1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65 
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION					\
70 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
72 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
73 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77 
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT		(5*HZ)
80 
81 static char version[] =
82 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87 		   "BCM57710/57711/57711E/"
88 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89 		   "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95 
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99 		 " Set number of queues (default is as a number of CPUs)");
100 
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104 
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108 				"(1 INT#x; 2 MSI)");
109 
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113 
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117 
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121 
122 struct workqueue_struct *bnx2x_wq;
123 
124 struct bnx2x_mac_vals {
125 	u32 xmac_addr;
126 	u32 xmac_val;
127 	u32 emac_addr;
128 	u32 emac_val;
129 	u32 umac_addr;
130 	u32 umac_val;
131 	u32 bmac_addr;
132 	u32 bmac_val[2];
133 };
134 
135 enum bnx2x_board_type {
136 	BCM57710 = 0,
137 	BCM57711,
138 	BCM57711E,
139 	BCM57712,
140 	BCM57712_MF,
141 	BCM57712_VF,
142 	BCM57800,
143 	BCM57800_MF,
144 	BCM57800_VF,
145 	BCM57810,
146 	BCM57810_MF,
147 	BCM57810_VF,
148 	BCM57840_4_10,
149 	BCM57840_2_20,
150 	BCM57840_MF,
151 	BCM57840_VF,
152 	BCM57811,
153 	BCM57811_MF,
154 	BCM57840_O,
155 	BCM57840_MFO,
156 	BCM57811_VF
157 };
158 
159 /* indexed by board_type, above */
160 static struct {
161 	char *name;
162 } board_info[] = {
163 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185 
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
248 #endif
249 
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272 	{ 0 }
273 };
274 
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276 
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284 
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286 				       u32 addr, dma_addr_t mapping)
287 {
288 	REG_WR(bp,  addr, U64_LO(mapping));
289 	REG_WR(bp,  addr + 4, U64_HI(mapping));
290 }
291 
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293 				  dma_addr_t mapping, u16 abs_fid)
294 {
295 	u32 addr = XSEM_REG_FAST_MEMORY +
296 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297 
298 	__storm_memset_dma_mapping(bp, addr, mapping);
299 }
300 
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302 				  u16 pf_id)
303 {
304 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305 		pf_id);
306 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307 		pf_id);
308 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309 		pf_id);
310 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311 		pf_id);
312 }
313 
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315 				 u8 enable)
316 {
317 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318 		enable);
319 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320 		enable);
321 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322 		enable);
323 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324 		enable);
325 }
326 
327 static void storm_memset_eq_data(struct bnx2x *bp,
328 				 struct event_ring_data *eq_data,
329 				u16 pfid)
330 {
331 	size_t size = sizeof(struct event_ring_data);
332 
333 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334 
335 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337 
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339 				 u16 pfid)
340 {
341 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342 	REG_WR16(bp, addr, eq_prod);
343 }
344 
345 /* used only at init
346  * locking is done by mcp
347  */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353 			       PCICFG_VENDOR_ID_OFFSET);
354 }
355 
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358 	u32 val;
359 
360 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363 			       PCICFG_VENDOR_ID_OFFSET);
364 
365 	return val;
366 }
367 
368 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE	"dst_addr [none]"
373 
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375 			  struct dmae_command *dmae, int msglvl)
376 {
377 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378 	int i;
379 
380 	switch (dmae->opcode & DMAE_COMMAND_DST) {
381 	case DMAE_CMD_DST_PCI:
382 		if (src_type == DMAE_CMD_SRC_PCI)
383 			DP(msglvl, "DMAE: opcode 0x%08x\n"
384 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
386 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
389 			   dmae->comp_val);
390 		else
391 			DP(msglvl, "DMAE: opcode 0x%08x\n"
392 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
393 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
394 			   dmae->opcode, dmae->src_addr_lo >> 2,
395 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
397 			   dmae->comp_val);
398 		break;
399 	case DMAE_CMD_DST_GRC:
400 		if (src_type == DMAE_CMD_SRC_PCI)
401 			DP(msglvl, "DMAE: opcode 0x%08x\n"
402 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
404 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405 			   dmae->len, dmae->dst_addr_lo >> 2,
406 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
407 			   dmae->comp_val);
408 		else
409 			DP(msglvl, "DMAE: opcode 0x%08x\n"
410 			   "src [%08x], len [%d*4], dst [%08x]\n"
411 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
412 			   dmae->opcode, dmae->src_addr_lo >> 2,
413 			   dmae->len, dmae->dst_addr_lo >> 2,
414 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
415 			   dmae->comp_val);
416 		break;
417 	default:
418 		if (src_type == DMAE_CMD_SRC_PCI)
419 			DP(msglvl, "DMAE: opcode 0x%08x\n"
420 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
421 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
422 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424 			   dmae->comp_val);
425 		else
426 			DP(msglvl, "DMAE: opcode 0x%08x\n"
427 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
428 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429 			   dmae->opcode, dmae->src_addr_lo >> 2,
430 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431 			   dmae->comp_val);
432 		break;
433 	}
434 
435 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437 		   i, *(((u32 *)dmae) + i));
438 }
439 
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443 	u32 cmd_offset;
444 	int i;
445 
446 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449 	}
450 	REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452 
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456 			   DMAE_CMD_C_ENABLE);
457 }
458 
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461 	return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463 
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465 			     bool with_comp, u8 comp_type)
466 {
467 	u32 opcode = 0;
468 
469 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
471 
472 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473 
474 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478 
479 #ifdef __BIG_ENDIAN
480 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484 	if (with_comp)
485 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486 	return opcode;
487 }
488 
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490 				      struct dmae_command *dmae,
491 				      u8 src_type, u8 dst_type)
492 {
493 	memset(dmae, 0, sizeof(struct dmae_command));
494 
495 	/* set the opcode */
496 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497 					 true, DMAE_COMP_PCI);
498 
499 	/* fill in the completion parameters */
500 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502 	dmae->comp_val = DMAE_COMP_VAL;
503 }
504 
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
507 {
508 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
509 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510 	int rc = 0;
511 
512 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513 
514 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
515 	 * as long as this code is called both from syscall context and
516 	 * from ndo_set_rx_mode() flow that may be called from BH.
517 	 */
518 	spin_lock_bh(&bp->dmae_lock);
519 
520 	/* reset completion */
521 	*wb_comp = 0;
522 
523 	/* post the command on the channel used for initializations */
524 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525 
526 	/* wait for completion */
527 	udelay(5);
528 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529 
530 		if (!cnt ||
531 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533 			BNX2X_ERR("DMAE timeout!\n");
534 			rc = DMAE_TIMEOUT;
535 			goto unlock;
536 		}
537 		cnt--;
538 		udelay(50);
539 	}
540 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
541 		BNX2X_ERR("DMAE PCI error!\n");
542 		rc = DMAE_PCI_ERROR;
543 	}
544 
545 unlock:
546 	spin_unlock_bh(&bp->dmae_lock);
547 	return rc;
548 }
549 
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551 		      u32 len32)
552 {
553 	int rc;
554 	struct dmae_command dmae;
555 
556 	if (!bp->dmae_ready) {
557 		u32 *data = bnx2x_sp(bp, wb_data[0]);
558 
559 		if (CHIP_IS_E1(bp))
560 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561 		else
562 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
563 		return;
564 	}
565 
566 	/* set opcode and fixed command fields */
567 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568 
569 	/* fill in addresses and len */
570 	dmae.src_addr_lo = U64_LO(dma_addr);
571 	dmae.src_addr_hi = U64_HI(dma_addr);
572 	dmae.dst_addr_lo = dst_addr >> 2;
573 	dmae.dst_addr_hi = 0;
574 	dmae.len = len32;
575 
576 	/* issue the command and wait for completion */
577 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
578 	if (rc) {
579 		BNX2X_ERR("DMAE returned failure %d\n", rc);
580 		bnx2x_panic();
581 	}
582 }
583 
584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
585 {
586 	int rc;
587 	struct dmae_command dmae;
588 
589 	if (!bp->dmae_ready) {
590 		u32 *data = bnx2x_sp(bp, wb_data[0]);
591 		int i;
592 
593 		if (CHIP_IS_E1(bp))
594 			for (i = 0; i < len32; i++)
595 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
596 		else
597 			for (i = 0; i < len32; i++)
598 				data[i] = REG_RD(bp, src_addr + i*4);
599 
600 		return;
601 	}
602 
603 	/* set opcode and fixed command fields */
604 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
605 
606 	/* fill in addresses and len */
607 	dmae.src_addr_lo = src_addr >> 2;
608 	dmae.src_addr_hi = 0;
609 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
610 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
611 	dmae.len = len32;
612 
613 	/* issue the command and wait for completion */
614 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
615 	if (rc) {
616 		BNX2X_ERR("DMAE returned failure %d\n", rc);
617 		bnx2x_panic();
618 	}
619 }
620 
621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
622 				      u32 addr, u32 len)
623 {
624 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
625 	int offset = 0;
626 
627 	while (len > dmae_wr_max) {
628 		bnx2x_write_dmae(bp, phys_addr + offset,
629 				 addr + offset, dmae_wr_max);
630 		offset += dmae_wr_max * 4;
631 		len -= dmae_wr_max;
632 	}
633 
634 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
635 }
636 
637 static int bnx2x_mc_assert(struct bnx2x *bp)
638 {
639 	char last_idx;
640 	int i, rc = 0;
641 	u32 row0, row1, row2, row3;
642 
643 	/* XSTORM */
644 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
645 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
646 	if (last_idx)
647 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
648 
649 	/* print the asserts */
650 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
651 
652 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
653 			      XSTORM_ASSERT_LIST_OFFSET(i));
654 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
655 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
656 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
658 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
660 
661 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
662 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
663 				  i, row3, row2, row1, row0);
664 			rc++;
665 		} else {
666 			break;
667 		}
668 	}
669 
670 	/* TSTORM */
671 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
672 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
673 	if (last_idx)
674 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
675 
676 	/* print the asserts */
677 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
678 
679 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
680 			      TSTORM_ASSERT_LIST_OFFSET(i));
681 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
682 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
683 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
685 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
687 
688 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
689 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
690 				  i, row3, row2, row1, row0);
691 			rc++;
692 		} else {
693 			break;
694 		}
695 	}
696 
697 	/* CSTORM */
698 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
699 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
700 	if (last_idx)
701 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
702 
703 	/* print the asserts */
704 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
705 
706 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
707 			      CSTORM_ASSERT_LIST_OFFSET(i));
708 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
709 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
710 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
712 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
714 
715 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
716 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
717 				  i, row3, row2, row1, row0);
718 			rc++;
719 		} else {
720 			break;
721 		}
722 	}
723 
724 	/* USTORM */
725 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
726 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
727 	if (last_idx)
728 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
729 
730 	/* print the asserts */
731 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
732 
733 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
734 			      USTORM_ASSERT_LIST_OFFSET(i));
735 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
736 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
737 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
738 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
739 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
740 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
741 
742 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
743 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
744 				  i, row3, row2, row1, row0);
745 			rc++;
746 		} else {
747 			break;
748 		}
749 	}
750 
751 	return rc;
752 }
753 
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755 {
756 	u32 addr, val;
757 	u32 mark, offset;
758 	__be32 data[9];
759 	int word;
760 	u32 trace_shmem_base;
761 	if (BP_NOMCP(bp)) {
762 		BNX2X_ERR("NO MCP - can not dump\n");
763 		return;
764 	}
765 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766 		(bp->common.bc_ver & 0xff0000) >> 16,
767 		(bp->common.bc_ver & 0xff00) >> 8,
768 		(bp->common.bc_ver & 0xff));
769 
770 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773 
774 	if (BP_PATH(bp) == 0)
775 		trace_shmem_base = bp->common.shmem_base;
776 	else
777 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778 	addr = trace_shmem_base - 0x800;
779 
780 	/* validate TRCB signature */
781 	mark = REG_RD(bp, addr);
782 	if (mark != MFW_TRACE_SIGNATURE) {
783 		BNX2X_ERR("Trace buffer signature is missing.");
784 		return ;
785 	}
786 
787 	/* read cyclic buffer pointer */
788 	addr += 4;
789 	mark = REG_RD(bp, addr);
790 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
791 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
792 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
793 
794 	printk("%s", lvl);
795 
796 	/* dump buffer after the mark */
797 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
798 		for (word = 0; word < 8; word++)
799 			data[word] = htonl(REG_RD(bp, offset + 4*word));
800 		data[8] = 0x0;
801 		pr_cont("%s", (char *)data);
802 	}
803 
804 	/* dump buffer before the mark */
805 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
806 		for (word = 0; word < 8; word++)
807 			data[word] = htonl(REG_RD(bp, offset + 4*word));
808 		data[8] = 0x0;
809 		pr_cont("%s", (char *)data);
810 	}
811 	printk("%s" "end of fw dump\n", lvl);
812 }
813 
814 static void bnx2x_fw_dump(struct bnx2x *bp)
815 {
816 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
817 }
818 
819 static void bnx2x_hc_int_disable(struct bnx2x *bp)
820 {
821 	int port = BP_PORT(bp);
822 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
823 	u32 val = REG_RD(bp, addr);
824 
825 	/* in E1 we must use only PCI configuration space to disable
826 	 * MSI/MSIX capability
827 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
828 	 */
829 	if (CHIP_IS_E1(bp)) {
830 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
831 		 * Use mask register to prevent from HC sending interrupts
832 		 * after we exit the function
833 		 */
834 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
835 
836 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
837 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
838 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
839 	} else
840 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
841 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
842 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
843 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
844 
845 	DP(NETIF_MSG_IFDOWN,
846 	   "write %x to HC %d (addr 0x%x)\n",
847 	   val, port, addr);
848 
849 	/* flush all outstanding writes */
850 	mmiowb();
851 
852 	REG_WR(bp, addr, val);
853 	if (REG_RD(bp, addr) != val)
854 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
855 }
856 
857 static void bnx2x_igu_int_disable(struct bnx2x *bp)
858 {
859 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
860 
861 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
862 		 IGU_PF_CONF_INT_LINE_EN |
863 		 IGU_PF_CONF_ATTN_BIT_EN);
864 
865 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
866 
867 	/* flush all outstanding writes */
868 	mmiowb();
869 
870 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
871 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
872 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874 
875 static void bnx2x_int_disable(struct bnx2x *bp)
876 {
877 	if (bp->common.int_block == INT_BLOCK_HC)
878 		bnx2x_hc_int_disable(bp);
879 	else
880 		bnx2x_igu_int_disable(bp);
881 }
882 
883 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
884 {
885 	int i;
886 	u16 j;
887 	struct hc_sp_status_block_data sp_sb_data;
888 	int func = BP_FUNC(bp);
889 #ifdef BNX2X_STOP_ON_ERROR
890 	u16 start = 0, end = 0;
891 	u8 cos;
892 #endif
893 	if (disable_int)
894 		bnx2x_int_disable(bp);
895 
896 	bp->stats_state = STATS_STATE_DISABLED;
897 	bp->eth_stats.unrecoverable_error++;
898 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
899 
900 	BNX2X_ERR("begin crash dump -----------------\n");
901 
902 	/* Indices */
903 	/* Common */
904 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
905 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
906 		  bp->spq_prod_idx, bp->stats_counter);
907 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
908 		  bp->def_status_blk->atten_status_block.attn_bits,
909 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
910 		  bp->def_status_blk->atten_status_block.status_block_id,
911 		  bp->def_status_blk->atten_status_block.attn_bits_index);
912 	BNX2X_ERR("     def (");
913 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
914 		pr_cont("0x%x%s",
915 			bp->def_status_blk->sp_sb.index_values[i],
916 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
917 
918 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
919 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
920 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
921 			i*sizeof(u32));
922 
923 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
924 	       sp_sb_data.igu_sb_id,
925 	       sp_sb_data.igu_seg_id,
926 	       sp_sb_data.p_func.pf_id,
927 	       sp_sb_data.p_func.vnic_id,
928 	       sp_sb_data.p_func.vf_id,
929 	       sp_sb_data.p_func.vf_valid,
930 	       sp_sb_data.state);
931 
932 	for_each_eth_queue(bp, i) {
933 		struct bnx2x_fastpath *fp = &bp->fp[i];
934 		int loop;
935 		struct hc_status_block_data_e2 sb_data_e2;
936 		struct hc_status_block_data_e1x sb_data_e1x;
937 		struct hc_status_block_sm  *hc_sm_p =
938 			CHIP_IS_E1x(bp) ?
939 			sb_data_e1x.common.state_machine :
940 			sb_data_e2.common.state_machine;
941 		struct hc_index_data *hc_index_p =
942 			CHIP_IS_E1x(bp) ?
943 			sb_data_e1x.index_data :
944 			sb_data_e2.index_data;
945 		u8 data_size, cos;
946 		u32 *sb_data_p;
947 		struct bnx2x_fp_txdata txdata;
948 
949 		/* Rx */
950 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
951 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
952 			  fp->rx_comp_prod,
953 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
954 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
955 			  fp->rx_sge_prod, fp->last_max_sge,
956 			  le16_to_cpu(fp->fp_hc_idx));
957 
958 		/* Tx */
959 		for_each_cos_in_tx_queue(fp, cos)
960 		{
961 			txdata = *fp->txdata_ptr[cos];
962 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
963 				  i, txdata.tx_pkt_prod,
964 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
965 				  txdata.tx_bd_cons,
966 				  le16_to_cpu(*txdata.tx_cons_sb));
967 		}
968 
969 		loop = CHIP_IS_E1x(bp) ?
970 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
971 
972 		/* host sb data */
973 
974 		if (IS_FCOE_FP(fp))
975 			continue;
976 
977 		BNX2X_ERR("     run indexes (");
978 		for (j = 0; j < HC_SB_MAX_SM; j++)
979 			pr_cont("0x%x%s",
980 			       fp->sb_running_index[j],
981 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
982 
983 		BNX2X_ERR("     indexes (");
984 		for (j = 0; j < loop; j++)
985 			pr_cont("0x%x%s",
986 			       fp->sb_index_values[j],
987 			       (j == loop - 1) ? ")" : " ");
988 		/* fw sb data */
989 		data_size = CHIP_IS_E1x(bp) ?
990 			sizeof(struct hc_status_block_data_e1x) :
991 			sizeof(struct hc_status_block_data_e2);
992 		data_size /= sizeof(u32);
993 		sb_data_p = CHIP_IS_E1x(bp) ?
994 			(u32 *)&sb_data_e1x :
995 			(u32 *)&sb_data_e2;
996 		/* copy sb data in here */
997 		for (j = 0; j < data_size; j++)
998 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
999 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1000 				j * sizeof(u32));
1001 
1002 		if (!CHIP_IS_E1x(bp)) {
1003 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1004 				sb_data_e2.common.p_func.pf_id,
1005 				sb_data_e2.common.p_func.vf_id,
1006 				sb_data_e2.common.p_func.vf_valid,
1007 				sb_data_e2.common.p_func.vnic_id,
1008 				sb_data_e2.common.same_igu_sb_1b,
1009 				sb_data_e2.common.state);
1010 		} else {
1011 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1012 				sb_data_e1x.common.p_func.pf_id,
1013 				sb_data_e1x.common.p_func.vf_id,
1014 				sb_data_e1x.common.p_func.vf_valid,
1015 				sb_data_e1x.common.p_func.vnic_id,
1016 				sb_data_e1x.common.same_igu_sb_1b,
1017 				sb_data_e1x.common.state);
1018 		}
1019 
1020 		/* SB_SMs data */
1021 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1022 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1023 				j, hc_sm_p[j].__flags,
1024 				hc_sm_p[j].igu_sb_id,
1025 				hc_sm_p[j].igu_seg_id,
1026 				hc_sm_p[j].time_to_expire,
1027 				hc_sm_p[j].timer_value);
1028 		}
1029 
1030 		/* Indices data */
1031 		for (j = 0; j < loop; j++) {
1032 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1033 			       hc_index_p[j].flags,
1034 			       hc_index_p[j].timeout);
1035 		}
1036 	}
1037 
1038 #ifdef BNX2X_STOP_ON_ERROR
1039 
1040 	/* event queue */
1041 	BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1042 	for (i = 0; i < NUM_EQ_DESC; i++) {
1043 		u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1044 
1045 		BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1046 			  i, bp->eq_ring[i].message.opcode,
1047 			  bp->eq_ring[i].message.error);
1048 		BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1049 	}
1050 
1051 	/* Rings */
1052 	/* Rx */
1053 	for_each_valid_rx_queue(bp, i) {
1054 		struct bnx2x_fastpath *fp = &bp->fp[i];
1055 
1056 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1057 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1058 		for (j = start; j != end; j = RX_BD(j + 1)) {
1059 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1060 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1061 
1062 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1063 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1064 		}
1065 
1066 		start = RX_SGE(fp->rx_sge_prod);
1067 		end = RX_SGE(fp->last_max_sge);
1068 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1069 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1070 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1071 
1072 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1073 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1074 		}
1075 
1076 		start = RCQ_BD(fp->rx_comp_cons - 10);
1077 		end = RCQ_BD(fp->rx_comp_cons + 503);
1078 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1079 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1080 
1081 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1082 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1083 		}
1084 	}
1085 
1086 	/* Tx */
1087 	for_each_valid_tx_queue(bp, i) {
1088 		struct bnx2x_fastpath *fp = &bp->fp[i];
1089 		for_each_cos_in_tx_queue(fp, cos) {
1090 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1091 
1092 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1093 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1094 			for (j = start; j != end; j = TX_BD(j + 1)) {
1095 				struct sw_tx_bd *sw_bd =
1096 					&txdata->tx_buf_ring[j];
1097 
1098 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1099 					  i, cos, j, sw_bd->skb,
1100 					  sw_bd->first_bd);
1101 			}
1102 
1103 			start = TX_BD(txdata->tx_bd_cons - 10);
1104 			end = TX_BD(txdata->tx_bd_cons + 254);
1105 			for (j = start; j != end; j = TX_BD(j + 1)) {
1106 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1107 
1108 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1109 					  i, cos, j, tx_bd[0], tx_bd[1],
1110 					  tx_bd[2], tx_bd[3]);
1111 			}
1112 		}
1113 	}
1114 #endif
1115 	bnx2x_fw_dump(bp);
1116 	bnx2x_mc_assert(bp);
1117 	BNX2X_ERR("end crash dump -----------------\n");
1118 }
1119 
1120 /*
1121  * FLR Support for E2
1122  *
1123  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1124  * initialization.
1125  */
1126 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1127 #define FLR_WAIT_INTERVAL	50	/* usec */
1128 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1129 
1130 struct pbf_pN_buf_regs {
1131 	int pN;
1132 	u32 init_crd;
1133 	u32 crd;
1134 	u32 crd_freed;
1135 };
1136 
1137 struct pbf_pN_cmd_regs {
1138 	int pN;
1139 	u32 lines_occup;
1140 	u32 lines_freed;
1141 };
1142 
1143 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1144 				     struct pbf_pN_buf_regs *regs,
1145 				     u32 poll_count)
1146 {
1147 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1148 	u32 cur_cnt = poll_count;
1149 
1150 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1151 	crd = crd_start = REG_RD(bp, regs->crd);
1152 	init_crd = REG_RD(bp, regs->init_crd);
1153 
1154 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1155 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1156 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1157 
1158 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1159 	       (init_crd - crd_start))) {
1160 		if (cur_cnt--) {
1161 			udelay(FLR_WAIT_INTERVAL);
1162 			crd = REG_RD(bp, regs->crd);
1163 			crd_freed = REG_RD(bp, regs->crd_freed);
1164 		} else {
1165 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1166 			   regs->pN);
1167 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1168 			   regs->pN, crd);
1169 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1170 			   regs->pN, crd_freed);
1171 			break;
1172 		}
1173 	}
1174 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1175 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1176 }
1177 
1178 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1179 				     struct pbf_pN_cmd_regs *regs,
1180 				     u32 poll_count)
1181 {
1182 	u32 occup, to_free, freed, freed_start;
1183 	u32 cur_cnt = poll_count;
1184 
1185 	occup = to_free = REG_RD(bp, regs->lines_occup);
1186 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1187 
1188 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1189 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1190 
1191 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1192 		if (cur_cnt--) {
1193 			udelay(FLR_WAIT_INTERVAL);
1194 			occup = REG_RD(bp, regs->lines_occup);
1195 			freed = REG_RD(bp, regs->lines_freed);
1196 		} else {
1197 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1198 			   regs->pN);
1199 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1200 			   regs->pN, occup);
1201 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1202 			   regs->pN, freed);
1203 			break;
1204 		}
1205 	}
1206 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1207 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1208 }
1209 
1210 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1211 				    u32 expected, u32 poll_count)
1212 {
1213 	u32 cur_cnt = poll_count;
1214 	u32 val;
1215 
1216 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1217 		udelay(FLR_WAIT_INTERVAL);
1218 
1219 	return val;
1220 }
1221 
1222 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1223 				    char *msg, u32 poll_cnt)
1224 {
1225 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1226 	if (val != 0) {
1227 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1228 		return 1;
1229 	}
1230 	return 0;
1231 }
1232 
1233 /* Common routines with VF FLR cleanup */
1234 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1235 {
1236 	/* adjust polling timeout */
1237 	if (CHIP_REV_IS_EMUL(bp))
1238 		return FLR_POLL_CNT * 2000;
1239 
1240 	if (CHIP_REV_IS_FPGA(bp))
1241 		return FLR_POLL_CNT * 120;
1242 
1243 	return FLR_POLL_CNT;
1244 }
1245 
1246 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1247 {
1248 	struct pbf_pN_cmd_regs cmd_regs[] = {
1249 		{0, (CHIP_IS_E3B0(bp)) ?
1250 			PBF_REG_TQ_OCCUPANCY_Q0 :
1251 			PBF_REG_P0_TQ_OCCUPANCY,
1252 		    (CHIP_IS_E3B0(bp)) ?
1253 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1254 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1255 		{1, (CHIP_IS_E3B0(bp)) ?
1256 			PBF_REG_TQ_OCCUPANCY_Q1 :
1257 			PBF_REG_P1_TQ_OCCUPANCY,
1258 		    (CHIP_IS_E3B0(bp)) ?
1259 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1260 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1261 		{4, (CHIP_IS_E3B0(bp)) ?
1262 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1263 			PBF_REG_P4_TQ_OCCUPANCY,
1264 		    (CHIP_IS_E3B0(bp)) ?
1265 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1266 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1267 	};
1268 
1269 	struct pbf_pN_buf_regs buf_regs[] = {
1270 		{0, (CHIP_IS_E3B0(bp)) ?
1271 			PBF_REG_INIT_CRD_Q0 :
1272 			PBF_REG_P0_INIT_CRD ,
1273 		    (CHIP_IS_E3B0(bp)) ?
1274 			PBF_REG_CREDIT_Q0 :
1275 			PBF_REG_P0_CREDIT,
1276 		    (CHIP_IS_E3B0(bp)) ?
1277 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1278 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1279 		{1, (CHIP_IS_E3B0(bp)) ?
1280 			PBF_REG_INIT_CRD_Q1 :
1281 			PBF_REG_P1_INIT_CRD,
1282 		    (CHIP_IS_E3B0(bp)) ?
1283 			PBF_REG_CREDIT_Q1 :
1284 			PBF_REG_P1_CREDIT,
1285 		    (CHIP_IS_E3B0(bp)) ?
1286 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1287 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1288 		{4, (CHIP_IS_E3B0(bp)) ?
1289 			PBF_REG_INIT_CRD_LB_Q :
1290 			PBF_REG_P4_INIT_CRD,
1291 		    (CHIP_IS_E3B0(bp)) ?
1292 			PBF_REG_CREDIT_LB_Q :
1293 			PBF_REG_P4_CREDIT,
1294 		    (CHIP_IS_E3B0(bp)) ?
1295 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1296 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1297 	};
1298 
1299 	int i;
1300 
1301 	/* Verify the command queues are flushed P0, P1, P4 */
1302 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1303 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1304 
1305 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1306 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1307 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1308 }
1309 
1310 #define OP_GEN_PARAM(param) \
1311 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1312 
1313 #define OP_GEN_TYPE(type) \
1314 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1315 
1316 #define OP_GEN_AGG_VECT(index) \
1317 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1318 
1319 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1320 {
1321 	u32 op_gen_command = 0;
1322 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1323 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1324 	int ret = 0;
1325 
1326 	if (REG_RD(bp, comp_addr)) {
1327 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1328 		return 1;
1329 	}
1330 
1331 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1332 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1333 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1334 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1335 
1336 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1337 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1338 
1339 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1340 		BNX2X_ERR("FW final cleanup did not succeed\n");
1341 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1342 		   (REG_RD(bp, comp_addr)));
1343 		bnx2x_panic();
1344 		return 1;
1345 	}
1346 	/* Zero completion for next FLR */
1347 	REG_WR(bp, comp_addr, 0);
1348 
1349 	return ret;
1350 }
1351 
1352 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1353 {
1354 	u16 status;
1355 
1356 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1357 	return status & PCI_EXP_DEVSTA_TRPND;
1358 }
1359 
1360 /* PF FLR specific routines
1361 */
1362 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1363 {
1364 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1365 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1367 			"CFC PF usage counter timed out",
1368 			poll_cnt))
1369 		return 1;
1370 
1371 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1372 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373 			DORQ_REG_PF_USAGE_CNT,
1374 			"DQ PF usage counter timed out",
1375 			poll_cnt))
1376 		return 1;
1377 
1378 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1379 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1381 			"QM PF usage counter timed out",
1382 			poll_cnt))
1383 		return 1;
1384 
1385 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1386 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1388 			"Timers VNIC usage counter timed out",
1389 			poll_cnt))
1390 		return 1;
1391 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1393 			"Timers NUM_SCANS usage counter timed out",
1394 			poll_cnt))
1395 		return 1;
1396 
1397 	/* Wait DMAE PF usage counter to zero */
1398 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1399 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1400 			"DMAE command register timed out",
1401 			poll_cnt))
1402 		return 1;
1403 
1404 	return 0;
1405 }
1406 
1407 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1408 {
1409 	u32 val;
1410 
1411 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1412 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1413 
1414 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1415 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1416 
1417 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1418 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1419 
1420 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1421 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1422 
1423 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1424 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1425 
1426 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1427 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1428 
1429 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1430 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1431 
1432 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1433 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1434 	   val);
1435 }
1436 
1437 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1438 {
1439 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1440 
1441 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1442 
1443 	/* Re-enable PF target read access */
1444 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1445 
1446 	/* Poll HW usage counters */
1447 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1448 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1449 		return -EBUSY;
1450 
1451 	/* Zero the igu 'trailing edge' and 'leading edge' */
1452 
1453 	/* Send the FW cleanup command */
1454 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1455 		return -EBUSY;
1456 
1457 	/* ATC cleanup */
1458 
1459 	/* Verify TX hw is flushed */
1460 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1461 
1462 	/* Wait 100ms (not adjusted according to platform) */
1463 	msleep(100);
1464 
1465 	/* Verify no pending pci transactions */
1466 	if (bnx2x_is_pcie_pending(bp->pdev))
1467 		BNX2X_ERR("PCIE Transactions still pending\n");
1468 
1469 	/* Debug */
1470 	bnx2x_hw_enable_status(bp);
1471 
1472 	/*
1473 	 * Master enable - Due to WB DMAE writes performed before this
1474 	 * register is re-initialized as part of the regular function init
1475 	 */
1476 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1477 
1478 	return 0;
1479 }
1480 
1481 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1482 {
1483 	int port = BP_PORT(bp);
1484 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1485 	u32 val = REG_RD(bp, addr);
1486 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1487 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1488 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1489 
1490 	if (msix) {
1491 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1492 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1493 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495 		if (single_msix)
1496 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1497 	} else if (msi) {
1498 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1499 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1500 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1501 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1502 	} else {
1503 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1504 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1505 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1506 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1507 
1508 		if (!CHIP_IS_E1(bp)) {
1509 			DP(NETIF_MSG_IFUP,
1510 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1511 
1512 			REG_WR(bp, addr, val);
1513 
1514 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1515 		}
1516 	}
1517 
1518 	if (CHIP_IS_E1(bp))
1519 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1520 
1521 	DP(NETIF_MSG_IFUP,
1522 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1523 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1524 
1525 	REG_WR(bp, addr, val);
1526 	/*
1527 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1528 	 */
1529 	mmiowb();
1530 	barrier();
1531 
1532 	if (!CHIP_IS_E1(bp)) {
1533 		/* init leading/trailing edge */
1534 		if (IS_MF(bp)) {
1535 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1536 			if (bp->port.pmf)
1537 				/* enable nig and gpio3 attention */
1538 				val |= 0x1100;
1539 		} else
1540 			val = 0xffff;
1541 
1542 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1543 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1544 	}
1545 
1546 	/* Make sure that interrupts are indeed enabled from here on */
1547 	mmiowb();
1548 }
1549 
1550 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1551 {
1552 	u32 val;
1553 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1556 
1557 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1558 
1559 	if (msix) {
1560 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1561 			 IGU_PF_CONF_SINGLE_ISR_EN);
1562 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563 			IGU_PF_CONF_ATTN_BIT_EN);
1564 
1565 		if (single_msix)
1566 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1567 	} else if (msi) {
1568 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1569 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1570 			IGU_PF_CONF_ATTN_BIT_EN |
1571 			IGU_PF_CONF_SINGLE_ISR_EN);
1572 	} else {
1573 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1574 		val |= (IGU_PF_CONF_INT_LINE_EN |
1575 			IGU_PF_CONF_ATTN_BIT_EN |
1576 			IGU_PF_CONF_SINGLE_ISR_EN);
1577 	}
1578 
1579 	/* Clean previous status - need to configure igu prior to ack*/
1580 	if ((!msix) || single_msix) {
1581 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1582 		bnx2x_ack_int(bp);
1583 	}
1584 
1585 	val |= IGU_PF_CONF_FUNC_EN;
1586 
1587 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1588 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589 
1590 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1591 
1592 	if (val & IGU_PF_CONF_INT_LINE_EN)
1593 		pci_intx(bp->pdev, true);
1594 
1595 	barrier();
1596 
1597 	/* init leading/trailing edge */
1598 	if (IS_MF(bp)) {
1599 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600 		if (bp->port.pmf)
1601 			/* enable nig and gpio3 attention */
1602 			val |= 0x1100;
1603 	} else
1604 		val = 0xffff;
1605 
1606 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1607 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1608 
1609 	/* Make sure that interrupts are indeed enabled from here on */
1610 	mmiowb();
1611 }
1612 
1613 void bnx2x_int_enable(struct bnx2x *bp)
1614 {
1615 	if (bp->common.int_block == INT_BLOCK_HC)
1616 		bnx2x_hc_int_enable(bp);
1617 	else
1618 		bnx2x_igu_int_enable(bp);
1619 }
1620 
1621 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1622 {
1623 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1624 	int i, offset;
1625 
1626 	if (disable_hw)
1627 		/* prevent the HW from sending interrupts */
1628 		bnx2x_int_disable(bp);
1629 
1630 	/* make sure all ISRs are done */
1631 	if (msix) {
1632 		synchronize_irq(bp->msix_table[0].vector);
1633 		offset = 1;
1634 		if (CNIC_SUPPORT(bp))
1635 			offset++;
1636 		for_each_eth_queue(bp, i)
1637 			synchronize_irq(bp->msix_table[offset++].vector);
1638 	} else
1639 		synchronize_irq(bp->pdev->irq);
1640 
1641 	/* make sure sp_task is not running */
1642 	cancel_delayed_work(&bp->sp_task);
1643 	cancel_delayed_work(&bp->period_task);
1644 	flush_workqueue(bnx2x_wq);
1645 }
1646 
1647 /* fast path */
1648 
1649 /*
1650  * General service functions
1651  */
1652 
1653 /* Return true if succeeded to acquire the lock */
1654 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1655 {
1656 	u32 lock_status;
1657 	u32 resource_bit = (1 << resource);
1658 	int func = BP_FUNC(bp);
1659 	u32 hw_lock_control_reg;
1660 
1661 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1662 	   "Trying to take a lock on resource %d\n", resource);
1663 
1664 	/* Validating that the resource is within range */
1665 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1666 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1667 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1668 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1669 		return false;
1670 	}
1671 
1672 	if (func <= 5)
1673 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1674 	else
1675 		hw_lock_control_reg =
1676 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1677 
1678 	/* Try to acquire the lock */
1679 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1680 	lock_status = REG_RD(bp, hw_lock_control_reg);
1681 	if (lock_status & resource_bit)
1682 		return true;
1683 
1684 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1685 	   "Failed to get a lock on resource %d\n", resource);
1686 	return false;
1687 }
1688 
1689 /**
1690  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1691  *
1692  * @bp:	driver handle
1693  *
1694  * Returns the recovery leader resource id according to the engine this function
1695  * belongs to. Currently only only 2 engines is supported.
1696  */
1697 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1698 {
1699 	if (BP_PATH(bp))
1700 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1701 	else
1702 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1703 }
1704 
1705 /**
1706  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1707  *
1708  * @bp: driver handle
1709  *
1710  * Tries to acquire a leader lock for current engine.
1711  */
1712 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1713 {
1714 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1715 }
1716 
1717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1718 
1719 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1720 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1721 {
1722 	/* Set the interrupt occurred bit for the sp-task to recognize it
1723 	 * must ack the interrupt and transition according to the IGU
1724 	 * state machine.
1725 	 */
1726 	atomic_set(&bp->interrupt_occurred, 1);
1727 
1728 	/* The sp_task must execute only after this bit
1729 	 * is set, otherwise we will get out of sync and miss all
1730 	 * further interrupts. Hence, the barrier.
1731 	 */
1732 	smp_wmb();
1733 
1734 	/* schedule sp_task to workqueue */
1735 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1736 }
1737 
1738 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1739 {
1740 	struct bnx2x *bp = fp->bp;
1741 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1742 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1743 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1744 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1745 
1746 	DP(BNX2X_MSG_SP,
1747 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1748 	   fp->index, cid, command, bp->state,
1749 	   rr_cqe->ramrod_cqe.ramrod_type);
1750 
1751 	/* If cid is within VF range, replace the slowpath object with the
1752 	 * one corresponding to this VF
1753 	 */
1754 	if (cid >= BNX2X_FIRST_VF_CID  &&
1755 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1756 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1757 
1758 	switch (command) {
1759 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1760 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1761 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1762 		break;
1763 
1764 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1765 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1766 		drv_cmd = BNX2X_Q_CMD_SETUP;
1767 		break;
1768 
1769 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1770 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1771 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1772 		break;
1773 
1774 	case (RAMROD_CMD_ID_ETH_HALT):
1775 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1776 		drv_cmd = BNX2X_Q_CMD_HALT;
1777 		break;
1778 
1779 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1780 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1781 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1782 		break;
1783 
1784 	case (RAMROD_CMD_ID_ETH_EMPTY):
1785 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1786 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1787 		break;
1788 
1789 	default:
1790 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1791 			  command, fp->index);
1792 		return;
1793 	}
1794 
1795 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1796 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1797 		/* q_obj->complete_cmd() failure means that this was
1798 		 * an unexpected completion.
1799 		 *
1800 		 * In this case we don't want to increase the bp->spq_left
1801 		 * because apparently we haven't sent this command the first
1802 		 * place.
1803 		 */
1804 #ifdef BNX2X_STOP_ON_ERROR
1805 		bnx2x_panic();
1806 #else
1807 		return;
1808 #endif
1809 	/* SRIOV: reschedule any 'in_progress' operations */
1810 	bnx2x_iov_sp_event(bp, cid, true);
1811 
1812 	smp_mb__before_atomic_inc();
1813 	atomic_inc(&bp->cq_spq_left);
1814 	/* push the change in bp->spq_left and towards the memory */
1815 	smp_mb__after_atomic_inc();
1816 
1817 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1818 
1819 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1820 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1821 		/* if Q update ramrod is completed for last Q in AFEX vif set
1822 		 * flow, then ACK MCP at the end
1823 		 *
1824 		 * mark pending ACK to MCP bit.
1825 		 * prevent case that both bits are cleared.
1826 		 * At the end of load/unload driver checks that
1827 		 * sp_state is cleared, and this order prevents
1828 		 * races
1829 		 */
1830 		smp_mb__before_clear_bit();
1831 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1832 		wmb();
1833 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1834 		smp_mb__after_clear_bit();
1835 
1836 		/* schedule the sp task as mcp ack is required */
1837 		bnx2x_schedule_sp_task(bp);
1838 	}
1839 
1840 	return;
1841 }
1842 
1843 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1844 {
1845 	struct bnx2x *bp = netdev_priv(dev_instance);
1846 	u16 status = bnx2x_ack_int(bp);
1847 	u16 mask;
1848 	int i;
1849 	u8 cos;
1850 
1851 	/* Return here if interrupt is shared and it's not for us */
1852 	if (unlikely(status == 0)) {
1853 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1854 		return IRQ_NONE;
1855 	}
1856 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1857 
1858 #ifdef BNX2X_STOP_ON_ERROR
1859 	if (unlikely(bp->panic))
1860 		return IRQ_HANDLED;
1861 #endif
1862 
1863 	for_each_eth_queue(bp, i) {
1864 		struct bnx2x_fastpath *fp = &bp->fp[i];
1865 
1866 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1867 		if (status & mask) {
1868 			/* Handle Rx or Tx according to SB id */
1869 			for_each_cos_in_tx_queue(fp, cos)
1870 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1871 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1872 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1873 			status &= ~mask;
1874 		}
1875 	}
1876 
1877 	if (CNIC_SUPPORT(bp)) {
1878 		mask = 0x2;
1879 		if (status & (mask | 0x1)) {
1880 			struct cnic_ops *c_ops = NULL;
1881 
1882 			rcu_read_lock();
1883 			c_ops = rcu_dereference(bp->cnic_ops);
1884 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1885 				      CNIC_DRV_STATE_HANDLES_IRQ))
1886 				c_ops->cnic_handler(bp->cnic_data, NULL);
1887 			rcu_read_unlock();
1888 
1889 			status &= ~mask;
1890 		}
1891 	}
1892 
1893 	if (unlikely(status & 0x1)) {
1894 
1895 		/* schedule sp task to perform default status block work, ack
1896 		 * attentions and enable interrupts.
1897 		 */
1898 		bnx2x_schedule_sp_task(bp);
1899 
1900 		status &= ~0x1;
1901 		if (!status)
1902 			return IRQ_HANDLED;
1903 	}
1904 
1905 	if (unlikely(status))
1906 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1907 		   status);
1908 
1909 	return IRQ_HANDLED;
1910 }
1911 
1912 /* Link */
1913 
1914 /*
1915  * General service functions
1916  */
1917 
1918 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1919 {
1920 	u32 lock_status;
1921 	u32 resource_bit = (1 << resource);
1922 	int func = BP_FUNC(bp);
1923 	u32 hw_lock_control_reg;
1924 	int cnt;
1925 
1926 	/* Validating that the resource is within range */
1927 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1928 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1929 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1930 		return -EINVAL;
1931 	}
1932 
1933 	if (func <= 5) {
1934 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1935 	} else {
1936 		hw_lock_control_reg =
1937 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1938 	}
1939 
1940 	/* Validating that the resource is not already taken */
1941 	lock_status = REG_RD(bp, hw_lock_control_reg);
1942 	if (lock_status & resource_bit) {
1943 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1944 		   lock_status, resource_bit);
1945 		return -EEXIST;
1946 	}
1947 
1948 	/* Try for 5 second every 5ms */
1949 	for (cnt = 0; cnt < 1000; cnt++) {
1950 		/* Try to acquire the lock */
1951 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1952 		lock_status = REG_RD(bp, hw_lock_control_reg);
1953 		if (lock_status & resource_bit)
1954 			return 0;
1955 
1956 		usleep_range(5000, 10000);
1957 	}
1958 	BNX2X_ERR("Timeout\n");
1959 	return -EAGAIN;
1960 }
1961 
1962 int bnx2x_release_leader_lock(struct bnx2x *bp)
1963 {
1964 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1965 }
1966 
1967 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969 	u32 lock_status;
1970 	u32 resource_bit = (1 << resource);
1971 	int func = BP_FUNC(bp);
1972 	u32 hw_lock_control_reg;
1973 
1974 	/* Validating that the resource is within range */
1975 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1976 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1977 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1978 		return -EINVAL;
1979 	}
1980 
1981 	if (func <= 5) {
1982 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1983 	} else {
1984 		hw_lock_control_reg =
1985 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1986 	}
1987 
1988 	/* Validating that the resource is currently taken */
1989 	lock_status = REG_RD(bp, hw_lock_control_reg);
1990 	if (!(lock_status & resource_bit)) {
1991 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
1992 			  lock_status, resource_bit);
1993 		return -EFAULT;
1994 	}
1995 
1996 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1997 	return 0;
1998 }
1999 
2000 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2001 {
2002 	/* The GPIO should be swapped if swap register is set and active */
2003 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2004 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2005 	int gpio_shift = gpio_num +
2006 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2007 	u32 gpio_mask = (1 << gpio_shift);
2008 	u32 gpio_reg;
2009 	int value;
2010 
2011 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2012 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2013 		return -EINVAL;
2014 	}
2015 
2016 	/* read GPIO value */
2017 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2018 
2019 	/* get the requested pin value */
2020 	if ((gpio_reg & gpio_mask) == gpio_mask)
2021 		value = 1;
2022 	else
2023 		value = 0;
2024 
2025 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2026 
2027 	return value;
2028 }
2029 
2030 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2031 {
2032 	/* The GPIO should be swapped if swap register is set and active */
2033 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2034 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2035 	int gpio_shift = gpio_num +
2036 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2037 	u32 gpio_mask = (1 << gpio_shift);
2038 	u32 gpio_reg;
2039 
2040 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2041 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2042 		return -EINVAL;
2043 	}
2044 
2045 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2046 	/* read GPIO and mask except the float bits */
2047 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2048 
2049 	switch (mode) {
2050 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2051 		DP(NETIF_MSG_LINK,
2052 		   "Set GPIO %d (shift %d) -> output low\n",
2053 		   gpio_num, gpio_shift);
2054 		/* clear FLOAT and set CLR */
2055 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2056 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2057 		break;
2058 
2059 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2060 		DP(NETIF_MSG_LINK,
2061 		   "Set GPIO %d (shift %d) -> output high\n",
2062 		   gpio_num, gpio_shift);
2063 		/* clear FLOAT and set SET */
2064 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2065 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2066 		break;
2067 
2068 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2069 		DP(NETIF_MSG_LINK,
2070 		   "Set GPIO %d (shift %d) -> input\n",
2071 		   gpio_num, gpio_shift);
2072 		/* set FLOAT */
2073 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2074 		break;
2075 
2076 	default:
2077 		break;
2078 	}
2079 
2080 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2081 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2082 
2083 	return 0;
2084 }
2085 
2086 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2087 {
2088 	u32 gpio_reg = 0;
2089 	int rc = 0;
2090 
2091 	/* Any port swapping should be handled by caller. */
2092 
2093 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2094 	/* read GPIO and mask except the float bits */
2095 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2096 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2097 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2098 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2099 
2100 	switch (mode) {
2101 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2102 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2103 		/* set CLR */
2104 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2105 		break;
2106 
2107 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2108 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2109 		/* set SET */
2110 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2111 		break;
2112 
2113 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2114 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2115 		/* set FLOAT */
2116 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2117 		break;
2118 
2119 	default:
2120 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2121 		rc = -EINVAL;
2122 		break;
2123 	}
2124 
2125 	if (rc == 0)
2126 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2127 
2128 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2129 
2130 	return rc;
2131 }
2132 
2133 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2134 {
2135 	/* The GPIO should be swapped if swap register is set and active */
2136 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2137 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2138 	int gpio_shift = gpio_num +
2139 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2140 	u32 gpio_mask = (1 << gpio_shift);
2141 	u32 gpio_reg;
2142 
2143 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2144 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2145 		return -EINVAL;
2146 	}
2147 
2148 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2149 	/* read GPIO int */
2150 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2151 
2152 	switch (mode) {
2153 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2154 		DP(NETIF_MSG_LINK,
2155 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2156 		   gpio_num, gpio_shift);
2157 		/* clear SET and set CLR */
2158 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2159 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2160 		break;
2161 
2162 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2163 		DP(NETIF_MSG_LINK,
2164 		   "Set GPIO INT %d (shift %d) -> output high\n",
2165 		   gpio_num, gpio_shift);
2166 		/* clear CLR and set SET */
2167 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2168 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2169 		break;
2170 
2171 	default:
2172 		break;
2173 	}
2174 
2175 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2176 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177 
2178 	return 0;
2179 }
2180 
2181 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2182 {
2183 	u32 spio_reg;
2184 
2185 	/* Only 2 SPIOs are configurable */
2186 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2187 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2188 		return -EINVAL;
2189 	}
2190 
2191 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2192 	/* read SPIO and mask except the float bits */
2193 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2194 
2195 	switch (mode) {
2196 	case MISC_SPIO_OUTPUT_LOW:
2197 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2198 		/* clear FLOAT and set CLR */
2199 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2200 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2201 		break;
2202 
2203 	case MISC_SPIO_OUTPUT_HIGH:
2204 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2205 		/* clear FLOAT and set SET */
2206 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2207 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2208 		break;
2209 
2210 	case MISC_SPIO_INPUT_HI_Z:
2211 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2212 		/* set FLOAT */
2213 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2214 		break;
2215 
2216 	default:
2217 		break;
2218 	}
2219 
2220 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2221 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2222 
2223 	return 0;
2224 }
2225 
2226 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2227 {
2228 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2229 	switch (bp->link_vars.ieee_fc &
2230 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2231 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2232 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2233 						   ADVERTISED_Pause);
2234 		break;
2235 
2236 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2237 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2238 						  ADVERTISED_Pause);
2239 		break;
2240 
2241 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2242 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2243 		break;
2244 
2245 	default:
2246 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2247 						   ADVERTISED_Pause);
2248 		break;
2249 	}
2250 }
2251 
2252 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2253 {
2254 	/* Initialize link parameters structure variables
2255 	 * It is recommended to turn off RX FC for jumbo frames
2256 	 *  for better performance
2257 	 */
2258 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2259 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2260 	else
2261 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2262 }
2263 
2264 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2265 {
2266 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2267 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2268 
2269 	if (!BP_NOMCP(bp)) {
2270 		bnx2x_set_requested_fc(bp);
2271 		bnx2x_acquire_phy_lock(bp);
2272 
2273 		if (load_mode == LOAD_DIAG) {
2274 			struct link_params *lp = &bp->link_params;
2275 			lp->loopback_mode = LOOPBACK_XGXS;
2276 			/* do PHY loopback at 10G speed, if possible */
2277 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2278 				if (lp->speed_cap_mask[cfx_idx] &
2279 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2280 					lp->req_line_speed[cfx_idx] =
2281 					SPEED_10000;
2282 				else
2283 					lp->req_line_speed[cfx_idx] =
2284 					SPEED_1000;
2285 			}
2286 		}
2287 
2288 		if (load_mode == LOAD_LOOPBACK_EXT) {
2289 			struct link_params *lp = &bp->link_params;
2290 			lp->loopback_mode = LOOPBACK_EXT;
2291 		}
2292 
2293 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2294 
2295 		bnx2x_release_phy_lock(bp);
2296 
2297 		bnx2x_calc_fc_adv(bp);
2298 
2299 		if (bp->link_vars.link_up) {
2300 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2301 			bnx2x_link_report(bp);
2302 		}
2303 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2304 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2305 		return rc;
2306 	}
2307 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2308 	return -EINVAL;
2309 }
2310 
2311 void bnx2x_link_set(struct bnx2x *bp)
2312 {
2313 	if (!BP_NOMCP(bp)) {
2314 		bnx2x_acquire_phy_lock(bp);
2315 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2316 		bnx2x_release_phy_lock(bp);
2317 
2318 		bnx2x_calc_fc_adv(bp);
2319 	} else
2320 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2321 }
2322 
2323 static void bnx2x__link_reset(struct bnx2x *bp)
2324 {
2325 	if (!BP_NOMCP(bp)) {
2326 		bnx2x_acquire_phy_lock(bp);
2327 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2328 		bnx2x_release_phy_lock(bp);
2329 	} else
2330 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2331 }
2332 
2333 void bnx2x_force_link_reset(struct bnx2x *bp)
2334 {
2335 	bnx2x_acquire_phy_lock(bp);
2336 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2337 	bnx2x_release_phy_lock(bp);
2338 }
2339 
2340 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2341 {
2342 	u8 rc = 0;
2343 
2344 	if (!BP_NOMCP(bp)) {
2345 		bnx2x_acquire_phy_lock(bp);
2346 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2347 				     is_serdes);
2348 		bnx2x_release_phy_lock(bp);
2349 	} else
2350 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2351 
2352 	return rc;
2353 }
2354 
2355 /* Calculates the sum of vn_min_rates.
2356    It's needed for further normalizing of the min_rates.
2357    Returns:
2358      sum of vn_min_rates.
2359        or
2360      0 - if all the min_rates are 0.
2361      In the later case fairness algorithm should be deactivated.
2362      If not all min_rates are zero then those that are zeroes will be set to 1.
2363  */
2364 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2365 				      struct cmng_init_input *input)
2366 {
2367 	int all_zero = 1;
2368 	int vn;
2369 
2370 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2371 		u32 vn_cfg = bp->mf_config[vn];
2372 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2373 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2374 
2375 		/* Skip hidden vns */
2376 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2377 			vn_min_rate = 0;
2378 		/* If min rate is zero - set it to 1 */
2379 		else if (!vn_min_rate)
2380 			vn_min_rate = DEF_MIN_RATE;
2381 		else
2382 			all_zero = 0;
2383 
2384 		input->vnic_min_rate[vn] = vn_min_rate;
2385 	}
2386 
2387 	/* if ETS or all min rates are zeros - disable fairness */
2388 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2389 		input->flags.cmng_enables &=
2390 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2391 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2392 	} else if (all_zero) {
2393 		input->flags.cmng_enables &=
2394 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2395 		DP(NETIF_MSG_IFUP,
2396 		   "All MIN values are zeroes fairness will be disabled\n");
2397 	} else
2398 		input->flags.cmng_enables |=
2399 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2400 }
2401 
2402 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2403 				    struct cmng_init_input *input)
2404 {
2405 	u16 vn_max_rate;
2406 	u32 vn_cfg = bp->mf_config[vn];
2407 
2408 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2409 		vn_max_rate = 0;
2410 	else {
2411 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2412 
2413 		if (IS_MF_SI(bp)) {
2414 			/* maxCfg in percents of linkspeed */
2415 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2416 		} else /* SD modes */
2417 			/* maxCfg is absolute in 100Mb units */
2418 			vn_max_rate = maxCfg * 100;
2419 	}
2420 
2421 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2422 
2423 	input->vnic_max_rate[vn] = vn_max_rate;
2424 }
2425 
2426 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2427 {
2428 	if (CHIP_REV_IS_SLOW(bp))
2429 		return CMNG_FNS_NONE;
2430 	if (IS_MF(bp))
2431 		return CMNG_FNS_MINMAX;
2432 
2433 	return CMNG_FNS_NONE;
2434 }
2435 
2436 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2437 {
2438 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2439 
2440 	if (BP_NOMCP(bp))
2441 		return; /* what should be the default value in this case */
2442 
2443 	/* For 2 port configuration the absolute function number formula
2444 	 * is:
2445 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2446 	 *
2447 	 *      and there are 4 functions per port
2448 	 *
2449 	 * For 4 port configuration it is
2450 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2451 	 *
2452 	 *      and there are 2 functions per port
2453 	 */
2454 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2455 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2456 
2457 		if (func >= E1H_FUNC_MAX)
2458 			break;
2459 
2460 		bp->mf_config[vn] =
2461 			MF_CFG_RD(bp, func_mf_config[func].config);
2462 	}
2463 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2464 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2465 		bp->flags |= MF_FUNC_DIS;
2466 	} else {
2467 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2468 		bp->flags &= ~MF_FUNC_DIS;
2469 	}
2470 }
2471 
2472 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2473 {
2474 	struct cmng_init_input input;
2475 	memset(&input, 0, sizeof(struct cmng_init_input));
2476 
2477 	input.port_rate = bp->link_vars.line_speed;
2478 
2479 	if (cmng_type == CMNG_FNS_MINMAX) {
2480 		int vn;
2481 
2482 		/* read mf conf from shmem */
2483 		if (read_cfg)
2484 			bnx2x_read_mf_cfg(bp);
2485 
2486 		/* vn_weight_sum and enable fairness if not 0 */
2487 		bnx2x_calc_vn_min(bp, &input);
2488 
2489 		/* calculate and set min-max rate for each vn */
2490 		if (bp->port.pmf)
2491 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2492 				bnx2x_calc_vn_max(bp, vn, &input);
2493 
2494 		/* always enable rate shaping and fairness */
2495 		input.flags.cmng_enables |=
2496 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2497 
2498 		bnx2x_init_cmng(&input, &bp->cmng);
2499 		return;
2500 	}
2501 
2502 	/* rate shaping and fairness are disabled */
2503 	DP(NETIF_MSG_IFUP,
2504 	   "rate shaping and fairness are disabled\n");
2505 }
2506 
2507 static void storm_memset_cmng(struct bnx2x *bp,
2508 			      struct cmng_init *cmng,
2509 			      u8 port)
2510 {
2511 	int vn;
2512 	size_t size = sizeof(struct cmng_struct_per_port);
2513 
2514 	u32 addr = BAR_XSTRORM_INTMEM +
2515 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2516 
2517 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2518 
2519 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2520 		int func = func_by_vn(bp, vn);
2521 
2522 		addr = BAR_XSTRORM_INTMEM +
2523 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2524 		size = sizeof(struct rate_shaping_vars_per_vn);
2525 		__storm_memset_struct(bp, addr, size,
2526 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2527 
2528 		addr = BAR_XSTRORM_INTMEM +
2529 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2530 		size = sizeof(struct fairness_vars_per_vn);
2531 		__storm_memset_struct(bp, addr, size,
2532 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2533 	}
2534 }
2535 
2536 /* This function is called upon link interrupt */
2537 static void bnx2x_link_attn(struct bnx2x *bp)
2538 {
2539 	/* Make sure that we are synced with the current statistics */
2540 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2541 
2542 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2543 
2544 	if (bp->link_vars.link_up) {
2545 
2546 		/* dropless flow control */
2547 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2548 			int port = BP_PORT(bp);
2549 			u32 pause_enabled = 0;
2550 
2551 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2552 				pause_enabled = 1;
2553 
2554 			REG_WR(bp, BAR_USTRORM_INTMEM +
2555 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2556 			       pause_enabled);
2557 		}
2558 
2559 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2560 			struct host_port_stats *pstats;
2561 
2562 			pstats = bnx2x_sp(bp, port_stats);
2563 			/* reset old mac stats */
2564 			memset(&(pstats->mac_stx[0]), 0,
2565 			       sizeof(struct mac_stx));
2566 		}
2567 		if (bp->state == BNX2X_STATE_OPEN)
2568 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2569 	}
2570 
2571 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2572 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2573 
2574 		if (cmng_fns != CMNG_FNS_NONE) {
2575 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2576 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2577 		} else
2578 			/* rate shaping and fairness are disabled */
2579 			DP(NETIF_MSG_IFUP,
2580 			   "single function mode without fairness\n");
2581 	}
2582 
2583 	__bnx2x_link_report(bp);
2584 
2585 	if (IS_MF(bp))
2586 		bnx2x_link_sync_notify(bp);
2587 }
2588 
2589 void bnx2x__link_status_update(struct bnx2x *bp)
2590 {
2591 	if (bp->state != BNX2X_STATE_OPEN)
2592 		return;
2593 
2594 	/* read updated dcb configuration */
2595 	if (IS_PF(bp)) {
2596 		bnx2x_dcbx_pmf_update(bp);
2597 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2598 		if (bp->link_vars.link_up)
2599 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2600 		else
2601 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2602 			/* indicate link status */
2603 		bnx2x_link_report(bp);
2604 
2605 	} else { /* VF */
2606 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2607 					  SUPPORTED_10baseT_Full |
2608 					  SUPPORTED_100baseT_Half |
2609 					  SUPPORTED_100baseT_Full |
2610 					  SUPPORTED_1000baseT_Full |
2611 					  SUPPORTED_2500baseX_Full |
2612 					  SUPPORTED_10000baseT_Full |
2613 					  SUPPORTED_TP |
2614 					  SUPPORTED_FIBRE |
2615 					  SUPPORTED_Autoneg |
2616 					  SUPPORTED_Pause |
2617 					  SUPPORTED_Asym_Pause);
2618 		bp->port.advertising[0] = bp->port.supported[0];
2619 
2620 		bp->link_params.bp = bp;
2621 		bp->link_params.port = BP_PORT(bp);
2622 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2623 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2624 		bp->link_params.req_line_speed[0] = SPEED_10000;
2625 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2626 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2627 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2628 		bp->link_vars.line_speed = SPEED_10000;
2629 		bp->link_vars.link_status =
2630 			(LINK_STATUS_LINK_UP |
2631 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2632 		bp->link_vars.link_up = 1;
2633 		bp->link_vars.duplex = DUPLEX_FULL;
2634 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2635 		__bnx2x_link_report(bp);
2636 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2637 	}
2638 }
2639 
2640 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2641 				  u16 vlan_val, u8 allowed_prio)
2642 {
2643 	struct bnx2x_func_state_params func_params = {NULL};
2644 	struct bnx2x_func_afex_update_params *f_update_params =
2645 		&func_params.params.afex_update;
2646 
2647 	func_params.f_obj = &bp->func_obj;
2648 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2649 
2650 	/* no need to wait for RAMROD completion, so don't
2651 	 * set RAMROD_COMP_WAIT flag
2652 	 */
2653 
2654 	f_update_params->vif_id = vifid;
2655 	f_update_params->afex_default_vlan = vlan_val;
2656 	f_update_params->allowed_priorities = allowed_prio;
2657 
2658 	/* if ramrod can not be sent, response to MCP immediately */
2659 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2660 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2661 
2662 	return 0;
2663 }
2664 
2665 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2666 					  u16 vif_index, u8 func_bit_map)
2667 {
2668 	struct bnx2x_func_state_params func_params = {NULL};
2669 	struct bnx2x_func_afex_viflists_params *update_params =
2670 		&func_params.params.afex_viflists;
2671 	int rc;
2672 	u32 drv_msg_code;
2673 
2674 	/* validate only LIST_SET and LIST_GET are received from switch */
2675 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2676 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2677 			  cmd_type);
2678 
2679 	func_params.f_obj = &bp->func_obj;
2680 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2681 
2682 	/* set parameters according to cmd_type */
2683 	update_params->afex_vif_list_command = cmd_type;
2684 	update_params->vif_list_index = vif_index;
2685 	update_params->func_bit_map =
2686 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2687 	update_params->func_to_clear = 0;
2688 	drv_msg_code =
2689 		(cmd_type == VIF_LIST_RULE_GET) ?
2690 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2691 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2692 
2693 	/* if ramrod can not be sent, respond to MCP immediately for
2694 	 * SET and GET requests (other are not triggered from MCP)
2695 	 */
2696 	rc = bnx2x_func_state_change(bp, &func_params);
2697 	if (rc < 0)
2698 		bnx2x_fw_command(bp, drv_msg_code, 0);
2699 
2700 	return 0;
2701 }
2702 
2703 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2704 {
2705 	struct afex_stats afex_stats;
2706 	u32 func = BP_ABS_FUNC(bp);
2707 	u32 mf_config;
2708 	u16 vlan_val;
2709 	u32 vlan_prio;
2710 	u16 vif_id;
2711 	u8 allowed_prio;
2712 	u8 vlan_mode;
2713 	u32 addr_to_write, vifid, addrs, stats_type, i;
2714 
2715 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2716 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2717 		DP(BNX2X_MSG_MCP,
2718 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2719 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2720 	}
2721 
2722 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2723 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2724 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2725 		DP(BNX2X_MSG_MCP,
2726 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2727 		   vifid, addrs);
2728 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2729 					       addrs);
2730 	}
2731 
2732 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2733 		addr_to_write = SHMEM2_RD(bp,
2734 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2735 		stats_type = SHMEM2_RD(bp,
2736 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2737 
2738 		DP(BNX2X_MSG_MCP,
2739 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2740 		   addr_to_write);
2741 
2742 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2743 
2744 		/* write response to scratchpad, for MCP */
2745 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2746 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2747 			       *(((u32 *)(&afex_stats))+i));
2748 
2749 		/* send ack message to MCP */
2750 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2751 	}
2752 
2753 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2754 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2755 		bp->mf_config[BP_VN(bp)] = mf_config;
2756 		DP(BNX2X_MSG_MCP,
2757 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2758 		   mf_config);
2759 
2760 		/* if VIF_SET is "enabled" */
2761 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2762 			/* set rate limit directly to internal RAM */
2763 			struct cmng_init_input cmng_input;
2764 			struct rate_shaping_vars_per_vn m_rs_vn;
2765 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2766 			u32 addr = BAR_XSTRORM_INTMEM +
2767 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2768 
2769 			bp->mf_config[BP_VN(bp)] = mf_config;
2770 
2771 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2772 			m_rs_vn.vn_counter.rate =
2773 				cmng_input.vnic_max_rate[BP_VN(bp)];
2774 			m_rs_vn.vn_counter.quota =
2775 				(m_rs_vn.vn_counter.rate *
2776 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2777 
2778 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2779 
2780 			/* read relevant values from mf_cfg struct in shmem */
2781 			vif_id =
2782 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2783 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2784 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2785 			vlan_val =
2786 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2787 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2788 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2789 			vlan_prio = (mf_config &
2790 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2791 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2792 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2793 			vlan_mode =
2794 				(MF_CFG_RD(bp,
2795 					   func_mf_config[func].afex_config) &
2796 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2797 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2798 			allowed_prio =
2799 				(MF_CFG_RD(bp,
2800 					   func_mf_config[func].afex_config) &
2801 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2802 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2803 
2804 			/* send ramrod to FW, return in case of failure */
2805 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2806 						   allowed_prio))
2807 				return;
2808 
2809 			bp->afex_def_vlan_tag = vlan_val;
2810 			bp->afex_vlan_mode = vlan_mode;
2811 		} else {
2812 			/* notify link down because BP->flags is disabled */
2813 			bnx2x_link_report(bp);
2814 
2815 			/* send INVALID VIF ramrod to FW */
2816 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2817 
2818 			/* Reset the default afex VLAN */
2819 			bp->afex_def_vlan_tag = -1;
2820 		}
2821 	}
2822 }
2823 
2824 static void bnx2x_pmf_update(struct bnx2x *bp)
2825 {
2826 	int port = BP_PORT(bp);
2827 	u32 val;
2828 
2829 	bp->port.pmf = 1;
2830 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2831 
2832 	/*
2833 	 * We need the mb() to ensure the ordering between the writing to
2834 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2835 	 */
2836 	smp_mb();
2837 
2838 	/* queue a periodic task */
2839 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2840 
2841 	bnx2x_dcbx_pmf_update(bp);
2842 
2843 	/* enable nig attention */
2844 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2845 	if (bp->common.int_block == INT_BLOCK_HC) {
2846 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2847 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2848 	} else if (!CHIP_IS_E1x(bp)) {
2849 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2850 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2851 	}
2852 
2853 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2854 }
2855 
2856 /* end of Link */
2857 
2858 /* slow path */
2859 
2860 /*
2861  * General service functions
2862  */
2863 
2864 /* send the MCP a request, block until there is a reply */
2865 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2866 {
2867 	int mb_idx = BP_FW_MB_IDX(bp);
2868 	u32 seq;
2869 	u32 rc = 0;
2870 	u32 cnt = 1;
2871 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2872 
2873 	mutex_lock(&bp->fw_mb_mutex);
2874 	seq = ++bp->fw_seq;
2875 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2876 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2877 
2878 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2879 			(command | seq), param);
2880 
2881 	do {
2882 		/* let the FW do it's magic ... */
2883 		msleep(delay);
2884 
2885 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2886 
2887 		/* Give the FW up to 5 second (500*10ms) */
2888 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2889 
2890 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2891 	   cnt*delay, rc, seq);
2892 
2893 	/* is this a reply to our command? */
2894 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2895 		rc &= FW_MSG_CODE_MASK;
2896 	else {
2897 		/* FW BUG! */
2898 		BNX2X_ERR("FW failed to respond!\n");
2899 		bnx2x_fw_dump(bp);
2900 		rc = 0;
2901 	}
2902 	mutex_unlock(&bp->fw_mb_mutex);
2903 
2904 	return rc;
2905 }
2906 
2907 static void storm_memset_func_cfg(struct bnx2x *bp,
2908 				 struct tstorm_eth_function_common_config *tcfg,
2909 				 u16 abs_fid)
2910 {
2911 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2912 
2913 	u32 addr = BAR_TSTRORM_INTMEM +
2914 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2915 
2916 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2917 }
2918 
2919 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2920 {
2921 	if (CHIP_IS_E1x(bp)) {
2922 		struct tstorm_eth_function_common_config tcfg = {0};
2923 
2924 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2925 	}
2926 
2927 	/* Enable the function in the FW */
2928 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2929 	storm_memset_func_en(bp, p->func_id, 1);
2930 
2931 	/* spq */
2932 	if (p->func_flgs & FUNC_FLG_SPQ) {
2933 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2934 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2935 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2936 	}
2937 }
2938 
2939 /**
2940  * bnx2x_get_common_flags - Return common flags
2941  *
2942  * @bp		device handle
2943  * @fp		queue handle
2944  * @zero_stats	TRUE if statistics zeroing is needed
2945  *
2946  * Return the flags that are common for the Tx-only and not normal connections.
2947  */
2948 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2949 					    struct bnx2x_fastpath *fp,
2950 					    bool zero_stats)
2951 {
2952 	unsigned long flags = 0;
2953 
2954 	/* PF driver will always initialize the Queue to an ACTIVE state */
2955 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2956 
2957 	/* tx only connections collect statistics (on the same index as the
2958 	 * parent connection). The statistics are zeroed when the parent
2959 	 * connection is initialized.
2960 	 */
2961 
2962 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2963 	if (zero_stats)
2964 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2965 
2966 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2967 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2968 
2969 #ifdef BNX2X_STOP_ON_ERROR
2970 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2971 #endif
2972 
2973 	return flags;
2974 }
2975 
2976 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2977 				       struct bnx2x_fastpath *fp,
2978 				       bool leading)
2979 {
2980 	unsigned long flags = 0;
2981 
2982 	/* calculate other queue flags */
2983 	if (IS_MF_SD(bp))
2984 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2985 
2986 	if (IS_FCOE_FP(fp)) {
2987 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2988 		/* For FCoE - force usage of default priority (for afex) */
2989 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2990 	}
2991 
2992 	if (!fp->disable_tpa) {
2993 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2994 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2995 		if (fp->mode == TPA_MODE_GRO)
2996 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2997 	}
2998 
2999 	if (leading) {
3000 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3001 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3002 	}
3003 
3004 	/* Always set HW VLAN stripping */
3005 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3006 
3007 	/* configure silent vlan removal */
3008 	if (IS_MF_AFEX(bp))
3009 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3010 
3011 	return flags | bnx2x_get_common_flags(bp, fp, true);
3012 }
3013 
3014 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3015 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3016 	u8 cos)
3017 {
3018 	gen_init->stat_id = bnx2x_stats_id(fp);
3019 	gen_init->spcl_id = fp->cl_id;
3020 
3021 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3022 	if (IS_FCOE_FP(fp))
3023 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3024 	else
3025 		gen_init->mtu = bp->dev->mtu;
3026 
3027 	gen_init->cos = cos;
3028 }
3029 
3030 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3031 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3032 	struct bnx2x_rxq_setup_params *rxq_init)
3033 {
3034 	u8 max_sge = 0;
3035 	u16 sge_sz = 0;
3036 	u16 tpa_agg_size = 0;
3037 
3038 	if (!fp->disable_tpa) {
3039 		pause->sge_th_lo = SGE_TH_LO(bp);
3040 		pause->sge_th_hi = SGE_TH_HI(bp);
3041 
3042 		/* validate SGE ring has enough to cross high threshold */
3043 		WARN_ON(bp->dropless_fc &&
3044 				pause->sge_th_hi + FW_PREFETCH_CNT >
3045 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3046 
3047 		tpa_agg_size = TPA_AGG_SIZE;
3048 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3049 			SGE_PAGE_SHIFT;
3050 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3051 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3052 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3053 	}
3054 
3055 	/* pause - not for e1 */
3056 	if (!CHIP_IS_E1(bp)) {
3057 		pause->bd_th_lo = BD_TH_LO(bp);
3058 		pause->bd_th_hi = BD_TH_HI(bp);
3059 
3060 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3061 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3062 		/*
3063 		 * validate that rings have enough entries to cross
3064 		 * high thresholds
3065 		 */
3066 		WARN_ON(bp->dropless_fc &&
3067 				pause->bd_th_hi + FW_PREFETCH_CNT >
3068 				bp->rx_ring_size);
3069 		WARN_ON(bp->dropless_fc &&
3070 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3071 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3072 
3073 		pause->pri_map = 1;
3074 	}
3075 
3076 	/* rxq setup */
3077 	rxq_init->dscr_map = fp->rx_desc_mapping;
3078 	rxq_init->sge_map = fp->rx_sge_mapping;
3079 	rxq_init->rcq_map = fp->rx_comp_mapping;
3080 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3081 
3082 	/* This should be a maximum number of data bytes that may be
3083 	 * placed on the BD (not including paddings).
3084 	 */
3085 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3086 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3087 
3088 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3089 	rxq_init->tpa_agg_sz = tpa_agg_size;
3090 	rxq_init->sge_buf_sz = sge_sz;
3091 	rxq_init->max_sges_pkt = max_sge;
3092 	rxq_init->rss_engine_id = BP_FUNC(bp);
3093 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3094 
3095 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3096 	 *
3097 	 * For PF Clients it should be the maximum available number.
3098 	 * VF driver(s) may want to define it to a smaller value.
3099 	 */
3100 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3101 
3102 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3103 	rxq_init->fw_sb_id = fp->fw_sb_id;
3104 
3105 	if (IS_FCOE_FP(fp))
3106 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3107 	else
3108 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3109 	/* configure silent vlan removal
3110 	 * if multi function mode is afex, then mask default vlan
3111 	 */
3112 	if (IS_MF_AFEX(bp)) {
3113 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3114 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3115 	}
3116 }
3117 
3118 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3119 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3120 	u8 cos)
3121 {
3122 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3123 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3124 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3125 	txq_init->fw_sb_id = fp->fw_sb_id;
3126 
3127 	/*
3128 	 * set the tss leading client id for TX classification ==
3129 	 * leading RSS client id
3130 	 */
3131 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3132 
3133 	if (IS_FCOE_FP(fp)) {
3134 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3135 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3136 	}
3137 }
3138 
3139 static void bnx2x_pf_init(struct bnx2x *bp)
3140 {
3141 	struct bnx2x_func_init_params func_init = {0};
3142 	struct event_ring_data eq_data = { {0} };
3143 	u16 flags;
3144 
3145 	if (!CHIP_IS_E1x(bp)) {
3146 		/* reset IGU PF statistics: MSIX + ATTN */
3147 		/* PF */
3148 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3149 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3150 			   (CHIP_MODE_IS_4_PORT(bp) ?
3151 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3152 		/* ATTN */
3153 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3154 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3155 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3156 			   (CHIP_MODE_IS_4_PORT(bp) ?
3157 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3158 	}
3159 
3160 	/* function setup flags */
3161 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3162 
3163 	/* This flag is relevant for E1x only.
3164 	 * E2 doesn't have a TPA configuration in a function level.
3165 	 */
3166 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3167 
3168 	func_init.func_flgs = flags;
3169 	func_init.pf_id = BP_FUNC(bp);
3170 	func_init.func_id = BP_FUNC(bp);
3171 	func_init.spq_map = bp->spq_mapping;
3172 	func_init.spq_prod = bp->spq_prod_idx;
3173 
3174 	bnx2x_func_init(bp, &func_init);
3175 
3176 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3177 
3178 	/*
3179 	 * Congestion management values depend on the link rate
3180 	 * There is no active link so initial link rate is set to 10 Gbps.
3181 	 * When the link comes up The congestion management values are
3182 	 * re-calculated according to the actual link rate.
3183 	 */
3184 	bp->link_vars.line_speed = SPEED_10000;
3185 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3186 
3187 	/* Only the PMF sets the HW */
3188 	if (bp->port.pmf)
3189 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3190 
3191 	/* init Event Queue - PCI bus guarantees correct endianity*/
3192 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3193 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3194 	eq_data.producer = bp->eq_prod;
3195 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3196 	eq_data.sb_id = DEF_SB_ID;
3197 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3198 }
3199 
3200 static void bnx2x_e1h_disable(struct bnx2x *bp)
3201 {
3202 	int port = BP_PORT(bp);
3203 
3204 	bnx2x_tx_disable(bp);
3205 
3206 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3207 }
3208 
3209 static void bnx2x_e1h_enable(struct bnx2x *bp)
3210 {
3211 	int port = BP_PORT(bp);
3212 
3213 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3214 
3215 	/* Tx queue should be only re-enabled */
3216 	netif_tx_wake_all_queues(bp->dev);
3217 
3218 	/*
3219 	 * Should not call netif_carrier_on since it will be called if the link
3220 	 * is up when checking for link state
3221 	 */
3222 }
3223 
3224 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3225 
3226 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3227 {
3228 	struct eth_stats_info *ether_stat =
3229 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3230 	struct bnx2x_vlan_mac_obj *mac_obj =
3231 		&bp->sp_objs->mac_obj;
3232 	int i;
3233 
3234 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3235 		ETH_STAT_INFO_VERSION_LEN);
3236 
3237 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3238 	 * mac_local field in ether_stat struct. The base address is offset by 2
3239 	 * bytes to account for the field being 8 bytes but a mac address is
3240 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3241 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3242 	 * allocated by the ether_stat struct, so the macs will land in their
3243 	 * proper positions.
3244 	 */
3245 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3246 		memset(ether_stat->mac_local + i, 0,
3247 		       sizeof(ether_stat->mac_local[0]));
3248 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3249 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3250 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3251 				ETH_ALEN);
3252 	ether_stat->mtu_size = bp->dev->mtu;
3253 	if (bp->dev->features & NETIF_F_RXCSUM)
3254 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3255 	if (bp->dev->features & NETIF_F_TSO)
3256 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3257 	ether_stat->feature_flags |= bp->common.boot_mode;
3258 
3259 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3260 
3261 	ether_stat->txq_size = bp->tx_ring_size;
3262 	ether_stat->rxq_size = bp->rx_ring_size;
3263 }
3264 
3265 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3266 {
3267 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3268 	struct fcoe_stats_info *fcoe_stat =
3269 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3270 
3271 	if (!CNIC_LOADED(bp))
3272 		return;
3273 
3274 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3275 
3276 	fcoe_stat->qos_priority =
3277 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3278 
3279 	/* insert FCoE stats from ramrod response */
3280 	if (!NO_FCOE(bp)) {
3281 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3282 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3283 			tstorm_queue_statistics;
3284 
3285 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3286 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3287 			xstorm_queue_statistics;
3288 
3289 		struct fcoe_statistics_params *fw_fcoe_stat =
3290 			&bp->fw_stats_data->fcoe;
3291 
3292 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3293 			  fcoe_stat->rx_bytes_lo,
3294 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3295 
3296 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3297 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3298 			  fcoe_stat->rx_bytes_lo,
3299 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3300 
3301 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3302 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3303 			  fcoe_stat->rx_bytes_lo,
3304 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3305 
3306 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3307 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3308 			  fcoe_stat->rx_bytes_lo,
3309 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3310 
3311 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3312 			  fcoe_stat->rx_frames_lo,
3313 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3314 
3315 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3316 			  fcoe_stat->rx_frames_lo,
3317 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3318 
3319 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3320 			  fcoe_stat->rx_frames_lo,
3321 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3322 
3323 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3324 			  fcoe_stat->rx_frames_lo,
3325 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3326 
3327 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3328 			  fcoe_stat->tx_bytes_lo,
3329 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3330 
3331 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3332 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3333 			  fcoe_stat->tx_bytes_lo,
3334 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3335 
3336 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3337 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3338 			  fcoe_stat->tx_bytes_lo,
3339 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3340 
3341 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3342 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3343 			  fcoe_stat->tx_bytes_lo,
3344 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3345 
3346 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3347 			  fcoe_stat->tx_frames_lo,
3348 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3349 
3350 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3351 			  fcoe_stat->tx_frames_lo,
3352 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3353 
3354 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3355 			  fcoe_stat->tx_frames_lo,
3356 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3357 
3358 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3359 			  fcoe_stat->tx_frames_lo,
3360 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3361 	}
3362 
3363 	/* ask L5 driver to add data to the struct */
3364 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3365 }
3366 
3367 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3368 {
3369 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3370 	struct iscsi_stats_info *iscsi_stat =
3371 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3372 
3373 	if (!CNIC_LOADED(bp))
3374 		return;
3375 
3376 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3377 	       ETH_ALEN);
3378 
3379 	iscsi_stat->qos_priority =
3380 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3381 
3382 	/* ask L5 driver to add data to the struct */
3383 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3384 }
3385 
3386 /* called due to MCP event (on pmf):
3387  *	reread new bandwidth configuration
3388  *	configure FW
3389  *	notify others function about the change
3390  */
3391 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3392 {
3393 	if (bp->link_vars.link_up) {
3394 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3395 		bnx2x_link_sync_notify(bp);
3396 	}
3397 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3398 }
3399 
3400 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3401 {
3402 	bnx2x_config_mf_bw(bp);
3403 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3404 }
3405 
3406 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3407 {
3408 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3409 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3410 }
3411 
3412 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3413 {
3414 	enum drv_info_opcode op_code;
3415 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3416 
3417 	/* if drv_info version supported by MFW doesn't match - send NACK */
3418 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3419 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3420 		return;
3421 	}
3422 
3423 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3424 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3425 
3426 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3427 	       sizeof(union drv_info_to_mcp));
3428 
3429 	switch (op_code) {
3430 	case ETH_STATS_OPCODE:
3431 		bnx2x_drv_info_ether_stat(bp);
3432 		break;
3433 	case FCOE_STATS_OPCODE:
3434 		bnx2x_drv_info_fcoe_stat(bp);
3435 		break;
3436 	case ISCSI_STATS_OPCODE:
3437 		bnx2x_drv_info_iscsi_stat(bp);
3438 		break;
3439 	default:
3440 		/* if op code isn't supported - send NACK */
3441 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3442 		return;
3443 	}
3444 
3445 	/* if we got drv_info attn from MFW then these fields are defined in
3446 	 * shmem2 for sure
3447 	 */
3448 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3449 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3450 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3451 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3452 
3453 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3454 }
3455 
3456 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3457 {
3458 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3459 
3460 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3461 
3462 		/*
3463 		 * This is the only place besides the function initialization
3464 		 * where the bp->flags can change so it is done without any
3465 		 * locks
3466 		 */
3467 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3468 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3469 			bp->flags |= MF_FUNC_DIS;
3470 
3471 			bnx2x_e1h_disable(bp);
3472 		} else {
3473 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3474 			bp->flags &= ~MF_FUNC_DIS;
3475 
3476 			bnx2x_e1h_enable(bp);
3477 		}
3478 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3479 	}
3480 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3481 		bnx2x_config_mf_bw(bp);
3482 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3483 	}
3484 
3485 	/* Report results to MCP */
3486 	if (dcc_event)
3487 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3488 	else
3489 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3490 }
3491 
3492 /* must be called under the spq lock */
3493 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3494 {
3495 	struct eth_spe *next_spe = bp->spq_prod_bd;
3496 
3497 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3498 		bp->spq_prod_bd = bp->spq;
3499 		bp->spq_prod_idx = 0;
3500 		DP(BNX2X_MSG_SP, "end of spq\n");
3501 	} else {
3502 		bp->spq_prod_bd++;
3503 		bp->spq_prod_idx++;
3504 	}
3505 	return next_spe;
3506 }
3507 
3508 /* must be called under the spq lock */
3509 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3510 {
3511 	int func = BP_FUNC(bp);
3512 
3513 	/*
3514 	 * Make sure that BD data is updated before writing the producer:
3515 	 * BD data is written to the memory, the producer is read from the
3516 	 * memory, thus we need a full memory barrier to ensure the ordering.
3517 	 */
3518 	mb();
3519 
3520 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3521 		 bp->spq_prod_idx);
3522 	mmiowb();
3523 }
3524 
3525 /**
3526  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3527  *
3528  * @cmd:	command to check
3529  * @cmd_type:	command type
3530  */
3531 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3532 {
3533 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3534 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3535 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3536 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3537 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3538 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3539 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3540 		return true;
3541 	else
3542 		return false;
3543 }
3544 
3545 /**
3546  * bnx2x_sp_post - place a single command on an SP ring
3547  *
3548  * @bp:		driver handle
3549  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3550  * @cid:	SW CID the command is related to
3551  * @data_hi:	command private data address (high 32 bits)
3552  * @data_lo:	command private data address (low 32 bits)
3553  * @cmd_type:	command type (e.g. NONE, ETH)
3554  *
3555  * SP data is handled as if it's always an address pair, thus data fields are
3556  * not swapped to little endian in upper functions. Instead this function swaps
3557  * data as if it's two u32 fields.
3558  */
3559 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3560 		  u32 data_hi, u32 data_lo, int cmd_type)
3561 {
3562 	struct eth_spe *spe;
3563 	u16 type;
3564 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3565 
3566 #ifdef BNX2X_STOP_ON_ERROR
3567 	if (unlikely(bp->panic)) {
3568 		BNX2X_ERR("Can't post SP when there is panic\n");
3569 		return -EIO;
3570 	}
3571 #endif
3572 
3573 	spin_lock_bh(&bp->spq_lock);
3574 
3575 	if (common) {
3576 		if (!atomic_read(&bp->eq_spq_left)) {
3577 			BNX2X_ERR("BUG! EQ ring full!\n");
3578 			spin_unlock_bh(&bp->spq_lock);
3579 			bnx2x_panic();
3580 			return -EBUSY;
3581 		}
3582 	} else if (!atomic_read(&bp->cq_spq_left)) {
3583 			BNX2X_ERR("BUG! SPQ ring full!\n");
3584 			spin_unlock_bh(&bp->spq_lock);
3585 			bnx2x_panic();
3586 			return -EBUSY;
3587 	}
3588 
3589 	spe = bnx2x_sp_get_next(bp);
3590 
3591 	/* CID needs port number to be encoded int it */
3592 	spe->hdr.conn_and_cmd_data =
3593 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3594 				    HW_CID(bp, cid));
3595 
3596 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3597 
3598 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3599 		 SPE_HDR_FUNCTION_ID);
3600 
3601 	spe->hdr.type = cpu_to_le16(type);
3602 
3603 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3604 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3605 
3606 	/*
3607 	 * It's ok if the actual decrement is issued towards the memory
3608 	 * somewhere between the spin_lock and spin_unlock. Thus no
3609 	 * more explicit memory barrier is needed.
3610 	 */
3611 	if (common)
3612 		atomic_dec(&bp->eq_spq_left);
3613 	else
3614 		atomic_dec(&bp->cq_spq_left);
3615 
3616 	DP(BNX2X_MSG_SP,
3617 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3618 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3619 	   (u32)(U64_LO(bp->spq_mapping) +
3620 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3621 	   HW_CID(bp, cid), data_hi, data_lo, type,
3622 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3623 
3624 	bnx2x_sp_prod_update(bp);
3625 	spin_unlock_bh(&bp->spq_lock);
3626 	return 0;
3627 }
3628 
3629 /* acquire split MCP access lock register */
3630 static int bnx2x_acquire_alr(struct bnx2x *bp)
3631 {
3632 	u32 j, val;
3633 	int rc = 0;
3634 
3635 	might_sleep();
3636 	for (j = 0; j < 1000; j++) {
3637 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3638 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3639 		if (val & MCPR_ACCESS_LOCK_LOCK)
3640 			break;
3641 
3642 		usleep_range(5000, 10000);
3643 	}
3644 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3645 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3646 		rc = -EBUSY;
3647 	}
3648 
3649 	return rc;
3650 }
3651 
3652 /* release split MCP access lock register */
3653 static void bnx2x_release_alr(struct bnx2x *bp)
3654 {
3655 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3656 }
3657 
3658 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3659 #define BNX2X_DEF_SB_IDX	0x0002
3660 
3661 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3662 {
3663 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3664 	u16 rc = 0;
3665 
3666 	barrier(); /* status block is written to by the chip */
3667 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3668 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3669 		rc |= BNX2X_DEF_SB_ATT_IDX;
3670 	}
3671 
3672 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3673 		bp->def_idx = def_sb->sp_sb.running_index;
3674 		rc |= BNX2X_DEF_SB_IDX;
3675 	}
3676 
3677 	/* Do not reorder: indices reading should complete before handling */
3678 	barrier();
3679 	return rc;
3680 }
3681 
3682 /*
3683  * slow path service functions
3684  */
3685 
3686 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3687 {
3688 	int port = BP_PORT(bp);
3689 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3690 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3691 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3692 				       NIG_REG_MASK_INTERRUPT_PORT0;
3693 	u32 aeu_mask;
3694 	u32 nig_mask = 0;
3695 	u32 reg_addr;
3696 
3697 	if (bp->attn_state & asserted)
3698 		BNX2X_ERR("IGU ERROR\n");
3699 
3700 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3701 	aeu_mask = REG_RD(bp, aeu_addr);
3702 
3703 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3704 	   aeu_mask, asserted);
3705 	aeu_mask &= ~(asserted & 0x3ff);
3706 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3707 
3708 	REG_WR(bp, aeu_addr, aeu_mask);
3709 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3710 
3711 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3712 	bp->attn_state |= asserted;
3713 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3714 
3715 	if (asserted & ATTN_HARD_WIRED_MASK) {
3716 		if (asserted & ATTN_NIG_FOR_FUNC) {
3717 
3718 			bnx2x_acquire_phy_lock(bp);
3719 
3720 			/* save nig interrupt mask */
3721 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3722 
3723 			/* If nig_mask is not set, no need to call the update
3724 			 * function.
3725 			 */
3726 			if (nig_mask) {
3727 				REG_WR(bp, nig_int_mask_addr, 0);
3728 
3729 				bnx2x_link_attn(bp);
3730 			}
3731 
3732 			/* handle unicore attn? */
3733 		}
3734 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3735 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3736 
3737 		if (asserted & GPIO_2_FUNC)
3738 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3739 
3740 		if (asserted & GPIO_3_FUNC)
3741 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3742 
3743 		if (asserted & GPIO_4_FUNC)
3744 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3745 
3746 		if (port == 0) {
3747 			if (asserted & ATTN_GENERAL_ATTN_1) {
3748 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3749 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3750 			}
3751 			if (asserted & ATTN_GENERAL_ATTN_2) {
3752 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3753 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3754 			}
3755 			if (asserted & ATTN_GENERAL_ATTN_3) {
3756 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3757 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3758 			}
3759 		} else {
3760 			if (asserted & ATTN_GENERAL_ATTN_4) {
3761 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3762 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3763 			}
3764 			if (asserted & ATTN_GENERAL_ATTN_5) {
3765 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3766 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3767 			}
3768 			if (asserted & ATTN_GENERAL_ATTN_6) {
3769 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3770 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3771 			}
3772 		}
3773 
3774 	} /* if hardwired */
3775 
3776 	if (bp->common.int_block == INT_BLOCK_HC)
3777 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3778 			    COMMAND_REG_ATTN_BITS_SET);
3779 	else
3780 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3781 
3782 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3783 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3784 	REG_WR(bp, reg_addr, asserted);
3785 
3786 	/* now set back the mask */
3787 	if (asserted & ATTN_NIG_FOR_FUNC) {
3788 		/* Verify that IGU ack through BAR was written before restoring
3789 		 * NIG mask. This loop should exit after 2-3 iterations max.
3790 		 */
3791 		if (bp->common.int_block != INT_BLOCK_HC) {
3792 			u32 cnt = 0, igu_acked;
3793 			do {
3794 				igu_acked = REG_RD(bp,
3795 						   IGU_REG_ATTENTION_ACK_BITS);
3796 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3797 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3798 			if (!igu_acked)
3799 				DP(NETIF_MSG_HW,
3800 				   "Failed to verify IGU ack on time\n");
3801 			barrier();
3802 		}
3803 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3804 		bnx2x_release_phy_lock(bp);
3805 	}
3806 }
3807 
3808 static void bnx2x_fan_failure(struct bnx2x *bp)
3809 {
3810 	int port = BP_PORT(bp);
3811 	u32 ext_phy_config;
3812 	/* mark the failure */
3813 	ext_phy_config =
3814 		SHMEM_RD(bp,
3815 			 dev_info.port_hw_config[port].external_phy_config);
3816 
3817 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3818 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3819 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3820 		 ext_phy_config);
3821 
3822 	/* log the failure */
3823 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3824 			    "Please contact OEM Support for assistance\n");
3825 
3826 	/* Schedule device reset (unload)
3827 	 * This is due to some boards consuming sufficient power when driver is
3828 	 * up to overheat if fan fails.
3829 	 */
3830 	smp_mb__before_clear_bit();
3831 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3832 	smp_mb__after_clear_bit();
3833 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3834 }
3835 
3836 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3837 {
3838 	int port = BP_PORT(bp);
3839 	int reg_offset;
3840 	u32 val;
3841 
3842 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3843 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3844 
3845 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3846 
3847 		val = REG_RD(bp, reg_offset);
3848 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3849 		REG_WR(bp, reg_offset, val);
3850 
3851 		BNX2X_ERR("SPIO5 hw attention\n");
3852 
3853 		/* Fan failure attention */
3854 		bnx2x_hw_reset_phy(&bp->link_params);
3855 		bnx2x_fan_failure(bp);
3856 	}
3857 
3858 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3859 		bnx2x_acquire_phy_lock(bp);
3860 		bnx2x_handle_module_detect_int(&bp->link_params);
3861 		bnx2x_release_phy_lock(bp);
3862 	}
3863 
3864 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3865 
3866 		val = REG_RD(bp, reg_offset);
3867 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3868 		REG_WR(bp, reg_offset, val);
3869 
3870 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3871 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3872 		bnx2x_panic();
3873 	}
3874 }
3875 
3876 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3877 {
3878 	u32 val;
3879 
3880 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3881 
3882 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3883 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3884 		/* DORQ discard attention */
3885 		if (val & 0x2)
3886 			BNX2X_ERR("FATAL error from DORQ\n");
3887 	}
3888 
3889 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3890 
3891 		int port = BP_PORT(bp);
3892 		int reg_offset;
3893 
3894 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3895 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3896 
3897 		val = REG_RD(bp, reg_offset);
3898 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3899 		REG_WR(bp, reg_offset, val);
3900 
3901 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3902 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3903 		bnx2x_panic();
3904 	}
3905 }
3906 
3907 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3908 {
3909 	u32 val;
3910 
3911 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3912 
3913 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3914 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3915 		/* CFC error attention */
3916 		if (val & 0x2)
3917 			BNX2X_ERR("FATAL error from CFC\n");
3918 	}
3919 
3920 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3921 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3922 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3923 		/* RQ_USDMDP_FIFO_OVERFLOW */
3924 		if (val & 0x18000)
3925 			BNX2X_ERR("FATAL error from PXP\n");
3926 
3927 		if (!CHIP_IS_E1x(bp)) {
3928 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3929 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3930 		}
3931 	}
3932 
3933 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3934 
3935 		int port = BP_PORT(bp);
3936 		int reg_offset;
3937 
3938 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3939 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3940 
3941 		val = REG_RD(bp, reg_offset);
3942 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3943 		REG_WR(bp, reg_offset, val);
3944 
3945 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3946 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3947 		bnx2x_panic();
3948 	}
3949 }
3950 
3951 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3952 {
3953 	u32 val;
3954 
3955 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3956 
3957 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3958 			int func = BP_FUNC(bp);
3959 
3960 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3961 			bnx2x_read_mf_cfg(bp);
3962 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3963 					func_mf_config[BP_ABS_FUNC(bp)].config);
3964 			val = SHMEM_RD(bp,
3965 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3966 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3967 				bnx2x_dcc_event(bp,
3968 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3969 
3970 			if (val & DRV_STATUS_SET_MF_BW)
3971 				bnx2x_set_mf_bw(bp);
3972 
3973 			if (val & DRV_STATUS_DRV_INFO_REQ)
3974 				bnx2x_handle_drv_info_req(bp);
3975 
3976 			if (val & DRV_STATUS_VF_DISABLED)
3977 				bnx2x_vf_handle_flr_event(bp);
3978 
3979 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3980 				bnx2x_pmf_update(bp);
3981 
3982 			if (bp->port.pmf &&
3983 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3984 				bp->dcbx_enabled > 0)
3985 				/* start dcbx state machine */
3986 				bnx2x_dcbx_set_params(bp,
3987 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3988 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
3989 				bnx2x_handle_afex_cmd(bp,
3990 					val & DRV_STATUS_AFEX_EVENT_MASK);
3991 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3992 				bnx2x_handle_eee_event(bp);
3993 			if (bp->link_vars.periodic_flags &
3994 			    PERIODIC_FLAGS_LINK_EVENT) {
3995 				/*  sync with link */
3996 				bnx2x_acquire_phy_lock(bp);
3997 				bp->link_vars.periodic_flags &=
3998 					~PERIODIC_FLAGS_LINK_EVENT;
3999 				bnx2x_release_phy_lock(bp);
4000 				if (IS_MF(bp))
4001 					bnx2x_link_sync_notify(bp);
4002 				bnx2x_link_report(bp);
4003 			}
4004 			/* Always call it here: bnx2x_link_report() will
4005 			 * prevent the link indication duplication.
4006 			 */
4007 			bnx2x__link_status_update(bp);
4008 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4009 
4010 			BNX2X_ERR("MC assert!\n");
4011 			bnx2x_mc_assert(bp);
4012 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4013 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4014 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4015 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4016 			bnx2x_panic();
4017 
4018 		} else if (attn & BNX2X_MCP_ASSERT) {
4019 
4020 			BNX2X_ERR("MCP assert!\n");
4021 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4022 			bnx2x_fw_dump(bp);
4023 
4024 		} else
4025 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4026 	}
4027 
4028 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4029 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4030 		if (attn & BNX2X_GRC_TIMEOUT) {
4031 			val = CHIP_IS_E1(bp) ? 0 :
4032 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4033 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4034 		}
4035 		if (attn & BNX2X_GRC_RSV) {
4036 			val = CHIP_IS_E1(bp) ? 0 :
4037 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4038 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4039 		}
4040 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4041 	}
4042 }
4043 
4044 /*
4045  * Bits map:
4046  * 0-7   - Engine0 load counter.
4047  * 8-15  - Engine1 load counter.
4048  * 16    - Engine0 RESET_IN_PROGRESS bit.
4049  * 17    - Engine1 RESET_IN_PROGRESS bit.
4050  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4051  *         on the engine
4052  * 19    - Engine1 ONE_IS_LOADED.
4053  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4054  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4055  *         just the one belonging to its engine).
4056  *
4057  */
4058 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4059 
4060 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4061 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4062 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4063 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4064 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4065 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4066 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4067 
4068 /*
4069  * Set the GLOBAL_RESET bit.
4070  *
4071  * Should be run under rtnl lock
4072  */
4073 void bnx2x_set_reset_global(struct bnx2x *bp)
4074 {
4075 	u32 val;
4076 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4077 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4078 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4079 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4080 }
4081 
4082 /*
4083  * Clear the GLOBAL_RESET bit.
4084  *
4085  * Should be run under rtnl lock
4086  */
4087 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4088 {
4089 	u32 val;
4090 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4091 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4092 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4093 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4094 }
4095 
4096 /*
4097  * Checks the GLOBAL_RESET bit.
4098  *
4099  * should be run under rtnl lock
4100  */
4101 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4102 {
4103 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4104 
4105 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4106 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4107 }
4108 
4109 /*
4110  * Clear RESET_IN_PROGRESS bit for the current engine.
4111  *
4112  * Should be run under rtnl lock
4113  */
4114 static void bnx2x_set_reset_done(struct bnx2x *bp)
4115 {
4116 	u32 val;
4117 	u32 bit = BP_PATH(bp) ?
4118 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4119 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4120 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4121 
4122 	/* Clear the bit */
4123 	val &= ~bit;
4124 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4125 
4126 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4127 }
4128 
4129 /*
4130  * Set RESET_IN_PROGRESS for the current engine.
4131  *
4132  * should be run under rtnl lock
4133  */
4134 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4135 {
4136 	u32 val;
4137 	u32 bit = BP_PATH(bp) ?
4138 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4139 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4140 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4141 
4142 	/* Set the bit */
4143 	val |= bit;
4144 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4145 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4146 }
4147 
4148 /*
4149  * Checks the RESET_IN_PROGRESS bit for the given engine.
4150  * should be run under rtnl lock
4151  */
4152 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4153 {
4154 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4155 	u32 bit = engine ?
4156 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4157 
4158 	/* return false if bit is set */
4159 	return (val & bit) ? false : true;
4160 }
4161 
4162 /*
4163  * set pf load for the current pf.
4164  *
4165  * should be run under rtnl lock
4166  */
4167 void bnx2x_set_pf_load(struct bnx2x *bp)
4168 {
4169 	u32 val1, val;
4170 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4171 			     BNX2X_PATH0_LOAD_CNT_MASK;
4172 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4173 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4174 
4175 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4176 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4177 
4178 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4179 
4180 	/* get the current counter value */
4181 	val1 = (val & mask) >> shift;
4182 
4183 	/* set bit of that PF */
4184 	val1 |= (1 << bp->pf_num);
4185 
4186 	/* clear the old value */
4187 	val &= ~mask;
4188 
4189 	/* set the new one */
4190 	val |= ((val1 << shift) & mask);
4191 
4192 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4193 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4194 }
4195 
4196 /**
4197  * bnx2x_clear_pf_load - clear pf load mark
4198  *
4199  * @bp:		driver handle
4200  *
4201  * Should be run under rtnl lock.
4202  * Decrements the load counter for the current engine. Returns
4203  * whether other functions are still loaded
4204  */
4205 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4206 {
4207 	u32 val1, val;
4208 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4209 			     BNX2X_PATH0_LOAD_CNT_MASK;
4210 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4211 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4212 
4213 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4214 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4215 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4216 
4217 	/* get the current counter value */
4218 	val1 = (val & mask) >> shift;
4219 
4220 	/* clear bit of that PF */
4221 	val1 &= ~(1 << bp->pf_num);
4222 
4223 	/* clear the old value */
4224 	val &= ~mask;
4225 
4226 	/* set the new one */
4227 	val |= ((val1 << shift) & mask);
4228 
4229 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4230 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4231 	return val1 != 0;
4232 }
4233 
4234 /*
4235  * Read the load status for the current engine.
4236  *
4237  * should be run under rtnl lock
4238  */
4239 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4240 {
4241 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4242 			     BNX2X_PATH0_LOAD_CNT_MASK);
4243 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4244 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4245 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4246 
4247 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4248 
4249 	val = (val & mask) >> shift;
4250 
4251 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4252 	   engine, val);
4253 
4254 	return val != 0;
4255 }
4256 
4257 static void _print_parity(struct bnx2x *bp, u32 reg)
4258 {
4259 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4260 }
4261 
4262 static void _print_next_block(int idx, const char *blk)
4263 {
4264 	pr_cont("%s%s", idx ? ", " : "", blk);
4265 }
4266 
4267 static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4268 					    int par_num, bool print)
4269 {
4270 	int i = 0;
4271 	u32 cur_bit = 0;
4272 	for (i = 0; sig; i++) {
4273 		cur_bit = ((u32)0x1 << i);
4274 		if (sig & cur_bit) {
4275 			switch (cur_bit) {
4276 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4277 				if (print) {
4278 					_print_next_block(par_num++, "BRB");
4279 					_print_parity(bp,
4280 						      BRB1_REG_BRB1_PRTY_STS);
4281 				}
4282 				break;
4283 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4284 				if (print) {
4285 					_print_next_block(par_num++, "PARSER");
4286 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4287 				}
4288 				break;
4289 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4290 				if (print) {
4291 					_print_next_block(par_num++, "TSDM");
4292 					_print_parity(bp,
4293 						      TSDM_REG_TSDM_PRTY_STS);
4294 				}
4295 				break;
4296 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4297 				if (print) {
4298 					_print_next_block(par_num++,
4299 							  "SEARCHER");
4300 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4301 				}
4302 				break;
4303 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4304 				if (print) {
4305 					_print_next_block(par_num++, "TCM");
4306 					_print_parity(bp,
4307 						      TCM_REG_TCM_PRTY_STS);
4308 				}
4309 				break;
4310 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4311 				if (print) {
4312 					_print_next_block(par_num++, "TSEMI");
4313 					_print_parity(bp,
4314 						      TSEM_REG_TSEM_PRTY_STS_0);
4315 					_print_parity(bp,
4316 						      TSEM_REG_TSEM_PRTY_STS_1);
4317 				}
4318 				break;
4319 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4320 				if (print) {
4321 					_print_next_block(par_num++, "XPB");
4322 					_print_parity(bp, GRCBASE_XPB +
4323 							  PB_REG_PB_PRTY_STS);
4324 				}
4325 				break;
4326 			}
4327 
4328 			/* Clear the bit */
4329 			sig &= ~cur_bit;
4330 		}
4331 	}
4332 
4333 	return par_num;
4334 }
4335 
4336 static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4337 					    int par_num, bool *global,
4338 					    bool print)
4339 {
4340 	int i = 0;
4341 	u32 cur_bit = 0;
4342 	for (i = 0; sig; i++) {
4343 		cur_bit = ((u32)0x1 << i);
4344 		if (sig & cur_bit) {
4345 			switch (cur_bit) {
4346 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4347 				if (print) {
4348 					_print_next_block(par_num++, "PBF");
4349 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4350 				}
4351 				break;
4352 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4353 				if (print) {
4354 					_print_next_block(par_num++, "QM");
4355 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4356 				}
4357 				break;
4358 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4359 				if (print) {
4360 					_print_next_block(par_num++, "TM");
4361 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4362 				}
4363 				break;
4364 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4365 				if (print) {
4366 					_print_next_block(par_num++, "XSDM");
4367 					_print_parity(bp,
4368 						      XSDM_REG_XSDM_PRTY_STS);
4369 				}
4370 				break;
4371 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4372 				if (print) {
4373 					_print_next_block(par_num++, "XCM");
4374 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4375 				}
4376 				break;
4377 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4378 				if (print) {
4379 					_print_next_block(par_num++, "XSEMI");
4380 					_print_parity(bp,
4381 						      XSEM_REG_XSEM_PRTY_STS_0);
4382 					_print_parity(bp,
4383 						      XSEM_REG_XSEM_PRTY_STS_1);
4384 				}
4385 				break;
4386 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4387 				if (print) {
4388 					_print_next_block(par_num++,
4389 							  "DOORBELLQ");
4390 					_print_parity(bp,
4391 						      DORQ_REG_DORQ_PRTY_STS);
4392 				}
4393 				break;
4394 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4395 				if (print) {
4396 					_print_next_block(par_num++, "NIG");
4397 					if (CHIP_IS_E1x(bp)) {
4398 						_print_parity(bp,
4399 							NIG_REG_NIG_PRTY_STS);
4400 					} else {
4401 						_print_parity(bp,
4402 							NIG_REG_NIG_PRTY_STS_0);
4403 						_print_parity(bp,
4404 							NIG_REG_NIG_PRTY_STS_1);
4405 					}
4406 				}
4407 				break;
4408 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4409 				if (print)
4410 					_print_next_block(par_num++,
4411 							  "VAUX PCI CORE");
4412 				*global = true;
4413 				break;
4414 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4415 				if (print) {
4416 					_print_next_block(par_num++, "DEBUG");
4417 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4418 				}
4419 				break;
4420 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4421 				if (print) {
4422 					_print_next_block(par_num++, "USDM");
4423 					_print_parity(bp,
4424 						      USDM_REG_USDM_PRTY_STS);
4425 				}
4426 				break;
4427 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4428 				if (print) {
4429 					_print_next_block(par_num++, "UCM");
4430 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4431 				}
4432 				break;
4433 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4434 				if (print) {
4435 					_print_next_block(par_num++, "USEMI");
4436 					_print_parity(bp,
4437 						      USEM_REG_USEM_PRTY_STS_0);
4438 					_print_parity(bp,
4439 						      USEM_REG_USEM_PRTY_STS_1);
4440 				}
4441 				break;
4442 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4443 				if (print) {
4444 					_print_next_block(par_num++, "UPB");
4445 					_print_parity(bp, GRCBASE_UPB +
4446 							  PB_REG_PB_PRTY_STS);
4447 				}
4448 				break;
4449 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4450 				if (print) {
4451 					_print_next_block(par_num++, "CSDM");
4452 					_print_parity(bp,
4453 						      CSDM_REG_CSDM_PRTY_STS);
4454 				}
4455 				break;
4456 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4457 				if (print) {
4458 					_print_next_block(par_num++, "CCM");
4459 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4460 				}
4461 				break;
4462 			}
4463 
4464 			/* Clear the bit */
4465 			sig &= ~cur_bit;
4466 		}
4467 	}
4468 
4469 	return par_num;
4470 }
4471 
4472 static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4473 					    int par_num, bool print)
4474 {
4475 	int i = 0;
4476 	u32 cur_bit = 0;
4477 	for (i = 0; sig; i++) {
4478 		cur_bit = ((u32)0x1 << i);
4479 		if (sig & cur_bit) {
4480 			switch (cur_bit) {
4481 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4482 				if (print) {
4483 					_print_next_block(par_num++, "CSEMI");
4484 					_print_parity(bp,
4485 						      CSEM_REG_CSEM_PRTY_STS_0);
4486 					_print_parity(bp,
4487 						      CSEM_REG_CSEM_PRTY_STS_1);
4488 				}
4489 				break;
4490 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4491 				if (print) {
4492 					_print_next_block(par_num++, "PXP");
4493 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4494 					_print_parity(bp,
4495 						      PXP2_REG_PXP2_PRTY_STS_0);
4496 					_print_parity(bp,
4497 						      PXP2_REG_PXP2_PRTY_STS_1);
4498 				}
4499 				break;
4500 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4501 				if (print)
4502 					_print_next_block(par_num++,
4503 					"PXPPCICLOCKCLIENT");
4504 				break;
4505 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4506 				if (print) {
4507 					_print_next_block(par_num++, "CFC");
4508 					_print_parity(bp,
4509 						      CFC_REG_CFC_PRTY_STS);
4510 				}
4511 				break;
4512 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4513 				if (print) {
4514 					_print_next_block(par_num++, "CDU");
4515 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4516 				}
4517 				break;
4518 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4519 				if (print) {
4520 					_print_next_block(par_num++, "DMAE");
4521 					_print_parity(bp,
4522 						      DMAE_REG_DMAE_PRTY_STS);
4523 				}
4524 				break;
4525 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4526 				if (print) {
4527 					_print_next_block(par_num++, "IGU");
4528 					if (CHIP_IS_E1x(bp))
4529 						_print_parity(bp,
4530 							HC_REG_HC_PRTY_STS);
4531 					else
4532 						_print_parity(bp,
4533 							IGU_REG_IGU_PRTY_STS);
4534 				}
4535 				break;
4536 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4537 				if (print) {
4538 					_print_next_block(par_num++, "MISC");
4539 					_print_parity(bp,
4540 						      MISC_REG_MISC_PRTY_STS);
4541 				}
4542 				break;
4543 			}
4544 
4545 			/* Clear the bit */
4546 			sig &= ~cur_bit;
4547 		}
4548 	}
4549 
4550 	return par_num;
4551 }
4552 
4553 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4554 					   bool *global, bool print)
4555 {
4556 	int i = 0;
4557 	u32 cur_bit = 0;
4558 	for (i = 0; sig; i++) {
4559 		cur_bit = ((u32)0x1 << i);
4560 		if (sig & cur_bit) {
4561 			switch (cur_bit) {
4562 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4563 				if (print)
4564 					_print_next_block(par_num++, "MCP ROM");
4565 				*global = true;
4566 				break;
4567 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4568 				if (print)
4569 					_print_next_block(par_num++,
4570 							  "MCP UMP RX");
4571 				*global = true;
4572 				break;
4573 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4574 				if (print)
4575 					_print_next_block(par_num++,
4576 							  "MCP UMP TX");
4577 				*global = true;
4578 				break;
4579 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4580 				if (print)
4581 					_print_next_block(par_num++,
4582 							  "MCP SCPAD");
4583 				*global = true;
4584 				break;
4585 			}
4586 
4587 			/* Clear the bit */
4588 			sig &= ~cur_bit;
4589 		}
4590 	}
4591 
4592 	return par_num;
4593 }
4594 
4595 static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4596 					    int par_num, bool print)
4597 {
4598 	int i = 0;
4599 	u32 cur_bit = 0;
4600 	for (i = 0; sig; i++) {
4601 		cur_bit = ((u32)0x1 << i);
4602 		if (sig & cur_bit) {
4603 			switch (cur_bit) {
4604 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4605 				if (print) {
4606 					_print_next_block(par_num++, "PGLUE_B");
4607 					_print_parity(bp,
4608 						PGLUE_B_REG_PGLUE_B_PRTY_STS);
4609 				}
4610 				break;
4611 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4612 				if (print) {
4613 					_print_next_block(par_num++, "ATC");
4614 					_print_parity(bp,
4615 						      ATC_REG_ATC_PRTY_STS);
4616 				}
4617 				break;
4618 			}
4619 
4620 			/* Clear the bit */
4621 			sig &= ~cur_bit;
4622 		}
4623 	}
4624 
4625 	return par_num;
4626 }
4627 
4628 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4629 			      u32 *sig)
4630 {
4631 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4632 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4633 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4634 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4635 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4636 		int par_num = 0;
4637 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4638 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4639 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4640 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4641 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4642 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4643 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4644 		if (print)
4645 			netdev_err(bp->dev,
4646 				   "Parity errors detected in blocks: ");
4647 		par_num = bnx2x_check_blocks_with_parity0(bp,
4648 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4649 		par_num = bnx2x_check_blocks_with_parity1(bp,
4650 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4651 		par_num = bnx2x_check_blocks_with_parity2(bp,
4652 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4653 		par_num = bnx2x_check_blocks_with_parity3(
4654 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4655 		par_num = bnx2x_check_blocks_with_parity4(bp,
4656 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4657 
4658 		if (print)
4659 			pr_cont("\n");
4660 
4661 		return true;
4662 	} else
4663 		return false;
4664 }
4665 
4666 /**
4667  * bnx2x_chk_parity_attn - checks for parity attentions.
4668  *
4669  * @bp:		driver handle
4670  * @global:	true if there was a global attention
4671  * @print:	show parity attention in syslog
4672  */
4673 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4674 {
4675 	struct attn_route attn = { {0} };
4676 	int port = BP_PORT(bp);
4677 
4678 	attn.sig[0] = REG_RD(bp,
4679 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4680 			     port*4);
4681 	attn.sig[1] = REG_RD(bp,
4682 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4683 			     port*4);
4684 	attn.sig[2] = REG_RD(bp,
4685 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4686 			     port*4);
4687 	attn.sig[3] = REG_RD(bp,
4688 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4689 			     port*4);
4690 
4691 	if (!CHIP_IS_E1x(bp))
4692 		attn.sig[4] = REG_RD(bp,
4693 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4694 				     port*4);
4695 
4696 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4697 }
4698 
4699 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4700 {
4701 	u32 val;
4702 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4703 
4704 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4705 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4706 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4707 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4708 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4709 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4710 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4711 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4712 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4713 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4714 		if (val &
4715 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4716 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4717 		if (val &
4718 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4719 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4720 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4721 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4722 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4723 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4724 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4725 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4726 	}
4727 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4728 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4729 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4730 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4731 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4732 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4733 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4734 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4735 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4736 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4737 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4738 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4739 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4740 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4741 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4742 	}
4743 
4744 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4745 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4746 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4747 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4748 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4749 	}
4750 }
4751 
4752 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4753 {
4754 	struct attn_route attn, *group_mask;
4755 	int port = BP_PORT(bp);
4756 	int index;
4757 	u32 reg_addr;
4758 	u32 val;
4759 	u32 aeu_mask;
4760 	bool global = false;
4761 
4762 	/* need to take HW lock because MCP or other port might also
4763 	   try to handle this event */
4764 	bnx2x_acquire_alr(bp);
4765 
4766 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4767 #ifndef BNX2X_STOP_ON_ERROR
4768 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4769 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4770 		/* Disable HW interrupts */
4771 		bnx2x_int_disable(bp);
4772 		/* In case of parity errors don't handle attentions so that
4773 		 * other function would "see" parity errors.
4774 		 */
4775 #else
4776 		bnx2x_panic();
4777 #endif
4778 		bnx2x_release_alr(bp);
4779 		return;
4780 	}
4781 
4782 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4783 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4784 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4785 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4786 	if (!CHIP_IS_E1x(bp))
4787 		attn.sig[4] =
4788 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4789 	else
4790 		attn.sig[4] = 0;
4791 
4792 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4793 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4794 
4795 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4796 		if (deasserted & (1 << index)) {
4797 			group_mask = &bp->attn_group[index];
4798 
4799 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4800 			   index,
4801 			   group_mask->sig[0], group_mask->sig[1],
4802 			   group_mask->sig[2], group_mask->sig[3],
4803 			   group_mask->sig[4]);
4804 
4805 			bnx2x_attn_int_deasserted4(bp,
4806 					attn.sig[4] & group_mask->sig[4]);
4807 			bnx2x_attn_int_deasserted3(bp,
4808 					attn.sig[3] & group_mask->sig[3]);
4809 			bnx2x_attn_int_deasserted1(bp,
4810 					attn.sig[1] & group_mask->sig[1]);
4811 			bnx2x_attn_int_deasserted2(bp,
4812 					attn.sig[2] & group_mask->sig[2]);
4813 			bnx2x_attn_int_deasserted0(bp,
4814 					attn.sig[0] & group_mask->sig[0]);
4815 		}
4816 	}
4817 
4818 	bnx2x_release_alr(bp);
4819 
4820 	if (bp->common.int_block == INT_BLOCK_HC)
4821 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4822 			    COMMAND_REG_ATTN_BITS_CLR);
4823 	else
4824 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4825 
4826 	val = ~deasserted;
4827 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4828 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4829 	REG_WR(bp, reg_addr, val);
4830 
4831 	if (~bp->attn_state & deasserted)
4832 		BNX2X_ERR("IGU ERROR\n");
4833 
4834 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4835 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4836 
4837 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4838 	aeu_mask = REG_RD(bp, reg_addr);
4839 
4840 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4841 	   aeu_mask, deasserted);
4842 	aeu_mask |= (deasserted & 0x3ff);
4843 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4844 
4845 	REG_WR(bp, reg_addr, aeu_mask);
4846 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4847 
4848 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4849 	bp->attn_state &= ~deasserted;
4850 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4851 }
4852 
4853 static void bnx2x_attn_int(struct bnx2x *bp)
4854 {
4855 	/* read local copy of bits */
4856 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4857 								attn_bits);
4858 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4859 								attn_bits_ack);
4860 	u32 attn_state = bp->attn_state;
4861 
4862 	/* look for changed bits */
4863 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4864 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4865 
4866 	DP(NETIF_MSG_HW,
4867 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4868 	   attn_bits, attn_ack, asserted, deasserted);
4869 
4870 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4871 		BNX2X_ERR("BAD attention state\n");
4872 
4873 	/* handle bits that were raised */
4874 	if (asserted)
4875 		bnx2x_attn_int_asserted(bp, asserted);
4876 
4877 	if (deasserted)
4878 		bnx2x_attn_int_deasserted(bp, deasserted);
4879 }
4880 
4881 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4882 		      u16 index, u8 op, u8 update)
4883 {
4884 	u32 igu_addr = bp->igu_base_addr;
4885 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4886 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4887 			     igu_addr);
4888 }
4889 
4890 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4891 {
4892 	/* No memory barriers */
4893 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4894 	mmiowb(); /* keep prod updates ordered */
4895 }
4896 
4897 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4898 				      union event_ring_elem *elem)
4899 {
4900 	u8 err = elem->message.error;
4901 
4902 	if (!bp->cnic_eth_dev.starting_cid  ||
4903 	    (cid < bp->cnic_eth_dev.starting_cid &&
4904 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4905 		return 1;
4906 
4907 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4908 
4909 	if (unlikely(err)) {
4910 
4911 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4912 			  cid);
4913 		bnx2x_panic_dump(bp, false);
4914 	}
4915 	bnx2x_cnic_cfc_comp(bp, cid, err);
4916 	return 0;
4917 }
4918 
4919 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4920 {
4921 	struct bnx2x_mcast_ramrod_params rparam;
4922 	int rc;
4923 
4924 	memset(&rparam, 0, sizeof(rparam));
4925 
4926 	rparam.mcast_obj = &bp->mcast_obj;
4927 
4928 	netif_addr_lock_bh(bp->dev);
4929 
4930 	/* Clear pending state for the last command */
4931 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4932 
4933 	/* If there are pending mcast commands - send them */
4934 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4935 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4936 		if (rc < 0)
4937 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4938 				  rc);
4939 	}
4940 
4941 	netif_addr_unlock_bh(bp->dev);
4942 }
4943 
4944 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4945 					    union event_ring_elem *elem)
4946 {
4947 	unsigned long ramrod_flags = 0;
4948 	int rc = 0;
4949 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4950 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4951 
4952 	/* Always push next commands out, don't wait here */
4953 	__set_bit(RAMROD_CONT, &ramrod_flags);
4954 
4955 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4956 			    >> BNX2X_SWCID_SHIFT) {
4957 	case BNX2X_FILTER_MAC_PENDING:
4958 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4959 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4960 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4961 		else
4962 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4963 
4964 		break;
4965 	case BNX2X_FILTER_MCAST_PENDING:
4966 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4967 		/* This is only relevant for 57710 where multicast MACs are
4968 		 * configured as unicast MACs using the same ramrod.
4969 		 */
4970 		bnx2x_handle_mcast_eqe(bp);
4971 		return;
4972 	default:
4973 		BNX2X_ERR("Unsupported classification command: %d\n",
4974 			  elem->message.data.eth_event.echo);
4975 		return;
4976 	}
4977 
4978 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4979 
4980 	if (rc < 0)
4981 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4982 	else if (rc > 0)
4983 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4984 }
4985 
4986 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4987 
4988 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4989 {
4990 	netif_addr_lock_bh(bp->dev);
4991 
4992 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4993 
4994 	/* Send rx_mode command again if was requested */
4995 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4996 		bnx2x_set_storm_rx_mode(bp);
4997 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4998 				    &bp->sp_state))
4999 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5000 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5001 				    &bp->sp_state))
5002 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5003 
5004 	netif_addr_unlock_bh(bp->dev);
5005 }
5006 
5007 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5008 					      union event_ring_elem *elem)
5009 {
5010 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5011 		DP(BNX2X_MSG_SP,
5012 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5013 		   elem->message.data.vif_list_event.func_bit_map);
5014 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5015 			elem->message.data.vif_list_event.func_bit_map);
5016 	} else if (elem->message.data.vif_list_event.echo ==
5017 		   VIF_LIST_RULE_SET) {
5018 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5019 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5020 	}
5021 }
5022 
5023 /* called with rtnl_lock */
5024 static void bnx2x_after_function_update(struct bnx2x *bp)
5025 {
5026 	int q, rc;
5027 	struct bnx2x_fastpath *fp;
5028 	struct bnx2x_queue_state_params queue_params = {NULL};
5029 	struct bnx2x_queue_update_params *q_update_params =
5030 		&queue_params.params.update;
5031 
5032 	/* Send Q update command with afex vlan removal values for all Qs */
5033 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5034 
5035 	/* set silent vlan removal values according to vlan mode */
5036 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5037 		  &q_update_params->update_flags);
5038 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5039 		  &q_update_params->update_flags);
5040 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5041 
5042 	/* in access mode mark mask and value are 0 to strip all vlans */
5043 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5044 		q_update_params->silent_removal_value = 0;
5045 		q_update_params->silent_removal_mask = 0;
5046 	} else {
5047 		q_update_params->silent_removal_value =
5048 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5049 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5050 	}
5051 
5052 	for_each_eth_queue(bp, q) {
5053 		/* Set the appropriate Queue object */
5054 		fp = &bp->fp[q];
5055 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5056 
5057 		/* send the ramrod */
5058 		rc = bnx2x_queue_state_change(bp, &queue_params);
5059 		if (rc < 0)
5060 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5061 				  q);
5062 	}
5063 
5064 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5065 		fp = &bp->fp[FCOE_IDX(bp)];
5066 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5067 
5068 		/* clear pending completion bit */
5069 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5070 
5071 		/* mark latest Q bit */
5072 		smp_mb__before_clear_bit();
5073 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5074 		smp_mb__after_clear_bit();
5075 
5076 		/* send Q update ramrod for FCoE Q */
5077 		rc = bnx2x_queue_state_change(bp, &queue_params);
5078 		if (rc < 0)
5079 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5080 				  q);
5081 	} else {
5082 		/* If no FCoE ring - ACK MCP now */
5083 		bnx2x_link_report(bp);
5084 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5085 	}
5086 }
5087 
5088 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5089 	struct bnx2x *bp, u32 cid)
5090 {
5091 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5092 
5093 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5094 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5095 	else
5096 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5097 }
5098 
5099 static void bnx2x_eq_int(struct bnx2x *bp)
5100 {
5101 	u16 hw_cons, sw_cons, sw_prod;
5102 	union event_ring_elem *elem;
5103 	u8 echo;
5104 	u32 cid;
5105 	u8 opcode;
5106 	int rc, spqe_cnt = 0;
5107 	struct bnx2x_queue_sp_obj *q_obj;
5108 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5109 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5110 
5111 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5112 
5113 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5114 	 * when we get the next-page we need to adjust so the loop
5115 	 * condition below will be met. The next element is the size of a
5116 	 * regular element and hence incrementing by 1
5117 	 */
5118 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5119 		hw_cons++;
5120 
5121 	/* This function may never run in parallel with itself for a
5122 	 * specific bp, thus there is no need in "paired" read memory
5123 	 * barrier here.
5124 	 */
5125 	sw_cons = bp->eq_cons;
5126 	sw_prod = bp->eq_prod;
5127 
5128 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5129 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5130 
5131 	for (; sw_cons != hw_cons;
5132 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5133 
5134 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5135 
5136 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5137 		if (!rc) {
5138 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5139 			   rc);
5140 			goto next_spqe;
5141 		}
5142 
5143 		/* elem CID originates from FW; actually LE */
5144 		cid = SW_CID((__force __le32)
5145 			     elem->message.data.cfc_del_event.cid);
5146 		opcode = elem->message.opcode;
5147 
5148 		/* handle eq element */
5149 		switch (opcode) {
5150 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5151 			DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5152 			bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5153 			continue;
5154 
5155 		case EVENT_RING_OPCODE_STAT_QUERY:
5156 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5157 			   "got statistics comp event %d\n",
5158 			   bp->stats_comp++);
5159 			/* nothing to do with stats comp */
5160 			goto next_spqe;
5161 
5162 		case EVENT_RING_OPCODE_CFC_DEL:
5163 			/* handle according to cid range */
5164 			/*
5165 			 * we may want to verify here that the bp state is
5166 			 * HALTING
5167 			 */
5168 			DP(BNX2X_MSG_SP,
5169 			   "got delete ramrod for MULTI[%d]\n", cid);
5170 
5171 			if (CNIC_LOADED(bp) &&
5172 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5173 				goto next_spqe;
5174 
5175 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5176 
5177 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5178 				break;
5179 
5180 			goto next_spqe;
5181 
5182 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5183 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5184 			if (f_obj->complete_cmd(bp, f_obj,
5185 						BNX2X_F_CMD_TX_STOP))
5186 				break;
5187 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5188 			goto next_spqe;
5189 
5190 		case EVENT_RING_OPCODE_START_TRAFFIC:
5191 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5192 			if (f_obj->complete_cmd(bp, f_obj,
5193 						BNX2X_F_CMD_TX_START))
5194 				break;
5195 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5196 			goto next_spqe;
5197 
5198 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5199 			echo = elem->message.data.function_update_event.echo;
5200 			if (echo == SWITCH_UPDATE) {
5201 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5202 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5203 				if (f_obj->complete_cmd(
5204 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5205 					break;
5206 
5207 			} else {
5208 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5209 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5210 				f_obj->complete_cmd(bp, f_obj,
5211 						    BNX2X_F_CMD_AFEX_UPDATE);
5212 
5213 				/* We will perform the Queues update from
5214 				 * sp_rtnl task as all Queue SP operations
5215 				 * should run under rtnl_lock.
5216 				 */
5217 				smp_mb__before_clear_bit();
5218 				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5219 					&bp->sp_rtnl_state);
5220 				smp_mb__after_clear_bit();
5221 
5222 				schedule_delayed_work(&bp->sp_rtnl_task, 0);
5223 			}
5224 
5225 			goto next_spqe;
5226 
5227 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5228 			f_obj->complete_cmd(bp, f_obj,
5229 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5230 			bnx2x_after_afex_vif_lists(bp, elem);
5231 			goto next_spqe;
5232 		case EVENT_RING_OPCODE_FUNCTION_START:
5233 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5234 			   "got FUNC_START ramrod\n");
5235 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5236 				break;
5237 
5238 			goto next_spqe;
5239 
5240 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5241 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5242 			   "got FUNC_STOP ramrod\n");
5243 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5244 				break;
5245 
5246 			goto next_spqe;
5247 		}
5248 
5249 		switch (opcode | bp->state) {
5250 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5251 		      BNX2X_STATE_OPEN):
5252 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5253 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5254 			cid = elem->message.data.eth_event.echo &
5255 				BNX2X_SWCID_MASK;
5256 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5257 			   cid);
5258 			rss_raw->clear_pending(rss_raw);
5259 			break;
5260 
5261 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5262 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5263 		case (EVENT_RING_OPCODE_SET_MAC |
5264 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5265 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5266 		      BNX2X_STATE_OPEN):
5267 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5268 		      BNX2X_STATE_DIAG):
5269 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5270 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5271 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5272 			bnx2x_handle_classification_eqe(bp, elem);
5273 			break;
5274 
5275 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5276 		      BNX2X_STATE_OPEN):
5277 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5278 		      BNX2X_STATE_DIAG):
5279 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5280 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5281 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5282 			bnx2x_handle_mcast_eqe(bp);
5283 			break;
5284 
5285 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5286 		      BNX2X_STATE_OPEN):
5287 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5288 		      BNX2X_STATE_DIAG):
5289 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5290 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5291 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5292 			bnx2x_handle_rx_mode_eqe(bp);
5293 			break;
5294 		default:
5295 			/* unknown event log error and continue */
5296 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5297 				  elem->message.opcode, bp->state);
5298 		}
5299 next_spqe:
5300 		spqe_cnt++;
5301 	} /* for */
5302 
5303 	smp_mb__before_atomic_inc();
5304 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5305 
5306 	bp->eq_cons = sw_cons;
5307 	bp->eq_prod = sw_prod;
5308 	/* Make sure that above mem writes were issued towards the memory */
5309 	smp_wmb();
5310 
5311 	/* update producer */
5312 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5313 }
5314 
5315 static void bnx2x_sp_task(struct work_struct *work)
5316 {
5317 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5318 
5319 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5320 
5321 	/* make sure the atomic interrupt_occurred has been written */
5322 	smp_rmb();
5323 	if (atomic_read(&bp->interrupt_occurred)) {
5324 
5325 		/* what work needs to be performed? */
5326 		u16 status = bnx2x_update_dsb_idx(bp);
5327 
5328 		DP(BNX2X_MSG_SP, "status %x\n", status);
5329 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5330 		atomic_set(&bp->interrupt_occurred, 0);
5331 
5332 		/* HW attentions */
5333 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5334 			bnx2x_attn_int(bp);
5335 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5336 		}
5337 
5338 		/* SP events: STAT_QUERY and others */
5339 		if (status & BNX2X_DEF_SB_IDX) {
5340 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5341 
5342 		if (FCOE_INIT(bp) &&
5343 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5344 				/* Prevent local bottom-halves from running as
5345 				 * we are going to change the local NAPI list.
5346 				 */
5347 				local_bh_disable();
5348 				napi_schedule(&bnx2x_fcoe(bp, napi));
5349 				local_bh_enable();
5350 			}
5351 
5352 			/* Handle EQ completions */
5353 			bnx2x_eq_int(bp);
5354 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5355 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5356 
5357 			status &= ~BNX2X_DEF_SB_IDX;
5358 		}
5359 
5360 		/* if status is non zero then perhaps something went wrong */
5361 		if (unlikely(status))
5362 			DP(BNX2X_MSG_SP,
5363 			   "got an unknown interrupt! (status 0x%x)\n", status);
5364 
5365 		/* ack status block only if something was actually handled */
5366 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5367 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5368 	}
5369 
5370 	/* must be called after the EQ processing (since eq leads to sriov
5371 	 * ramrod completion flows).
5372 	 * This flow may have been scheduled by the arrival of a ramrod
5373 	 * completion, or by the sriov code rescheduling itself.
5374 	 */
5375 	bnx2x_iov_sp_task(bp);
5376 
5377 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5378 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5379 			       &bp->sp_state)) {
5380 		bnx2x_link_report(bp);
5381 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5382 	}
5383 }
5384 
5385 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5386 {
5387 	struct net_device *dev = dev_instance;
5388 	struct bnx2x *bp = netdev_priv(dev);
5389 
5390 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5391 		     IGU_INT_DISABLE, 0);
5392 
5393 #ifdef BNX2X_STOP_ON_ERROR
5394 	if (unlikely(bp->panic))
5395 		return IRQ_HANDLED;
5396 #endif
5397 
5398 	if (CNIC_LOADED(bp)) {
5399 		struct cnic_ops *c_ops;
5400 
5401 		rcu_read_lock();
5402 		c_ops = rcu_dereference(bp->cnic_ops);
5403 		if (c_ops)
5404 			c_ops->cnic_handler(bp->cnic_data, NULL);
5405 		rcu_read_unlock();
5406 	}
5407 
5408 	/* schedule sp task to perform default status block work, ack
5409 	 * attentions and enable interrupts.
5410 	 */
5411 	bnx2x_schedule_sp_task(bp);
5412 
5413 	return IRQ_HANDLED;
5414 }
5415 
5416 /* end of slow path */
5417 
5418 void bnx2x_drv_pulse(struct bnx2x *bp)
5419 {
5420 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5421 		 bp->fw_drv_pulse_wr_seq);
5422 }
5423 
5424 static void bnx2x_timer(unsigned long data)
5425 {
5426 	struct bnx2x *bp = (struct bnx2x *) data;
5427 
5428 	if (!netif_running(bp->dev))
5429 		return;
5430 
5431 	if (IS_PF(bp) &&
5432 	    !BP_NOMCP(bp)) {
5433 		int mb_idx = BP_FW_MB_IDX(bp);
5434 		u32 drv_pulse;
5435 		u32 mcp_pulse;
5436 
5437 		++bp->fw_drv_pulse_wr_seq;
5438 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5439 		/* TBD - add SYSTEM_TIME */
5440 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5441 		bnx2x_drv_pulse(bp);
5442 
5443 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5444 			     MCP_PULSE_SEQ_MASK);
5445 		/* The delta between driver pulse and mcp response
5446 		 * should be 1 (before mcp response) or 0 (after mcp response)
5447 		 */
5448 		if ((drv_pulse != mcp_pulse) &&
5449 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5450 			/* someone lost a heartbeat... */
5451 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5452 				  drv_pulse, mcp_pulse);
5453 		}
5454 	}
5455 
5456 	if (bp->state == BNX2X_STATE_OPEN)
5457 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5458 
5459 	/* sample pf vf bulletin board for new posts from pf */
5460 	if (IS_VF(bp))
5461 		bnx2x_timer_sriov(bp);
5462 
5463 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5464 }
5465 
5466 /* end of Statistics */
5467 
5468 /* nic init */
5469 
5470 /*
5471  * nic init service functions
5472  */
5473 
5474 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5475 {
5476 	u32 i;
5477 	if (!(len%4) && !(addr%4))
5478 		for (i = 0; i < len; i += 4)
5479 			REG_WR(bp, addr + i, fill);
5480 	else
5481 		for (i = 0; i < len; i++)
5482 			REG_WR8(bp, addr + i, fill);
5483 }
5484 
5485 /* helper: writes FP SP data to FW - data_size in dwords */
5486 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5487 				int fw_sb_id,
5488 				u32 *sb_data_p,
5489 				u32 data_size)
5490 {
5491 	int index;
5492 	for (index = 0; index < data_size; index++)
5493 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5494 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5495 			sizeof(u32)*index,
5496 			*(sb_data_p + index));
5497 }
5498 
5499 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5500 {
5501 	u32 *sb_data_p;
5502 	u32 data_size = 0;
5503 	struct hc_status_block_data_e2 sb_data_e2;
5504 	struct hc_status_block_data_e1x sb_data_e1x;
5505 
5506 	/* disable the function first */
5507 	if (!CHIP_IS_E1x(bp)) {
5508 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5509 		sb_data_e2.common.state = SB_DISABLED;
5510 		sb_data_e2.common.p_func.vf_valid = false;
5511 		sb_data_p = (u32 *)&sb_data_e2;
5512 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5513 	} else {
5514 		memset(&sb_data_e1x, 0,
5515 		       sizeof(struct hc_status_block_data_e1x));
5516 		sb_data_e1x.common.state = SB_DISABLED;
5517 		sb_data_e1x.common.p_func.vf_valid = false;
5518 		sb_data_p = (u32 *)&sb_data_e1x;
5519 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5520 	}
5521 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5522 
5523 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5524 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5525 			CSTORM_STATUS_BLOCK_SIZE);
5526 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5527 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5528 			CSTORM_SYNC_BLOCK_SIZE);
5529 }
5530 
5531 /* helper:  writes SP SB data to FW */
5532 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5533 		struct hc_sp_status_block_data *sp_sb_data)
5534 {
5535 	int func = BP_FUNC(bp);
5536 	int i;
5537 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5538 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5539 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5540 			i*sizeof(u32),
5541 			*((u32 *)sp_sb_data + i));
5542 }
5543 
5544 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5545 {
5546 	int func = BP_FUNC(bp);
5547 	struct hc_sp_status_block_data sp_sb_data;
5548 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5549 
5550 	sp_sb_data.state = SB_DISABLED;
5551 	sp_sb_data.p_func.vf_valid = false;
5552 
5553 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5554 
5555 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5556 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5557 			CSTORM_SP_STATUS_BLOCK_SIZE);
5558 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5559 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5560 			CSTORM_SP_SYNC_BLOCK_SIZE);
5561 }
5562 
5563 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5564 					   int igu_sb_id, int igu_seg_id)
5565 {
5566 	hc_sm->igu_sb_id = igu_sb_id;
5567 	hc_sm->igu_seg_id = igu_seg_id;
5568 	hc_sm->timer_value = 0xFF;
5569 	hc_sm->time_to_expire = 0xFFFFFFFF;
5570 }
5571 
5572 /* allocates state machine ids. */
5573 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5574 {
5575 	/* zero out state machine indices */
5576 	/* rx indices */
5577 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5578 
5579 	/* tx indices */
5580 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5581 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5582 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5583 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5584 
5585 	/* map indices */
5586 	/* rx indices */
5587 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5588 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5589 
5590 	/* tx indices */
5591 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5592 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5593 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5594 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5595 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5596 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5597 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5598 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5599 }
5600 
5601 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5602 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5603 {
5604 	int igu_seg_id;
5605 
5606 	struct hc_status_block_data_e2 sb_data_e2;
5607 	struct hc_status_block_data_e1x sb_data_e1x;
5608 	struct hc_status_block_sm  *hc_sm_p;
5609 	int data_size;
5610 	u32 *sb_data_p;
5611 
5612 	if (CHIP_INT_MODE_IS_BC(bp))
5613 		igu_seg_id = HC_SEG_ACCESS_NORM;
5614 	else
5615 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5616 
5617 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5618 
5619 	if (!CHIP_IS_E1x(bp)) {
5620 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5621 		sb_data_e2.common.state = SB_ENABLED;
5622 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5623 		sb_data_e2.common.p_func.vf_id = vfid;
5624 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5625 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5626 		sb_data_e2.common.same_igu_sb_1b = true;
5627 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5628 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5629 		hc_sm_p = sb_data_e2.common.state_machine;
5630 		sb_data_p = (u32 *)&sb_data_e2;
5631 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5632 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5633 	} else {
5634 		memset(&sb_data_e1x, 0,
5635 		       sizeof(struct hc_status_block_data_e1x));
5636 		sb_data_e1x.common.state = SB_ENABLED;
5637 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5638 		sb_data_e1x.common.p_func.vf_id = 0xff;
5639 		sb_data_e1x.common.p_func.vf_valid = false;
5640 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5641 		sb_data_e1x.common.same_igu_sb_1b = true;
5642 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5643 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5644 		hc_sm_p = sb_data_e1x.common.state_machine;
5645 		sb_data_p = (u32 *)&sb_data_e1x;
5646 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5647 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5648 	}
5649 
5650 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5651 				       igu_sb_id, igu_seg_id);
5652 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5653 				       igu_sb_id, igu_seg_id);
5654 
5655 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5656 
5657 	/* write indices to HW - PCI guarantees endianity of regpairs */
5658 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5659 }
5660 
5661 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5662 				     u16 tx_usec, u16 rx_usec)
5663 {
5664 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5665 				    false, rx_usec);
5666 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5667 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5668 				       tx_usec);
5669 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5670 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5671 				       tx_usec);
5672 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5673 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5674 				       tx_usec);
5675 }
5676 
5677 static void bnx2x_init_def_sb(struct bnx2x *bp)
5678 {
5679 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5680 	dma_addr_t mapping = bp->def_status_blk_mapping;
5681 	int igu_sp_sb_index;
5682 	int igu_seg_id;
5683 	int port = BP_PORT(bp);
5684 	int func = BP_FUNC(bp);
5685 	int reg_offset, reg_offset_en5;
5686 	u64 section;
5687 	int index;
5688 	struct hc_sp_status_block_data sp_sb_data;
5689 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5690 
5691 	if (CHIP_INT_MODE_IS_BC(bp)) {
5692 		igu_sp_sb_index = DEF_SB_IGU_ID;
5693 		igu_seg_id = HC_SEG_ACCESS_DEF;
5694 	} else {
5695 		igu_sp_sb_index = bp->igu_dsb_id;
5696 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5697 	}
5698 
5699 	/* ATTN */
5700 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5701 					    atten_status_block);
5702 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5703 
5704 	bp->attn_state = 0;
5705 
5706 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5707 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5708 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5709 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5710 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5711 		int sindex;
5712 		/* take care of sig[0]..sig[4] */
5713 		for (sindex = 0; sindex < 4; sindex++)
5714 			bp->attn_group[index].sig[sindex] =
5715 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5716 
5717 		if (!CHIP_IS_E1x(bp))
5718 			/*
5719 			 * enable5 is separate from the rest of the registers,
5720 			 * and therefore the address skip is 4
5721 			 * and not 16 between the different groups
5722 			 */
5723 			bp->attn_group[index].sig[4] = REG_RD(bp,
5724 					reg_offset_en5 + 0x4*index);
5725 		else
5726 			bp->attn_group[index].sig[4] = 0;
5727 	}
5728 
5729 	if (bp->common.int_block == INT_BLOCK_HC) {
5730 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5731 				     HC_REG_ATTN_MSG0_ADDR_L);
5732 
5733 		REG_WR(bp, reg_offset, U64_LO(section));
5734 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5735 	} else if (!CHIP_IS_E1x(bp)) {
5736 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5737 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5738 	}
5739 
5740 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5741 					    sp_sb);
5742 
5743 	bnx2x_zero_sp_sb(bp);
5744 
5745 	/* PCI guarantees endianity of regpairs */
5746 	sp_sb_data.state		= SB_ENABLED;
5747 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5748 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5749 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5750 	sp_sb_data.igu_seg_id		= igu_seg_id;
5751 	sp_sb_data.p_func.pf_id		= func;
5752 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5753 	sp_sb_data.p_func.vf_id		= 0xff;
5754 
5755 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5756 
5757 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5758 }
5759 
5760 void bnx2x_update_coalesce(struct bnx2x *bp)
5761 {
5762 	int i;
5763 
5764 	for_each_eth_queue(bp, i)
5765 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5766 					 bp->tx_ticks, bp->rx_ticks);
5767 }
5768 
5769 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5770 {
5771 	spin_lock_init(&bp->spq_lock);
5772 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5773 
5774 	bp->spq_prod_idx = 0;
5775 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5776 	bp->spq_prod_bd = bp->spq;
5777 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5778 }
5779 
5780 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5781 {
5782 	int i;
5783 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5784 		union event_ring_elem *elem =
5785 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5786 
5787 		elem->next_page.addr.hi =
5788 			cpu_to_le32(U64_HI(bp->eq_mapping +
5789 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5790 		elem->next_page.addr.lo =
5791 			cpu_to_le32(U64_LO(bp->eq_mapping +
5792 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5793 	}
5794 	bp->eq_cons = 0;
5795 	bp->eq_prod = NUM_EQ_DESC;
5796 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5797 	/* we want a warning message before it gets wrought... */
5798 	atomic_set(&bp->eq_spq_left,
5799 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5800 }
5801 
5802 /* called with netif_addr_lock_bh() */
5803 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5804 			unsigned long rx_mode_flags,
5805 			unsigned long rx_accept_flags,
5806 			unsigned long tx_accept_flags,
5807 			unsigned long ramrod_flags)
5808 {
5809 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5810 	int rc;
5811 
5812 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5813 
5814 	/* Prepare ramrod parameters */
5815 	ramrod_param.cid = 0;
5816 	ramrod_param.cl_id = cl_id;
5817 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5818 	ramrod_param.func_id = BP_FUNC(bp);
5819 
5820 	ramrod_param.pstate = &bp->sp_state;
5821 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5822 
5823 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5824 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5825 
5826 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5827 
5828 	ramrod_param.ramrod_flags = ramrod_flags;
5829 	ramrod_param.rx_mode_flags = rx_mode_flags;
5830 
5831 	ramrod_param.rx_accept_flags = rx_accept_flags;
5832 	ramrod_param.tx_accept_flags = tx_accept_flags;
5833 
5834 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5835 	if (rc < 0) {
5836 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5837 		return rc;
5838 	}
5839 
5840 	return 0;
5841 }
5842 
5843 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5844 				   unsigned long *rx_accept_flags,
5845 				   unsigned long *tx_accept_flags)
5846 {
5847 	/* Clear the flags first */
5848 	*rx_accept_flags = 0;
5849 	*tx_accept_flags = 0;
5850 
5851 	switch (rx_mode) {
5852 	case BNX2X_RX_MODE_NONE:
5853 		/*
5854 		 * 'drop all' supersedes any accept flags that may have been
5855 		 * passed to the function.
5856 		 */
5857 		break;
5858 	case BNX2X_RX_MODE_NORMAL:
5859 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5860 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5861 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5862 
5863 		/* internal switching mode */
5864 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5865 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5866 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5867 
5868 		break;
5869 	case BNX2X_RX_MODE_ALLMULTI:
5870 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5871 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5872 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5873 
5874 		/* internal switching mode */
5875 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5876 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5877 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5878 
5879 		break;
5880 	case BNX2X_RX_MODE_PROMISC:
5881 		/* According to definition of SI mode, iface in promisc mode
5882 		 * should receive matched and unmatched (in resolution of port)
5883 		 * unicast packets.
5884 		 */
5885 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5886 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5887 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5888 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5889 
5890 		/* internal switching mode */
5891 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5892 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5893 
5894 		if (IS_MF_SI(bp))
5895 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5896 		else
5897 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5898 
5899 		break;
5900 	default:
5901 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5902 		return -EINVAL;
5903 	}
5904 
5905 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5906 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5907 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5908 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5909 	}
5910 
5911 	return 0;
5912 }
5913 
5914 /* called with netif_addr_lock_bh() */
5915 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5916 {
5917 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5918 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5919 	int rc;
5920 
5921 	if (!NO_FCOE(bp))
5922 		/* Configure rx_mode of FCoE Queue */
5923 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5924 
5925 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5926 				     &tx_accept_flags);
5927 	if (rc)
5928 		return rc;
5929 
5930 	__set_bit(RAMROD_RX, &ramrod_flags);
5931 	__set_bit(RAMROD_TX, &ramrod_flags);
5932 
5933 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5934 				   rx_accept_flags, tx_accept_flags,
5935 				   ramrod_flags);
5936 }
5937 
5938 static void bnx2x_init_internal_common(struct bnx2x *bp)
5939 {
5940 	int i;
5941 
5942 	if (IS_MF_SI(bp))
5943 		/*
5944 		 * In switch independent mode, the TSTORM needs to accept
5945 		 * packets that failed classification, since approximate match
5946 		 * mac addresses aren't written to NIG LLH
5947 		 */
5948 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5949 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5950 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5951 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5952 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5953 
5954 	/* Zero this manually as its initialization is
5955 	   currently missing in the initTool */
5956 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5957 		REG_WR(bp, BAR_USTRORM_INTMEM +
5958 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5959 	if (!CHIP_IS_E1x(bp)) {
5960 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5961 			CHIP_INT_MODE_IS_BC(bp) ?
5962 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5963 	}
5964 }
5965 
5966 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5967 {
5968 	switch (load_code) {
5969 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5970 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5971 		bnx2x_init_internal_common(bp);
5972 		/* no break */
5973 
5974 	case FW_MSG_CODE_DRV_LOAD_PORT:
5975 		/* nothing to do */
5976 		/* no break */
5977 
5978 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5979 		/* internal memory per function is
5980 		   initialized inside bnx2x_pf_init */
5981 		break;
5982 
5983 	default:
5984 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5985 		break;
5986 	}
5987 }
5988 
5989 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5990 {
5991 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5992 }
5993 
5994 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5995 {
5996 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
5997 }
5998 
5999 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6000 {
6001 	if (CHIP_IS_E1x(fp->bp))
6002 		return BP_L_ID(fp->bp) + fp->index;
6003 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6004 		return bnx2x_fp_igu_sb_id(fp);
6005 }
6006 
6007 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6008 {
6009 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6010 	u8 cos;
6011 	unsigned long q_type = 0;
6012 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6013 	fp->rx_queue = fp_idx;
6014 	fp->cid = fp_idx;
6015 	fp->cl_id = bnx2x_fp_cl_id(fp);
6016 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6017 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6018 	/* qZone id equals to FW (per path) client id */
6019 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6020 
6021 	/* init shortcut */
6022 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6023 
6024 	/* Setup SB indices */
6025 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6026 
6027 	/* Configure Queue State object */
6028 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6029 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6030 
6031 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6032 
6033 	/* init tx data */
6034 	for_each_cos_in_tx_queue(fp, cos) {
6035 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6036 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6037 				  FP_COS_TO_TXQ(fp, cos, bp),
6038 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6039 		cids[cos] = fp->txdata_ptr[cos]->cid;
6040 	}
6041 
6042 	/* nothing more for vf to do here */
6043 	if (IS_VF(bp))
6044 		return;
6045 
6046 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6047 		      fp->fw_sb_id, fp->igu_sb_id);
6048 	bnx2x_update_fpsb_idx(fp);
6049 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6050 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6051 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6052 
6053 	/**
6054 	 * Configure classification DBs: Always enable Tx switching
6055 	 */
6056 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6057 
6058 	DP(NETIF_MSG_IFUP,
6059 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6060 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6061 	   fp->igu_sb_id);
6062 }
6063 
6064 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6065 {
6066 	int i;
6067 
6068 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6069 		struct eth_tx_next_bd *tx_next_bd =
6070 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6071 
6072 		tx_next_bd->addr_hi =
6073 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6074 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6075 		tx_next_bd->addr_lo =
6076 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6077 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6078 	}
6079 
6080 	*txdata->tx_cons_sb = cpu_to_le16(0);
6081 
6082 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6083 	txdata->tx_db.data.zero_fill1 = 0;
6084 	txdata->tx_db.data.prod = 0;
6085 
6086 	txdata->tx_pkt_prod = 0;
6087 	txdata->tx_pkt_cons = 0;
6088 	txdata->tx_bd_prod = 0;
6089 	txdata->tx_bd_cons = 0;
6090 	txdata->tx_pkt = 0;
6091 }
6092 
6093 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6094 {
6095 	int i;
6096 
6097 	for_each_tx_queue_cnic(bp, i)
6098 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6099 }
6100 
6101 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6102 {
6103 	int i;
6104 	u8 cos;
6105 
6106 	for_each_eth_queue(bp, i)
6107 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6108 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6109 }
6110 
6111 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6112 {
6113 	if (!NO_FCOE(bp))
6114 		bnx2x_init_fcoe_fp(bp);
6115 
6116 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6117 		      BNX2X_VF_ID_INVALID, false,
6118 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6119 
6120 	/* ensure status block indices were read */
6121 	rmb();
6122 	bnx2x_init_rx_rings_cnic(bp);
6123 	bnx2x_init_tx_rings_cnic(bp);
6124 
6125 	/* flush all */
6126 	mb();
6127 	mmiowb();
6128 }
6129 
6130 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6131 {
6132 	int i;
6133 
6134 	/* Setup NIC internals and enable interrupts */
6135 	for_each_eth_queue(bp, i)
6136 		bnx2x_init_eth_fp(bp, i);
6137 
6138 	/* ensure status block indices were read */
6139 	rmb();
6140 	bnx2x_init_rx_rings(bp);
6141 	bnx2x_init_tx_rings(bp);
6142 
6143 	if (IS_PF(bp)) {
6144 		/* Initialize MOD_ABS interrupts */
6145 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6146 				       bp->common.shmem_base,
6147 				       bp->common.shmem2_base, BP_PORT(bp));
6148 
6149 		/* initialize the default status block and sp ring */
6150 		bnx2x_init_def_sb(bp);
6151 		bnx2x_update_dsb_idx(bp);
6152 		bnx2x_init_sp_ring(bp);
6153 	} else {
6154 		bnx2x_memset_stats(bp);
6155 	}
6156 }
6157 
6158 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6159 {
6160 	bnx2x_init_eq_ring(bp);
6161 	bnx2x_init_internal(bp, load_code);
6162 	bnx2x_pf_init(bp);
6163 	bnx2x_stats_init(bp);
6164 
6165 	/* flush all before enabling interrupts */
6166 	mb();
6167 	mmiowb();
6168 
6169 	bnx2x_int_enable(bp);
6170 
6171 	/* Check for SPIO5 */
6172 	bnx2x_attn_int_deasserted0(bp,
6173 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6174 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6175 }
6176 
6177 /* gzip service functions */
6178 static int bnx2x_gunzip_init(struct bnx2x *bp)
6179 {
6180 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6181 					    &bp->gunzip_mapping, GFP_KERNEL);
6182 	if (bp->gunzip_buf  == NULL)
6183 		goto gunzip_nomem1;
6184 
6185 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6186 	if (bp->strm  == NULL)
6187 		goto gunzip_nomem2;
6188 
6189 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6190 	if (bp->strm->workspace == NULL)
6191 		goto gunzip_nomem3;
6192 
6193 	return 0;
6194 
6195 gunzip_nomem3:
6196 	kfree(bp->strm);
6197 	bp->strm = NULL;
6198 
6199 gunzip_nomem2:
6200 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6201 			  bp->gunzip_mapping);
6202 	bp->gunzip_buf = NULL;
6203 
6204 gunzip_nomem1:
6205 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6206 	return -ENOMEM;
6207 }
6208 
6209 static void bnx2x_gunzip_end(struct bnx2x *bp)
6210 {
6211 	if (bp->strm) {
6212 		vfree(bp->strm->workspace);
6213 		kfree(bp->strm);
6214 		bp->strm = NULL;
6215 	}
6216 
6217 	if (bp->gunzip_buf) {
6218 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6219 				  bp->gunzip_mapping);
6220 		bp->gunzip_buf = NULL;
6221 	}
6222 }
6223 
6224 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6225 {
6226 	int n, rc;
6227 
6228 	/* check gzip header */
6229 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6230 		BNX2X_ERR("Bad gzip header\n");
6231 		return -EINVAL;
6232 	}
6233 
6234 	n = 10;
6235 
6236 #define FNAME				0x8
6237 
6238 	if (zbuf[3] & FNAME)
6239 		while ((zbuf[n++] != 0) && (n < len));
6240 
6241 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6242 	bp->strm->avail_in = len - n;
6243 	bp->strm->next_out = bp->gunzip_buf;
6244 	bp->strm->avail_out = FW_BUF_SIZE;
6245 
6246 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6247 	if (rc != Z_OK)
6248 		return rc;
6249 
6250 	rc = zlib_inflate(bp->strm, Z_FINISH);
6251 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6252 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6253 			   bp->strm->msg);
6254 
6255 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6256 	if (bp->gunzip_outlen & 0x3)
6257 		netdev_err(bp->dev,
6258 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6259 				bp->gunzip_outlen);
6260 	bp->gunzip_outlen >>= 2;
6261 
6262 	zlib_inflateEnd(bp->strm);
6263 
6264 	if (rc == Z_STREAM_END)
6265 		return 0;
6266 
6267 	return rc;
6268 }
6269 
6270 /* nic load/unload */
6271 
6272 /*
6273  * General service functions
6274  */
6275 
6276 /* send a NIG loopback debug packet */
6277 static void bnx2x_lb_pckt(struct bnx2x *bp)
6278 {
6279 	u32 wb_write[3];
6280 
6281 	/* Ethernet source and destination addresses */
6282 	wb_write[0] = 0x55555555;
6283 	wb_write[1] = 0x55555555;
6284 	wb_write[2] = 0x20;		/* SOP */
6285 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6286 
6287 	/* NON-IP protocol */
6288 	wb_write[0] = 0x09000000;
6289 	wb_write[1] = 0x55555555;
6290 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6291 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6292 }
6293 
6294 /* some of the internal memories
6295  * are not directly readable from the driver
6296  * to test them we send debug packets
6297  */
6298 static int bnx2x_int_mem_test(struct bnx2x *bp)
6299 {
6300 	int factor;
6301 	int count, i;
6302 	u32 val = 0;
6303 
6304 	if (CHIP_REV_IS_FPGA(bp))
6305 		factor = 120;
6306 	else if (CHIP_REV_IS_EMUL(bp))
6307 		factor = 200;
6308 	else
6309 		factor = 1;
6310 
6311 	/* Disable inputs of parser neighbor blocks */
6312 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6313 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6314 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6315 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6316 
6317 	/*  Write 0 to parser credits for CFC search request */
6318 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6319 
6320 	/* send Ethernet packet */
6321 	bnx2x_lb_pckt(bp);
6322 
6323 	/* TODO do i reset NIG statistic? */
6324 	/* Wait until NIG register shows 1 packet of size 0x10 */
6325 	count = 1000 * factor;
6326 	while (count) {
6327 
6328 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6329 		val = *bnx2x_sp(bp, wb_data[0]);
6330 		if (val == 0x10)
6331 			break;
6332 
6333 		usleep_range(10000, 20000);
6334 		count--;
6335 	}
6336 	if (val != 0x10) {
6337 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6338 		return -1;
6339 	}
6340 
6341 	/* Wait until PRS register shows 1 packet */
6342 	count = 1000 * factor;
6343 	while (count) {
6344 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6345 		if (val == 1)
6346 			break;
6347 
6348 		usleep_range(10000, 20000);
6349 		count--;
6350 	}
6351 	if (val != 0x1) {
6352 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6353 		return -2;
6354 	}
6355 
6356 	/* Reset and init BRB, PRS */
6357 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6358 	msleep(50);
6359 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6360 	msleep(50);
6361 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6362 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6363 
6364 	DP(NETIF_MSG_HW, "part2\n");
6365 
6366 	/* Disable inputs of parser neighbor blocks */
6367 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6368 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6369 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6370 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6371 
6372 	/* Write 0 to parser credits for CFC search request */
6373 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6374 
6375 	/* send 10 Ethernet packets */
6376 	for (i = 0; i < 10; i++)
6377 		bnx2x_lb_pckt(bp);
6378 
6379 	/* Wait until NIG register shows 10 + 1
6380 	   packets of size 11*0x10 = 0xb0 */
6381 	count = 1000 * factor;
6382 	while (count) {
6383 
6384 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6385 		val = *bnx2x_sp(bp, wb_data[0]);
6386 		if (val == 0xb0)
6387 			break;
6388 
6389 		usleep_range(10000, 20000);
6390 		count--;
6391 	}
6392 	if (val != 0xb0) {
6393 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6394 		return -3;
6395 	}
6396 
6397 	/* Wait until PRS register shows 2 packets */
6398 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6399 	if (val != 2)
6400 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6401 
6402 	/* Write 1 to parser credits for CFC search request */
6403 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6404 
6405 	/* Wait until PRS register shows 3 packets */
6406 	msleep(10 * factor);
6407 	/* Wait until NIG register shows 1 packet of size 0x10 */
6408 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6409 	if (val != 3)
6410 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6411 
6412 	/* clear NIG EOP FIFO */
6413 	for (i = 0; i < 11; i++)
6414 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6415 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6416 	if (val != 1) {
6417 		BNX2X_ERR("clear of NIG failed\n");
6418 		return -4;
6419 	}
6420 
6421 	/* Reset and init BRB, PRS, NIG */
6422 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6423 	msleep(50);
6424 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6425 	msleep(50);
6426 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6427 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6428 	if (!CNIC_SUPPORT(bp))
6429 		/* set NIC mode */
6430 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6431 
6432 	/* Enable inputs of parser neighbor blocks */
6433 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6434 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6435 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6436 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6437 
6438 	DP(NETIF_MSG_HW, "done\n");
6439 
6440 	return 0; /* OK */
6441 }
6442 
6443 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6444 {
6445 	u32 val;
6446 
6447 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6448 	if (!CHIP_IS_E1x(bp))
6449 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6450 	else
6451 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6452 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6453 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6454 	/*
6455 	 * mask read length error interrupts in brb for parser
6456 	 * (parsing unit and 'checksum and crc' unit)
6457 	 * these errors are legal (PU reads fixed length and CAC can cause
6458 	 * read length error on truncated packets)
6459 	 */
6460 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6461 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6462 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6463 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6464 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6465 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6466 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6467 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6468 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6469 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6470 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6471 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6472 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6473 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6474 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6475 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6476 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6477 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6478 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6479 
6480 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6481 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6482 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6483 	if (!CHIP_IS_E1x(bp))
6484 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6485 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6486 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6487 
6488 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6489 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6490 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6491 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6492 
6493 	if (!CHIP_IS_E1x(bp))
6494 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6495 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6496 
6497 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6498 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6499 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6500 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6501 }
6502 
6503 static void bnx2x_reset_common(struct bnx2x *bp)
6504 {
6505 	u32 val = 0x1400;
6506 
6507 	/* reset_common */
6508 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6509 	       0xd3ffff7f);
6510 
6511 	if (CHIP_IS_E3(bp)) {
6512 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6513 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6514 	}
6515 
6516 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6517 }
6518 
6519 static void bnx2x_setup_dmae(struct bnx2x *bp)
6520 {
6521 	bp->dmae_ready = 0;
6522 	spin_lock_init(&bp->dmae_lock);
6523 }
6524 
6525 static void bnx2x_init_pxp(struct bnx2x *bp)
6526 {
6527 	u16 devctl;
6528 	int r_order, w_order;
6529 
6530 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6531 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6532 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6533 	if (bp->mrrs == -1)
6534 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6535 	else {
6536 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6537 		r_order = bp->mrrs;
6538 	}
6539 
6540 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6541 }
6542 
6543 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6544 {
6545 	int is_required;
6546 	u32 val;
6547 	int port;
6548 
6549 	if (BP_NOMCP(bp))
6550 		return;
6551 
6552 	is_required = 0;
6553 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6554 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6555 
6556 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6557 		is_required = 1;
6558 
6559 	/*
6560 	 * The fan failure mechanism is usually related to the PHY type since
6561 	 * the power consumption of the board is affected by the PHY. Currently,
6562 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6563 	 */
6564 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6565 		for (port = PORT_0; port < PORT_MAX; port++) {
6566 			is_required |=
6567 				bnx2x_fan_failure_det_req(
6568 					bp,
6569 					bp->common.shmem_base,
6570 					bp->common.shmem2_base,
6571 					port);
6572 		}
6573 
6574 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6575 
6576 	if (is_required == 0)
6577 		return;
6578 
6579 	/* Fan failure is indicated by SPIO 5 */
6580 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6581 
6582 	/* set to active low mode */
6583 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6584 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6585 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6586 
6587 	/* enable interrupt to signal the IGU */
6588 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6589 	val |= MISC_SPIO_SPIO5;
6590 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6591 }
6592 
6593 void bnx2x_pf_disable(struct bnx2x *bp)
6594 {
6595 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6596 	val &= ~IGU_PF_CONF_FUNC_EN;
6597 
6598 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6599 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6600 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6601 }
6602 
6603 static void bnx2x__common_init_phy(struct bnx2x *bp)
6604 {
6605 	u32 shmem_base[2], shmem2_base[2];
6606 	/* Avoid common init in case MFW supports LFA */
6607 	if (SHMEM2_RD(bp, size) >
6608 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6609 		return;
6610 	shmem_base[0] =  bp->common.shmem_base;
6611 	shmem2_base[0] = bp->common.shmem2_base;
6612 	if (!CHIP_IS_E1x(bp)) {
6613 		shmem_base[1] =
6614 			SHMEM2_RD(bp, other_shmem_base_addr);
6615 		shmem2_base[1] =
6616 			SHMEM2_RD(bp, other_shmem2_base_addr);
6617 	}
6618 	bnx2x_acquire_phy_lock(bp);
6619 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6620 			      bp->common.chip_id);
6621 	bnx2x_release_phy_lock(bp);
6622 }
6623 
6624 /**
6625  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6626  *
6627  * @bp:		driver handle
6628  */
6629 static int bnx2x_init_hw_common(struct bnx2x *bp)
6630 {
6631 	u32 val;
6632 
6633 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6634 
6635 	/*
6636 	 * take the RESET lock to protect undi_unload flow from accessing
6637 	 * registers while we're resetting the chip
6638 	 */
6639 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6640 
6641 	bnx2x_reset_common(bp);
6642 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6643 
6644 	val = 0xfffc;
6645 	if (CHIP_IS_E3(bp)) {
6646 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6647 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6648 	}
6649 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6650 
6651 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6652 
6653 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6654 
6655 	if (!CHIP_IS_E1x(bp)) {
6656 		u8 abs_func_id;
6657 
6658 		/**
6659 		 * 4-port mode or 2-port mode we need to turn of master-enable
6660 		 * for everyone, after that, turn it back on for self.
6661 		 * so, we disregard multi-function or not, and always disable
6662 		 * for all functions on the given path, this means 0,2,4,6 for
6663 		 * path 0 and 1,3,5,7 for path 1
6664 		 */
6665 		for (abs_func_id = BP_PATH(bp);
6666 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6667 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6668 				REG_WR(bp,
6669 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6670 				    1);
6671 				continue;
6672 			}
6673 
6674 			bnx2x_pretend_func(bp, abs_func_id);
6675 			/* clear pf enable */
6676 			bnx2x_pf_disable(bp);
6677 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6678 		}
6679 	}
6680 
6681 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6682 	if (CHIP_IS_E1(bp)) {
6683 		/* enable HW interrupt from PXP on USDM overflow
6684 		   bit 16 on INT_MASK_0 */
6685 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6686 	}
6687 
6688 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6689 	bnx2x_init_pxp(bp);
6690 
6691 #ifdef __BIG_ENDIAN
6692 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6693 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6694 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6695 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6696 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6697 	/* make sure this value is 0 */
6698 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6699 
6700 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6701 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6702 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6703 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6704 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6705 #endif
6706 
6707 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6708 
6709 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6710 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6711 
6712 	/* let the HW do it's magic ... */
6713 	msleep(100);
6714 	/* finish PXP init */
6715 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6716 	if (val != 1) {
6717 		BNX2X_ERR("PXP2 CFG failed\n");
6718 		return -EBUSY;
6719 	}
6720 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6721 	if (val != 1) {
6722 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6723 		return -EBUSY;
6724 	}
6725 
6726 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6727 	 * have entries with value "0" and valid bit on.
6728 	 * This needs to be done by the first PF that is loaded in a path
6729 	 * (i.e. common phase)
6730 	 */
6731 	if (!CHIP_IS_E1x(bp)) {
6732 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6733  * (i.e. vnic3) to start even if it is marked as "scan-off".
6734  * This occurs when a different function (func2,3) is being marked
6735  * as "scan-off". Real-life scenario for example: if a driver is being
6736  * load-unloaded while func6,7 are down. This will cause the timer to access
6737  * the ilt, translate to a logical address and send a request to read/write.
6738  * Since the ilt for the function that is down is not valid, this will cause
6739  * a translation error which is unrecoverable.
6740  * The Workaround is intended to make sure that when this happens nothing fatal
6741  * will occur. The workaround:
6742  *	1.  First PF driver which loads on a path will:
6743  *		a.  After taking the chip out of reset, by using pretend,
6744  *		    it will write "0" to the following registers of
6745  *		    the other vnics.
6746  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6747  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6748  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6749  *		    And for itself it will write '1' to
6750  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6751  *		    dmae-operations (writing to pram for example.)
6752  *		    note: can be done for only function 6,7 but cleaner this
6753  *			  way.
6754  *		b.  Write zero+valid to the entire ILT.
6755  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6756  *		    VNIC3 (of that port). The range allocated will be the
6757  *		    entire ILT. This is needed to prevent  ILT range error.
6758  *	2.  Any PF driver load flow:
6759  *		a.  ILT update with the physical addresses of the allocated
6760  *		    logical pages.
6761  *		b.  Wait 20msec. - note that this timeout is needed to make
6762  *		    sure there are no requests in one of the PXP internal
6763  *		    queues with "old" ILT addresses.
6764  *		c.  PF enable in the PGLC.
6765  *		d.  Clear the was_error of the PF in the PGLC. (could have
6766  *		    occurred while driver was down)
6767  *		e.  PF enable in the CFC (WEAK + STRONG)
6768  *		f.  Timers scan enable
6769  *	3.  PF driver unload flow:
6770  *		a.  Clear the Timers scan_en.
6771  *		b.  Polling for scan_on=0 for that PF.
6772  *		c.  Clear the PF enable bit in the PXP.
6773  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6774  *		e.  Write zero+valid to all ILT entries (The valid bit must
6775  *		    stay set)
6776  *		f.  If this is VNIC 3 of a port then also init
6777  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6778  *		    to the last entry in the ILT.
6779  *
6780  *	Notes:
6781  *	Currently the PF error in the PGLC is non recoverable.
6782  *	In the future the there will be a recovery routine for this error.
6783  *	Currently attention is masked.
6784  *	Having an MCP lock on the load/unload process does not guarantee that
6785  *	there is no Timer disable during Func6/7 enable. This is because the
6786  *	Timers scan is currently being cleared by the MCP on FLR.
6787  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6788  *	there is error before clearing it. But the flow above is simpler and
6789  *	more general.
6790  *	All ILT entries are written by zero+valid and not just PF6/7
6791  *	ILT entries since in the future the ILT entries allocation for
6792  *	PF-s might be dynamic.
6793  */
6794 		struct ilt_client_info ilt_cli;
6795 		struct bnx2x_ilt ilt;
6796 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6797 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6798 
6799 		/* initialize dummy TM client */
6800 		ilt_cli.start = 0;
6801 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6802 		ilt_cli.client_num = ILT_CLIENT_TM;
6803 
6804 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6805 		 * Step 2: set the timers first/last ilt entry to point
6806 		 * to the entire range to prevent ILT range error for 3rd/4th
6807 		 * vnic	(this code assumes existence of the vnic)
6808 		 *
6809 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6810 		 * with dummy TM client
6811 		 *
6812 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6813 		 * and his brother are split registers
6814 		 */
6815 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6816 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6817 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6818 
6819 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6820 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6821 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6822 	}
6823 
6824 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6825 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6826 
6827 	if (!CHIP_IS_E1x(bp)) {
6828 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6829 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6830 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6831 
6832 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6833 
6834 		/* let the HW do it's magic ... */
6835 		do {
6836 			msleep(200);
6837 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6838 		} while (factor-- && (val != 1));
6839 
6840 		if (val != 1) {
6841 			BNX2X_ERR("ATC_INIT failed\n");
6842 			return -EBUSY;
6843 		}
6844 	}
6845 
6846 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6847 
6848 	bnx2x_iov_init_dmae(bp);
6849 
6850 	/* clean the DMAE memory */
6851 	bp->dmae_ready = 1;
6852 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6853 
6854 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6855 
6856 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6857 
6858 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6859 
6860 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6861 
6862 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6863 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6864 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6865 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6866 
6867 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6868 
6869 	/* QM queues pointers table */
6870 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6871 
6872 	/* soft reset pulse */
6873 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6874 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6875 
6876 	if (CNIC_SUPPORT(bp))
6877 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6878 
6879 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6880 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6881 	if (!CHIP_REV_IS_SLOW(bp))
6882 		/* enable hw interrupt from doorbell Q */
6883 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6884 
6885 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6886 
6887 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6888 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6889 
6890 	if (!CHIP_IS_E1(bp))
6891 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6892 
6893 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6894 		if (IS_MF_AFEX(bp)) {
6895 			/* configure that VNTag and VLAN headers must be
6896 			 * received in afex mode
6897 			 */
6898 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6899 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6900 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6901 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6902 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6903 		} else {
6904 			/* Bit-map indicating which L2 hdrs may appear
6905 			 * after the basic Ethernet header
6906 			 */
6907 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6908 			       bp->path_has_ovlan ? 7 : 6);
6909 		}
6910 	}
6911 
6912 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6913 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6914 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6915 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6916 
6917 	if (!CHIP_IS_E1x(bp)) {
6918 		/* reset VFC memories */
6919 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6920 			   VFC_MEMORIES_RST_REG_CAM_RST |
6921 			   VFC_MEMORIES_RST_REG_RAM_RST);
6922 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6923 			   VFC_MEMORIES_RST_REG_CAM_RST |
6924 			   VFC_MEMORIES_RST_REG_RAM_RST);
6925 
6926 		msleep(20);
6927 	}
6928 
6929 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6930 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6931 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6932 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6933 
6934 	/* sync semi rtc */
6935 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6936 	       0x80000000);
6937 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6938 	       0x80000000);
6939 
6940 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6941 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6942 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6943 
6944 	if (!CHIP_IS_E1x(bp)) {
6945 		if (IS_MF_AFEX(bp)) {
6946 			/* configure that VNTag and VLAN headers must be
6947 			 * sent in afex mode
6948 			 */
6949 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6950 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6951 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6952 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6953 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6954 		} else {
6955 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6956 			       bp->path_has_ovlan ? 7 : 6);
6957 		}
6958 	}
6959 
6960 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6961 
6962 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6963 
6964 	if (CNIC_SUPPORT(bp)) {
6965 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6966 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6967 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6968 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6969 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6970 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6971 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6972 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6973 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6974 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6975 	}
6976 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6977 
6978 	if (sizeof(union cdu_context) != 1024)
6979 		/* we currently assume that a context is 1024 bytes */
6980 		dev_alert(&bp->pdev->dev,
6981 			  "please adjust the size of cdu_context(%ld)\n",
6982 			  (long)sizeof(union cdu_context));
6983 
6984 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6985 	val = (4 << 24) + (0 << 12) + 1024;
6986 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6987 
6988 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6989 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6990 	/* enable context validation interrupt from CFC */
6991 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6992 
6993 	/* set the thresholds to prevent CFC/CDU race */
6994 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6995 
6996 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6997 
6998 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6999 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7000 
7001 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7002 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7003 
7004 	/* Reset PCIE errors for debug */
7005 	REG_WR(bp, 0x2814, 0xffffffff);
7006 	REG_WR(bp, 0x3820, 0xffffffff);
7007 
7008 	if (!CHIP_IS_E1x(bp)) {
7009 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7010 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7011 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7012 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7013 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7014 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7015 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7016 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7017 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7018 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7019 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7020 	}
7021 
7022 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7023 	if (!CHIP_IS_E1(bp)) {
7024 		/* in E3 this done in per-port section */
7025 		if (!CHIP_IS_E3(bp))
7026 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7027 	}
7028 	if (CHIP_IS_E1H(bp))
7029 		/* not applicable for E2 (and above ...) */
7030 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7031 
7032 	if (CHIP_REV_IS_SLOW(bp))
7033 		msleep(200);
7034 
7035 	/* finish CFC init */
7036 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7037 	if (val != 1) {
7038 		BNX2X_ERR("CFC LL_INIT failed\n");
7039 		return -EBUSY;
7040 	}
7041 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7042 	if (val != 1) {
7043 		BNX2X_ERR("CFC AC_INIT failed\n");
7044 		return -EBUSY;
7045 	}
7046 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7047 	if (val != 1) {
7048 		BNX2X_ERR("CFC CAM_INIT failed\n");
7049 		return -EBUSY;
7050 	}
7051 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7052 
7053 	if (CHIP_IS_E1(bp)) {
7054 		/* read NIG statistic
7055 		   to see if this is our first up since powerup */
7056 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7057 		val = *bnx2x_sp(bp, wb_data[0]);
7058 
7059 		/* do internal memory self test */
7060 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7061 			BNX2X_ERR("internal mem self test failed\n");
7062 			return -EBUSY;
7063 		}
7064 	}
7065 
7066 	bnx2x_setup_fan_failure_detection(bp);
7067 
7068 	/* clear PXP2 attentions */
7069 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7070 
7071 	bnx2x_enable_blocks_attention(bp);
7072 	bnx2x_enable_blocks_parity(bp);
7073 
7074 	if (!BP_NOMCP(bp)) {
7075 		if (CHIP_IS_E1x(bp))
7076 			bnx2x__common_init_phy(bp);
7077 	} else
7078 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7079 
7080 	return 0;
7081 }
7082 
7083 /**
7084  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7085  *
7086  * @bp:		driver handle
7087  */
7088 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7089 {
7090 	int rc = bnx2x_init_hw_common(bp);
7091 
7092 	if (rc)
7093 		return rc;
7094 
7095 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7096 	if (!BP_NOMCP(bp))
7097 		bnx2x__common_init_phy(bp);
7098 
7099 	return 0;
7100 }
7101 
7102 static int bnx2x_init_hw_port(struct bnx2x *bp)
7103 {
7104 	int port = BP_PORT(bp);
7105 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7106 	u32 low, high;
7107 	u32 val;
7108 
7109 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7110 
7111 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7112 
7113 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7114 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7115 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7116 
7117 	/* Timers bug workaround: disables the pf_master bit in pglue at
7118 	 * common phase, we need to enable it here before any dmae access are
7119 	 * attempted. Therefore we manually added the enable-master to the
7120 	 * port phase (it also happens in the function phase)
7121 	 */
7122 	if (!CHIP_IS_E1x(bp))
7123 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7124 
7125 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7126 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7127 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7128 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7129 
7130 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7131 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7132 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7133 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7134 
7135 	/* QM cid (connection) count */
7136 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7137 
7138 	if (CNIC_SUPPORT(bp)) {
7139 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7140 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7141 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7142 	}
7143 
7144 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7145 
7146 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7147 
7148 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7149 
7150 		if (IS_MF(bp))
7151 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7152 		else if (bp->dev->mtu > 4096) {
7153 			if (bp->flags & ONE_PORT_FLAG)
7154 				low = 160;
7155 			else {
7156 				val = bp->dev->mtu;
7157 				/* (24*1024 + val*4)/256 */
7158 				low = 96 + (val/64) +
7159 						((val % 64) ? 1 : 0);
7160 			}
7161 		} else
7162 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7163 		high = low + 56;	/* 14*1024/256 */
7164 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7165 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7166 	}
7167 
7168 	if (CHIP_MODE_IS_4_PORT(bp))
7169 		REG_WR(bp, (BP_PORT(bp) ?
7170 			    BRB1_REG_MAC_GUARANTIED_1 :
7171 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7172 
7173 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7174 	if (CHIP_IS_E3B0(bp)) {
7175 		if (IS_MF_AFEX(bp)) {
7176 			/* configure headers for AFEX mode */
7177 			REG_WR(bp, BP_PORT(bp) ?
7178 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7179 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7180 			REG_WR(bp, BP_PORT(bp) ?
7181 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7182 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7183 			REG_WR(bp, BP_PORT(bp) ?
7184 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7185 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7186 		} else {
7187 			/* Ovlan exists only if we are in multi-function +
7188 			 * switch-dependent mode, in switch-independent there
7189 			 * is no ovlan headers
7190 			 */
7191 			REG_WR(bp, BP_PORT(bp) ?
7192 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7193 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7194 			       (bp->path_has_ovlan ? 7 : 6));
7195 		}
7196 	}
7197 
7198 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7199 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7200 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7201 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7202 
7203 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7204 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7205 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7206 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7207 
7208 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7209 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7210 
7211 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7212 
7213 	if (CHIP_IS_E1x(bp)) {
7214 		/* configure PBF to work without PAUSE mtu 9000 */
7215 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7216 
7217 		/* update threshold */
7218 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7219 		/* update init credit */
7220 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7221 
7222 		/* probe changes */
7223 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7224 		udelay(50);
7225 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7226 	}
7227 
7228 	if (CNIC_SUPPORT(bp))
7229 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7230 
7231 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7232 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7233 
7234 	if (CHIP_IS_E1(bp)) {
7235 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7236 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7237 	}
7238 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7239 
7240 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7241 
7242 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7243 	/* init aeu_mask_attn_func_0/1:
7244 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7245 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7246 	 *             bits 4-7 are used for "per vn group attention" */
7247 	val = IS_MF(bp) ? 0xF7 : 0x7;
7248 	/* Enable DCBX attention for all but E1 */
7249 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7250 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7251 
7252 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7253 
7254 	if (!CHIP_IS_E1x(bp)) {
7255 		/* Bit-map indicating which L2 hdrs may appear after the
7256 		 * basic Ethernet header
7257 		 */
7258 		if (IS_MF_AFEX(bp))
7259 			REG_WR(bp, BP_PORT(bp) ?
7260 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7261 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7262 		else
7263 			REG_WR(bp, BP_PORT(bp) ?
7264 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7265 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7266 			       IS_MF_SD(bp) ? 7 : 6);
7267 
7268 		if (CHIP_IS_E3(bp))
7269 			REG_WR(bp, BP_PORT(bp) ?
7270 				   NIG_REG_LLH1_MF_MODE :
7271 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7272 	}
7273 	if (!CHIP_IS_E3(bp))
7274 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7275 
7276 	if (!CHIP_IS_E1(bp)) {
7277 		/* 0x2 disable mf_ov, 0x1 enable */
7278 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7279 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7280 
7281 		if (!CHIP_IS_E1x(bp)) {
7282 			val = 0;
7283 			switch (bp->mf_mode) {
7284 			case MULTI_FUNCTION_SD:
7285 				val = 1;
7286 				break;
7287 			case MULTI_FUNCTION_SI:
7288 			case MULTI_FUNCTION_AFEX:
7289 				val = 2;
7290 				break;
7291 			}
7292 
7293 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7294 						  NIG_REG_LLH0_CLS_TYPE), val);
7295 		}
7296 		{
7297 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7298 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7299 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7300 		}
7301 	}
7302 
7303 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7304 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7305 	if (val & MISC_SPIO_SPIO5) {
7306 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7307 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7308 		val = REG_RD(bp, reg_addr);
7309 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7310 		REG_WR(bp, reg_addr, val);
7311 	}
7312 
7313 	return 0;
7314 }
7315 
7316 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7317 {
7318 	int reg;
7319 	u32 wb_write[2];
7320 
7321 	if (CHIP_IS_E1(bp))
7322 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7323 	else
7324 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7325 
7326 	wb_write[0] = ONCHIP_ADDR1(addr);
7327 	wb_write[1] = ONCHIP_ADDR2(addr);
7328 	REG_WR_DMAE(bp, reg, wb_write, 2);
7329 }
7330 
7331 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7332 {
7333 	u32 data, ctl, cnt = 100;
7334 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7335 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7336 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7337 	u32 sb_bit =  1 << (idu_sb_id%32);
7338 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7339 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7340 
7341 	/* Not supported in BC mode */
7342 	if (CHIP_INT_MODE_IS_BC(bp))
7343 		return;
7344 
7345 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7346 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7347 		IGU_REGULAR_CLEANUP_SET				|
7348 		IGU_REGULAR_BCLEANUP;
7349 
7350 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7351 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7352 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7353 
7354 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7355 			 data, igu_addr_data);
7356 	REG_WR(bp, igu_addr_data, data);
7357 	mmiowb();
7358 	barrier();
7359 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7360 			  ctl, igu_addr_ctl);
7361 	REG_WR(bp, igu_addr_ctl, ctl);
7362 	mmiowb();
7363 	barrier();
7364 
7365 	/* wait for clean up to finish */
7366 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7367 		msleep(20);
7368 
7369 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7370 		DP(NETIF_MSG_HW,
7371 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7372 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7373 	}
7374 }
7375 
7376 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7377 {
7378 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7379 }
7380 
7381 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7382 {
7383 	u32 i, base = FUNC_ILT_BASE(func);
7384 	for (i = base; i < base + ILT_PER_FUNC; i++)
7385 		bnx2x_ilt_wr(bp, i, 0);
7386 }
7387 
7388 static void bnx2x_init_searcher(struct bnx2x *bp)
7389 {
7390 	int port = BP_PORT(bp);
7391 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7392 	/* T1 hash bits value determines the T1 number of entries */
7393 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7394 }
7395 
7396 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7397 {
7398 	int rc;
7399 	struct bnx2x_func_state_params func_params = {NULL};
7400 	struct bnx2x_func_switch_update_params *switch_update_params =
7401 		&func_params.params.switch_update;
7402 
7403 	/* Prepare parameters for function state transitions */
7404 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7405 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7406 
7407 	func_params.f_obj = &bp->func_obj;
7408 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7409 
7410 	/* Function parameters */
7411 	switch_update_params->suspend = suspend;
7412 
7413 	rc = bnx2x_func_state_change(bp, &func_params);
7414 
7415 	return rc;
7416 }
7417 
7418 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7419 {
7420 	int rc, i, port = BP_PORT(bp);
7421 	int vlan_en = 0, mac_en[NUM_MACS];
7422 
7423 	/* Close input from network */
7424 	if (bp->mf_mode == SINGLE_FUNCTION) {
7425 		bnx2x_set_rx_filter(&bp->link_params, 0);
7426 	} else {
7427 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7428 				   NIG_REG_LLH0_FUNC_EN);
7429 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7430 			  NIG_REG_LLH0_FUNC_EN, 0);
7431 		for (i = 0; i < NUM_MACS; i++) {
7432 			mac_en[i] = REG_RD(bp, port ?
7433 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7434 					      4 * i) :
7435 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7436 					      4 * i));
7437 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7438 					      4 * i) :
7439 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7440 		}
7441 	}
7442 
7443 	/* Close BMC to host */
7444 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7445 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7446 
7447 	/* Suspend Tx switching to the PF. Completion of this ramrod
7448 	 * further guarantees that all the packets of that PF / child
7449 	 * VFs in BRB were processed by the Parser, so it is safe to
7450 	 * change the NIC_MODE register.
7451 	 */
7452 	rc = bnx2x_func_switch_update(bp, 1);
7453 	if (rc) {
7454 		BNX2X_ERR("Can't suspend tx-switching!\n");
7455 		return rc;
7456 	}
7457 
7458 	/* Change NIC_MODE register */
7459 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7460 
7461 	/* Open input from network */
7462 	if (bp->mf_mode == SINGLE_FUNCTION) {
7463 		bnx2x_set_rx_filter(&bp->link_params, 1);
7464 	} else {
7465 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7466 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7467 		for (i = 0; i < NUM_MACS; i++) {
7468 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7469 					      4 * i) :
7470 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7471 				  mac_en[i]);
7472 		}
7473 	}
7474 
7475 	/* Enable BMC to host */
7476 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7477 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7478 
7479 	/* Resume Tx switching to the PF */
7480 	rc = bnx2x_func_switch_update(bp, 0);
7481 	if (rc) {
7482 		BNX2X_ERR("Can't resume tx-switching!\n");
7483 		return rc;
7484 	}
7485 
7486 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7487 	return 0;
7488 }
7489 
7490 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7491 {
7492 	int rc;
7493 
7494 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7495 
7496 	if (CONFIGURE_NIC_MODE(bp)) {
7497 		/* Configure searcher as part of function hw init */
7498 		bnx2x_init_searcher(bp);
7499 
7500 		/* Reset NIC mode */
7501 		rc = bnx2x_reset_nic_mode(bp);
7502 		if (rc)
7503 			BNX2X_ERR("Can't change NIC mode!\n");
7504 		return rc;
7505 	}
7506 
7507 	return 0;
7508 }
7509 
7510 static int bnx2x_init_hw_func(struct bnx2x *bp)
7511 {
7512 	int port = BP_PORT(bp);
7513 	int func = BP_FUNC(bp);
7514 	int init_phase = PHASE_PF0 + func;
7515 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7516 	u16 cdu_ilt_start;
7517 	u32 addr, val;
7518 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7519 	int i, main_mem_width, rc;
7520 
7521 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7522 
7523 	/* FLR cleanup - hmmm */
7524 	if (!CHIP_IS_E1x(bp)) {
7525 		rc = bnx2x_pf_flr_clnup(bp);
7526 		if (rc) {
7527 			bnx2x_fw_dump(bp);
7528 			return rc;
7529 		}
7530 	}
7531 
7532 	/* set MSI reconfigure capability */
7533 	if (bp->common.int_block == INT_BLOCK_HC) {
7534 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7535 		val = REG_RD(bp, addr);
7536 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7537 		REG_WR(bp, addr, val);
7538 	}
7539 
7540 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7541 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7542 
7543 	ilt = BP_ILT(bp);
7544 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7545 
7546 	if (IS_SRIOV(bp))
7547 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7548 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7549 
7550 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7551 	 * those of the VFs, so start line should be reset
7552 	 */
7553 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7554 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7555 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7556 		ilt->lines[cdu_ilt_start + i].page_mapping =
7557 			bp->context[i].cxt_mapping;
7558 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7559 	}
7560 
7561 	bnx2x_ilt_init_op(bp, INITOP_SET);
7562 
7563 	if (!CONFIGURE_NIC_MODE(bp)) {
7564 		bnx2x_init_searcher(bp);
7565 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7566 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7567 	} else {
7568 		/* Set NIC mode */
7569 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7570 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7571 	}
7572 
7573 	if (!CHIP_IS_E1x(bp)) {
7574 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7575 
7576 		/* Turn on a single ISR mode in IGU if driver is going to use
7577 		 * INT#x or MSI
7578 		 */
7579 		if (!(bp->flags & USING_MSIX_FLAG))
7580 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7581 		/*
7582 		 * Timers workaround bug: function init part.
7583 		 * Need to wait 20msec after initializing ILT,
7584 		 * needed to make sure there are no requests in
7585 		 * one of the PXP internal queues with "old" ILT addresses
7586 		 */
7587 		msleep(20);
7588 		/*
7589 		 * Master enable - Due to WB DMAE writes performed before this
7590 		 * register is re-initialized as part of the regular function
7591 		 * init
7592 		 */
7593 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7594 		/* Enable the function in IGU */
7595 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7596 	}
7597 
7598 	bp->dmae_ready = 1;
7599 
7600 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7601 
7602 	if (!CHIP_IS_E1x(bp))
7603 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7604 
7605 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7606 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7607 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7608 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7609 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7610 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7611 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7612 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7613 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7614 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7615 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7616 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7617 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7618 
7619 	if (!CHIP_IS_E1x(bp))
7620 		REG_WR(bp, QM_REG_PF_EN, 1);
7621 
7622 	if (!CHIP_IS_E1x(bp)) {
7623 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7624 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7625 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7626 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7627 	}
7628 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7629 
7630 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7631 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7632 
7633 	bnx2x_iov_init_dq(bp);
7634 
7635 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7636 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7637 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7638 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7639 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7640 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7641 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7642 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7643 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7644 	if (!CHIP_IS_E1x(bp))
7645 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7646 
7647 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7648 
7649 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7650 
7651 	if (!CHIP_IS_E1x(bp))
7652 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7653 
7654 	if (IS_MF(bp)) {
7655 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7656 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7657 	}
7658 
7659 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7660 
7661 	/* HC init per function */
7662 	if (bp->common.int_block == INT_BLOCK_HC) {
7663 		if (CHIP_IS_E1H(bp)) {
7664 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7665 
7666 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7667 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7668 		}
7669 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7670 
7671 	} else {
7672 		int num_segs, sb_idx, prod_offset;
7673 
7674 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7675 
7676 		if (!CHIP_IS_E1x(bp)) {
7677 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7678 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7679 		}
7680 
7681 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7682 
7683 		if (!CHIP_IS_E1x(bp)) {
7684 			int dsb_idx = 0;
7685 			/**
7686 			 * Producer memory:
7687 			 * E2 mode: address 0-135 match to the mapping memory;
7688 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7689 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7690 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7691 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7692 			 * 144-147 reserved.
7693 			 *
7694 			 * E1.5 mode - In backward compatible mode;
7695 			 * for non default SB; each even line in the memory
7696 			 * holds the U producer and each odd line hold
7697 			 * the C producer. The first 128 producers are for
7698 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7699 			 * producers are for the DSB for each PF.
7700 			 * Each PF has five segments: (the order inside each
7701 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7702 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7703 			 * 144-147 attn prods;
7704 			 */
7705 			/* non-default-status-blocks */
7706 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7707 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7708 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7709 				prod_offset = (bp->igu_base_sb + sb_idx) *
7710 					num_segs;
7711 
7712 				for (i = 0; i < num_segs; i++) {
7713 					addr = IGU_REG_PROD_CONS_MEMORY +
7714 							(prod_offset + i) * 4;
7715 					REG_WR(bp, addr, 0);
7716 				}
7717 				/* send consumer update with value 0 */
7718 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7719 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7720 				bnx2x_igu_clear_sb(bp,
7721 						   bp->igu_base_sb + sb_idx);
7722 			}
7723 
7724 			/* default-status-blocks */
7725 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7726 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7727 
7728 			if (CHIP_MODE_IS_4_PORT(bp))
7729 				dsb_idx = BP_FUNC(bp);
7730 			else
7731 				dsb_idx = BP_VN(bp);
7732 
7733 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7734 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7735 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7736 
7737 			/*
7738 			 * igu prods come in chunks of E1HVN_MAX (4) -
7739 			 * does not matters what is the current chip mode
7740 			 */
7741 			for (i = 0; i < (num_segs * E1HVN_MAX);
7742 			     i += E1HVN_MAX) {
7743 				addr = IGU_REG_PROD_CONS_MEMORY +
7744 							(prod_offset + i)*4;
7745 				REG_WR(bp, addr, 0);
7746 			}
7747 			/* send consumer update with 0 */
7748 			if (CHIP_INT_MODE_IS_BC(bp)) {
7749 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7750 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7751 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7752 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7753 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7754 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7755 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7756 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7757 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7758 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7759 			} else {
7760 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7761 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7762 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7763 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7764 			}
7765 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7766 
7767 			/* !!! These should become driver const once
7768 			   rf-tool supports split-68 const */
7769 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7770 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7771 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7772 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7773 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7774 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7775 		}
7776 	}
7777 
7778 	/* Reset PCIE errors for debug */
7779 	REG_WR(bp, 0x2114, 0xffffffff);
7780 	REG_WR(bp, 0x2120, 0xffffffff);
7781 
7782 	if (CHIP_IS_E1x(bp)) {
7783 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7784 		main_mem_base = HC_REG_MAIN_MEMORY +
7785 				BP_PORT(bp) * (main_mem_size * 4);
7786 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7787 		main_mem_width = 8;
7788 
7789 		val = REG_RD(bp, main_mem_prty_clr);
7790 		if (val)
7791 			DP(NETIF_MSG_HW,
7792 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7793 			   val);
7794 
7795 		/* Clear "false" parity errors in MSI-X table */
7796 		for (i = main_mem_base;
7797 		     i < main_mem_base + main_mem_size * 4;
7798 		     i += main_mem_width) {
7799 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7800 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7801 					 i, main_mem_width / 4);
7802 		}
7803 		/* Clear HC parity attention */
7804 		REG_RD(bp, main_mem_prty_clr);
7805 	}
7806 
7807 #ifdef BNX2X_STOP_ON_ERROR
7808 	/* Enable STORMs SP logging */
7809 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7810 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7811 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7812 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7813 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7814 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7815 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7816 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7817 #endif
7818 
7819 	bnx2x_phy_probe(&bp->link_params);
7820 
7821 	return 0;
7822 }
7823 
7824 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7825 {
7826 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7827 
7828 	if (!CHIP_IS_E1x(bp))
7829 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7830 			       sizeof(struct host_hc_status_block_e2));
7831 	else
7832 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7833 			       sizeof(struct host_hc_status_block_e1x));
7834 
7835 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7836 }
7837 
7838 void bnx2x_free_mem(struct bnx2x *bp)
7839 {
7840 	int i;
7841 
7842 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7843 		       sizeof(struct host_sp_status_block));
7844 
7845 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7846 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7847 
7848 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7849 		       sizeof(struct bnx2x_slowpath));
7850 
7851 	for (i = 0; i < L2_ILT_LINES(bp); i++)
7852 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7853 			       bp->context[i].size);
7854 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7855 
7856 	BNX2X_FREE(bp->ilt->lines);
7857 
7858 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7859 
7860 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7861 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7862 
7863 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7864 
7865 	bnx2x_iov_free_mem(bp);
7866 }
7867 
7868 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7869 {
7870 	if (!CHIP_IS_E1x(bp))
7871 		/* size = the status block + ramrod buffers */
7872 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7873 				sizeof(struct host_hc_status_block_e2));
7874 	else
7875 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7876 				&bp->cnic_sb_mapping,
7877 				sizeof(struct
7878 				       host_hc_status_block_e1x));
7879 
7880 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7881 		/* allocate searcher T2 table, as it wasn't allocated before */
7882 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7883 
7884 	/* write address to which L5 should insert its values */
7885 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
7886 		&bp->slowpath->drv_info_to_mcp;
7887 
7888 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7889 		goto alloc_mem_err;
7890 
7891 	return 0;
7892 
7893 alloc_mem_err:
7894 	bnx2x_free_mem_cnic(bp);
7895 	BNX2X_ERR("Can't allocate memory\n");
7896 	return -ENOMEM;
7897 }
7898 
7899 int bnx2x_alloc_mem(struct bnx2x *bp)
7900 {
7901 	int i, allocated, context_size;
7902 
7903 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7904 		/* allocate searcher T2 table */
7905 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7906 
7907 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7908 			sizeof(struct host_sp_status_block));
7909 
7910 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7911 			sizeof(struct bnx2x_slowpath));
7912 
7913 	/* Allocate memory for CDU context:
7914 	 * This memory is allocated separately and not in the generic ILT
7915 	 * functions because CDU differs in few aspects:
7916 	 * 1. There are multiple entities allocating memory for context -
7917 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7918 	 * its own ILT lines.
7919 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
7920 	 * for the other ILT clients), to be efficient we want to support
7921 	 * allocation of sub-page-size in the last entry.
7922 	 * 3. Context pointers are used by the driver to pass to FW / update
7923 	 * the context (for the other ILT clients the pointers are used just to
7924 	 * free the memory during unload).
7925 	 */
7926 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7927 
7928 	for (i = 0, allocated = 0; allocated < context_size; i++) {
7929 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7930 					  (context_size - allocated));
7931 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7932 				&bp->context[i].cxt_mapping,
7933 				bp->context[i].size);
7934 		allocated += bp->context[i].size;
7935 	}
7936 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7937 
7938 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7939 		goto alloc_mem_err;
7940 
7941 	if (bnx2x_iov_alloc_mem(bp))
7942 		goto alloc_mem_err;
7943 
7944 	/* Slow path ring */
7945 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7946 
7947 	/* EQ */
7948 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7949 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7950 
7951 	return 0;
7952 
7953 alloc_mem_err:
7954 	bnx2x_free_mem(bp);
7955 	BNX2X_ERR("Can't allocate memory\n");
7956 	return -ENOMEM;
7957 }
7958 
7959 /*
7960  * Init service functions
7961  */
7962 
7963 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7964 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7965 		      int mac_type, unsigned long *ramrod_flags)
7966 {
7967 	int rc;
7968 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7969 
7970 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7971 
7972 	/* Fill general parameters */
7973 	ramrod_param.vlan_mac_obj = obj;
7974 	ramrod_param.ramrod_flags = *ramrod_flags;
7975 
7976 	/* Fill a user request section if needed */
7977 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7978 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7979 
7980 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7981 
7982 		/* Set the command: ADD or DEL */
7983 		if (set)
7984 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7985 		else
7986 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7987 	}
7988 
7989 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7990 
7991 	if (rc == -EEXIST) {
7992 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7993 		/* do not treat adding same MAC as error */
7994 		rc = 0;
7995 	} else if (rc < 0)
7996 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7997 
7998 	return rc;
7999 }
8000 
8001 int bnx2x_del_all_macs(struct bnx2x *bp,
8002 		       struct bnx2x_vlan_mac_obj *mac_obj,
8003 		       int mac_type, bool wait_for_comp)
8004 {
8005 	int rc;
8006 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8007 
8008 	/* Wait for completion of requested */
8009 	if (wait_for_comp)
8010 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8011 
8012 	/* Set the mac type of addresses we want to clear */
8013 	__set_bit(mac_type, &vlan_mac_flags);
8014 
8015 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8016 	if (rc < 0)
8017 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8018 
8019 	return rc;
8020 }
8021 
8022 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8023 {
8024 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
8025 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8026 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8027 		   "Ignoring Zero MAC for STORAGE SD mode\n");
8028 		return 0;
8029 	}
8030 
8031 	if (IS_PF(bp)) {
8032 		unsigned long ramrod_flags = 0;
8033 
8034 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8035 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8036 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8037 					 &bp->sp_objs->mac_obj, set,
8038 					 BNX2X_ETH_MAC, &ramrod_flags);
8039 	} else { /* vf */
8040 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8041 					     bp->fp->index, true);
8042 	}
8043 }
8044 
8045 int bnx2x_setup_leading(struct bnx2x *bp)
8046 {
8047 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
8048 }
8049 
8050 /**
8051  * bnx2x_set_int_mode - configure interrupt mode
8052  *
8053  * @bp:		driver handle
8054  *
8055  * In case of MSI-X it will also try to enable MSI-X.
8056  */
8057 int bnx2x_set_int_mode(struct bnx2x *bp)
8058 {
8059 	int rc = 0;
8060 
8061 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX)
8062 		return -EINVAL;
8063 
8064 	switch (int_mode) {
8065 	case BNX2X_INT_MODE_MSIX:
8066 		/* attempt to enable msix */
8067 		rc = bnx2x_enable_msix(bp);
8068 
8069 		/* msix attained */
8070 		if (!rc)
8071 			return 0;
8072 
8073 		/* vfs use only msix */
8074 		if (rc && IS_VF(bp))
8075 			return rc;
8076 
8077 		/* failed to enable multiple MSI-X */
8078 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8079 			       bp->num_queues,
8080 			       1 + bp->num_cnic_queues);
8081 
8082 		/* falling through... */
8083 	case BNX2X_INT_MODE_MSI:
8084 		bnx2x_enable_msi(bp);
8085 
8086 		/* falling through... */
8087 	case BNX2X_INT_MODE_INTX:
8088 		bp->num_ethernet_queues = 1;
8089 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8090 		BNX2X_DEV_INFO("set number of queues to 1\n");
8091 		break;
8092 	default:
8093 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8094 		return -EINVAL;
8095 	}
8096 	return 0;
8097 }
8098 
8099 /* must be called prior to any HW initializations */
8100 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8101 {
8102 	if (IS_SRIOV(bp))
8103 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8104 	return L2_ILT_LINES(bp);
8105 }
8106 
8107 void bnx2x_ilt_set_info(struct bnx2x *bp)
8108 {
8109 	struct ilt_client_info *ilt_client;
8110 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8111 	u16 line = 0;
8112 
8113 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8114 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8115 
8116 	/* CDU */
8117 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8118 	ilt_client->client_num = ILT_CLIENT_CDU;
8119 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8120 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8121 	ilt_client->start = line;
8122 	line += bnx2x_cid_ilt_lines(bp);
8123 
8124 	if (CNIC_SUPPORT(bp))
8125 		line += CNIC_ILT_LINES;
8126 	ilt_client->end = line - 1;
8127 
8128 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8129 	   ilt_client->start,
8130 	   ilt_client->end,
8131 	   ilt_client->page_size,
8132 	   ilt_client->flags,
8133 	   ilog2(ilt_client->page_size >> 12));
8134 
8135 	/* QM */
8136 	if (QM_INIT(bp->qm_cid_count)) {
8137 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8138 		ilt_client->client_num = ILT_CLIENT_QM;
8139 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8140 		ilt_client->flags = 0;
8141 		ilt_client->start = line;
8142 
8143 		/* 4 bytes for each cid */
8144 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8145 							 QM_ILT_PAGE_SZ);
8146 
8147 		ilt_client->end = line - 1;
8148 
8149 		DP(NETIF_MSG_IFUP,
8150 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8151 		   ilt_client->start,
8152 		   ilt_client->end,
8153 		   ilt_client->page_size,
8154 		   ilt_client->flags,
8155 		   ilog2(ilt_client->page_size >> 12));
8156 	}
8157 
8158 	if (CNIC_SUPPORT(bp)) {
8159 		/* SRC */
8160 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8161 		ilt_client->client_num = ILT_CLIENT_SRC;
8162 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8163 		ilt_client->flags = 0;
8164 		ilt_client->start = line;
8165 		line += SRC_ILT_LINES;
8166 		ilt_client->end = line - 1;
8167 
8168 		DP(NETIF_MSG_IFUP,
8169 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8170 		   ilt_client->start,
8171 		   ilt_client->end,
8172 		   ilt_client->page_size,
8173 		   ilt_client->flags,
8174 		   ilog2(ilt_client->page_size >> 12));
8175 
8176 		/* TM */
8177 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8178 		ilt_client->client_num = ILT_CLIENT_TM;
8179 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8180 		ilt_client->flags = 0;
8181 		ilt_client->start = line;
8182 		line += TM_ILT_LINES;
8183 		ilt_client->end = line - 1;
8184 
8185 		DP(NETIF_MSG_IFUP,
8186 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8187 		   ilt_client->start,
8188 		   ilt_client->end,
8189 		   ilt_client->page_size,
8190 		   ilt_client->flags,
8191 		   ilog2(ilt_client->page_size >> 12));
8192 	}
8193 
8194 	BUG_ON(line > ILT_MAX_LINES);
8195 }
8196 
8197 /**
8198  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8199  *
8200  * @bp:			driver handle
8201  * @fp:			pointer to fastpath
8202  * @init_params:	pointer to parameters structure
8203  *
8204  * parameters configured:
8205  *      - HC configuration
8206  *      - Queue's CDU context
8207  */
8208 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8209 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8210 {
8211 	u8 cos;
8212 	int cxt_index, cxt_offset;
8213 
8214 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8215 	if (!IS_FCOE_FP(fp)) {
8216 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8217 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8218 
8219 		/* If HC is supported, enable host coalescing in the transition
8220 		 * to INIT state.
8221 		 */
8222 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8223 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8224 
8225 		/* HC rate */
8226 		init_params->rx.hc_rate = bp->rx_ticks ?
8227 			(1000000 / bp->rx_ticks) : 0;
8228 		init_params->tx.hc_rate = bp->tx_ticks ?
8229 			(1000000 / bp->tx_ticks) : 0;
8230 
8231 		/* FW SB ID */
8232 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8233 			fp->fw_sb_id;
8234 
8235 		/*
8236 		 * CQ index among the SB indices: FCoE clients uses the default
8237 		 * SB, therefore it's different.
8238 		 */
8239 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8240 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8241 	}
8242 
8243 	/* set maximum number of COSs supported by this queue */
8244 	init_params->max_cos = fp->max_cos;
8245 
8246 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8247 	    fp->index, init_params->max_cos);
8248 
8249 	/* set the context pointers queue object */
8250 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8251 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8252 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8253 				ILT_PAGE_CIDS);
8254 		init_params->cxts[cos] =
8255 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8256 	}
8257 }
8258 
8259 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8260 			struct bnx2x_queue_state_params *q_params,
8261 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8262 			int tx_index, bool leading)
8263 {
8264 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8265 
8266 	/* Set the command */
8267 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8268 
8269 	/* Set tx-only QUEUE flags: don't zero statistics */
8270 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8271 
8272 	/* choose the index of the cid to send the slow path on */
8273 	tx_only_params->cid_index = tx_index;
8274 
8275 	/* Set general TX_ONLY_SETUP parameters */
8276 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8277 
8278 	/* Set Tx TX_ONLY_SETUP parameters */
8279 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8280 
8281 	DP(NETIF_MSG_IFUP,
8282 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8283 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8284 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8285 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8286 
8287 	/* send the ramrod */
8288 	return bnx2x_queue_state_change(bp, q_params);
8289 }
8290 
8291 /**
8292  * bnx2x_setup_queue - setup queue
8293  *
8294  * @bp:		driver handle
8295  * @fp:		pointer to fastpath
8296  * @leading:	is leading
8297  *
8298  * This function performs 2 steps in a Queue state machine
8299  *      actually: 1) RESET->INIT 2) INIT->SETUP
8300  */
8301 
8302 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8303 		       bool leading)
8304 {
8305 	struct bnx2x_queue_state_params q_params = {NULL};
8306 	struct bnx2x_queue_setup_params *setup_params =
8307 						&q_params.params.setup;
8308 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8309 						&q_params.params.tx_only;
8310 	int rc;
8311 	u8 tx_index;
8312 
8313 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8314 
8315 	/* reset IGU state skip FCoE L2 queue */
8316 	if (!IS_FCOE_FP(fp))
8317 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8318 			     IGU_INT_ENABLE, 0);
8319 
8320 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8321 	/* We want to wait for completion in this context */
8322 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8323 
8324 	/* Prepare the INIT parameters */
8325 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8326 
8327 	/* Set the command */
8328 	q_params.cmd = BNX2X_Q_CMD_INIT;
8329 
8330 	/* Change the state to INIT */
8331 	rc = bnx2x_queue_state_change(bp, &q_params);
8332 	if (rc) {
8333 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8334 		return rc;
8335 	}
8336 
8337 	DP(NETIF_MSG_IFUP, "init complete\n");
8338 
8339 	/* Now move the Queue to the SETUP state... */
8340 	memset(setup_params, 0, sizeof(*setup_params));
8341 
8342 	/* Set QUEUE flags */
8343 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8344 
8345 	/* Set general SETUP parameters */
8346 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8347 				FIRST_TX_COS_INDEX);
8348 
8349 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8350 			    &setup_params->rxq_params);
8351 
8352 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8353 			   FIRST_TX_COS_INDEX);
8354 
8355 	/* Set the command */
8356 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8357 
8358 	if (IS_FCOE_FP(fp))
8359 		bp->fcoe_init = true;
8360 
8361 	/* Change the state to SETUP */
8362 	rc = bnx2x_queue_state_change(bp, &q_params);
8363 	if (rc) {
8364 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8365 		return rc;
8366 	}
8367 
8368 	/* loop through the relevant tx-only indices */
8369 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8370 	      tx_index < fp->max_cos;
8371 	      tx_index++) {
8372 
8373 		/* prepare and send tx-only ramrod*/
8374 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8375 					  tx_only_params, tx_index, leading);
8376 		if (rc) {
8377 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8378 				  fp->index, tx_index);
8379 			return rc;
8380 		}
8381 	}
8382 
8383 	return rc;
8384 }
8385 
8386 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8387 {
8388 	struct bnx2x_fastpath *fp = &bp->fp[index];
8389 	struct bnx2x_fp_txdata *txdata;
8390 	struct bnx2x_queue_state_params q_params = {NULL};
8391 	int rc, tx_index;
8392 
8393 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8394 
8395 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8396 	/* We want to wait for completion in this context */
8397 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8398 
8399 	/* close tx-only connections */
8400 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8401 	     tx_index < fp->max_cos;
8402 	     tx_index++){
8403 
8404 		/* ascertain this is a normal queue*/
8405 		txdata = fp->txdata_ptr[tx_index];
8406 
8407 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8408 							txdata->txq_index);
8409 
8410 		/* send halt terminate on tx-only connection */
8411 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8412 		memset(&q_params.params.terminate, 0,
8413 		       sizeof(q_params.params.terminate));
8414 		q_params.params.terminate.cid_index = tx_index;
8415 
8416 		rc = bnx2x_queue_state_change(bp, &q_params);
8417 		if (rc)
8418 			return rc;
8419 
8420 		/* send halt terminate on tx-only connection */
8421 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8422 		memset(&q_params.params.cfc_del, 0,
8423 		       sizeof(q_params.params.cfc_del));
8424 		q_params.params.cfc_del.cid_index = tx_index;
8425 		rc = bnx2x_queue_state_change(bp, &q_params);
8426 		if (rc)
8427 			return rc;
8428 	}
8429 	/* Stop the primary connection: */
8430 	/* ...halt the connection */
8431 	q_params.cmd = BNX2X_Q_CMD_HALT;
8432 	rc = bnx2x_queue_state_change(bp, &q_params);
8433 	if (rc)
8434 		return rc;
8435 
8436 	/* ...terminate the connection */
8437 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8438 	memset(&q_params.params.terminate, 0,
8439 	       sizeof(q_params.params.terminate));
8440 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8441 	rc = bnx2x_queue_state_change(bp, &q_params);
8442 	if (rc)
8443 		return rc;
8444 	/* ...delete cfc entry */
8445 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8446 	memset(&q_params.params.cfc_del, 0,
8447 	       sizeof(q_params.params.cfc_del));
8448 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8449 	return bnx2x_queue_state_change(bp, &q_params);
8450 }
8451 
8452 static void bnx2x_reset_func(struct bnx2x *bp)
8453 {
8454 	int port = BP_PORT(bp);
8455 	int func = BP_FUNC(bp);
8456 	int i;
8457 
8458 	/* Disable the function in the FW */
8459 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8460 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8461 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8462 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8463 
8464 	/* FP SBs */
8465 	for_each_eth_queue(bp, i) {
8466 		struct bnx2x_fastpath *fp = &bp->fp[i];
8467 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8468 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8469 			   SB_DISABLED);
8470 	}
8471 
8472 	if (CNIC_LOADED(bp))
8473 		/* CNIC SB */
8474 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8475 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8476 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8477 
8478 	/* SP SB */
8479 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8480 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8481 		SB_DISABLED);
8482 
8483 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8484 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8485 		       0);
8486 
8487 	/* Configure IGU */
8488 	if (bp->common.int_block == INT_BLOCK_HC) {
8489 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8490 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8491 	} else {
8492 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8493 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8494 	}
8495 
8496 	if (CNIC_LOADED(bp)) {
8497 		/* Disable Timer scan */
8498 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8499 		/*
8500 		 * Wait for at least 10ms and up to 2 second for the timers
8501 		 * scan to complete
8502 		 */
8503 		for (i = 0; i < 200; i++) {
8504 			usleep_range(10000, 20000);
8505 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8506 				break;
8507 		}
8508 	}
8509 	/* Clear ILT */
8510 	bnx2x_clear_func_ilt(bp, func);
8511 
8512 	/* Timers workaround bug for E2: if this is vnic-3,
8513 	 * we need to set the entire ilt range for this timers.
8514 	 */
8515 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8516 		struct ilt_client_info ilt_cli;
8517 		/* use dummy TM client */
8518 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8519 		ilt_cli.start = 0;
8520 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8521 		ilt_cli.client_num = ILT_CLIENT_TM;
8522 
8523 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8524 	}
8525 
8526 	/* this assumes that reset_port() called before reset_func()*/
8527 	if (!CHIP_IS_E1x(bp))
8528 		bnx2x_pf_disable(bp);
8529 
8530 	bp->dmae_ready = 0;
8531 }
8532 
8533 static void bnx2x_reset_port(struct bnx2x *bp)
8534 {
8535 	int port = BP_PORT(bp);
8536 	u32 val;
8537 
8538 	/* Reset physical Link */
8539 	bnx2x__link_reset(bp);
8540 
8541 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8542 
8543 	/* Do not rcv packets to BRB */
8544 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8545 	/* Do not direct rcv packets that are not for MCP to the BRB */
8546 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8547 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8548 
8549 	/* Configure AEU */
8550 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8551 
8552 	msleep(100);
8553 	/* Check for BRB port occupancy */
8554 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8555 	if (val)
8556 		DP(NETIF_MSG_IFDOWN,
8557 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8558 
8559 	/* TODO: Close Doorbell port? */
8560 }
8561 
8562 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8563 {
8564 	struct bnx2x_func_state_params func_params = {NULL};
8565 
8566 	/* Prepare parameters for function state transitions */
8567 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8568 
8569 	func_params.f_obj = &bp->func_obj;
8570 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8571 
8572 	func_params.params.hw_init.load_phase = load_code;
8573 
8574 	return bnx2x_func_state_change(bp, &func_params);
8575 }
8576 
8577 static int bnx2x_func_stop(struct bnx2x *bp)
8578 {
8579 	struct bnx2x_func_state_params func_params = {NULL};
8580 	int rc;
8581 
8582 	/* Prepare parameters for function state transitions */
8583 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8584 	func_params.f_obj = &bp->func_obj;
8585 	func_params.cmd = BNX2X_F_CMD_STOP;
8586 
8587 	/*
8588 	 * Try to stop the function the 'good way'. If fails (in case
8589 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8590 	 * not in a debug mode, perform a state transaction in order to
8591 	 * enable further HW_RESET transaction.
8592 	 */
8593 	rc = bnx2x_func_state_change(bp, &func_params);
8594 	if (rc) {
8595 #ifdef BNX2X_STOP_ON_ERROR
8596 		return rc;
8597 #else
8598 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8599 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8600 		return bnx2x_func_state_change(bp, &func_params);
8601 #endif
8602 	}
8603 
8604 	return 0;
8605 }
8606 
8607 /**
8608  * bnx2x_send_unload_req - request unload mode from the MCP.
8609  *
8610  * @bp:			driver handle
8611  * @unload_mode:	requested function's unload mode
8612  *
8613  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8614  */
8615 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8616 {
8617 	u32 reset_code = 0;
8618 	int port = BP_PORT(bp);
8619 
8620 	/* Select the UNLOAD request mode */
8621 	if (unload_mode == UNLOAD_NORMAL)
8622 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8623 
8624 	else if (bp->flags & NO_WOL_FLAG)
8625 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8626 
8627 	else if (bp->wol) {
8628 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8629 		u8 *mac_addr = bp->dev->dev_addr;
8630 		u32 val;
8631 		u16 pmc;
8632 
8633 		/* The mac address is written to entries 1-4 to
8634 		 * preserve entry 0 which is used by the PMF
8635 		 */
8636 		u8 entry = (BP_VN(bp) + 1)*8;
8637 
8638 		val = (mac_addr[0] << 8) | mac_addr[1];
8639 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8640 
8641 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8642 		      (mac_addr[4] << 8) | mac_addr[5];
8643 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8644 
8645 		/* Enable the PME and clear the status */
8646 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8647 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8648 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8649 
8650 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8651 
8652 	} else
8653 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8654 
8655 	/* Send the request to the MCP */
8656 	if (!BP_NOMCP(bp))
8657 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8658 	else {
8659 		int path = BP_PATH(bp);
8660 
8661 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8662 		   path, load_count[path][0], load_count[path][1],
8663 		   load_count[path][2]);
8664 		load_count[path][0]--;
8665 		load_count[path][1 + port]--;
8666 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8667 		   path, load_count[path][0], load_count[path][1],
8668 		   load_count[path][2]);
8669 		if (load_count[path][0] == 0)
8670 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8671 		else if (load_count[path][1 + port] == 0)
8672 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8673 		else
8674 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8675 	}
8676 
8677 	return reset_code;
8678 }
8679 
8680 /**
8681  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8682  *
8683  * @bp:		driver handle
8684  * @keep_link:		true iff link should be kept up
8685  */
8686 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8687 {
8688 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8689 
8690 	/* Report UNLOAD_DONE to MCP */
8691 	if (!BP_NOMCP(bp))
8692 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8693 }
8694 
8695 static int bnx2x_func_wait_started(struct bnx2x *bp)
8696 {
8697 	int tout = 50;
8698 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8699 
8700 	if (!bp->port.pmf)
8701 		return 0;
8702 
8703 	/*
8704 	 * (assumption: No Attention from MCP at this stage)
8705 	 * PMF probably in the middle of TX disable/enable transaction
8706 	 * 1. Sync IRS for default SB
8707 	 * 2. Sync SP queue - this guarantees us that attention handling started
8708 	 * 3. Wait, that TX disable/enable transaction completes
8709 	 *
8710 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8711 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8712 	 * received completion for the transaction the state is TX_STOPPED.
8713 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8714 	 * transaction.
8715 	 */
8716 
8717 	/* make sure default SB ISR is done */
8718 	if (msix)
8719 		synchronize_irq(bp->msix_table[0].vector);
8720 	else
8721 		synchronize_irq(bp->pdev->irq);
8722 
8723 	flush_workqueue(bnx2x_wq);
8724 
8725 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8726 				BNX2X_F_STATE_STARTED && tout--)
8727 		msleep(20);
8728 
8729 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8730 						BNX2X_F_STATE_STARTED) {
8731 #ifdef BNX2X_STOP_ON_ERROR
8732 		BNX2X_ERR("Wrong function state\n");
8733 		return -EBUSY;
8734 #else
8735 		/*
8736 		 * Failed to complete the transaction in a "good way"
8737 		 * Force both transactions with CLR bit
8738 		 */
8739 		struct bnx2x_func_state_params func_params = {NULL};
8740 
8741 		DP(NETIF_MSG_IFDOWN,
8742 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8743 
8744 		func_params.f_obj = &bp->func_obj;
8745 		__set_bit(RAMROD_DRV_CLR_ONLY,
8746 					&func_params.ramrod_flags);
8747 
8748 		/* STARTED-->TX_ST0PPED */
8749 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8750 		bnx2x_func_state_change(bp, &func_params);
8751 
8752 		/* TX_ST0PPED-->STARTED */
8753 		func_params.cmd = BNX2X_F_CMD_TX_START;
8754 		return bnx2x_func_state_change(bp, &func_params);
8755 #endif
8756 	}
8757 
8758 	return 0;
8759 }
8760 
8761 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8762 {
8763 	int port = BP_PORT(bp);
8764 	int i, rc = 0;
8765 	u8 cos;
8766 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8767 	u32 reset_code;
8768 
8769 	/* Wait until tx fastpath tasks complete */
8770 	for_each_tx_queue(bp, i) {
8771 		struct bnx2x_fastpath *fp = &bp->fp[i];
8772 
8773 		for_each_cos_in_tx_queue(fp, cos)
8774 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8775 #ifdef BNX2X_STOP_ON_ERROR
8776 		if (rc)
8777 			return;
8778 #endif
8779 	}
8780 
8781 	/* Give HW time to discard old tx messages */
8782 	usleep_range(1000, 2000);
8783 
8784 	/* Clean all ETH MACs */
8785 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8786 				false);
8787 	if (rc < 0)
8788 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8789 
8790 	/* Clean up UC list  */
8791 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8792 				true);
8793 	if (rc < 0)
8794 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8795 			  rc);
8796 
8797 	/* Disable LLH */
8798 	if (!CHIP_IS_E1(bp))
8799 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8800 
8801 	/* Set "drop all" (stop Rx).
8802 	 * We need to take a netif_addr_lock() here in order to prevent
8803 	 * a race between the completion code and this code.
8804 	 */
8805 	netif_addr_lock_bh(bp->dev);
8806 	/* Schedule the rx_mode command */
8807 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8808 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8809 	else
8810 		bnx2x_set_storm_rx_mode(bp);
8811 
8812 	/* Cleanup multicast configuration */
8813 	rparam.mcast_obj = &bp->mcast_obj;
8814 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8815 	if (rc < 0)
8816 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8817 
8818 	netif_addr_unlock_bh(bp->dev);
8819 
8820 	bnx2x_iov_chip_cleanup(bp);
8821 
8822 	/*
8823 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8824 	 * this function should perform FUNC, PORT or COMMON HW
8825 	 * reset.
8826 	 */
8827 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8828 
8829 	/*
8830 	 * (assumption: No Attention from MCP at this stage)
8831 	 * PMF probably in the middle of TX disable/enable transaction
8832 	 */
8833 	rc = bnx2x_func_wait_started(bp);
8834 	if (rc) {
8835 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8836 #ifdef BNX2X_STOP_ON_ERROR
8837 		return;
8838 #endif
8839 	}
8840 
8841 	/* Close multi and leading connections
8842 	 * Completions for ramrods are collected in a synchronous way
8843 	 */
8844 	for_each_eth_queue(bp, i)
8845 		if (bnx2x_stop_queue(bp, i))
8846 #ifdef BNX2X_STOP_ON_ERROR
8847 			return;
8848 #else
8849 			goto unload_error;
8850 #endif
8851 
8852 	if (CNIC_LOADED(bp)) {
8853 		for_each_cnic_queue(bp, i)
8854 			if (bnx2x_stop_queue(bp, i))
8855 #ifdef BNX2X_STOP_ON_ERROR
8856 				return;
8857 #else
8858 				goto unload_error;
8859 #endif
8860 	}
8861 
8862 	/* If SP settings didn't get completed so far - something
8863 	 * very wrong has happen.
8864 	 */
8865 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8866 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8867 
8868 #ifndef BNX2X_STOP_ON_ERROR
8869 unload_error:
8870 #endif
8871 	rc = bnx2x_func_stop(bp);
8872 	if (rc) {
8873 		BNX2X_ERR("Function stop failed!\n");
8874 #ifdef BNX2X_STOP_ON_ERROR
8875 		return;
8876 #endif
8877 	}
8878 
8879 	/* Disable HW interrupts, NAPI */
8880 	bnx2x_netif_stop(bp, 1);
8881 	/* Delete all NAPI objects */
8882 	bnx2x_del_all_napi(bp);
8883 	if (CNIC_LOADED(bp))
8884 		bnx2x_del_all_napi_cnic(bp);
8885 
8886 	/* Release IRQs */
8887 	bnx2x_free_irq(bp);
8888 
8889 	/* Reset the chip */
8890 	rc = bnx2x_reset_hw(bp, reset_code);
8891 	if (rc)
8892 		BNX2X_ERR("HW_RESET failed\n");
8893 
8894 	/* Report UNLOAD_DONE to MCP */
8895 	bnx2x_send_unload_done(bp, keep_link);
8896 }
8897 
8898 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8899 {
8900 	u32 val;
8901 
8902 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8903 
8904 	if (CHIP_IS_E1(bp)) {
8905 		int port = BP_PORT(bp);
8906 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8907 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8908 
8909 		val = REG_RD(bp, addr);
8910 		val &= ~(0x300);
8911 		REG_WR(bp, addr, val);
8912 	} else {
8913 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8914 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8915 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8916 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8917 	}
8918 }
8919 
8920 /* Close gates #2, #3 and #4: */
8921 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8922 {
8923 	u32 val;
8924 
8925 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8926 	if (!CHIP_IS_E1(bp)) {
8927 		/* #4 */
8928 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8929 		/* #2 */
8930 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8931 	}
8932 
8933 	/* #3 */
8934 	if (CHIP_IS_E1x(bp)) {
8935 		/* Prevent interrupts from HC on both ports */
8936 		val = REG_RD(bp, HC_REG_CONFIG_1);
8937 		REG_WR(bp, HC_REG_CONFIG_1,
8938 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8939 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8940 
8941 		val = REG_RD(bp, HC_REG_CONFIG_0);
8942 		REG_WR(bp, HC_REG_CONFIG_0,
8943 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8944 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8945 	} else {
8946 		/* Prevent incoming interrupts in IGU */
8947 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8948 
8949 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8950 		       (!close) ?
8951 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8952 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8953 	}
8954 
8955 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8956 		close ? "closing" : "opening");
8957 	mmiowb();
8958 }
8959 
8960 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8961 
8962 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8963 {
8964 	/* Do some magic... */
8965 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8966 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8967 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8968 }
8969 
8970 /**
8971  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8972  *
8973  * @bp:		driver handle
8974  * @magic_val:	old value of the `magic' bit.
8975  */
8976 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8977 {
8978 	/* Restore the `magic' bit value... */
8979 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8980 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8981 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8982 }
8983 
8984 /**
8985  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8986  *
8987  * @bp:		driver handle
8988  * @magic_val:	old value of 'magic' bit.
8989  *
8990  * Takes care of CLP configurations.
8991  */
8992 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8993 {
8994 	u32 shmem;
8995 	u32 validity_offset;
8996 
8997 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8998 
8999 	/* Set `magic' bit in order to save MF config */
9000 	if (!CHIP_IS_E1(bp))
9001 		bnx2x_clp_reset_prep(bp, magic_val);
9002 
9003 	/* Get shmem offset */
9004 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9005 	validity_offset =
9006 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9007 
9008 	/* Clear validity map flags */
9009 	if (shmem > 0)
9010 		REG_WR(bp, shmem + validity_offset, 0);
9011 }
9012 
9013 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9014 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9015 
9016 /**
9017  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9018  *
9019  * @bp:	driver handle
9020  */
9021 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9022 {
9023 	/* special handling for emulation and FPGA,
9024 	   wait 10 times longer */
9025 	if (CHIP_REV_IS_SLOW(bp))
9026 		msleep(MCP_ONE_TIMEOUT*10);
9027 	else
9028 		msleep(MCP_ONE_TIMEOUT);
9029 }
9030 
9031 /*
9032  * initializes bp->common.shmem_base and waits for validity signature to appear
9033  */
9034 static int bnx2x_init_shmem(struct bnx2x *bp)
9035 {
9036 	int cnt = 0;
9037 	u32 val = 0;
9038 
9039 	do {
9040 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9041 		if (bp->common.shmem_base) {
9042 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9043 			if (val & SHR_MEM_VALIDITY_MB)
9044 				return 0;
9045 		}
9046 
9047 		bnx2x_mcp_wait_one(bp);
9048 
9049 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9050 
9051 	BNX2X_ERR("BAD MCP validity signature\n");
9052 
9053 	return -ENODEV;
9054 }
9055 
9056 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9057 {
9058 	int rc = bnx2x_init_shmem(bp);
9059 
9060 	/* Restore the `magic' bit value */
9061 	if (!CHIP_IS_E1(bp))
9062 		bnx2x_clp_reset_done(bp, magic_val);
9063 
9064 	return rc;
9065 }
9066 
9067 static void bnx2x_pxp_prep(struct bnx2x *bp)
9068 {
9069 	if (!CHIP_IS_E1(bp)) {
9070 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9071 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9072 		mmiowb();
9073 	}
9074 }
9075 
9076 /*
9077  * Reset the whole chip except for:
9078  *      - PCIE core
9079  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9080  *              one reset bit)
9081  *      - IGU
9082  *      - MISC (including AEU)
9083  *      - GRC
9084  *      - RBCN, RBCP
9085  */
9086 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9087 {
9088 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9089 	u32 global_bits2, stay_reset2;
9090 
9091 	/*
9092 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9093 	 * (per chip) blocks.
9094 	 */
9095 	global_bits2 =
9096 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9097 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9098 
9099 	/* Don't reset the following blocks.
9100 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9101 	 *            reset, as in 4 port device they might still be owned
9102 	 *            by the MCP (there is only one leader per path).
9103 	 */
9104 	not_reset_mask1 =
9105 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9106 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9107 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9108 
9109 	not_reset_mask2 =
9110 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9111 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9112 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9113 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9114 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9115 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9116 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9117 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9118 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9119 		MISC_REGISTERS_RESET_REG_2_PGLC |
9120 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9121 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9122 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9123 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9124 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9125 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9126 
9127 	/*
9128 	 * Keep the following blocks in reset:
9129 	 *  - all xxMACs are handled by the bnx2x_link code.
9130 	 */
9131 	stay_reset2 =
9132 		MISC_REGISTERS_RESET_REG_2_XMAC |
9133 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9134 
9135 	/* Full reset masks according to the chip */
9136 	reset_mask1 = 0xffffffff;
9137 
9138 	if (CHIP_IS_E1(bp))
9139 		reset_mask2 = 0xffff;
9140 	else if (CHIP_IS_E1H(bp))
9141 		reset_mask2 = 0x1ffff;
9142 	else if (CHIP_IS_E2(bp))
9143 		reset_mask2 = 0xfffff;
9144 	else /* CHIP_IS_E3 */
9145 		reset_mask2 = 0x3ffffff;
9146 
9147 	/* Don't reset global blocks unless we need to */
9148 	if (!global)
9149 		reset_mask2 &= ~global_bits2;
9150 
9151 	/*
9152 	 * In case of attention in the QM, we need to reset PXP
9153 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9154 	 * because otherwise QM reset would release 'close the gates' shortly
9155 	 * before resetting the PXP, then the PSWRQ would send a write
9156 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9157 	 * read the payload data from PSWWR, but PSWWR would not
9158 	 * respond. The write queue in PGLUE would stuck, dmae commands
9159 	 * would not return. Therefore it's important to reset the second
9160 	 * reset register (containing the
9161 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9162 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9163 	 * bit).
9164 	 */
9165 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9166 	       reset_mask2 & (~not_reset_mask2));
9167 
9168 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9169 	       reset_mask1 & (~not_reset_mask1));
9170 
9171 	barrier();
9172 	mmiowb();
9173 
9174 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9175 	       reset_mask2 & (~stay_reset2));
9176 
9177 	barrier();
9178 	mmiowb();
9179 
9180 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9181 	mmiowb();
9182 }
9183 
9184 /**
9185  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9186  * It should get cleared in no more than 1s.
9187  *
9188  * @bp:	driver handle
9189  *
9190  * It should get cleared in no more than 1s. Returns 0 if
9191  * pending writes bit gets cleared.
9192  */
9193 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9194 {
9195 	u32 cnt = 1000;
9196 	u32 pend_bits = 0;
9197 
9198 	do {
9199 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9200 
9201 		if (pend_bits == 0)
9202 			break;
9203 
9204 		usleep_range(1000, 2000);
9205 	} while (cnt-- > 0);
9206 
9207 	if (cnt <= 0) {
9208 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9209 			  pend_bits);
9210 		return -EBUSY;
9211 	}
9212 
9213 	return 0;
9214 }
9215 
9216 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9217 {
9218 	int cnt = 1000;
9219 	u32 val = 0;
9220 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9221 	u32 tags_63_32 = 0;
9222 
9223 	/* Empty the Tetris buffer, wait for 1s */
9224 	do {
9225 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9226 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9227 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9228 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9229 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9230 		if (CHIP_IS_E3(bp))
9231 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9232 
9233 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9234 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9235 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9236 		    (pgl_exp_rom2 == 0xffffffff) &&
9237 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9238 			break;
9239 		usleep_range(1000, 2000);
9240 	} while (cnt-- > 0);
9241 
9242 	if (cnt <= 0) {
9243 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9244 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9245 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9246 			  pgl_exp_rom2);
9247 		return -EAGAIN;
9248 	}
9249 
9250 	barrier();
9251 
9252 	/* Close gates #2, #3 and #4 */
9253 	bnx2x_set_234_gates(bp, true);
9254 
9255 	/* Poll for IGU VQs for 57712 and newer chips */
9256 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9257 		return -EAGAIN;
9258 
9259 	/* TBD: Indicate that "process kill" is in progress to MCP */
9260 
9261 	/* Clear "unprepared" bit */
9262 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9263 	barrier();
9264 
9265 	/* Make sure all is written to the chip before the reset */
9266 	mmiowb();
9267 
9268 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9269 	 * PSWHST, GRC and PSWRD Tetris buffer.
9270 	 */
9271 	usleep_range(1000, 2000);
9272 
9273 	/* Prepare to chip reset: */
9274 	/* MCP */
9275 	if (global)
9276 		bnx2x_reset_mcp_prep(bp, &val);
9277 
9278 	/* PXP */
9279 	bnx2x_pxp_prep(bp);
9280 	barrier();
9281 
9282 	/* reset the chip */
9283 	bnx2x_process_kill_chip_reset(bp, global);
9284 	barrier();
9285 
9286 	/* Recover after reset: */
9287 	/* MCP */
9288 	if (global && bnx2x_reset_mcp_comp(bp, val))
9289 		return -EAGAIN;
9290 
9291 	/* TBD: Add resetting the NO_MCP mode DB here */
9292 
9293 	/* Open the gates #2, #3 and #4 */
9294 	bnx2x_set_234_gates(bp, false);
9295 
9296 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9297 	 * reset state, re-enable attentions. */
9298 
9299 	return 0;
9300 }
9301 
9302 static int bnx2x_leader_reset(struct bnx2x *bp)
9303 {
9304 	int rc = 0;
9305 	bool global = bnx2x_reset_is_global(bp);
9306 	u32 load_code;
9307 
9308 	/* if not going to reset MCP - load "fake" driver to reset HW while
9309 	 * driver is owner of the HW
9310 	 */
9311 	if (!global && !BP_NOMCP(bp)) {
9312 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9313 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9314 		if (!load_code) {
9315 			BNX2X_ERR("MCP response failure, aborting\n");
9316 			rc = -EAGAIN;
9317 			goto exit_leader_reset;
9318 		}
9319 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9320 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9321 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9322 			rc = -EAGAIN;
9323 			goto exit_leader_reset2;
9324 		}
9325 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9326 		if (!load_code) {
9327 			BNX2X_ERR("MCP response failure, aborting\n");
9328 			rc = -EAGAIN;
9329 			goto exit_leader_reset2;
9330 		}
9331 	}
9332 
9333 	/* Try to recover after the failure */
9334 	if (bnx2x_process_kill(bp, global)) {
9335 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9336 			  BP_PATH(bp));
9337 		rc = -EAGAIN;
9338 		goto exit_leader_reset2;
9339 	}
9340 
9341 	/*
9342 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9343 	 * state.
9344 	 */
9345 	bnx2x_set_reset_done(bp);
9346 	if (global)
9347 		bnx2x_clear_reset_global(bp);
9348 
9349 exit_leader_reset2:
9350 	/* unload "fake driver" if it was loaded */
9351 	if (!global && !BP_NOMCP(bp)) {
9352 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9353 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9354 	}
9355 exit_leader_reset:
9356 	bp->is_leader = 0;
9357 	bnx2x_release_leader_lock(bp);
9358 	smp_mb();
9359 	return rc;
9360 }
9361 
9362 static void bnx2x_recovery_failed(struct bnx2x *bp)
9363 {
9364 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9365 
9366 	/* Disconnect this device */
9367 	netif_device_detach(bp->dev);
9368 
9369 	/*
9370 	 * Block ifup for all function on this engine until "process kill"
9371 	 * or power cycle.
9372 	 */
9373 	bnx2x_set_reset_in_progress(bp);
9374 
9375 	/* Shut down the power */
9376 	bnx2x_set_power_state(bp, PCI_D3hot);
9377 
9378 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9379 
9380 	smp_mb();
9381 }
9382 
9383 /*
9384  * Assumption: runs under rtnl lock. This together with the fact
9385  * that it's called only from bnx2x_sp_rtnl() ensure that it
9386  * will never be called when netif_running(bp->dev) is false.
9387  */
9388 static void bnx2x_parity_recover(struct bnx2x *bp)
9389 {
9390 	bool global = false;
9391 	u32 error_recovered, error_unrecovered;
9392 	bool is_parity;
9393 
9394 	DP(NETIF_MSG_HW, "Handling parity\n");
9395 	while (1) {
9396 		switch (bp->recovery_state) {
9397 		case BNX2X_RECOVERY_INIT:
9398 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9399 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9400 			WARN_ON(!is_parity);
9401 
9402 			/* Try to get a LEADER_LOCK HW lock */
9403 			if (bnx2x_trylock_leader_lock(bp)) {
9404 				bnx2x_set_reset_in_progress(bp);
9405 				/*
9406 				 * Check if there is a global attention and if
9407 				 * there was a global attention, set the global
9408 				 * reset bit.
9409 				 */
9410 
9411 				if (global)
9412 					bnx2x_set_reset_global(bp);
9413 
9414 				bp->is_leader = 1;
9415 			}
9416 
9417 			/* Stop the driver */
9418 			/* If interface has been removed - break */
9419 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9420 				return;
9421 
9422 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9423 
9424 			/* Ensure "is_leader", MCP command sequence and
9425 			 * "recovery_state" update values are seen on other
9426 			 * CPUs.
9427 			 */
9428 			smp_mb();
9429 			break;
9430 
9431 		case BNX2X_RECOVERY_WAIT:
9432 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9433 			if (bp->is_leader) {
9434 				int other_engine = BP_PATH(bp) ? 0 : 1;
9435 				bool other_load_status =
9436 					bnx2x_get_load_status(bp, other_engine);
9437 				bool load_status =
9438 					bnx2x_get_load_status(bp, BP_PATH(bp));
9439 				global = bnx2x_reset_is_global(bp);
9440 
9441 				/*
9442 				 * In case of a parity in a global block, let
9443 				 * the first leader that performs a
9444 				 * leader_reset() reset the global blocks in
9445 				 * order to clear global attentions. Otherwise
9446 				 * the gates will remain closed for that
9447 				 * engine.
9448 				 */
9449 				if (load_status ||
9450 				    (global && other_load_status)) {
9451 					/* Wait until all other functions get
9452 					 * down.
9453 					 */
9454 					schedule_delayed_work(&bp->sp_rtnl_task,
9455 								HZ/10);
9456 					return;
9457 				} else {
9458 					/* If all other functions got down -
9459 					 * try to bring the chip back to
9460 					 * normal. In any case it's an exit
9461 					 * point for a leader.
9462 					 */
9463 					if (bnx2x_leader_reset(bp)) {
9464 						bnx2x_recovery_failed(bp);
9465 						return;
9466 					}
9467 
9468 					/* If we are here, means that the
9469 					 * leader has succeeded and doesn't
9470 					 * want to be a leader any more. Try
9471 					 * to continue as a none-leader.
9472 					 */
9473 					break;
9474 				}
9475 			} else { /* non-leader */
9476 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9477 					/* Try to get a LEADER_LOCK HW lock as
9478 					 * long as a former leader may have
9479 					 * been unloaded by the user or
9480 					 * released a leadership by another
9481 					 * reason.
9482 					 */
9483 					if (bnx2x_trylock_leader_lock(bp)) {
9484 						/* I'm a leader now! Restart a
9485 						 * switch case.
9486 						 */
9487 						bp->is_leader = 1;
9488 						break;
9489 					}
9490 
9491 					schedule_delayed_work(&bp->sp_rtnl_task,
9492 								HZ/10);
9493 					return;
9494 
9495 				} else {
9496 					/*
9497 					 * If there was a global attention, wait
9498 					 * for it to be cleared.
9499 					 */
9500 					if (bnx2x_reset_is_global(bp)) {
9501 						schedule_delayed_work(
9502 							&bp->sp_rtnl_task,
9503 							HZ/10);
9504 						return;
9505 					}
9506 
9507 					error_recovered =
9508 					  bp->eth_stats.recoverable_error;
9509 					error_unrecovered =
9510 					  bp->eth_stats.unrecoverable_error;
9511 					bp->recovery_state =
9512 						BNX2X_RECOVERY_NIC_LOADING;
9513 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9514 						error_unrecovered++;
9515 						netdev_err(bp->dev,
9516 							   "Recovery failed. Power cycle needed\n");
9517 						/* Disconnect this device */
9518 						netif_device_detach(bp->dev);
9519 						/* Shut down the power */
9520 						bnx2x_set_power_state(
9521 							bp, PCI_D3hot);
9522 						smp_mb();
9523 					} else {
9524 						bp->recovery_state =
9525 							BNX2X_RECOVERY_DONE;
9526 						error_recovered++;
9527 						smp_mb();
9528 					}
9529 					bp->eth_stats.recoverable_error =
9530 						error_recovered;
9531 					bp->eth_stats.unrecoverable_error =
9532 						error_unrecovered;
9533 
9534 					return;
9535 				}
9536 			}
9537 		default:
9538 			return;
9539 		}
9540 	}
9541 }
9542 
9543 static int bnx2x_close(struct net_device *dev);
9544 
9545 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9546  * scheduled on a general queue in order to prevent a dead lock.
9547  */
9548 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9549 {
9550 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9551 
9552 	rtnl_lock();
9553 
9554 	if (!netif_running(bp->dev)) {
9555 		rtnl_unlock();
9556 		return;
9557 	}
9558 
9559 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9560 #ifdef BNX2X_STOP_ON_ERROR
9561 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9562 			  "you will need to reboot when done\n");
9563 		goto sp_rtnl_not_reset;
9564 #endif
9565 		/*
9566 		 * Clear all pending SP commands as we are going to reset the
9567 		 * function anyway.
9568 		 */
9569 		bp->sp_rtnl_state = 0;
9570 		smp_mb();
9571 
9572 		bnx2x_parity_recover(bp);
9573 
9574 		rtnl_unlock();
9575 		return;
9576 	}
9577 
9578 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9579 #ifdef BNX2X_STOP_ON_ERROR
9580 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9581 			  "you will need to reboot when done\n");
9582 		goto sp_rtnl_not_reset;
9583 #endif
9584 
9585 		/*
9586 		 * Clear all pending SP commands as we are going to reset the
9587 		 * function anyway.
9588 		 */
9589 		bp->sp_rtnl_state = 0;
9590 		smp_mb();
9591 
9592 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9593 		bnx2x_nic_load(bp, LOAD_NORMAL);
9594 
9595 		rtnl_unlock();
9596 		return;
9597 	}
9598 #ifdef BNX2X_STOP_ON_ERROR
9599 sp_rtnl_not_reset:
9600 #endif
9601 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9602 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9603 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9604 		bnx2x_after_function_update(bp);
9605 	/*
9606 	 * in case of fan failure we need to reset id if the "stop on error"
9607 	 * debug flag is set, since we trying to prevent permanent overheating
9608 	 * damage
9609 	 */
9610 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9611 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9612 		netif_device_detach(bp->dev);
9613 		bnx2x_close(bp->dev);
9614 		rtnl_unlock();
9615 		return;
9616 	}
9617 
9618 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9619 		DP(BNX2X_MSG_SP,
9620 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
9621 		bnx2x_vfpf_set_mcast(bp->dev);
9622 	}
9623 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9624 			       &bp->sp_rtnl_state)){
9625 		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9626 			bnx2x_tx_disable(bp);
9627 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9628 		}
9629 	}
9630 
9631 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
9632 			       &bp->sp_rtnl_state)) {
9633 		DP(BNX2X_MSG_SP,
9634 		   "sending set storm rx mode vf pf channel message from rtnl sp-task\n");
9635 		bnx2x_vfpf_storm_rx_mode(bp);
9636 	}
9637 
9638 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9639 			       &bp->sp_rtnl_state))
9640 		bnx2x_pf_set_vfs_vlan(bp);
9641 
9642 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
9643 	 * can be called from other contexts as well)
9644 	 */
9645 	rtnl_unlock();
9646 
9647 	/* enable SR-IOV if applicable */
9648 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9649 					       &bp->sp_rtnl_state)) {
9650 		bnx2x_disable_sriov(bp);
9651 		bnx2x_enable_sriov(bp);
9652 	}
9653 }
9654 
9655 static void bnx2x_period_task(struct work_struct *work)
9656 {
9657 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9658 
9659 	if (!netif_running(bp->dev))
9660 		goto period_task_exit;
9661 
9662 	if (CHIP_REV_IS_SLOW(bp)) {
9663 		BNX2X_ERR("period task called on emulation, ignoring\n");
9664 		goto period_task_exit;
9665 	}
9666 
9667 	bnx2x_acquire_phy_lock(bp);
9668 	/*
9669 	 * The barrier is needed to ensure the ordering between the writing to
9670 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9671 	 * the reading here.
9672 	 */
9673 	smp_mb();
9674 	if (bp->port.pmf) {
9675 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9676 
9677 		/* Re-queue task in 1 sec */
9678 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9679 	}
9680 
9681 	bnx2x_release_phy_lock(bp);
9682 period_task_exit:
9683 	return;
9684 }
9685 
9686 /*
9687  * Init service functions
9688  */
9689 
9690 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9691 {
9692 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9693 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9694 	return base + (BP_ABS_FUNC(bp)) * stride;
9695 }
9696 
9697 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9698 					struct bnx2x_mac_vals *vals)
9699 {
9700 	u32 val, base_addr, offset, mask, reset_reg;
9701 	bool mac_stopped = false;
9702 	u8 port = BP_PORT(bp);
9703 
9704 	/* reset addresses as they also mark which values were changed */
9705 	vals->bmac_addr = 0;
9706 	vals->umac_addr = 0;
9707 	vals->xmac_addr = 0;
9708 	vals->emac_addr = 0;
9709 
9710 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9711 
9712 	if (!CHIP_IS_E3(bp)) {
9713 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9714 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9715 		if ((mask & reset_reg) && val) {
9716 			u32 wb_data[2];
9717 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9718 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9719 						: NIG_REG_INGRESS_BMAC0_MEM;
9720 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9721 						: BIGMAC_REGISTER_BMAC_CONTROL;
9722 
9723 			/*
9724 			 * use rd/wr since we cannot use dmae. This is safe
9725 			 * since MCP won't access the bus due to the request
9726 			 * to unload, and no function on the path can be
9727 			 * loaded at this time.
9728 			 */
9729 			wb_data[0] = REG_RD(bp, base_addr + offset);
9730 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9731 			vals->bmac_addr = base_addr + offset;
9732 			vals->bmac_val[0] = wb_data[0];
9733 			vals->bmac_val[1] = wb_data[1];
9734 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9735 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
9736 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9737 		}
9738 		BNX2X_DEV_INFO("Disable emac Rx\n");
9739 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9740 		vals->emac_val = REG_RD(bp, vals->emac_addr);
9741 		REG_WR(bp, vals->emac_addr, 0);
9742 		mac_stopped = true;
9743 	} else {
9744 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9745 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9746 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9747 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9748 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9749 			       val & ~(1 << 1));
9750 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9751 			       val | (1 << 1));
9752 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9753 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9754 			REG_WR(bp, vals->xmac_addr, 0);
9755 			mac_stopped = true;
9756 		}
9757 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9758 		if (mask & reset_reg) {
9759 			BNX2X_DEV_INFO("Disable umac Rx\n");
9760 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9761 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9762 			vals->umac_val = REG_RD(bp, vals->umac_addr);
9763 			REG_WR(bp, vals->umac_addr, 0);
9764 			mac_stopped = true;
9765 		}
9766 	}
9767 
9768 	if (mac_stopped)
9769 		msleep(20);
9770 }
9771 
9772 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9773 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9774 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9775 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9776 
9777 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9778 {
9779 	u16 rcq, bd;
9780 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9781 
9782 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9783 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9784 
9785 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9786 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9787 
9788 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9789 		       port, bd, rcq);
9790 }
9791 
9792 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9793 {
9794 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9795 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9796 	if (!rc) {
9797 		BNX2X_ERR("MCP response failure, aborting\n");
9798 		return -EBUSY;
9799 	}
9800 
9801 	return 0;
9802 }
9803 
9804 static struct bnx2x_prev_path_list *
9805 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
9806 {
9807 	struct bnx2x_prev_path_list *tmp_list;
9808 
9809 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9810 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9811 		    bp->pdev->bus->number == tmp_list->bus &&
9812 		    BP_PATH(bp) == tmp_list->path)
9813 			return tmp_list;
9814 
9815 	return NULL;
9816 }
9817 
9818 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9819 {
9820 	struct bnx2x_prev_path_list *tmp_list;
9821 	int rc;
9822 
9823 	rc = down_interruptible(&bnx2x_prev_sem);
9824 	if (rc) {
9825 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9826 		return rc;
9827 	}
9828 
9829 	tmp_list = bnx2x_prev_path_get_entry(bp);
9830 	if (tmp_list) {
9831 		tmp_list->aer = 1;
9832 		rc = 0;
9833 	} else {
9834 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9835 			  BP_PATH(bp));
9836 	}
9837 
9838 	up(&bnx2x_prev_sem);
9839 
9840 	return rc;
9841 }
9842 
9843 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9844 {
9845 	struct bnx2x_prev_path_list *tmp_list;
9846 	int rc = false;
9847 
9848 	if (down_trylock(&bnx2x_prev_sem))
9849 		return false;
9850 
9851 	tmp_list = bnx2x_prev_path_get_entry(bp);
9852 	if (tmp_list) {
9853 		if (tmp_list->aer) {
9854 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9855 			   BP_PATH(bp));
9856 		} else {
9857 			rc = true;
9858 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9859 				       BP_PATH(bp));
9860 		}
9861 	}
9862 
9863 	up(&bnx2x_prev_sem);
9864 
9865 	return rc;
9866 }
9867 
9868 bool bnx2x_port_after_undi(struct bnx2x *bp)
9869 {
9870 	struct bnx2x_prev_path_list *entry;
9871 	bool val;
9872 
9873 	down(&bnx2x_prev_sem);
9874 
9875 	entry = bnx2x_prev_path_get_entry(bp);
9876 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9877 
9878 	up(&bnx2x_prev_sem);
9879 
9880 	return val;
9881 }
9882 
9883 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9884 {
9885 	struct bnx2x_prev_path_list *tmp_list;
9886 	int rc;
9887 
9888 	rc = down_interruptible(&bnx2x_prev_sem);
9889 	if (rc) {
9890 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9891 		return rc;
9892 	}
9893 
9894 	/* Check whether the entry for this path already exists */
9895 	tmp_list = bnx2x_prev_path_get_entry(bp);
9896 	if (tmp_list) {
9897 		if (!tmp_list->aer) {
9898 			BNX2X_ERR("Re-Marking the path.\n");
9899 		} else {
9900 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9901 			   BP_PATH(bp));
9902 			tmp_list->aer = 0;
9903 		}
9904 		up(&bnx2x_prev_sem);
9905 		return 0;
9906 	}
9907 	up(&bnx2x_prev_sem);
9908 
9909 	/* Create an entry for this path and add it */
9910 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9911 	if (!tmp_list) {
9912 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9913 		return -ENOMEM;
9914 	}
9915 
9916 	tmp_list->bus = bp->pdev->bus->number;
9917 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9918 	tmp_list->path = BP_PATH(bp);
9919 	tmp_list->aer = 0;
9920 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9921 
9922 	rc = down_interruptible(&bnx2x_prev_sem);
9923 	if (rc) {
9924 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9925 		kfree(tmp_list);
9926 	} else {
9927 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9928 		   BP_PATH(bp));
9929 		list_add(&tmp_list->list, &bnx2x_prev_list);
9930 		up(&bnx2x_prev_sem);
9931 	}
9932 
9933 	return rc;
9934 }
9935 
9936 static int bnx2x_do_flr(struct bnx2x *bp)
9937 {
9938 	int i;
9939 	u16 status;
9940 	struct pci_dev *dev = bp->pdev;
9941 
9942 	if (CHIP_IS_E1x(bp)) {
9943 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9944 		return -EINVAL;
9945 	}
9946 
9947 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9948 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9949 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9950 			  bp->common.bc_ver);
9951 		return -EINVAL;
9952 	}
9953 
9954 	/* Wait for Transaction Pending bit clean */
9955 	for (i = 0; i < 4; i++) {
9956 		if (i)
9957 			msleep((1 << (i - 1)) * 100);
9958 
9959 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9960 		if (!(status & PCI_EXP_DEVSTA_TRPND))
9961 			goto clear;
9962 	}
9963 
9964 	dev_err(&dev->dev,
9965 		"transaction is not cleared; proceeding with reset anyway\n");
9966 
9967 clear:
9968 
9969 	BNX2X_DEV_INFO("Initiating FLR\n");
9970 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9971 
9972 	return 0;
9973 }
9974 
9975 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9976 {
9977 	int rc;
9978 
9979 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
9980 
9981 	/* Test if previous unload process was already finished for this path */
9982 	if (bnx2x_prev_is_path_marked(bp))
9983 		return bnx2x_prev_mcp_done(bp);
9984 
9985 	BNX2X_DEV_INFO("Path is unmarked\n");
9986 
9987 	/* If function has FLR capabilities, and existing FW version matches
9988 	 * the one required, then FLR will be sufficient to clean any residue
9989 	 * left by previous driver
9990 	 */
9991 	rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9992 
9993 	if (!rc) {
9994 		/* fw version is good */
9995 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9996 		rc = bnx2x_do_flr(bp);
9997 	}
9998 
9999 	if (!rc) {
10000 		/* FLR was performed */
10001 		BNX2X_DEV_INFO("FLR successful\n");
10002 		return 0;
10003 	}
10004 
10005 	BNX2X_DEV_INFO("Could not FLR\n");
10006 
10007 	/* Close the MCP request, return failure*/
10008 	rc = bnx2x_prev_mcp_done(bp);
10009 	if (!rc)
10010 		rc = BNX2X_PREV_WAIT_NEEDED;
10011 
10012 	return rc;
10013 }
10014 
10015 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10016 {
10017 	u32 reset_reg, tmp_reg = 0, rc;
10018 	bool prev_undi = false;
10019 	struct bnx2x_mac_vals mac_vals;
10020 
10021 	/* It is possible a previous function received 'common' answer,
10022 	 * but hasn't loaded yet, therefore creating a scenario of
10023 	 * multiple functions receiving 'common' on the same path.
10024 	 */
10025 	BNX2X_DEV_INFO("Common unload Flow\n");
10026 
10027 	memset(&mac_vals, 0, sizeof(mac_vals));
10028 
10029 	if (bnx2x_prev_is_path_marked(bp))
10030 		return bnx2x_prev_mcp_done(bp);
10031 
10032 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10033 
10034 	/* Reset should be performed after BRB is emptied */
10035 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10036 		u32 timer_count = 1000;
10037 
10038 		/* Close the MAC Rx to prevent BRB from filling up */
10039 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10040 
10041 		/* close LLH filters towards the BRB */
10042 		bnx2x_set_rx_filter(&bp->link_params, 0);
10043 
10044 		/* Check if the UNDI driver was previously loaded
10045 		 * UNDI driver initializes CID offset for normal bell to 0x7
10046 		 */
10047 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10048 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10049 			if (tmp_reg == 0x7) {
10050 				BNX2X_DEV_INFO("UNDI previously loaded\n");
10051 				prev_undi = true;
10052 				/* clear the UNDI indication */
10053 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10054 				/* clear possible idle check errors */
10055 				REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10056 			}
10057 		}
10058 		if (!CHIP_IS_E1x(bp))
10059 			/* block FW from writing to host */
10060 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10061 
10062 		/* wait until BRB is empty */
10063 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10064 		while (timer_count) {
10065 			u32 prev_brb = tmp_reg;
10066 
10067 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10068 			if (!tmp_reg)
10069 				break;
10070 
10071 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10072 
10073 			/* reset timer as long as BRB actually gets emptied */
10074 			if (prev_brb > tmp_reg)
10075 				timer_count = 1000;
10076 			else
10077 				timer_count--;
10078 
10079 			/* If UNDI resides in memory, manually increment it */
10080 			if (prev_undi)
10081 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10082 
10083 			udelay(10);
10084 		}
10085 
10086 		if (!timer_count)
10087 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10088 	}
10089 
10090 	/* No packets are in the pipeline, path is ready for reset */
10091 	bnx2x_reset_common(bp);
10092 
10093 	if (mac_vals.xmac_addr)
10094 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10095 	if (mac_vals.umac_addr)
10096 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10097 	if (mac_vals.emac_addr)
10098 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10099 	if (mac_vals.bmac_addr) {
10100 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10101 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10102 	}
10103 
10104 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10105 	if (rc) {
10106 		bnx2x_prev_mcp_done(bp);
10107 		return rc;
10108 	}
10109 
10110 	return bnx2x_prev_mcp_done(bp);
10111 }
10112 
10113 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10114  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10115  * the addresses of the transaction, resulting in was-error bit set in the pci
10116  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10117  * to clear the interrupt which detected this from the pglueb and the was done
10118  * bit
10119  */
10120 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10121 {
10122 	if (!CHIP_IS_E1x(bp)) {
10123 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10124 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10125 			DP(BNX2X_MSG_SP,
10126 			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10127 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10128 			       1 << BP_FUNC(bp));
10129 		}
10130 	}
10131 }
10132 
10133 static int bnx2x_prev_unload(struct bnx2x *bp)
10134 {
10135 	int time_counter = 10;
10136 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10137 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10138 
10139 	/* clear hw from errors which may have resulted from an interrupted
10140 	 * dmae transaction.
10141 	 */
10142 	bnx2x_prev_interrupted_dmae(bp);
10143 
10144 	/* Release previously held locks */
10145 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10146 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10147 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10148 
10149 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10150 	if (hw_lock_val) {
10151 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10152 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10153 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10154 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10155 		}
10156 
10157 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10158 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10159 	} else
10160 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10161 
10162 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10163 		BNX2X_DEV_INFO("Release previously held alr\n");
10164 		bnx2x_release_alr(bp);
10165 	}
10166 
10167 	do {
10168 		int aer = 0;
10169 		/* Lock MCP using an unload request */
10170 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10171 		if (!fw) {
10172 			BNX2X_ERR("MCP response failure, aborting\n");
10173 			rc = -EBUSY;
10174 			break;
10175 		}
10176 
10177 		rc = down_interruptible(&bnx2x_prev_sem);
10178 		if (rc) {
10179 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10180 				  rc);
10181 		} else {
10182 			/* If Path is marked by EEH, ignore unload status */
10183 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10184 				 bnx2x_prev_path_get_entry(bp)->aer);
10185 			up(&bnx2x_prev_sem);
10186 		}
10187 
10188 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10189 			rc = bnx2x_prev_unload_common(bp);
10190 			break;
10191 		}
10192 
10193 		/* non-common reply from MCP might require looping */
10194 		rc = bnx2x_prev_unload_uncommon(bp);
10195 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10196 			break;
10197 
10198 		msleep(20);
10199 	} while (--time_counter);
10200 
10201 	if (!time_counter || rc) {
10202 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
10203 		rc = -EBUSY;
10204 	}
10205 
10206 	/* Mark function if its port was used to boot from SAN */
10207 	if (bnx2x_port_after_undi(bp))
10208 		bp->link_params.feature_config_flags |=
10209 			FEATURE_CONFIG_BOOT_FROM_SAN;
10210 
10211 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10212 
10213 	return rc;
10214 }
10215 
10216 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10217 {
10218 	u32 val, val2, val3, val4, id, boot_mode;
10219 	u16 pmc;
10220 
10221 	/* Get the chip revision id and number. */
10222 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10223 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10224 	id = ((val & 0xffff) << 16);
10225 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10226 	id |= ((val & 0xf) << 12);
10227 
10228 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10229 	 * the configuration space (so we need to reg_rd)
10230 	 */
10231 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10232 	id |= (((val >> 24) & 0xf) << 4);
10233 	val = REG_RD(bp, MISC_REG_BOND_ID);
10234 	id |= (val & 0xf);
10235 	bp->common.chip_id = id;
10236 
10237 	/* force 57811 according to MISC register */
10238 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10239 		if (CHIP_IS_57810(bp))
10240 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10241 				(bp->common.chip_id & 0x0000FFFF);
10242 		else if (CHIP_IS_57810_MF(bp))
10243 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10244 				(bp->common.chip_id & 0x0000FFFF);
10245 		bp->common.chip_id |= 0x1;
10246 	}
10247 
10248 	/* Set doorbell size */
10249 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10250 
10251 	if (!CHIP_IS_E1x(bp)) {
10252 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10253 		if ((val & 1) == 0)
10254 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10255 		else
10256 			val = (val >> 1) & 1;
10257 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10258 						       "2_PORT_MODE");
10259 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10260 						 CHIP_2_PORT_MODE;
10261 
10262 		if (CHIP_MODE_IS_4_PORT(bp))
10263 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10264 		else
10265 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10266 	} else {
10267 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10268 		bp->pfid = bp->pf_num;			/* 0..7 */
10269 	}
10270 
10271 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10272 
10273 	bp->link_params.chip_id = bp->common.chip_id;
10274 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10275 
10276 	val = (REG_RD(bp, 0x2874) & 0x55);
10277 	if ((bp->common.chip_id & 0x1) ||
10278 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10279 		bp->flags |= ONE_PORT_FLAG;
10280 		BNX2X_DEV_INFO("single port device\n");
10281 	}
10282 
10283 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10284 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10285 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10286 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10287 		       bp->common.flash_size, bp->common.flash_size);
10288 
10289 	bnx2x_init_shmem(bp);
10290 
10291 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10292 					MISC_REG_GENERIC_CR_1 :
10293 					MISC_REG_GENERIC_CR_0));
10294 
10295 	bp->link_params.shmem_base = bp->common.shmem_base;
10296 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10297 	if (SHMEM2_RD(bp, size) >
10298 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10299 		bp->link_params.lfa_base =
10300 		REG_RD(bp, bp->common.shmem2_base +
10301 		       (u32)offsetof(struct shmem2_region,
10302 				     lfa_host_addr[BP_PORT(bp)]));
10303 	else
10304 		bp->link_params.lfa_base = 0;
10305 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10306 		       bp->common.shmem_base, bp->common.shmem2_base);
10307 
10308 	if (!bp->common.shmem_base) {
10309 		BNX2X_DEV_INFO("MCP not active\n");
10310 		bp->flags |= NO_MCP_FLAG;
10311 		return;
10312 	}
10313 
10314 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10315 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10316 
10317 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10318 					SHARED_HW_CFG_LED_MODE_MASK) >>
10319 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10320 
10321 	bp->link_params.feature_config_flags = 0;
10322 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10323 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10324 		bp->link_params.feature_config_flags |=
10325 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10326 	else
10327 		bp->link_params.feature_config_flags &=
10328 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10329 
10330 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10331 	bp->common.bc_ver = val;
10332 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10333 	if (val < BNX2X_BC_VER) {
10334 		/* for now only warn
10335 		 * later we might need to enforce this */
10336 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10337 			  BNX2X_BC_VER, val);
10338 	}
10339 	bp->link_params.feature_config_flags |=
10340 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10341 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10342 
10343 	bp->link_params.feature_config_flags |=
10344 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10345 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10346 	bp->link_params.feature_config_flags |=
10347 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10348 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10349 	bp->link_params.feature_config_flags |=
10350 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10351 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10352 
10353 	bp->link_params.feature_config_flags |=
10354 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10355 		FEATURE_CONFIG_MT_SUPPORT : 0;
10356 
10357 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10358 			BC_SUPPORTS_PFC_STATS : 0;
10359 
10360 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10361 			BC_SUPPORTS_FCOE_FEATURES : 0;
10362 
10363 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10364 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10365 	boot_mode = SHMEM_RD(bp,
10366 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10367 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10368 	switch (boot_mode) {
10369 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10370 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10371 		break;
10372 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10373 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10374 		break;
10375 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10376 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10377 		break;
10378 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10379 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10380 		break;
10381 	}
10382 
10383 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10384 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10385 
10386 	BNX2X_DEV_INFO("%sWoL capable\n",
10387 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10388 
10389 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10390 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10391 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10392 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10393 
10394 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10395 		 val, val2, val3, val4);
10396 }
10397 
10398 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10399 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10400 
10401 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10402 {
10403 	int pfid = BP_FUNC(bp);
10404 	int igu_sb_id;
10405 	u32 val;
10406 	u8 fid, igu_sb_cnt = 0;
10407 
10408 	bp->igu_base_sb = 0xff;
10409 	if (CHIP_INT_MODE_IS_BC(bp)) {
10410 		int vn = BP_VN(bp);
10411 		igu_sb_cnt = bp->igu_sb_cnt;
10412 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10413 			FP_SB_MAX_E1x;
10414 
10415 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10416 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10417 
10418 		return 0;
10419 	}
10420 
10421 	/* IGU in normal mode - read CAM */
10422 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10423 	     igu_sb_id++) {
10424 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10425 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10426 			continue;
10427 		fid = IGU_FID(val);
10428 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10429 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10430 				continue;
10431 			if (IGU_VEC(val) == 0)
10432 				/* default status block */
10433 				bp->igu_dsb_id = igu_sb_id;
10434 			else {
10435 				if (bp->igu_base_sb == 0xff)
10436 					bp->igu_base_sb = igu_sb_id;
10437 				igu_sb_cnt++;
10438 			}
10439 		}
10440 	}
10441 
10442 #ifdef CONFIG_PCI_MSI
10443 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10444 	 * optional that number of CAM entries will not be equal to the value
10445 	 * advertised in PCI.
10446 	 * Driver should use the minimal value of both as the actual status
10447 	 * block count
10448 	 */
10449 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10450 #endif
10451 
10452 	if (igu_sb_cnt == 0) {
10453 		BNX2X_ERR("CAM configuration error\n");
10454 		return -EINVAL;
10455 	}
10456 
10457 	return 0;
10458 }
10459 
10460 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10461 {
10462 	int cfg_size = 0, idx, port = BP_PORT(bp);
10463 
10464 	/* Aggregation of supported attributes of all external phys */
10465 	bp->port.supported[0] = 0;
10466 	bp->port.supported[1] = 0;
10467 	switch (bp->link_params.num_phys) {
10468 	case 1:
10469 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10470 		cfg_size = 1;
10471 		break;
10472 	case 2:
10473 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10474 		cfg_size = 1;
10475 		break;
10476 	case 3:
10477 		if (bp->link_params.multi_phy_config &
10478 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10479 			bp->port.supported[1] =
10480 				bp->link_params.phy[EXT_PHY1].supported;
10481 			bp->port.supported[0] =
10482 				bp->link_params.phy[EXT_PHY2].supported;
10483 		} else {
10484 			bp->port.supported[0] =
10485 				bp->link_params.phy[EXT_PHY1].supported;
10486 			bp->port.supported[1] =
10487 				bp->link_params.phy[EXT_PHY2].supported;
10488 		}
10489 		cfg_size = 2;
10490 		break;
10491 	}
10492 
10493 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10494 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10495 			   SHMEM_RD(bp,
10496 			   dev_info.port_hw_config[port].external_phy_config),
10497 			   SHMEM_RD(bp,
10498 			   dev_info.port_hw_config[port].external_phy_config2));
10499 			return;
10500 	}
10501 
10502 	if (CHIP_IS_E3(bp))
10503 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10504 	else {
10505 		switch (switch_cfg) {
10506 		case SWITCH_CFG_1G:
10507 			bp->port.phy_addr = REG_RD(
10508 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10509 			break;
10510 		case SWITCH_CFG_10G:
10511 			bp->port.phy_addr = REG_RD(
10512 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10513 			break;
10514 		default:
10515 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10516 				  bp->port.link_config[0]);
10517 			return;
10518 		}
10519 	}
10520 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10521 	/* mask what we support according to speed_cap_mask per configuration */
10522 	for (idx = 0; idx < cfg_size; idx++) {
10523 		if (!(bp->link_params.speed_cap_mask[idx] &
10524 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10525 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10526 
10527 		if (!(bp->link_params.speed_cap_mask[idx] &
10528 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10529 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10530 
10531 		if (!(bp->link_params.speed_cap_mask[idx] &
10532 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10533 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10534 
10535 		if (!(bp->link_params.speed_cap_mask[idx] &
10536 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10537 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10538 
10539 		if (!(bp->link_params.speed_cap_mask[idx] &
10540 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10541 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10542 						     SUPPORTED_1000baseT_Full);
10543 
10544 		if (!(bp->link_params.speed_cap_mask[idx] &
10545 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10546 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10547 
10548 		if (!(bp->link_params.speed_cap_mask[idx] &
10549 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10550 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10551 
10552 		if (!(bp->link_params.speed_cap_mask[idx] &
10553 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10554 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10555 	}
10556 
10557 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10558 		       bp->port.supported[1]);
10559 }
10560 
10561 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10562 {
10563 	u32 link_config, idx, cfg_size = 0;
10564 	bp->port.advertising[0] = 0;
10565 	bp->port.advertising[1] = 0;
10566 	switch (bp->link_params.num_phys) {
10567 	case 1:
10568 	case 2:
10569 		cfg_size = 1;
10570 		break;
10571 	case 3:
10572 		cfg_size = 2;
10573 		break;
10574 	}
10575 	for (idx = 0; idx < cfg_size; idx++) {
10576 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10577 		link_config = bp->port.link_config[idx];
10578 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10579 		case PORT_FEATURE_LINK_SPEED_AUTO:
10580 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10581 				bp->link_params.req_line_speed[idx] =
10582 					SPEED_AUTO_NEG;
10583 				bp->port.advertising[idx] |=
10584 					bp->port.supported[idx];
10585 				if (bp->link_params.phy[EXT_PHY1].type ==
10586 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10587 					bp->port.advertising[idx] |=
10588 					(SUPPORTED_100baseT_Half |
10589 					 SUPPORTED_100baseT_Full);
10590 			} else {
10591 				/* force 10G, no AN */
10592 				bp->link_params.req_line_speed[idx] =
10593 					SPEED_10000;
10594 				bp->port.advertising[idx] |=
10595 					(ADVERTISED_10000baseT_Full |
10596 					 ADVERTISED_FIBRE);
10597 				continue;
10598 			}
10599 			break;
10600 
10601 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10602 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10603 				bp->link_params.req_line_speed[idx] =
10604 					SPEED_10;
10605 				bp->port.advertising[idx] |=
10606 					(ADVERTISED_10baseT_Full |
10607 					 ADVERTISED_TP);
10608 			} else {
10609 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10610 					    link_config,
10611 				    bp->link_params.speed_cap_mask[idx]);
10612 				return;
10613 			}
10614 			break;
10615 
10616 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10617 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10618 				bp->link_params.req_line_speed[idx] =
10619 					SPEED_10;
10620 				bp->link_params.req_duplex[idx] =
10621 					DUPLEX_HALF;
10622 				bp->port.advertising[idx] |=
10623 					(ADVERTISED_10baseT_Half |
10624 					 ADVERTISED_TP);
10625 			} else {
10626 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10627 					    link_config,
10628 					  bp->link_params.speed_cap_mask[idx]);
10629 				return;
10630 			}
10631 			break;
10632 
10633 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10634 			if (bp->port.supported[idx] &
10635 			    SUPPORTED_100baseT_Full) {
10636 				bp->link_params.req_line_speed[idx] =
10637 					SPEED_100;
10638 				bp->port.advertising[idx] |=
10639 					(ADVERTISED_100baseT_Full |
10640 					 ADVERTISED_TP);
10641 			} else {
10642 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10643 					    link_config,
10644 					  bp->link_params.speed_cap_mask[idx]);
10645 				return;
10646 			}
10647 			break;
10648 
10649 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10650 			if (bp->port.supported[idx] &
10651 			    SUPPORTED_100baseT_Half) {
10652 				bp->link_params.req_line_speed[idx] =
10653 								SPEED_100;
10654 				bp->link_params.req_duplex[idx] =
10655 								DUPLEX_HALF;
10656 				bp->port.advertising[idx] |=
10657 					(ADVERTISED_100baseT_Half |
10658 					 ADVERTISED_TP);
10659 			} else {
10660 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10661 				    link_config,
10662 				    bp->link_params.speed_cap_mask[idx]);
10663 				return;
10664 			}
10665 			break;
10666 
10667 		case PORT_FEATURE_LINK_SPEED_1G:
10668 			if (bp->port.supported[idx] &
10669 			    SUPPORTED_1000baseT_Full) {
10670 				bp->link_params.req_line_speed[idx] =
10671 					SPEED_1000;
10672 				bp->port.advertising[idx] |=
10673 					(ADVERTISED_1000baseT_Full |
10674 					 ADVERTISED_TP);
10675 			} else {
10676 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10677 				    link_config,
10678 				    bp->link_params.speed_cap_mask[idx]);
10679 				return;
10680 			}
10681 			break;
10682 
10683 		case PORT_FEATURE_LINK_SPEED_2_5G:
10684 			if (bp->port.supported[idx] &
10685 			    SUPPORTED_2500baseX_Full) {
10686 				bp->link_params.req_line_speed[idx] =
10687 					SPEED_2500;
10688 				bp->port.advertising[idx] |=
10689 					(ADVERTISED_2500baseX_Full |
10690 						ADVERTISED_TP);
10691 			} else {
10692 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10693 				    link_config,
10694 				    bp->link_params.speed_cap_mask[idx]);
10695 				return;
10696 			}
10697 			break;
10698 
10699 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10700 			if (bp->port.supported[idx] &
10701 			    SUPPORTED_10000baseT_Full) {
10702 				bp->link_params.req_line_speed[idx] =
10703 					SPEED_10000;
10704 				bp->port.advertising[idx] |=
10705 					(ADVERTISED_10000baseT_Full |
10706 						ADVERTISED_FIBRE);
10707 			} else {
10708 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10709 				    link_config,
10710 				    bp->link_params.speed_cap_mask[idx]);
10711 				return;
10712 			}
10713 			break;
10714 		case PORT_FEATURE_LINK_SPEED_20G:
10715 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10716 
10717 			break;
10718 		default:
10719 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10720 				  link_config);
10721 				bp->link_params.req_line_speed[idx] =
10722 							SPEED_AUTO_NEG;
10723 				bp->port.advertising[idx] =
10724 						bp->port.supported[idx];
10725 			break;
10726 		}
10727 
10728 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10729 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10730 		if (bp->link_params.req_flow_ctrl[idx] ==
10731 		    BNX2X_FLOW_CTRL_AUTO) {
10732 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10733 				bp->link_params.req_flow_ctrl[idx] =
10734 							BNX2X_FLOW_CTRL_NONE;
10735 			else
10736 				bnx2x_set_requested_fc(bp);
10737 		}
10738 
10739 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10740 			       bp->link_params.req_line_speed[idx],
10741 			       bp->link_params.req_duplex[idx],
10742 			       bp->link_params.req_flow_ctrl[idx],
10743 			       bp->port.advertising[idx]);
10744 	}
10745 }
10746 
10747 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10748 {
10749 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
10750 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
10751 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10752 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10753 }
10754 
10755 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10756 {
10757 	int port = BP_PORT(bp);
10758 	u32 config;
10759 	u32 ext_phy_type, ext_phy_config, eee_mode;
10760 
10761 	bp->link_params.bp = bp;
10762 	bp->link_params.port = port;
10763 
10764 	bp->link_params.lane_config =
10765 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10766 
10767 	bp->link_params.speed_cap_mask[0] =
10768 		SHMEM_RD(bp,
10769 			 dev_info.port_hw_config[port].speed_capability_mask) &
10770 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10771 	bp->link_params.speed_cap_mask[1] =
10772 		SHMEM_RD(bp,
10773 			 dev_info.port_hw_config[port].speed_capability_mask2) &
10774 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10775 	bp->port.link_config[0] =
10776 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10777 
10778 	bp->port.link_config[1] =
10779 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10780 
10781 	bp->link_params.multi_phy_config =
10782 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10783 	/* If the device is capable of WoL, set the default state according
10784 	 * to the HW
10785 	 */
10786 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10787 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10788 		   (config & PORT_FEATURE_WOL_ENABLED));
10789 
10790 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10791 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10792 		bp->flags |= NO_ISCSI_FLAG;
10793 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10794 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10795 		bp->flags |= NO_FCOE_FLAG;
10796 
10797 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10798 		       bp->link_params.lane_config,
10799 		       bp->link_params.speed_cap_mask[0],
10800 		       bp->port.link_config[0]);
10801 
10802 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10803 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10804 	bnx2x_phy_probe(&bp->link_params);
10805 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10806 
10807 	bnx2x_link_settings_requested(bp);
10808 
10809 	/*
10810 	 * If connected directly, work with the internal PHY, otherwise, work
10811 	 * with the external PHY
10812 	 */
10813 	ext_phy_config =
10814 		SHMEM_RD(bp,
10815 			 dev_info.port_hw_config[port].external_phy_config);
10816 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10817 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10818 		bp->mdio.prtad = bp->port.phy_addr;
10819 
10820 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10821 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10822 		bp->mdio.prtad =
10823 			XGXS_EXT_PHY_ADDR(ext_phy_config);
10824 
10825 	/* Configure link feature according to nvram value */
10826 	eee_mode = (((SHMEM_RD(bp, dev_info.
10827 		      port_feature_config[port].eee_power_mode)) &
10828 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10829 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10830 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10831 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10832 					   EEE_MODE_ENABLE_LPI |
10833 					   EEE_MODE_OUTPUT_TIME;
10834 	} else {
10835 		bp->link_params.eee_mode = 0;
10836 	}
10837 }
10838 
10839 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10840 {
10841 	u32 no_flags = NO_ISCSI_FLAG;
10842 	int port = BP_PORT(bp);
10843 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10844 				drv_lic_key[port].max_iscsi_conn);
10845 
10846 	if (!CNIC_SUPPORT(bp)) {
10847 		bp->flags |= no_flags;
10848 		return;
10849 	}
10850 
10851 	/* Get the number of maximum allowed iSCSI connections */
10852 	bp->cnic_eth_dev.max_iscsi_conn =
10853 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10854 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10855 
10856 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10857 		       bp->cnic_eth_dev.max_iscsi_conn);
10858 
10859 	/*
10860 	 * If maximum allowed number of connections is zero -
10861 	 * disable the feature.
10862 	 */
10863 	if (!bp->cnic_eth_dev.max_iscsi_conn)
10864 		bp->flags |= no_flags;
10865 }
10866 
10867 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10868 {
10869 	/* Port info */
10870 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10871 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10872 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10873 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10874 
10875 	/* Node info */
10876 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10877 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10878 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10879 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10880 }
10881 
10882 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10883 {
10884 	u8 count = 0;
10885 
10886 	if (IS_MF(bp)) {
10887 		u8 fid;
10888 
10889 		/* iterate over absolute function ids for this path: */
10890 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10891 			if (IS_MF_SD(bp)) {
10892 				u32 cfg = MF_CFG_RD(bp,
10893 						    func_mf_config[fid].config);
10894 
10895 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10896 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10897 					    FUNC_MF_CFG_PROTOCOL_FCOE))
10898 					count++;
10899 			} else {
10900 				u32 cfg = MF_CFG_RD(bp,
10901 						    func_ext_config[fid].
10902 								      func_cfg);
10903 
10904 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10905 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10906 					count++;
10907 			}
10908 		}
10909 	} else { /* SF */
10910 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10911 
10912 		for (port = 0; port < port_cnt; port++) {
10913 			u32 lic = SHMEM_RD(bp,
10914 					   drv_lic_key[port].max_fcoe_conn) ^
10915 				  FW_ENCODE_32BIT_PATTERN;
10916 			if (lic)
10917 				count++;
10918 		}
10919 	}
10920 
10921 	return count;
10922 }
10923 
10924 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10925 {
10926 	int port = BP_PORT(bp);
10927 	int func = BP_ABS_FUNC(bp);
10928 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10929 				drv_lic_key[port].max_fcoe_conn);
10930 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
10931 
10932 	if (!CNIC_SUPPORT(bp)) {
10933 		bp->flags |= NO_FCOE_FLAG;
10934 		return;
10935 	}
10936 
10937 	/* Get the number of maximum allowed FCoE connections */
10938 	bp->cnic_eth_dev.max_fcoe_conn =
10939 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10940 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10941 
10942 	/* Calculate the number of maximum allowed FCoE tasks */
10943 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10944 
10945 	/* check if FCoE resources must be shared between different functions */
10946 	if (num_fcoe_func)
10947 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
10948 
10949 	/* Read the WWN: */
10950 	if (!IS_MF(bp)) {
10951 		/* Port info */
10952 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10953 			SHMEM_RD(bp,
10954 				 dev_info.port_hw_config[port].
10955 				 fcoe_wwn_port_name_upper);
10956 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10957 			SHMEM_RD(bp,
10958 				 dev_info.port_hw_config[port].
10959 				 fcoe_wwn_port_name_lower);
10960 
10961 		/* Node info */
10962 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10963 			SHMEM_RD(bp,
10964 				 dev_info.port_hw_config[port].
10965 				 fcoe_wwn_node_name_upper);
10966 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10967 			SHMEM_RD(bp,
10968 				 dev_info.port_hw_config[port].
10969 				 fcoe_wwn_node_name_lower);
10970 	} else if (!IS_MF_SD(bp)) {
10971 		/*
10972 		 * Read the WWN info only if the FCoE feature is enabled for
10973 		 * this function.
10974 		 */
10975 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10976 			bnx2x_get_ext_wwn_info(bp, func);
10977 
10978 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10979 		bnx2x_get_ext_wwn_info(bp, func);
10980 	}
10981 
10982 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10983 
10984 	/*
10985 	 * If maximum allowed number of connections is zero -
10986 	 * disable the feature.
10987 	 */
10988 	if (!bp->cnic_eth_dev.max_fcoe_conn)
10989 		bp->flags |= NO_FCOE_FLAG;
10990 }
10991 
10992 static void bnx2x_get_cnic_info(struct bnx2x *bp)
10993 {
10994 	/*
10995 	 * iSCSI may be dynamically disabled but reading
10996 	 * info here we will decrease memory usage by driver
10997 	 * if the feature is disabled for good
10998 	 */
10999 	bnx2x_get_iscsi_info(bp);
11000 	bnx2x_get_fcoe_info(bp);
11001 }
11002 
11003 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11004 {
11005 	u32 val, val2;
11006 	int func = BP_ABS_FUNC(bp);
11007 	int port = BP_PORT(bp);
11008 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11009 	u8 *fip_mac = bp->fip_mac;
11010 
11011 	if (IS_MF(bp)) {
11012 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11013 		 * FCoE MAC then the appropriate feature should be disabled.
11014 		 * In non SD mode features configuration comes from struct
11015 		 * func_ext_config.
11016 		 */
11017 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11018 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11019 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11020 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11021 						 iscsi_mac_addr_upper);
11022 				val = MF_CFG_RD(bp, func_ext_config[func].
11023 						iscsi_mac_addr_lower);
11024 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11025 				BNX2X_DEV_INFO
11026 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11027 			} else {
11028 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11029 			}
11030 
11031 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11032 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11033 						 fcoe_mac_addr_upper);
11034 				val = MF_CFG_RD(bp, func_ext_config[func].
11035 						fcoe_mac_addr_lower);
11036 				bnx2x_set_mac_buf(fip_mac, val, val2);
11037 				BNX2X_DEV_INFO
11038 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11039 			} else {
11040 				bp->flags |= NO_FCOE_FLAG;
11041 			}
11042 
11043 			bp->mf_ext_config = cfg;
11044 
11045 		} else { /* SD MODE */
11046 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11047 				/* use primary mac as iscsi mac */
11048 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11049 
11050 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11051 				BNX2X_DEV_INFO
11052 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11053 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11054 				/* use primary mac as fip mac */
11055 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11056 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11057 				BNX2X_DEV_INFO
11058 					("Read FIP MAC: %pM\n", fip_mac);
11059 			}
11060 		}
11061 
11062 		/* If this is a storage-only interface, use SAN mac as
11063 		 * primary MAC. Notice that for SD this is already the case,
11064 		 * as the SAN mac was copied from the primary MAC.
11065 		 */
11066 		if (IS_MF_FCOE_AFEX(bp))
11067 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11068 	} else {
11069 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11070 				iscsi_mac_upper);
11071 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11072 			       iscsi_mac_lower);
11073 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11074 
11075 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11076 				fcoe_fip_mac_upper);
11077 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11078 			       fcoe_fip_mac_lower);
11079 		bnx2x_set_mac_buf(fip_mac, val, val2);
11080 	}
11081 
11082 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11083 	if (!is_valid_ether_addr(iscsi_mac)) {
11084 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11085 		memset(iscsi_mac, 0, ETH_ALEN);
11086 	}
11087 
11088 	/* Disable FCoE if MAC configuration is invalid. */
11089 	if (!is_valid_ether_addr(fip_mac)) {
11090 		bp->flags |= NO_FCOE_FLAG;
11091 		memset(bp->fip_mac, 0, ETH_ALEN);
11092 	}
11093 }
11094 
11095 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11096 {
11097 	u32 val, val2;
11098 	int func = BP_ABS_FUNC(bp);
11099 	int port = BP_PORT(bp);
11100 
11101 	/* Zero primary MAC configuration */
11102 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
11103 
11104 	if (BP_NOMCP(bp)) {
11105 		BNX2X_ERROR("warning: random MAC workaround active\n");
11106 		eth_hw_addr_random(bp->dev);
11107 	} else if (IS_MF(bp)) {
11108 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11109 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11110 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11111 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11112 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11113 
11114 		if (CNIC_SUPPORT(bp))
11115 			bnx2x_get_cnic_mac_hwinfo(bp);
11116 	} else {
11117 		/* in SF read MACs from port configuration */
11118 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11119 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11120 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11121 
11122 		if (CNIC_SUPPORT(bp))
11123 			bnx2x_get_cnic_mac_hwinfo(bp);
11124 	}
11125 
11126 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11127 
11128 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11129 		dev_err(&bp->pdev->dev,
11130 			"bad Ethernet MAC address configuration: %pM\n"
11131 			"change it manually before bringing up the appropriate network interface\n",
11132 			bp->dev->dev_addr);
11133 }
11134 
11135 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11136 {
11137 	int tmp;
11138 	u32 cfg;
11139 
11140 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11141 		/* Take function: tmp = func */
11142 		tmp = BP_ABS_FUNC(bp);
11143 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11144 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11145 	} else {
11146 		/* Take port: tmp = port */
11147 		tmp = BP_PORT(bp);
11148 		cfg = SHMEM_RD(bp,
11149 			       dev_info.port_hw_config[tmp].generic_features);
11150 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11151 	}
11152 	return cfg;
11153 }
11154 
11155 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11156 {
11157 	int /*abs*/func = BP_ABS_FUNC(bp);
11158 	int vn;
11159 	u32 val = 0;
11160 	int rc = 0;
11161 
11162 	bnx2x_get_common_hwinfo(bp);
11163 
11164 	/*
11165 	 * initialize IGU parameters
11166 	 */
11167 	if (CHIP_IS_E1x(bp)) {
11168 		bp->common.int_block = INT_BLOCK_HC;
11169 
11170 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11171 		bp->igu_base_sb = 0;
11172 	} else {
11173 		bp->common.int_block = INT_BLOCK_IGU;
11174 
11175 		/* do not allow device reset during IGU info processing */
11176 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11177 
11178 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11179 
11180 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11181 			int tout = 5000;
11182 
11183 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11184 
11185 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11186 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11187 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11188 
11189 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11190 				tout--;
11191 				usleep_range(1000, 2000);
11192 			}
11193 
11194 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11195 				dev_err(&bp->pdev->dev,
11196 					"FORCING Normal Mode failed!!!\n");
11197 				bnx2x_release_hw_lock(bp,
11198 						      HW_LOCK_RESOURCE_RESET);
11199 				return -EPERM;
11200 			}
11201 		}
11202 
11203 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11204 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11205 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11206 		} else
11207 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11208 
11209 		rc = bnx2x_get_igu_cam_info(bp);
11210 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11211 		if (rc)
11212 			return rc;
11213 	}
11214 
11215 	/*
11216 	 * set base FW non-default (fast path) status block id, this value is
11217 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11218 	 * determine the id used by the FW.
11219 	 */
11220 	if (CHIP_IS_E1x(bp))
11221 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11222 	else /*
11223 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11224 	      * the same queue are indicated on the same IGU SB). So we prefer
11225 	      * FW and IGU SBs to be the same value.
11226 	      */
11227 		bp->base_fw_ndsb = bp->igu_base_sb;
11228 
11229 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11230 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11231 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11232 
11233 	/*
11234 	 * Initialize MF configuration
11235 	 */
11236 
11237 	bp->mf_ov = 0;
11238 	bp->mf_mode = 0;
11239 	vn = BP_VN(bp);
11240 
11241 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11242 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11243 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11244 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11245 
11246 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11247 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11248 		else
11249 			bp->common.mf_cfg_base = bp->common.shmem_base +
11250 				offsetof(struct shmem_region, func_mb) +
11251 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11252 		/*
11253 		 * get mf configuration:
11254 		 * 1. Existence of MF configuration
11255 		 * 2. MAC address must be legal (check only upper bytes)
11256 		 *    for  Switch-Independent mode;
11257 		 *    OVLAN must be legal for Switch-Dependent mode
11258 		 * 3. SF_MODE configures specific MF mode
11259 		 */
11260 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11261 			/* get mf configuration */
11262 			val = SHMEM_RD(bp,
11263 				       dev_info.shared_feature_config.config);
11264 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11265 
11266 			switch (val) {
11267 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11268 				val = MF_CFG_RD(bp, func_mf_config[func].
11269 						mac_upper);
11270 				/* check for legal mac (upper bytes)*/
11271 				if (val != 0xffff) {
11272 					bp->mf_mode = MULTI_FUNCTION_SI;
11273 					bp->mf_config[vn] = MF_CFG_RD(bp,
11274 						   func_mf_config[func].config);
11275 				} else
11276 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
11277 				break;
11278 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11279 				if ((!CHIP_IS_E1x(bp)) &&
11280 				    (MF_CFG_RD(bp, func_mf_config[func].
11281 					       mac_upper) != 0xffff) &&
11282 				    (SHMEM2_HAS(bp,
11283 						afex_driver_support))) {
11284 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11285 					bp->mf_config[vn] = MF_CFG_RD(bp,
11286 						func_mf_config[func].config);
11287 				} else {
11288 					BNX2X_DEV_INFO("can not configure afex mode\n");
11289 				}
11290 				break;
11291 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11292 				/* get OV configuration */
11293 				val = MF_CFG_RD(bp,
11294 					func_mf_config[FUNC_0].e1hov_tag);
11295 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11296 
11297 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11298 					bp->mf_mode = MULTI_FUNCTION_SD;
11299 					bp->mf_config[vn] = MF_CFG_RD(bp,
11300 						func_mf_config[func].config);
11301 				} else
11302 					BNX2X_DEV_INFO("illegal OV for SD\n");
11303 				break;
11304 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11305 				bp->mf_config[vn] = 0;
11306 				break;
11307 			default:
11308 				/* Unknown configuration: reset mf_config */
11309 				bp->mf_config[vn] = 0;
11310 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11311 			}
11312 		}
11313 
11314 		BNX2X_DEV_INFO("%s function mode\n",
11315 			       IS_MF(bp) ? "multi" : "single");
11316 
11317 		switch (bp->mf_mode) {
11318 		case MULTI_FUNCTION_SD:
11319 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11320 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11321 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11322 				bp->mf_ov = val;
11323 				bp->path_has_ovlan = true;
11324 
11325 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11326 					       func, bp->mf_ov, bp->mf_ov);
11327 			} else {
11328 				dev_err(&bp->pdev->dev,
11329 					"No valid MF OV for func %d, aborting\n",
11330 					func);
11331 				return -EPERM;
11332 			}
11333 			break;
11334 		case MULTI_FUNCTION_AFEX:
11335 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11336 			break;
11337 		case MULTI_FUNCTION_SI:
11338 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11339 				       func);
11340 			break;
11341 		default:
11342 			if (vn) {
11343 				dev_err(&bp->pdev->dev,
11344 					"VN %d is in a single function mode, aborting\n",
11345 					vn);
11346 				return -EPERM;
11347 			}
11348 			break;
11349 		}
11350 
11351 		/* check if other port on the path needs ovlan:
11352 		 * Since MF configuration is shared between ports
11353 		 * Possible mixed modes are only
11354 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11355 		 */
11356 		if (CHIP_MODE_IS_4_PORT(bp) &&
11357 		    !bp->path_has_ovlan &&
11358 		    !IS_MF(bp) &&
11359 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11360 			u8 other_port = !BP_PORT(bp);
11361 			u8 other_func = BP_PATH(bp) + 2*other_port;
11362 			val = MF_CFG_RD(bp,
11363 					func_mf_config[other_func].e1hov_tag);
11364 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11365 				bp->path_has_ovlan = true;
11366 		}
11367 	}
11368 
11369 	/* adjust igu_sb_cnt to MF for E1x */
11370 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
11371 		bp->igu_sb_cnt /= E1HVN_MAX;
11372 
11373 	/* port info */
11374 	bnx2x_get_port_hwinfo(bp);
11375 
11376 	/* Get MAC addresses */
11377 	bnx2x_get_mac_hwinfo(bp);
11378 
11379 	bnx2x_get_cnic_info(bp);
11380 
11381 	return rc;
11382 }
11383 
11384 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11385 {
11386 	int cnt, i, block_end, rodi;
11387 	char vpd_start[BNX2X_VPD_LEN+1];
11388 	char str_id_reg[VENDOR_ID_LEN+1];
11389 	char str_id_cap[VENDOR_ID_LEN+1];
11390 	char *vpd_data;
11391 	char *vpd_extended_data = NULL;
11392 	u8 len;
11393 
11394 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11395 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11396 
11397 	if (cnt < BNX2X_VPD_LEN)
11398 		goto out_not_found;
11399 
11400 	/* VPD RO tag should be first tag after identifier string, hence
11401 	 * we should be able to find it in first BNX2X_VPD_LEN chars
11402 	 */
11403 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11404 			     PCI_VPD_LRDT_RO_DATA);
11405 	if (i < 0)
11406 		goto out_not_found;
11407 
11408 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11409 		    pci_vpd_lrdt_size(&vpd_start[i]);
11410 
11411 	i += PCI_VPD_LRDT_TAG_SIZE;
11412 
11413 	if (block_end > BNX2X_VPD_LEN) {
11414 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11415 		if (vpd_extended_data  == NULL)
11416 			goto out_not_found;
11417 
11418 		/* read rest of vpd image into vpd_extended_data */
11419 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11420 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11421 				   block_end - BNX2X_VPD_LEN,
11422 				   vpd_extended_data + BNX2X_VPD_LEN);
11423 		if (cnt < (block_end - BNX2X_VPD_LEN))
11424 			goto out_not_found;
11425 		vpd_data = vpd_extended_data;
11426 	} else
11427 		vpd_data = vpd_start;
11428 
11429 	/* now vpd_data holds full vpd content in both cases */
11430 
11431 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11432 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11433 	if (rodi < 0)
11434 		goto out_not_found;
11435 
11436 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11437 
11438 	if (len != VENDOR_ID_LEN)
11439 		goto out_not_found;
11440 
11441 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11442 
11443 	/* vendor specific info */
11444 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11445 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11446 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11447 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11448 
11449 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11450 						PCI_VPD_RO_KEYWORD_VENDOR0);
11451 		if (rodi >= 0) {
11452 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11453 
11454 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11455 
11456 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11457 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11458 				bp->fw_ver[len] = ' ';
11459 			}
11460 		}
11461 		kfree(vpd_extended_data);
11462 		return;
11463 	}
11464 out_not_found:
11465 	kfree(vpd_extended_data);
11466 	return;
11467 }
11468 
11469 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11470 {
11471 	u32 flags = 0;
11472 
11473 	if (CHIP_REV_IS_FPGA(bp))
11474 		SET_FLAGS(flags, MODE_FPGA);
11475 	else if (CHIP_REV_IS_EMUL(bp))
11476 		SET_FLAGS(flags, MODE_EMUL);
11477 	else
11478 		SET_FLAGS(flags, MODE_ASIC);
11479 
11480 	if (CHIP_MODE_IS_4_PORT(bp))
11481 		SET_FLAGS(flags, MODE_PORT4);
11482 	else
11483 		SET_FLAGS(flags, MODE_PORT2);
11484 
11485 	if (CHIP_IS_E2(bp))
11486 		SET_FLAGS(flags, MODE_E2);
11487 	else if (CHIP_IS_E3(bp)) {
11488 		SET_FLAGS(flags, MODE_E3);
11489 		if (CHIP_REV(bp) == CHIP_REV_Ax)
11490 			SET_FLAGS(flags, MODE_E3_A0);
11491 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11492 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11493 	}
11494 
11495 	if (IS_MF(bp)) {
11496 		SET_FLAGS(flags, MODE_MF);
11497 		switch (bp->mf_mode) {
11498 		case MULTI_FUNCTION_SD:
11499 			SET_FLAGS(flags, MODE_MF_SD);
11500 			break;
11501 		case MULTI_FUNCTION_SI:
11502 			SET_FLAGS(flags, MODE_MF_SI);
11503 			break;
11504 		case MULTI_FUNCTION_AFEX:
11505 			SET_FLAGS(flags, MODE_MF_AFEX);
11506 			break;
11507 		}
11508 	} else
11509 		SET_FLAGS(flags, MODE_SF);
11510 
11511 #if defined(__LITTLE_ENDIAN)
11512 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11513 #else /*(__BIG_ENDIAN)*/
11514 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11515 #endif
11516 	INIT_MODE_FLAGS(bp) = flags;
11517 }
11518 
11519 static int bnx2x_init_bp(struct bnx2x *bp)
11520 {
11521 	int func;
11522 	int rc;
11523 
11524 	mutex_init(&bp->port.phy_mutex);
11525 	mutex_init(&bp->fw_mb_mutex);
11526 	spin_lock_init(&bp->stats_lock);
11527 
11528 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11529 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11530 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11531 	if (IS_PF(bp)) {
11532 		rc = bnx2x_get_hwinfo(bp);
11533 		if (rc)
11534 			return rc;
11535 	} else {
11536 		eth_zero_addr(bp->dev->dev_addr);
11537 	}
11538 
11539 	bnx2x_set_modes_bitmap(bp);
11540 
11541 	rc = bnx2x_alloc_mem_bp(bp);
11542 	if (rc)
11543 		return rc;
11544 
11545 	bnx2x_read_fwinfo(bp);
11546 
11547 	func = BP_FUNC(bp);
11548 
11549 	/* need to reset chip if undi was active */
11550 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
11551 		/* init fw_seq */
11552 		bp->fw_seq =
11553 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11554 							DRV_MSG_SEQ_NUMBER_MASK;
11555 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11556 
11557 		bnx2x_prev_unload(bp);
11558 	}
11559 
11560 	if (CHIP_REV_IS_FPGA(bp))
11561 		dev_err(&bp->pdev->dev, "FPGA detected\n");
11562 
11563 	if (BP_NOMCP(bp) && (func == 0))
11564 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11565 
11566 	bp->disable_tpa = disable_tpa;
11567 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11568 
11569 	/* Set TPA flags */
11570 	if (bp->disable_tpa) {
11571 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11572 		bp->dev->features &= ~NETIF_F_LRO;
11573 	} else {
11574 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11575 		bp->dev->features |= NETIF_F_LRO;
11576 	}
11577 
11578 	if (CHIP_IS_E1(bp))
11579 		bp->dropless_fc = 0;
11580 	else
11581 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11582 
11583 	bp->mrrs = mrrs;
11584 
11585 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11586 	if (IS_VF(bp))
11587 		bp->rx_ring_size = MAX_RX_AVAIL;
11588 
11589 	/* make sure that the numbers are in the right granularity */
11590 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11591 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11592 
11593 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11594 
11595 	init_timer(&bp->timer);
11596 	bp->timer.expires = jiffies + bp->current_interval;
11597 	bp->timer.data = (unsigned long) bp;
11598 	bp->timer.function = bnx2x_timer;
11599 
11600 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11601 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11602 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11603 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11604 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11605 		bnx2x_dcbx_init_params(bp);
11606 	} else {
11607 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11608 	}
11609 
11610 	if (CHIP_IS_E1x(bp))
11611 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11612 	else
11613 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11614 
11615 	/* multiple tx priority */
11616 	if (IS_VF(bp))
11617 		bp->max_cos = 1;
11618 	else if (CHIP_IS_E1x(bp))
11619 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11620 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11621 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11622 	else if (CHIP_IS_E3B0(bp))
11623 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11624 	else
11625 		BNX2X_ERR("unknown chip %x revision %x\n",
11626 			  CHIP_NUM(bp), CHIP_REV(bp));
11627 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11628 
11629 	/* We need at least one default status block for slow-path events,
11630 	 * second status block for the L2 queue, and a third status block for
11631 	 * CNIC if supported.
11632 	 */
11633 	if (CNIC_SUPPORT(bp))
11634 		bp->min_msix_vec_cnt = 3;
11635 	else
11636 		bp->min_msix_vec_cnt = 2;
11637 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11638 
11639 	bp->dump_preset_idx = 1;
11640 
11641 	return rc;
11642 }
11643 
11644 /****************************************************************************
11645 * General service functions
11646 ****************************************************************************/
11647 
11648 /*
11649  * net_device service functions
11650  */
11651 
11652 /* called with rtnl_lock */
11653 static int bnx2x_open(struct net_device *dev)
11654 {
11655 	struct bnx2x *bp = netdev_priv(dev);
11656 	bool global = false;
11657 	int other_engine = BP_PATH(bp) ? 0 : 1;
11658 	bool other_load_status, load_status;
11659 	int rc;
11660 
11661 	bp->stats_init = true;
11662 
11663 	netif_carrier_off(dev);
11664 
11665 	bnx2x_set_power_state(bp, PCI_D0);
11666 
11667 	/* If parity had happen during the unload, then attentions
11668 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11669 	 * want the first function loaded on the current engine to
11670 	 * complete the recovery.
11671 	 * Parity recovery is only relevant for PF driver.
11672 	 */
11673 	if (IS_PF(bp)) {
11674 		other_load_status = bnx2x_get_load_status(bp, other_engine);
11675 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11676 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11677 		    bnx2x_chk_parity_attn(bp, &global, true)) {
11678 			do {
11679 				/* If there are attentions and they are in a
11680 				 * global blocks, set the GLOBAL_RESET bit
11681 				 * regardless whether it will be this function
11682 				 * that will complete the recovery or not.
11683 				 */
11684 				if (global)
11685 					bnx2x_set_reset_global(bp);
11686 
11687 				/* Only the first function on the current
11688 				 * engine should try to recover in open. In case
11689 				 * of attentions in global blocks only the first
11690 				 * in the chip should try to recover.
11691 				 */
11692 				if ((!load_status &&
11693 				     (!global || !other_load_status)) &&
11694 				      bnx2x_trylock_leader_lock(bp) &&
11695 				      !bnx2x_leader_reset(bp)) {
11696 					netdev_info(bp->dev,
11697 						    "Recovered in open\n");
11698 					break;
11699 				}
11700 
11701 				/* recovery has failed... */
11702 				bnx2x_set_power_state(bp, PCI_D3hot);
11703 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
11704 
11705 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11706 					  "If you still see this message after a few retries then power cycle is required.\n");
11707 
11708 				return -EAGAIN;
11709 			} while (0);
11710 		}
11711 	}
11712 
11713 	bp->recovery_state = BNX2X_RECOVERY_DONE;
11714 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
11715 	if (rc)
11716 		return rc;
11717 	return bnx2x_open_epilog(bp);
11718 }
11719 
11720 /* called with rtnl_lock */
11721 static int bnx2x_close(struct net_device *dev)
11722 {
11723 	struct bnx2x *bp = netdev_priv(dev);
11724 
11725 	/* Unload the driver, release IRQs */
11726 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11727 
11728 	return 0;
11729 }
11730 
11731 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11732 				      struct bnx2x_mcast_ramrod_params *p)
11733 {
11734 	int mc_count = netdev_mc_count(bp->dev);
11735 	struct bnx2x_mcast_list_elem *mc_mac =
11736 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11737 	struct netdev_hw_addr *ha;
11738 
11739 	if (!mc_mac)
11740 		return -ENOMEM;
11741 
11742 	INIT_LIST_HEAD(&p->mcast_list);
11743 
11744 	netdev_for_each_mc_addr(ha, bp->dev) {
11745 		mc_mac->mac = bnx2x_mc_addr(ha);
11746 		list_add_tail(&mc_mac->link, &p->mcast_list);
11747 		mc_mac++;
11748 	}
11749 
11750 	p->mcast_list_len = mc_count;
11751 
11752 	return 0;
11753 }
11754 
11755 static void bnx2x_free_mcast_macs_list(
11756 	struct bnx2x_mcast_ramrod_params *p)
11757 {
11758 	struct bnx2x_mcast_list_elem *mc_mac =
11759 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11760 				 link);
11761 
11762 	WARN_ON(!mc_mac);
11763 	kfree(mc_mac);
11764 }
11765 
11766 /**
11767  * bnx2x_set_uc_list - configure a new unicast MACs list.
11768  *
11769  * @bp: driver handle
11770  *
11771  * We will use zero (0) as a MAC type for these MACs.
11772  */
11773 static int bnx2x_set_uc_list(struct bnx2x *bp)
11774 {
11775 	int rc;
11776 	struct net_device *dev = bp->dev;
11777 	struct netdev_hw_addr *ha;
11778 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11779 	unsigned long ramrod_flags = 0;
11780 
11781 	/* First schedule a cleanup up of old configuration */
11782 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11783 	if (rc < 0) {
11784 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11785 		return rc;
11786 	}
11787 
11788 	netdev_for_each_uc_addr(ha, dev) {
11789 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11790 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11791 		if (rc == -EEXIST) {
11792 			DP(BNX2X_MSG_SP,
11793 			   "Failed to schedule ADD operations: %d\n", rc);
11794 			/* do not treat adding same MAC as error */
11795 			rc = 0;
11796 
11797 		} else if (rc < 0) {
11798 
11799 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11800 				  rc);
11801 			return rc;
11802 		}
11803 	}
11804 
11805 	/* Execute the pending commands */
11806 	__set_bit(RAMROD_CONT, &ramrod_flags);
11807 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11808 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
11809 }
11810 
11811 static int bnx2x_set_mc_list(struct bnx2x *bp)
11812 {
11813 	struct net_device *dev = bp->dev;
11814 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
11815 	int rc = 0;
11816 
11817 	rparam.mcast_obj = &bp->mcast_obj;
11818 
11819 	/* first, clear all configured multicast MACs */
11820 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11821 	if (rc < 0) {
11822 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11823 		return rc;
11824 	}
11825 
11826 	/* then, configure a new MACs list */
11827 	if (netdev_mc_count(dev)) {
11828 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11829 		if (rc) {
11830 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11831 				  rc);
11832 			return rc;
11833 		}
11834 
11835 		/* Now add the new MACs */
11836 		rc = bnx2x_config_mcast(bp, &rparam,
11837 					BNX2X_MCAST_CMD_ADD);
11838 		if (rc < 0)
11839 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11840 				  rc);
11841 
11842 		bnx2x_free_mcast_macs_list(&rparam);
11843 	}
11844 
11845 	return rc;
11846 }
11847 
11848 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11849 void bnx2x_set_rx_mode(struct net_device *dev)
11850 {
11851 	struct bnx2x *bp = netdev_priv(dev);
11852 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11853 
11854 	if (bp->state != BNX2X_STATE_OPEN) {
11855 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11856 		return;
11857 	}
11858 
11859 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11860 
11861 	if (dev->flags & IFF_PROMISC)
11862 		rx_mode = BNX2X_RX_MODE_PROMISC;
11863 	else if ((dev->flags & IFF_ALLMULTI) ||
11864 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11865 		  CHIP_IS_E1(bp)))
11866 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
11867 	else {
11868 		if (IS_PF(bp)) {
11869 			/* some multicasts */
11870 			if (bnx2x_set_mc_list(bp) < 0)
11871 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
11872 
11873 			if (bnx2x_set_uc_list(bp) < 0)
11874 				rx_mode = BNX2X_RX_MODE_PROMISC;
11875 		} else {
11876 			/* configuring mcast to a vf involves sleeping (when we
11877 			 * wait for the pf's response). Since this function is
11878 			 * called from non sleepable context we must schedule
11879 			 * a work item for this purpose
11880 			 */
11881 			smp_mb__before_clear_bit();
11882 			set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11883 				&bp->sp_rtnl_state);
11884 			smp_mb__after_clear_bit();
11885 			schedule_delayed_work(&bp->sp_rtnl_task, 0);
11886 		}
11887 	}
11888 
11889 	bp->rx_mode = rx_mode;
11890 	/* handle ISCSI SD mode */
11891 	if (IS_MF_ISCSI_SD(bp))
11892 		bp->rx_mode = BNX2X_RX_MODE_NONE;
11893 
11894 	/* Schedule the rx_mode command */
11895 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11896 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11897 		return;
11898 	}
11899 
11900 	if (IS_PF(bp)) {
11901 		bnx2x_set_storm_rx_mode(bp);
11902 	} else {
11903 		/* configuring rx mode to storms in a vf involves sleeping (when
11904 		 * we wait for the pf's response). Since this function is
11905 		 * called from non sleepable context we must schedule
11906 		 * a work item for this purpose
11907 		 */
11908 		smp_mb__before_clear_bit();
11909 		set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
11910 			&bp->sp_rtnl_state);
11911 		smp_mb__after_clear_bit();
11912 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
11913 	}
11914 }
11915 
11916 /* called with rtnl_lock */
11917 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11918 			   int devad, u16 addr)
11919 {
11920 	struct bnx2x *bp = netdev_priv(netdev);
11921 	u16 value;
11922 	int rc;
11923 
11924 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11925 	   prtad, devad, addr);
11926 
11927 	/* The HW expects different devad if CL22 is used */
11928 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11929 
11930 	bnx2x_acquire_phy_lock(bp);
11931 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11932 	bnx2x_release_phy_lock(bp);
11933 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11934 
11935 	if (!rc)
11936 		rc = value;
11937 	return rc;
11938 }
11939 
11940 /* called with rtnl_lock */
11941 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11942 			    u16 addr, u16 value)
11943 {
11944 	struct bnx2x *bp = netdev_priv(netdev);
11945 	int rc;
11946 
11947 	DP(NETIF_MSG_LINK,
11948 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11949 	   prtad, devad, addr, value);
11950 
11951 	/* The HW expects different devad if CL22 is used */
11952 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11953 
11954 	bnx2x_acquire_phy_lock(bp);
11955 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11956 	bnx2x_release_phy_lock(bp);
11957 	return rc;
11958 }
11959 
11960 /* called with rtnl_lock */
11961 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11962 {
11963 	struct bnx2x *bp = netdev_priv(dev);
11964 	struct mii_ioctl_data *mdio = if_mii(ifr);
11965 
11966 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11967 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
11968 
11969 	if (!netif_running(dev))
11970 		return -EAGAIN;
11971 
11972 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11973 }
11974 
11975 #ifdef CONFIG_NET_POLL_CONTROLLER
11976 static void poll_bnx2x(struct net_device *dev)
11977 {
11978 	struct bnx2x *bp = netdev_priv(dev);
11979 	int i;
11980 
11981 	for_each_eth_queue(bp, i) {
11982 		struct bnx2x_fastpath *fp = &bp->fp[i];
11983 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11984 	}
11985 }
11986 #endif
11987 
11988 static int bnx2x_validate_addr(struct net_device *dev)
11989 {
11990 	struct bnx2x *bp = netdev_priv(dev);
11991 
11992 	/* query the bulletin board for mac address configured by the PF */
11993 	if (IS_VF(bp))
11994 		bnx2x_sample_bulletin(bp);
11995 
11996 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11997 		BNX2X_ERR("Non-valid Ethernet address\n");
11998 		return -EADDRNOTAVAIL;
11999 	}
12000 	return 0;
12001 }
12002 
12003 static const struct net_device_ops bnx2x_netdev_ops = {
12004 	.ndo_open		= bnx2x_open,
12005 	.ndo_stop		= bnx2x_close,
12006 	.ndo_start_xmit		= bnx2x_start_xmit,
12007 	.ndo_select_queue	= bnx2x_select_queue,
12008 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12009 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12010 	.ndo_validate_addr	= bnx2x_validate_addr,
12011 	.ndo_do_ioctl		= bnx2x_ioctl,
12012 	.ndo_change_mtu		= bnx2x_change_mtu,
12013 	.ndo_fix_features	= bnx2x_fix_features,
12014 	.ndo_set_features	= bnx2x_set_features,
12015 	.ndo_tx_timeout		= bnx2x_tx_timeout,
12016 #ifdef CONFIG_NET_POLL_CONTROLLER
12017 	.ndo_poll_controller	= poll_bnx2x,
12018 #endif
12019 	.ndo_setup_tc		= bnx2x_setup_tc,
12020 #ifdef CONFIG_BNX2X_SRIOV
12021 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12022 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12023 	.ndo_get_vf_config	= bnx2x_get_vf_config,
12024 #endif
12025 #ifdef NETDEV_FCOE_WWNN
12026 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12027 #endif
12028 
12029 #ifdef CONFIG_NET_LL_RX_POLL
12030 	.ndo_busy_poll		= bnx2x_low_latency_recv,
12031 #endif
12032 };
12033 
12034 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12035 {
12036 	struct device *dev = &bp->pdev->dev;
12037 
12038 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
12039 		bp->flags |= USING_DAC_FLAG;
12040 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
12041 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
12042 			return -EIO;
12043 		}
12044 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
12045 		dev_err(dev, "System does not support DMA, aborting\n");
12046 		return -EIO;
12047 	}
12048 
12049 	return 0;
12050 }
12051 
12052 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12053 			  struct net_device *dev, unsigned long board_type)
12054 {
12055 	int rc;
12056 	u32 pci_cfg_dword;
12057 	bool chip_is_e1x = (board_type == BCM57710 ||
12058 			    board_type == BCM57711 ||
12059 			    board_type == BCM57711E);
12060 
12061 	SET_NETDEV_DEV(dev, &pdev->dev);
12062 
12063 	bp->dev = dev;
12064 	bp->pdev = pdev;
12065 
12066 	rc = pci_enable_device(pdev);
12067 	if (rc) {
12068 		dev_err(&bp->pdev->dev,
12069 			"Cannot enable PCI device, aborting\n");
12070 		goto err_out;
12071 	}
12072 
12073 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12074 		dev_err(&bp->pdev->dev,
12075 			"Cannot find PCI device base address, aborting\n");
12076 		rc = -ENODEV;
12077 		goto err_out_disable;
12078 	}
12079 
12080 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12081 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12082 		rc = -ENODEV;
12083 		goto err_out_disable;
12084 	}
12085 
12086 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12087 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12088 	    PCICFG_REVESION_ID_ERROR_VAL) {
12089 		pr_err("PCI device error, probably due to fan failure, aborting\n");
12090 		rc = -ENODEV;
12091 		goto err_out_disable;
12092 	}
12093 
12094 	if (atomic_read(&pdev->enable_cnt) == 1) {
12095 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12096 		if (rc) {
12097 			dev_err(&bp->pdev->dev,
12098 				"Cannot obtain PCI resources, aborting\n");
12099 			goto err_out_disable;
12100 		}
12101 
12102 		pci_set_master(pdev);
12103 		pci_save_state(pdev);
12104 	}
12105 
12106 	if (IS_PF(bp)) {
12107 		bp->pm_cap = pdev->pm_cap;
12108 		if (bp->pm_cap == 0) {
12109 			dev_err(&bp->pdev->dev,
12110 				"Cannot find power management capability, aborting\n");
12111 			rc = -EIO;
12112 			goto err_out_release;
12113 		}
12114 	}
12115 
12116 	if (!pci_is_pcie(pdev)) {
12117 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12118 		rc = -EIO;
12119 		goto err_out_release;
12120 	}
12121 
12122 	rc = bnx2x_set_coherency_mask(bp);
12123 	if (rc)
12124 		goto err_out_release;
12125 
12126 	dev->mem_start = pci_resource_start(pdev, 0);
12127 	dev->base_addr = dev->mem_start;
12128 	dev->mem_end = pci_resource_end(pdev, 0);
12129 
12130 	dev->irq = pdev->irq;
12131 
12132 	bp->regview = pci_ioremap_bar(pdev, 0);
12133 	if (!bp->regview) {
12134 		dev_err(&bp->pdev->dev,
12135 			"Cannot map register space, aborting\n");
12136 		rc = -ENOMEM;
12137 		goto err_out_release;
12138 	}
12139 
12140 	/* In E1/E1H use pci device function given by kernel.
12141 	 * In E2/E3 read physical function from ME register since these chips
12142 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12143 	 * (depending on hypervisor).
12144 	 */
12145 	if (chip_is_e1x) {
12146 		bp->pf_num = PCI_FUNC(pdev->devfn);
12147 	} else {
12148 		/* chip is E2/3*/
12149 		pci_read_config_dword(bp->pdev,
12150 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12151 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12152 				  ME_REG_ABS_PF_NUM_SHIFT);
12153 	}
12154 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12155 
12156 	/* clean indirect addresses */
12157 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12158 			       PCICFG_VENDOR_ID_OFFSET);
12159 	/*
12160 	 * Clean the following indirect addresses for all functions since it
12161 	 * is not used by the driver.
12162 	 */
12163 	if (IS_PF(bp)) {
12164 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12165 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12166 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12167 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12168 
12169 		if (chip_is_e1x) {
12170 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12171 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12172 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12173 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12174 		}
12175 
12176 		/* Enable internal target-read (in case we are probed after PF
12177 		 * FLR). Must be done prior to any BAR read access. Only for
12178 		 * 57712 and up
12179 		 */
12180 		if (!chip_is_e1x)
12181 			REG_WR(bp,
12182 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12183 	}
12184 
12185 	dev->watchdog_timeo = TX_TIMEOUT;
12186 
12187 	dev->netdev_ops = &bnx2x_netdev_ops;
12188 	bnx2x_set_ethtool_ops(bp, dev);
12189 
12190 	dev->priv_flags |= IFF_UNICAST_FLT;
12191 
12192 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12193 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12194 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12195 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12196 	if (!CHIP_IS_E1x(bp)) {
12197 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12198 		dev->hw_enc_features =
12199 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12200 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12201 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12202 	}
12203 
12204 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12205 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12206 
12207 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12208 	if (bp->flags & USING_DAC_FLAG)
12209 		dev->features |= NETIF_F_HIGHDMA;
12210 
12211 	/* Add Loopback capability to the device */
12212 	dev->hw_features |= NETIF_F_LOOPBACK;
12213 
12214 #ifdef BCM_DCBNL
12215 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12216 #endif
12217 
12218 	/* get_port_hwinfo() will set prtad and mmds properly */
12219 	bp->mdio.prtad = MDIO_PRTAD_NONE;
12220 	bp->mdio.mmds = 0;
12221 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12222 	bp->mdio.dev = dev;
12223 	bp->mdio.mdio_read = bnx2x_mdio_read;
12224 	bp->mdio.mdio_write = bnx2x_mdio_write;
12225 
12226 	return 0;
12227 
12228 err_out_release:
12229 	if (atomic_read(&pdev->enable_cnt) == 1)
12230 		pci_release_regions(pdev);
12231 
12232 err_out_disable:
12233 	pci_disable_device(pdev);
12234 	pci_set_drvdata(pdev, NULL);
12235 
12236 err_out:
12237 	return rc;
12238 }
12239 
12240 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width,
12241 				       enum bnx2x_pci_bus_speed *speed)
12242 {
12243 	u32 link_speed, val = 0;
12244 
12245 	pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12246 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12247 
12248 	link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12249 
12250 	switch (link_speed) {
12251 	case 3:
12252 		*speed = BNX2X_PCI_LINK_SPEED_8000;
12253 		break;
12254 	case 2:
12255 		*speed = BNX2X_PCI_LINK_SPEED_5000;
12256 		break;
12257 	default:
12258 		*speed = BNX2X_PCI_LINK_SPEED_2500;
12259 	}
12260 }
12261 
12262 static int bnx2x_check_firmware(struct bnx2x *bp)
12263 {
12264 	const struct firmware *firmware = bp->firmware;
12265 	struct bnx2x_fw_file_hdr *fw_hdr;
12266 	struct bnx2x_fw_file_section *sections;
12267 	u32 offset, len, num_ops;
12268 	__be16 *ops_offsets;
12269 	int i;
12270 	const u8 *fw_ver;
12271 
12272 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12273 		BNX2X_ERR("Wrong FW size\n");
12274 		return -EINVAL;
12275 	}
12276 
12277 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12278 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12279 
12280 	/* Make sure none of the offsets and sizes make us read beyond
12281 	 * the end of the firmware data */
12282 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12283 		offset = be32_to_cpu(sections[i].offset);
12284 		len = be32_to_cpu(sections[i].len);
12285 		if (offset + len > firmware->size) {
12286 			BNX2X_ERR("Section %d length is out of bounds\n", i);
12287 			return -EINVAL;
12288 		}
12289 	}
12290 
12291 	/* Likewise for the init_ops offsets */
12292 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12293 	ops_offsets = (__force __be16 *)(firmware->data + offset);
12294 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12295 
12296 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12297 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12298 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12299 			return -EINVAL;
12300 		}
12301 	}
12302 
12303 	/* Check FW version */
12304 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12305 	fw_ver = firmware->data + offset;
12306 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12307 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12308 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12309 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12310 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12311 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12312 		       BCM_5710_FW_MAJOR_VERSION,
12313 		       BCM_5710_FW_MINOR_VERSION,
12314 		       BCM_5710_FW_REVISION_VERSION,
12315 		       BCM_5710_FW_ENGINEERING_VERSION);
12316 		return -EINVAL;
12317 	}
12318 
12319 	return 0;
12320 }
12321 
12322 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12323 {
12324 	const __be32 *source = (const __be32 *)_source;
12325 	u32 *target = (u32 *)_target;
12326 	u32 i;
12327 
12328 	for (i = 0; i < n/4; i++)
12329 		target[i] = be32_to_cpu(source[i]);
12330 }
12331 
12332 /*
12333    Ops array is stored in the following format:
12334    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12335  */
12336 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12337 {
12338 	const __be32 *source = (const __be32 *)_source;
12339 	struct raw_op *target = (struct raw_op *)_target;
12340 	u32 i, j, tmp;
12341 
12342 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12343 		tmp = be32_to_cpu(source[j]);
12344 		target[i].op = (tmp >> 24) & 0xff;
12345 		target[i].offset = tmp & 0xffffff;
12346 		target[i].raw_data = be32_to_cpu(source[j + 1]);
12347 	}
12348 }
12349 
12350 /* IRO array is stored in the following format:
12351  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12352  */
12353 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12354 {
12355 	const __be32 *source = (const __be32 *)_source;
12356 	struct iro *target = (struct iro *)_target;
12357 	u32 i, j, tmp;
12358 
12359 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12360 		target[i].base = be32_to_cpu(source[j]);
12361 		j++;
12362 		tmp = be32_to_cpu(source[j]);
12363 		target[i].m1 = (tmp >> 16) & 0xffff;
12364 		target[i].m2 = tmp & 0xffff;
12365 		j++;
12366 		tmp = be32_to_cpu(source[j]);
12367 		target[i].m3 = (tmp >> 16) & 0xffff;
12368 		target[i].size = tmp & 0xffff;
12369 		j++;
12370 	}
12371 }
12372 
12373 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12374 {
12375 	const __be16 *source = (const __be16 *)_source;
12376 	u16 *target = (u16 *)_target;
12377 	u32 i;
12378 
12379 	for (i = 0; i < n/2; i++)
12380 		target[i] = be16_to_cpu(source[i]);
12381 }
12382 
12383 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12384 do {									\
12385 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12386 	bp->arr = kmalloc(len, GFP_KERNEL);				\
12387 	if (!bp->arr)							\
12388 		goto lbl;						\
12389 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12390 	     (u8 *)bp->arr, len);					\
12391 } while (0)
12392 
12393 static int bnx2x_init_firmware(struct bnx2x *bp)
12394 {
12395 	const char *fw_file_name;
12396 	struct bnx2x_fw_file_hdr *fw_hdr;
12397 	int rc;
12398 
12399 	if (bp->firmware)
12400 		return 0;
12401 
12402 	if (CHIP_IS_E1(bp))
12403 		fw_file_name = FW_FILE_NAME_E1;
12404 	else if (CHIP_IS_E1H(bp))
12405 		fw_file_name = FW_FILE_NAME_E1H;
12406 	else if (!CHIP_IS_E1x(bp))
12407 		fw_file_name = FW_FILE_NAME_E2;
12408 	else {
12409 		BNX2X_ERR("Unsupported chip revision\n");
12410 		return -EINVAL;
12411 	}
12412 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12413 
12414 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12415 	if (rc) {
12416 		BNX2X_ERR("Can't load firmware file %s\n",
12417 			  fw_file_name);
12418 		goto request_firmware_exit;
12419 	}
12420 
12421 	rc = bnx2x_check_firmware(bp);
12422 	if (rc) {
12423 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12424 		goto request_firmware_exit;
12425 	}
12426 
12427 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12428 
12429 	/* Initialize the pointers to the init arrays */
12430 	/* Blob */
12431 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12432 
12433 	/* Opcodes */
12434 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12435 
12436 	/* Offsets */
12437 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12438 			    be16_to_cpu_n);
12439 
12440 	/* STORMs firmware */
12441 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12442 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12443 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12444 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12445 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12446 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12447 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12448 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12449 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12450 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12451 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12452 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12453 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12454 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12455 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12456 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12457 	/* IRO */
12458 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12459 
12460 	return 0;
12461 
12462 iro_alloc_err:
12463 	kfree(bp->init_ops_offsets);
12464 init_offsets_alloc_err:
12465 	kfree(bp->init_ops);
12466 init_ops_alloc_err:
12467 	kfree(bp->init_data);
12468 request_firmware_exit:
12469 	release_firmware(bp->firmware);
12470 	bp->firmware = NULL;
12471 
12472 	return rc;
12473 }
12474 
12475 static void bnx2x_release_firmware(struct bnx2x *bp)
12476 {
12477 	kfree(bp->init_ops_offsets);
12478 	kfree(bp->init_ops);
12479 	kfree(bp->init_data);
12480 	release_firmware(bp->firmware);
12481 	bp->firmware = NULL;
12482 }
12483 
12484 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12485 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12486 	.init_hw_cmn      = bnx2x_init_hw_common,
12487 	.init_hw_port     = bnx2x_init_hw_port,
12488 	.init_hw_func     = bnx2x_init_hw_func,
12489 
12490 	.reset_hw_cmn     = bnx2x_reset_common,
12491 	.reset_hw_port    = bnx2x_reset_port,
12492 	.reset_hw_func    = bnx2x_reset_func,
12493 
12494 	.gunzip_init      = bnx2x_gunzip_init,
12495 	.gunzip_end       = bnx2x_gunzip_end,
12496 
12497 	.init_fw          = bnx2x_init_firmware,
12498 	.release_fw       = bnx2x_release_firmware,
12499 };
12500 
12501 void bnx2x__init_func_obj(struct bnx2x *bp)
12502 {
12503 	/* Prepare DMAE related driver resources */
12504 	bnx2x_setup_dmae(bp);
12505 
12506 	bnx2x_init_func_obj(bp, &bp->func_obj,
12507 			    bnx2x_sp(bp, func_rdata),
12508 			    bnx2x_sp_mapping(bp, func_rdata),
12509 			    bnx2x_sp(bp, func_afex_rdata),
12510 			    bnx2x_sp_mapping(bp, func_afex_rdata),
12511 			    &bnx2x_func_sp_drv);
12512 }
12513 
12514 /* must be called after sriov-enable */
12515 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12516 {
12517 	int cid_count = BNX2X_L2_MAX_CID(bp);
12518 
12519 	if (IS_SRIOV(bp))
12520 		cid_count += BNX2X_VF_CIDS;
12521 
12522 	if (CNIC_SUPPORT(bp))
12523 		cid_count += CNIC_CID_MAX;
12524 
12525 	return roundup(cid_count, QM_CID_ROUND);
12526 }
12527 
12528 /**
12529  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12530  *
12531  * @dev:	pci device
12532  *
12533  */
12534 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12535 				     int cnic_cnt, bool is_vf)
12536 {
12537 	int pos, index;
12538 	u16 control = 0;
12539 
12540 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12541 
12542 	/*
12543 	 * If MSI-X is not supported - return number of SBs needed to support
12544 	 * one fast path queue: one FP queue + SB for CNIC
12545 	 */
12546 	if (!pos) {
12547 		dev_info(&pdev->dev, "no msix capability found\n");
12548 		return 1 + cnic_cnt;
12549 	}
12550 	dev_info(&pdev->dev, "msix capability found\n");
12551 
12552 	/*
12553 	 * The value in the PCI configuration space is the index of the last
12554 	 * entry, namely one less than the actual size of the table, which is
12555 	 * exactly what we want to return from this function: number of all SBs
12556 	 * without the default SB.
12557 	 * For VFs there is no default SB, then we return (index+1).
12558 	 */
12559 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
12560 
12561 	index = control & PCI_MSIX_FLAGS_QSIZE;
12562 
12563 	return is_vf ? index + 1 : index;
12564 }
12565 
12566 static int set_max_cos_est(int chip_id)
12567 {
12568 	switch (chip_id) {
12569 	case BCM57710:
12570 	case BCM57711:
12571 	case BCM57711E:
12572 		return BNX2X_MULTI_TX_COS_E1X;
12573 	case BCM57712:
12574 	case BCM57712_MF:
12575 	case BCM57712_VF:
12576 		return BNX2X_MULTI_TX_COS_E2_E3A0;
12577 	case BCM57800:
12578 	case BCM57800_MF:
12579 	case BCM57800_VF:
12580 	case BCM57810:
12581 	case BCM57810_MF:
12582 	case BCM57840_4_10:
12583 	case BCM57840_2_20:
12584 	case BCM57840_O:
12585 	case BCM57840_MFO:
12586 	case BCM57810_VF:
12587 	case BCM57840_MF:
12588 	case BCM57840_VF:
12589 	case BCM57811:
12590 	case BCM57811_MF:
12591 	case BCM57811_VF:
12592 		return BNX2X_MULTI_TX_COS_E3B0;
12593 		return 1;
12594 	default:
12595 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
12596 		return -ENODEV;
12597 	}
12598 }
12599 
12600 static int set_is_vf(int chip_id)
12601 {
12602 	switch (chip_id) {
12603 	case BCM57712_VF:
12604 	case BCM57800_VF:
12605 	case BCM57810_VF:
12606 	case BCM57840_VF:
12607 	case BCM57811_VF:
12608 		return true;
12609 	default:
12610 		return false;
12611 	}
12612 }
12613 
12614 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12615 
12616 static int bnx2x_init_one(struct pci_dev *pdev,
12617 				    const struct pci_device_id *ent)
12618 {
12619 	struct net_device *dev = NULL;
12620 	struct bnx2x *bp;
12621 	int pcie_width;
12622 	enum bnx2x_pci_bus_speed pcie_speed;
12623 	int rc, max_non_def_sbs;
12624 	int rx_count, tx_count, rss_count, doorbell_size;
12625 	int max_cos_est;
12626 	bool is_vf;
12627 	int cnic_cnt;
12628 
12629 	/* An estimated maximum supported CoS number according to the chip
12630 	 * version.
12631 	 * We will try to roughly estimate the maximum number of CoSes this chip
12632 	 * may support in order to minimize the memory allocated for Tx
12633 	 * netdev_queue's. This number will be accurately calculated during the
12634 	 * initialization of bp->max_cos based on the chip versions AND chip
12635 	 * revision in the bnx2x_init_bp().
12636 	 */
12637 	max_cos_est = set_max_cos_est(ent->driver_data);
12638 	if (max_cos_est < 0)
12639 		return max_cos_est;
12640 	is_vf = set_is_vf(ent->driver_data);
12641 	cnic_cnt = is_vf ? 0 : 1;
12642 
12643 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf);
12644 
12645 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
12646 	rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt;
12647 
12648 	if (rss_count < 1)
12649 		return -EINVAL;
12650 
12651 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12652 	rx_count = rss_count + cnic_cnt;
12653 
12654 	/* Maximum number of netdev Tx queues:
12655 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12656 	 */
12657 	tx_count = rss_count * max_cos_est + cnic_cnt;
12658 
12659 	/* dev zeroed in init_etherdev */
12660 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12661 	if (!dev)
12662 		return -ENOMEM;
12663 
12664 	bp = netdev_priv(dev);
12665 
12666 	bp->flags = 0;
12667 	if (is_vf)
12668 		bp->flags |= IS_VF_FLAG;
12669 
12670 	bp->igu_sb_cnt = max_non_def_sbs;
12671 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12672 	bp->msg_enable = debug;
12673 	bp->cnic_support = cnic_cnt;
12674 	bp->cnic_probe = bnx2x_cnic_probe;
12675 
12676 	pci_set_drvdata(pdev, dev);
12677 
12678 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12679 	if (rc < 0) {
12680 		free_netdev(dev);
12681 		return rc;
12682 	}
12683 
12684 	BNX2X_DEV_INFO("This is a %s function\n",
12685 		       IS_PF(bp) ? "physical" : "virtual");
12686 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12687 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12688 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12689 		       tx_count, rx_count);
12690 
12691 	rc = bnx2x_init_bp(bp);
12692 	if (rc)
12693 		goto init_one_exit;
12694 
12695 	/* Map doorbells here as we need the real value of bp->max_cos which
12696 	 * is initialized in bnx2x_init_bp() to determine the number of
12697 	 * l2 connections.
12698 	 */
12699 	if (IS_VF(bp)) {
12700 		bp->doorbells = bnx2x_vf_doorbells(bp);
12701 		rc = bnx2x_vf_pci_alloc(bp);
12702 		if (rc)
12703 			goto init_one_exit;
12704 	} else {
12705 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12706 		if (doorbell_size > pci_resource_len(pdev, 2)) {
12707 			dev_err(&bp->pdev->dev,
12708 				"Cannot map doorbells, bar size too small, aborting\n");
12709 			rc = -ENOMEM;
12710 			goto init_one_exit;
12711 		}
12712 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12713 						doorbell_size);
12714 	}
12715 	if (!bp->doorbells) {
12716 		dev_err(&bp->pdev->dev,
12717 			"Cannot map doorbell space, aborting\n");
12718 		rc = -ENOMEM;
12719 		goto init_one_exit;
12720 	}
12721 
12722 	if (IS_VF(bp)) {
12723 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12724 		if (rc)
12725 			goto init_one_exit;
12726 	}
12727 
12728 	/* Enable SRIOV if capability found in configuration space */
12729 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12730 	if (rc)
12731 		goto init_one_exit;
12732 
12733 	/* calc qm_cid_count */
12734 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12735 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12736 
12737 	/* disable FCOE L2 queue for E1x*/
12738 	if (CHIP_IS_E1x(bp))
12739 		bp->flags |= NO_FCOE_FLAG;
12740 
12741 	/* Set bp->num_queues for MSI-X mode*/
12742 	bnx2x_set_num_queues(bp);
12743 
12744 	/* Configure interrupt mode: try to enable MSI-X/MSI if
12745 	 * needed.
12746 	 */
12747 	rc = bnx2x_set_int_mode(bp);
12748 	if (rc) {
12749 		dev_err(&pdev->dev, "Cannot set interrupts\n");
12750 		goto init_one_exit;
12751 	}
12752 	BNX2X_DEV_INFO("set interrupts successfully\n");
12753 
12754 	/* register the net device */
12755 	rc = register_netdev(dev);
12756 	if (rc) {
12757 		dev_err(&pdev->dev, "Cannot register net device\n");
12758 		goto init_one_exit;
12759 	}
12760 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12761 
12762 	if (!NO_FCOE(bp)) {
12763 		/* Add storage MAC address */
12764 		rtnl_lock();
12765 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12766 		rtnl_unlock();
12767 	}
12768 
12769 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12770 	BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12771 		       pcie_width, pcie_speed);
12772 
12773 	BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12774 		       board_info[ent->driver_data].name,
12775 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12776 		       pcie_width,
12777 		       pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" :
12778 		       pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" :
12779 		       pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" :
12780 		       "Unknown",
12781 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
12782 
12783 	return 0;
12784 
12785 init_one_exit:
12786 	if (bp->regview)
12787 		iounmap(bp->regview);
12788 
12789 	if (IS_PF(bp) && bp->doorbells)
12790 		iounmap(bp->doorbells);
12791 
12792 	free_netdev(dev);
12793 
12794 	if (atomic_read(&pdev->enable_cnt) == 1)
12795 		pci_release_regions(pdev);
12796 
12797 	pci_disable_device(pdev);
12798 	pci_set_drvdata(pdev, NULL);
12799 
12800 	return rc;
12801 }
12802 
12803 static void __bnx2x_remove(struct pci_dev *pdev,
12804 			   struct net_device *dev,
12805 			   struct bnx2x *bp,
12806 			   bool remove_netdev)
12807 {
12808 	/* Delete storage MAC address */
12809 	if (!NO_FCOE(bp)) {
12810 		rtnl_lock();
12811 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12812 		rtnl_unlock();
12813 	}
12814 
12815 #ifdef BCM_DCBNL
12816 	/* Delete app tlvs from dcbnl */
12817 	bnx2x_dcbnl_update_applist(bp, true);
12818 #endif
12819 
12820 	/* Close the interface - either directly or implicitly */
12821 	if (remove_netdev) {
12822 		unregister_netdev(dev);
12823 	} else {
12824 		rtnl_lock();
12825 		if (netif_running(dev))
12826 			bnx2x_close(dev);
12827 		rtnl_unlock();
12828 	}
12829 
12830 	bnx2x_iov_remove_one(bp);
12831 
12832 	/* Power on: we can't let PCI layer write to us while we are in D3 */
12833 	if (IS_PF(bp))
12834 		bnx2x_set_power_state(bp, PCI_D0);
12835 
12836 	/* Disable MSI/MSI-X */
12837 	bnx2x_disable_msi(bp);
12838 
12839 	/* Power off */
12840 	if (IS_PF(bp))
12841 		bnx2x_set_power_state(bp, PCI_D3hot);
12842 
12843 	/* Make sure RESET task is not scheduled before continuing */
12844 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
12845 
12846 	/* send message via vfpf channel to release the resources of this vf */
12847 	if (IS_VF(bp))
12848 		bnx2x_vfpf_release(bp);
12849 
12850 	/* Assumes no further PCIe PM changes will occur */
12851 	if (system_state == SYSTEM_POWER_OFF) {
12852 		pci_wake_from_d3(pdev, bp->wol);
12853 		pci_set_power_state(pdev, PCI_D3hot);
12854 	}
12855 
12856 	if (bp->regview)
12857 		iounmap(bp->regview);
12858 
12859 	/* for vf doorbells are part of the regview and were unmapped along with
12860 	 * it. FW is only loaded by PF.
12861 	 */
12862 	if (IS_PF(bp)) {
12863 		if (bp->doorbells)
12864 			iounmap(bp->doorbells);
12865 
12866 		bnx2x_release_firmware(bp);
12867 	}
12868 	bnx2x_free_mem_bp(bp);
12869 
12870 	if (remove_netdev)
12871 		free_netdev(dev);
12872 
12873 	if (atomic_read(&pdev->enable_cnt) == 1)
12874 		pci_release_regions(pdev);
12875 
12876 	pci_disable_device(pdev);
12877 	pci_set_drvdata(pdev, NULL);
12878 }
12879 
12880 static void bnx2x_remove_one(struct pci_dev *pdev)
12881 {
12882 	struct net_device *dev = pci_get_drvdata(pdev);
12883 	struct bnx2x *bp;
12884 
12885 	if (!dev) {
12886 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12887 		return;
12888 	}
12889 	bp = netdev_priv(dev);
12890 
12891 	__bnx2x_remove(pdev, dev, bp, true);
12892 }
12893 
12894 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12895 {
12896 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12897 
12898 	bp->rx_mode = BNX2X_RX_MODE_NONE;
12899 
12900 	if (CNIC_LOADED(bp))
12901 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12902 
12903 	/* Stop Tx */
12904 	bnx2x_tx_disable(bp);
12905 	/* Delete all NAPI objects */
12906 	bnx2x_del_all_napi(bp);
12907 	if (CNIC_LOADED(bp))
12908 		bnx2x_del_all_napi_cnic(bp);
12909 	netdev_reset_tc(bp->dev);
12910 
12911 	del_timer_sync(&bp->timer);
12912 	cancel_delayed_work(&bp->sp_task);
12913 	cancel_delayed_work(&bp->period_task);
12914 
12915 	spin_lock_bh(&bp->stats_lock);
12916 	bp->stats_state = STATS_STATE_DISABLED;
12917 	spin_unlock_bh(&bp->stats_lock);
12918 
12919 	bnx2x_save_statistics(bp);
12920 
12921 	netif_carrier_off(bp->dev);
12922 
12923 	return 0;
12924 }
12925 
12926 /**
12927  * bnx2x_io_error_detected - called when PCI error is detected
12928  * @pdev: Pointer to PCI device
12929  * @state: The current pci connection state
12930  *
12931  * This function is called after a PCI bus error affecting
12932  * this device has been detected.
12933  */
12934 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12935 						pci_channel_state_t state)
12936 {
12937 	struct net_device *dev = pci_get_drvdata(pdev);
12938 	struct bnx2x *bp = netdev_priv(dev);
12939 
12940 	rtnl_lock();
12941 
12942 	BNX2X_ERR("IO error detected\n");
12943 
12944 	netif_device_detach(dev);
12945 
12946 	if (state == pci_channel_io_perm_failure) {
12947 		rtnl_unlock();
12948 		return PCI_ERS_RESULT_DISCONNECT;
12949 	}
12950 
12951 	if (netif_running(dev))
12952 		bnx2x_eeh_nic_unload(bp);
12953 
12954 	bnx2x_prev_path_mark_eeh(bp);
12955 
12956 	pci_disable_device(pdev);
12957 
12958 	rtnl_unlock();
12959 
12960 	/* Request a slot reset */
12961 	return PCI_ERS_RESULT_NEED_RESET;
12962 }
12963 
12964 /**
12965  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12966  * @pdev: Pointer to PCI device
12967  *
12968  * Restart the card from scratch, as if from a cold-boot.
12969  */
12970 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12971 {
12972 	struct net_device *dev = pci_get_drvdata(pdev);
12973 	struct bnx2x *bp = netdev_priv(dev);
12974 	int i;
12975 
12976 	rtnl_lock();
12977 	BNX2X_ERR("IO slot reset initializing...\n");
12978 	if (pci_enable_device(pdev)) {
12979 		dev_err(&pdev->dev,
12980 			"Cannot re-enable PCI device after reset\n");
12981 		rtnl_unlock();
12982 		return PCI_ERS_RESULT_DISCONNECT;
12983 	}
12984 
12985 	pci_set_master(pdev);
12986 	pci_restore_state(pdev);
12987 	pci_save_state(pdev);
12988 
12989 	if (netif_running(dev))
12990 		bnx2x_set_power_state(bp, PCI_D0);
12991 
12992 	if (netif_running(dev)) {
12993 		BNX2X_ERR("IO slot reset --> driver unload\n");
12994 
12995 		/* MCP should have been reset; Need to wait for validity */
12996 		bnx2x_init_shmem(bp);
12997 
12998 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
12999 			u32 v;
13000 
13001 			v = SHMEM2_RD(bp,
13002 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13003 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13004 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13005 		}
13006 		bnx2x_drain_tx_queues(bp);
13007 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13008 		bnx2x_netif_stop(bp, 1);
13009 		bnx2x_free_irq(bp);
13010 
13011 		/* Report UNLOAD_DONE to MCP */
13012 		bnx2x_send_unload_done(bp, true);
13013 
13014 		bp->sp_state = 0;
13015 		bp->port.pmf = 0;
13016 
13017 		bnx2x_prev_unload(bp);
13018 
13019 		/* We should have reseted the engine, so It's fair to
13020 		 * assume the FW will no longer write to the bnx2x driver.
13021 		 */
13022 		bnx2x_squeeze_objects(bp);
13023 		bnx2x_free_skbs(bp);
13024 		for_each_rx_queue(bp, i)
13025 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13026 		bnx2x_free_fp_mem(bp);
13027 		bnx2x_free_mem(bp);
13028 
13029 		bp->state = BNX2X_STATE_CLOSED;
13030 	}
13031 
13032 	rtnl_unlock();
13033 
13034 	return PCI_ERS_RESULT_RECOVERED;
13035 }
13036 
13037 /**
13038  * bnx2x_io_resume - called when traffic can start flowing again
13039  * @pdev: Pointer to PCI device
13040  *
13041  * This callback is called when the error recovery driver tells us that
13042  * its OK to resume normal operation.
13043  */
13044 static void bnx2x_io_resume(struct pci_dev *pdev)
13045 {
13046 	struct net_device *dev = pci_get_drvdata(pdev);
13047 	struct bnx2x *bp = netdev_priv(dev);
13048 
13049 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13050 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13051 		return;
13052 	}
13053 
13054 	rtnl_lock();
13055 
13056 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13057 							DRV_MSG_SEQ_NUMBER_MASK;
13058 
13059 	if (netif_running(dev))
13060 		bnx2x_nic_load(bp, LOAD_NORMAL);
13061 
13062 	netif_device_attach(dev);
13063 
13064 	rtnl_unlock();
13065 }
13066 
13067 static const struct pci_error_handlers bnx2x_err_handler = {
13068 	.error_detected = bnx2x_io_error_detected,
13069 	.slot_reset     = bnx2x_io_slot_reset,
13070 	.resume         = bnx2x_io_resume,
13071 };
13072 
13073 static void bnx2x_shutdown(struct pci_dev *pdev)
13074 {
13075 	struct net_device *dev = pci_get_drvdata(pdev);
13076 	struct bnx2x *bp;
13077 
13078 	if (!dev)
13079 		return;
13080 
13081 	bp = netdev_priv(dev);
13082 	if (!bp)
13083 		return;
13084 
13085 	rtnl_lock();
13086 	netif_device_detach(dev);
13087 	rtnl_unlock();
13088 
13089 	/* Don't remove the netdevice, as there are scenarios which will cause
13090 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13091 	 * rootfs is mounted from SAN.
13092 	 */
13093 	__bnx2x_remove(pdev, dev, bp, false);
13094 }
13095 
13096 static struct pci_driver bnx2x_pci_driver = {
13097 	.name        = DRV_MODULE_NAME,
13098 	.id_table    = bnx2x_pci_tbl,
13099 	.probe       = bnx2x_init_one,
13100 	.remove      = bnx2x_remove_one,
13101 	.suspend     = bnx2x_suspend,
13102 	.resume      = bnx2x_resume,
13103 	.err_handler = &bnx2x_err_handler,
13104 #ifdef CONFIG_BNX2X_SRIOV
13105 	.sriov_configure = bnx2x_sriov_configure,
13106 #endif
13107 	.shutdown    = bnx2x_shutdown,
13108 };
13109 
13110 static int __init bnx2x_init(void)
13111 {
13112 	int ret;
13113 
13114 	pr_info("%s", version);
13115 
13116 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13117 	if (bnx2x_wq == NULL) {
13118 		pr_err("Cannot create workqueue\n");
13119 		return -ENOMEM;
13120 	}
13121 
13122 	ret = pci_register_driver(&bnx2x_pci_driver);
13123 	if (ret) {
13124 		pr_err("Cannot register driver\n");
13125 		destroy_workqueue(bnx2x_wq);
13126 	}
13127 	return ret;
13128 }
13129 
13130 static void __exit bnx2x_cleanup(void)
13131 {
13132 	struct list_head *pos, *q;
13133 
13134 	pci_unregister_driver(&bnx2x_pci_driver);
13135 
13136 	destroy_workqueue(bnx2x_wq);
13137 
13138 	/* Free globally allocated resources */
13139 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13140 		struct bnx2x_prev_path_list *tmp =
13141 			list_entry(pos, struct bnx2x_prev_path_list, list);
13142 		list_del(pos);
13143 		kfree(tmp);
13144 	}
13145 }
13146 
13147 void bnx2x_notify_link_changed(struct bnx2x *bp)
13148 {
13149 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13150 }
13151 
13152 module_init(bnx2x_init);
13153 module_exit(bnx2x_cleanup);
13154 
13155 /**
13156  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13157  *
13158  * @bp:		driver handle
13159  * @set:	set or clear the CAM entry
13160  *
13161  * This function will wait until the ramrod completion returns.
13162  * Return 0 if success, -ENODEV if ramrod doesn't return.
13163  */
13164 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13165 {
13166 	unsigned long ramrod_flags = 0;
13167 
13168 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13169 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13170 				 &bp->iscsi_l2_mac_obj, true,
13171 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13172 }
13173 
13174 /* count denotes the number of new completions we have seen */
13175 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13176 {
13177 	struct eth_spe *spe;
13178 	int cxt_index, cxt_offset;
13179 
13180 #ifdef BNX2X_STOP_ON_ERROR
13181 	if (unlikely(bp->panic))
13182 		return;
13183 #endif
13184 
13185 	spin_lock_bh(&bp->spq_lock);
13186 	BUG_ON(bp->cnic_spq_pending < count);
13187 	bp->cnic_spq_pending -= count;
13188 
13189 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13190 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13191 				& SPE_HDR_CONN_TYPE) >>
13192 				SPE_HDR_CONN_TYPE_SHIFT;
13193 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13194 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13195 
13196 		/* Set validation for iSCSI L2 client before sending SETUP
13197 		 *  ramrod
13198 		 */
13199 		if (type == ETH_CONNECTION_TYPE) {
13200 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13201 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13202 					ILT_PAGE_CIDS;
13203 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13204 					(cxt_index * ILT_PAGE_CIDS);
13205 				bnx2x_set_ctx_validation(bp,
13206 					&bp->context[cxt_index].
13207 							 vcxt[cxt_offset].eth,
13208 					BNX2X_ISCSI_ETH_CID(bp));
13209 			}
13210 		}
13211 
13212 		/*
13213 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13214 		 * and in the air. We also check that number of outstanding
13215 		 * COMMON ramrods is not more than the EQ and SPQ can
13216 		 * accommodate.
13217 		 */
13218 		if (type == ETH_CONNECTION_TYPE) {
13219 			if (!atomic_read(&bp->cq_spq_left))
13220 				break;
13221 			else
13222 				atomic_dec(&bp->cq_spq_left);
13223 		} else if (type == NONE_CONNECTION_TYPE) {
13224 			if (!atomic_read(&bp->eq_spq_left))
13225 				break;
13226 			else
13227 				atomic_dec(&bp->eq_spq_left);
13228 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13229 			   (type == FCOE_CONNECTION_TYPE)) {
13230 			if (bp->cnic_spq_pending >=
13231 			    bp->cnic_eth_dev.max_kwqe_pending)
13232 				break;
13233 			else
13234 				bp->cnic_spq_pending++;
13235 		} else {
13236 			BNX2X_ERR("Unknown SPE type: %d\n", type);
13237 			bnx2x_panic();
13238 			break;
13239 		}
13240 
13241 		spe = bnx2x_sp_get_next(bp);
13242 		*spe = *bp->cnic_kwq_cons;
13243 
13244 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13245 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13246 
13247 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13248 			bp->cnic_kwq_cons = bp->cnic_kwq;
13249 		else
13250 			bp->cnic_kwq_cons++;
13251 	}
13252 	bnx2x_sp_prod_update(bp);
13253 	spin_unlock_bh(&bp->spq_lock);
13254 }
13255 
13256 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13257 			       struct kwqe_16 *kwqes[], u32 count)
13258 {
13259 	struct bnx2x *bp = netdev_priv(dev);
13260 	int i;
13261 
13262 #ifdef BNX2X_STOP_ON_ERROR
13263 	if (unlikely(bp->panic)) {
13264 		BNX2X_ERR("Can't post to SP queue while panic\n");
13265 		return -EIO;
13266 	}
13267 #endif
13268 
13269 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13270 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13271 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
13272 		return -EAGAIN;
13273 	}
13274 
13275 	spin_lock_bh(&bp->spq_lock);
13276 
13277 	for (i = 0; i < count; i++) {
13278 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13279 
13280 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13281 			break;
13282 
13283 		*bp->cnic_kwq_prod = *spe;
13284 
13285 		bp->cnic_kwq_pending++;
13286 
13287 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13288 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
13289 		   spe->data.update_data_addr.hi,
13290 		   spe->data.update_data_addr.lo,
13291 		   bp->cnic_kwq_pending);
13292 
13293 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13294 			bp->cnic_kwq_prod = bp->cnic_kwq;
13295 		else
13296 			bp->cnic_kwq_prod++;
13297 	}
13298 
13299 	spin_unlock_bh(&bp->spq_lock);
13300 
13301 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13302 		bnx2x_cnic_sp_post(bp, 0);
13303 
13304 	return i;
13305 }
13306 
13307 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13308 {
13309 	struct cnic_ops *c_ops;
13310 	int rc = 0;
13311 
13312 	mutex_lock(&bp->cnic_mutex);
13313 	c_ops = rcu_dereference_protected(bp->cnic_ops,
13314 					  lockdep_is_held(&bp->cnic_mutex));
13315 	if (c_ops)
13316 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13317 	mutex_unlock(&bp->cnic_mutex);
13318 
13319 	return rc;
13320 }
13321 
13322 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13323 {
13324 	struct cnic_ops *c_ops;
13325 	int rc = 0;
13326 
13327 	rcu_read_lock();
13328 	c_ops = rcu_dereference(bp->cnic_ops);
13329 	if (c_ops)
13330 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13331 	rcu_read_unlock();
13332 
13333 	return rc;
13334 }
13335 
13336 /*
13337  * for commands that have no data
13338  */
13339 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13340 {
13341 	struct cnic_ctl_info ctl = {0};
13342 
13343 	ctl.cmd = cmd;
13344 
13345 	return bnx2x_cnic_ctl_send(bp, &ctl);
13346 }
13347 
13348 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13349 {
13350 	struct cnic_ctl_info ctl = {0};
13351 
13352 	/* first we tell CNIC and only then we count this as a completion */
13353 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13354 	ctl.data.comp.cid = cid;
13355 	ctl.data.comp.error = err;
13356 
13357 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
13358 	bnx2x_cnic_sp_post(bp, 0);
13359 }
13360 
13361 /* Called with netif_addr_lock_bh() taken.
13362  * Sets an rx_mode config for an iSCSI ETH client.
13363  * Doesn't block.
13364  * Completion should be checked outside.
13365  */
13366 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13367 {
13368 	unsigned long accept_flags = 0, ramrod_flags = 0;
13369 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13370 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13371 
13372 	if (start) {
13373 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
13374 		 * because it's the only way for UIO Queue to accept
13375 		 * multicasts (in non-promiscuous mode only one Queue per
13376 		 * function will receive multicast packets (leading in our
13377 		 * case).
13378 		 */
13379 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13380 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13381 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13382 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13383 
13384 		/* Clear STOP_PENDING bit if START is requested */
13385 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13386 
13387 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13388 	} else
13389 		/* Clear START_PENDING bit if STOP is requested */
13390 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13391 
13392 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13393 		set_bit(sched_state, &bp->sp_state);
13394 	else {
13395 		__set_bit(RAMROD_RX, &ramrod_flags);
13396 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13397 				    ramrod_flags);
13398 	}
13399 }
13400 
13401 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13402 {
13403 	struct bnx2x *bp = netdev_priv(dev);
13404 	int rc = 0;
13405 
13406 	switch (ctl->cmd) {
13407 	case DRV_CTL_CTXTBL_WR_CMD: {
13408 		u32 index = ctl->data.io.offset;
13409 		dma_addr_t addr = ctl->data.io.dma_addr;
13410 
13411 		bnx2x_ilt_wr(bp, index, addr);
13412 		break;
13413 	}
13414 
13415 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13416 		int count = ctl->data.credit.credit_count;
13417 
13418 		bnx2x_cnic_sp_post(bp, count);
13419 		break;
13420 	}
13421 
13422 	/* rtnl_lock is held.  */
13423 	case DRV_CTL_START_L2_CMD: {
13424 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13425 		unsigned long sp_bits = 0;
13426 
13427 		/* Configure the iSCSI classification object */
13428 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13429 				   cp->iscsi_l2_client_id,
13430 				   cp->iscsi_l2_cid, BP_FUNC(bp),
13431 				   bnx2x_sp(bp, mac_rdata),
13432 				   bnx2x_sp_mapping(bp, mac_rdata),
13433 				   BNX2X_FILTER_MAC_PENDING,
13434 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13435 				   &bp->macs_pool);
13436 
13437 		/* Set iSCSI MAC address */
13438 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13439 		if (rc)
13440 			break;
13441 
13442 		mmiowb();
13443 		barrier();
13444 
13445 		/* Start accepting on iSCSI L2 ring */
13446 
13447 		netif_addr_lock_bh(dev);
13448 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
13449 		netif_addr_unlock_bh(dev);
13450 
13451 		/* bits to wait on */
13452 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13453 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13454 
13455 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13456 			BNX2X_ERR("rx_mode completion timed out!\n");
13457 
13458 		break;
13459 	}
13460 
13461 	/* rtnl_lock is held.  */
13462 	case DRV_CTL_STOP_L2_CMD: {
13463 		unsigned long sp_bits = 0;
13464 
13465 		/* Stop accepting on iSCSI L2 ring */
13466 		netif_addr_lock_bh(dev);
13467 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
13468 		netif_addr_unlock_bh(dev);
13469 
13470 		/* bits to wait on */
13471 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13472 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13473 
13474 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13475 			BNX2X_ERR("rx_mode completion timed out!\n");
13476 
13477 		mmiowb();
13478 		barrier();
13479 
13480 		/* Unset iSCSI L2 MAC */
13481 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13482 					BNX2X_ISCSI_ETH_MAC, true);
13483 		break;
13484 	}
13485 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13486 		int count = ctl->data.credit.credit_count;
13487 
13488 		smp_mb__before_atomic_inc();
13489 		atomic_add(count, &bp->cq_spq_left);
13490 		smp_mb__after_atomic_inc();
13491 		break;
13492 	}
13493 	case DRV_CTL_ULP_REGISTER_CMD: {
13494 		int ulp_type = ctl->data.register_data.ulp_type;
13495 
13496 		if (CHIP_IS_E3(bp)) {
13497 			int idx = BP_FW_MB_IDX(bp);
13498 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13499 			int path = BP_PATH(bp);
13500 			int port = BP_PORT(bp);
13501 			int i;
13502 			u32 scratch_offset;
13503 			u32 *host_addr;
13504 
13505 			/* first write capability to shmem2 */
13506 			if (ulp_type == CNIC_ULP_ISCSI)
13507 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13508 			else if (ulp_type == CNIC_ULP_FCOE)
13509 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13510 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13511 
13512 			if ((ulp_type != CNIC_ULP_FCOE) ||
13513 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13514 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13515 				break;
13516 
13517 			/* if reached here - should write fcoe capabilities */
13518 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13519 			if (!scratch_offset)
13520 				break;
13521 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
13522 						   fcoe_features[path][port]);
13523 			host_addr = (u32 *) &(ctl->data.register_data.
13524 					      fcoe_features);
13525 			for (i = 0; i < sizeof(struct fcoe_capabilities);
13526 			     i += 4)
13527 				REG_WR(bp, scratch_offset + i,
13528 				       *(host_addr + i/4));
13529 		}
13530 		break;
13531 	}
13532 
13533 	case DRV_CTL_ULP_UNREGISTER_CMD: {
13534 		int ulp_type = ctl->data.ulp_type;
13535 
13536 		if (CHIP_IS_E3(bp)) {
13537 			int idx = BP_FW_MB_IDX(bp);
13538 			u32 cap;
13539 
13540 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13541 			if (ulp_type == CNIC_ULP_ISCSI)
13542 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13543 			else if (ulp_type == CNIC_ULP_FCOE)
13544 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13545 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13546 		}
13547 		break;
13548 	}
13549 
13550 	default:
13551 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
13552 		rc = -EINVAL;
13553 	}
13554 
13555 	return rc;
13556 }
13557 
13558 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13559 {
13560 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13561 
13562 	if (bp->flags & USING_MSIX_FLAG) {
13563 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13564 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13565 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
13566 	} else {
13567 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13568 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13569 	}
13570 	if (!CHIP_IS_E1x(bp))
13571 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13572 	else
13573 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13574 
13575 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13576 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13577 	cp->irq_arr[1].status_blk = bp->def_status_blk;
13578 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13579 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13580 
13581 	cp->num_irq = 2;
13582 }
13583 
13584 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13585 {
13586 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13587 
13588 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13589 			     bnx2x_cid_ilt_lines(bp);
13590 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13591 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13592 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13593 
13594 	if (NO_ISCSI_OOO(bp))
13595 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13596 }
13597 
13598 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13599 			       void *data)
13600 {
13601 	struct bnx2x *bp = netdev_priv(dev);
13602 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13603 	int rc;
13604 
13605 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13606 
13607 	if (ops == NULL) {
13608 		BNX2X_ERR("NULL ops received\n");
13609 		return -EINVAL;
13610 	}
13611 
13612 	if (!CNIC_SUPPORT(bp)) {
13613 		BNX2X_ERR("Can't register CNIC when not supported\n");
13614 		return -EOPNOTSUPP;
13615 	}
13616 
13617 	if (!CNIC_LOADED(bp)) {
13618 		rc = bnx2x_load_cnic(bp);
13619 		if (rc) {
13620 			BNX2X_ERR("CNIC-related load failed\n");
13621 			return rc;
13622 		}
13623 	}
13624 
13625 	bp->cnic_enabled = true;
13626 
13627 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13628 	if (!bp->cnic_kwq)
13629 		return -ENOMEM;
13630 
13631 	bp->cnic_kwq_cons = bp->cnic_kwq;
13632 	bp->cnic_kwq_prod = bp->cnic_kwq;
13633 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13634 
13635 	bp->cnic_spq_pending = 0;
13636 	bp->cnic_kwq_pending = 0;
13637 
13638 	bp->cnic_data = data;
13639 
13640 	cp->num_irq = 0;
13641 	cp->drv_state |= CNIC_DRV_STATE_REGD;
13642 	cp->iro_arr = bp->iro_arr;
13643 
13644 	bnx2x_setup_cnic_irq_info(bp);
13645 
13646 	rcu_assign_pointer(bp->cnic_ops, ops);
13647 
13648 	return 0;
13649 }
13650 
13651 static int bnx2x_unregister_cnic(struct net_device *dev)
13652 {
13653 	struct bnx2x *bp = netdev_priv(dev);
13654 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13655 
13656 	mutex_lock(&bp->cnic_mutex);
13657 	cp->drv_state = 0;
13658 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
13659 	mutex_unlock(&bp->cnic_mutex);
13660 	synchronize_rcu();
13661 	bp->cnic_enabled = false;
13662 	kfree(bp->cnic_kwq);
13663 	bp->cnic_kwq = NULL;
13664 
13665 	return 0;
13666 }
13667 
13668 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13669 {
13670 	struct bnx2x *bp = netdev_priv(dev);
13671 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13672 
13673 	/* If both iSCSI and FCoE are disabled - return NULL in
13674 	 * order to indicate CNIC that it should not try to work
13675 	 * with this device.
13676 	 */
13677 	if (NO_ISCSI(bp) && NO_FCOE(bp))
13678 		return NULL;
13679 
13680 	cp->drv_owner = THIS_MODULE;
13681 	cp->chip_id = CHIP_ID(bp);
13682 	cp->pdev = bp->pdev;
13683 	cp->io_base = bp->regview;
13684 	cp->io_base2 = bp->doorbells;
13685 	cp->max_kwqe_pending = 8;
13686 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13687 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13688 			     bnx2x_cid_ilt_lines(bp);
13689 	cp->ctx_tbl_len = CNIC_ILT_LINES;
13690 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13691 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13692 	cp->drv_ctl = bnx2x_drv_ctl;
13693 	cp->drv_register_cnic = bnx2x_register_cnic;
13694 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13695 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13696 	cp->iscsi_l2_client_id =
13697 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13698 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13699 
13700 	if (NO_ISCSI_OOO(bp))
13701 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13702 
13703 	if (NO_ISCSI(bp))
13704 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13705 
13706 	if (NO_FCOE(bp))
13707 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13708 
13709 	BNX2X_DEV_INFO(
13710 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13711 	   cp->ctx_blk_size,
13712 	   cp->ctx_tbl_offset,
13713 	   cp->ctx_tbl_len,
13714 	   cp->starting_cid);
13715 	return cp;
13716 }
13717 
13718 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13719 {
13720 	struct bnx2x *bp = fp->bp;
13721 	u32 offset = BAR_USTRORM_INTMEM;
13722 
13723 	if (IS_VF(bp))
13724 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
13725 	else if (!CHIP_IS_E1x(bp))
13726 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13727 	else
13728 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13729 
13730 	return offset;
13731 }
13732 
13733 /* called only on E1H or E2.
13734  * When pretending to be PF, the pretend value is the function number 0...7
13735  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13736  * combination
13737  */
13738 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13739 {
13740 	u32 pretend_reg;
13741 
13742 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13743 		return -1;
13744 
13745 	/* get my own pretend register */
13746 	pretend_reg = bnx2x_get_pretend_reg(bp);
13747 	REG_WR(bp, pretend_reg, pretend_func_val);
13748 	REG_RD(bp, pretend_reg);
13749 	return 0;
13750 }
13751