) 9212 synchronize_irq(bp->msix_table[0].vector); 9213 else 9214 synchronize_irq(bp->pdev->irq); 9215 9216 flush_workqueue(bnx2x_wq); 9217 flush_workqueue(bnx2x_iov_wq); 9218 9219 while (bnx2x_func_get_state(bp, &bp->func_obj) != 9220 BNX2X_F_STATE_STARTED && tout--) 9221 msleep(20); 9222 9223 if (bnx2x_func_get_state(bp, &bp->func_obj) != 9224 BNX2X_F_STATE_STARTED) { 9225 #ifdef BNX2X_STOP_ON_ERROR 9226 BNX2X_ERR("Wrong function state\n"); 9227 return -EBUSY; 9228 #else 9229 /* 9230 * Failed to complete the transaction in a "good way" 9231 * Force both transactions with CLR bit 9232 */ 9233 struct bnx2x_func_state_params func_params = {NULL}; 9234 9235 DP(NETIF_MSG_IFDOWN, 9236 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n"); 9237 9238 func_params.f_obj = &bp->func_obj; 9239 __set_bit(RAMROD_DRV_CLR_ONLY, 9240 &func_params.ramrod_flags); 9241 9242 /* STARTED-->TX_ST0PPED */ 9243 func_params.cmd = BNX2X_F_CMD_TX_STOP; 9244 bnx2x_func_state_change(bp, &func_params); 9245 9246 /* TX_ST0PPED-->STARTED */ 9247 func_params.cmd = BNX2X_F_CMD_TX_START; 9248 return bnx2x_func_state_change(bp, &func_params); 9249 #endif 9250 } 9251 9252 return 0; 9253 } 9254 9255 static void bnx2x_disable_ptp(struct bnx2x *bp) 9256 { 9257 int port = BP_PORT(bp); 9258 9259 /* Disable sending PTP packets to host */ 9260 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 9261 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 9262 9263 /* Reset PTP event detection rules */ 9264 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 9265 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 9266 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 9267 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 9268 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 9269 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 9270 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 9271 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 9272 9273 /* Disable the PTP feature */ 9274 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 9275 NIG_REG_P0_PTP_EN, 0x0); 9276 } 9277 9278 /* Called during unload, to stop PTP-related stuff */ 9279 static void bnx2x_stop_ptp(struct bnx2x *bp) 9280 { 9281 /* Cancel PTP work queue. Should be done after the Tx queues are 9282 * drained to prevent additional scheduling. 9283 */ 9284 cancel_work_sync(&bp->ptp_task); 9285 9286 if (bp->ptp_tx_skb) { 9287 dev_kfree_skb_any(bp->ptp_tx_skb); 9288 bp->ptp_tx_skb = NULL; 9289 } 9290 9291 /* Disable PTP in HW */ 9292 bnx2x_disable_ptp(bp); 9293 9294 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n"); 9295 } 9296 9297 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) 9298 { 9299 int port = BP_PORT(bp); 9300 int i, rc = 0; 9301 u8 cos; 9302 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 9303 u32 reset_code; 9304 9305 /* Wait until tx fastpath tasks complete */ 9306 for_each_tx_queue(bp, i) { 9307 struct bnx2x_fastpath *fp = &bp->fp[i]; 9308 9309 for_each_cos_in_tx_queue(fp, cos) 9310 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 9311 #ifdef BNX2X_STOP_ON_ERROR 9312 if (rc) 9313 return; 9314 #endif 9315 } 9316 9317 /* Give HW time to discard old tx messages */ 9318 usleep_range(1000, 2000); 9319 9320 /* Clean all ETH MACs */ 9321 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, 9322 false); 9323 if (rc < 0) 9324 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); 9325 9326 /* Clean up UC list */ 9327 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, 9328 true); 9329 if (rc < 0) 9330 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", 9331 rc); 9332 9333 /* Disable LLH */ 9334 if (!CHIP_IS_E1(bp)) 9335 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 9336 9337 /* Set "drop all" (stop Rx). 9338 * We need to take a netif_addr_lock() here in order to prevent 9339 * a race between the completion code and this code. 9340 */ 9341 netif_addr_lock_bh(bp->dev); 9342 /* Schedule the rx_mode command */ 9343 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 9344 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 9345 else if (bp->slowpath) 9346 bnx2x_set_storm_rx_mode(bp); 9347 9348 /* Cleanup multicast configuration */ 9349 rparam.mcast_obj = &bp->mcast_obj; 9350 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 9351 if (rc < 0) 9352 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); 9353 9354 netif_addr_unlock_bh(bp->dev); 9355 9356 bnx2x_iov_chip_cleanup(bp); 9357 9358 /* 9359 * Send the UNLOAD_REQUEST to the MCP. This will return if 9360 * this function should perform FUNC, PORT or COMMON HW 9361 * reset. 9362 */ 9363 reset_code = bnx2x_send_unload_req(bp, unload_mode); 9364 9365 /* 9366 * (assumption: No Attention from MCP at this stage) 9367 * PMF probably in the middle of TX disable/enable transaction 9368 */ 9369 rc = bnx2x_func_wait_started(bp); 9370 if (rc) { 9371 BNX2X_ERR("bnx2x_func_wait_started failed\n"); 9372 #ifdef BNX2X_STOP_ON_ERROR 9373 return; 9374 #endif 9375 } 9376 9377 /* Close multi and leading connections 9378 * Completions for ramrods are collected in a synchronous way 9379 */ 9380 for_each_eth_queue(bp, i) 9381 if (bnx2x_stop_queue(bp, i)) 9382 #ifdef BNX2X_STOP_ON_ERROR 9383 return; 9384 #else 9385 goto unload_error; 9386 #endif 9387 9388 if (CNIC_LOADED(bp)) { 9389 for_each_cnic_queue(bp, i) 9390 if (bnx2x_stop_queue(bp, i)) 9391 #ifdef BNX2X_STOP_ON_ERROR 9392 return; 9393 #else 9394 goto unload_error; 9395 #endif 9396 } 9397 9398 /* If SP settings didn't get completed so far - something 9399 * very wrong has happen. 9400 */ 9401 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) 9402 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); 9403 9404 #ifndef BNX2X_STOP_ON_ERROR 9405 unload_error: 9406 #endif 9407 rc = bnx2x_func_stop(bp); 9408 if (rc) { 9409 BNX2X_ERR("Function stop failed!\n"); 9410 #ifdef BNX2X_STOP_ON_ERROR 9411 return; 9412 #endif 9413 } 9414 9415 /* stop_ptp should be after the Tx queues are drained to prevent 9416 * scheduling to the cancelled PTP work queue. It should also be after 9417 * function stop ramrod is sent, since as part of this ramrod FW access 9418 * PTP registers. 9419 */ 9420 if (bp->flags & PTP_SUPPORTED) 9421 bnx2x_stop_ptp(bp); 9422 9423 /* Disable HW interrupts, NAPI */ 9424 bnx2x_netif_stop(bp, 1); 9425 /* Delete all NAPI objects */ 9426 bnx2x_del_all_napi(bp); 9427 if (CNIC_LOADED(bp)) 9428 bnx2x_del_all_napi_cnic(bp); 9429 9430 /* Release IRQs */ 9431 bnx2x_free_irq(bp); 9432 9433 /* Reset the chip, unless PCI function is offline. If we reach this 9434 * point following a PCI error handling, it means device is really 9435 * in a bad state and we're about to remove it, so reset the chip 9436 * is not a good idea. 9437 */ 9438 if (!pci_channel_offline(bp->pdev)) { 9439 rc = bnx2x_reset_hw(bp, reset_code); 9440 if (rc) 9441 BNX2X_ERR("HW_RESET failed\n"); 9442 } 9443 9444 /* Report UNLOAD_DONE to MCP */ 9445 bnx2x_send_unload_done(bp, keep_link); 9446 } 9447 9448 void bnx2x_disable_close_the_gate(struct bnx2x *bp) 9449 { 9450 u32 val; 9451 9452 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); 9453 9454 if (CHIP_IS_E1(bp)) { 9455 int port = BP_PORT(bp); 9456 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 9457 MISC_REG_AEU_MASK_ATTN_FUNC_0; 9458 9459 val = REG_RD(bp, addr); 9460 val &= ~(0x300); 9461 REG_WR(bp, addr, val); 9462 } else { 9463 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); 9464 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 9465 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 9466 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); 9467 } 9468 } 9469 9470 /* Close gates #2, #3 and #4: */ 9471 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) 9472 { 9473 u32 val; 9474 9475 /* Gates #2 and #4a are closed/opened for "not E1" only */ 9476 if (!CHIP_IS_E1(bp)) { 9477 /* #4 */ 9478 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 9479 /* #2 */ 9480 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 9481 } 9482 9483 /* #3 */ 9484 if (CHIP_IS_E1x(bp)) { 9485 /* Prevent interrupts from HC on both ports */ 9486 val = REG_RD(bp, HC_REG_CONFIG_1); 9487 REG_WR(bp, HC_REG_CONFIG_1, 9488 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 9489 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 9490 9491 val = REG_RD(bp, HC_REG_CONFIG_0); 9492 REG_WR(bp, HC_REG_CONFIG_0, 9493 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 9494 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 9495 } else { 9496 /* Prevent incoming interrupts in IGU */ 9497 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 9498 9499 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, 9500 (!close) ? 9501 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 9502 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 9503 } 9504 9505 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", 9506 close ? "closing" : "opening"); 9507 mmiowb(); 9508 } 9509 9510 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ 9511 9512 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) 9513 { 9514 /* Do some magic... */ 9515 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9516 *magic_val = val & SHARED_MF_CLP_MAGIC; 9517 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 9518 } 9519 9520 /** 9521 * bnx2x_clp_reset_done - restore the value of the `magic' bit. 9522 * 9523 * @bp: driver handle 9524 * @magic_val: old value of the `magic' bit. 9525 */ 9526 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) 9527 { 9528 /* Restore the `magic' bit value... */ 9529 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9530 MF_CFG_WR(bp, shared_mf_config.clp_mb, 9531 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 9532 } 9533 9534 /** 9535 * bnx2x_reset_mcp_prep - prepare for MCP reset. 9536 * 9537 * @bp: driver handle 9538 * @magic_val: old value of 'magic' bit. 9539 * 9540 * Takes care of CLP configurations. 9541 */ 9542 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) 9543 { 9544 u32 shmem; 9545 u32 validity_offset; 9546 9547 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); 9548 9549 /* Set `magic' bit in order to save MF config */ 9550 if (!CHIP_IS_E1(bp)) 9551 bnx2x_clp_reset_prep(bp, magic_val); 9552 9553 /* Get shmem offset */ 9554 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9555 validity_offset = 9556 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); 9557 9558 /* Clear validity map flags */ 9559 if (shmem > 0) 9560 REG_WR(bp, shmem + validity_offset, 0); 9561 } 9562 9563 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 9564 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 9565 9566 /** 9567 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT 9568 * 9569 * @bp: driver handle 9570 */ 9571 static void bnx2x_mcp_wait_one(struct bnx2x *bp) 9572 { 9573 /* special handling for emulation and FPGA, 9574 wait 10 times longer */ 9575 if (CHIP_REV_IS_SLOW(bp)) 9576 msleep(MCP_ONE_TIMEOUT*10); 9577 else 9578 msleep(MCP_ONE_TIMEOUT); 9579 } 9580 9581 /* 9582 * initializes bp->common.shmem_base and waits for validity signature to appear 9583 */ 9584 static int bnx2x_init_shmem(struct bnx2x *bp) 9585 { 9586 int cnt = 0; 9587 u32 val = 0; 9588 9589 do { 9590 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9591 9592 /* If we read all 0xFFs, means we are in PCI error state and 9593 * should bail out to avoid crashes on adapter's FW reads. 9594 */ 9595 if (bp->common.shmem_base == 0xFFFFFFFF) { 9596 bp->flags |= NO_MCP_FLAG; 9597 return -ENODEV; 9598 } 9599 9600 if (bp->common.shmem_base) { 9601 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); 9602 if (val & SHR_MEM_VALIDITY_MB) 9603 return 0; 9604 } 9605 9606 bnx2x_mcp_wait_one(bp); 9607 9608 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 9609 9610 BNX2X_ERR("BAD MCP validity signature\n"); 9611 9612 return -ENODEV; 9613 } 9614 9615 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) 9616 { 9617 int rc = bnx2x_init_shmem(bp); 9618 9619 /* Restore the `magic' bit value */ 9620 if (!CHIP_IS_E1(bp)) 9621 bnx2x_clp_reset_done(bp, magic_val); 9622 9623 return rc; 9624 } 9625 9626 static void bnx2x_pxp_prep(struct bnx2x *bp) 9627 { 9628 if (!CHIP_IS_E1(bp)) { 9629 REG_WR(bp, PXP2_REG_RD_START_INIT, 0); 9630 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); 9631 mmiowb(); 9632 } 9633 } 9634 9635 /* 9636 * Reset the whole chip except for: 9637 * - PCIE core 9638 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by 9639 * one reset bit) 9640 * - IGU 9641 * - MISC (including AEU) 9642 * - GRC 9643 * - RBCN, RBCP 9644 */ 9645 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) 9646 { 9647 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 9648 u32 global_bits2, stay_reset2; 9649 9650 /* 9651 * Bits that have to be set in reset_mask2 if we want to reset 'global' 9652 * (per chip) blocks. 9653 */ 9654 global_bits2 = 9655 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 9656 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 9657 9658 /* Don't reset the following blocks. 9659 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 9660 * reset, as in 4 port device they might still be owned 9661 * by the MCP (there is only one leader per path). 9662 */ 9663 not_reset_mask1 = 9664 MISC_REGISTERS_RESET_REG_1_RST_HC | 9665 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 9666 MISC_REGISTERS_RESET_REG_1_RST_PXP; 9667 9668 not_reset_mask2 = 9669 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 9670 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 9671 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 9672 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 9673 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 9674 MISC_REGISTERS_RESET_REG_2_RST_GRC | 9675 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 9676 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 9677 MISC_REGISTERS_RESET_REG_2_RST_ATC | 9678 MISC_REGISTERS_RESET_REG_2_PGLC | 9679 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 9680 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 9681 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 9682 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 9683 MISC_REGISTERS_RESET_REG_2_UMAC0 | 9684 MISC_REGISTERS_RESET_REG_2_UMAC1; 9685 9686 /* 9687 * Keep the following blocks in reset: 9688 * - all xxMACs are handled by the bnx2x_link code. 9689 */ 9690 stay_reset2 = 9691 MISC_REGISTERS_RESET_REG_2_XMAC | 9692 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 9693 9694 /* Full reset masks according to the chip */ 9695 reset_mask1 = 0xffffffff; 9696 9697 if (CHIP_IS_E1(bp)) 9698 reset_mask2 = 0xffff; 9699 else if (CHIP_IS_E1H(bp)) 9700 reset_mask2 = 0x1ffff; 9701 else if (CHIP_IS_E2(bp)) 9702 reset_mask2 = 0xfffff; 9703 else /* CHIP_IS_E3 */ 9704 reset_mask2 = 0x3ffffff; 9705 9706 /* Don't reset global blocks unless we need to */ 9707 if (!global) 9708 reset_mask2 &= ~global_bits2; 9709 9710 /* 9711 * In case of attention in the QM, we need to reset PXP 9712 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 9713 * because otherwise QM reset would release 'close the gates' shortly 9714 * before resetting the PXP, then the PSWRQ would send a write 9715 * request to PGLUE. Then when PXP is reset, PGLUE would try to 9716 * read the payload data from PSWWR, but PSWWR would not 9717 * respond. The write queue in PGLUE would stuck, dmae commands 9718 * would not return. Therefore it's important to reset the second 9719 * reset register (containing the 9720 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 9721 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 9722 * bit). 9723 */ 9724 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 9725 reset_mask2 & (~not_reset_mask2)); 9726 9727 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 9728 reset_mask1 & (~not_reset_mask1)); 9729 9730 barrier(); 9731 mmiowb(); 9732 9733 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 9734 reset_mask2 & (~stay_reset2)); 9735 9736 barrier(); 9737 mmiowb(); 9738 9739 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 9740 mmiowb(); 9741 } 9742 9743 /** 9744 * bnx2x_er_poll_igu_vq - poll for pending writes bit. 9745 * It should get cleared in no more than 1s. 9746 * 9747 * @bp: driver handle 9748 * 9749 * It should get cleared in no more than 1s. Returns 0 if 9750 * pending writes bit gets cleared. 9751 */ 9752 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) 9753 { 9754 u32 cnt = 1000; 9755 u32 pend_bits = 0; 9756 9757 do { 9758 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); 9759 9760 if (pend_bits == 0) 9761 break; 9762 9763 usleep_range(1000, 2000); 9764 } while (cnt-- > 0); 9765 9766 if (cnt <= 0) { 9767 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", 9768 pend_bits); 9769 return -EBUSY; 9770 } 9771 9772 return 0; 9773 } 9774 9775 static int bnx2x_process_kill(struct bnx2x *bp, bool global) 9776 { 9777 int cnt = 1000; 9778 u32 val = 0; 9779 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 9780 u32 tags_63_32 = 0; 9781 9782 /* Empty the Tetris buffer, wait for 1s */ 9783 do { 9784 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); 9785 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); 9786 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); 9787 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); 9788 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); 9789 if (CHIP_IS_E3(bp)) 9790 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); 9791 9792 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 9793 ((port_is_idle_0 & 0x1) == 0x1) && 9794 ((port_is_idle_1 & 0x1) == 0x1) && 9795 (pgl_exp_rom2 == 0xffffffff) && 9796 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) 9797 break; 9798 usleep_range(1000, 2000); 9799 } while (cnt-- > 0); 9800 9801 if (cnt <= 0) { 9802 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); 9803 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 9804 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, 9805 pgl_exp_rom2); 9806 return -EAGAIN; 9807 } 9808 9809 barrier(); 9810 9811 /* Close gates #2, #3 and #4 */ 9812 bnx2x_set_234_gates(bp, true); 9813 9814 /* Poll for IGU VQs for 57712 and newer chips */ 9815 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) 9816 return -EAGAIN; 9817 9818 /* TBD: Indicate that "process kill" is in progress to MCP */ 9819 9820 /* Clear "unprepared" bit */ 9821 REG_WR(bp, MISC_REG_UNPREPARED, 0); 9822 barrier(); 9823 9824 /* Make sure all is written to the chip before the reset */ 9825 mmiowb(); 9826 9827 /* Wait for 1ms to empty GLUE and PCI-E core queues, 9828 * PSWHST, GRC and PSWRD Tetris buffer. 9829 */ 9830 usleep_range(1000, 2000); 9831 9832 /* Prepare to chip reset: */ 9833 /* MCP */ 9834 if (global) 9835 bnx2x_reset_mcp_prep(bp, &val); 9836 9837 /* PXP */ 9838 bnx2x_pxp_prep(bp); 9839 barrier(); 9840 9841 /* reset the chip */ 9842 bnx2x_process_kill_chip_reset(bp, global); 9843 barrier(); 9844 9845 /* clear errors in PGB */ 9846 if (!CHIP_IS_E1x(bp)) 9847 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 9848 9849 /* Recover after reset: */ 9850 /* MCP */ 9851 if (global && bnx2x_reset_mcp_comp(bp, val)) 9852 return -EAGAIN; 9853 9854 /* TBD: Add resetting the NO_MCP mode DB here */ 9855 9856 /* Open the gates #2, #3 and #4 */ 9857 bnx2x_set_234_gates(bp, false); 9858 9859 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a 9860 * reset state, re-enable attentions. */ 9861 9862 return 0; 9863 } 9864 9865 static int bnx2x_leader_reset(struct bnx2x *bp) 9866 { 9867 int rc = 0; 9868 bool global = bnx2x_reset_is_global(bp); 9869 u32 load_code; 9870 9871 /* if not going to reset MCP - load "fake" driver to reset HW while 9872 * driver is owner of the HW 9873 */ 9874 if (!global && !BP_NOMCP(bp)) { 9875 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 9876 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 9877 if (!load_code) { 9878 BNX2X_ERR("MCP response failure, aborting\n"); 9879 rc = -EAGAIN; 9880 goto exit_leader_reset; 9881 } 9882 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 9883 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 9884 BNX2X_ERR("MCP unexpected resp, aborting\n"); 9885 rc = -EAGAIN; 9886 goto exit_leader_reset2; 9887 } 9888 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 9889 if (!load_code) { 9890 BNX2X_ERR("MCP response failure, aborting\n"); 9891 rc = -EAGAIN; 9892 goto exit_leader_reset2; 9893 } 9894 } 9895 9896 /* Try to recover after the failure */ 9897 if (bnx2x_process_kill(bp, global)) { 9898 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", 9899 BP_PATH(bp)); 9900 rc = -EAGAIN; 9901 goto exit_leader_reset2; 9902 } 9903 9904 /* 9905 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver 9906 * state. 9907 */ 9908 bnx2x_set_reset_done(bp); 9909 if (global) 9910 bnx2x_clear_reset_global(bp); 9911 9912 exit_leader_reset2: 9913 /* unload "fake driver" if it was loaded */ 9914 if (!global && !BP_NOMCP(bp)) { 9915 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 9916 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 9917 } 9918 exit_leader_reset: 9919 bp->is_leader = 0; 9920 bnx2x_release_leader_lock(bp); 9921 smp_mb(); 9922 return rc; 9923 } 9924 9925 static void bnx2x_recovery_failed(struct bnx2x *bp) 9926 { 9927 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); 9928 9929 /* Disconnect this device */ 9930 netif_device_detach(bp->dev); 9931 9932 /* 9933 * Block ifup for all function on this engine until "process kill" 9934 * or power cycle. 9935 */ 9936 bnx2x_set_reset_in_progress(bp); 9937 9938 /* Shut down the power */ 9939 bnx2x_set_power_state(bp, PCI_D3hot); 9940 9941 bp->recovery_state = BNX2X_RECOVERY_FAILED; 9942 9943 smp_mb(); 9944 } 9945 9946 /* 9947 * Assumption: runs under rtnl lock. This together with the fact 9948 * that it's called only from bnx2x_sp_rtnl() ensure that it 9949 * will never be called when netif_running(bp->dev) is false. 9950 */ 9951 static void bnx2x_parity_recover(struct bnx2x *bp) 9952 { 9953 bool global = false; 9954 u32 error_recovered, error_unrecovered; 9955 bool is_parity; 9956 9957 DP(NETIF_MSG_HW, "Handling parity\n"); 9958 while (1) { 9959 switch (bp->recovery_state) { 9960 case BNX2X_RECOVERY_INIT: 9961 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); 9962 is_parity = bnx2x_chk_parity_attn(bp, &global, false); 9963 WARN_ON(!is_parity); 9964 9965 /* Try to get a LEADER_LOCK HW lock */ 9966 if (bnx2x_trylock_leader_lock(bp)) { 9967 bnx2x_set_reset_in_progress(bp); 9968 /* 9969 * Check if there is a global attention and if 9970 * there was a global attention, set the global 9971 * reset bit. 9972 */ 9973 9974 if (global) 9975 bnx2x_set_reset_global(bp); 9976 9977 bp->is_leader = 1; 9978 } 9979 9980 /* Stop the driver */ 9981 /* If interface has been removed - break */ 9982 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) 9983 return; 9984 9985 bp->recovery_state = BNX2X_RECOVERY_WAIT; 9986 9987 /* Ensure "is_leader", MCP command sequence and 9988 * "recovery_state" update values are seen on other 9989 * CPUs. 9990 */ 9991 smp_mb(); 9992 break; 9993 9994 case BNX2X_RECOVERY_WAIT: 9995 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); 9996 if (bp->is_leader) { 9997 int other_engine = BP_PATH(bp) ? 0 : 1; 9998 bool other_load_status = 9999 bnx2x_get_load_status(bp, other_engine); 10000 bool load_status = 10001 bnx2x_get_load_status(bp, BP_PATH(bp)); 10002 global = bnx2x_reset_is_global(bp); 10003 10004 /* 10005 * In case of a parity in a global block, let 10006 * the first leader that performs a 10007 * leader_reset() reset the global blocks in 10008 * order to clear global attentions. Otherwise 10009 * the gates will remain closed for that 10010 * engine. 10011 */ 10012 if (load_status || 10013 (global && other_load_status)) { 10014 /* Wait until all other functions get 10015 * down. 10016 */ 10017 schedule_delayed_work(&bp->sp_rtnl_task, 10018 HZ/10); 10019 return; 10020 } else { 10021 /* If all other functions got down - 10022 * try to bring the chip back to 10023 * normal. In any case it's an exit 10024 * point for a leader. 10025 */ 10026 if (bnx2x_leader_reset(bp)) { 10027 bnx2x_recovery_failed(bp); 10028 return; 10029 } 10030 10031 /* If we are here, means that the 10032 * leader has succeeded and doesn't 10033 * want to be a leader any more. Try 10034 * to continue as a none-leader. 10035 */ 10036 break; 10037 } 10038 } else { /* non-leader */ 10039 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { 10040 /* Try to get a LEADER_LOCK HW lock as 10041 * long as a former leader may have 10042 * been unloaded by the user or 10043 * released a leadership by another 10044 * reason. 10045 */ 10046 if (bnx2x_trylock_leader_lock(bp)) { 10047 /* I'm a leader now! Restart a 10048 * switch case. 10049 */ 10050 bp->is_leader = 1; 10051 break; 10052 } 10053 10054 schedule_delayed_work(&bp->sp_rtnl_task, 10055 HZ/10); 10056 return; 10057 10058 } else { 10059 /* 10060 * If there was a global attention, wait 10061 * for it to be cleared. 10062 */ 10063 if (bnx2x_reset_is_global(bp)) { 10064 schedule_delayed_work( 10065 &bp->sp_rtnl_task, 10066 HZ/10); 10067 return; 10068 } 10069 10070 error_recovered = 10071 bp->eth_stats.recoverable_error; 10072 error_unrecovered = 10073 bp->eth_stats.unrecoverable_error; 10074 bp->recovery_state = 10075 BNX2X_RECOVERY_NIC_LOADING; 10076 if (bnx2x_nic_load(bp, LOAD_NORMAL)) { 10077 error_unrecovered++; 10078 netdev_err(bp->dev, 10079 "Recovery failed. Power cycle needed\n"); 10080 /* Disconnect this device */ 10081 netif_device_detach(bp->dev); 10082 /* Shut down the power */ 10083 bnx2x_set_power_state( 10084 bp, PCI_D3hot); 10085 smp_mb(); 10086 } else { 10087 bp->recovery_state = 10088 BNX2X_RECOVERY_DONE; 10089 error_recovered++; 10090 smp_mb(); 10091 } 10092 bp->eth_stats.recoverable_error = 10093 error_recovered; 10094 bp->eth_stats.unrecoverable_error = 10095 error_unrecovered; 10096 10097 return; 10098 } 10099 } 10100 default: 10101 return; 10102 } 10103 } 10104 } 10105 10106 static int bnx2x_udp_port_update(struct bnx2x *bp) 10107 { 10108 struct bnx2x_func_switch_update_params *switch_update_params; 10109 struct bnx2x_func_state_params func_params = {NULL}; 10110 struct bnx2x_udp_tunnel *udp_tunnel; 10111 u16 vxlan_port = 0, geneve_port = 0; 10112 int rc; 10113 10114 switch_update_params = &func_params.params.switch_update; 10115 10116 /* Prepare parameters for function state transitions */ 10117 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 10118 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 10119 10120 func_params.f_obj = &bp->func_obj; 10121 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 10122 10123 /* Function parameters */ 10124 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG, 10125 &switch_update_params->changes); 10126 10127 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) { 10128 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]; 10129 geneve_port = udp_tunnel->dst_port; 10130 switch_update_params->geneve_dst_port = geneve_port; 10131 } 10132 10133 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) { 10134 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]; 10135 vxlan_port = udp_tunnel->dst_port; 10136 switch_update_params->vxlan_dst_port = vxlan_port; 10137 } 10138 10139 /* Re-enable inner-rss for the offloaded UDP tunnels */ 10140 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS, 10141 &switch_update_params->changes); 10142 10143 rc = bnx2x_func_state_change(bp, &func_params); 10144 if (rc) 10145 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n", 10146 vxlan_port, geneve_port, rc); 10147 else 10148 DP(BNX2X_MSG_SP, 10149 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n", 10150 vxlan_port, geneve_port); 10151 10152 return rc; 10153 } 10154 10155 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port, 10156 enum bnx2x_udp_port_type type) 10157 { 10158 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type]; 10159 10160 if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp)) 10161 return; 10162 10163 if (udp_port->count && udp_port->dst_port == port) { 10164 udp_port->count++; 10165 return; 10166 } 10167 10168 if (udp_port->count) { 10169 DP(BNX2X_MSG_SP, 10170 "UDP tunnel [%d] - destination port limit reached\n", 10171 type); 10172 return; 10173 } 10174 10175 udp_port->dst_port = port; 10176 udp_port->count = 1; 10177 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0); 10178 } 10179 10180 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port, 10181 enum bnx2x_udp_port_type type) 10182 { 10183 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type]; 10184 10185 if (!IS_PF(bp) || CHIP_IS_E1x(bp)) 10186 return; 10187 10188 if (!udp_port->count || udp_port->dst_port != port) { 10189 DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n", 10190 type); 10191 return; 10192 } 10193 10194 /* Remove reference, and make certain it's no longer in use */ 10195 udp_port->count--; 10196 if (udp_port->count) 10197 return; 10198 udp_port->dst_port = 0; 10199 10200 if (netif_running(bp->dev)) 10201 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0); 10202 else 10203 DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n", 10204 type, port); 10205 } 10206 10207 static void bnx2x_udp_tunnel_add(struct net_device *netdev, 10208 struct udp_tunnel_info *ti) 10209 { 10210 struct bnx2x *bp = netdev_priv(netdev); 10211 u16 t_port = ntohs(ti->port); 10212 10213 switch (ti->type) { 10214 case UDP_TUNNEL_TYPE_VXLAN: 10215 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN); 10216 break; 10217 case UDP_TUNNEL_TYPE_GENEVE: 10218 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE); 10219 break; 10220 default: 10221 break; 10222 } 10223 } 10224 10225 static void bnx2x_udp_tunnel_del(struct net_device *netdev, 10226 struct udp_tunnel_info *ti) 10227 { 10228 struct bnx2x *bp = netdev_priv(netdev); 10229 u16 t_port = ntohs(ti->port); 10230 10231 switch (ti->type) { 10232 case UDP_TUNNEL_TYPE_VXLAN: 10233 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN); 10234 break; 10235 case UDP_TUNNEL_TYPE_GENEVE: 10236 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE); 10237 break; 10238 default: 10239 break; 10240 } 10241 } 10242 10243 static int bnx2x_close(struct net_device *dev); 10244 10245 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is 10246 * scheduled on a general queue in order to prevent a dead lock. 10247 */ 10248 static void bnx2x_sp_rtnl_task(struct work_struct *work) 10249 { 10250 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); 10251 10252 rtnl_lock(); 10253 10254 if (!netif_running(bp->dev)) { 10255 rtnl_unlock(); 10256 return; 10257 } 10258 10259 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { 10260 #ifdef BNX2X_STOP_ON_ERROR 10261 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10262 "you will need to reboot when done\n"); 10263 goto sp_rtnl_not_reset; 10264 #endif 10265 /* 10266 * Clear all pending SP commands as we are going to reset the 10267 * function anyway. 10268 */ 10269 bp->sp_rtnl_state = 0; 10270 smp_mb(); 10271 10272 bnx2x_parity_recover(bp); 10273 10274 rtnl_unlock(); 10275 return; 10276 } 10277 10278 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { 10279 #ifdef BNX2X_STOP_ON_ERROR 10280 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10281 "you will need to reboot when done\n"); 10282 goto sp_rtnl_not_reset; 10283 #endif 10284 10285 /* 10286 * Clear all pending SP commands as we are going to reset the 10287 * function anyway. 10288 */ 10289 bp->sp_rtnl_state = 0; 10290 smp_mb(); 10291 10292 /* Immediately indicate link as down */ 10293 bp->link_vars.link_up = 0; 10294 bp->force_link_down = true; 10295 netif_carrier_off(bp->dev); 10296 BNX2X_ERR("Indicating link is down due to Tx-timeout\n"); 10297 10298 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10299 /* When ret value shows failure of allocation failure, 10300 * the nic is rebooted again. If open still fails, a error 10301 * message to notify the user. 10302 */ 10303 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) { 10304 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10305 if (bnx2x_nic_load(bp, LOAD_NORMAL)) 10306 BNX2X_ERR("Open the NIC fails again!\n"); 10307 } 10308 rtnl_unlock(); 10309 return; 10310 } 10311 #ifdef BNX2X_STOP_ON_ERROR 10312 sp_rtnl_not_reset: 10313 #endif 10314 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) 10315 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); 10316 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) 10317 bnx2x_after_function_update(bp); 10318 /* 10319 * in case of fan failure we need to reset id if the "stop on error" 10320 * debug flag is set, since we trying to prevent permanent overheating 10321 * damage 10322 */ 10323 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { 10324 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); 10325 netif_device_detach(bp->dev); 10326 bnx2x_close(bp->dev); 10327 rtnl_unlock(); 10328 return; 10329 } 10330 10331 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { 10332 DP(BNX2X_MSG_SP, 10333 "sending set mcast vf pf channel message from rtnl sp-task\n"); 10334 bnx2x_vfpf_set_mcast(bp->dev); 10335 } 10336 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 10337 &bp->sp_rtnl_state)){ 10338 if (netif_carrier_ok(bp->dev)) { 10339 bnx2x_tx_disable(bp); 10340 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); 10341 } 10342 } 10343 10344 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) { 10345 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n"); 10346 bnx2x_set_rx_mode_inner(bp); 10347 } 10348 10349 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, 10350 &bp->sp_rtnl_state)) 10351 bnx2x_pf_set_vfs_vlan(bp); 10352 10353 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) { 10354 bnx2x_dcbx_stop_hw_tx(bp); 10355 bnx2x_dcbx_resume_hw_tx(bp); 10356 } 10357 10358 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION, 10359 &bp->sp_rtnl_state)) 10360 bnx2x_update_mng_version(bp); 10361 10362 if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT, 10363 &bp->sp_rtnl_state)) { 10364 if (bnx2x_udp_port_update(bp)) { 10365 /* On error, forget configuration */ 10366 memset(bp->udp_tunnel_ports, 0, 10367 sizeof(struct bnx2x_udp_tunnel) * 10368 BNX2X_UDP_PORT_MAX); 10369 } else { 10370 /* Since we don't store additional port information, 10371 * if no ports are configured for any feature ask for 10372 * information about currently configured ports. 10373 */ 10374 if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count && 10375 !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) 10376 udp_tunnel_get_rx_info(bp->dev); 10377 } 10378 } 10379 10380 /* work which needs rtnl lock not-taken (as it takes the lock itself and 10381 * can be called from other contexts as well) 10382 */ 10383 rtnl_unlock(); 10384 10385 /* enable SR-IOV if applicable */ 10386 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, 10387 &bp->sp_rtnl_state)) { 10388 bnx2x_disable_sriov(bp); 10389 bnx2x_enable_sriov(bp); 10390 } 10391 } 10392 10393 static void bnx2x_period_task(struct work_struct *work) 10394 { 10395 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); 10396 10397 if (!netif_running(bp->dev)) 10398 goto period_task_exit; 10399 10400 if (CHIP_REV_IS_SLOW(bp)) { 10401 BNX2X_ERR("period task called on emulation, ignoring\n"); 10402 goto period_task_exit; 10403 } 10404 10405 bnx2x_acquire_phy_lock(bp); 10406 /* 10407 * The barrier is needed to ensure the ordering between the writing to 10408 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and 10409 * the reading here. 10410 */ 10411 smp_mb(); 10412 if (bp->port.pmf) { 10413 bnx2x_period_func(&bp->link_params, &bp->link_vars); 10414 10415 /* Re-queue task in 1 sec */ 10416 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); 10417 } 10418 10419 bnx2x_release_phy_lock(bp); 10420 period_task_exit: 10421 return; 10422 } 10423 10424 /* 10425 * Init service functions 10426 */ 10427 10428 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp) 10429 { 10430 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; 10431 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; 10432 return base + (BP_ABS_FUNC(bp)) * stride; 10433 } 10434 10435 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp, 10436 u8 port, u32 reset_reg, 10437 struct bnx2x_mac_vals *vals) 10438 { 10439 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 10440 u32 base_addr; 10441 10442 if (!(mask & reset_reg)) 10443 return false; 10444 10445 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port); 10446 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 10447 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG; 10448 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]); 10449 REG_WR(bp, vals->umac_addr[port], 0); 10450 10451 return true; 10452 } 10453 10454 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, 10455 struct bnx2x_mac_vals *vals) 10456 { 10457 u32 val, base_addr, offset, mask, reset_reg; 10458 bool mac_stopped = false; 10459 u8 port = BP_PORT(bp); 10460 10461 /* reset addresses as they also mark which values were changed */ 10462 memset(vals, 0, sizeof(*vals)); 10463 10464 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); 10465 10466 if (!CHIP_IS_E3(bp)) { 10467 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 10468 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 10469 if ((mask & reset_reg) && val) { 10470 u32 wb_data[2]; 10471 BNX2X_DEV_INFO("Disable bmac Rx\n"); 10472 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM 10473 : NIG_REG_INGRESS_BMAC0_MEM; 10474 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL 10475 : BIGMAC_REGISTER_BMAC_CONTROL; 10476 10477 /* 10478 * use rd/wr since we cannot use dmae. This is safe 10479 * since MCP won't access the bus due to the request 10480 * to unload, and no function on the path can be 10481 * loaded at this time. 10482 */ 10483 wb_data[0] = REG_RD(bp, base_addr + offset); 10484 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); 10485 vals->bmac_addr = base_addr + offset; 10486 vals->bmac_val[0] = wb_data[0]; 10487 vals->bmac_val[1] = wb_data[1]; 10488 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; 10489 REG_WR(bp, vals->bmac_addr, wb_data[0]); 10490 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); 10491 } 10492 BNX2X_DEV_INFO("Disable emac Rx\n"); 10493 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; 10494 vals->emac_val = REG_RD(bp, vals->emac_addr); 10495 REG_WR(bp, vals->emac_addr, 0); 10496 mac_stopped = true; 10497 } else { 10498 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 10499 BNX2X_DEV_INFO("Disable xmac Rx\n"); 10500 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 10501 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); 10502 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10503 val & ~(1 << 1)); 10504 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10505 val | (1 << 1)); 10506 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 10507 vals->xmac_val = REG_RD(bp, vals->xmac_addr); 10508 REG_WR(bp, vals->xmac_addr, 0); 10509 mac_stopped = true; 10510 } 10511 10512 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0, 10513 reset_reg, vals); 10514 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1, 10515 reset_reg, vals); 10516 } 10517 10518 if (mac_stopped) 10519 msleep(20); 10520 } 10521 10522 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 10523 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \ 10524 0x1848 + ((f) << 4)) 10525 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) 10526 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 10527 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 10528 10529 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07) 10530 #define BCM_5710_UNDI_FW_MF_MINOR (0x08) 10531 #define BCM_5710_UNDI_FW_MF_VERS (0x05) 10532 10533 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp) 10534 { 10535 /* UNDI marks its presence in DORQ - 10536 * it initializes CID offset for normal bell to 0x7 10537 */ 10538 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) & 10539 MISC_REGISTERS_RESET_REG_1_RST_DORQ)) 10540 return false; 10541 10542 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) { 10543 BNX2X_DEV_INFO("UNDI previously loaded\n"); 10544 return true; 10545 } 10546 10547 return false; 10548 } 10549 10550 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc) 10551 { 10552 u16 rcq, bd; 10553 u32 addr, tmp_reg; 10554 10555 if (BP_FUNC(bp) < 2) 10556 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp)); 10557 else 10558 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2); 10559 10560 tmp_reg = REG_RD(bp, addr); 10561 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; 10562 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; 10563 10564 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); 10565 REG_WR(bp, addr, tmp_reg); 10566 10567 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n", 10568 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq); 10569 } 10570 10571 static int bnx2x_prev_mcp_done(struct bnx2x *bp) 10572 { 10573 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 10574 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 10575 if (!rc) { 10576 BNX2X_ERR("MCP response failure, aborting\n"); 10577 return -EBUSY; 10578 } 10579 10580 return 0; 10581 } 10582 10583 static struct bnx2x_prev_path_list * 10584 bnx2x_prev_path_get_entry(struct bnx2x *bp) 10585 { 10586 struct bnx2x_prev_path_list *tmp_list; 10587 10588 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) 10589 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && 10590 bp->pdev->bus->number == tmp_list->bus && 10591 BP_PATH(bp) == tmp_list->path) 10592 return tmp_list; 10593 10594 return NULL; 10595 } 10596 10597 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) 10598 { 10599 struct bnx2x_prev_path_list *tmp_list; 10600 int rc; 10601 10602 rc = down_interruptible(&bnx2x_prev_sem); 10603 if (rc) { 10604 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10605 return rc; 10606 } 10607 10608 tmp_list = bnx2x_prev_path_get_entry(bp); 10609 if (tmp_list) { 10610 tmp_list->aer = 1; 10611 rc = 0; 10612 } else { 10613 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", 10614 BP_PATH(bp)); 10615 } 10616 10617 up(&bnx2x_prev_sem); 10618 10619 return rc; 10620 } 10621 10622 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) 10623 { 10624 struct bnx2x_prev_path_list *tmp_list; 10625 bool rc = false; 10626 10627 if (down_trylock(&bnx2x_prev_sem)) 10628 return false; 10629 10630 tmp_list = bnx2x_prev_path_get_entry(bp); 10631 if (tmp_list) { 10632 if (tmp_list->aer) { 10633 DP(NETIF_MSG_HW, "Path %d was marked by AER\n", 10634 BP_PATH(bp)); 10635 } else { 10636 rc = true; 10637 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", 10638 BP_PATH(bp)); 10639 } 10640 } 10641 10642 up(&bnx2x_prev_sem); 10643 10644 return rc; 10645 } 10646 10647 bool bnx2x_port_after_undi(struct bnx2x *bp) 10648 { 10649 struct bnx2x_prev_path_list *entry; 10650 bool val; 10651 10652 down(&bnx2x_prev_sem); 10653 10654 entry = bnx2x_prev_path_get_entry(bp); 10655 val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); 10656 10657 up(&bnx2x_prev_sem); 10658 10659 return val; 10660 } 10661 10662 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) 10663 { 10664 struct bnx2x_prev_path_list *tmp_list; 10665 int rc; 10666 10667 rc = down_interruptible(&bnx2x_prev_sem); 10668 if (rc) { 10669 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10670 return rc; 10671 } 10672 10673 /* Check whether the entry for this path already exists */ 10674 tmp_list = bnx2x_prev_path_get_entry(bp); 10675 if (tmp_list) { 10676 if (!tmp_list->aer) { 10677 BNX2X_ERR("Re-Marking the path.\n"); 10678 } else { 10679 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", 10680 BP_PATH(bp)); 10681 tmp_list->aer = 0; 10682 } 10683 up(&bnx2x_prev_sem); 10684 return 0; 10685 } 10686 up(&bnx2x_prev_sem); 10687 10688 /* Create an entry for this path and add it */ 10689 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); 10690 if (!tmp_list) { 10691 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); 10692 return -ENOMEM; 10693 } 10694 10695 tmp_list->bus = bp->pdev->bus->number; 10696 tmp_list->slot = PCI_SLOT(bp->pdev->devfn); 10697 tmp_list->path = BP_PATH(bp); 10698 tmp_list->aer = 0; 10699 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; 10700 10701 rc = down_interruptible(&bnx2x_prev_sem); 10702 if (rc) { 10703 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10704 kfree(tmp_list); 10705 } else { 10706 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", 10707 BP_PATH(bp)); 10708 list_add(&tmp_list->list, &bnx2x_prev_list); 10709 up(&bnx2x_prev_sem); 10710 } 10711 10712 return rc; 10713 } 10714 10715 static int bnx2x_do_flr(struct bnx2x *bp) 10716 { 10717 struct pci_dev *dev = bp->pdev; 10718 10719 if (CHIP_IS_E1x(bp)) { 10720 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); 10721 return -EINVAL; 10722 } 10723 10724 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 10725 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 10726 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", 10727 bp->common.bc_ver); 10728 return -EINVAL; 10729 } 10730 10731 if (!pci_wait_for_pending_transaction(dev)) 10732 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 10733 10734 BNX2X_DEV_INFO("Initiating FLR\n"); 10735 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); 10736 10737 return 0; 10738 } 10739 10740 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) 10741 { 10742 int rc; 10743 10744 BNX2X_DEV_INFO("Uncommon unload Flow\n"); 10745 10746 /* Test if previous unload process was already finished for this path */ 10747 if (bnx2x_prev_is_path_marked(bp)) 10748 return bnx2x_prev_mcp_done(bp); 10749 10750 BNX2X_DEV_INFO("Path is unmarked\n"); 10751 10752 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */ 10753 if (bnx2x_prev_is_after_undi(bp)) 10754 goto out; 10755 10756 /* If function has FLR capabilities, and existing FW version matches 10757 * the one required, then FLR will be sufficient to clean any residue 10758 * left by previous driver 10759 */ 10760 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false); 10761 10762 if (!rc) { 10763 /* fw version is good */ 10764 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); 10765 rc = bnx2x_do_flr(bp); 10766 } 10767 10768 if (!rc) { 10769 /* FLR was performed */ 10770 BNX2X_DEV_INFO("FLR successful\n"); 10771 return 0; 10772 } 10773 10774 BNX2X_DEV_INFO("Could not FLR\n"); 10775 10776 out: 10777 /* Close the MCP request, return failure*/ 10778 rc = bnx2x_prev_mcp_done(bp); 10779 if (!rc) 10780 rc = BNX2X_PREV_WAIT_NEEDED; 10781 10782 return rc; 10783 } 10784 10785 static int bnx2x_prev_unload_common(struct bnx2x *bp) 10786 { 10787 u32 reset_reg, tmp_reg = 0, rc; 10788 bool prev_undi = false; 10789 struct bnx2x_mac_vals mac_vals; 10790 10791 /* It is possible a previous function received 'common' answer, 10792 * but hasn't loaded yet, therefore creating a scenario of 10793 * multiple functions receiving 'common' on the same path. 10794 */ 10795 BNX2X_DEV_INFO("Common unload Flow\n"); 10796 10797 memset(&mac_vals, 0, sizeof(mac_vals)); 10798 10799 if (bnx2x_prev_is_path_marked(bp)) 10800 return bnx2x_prev_mcp_done(bp); 10801 10802 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); 10803 10804 /* Reset should be performed after BRB is emptied */ 10805 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 10806 u32 timer_count = 1000; 10807 10808 /* Close the MAC Rx to prevent BRB from filling up */ 10809 bnx2x_prev_unload_close_mac(bp, &mac_vals); 10810 10811 /* close LLH filters for both ports towards the BRB */ 10812 bnx2x_set_rx_filter(&bp->link_params, 0); 10813 bp->link_params.port ^= 1; 10814 bnx2x_set_rx_filter(&bp->link_params, 0); 10815 bp->link_params.port ^= 1; 10816 10817 /* Check if the UNDI driver was previously loaded */ 10818 if (bnx2x_prev_is_after_undi(bp)) { 10819 prev_undi = true; 10820 /* clear the UNDI indication */ 10821 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); 10822 /* clear possible idle check errors */ 10823 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); 10824 } 10825 if (!CHIP_IS_E1x(bp)) 10826 /* block FW from writing to host */ 10827 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 10828 10829 /* wait until BRB is empty */ 10830 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10831 while (timer_count) { 10832 u32 prev_brb = tmp_reg; 10833 10834 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10835 if (!tmp_reg) 10836 break; 10837 10838 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); 10839 10840 /* reset timer as long as BRB actually gets emptied */ 10841 if (prev_brb > tmp_reg) 10842 timer_count = 1000; 10843 else 10844 timer_count--; 10845 10846 /* If UNDI resides in memory, manually increment it */ 10847 if (prev_undi) 10848 bnx2x_prev_unload_undi_inc(bp, 1); 10849 10850 udelay(10); 10851 } 10852 10853 if (!timer_count) 10854 BNX2X_ERR("Failed to empty BRB, hope for the best\n"); 10855 } 10856 10857 /* No packets are in the pipeline, path is ready for reset */ 10858 bnx2x_reset_common(bp); 10859 10860 if (mac_vals.xmac_addr) 10861 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); 10862 if (mac_vals.umac_addr[0]) 10863 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]); 10864 if (mac_vals.umac_addr[1]) 10865 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]); 10866 if (mac_vals.emac_addr) 10867 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); 10868 if (mac_vals.bmac_addr) { 10869 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 10870 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 10871 } 10872 10873 rc = bnx2x_prev_mark_path(bp, prev_undi); 10874 if (rc) { 10875 bnx2x_prev_mcp_done(bp); 10876 return rc; 10877 } 10878 10879 return bnx2x_prev_mcp_done(bp); 10880 } 10881 10882 static int bnx2x_prev_unload(struct bnx2x *bp) 10883 { 10884 int time_counter = 10; 10885 u32 rc, fw, hw_lock_reg, hw_lock_val; 10886 BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); 10887 10888 /* clear hw from errors which may have resulted from an interrupted 10889 * dmae transaction. 10890 */ 10891 bnx2x_clean_pglue_errors(bp); 10892 10893 /* Release previously held locks */ 10894 hw_lock_reg = (BP_FUNC(bp) <= 5) ? 10895 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : 10896 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); 10897 10898 hw_lock_val = REG_RD(bp, hw_lock_reg); 10899 if (hw_lock_val) { 10900 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 10901 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); 10902 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, 10903 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); 10904 } 10905 10906 BNX2X_DEV_INFO("Release Previously held hw lock\n"); 10907 REG_WR(bp, hw_lock_reg, 0xffffffff); 10908 } else 10909 BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); 10910 10911 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { 10912 BNX2X_DEV_INFO("Release previously held alr\n"); 10913 bnx2x_release_alr(bp); 10914 } 10915 10916 do { 10917 int aer = 0; 10918 /* Lock MCP using an unload request */ 10919 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 10920 if (!fw) { 10921 BNX2X_ERR("MCP response failure, aborting\n"); 10922 rc = -EBUSY; 10923 break; 10924 } 10925 10926 rc = down_interruptible(&bnx2x_prev_sem); 10927 if (rc) { 10928 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", 10929 rc); 10930 } else { 10931 /* If Path is marked by EEH, ignore unload status */ 10932 aer = !!(bnx2x_prev_path_get_entry(bp) && 10933 bnx2x_prev_path_get_entry(bp)->aer); 10934 up(&bnx2x_prev_sem); 10935 } 10936 10937 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { 10938 rc = bnx2x_prev_unload_common(bp); 10939 break; 10940 } 10941 10942 /* non-common reply from MCP might require looping */ 10943 rc = bnx2x_prev_unload_uncommon(bp); 10944 if (rc != BNX2X_PREV_WAIT_NEEDED) 10945 break; 10946 10947 msleep(20); 10948 } while (--time_counter); 10949 10950 if (!time_counter || rc) { 10951 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n"); 10952 rc = -EPROBE_DEFER; 10953 } 10954 10955 /* Mark function if its port was used to boot from SAN */ 10956 if (bnx2x_port_after_undi(bp)) 10957 bp->link_params.feature_config_flags |= 10958 FEATURE_CONFIG_BOOT_FROM_SAN; 10959 10960 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); 10961 10962 return rc; 10963 } 10964 10965 static void bnx2x_get_common_hwinfo(struct bnx2x *bp) 10966 { 10967 u32 val, val2, val3, val4, id, boot_mode; 10968 u16 pmc; 10969 10970 /* Get the chip revision id and number. */ 10971 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 10972 val = REG_RD(bp, MISC_REG_CHIP_NUM); 10973 id = ((val & 0xffff) << 16); 10974 val = REG_RD(bp, MISC_REG_CHIP_REV); 10975 id |= ((val & 0xf) << 12); 10976 10977 /* Metal is read from PCI regs, but we can't access >=0x400 from 10978 * the configuration space (so we need to reg_rd) 10979 */ 10980 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); 10981 id |= (((val >> 24) & 0xf) << 4); 10982 val = REG_RD(bp, MISC_REG_BOND_ID); 10983 id |= (val & 0xf); 10984 bp->common.chip_id = id; 10985 10986 /* force 57811 according to MISC register */ 10987 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 10988 if (CHIP_IS_57810(bp)) 10989 bp->common.chip_id = (CHIP_NUM_57811 << 16) | 10990 (bp->common.chip_id & 0x0000FFFF); 10991 else if (CHIP_IS_57810_MF(bp)) 10992 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | 10993 (bp->common.chip_id & 0x0000FFFF); 10994 bp->common.chip_id |= 0x1; 10995 } 10996 10997 /* Set doorbell size */ 10998 bp->db_size = (1 << BNX2X_DB_SHIFT); 10999 11000 if (!CHIP_IS_E1x(bp)) { 11001 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); 11002 if ((val & 1) == 0) 11003 val = REG_RD(bp, MISC_REG_PORT4MODE_EN); 11004 else 11005 val = (val >> 1) & 1; 11006 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : 11007 "2_PORT_MODE"); 11008 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : 11009 CHIP_2_PORT_MODE; 11010 11011 if (CHIP_MODE_IS_4_PORT(bp)) 11012 bp->pfid = (bp->pf_num >> 1); /* 0..3 */ 11013 else 11014 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ 11015 } else { 11016 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ 11017 bp->pfid = bp->pf_num; /* 0..7 */ 11018 } 11019 11020 BNX2X_DEV_INFO("pf_id: %x", bp->pfid); 11021 11022 bp->link_params.chip_id = bp->common.chip_id; 11023 BNX2X_DEV_INFO("chip ID is 0x%x\n", id); 11024 11025 val = (REG_RD(bp, 0x2874) & 0x55); 11026 if ((bp->common.chip_id & 0x1) || 11027 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { 11028 bp->flags |= ONE_PORT_FLAG; 11029 BNX2X_DEV_INFO("single port device\n"); 11030 } 11031 11032 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); 11033 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << 11034 (val & MCPR_NVM_CFG4_FLASH_SIZE)); 11035 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", 11036 bp->common.flash_size, bp->common.flash_size); 11037 11038 bnx2x_init_shmem(bp); 11039 11040 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? 11041 MISC_REG_GENERIC_CR_1 : 11042 MISC_REG_GENERIC_CR_0)); 11043 11044 bp->link_params.shmem_base = bp->common.shmem_base; 11045 bp->link_params.shmem2_base = bp->common.shmem2_base; 11046 if (SHMEM2_RD(bp, size) > 11047 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 11048 bp->link_params.lfa_base = 11049 REG_RD(bp, bp->common.shmem2_base + 11050 (u32)offsetof(struct shmem2_region, 11051 lfa_host_addr[BP_PORT(bp)])); 11052 else 11053 bp->link_params.lfa_base = 0; 11054 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", 11055 bp->common.shmem_base, bp->common.shmem2_base); 11056 11057 if (!bp->common.shmem_base) { 11058 BNX2X_DEV_INFO("MCP not active\n"); 11059 bp->flags |= NO_MCP_FLAG; 11060 return; 11061 } 11062 11063 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); 11064 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); 11065 11066 bp->link_params.hw_led_mode = ((bp->common.hw_config & 11067 SHARED_HW_CFG_LED_MODE_MASK) >> 11068 SHARED_HW_CFG_LED_MODE_SHIFT); 11069 11070 bp->link_params.feature_config_flags = 0; 11071 val = SHMEM_RD(bp, dev_info.shared_feature_config.config); 11072 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) 11073 bp->link_params.feature_config_flags |= 11074 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 11075 else 11076 bp->link_params.feature_config_flags &= 11077 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 11078 11079 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; 11080 bp->common.bc_ver = val; 11081 BNX2X_DEV_INFO("bc_ver %X\n", val); 11082 if (val < BNX2X_BC_VER) { 11083 /* for now only warn 11084 * later we might need to enforce this */ 11085 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", 11086 BNX2X_BC_VER, val); 11087 } 11088 bp->link_params.feature_config_flags |= 11089 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? 11090 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; 11091 11092 bp->link_params.feature_config_flags |= 11093 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? 11094 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; 11095 bp->link_params.feature_config_flags |= 11096 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? 11097 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; 11098 bp->link_params.feature_config_flags |= 11099 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? 11100 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; 11101 11102 bp->link_params.feature_config_flags |= 11103 (val >= REQ_BC_VER_4_MT_SUPPORTED) ? 11104 FEATURE_CONFIG_MT_SUPPORT : 0; 11105 11106 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? 11107 BC_SUPPORTS_PFC_STATS : 0; 11108 11109 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? 11110 BC_SUPPORTS_FCOE_FEATURES : 0; 11111 11112 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? 11113 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; 11114 11115 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? 11116 BC_SUPPORTS_RMMOD_CMD : 0; 11117 11118 boot_mode = SHMEM_RD(bp, 11119 dev_info.port_feature_config[BP_PORT(bp)].mba_config) & 11120 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; 11121 switch (boot_mode) { 11122 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: 11123 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; 11124 break; 11125 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: 11126 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; 11127 break; 11128 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: 11129 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; 11130 break; 11131 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: 11132 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; 11133 break; 11134 } 11135 11136 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc); 11137 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; 11138 11139 BNX2X_DEV_INFO("%sWoL capable\n", 11140 (bp->flags & NO_WOL_FLAG) ? "not " : ""); 11141 11142 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); 11143 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); 11144 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); 11145 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); 11146 11147 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", 11148 val, val2, val3, val4); 11149 } 11150 11151 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 11152 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 11153 11154 static int bnx2x_get_igu_cam_info(struct bnx2x *bp) 11155 { 11156 int pfid = BP_FUNC(bp); 11157 int igu_sb_id; 11158 u32 val; 11159 u8 fid, igu_sb_cnt = 0; 11160 11161 bp->igu_base_sb = 0xff; 11162 if (CHIP_INT_MODE_IS_BC(bp)) { 11163 int vn = BP_VN(bp); 11164 igu_sb_cnt = bp->igu_sb_cnt; 11165 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * 11166 FP_SB_MAX_E1x; 11167 11168 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + 11169 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); 11170 11171 return 0; 11172 } 11173 11174 /* IGU in normal mode - read CAM */ 11175 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 11176 igu_sb_id++) { 11177 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 11178 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 11179 continue; 11180 fid = IGU_FID(val); 11181 if ((fid & IGU_FID_ENCODE_IS_PF)) { 11182 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) 11183 continue; 11184 if (IGU_VEC(val) == 0) 11185 /* default status block */ 11186 bp->igu_dsb_id = igu_sb_id; 11187 else { 11188 if (bp->igu_base_sb == 0xff) 11189 bp->igu_base_sb = igu_sb_id; 11190 igu_sb_cnt++; 11191 } 11192 } 11193 } 11194 11195 #ifdef CONFIG_PCI_MSI 11196 /* Due to new PF resource allocation by MFW T7.4 and above, it's 11197 * optional that number of CAM entries will not be equal to the value 11198 * advertised in PCI. 11199 * Driver should use the minimal value of both as the actual status 11200 * block count 11201 */ 11202 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); 11203 #endif 11204 11205 if (igu_sb_cnt == 0) { 11206 BNX2X_ERR("CAM configuration error\n"); 11207 return -EINVAL; 11208 } 11209 11210 return 0; 11211 } 11212 11213 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) 11214 { 11215 int cfg_size = 0, idx, port = BP_PORT(bp); 11216 11217 /* Aggregation of supported attributes of all external phys */ 11218 bp->port.supported[0] = 0; 11219 bp->port.supported[1] = 0; 11220 switch (bp->link_params.num_phys) { 11221 case 1: 11222 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; 11223 cfg_size = 1; 11224 break; 11225 case 2: 11226 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; 11227 cfg_size = 1; 11228 break; 11229 case 3: 11230 if (bp->link_params.multi_phy_config & 11231 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11232 bp->port.supported[1] = 11233 bp->link_params.phy[EXT_PHY1].supported; 11234 bp->port.supported[0] = 11235 bp->link_params.phy[EXT_PHY2].supported; 11236 } else { 11237 bp->port.supported[0] = 11238 bp->link_params.phy[EXT_PHY1].supported; 11239 bp->port.supported[1] = 11240 bp->link_params.phy[EXT_PHY2].supported; 11241 } 11242 cfg_size = 2; 11243 break; 11244 } 11245 11246 if (!(bp->port.supported[0] || bp->port.supported[1])) { 11247 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", 11248 SHMEM_RD(bp, 11249 dev_info.port_hw_config[port].external_phy_config), 11250 SHMEM_RD(bp, 11251 dev_info.port_hw_config[port].external_phy_config2)); 11252 return; 11253 } 11254 11255 if (CHIP_IS_E3(bp)) 11256 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); 11257 else { 11258 switch (switch_cfg) { 11259 case SWITCH_CFG_1G: 11260 bp->port.phy_addr = REG_RD( 11261 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 11262 break; 11263 case SWITCH_CFG_10G: 11264 bp->port.phy_addr = REG_RD( 11265 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 11266 break; 11267 default: 11268 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", 11269 bp->port.link_config[0]); 11270 return; 11271 } 11272 } 11273 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); 11274 /* mask what we support according to speed_cap_mask per configuration */ 11275 for (idx = 0; idx < cfg_size; idx++) { 11276 if (!(bp->link_params.speed_cap_mask[idx] & 11277 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) 11278 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; 11279 11280 if (!(bp->link_params.speed_cap_mask[idx] & 11281 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) 11282 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; 11283 11284 if (!(bp->link_params.speed_cap_mask[idx] & 11285 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) 11286 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; 11287 11288 if (!(bp->link_params.speed_cap_mask[idx] & 11289 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) 11290 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; 11291 11292 if (!(bp->link_params.speed_cap_mask[idx] & 11293 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) 11294 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | 11295 SUPPORTED_1000baseT_Full); 11296 11297 if (!(bp->link_params.speed_cap_mask[idx] & 11298 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) 11299 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; 11300 11301 if (!(bp->link_params.speed_cap_mask[idx] & 11302 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) 11303 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; 11304 11305 if (!(bp->link_params.speed_cap_mask[idx] & 11306 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) 11307 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; 11308 } 11309 11310 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], 11311 bp->port.supported[1]); 11312 } 11313 11314 static void bnx2x_link_settings_requested(struct bnx2x *bp) 11315 { 11316 u32 link_config, idx, cfg_size = 0; 11317 bp->port.advertising[0] = 0; 11318 bp->port.advertising[1] = 0; 11319 switch (bp->link_params.num_phys) { 11320 case 1: 11321 case 2: 11322 cfg_size = 1; 11323 break; 11324 case 3: 11325 cfg_size = 2; 11326 break; 11327 } 11328 for (idx = 0; idx < cfg_size; idx++) { 11329 bp->link_params.req_duplex[idx] = DUPLEX_FULL; 11330 link_config = bp->port.link_config[idx]; 11331 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 11332 case PORT_FEATURE_LINK_SPEED_AUTO: 11333 if (bp->port.supported[idx] & SUPPORTED_Autoneg) { 11334 bp->link_params.req_line_speed[idx] = 11335 SPEED_AUTO_NEG; 11336 bp->port.advertising[idx] |= 11337 bp->port.supported[idx]; 11338 if (bp->link_params.phy[EXT_PHY1].type == 11339 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 11340 bp->port.advertising[idx] |= 11341 (SUPPORTED_100baseT_Half | 11342 SUPPORTED_100baseT_Full); 11343 } else { 11344 /* force 10G, no AN */ 11345 bp->link_params.req_line_speed[idx] = 11346 SPEED_10000; 11347 bp->port.advertising[idx] |= 11348 (ADVERTISED_10000baseT_Full | 11349 ADVERTISED_FIBRE); 11350 continue; 11351 } 11352 break; 11353 11354 case PORT_FEATURE_LINK_SPEED_10M_FULL: 11355 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { 11356 bp->link_params.req_line_speed[idx] = 11357 SPEED_10; 11358 bp->port.advertising[idx] |= 11359 (ADVERTISED_10baseT_Full | 11360 ADVERTISED_TP); 11361 } else { 11362 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11363 link_config, 11364 bp->link_params.speed_cap_mask[idx]); 11365 return; 11366 } 11367 break; 11368 11369 case PORT_FEATURE_LINK_SPEED_10M_HALF: 11370 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { 11371 bp->link_params.req_line_speed[idx] = 11372 SPEED_10; 11373 bp->link_params.req_duplex[idx] = 11374 DUPLEX_HALF; 11375 bp->port.advertising[idx] |= 11376 (ADVERTISED_10baseT_Half | 11377 ADVERTISED_TP); 11378 } else { 11379 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11380 link_config, 11381 bp->link_params.speed_cap_mask[idx]); 11382 return; 11383 } 11384 break; 11385 11386 case PORT_FEATURE_LINK_SPEED_100M_FULL: 11387 if (bp->port.supported[idx] & 11388 SUPPORTED_100baseT_Full) { 11389 bp->link_params.req_line_speed[idx] = 11390 SPEED_100; 11391 bp->port.advertising[idx] |= 11392 (ADVERTISED_100baseT_Full | 11393 ADVERTISED_TP); 11394 } else { 11395 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11396 link_config, 11397 bp->link_params.speed_cap_mask[idx]); 11398 return; 11399 } 11400 break; 11401 11402 case PORT_FEATURE_LINK_SPEED_100M_HALF: 11403 if (bp->port.supported[idx] & 11404 SUPPORTED_100baseT_Half) { 11405 bp->link_params.req_line_speed[idx] = 11406 SPEED_100; 11407 bp->link_params.req_duplex[idx] = 11408 DUPLEX_HALF; 11409 bp->port.advertising[idx] |= 11410 (ADVERTISED_100baseT_Half | 11411 ADVERTISED_TP); 11412 } else { 11413 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11414 link_config, 11415 bp->link_params.speed_cap_mask[idx]); 11416 return; 11417 } 11418 break; 11419 11420 case PORT_FEATURE_LINK_SPEED_1G: 11421 if (bp->port.supported[idx] & 11422 SUPPORTED_1000baseT_Full) { 11423 bp->link_params.req_line_speed[idx] = 11424 SPEED_1000; 11425 bp->port.advertising[idx] |= 11426 (ADVERTISED_1000baseT_Full | 11427 ADVERTISED_TP); 11428 } else if (bp->port.supported[idx] & 11429 SUPPORTED_1000baseKX_Full) { 11430 bp->link_params.req_line_speed[idx] = 11431 SPEED_1000; 11432 bp->port.advertising[idx] |= 11433 ADVERTISED_1000baseKX_Full; 11434 } else { 11435 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11436 link_config, 11437 bp->link_params.speed_cap_mask[idx]); 11438 return; 11439 } 11440 break; 11441 11442 case PORT_FEATURE_LINK_SPEED_2_5G: 11443 if (bp->port.supported[idx] & 11444 SUPPORTED_2500baseX_Full) { 11445 bp->link_params.req_line_speed[idx] = 11446 SPEED_2500; 11447 bp->port.advertising[idx] |= 11448 (ADVERTISED_2500baseX_Full | 11449 ADVERTISED_TP); 11450 } else { 11451 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11452 link_config, 11453 bp->link_params.speed_cap_mask[idx]); 11454 return; 11455 } 11456 break; 11457 11458 case PORT_FEATURE_LINK_SPEED_10G_CX4: 11459 if (bp->port.supported[idx] & 11460 SUPPORTED_10000baseT_Full) { 11461 bp->link_params.req_line_speed[idx] = 11462 SPEED_10000; 11463 bp->port.advertising[idx] |= 11464 (ADVERTISED_10000baseT_Full | 11465 ADVERTISED_FIBRE); 11466 } else if (bp->port.supported[idx] & 11467 SUPPORTED_10000baseKR_Full) { 11468 bp->link_params.req_line_speed[idx] = 11469 SPEED_10000; 11470 bp->port.advertising[idx] |= 11471 (ADVERTISED_10000baseKR_Full | 11472 ADVERTISED_FIBRE); 11473 } else { 11474 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11475 link_config, 11476 bp->link_params.speed_cap_mask[idx]); 11477 return; 11478 } 11479 break; 11480 case PORT_FEATURE_LINK_SPEED_20G: 11481 bp->link_params.req_line_speed[idx] = SPEED_20000; 11482 11483 break; 11484 default: 11485 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", 11486 link_config); 11487 bp->link_params.req_line_speed[idx] = 11488 SPEED_AUTO_NEG; 11489 bp->port.advertising[idx] = 11490 bp->port.supported[idx]; 11491 break; 11492 } 11493 11494 bp->link_params.req_flow_ctrl[idx] = (link_config & 11495 PORT_FEATURE_FLOW_CONTROL_MASK); 11496 if (bp->link_params.req_flow_ctrl[idx] == 11497 BNX2X_FLOW_CTRL_AUTO) { 11498 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) 11499 bp->link_params.req_flow_ctrl[idx] = 11500 BNX2X_FLOW_CTRL_NONE; 11501 else 11502 bnx2x_set_requested_fc(bp); 11503 } 11504 11505 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", 11506 bp->link_params.req_line_speed[idx], 11507 bp->link_params.req_duplex[idx], 11508 bp->link_params.req_flow_ctrl[idx], 11509 bp->port.advertising[idx]); 11510 } 11511 } 11512 11513 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) 11514 { 11515 __be16 mac_hi_be = cpu_to_be16(mac_hi); 11516 __be32 mac_lo_be = cpu_to_be32(mac_lo); 11517 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); 11518 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); 11519 } 11520 11521 static void bnx2x_get_port_hwinfo(struct bnx2x *bp) 11522 { 11523 int port = BP_PORT(bp); 11524 u32 config; 11525 u32 ext_phy_type, ext_phy_config, eee_mode; 11526 11527 bp->link_params.bp = bp; 11528 bp->link_params.port = port; 11529 11530 bp->link_params.lane_config = 11531 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); 11532 11533 bp->link_params.speed_cap_mask[0] = 11534 SHMEM_RD(bp, 11535 dev_info.port_hw_config[port].speed_capability_mask) & 11536 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11537 bp->link_params.speed_cap_mask[1] = 11538 SHMEM_RD(bp, 11539 dev_info.port_hw_config[port].speed_capability_mask2) & 11540 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11541 bp->port.link_config[0] = 11542 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); 11543 11544 bp->port.link_config[1] = 11545 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); 11546 11547 bp->link_params.multi_phy_config = 11548 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); 11549 /* If the device is capable of WoL, set the default state according 11550 * to the HW 11551 */ 11552 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); 11553 bp->wol = (!(bp->flags & NO_WOL_FLAG) && 11554 (config & PORT_FEATURE_WOL_ENABLED)); 11555 11556 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11557 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) 11558 bp->flags |= NO_ISCSI_FLAG; 11559 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11560 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) 11561 bp->flags |= NO_FCOE_FLAG; 11562 11563 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", 11564 bp->link_params.lane_config, 11565 bp->link_params.speed_cap_mask[0], 11566 bp->port.link_config[0]); 11567 11568 bp->link_params.switch_cfg = (bp->port.link_config[0] & 11569 PORT_FEATURE_CONNECTED_SWITCH_MASK); 11570 bnx2x_phy_probe(&bp->link_params); 11571 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); 11572 11573 bnx2x_link_settings_requested(bp); 11574 11575 /* 11576 * If connected directly, work with the internal PHY, otherwise, work 11577 * with the external PHY 11578 */ 11579 ext_phy_config = 11580 SHMEM_RD(bp, 11581 dev_info.port_hw_config[port].external_phy_config); 11582 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); 11583 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 11584 bp->mdio.prtad = bp->port.phy_addr; 11585 11586 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 11587 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 11588 bp->mdio.prtad = 11589 XGXS_EXT_PHY_ADDR(ext_phy_config); 11590 11591 /* Configure link feature according to nvram value */ 11592 eee_mode = (((SHMEM_RD(bp, dev_info. 11593 port_feature_config[port].eee_power_mode)) & 11594 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 11595 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 11596 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 11597 bp->link_params.eee_mode = EEE_MODE_ADV_LPI | 11598 EEE_MODE_ENABLE_LPI | 11599 EEE_MODE_OUTPUT_TIME; 11600 } else { 11601 bp->link_params.eee_mode = 0; 11602 } 11603 } 11604 11605 void bnx2x_get_iscsi_info(struct bnx2x *bp) 11606 { 11607 u32 no_flags = NO_ISCSI_FLAG; 11608 int port = BP_PORT(bp); 11609 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11610 drv_lic_key[port].max_iscsi_conn); 11611 11612 if (!CNIC_SUPPORT(bp)) { 11613 bp->flags |= no_flags; 11614 return; 11615 } 11616 11617 /* Get the number of maximum allowed iSCSI connections */ 11618 bp->cnic_eth_dev.max_iscsi_conn = 11619 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> 11620 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; 11621 11622 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", 11623 bp->cnic_eth_dev.max_iscsi_conn); 11624 11625 /* 11626 * If maximum allowed number of connections is zero - 11627 * disable the feature. 11628 */ 11629 if (!bp->cnic_eth_dev.max_iscsi_conn) 11630 bp->flags |= no_flags; 11631 } 11632 11633 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) 11634 { 11635 /* Port info */ 11636 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11637 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); 11638 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11639 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); 11640 11641 /* Node info */ 11642 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11643 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); 11644 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11645 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); 11646 } 11647 11648 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) 11649 { 11650 u8 count = 0; 11651 11652 if (IS_MF(bp)) { 11653 u8 fid; 11654 11655 /* iterate over absolute function ids for this path: */ 11656 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { 11657 if (IS_MF_SD(bp)) { 11658 u32 cfg = MF_CFG_RD(bp, 11659 func_mf_config[fid].config); 11660 11661 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && 11662 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == 11663 FUNC_MF_CFG_PROTOCOL_FCOE)) 11664 count++; 11665 } else { 11666 u32 cfg = MF_CFG_RD(bp, 11667 func_ext_config[fid]. 11668 func_cfg); 11669 11670 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && 11671 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) 11672 count++; 11673 } 11674 } 11675 } else { /* SF */ 11676 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; 11677 11678 for (port = 0; port < port_cnt; port++) { 11679 u32 lic = SHMEM_RD(bp, 11680 drv_lic_key[port].max_fcoe_conn) ^ 11681 FW_ENCODE_32BIT_PATTERN; 11682 if (lic) 11683 count++; 11684 } 11685 } 11686 11687 return count; 11688 } 11689 11690 static void bnx2x_get_fcoe_info(struct bnx2x *bp) 11691 { 11692 int port = BP_PORT(bp); 11693 int func = BP_ABS_FUNC(bp); 11694 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11695 drv_lic_key[port].max_fcoe_conn); 11696 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); 11697 11698 if (!CNIC_SUPPORT(bp)) { 11699 bp->flags |= NO_FCOE_FLAG; 11700 return; 11701 } 11702 11703 /* Get the number of maximum allowed FCoE connections */ 11704 bp->cnic_eth_dev.max_fcoe_conn = 11705 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> 11706 BNX2X_MAX_FCOE_INIT_CONN_SHIFT; 11707 11708 /* Calculate the number of maximum allowed FCoE tasks */ 11709 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; 11710 11711 /* check if FCoE resources must be shared between different functions */ 11712 if (num_fcoe_func) 11713 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; 11714 11715 /* Read the WWN: */ 11716 if (!IS_MF(bp)) { 11717 /* Port info */ 11718 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11719 SHMEM_RD(bp, 11720 dev_info.port_hw_config[port]. 11721 fcoe_wwn_port_name_upper); 11722 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11723 SHMEM_RD(bp, 11724 dev_info.port_hw_config[port]. 11725 fcoe_wwn_port_name_lower); 11726 11727 /* Node info */ 11728 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11729 SHMEM_RD(bp, 11730 dev_info.port_hw_config[port]. 11731 fcoe_wwn_node_name_upper); 11732 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11733 SHMEM_RD(bp, 11734 dev_info.port_hw_config[port]. 11735 fcoe_wwn_node_name_lower); 11736 } else if (!IS_MF_SD(bp)) { 11737 /* Read the WWN info only if the FCoE feature is enabled for 11738 * this function. 11739 */ 11740 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp)) 11741 bnx2x_get_ext_wwn_info(bp, func); 11742 } else { 11743 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) 11744 bnx2x_get_ext_wwn_info(bp, func); 11745 } 11746 11747 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); 11748 11749 /* 11750 * If maximum allowed number of connections is zero - 11751 * disable the feature. 11752 */ 11753 if (!bp->cnic_eth_dev.max_fcoe_conn) 11754 bp->flags |= NO_FCOE_FLAG; 11755 } 11756 11757 static void bnx2x_get_cnic_info(struct bnx2x *bp) 11758 { 11759 /* 11760 * iSCSI may be dynamically disabled but reading 11761 * info here we will decrease memory usage by driver 11762 * if the feature is disabled for good 11763 */ 11764 bnx2x_get_iscsi_info(bp); 11765 bnx2x_get_fcoe_info(bp); 11766 } 11767 11768 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) 11769 { 11770 u32 val, val2; 11771 int func = BP_ABS_FUNC(bp); 11772 int port = BP_PORT(bp); 11773 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; 11774 u8 *fip_mac = bp->fip_mac; 11775 11776 if (IS_MF(bp)) { 11777 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or 11778 * FCoE MAC then the appropriate feature should be disabled. 11779 * In non SD mode features configuration comes from struct 11780 * func_ext_config. 11781 */ 11782 if (!IS_MF_SD(bp)) { 11783 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); 11784 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 11785 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11786 iscsi_mac_addr_upper); 11787 val = MF_CFG_RD(bp, func_ext_config[func]. 11788 iscsi_mac_addr_lower); 11789 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11790 BNX2X_DEV_INFO 11791 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11792 } else { 11793 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11794 } 11795 11796 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 11797 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11798 fcoe_mac_addr_upper); 11799 val = MF_CFG_RD(bp, func_ext_config[func]. 11800 fcoe_mac_addr_lower); 11801 bnx2x_set_mac_buf(fip_mac, val, val2); 11802 BNX2X_DEV_INFO 11803 ("Read FCoE L2 MAC: %pM\n", fip_mac); 11804 } else { 11805 bp->flags |= NO_FCOE_FLAG; 11806 } 11807 11808 bp->mf_ext_config = cfg; 11809 11810 } else { /* SD MODE */ 11811 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { 11812 /* use primary mac as iscsi mac */ 11813 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); 11814 11815 BNX2X_DEV_INFO("SD ISCSI MODE\n"); 11816 BNX2X_DEV_INFO 11817 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11818 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { 11819 /* use primary mac as fip mac */ 11820 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); 11821 BNX2X_DEV_INFO("SD FCoE MODE\n"); 11822 BNX2X_DEV_INFO 11823 ("Read FIP MAC: %pM\n", fip_mac); 11824 } 11825 } 11826 11827 /* If this is a storage-only interface, use SAN mac as 11828 * primary MAC. Notice that for SD this is already the case, 11829 * as the SAN mac was copied from the primary MAC. 11830 */ 11831 if (IS_MF_FCOE_AFEX(bp)) 11832 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN); 11833 } else { 11834 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11835 iscsi_mac_upper); 11836 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11837 iscsi_mac_lower); 11838 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11839 11840 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11841 fcoe_fip_mac_upper); 11842 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11843 fcoe_fip_mac_lower); 11844 bnx2x_set_mac_buf(fip_mac, val, val2); 11845 } 11846 11847 /* Disable iSCSI OOO if MAC configuration is invalid. */ 11848 if (!is_valid_ether_addr(iscsi_mac)) { 11849 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11850 eth_zero_addr(iscsi_mac); 11851 } 11852 11853 /* Disable FCoE if MAC configuration is invalid. */ 11854 if (!is_valid_ether_addr(fip_mac)) { 11855 bp->flags |= NO_FCOE_FLAG; 11856 eth_zero_addr(bp->fip_mac); 11857 } 11858 } 11859 11860 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) 11861 { 11862 u32 val, val2; 11863 int func = BP_ABS_FUNC(bp); 11864 int port = BP_PORT(bp); 11865 11866 /* Zero primary MAC configuration */ 11867 eth_zero_addr(bp->dev->dev_addr); 11868 11869 if (BP_NOMCP(bp)) { 11870 BNX2X_ERROR("warning: random MAC workaround active\n"); 11871 eth_hw_addr_random(bp->dev); 11872 } else if (IS_MF(bp)) { 11873 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11874 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); 11875 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && 11876 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) 11877 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11878 11879 if (CNIC_SUPPORT(bp)) 11880 bnx2x_get_cnic_mac_hwinfo(bp); 11881 } else { 11882 /* in SF read MACs from port configuration */ 11883 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11884 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11885 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11886 11887 if (CNIC_SUPPORT(bp)) 11888 bnx2x_get_cnic_mac_hwinfo(bp); 11889 } 11890 11891 if (!BP_NOMCP(bp)) { 11892 /* Read physical port identifier from shmem */ 11893 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11894 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11895 bnx2x_set_mac_buf(bp->phys_port_id, val, val2); 11896 bp->flags |= HAS_PHYS_PORT_ID; 11897 } 11898 11899 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); 11900 11901 if (!is_valid_ether_addr(bp->dev->dev_addr)) 11902 dev_err(&bp->pdev->dev, 11903 "bad Ethernet MAC address configuration: %pM\n" 11904 "change it manually before bringing up the appropriate network interface\n", 11905 bp->dev->dev_addr); 11906 } 11907 11908 static bool bnx2x_get_dropless_info(struct bnx2x *bp) 11909 { 11910 int tmp; 11911 u32 cfg; 11912 11913 if (IS_VF(bp)) 11914 return false; 11915 11916 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { 11917 /* Take function: tmp = func */ 11918 tmp = BP_ABS_FUNC(bp); 11919 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); 11920 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); 11921 } else { 11922 /* Take port: tmp = port */ 11923 tmp = BP_PORT(bp); 11924 cfg = SHMEM_RD(bp, 11925 dev_info.port_hw_config[tmp].generic_features); 11926 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); 11927 } 11928 return cfg; 11929 } 11930 11931 static void validate_set_si_mode(struct bnx2x *bp) 11932 { 11933 u8 func = BP_ABS_FUNC(bp); 11934 u32 val; 11935 11936 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11937 11938 /* check for legal mac (upper bytes) */ 11939 if (val != 0xffff) { 11940 bp->mf_mode = MULTI_FUNCTION_SI; 11941 bp->mf_config[BP_VN(bp)] = 11942 MF_CFG_RD(bp, func_mf_config[func].config); 11943 } else 11944 BNX2X_DEV_INFO("illegal MAC address for SI\n"); 11945 } 11946 11947 static int bnx2x_get_hwinfo(struct bnx2x *bp) 11948 { 11949 int /*abs*/func = BP_ABS_FUNC(bp); 11950 int vn, mfw_vn; 11951 u32 val = 0, val2 = 0; 11952 int rc = 0; 11953 11954 /* Validate that chip access is feasible */ 11955 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) { 11956 dev_err(&bp->pdev->dev, 11957 "Chip read returns all Fs. Preventing probe from continuing\n"); 11958 return -EINVAL; 11959 } 11960 11961 bnx2x_get_common_hwinfo(bp); 11962 11963 /* 11964 * initialize IGU parameters 11965 */ 11966 if (CHIP_IS_E1x(bp)) { 11967 bp->common.int_block = INT_BLOCK_HC; 11968 11969 bp->igu_dsb_id = DEF_SB_IGU_ID; 11970 bp->igu_base_sb = 0; 11971 } else { 11972 bp->common.int_block = INT_BLOCK_IGU; 11973 11974 /* do not allow device reset during IGU info processing */ 11975 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11976 11977 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 11978 11979 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11980 int tout = 5000; 11981 11982 BNX2X_DEV_INFO("FORCING Normal Mode\n"); 11983 11984 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 11985 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); 11986 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); 11987 11988 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11989 tout--; 11990 usleep_range(1000, 2000); 11991 } 11992 11993 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11994 dev_err(&bp->pdev->dev, 11995 "FORCING Normal Mode failed!!!\n"); 11996 bnx2x_release_hw_lock(bp, 11997 HW_LOCK_RESOURCE_RESET); 11998 return -EPERM; 11999 } 12000 } 12001 12002 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 12003 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); 12004 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; 12005 } else 12006 BNX2X_DEV_INFO("IGU Normal Mode\n"); 12007 12008 rc = bnx2x_get_igu_cam_info(bp); 12009 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 12010 if (rc) 12011 return rc; 12012 } 12013 12014 /* 12015 * set base FW non-default (fast path) status block id, this value is 12016 * used to initialize the fw_sb_id saved on the fp/queue structure to 12017 * determine the id used by the FW. 12018 */ 12019 if (CHIP_IS_E1x(bp)) 12020 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); 12021 else /* 12022 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of 12023 * the same queue are indicated on the same IGU SB). So we prefer 12024 * FW and IGU SBs to be the same value. 12025 */ 12026 bp->base_fw_ndsb = bp->igu_base_sb; 12027 12028 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" 12029 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, 12030 bp->igu_sb_cnt, bp->base_fw_ndsb); 12031 12032 /* 12033 * Initialize MF configuration 12034 */ 12035 12036 bp->mf_ov = 0; 12037 bp->mf_mode = 0; 12038 bp->mf_sub_mode = 0; 12039 vn = BP_VN(bp); 12040 mfw_vn = BP_FW_MB_IDX(bp); 12041 12042 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { 12043 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", 12044 bp->common.shmem2_base, SHMEM2_RD(bp, size), 12045 (u32)offsetof(struct shmem2_region, mf_cfg_addr)); 12046 12047 if (SHMEM2_HAS(bp, mf_cfg_addr)) 12048 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); 12049 else 12050 bp->common.mf_cfg_base = bp->common.shmem_base + 12051 offsetof(struct shmem_region, func_mb) + 12052 E1H_FUNC_MAX * sizeof(struct drv_func_mb); 12053 /* 12054 * get mf configuration: 12055 * 1. Existence of MF configuration 12056 * 2. MAC address must be legal (check only upper bytes) 12057 * for Switch-Independent mode; 12058 * OVLAN must be legal for Switch-Dependent mode 12059 * 3. SF_MODE configures specific MF mode 12060 */ 12061 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12062 /* get mf configuration */ 12063 val = SHMEM_RD(bp, 12064 dev_info.shared_feature_config.config); 12065 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; 12066 12067 switch (val) { 12068 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 12069 validate_set_si_mode(bp); 12070 break; 12071 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 12072 if ((!CHIP_IS_E1x(bp)) && 12073 (MF_CFG_RD(bp, func_mf_config[func]. 12074 mac_upper) != 0xffff) && 12075 (SHMEM2_HAS(bp, 12076 afex_driver_support))) { 12077 bp->mf_mode = MULTI_FUNCTION_AFEX; 12078 bp->mf_config[vn] = MF_CFG_RD(bp, 12079 func_mf_config[func].config); 12080 } else { 12081 BNX2X_DEV_INFO("can not configure afex mode\n"); 12082 } 12083 break; 12084 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 12085 /* get OV configuration */ 12086 val = MF_CFG_RD(bp, 12087 func_mf_config[FUNC_0].e1hov_tag); 12088 val &= FUNC_MF_CFG_E1HOV_TAG_MASK; 12089 12090 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12091 bp->mf_mode = MULTI_FUNCTION_SD; 12092 bp->mf_config[vn] = MF_CFG_RD(bp, 12093 func_mf_config[func].config); 12094 } else 12095 BNX2X_DEV_INFO("illegal OV for SD\n"); 12096 break; 12097 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE: 12098 bp->mf_mode = MULTI_FUNCTION_SD; 12099 bp->mf_sub_mode = SUB_MF_MODE_BD; 12100 bp->mf_config[vn] = 12101 MF_CFG_RD(bp, 12102 func_mf_config[func].config); 12103 12104 if (SHMEM2_HAS(bp, mtu_size)) { 12105 int mtu_idx = BP_FW_MB_IDX(bp); 12106 u16 mtu_size; 12107 u32 mtu; 12108 12109 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]); 12110 mtu_size = (u16)mtu; 12111 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n", 12112 mtu_size, mtu); 12113 12114 /* if valid: update device mtu */ 12115 if ((mtu_size >= ETH_MIN_PACKET_SIZE) && 12116 (mtu_size <= 12117 ETH_MAX_JUMBO_PACKET_SIZE)) 12118 bp->dev->mtu = mtu_size; 12119 } 12120 break; 12121 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE: 12122 bp->mf_mode = MULTI_FUNCTION_SD; 12123 bp->mf_sub_mode = SUB_MF_MODE_UFP; 12124 bp->mf_config[vn] = 12125 MF_CFG_RD(bp, 12126 func_mf_config[func].config); 12127 break; 12128 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 12129 bp->mf_config[vn] = 0; 12130 break; 12131 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE: 12132 val2 = SHMEM_RD(bp, 12133 dev_info.shared_hw_config.config_3); 12134 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK; 12135 switch (val2) { 12136 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5: 12137 validate_set_si_mode(bp); 12138 bp->mf_sub_mode = 12139 SUB_MF_MODE_NPAR1_DOT_5; 12140 break; 12141 default: 12142 /* Unknown configuration */ 12143 bp->mf_config[vn] = 0; 12144 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n", 12145 val); 12146 } 12147 break; 12148 default: 12149 /* Unknown configuration: reset mf_config */ 12150 bp->mf_config[vn] = 0; 12151 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); 12152 } 12153 } 12154 12155 BNX2X_DEV_INFO("%s function mode\n", 12156 IS_MF(bp) ? "multi" : "single"); 12157 12158 switch (bp->mf_mode) { 12159 case MULTI_FUNCTION_SD: 12160 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 12161 FUNC_MF_CFG_E1HOV_TAG_MASK; 12162 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12163 bp->mf_ov = val; 12164 bp->path_has_ovlan = true; 12165 12166 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", 12167 func, bp->mf_ov, bp->mf_ov); 12168 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) || 12169 (bp->mf_sub_mode == SUB_MF_MODE_BD)) { 12170 dev_err(&bp->pdev->dev, 12171 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n", 12172 func); 12173 bp->path_has_ovlan = true; 12174 } else { 12175 dev_err(&bp->pdev->dev, 12176 "No valid MF OV for func %d, aborting\n", 12177 func); 12178 return -EPERM; 12179 } 12180 break; 12181 case MULTI_FUNCTION_AFEX: 12182 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); 12183 break; 12184 case MULTI_FUNCTION_SI: 12185 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", 12186 func); 12187 break; 12188 default: 12189 if (vn) { 12190 dev_err(&bp->pdev->dev, 12191 "VN %d is in a single function mode, aborting\n", 12192 vn); 12193 return -EPERM; 12194 } 12195 break; 12196 } 12197 12198 /* check if other port on the path needs ovlan: 12199 * Since MF configuration is shared between ports 12200 * Possible mixed modes are only 12201 * {SF, SI} {SF, SD} {SD, SF} {SI, SF} 12202 */ 12203 if (CHIP_MODE_IS_4_PORT(bp) && 12204 !bp->path_has_ovlan && 12205 !IS_MF(bp) && 12206 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12207 u8 other_port = !BP_PORT(bp); 12208 u8 other_func = BP_PATH(bp) + 2*other_port; 12209 val = MF_CFG_RD(bp, 12210 func_mf_config[other_func].e1hov_tag); 12211 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) 12212 bp->path_has_ovlan = true; 12213 } 12214 } 12215 12216 /* adjust igu_sb_cnt to MF for E1H */ 12217 if (CHIP_IS_E1H(bp) && IS_MF(bp)) 12218 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT); 12219 12220 /* port info */ 12221 bnx2x_get_port_hwinfo(bp); 12222 12223 /* Get MAC addresses */ 12224 bnx2x_get_mac_hwinfo(bp); 12225 12226 bnx2x_get_cnic_info(bp); 12227 12228 return rc; 12229 } 12230 12231 static void bnx2x_read_fwinfo(struct bnx2x *bp) 12232 { 12233 int cnt, i, block_end, rodi; 12234 char vpd_start[BNX2X_VPD_LEN+1]; 12235 char str_id_reg[VENDOR_ID_LEN+1]; 12236 char str_id_cap[VENDOR_ID_LEN+1]; 12237 char *vpd_data; 12238 char *vpd_extended_data = NULL; 12239 u8 len; 12240 12241 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); 12242 memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); 12243 12244 if (cnt < BNX2X_VPD_LEN) 12245 goto out_not_found; 12246 12247 /* VPD RO tag should be first tag after identifier string, hence 12248 * we should be able to find it in first BNX2X_VPD_LEN chars 12249 */ 12250 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, 12251 PCI_VPD_LRDT_RO_DATA); 12252 if (i < 0) 12253 goto out_not_found; 12254 12255 block_end = i + PCI_VPD_LRDT_TAG_SIZE + 12256 pci_vpd_lrdt_size(&vpd_start[i]); 12257 12258 i += PCI_VPD_LRDT_TAG_SIZE; 12259 12260 if (block_end > BNX2X_VPD_LEN) { 12261 vpd_extended_data = kmalloc(block_end, GFP_KERNEL); 12262 if (vpd_extended_data == NULL) 12263 goto out_not_found; 12264 12265 /* read rest of vpd image into vpd_extended_data */ 12266 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); 12267 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, 12268 block_end - BNX2X_VPD_LEN, 12269 vpd_extended_data + BNX2X_VPD_LEN); 12270 if (cnt < (block_end - BNX2X_VPD_LEN)) 12271 goto out_not_found; 12272 vpd_data = vpd_extended_data; 12273 } else 12274 vpd_data = vpd_start; 12275 12276 /* now vpd_data holds full vpd content in both cases */ 12277 12278 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12279 PCI_VPD_RO_KEYWORD_MFR_ID); 12280 if (rodi < 0) 12281 goto out_not_found; 12282 12283 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12284 12285 if (len != VENDOR_ID_LEN) 12286 goto out_not_found; 12287 12288 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12289 12290 /* vendor specific info */ 12291 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); 12292 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); 12293 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || 12294 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { 12295 12296 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12297 PCI_VPD_RO_KEYWORD_VENDOR0); 12298 if (rodi >= 0) { 12299 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12300 12301 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12302 12303 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { 12304 memcpy(bp->fw_ver, &vpd_data[rodi], len); 12305 bp->fw_ver[len] = ' '; 12306 } 12307 } 12308 kfree(vpd_extended_data); 12309 return; 12310 } 12311 out_not_found: 12312 kfree(vpd_extended_data); 12313 return; 12314 } 12315 12316 static void bnx2x_set_modes_bitmap(struct bnx2x *bp) 12317 { 12318 u32 flags = 0; 12319 12320 if (CHIP_REV_IS_FPGA(bp)) 12321 SET_FLAGS(flags, MODE_FPGA); 12322 else if (CHIP_REV_IS_EMUL(bp)) 12323 SET_FLAGS(flags, MODE_EMUL); 12324 else 12325 SET_FLAGS(flags, MODE_ASIC); 12326 12327 if (CHIP_MODE_IS_4_PORT(bp)) 12328 SET_FLAGS(flags, MODE_PORT4); 12329 else 12330 SET_FLAGS(flags, MODE_PORT2); 12331 12332 if (CHIP_IS_E2(bp)) 12333 SET_FLAGS(flags, MODE_E2); 12334 else if (CHIP_IS_E3(bp)) { 12335 SET_FLAGS(flags, MODE_E3); 12336 if (CHIP_REV(bp) == CHIP_REV_Ax) 12337 SET_FLAGS(flags, MODE_E3_A0); 12338 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ 12339 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 12340 } 12341 12342 if (IS_MF(bp)) { 12343 SET_FLAGS(flags, MODE_MF); 12344 switch (bp->mf_mode) { 12345 case MULTI_FUNCTION_SD: 12346 SET_FLAGS(flags, MODE_MF_SD); 12347 break; 12348 case MULTI_FUNCTION_SI: 12349 SET_FLAGS(flags, MODE_MF_SI); 12350 break; 12351 case MULTI_FUNCTION_AFEX: 12352 SET_FLAGS(flags, MODE_MF_AFEX); 12353 break; 12354 } 12355 } else 12356 SET_FLAGS(flags, MODE_SF); 12357 12358 #if defined(__LITTLE_ENDIAN) 12359 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 12360 #else /*(__BIG_ENDIAN)*/ 12361 SET_FLAGS(flags, MODE_BIG_ENDIAN); 12362 #endif 12363 INIT_MODE_FLAGS(bp) = flags; 12364 } 12365 12366 static int bnx2x_init_bp(struct bnx2x *bp) 12367 { 12368 int func; 12369 int rc; 12370 12371 mutex_init(&bp->port.phy_mutex); 12372 mutex_init(&bp->fw_mb_mutex); 12373 mutex_init(&bp->drv_info_mutex); 12374 sema_init(&bp->stats_lock, 1); 12375 bp->drv_info_mng_owner = false; 12376 INIT_LIST_HEAD(&bp->vlan_reg); 12377 12378 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); 12379 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); 12380 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); 12381 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task); 12382 if (IS_PF(bp)) { 12383 rc = bnx2x_get_hwinfo(bp); 12384 if (rc) 12385 return rc; 12386 } else { 12387 eth_zero_addr(bp->dev->dev_addr); 12388 } 12389 12390 bnx2x_set_modes_bitmap(bp); 12391 12392 rc = bnx2x_alloc_mem_bp(bp); 12393 if (rc) 12394 return rc; 12395 12396 bnx2x_read_fwinfo(bp); 12397 12398 func = BP_FUNC(bp); 12399 12400 /* need to reset chip if undi was active */ 12401 if (IS_PF(bp) && !BP_NOMCP(bp)) { 12402 /* init fw_seq */ 12403 bp->fw_seq = 12404 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 12405 DRV_MSG_SEQ_NUMBER_MASK; 12406 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 12407 12408 rc = bnx2x_prev_unload(bp); 12409 if (rc) { 12410 bnx2x_free_mem_bp(bp); 12411 return rc; 12412 } 12413 } 12414 12415 if (CHIP_REV_IS_FPGA(bp)) 12416 dev_err(&bp->pdev->dev, "FPGA detected\n"); 12417 12418 if (BP_NOMCP(bp) && (func == 0)) 12419 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); 12420 12421 bp->disable_tpa = disable_tpa; 12422 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp); 12423 /* Reduce memory usage in kdump environment by disabling TPA */ 12424 bp->disable_tpa |= is_kdump_kernel(); 12425 12426 /* Set TPA flags */ 12427 if (bp->disable_tpa) { 12428 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12429 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12430 } 12431 12432 if (CHIP_IS_E1(bp)) 12433 bp->dropless_fc = 0; 12434 else 12435 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); 12436 12437 bp->mrrs = mrrs; 12438 12439 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL; 12440 if (IS_VF(bp)) 12441 bp->rx_ring_size = MAX_RX_AVAIL; 12442 12443 /* make sure that the numbers are in the right granularity */ 12444 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; 12445 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; 12446 12447 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; 12448 12449 timer_setup(&bp->timer, bnx2x_timer, 0); 12450 bp->timer.expires = jiffies + bp->current_interval; 12451 12452 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && 12453 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && 12454 SHMEM2_HAS(bp, dcbx_en) && 12455 SHMEM2_RD(bp, dcbx_lldp_params_offset) && 12456 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) && 12457 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) { 12458 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); 12459 bnx2x_dcbx_init_params(bp); 12460 } else { 12461 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); 12462 } 12463 12464 if (CHIP_IS_E1x(bp)) 12465 bp->cnic_base_cl_id = FP_SB_MAX_E1x; 12466 else 12467 bp->cnic_base_cl_id = FP_SB_MAX_E2; 12468 12469 /* multiple tx priority */ 12470 if (IS_VF(bp)) 12471 bp->max_cos = 1; 12472 else if (CHIP_IS_E1x(bp)) 12473 bp->max_cos = BNX2X_MULTI_TX_COS_E1X; 12474 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) 12475 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; 12476 else if (CHIP_IS_E3B0(bp)) 12477 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; 12478 else 12479 BNX2X_ERR("unknown chip %x revision %x\n", 12480 CHIP_NUM(bp), CHIP_REV(bp)); 12481 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); 12482 12483 /* We need at least one default status block for slow-path events, 12484 * second status block for the L2 queue, and a third status block for 12485 * CNIC if supported. 12486 */ 12487 if (IS_VF(bp)) 12488 bp->min_msix_vec_cnt = 1; 12489 else if (CNIC_SUPPORT(bp)) 12490 bp->min_msix_vec_cnt = 3; 12491 else /* PF w/o cnic */ 12492 bp->min_msix_vec_cnt = 2; 12493 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); 12494 12495 bp->dump_preset_idx = 1; 12496 12497 if (CHIP_IS_E3B0(bp)) 12498 bp->flags |= PTP_SUPPORTED; 12499 12500 return rc; 12501 } 12502 12503 /**************************************************************************** 12504 * General service functions 12505 ****************************************************************************/ 12506 12507 /* 12508 * net_device service functions 12509 */ 12510 12511 /* called with rtnl_lock */ 12512 static int bnx2x_open(struct net_device *dev) 12513 { 12514 struct bnx2x *bp = netdev_priv(dev); 12515 int rc; 12516 12517 bp->stats_init = true; 12518 12519 netif_carrier_off(dev); 12520 12521 bnx2x_set_power_state(bp, PCI_D0); 12522 12523 /* If parity had happen during the unload, then attentions 12524 * and/or RECOVERY_IN_PROGRES may still be set. In this case we 12525 * want the first function loaded on the current engine to 12526 * complete the recovery. 12527 * Parity recovery is only relevant for PF driver. 12528 */ 12529 if (IS_PF(bp)) { 12530 int other_engine = BP_PATH(bp) ? 0 : 1; 12531 bool other_load_status, load_status; 12532 bool global = false; 12533 12534 other_load_status = bnx2x_get_load_status(bp, other_engine); 12535 load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); 12536 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || 12537 bnx2x_chk_parity_attn(bp, &global, true)) { 12538 do { 12539 /* If there are attentions and they are in a 12540 * global blocks, set the GLOBAL_RESET bit 12541 * regardless whether it will be this function 12542 * that will complete the recovery or not. 12543 */ 12544 if (global) 12545 bnx2x_set_reset_global(bp); 12546 12547 /* Only the first function on the current 12548 * engine should try to recover in open. In case 12549 * of attentions in global blocks only the first 12550 * in the chip should try to recover. 12551 */ 12552 if ((!load_status && 12553 (!global || !other_load_status)) && 12554 bnx2x_trylock_leader_lock(bp) && 12555 !bnx2x_leader_reset(bp)) { 12556 netdev_info(bp->dev, 12557 "Recovered in open\n"); 12558 break; 12559 } 12560 12561 /* recovery has failed... */ 12562 bnx2x_set_power_state(bp, PCI_D3hot); 12563 bp->recovery_state = BNX2X_RECOVERY_FAILED; 12564 12565 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" 12566 "If you still see this message after a few retries then power cycle is required.\n"); 12567 12568 return -EAGAIN; 12569 } while (0); 12570 } 12571 } 12572 12573 bp->recovery_state = BNX2X_RECOVERY_DONE; 12574 rc = bnx2x_nic_load(bp, LOAD_OPEN); 12575 if (rc) 12576 return rc; 12577 12578 if (IS_PF(bp)) 12579 udp_tunnel_get_rx_info(dev); 12580 12581 return 0; 12582 } 12583 12584 /* called with rtnl_lock */ 12585 static int bnx2x_close(struct net_device *dev) 12586 { 12587 struct bnx2x *bp = netdev_priv(dev); 12588 12589 /* Unload the driver, release IRQs */ 12590 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 12591 12592 return 0; 12593 } 12594 12595 struct bnx2x_mcast_list_elem_group 12596 { 12597 struct list_head mcast_group_link; 12598 struct bnx2x_mcast_list_elem mcast_elems[]; 12599 }; 12600 12601 #define MCAST_ELEMS_PER_PG \ 12602 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \ 12603 sizeof(struct bnx2x_mcast_list_elem)) 12604 12605 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list) 12606 { 12607 struct bnx2x_mcast_list_elem_group *current_mcast_group; 12608 12609 while (!list_empty(mcast_group_list)) { 12610 current_mcast_group = list_first_entry(mcast_group_list, 12611 struct bnx2x_mcast_list_elem_group, 12612 mcast_group_link); 12613 list_del(¤t_mcast_group->mcast_group_link); 12614 free_page((unsigned long)current_mcast_group); 12615 } 12616 } 12617 12618 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, 12619 struct bnx2x_mcast_ramrod_params *p, 12620 struct list_head *mcast_group_list) 12621 { 12622 struct bnx2x_mcast_list_elem *mc_mac; 12623 struct netdev_hw_addr *ha; 12624 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL; 12625 int mc_count = netdev_mc_count(bp->dev); 12626 int offset = 0; 12627 12628 INIT_LIST_HEAD(&p->mcast_list); 12629 netdev_for_each_mc_addr(ha, bp->dev) { 12630 if (!offset) { 12631 current_mcast_group = 12632 (struct bnx2x_mcast_list_elem_group *) 12633 __get_free_page(GFP_ATOMIC); 12634 if (!current_mcast_group) { 12635 bnx2x_free_mcast_macs_list(mcast_group_list); 12636 BNX2X_ERR("Failed to allocate mc MAC list\n"); 12637 return -ENOMEM; 12638 } 12639 list_add(¤t_mcast_group->mcast_group_link, 12640 mcast_group_list); 12641 } 12642 mc_mac = ¤t_mcast_group->mcast_elems[offset]; 12643 mc_mac->mac = bnx2x_mc_addr(ha); 12644 list_add_tail(&mc_mac->link, &p->mcast_list); 12645 offset++; 12646 if (offset == MCAST_ELEMS_PER_PG) 12647 offset = 0; 12648 } 12649 p->mcast_list_len = mc_count; 12650 return 0; 12651 } 12652 12653 /** 12654 * bnx2x_set_uc_list - configure a new unicast MACs list. 12655 * 12656 * @bp: driver handle 12657 * 12658 * We will use zero (0) as a MAC type for these MACs. 12659 */ 12660 static int bnx2x_set_uc_list(struct bnx2x *bp) 12661 { 12662 int rc; 12663 struct net_device *dev = bp->dev; 12664 struct netdev_hw_addr *ha; 12665 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 12666 unsigned long ramrod_flags = 0; 12667 12668 /* First schedule a cleanup up of old configuration */ 12669 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); 12670 if (rc < 0) { 12671 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); 12672 return rc; 12673 } 12674 12675 netdev_for_each_uc_addr(ha, dev) { 12676 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, 12677 BNX2X_UC_LIST_MAC, &ramrod_flags); 12678 if (rc == -EEXIST) { 12679 DP(BNX2X_MSG_SP, 12680 "Failed to schedule ADD operations: %d\n", rc); 12681 /* do not treat adding same MAC as error */ 12682 rc = 0; 12683 12684 } else if (rc < 0) { 12685 12686 BNX2X_ERR("Failed to schedule ADD operations: %d\n", 12687 rc); 12688 return rc; 12689 } 12690 } 12691 12692 /* Execute the pending commands */ 12693 __set_bit(RAMROD_CONT, &ramrod_flags); 12694 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, 12695 BNX2X_UC_LIST_MAC, &ramrod_flags); 12696 } 12697 12698 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp) 12699 { 12700 LIST_HEAD(mcast_group_list); 12701 struct net_device *dev = bp->dev; 12702 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12703 int rc = 0; 12704 12705 rparam.mcast_obj = &bp->mcast_obj; 12706 12707 /* first, clear all configured multicast MACs */ 12708 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12709 if (rc < 0) { 12710 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); 12711 return rc; 12712 } 12713 12714 /* then, configure a new MACs list */ 12715 if (netdev_mc_count(dev)) { 12716 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list); 12717 if (rc) 12718 return rc; 12719 12720 /* Now add the new MACs */ 12721 rc = bnx2x_config_mcast(bp, &rparam, 12722 BNX2X_MCAST_CMD_ADD); 12723 if (rc < 0) 12724 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12725 rc); 12726 12727 bnx2x_free_mcast_macs_list(&mcast_group_list); 12728 } 12729 12730 return rc; 12731 } 12732 12733 static int bnx2x_set_mc_list(struct bnx2x *bp) 12734 { 12735 LIST_HEAD(mcast_group_list); 12736 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12737 struct net_device *dev = bp->dev; 12738 int rc = 0; 12739 12740 /* On older adapters, we need to flush and re-add filters */ 12741 if (CHIP_IS_E1x(bp)) 12742 return bnx2x_set_mc_list_e1x(bp); 12743 12744 rparam.mcast_obj = &bp->mcast_obj; 12745 12746 if (netdev_mc_count(dev)) { 12747 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list); 12748 if (rc) 12749 return rc; 12750 12751 /* Override the curently configured set of mc filters */ 12752 rc = bnx2x_config_mcast(bp, &rparam, 12753 BNX2X_MCAST_CMD_SET); 12754 if (rc < 0) 12755 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12756 rc); 12757 12758 bnx2x_free_mcast_macs_list(&mcast_group_list); 12759 } else { 12760 /* If no mc addresses are required, flush the configuration */ 12761 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12762 if (rc < 0) 12763 BNX2X_ERR("Failed to clear multicast configuration %d\n", 12764 rc); 12765 } 12766 12767 return rc; 12768 } 12769 12770 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ 12771 static void bnx2x_set_rx_mode(struct net_device *dev) 12772 { 12773 struct bnx2x *bp = netdev_priv(dev); 12774 12775 if (bp->state != BNX2X_STATE_OPEN) { 12776 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); 12777 return; 12778 } else { 12779 /* Schedule an SP task to handle rest of change */ 12780 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE, 12781 NETIF_MSG_IFUP); 12782 } 12783 } 12784 12785 void bnx2x_set_rx_mode_inner(struct bnx2x *bp) 12786 { 12787 u32 rx_mode = BNX2X_RX_MODE_NORMAL; 12788 12789 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); 12790 12791 netif_addr_lock_bh(bp->dev); 12792 12793 if (bp->dev->flags & IFF_PROMISC) { 12794 rx_mode = BNX2X_RX_MODE_PROMISC; 12795 } else if ((bp->dev->flags & IFF_ALLMULTI) || 12796 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) && 12797 CHIP_IS_E1(bp))) { 12798 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12799 } else { 12800 if (IS_PF(bp)) { 12801 /* some multicasts */ 12802 if (bnx2x_set_mc_list(bp) < 0) 12803 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12804 12805 /* release bh lock, as bnx2x_set_uc_list might sleep */ 12806 netif_addr_unlock_bh(bp->dev); 12807 if (bnx2x_set_uc_list(bp) < 0) 12808 rx_mode = BNX2X_RX_MODE_PROMISC; 12809 netif_addr_lock_bh(bp->dev); 12810 } else { 12811 /* configuring mcast to a vf involves sleeping (when we 12812 * wait for the pf's response). 12813 */ 12814 bnx2x_schedule_sp_rtnl(bp, 12815 BNX2X_SP_RTNL_VFPF_MCAST, 0); 12816 } 12817 } 12818 12819 bp->rx_mode = rx_mode; 12820 /* handle ISCSI SD mode */ 12821 if (IS_MF_ISCSI_ONLY(bp)) 12822 bp->rx_mode = BNX2X_RX_MODE_NONE; 12823 12824 /* Schedule the rx_mode command */ 12825 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { 12826 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 12827 netif_addr_unlock_bh(bp->dev); 12828 return; 12829 } 12830 12831 if (IS_PF(bp)) { 12832 bnx2x_set_storm_rx_mode(bp); 12833 netif_addr_unlock_bh(bp->dev); 12834 } else { 12835 /* VF will need to request the PF to make this change, and so 12836 * the VF needs to release the bottom-half lock prior to the 12837 * request (as it will likely require sleep on the VF side) 12838 */ 12839 netif_addr_unlock_bh(bp->dev); 12840 bnx2x_vfpf_storm_rx_mode(bp); 12841 } 12842 } 12843 12844 /* called with rtnl_lock */ 12845 static int bnx2x_mdio_read(struct net_device *netdev, int prtad, 12846 int devad, u16 addr) 12847 { 12848 struct bnx2x *bp = netdev_priv(netdev); 12849 u16 value; 12850 int rc; 12851 12852 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", 12853 prtad, devad, addr); 12854 12855 /* The HW expects different devad if CL22 is used */ 12856 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12857 12858 bnx2x_acquire_phy_lock(bp); 12859 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); 12860 bnx2x_release_phy_lock(bp); 12861 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); 12862 12863 if (!rc) 12864 rc = value; 12865 return rc; 12866 } 12867 12868 /* called with rtnl_lock */ 12869 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, 12870 u16 addr, u16 value) 12871 { 12872 struct bnx2x *bp = netdev_priv(netdev); 12873 int rc; 12874 12875 DP(NETIF_MSG_LINK, 12876 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", 12877 prtad, devad, addr, value); 12878 12879 /* The HW expects different devad if CL22 is used */ 12880 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12881 12882 bnx2x_acquire_phy_lock(bp); 12883 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); 12884 bnx2x_release_phy_lock(bp); 12885 return rc; 12886 } 12887 12888 /* called with rtnl_lock */ 12889 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12890 { 12891 struct bnx2x *bp = netdev_priv(dev); 12892 struct mii_ioctl_data *mdio = if_mii(ifr); 12893 12894 if (!netif_running(dev)) 12895 return -EAGAIN; 12896 12897 switch (cmd) { 12898 case SIOCSHWTSTAMP: 12899 return bnx2x_hwtstamp_ioctl(bp, ifr); 12900 default: 12901 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", 12902 mdio->phy_id, mdio->reg_num, mdio->val_in); 12903 return mdio_mii_ioctl(&bp->mdio, mdio, cmd); 12904 } 12905 } 12906 12907 static int bnx2x_validate_addr(struct net_device *dev) 12908 { 12909 struct bnx2x *bp = netdev_priv(dev); 12910 12911 /* query the bulletin board for mac address configured by the PF */ 12912 if (IS_VF(bp)) 12913 bnx2x_sample_bulletin(bp); 12914 12915 if (!is_valid_ether_addr(dev->dev_addr)) { 12916 BNX2X_ERR("Non-valid Ethernet address\n"); 12917 return -EADDRNOTAVAIL; 12918 } 12919 return 0; 12920 } 12921 12922 static int bnx2x_get_phys_port_id(struct net_device *netdev, 12923 struct netdev_phys_item_id *ppid) 12924 { 12925 struct bnx2x *bp = netdev_priv(netdev); 12926 12927 if (!(bp->flags & HAS_PHYS_PORT_ID)) 12928 return -EOPNOTSUPP; 12929 12930 ppid->id_len = sizeof(bp->phys_port_id); 12931 memcpy(ppid->id, bp->phys_port_id, ppid->id_len); 12932 12933 return 0; 12934 } 12935 12936 static netdev_features_t bnx2x_features_check(struct sk_buff *skb, 12937 struct net_device *dev, 12938 netdev_features_t features) 12939 { 12940 /* 12941 * A skb with gso_size + header length > 9700 will cause a 12942 * firmware panic. Drop GSO support. 12943 * 12944 * Eventually the upper layer should not pass these packets down. 12945 * 12946 * For speed, if the gso_size is <= 9000, assume there will 12947 * not be 700 bytes of headers and pass it through. Only do a 12948 * full (slow) validation if the gso_size is > 9000. 12949 * 12950 * (Due to the way SKB_BY_FRAGS works this will also do a full 12951 * validation in that case.) 12952 */ 12953 if (unlikely(skb_is_gso(skb) && 12954 (skb_shinfo(skb)->gso_size > 9000) && 12955 !skb_gso_validate_mac_len(skb, 9700))) 12956 features &= ~NETIF_F_GSO_MASK; 12957 12958 features = vlan_features_check(skb, features); 12959 return vxlan_features_check(skb, features); 12960 } 12961 12962 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add) 12963 { 12964 int rc; 12965 12966 if (IS_PF(bp)) { 12967 unsigned long ramrod_flags = 0; 12968 12969 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12970 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj, 12971 add, &ramrod_flags); 12972 } else { 12973 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add); 12974 } 12975 12976 return rc; 12977 } 12978 12979 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp) 12980 { 12981 struct bnx2x_vlan_entry *vlan; 12982 int rc = 0; 12983 12984 /* Configure all non-configured entries */ 12985 list_for_each_entry(vlan, &bp->vlan_reg, link) { 12986 if (vlan->hw) 12987 continue; 12988 12989 if (bp->vlan_cnt >= bp->vlan_credit) 12990 return -ENOBUFS; 12991 12992 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true); 12993 if (rc) { 12994 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid); 12995 return rc; 12996 } 12997 12998 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid); 12999 vlan->hw = true; 13000 bp->vlan_cnt++; 13001 } 13002 13003 return 0; 13004 } 13005 13006 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode) 13007 { 13008 bool need_accept_any_vlan; 13009 13010 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp); 13011 13012 if (bp->accept_any_vlan != need_accept_any_vlan) { 13013 bp->accept_any_vlan = need_accept_any_vlan; 13014 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n", 13015 bp->accept_any_vlan ? "raised" : "cleared"); 13016 if (set_rx_mode) { 13017 if (IS_PF(bp)) 13018 bnx2x_set_rx_mode_inner(bp); 13019 else 13020 bnx2x_vfpf_storm_rx_mode(bp); 13021 } 13022 } 13023 } 13024 13025 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp) 13026 { 13027 struct bnx2x_vlan_entry *vlan; 13028 13029 /* The hw forgot all entries after reload */ 13030 list_for_each_entry(vlan, &bp->vlan_reg, link) 13031 vlan->hw = false; 13032 bp->vlan_cnt = 0; 13033 13034 /* Don't set rx mode here. Our caller will do it. */ 13035 bnx2x_vlan_configure(bp, false); 13036 13037 return 0; 13038 } 13039 13040 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 13041 { 13042 struct bnx2x *bp = netdev_priv(dev); 13043 struct bnx2x_vlan_entry *vlan; 13044 13045 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid); 13046 13047 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL); 13048 if (!vlan) 13049 return -ENOMEM; 13050 13051 vlan->vid = vid; 13052 vlan->hw = false; 13053 list_add_tail(&vlan->link, &bp->vlan_reg); 13054 13055 if (netif_running(dev)) 13056 bnx2x_vlan_configure(bp, true); 13057 13058 return 0; 13059 } 13060 13061 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 13062 { 13063 struct bnx2x *bp = netdev_priv(dev); 13064 struct bnx2x_vlan_entry *vlan; 13065 bool found = false; 13066 int rc = 0; 13067 13068 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid); 13069 13070 list_for_each_entry(vlan, &bp->vlan_reg, link) 13071 if (vlan->vid == vid) { 13072 found = true; 13073 break; 13074 } 13075 13076 if (!found) { 13077 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid); 13078 return -EINVAL; 13079 } 13080 13081 if (netif_running(dev) && vlan->hw) { 13082 rc = __bnx2x_vlan_configure_vid(bp, vid, false); 13083 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid); 13084 bp->vlan_cnt--; 13085 } 13086 13087 list_del(&vlan->link); 13088 kfree(vlan); 13089 13090 if (netif_running(dev)) 13091 bnx2x_vlan_configure(bp, true); 13092 13093 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc); 13094 13095 return rc; 13096 } 13097 13098 static const struct net_device_ops bnx2x_netdev_ops = { 13099 .ndo_open = bnx2x_open, 13100 .ndo_stop = bnx2x_close, 13101 .ndo_start_xmit = bnx2x_start_xmit, 13102 .ndo_select_queue = bnx2x_select_queue, 13103 .ndo_set_rx_mode = bnx2x_set_rx_mode, 13104 .ndo_set_mac_address = bnx2x_change_mac_addr, 13105 .ndo_validate_addr = bnx2x_validate_addr, 13106 .ndo_do_ioctl = bnx2x_ioctl, 13107 .ndo_change_mtu = bnx2x_change_mtu, 13108 .ndo_fix_features = bnx2x_fix_features, 13109 .ndo_set_features = bnx2x_set_features, 13110 .ndo_tx_timeout = bnx2x_tx_timeout, 13111 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid, 13112 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid, 13113 .ndo_setup_tc = __bnx2x_setup_tc, 13114 #ifdef CONFIG_BNX2X_SRIOV 13115 .ndo_set_vf_mac = bnx2x_set_vf_mac, 13116 .ndo_set_vf_vlan = bnx2x_set_vf_vlan, 13117 .ndo_get_vf_config = bnx2x_get_vf_config, 13118 .ndo_set_vf_spoofchk = bnx2x_set_vf_spoofchk, 13119 #endif 13120 #ifdef NETDEV_FCOE_WWNN 13121 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, 13122 #endif 13123 13124 .ndo_get_phys_port_id = bnx2x_get_phys_port_id, 13125 .ndo_set_vf_link_state = bnx2x_set_vf_link_state, 13126 .ndo_features_check = bnx2x_features_check, 13127 .ndo_udp_tunnel_add = bnx2x_udp_tunnel_add, 13128 .ndo_udp_tunnel_del = bnx2x_udp_tunnel_del, 13129 }; 13130 13131 static int bnx2x_set_coherency_mask(struct bnx2x *bp) 13132 { 13133 struct device *dev = &bp->pdev->dev; 13134 13135 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 && 13136 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) { 13137 dev_err(dev, "System does not support DMA, aborting\n"); 13138 return -EIO; 13139 } 13140 13141 return 0; 13142 } 13143 13144 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp) 13145 { 13146 if (bp->flags & AER_ENABLED) { 13147 pci_disable_pcie_error_reporting(bp->pdev); 13148 bp->flags &= ~AER_ENABLED; 13149 } 13150 } 13151 13152 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, 13153 struct net_device *dev, unsigned long board_type) 13154 { 13155 int rc; 13156 u32 pci_cfg_dword; 13157 bool chip_is_e1x = (board_type == BCM57710 || 13158 board_type == BCM57711 || 13159 board_type == BCM57711E); 13160 13161 SET_NETDEV_DEV(dev, &pdev->dev); 13162 13163 bp->dev = dev; 13164 bp->pdev = pdev; 13165 13166 rc = pci_enable_device(pdev); 13167 if (rc) { 13168 dev_err(&bp->pdev->dev, 13169 "Cannot enable PCI device, aborting\n"); 13170 goto err_out; 13171 } 13172 13173 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 13174 dev_err(&bp->pdev->dev, 13175 "Cannot find PCI device base address, aborting\n"); 13176 rc = -ENODEV; 13177 goto err_out_disable; 13178 } 13179 13180 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { 13181 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); 13182 rc = -ENODEV; 13183 goto err_out_disable; 13184 } 13185 13186 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); 13187 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == 13188 PCICFG_REVESION_ID_ERROR_VAL) { 13189 pr_err("PCI device error, probably due to fan failure, aborting\n"); 13190 rc = -ENODEV; 13191 goto err_out_disable; 13192 } 13193 13194 if (atomic_read(&pdev->enable_cnt) == 1) { 13195 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 13196 if (rc) { 13197 dev_err(&bp->pdev->dev, 13198 "Cannot obtain PCI resources, aborting\n"); 13199 goto err_out_disable; 13200 } 13201 13202 pci_set_master(pdev); 13203 pci_save_state(pdev); 13204 } 13205 13206 if (IS_PF(bp)) { 13207 if (!pdev->pm_cap) { 13208 dev_err(&bp->pdev->dev, 13209 "Cannot find power management capability, aborting\n"); 13210 rc = -EIO; 13211 goto err_out_release; 13212 } 13213 } 13214 13215 if (!pci_is_pcie(pdev)) { 13216 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); 13217 rc = -EIO; 13218 goto err_out_release; 13219 } 13220 13221 rc = bnx2x_set_coherency_mask(bp); 13222 if (rc) 13223 goto err_out_release; 13224 13225 dev->mem_start = pci_resource_start(pdev, 0); 13226 dev->base_addr = dev->mem_start; 13227 dev->mem_end = pci_resource_end(pdev, 0); 13228 13229 dev->irq = pdev->irq; 13230 13231 bp->regview = pci_ioremap_bar(pdev, 0); 13232 if (!bp->regview) { 13233 dev_err(&bp->pdev->dev, 13234 "Cannot map register space, aborting\n"); 13235 rc = -ENOMEM; 13236 goto err_out_release; 13237 } 13238 13239 /* In E1/E1H use pci device function given by kernel. 13240 * In E2/E3 read physical function from ME register since these chips 13241 * support Physical Device Assignment where kernel BDF maybe arbitrary 13242 * (depending on hypervisor). 13243 */ 13244 if (chip_is_e1x) { 13245 bp->pf_num = PCI_FUNC(pdev->devfn); 13246 } else { 13247 /* chip is E2/3*/ 13248 pci_read_config_dword(bp->pdev, 13249 PCICFG_ME_REGISTER, &pci_cfg_dword); 13250 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> 13251 ME_REG_ABS_PF_NUM_SHIFT); 13252 } 13253 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); 13254 13255 /* clean indirect addresses */ 13256 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 13257 PCICFG_VENDOR_ID_OFFSET); 13258 13259 /* Set PCIe reset type to fundamental for EEH recovery */ 13260 pdev->needs_freset = 1; 13261 13262 /* AER (Advanced Error reporting) configuration */ 13263 rc = pci_enable_pcie_error_reporting(pdev); 13264 if (!rc) 13265 bp->flags |= AER_ENABLED; 13266 else 13267 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc); 13268 13269 /* 13270 * Clean the following indirect addresses for all functions since it 13271 * is not used by the driver. 13272 */ 13273 if (IS_PF(bp)) { 13274 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); 13275 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); 13276 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); 13277 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); 13278 13279 if (chip_is_e1x) { 13280 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); 13281 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); 13282 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); 13283 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); 13284 } 13285 13286 /* Enable internal target-read (in case we are probed after PF 13287 * FLR). Must be done prior to any BAR read access. Only for 13288 * 57712 and up 13289 */ 13290 if (!chip_is_e1x) 13291 REG_WR(bp, 13292 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13293 } 13294 13295 dev->watchdog_timeo = TX_TIMEOUT; 13296 13297 dev->netdev_ops = &bnx2x_netdev_ops; 13298 bnx2x_set_ethtool_ops(bp, dev); 13299 13300 dev->priv_flags |= IFF_UNICAST_FLT; 13301 13302 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13303 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13304 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW | 13305 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; 13306 if (!chip_is_e1x) { 13307 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | 13308 NETIF_F_GSO_IPXIP4 | 13309 NETIF_F_GSO_UDP_TUNNEL | 13310 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13311 NETIF_F_GSO_PARTIAL; 13312 13313 dev->hw_enc_features = 13314 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13315 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13316 NETIF_F_GSO_IPXIP4 | 13317 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | 13318 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | 13319 NETIF_F_GSO_PARTIAL; 13320 13321 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM | 13322 NETIF_F_GSO_UDP_TUNNEL_CSUM; 13323 } 13324 13325 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13326 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; 13327 13328 if (IS_PF(bp)) { 13329 if (chip_is_e1x) 13330 bp->accept_any_vlan = true; 13331 else 13332 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13333 } 13334 /* For VF we'll know whether to enable VLAN filtering after 13335 * getting a response to CHANNEL_TLV_ACQUIRE from PF. 13336 */ 13337 13338 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; 13339 dev->features |= NETIF_F_HIGHDMA; 13340 if (dev->features & NETIF_F_LRO) 13341 dev->features &= ~NETIF_F_GRO_HW; 13342 13343 /* Add Loopback capability to the device */ 13344 dev->hw_features |= NETIF_F_LOOPBACK; 13345 13346 #ifdef BCM_DCBNL 13347 dev->dcbnl_ops = &bnx2x_dcbnl_ops; 13348 #endif 13349 13350 /* MTU range, 46 - 9600 */ 13351 dev->min_mtu = ETH_MIN_PACKET_SIZE; 13352 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE; 13353 13354 /* get_port_hwinfo() will set prtad and mmds properly */ 13355 bp->mdio.prtad = MDIO_PRTAD_NONE; 13356 bp->mdio.mmds = 0; 13357 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; 13358 bp->mdio.dev = dev; 13359 bp->mdio.mdio_read = bnx2x_mdio_read; 13360 bp->mdio.mdio_write = bnx2x_mdio_write; 13361 13362 return 0; 13363 13364 err_out_release: 13365 if (atomic_read(&pdev->enable_cnt) == 1) 13366 pci_release_regions(pdev); 13367 13368 err_out_disable: 13369 pci_disable_device(pdev); 13370 13371 err_out: 13372 return rc; 13373 } 13374 13375 static int bnx2x_check_firmware(struct bnx2x *bp) 13376 { 13377 const struct firmware *firmware = bp->firmware; 13378 struct bnx2x_fw_file_hdr *fw_hdr; 13379 struct bnx2x_fw_file_section *sections; 13380 u32 offset, len, num_ops; 13381 __be16 *ops_offsets; 13382 int i; 13383 const u8 *fw_ver; 13384 13385 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { 13386 BNX2X_ERR("Wrong FW size\n"); 13387 return -EINVAL; 13388 } 13389 13390 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; 13391 sections = (struct bnx2x_fw_file_section *)fw_hdr; 13392 13393 /* Make sure none of the offsets and sizes make us read beyond 13394 * the end of the firmware data */ 13395 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { 13396 offset = be32_to_cpu(sections[i].offset); 13397 len = be32_to_cpu(sections[i].len); 13398 if (offset + len > firmware->size) { 13399 BNX2X_ERR("Section %d length is out of bounds\n", i); 13400 return -EINVAL; 13401 } 13402 } 13403 13404 /* Likewise for the init_ops offsets */ 13405 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); 13406 ops_offsets = (__force __be16 *)(firmware->data + offset); 13407 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); 13408 13409 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { 13410 if (be16_to_cpu(ops_offsets[i]) > num_ops) { 13411 BNX2X_ERR("Section offset %d is out of bounds\n", i); 13412 return -EINVAL; 13413 } 13414 } 13415 13416 /* Check FW version */ 13417 offset = be32_to_cpu(fw_hdr->fw_version.offset); 13418 fw_ver = firmware->data + offset; 13419 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || 13420 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || 13421 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || 13422 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { 13423 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", 13424 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], 13425 BCM_5710_FW_MAJOR_VERSION, 13426 BCM_5710_FW_MINOR_VERSION, 13427 BCM_5710_FW_REVISION_VERSION, 13428 BCM_5710_FW_ENGINEERING_VERSION); 13429 return -EINVAL; 13430 } 13431 13432 return 0; 13433 } 13434 13435 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13436 { 13437 const __be32 *source = (const __be32 *)_source; 13438 u32 *target = (u32 *)_target; 13439 u32 i; 13440 13441 for (i = 0; i < n/4; i++) 13442 target[i] = be32_to_cpu(source[i]); 13443 } 13444 13445 /* 13446 Ops array is stored in the following format: 13447 {op(8bit), offset(24bit, big endian), data(32bit, big endian)} 13448 */ 13449 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) 13450 { 13451 const __be32 *source = (const __be32 *)_source; 13452 struct raw_op *target = (struct raw_op *)_target; 13453 u32 i, j, tmp; 13454 13455 for (i = 0, j = 0; i < n/8; i++, j += 2) { 13456 tmp = be32_to_cpu(source[j]); 13457 target[i].op = (tmp >> 24) & 0xff; 13458 target[i].offset = tmp & 0xffffff; 13459 target[i].raw_data = be32_to_cpu(source[j + 1]); 13460 } 13461 } 13462 13463 /* IRO array is stored in the following format: 13464 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } 13465 */ 13466 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) 13467 { 13468 const __be32 *source = (const __be32 *)_source; 13469 struct iro *target = (struct iro *)_target; 13470 u32 i, j, tmp; 13471 13472 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { 13473 target[i].base = be32_to_cpu(source[j]); 13474 j++; 13475 tmp = be32_to_cpu(source[j]); 13476 target[i].m1 = (tmp >> 16) & 0xffff; 13477 target[i].m2 = tmp & 0xffff; 13478 j++; 13479 tmp = be32_to_cpu(source[j]); 13480 target[i].m3 = (tmp >> 16) & 0xffff; 13481 target[i].size = tmp & 0xffff; 13482 j++; 13483 } 13484 } 13485 13486 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13487 { 13488 const __be16 *source = (const __be16 *)_source; 13489 u16 *target = (u16 *)_target; 13490 u32 i; 13491 13492 for (i = 0; i < n/2; i++) 13493 target[i] = be16_to_cpu(source[i]); 13494 } 13495 13496 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ 13497 do { \ 13498 u32 len = be32_to_cpu(fw_hdr->arr.len); \ 13499 bp->arr = kmalloc(len, GFP_KERNEL); \ 13500 if (!bp->arr) \ 13501 goto lbl; \ 13502 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ 13503 (u8 *)bp->arr, len); \ 13504 } while (0) 13505 13506 static int bnx2x_init_firmware(struct bnx2x *bp) 13507 { 13508 const char *fw_file_name; 13509 struct bnx2x_fw_file_hdr *fw_hdr; 13510 int rc; 13511 13512 if (bp->firmware) 13513 return 0; 13514 13515 if (CHIP_IS_E1(bp)) 13516 fw_file_name = FW_FILE_NAME_E1; 13517 else if (CHIP_IS_E1H(bp)) 13518 fw_file_name = FW_FILE_NAME_E1H; 13519 else if (!CHIP_IS_E1x(bp)) 13520 fw_file_name = FW_FILE_NAME_E2; 13521 else { 13522 BNX2X_ERR("Unsupported chip revision\n"); 13523 return -EINVAL; 13524 } 13525 BNX2X_DEV_INFO("Loading %s\n", fw_file_name); 13526 13527 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); 13528 if (rc) { 13529 BNX2X_ERR("Can't load firmware file %s\n", 13530 fw_file_name); 13531 goto request_firmware_exit; 13532 } 13533 13534 rc = bnx2x_check_firmware(bp); 13535 if (rc) { 13536 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); 13537 goto request_firmware_exit; 13538 } 13539 13540 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; 13541 13542 /* Initialize the pointers to the init arrays */ 13543 /* Blob */ 13544 rc = -ENOMEM; 13545 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); 13546 13547 /* Opcodes */ 13548 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); 13549 13550 /* Offsets */ 13551 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, 13552 be16_to_cpu_n); 13553 13554 /* STORMs firmware */ 13555 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13556 be32_to_cpu(fw_hdr->tsem_int_table_data.offset); 13557 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + 13558 be32_to_cpu(fw_hdr->tsem_pram_data.offset); 13559 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13560 be32_to_cpu(fw_hdr->usem_int_table_data.offset); 13561 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + 13562 be32_to_cpu(fw_hdr->usem_pram_data.offset); 13563 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13564 be32_to_cpu(fw_hdr->xsem_int_table_data.offset); 13565 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + 13566 be32_to_cpu(fw_hdr->xsem_pram_data.offset); 13567 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13568 be32_to_cpu(fw_hdr->csem_int_table_data.offset); 13569 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + 13570 be32_to_cpu(fw_hdr->csem_pram_data.offset); 13571 /* IRO */ 13572 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); 13573 13574 return 0; 13575 13576 iro_alloc_err: 13577 kfree(bp->init_ops_offsets); 13578 init_offsets_alloc_err: 13579 kfree(bp->init_ops); 13580 init_ops_alloc_err: 13581 kfree(bp->init_data); 13582 request_firmware_exit: 13583 release_firmware(bp->firmware); 13584 bp->firmware = NULL; 13585 13586 return rc; 13587 } 13588 13589 static void bnx2x_release_firmware(struct bnx2x *bp) 13590 { 13591 kfree(bp->init_ops_offsets); 13592 kfree(bp->init_ops); 13593 kfree(bp->init_data); 13594 release_firmware(bp->firmware); 13595 bp->firmware = NULL; 13596 } 13597 13598 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { 13599 .init_hw_cmn_chip = bnx2x_init_hw_common_chip, 13600 .init_hw_cmn = bnx2x_init_hw_common, 13601 .init_hw_port = bnx2x_init_hw_port, 13602 .init_hw_func = bnx2x_init_hw_func, 13603 13604 .reset_hw_cmn = bnx2x_reset_common, 13605 .reset_hw_port = bnx2x_reset_port, 13606 .reset_hw_func = bnx2x_reset_func, 13607 13608 .gunzip_init = bnx2x_gunzip_init, 13609 .gunzip_end = bnx2x_gunzip_end, 13610 13611 .init_fw = bnx2x_init_firmware, 13612 .release_fw = bnx2x_release_firmware, 13613 }; 13614 13615 void bnx2x__init_func_obj(struct bnx2x *bp) 13616 { 13617 /* Prepare DMAE related driver resources */ 13618 bnx2x_setup_dmae(bp); 13619 13620 bnx2x_init_func_obj(bp, &bp->func_obj, 13621 bnx2x_sp(bp, func_rdata), 13622 bnx2x_sp_mapping(bp, func_rdata), 13623 bnx2x_sp(bp, func_afex_rdata), 13624 bnx2x_sp_mapping(bp, func_afex_rdata), 13625 &bnx2x_func_sp_drv); 13626 } 13627 13628 /* must be called after sriov-enable */ 13629 static int bnx2x_set_qm_cid_count(struct bnx2x *bp) 13630 { 13631 int cid_count = BNX2X_L2_MAX_CID(bp); 13632 13633 if (IS_SRIOV(bp)) 13634 cid_count += BNX2X_VF_CIDS; 13635 13636 if (CNIC_SUPPORT(bp)) 13637 cid_count += CNIC_CID_MAX; 13638 13639 return roundup(cid_count, QM_CID_ROUND); 13640 } 13641 13642 /** 13643 * bnx2x_get_num_none_def_sbs - return the number of none default SBs 13644 * 13645 * @dev: pci device 13646 * 13647 */ 13648 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt) 13649 { 13650 int index; 13651 u16 control = 0; 13652 13653 /* 13654 * If MSI-X is not supported - return number of SBs needed to support 13655 * one fast path queue: one FP queue + SB for CNIC 13656 */ 13657 if (!pdev->msix_cap) { 13658 dev_info(&pdev->dev, "no msix capability found\n"); 13659 return 1 + cnic_cnt; 13660 } 13661 dev_info(&pdev->dev, "msix capability found\n"); 13662 13663 /* 13664 * The value in the PCI configuration space is the index of the last 13665 * entry, namely one less than the actual size of the table, which is 13666 * exactly what we want to return from this function: number of all SBs 13667 * without the default SB. 13668 * For VFs there is no default SB, then we return (index+1). 13669 */ 13670 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control); 13671 13672 index = control & PCI_MSIX_FLAGS_QSIZE; 13673 13674 return index; 13675 } 13676 13677 static int set_max_cos_est(int chip_id) 13678 { 13679 switch (chip_id) { 13680 case BCM57710: 13681 case BCM57711: 13682 case BCM57711E: 13683 return BNX2X_MULTI_TX_COS_E1X; 13684 case BCM57712: 13685 case BCM57712_MF: 13686 return BNX2X_MULTI_TX_COS_E2_E3A0; 13687 case BCM57800: 13688 case BCM57800_MF: 13689 case BCM57810: 13690 case BCM57810_MF: 13691 case BCM57840_4_10: 13692 case BCM57840_2_20: 13693 case BCM57840_O: 13694 case BCM57840_MFO: 13695 case BCM57840_MF: 13696 case BCM57811: 13697 case BCM57811_MF: 13698 return BNX2X_MULTI_TX_COS_E3B0; 13699 case BCM57712_VF: 13700 case BCM57800_VF: 13701 case BCM57810_VF: 13702 case BCM57840_VF: 13703 case BCM57811_VF: 13704 return 1; 13705 default: 13706 pr_err("Unknown board_type (%d), aborting\n", chip_id); 13707 return -ENODEV; 13708 } 13709 } 13710 13711 static int set_is_vf(int chip_id) 13712 { 13713 switch (chip_id) { 13714 case BCM57712_VF: 13715 case BCM57800_VF: 13716 case BCM57810_VF: 13717 case BCM57840_VF: 13718 case BCM57811_VF: 13719 return true; 13720 default: 13721 return false; 13722 } 13723 } 13724 13725 /* nig_tsgen registers relative address */ 13726 #define tsgen_ctrl 0x0 13727 #define tsgen_freecount 0x10 13728 #define tsgen_synctime_t0 0x20 13729 #define tsgen_offset_t0 0x28 13730 #define tsgen_drift_t0 0x30 13731 #define tsgen_synctime_t1 0x58 13732 #define tsgen_offset_t1 0x60 13733 #define tsgen_drift_t1 0x68 13734 13735 /* FW workaround for setting drift */ 13736 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir, 13737 int best_val, int best_period) 13738 { 13739 struct bnx2x_func_state_params func_params = {NULL}; 13740 struct bnx2x_func_set_timesync_params *set_timesync_params = 13741 &func_params.params.set_timesync; 13742 13743 /* Prepare parameters for function state transitions */ 13744 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 13745 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 13746 13747 func_params.f_obj = &bp->func_obj; 13748 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 13749 13750 /* Function parameters */ 13751 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET; 13752 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 13753 set_timesync_params->add_sub_drift_adjust_value = 13754 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE; 13755 set_timesync_params->drift_adjust_value = best_val; 13756 set_timesync_params->drift_adjust_period = best_period; 13757 13758 return bnx2x_func_state_change(bp, &func_params); 13759 } 13760 13761 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 13762 { 13763 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13764 int rc; 13765 int drift_dir = 1; 13766 int val, period, period1, period2, dif, dif1, dif2; 13767 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0; 13768 13769 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb); 13770 13771 if (!netif_running(bp->dev)) { 13772 DP(BNX2X_MSG_PTP, 13773 "PTP adjfreq called while the interface is down\n"); 13774 return -ENETDOWN; 13775 } 13776 13777 if (ppb < 0) { 13778 ppb = -ppb; 13779 drift_dir = 0; 13780 } 13781 13782 if (ppb == 0) { 13783 best_val = 1; 13784 best_period = 0x1FFFFFF; 13785 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) { 13786 best_val = 31; 13787 best_period = 1; 13788 } else { 13789 /* Changed not to allow val = 8, 16, 24 as these values 13790 * are not supported in workaround. 13791 */ 13792 for (val = 0; val <= 31; val++) { 13793 if ((val & 0x7) == 0) 13794 continue; 13795 period1 = val * 1000000 / ppb; 13796 period2 = period1 + 1; 13797 if (period1 != 0) 13798 dif1 = ppb - (val * 1000000 / period1); 13799 else 13800 dif1 = BNX2X_MAX_PHC_DRIFT; 13801 if (dif1 < 0) 13802 dif1 = -dif1; 13803 dif2 = ppb - (val * 1000000 / period2); 13804 if (dif2 < 0) 13805 dif2 = -dif2; 13806 dif = (dif1 < dif2) ? dif1 : dif2; 13807 period = (dif1 < dif2) ? period1 : period2; 13808 if (dif < best_dif) { 13809 best_dif = dif; 13810 best_val = val; 13811 best_period = period; 13812 } 13813 } 13814 } 13815 13816 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val, 13817 best_period); 13818 if (rc) { 13819 BNX2X_ERR("Failed to set drift\n"); 13820 return -EFAULT; 13821 } 13822 13823 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val, 13824 best_period); 13825 13826 return 0; 13827 } 13828 13829 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 13830 { 13831 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13832 13833 if (!netif_running(bp->dev)) { 13834 DP(BNX2X_MSG_PTP, 13835 "PTP adjtime called while the interface is down\n"); 13836 return -ENETDOWN; 13837 } 13838 13839 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta); 13840 13841 timecounter_adjtime(&bp->timecounter, delta); 13842 13843 return 0; 13844 } 13845 13846 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 13847 { 13848 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13849 u64 ns; 13850 13851 if (!netif_running(bp->dev)) { 13852 DP(BNX2X_MSG_PTP, 13853 "PTP gettime called while the interface is down\n"); 13854 return -ENETDOWN; 13855 } 13856 13857 ns = timecounter_read(&bp->timecounter); 13858 13859 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns); 13860 13861 *ts = ns_to_timespec64(ns); 13862 13863 return 0; 13864 } 13865 13866 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp, 13867 const struct timespec64 *ts) 13868 { 13869 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13870 u64 ns; 13871 13872 if (!netif_running(bp->dev)) { 13873 DP(BNX2X_MSG_PTP, 13874 "PTP settime called while the interface is down\n"); 13875 return -ENETDOWN; 13876 } 13877 13878 ns = timespec64_to_ns(ts); 13879 13880 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns); 13881 13882 /* Re-init the timecounter */ 13883 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns); 13884 13885 return 0; 13886 } 13887 13888 /* Enable (or disable) ancillary features of the phc subsystem */ 13889 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp, 13890 struct ptp_clock_request *rq, int on) 13891 { 13892 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13893 13894 BNX2X_ERR("PHC ancillary features are not supported\n"); 13895 return -ENOTSUPP; 13896 } 13897 13898 static void bnx2x_register_phc(struct bnx2x *bp) 13899 { 13900 /* Fill the ptp_clock_info struct and register PTP clock*/ 13901 bp->ptp_clock_info.owner = THIS_MODULE; 13902 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name); 13903 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */ 13904 bp->ptp_clock_info.n_alarm = 0; 13905 bp->ptp_clock_info.n_ext_ts = 0; 13906 bp->ptp_clock_info.n_per_out = 0; 13907 bp->ptp_clock_info.pps = 0; 13908 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq; 13909 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime; 13910 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime; 13911 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime; 13912 bp->ptp_clock_info.enable = bnx2x_ptp_enable; 13913 13914 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev); 13915 if (IS_ERR(bp->ptp_clock)) { 13916 bp->ptp_clock = NULL; 13917 BNX2X_ERR("PTP clock registration failed\n"); 13918 } 13919 } 13920 13921 static int bnx2x_init_one(struct pci_dev *pdev, 13922 const struct pci_device_id *ent) 13923 { 13924 struct net_device *dev = NULL; 13925 struct bnx2x *bp; 13926 int rc, max_non_def_sbs; 13927 int rx_count, tx_count, rss_count, doorbell_size; 13928 int max_cos_est; 13929 bool is_vf; 13930 int cnic_cnt; 13931 13932 /* Management FW 'remembers' living interfaces. Allow it some time 13933 * to forget previously living interfaces, allowing a proper re-load. 13934 */ 13935 if (is_kdump_kernel()) { 13936 ktime_t now = ktime_get_boottime(); 13937 ktime_t fw_ready_time = ktime_set(5, 0); 13938 13939 if (ktime_before(now, fw_ready_time)) 13940 msleep(ktime_ms_delta(fw_ready_time, now)); 13941 } 13942 13943 /* An estimated maximum supported CoS number according to the chip 13944 * version. 13945 * We will try to roughly estimate the maximum number of CoSes this chip 13946 * may support in order to minimize the memory allocated for Tx 13947 * netdev_queue's. This number will be accurately calculated during the 13948 * initialization of bp->max_cos based on the chip versions AND chip 13949 * revision in the bnx2x_init_bp(). 13950 */ 13951 max_cos_est = set_max_cos_est(ent->driver_data); 13952 if (max_cos_est < 0) 13953 return max_cos_est; 13954 is_vf = set_is_vf(ent->driver_data); 13955 cnic_cnt = is_vf ? 0 : 1; 13956 13957 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt); 13958 13959 /* add another SB for VF as it has no default SB */ 13960 max_non_def_sbs += is_vf ? 1 : 0; 13961 13962 /* Maximum number of RSS queues: one IGU SB goes to CNIC */ 13963 rss_count = max_non_def_sbs - cnic_cnt; 13964 13965 if (rss_count < 1) 13966 return -EINVAL; 13967 13968 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ 13969 rx_count = rss_count + cnic_cnt; 13970 13971 /* Maximum number of netdev Tx queues: 13972 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 13973 */ 13974 tx_count = rss_count * max_cos_est + cnic_cnt; 13975 13976 /* dev zeroed in init_etherdev */ 13977 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); 13978 if (!dev) 13979 return -ENOMEM; 13980 13981 bp = netdev_priv(dev); 13982 13983 bp->flags = 0; 13984 if (is_vf) 13985 bp->flags |= IS_VF_FLAG; 13986 13987 bp->igu_sb_cnt = max_non_def_sbs; 13988 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; 13989 bp->msg_enable = debug; 13990 bp->cnic_support = cnic_cnt; 13991 bp->cnic_probe = bnx2x_cnic_probe; 13992 13993 pci_set_drvdata(pdev, dev); 13994 13995 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); 13996 if (rc < 0) { 13997 free_netdev(dev); 13998 return rc; 13999 } 14000 14001 BNX2X_DEV_INFO("This is a %s function\n", 14002 IS_PF(bp) ? "physical" : "virtual"); 14003 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); 14004 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); 14005 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", 14006 tx_count, rx_count); 14007 14008 rc = bnx2x_init_bp(bp); 14009 if (rc) 14010 goto init_one_exit; 14011 14012 /* Map doorbells here as we need the real value of bp->max_cos which 14013 * is initialized in bnx2x_init_bp() to determine the number of 14014 * l2 connections. 14015 */ 14016 if (IS_VF(bp)) { 14017 bp->doorbells = bnx2x_vf_doorbells(bp); 14018 rc = bnx2x_vf_pci_alloc(bp); 14019 if (rc) 14020 goto init_one_freemem; 14021 } else { 14022 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); 14023 if (doorbell_size > pci_resource_len(pdev, 2)) { 14024 dev_err(&bp->pdev->dev, 14025 "Cannot map doorbells, bar size too small, aborting\n"); 14026 rc = -ENOMEM; 14027 goto init_one_freemem; 14028 } 14029 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2), 14030 doorbell_size); 14031 } 14032 if (!bp->doorbells) { 14033 dev_err(&bp->pdev->dev, 14034 "Cannot map doorbell space, aborting\n"); 14035 rc = -ENOMEM; 14036 goto init_one_freemem; 14037 } 14038 14039 if (IS_VF(bp)) { 14040 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); 14041 if (rc) 14042 goto init_one_freemem; 14043 14044 #ifdef CONFIG_BNX2X_SRIOV 14045 /* VF with OLD Hypervisor or old PF do not support filtering */ 14046 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) { 14047 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 14048 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 14049 } 14050 #endif 14051 } 14052 14053 /* Enable SRIOV if capability found in configuration space */ 14054 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); 14055 if (rc) 14056 goto init_one_freemem; 14057 14058 /* calc qm_cid_count */ 14059 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); 14060 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); 14061 14062 /* disable FCOE L2 queue for E1x*/ 14063 if (CHIP_IS_E1x(bp)) 14064 bp->flags |= NO_FCOE_FLAG; 14065 14066 /* Set bp->num_queues for MSI-X mode*/ 14067 bnx2x_set_num_queues(bp); 14068 14069 /* Configure interrupt mode: try to enable MSI-X/MSI if 14070 * needed. 14071 */ 14072 rc = bnx2x_set_int_mode(bp); 14073 if (rc) { 14074 dev_err(&pdev->dev, "Cannot set interrupts\n"); 14075 goto init_one_freemem; 14076 } 14077 BNX2X_DEV_INFO("set interrupts successfully\n"); 14078 14079 /* register the net device */ 14080 rc = register_netdev(dev); 14081 if (rc) { 14082 dev_err(&pdev->dev, "Cannot register net device\n"); 14083 goto init_one_freemem; 14084 } 14085 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); 14086 14087 if (!NO_FCOE(bp)) { 14088 /* Add storage MAC address */ 14089 rtnl_lock(); 14090 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 14091 rtnl_unlock(); 14092 } 14093 BNX2X_DEV_INFO( 14094 "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n", 14095 board_info[ent->driver_data].name, 14096 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), 14097 dev->base_addr, bp->pdev->irq, dev->dev_addr); 14098 pcie_print_link_status(bp->pdev); 14099 14100 bnx2x_register_phc(bp); 14101 14102 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 14103 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 14104 14105 return 0; 14106 14107 init_one_freemem: 14108 bnx2x_free_mem_bp(bp); 14109 14110 init_one_exit: 14111 bnx2x_disable_pcie_error_reporting(bp); 14112 14113 if (bp->regview) 14114 iounmap(bp->regview); 14115 14116 if (IS_PF(bp) && bp->doorbells) 14117 iounmap(bp->doorbells); 14118 14119 free_netdev(dev); 14120 14121 if (atomic_read(&pdev->enable_cnt) == 1) 14122 pci_release_regions(pdev); 14123 14124 pci_disable_device(pdev); 14125 14126 return rc; 14127 } 14128 14129 static void __bnx2x_remove(struct pci_dev *pdev, 14130 struct net_device *dev, 14131 struct bnx2x *bp, 14132 bool remove_netdev) 14133 { 14134 if (bp->ptp_clock) { 14135 ptp_clock_unregister(bp->ptp_clock); 14136 bp->ptp_clock = NULL; 14137 } 14138 14139 /* Delete storage MAC address */ 14140 if (!NO_FCOE(bp)) { 14141 rtnl_lock(); 14142 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 14143 rtnl_unlock(); 14144 } 14145 14146 #ifdef BCM_DCBNL 14147 /* Delete app tlvs from dcbnl */ 14148 bnx2x_dcbnl_update_applist(bp, true); 14149 #endif 14150 14151 if (IS_PF(bp) && 14152 !BP_NOMCP(bp) && 14153 (bp->flags & BC_SUPPORTS_RMMOD_CMD)) 14154 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); 14155 14156 /* Close the interface - either directly or implicitly */ 14157 if (remove_netdev) { 14158 unregister_netdev(dev); 14159 } else { 14160 rtnl_lock(); 14161 dev_close(dev); 14162 rtnl_unlock(); 14163 } 14164 14165 bnx2x_iov_remove_one(bp); 14166 14167 /* Power on: we can't let PCI layer write to us while we are in D3 */ 14168 if (IS_PF(bp)) { 14169 bnx2x_set_power_state(bp, PCI_D0); 14170 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED); 14171 14172 /* Set endianity registers to reset values in case next driver 14173 * boots in different endianty environment. 14174 */ 14175 bnx2x_reset_endianity(bp); 14176 } 14177 14178 /* Disable MSI/MSI-X */ 14179 bnx2x_disable_msi(bp); 14180 14181 /* Power off */ 14182 if (IS_PF(bp)) 14183 bnx2x_set_power_state(bp, PCI_D3hot); 14184 14185 /* Make sure RESET task is not scheduled before continuing */ 14186 cancel_delayed_work_sync(&bp->sp_rtnl_task); 14187 14188 /* send message via vfpf channel to release the resources of this vf */ 14189 if (IS_VF(bp)) 14190 bnx2x_vfpf_release(bp); 14191 14192 /* Assumes no further PCIe PM changes will occur */ 14193 if (system_state == SYSTEM_POWER_OFF) { 14194 pci_wake_from_d3(pdev, bp->wol); 14195 pci_set_power_state(pdev, PCI_D3hot); 14196 } 14197 14198 bnx2x_disable_pcie_error_reporting(bp); 14199 if (remove_netdev) { 14200 if (bp->regview) 14201 iounmap(bp->regview); 14202 14203 /* For vfs, doorbells are part of the regview and were unmapped 14204 * along with it. FW is only loaded by PF. 14205 */ 14206 if (IS_PF(bp)) { 14207 if (bp->doorbells) 14208 iounmap(bp->doorbells); 14209 14210 bnx2x_release_firmware(bp); 14211 } else { 14212 bnx2x_vf_pci_dealloc(bp); 14213 } 14214 bnx2x_free_mem_bp(bp); 14215 14216 free_netdev(dev); 14217 14218 if (atomic_read(&pdev->enable_cnt) == 1) 14219 pci_release_regions(pdev); 14220 14221 pci_disable_device(pdev); 14222 } 14223 } 14224 14225 static void bnx2x_remove_one(struct pci_dev *pdev) 14226 { 14227 struct net_device *dev = pci_get_drvdata(pdev); 14228 struct bnx2x *bp; 14229 14230 if (!dev) { 14231 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 14232 return; 14233 } 14234 bp = netdev_priv(dev); 14235 14236 __bnx2x_remove(pdev, dev, bp, true); 14237 } 14238 14239 static int bnx2x_eeh_nic_unload(struct bnx2x *bp) 14240 { 14241 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 14242 14243 bp->rx_mode = BNX2X_RX_MODE_NONE; 14244 14245 if (CNIC_LOADED(bp)) 14246 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 14247 14248 /* Stop Tx */ 14249 bnx2x_tx_disable(bp); 14250 /* Delete all NAPI objects */ 14251 bnx2x_del_all_napi(bp); 14252 if (CNIC_LOADED(bp)) 14253 bnx2x_del_all_napi_cnic(bp); 14254 netdev_reset_tc(bp->dev); 14255 14256 del_timer_sync(&bp->timer); 14257 cancel_delayed_work_sync(&bp->sp_task); 14258 cancel_delayed_work_sync(&bp->period_task); 14259 14260 if (!down_timeout(&bp->stats_lock, HZ / 10)) { 14261 bp->stats_state = STATS_STATE_DISABLED; 14262 up(&bp->stats_lock); 14263 } 14264 14265 bnx2x_save_statistics(bp); 14266 14267 netif_carrier_off(bp->dev); 14268 14269 return 0; 14270 } 14271 14272 /** 14273 * bnx2x_io_error_detected - called when PCI error is detected 14274 * @pdev: Pointer to PCI device 14275 * @state: The current pci connection state 14276 * 14277 * This function is called after a PCI bus error affecting 14278 * this device has been detected. 14279 */ 14280 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, 14281 pci_channel_state_t state) 14282 { 14283 struct net_device *dev = pci_get_drvdata(pdev); 14284 struct bnx2x *bp = netdev_priv(dev); 14285 14286 rtnl_lock(); 14287 14288 BNX2X_ERR("IO error detected\n"); 14289 14290 netif_device_detach(dev); 14291 14292 if (state == pci_channel_io_perm_failure) { 14293 rtnl_unlock(); 14294 return PCI_ERS_RESULT_DISCONNECT; 14295 } 14296 14297 if (netif_running(dev)) 14298 bnx2x_eeh_nic_unload(bp); 14299 14300 bnx2x_prev_path_mark_eeh(bp); 14301 14302 pci_disable_device(pdev); 14303 14304 rtnl_unlock(); 14305 14306 /* Request a slot reset */ 14307 return PCI_ERS_RESULT_NEED_RESET; 14308 } 14309 14310 /** 14311 * bnx2x_io_slot_reset - called after the PCI bus has been reset 14312 * @pdev: Pointer to PCI device 14313 * 14314 * Restart the card from scratch, as if from a cold-boot. 14315 */ 14316 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) 14317 { 14318 struct net_device *dev = pci_get_drvdata(pdev); 14319 struct bnx2x *bp = netdev_priv(dev); 14320 int i; 14321 14322 rtnl_lock(); 14323 BNX2X_ERR("IO slot reset initializing...\n"); 14324 if (pci_enable_device(pdev)) { 14325 dev_err(&pdev->dev, 14326 "Cannot re-enable PCI device after reset\n"); 14327 rtnl_unlock(); 14328 return PCI_ERS_RESULT_DISCONNECT; 14329 } 14330 14331 pci_set_master(pdev); 14332 pci_restore_state(pdev); 14333 pci_save_state(pdev); 14334 14335 if (netif_running(dev)) 14336 bnx2x_set_power_state(bp, PCI_D0); 14337 14338 if (netif_running(dev)) { 14339 BNX2X_ERR("IO slot reset --> driver unload\n"); 14340 14341 /* MCP should have been reset; Need to wait for validity */ 14342 if (bnx2x_init_shmem(bp)) { 14343 rtnl_unlock(); 14344 return PCI_ERS_RESULT_DISCONNECT; 14345 } 14346 14347 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 14348 u32 v; 14349 14350 v = SHMEM2_RD(bp, 14351 drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 14352 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 14353 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 14354 } 14355 bnx2x_drain_tx_queues(bp); 14356 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); 14357 bnx2x_netif_stop(bp, 1); 14358 bnx2x_free_irq(bp); 14359 14360 /* Report UNLOAD_DONE to MCP */ 14361 bnx2x_send_unload_done(bp, true); 14362 14363 bp->sp_state = 0; 14364 bp->port.pmf = 0; 14365 14366 bnx2x_prev_unload(bp); 14367 14368 /* We should have reseted the engine, so It's fair to 14369 * assume the FW will no longer write to the bnx2x driver. 14370 */ 14371 bnx2x_squeeze_objects(bp); 14372 bnx2x_free_skbs(bp); 14373 for_each_rx_queue(bp, i) 14374 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 14375 bnx2x_free_fp_mem(bp); 14376 bnx2x_free_mem(bp); 14377 14378 bp->state = BNX2X_STATE_CLOSED; 14379 } 14380 14381 rtnl_unlock(); 14382 14383 return PCI_ERS_RESULT_RECOVERED; 14384 } 14385 14386 /** 14387 * bnx2x_io_resume - called when traffic can start flowing again 14388 * @pdev: Pointer to PCI device 14389 * 14390 * This callback is called when the error recovery driver tells us that 14391 * its OK to resume normal operation. 14392 */ 14393 static void bnx2x_io_resume(struct pci_dev *pdev) 14394 { 14395 struct net_device *dev = pci_get_drvdata(pdev); 14396 struct bnx2x *bp = netdev_priv(dev); 14397 14398 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 14399 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); 14400 return; 14401 } 14402 14403 rtnl_lock(); 14404 14405 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 14406 DRV_MSG_SEQ_NUMBER_MASK; 14407 14408 if (netif_running(dev)) 14409 bnx2x_nic_load(bp, LOAD_NORMAL); 14410 14411 netif_device_attach(dev); 14412 14413 rtnl_unlock(); 14414 } 14415 14416 static const struct pci_error_handlers bnx2x_err_handler = { 14417 .error_detected = bnx2x_io_error_detected, 14418 .slot_reset = bnx2x_io_slot_reset, 14419 .resume = bnx2x_io_resume, 14420 }; 14421 14422 static void bnx2x_shutdown(struct pci_dev *pdev) 14423 { 14424 struct net_device *dev = pci_get_drvdata(pdev); 14425 struct bnx2x *bp; 14426 14427 if (!dev) 14428 return; 14429 14430 bp = netdev_priv(dev); 14431 if (!bp) 14432 return; 14433 14434 rtnl_lock(); 14435 netif_device_detach(dev); 14436 rtnl_unlock(); 14437 14438 /* Don't remove the netdevice, as there are scenarios which will cause 14439 * the kernel to hang, e.g., when trying to remove bnx2i while the 14440 * rootfs is mounted from SAN. 14441 */ 14442 __bnx2x_remove(pdev, dev, bp, false); 14443 } 14444 14445 static struct pci_driver bnx2x_pci_driver = { 14446 .name = DRV_MODULE_NAME, 14447 .id_table = bnx2x_pci_tbl, 14448 .probe = bnx2x_init_one, 14449 .remove = bnx2x_remove_one, 14450 .suspend = bnx2x_suspend, 14451 .resume = bnx2x_resume, 14452 .err_handler = &bnx2x_err_handler, 14453 #ifdef CONFIG_BNX2X_SRIOV 14454 .sriov_configure = bnx2x_sriov_configure, 14455 #endif 14456 .shutdown = bnx2x_shutdown, 14457 }; 14458 14459 static int __init bnx2x_init(void) 14460 { 14461 int ret; 14462 14463 pr_info("%s", version); 14464 14465 bnx2x_wq = create_singlethread_workqueue("bnx2x"); 14466 if (bnx2x_wq == NULL) { 14467 pr_err("Cannot create workqueue\n"); 14468 return -ENOMEM; 14469 } 14470 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov"); 14471 if (!bnx2x_iov_wq) { 14472 pr_err("Cannot create iov workqueue\n"); 14473 destroy_workqueue(bnx2x_wq); 14474 return -ENOMEM; 14475 } 14476 14477 ret = pci_register_driver(&bnx2x_pci_driver); 14478 if (ret) { 14479 pr_err("Cannot register driver\n"); 14480 destroy_workqueue(bnx2x_wq); 14481 destroy_workqueue(bnx2x_iov_wq); 14482 } 14483 return ret; 14484 } 14485 14486 static void __exit bnx2x_cleanup(void) 14487 { 14488 struct list_head *pos, *q; 14489 14490 pci_unregister_driver(&bnx2x_pci_driver); 14491 14492 destroy_workqueue(bnx2x_wq); 14493 destroy_workqueue(bnx2x_iov_wq); 14494 14495 /* Free globally allocated resources */ 14496 list_for_each_safe(pos, q, &bnx2x_prev_list) { 14497 struct bnx2x_prev_path_list *tmp = 14498 list_entry(pos, struct bnx2x_prev_path_list, list); 14499 list_del(pos); 14500 kfree(tmp); 14501 } 14502 } 14503 14504 void bnx2x_notify_link_changed(struct bnx2x *bp) 14505 { 14506 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); 14507 } 14508 14509 module_init(bnx2x_init); 14510 module_exit(bnx2x_cleanup); 14511 14512 /** 14513 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). 14514 * 14515 * @bp: driver handle 14516 * @set: set or clear the CAM entry 14517 * 14518 * This function will wait until the ramrod completion returns. 14519 * Return 0 if success, -ENODEV if ramrod doesn't return. 14520 */ 14521 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) 14522 { 14523 unsigned long ramrod_flags = 0; 14524 14525 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 14526 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, 14527 &bp->iscsi_l2_mac_obj, true, 14528 BNX2X_ISCSI_ETH_MAC, &ramrod_flags); 14529 } 14530 14531 /* count denotes the number of new completions we have seen */ 14532 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) 14533 { 14534 struct eth_spe *spe; 14535 int cxt_index, cxt_offset; 14536 14537 #ifdef BNX2X_STOP_ON_ERROR 14538 if (unlikely(bp->panic)) 14539 return; 14540 #endif 14541 14542 spin_lock_bh(&bp->spq_lock); 14543 BUG_ON(bp->cnic_spq_pending < count); 14544 bp->cnic_spq_pending -= count; 14545 14546 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { 14547 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) 14548 & SPE_HDR_CONN_TYPE) >> 14549 SPE_HDR_CONN_TYPE_SHIFT; 14550 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) 14551 >> SPE_HDR_CMD_ID_SHIFT) & 0xff; 14552 14553 /* Set validation for iSCSI L2 client before sending SETUP 14554 * ramrod 14555 */ 14556 if (type == ETH_CONNECTION_TYPE) { 14557 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { 14558 cxt_index = BNX2X_ISCSI_ETH_CID(bp) / 14559 ILT_PAGE_CIDS; 14560 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - 14561 (cxt_index * ILT_PAGE_CIDS); 14562 bnx2x_set_ctx_validation(bp, 14563 &bp->context[cxt_index]. 14564 vcxt[cxt_offset].eth, 14565 BNX2X_ISCSI_ETH_CID(bp)); 14566 } 14567 } 14568 14569 /* 14570 * There may be not more than 8 L2, not more than 8 L5 SPEs 14571 * and in the air. We also check that number of outstanding 14572 * COMMON ramrods is not more than the EQ and SPQ can 14573 * accommodate. 14574 */ 14575 if (type == ETH_CONNECTION_TYPE) { 14576 if (!atomic_read(&bp->cq_spq_left)) 14577 break; 14578 else 14579 atomic_dec(&bp->cq_spq_left); 14580 } else if (type == NONE_CONNECTION_TYPE) { 14581 if (!atomic_read(&bp->eq_spq_left)) 14582 break; 14583 else 14584 atomic_dec(&bp->eq_spq_left); 14585 } else if ((type == ISCSI_CONNECTION_TYPE) || 14586 (type == FCOE_CONNECTION_TYPE)) { 14587 if (bp->cnic_spq_pending >= 14588 bp->cnic_eth_dev.max_kwqe_pending) 14589 break; 14590 else 14591 bp->cnic_spq_pending++; 14592 } else { 14593 BNX2X_ERR("Unknown SPE type: %d\n", type); 14594 bnx2x_panic(); 14595 break; 14596 } 14597 14598 spe = bnx2x_sp_get_next(bp); 14599 *spe = *bp->cnic_kwq_cons; 14600 14601 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", 14602 bp->cnic_spq_pending, bp->cnic_kwq_pending, count); 14603 14604 if (bp->cnic_kwq_cons == bp->cnic_kwq_last) 14605 bp->cnic_kwq_cons = bp->cnic_kwq; 14606 else 14607 bp->cnic_kwq_cons++; 14608 } 14609 bnx2x_sp_prod_update(bp); 14610 spin_unlock_bh(&bp->spq_lock); 14611 } 14612 14613 static int bnx2x_cnic_sp_queue(struct net_device *dev, 14614 struct kwqe_16 *kwqes[], u32 count) 14615 { 14616 struct bnx2x *bp = netdev_priv(dev); 14617 int i; 14618 14619 #ifdef BNX2X_STOP_ON_ERROR 14620 if (unlikely(bp->panic)) { 14621 BNX2X_ERR("Can't post to SP queue while panic\n"); 14622 return -EIO; 14623 } 14624 #endif 14625 14626 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && 14627 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 14628 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 14629 return -EAGAIN; 14630 } 14631 14632 spin_lock_bh(&bp->spq_lock); 14633 14634 for (i = 0; i < count; i++) { 14635 struct eth_spe *spe = (struct eth_spe *)kwqes[i]; 14636 14637 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) 14638 break; 14639 14640 *bp->cnic_kwq_prod = *spe; 14641 14642 bp->cnic_kwq_pending++; 14643 14644 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", 14645 spe->hdr.conn_and_cmd_data, spe->hdr.type, 14646 spe->data.update_data_addr.hi, 14647 spe->data.update_data_addr.lo, 14648 bp->cnic_kwq_pending); 14649 14650 if (bp->cnic_kwq_prod == bp->cnic_kwq_last) 14651 bp->cnic_kwq_prod = bp->cnic_kwq; 14652 else 14653 bp->cnic_kwq_prod++; 14654 } 14655 14656 spin_unlock_bh(&bp->spq_lock); 14657 14658 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) 14659 bnx2x_cnic_sp_post(bp, 0); 14660 14661 return i; 14662 } 14663 14664 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14665 { 14666 struct cnic_ops *c_ops; 14667 int rc = 0; 14668 14669 mutex_lock(&bp->cnic_mutex); 14670 c_ops = rcu_dereference_protected(bp->cnic_ops, 14671 lockdep_is_held(&bp->cnic_mutex)); 14672 if (c_ops) 14673 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14674 mutex_unlock(&bp->cnic_mutex); 14675 14676 return rc; 14677 } 14678 14679 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14680 { 14681 struct cnic_ops *c_ops; 14682 int rc = 0; 14683 14684 rcu_read_lock(); 14685 c_ops = rcu_dereference(bp->cnic_ops); 14686 if (c_ops) 14687 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14688 rcu_read_unlock(); 14689 14690 return rc; 14691 } 14692 14693 /* 14694 * for commands that have no data 14695 */ 14696 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) 14697 { 14698 struct cnic_ctl_info ctl = {0}; 14699 14700 ctl.cmd = cmd; 14701 14702 return bnx2x_cnic_ctl_send(bp, &ctl); 14703 } 14704 14705 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) 14706 { 14707 struct cnic_ctl_info ctl = {0}; 14708 14709 /* first we tell CNIC and only then we count this as a completion */ 14710 ctl.cmd = CNIC_CTL_COMPLETION_CMD; 14711 ctl.data.comp.cid = cid; 14712 ctl.data.comp.error = err; 14713 14714 bnx2x_cnic_ctl_send_bh(bp, &ctl); 14715 bnx2x_cnic_sp_post(bp, 0); 14716 } 14717 14718 /* Called with netif_addr_lock_bh() taken. 14719 * Sets an rx_mode config for an iSCSI ETH client. 14720 * Doesn't block. 14721 * Completion should be checked outside. 14722 */ 14723 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) 14724 { 14725 unsigned long accept_flags = 0, ramrod_flags = 0; 14726 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 14727 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; 14728 14729 if (start) { 14730 /* Start accepting on iSCSI L2 ring. Accept all multicasts 14731 * because it's the only way for UIO Queue to accept 14732 * multicasts (in non-promiscuous mode only one Queue per 14733 * function will receive multicast packets (leading in our 14734 * case). 14735 */ 14736 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); 14737 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); 14738 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); 14739 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 14740 14741 /* Clear STOP_PENDING bit if START is requested */ 14742 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); 14743 14744 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; 14745 } else 14746 /* Clear START_PENDING bit if STOP is requested */ 14747 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); 14748 14749 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 14750 set_bit(sched_state, &bp->sp_state); 14751 else { 14752 __set_bit(RAMROD_RX, &ramrod_flags); 14753 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, 14754 ramrod_flags); 14755 } 14756 } 14757 14758 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) 14759 { 14760 struct bnx2x *bp = netdev_priv(dev); 14761 int rc = 0; 14762 14763 switch (ctl->cmd) { 14764 case DRV_CTL_CTXTBL_WR_CMD: { 14765 u32 index = ctl->data.io.offset; 14766 dma_addr_t addr = ctl->data.io.dma_addr; 14767 14768 bnx2x_ilt_wr(bp, index, addr); 14769 break; 14770 } 14771 14772 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { 14773 int count = ctl->data.credit.credit_count; 14774 14775 bnx2x_cnic_sp_post(bp, count); 14776 break; 14777 } 14778 14779 /* rtnl_lock is held. */ 14780 case DRV_CTL_START_L2_CMD: { 14781 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14782 unsigned long sp_bits = 0; 14783 14784 /* Configure the iSCSI classification object */ 14785 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, 14786 cp->iscsi_l2_client_id, 14787 cp->iscsi_l2_cid, BP_FUNC(bp), 14788 bnx2x_sp(bp, mac_rdata), 14789 bnx2x_sp_mapping(bp, mac_rdata), 14790 BNX2X_FILTER_MAC_PENDING, 14791 &bp->sp_state, BNX2X_OBJ_TYPE_RX, 14792 &bp->macs_pool); 14793 14794 /* Set iSCSI MAC address */ 14795 rc = bnx2x_set_iscsi_eth_mac_addr(bp); 14796 if (rc) 14797 break; 14798 14799 mmiowb(); 14800 barrier(); 14801 14802 /* Start accepting on iSCSI L2 ring */ 14803 14804 netif_addr_lock_bh(dev); 14805 bnx2x_set_iscsi_eth_rx_mode(bp, true); 14806 netif_addr_unlock_bh(dev); 14807 14808 /* bits to wait on */ 14809 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14810 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); 14811 14812 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14813 BNX2X_ERR("rx_mode completion timed out!\n"); 14814 14815 break; 14816 } 14817 14818 /* rtnl_lock is held. */ 14819 case DRV_CTL_STOP_L2_CMD: { 14820 unsigned long sp_bits = 0; 14821 14822 /* Stop accepting on iSCSI L2 ring */ 14823 netif_addr_lock_bh(dev); 14824 bnx2x_set_iscsi_eth_rx_mode(bp, false); 14825 netif_addr_unlock_bh(dev); 14826 14827 /* bits to wait on */ 14828 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14829 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); 14830 14831 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14832 BNX2X_ERR("rx_mode completion timed out!\n"); 14833 14834 mmiowb(); 14835 barrier(); 14836 14837 /* Unset iSCSI L2 MAC */ 14838 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, 14839 BNX2X_ISCSI_ETH_MAC, true); 14840 break; 14841 } 14842 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { 14843 int count = ctl->data.credit.credit_count; 14844 14845 smp_mb__before_atomic(); 14846 atomic_add(count, &bp->cq_spq_left); 14847 smp_mb__after_atomic(); 14848 break; 14849 } 14850 case DRV_CTL_ULP_REGISTER_CMD: { 14851 int ulp_type = ctl->data.register_data.ulp_type; 14852 14853 if (CHIP_IS_E3(bp)) { 14854 int idx = BP_FW_MB_IDX(bp); 14855 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14856 int path = BP_PATH(bp); 14857 int port = BP_PORT(bp); 14858 int i; 14859 u32 scratch_offset; 14860 u32 *host_addr; 14861 14862 /* first write capability to shmem2 */ 14863 if (ulp_type == CNIC_ULP_ISCSI) 14864 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14865 else if (ulp_type == CNIC_ULP_FCOE) 14866 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14867 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14868 14869 if ((ulp_type != CNIC_ULP_FCOE) || 14870 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || 14871 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) 14872 break; 14873 14874 /* if reached here - should write fcoe capabilities */ 14875 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); 14876 if (!scratch_offset) 14877 break; 14878 scratch_offset += offsetof(struct glob_ncsi_oem_data, 14879 fcoe_features[path][port]); 14880 host_addr = (u32 *) &(ctl->data.register_data. 14881 fcoe_features); 14882 for (i = 0; i < sizeof(struct fcoe_capabilities); 14883 i += 4) 14884 REG_WR(bp, scratch_offset + i, 14885 *(host_addr + i/4)); 14886 } 14887 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14888 break; 14889 } 14890 14891 case DRV_CTL_ULP_UNREGISTER_CMD: { 14892 int ulp_type = ctl->data.ulp_type; 14893 14894 if (CHIP_IS_E3(bp)) { 14895 int idx = BP_FW_MB_IDX(bp); 14896 u32 cap; 14897 14898 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14899 if (ulp_type == CNIC_ULP_ISCSI) 14900 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14901 else if (ulp_type == CNIC_ULP_FCOE) 14902 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14903 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14904 } 14905 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14906 break; 14907 } 14908 14909 default: 14910 BNX2X_ERR("unknown command %x\n", ctl->cmd); 14911 rc = -EINVAL; 14912 } 14913 14914 /* For storage-only interfaces, change driver state */ 14915 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) { 14916 switch (ctl->drv_state) { 14917 case DRV_NOP: 14918 break; 14919 case DRV_ACTIVE: 14920 bnx2x_set_os_driver_state(bp, 14921 OS_DRIVER_STATE_ACTIVE); 14922 break; 14923 case DRV_INACTIVE: 14924 bnx2x_set_os_driver_state(bp, 14925 OS_DRIVER_STATE_DISABLED); 14926 break; 14927 case DRV_UNLOADED: 14928 bnx2x_set_os_driver_state(bp, 14929 OS_DRIVER_STATE_NOT_LOADED); 14930 break; 14931 default: 14932 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state); 14933 } 14934 } 14935 14936 return rc; 14937 } 14938 14939 static int bnx2x_get_fc_npiv(struct net_device *dev, 14940 struct cnic_fc_npiv_tbl *cnic_tbl) 14941 { 14942 struct bnx2x *bp = netdev_priv(dev); 14943 struct bdn_fc_npiv_tbl *tbl = NULL; 14944 u32 offset, entries; 14945 int rc = -EINVAL; 14946 int i; 14947 14948 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0])) 14949 goto out; 14950 14951 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n"); 14952 14953 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL); 14954 if (!tbl) { 14955 BNX2X_ERR("Failed to allocate fc_npiv table\n"); 14956 goto out; 14957 } 14958 14959 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]); 14960 if (!offset) { 14961 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n"); 14962 goto out; 14963 } 14964 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset); 14965 14966 /* Read the table contents from nvram */ 14967 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) { 14968 BNX2X_ERR("Failed to read FC-NPIV table\n"); 14969 goto out; 14970 } 14971 14972 /* Since bnx2x_nvram_read() returns data in be32, we need to convert 14973 * the number of entries back to cpu endianness. 14974 */ 14975 entries = tbl->fc_npiv_cfg.num_of_npiv; 14976 entries = (__force u32)be32_to_cpu((__force __be32)entries); 14977 tbl->fc_npiv_cfg.num_of_npiv = entries; 14978 14979 if (!tbl->fc_npiv_cfg.num_of_npiv) { 14980 DP(BNX2X_MSG_MCP, 14981 "No FC-NPIV table [valid, simply not present]\n"); 14982 goto out; 14983 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) { 14984 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n", 14985 tbl->fc_npiv_cfg.num_of_npiv); 14986 goto out; 14987 } else { 14988 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n", 14989 tbl->fc_npiv_cfg.num_of_npiv); 14990 } 14991 14992 /* Copy the data into cnic-provided struct */ 14993 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv; 14994 for (i = 0; i < cnic_tbl->count; i++) { 14995 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8); 14996 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8); 14997 } 14998 14999 rc = 0; 15000 out: 15001 kfree(tbl); 15002 return rc; 15003 } 15004 15005 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) 15006 { 15007 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15008 15009 if (bp->flags & USING_MSIX_FLAG) { 15010 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; 15011 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; 15012 cp->irq_arr[0].vector = bp->msix_table[1].vector; 15013 } else { 15014 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; 15015 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; 15016 } 15017 if (!CHIP_IS_E1x(bp)) 15018 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; 15019 else 15020 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; 15021 15022 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); 15023 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); 15024 cp->irq_arr[1].status_blk = bp->def_status_blk; 15025 cp->irq_arr[1].status_blk_num = DEF_SB_ID; 15026 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; 15027 15028 cp->num_irq = 2; 15029 } 15030 15031 void bnx2x_setup_cnic_info(struct bnx2x *bp) 15032 { 15033 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15034 15035 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 15036 bnx2x_cid_ilt_lines(bp); 15037 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 15038 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 15039 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 15040 15041 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n", 15042 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid, 15043 cp->iscsi_l2_cid); 15044 15045 if (NO_ISCSI_OOO(bp)) 15046 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 15047 } 15048 15049 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, 15050 void *data) 15051 { 15052 struct bnx2x *bp = netdev_priv(dev); 15053 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15054 int rc; 15055 15056 DP(NETIF_MSG_IFUP, "Register_cnic called\n"); 15057 15058 if (ops == NULL) { 15059 BNX2X_ERR("NULL ops received\n"); 15060 return -EINVAL; 15061 } 15062 15063 if (!CNIC_SUPPORT(bp)) { 15064 BNX2X_ERR("Can't register CNIC when not supported\n"); 15065 return -EOPNOTSUPP; 15066 } 15067 15068 if (!CNIC_LOADED(bp)) { 15069 rc = bnx2x_load_cnic(bp); 15070 if (rc) { 15071 BNX2X_ERR("CNIC-related load failed\n"); 15072 return rc; 15073 } 15074 } 15075 15076 bp->cnic_enabled = true; 15077 15078 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); 15079 if (!bp->cnic_kwq) 15080 return -ENOMEM; 15081 15082 bp->cnic_kwq_cons = bp->cnic_kwq; 15083 bp->cnic_kwq_prod = bp->cnic_kwq; 15084 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; 15085 15086 bp->cnic_spq_pending = 0; 15087 bp->cnic_kwq_pending = 0; 15088 15089 bp->cnic_data = data; 15090 15091 cp->num_irq = 0; 15092 cp->drv_state |= CNIC_DRV_STATE_REGD; 15093 cp->iro_arr = bp->iro_arr; 15094 15095 bnx2x_setup_cnic_irq_info(bp); 15096 15097 rcu_assign_pointer(bp->cnic_ops, ops); 15098 15099 /* Schedule driver to read CNIC driver versions */ 15100 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 15101 15102 return 0; 15103 } 15104 15105 static int bnx2x_unregister_cnic(struct net_device *dev) 15106 { 15107 struct bnx2x *bp = netdev_priv(dev); 15108 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15109 15110 mutex_lock(&bp->cnic_mutex); 15111 cp->drv_state = 0; 15112 RCU_INIT_POINTER(bp->cnic_ops, NULL); 15113 mutex_unlock(&bp->cnic_mutex); 15114 synchronize_rcu(); 15115 bp->cnic_enabled = false; 15116 kfree(bp->cnic_kwq); 15117 bp->cnic_kwq = NULL; 15118 15119 return 0; 15120 } 15121 15122 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) 15123 { 15124 struct bnx2x *bp = netdev_priv(dev); 15125 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15126 15127 /* If both iSCSI and FCoE are disabled - return NULL in 15128 * order to indicate CNIC that it should not try to work 15129 * with this device. 15130 */ 15131 if (NO_ISCSI(bp) && NO_FCOE(bp)) 15132 return NULL; 15133 15134 cp->drv_owner = THIS_MODULE; 15135 cp->chip_id = CHIP_ID(bp); 15136 cp->pdev = bp->pdev; 15137 cp->io_base = bp->regview; 15138 cp->io_base2 = bp->doorbells; 15139 cp->max_kwqe_pending = 8; 15140 cp->ctx_blk_size = CDU_ILT_PAGE_SZ; 15141 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 15142 bnx2x_cid_ilt_lines(bp); 15143 cp->ctx_tbl_len = CNIC_ILT_LINES; 15144 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 15145 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; 15146 cp->drv_ctl = bnx2x_drv_ctl; 15147 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv; 15148 cp->drv_register_cnic = bnx2x_register_cnic; 15149 cp->drv_unregister_cnic = bnx2x_unregister_cnic; 15150 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 15151 cp->iscsi_l2_client_id = 15152 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 15153 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 15154 15155 if (NO_ISCSI_OOO(bp)) 15156 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 15157 15158 if (NO_ISCSI(bp)) 15159 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; 15160 15161 if (NO_FCOE(bp)) 15162 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; 15163 15164 BNX2X_DEV_INFO( 15165 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", 15166 cp->ctx_blk_size, 15167 cp->ctx_tbl_offset, 15168 cp->ctx_tbl_len, 15169 cp->starting_cid); 15170 return cp; 15171 } 15172 15173 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) 15174 { 15175 struct bnx2x *bp = fp->bp; 15176 u32 offset = BAR_USTRORM_INTMEM; 15177 15178 if (IS_VF(bp)) 15179 return bnx2x_vf_ustorm_prods_offset(bp, fp); 15180 else if (!CHIP_IS_E1x(bp)) 15181 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 15182 else 15183 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); 15184 15185 return offset; 15186 } 15187 15188 /* called only on E1H or E2. 15189 * When pretending to be PF, the pretend value is the function number 0...7 15190 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 15191 * combination 15192 */ 15193 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) 15194 { 15195 u32 pretend_reg; 15196 15197 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) 15198 return -1; 15199 15200 /* get my own pretend register */ 15201 pretend_reg = bnx2x_get_pretend_reg(bp); 15202 REG_WR(bp, pretend_reg, pretend_func_val); 15203 REG_RD(bp, pretend_reg); 15204 return 0; 15205 } 15206 15207 static void bnx2x_ptp_task(struct work_struct *work) 15208 { 15209 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task); 15210 int port = BP_PORT(bp); 15211 u32 val_seq; 15212 u64 timestamp, ns; 15213 struct skb_shared_hwtstamps shhwtstamps; 15214 15215 /* Read Tx timestamp registers */ 15216 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15217 NIG_REG_P0_TLLH_PTP_BUF_SEQID); 15218 if (val_seq & 0x10000) { 15219 /* There is a valid timestamp value */ 15220 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB : 15221 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB); 15222 timestamp <<= 32; 15223 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB : 15224 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB); 15225 /* Reset timestamp register to allow new timestamp */ 15226 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15227 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15228 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15229 15230 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 15231 shhwtstamps.hwtstamp = ns_to_ktime(ns); 15232 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps); 15233 dev_kfree_skb_any(bp->ptp_tx_skb); 15234 bp->ptp_tx_skb = NULL; 15235 15236 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n", 15237 timestamp, ns); 15238 } else { 15239 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n"); 15240 /* Reschedule to keep checking for a valid timestamp value */ 15241 schedule_work(&bp->ptp_task); 15242 } 15243 } 15244 15245 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb) 15246 { 15247 int port = BP_PORT(bp); 15248 u64 timestamp, ns; 15249 15250 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB : 15251 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB); 15252 timestamp <<= 32; 15253 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB : 15254 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB); 15255 15256 /* Reset timestamp register to allow new timestamp */ 15257 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15258 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15259 15260 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15261 15262 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 15263 15264 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n", 15265 timestamp, ns); 15266 } 15267 15268 /* Read the PHC */ 15269 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc) 15270 { 15271 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter); 15272 int port = BP_PORT(bp); 15273 u32 wb_data[2]; 15274 u64 phc_cycles; 15275 15276 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 : 15277 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2); 15278 phc_cycles = wb_data[1]; 15279 phc_cycles = (phc_cycles << 32) + wb_data[0]; 15280 15281 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles); 15282 15283 return phc_cycles; 15284 } 15285 15286 static void bnx2x_init_cyclecounter(struct bnx2x *bp) 15287 { 15288 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter)); 15289 bp->cyclecounter.read = bnx2x_cyclecounter_read; 15290 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64); 15291 bp->cyclecounter.shift = 0; 15292 bp->cyclecounter.mult = 1; 15293 } 15294 15295 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp) 15296 { 15297 struct bnx2x_func_state_params func_params = {NULL}; 15298 struct bnx2x_func_set_timesync_params *set_timesync_params = 15299 &func_params.params.set_timesync; 15300 15301 /* Prepare parameters for function state transitions */ 15302 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 15303 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 15304 15305 func_params.f_obj = &bp->func_obj; 15306 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 15307 15308 /* Function parameters */ 15309 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET; 15310 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 15311 15312 return bnx2x_func_state_change(bp, &func_params); 15313 } 15314 15315 static int bnx2x_enable_ptp_packets(struct bnx2x *bp) 15316 { 15317 struct bnx2x_queue_state_params q_params; 15318 int rc, i; 15319 15320 /* send queue update ramrod to enable PTP packets */ 15321 memset(&q_params, 0, sizeof(q_params)); 15322 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 15323 q_params.cmd = BNX2X_Q_CMD_UPDATE; 15324 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, 15325 &q_params.params.update.update_flags); 15326 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS, 15327 &q_params.params.update.update_flags); 15328 15329 /* send the ramrod on all the queues of the PF */ 15330 for_each_eth_queue(bp, i) { 15331 struct bnx2x_fastpath *fp = &bp->fp[i]; 15332 15333 /* Set the appropriate Queue object */ 15334 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 15335 15336 /* Update the Queue state */ 15337 rc = bnx2x_queue_state_change(bp, &q_params); 15338 if (rc) { 15339 BNX2X_ERR("Failed to enable PTP packets\n"); 15340 return rc; 15341 } 15342 } 15343 15344 return 0; 15345 } 15346 15347 int bnx2x_configure_ptp_filters(struct bnx2x *bp) 15348 { 15349 int port = BP_PORT(bp); 15350 int rc; 15351 15352 if (!bp->hwtstamp_ioctl_called) 15353 return 0; 15354 15355 switch (bp->tx_type) { 15356 case HWTSTAMP_TX_ON: 15357 bp->flags |= TX_TIMESTAMPING_EN; 15358 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15359 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA); 15360 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15361 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE); 15362 break; 15363 case HWTSTAMP_TX_ONESTEP_SYNC: 15364 BNX2X_ERR("One-step timestamping is not supported\n"); 15365 return -ERANGE; 15366 } 15367 15368 switch (bp->rx_filter) { 15369 case HWTSTAMP_FILTER_NONE: 15370 break; 15371 case HWTSTAMP_FILTER_ALL: 15372 case HWTSTAMP_FILTER_SOME: 15373 case HWTSTAMP_FILTER_NTP_ALL: 15374 bp->rx_filter = HWTSTAMP_FILTER_NONE; 15375 break; 15376 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 15377 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 15378 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 15379 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 15380 /* Initialize PTP detection for UDP/IPv4 events */ 15381 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15382 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE); 15383 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15384 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE); 15385 break; 15386 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 15387 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 15388 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 15389 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 15390 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */ 15391 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15392 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA); 15393 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15394 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE); 15395 break; 15396 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 15397 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 15398 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 15399 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 15400 /* Initialize PTP detection L2 events */ 15401 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15402 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF); 15403 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15404 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF); 15405 15406 break; 15407 case HWTSTAMP_FILTER_PTP_V2_EVENT: 15408 case HWTSTAMP_FILTER_PTP_V2_SYNC: 15409 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 15410 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 15411 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */ 15412 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15413 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA); 15414 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15415 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE); 15416 break; 15417 } 15418 15419 /* Indicate to FW that this PF expects recorded PTP packets */ 15420 rc = bnx2x_enable_ptp_packets(bp); 15421 if (rc) 15422 return rc; 15423 15424 /* Enable sending PTP packets to host */ 15425 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15426 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1); 15427 15428 return 0; 15429 } 15430 15431 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr) 15432 { 15433 struct hwtstamp_config config; 15434 int rc; 15435 15436 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n"); 15437 15438 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 15439 return -EFAULT; 15440 15441 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n", 15442 config.tx_type, config.rx_filter); 15443 15444 if (config.flags) { 15445 BNX2X_ERR("config.flags is reserved for future use\n"); 15446 return -EINVAL; 15447 } 15448 15449 bp->hwtstamp_ioctl_called = 1; 15450 bp->tx_type = config.tx_type; 15451 bp->rx_filter = config.rx_filter; 15452 15453 rc = bnx2x_configure_ptp_filters(bp); 15454 if (rc) 15455 return rc; 15456 15457 config.rx_filter = bp->rx_filter; 15458 15459 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 15460 -EFAULT : 0; 15461 } 15462 15463 /* Configures HW for PTP */ 15464 static int bnx2x_configure_ptp(struct bnx2x *bp) 15465 { 15466 int rc, port = BP_PORT(bp); 15467 u32 wb_data[2]; 15468 15469 /* Reset PTP event detection rules - will be configured in the IOCTL */ 15470 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15471 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 15472 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15473 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 15474 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15475 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 15476 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15477 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 15478 15479 /* Disable PTP packets to host - will be configured in the IOCTL*/ 15480 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15481 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 15482 15483 /* Enable the PTP feature */ 15484 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 15485 NIG_REG_P0_PTP_EN, 0x3F); 15486 15487 /* Enable the free-running counter */ 15488 wb_data[0] = 0; 15489 wb_data[1] = 0; 15490 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2); 15491 15492 /* Reset drift register (offset register is not reset) */ 15493 rc = bnx2x_send_reset_timesync_ramrod(bp); 15494 if (rc) { 15495 BNX2X_ERR("Failed to reset PHC drift register\n"); 15496 return -EFAULT; 15497 } 15498 15499 /* Reset possibly old timestamps */ 15500 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15501 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15502 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15503 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15504 15505 return 0; 15506 } 15507 15508 /* Called during load, to initialize PTP-related stuff */ 15509 void bnx2x_init_ptp(struct bnx2x *bp) 15510 { 15511 int rc; 15512 15513 /* Configure PTP in HW */ 15514 rc = bnx2x_configure_ptp(bp); 15515 if (rc) { 15516 BNX2X_ERR("Stopping PTP initialization\n"); 15517 return; 15518 } 15519 15520 /* Init work queue for Tx timestamping */ 15521 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task); 15522 15523 /* Init cyclecounter and timecounter. This is done only in the first 15524 * load. If done in every load, PTP application will fail when doing 15525 * unload / load (e.g. MTU change) while it is running. 15526 */ 15527 if (!bp->timecounter_init_done) { 15528 bnx2x_init_cyclecounter(bp); 15529 timecounter_init(&bp->timecounter, &bp->cyclecounter, 15530 ktime_to_ns(ktime_get_real())); 15531 bp->timecounter_init_done = 1; 15532 } 15533 15534 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n"); 15535 } 15536