1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2012 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64 
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION					\
69 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76 
77 /* Time in jiffies before concluding the transmitter is hung */
78 #define TX_TIMEOUT		(5*HZ)
79 
80 static char version[] __devinitdata =
81 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83 
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("Broadcom NetXtreme II "
86 		   "BCM57710/57711/57711E/"
87 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 		   "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_MODULE_VERSION);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93 MODULE_FIRMWARE(FW_FILE_NAME_E2);
94 
95 static int multi_mode = 1;
96 module_param(multi_mode, int, 0);
97 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98 			     "(0 Disable; 1 Enable (default))");
99 
100 int num_queues;
101 module_param(num_queues, int, 0);
102 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103 				" (default is as a number of CPUs)");
104 
105 static int disable_tpa;
106 module_param(disable_tpa, int, 0);
107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108 
109 #define INT_MODE_INTx			1
110 #define INT_MODE_MSI			2
111 static int int_mode;
112 module_param(int_mode, int, 0);
113 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114 				"(1 INT#x; 2 MSI)");
115 
116 static int dropless_fc;
117 module_param(dropless_fc, int, 0);
118 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119 
120 static int mrrs = -1;
121 module_param(mrrs, int, 0);
122 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
123 
124 static int debug;
125 module_param(debug, int, 0);
126 MODULE_PARM_DESC(debug, " Default debug msglevel");
127 
128 
129 
130 struct workqueue_struct *bnx2x_wq;
131 
132 enum bnx2x_board_type {
133 	BCM57710 = 0,
134 	BCM57711,
135 	BCM57711E,
136 	BCM57712,
137 	BCM57712_MF,
138 	BCM57800,
139 	BCM57800_MF,
140 	BCM57810,
141 	BCM57810_MF,
142 	BCM57840,
143 	BCM57840_MF
144 };
145 
146 /* indexed by board_type, above */
147 static struct {
148 	char *name;
149 } board_info[] __devinitdata = {
150 	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
151 	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
152 	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
153 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
154 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
155 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
156 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
157 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
158 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
159 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
160 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
161 						"Ethernet Multi Function"}
162 };
163 
164 #ifndef PCI_DEVICE_ID_NX2_57710
165 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
166 #endif
167 #ifndef PCI_DEVICE_ID_NX2_57711
168 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
169 #endif
170 #ifndef PCI_DEVICE_ID_NX2_57711E
171 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
172 #endif
173 #ifndef PCI_DEVICE_ID_NX2_57712
174 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
175 #endif
176 #ifndef PCI_DEVICE_ID_NX2_57712_MF
177 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
178 #endif
179 #ifndef PCI_DEVICE_ID_NX2_57800
180 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
181 #endif
182 #ifndef PCI_DEVICE_ID_NX2_57800_MF
183 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
184 #endif
185 #ifndef PCI_DEVICE_ID_NX2_57810
186 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
187 #endif
188 #ifndef PCI_DEVICE_ID_NX2_57810_MF
189 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57840
192 #define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57840_MF
195 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
196 #endif
197 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
198 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
199 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
200 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
201 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
202 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
203 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
204 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
205 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
206 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
207 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
208 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
209 	{ 0 }
210 };
211 
212 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
213 
214 /****************************************************************************
215 * General service functions
216 ****************************************************************************/
217 
218 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
219 				       u32 addr, dma_addr_t mapping)
220 {
221 	REG_WR(bp,  addr, U64_LO(mapping));
222 	REG_WR(bp,  addr + 4, U64_HI(mapping));
223 }
224 
225 static inline void storm_memset_spq_addr(struct bnx2x *bp,
226 					 dma_addr_t mapping, u16 abs_fid)
227 {
228 	u32 addr = XSEM_REG_FAST_MEMORY +
229 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
230 
231 	__storm_memset_dma_mapping(bp, addr, mapping);
232 }
233 
234 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
235 					 u16 pf_id)
236 {
237 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
238 		pf_id);
239 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
240 		pf_id);
241 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
242 		pf_id);
243 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
244 		pf_id);
245 }
246 
247 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
248 					u8 enable)
249 {
250 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
251 		enable);
252 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
253 		enable);
254 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
255 		enable);
256 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
257 		enable);
258 }
259 
260 static inline void storm_memset_eq_data(struct bnx2x *bp,
261 				struct event_ring_data *eq_data,
262 				u16 pfid)
263 {
264 	size_t size = sizeof(struct event_ring_data);
265 
266 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
267 
268 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
269 }
270 
271 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
272 					u16 pfid)
273 {
274 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
275 	REG_WR16(bp, addr, eq_prod);
276 }
277 
278 /* used only at init
279  * locking is done by mcp
280  */
281 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
282 {
283 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
284 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
285 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
286 			       PCICFG_VENDOR_ID_OFFSET);
287 }
288 
289 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
290 {
291 	u32 val;
292 
293 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
294 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
295 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
296 			       PCICFG_VENDOR_ID_OFFSET);
297 
298 	return val;
299 }
300 
301 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
302 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
303 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
304 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
305 #define DMAE_DP_DST_NONE	"dst_addr [none]"
306 
307 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
308 			  int msglvl)
309 {
310 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
311 
312 	switch (dmae->opcode & DMAE_COMMAND_DST) {
313 	case DMAE_CMD_DST_PCI:
314 		if (src_type == DMAE_CMD_SRC_PCI)
315 			DP(msglvl, "DMAE: opcode 0x%08x\n"
316 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
317 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
318 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
319 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
320 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
321 			   dmae->comp_val);
322 		else
323 			DP(msglvl, "DMAE: opcode 0x%08x\n"
324 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
325 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
326 			   dmae->opcode, dmae->src_addr_lo >> 2,
327 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
328 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
329 			   dmae->comp_val);
330 		break;
331 	case DMAE_CMD_DST_GRC:
332 		if (src_type == DMAE_CMD_SRC_PCI)
333 			DP(msglvl, "DMAE: opcode 0x%08x\n"
334 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
335 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
336 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
337 			   dmae->len, dmae->dst_addr_lo >> 2,
338 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
339 			   dmae->comp_val);
340 		else
341 			DP(msglvl, "DMAE: opcode 0x%08x\n"
342 			   "src [%08x], len [%d*4], dst [%08x]\n"
343 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
344 			   dmae->opcode, dmae->src_addr_lo >> 2,
345 			   dmae->len, dmae->dst_addr_lo >> 2,
346 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
347 			   dmae->comp_val);
348 		break;
349 	default:
350 		if (src_type == DMAE_CMD_SRC_PCI)
351 			DP(msglvl, "DMAE: opcode 0x%08x\n"
352 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
353 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
354 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
355 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
356 			   dmae->comp_val);
357 		else
358 			DP(msglvl, "DMAE: opcode 0x%08x\n"
359 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
360 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
361 			   dmae->opcode, dmae->src_addr_lo >> 2,
362 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
363 			   dmae->comp_val);
364 		break;
365 	}
366 
367 }
368 
369 /* copy command into DMAE command memory and set DMAE command go */
370 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
371 {
372 	u32 cmd_offset;
373 	int i;
374 
375 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
376 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
377 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
378 	}
379 	REG_WR(bp, dmae_reg_go_c[idx], 1);
380 }
381 
382 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
383 {
384 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
385 			   DMAE_CMD_C_ENABLE);
386 }
387 
388 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
389 {
390 	return opcode & ~DMAE_CMD_SRC_RESET;
391 }
392 
393 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
394 			     bool with_comp, u8 comp_type)
395 {
396 	u32 opcode = 0;
397 
398 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
399 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
400 
401 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
402 
403 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
404 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
405 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
406 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
407 
408 #ifdef __BIG_ENDIAN
409 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
410 #else
411 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
412 #endif
413 	if (with_comp)
414 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
415 	return opcode;
416 }
417 
418 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
419 				      struct dmae_command *dmae,
420 				      u8 src_type, u8 dst_type)
421 {
422 	memset(dmae, 0, sizeof(struct dmae_command));
423 
424 	/* set the opcode */
425 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
426 					 true, DMAE_COMP_PCI);
427 
428 	/* fill in the completion parameters */
429 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
430 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
431 	dmae->comp_val = DMAE_COMP_VAL;
432 }
433 
434 /* issue a dmae command over the init-channel and wailt for completion */
435 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
436 				      struct dmae_command *dmae)
437 {
438 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
439 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
440 	int rc = 0;
441 
442 	/*
443 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
444 	 * as long as this code is called both from syscall context and
445 	 * from ndo_set_rx_mode() flow that may be called from BH.
446 	 */
447 	spin_lock_bh(&bp->dmae_lock);
448 
449 	/* reset completion */
450 	*wb_comp = 0;
451 
452 	/* post the command on the channel used for initializations */
453 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
454 
455 	/* wait for completion */
456 	udelay(5);
457 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
458 
459 		if (!cnt ||
460 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
461 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
462 			BNX2X_ERR("DMAE timeout!\n");
463 			rc = DMAE_TIMEOUT;
464 			goto unlock;
465 		}
466 		cnt--;
467 		udelay(50);
468 	}
469 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
470 		BNX2X_ERR("DMAE PCI error!\n");
471 		rc = DMAE_PCI_ERROR;
472 	}
473 
474 unlock:
475 	spin_unlock_bh(&bp->dmae_lock);
476 	return rc;
477 }
478 
479 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
480 		      u32 len32)
481 {
482 	struct dmae_command dmae;
483 
484 	if (!bp->dmae_ready) {
485 		u32 *data = bnx2x_sp(bp, wb_data[0]);
486 
487 		if (CHIP_IS_E1(bp))
488 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
489 		else
490 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
491 		return;
492 	}
493 
494 	/* set opcode and fixed command fields */
495 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
496 
497 	/* fill in addresses and len */
498 	dmae.src_addr_lo = U64_LO(dma_addr);
499 	dmae.src_addr_hi = U64_HI(dma_addr);
500 	dmae.dst_addr_lo = dst_addr >> 2;
501 	dmae.dst_addr_hi = 0;
502 	dmae.len = len32;
503 
504 	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
505 
506 	/* issue the command and wait for completion */
507 	bnx2x_issue_dmae_with_comp(bp, &dmae);
508 }
509 
510 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
511 {
512 	struct dmae_command dmae;
513 
514 	if (!bp->dmae_ready) {
515 		u32 *data = bnx2x_sp(bp, wb_data[0]);
516 		int i;
517 
518 		if (CHIP_IS_E1(bp))
519 			for (i = 0; i < len32; i++)
520 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
521 		else
522 			for (i = 0; i < len32; i++)
523 				data[i] = REG_RD(bp, src_addr + i*4);
524 
525 		return;
526 	}
527 
528 	/* set opcode and fixed command fields */
529 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
530 
531 	/* fill in addresses and len */
532 	dmae.src_addr_lo = src_addr >> 2;
533 	dmae.src_addr_hi = 0;
534 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
535 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
536 	dmae.len = len32;
537 
538 	bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
539 
540 	/* issue the command and wait for completion */
541 	bnx2x_issue_dmae_with_comp(bp, &dmae);
542 }
543 
544 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
545 				      u32 addr, u32 len)
546 {
547 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
548 	int offset = 0;
549 
550 	while (len > dmae_wr_max) {
551 		bnx2x_write_dmae(bp, phys_addr + offset,
552 				 addr + offset, dmae_wr_max);
553 		offset += dmae_wr_max * 4;
554 		len -= dmae_wr_max;
555 	}
556 
557 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
558 }
559 
560 /* used only for slowpath so not inlined */
561 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
562 {
563 	u32 wb_write[2];
564 
565 	wb_write[0] = val_hi;
566 	wb_write[1] = val_lo;
567 	REG_WR_DMAE(bp, reg, wb_write, 2);
568 }
569 
570 #ifdef USE_WB_RD
571 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
572 {
573 	u32 wb_data[2];
574 
575 	REG_RD_DMAE(bp, reg, wb_data, 2);
576 
577 	return HILO_U64(wb_data[0], wb_data[1]);
578 }
579 #endif
580 
581 static int bnx2x_mc_assert(struct bnx2x *bp)
582 {
583 	char last_idx;
584 	int i, rc = 0;
585 	u32 row0, row1, row2, row3;
586 
587 	/* XSTORM */
588 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
589 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
590 	if (last_idx)
591 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
592 
593 	/* print the asserts */
594 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
595 
596 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
597 			      XSTORM_ASSERT_LIST_OFFSET(i));
598 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
599 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
600 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
601 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
602 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
603 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
604 
605 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
606 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
607 				  i, row3, row2, row1, row0);
608 			rc++;
609 		} else {
610 			break;
611 		}
612 	}
613 
614 	/* TSTORM */
615 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
616 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
617 	if (last_idx)
618 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
619 
620 	/* print the asserts */
621 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
622 
623 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
624 			      TSTORM_ASSERT_LIST_OFFSET(i));
625 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
626 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
627 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
628 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
629 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
630 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
631 
632 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
633 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
634 				  i, row3, row2, row1, row0);
635 			rc++;
636 		} else {
637 			break;
638 		}
639 	}
640 
641 	/* CSTORM */
642 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
643 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
644 	if (last_idx)
645 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
646 
647 	/* print the asserts */
648 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
649 
650 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
651 			      CSTORM_ASSERT_LIST_OFFSET(i));
652 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
653 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
654 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
655 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
656 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
657 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
658 
659 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
660 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
661 				  i, row3, row2, row1, row0);
662 			rc++;
663 		} else {
664 			break;
665 		}
666 	}
667 
668 	/* USTORM */
669 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
670 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
671 	if (last_idx)
672 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
673 
674 	/* print the asserts */
675 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
676 
677 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
678 			      USTORM_ASSERT_LIST_OFFSET(i));
679 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
680 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
681 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
682 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
683 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
684 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
685 
686 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
687 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
688 				  i, row3, row2, row1, row0);
689 			rc++;
690 		} else {
691 			break;
692 		}
693 	}
694 
695 	return rc;
696 }
697 
698 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
699 {
700 	u32 addr, val;
701 	u32 mark, offset;
702 	__be32 data[9];
703 	int word;
704 	u32 trace_shmem_base;
705 	if (BP_NOMCP(bp)) {
706 		BNX2X_ERR("NO MCP - can not dump\n");
707 		return;
708 	}
709 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
710 		(bp->common.bc_ver & 0xff0000) >> 16,
711 		(bp->common.bc_ver & 0xff00) >> 8,
712 		(bp->common.bc_ver & 0xff));
713 
714 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
715 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
716 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
717 
718 	if (BP_PATH(bp) == 0)
719 		trace_shmem_base = bp->common.shmem_base;
720 	else
721 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
722 	addr = trace_shmem_base - 0x0800 + 4;
723 	mark = REG_RD(bp, addr);
724 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
725 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
726 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
727 
728 	printk("%s", lvl);
729 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
730 		for (word = 0; word < 8; word++)
731 			data[word] = htonl(REG_RD(bp, offset + 4*word));
732 		data[8] = 0x0;
733 		pr_cont("%s", (char *)data);
734 	}
735 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
736 		for (word = 0; word < 8; word++)
737 			data[word] = htonl(REG_RD(bp, offset + 4*word));
738 		data[8] = 0x0;
739 		pr_cont("%s", (char *)data);
740 	}
741 	printk("%s" "end of fw dump\n", lvl);
742 }
743 
744 static inline void bnx2x_fw_dump(struct bnx2x *bp)
745 {
746 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
747 }
748 
749 void bnx2x_panic_dump(struct bnx2x *bp)
750 {
751 	int i;
752 	u16 j;
753 	struct hc_sp_status_block_data sp_sb_data;
754 	int func = BP_FUNC(bp);
755 #ifdef BNX2X_STOP_ON_ERROR
756 	u16 start = 0, end = 0;
757 	u8 cos;
758 #endif
759 
760 	bp->stats_state = STATS_STATE_DISABLED;
761 	bp->eth_stats.unrecoverable_error++;
762 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
763 
764 	BNX2X_ERR("begin crash dump -----------------\n");
765 
766 	/* Indices */
767 	/* Common */
768 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
769 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
770 		  bp->spq_prod_idx, bp->stats_counter);
771 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
772 		  bp->def_status_blk->atten_status_block.attn_bits,
773 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
774 		  bp->def_status_blk->atten_status_block.status_block_id,
775 		  bp->def_status_blk->atten_status_block.attn_bits_index);
776 	BNX2X_ERR("     def (");
777 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
778 		pr_cont("0x%x%s",
779 			bp->def_status_blk->sp_sb.index_values[i],
780 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
781 
782 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
783 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
784 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
785 			i*sizeof(u32));
786 
787 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
788 	       sp_sb_data.igu_sb_id,
789 	       sp_sb_data.igu_seg_id,
790 	       sp_sb_data.p_func.pf_id,
791 	       sp_sb_data.p_func.vnic_id,
792 	       sp_sb_data.p_func.vf_id,
793 	       sp_sb_data.p_func.vf_valid,
794 	       sp_sb_data.state);
795 
796 
797 	for_each_eth_queue(bp, i) {
798 		struct bnx2x_fastpath *fp = &bp->fp[i];
799 		int loop;
800 		struct hc_status_block_data_e2 sb_data_e2;
801 		struct hc_status_block_data_e1x sb_data_e1x;
802 		struct hc_status_block_sm  *hc_sm_p =
803 			CHIP_IS_E1x(bp) ?
804 			sb_data_e1x.common.state_machine :
805 			sb_data_e2.common.state_machine;
806 		struct hc_index_data *hc_index_p =
807 			CHIP_IS_E1x(bp) ?
808 			sb_data_e1x.index_data :
809 			sb_data_e2.index_data;
810 		u8 data_size, cos;
811 		u32 *sb_data_p;
812 		struct bnx2x_fp_txdata txdata;
813 
814 		/* Rx */
815 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
816 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
817 			  fp->rx_comp_prod,
818 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
819 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
820 			  fp->rx_sge_prod, fp->last_max_sge,
821 			  le16_to_cpu(fp->fp_hc_idx));
822 
823 		/* Tx */
824 		for_each_cos_in_tx_queue(fp, cos)
825 		{
826 			txdata = fp->txdata[cos];
827 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
828 				  i, txdata.tx_pkt_prod,
829 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
830 				  txdata.tx_bd_cons,
831 				  le16_to_cpu(*txdata.tx_cons_sb));
832 		}
833 
834 		loop = CHIP_IS_E1x(bp) ?
835 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
836 
837 		/* host sb data */
838 
839 #ifdef BCM_CNIC
840 		if (IS_FCOE_FP(fp))
841 			continue;
842 #endif
843 		BNX2X_ERR("     run indexes (");
844 		for (j = 0; j < HC_SB_MAX_SM; j++)
845 			pr_cont("0x%x%s",
846 			       fp->sb_running_index[j],
847 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
848 
849 		BNX2X_ERR("     indexes (");
850 		for (j = 0; j < loop; j++)
851 			pr_cont("0x%x%s",
852 			       fp->sb_index_values[j],
853 			       (j == loop - 1) ? ")" : " ");
854 		/* fw sb data */
855 		data_size = CHIP_IS_E1x(bp) ?
856 			sizeof(struct hc_status_block_data_e1x) :
857 			sizeof(struct hc_status_block_data_e2);
858 		data_size /= sizeof(u32);
859 		sb_data_p = CHIP_IS_E1x(bp) ?
860 			(u32 *)&sb_data_e1x :
861 			(u32 *)&sb_data_e2;
862 		/* copy sb data in here */
863 		for (j = 0; j < data_size; j++)
864 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
865 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
866 				j * sizeof(u32));
867 
868 		if (!CHIP_IS_E1x(bp)) {
869 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
870 				sb_data_e2.common.p_func.pf_id,
871 				sb_data_e2.common.p_func.vf_id,
872 				sb_data_e2.common.p_func.vf_valid,
873 				sb_data_e2.common.p_func.vnic_id,
874 				sb_data_e2.common.same_igu_sb_1b,
875 				sb_data_e2.common.state);
876 		} else {
877 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
878 				sb_data_e1x.common.p_func.pf_id,
879 				sb_data_e1x.common.p_func.vf_id,
880 				sb_data_e1x.common.p_func.vf_valid,
881 				sb_data_e1x.common.p_func.vnic_id,
882 				sb_data_e1x.common.same_igu_sb_1b,
883 				sb_data_e1x.common.state);
884 		}
885 
886 		/* SB_SMs data */
887 		for (j = 0; j < HC_SB_MAX_SM; j++) {
888 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
889 				j, hc_sm_p[j].__flags,
890 				hc_sm_p[j].igu_sb_id,
891 				hc_sm_p[j].igu_seg_id,
892 				hc_sm_p[j].time_to_expire,
893 				hc_sm_p[j].timer_value);
894 		}
895 
896 		/* Indecies data */
897 		for (j = 0; j < loop; j++) {
898 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
899 			       hc_index_p[j].flags,
900 			       hc_index_p[j].timeout);
901 		}
902 	}
903 
904 #ifdef BNX2X_STOP_ON_ERROR
905 	/* Rings */
906 	/* Rx */
907 	for_each_rx_queue(bp, i) {
908 		struct bnx2x_fastpath *fp = &bp->fp[i];
909 
910 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
911 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
912 		for (j = start; j != end; j = RX_BD(j + 1)) {
913 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
914 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
915 
916 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
917 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
918 		}
919 
920 		start = RX_SGE(fp->rx_sge_prod);
921 		end = RX_SGE(fp->last_max_sge);
922 		for (j = start; j != end; j = RX_SGE(j + 1)) {
923 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
924 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
925 
926 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
927 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
928 		}
929 
930 		start = RCQ_BD(fp->rx_comp_cons - 10);
931 		end = RCQ_BD(fp->rx_comp_cons + 503);
932 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
933 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
934 
935 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
936 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
937 		}
938 	}
939 
940 	/* Tx */
941 	for_each_tx_queue(bp, i) {
942 		struct bnx2x_fastpath *fp = &bp->fp[i];
943 		for_each_cos_in_tx_queue(fp, cos) {
944 			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
945 
946 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
947 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
948 			for (j = start; j != end; j = TX_BD(j + 1)) {
949 				struct sw_tx_bd *sw_bd =
950 					&txdata->tx_buf_ring[j];
951 
952 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
953 					  i, cos, j, sw_bd->skb,
954 					  sw_bd->first_bd);
955 			}
956 
957 			start = TX_BD(txdata->tx_bd_cons - 10);
958 			end = TX_BD(txdata->tx_bd_cons + 254);
959 			for (j = start; j != end; j = TX_BD(j + 1)) {
960 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
961 
962 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
963 					  i, cos, j, tx_bd[0], tx_bd[1],
964 					  tx_bd[2], tx_bd[3]);
965 			}
966 		}
967 	}
968 #endif
969 	bnx2x_fw_dump(bp);
970 	bnx2x_mc_assert(bp);
971 	BNX2X_ERR("end crash dump -----------------\n");
972 }
973 
974 /*
975  * FLR Support for E2
976  *
977  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
978  * initialization.
979  */
980 #define FLR_WAIT_USEC		10000	/* 10 miliseconds */
981 #define FLR_WAIT_INTERVAL	50	/* usec */
982 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
983 
984 struct pbf_pN_buf_regs {
985 	int pN;
986 	u32 init_crd;
987 	u32 crd;
988 	u32 crd_freed;
989 };
990 
991 struct pbf_pN_cmd_regs {
992 	int pN;
993 	u32 lines_occup;
994 	u32 lines_freed;
995 };
996 
997 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
998 				     struct pbf_pN_buf_regs *regs,
999 				     u32 poll_count)
1000 {
1001 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1002 	u32 cur_cnt = poll_count;
1003 
1004 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1005 	crd = crd_start = REG_RD(bp, regs->crd);
1006 	init_crd = REG_RD(bp, regs->init_crd);
1007 
1008 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1009 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1010 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1011 
1012 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1013 	       (init_crd - crd_start))) {
1014 		if (cur_cnt--) {
1015 			udelay(FLR_WAIT_INTERVAL);
1016 			crd = REG_RD(bp, regs->crd);
1017 			crd_freed = REG_RD(bp, regs->crd_freed);
1018 		} else {
1019 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1020 			   regs->pN);
1021 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1022 			   regs->pN, crd);
1023 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1024 			   regs->pN, crd_freed);
1025 			break;
1026 		}
1027 	}
1028 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1029 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1030 }
1031 
1032 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1033 				     struct pbf_pN_cmd_regs *regs,
1034 				     u32 poll_count)
1035 {
1036 	u32 occup, to_free, freed, freed_start;
1037 	u32 cur_cnt = poll_count;
1038 
1039 	occup = to_free = REG_RD(bp, regs->lines_occup);
1040 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1041 
1042 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1043 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1044 
1045 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1046 		if (cur_cnt--) {
1047 			udelay(FLR_WAIT_INTERVAL);
1048 			occup = REG_RD(bp, regs->lines_occup);
1049 			freed = REG_RD(bp, regs->lines_freed);
1050 		} else {
1051 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1052 			   regs->pN);
1053 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1054 			   regs->pN, occup);
1055 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1056 			   regs->pN, freed);
1057 			break;
1058 		}
1059 	}
1060 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1061 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1062 }
1063 
1064 static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1065 				     u32 expected, u32 poll_count)
1066 {
1067 	u32 cur_cnt = poll_count;
1068 	u32 val;
1069 
1070 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1071 		udelay(FLR_WAIT_INTERVAL);
1072 
1073 	return val;
1074 }
1075 
1076 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1077 						  char *msg, u32 poll_cnt)
1078 {
1079 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1080 	if (val != 0) {
1081 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1082 		return 1;
1083 	}
1084 	return 0;
1085 }
1086 
1087 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1088 {
1089 	/* adjust polling timeout */
1090 	if (CHIP_REV_IS_EMUL(bp))
1091 		return FLR_POLL_CNT * 2000;
1092 
1093 	if (CHIP_REV_IS_FPGA(bp))
1094 		return FLR_POLL_CNT * 120;
1095 
1096 	return FLR_POLL_CNT;
1097 }
1098 
1099 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1100 {
1101 	struct pbf_pN_cmd_regs cmd_regs[] = {
1102 		{0, (CHIP_IS_E3B0(bp)) ?
1103 			PBF_REG_TQ_OCCUPANCY_Q0 :
1104 			PBF_REG_P0_TQ_OCCUPANCY,
1105 		    (CHIP_IS_E3B0(bp)) ?
1106 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1107 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1108 		{1, (CHIP_IS_E3B0(bp)) ?
1109 			PBF_REG_TQ_OCCUPANCY_Q1 :
1110 			PBF_REG_P1_TQ_OCCUPANCY,
1111 		    (CHIP_IS_E3B0(bp)) ?
1112 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1113 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1114 		{4, (CHIP_IS_E3B0(bp)) ?
1115 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1116 			PBF_REG_P4_TQ_OCCUPANCY,
1117 		    (CHIP_IS_E3B0(bp)) ?
1118 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1119 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1120 	};
1121 
1122 	struct pbf_pN_buf_regs buf_regs[] = {
1123 		{0, (CHIP_IS_E3B0(bp)) ?
1124 			PBF_REG_INIT_CRD_Q0 :
1125 			PBF_REG_P0_INIT_CRD ,
1126 		    (CHIP_IS_E3B0(bp)) ?
1127 			PBF_REG_CREDIT_Q0 :
1128 			PBF_REG_P0_CREDIT,
1129 		    (CHIP_IS_E3B0(bp)) ?
1130 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1131 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1132 		{1, (CHIP_IS_E3B0(bp)) ?
1133 			PBF_REG_INIT_CRD_Q1 :
1134 			PBF_REG_P1_INIT_CRD,
1135 		    (CHIP_IS_E3B0(bp)) ?
1136 			PBF_REG_CREDIT_Q1 :
1137 			PBF_REG_P1_CREDIT,
1138 		    (CHIP_IS_E3B0(bp)) ?
1139 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1140 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1141 		{4, (CHIP_IS_E3B0(bp)) ?
1142 			PBF_REG_INIT_CRD_LB_Q :
1143 			PBF_REG_P4_INIT_CRD,
1144 		    (CHIP_IS_E3B0(bp)) ?
1145 			PBF_REG_CREDIT_LB_Q :
1146 			PBF_REG_P4_CREDIT,
1147 		    (CHIP_IS_E3B0(bp)) ?
1148 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1149 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1150 	};
1151 
1152 	int i;
1153 
1154 	/* Verify the command queues are flushed P0, P1, P4 */
1155 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1156 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1157 
1158 
1159 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1160 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1161 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1162 }
1163 
1164 #define OP_GEN_PARAM(param) \
1165 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1166 
1167 #define OP_GEN_TYPE(type) \
1168 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1169 
1170 #define OP_GEN_AGG_VECT(index) \
1171 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1172 
1173 
1174 static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1175 					 u32 poll_cnt)
1176 {
1177 	struct sdm_op_gen op_gen = {0};
1178 
1179 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1180 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1181 	int ret = 0;
1182 
1183 	if (REG_RD(bp, comp_addr)) {
1184 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1185 		return 1;
1186 	}
1187 
1188 	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1189 	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1190 	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1191 	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1192 
1193 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1194 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1195 
1196 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1197 		BNX2X_ERR("FW final cleanup did not succeed\n");
1198 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1199 		   (REG_RD(bp, comp_addr)));
1200 		ret = 1;
1201 	}
1202 	/* Zero completion for nxt FLR */
1203 	REG_WR(bp, comp_addr, 0);
1204 
1205 	return ret;
1206 }
1207 
1208 static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1209 {
1210 	int pos;
1211 	u16 status;
1212 
1213 	pos = pci_pcie_cap(dev);
1214 	if (!pos)
1215 		return false;
1216 
1217 	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1218 	return status & PCI_EXP_DEVSTA_TRPND;
1219 }
1220 
1221 /* PF FLR specific routines
1222 */
1223 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1224 {
1225 
1226 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1227 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1228 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1229 			"CFC PF usage counter timed out",
1230 			poll_cnt))
1231 		return 1;
1232 
1233 
1234 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1235 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1236 			DORQ_REG_PF_USAGE_CNT,
1237 			"DQ PF usage counter timed out",
1238 			poll_cnt))
1239 		return 1;
1240 
1241 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1242 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1243 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1244 			"QM PF usage counter timed out",
1245 			poll_cnt))
1246 		return 1;
1247 
1248 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1249 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1250 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1251 			"Timers VNIC usage counter timed out",
1252 			poll_cnt))
1253 		return 1;
1254 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1255 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1256 			"Timers NUM_SCANS usage counter timed out",
1257 			poll_cnt))
1258 		return 1;
1259 
1260 	/* Wait DMAE PF usage counter to zero */
1261 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1262 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1263 			"DMAE dommand register timed out",
1264 			poll_cnt))
1265 		return 1;
1266 
1267 	return 0;
1268 }
1269 
1270 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1271 {
1272 	u32 val;
1273 
1274 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1275 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1276 
1277 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1278 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1279 
1280 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1281 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1282 
1283 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1284 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1285 
1286 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1287 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1288 
1289 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1290 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1291 
1292 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1293 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1294 
1295 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1296 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1297 	   val);
1298 }
1299 
1300 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1301 {
1302 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1303 
1304 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1305 
1306 	/* Re-enable PF target read access */
1307 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1308 
1309 	/* Poll HW usage counters */
1310 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1311 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1312 		return -EBUSY;
1313 
1314 	/* Zero the igu 'trailing edge' and 'leading edge' */
1315 
1316 	/* Send the FW cleanup command */
1317 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1318 		return -EBUSY;
1319 
1320 	/* ATC cleanup */
1321 
1322 	/* Verify TX hw is flushed */
1323 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1324 
1325 	/* Wait 100ms (not adjusted according to platform) */
1326 	msleep(100);
1327 
1328 	/* Verify no pending pci transactions */
1329 	if (bnx2x_is_pcie_pending(bp->pdev))
1330 		BNX2X_ERR("PCIE Transactions still pending\n");
1331 
1332 	/* Debug */
1333 	bnx2x_hw_enable_status(bp);
1334 
1335 	/*
1336 	 * Master enable - Due to WB DMAE writes performed before this
1337 	 * register is re-initialized as part of the regular function init
1338 	 */
1339 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1340 
1341 	return 0;
1342 }
1343 
1344 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1345 {
1346 	int port = BP_PORT(bp);
1347 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1348 	u32 val = REG_RD(bp, addr);
1349 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1350 	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1351 
1352 	if (msix) {
1353 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1354 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1355 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1356 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1357 	} else if (msi) {
1358 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1359 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1360 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1361 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1362 	} else {
1363 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1364 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1365 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1366 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1367 
1368 		if (!CHIP_IS_E1(bp)) {
1369 			DP(NETIF_MSG_IFUP,
1370 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1371 
1372 			REG_WR(bp, addr, val);
1373 
1374 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1375 		}
1376 	}
1377 
1378 	if (CHIP_IS_E1(bp))
1379 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1380 
1381 	DP(NETIF_MSG_IFUP,
1382 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1383 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1384 
1385 	REG_WR(bp, addr, val);
1386 	/*
1387 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1388 	 */
1389 	mmiowb();
1390 	barrier();
1391 
1392 	if (!CHIP_IS_E1(bp)) {
1393 		/* init leading/trailing edge */
1394 		if (IS_MF(bp)) {
1395 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1396 			if (bp->port.pmf)
1397 				/* enable nig and gpio3 attention */
1398 				val |= 0x1100;
1399 		} else
1400 			val = 0xffff;
1401 
1402 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1403 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1404 	}
1405 
1406 	/* Make sure that interrupts are indeed enabled from here on */
1407 	mmiowb();
1408 }
1409 
1410 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1411 {
1412 	u32 val;
1413 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1414 	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1415 
1416 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1417 
1418 	if (msix) {
1419 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1420 			 IGU_PF_CONF_SINGLE_ISR_EN);
1421 		val |= (IGU_PF_CONF_FUNC_EN |
1422 			IGU_PF_CONF_MSI_MSIX_EN |
1423 			IGU_PF_CONF_ATTN_BIT_EN);
1424 	} else if (msi) {
1425 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1426 		val |= (IGU_PF_CONF_FUNC_EN |
1427 			IGU_PF_CONF_MSI_MSIX_EN |
1428 			IGU_PF_CONF_ATTN_BIT_EN |
1429 			IGU_PF_CONF_SINGLE_ISR_EN);
1430 	} else {
1431 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1432 		val |= (IGU_PF_CONF_FUNC_EN |
1433 			IGU_PF_CONF_INT_LINE_EN |
1434 			IGU_PF_CONF_ATTN_BIT_EN |
1435 			IGU_PF_CONF_SINGLE_ISR_EN);
1436 	}
1437 
1438 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1439 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1440 
1441 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1442 
1443 	barrier();
1444 
1445 	/* init leading/trailing edge */
1446 	if (IS_MF(bp)) {
1447 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1448 		if (bp->port.pmf)
1449 			/* enable nig and gpio3 attention */
1450 			val |= 0x1100;
1451 	} else
1452 		val = 0xffff;
1453 
1454 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1455 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1456 
1457 	/* Make sure that interrupts are indeed enabled from here on */
1458 	mmiowb();
1459 }
1460 
1461 void bnx2x_int_enable(struct bnx2x *bp)
1462 {
1463 	if (bp->common.int_block == INT_BLOCK_HC)
1464 		bnx2x_hc_int_enable(bp);
1465 	else
1466 		bnx2x_igu_int_enable(bp);
1467 }
1468 
1469 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1470 {
1471 	int port = BP_PORT(bp);
1472 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1473 	u32 val = REG_RD(bp, addr);
1474 
1475 	/*
1476 	 * in E1 we must use only PCI configuration space to disable
1477 	 * MSI/MSIX capablility
1478 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1479 	 */
1480 	if (CHIP_IS_E1(bp)) {
1481 		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1482 		 *  Use mask register to prevent from HC sending interrupts
1483 		 *  after we exit the function
1484 		 */
1485 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1486 
1487 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1488 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1489 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1490 	} else
1491 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1492 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1493 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1494 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495 
1496 	DP(NETIF_MSG_IFDOWN,
1497 	   "write %x to HC %d (addr 0x%x)\n",
1498 	   val, port, addr);
1499 
1500 	/* flush all outstanding writes */
1501 	mmiowb();
1502 
1503 	REG_WR(bp, addr, val);
1504 	if (REG_RD(bp, addr) != val)
1505 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1506 }
1507 
1508 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1509 {
1510 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1511 
1512 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1513 		 IGU_PF_CONF_INT_LINE_EN |
1514 		 IGU_PF_CONF_ATTN_BIT_EN);
1515 
1516 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1517 
1518 	/* flush all outstanding writes */
1519 	mmiowb();
1520 
1521 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1522 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1523 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1524 }
1525 
1526 void bnx2x_int_disable(struct bnx2x *bp)
1527 {
1528 	if (bp->common.int_block == INT_BLOCK_HC)
1529 		bnx2x_hc_int_disable(bp);
1530 	else
1531 		bnx2x_igu_int_disable(bp);
1532 }
1533 
1534 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1535 {
1536 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1537 	int i, offset;
1538 
1539 	if (disable_hw)
1540 		/* prevent the HW from sending interrupts */
1541 		bnx2x_int_disable(bp);
1542 
1543 	/* make sure all ISRs are done */
1544 	if (msix) {
1545 		synchronize_irq(bp->msix_table[0].vector);
1546 		offset = 1;
1547 #ifdef BCM_CNIC
1548 		offset++;
1549 #endif
1550 		for_each_eth_queue(bp, i)
1551 			synchronize_irq(bp->msix_table[offset++].vector);
1552 	} else
1553 		synchronize_irq(bp->pdev->irq);
1554 
1555 	/* make sure sp_task is not running */
1556 	cancel_delayed_work(&bp->sp_task);
1557 	cancel_delayed_work(&bp->period_task);
1558 	flush_workqueue(bnx2x_wq);
1559 }
1560 
1561 /* fast path */
1562 
1563 /*
1564  * General service functions
1565  */
1566 
1567 /* Return true if succeeded to acquire the lock */
1568 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1569 {
1570 	u32 lock_status;
1571 	u32 resource_bit = (1 << resource);
1572 	int func = BP_FUNC(bp);
1573 	u32 hw_lock_control_reg;
1574 
1575 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1576 	   "Trying to take a lock on resource %d\n", resource);
1577 
1578 	/* Validating that the resource is within range */
1579 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1580 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1581 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1582 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1583 		return false;
1584 	}
1585 
1586 	if (func <= 5)
1587 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1588 	else
1589 		hw_lock_control_reg =
1590 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1591 
1592 	/* Try to acquire the lock */
1593 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1594 	lock_status = REG_RD(bp, hw_lock_control_reg);
1595 	if (lock_status & resource_bit)
1596 		return true;
1597 
1598 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1599 	   "Failed to get a lock on resource %d\n", resource);
1600 	return false;
1601 }
1602 
1603 /**
1604  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1605  *
1606  * @bp:	driver handle
1607  *
1608  * Returns the recovery leader resource id according to the engine this function
1609  * belongs to. Currently only only 2 engines is supported.
1610  */
1611 static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1612 {
1613 	if (BP_PATH(bp))
1614 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1615 	else
1616 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1617 }
1618 
1619 /**
1620  * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1621  *
1622  * @bp: driver handle
1623  *
1624  * Tries to aquire a leader lock for cuurent engine.
1625  */
1626 static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1627 {
1628 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1629 }
1630 
1631 #ifdef BCM_CNIC
1632 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1633 #endif
1634 
1635 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1636 {
1637 	struct bnx2x *bp = fp->bp;
1638 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1639 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1640 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1641 	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1642 
1643 	DP(BNX2X_MSG_SP,
1644 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1645 	   fp->index, cid, command, bp->state,
1646 	   rr_cqe->ramrod_cqe.ramrod_type);
1647 
1648 	switch (command) {
1649 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1650 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1651 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1652 		break;
1653 
1654 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1655 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1656 		drv_cmd = BNX2X_Q_CMD_SETUP;
1657 		break;
1658 
1659 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1660 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1661 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1662 		break;
1663 
1664 	case (RAMROD_CMD_ID_ETH_HALT):
1665 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1666 		drv_cmd = BNX2X_Q_CMD_HALT;
1667 		break;
1668 
1669 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1670 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1671 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1672 		break;
1673 
1674 	case (RAMROD_CMD_ID_ETH_EMPTY):
1675 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1676 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1677 		break;
1678 
1679 	default:
1680 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1681 			  command, fp->index);
1682 		return;
1683 	}
1684 
1685 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1686 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1687 		/* q_obj->complete_cmd() failure means that this was
1688 		 * an unexpected completion.
1689 		 *
1690 		 * In this case we don't want to increase the bp->spq_left
1691 		 * because apparently we haven't sent this command the first
1692 		 * place.
1693 		 */
1694 #ifdef BNX2X_STOP_ON_ERROR
1695 		bnx2x_panic();
1696 #else
1697 		return;
1698 #endif
1699 
1700 	smp_mb__before_atomic_inc();
1701 	atomic_inc(&bp->cq_spq_left);
1702 	/* push the change in bp->spq_left and towards the memory */
1703 	smp_mb__after_atomic_inc();
1704 
1705 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1706 
1707 	return;
1708 }
1709 
1710 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1711 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1712 {
1713 	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1714 
1715 	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1716 				 start);
1717 }
1718 
1719 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1720 {
1721 	struct bnx2x *bp = netdev_priv(dev_instance);
1722 	u16 status = bnx2x_ack_int(bp);
1723 	u16 mask;
1724 	int i;
1725 	u8 cos;
1726 
1727 	/* Return here if interrupt is shared and it's not for us */
1728 	if (unlikely(status == 0)) {
1729 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1730 		return IRQ_NONE;
1731 	}
1732 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1733 
1734 #ifdef BNX2X_STOP_ON_ERROR
1735 	if (unlikely(bp->panic))
1736 		return IRQ_HANDLED;
1737 #endif
1738 
1739 	for_each_eth_queue(bp, i) {
1740 		struct bnx2x_fastpath *fp = &bp->fp[i];
1741 
1742 		mask = 0x2 << (fp->index + CNIC_PRESENT);
1743 		if (status & mask) {
1744 			/* Handle Rx or Tx according to SB id */
1745 			prefetch(fp->rx_cons_sb);
1746 			for_each_cos_in_tx_queue(fp, cos)
1747 				prefetch(fp->txdata[cos].tx_cons_sb);
1748 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1749 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1750 			status &= ~mask;
1751 		}
1752 	}
1753 
1754 #ifdef BCM_CNIC
1755 	mask = 0x2;
1756 	if (status & (mask | 0x1)) {
1757 		struct cnic_ops *c_ops = NULL;
1758 
1759 		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1760 			rcu_read_lock();
1761 			c_ops = rcu_dereference(bp->cnic_ops);
1762 			if (c_ops)
1763 				c_ops->cnic_handler(bp->cnic_data, NULL);
1764 			rcu_read_unlock();
1765 		}
1766 
1767 		status &= ~mask;
1768 	}
1769 #endif
1770 
1771 	if (unlikely(status & 0x1)) {
1772 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1773 
1774 		status &= ~0x1;
1775 		if (!status)
1776 			return IRQ_HANDLED;
1777 	}
1778 
1779 	if (unlikely(status))
1780 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1781 		   status);
1782 
1783 	return IRQ_HANDLED;
1784 }
1785 
1786 /* Link */
1787 
1788 /*
1789  * General service functions
1790  */
1791 
1792 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1793 {
1794 	u32 lock_status;
1795 	u32 resource_bit = (1 << resource);
1796 	int func = BP_FUNC(bp);
1797 	u32 hw_lock_control_reg;
1798 	int cnt;
1799 
1800 	/* Validating that the resource is within range */
1801 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1802 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1803 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1804 		return -EINVAL;
1805 	}
1806 
1807 	if (func <= 5) {
1808 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1809 	} else {
1810 		hw_lock_control_reg =
1811 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1812 	}
1813 
1814 	/* Validating that the resource is not already taken */
1815 	lock_status = REG_RD(bp, hw_lock_control_reg);
1816 	if (lock_status & resource_bit) {
1817 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1818 		   lock_status, resource_bit);
1819 		return -EEXIST;
1820 	}
1821 
1822 	/* Try for 5 second every 5ms */
1823 	for (cnt = 0; cnt < 1000; cnt++) {
1824 		/* Try to acquire the lock */
1825 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1826 		lock_status = REG_RD(bp, hw_lock_control_reg);
1827 		if (lock_status & resource_bit)
1828 			return 0;
1829 
1830 		msleep(5);
1831 	}
1832 	BNX2X_ERR("Timeout\n");
1833 	return -EAGAIN;
1834 }
1835 
1836 int bnx2x_release_leader_lock(struct bnx2x *bp)
1837 {
1838 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1839 }
1840 
1841 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1842 {
1843 	u32 lock_status;
1844 	u32 resource_bit = (1 << resource);
1845 	int func = BP_FUNC(bp);
1846 	u32 hw_lock_control_reg;
1847 
1848 	/* Validating that the resource is within range */
1849 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1850 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1851 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1852 		return -EINVAL;
1853 	}
1854 
1855 	if (func <= 5) {
1856 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1857 	} else {
1858 		hw_lock_control_reg =
1859 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1860 	}
1861 
1862 	/* Validating that the resource is currently taken */
1863 	lock_status = REG_RD(bp, hw_lock_control_reg);
1864 	if (!(lock_status & resource_bit)) {
1865 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1866 		   lock_status, resource_bit);
1867 		return -EFAULT;
1868 	}
1869 
1870 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1871 	return 0;
1872 }
1873 
1874 
1875 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1876 {
1877 	/* The GPIO should be swapped if swap register is set and active */
1878 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1879 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1880 	int gpio_shift = gpio_num +
1881 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1882 	u32 gpio_mask = (1 << gpio_shift);
1883 	u32 gpio_reg;
1884 	int value;
1885 
1886 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1887 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1888 		return -EINVAL;
1889 	}
1890 
1891 	/* read GPIO value */
1892 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1893 
1894 	/* get the requested pin value */
1895 	if ((gpio_reg & gpio_mask) == gpio_mask)
1896 		value = 1;
1897 	else
1898 		value = 0;
1899 
1900 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1901 
1902 	return value;
1903 }
1904 
1905 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1906 {
1907 	/* The GPIO should be swapped if swap register is set and active */
1908 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1909 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1910 	int gpio_shift = gpio_num +
1911 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1912 	u32 gpio_mask = (1 << gpio_shift);
1913 	u32 gpio_reg;
1914 
1915 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1916 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1917 		return -EINVAL;
1918 	}
1919 
1920 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1921 	/* read GPIO and mask except the float bits */
1922 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1923 
1924 	switch (mode) {
1925 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1926 		DP(NETIF_MSG_LINK,
1927 		   "Set GPIO %d (shift %d) -> output low\n",
1928 		   gpio_num, gpio_shift);
1929 		/* clear FLOAT and set CLR */
1930 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1931 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1932 		break;
1933 
1934 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1935 		DP(NETIF_MSG_LINK,
1936 		   "Set GPIO %d (shift %d) -> output high\n",
1937 		   gpio_num, gpio_shift);
1938 		/* clear FLOAT and set SET */
1939 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1940 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1941 		break;
1942 
1943 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1944 		DP(NETIF_MSG_LINK,
1945 		   "Set GPIO %d (shift %d) -> input\n",
1946 		   gpio_num, gpio_shift);
1947 		/* set FLOAT */
1948 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1949 		break;
1950 
1951 	default:
1952 		break;
1953 	}
1954 
1955 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1956 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1957 
1958 	return 0;
1959 }
1960 
1961 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1962 {
1963 	u32 gpio_reg = 0;
1964 	int rc = 0;
1965 
1966 	/* Any port swapping should be handled by caller. */
1967 
1968 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1969 	/* read GPIO and mask except the float bits */
1970 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1971 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1972 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1973 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1974 
1975 	switch (mode) {
1976 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1977 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1978 		/* set CLR */
1979 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1980 		break;
1981 
1982 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1983 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1984 		/* set SET */
1985 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1986 		break;
1987 
1988 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1989 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
1990 		/* set FLOAT */
1991 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1992 		break;
1993 
1994 	default:
1995 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
1996 		rc = -EINVAL;
1997 		break;
1998 	}
1999 
2000 	if (rc == 0)
2001 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2002 
2003 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2004 
2005 	return rc;
2006 }
2007 
2008 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2009 {
2010 	/* The GPIO should be swapped if swap register is set and active */
2011 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2012 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2013 	int gpio_shift = gpio_num +
2014 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2015 	u32 gpio_mask = (1 << gpio_shift);
2016 	u32 gpio_reg;
2017 
2018 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2019 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2020 		return -EINVAL;
2021 	}
2022 
2023 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2024 	/* read GPIO int */
2025 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2026 
2027 	switch (mode) {
2028 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2029 		DP(NETIF_MSG_LINK,
2030 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2031 		   gpio_num, gpio_shift);
2032 		/* clear SET and set CLR */
2033 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2034 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2035 		break;
2036 
2037 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2038 		DP(NETIF_MSG_LINK,
2039 		   "Set GPIO INT %d (shift %d) -> output high\n",
2040 		   gpio_num, gpio_shift);
2041 		/* clear CLR and set SET */
2042 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2043 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2044 		break;
2045 
2046 	default:
2047 		break;
2048 	}
2049 
2050 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2051 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2052 
2053 	return 0;
2054 }
2055 
2056 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2057 {
2058 	u32 spio_mask = (1 << spio_num);
2059 	u32 spio_reg;
2060 
2061 	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2062 	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2063 		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2064 		return -EINVAL;
2065 	}
2066 
2067 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2068 	/* read SPIO and mask except the float bits */
2069 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2070 
2071 	switch (mode) {
2072 	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2073 		DP(NETIF_MSG_HW, "Set SPIO %d -> output low\n", spio_num);
2074 		/* clear FLOAT and set CLR */
2075 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2076 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2077 		break;
2078 
2079 	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2080 		DP(NETIF_MSG_HW, "Set SPIO %d -> output high\n", spio_num);
2081 		/* clear FLOAT and set SET */
2082 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2083 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2084 		break;
2085 
2086 	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2087 		DP(NETIF_MSG_HW, "Set SPIO %d -> input\n", spio_num);
2088 		/* set FLOAT */
2089 		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2090 		break;
2091 
2092 	default:
2093 		break;
2094 	}
2095 
2096 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2097 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2098 
2099 	return 0;
2100 }
2101 
2102 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2103 {
2104 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2105 	switch (bp->link_vars.ieee_fc &
2106 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2107 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2108 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2109 						   ADVERTISED_Pause);
2110 		break;
2111 
2112 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2113 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2114 						  ADVERTISED_Pause);
2115 		break;
2116 
2117 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2118 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2119 		break;
2120 
2121 	default:
2122 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2123 						   ADVERTISED_Pause);
2124 		break;
2125 	}
2126 }
2127 
2128 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2129 {
2130 	if (!BP_NOMCP(bp)) {
2131 		u8 rc;
2132 		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2133 		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2134 		/*
2135 		 * Initialize link parameters structure variables
2136 		 * It is recommended to turn off RX FC for jumbo frames
2137 		 * for better performance
2138 		 */
2139 		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2140 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2141 		else
2142 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2143 
2144 		bnx2x_acquire_phy_lock(bp);
2145 
2146 		if (load_mode == LOAD_DIAG) {
2147 			struct link_params *lp = &bp->link_params;
2148 			lp->loopback_mode = LOOPBACK_XGXS;
2149 			/* do PHY loopback at 10G speed, if possible */
2150 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2151 				if (lp->speed_cap_mask[cfx_idx] &
2152 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2153 					lp->req_line_speed[cfx_idx] =
2154 					SPEED_10000;
2155 				else
2156 					lp->req_line_speed[cfx_idx] =
2157 					SPEED_1000;
2158 			}
2159 		}
2160 
2161 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2162 
2163 		bnx2x_release_phy_lock(bp);
2164 
2165 		bnx2x_calc_fc_adv(bp);
2166 
2167 		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2168 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2169 			bnx2x_link_report(bp);
2170 		} else
2171 			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2172 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2173 		return rc;
2174 	}
2175 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2176 	return -EINVAL;
2177 }
2178 
2179 void bnx2x_link_set(struct bnx2x *bp)
2180 {
2181 	if (!BP_NOMCP(bp)) {
2182 		bnx2x_acquire_phy_lock(bp);
2183 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2184 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2185 		bnx2x_release_phy_lock(bp);
2186 
2187 		bnx2x_calc_fc_adv(bp);
2188 	} else
2189 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2190 }
2191 
2192 static void bnx2x__link_reset(struct bnx2x *bp)
2193 {
2194 	if (!BP_NOMCP(bp)) {
2195 		bnx2x_acquire_phy_lock(bp);
2196 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2197 		bnx2x_release_phy_lock(bp);
2198 	} else
2199 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2200 }
2201 
2202 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2203 {
2204 	u8 rc = 0;
2205 
2206 	if (!BP_NOMCP(bp)) {
2207 		bnx2x_acquire_phy_lock(bp);
2208 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2209 				     is_serdes);
2210 		bnx2x_release_phy_lock(bp);
2211 	} else
2212 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2213 
2214 	return rc;
2215 }
2216 
2217 static void bnx2x_init_port_minmax(struct bnx2x *bp)
2218 {
2219 	u32 r_param = bp->link_vars.line_speed / 8;
2220 	u32 fair_periodic_timeout_usec;
2221 	u32 t_fair;
2222 
2223 	memset(&(bp->cmng.rs_vars), 0,
2224 	       sizeof(struct rate_shaping_vars_per_port));
2225 	memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2226 
2227 	/* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2228 	bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2229 
2230 	/* this is the threshold below which no timer arming will occur
2231 	   1.25 coefficient is for the threshold to be a little bigger
2232 	   than the real time, to compensate for timer in-accuracy */
2233 	bp->cmng.rs_vars.rs_threshold =
2234 				(RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2235 
2236 	/* resolution of fairness timer */
2237 	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2238 	/* for 10G it is 1000usec. for 1G it is 10000usec. */
2239 	t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2240 
2241 	/* this is the threshold below which we won't arm the timer anymore */
2242 	bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2243 
2244 	/* we multiply by 1e3/8 to get bytes/msec.
2245 	   We don't want the credits to pass a credit
2246 	   of the t_fair*FAIR_MEM (algorithm resolution) */
2247 	bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2248 	/* since each tick is 4 usec */
2249 	bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2250 }
2251 
2252 /* Calculates the sum of vn_min_rates.
2253    It's needed for further normalizing of the min_rates.
2254    Returns:
2255      sum of vn_min_rates.
2256        or
2257      0 - if all the min_rates are 0.
2258      In the later case fainess algorithm should be deactivated.
2259      If not all min_rates are zero then those that are zeroes will be set to 1.
2260  */
2261 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2262 {
2263 	int all_zero = 1;
2264 	int vn;
2265 
2266 	bp->vn_weight_sum = 0;
2267 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2268 		u32 vn_cfg = bp->mf_config[vn];
2269 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2270 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2271 
2272 		/* Skip hidden vns */
2273 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2274 			continue;
2275 
2276 		/* If min rate is zero - set it to 1 */
2277 		if (!vn_min_rate)
2278 			vn_min_rate = DEF_MIN_RATE;
2279 		else
2280 			all_zero = 0;
2281 
2282 		bp->vn_weight_sum += vn_min_rate;
2283 	}
2284 
2285 	/* if ETS or all min rates are zeros - disable fairness */
2286 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2287 		bp->cmng.flags.cmng_enables &=
2288 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2289 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2290 	} else if (all_zero) {
2291 		bp->cmng.flags.cmng_enables &=
2292 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2293 		DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2294 		   "  fairness will be disabled\n");
2295 	} else
2296 		bp->cmng.flags.cmng_enables |=
2297 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2298 }
2299 
2300 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2301 {
2302 	struct rate_shaping_vars_per_vn m_rs_vn;
2303 	struct fairness_vars_per_vn m_fair_vn;
2304 	u32 vn_cfg = bp->mf_config[vn];
2305 	int func = func_by_vn(bp, vn);
2306 	u16 vn_min_rate, vn_max_rate;
2307 	int i;
2308 
2309 	/* If function is hidden - set min and max to zeroes */
2310 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2311 		vn_min_rate = 0;
2312 		vn_max_rate = 0;
2313 
2314 	} else {
2315 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2316 
2317 		vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2318 				FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2319 		/* If fairness is enabled (not all min rates are zeroes) and
2320 		   if current min rate is zero - set it to 1.
2321 		   This is a requirement of the algorithm. */
2322 		if (bp->vn_weight_sum && (vn_min_rate == 0))
2323 			vn_min_rate = DEF_MIN_RATE;
2324 
2325 		if (IS_MF_SI(bp))
2326 			/* maxCfg in percents of linkspeed */
2327 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2328 		else
2329 			/* maxCfg is absolute in 100Mb units */
2330 			vn_max_rate = maxCfg * 100;
2331 	}
2332 
2333 	DP(NETIF_MSG_IFUP,
2334 	   "func %d: vn_min_rate %d  vn_max_rate %d  vn_weight_sum %d\n",
2335 	   func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2336 
2337 	memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2338 	memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2339 
2340 	/* global vn counter - maximal Mbps for this vn */
2341 	m_rs_vn.vn_counter.rate = vn_max_rate;
2342 
2343 	/* quota - number of bytes transmitted in this period */
2344 	m_rs_vn.vn_counter.quota =
2345 				(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2346 
2347 	if (bp->vn_weight_sum) {
2348 		/* credit for each period of the fairness algorithm:
2349 		   number of bytes in T_FAIR (the vn share the port rate).
2350 		   vn_weight_sum should not be larger than 10000, thus
2351 		   T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2352 		   than zero */
2353 		m_fair_vn.vn_credit_delta =
2354 			max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2355 						   (8 * bp->vn_weight_sum))),
2356 			      (bp->cmng.fair_vars.fair_threshold +
2357 							MIN_ABOVE_THRESH));
2358 		DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2359 		   m_fair_vn.vn_credit_delta);
2360 	}
2361 
2362 	/* Store it to internal memory */
2363 	for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2364 		REG_WR(bp, BAR_XSTRORM_INTMEM +
2365 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2366 		       ((u32 *)(&m_rs_vn))[i]);
2367 
2368 	for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2369 		REG_WR(bp, BAR_XSTRORM_INTMEM +
2370 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2371 		       ((u32 *)(&m_fair_vn))[i]);
2372 }
2373 
2374 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2375 {
2376 	if (CHIP_REV_IS_SLOW(bp))
2377 		return CMNG_FNS_NONE;
2378 	if (IS_MF(bp))
2379 		return CMNG_FNS_MINMAX;
2380 
2381 	return CMNG_FNS_NONE;
2382 }
2383 
2384 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2385 {
2386 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2387 
2388 	if (BP_NOMCP(bp))
2389 		return; /* what should be the default bvalue in this case */
2390 
2391 	/* For 2 port configuration the absolute function number formula
2392 	 * is:
2393 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2394 	 *
2395 	 *      and there are 4 functions per port
2396 	 *
2397 	 * For 4 port configuration it is
2398 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2399 	 *
2400 	 *      and there are 2 functions per port
2401 	 */
2402 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2403 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2404 
2405 		if (func >= E1H_FUNC_MAX)
2406 			break;
2407 
2408 		bp->mf_config[vn] =
2409 			MF_CFG_RD(bp, func_mf_config[func].config);
2410 	}
2411 }
2412 
2413 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2414 {
2415 
2416 	if (cmng_type == CMNG_FNS_MINMAX) {
2417 		int vn;
2418 
2419 		/* clear cmng_enables */
2420 		bp->cmng.flags.cmng_enables = 0;
2421 
2422 		/* read mf conf from shmem */
2423 		if (read_cfg)
2424 			bnx2x_read_mf_cfg(bp);
2425 
2426 		/* Init rate shaping and fairness contexts */
2427 		bnx2x_init_port_minmax(bp);
2428 
2429 		/* vn_weight_sum and enable fairness if not 0 */
2430 		bnx2x_calc_vn_weight_sum(bp);
2431 
2432 		/* calculate and set min-max rate for each vn */
2433 		if (bp->port.pmf)
2434 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2435 				bnx2x_init_vn_minmax(bp, vn);
2436 
2437 		/* always enable rate shaping and fairness */
2438 		bp->cmng.flags.cmng_enables |=
2439 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2440 		if (!bp->vn_weight_sum)
2441 			DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2442 				   "  fairness will be disabled\n");
2443 		return;
2444 	}
2445 
2446 	/* rate shaping and fairness are disabled */
2447 	DP(NETIF_MSG_IFUP,
2448 	   "rate shaping and fairness are disabled\n");
2449 }
2450 
2451 /* This function is called upon link interrupt */
2452 static void bnx2x_link_attn(struct bnx2x *bp)
2453 {
2454 	/* Make sure that we are synced with the current statistics */
2455 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2456 
2457 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2458 
2459 	if (bp->link_vars.link_up) {
2460 
2461 		/* dropless flow control */
2462 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2463 			int port = BP_PORT(bp);
2464 			u32 pause_enabled = 0;
2465 
2466 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2467 				pause_enabled = 1;
2468 
2469 			REG_WR(bp, BAR_USTRORM_INTMEM +
2470 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2471 			       pause_enabled);
2472 		}
2473 
2474 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2475 			struct host_port_stats *pstats;
2476 
2477 			pstats = bnx2x_sp(bp, port_stats);
2478 			/* reset old mac stats */
2479 			memset(&(pstats->mac_stx[0]), 0,
2480 			       sizeof(struct mac_stx));
2481 		}
2482 		if (bp->state == BNX2X_STATE_OPEN)
2483 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2484 	}
2485 
2486 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2487 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2488 
2489 		if (cmng_fns != CMNG_FNS_NONE) {
2490 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2491 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2492 		} else
2493 			/* rate shaping and fairness are disabled */
2494 			DP(NETIF_MSG_IFUP,
2495 			   "single function mode without fairness\n");
2496 	}
2497 
2498 	__bnx2x_link_report(bp);
2499 
2500 	if (IS_MF(bp))
2501 		bnx2x_link_sync_notify(bp);
2502 }
2503 
2504 void bnx2x__link_status_update(struct bnx2x *bp)
2505 {
2506 	if (bp->state != BNX2X_STATE_OPEN)
2507 		return;
2508 
2509 	/* read updated dcb configuration */
2510 	bnx2x_dcbx_pmf_update(bp);
2511 
2512 	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2513 
2514 	if (bp->link_vars.link_up)
2515 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2516 	else
2517 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2518 
2519 	/* indicate link status */
2520 	bnx2x_link_report(bp);
2521 }
2522 
2523 static void bnx2x_pmf_update(struct bnx2x *bp)
2524 {
2525 	int port = BP_PORT(bp);
2526 	u32 val;
2527 
2528 	bp->port.pmf = 1;
2529 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2530 
2531 	/*
2532 	 * We need the mb() to ensure the ordering between the writing to
2533 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2534 	 */
2535 	smp_mb();
2536 
2537 	/* queue a periodic task */
2538 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2539 
2540 	bnx2x_dcbx_pmf_update(bp);
2541 
2542 	/* enable nig attention */
2543 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2544 	if (bp->common.int_block == INT_BLOCK_HC) {
2545 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2546 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2547 	} else if (!CHIP_IS_E1x(bp)) {
2548 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2549 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2550 	}
2551 
2552 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2553 }
2554 
2555 /* end of Link */
2556 
2557 /* slow path */
2558 
2559 /*
2560  * General service functions
2561  */
2562 
2563 /* send the MCP a request, block until there is a reply */
2564 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2565 {
2566 	int mb_idx = BP_FW_MB_IDX(bp);
2567 	u32 seq;
2568 	u32 rc = 0;
2569 	u32 cnt = 1;
2570 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2571 
2572 	mutex_lock(&bp->fw_mb_mutex);
2573 	seq = ++bp->fw_seq;
2574 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2575 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2576 
2577 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2578 			(command | seq), param);
2579 
2580 	do {
2581 		/* let the FW do it's magic ... */
2582 		msleep(delay);
2583 
2584 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2585 
2586 		/* Give the FW up to 5 second (500*10ms) */
2587 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2588 
2589 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2590 	   cnt*delay, rc, seq);
2591 
2592 	/* is this a reply to our command? */
2593 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2594 		rc &= FW_MSG_CODE_MASK;
2595 	else {
2596 		/* FW BUG! */
2597 		BNX2X_ERR("FW failed to respond!\n");
2598 		bnx2x_fw_dump(bp);
2599 		rc = 0;
2600 	}
2601 	mutex_unlock(&bp->fw_mb_mutex);
2602 
2603 	return rc;
2604 }
2605 
2606 
2607 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2608 {
2609 	if (CHIP_IS_E1x(bp)) {
2610 		struct tstorm_eth_function_common_config tcfg = {0};
2611 
2612 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2613 	}
2614 
2615 	/* Enable the function in the FW */
2616 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2617 	storm_memset_func_en(bp, p->func_id, 1);
2618 
2619 	/* spq */
2620 	if (p->func_flgs & FUNC_FLG_SPQ) {
2621 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2622 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2623 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2624 	}
2625 }
2626 
2627 /**
2628  * bnx2x_get_tx_only_flags - Return common flags
2629  *
2630  * @bp		device handle
2631  * @fp		queue handle
2632  * @zero_stats	TRUE if statistics zeroing is needed
2633  *
2634  * Return the flags that are common for the Tx-only and not normal connections.
2635  */
2636 static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2637 						   struct bnx2x_fastpath *fp,
2638 						   bool zero_stats)
2639 {
2640 	unsigned long flags = 0;
2641 
2642 	/* PF driver will always initialize the Queue to an ACTIVE state */
2643 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2644 
2645 	/* tx only connections collect statistics (on the same index as the
2646 	 *  parent connection). The statistics are zeroed when the parent
2647 	 *  connection is initialized.
2648 	 */
2649 
2650 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2651 	if (zero_stats)
2652 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2653 
2654 
2655 	return flags;
2656 }
2657 
2658 static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2659 					      struct bnx2x_fastpath *fp,
2660 					      bool leading)
2661 {
2662 	unsigned long flags = 0;
2663 
2664 	/* calculate other queue flags */
2665 	if (IS_MF_SD(bp))
2666 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2667 
2668 	if (IS_FCOE_FP(fp))
2669 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2670 
2671 	if (!fp->disable_tpa) {
2672 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2673 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2674 		if (fp->mode == TPA_MODE_GRO)
2675 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2676 	}
2677 
2678 	if (leading) {
2679 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2680 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2681 	}
2682 
2683 	/* Always set HW VLAN stripping */
2684 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2685 
2686 
2687 	return flags | bnx2x_get_common_flags(bp, fp, true);
2688 }
2689 
2690 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2691 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2692 	u8 cos)
2693 {
2694 	gen_init->stat_id = bnx2x_stats_id(fp);
2695 	gen_init->spcl_id = fp->cl_id;
2696 
2697 	/* Always use mini-jumbo MTU for FCoE L2 ring */
2698 	if (IS_FCOE_FP(fp))
2699 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2700 	else
2701 		gen_init->mtu = bp->dev->mtu;
2702 
2703 	gen_init->cos = cos;
2704 }
2705 
2706 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2707 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2708 	struct bnx2x_rxq_setup_params *rxq_init)
2709 {
2710 	u8 max_sge = 0;
2711 	u16 sge_sz = 0;
2712 	u16 tpa_agg_size = 0;
2713 
2714 	if (!fp->disable_tpa) {
2715 		pause->sge_th_lo = SGE_TH_LO(bp);
2716 		pause->sge_th_hi = SGE_TH_HI(bp);
2717 
2718 		/* validate SGE ring has enough to cross high threshold */
2719 		WARN_ON(bp->dropless_fc &&
2720 				pause->sge_th_hi + FW_PREFETCH_CNT >
2721 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2722 
2723 		tpa_agg_size = min_t(u32,
2724 			(min_t(u32, 8, MAX_SKB_FRAGS) *
2725 			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2726 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2727 			SGE_PAGE_SHIFT;
2728 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2729 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2730 		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2731 				    0xffff);
2732 	}
2733 
2734 	/* pause - not for e1 */
2735 	if (!CHIP_IS_E1(bp)) {
2736 		pause->bd_th_lo = BD_TH_LO(bp);
2737 		pause->bd_th_hi = BD_TH_HI(bp);
2738 
2739 		pause->rcq_th_lo = RCQ_TH_LO(bp);
2740 		pause->rcq_th_hi = RCQ_TH_HI(bp);
2741 		/*
2742 		 * validate that rings have enough entries to cross
2743 		 * high thresholds
2744 		 */
2745 		WARN_ON(bp->dropless_fc &&
2746 				pause->bd_th_hi + FW_PREFETCH_CNT >
2747 				bp->rx_ring_size);
2748 		WARN_ON(bp->dropless_fc &&
2749 				pause->rcq_th_hi + FW_PREFETCH_CNT >
2750 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2751 
2752 		pause->pri_map = 1;
2753 	}
2754 
2755 	/* rxq setup */
2756 	rxq_init->dscr_map = fp->rx_desc_mapping;
2757 	rxq_init->sge_map = fp->rx_sge_mapping;
2758 	rxq_init->rcq_map = fp->rx_comp_mapping;
2759 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2760 
2761 	/* This should be a maximum number of data bytes that may be
2762 	 * placed on the BD (not including paddings).
2763 	 */
2764 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2765 		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2766 
2767 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2768 	rxq_init->tpa_agg_sz = tpa_agg_size;
2769 	rxq_init->sge_buf_sz = sge_sz;
2770 	rxq_init->max_sges_pkt = max_sge;
2771 	rxq_init->rss_engine_id = BP_FUNC(bp);
2772 	rxq_init->mcast_engine_id = BP_FUNC(bp);
2773 
2774 	/* Maximum number or simultaneous TPA aggregation for this Queue.
2775 	 *
2776 	 * For PF Clients it should be the maximum avaliable number.
2777 	 * VF driver(s) may want to define it to a smaller value.
2778 	 */
2779 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2780 
2781 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2782 	rxq_init->fw_sb_id = fp->fw_sb_id;
2783 
2784 	if (IS_FCOE_FP(fp))
2785 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2786 	else
2787 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2788 }
2789 
2790 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2791 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2792 	u8 cos)
2793 {
2794 	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2795 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2796 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2797 	txq_init->fw_sb_id = fp->fw_sb_id;
2798 
2799 	/*
2800 	 * set the tss leading client id for TX classfication ==
2801 	 * leading RSS client id
2802 	 */
2803 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2804 
2805 	if (IS_FCOE_FP(fp)) {
2806 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2807 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2808 	}
2809 }
2810 
2811 static void bnx2x_pf_init(struct bnx2x *bp)
2812 {
2813 	struct bnx2x_func_init_params func_init = {0};
2814 	struct event_ring_data eq_data = { {0} };
2815 	u16 flags;
2816 
2817 	if (!CHIP_IS_E1x(bp)) {
2818 		/* reset IGU PF statistics: MSIX + ATTN */
2819 		/* PF */
2820 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2821 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2822 			   (CHIP_MODE_IS_4_PORT(bp) ?
2823 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2824 		/* ATTN */
2825 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2826 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2827 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2828 			   (CHIP_MODE_IS_4_PORT(bp) ?
2829 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2830 	}
2831 
2832 	/* function setup flags */
2833 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2834 
2835 	/* This flag is relevant for E1x only.
2836 	 * E2 doesn't have a TPA configuration in a function level.
2837 	 */
2838 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2839 
2840 	func_init.func_flgs = flags;
2841 	func_init.pf_id = BP_FUNC(bp);
2842 	func_init.func_id = BP_FUNC(bp);
2843 	func_init.spq_map = bp->spq_mapping;
2844 	func_init.spq_prod = bp->spq_prod_idx;
2845 
2846 	bnx2x_func_init(bp, &func_init);
2847 
2848 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2849 
2850 	/*
2851 	 * Congestion management values depend on the link rate
2852 	 * There is no active link so initial link rate is set to 10 Gbps.
2853 	 * When the link comes up The congestion management values are
2854 	 * re-calculated according to the actual link rate.
2855 	 */
2856 	bp->link_vars.line_speed = SPEED_10000;
2857 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2858 
2859 	/* Only the PMF sets the HW */
2860 	if (bp->port.pmf)
2861 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2862 
2863 	/* init Event Queue */
2864 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2865 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2866 	eq_data.producer = bp->eq_prod;
2867 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2868 	eq_data.sb_id = DEF_SB_ID;
2869 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2870 }
2871 
2872 
2873 static void bnx2x_e1h_disable(struct bnx2x *bp)
2874 {
2875 	int port = BP_PORT(bp);
2876 
2877 	bnx2x_tx_disable(bp);
2878 
2879 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2880 }
2881 
2882 static void bnx2x_e1h_enable(struct bnx2x *bp)
2883 {
2884 	int port = BP_PORT(bp);
2885 
2886 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2887 
2888 	/* Tx queue should be only reenabled */
2889 	netif_tx_wake_all_queues(bp->dev);
2890 
2891 	/*
2892 	 * Should not call netif_carrier_on since it will be called if the link
2893 	 * is up when checking for link state
2894 	 */
2895 }
2896 
2897 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2898 
2899 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
2900 {
2901 	struct eth_stats_info *ether_stat =
2902 		&bp->slowpath->drv_info_to_mcp.ether_stat;
2903 
2904 	/* leave last char as NULL */
2905 	memcpy(ether_stat->version, DRV_MODULE_VERSION,
2906 	       ETH_STAT_INFO_VERSION_LEN - 1);
2907 
2908 	bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
2909 					 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
2910 					 ether_stat->mac_local);
2911 
2912 	ether_stat->mtu_size = bp->dev->mtu;
2913 
2914 	if (bp->dev->features & NETIF_F_RXCSUM)
2915 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
2916 	if (bp->dev->features & NETIF_F_TSO)
2917 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
2918 	ether_stat->feature_flags |= bp->common.boot_mode;
2919 
2920 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
2921 
2922 	ether_stat->txq_size = bp->tx_ring_size;
2923 	ether_stat->rxq_size = bp->rx_ring_size;
2924 }
2925 
2926 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
2927 {
2928 #ifdef BCM_CNIC
2929 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
2930 	struct fcoe_stats_info *fcoe_stat =
2931 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
2932 
2933 	memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
2934 
2935 	fcoe_stat->qos_priority =
2936 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
2937 
2938 	/* insert FCoE stats from ramrod response */
2939 	if (!NO_FCOE(bp)) {
2940 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
2941 			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2942 			tstorm_queue_statistics;
2943 
2944 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
2945 			&bp->fw_stats_data->queue_stats[FCOE_IDX].
2946 			xstorm_queue_statistics;
2947 
2948 		struct fcoe_statistics_params *fw_fcoe_stat =
2949 			&bp->fw_stats_data->fcoe;
2950 
2951 		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
2952 		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
2953 
2954 		ADD_64(fcoe_stat->rx_bytes_hi,
2955 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
2956 		       fcoe_stat->rx_bytes_lo,
2957 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
2958 
2959 		ADD_64(fcoe_stat->rx_bytes_hi,
2960 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
2961 		       fcoe_stat->rx_bytes_lo,
2962 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
2963 
2964 		ADD_64(fcoe_stat->rx_bytes_hi,
2965 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
2966 		       fcoe_stat->rx_bytes_lo,
2967 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
2968 
2969 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2970 		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
2971 
2972 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2973 		       fcoe_q_tstorm_stats->rcv_ucast_pkts);
2974 
2975 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2976 		       fcoe_q_tstorm_stats->rcv_bcast_pkts);
2977 
2978 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2979 		       fcoe_q_tstorm_stats->rcv_mcast_pkts);
2980 
2981 		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
2982 		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
2983 
2984 		ADD_64(fcoe_stat->tx_bytes_hi,
2985 		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
2986 		       fcoe_stat->tx_bytes_lo,
2987 		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
2988 
2989 		ADD_64(fcoe_stat->tx_bytes_hi,
2990 		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
2991 		       fcoe_stat->tx_bytes_lo,
2992 		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
2993 
2994 		ADD_64(fcoe_stat->tx_bytes_hi,
2995 		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
2996 		       fcoe_stat->tx_bytes_lo,
2997 		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
2998 
2999 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3000 		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3001 
3002 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3003 		       fcoe_q_xstorm_stats->ucast_pkts_sent);
3004 
3005 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3006 		       fcoe_q_xstorm_stats->bcast_pkts_sent);
3007 
3008 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3009 		       fcoe_q_xstorm_stats->mcast_pkts_sent);
3010 	}
3011 
3012 	/* ask L5 driver to add data to the struct */
3013 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3014 #endif
3015 }
3016 
3017 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3018 {
3019 #ifdef BCM_CNIC
3020 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3021 	struct iscsi_stats_info *iscsi_stat =
3022 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3023 
3024 	memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3025 
3026 	iscsi_stat->qos_priority =
3027 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3028 
3029 	/* ask L5 driver to add data to the struct */
3030 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3031 #endif
3032 }
3033 
3034 /* called due to MCP event (on pmf):
3035  *	reread new bandwidth configuration
3036  *	configure FW
3037  *	notify others function about the change
3038  */
3039 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
3040 {
3041 	if (bp->link_vars.link_up) {
3042 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3043 		bnx2x_link_sync_notify(bp);
3044 	}
3045 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3046 }
3047 
3048 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
3049 {
3050 	bnx2x_config_mf_bw(bp);
3051 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3052 }
3053 
3054 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3055 {
3056 	enum drv_info_opcode op_code;
3057 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3058 
3059 	/* if drv_info version supported by MFW doesn't match - send NACK */
3060 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3061 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3062 		return;
3063 	}
3064 
3065 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3066 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3067 
3068 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3069 	       sizeof(union drv_info_to_mcp));
3070 
3071 	switch (op_code) {
3072 	case ETH_STATS_OPCODE:
3073 		bnx2x_drv_info_ether_stat(bp);
3074 		break;
3075 	case FCOE_STATS_OPCODE:
3076 		bnx2x_drv_info_fcoe_stat(bp);
3077 		break;
3078 	case ISCSI_STATS_OPCODE:
3079 		bnx2x_drv_info_iscsi_stat(bp);
3080 		break;
3081 	default:
3082 		/* if op code isn't supported - send NACK */
3083 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3084 		return;
3085 	}
3086 
3087 	/* if we got drv_info attn from MFW then these fields are defined in
3088 	 * shmem2 for sure
3089 	 */
3090 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3091 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3092 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3093 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3094 
3095 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3096 }
3097 
3098 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3099 {
3100 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3101 
3102 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3103 
3104 		/*
3105 		 * This is the only place besides the function initialization
3106 		 * where the bp->flags can change so it is done without any
3107 		 * locks
3108 		 */
3109 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3110 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3111 			bp->flags |= MF_FUNC_DIS;
3112 
3113 			bnx2x_e1h_disable(bp);
3114 		} else {
3115 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3116 			bp->flags &= ~MF_FUNC_DIS;
3117 
3118 			bnx2x_e1h_enable(bp);
3119 		}
3120 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3121 	}
3122 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3123 		bnx2x_config_mf_bw(bp);
3124 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3125 	}
3126 
3127 	/* Report results to MCP */
3128 	if (dcc_event)
3129 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3130 	else
3131 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3132 }
3133 
3134 /* must be called under the spq lock */
3135 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3136 {
3137 	struct eth_spe *next_spe = bp->spq_prod_bd;
3138 
3139 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3140 		bp->spq_prod_bd = bp->spq;
3141 		bp->spq_prod_idx = 0;
3142 		DP(BNX2X_MSG_SP, "end of spq\n");
3143 	} else {
3144 		bp->spq_prod_bd++;
3145 		bp->spq_prod_idx++;
3146 	}
3147 	return next_spe;
3148 }
3149 
3150 /* must be called under the spq lock */
3151 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3152 {
3153 	int func = BP_FUNC(bp);
3154 
3155 	/*
3156 	 * Make sure that BD data is updated before writing the producer:
3157 	 * BD data is written to the memory, the producer is read from the
3158 	 * memory, thus we need a full memory barrier to ensure the ordering.
3159 	 */
3160 	mb();
3161 
3162 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3163 		 bp->spq_prod_idx);
3164 	mmiowb();
3165 }
3166 
3167 /**
3168  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3169  *
3170  * @cmd:	command to check
3171  * @cmd_type:	command type
3172  */
3173 static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3174 {
3175 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3176 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3177 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3178 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3179 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3180 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3181 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3182 		return true;
3183 	else
3184 		return false;
3185 
3186 }
3187 
3188 
3189 /**
3190  * bnx2x_sp_post - place a single command on an SP ring
3191  *
3192  * @bp:		driver handle
3193  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3194  * @cid:	SW CID the command is related to
3195  * @data_hi:	command private data address (high 32 bits)
3196  * @data_lo:	command private data address (low 32 bits)
3197  * @cmd_type:	command type (e.g. NONE, ETH)
3198  *
3199  * SP data is handled as if it's always an address pair, thus data fields are
3200  * not swapped to little endian in upper functions. Instead this function swaps
3201  * data as if it's two u32 fields.
3202  */
3203 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3204 		  u32 data_hi, u32 data_lo, int cmd_type)
3205 {
3206 	struct eth_spe *spe;
3207 	u16 type;
3208 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3209 
3210 #ifdef BNX2X_STOP_ON_ERROR
3211 	if (unlikely(bp->panic)) {
3212 		BNX2X_ERR("Can't post SP when there is panic\n");
3213 		return -EIO;
3214 	}
3215 #endif
3216 
3217 	spin_lock_bh(&bp->spq_lock);
3218 
3219 	if (common) {
3220 		if (!atomic_read(&bp->eq_spq_left)) {
3221 			BNX2X_ERR("BUG! EQ ring full!\n");
3222 			spin_unlock_bh(&bp->spq_lock);
3223 			bnx2x_panic();
3224 			return -EBUSY;
3225 		}
3226 	} else if (!atomic_read(&bp->cq_spq_left)) {
3227 			BNX2X_ERR("BUG! SPQ ring full!\n");
3228 			spin_unlock_bh(&bp->spq_lock);
3229 			bnx2x_panic();
3230 			return -EBUSY;
3231 	}
3232 
3233 	spe = bnx2x_sp_get_next(bp);
3234 
3235 	/* CID needs port number to be encoded int it */
3236 	spe->hdr.conn_and_cmd_data =
3237 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3238 				    HW_CID(bp, cid));
3239 
3240 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3241 
3242 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3243 		 SPE_HDR_FUNCTION_ID);
3244 
3245 	spe->hdr.type = cpu_to_le16(type);
3246 
3247 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3248 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3249 
3250 	/*
3251 	 * It's ok if the actual decrement is issued towards the memory
3252 	 * somewhere between the spin_lock and spin_unlock. Thus no
3253 	 * more explict memory barrier is needed.
3254 	 */
3255 	if (common)
3256 		atomic_dec(&bp->eq_spq_left);
3257 	else
3258 		atomic_dec(&bp->cq_spq_left);
3259 
3260 
3261 	DP(BNX2X_MSG_SP,
3262 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3263 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3264 	   (u32)(U64_LO(bp->spq_mapping) +
3265 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3266 	   HW_CID(bp, cid), data_hi, data_lo, type,
3267 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3268 
3269 	bnx2x_sp_prod_update(bp);
3270 	spin_unlock_bh(&bp->spq_lock);
3271 	return 0;
3272 }
3273 
3274 /* acquire split MCP access lock register */
3275 static int bnx2x_acquire_alr(struct bnx2x *bp)
3276 {
3277 	u32 j, val;
3278 	int rc = 0;
3279 
3280 	might_sleep();
3281 	for (j = 0; j < 1000; j++) {
3282 		val = (1UL << 31);
3283 		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3284 		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3285 		if (val & (1L << 31))
3286 			break;
3287 
3288 		msleep(5);
3289 	}
3290 	if (!(val & (1L << 31))) {
3291 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3292 		rc = -EBUSY;
3293 	}
3294 
3295 	return rc;
3296 }
3297 
3298 /* release split MCP access lock register */
3299 static void bnx2x_release_alr(struct bnx2x *bp)
3300 {
3301 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3302 }
3303 
3304 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3305 #define BNX2X_DEF_SB_IDX	0x0002
3306 
3307 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3308 {
3309 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3310 	u16 rc = 0;
3311 
3312 	barrier(); /* status block is written to by the chip */
3313 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3314 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3315 		rc |= BNX2X_DEF_SB_ATT_IDX;
3316 	}
3317 
3318 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3319 		bp->def_idx = def_sb->sp_sb.running_index;
3320 		rc |= BNX2X_DEF_SB_IDX;
3321 	}
3322 
3323 	/* Do not reorder: indecies reading should complete before handling */
3324 	barrier();
3325 	return rc;
3326 }
3327 
3328 /*
3329  * slow path service functions
3330  */
3331 
3332 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3333 {
3334 	int port = BP_PORT(bp);
3335 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3336 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3337 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3338 				       NIG_REG_MASK_INTERRUPT_PORT0;
3339 	u32 aeu_mask;
3340 	u32 nig_mask = 0;
3341 	u32 reg_addr;
3342 
3343 	if (bp->attn_state & asserted)
3344 		BNX2X_ERR("IGU ERROR\n");
3345 
3346 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3347 	aeu_mask = REG_RD(bp, aeu_addr);
3348 
3349 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3350 	   aeu_mask, asserted);
3351 	aeu_mask &= ~(asserted & 0x3ff);
3352 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3353 
3354 	REG_WR(bp, aeu_addr, aeu_mask);
3355 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3356 
3357 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3358 	bp->attn_state |= asserted;
3359 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3360 
3361 	if (asserted & ATTN_HARD_WIRED_MASK) {
3362 		if (asserted & ATTN_NIG_FOR_FUNC) {
3363 
3364 			bnx2x_acquire_phy_lock(bp);
3365 
3366 			/* save nig interrupt mask */
3367 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3368 
3369 			/* If nig_mask is not set, no need to call the update
3370 			 * function.
3371 			 */
3372 			if (nig_mask) {
3373 				REG_WR(bp, nig_int_mask_addr, 0);
3374 
3375 				bnx2x_link_attn(bp);
3376 			}
3377 
3378 			/* handle unicore attn? */
3379 		}
3380 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3381 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3382 
3383 		if (asserted & GPIO_2_FUNC)
3384 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3385 
3386 		if (asserted & GPIO_3_FUNC)
3387 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3388 
3389 		if (asserted & GPIO_4_FUNC)
3390 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3391 
3392 		if (port == 0) {
3393 			if (asserted & ATTN_GENERAL_ATTN_1) {
3394 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3395 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3396 			}
3397 			if (asserted & ATTN_GENERAL_ATTN_2) {
3398 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3399 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3400 			}
3401 			if (asserted & ATTN_GENERAL_ATTN_3) {
3402 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3403 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3404 			}
3405 		} else {
3406 			if (asserted & ATTN_GENERAL_ATTN_4) {
3407 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3408 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3409 			}
3410 			if (asserted & ATTN_GENERAL_ATTN_5) {
3411 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3412 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3413 			}
3414 			if (asserted & ATTN_GENERAL_ATTN_6) {
3415 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3416 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3417 			}
3418 		}
3419 
3420 	} /* if hardwired */
3421 
3422 	if (bp->common.int_block == INT_BLOCK_HC)
3423 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3424 			    COMMAND_REG_ATTN_BITS_SET);
3425 	else
3426 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3427 
3428 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3429 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3430 	REG_WR(bp, reg_addr, asserted);
3431 
3432 	/* now set back the mask */
3433 	if (asserted & ATTN_NIG_FOR_FUNC) {
3434 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3435 		bnx2x_release_phy_lock(bp);
3436 	}
3437 }
3438 
3439 static inline void bnx2x_fan_failure(struct bnx2x *bp)
3440 {
3441 	int port = BP_PORT(bp);
3442 	u32 ext_phy_config;
3443 	/* mark the failure */
3444 	ext_phy_config =
3445 		SHMEM_RD(bp,
3446 			 dev_info.port_hw_config[port].external_phy_config);
3447 
3448 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3449 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3450 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3451 		 ext_phy_config);
3452 
3453 	/* log the failure */
3454 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3455 			    "Please contact OEM Support for assistance\n");
3456 
3457 	/*
3458 	 * Scheudle device reset (unload)
3459 	 * This is due to some boards consuming sufficient power when driver is
3460 	 * up to overheat if fan fails.
3461 	 */
3462 	smp_mb__before_clear_bit();
3463 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3464 	smp_mb__after_clear_bit();
3465 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3466 
3467 }
3468 
3469 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3470 {
3471 	int port = BP_PORT(bp);
3472 	int reg_offset;
3473 	u32 val;
3474 
3475 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3476 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3477 
3478 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3479 
3480 		val = REG_RD(bp, reg_offset);
3481 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3482 		REG_WR(bp, reg_offset, val);
3483 
3484 		BNX2X_ERR("SPIO5 hw attention\n");
3485 
3486 		/* Fan failure attention */
3487 		bnx2x_hw_reset_phy(&bp->link_params);
3488 		bnx2x_fan_failure(bp);
3489 	}
3490 
3491 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3492 		bnx2x_acquire_phy_lock(bp);
3493 		bnx2x_handle_module_detect_int(&bp->link_params);
3494 		bnx2x_release_phy_lock(bp);
3495 	}
3496 
3497 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3498 
3499 		val = REG_RD(bp, reg_offset);
3500 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3501 		REG_WR(bp, reg_offset, val);
3502 
3503 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3504 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3505 		bnx2x_panic();
3506 	}
3507 }
3508 
3509 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3510 {
3511 	u32 val;
3512 
3513 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3514 
3515 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3516 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3517 		/* DORQ discard attention */
3518 		if (val & 0x2)
3519 			BNX2X_ERR("FATAL error from DORQ\n");
3520 	}
3521 
3522 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3523 
3524 		int port = BP_PORT(bp);
3525 		int reg_offset;
3526 
3527 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3528 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3529 
3530 		val = REG_RD(bp, reg_offset);
3531 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3532 		REG_WR(bp, reg_offset, val);
3533 
3534 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3535 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3536 		bnx2x_panic();
3537 	}
3538 }
3539 
3540 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3541 {
3542 	u32 val;
3543 
3544 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3545 
3546 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3547 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3548 		/* CFC error attention */
3549 		if (val & 0x2)
3550 			BNX2X_ERR("FATAL error from CFC\n");
3551 	}
3552 
3553 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3554 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3555 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3556 		/* RQ_USDMDP_FIFO_OVERFLOW */
3557 		if (val & 0x18000)
3558 			BNX2X_ERR("FATAL error from PXP\n");
3559 
3560 		if (!CHIP_IS_E1x(bp)) {
3561 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3562 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3563 		}
3564 	}
3565 
3566 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3567 
3568 		int port = BP_PORT(bp);
3569 		int reg_offset;
3570 
3571 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3572 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3573 
3574 		val = REG_RD(bp, reg_offset);
3575 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3576 		REG_WR(bp, reg_offset, val);
3577 
3578 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3579 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3580 		bnx2x_panic();
3581 	}
3582 }
3583 
3584 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3585 {
3586 	u32 val;
3587 
3588 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3589 
3590 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3591 			int func = BP_FUNC(bp);
3592 
3593 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3594 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3595 					func_mf_config[BP_ABS_FUNC(bp)].config);
3596 			val = SHMEM_RD(bp,
3597 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3598 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3599 				bnx2x_dcc_event(bp,
3600 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3601 
3602 			if (val & DRV_STATUS_SET_MF_BW)
3603 				bnx2x_set_mf_bw(bp);
3604 
3605 			if (val & DRV_STATUS_DRV_INFO_REQ)
3606 				bnx2x_handle_drv_info_req(bp);
3607 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3608 				bnx2x_pmf_update(bp);
3609 
3610 			if (bp->port.pmf &&
3611 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3612 				bp->dcbx_enabled > 0)
3613 				/* start dcbx state machine */
3614 				bnx2x_dcbx_set_params(bp,
3615 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3616 			if (bp->link_vars.periodic_flags &
3617 			    PERIODIC_FLAGS_LINK_EVENT) {
3618 				/*  sync with link */
3619 				bnx2x_acquire_phy_lock(bp);
3620 				bp->link_vars.periodic_flags &=
3621 					~PERIODIC_FLAGS_LINK_EVENT;
3622 				bnx2x_release_phy_lock(bp);
3623 				if (IS_MF(bp))
3624 					bnx2x_link_sync_notify(bp);
3625 				bnx2x_link_report(bp);
3626 			}
3627 			/* Always call it here: bnx2x_link_report() will
3628 			 * prevent the link indication duplication.
3629 			 */
3630 			bnx2x__link_status_update(bp);
3631 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3632 
3633 			BNX2X_ERR("MC assert!\n");
3634 			bnx2x_mc_assert(bp);
3635 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3636 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3637 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3638 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3639 			bnx2x_panic();
3640 
3641 		} else if (attn & BNX2X_MCP_ASSERT) {
3642 
3643 			BNX2X_ERR("MCP assert!\n");
3644 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3645 			bnx2x_fw_dump(bp);
3646 
3647 		} else
3648 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3649 	}
3650 
3651 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3652 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3653 		if (attn & BNX2X_GRC_TIMEOUT) {
3654 			val = CHIP_IS_E1(bp) ? 0 :
3655 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3656 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3657 		}
3658 		if (attn & BNX2X_GRC_RSV) {
3659 			val = CHIP_IS_E1(bp) ? 0 :
3660 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3661 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3662 		}
3663 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3664 	}
3665 }
3666 
3667 /*
3668  * Bits map:
3669  * 0-7   - Engine0 load counter.
3670  * 8-15  - Engine1 load counter.
3671  * 16    - Engine0 RESET_IN_PROGRESS bit.
3672  * 17    - Engine1 RESET_IN_PROGRESS bit.
3673  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3674  *         on the engine
3675  * 19    - Engine1 ONE_IS_LOADED.
3676  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3677  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3678  *         just the one belonging to its engine).
3679  *
3680  */
3681 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3682 
3683 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3684 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3685 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3686 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3687 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3688 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3689 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
3690 
3691 /*
3692  * Set the GLOBAL_RESET bit.
3693  *
3694  * Should be run under rtnl lock
3695  */
3696 void bnx2x_set_reset_global(struct bnx2x *bp)
3697 {
3698 	u32 val;
3699 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3700 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3701 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3702 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3703 }
3704 
3705 /*
3706  * Clear the GLOBAL_RESET bit.
3707  *
3708  * Should be run under rtnl lock
3709  */
3710 static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3711 {
3712 	u32 val;
3713 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3714 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3715 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3716 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3717 }
3718 
3719 /*
3720  * Checks the GLOBAL_RESET bit.
3721  *
3722  * should be run under rtnl lock
3723  */
3724 static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3725 {
3726 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3727 
3728 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3729 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3730 }
3731 
3732 /*
3733  * Clear RESET_IN_PROGRESS bit for the current engine.
3734  *
3735  * Should be run under rtnl lock
3736  */
3737 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3738 {
3739 	u32 val;
3740 	u32 bit = BP_PATH(bp) ?
3741 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3742 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3743 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3744 
3745 	/* Clear the bit */
3746 	val &= ~bit;
3747 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3748 
3749 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3750 }
3751 
3752 /*
3753  * Set RESET_IN_PROGRESS for the current engine.
3754  *
3755  * should be run under rtnl lock
3756  */
3757 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3758 {
3759 	u32 val;
3760 	u32 bit = BP_PATH(bp) ?
3761 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3762 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3763 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3764 
3765 	/* Set the bit */
3766 	val |= bit;
3767 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3768 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3769 }
3770 
3771 /*
3772  * Checks the RESET_IN_PROGRESS bit for the given engine.
3773  * should be run under rtnl lock
3774  */
3775 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3776 {
3777 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3778 	u32 bit = engine ?
3779 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3780 
3781 	/* return false if bit is set */
3782 	return (val & bit) ? false : true;
3783 }
3784 
3785 /*
3786  * set pf load for the current pf.
3787  *
3788  * should be run under rtnl lock
3789  */
3790 void bnx2x_set_pf_load(struct bnx2x *bp)
3791 {
3792 	u32 val1, val;
3793 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3794 			     BNX2X_PATH0_LOAD_CNT_MASK;
3795 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3796 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3797 
3798 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3799 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3800 
3801 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
3802 
3803 	/* get the current counter value */
3804 	val1 = (val & mask) >> shift;
3805 
3806 	/* set bit of that PF */
3807 	val1 |= (1 << bp->pf_num);
3808 
3809 	/* clear the old value */
3810 	val &= ~mask;
3811 
3812 	/* set the new one */
3813 	val |= ((val1 << shift) & mask);
3814 
3815 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3816 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3817 }
3818 
3819 /**
3820  * bnx2x_clear_pf_load - clear pf load mark
3821  *
3822  * @bp:		driver handle
3823  *
3824  * Should be run under rtnl lock.
3825  * Decrements the load counter for the current engine. Returns
3826  * whether other functions are still loaded
3827  */
3828 bool bnx2x_clear_pf_load(struct bnx2x *bp)
3829 {
3830 	u32 val1, val;
3831 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3832 			     BNX2X_PATH0_LOAD_CNT_MASK;
3833 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3834 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3835 
3836 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3837 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3838 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
3839 
3840 	/* get the current counter value */
3841 	val1 = (val & mask) >> shift;
3842 
3843 	/* clear bit of that PF */
3844 	val1 &= ~(1 << bp->pf_num);
3845 
3846 	/* clear the old value */
3847 	val &= ~mask;
3848 
3849 	/* set the new one */
3850 	val |= ((val1 << shift) & mask);
3851 
3852 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3853 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3854 	return val1 != 0;
3855 }
3856 
3857 /*
3858  * Read the load status for the current engine.
3859  *
3860  * should be run under rtnl lock
3861  */
3862 static inline bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
3863 {
3864 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3865 			     BNX2X_PATH0_LOAD_CNT_MASK);
3866 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3867 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
3868 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3869 
3870 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
3871 
3872 	val = (val & mask) >> shift;
3873 
3874 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
3875 	   engine, val);
3876 
3877 	return val != 0;
3878 }
3879 
3880 /*
3881  * Reset the load status for the current engine.
3882  */
3883 static inline void bnx2x_clear_load_status(struct bnx2x *bp)
3884 {
3885 	u32 val;
3886 	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3887 		    BNX2X_PATH0_LOAD_CNT_MASK);
3888 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3889 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3890 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3891 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3892 }
3893 
3894 static inline void _print_next_block(int idx, const char *blk)
3895 {
3896 	pr_cont("%s%s", idx ? ", " : "", blk);
3897 }
3898 
3899 static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3900 						  bool print)
3901 {
3902 	int i = 0;
3903 	u32 cur_bit = 0;
3904 	for (i = 0; sig; i++) {
3905 		cur_bit = ((u32)0x1 << i);
3906 		if (sig & cur_bit) {
3907 			switch (cur_bit) {
3908 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3909 				if (print)
3910 					_print_next_block(par_num++, "BRB");
3911 				break;
3912 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3913 				if (print)
3914 					_print_next_block(par_num++, "PARSER");
3915 				break;
3916 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3917 				if (print)
3918 					_print_next_block(par_num++, "TSDM");
3919 				break;
3920 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3921 				if (print)
3922 					_print_next_block(par_num++,
3923 							  "SEARCHER");
3924 				break;
3925 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3926 				if (print)
3927 					_print_next_block(par_num++, "TCM");
3928 				break;
3929 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3930 				if (print)
3931 					_print_next_block(par_num++, "TSEMI");
3932 				break;
3933 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3934 				if (print)
3935 					_print_next_block(par_num++, "XPB");
3936 				break;
3937 			}
3938 
3939 			/* Clear the bit */
3940 			sig &= ~cur_bit;
3941 		}
3942 	}
3943 
3944 	return par_num;
3945 }
3946 
3947 static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3948 						  bool *global, bool print)
3949 {
3950 	int i = 0;
3951 	u32 cur_bit = 0;
3952 	for (i = 0; sig; i++) {
3953 		cur_bit = ((u32)0x1 << i);
3954 		if (sig & cur_bit) {
3955 			switch (cur_bit) {
3956 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3957 				if (print)
3958 					_print_next_block(par_num++, "PBF");
3959 				break;
3960 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3961 				if (print)
3962 					_print_next_block(par_num++, "QM");
3963 				break;
3964 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3965 				if (print)
3966 					_print_next_block(par_num++, "TM");
3967 				break;
3968 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3969 				if (print)
3970 					_print_next_block(par_num++, "XSDM");
3971 				break;
3972 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3973 				if (print)
3974 					_print_next_block(par_num++, "XCM");
3975 				break;
3976 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3977 				if (print)
3978 					_print_next_block(par_num++, "XSEMI");
3979 				break;
3980 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3981 				if (print)
3982 					_print_next_block(par_num++,
3983 							  "DOORBELLQ");
3984 				break;
3985 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3986 				if (print)
3987 					_print_next_block(par_num++, "NIG");
3988 				break;
3989 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3990 				if (print)
3991 					_print_next_block(par_num++,
3992 							  "VAUX PCI CORE");
3993 				*global = true;
3994 				break;
3995 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3996 				if (print)
3997 					_print_next_block(par_num++, "DEBUG");
3998 				break;
3999 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4000 				if (print)
4001 					_print_next_block(par_num++, "USDM");
4002 				break;
4003 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4004 				if (print)
4005 					_print_next_block(par_num++, "UCM");
4006 				break;
4007 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4008 				if (print)
4009 					_print_next_block(par_num++, "USEMI");
4010 				break;
4011 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4012 				if (print)
4013 					_print_next_block(par_num++, "UPB");
4014 				break;
4015 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4016 				if (print)
4017 					_print_next_block(par_num++, "CSDM");
4018 				break;
4019 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4020 				if (print)
4021 					_print_next_block(par_num++, "CCM");
4022 				break;
4023 			}
4024 
4025 			/* Clear the bit */
4026 			sig &= ~cur_bit;
4027 		}
4028 	}
4029 
4030 	return par_num;
4031 }
4032 
4033 static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4034 						  bool print)
4035 {
4036 	int i = 0;
4037 	u32 cur_bit = 0;
4038 	for (i = 0; sig; i++) {
4039 		cur_bit = ((u32)0x1 << i);
4040 		if (sig & cur_bit) {
4041 			switch (cur_bit) {
4042 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4043 				if (print)
4044 					_print_next_block(par_num++, "CSEMI");
4045 				break;
4046 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4047 				if (print)
4048 					_print_next_block(par_num++, "PXP");
4049 				break;
4050 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4051 				if (print)
4052 					_print_next_block(par_num++,
4053 					"PXPPCICLOCKCLIENT");
4054 				break;
4055 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4056 				if (print)
4057 					_print_next_block(par_num++, "CFC");
4058 				break;
4059 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4060 				if (print)
4061 					_print_next_block(par_num++, "CDU");
4062 				break;
4063 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4064 				if (print)
4065 					_print_next_block(par_num++, "DMAE");
4066 				break;
4067 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4068 				if (print)
4069 					_print_next_block(par_num++, "IGU");
4070 				break;
4071 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4072 				if (print)
4073 					_print_next_block(par_num++, "MISC");
4074 				break;
4075 			}
4076 
4077 			/* Clear the bit */
4078 			sig &= ~cur_bit;
4079 		}
4080 	}
4081 
4082 	return par_num;
4083 }
4084 
4085 static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4086 						  bool *global, bool print)
4087 {
4088 	int i = 0;
4089 	u32 cur_bit = 0;
4090 	for (i = 0; sig; i++) {
4091 		cur_bit = ((u32)0x1 << i);
4092 		if (sig & cur_bit) {
4093 			switch (cur_bit) {
4094 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4095 				if (print)
4096 					_print_next_block(par_num++, "MCP ROM");
4097 				*global = true;
4098 				break;
4099 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4100 				if (print)
4101 					_print_next_block(par_num++,
4102 							  "MCP UMP RX");
4103 				*global = true;
4104 				break;
4105 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4106 				if (print)
4107 					_print_next_block(par_num++,
4108 							  "MCP UMP TX");
4109 				*global = true;
4110 				break;
4111 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4112 				if (print)
4113 					_print_next_block(par_num++,
4114 							  "MCP SCPAD");
4115 				*global = true;
4116 				break;
4117 			}
4118 
4119 			/* Clear the bit */
4120 			sig &= ~cur_bit;
4121 		}
4122 	}
4123 
4124 	return par_num;
4125 }
4126 
4127 static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4128 						  bool print)
4129 {
4130 	int i = 0;
4131 	u32 cur_bit = 0;
4132 	for (i = 0; sig; i++) {
4133 		cur_bit = ((u32)0x1 << i);
4134 		if (sig & cur_bit) {
4135 			switch (cur_bit) {
4136 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4137 				if (print)
4138 					_print_next_block(par_num++, "PGLUE_B");
4139 				break;
4140 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4141 				if (print)
4142 					_print_next_block(par_num++, "ATC");
4143 				break;
4144 			}
4145 
4146 			/* Clear the bit */
4147 			sig &= ~cur_bit;
4148 		}
4149 	}
4150 
4151 	return par_num;
4152 }
4153 
4154 static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4155 				     u32 *sig)
4156 {
4157 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4158 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4159 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4160 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4161 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4162 		int par_num = 0;
4163 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4164 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4165 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4166 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4167 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4168 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4169 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4170 		if (print)
4171 			netdev_err(bp->dev,
4172 				   "Parity errors detected in blocks: ");
4173 		par_num = bnx2x_check_blocks_with_parity0(
4174 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4175 		par_num = bnx2x_check_blocks_with_parity1(
4176 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4177 		par_num = bnx2x_check_blocks_with_parity2(
4178 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4179 		par_num = bnx2x_check_blocks_with_parity3(
4180 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4181 		par_num = bnx2x_check_blocks_with_parity4(
4182 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4183 
4184 		if (print)
4185 			pr_cont("\n");
4186 
4187 		return true;
4188 	} else
4189 		return false;
4190 }
4191 
4192 /**
4193  * bnx2x_chk_parity_attn - checks for parity attentions.
4194  *
4195  * @bp:		driver handle
4196  * @global:	true if there was a global attention
4197  * @print:	show parity attention in syslog
4198  */
4199 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4200 {
4201 	struct attn_route attn = { {0} };
4202 	int port = BP_PORT(bp);
4203 
4204 	attn.sig[0] = REG_RD(bp,
4205 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4206 			     port*4);
4207 	attn.sig[1] = REG_RD(bp,
4208 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4209 			     port*4);
4210 	attn.sig[2] = REG_RD(bp,
4211 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4212 			     port*4);
4213 	attn.sig[3] = REG_RD(bp,
4214 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4215 			     port*4);
4216 
4217 	if (!CHIP_IS_E1x(bp))
4218 		attn.sig[4] = REG_RD(bp,
4219 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4220 				     port*4);
4221 
4222 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4223 }
4224 
4225 
4226 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4227 {
4228 	u32 val;
4229 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4230 
4231 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4232 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4233 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4234 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4235 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4236 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4237 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4238 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4239 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4240 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4241 		if (val &
4242 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4243 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4244 		if (val &
4245 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4246 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4247 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4248 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4249 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4250 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4251 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4252 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4253 	}
4254 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4255 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4256 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4257 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4258 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4259 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4260 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4261 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4262 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4263 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4264 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4265 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4266 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4267 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4268 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4269 	}
4270 
4271 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4272 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4273 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4274 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4275 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4276 	}
4277 
4278 }
4279 
4280 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4281 {
4282 	struct attn_route attn, *group_mask;
4283 	int port = BP_PORT(bp);
4284 	int index;
4285 	u32 reg_addr;
4286 	u32 val;
4287 	u32 aeu_mask;
4288 	bool global = false;
4289 
4290 	/* need to take HW lock because MCP or other port might also
4291 	   try to handle this event */
4292 	bnx2x_acquire_alr(bp);
4293 
4294 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4295 #ifndef BNX2X_STOP_ON_ERROR
4296 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4297 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4298 		/* Disable HW interrupts */
4299 		bnx2x_int_disable(bp);
4300 		/* In case of parity errors don't handle attentions so that
4301 		 * other function would "see" parity errors.
4302 		 */
4303 #else
4304 		bnx2x_panic();
4305 #endif
4306 		bnx2x_release_alr(bp);
4307 		return;
4308 	}
4309 
4310 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4311 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4312 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4313 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4314 	if (!CHIP_IS_E1x(bp))
4315 		attn.sig[4] =
4316 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4317 	else
4318 		attn.sig[4] = 0;
4319 
4320 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4321 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4322 
4323 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4324 		if (deasserted & (1 << index)) {
4325 			group_mask = &bp->attn_group[index];
4326 
4327 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4328 			   index,
4329 			   group_mask->sig[0], group_mask->sig[1],
4330 			   group_mask->sig[2], group_mask->sig[3],
4331 			   group_mask->sig[4]);
4332 
4333 			bnx2x_attn_int_deasserted4(bp,
4334 					attn.sig[4] & group_mask->sig[4]);
4335 			bnx2x_attn_int_deasserted3(bp,
4336 					attn.sig[3] & group_mask->sig[3]);
4337 			bnx2x_attn_int_deasserted1(bp,
4338 					attn.sig[1] & group_mask->sig[1]);
4339 			bnx2x_attn_int_deasserted2(bp,
4340 					attn.sig[2] & group_mask->sig[2]);
4341 			bnx2x_attn_int_deasserted0(bp,
4342 					attn.sig[0] & group_mask->sig[0]);
4343 		}
4344 	}
4345 
4346 	bnx2x_release_alr(bp);
4347 
4348 	if (bp->common.int_block == INT_BLOCK_HC)
4349 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4350 			    COMMAND_REG_ATTN_BITS_CLR);
4351 	else
4352 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4353 
4354 	val = ~deasserted;
4355 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4356 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4357 	REG_WR(bp, reg_addr, val);
4358 
4359 	if (~bp->attn_state & deasserted)
4360 		BNX2X_ERR("IGU ERROR\n");
4361 
4362 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4363 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4364 
4365 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4366 	aeu_mask = REG_RD(bp, reg_addr);
4367 
4368 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4369 	   aeu_mask, deasserted);
4370 	aeu_mask |= (deasserted & 0x3ff);
4371 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4372 
4373 	REG_WR(bp, reg_addr, aeu_mask);
4374 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4375 
4376 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4377 	bp->attn_state &= ~deasserted;
4378 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4379 }
4380 
4381 static void bnx2x_attn_int(struct bnx2x *bp)
4382 {
4383 	/* read local copy of bits */
4384 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4385 								attn_bits);
4386 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4387 								attn_bits_ack);
4388 	u32 attn_state = bp->attn_state;
4389 
4390 	/* look for changed bits */
4391 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4392 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4393 
4394 	DP(NETIF_MSG_HW,
4395 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4396 	   attn_bits, attn_ack, asserted, deasserted);
4397 
4398 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4399 		BNX2X_ERR("BAD attention state\n");
4400 
4401 	/* handle bits that were raised */
4402 	if (asserted)
4403 		bnx2x_attn_int_asserted(bp, asserted);
4404 
4405 	if (deasserted)
4406 		bnx2x_attn_int_deasserted(bp, deasserted);
4407 }
4408 
4409 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4410 		      u16 index, u8 op, u8 update)
4411 {
4412 	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4413 
4414 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4415 			     igu_addr);
4416 }
4417 
4418 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4419 {
4420 	/* No memory barriers */
4421 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4422 	mmiowb(); /* keep prod updates ordered */
4423 }
4424 
4425 #ifdef BCM_CNIC
4426 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4427 				      union event_ring_elem *elem)
4428 {
4429 	u8 err = elem->message.error;
4430 
4431 	if (!bp->cnic_eth_dev.starting_cid  ||
4432 	    (cid < bp->cnic_eth_dev.starting_cid &&
4433 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4434 		return 1;
4435 
4436 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4437 
4438 	if (unlikely(err)) {
4439 
4440 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4441 			  cid);
4442 		bnx2x_panic_dump(bp);
4443 	}
4444 	bnx2x_cnic_cfc_comp(bp, cid, err);
4445 	return 0;
4446 }
4447 #endif
4448 
4449 static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4450 {
4451 	struct bnx2x_mcast_ramrod_params rparam;
4452 	int rc;
4453 
4454 	memset(&rparam, 0, sizeof(rparam));
4455 
4456 	rparam.mcast_obj = &bp->mcast_obj;
4457 
4458 	netif_addr_lock_bh(bp->dev);
4459 
4460 	/* Clear pending state for the last command */
4461 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4462 
4463 	/* If there are pending mcast commands - send them */
4464 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4465 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4466 		if (rc < 0)
4467 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4468 				  rc);
4469 	}
4470 
4471 	netif_addr_unlock_bh(bp->dev);
4472 }
4473 
4474 static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4475 						   union event_ring_elem *elem)
4476 {
4477 	unsigned long ramrod_flags = 0;
4478 	int rc = 0;
4479 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4480 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4481 
4482 	/* Always push next commands out, don't wait here */
4483 	__set_bit(RAMROD_CONT, &ramrod_flags);
4484 
4485 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4486 	case BNX2X_FILTER_MAC_PENDING:
4487 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4488 #ifdef BCM_CNIC
4489 		if (cid == BNX2X_ISCSI_ETH_CID)
4490 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4491 		else
4492 #endif
4493 			vlan_mac_obj = &bp->fp[cid].mac_obj;
4494 
4495 		break;
4496 	case BNX2X_FILTER_MCAST_PENDING:
4497 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4498 		/* This is only relevant for 57710 where multicast MACs are
4499 		 * configured as unicast MACs using the same ramrod.
4500 		 */
4501 		bnx2x_handle_mcast_eqe(bp);
4502 		return;
4503 	default:
4504 		BNX2X_ERR("Unsupported classification command: %d\n",
4505 			  elem->message.data.eth_event.echo);
4506 		return;
4507 	}
4508 
4509 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4510 
4511 	if (rc < 0)
4512 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4513 	else if (rc > 0)
4514 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4515 
4516 }
4517 
4518 #ifdef BCM_CNIC
4519 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4520 #endif
4521 
4522 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4523 {
4524 	netif_addr_lock_bh(bp->dev);
4525 
4526 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4527 
4528 	/* Send rx_mode command again if was requested */
4529 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4530 		bnx2x_set_storm_rx_mode(bp);
4531 #ifdef BCM_CNIC
4532 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4533 				    &bp->sp_state))
4534 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4535 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4536 				    &bp->sp_state))
4537 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4538 #endif
4539 
4540 	netif_addr_unlock_bh(bp->dev);
4541 }
4542 
4543 static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4544 	struct bnx2x *bp, u32 cid)
4545 {
4546 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4547 #ifdef BCM_CNIC
4548 	if (cid == BNX2X_FCOE_ETH_CID)
4549 		return &bnx2x_fcoe(bp, q_obj);
4550 	else
4551 #endif
4552 		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4553 }
4554 
4555 static void bnx2x_eq_int(struct bnx2x *bp)
4556 {
4557 	u16 hw_cons, sw_cons, sw_prod;
4558 	union event_ring_elem *elem;
4559 	u32 cid;
4560 	u8 opcode;
4561 	int spqe_cnt = 0;
4562 	struct bnx2x_queue_sp_obj *q_obj;
4563 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4564 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4565 
4566 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4567 
4568 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4569 	 * when we get the the next-page we nned to adjust so the loop
4570 	 * condition below will be met. The next element is the size of a
4571 	 * regular element and hence incrementing by 1
4572 	 */
4573 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4574 		hw_cons++;
4575 
4576 	/* This function may never run in parallel with itself for a
4577 	 * specific bp, thus there is no need in "paired" read memory
4578 	 * barrier here.
4579 	 */
4580 	sw_cons = bp->eq_cons;
4581 	sw_prod = bp->eq_prod;
4582 
4583 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4584 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4585 
4586 	for (; sw_cons != hw_cons;
4587 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4588 
4589 
4590 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4591 
4592 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4593 		opcode = elem->message.opcode;
4594 
4595 
4596 		/* handle eq element */
4597 		switch (opcode) {
4598 		case EVENT_RING_OPCODE_STAT_QUERY:
4599 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4600 			   "got statistics comp event %d\n",
4601 			   bp->stats_comp++);
4602 			/* nothing to do with stats comp */
4603 			goto next_spqe;
4604 
4605 		case EVENT_RING_OPCODE_CFC_DEL:
4606 			/* handle according to cid range */
4607 			/*
4608 			 * we may want to verify here that the bp state is
4609 			 * HALTING
4610 			 */
4611 			DP(BNX2X_MSG_SP,
4612 			   "got delete ramrod for MULTI[%d]\n", cid);
4613 #ifdef BCM_CNIC
4614 			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4615 				goto next_spqe;
4616 #endif
4617 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4618 
4619 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4620 				break;
4621 
4622 
4623 
4624 			goto next_spqe;
4625 
4626 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4627 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4628 			if (f_obj->complete_cmd(bp, f_obj,
4629 						BNX2X_F_CMD_TX_STOP))
4630 				break;
4631 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4632 			goto next_spqe;
4633 
4634 		case EVENT_RING_OPCODE_START_TRAFFIC:
4635 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4636 			if (f_obj->complete_cmd(bp, f_obj,
4637 						BNX2X_F_CMD_TX_START))
4638 				break;
4639 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4640 			goto next_spqe;
4641 		case EVENT_RING_OPCODE_FUNCTION_START:
4642 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4643 			   "got FUNC_START ramrod\n");
4644 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4645 				break;
4646 
4647 			goto next_spqe;
4648 
4649 		case EVENT_RING_OPCODE_FUNCTION_STOP:
4650 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4651 			   "got FUNC_STOP ramrod\n");
4652 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4653 				break;
4654 
4655 			goto next_spqe;
4656 		}
4657 
4658 		switch (opcode | bp->state) {
4659 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4660 		      BNX2X_STATE_OPEN):
4661 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4662 		      BNX2X_STATE_OPENING_WAIT4_PORT):
4663 			cid = elem->message.data.eth_event.echo &
4664 				BNX2X_SWCID_MASK;
4665 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4666 			   cid);
4667 			rss_raw->clear_pending(rss_raw);
4668 			break;
4669 
4670 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4671 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4672 		case (EVENT_RING_OPCODE_SET_MAC |
4673 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4674 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4675 		      BNX2X_STATE_OPEN):
4676 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4677 		      BNX2X_STATE_DIAG):
4678 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4679 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4680 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4681 			bnx2x_handle_classification_eqe(bp, elem);
4682 			break;
4683 
4684 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4685 		      BNX2X_STATE_OPEN):
4686 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4687 		      BNX2X_STATE_DIAG):
4688 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4689 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4690 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4691 			bnx2x_handle_mcast_eqe(bp);
4692 			break;
4693 
4694 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4695 		      BNX2X_STATE_OPEN):
4696 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4697 		      BNX2X_STATE_DIAG):
4698 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4699 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4700 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4701 			bnx2x_handle_rx_mode_eqe(bp);
4702 			break;
4703 		default:
4704 			/* unknown event log error and continue */
4705 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4706 				  elem->message.opcode, bp->state);
4707 		}
4708 next_spqe:
4709 		spqe_cnt++;
4710 	} /* for */
4711 
4712 	smp_mb__before_atomic_inc();
4713 	atomic_add(spqe_cnt, &bp->eq_spq_left);
4714 
4715 	bp->eq_cons = sw_cons;
4716 	bp->eq_prod = sw_prod;
4717 	/* Make sure that above mem writes were issued towards the memory */
4718 	smp_wmb();
4719 
4720 	/* update producer */
4721 	bnx2x_update_eq_prod(bp, bp->eq_prod);
4722 }
4723 
4724 static void bnx2x_sp_task(struct work_struct *work)
4725 {
4726 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4727 	u16 status;
4728 
4729 	status = bnx2x_update_dsb_idx(bp);
4730 /*	if (status == 0)				     */
4731 /*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4732 
4733 	DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
4734 
4735 	/* HW attentions */
4736 	if (status & BNX2X_DEF_SB_ATT_IDX) {
4737 		bnx2x_attn_int(bp);
4738 		status &= ~BNX2X_DEF_SB_ATT_IDX;
4739 	}
4740 
4741 	/* SP events: STAT_QUERY and others */
4742 	if (status & BNX2X_DEF_SB_IDX) {
4743 #ifdef BCM_CNIC
4744 		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4745 
4746 		if ((!NO_FCOE(bp)) &&
4747 			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4748 			/*
4749 			 * Prevent local bottom-halves from running as
4750 			 * we are going to change the local NAPI list.
4751 			 */
4752 			local_bh_disable();
4753 			napi_schedule(&bnx2x_fcoe(bp, napi));
4754 			local_bh_enable();
4755 		}
4756 #endif
4757 		/* Handle EQ completions */
4758 		bnx2x_eq_int(bp);
4759 
4760 		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4761 			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4762 
4763 		status &= ~BNX2X_DEF_SB_IDX;
4764 	}
4765 
4766 	if (unlikely(status))
4767 		DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
4768 		   status);
4769 
4770 	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4771 	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4772 }
4773 
4774 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4775 {
4776 	struct net_device *dev = dev_instance;
4777 	struct bnx2x *bp = netdev_priv(dev);
4778 
4779 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4780 		     IGU_INT_DISABLE, 0);
4781 
4782 #ifdef BNX2X_STOP_ON_ERROR
4783 	if (unlikely(bp->panic))
4784 		return IRQ_HANDLED;
4785 #endif
4786 
4787 #ifdef BCM_CNIC
4788 	{
4789 		struct cnic_ops *c_ops;
4790 
4791 		rcu_read_lock();
4792 		c_ops = rcu_dereference(bp->cnic_ops);
4793 		if (c_ops)
4794 			c_ops->cnic_handler(bp->cnic_data, NULL);
4795 		rcu_read_unlock();
4796 	}
4797 #endif
4798 	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4799 
4800 	return IRQ_HANDLED;
4801 }
4802 
4803 /* end of slow path */
4804 
4805 
4806 void bnx2x_drv_pulse(struct bnx2x *bp)
4807 {
4808 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4809 		 bp->fw_drv_pulse_wr_seq);
4810 }
4811 
4812 
4813 static void bnx2x_timer(unsigned long data)
4814 {
4815 	struct bnx2x *bp = (struct bnx2x *) data;
4816 
4817 	if (!netif_running(bp->dev))
4818 		return;
4819 
4820 	if (!BP_NOMCP(bp)) {
4821 		int mb_idx = BP_FW_MB_IDX(bp);
4822 		u32 drv_pulse;
4823 		u32 mcp_pulse;
4824 
4825 		++bp->fw_drv_pulse_wr_seq;
4826 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4827 		/* TBD - add SYSTEM_TIME */
4828 		drv_pulse = bp->fw_drv_pulse_wr_seq;
4829 		bnx2x_drv_pulse(bp);
4830 
4831 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4832 			     MCP_PULSE_SEQ_MASK);
4833 		/* The delta between driver pulse and mcp response
4834 		 * should be 1 (before mcp response) or 0 (after mcp response)
4835 		 */
4836 		if ((drv_pulse != mcp_pulse) &&
4837 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4838 			/* someone lost a heartbeat... */
4839 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4840 				  drv_pulse, mcp_pulse);
4841 		}
4842 	}
4843 
4844 	if (bp->state == BNX2X_STATE_OPEN)
4845 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4846 
4847 	mod_timer(&bp->timer, jiffies + bp->current_interval);
4848 }
4849 
4850 /* end of Statistics */
4851 
4852 /* nic init */
4853 
4854 /*
4855  * nic init service functions
4856  */
4857 
4858 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4859 {
4860 	u32 i;
4861 	if (!(len%4) && !(addr%4))
4862 		for (i = 0; i < len; i += 4)
4863 			REG_WR(bp, addr + i, fill);
4864 	else
4865 		for (i = 0; i < len; i++)
4866 			REG_WR8(bp, addr + i, fill);
4867 
4868 }
4869 
4870 /* helper: writes FP SP data to FW - data_size in dwords */
4871 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4872 				       int fw_sb_id,
4873 				       u32 *sb_data_p,
4874 				       u32 data_size)
4875 {
4876 	int index;
4877 	for (index = 0; index < data_size; index++)
4878 		REG_WR(bp, BAR_CSTRORM_INTMEM +
4879 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4880 			sizeof(u32)*index,
4881 			*(sb_data_p + index));
4882 }
4883 
4884 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4885 {
4886 	u32 *sb_data_p;
4887 	u32 data_size = 0;
4888 	struct hc_status_block_data_e2 sb_data_e2;
4889 	struct hc_status_block_data_e1x sb_data_e1x;
4890 
4891 	/* disable the function first */
4892 	if (!CHIP_IS_E1x(bp)) {
4893 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4894 		sb_data_e2.common.state = SB_DISABLED;
4895 		sb_data_e2.common.p_func.vf_valid = false;
4896 		sb_data_p = (u32 *)&sb_data_e2;
4897 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4898 	} else {
4899 		memset(&sb_data_e1x, 0,
4900 		       sizeof(struct hc_status_block_data_e1x));
4901 		sb_data_e1x.common.state = SB_DISABLED;
4902 		sb_data_e1x.common.p_func.vf_valid = false;
4903 		sb_data_p = (u32 *)&sb_data_e1x;
4904 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4905 	}
4906 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4907 
4908 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4909 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4910 			CSTORM_STATUS_BLOCK_SIZE);
4911 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4912 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4913 			CSTORM_SYNC_BLOCK_SIZE);
4914 }
4915 
4916 /* helper:  writes SP SB data to FW */
4917 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4918 		struct hc_sp_status_block_data *sp_sb_data)
4919 {
4920 	int func = BP_FUNC(bp);
4921 	int i;
4922 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4923 		REG_WR(bp, BAR_CSTRORM_INTMEM +
4924 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4925 			i*sizeof(u32),
4926 			*((u32 *)sp_sb_data + i));
4927 }
4928 
4929 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4930 {
4931 	int func = BP_FUNC(bp);
4932 	struct hc_sp_status_block_data sp_sb_data;
4933 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4934 
4935 	sp_sb_data.state = SB_DISABLED;
4936 	sp_sb_data.p_func.vf_valid = false;
4937 
4938 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4939 
4940 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4941 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4942 			CSTORM_SP_STATUS_BLOCK_SIZE);
4943 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4944 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4945 			CSTORM_SP_SYNC_BLOCK_SIZE);
4946 
4947 }
4948 
4949 
4950 static inline
4951 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4952 					   int igu_sb_id, int igu_seg_id)
4953 {
4954 	hc_sm->igu_sb_id = igu_sb_id;
4955 	hc_sm->igu_seg_id = igu_seg_id;
4956 	hc_sm->timer_value = 0xFF;
4957 	hc_sm->time_to_expire = 0xFFFFFFFF;
4958 }
4959 
4960 
4961 /* allocates state machine ids. */
4962 static inline
4963 void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4964 {
4965 	/* zero out state machine indices */
4966 	/* rx indices */
4967 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4968 
4969 	/* tx indices */
4970 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4971 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4972 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4973 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4974 
4975 	/* map indices */
4976 	/* rx indices */
4977 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4978 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4979 
4980 	/* tx indices */
4981 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4982 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4983 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4984 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4985 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4986 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4987 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4988 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
4989 }
4990 
4991 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
4992 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
4993 {
4994 	int igu_seg_id;
4995 
4996 	struct hc_status_block_data_e2 sb_data_e2;
4997 	struct hc_status_block_data_e1x sb_data_e1x;
4998 	struct hc_status_block_sm  *hc_sm_p;
4999 	int data_size;
5000 	u32 *sb_data_p;
5001 
5002 	if (CHIP_INT_MODE_IS_BC(bp))
5003 		igu_seg_id = HC_SEG_ACCESS_NORM;
5004 	else
5005 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5006 
5007 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5008 
5009 	if (!CHIP_IS_E1x(bp)) {
5010 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5011 		sb_data_e2.common.state = SB_ENABLED;
5012 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5013 		sb_data_e2.common.p_func.vf_id = vfid;
5014 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5015 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5016 		sb_data_e2.common.same_igu_sb_1b = true;
5017 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5018 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5019 		hc_sm_p = sb_data_e2.common.state_machine;
5020 		sb_data_p = (u32 *)&sb_data_e2;
5021 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5022 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5023 	} else {
5024 		memset(&sb_data_e1x, 0,
5025 		       sizeof(struct hc_status_block_data_e1x));
5026 		sb_data_e1x.common.state = SB_ENABLED;
5027 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5028 		sb_data_e1x.common.p_func.vf_id = 0xff;
5029 		sb_data_e1x.common.p_func.vf_valid = false;
5030 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5031 		sb_data_e1x.common.same_igu_sb_1b = true;
5032 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5033 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5034 		hc_sm_p = sb_data_e1x.common.state_machine;
5035 		sb_data_p = (u32 *)&sb_data_e1x;
5036 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5037 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5038 	}
5039 
5040 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5041 				       igu_sb_id, igu_seg_id);
5042 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5043 				       igu_sb_id, igu_seg_id);
5044 
5045 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5046 
5047 	/* write indecies to HW */
5048 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5049 }
5050 
5051 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5052 				     u16 tx_usec, u16 rx_usec)
5053 {
5054 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5055 				    false, rx_usec);
5056 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5057 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5058 				       tx_usec);
5059 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5060 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5061 				       tx_usec);
5062 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5063 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5064 				       tx_usec);
5065 }
5066 
5067 static void bnx2x_init_def_sb(struct bnx2x *bp)
5068 {
5069 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5070 	dma_addr_t mapping = bp->def_status_blk_mapping;
5071 	int igu_sp_sb_index;
5072 	int igu_seg_id;
5073 	int port = BP_PORT(bp);
5074 	int func = BP_FUNC(bp);
5075 	int reg_offset, reg_offset_en5;
5076 	u64 section;
5077 	int index;
5078 	struct hc_sp_status_block_data sp_sb_data;
5079 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5080 
5081 	if (CHIP_INT_MODE_IS_BC(bp)) {
5082 		igu_sp_sb_index = DEF_SB_IGU_ID;
5083 		igu_seg_id = HC_SEG_ACCESS_DEF;
5084 	} else {
5085 		igu_sp_sb_index = bp->igu_dsb_id;
5086 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5087 	}
5088 
5089 	/* ATTN */
5090 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5091 					    atten_status_block);
5092 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5093 
5094 	bp->attn_state = 0;
5095 
5096 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5097 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5098 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5099 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5100 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5101 		int sindex;
5102 		/* take care of sig[0]..sig[4] */
5103 		for (sindex = 0; sindex < 4; sindex++)
5104 			bp->attn_group[index].sig[sindex] =
5105 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5106 
5107 		if (!CHIP_IS_E1x(bp))
5108 			/*
5109 			 * enable5 is separate from the rest of the registers,
5110 			 * and therefore the address skip is 4
5111 			 * and not 16 between the different groups
5112 			 */
5113 			bp->attn_group[index].sig[4] = REG_RD(bp,
5114 					reg_offset_en5 + 0x4*index);
5115 		else
5116 			bp->attn_group[index].sig[4] = 0;
5117 	}
5118 
5119 	if (bp->common.int_block == INT_BLOCK_HC) {
5120 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5121 				     HC_REG_ATTN_MSG0_ADDR_L);
5122 
5123 		REG_WR(bp, reg_offset, U64_LO(section));
5124 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5125 	} else if (!CHIP_IS_E1x(bp)) {
5126 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5127 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5128 	}
5129 
5130 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5131 					    sp_sb);
5132 
5133 	bnx2x_zero_sp_sb(bp);
5134 
5135 	sp_sb_data.state		= SB_ENABLED;
5136 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5137 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5138 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5139 	sp_sb_data.igu_seg_id		= igu_seg_id;
5140 	sp_sb_data.p_func.pf_id		= func;
5141 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5142 	sp_sb_data.p_func.vf_id		= 0xff;
5143 
5144 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5145 
5146 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5147 }
5148 
5149 void bnx2x_update_coalesce(struct bnx2x *bp)
5150 {
5151 	int i;
5152 
5153 	for_each_eth_queue(bp, i)
5154 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5155 					 bp->tx_ticks, bp->rx_ticks);
5156 }
5157 
5158 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5159 {
5160 	spin_lock_init(&bp->spq_lock);
5161 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5162 
5163 	bp->spq_prod_idx = 0;
5164 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5165 	bp->spq_prod_bd = bp->spq;
5166 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5167 }
5168 
5169 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5170 {
5171 	int i;
5172 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5173 		union event_ring_elem *elem =
5174 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5175 
5176 		elem->next_page.addr.hi =
5177 			cpu_to_le32(U64_HI(bp->eq_mapping +
5178 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5179 		elem->next_page.addr.lo =
5180 			cpu_to_le32(U64_LO(bp->eq_mapping +
5181 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5182 	}
5183 	bp->eq_cons = 0;
5184 	bp->eq_prod = NUM_EQ_DESC;
5185 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5186 	/* we want a warning message before it gets rought... */
5187 	atomic_set(&bp->eq_spq_left,
5188 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5189 }
5190 
5191 
5192 /* called with netif_addr_lock_bh() */
5193 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5194 			 unsigned long rx_mode_flags,
5195 			 unsigned long rx_accept_flags,
5196 			 unsigned long tx_accept_flags,
5197 			 unsigned long ramrod_flags)
5198 {
5199 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5200 	int rc;
5201 
5202 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5203 
5204 	/* Prepare ramrod parameters */
5205 	ramrod_param.cid = 0;
5206 	ramrod_param.cl_id = cl_id;
5207 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5208 	ramrod_param.func_id = BP_FUNC(bp);
5209 
5210 	ramrod_param.pstate = &bp->sp_state;
5211 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5212 
5213 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5214 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5215 
5216 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5217 
5218 	ramrod_param.ramrod_flags = ramrod_flags;
5219 	ramrod_param.rx_mode_flags = rx_mode_flags;
5220 
5221 	ramrod_param.rx_accept_flags = rx_accept_flags;
5222 	ramrod_param.tx_accept_flags = tx_accept_flags;
5223 
5224 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5225 	if (rc < 0) {
5226 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5227 		return;
5228 	}
5229 }
5230 
5231 /* called with netif_addr_lock_bh() */
5232 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5233 {
5234 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5235 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5236 
5237 #ifdef BCM_CNIC
5238 	if (!NO_FCOE(bp))
5239 
5240 		/* Configure rx_mode of FCoE Queue */
5241 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5242 #endif
5243 
5244 	switch (bp->rx_mode) {
5245 	case BNX2X_RX_MODE_NONE:
5246 		/*
5247 		 * 'drop all' supersedes any accept flags that may have been
5248 		 * passed to the function.
5249 		 */
5250 		break;
5251 	case BNX2X_RX_MODE_NORMAL:
5252 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5253 		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5254 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5255 
5256 		/* internal switching mode */
5257 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5258 		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5259 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5260 
5261 		break;
5262 	case BNX2X_RX_MODE_ALLMULTI:
5263 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5264 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5265 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5266 
5267 		/* internal switching mode */
5268 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5269 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5270 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5271 
5272 		break;
5273 	case BNX2X_RX_MODE_PROMISC:
5274 		/* According to deffinition of SI mode, iface in promisc mode
5275 		 * should receive matched and unmatched (in resolution of port)
5276 		 * unicast packets.
5277 		 */
5278 		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5279 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5280 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5281 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5282 
5283 		/* internal switching mode */
5284 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5285 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5286 
5287 		if (IS_MF_SI(bp))
5288 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5289 		else
5290 			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5291 
5292 		break;
5293 	default:
5294 		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5295 		return;
5296 	}
5297 
5298 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5299 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5300 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5301 	}
5302 
5303 	__set_bit(RAMROD_RX, &ramrod_flags);
5304 	__set_bit(RAMROD_TX, &ramrod_flags);
5305 
5306 	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5307 			    tx_accept_flags, ramrod_flags);
5308 }
5309 
5310 static void bnx2x_init_internal_common(struct bnx2x *bp)
5311 {
5312 	int i;
5313 
5314 	if (IS_MF_SI(bp))
5315 		/*
5316 		 * In switch independent mode, the TSTORM needs to accept
5317 		 * packets that failed classification, since approximate match
5318 		 * mac addresses aren't written to NIG LLH
5319 		 */
5320 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5321 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5322 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5323 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5324 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5325 
5326 	/* Zero this manually as its initialization is
5327 	   currently missing in the initTool */
5328 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5329 		REG_WR(bp, BAR_USTRORM_INTMEM +
5330 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5331 	if (!CHIP_IS_E1x(bp)) {
5332 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5333 			CHIP_INT_MODE_IS_BC(bp) ?
5334 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5335 	}
5336 }
5337 
5338 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5339 {
5340 	switch (load_code) {
5341 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5342 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5343 		bnx2x_init_internal_common(bp);
5344 		/* no break */
5345 
5346 	case FW_MSG_CODE_DRV_LOAD_PORT:
5347 		/* nothing to do */
5348 		/* no break */
5349 
5350 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5351 		/* internal memory per function is
5352 		   initialized inside bnx2x_pf_init */
5353 		break;
5354 
5355 	default:
5356 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5357 		break;
5358 	}
5359 }
5360 
5361 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5362 {
5363 	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5364 }
5365 
5366 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5367 {
5368 	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5369 }
5370 
5371 static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5372 {
5373 	if (CHIP_IS_E1x(fp->bp))
5374 		return BP_L_ID(fp->bp) + fp->index;
5375 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5376 		return bnx2x_fp_igu_sb_id(fp);
5377 }
5378 
5379 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5380 {
5381 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5382 	u8 cos;
5383 	unsigned long q_type = 0;
5384 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5385 	fp->rx_queue = fp_idx;
5386 	fp->cid = fp_idx;
5387 	fp->cl_id = bnx2x_fp_cl_id(fp);
5388 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5389 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5390 	/* qZone id equals to FW (per path) client id */
5391 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5392 
5393 	/* init shortcut */
5394 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5395 
5396 	/* Setup SB indicies */
5397 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5398 
5399 	/* Configure Queue State object */
5400 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5401 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5402 
5403 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5404 
5405 	/* init tx data */
5406 	for_each_cos_in_tx_queue(fp, cos) {
5407 		bnx2x_init_txdata(bp, &fp->txdata[cos],
5408 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5409 				  FP_COS_TO_TXQ(fp, cos),
5410 				  BNX2X_TX_SB_INDEX_BASE + cos);
5411 		cids[cos] = fp->txdata[cos].cid;
5412 	}
5413 
5414 	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5415 			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5416 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5417 
5418 	/**
5419 	 * Configure classification DBs: Always enable Tx switching
5420 	 */
5421 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5422 
5423 	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5424 		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5425 		   fp->igu_sb_id);
5426 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5427 		      fp->fw_sb_id, fp->igu_sb_id);
5428 
5429 	bnx2x_update_fpsb_idx(fp);
5430 }
5431 
5432 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5433 {
5434 	int i;
5435 
5436 	for_each_eth_queue(bp, i)
5437 		bnx2x_init_eth_fp(bp, i);
5438 #ifdef BCM_CNIC
5439 	if (!NO_FCOE(bp))
5440 		bnx2x_init_fcoe_fp(bp);
5441 
5442 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5443 		      BNX2X_VF_ID_INVALID, false,
5444 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5445 
5446 #endif
5447 
5448 	/* Initialize MOD_ABS interrupts */
5449 	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5450 			       bp->common.shmem_base, bp->common.shmem2_base,
5451 			       BP_PORT(bp));
5452 	/* ensure status block indices were read */
5453 	rmb();
5454 
5455 	bnx2x_init_def_sb(bp);
5456 	bnx2x_update_dsb_idx(bp);
5457 	bnx2x_init_rx_rings(bp);
5458 	bnx2x_init_tx_rings(bp);
5459 	bnx2x_init_sp_ring(bp);
5460 	bnx2x_init_eq_ring(bp);
5461 	bnx2x_init_internal(bp, load_code);
5462 	bnx2x_pf_init(bp);
5463 	bnx2x_stats_init(bp);
5464 
5465 	/* flush all before enabling interrupts */
5466 	mb();
5467 	mmiowb();
5468 
5469 	bnx2x_int_enable(bp);
5470 
5471 	/* Check for SPIO5 */
5472 	bnx2x_attn_int_deasserted0(bp,
5473 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5474 				   AEU_INPUTS_ATTN_BITS_SPIO5);
5475 }
5476 
5477 /* end of nic init */
5478 
5479 /*
5480  * gzip service functions
5481  */
5482 
5483 static int bnx2x_gunzip_init(struct bnx2x *bp)
5484 {
5485 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5486 					    &bp->gunzip_mapping, GFP_KERNEL);
5487 	if (bp->gunzip_buf  == NULL)
5488 		goto gunzip_nomem1;
5489 
5490 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5491 	if (bp->strm  == NULL)
5492 		goto gunzip_nomem2;
5493 
5494 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5495 	if (bp->strm->workspace == NULL)
5496 		goto gunzip_nomem3;
5497 
5498 	return 0;
5499 
5500 gunzip_nomem3:
5501 	kfree(bp->strm);
5502 	bp->strm = NULL;
5503 
5504 gunzip_nomem2:
5505 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5506 			  bp->gunzip_mapping);
5507 	bp->gunzip_buf = NULL;
5508 
5509 gunzip_nomem1:
5510 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5511 	return -ENOMEM;
5512 }
5513 
5514 static void bnx2x_gunzip_end(struct bnx2x *bp)
5515 {
5516 	if (bp->strm) {
5517 		vfree(bp->strm->workspace);
5518 		kfree(bp->strm);
5519 		bp->strm = NULL;
5520 	}
5521 
5522 	if (bp->gunzip_buf) {
5523 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5524 				  bp->gunzip_mapping);
5525 		bp->gunzip_buf = NULL;
5526 	}
5527 }
5528 
5529 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5530 {
5531 	int n, rc;
5532 
5533 	/* check gzip header */
5534 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5535 		BNX2X_ERR("Bad gzip header\n");
5536 		return -EINVAL;
5537 	}
5538 
5539 	n = 10;
5540 
5541 #define FNAME				0x8
5542 
5543 	if (zbuf[3] & FNAME)
5544 		while ((zbuf[n++] != 0) && (n < len));
5545 
5546 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5547 	bp->strm->avail_in = len - n;
5548 	bp->strm->next_out = bp->gunzip_buf;
5549 	bp->strm->avail_out = FW_BUF_SIZE;
5550 
5551 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5552 	if (rc != Z_OK)
5553 		return rc;
5554 
5555 	rc = zlib_inflate(bp->strm, Z_FINISH);
5556 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5557 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5558 			   bp->strm->msg);
5559 
5560 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5561 	if (bp->gunzip_outlen & 0x3)
5562 		netdev_err(bp->dev,
5563 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5564 				bp->gunzip_outlen);
5565 	bp->gunzip_outlen >>= 2;
5566 
5567 	zlib_inflateEnd(bp->strm);
5568 
5569 	if (rc == Z_STREAM_END)
5570 		return 0;
5571 
5572 	return rc;
5573 }
5574 
5575 /* nic load/unload */
5576 
5577 /*
5578  * General service functions
5579  */
5580 
5581 /* send a NIG loopback debug packet */
5582 static void bnx2x_lb_pckt(struct bnx2x *bp)
5583 {
5584 	u32 wb_write[3];
5585 
5586 	/* Ethernet source and destination addresses */
5587 	wb_write[0] = 0x55555555;
5588 	wb_write[1] = 0x55555555;
5589 	wb_write[2] = 0x20;		/* SOP */
5590 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5591 
5592 	/* NON-IP protocol */
5593 	wb_write[0] = 0x09000000;
5594 	wb_write[1] = 0x55555555;
5595 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5596 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5597 }
5598 
5599 /* some of the internal memories
5600  * are not directly readable from the driver
5601  * to test them we send debug packets
5602  */
5603 static int bnx2x_int_mem_test(struct bnx2x *bp)
5604 {
5605 	int factor;
5606 	int count, i;
5607 	u32 val = 0;
5608 
5609 	if (CHIP_REV_IS_FPGA(bp))
5610 		factor = 120;
5611 	else if (CHIP_REV_IS_EMUL(bp))
5612 		factor = 200;
5613 	else
5614 		factor = 1;
5615 
5616 	/* Disable inputs of parser neighbor blocks */
5617 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5618 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5619 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5620 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5621 
5622 	/*  Write 0 to parser credits for CFC search request */
5623 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5624 
5625 	/* send Ethernet packet */
5626 	bnx2x_lb_pckt(bp);
5627 
5628 	/* TODO do i reset NIG statistic? */
5629 	/* Wait until NIG register shows 1 packet of size 0x10 */
5630 	count = 1000 * factor;
5631 	while (count) {
5632 
5633 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5634 		val = *bnx2x_sp(bp, wb_data[0]);
5635 		if (val == 0x10)
5636 			break;
5637 
5638 		msleep(10);
5639 		count--;
5640 	}
5641 	if (val != 0x10) {
5642 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5643 		return -1;
5644 	}
5645 
5646 	/* Wait until PRS register shows 1 packet */
5647 	count = 1000 * factor;
5648 	while (count) {
5649 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5650 		if (val == 1)
5651 			break;
5652 
5653 		msleep(10);
5654 		count--;
5655 	}
5656 	if (val != 0x1) {
5657 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5658 		return -2;
5659 	}
5660 
5661 	/* Reset and init BRB, PRS */
5662 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5663 	msleep(50);
5664 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5665 	msleep(50);
5666 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5667 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5668 
5669 	DP(NETIF_MSG_HW, "part2\n");
5670 
5671 	/* Disable inputs of parser neighbor blocks */
5672 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5673 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5674 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5675 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5676 
5677 	/* Write 0 to parser credits for CFC search request */
5678 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5679 
5680 	/* send 10 Ethernet packets */
5681 	for (i = 0; i < 10; i++)
5682 		bnx2x_lb_pckt(bp);
5683 
5684 	/* Wait until NIG register shows 10 + 1
5685 	   packets of size 11*0x10 = 0xb0 */
5686 	count = 1000 * factor;
5687 	while (count) {
5688 
5689 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5690 		val = *bnx2x_sp(bp, wb_data[0]);
5691 		if (val == 0xb0)
5692 			break;
5693 
5694 		msleep(10);
5695 		count--;
5696 	}
5697 	if (val != 0xb0) {
5698 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5699 		return -3;
5700 	}
5701 
5702 	/* Wait until PRS register shows 2 packets */
5703 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5704 	if (val != 2)
5705 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5706 
5707 	/* Write 1 to parser credits for CFC search request */
5708 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5709 
5710 	/* Wait until PRS register shows 3 packets */
5711 	msleep(10 * factor);
5712 	/* Wait until NIG register shows 1 packet of size 0x10 */
5713 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5714 	if (val != 3)
5715 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5716 
5717 	/* clear NIG EOP FIFO */
5718 	for (i = 0; i < 11; i++)
5719 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5720 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5721 	if (val != 1) {
5722 		BNX2X_ERR("clear of NIG failed\n");
5723 		return -4;
5724 	}
5725 
5726 	/* Reset and init BRB, PRS, NIG */
5727 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5728 	msleep(50);
5729 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5730 	msleep(50);
5731 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5732 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5733 #ifndef BCM_CNIC
5734 	/* set NIC mode */
5735 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
5736 #endif
5737 
5738 	/* Enable inputs of parser neighbor blocks */
5739 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5740 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5741 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5742 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5743 
5744 	DP(NETIF_MSG_HW, "done\n");
5745 
5746 	return 0; /* OK */
5747 }
5748 
5749 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5750 {
5751 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5752 	if (!CHIP_IS_E1x(bp))
5753 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5754 	else
5755 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5756 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5757 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5758 	/*
5759 	 * mask read length error interrupts in brb for parser
5760 	 * (parsing unit and 'checksum and crc' unit)
5761 	 * these errors are legal (PU reads fixed length and CAC can cause
5762 	 * read length error on truncated packets)
5763 	 */
5764 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5765 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5766 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5767 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5768 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5769 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5770 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5771 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5772 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5773 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5774 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5775 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5776 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5777 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5778 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5779 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5780 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5781 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5782 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5783 
5784 	if (CHIP_REV_IS_FPGA(bp))
5785 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5786 	else if (!CHIP_IS_E1x(bp))
5787 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5788 			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5789 				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5790 				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5791 				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5792 				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5793 	else
5794 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5795 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5796 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5797 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5798 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5799 
5800 	if (!CHIP_IS_E1x(bp))
5801 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5802 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5803 
5804 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5805 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5806 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5807 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
5808 }
5809 
5810 static void bnx2x_reset_common(struct bnx2x *bp)
5811 {
5812 	u32 val = 0x1400;
5813 
5814 	/* reset_common */
5815 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5816 	       0xd3ffff7f);
5817 
5818 	if (CHIP_IS_E3(bp)) {
5819 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5820 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5821 	}
5822 
5823 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5824 }
5825 
5826 static void bnx2x_setup_dmae(struct bnx2x *bp)
5827 {
5828 	bp->dmae_ready = 0;
5829 	spin_lock_init(&bp->dmae_lock);
5830 }
5831 
5832 static void bnx2x_init_pxp(struct bnx2x *bp)
5833 {
5834 	u16 devctl;
5835 	int r_order, w_order;
5836 
5837 	pci_read_config_word(bp->pdev,
5838 			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5839 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5840 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5841 	if (bp->mrrs == -1)
5842 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5843 	else {
5844 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5845 		r_order = bp->mrrs;
5846 	}
5847 
5848 	bnx2x_init_pxp_arb(bp, r_order, w_order);
5849 }
5850 
5851 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5852 {
5853 	int is_required;
5854 	u32 val;
5855 	int port;
5856 
5857 	if (BP_NOMCP(bp))
5858 		return;
5859 
5860 	is_required = 0;
5861 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5862 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
5863 
5864 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5865 		is_required = 1;
5866 
5867 	/*
5868 	 * The fan failure mechanism is usually related to the PHY type since
5869 	 * the power consumption of the board is affected by the PHY. Currently,
5870 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5871 	 */
5872 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5873 		for (port = PORT_0; port < PORT_MAX; port++) {
5874 			is_required |=
5875 				bnx2x_fan_failure_det_req(
5876 					bp,
5877 					bp->common.shmem_base,
5878 					bp->common.shmem2_base,
5879 					port);
5880 		}
5881 
5882 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5883 
5884 	if (is_required == 0)
5885 		return;
5886 
5887 	/* Fan failure is indicated by SPIO 5 */
5888 	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5889 		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
5890 
5891 	/* set to active low mode */
5892 	val = REG_RD(bp, MISC_REG_SPIO_INT);
5893 	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5894 					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5895 	REG_WR(bp, MISC_REG_SPIO_INT, val);
5896 
5897 	/* enable interrupt to signal the IGU */
5898 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5899 	val |= (1 << MISC_REGISTERS_SPIO_5);
5900 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5901 }
5902 
5903 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5904 {
5905 	u32 offset = 0;
5906 
5907 	if (CHIP_IS_E1(bp))
5908 		return;
5909 	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5910 		return;
5911 
5912 	switch (BP_ABS_FUNC(bp)) {
5913 	case 0:
5914 		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5915 		break;
5916 	case 1:
5917 		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5918 		break;
5919 	case 2:
5920 		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5921 		break;
5922 	case 3:
5923 		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5924 		break;
5925 	case 4:
5926 		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5927 		break;
5928 	case 5:
5929 		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5930 		break;
5931 	case 6:
5932 		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5933 		break;
5934 	case 7:
5935 		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5936 		break;
5937 	default:
5938 		return;
5939 	}
5940 
5941 	REG_WR(bp, offset, pretend_func_num);
5942 	REG_RD(bp, offset);
5943 	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5944 }
5945 
5946 void bnx2x_pf_disable(struct bnx2x *bp)
5947 {
5948 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5949 	val &= ~IGU_PF_CONF_FUNC_EN;
5950 
5951 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5952 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5953 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5954 }
5955 
5956 static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5957 {
5958 	u32 shmem_base[2], shmem2_base[2];
5959 	shmem_base[0] =  bp->common.shmem_base;
5960 	shmem2_base[0] = bp->common.shmem2_base;
5961 	if (!CHIP_IS_E1x(bp)) {
5962 		shmem_base[1] =
5963 			SHMEM2_RD(bp, other_shmem_base_addr);
5964 		shmem2_base[1] =
5965 			SHMEM2_RD(bp, other_shmem2_base_addr);
5966 	}
5967 	bnx2x_acquire_phy_lock(bp);
5968 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5969 			      bp->common.chip_id);
5970 	bnx2x_release_phy_lock(bp);
5971 }
5972 
5973 /**
5974  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5975  *
5976  * @bp:		driver handle
5977  */
5978 static int bnx2x_init_hw_common(struct bnx2x *bp)
5979 {
5980 	u32 val;
5981 
5982 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
5983 
5984 	/*
5985 	 * take the UNDI lock to protect undi_unload flow from accessing
5986 	 * registers while we're resetting the chip
5987 	 */
5988 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
5989 
5990 	bnx2x_reset_common(bp);
5991 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
5992 
5993 	val = 0xfffc;
5994 	if (CHIP_IS_E3(bp)) {
5995 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5996 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5997 	}
5998 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
5999 
6000 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6001 
6002 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6003 
6004 	if (!CHIP_IS_E1x(bp)) {
6005 		u8 abs_func_id;
6006 
6007 		/**
6008 		 * 4-port mode or 2-port mode we need to turn of master-enable
6009 		 * for everyone, after that, turn it back on for self.
6010 		 * so, we disregard multi-function or not, and always disable
6011 		 * for all functions on the given path, this means 0,2,4,6 for
6012 		 * path 0 and 1,3,5,7 for path 1
6013 		 */
6014 		for (abs_func_id = BP_PATH(bp);
6015 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6016 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6017 				REG_WR(bp,
6018 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6019 				    1);
6020 				continue;
6021 			}
6022 
6023 			bnx2x_pretend_func(bp, abs_func_id);
6024 			/* clear pf enable */
6025 			bnx2x_pf_disable(bp);
6026 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6027 		}
6028 	}
6029 
6030 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6031 	if (CHIP_IS_E1(bp)) {
6032 		/* enable HW interrupt from PXP on USDM overflow
6033 		   bit 16 on INT_MASK_0 */
6034 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6035 	}
6036 
6037 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6038 	bnx2x_init_pxp(bp);
6039 
6040 #ifdef __BIG_ENDIAN
6041 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6042 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6043 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6044 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6045 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6046 	/* make sure this value is 0 */
6047 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6048 
6049 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6050 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6051 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6052 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6053 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6054 #endif
6055 
6056 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6057 
6058 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6059 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6060 
6061 	/* let the HW do it's magic ... */
6062 	msleep(100);
6063 	/* finish PXP init */
6064 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6065 	if (val != 1) {
6066 		BNX2X_ERR("PXP2 CFG failed\n");
6067 		return -EBUSY;
6068 	}
6069 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6070 	if (val != 1) {
6071 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6072 		return -EBUSY;
6073 	}
6074 
6075 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6076 	 * have entries with value "0" and valid bit on.
6077 	 * This needs to be done by the first PF that is loaded in a path
6078 	 * (i.e. common phase)
6079 	 */
6080 	if (!CHIP_IS_E1x(bp)) {
6081 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6082  * (i.e. vnic3) to start even if it is marked as "scan-off".
6083  * This occurs when a different function (func2,3) is being marked
6084  * as "scan-off". Real-life scenario for example: if a driver is being
6085  * load-unloaded while func6,7 are down. This will cause the timer to access
6086  * the ilt, translate to a logical address and send a request to read/write.
6087  * Since the ilt for the function that is down is not valid, this will cause
6088  * a translation error which is unrecoverable.
6089  * The Workaround is intended to make sure that when this happens nothing fatal
6090  * will occur. The workaround:
6091  *	1.  First PF driver which loads on a path will:
6092  *		a.  After taking the chip out of reset, by using pretend,
6093  *		    it will write "0" to the following registers of
6094  *		    the other vnics.
6095  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6096  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6097  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6098  *		    And for itself it will write '1' to
6099  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6100  *		    dmae-operations (writing to pram for example.)
6101  *		    note: can be done for only function 6,7 but cleaner this
6102  *			  way.
6103  *		b.  Write zero+valid to the entire ILT.
6104  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6105  *		    VNIC3 (of that port). The range allocated will be the
6106  *		    entire ILT. This is needed to prevent  ILT range error.
6107  *	2.  Any PF driver load flow:
6108  *		a.  ILT update with the physical addresses of the allocated
6109  *		    logical pages.
6110  *		b.  Wait 20msec. - note that this timeout is needed to make
6111  *		    sure there are no requests in one of the PXP internal
6112  *		    queues with "old" ILT addresses.
6113  *		c.  PF enable in the PGLC.
6114  *		d.  Clear the was_error of the PF in the PGLC. (could have
6115  *		    occured while driver was down)
6116  *		e.  PF enable in the CFC (WEAK + STRONG)
6117  *		f.  Timers scan enable
6118  *	3.  PF driver unload flow:
6119  *		a.  Clear the Timers scan_en.
6120  *		b.  Polling for scan_on=0 for that PF.
6121  *		c.  Clear the PF enable bit in the PXP.
6122  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6123  *		e.  Write zero+valid to all ILT entries (The valid bit must
6124  *		    stay set)
6125  *		f.  If this is VNIC 3 of a port then also init
6126  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6127  *		    to the last enrty in the ILT.
6128  *
6129  *	Notes:
6130  *	Currently the PF error in the PGLC is non recoverable.
6131  *	In the future the there will be a recovery routine for this error.
6132  *	Currently attention is masked.
6133  *	Having an MCP lock on the load/unload process does not guarantee that
6134  *	there is no Timer disable during Func6/7 enable. This is because the
6135  *	Timers scan is currently being cleared by the MCP on FLR.
6136  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6137  *	there is error before clearing it. But the flow above is simpler and
6138  *	more general.
6139  *	All ILT entries are written by zero+valid and not just PF6/7
6140  *	ILT entries since in the future the ILT entries allocation for
6141  *	PF-s might be dynamic.
6142  */
6143 		struct ilt_client_info ilt_cli;
6144 		struct bnx2x_ilt ilt;
6145 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6146 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6147 
6148 		/* initialize dummy TM client */
6149 		ilt_cli.start = 0;
6150 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6151 		ilt_cli.client_num = ILT_CLIENT_TM;
6152 
6153 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6154 		 * Step 2: set the timers first/last ilt entry to point
6155 		 * to the entire range to prevent ILT range error for 3rd/4th
6156 		 * vnic	(this code assumes existance of the vnic)
6157 		 *
6158 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6159 		 * with dummy TM client
6160 		 *
6161 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6162 		 * and his brother are split registers
6163 		 */
6164 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6165 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6166 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6167 
6168 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6169 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6170 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6171 	}
6172 
6173 
6174 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6175 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6176 
6177 	if (!CHIP_IS_E1x(bp)) {
6178 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6179 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6180 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6181 
6182 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6183 
6184 		/* let the HW do it's magic ... */
6185 		do {
6186 			msleep(200);
6187 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6188 		} while (factor-- && (val != 1));
6189 
6190 		if (val != 1) {
6191 			BNX2X_ERR("ATC_INIT failed\n");
6192 			return -EBUSY;
6193 		}
6194 	}
6195 
6196 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6197 
6198 	/* clean the DMAE memory */
6199 	bp->dmae_ready = 1;
6200 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6201 
6202 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6203 
6204 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6205 
6206 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6207 
6208 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6209 
6210 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6211 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6212 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6213 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6214 
6215 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6216 
6217 
6218 	/* QM queues pointers table */
6219 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6220 
6221 	/* soft reset pulse */
6222 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6223 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6224 
6225 #ifdef BCM_CNIC
6226 	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6227 #endif
6228 
6229 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6230 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6231 	if (!CHIP_REV_IS_SLOW(bp))
6232 		/* enable hw interrupt from doorbell Q */
6233 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6234 
6235 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6236 
6237 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6238 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6239 
6240 	if (!CHIP_IS_E1(bp))
6241 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6242 
6243 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6244 		/* Bit-map indicating which L2 hdrs may appear
6245 		 * after the basic Ethernet header
6246 		 */
6247 		REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6248 		       bp->path_has_ovlan ? 7 : 6);
6249 
6250 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6251 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6252 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6253 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6254 
6255 	if (!CHIP_IS_E1x(bp)) {
6256 		/* reset VFC memories */
6257 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6258 			   VFC_MEMORIES_RST_REG_CAM_RST |
6259 			   VFC_MEMORIES_RST_REG_RAM_RST);
6260 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6261 			   VFC_MEMORIES_RST_REG_CAM_RST |
6262 			   VFC_MEMORIES_RST_REG_RAM_RST);
6263 
6264 		msleep(20);
6265 	}
6266 
6267 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6268 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6269 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6270 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6271 
6272 	/* sync semi rtc */
6273 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6274 	       0x80000000);
6275 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6276 	       0x80000000);
6277 
6278 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6279 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6280 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6281 
6282 	if (!CHIP_IS_E1x(bp))
6283 		REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6284 		       bp->path_has_ovlan ? 7 : 6);
6285 
6286 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6287 
6288 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6289 
6290 #ifdef BCM_CNIC
6291 	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6292 	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6293 	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6294 	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6295 	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6296 	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6297 	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6298 	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6299 	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6300 	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6301 #endif
6302 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6303 
6304 	if (sizeof(union cdu_context) != 1024)
6305 		/* we currently assume that a context is 1024 bytes */
6306 		dev_alert(&bp->pdev->dev,
6307 			  "please adjust the size of cdu_context(%ld)\n",
6308 			  (long)sizeof(union cdu_context));
6309 
6310 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6311 	val = (4 << 24) + (0 << 12) + 1024;
6312 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6313 
6314 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6315 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6316 	/* enable context validation interrupt from CFC */
6317 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6318 
6319 	/* set the thresholds to prevent CFC/CDU race */
6320 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6321 
6322 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6323 
6324 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6325 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6326 
6327 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6328 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6329 
6330 	/* Reset PCIE errors for debug */
6331 	REG_WR(bp, 0x2814, 0xffffffff);
6332 	REG_WR(bp, 0x3820, 0xffffffff);
6333 
6334 	if (!CHIP_IS_E1x(bp)) {
6335 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6336 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6337 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6338 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6339 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6340 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6341 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6342 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6343 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6344 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6345 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6346 	}
6347 
6348 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6349 	if (!CHIP_IS_E1(bp)) {
6350 		/* in E3 this done in per-port section */
6351 		if (!CHIP_IS_E3(bp))
6352 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6353 	}
6354 	if (CHIP_IS_E1H(bp))
6355 		/* not applicable for E2 (and above ...) */
6356 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6357 
6358 	if (CHIP_REV_IS_SLOW(bp))
6359 		msleep(200);
6360 
6361 	/* finish CFC init */
6362 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6363 	if (val != 1) {
6364 		BNX2X_ERR("CFC LL_INIT failed\n");
6365 		return -EBUSY;
6366 	}
6367 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6368 	if (val != 1) {
6369 		BNX2X_ERR("CFC AC_INIT failed\n");
6370 		return -EBUSY;
6371 	}
6372 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6373 	if (val != 1) {
6374 		BNX2X_ERR("CFC CAM_INIT failed\n");
6375 		return -EBUSY;
6376 	}
6377 	REG_WR(bp, CFC_REG_DEBUG0, 0);
6378 
6379 	if (CHIP_IS_E1(bp)) {
6380 		/* read NIG statistic
6381 		   to see if this is our first up since powerup */
6382 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6383 		val = *bnx2x_sp(bp, wb_data[0]);
6384 
6385 		/* do internal memory self test */
6386 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6387 			BNX2X_ERR("internal mem self test failed\n");
6388 			return -EBUSY;
6389 		}
6390 	}
6391 
6392 	bnx2x_setup_fan_failure_detection(bp);
6393 
6394 	/* clear PXP2 attentions */
6395 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6396 
6397 	bnx2x_enable_blocks_attention(bp);
6398 	bnx2x_enable_blocks_parity(bp);
6399 
6400 	if (!BP_NOMCP(bp)) {
6401 		if (CHIP_IS_E1x(bp))
6402 			bnx2x__common_init_phy(bp);
6403 	} else
6404 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6405 
6406 	return 0;
6407 }
6408 
6409 /**
6410  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6411  *
6412  * @bp:		driver handle
6413  */
6414 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6415 {
6416 	int rc = bnx2x_init_hw_common(bp);
6417 
6418 	if (rc)
6419 		return rc;
6420 
6421 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6422 	if (!BP_NOMCP(bp))
6423 		bnx2x__common_init_phy(bp);
6424 
6425 	return 0;
6426 }
6427 
6428 static int bnx2x_init_hw_port(struct bnx2x *bp)
6429 {
6430 	int port = BP_PORT(bp);
6431 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6432 	u32 low, high;
6433 	u32 val;
6434 
6435 	bnx2x__link_reset(bp);
6436 
6437 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
6438 
6439 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6440 
6441 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6442 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6443 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6444 
6445 	/* Timers bug workaround: disables the pf_master bit in pglue at
6446 	 * common phase, we need to enable it here before any dmae access are
6447 	 * attempted. Therefore we manually added the enable-master to the
6448 	 * port phase (it also happens in the function phase)
6449 	 */
6450 	if (!CHIP_IS_E1x(bp))
6451 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6452 
6453 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6454 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6455 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6456 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6457 
6458 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6459 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6460 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6461 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6462 
6463 	/* QM cid (connection) count */
6464 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6465 
6466 #ifdef BCM_CNIC
6467 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6468 	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6469 	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6470 #endif
6471 
6472 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6473 
6474 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6475 		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6476 
6477 		if (IS_MF(bp))
6478 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6479 		else if (bp->dev->mtu > 4096) {
6480 			if (bp->flags & ONE_PORT_FLAG)
6481 				low = 160;
6482 			else {
6483 				val = bp->dev->mtu;
6484 				/* (24*1024 + val*4)/256 */
6485 				low = 96 + (val/64) +
6486 						((val % 64) ? 1 : 0);
6487 			}
6488 		} else
6489 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6490 		high = low + 56;	/* 14*1024/256 */
6491 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6492 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6493 	}
6494 
6495 	if (CHIP_MODE_IS_4_PORT(bp))
6496 		REG_WR(bp, (BP_PORT(bp) ?
6497 			    BRB1_REG_MAC_GUARANTIED_1 :
6498 			    BRB1_REG_MAC_GUARANTIED_0), 40);
6499 
6500 
6501 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6502 	if (CHIP_IS_E3B0(bp))
6503 		/* Ovlan exists only if we are in multi-function +
6504 		 * switch-dependent mode, in switch-independent there
6505 		 * is no ovlan headers
6506 		 */
6507 		REG_WR(bp, BP_PORT(bp) ?
6508 		       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6509 		       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6510 		       (bp->path_has_ovlan ? 7 : 6));
6511 
6512 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6513 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6514 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6515 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6516 
6517 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6518 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6519 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6520 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6521 
6522 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6523 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6524 
6525 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6526 
6527 	if (CHIP_IS_E1x(bp)) {
6528 		/* configure PBF to work without PAUSE mtu 9000 */
6529 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6530 
6531 		/* update threshold */
6532 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6533 		/* update init credit */
6534 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6535 
6536 		/* probe changes */
6537 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6538 		udelay(50);
6539 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6540 	}
6541 
6542 #ifdef BCM_CNIC
6543 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6544 #endif
6545 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6546 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6547 
6548 	if (CHIP_IS_E1(bp)) {
6549 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6550 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6551 	}
6552 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6553 
6554 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6555 
6556 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6557 	/* init aeu_mask_attn_func_0/1:
6558 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6559 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6560 	 *             bits 4-7 are used for "per vn group attention" */
6561 	val = IS_MF(bp) ? 0xF7 : 0x7;
6562 	/* Enable DCBX attention for all but E1 */
6563 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6564 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6565 
6566 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6567 
6568 	if (!CHIP_IS_E1x(bp)) {
6569 		/* Bit-map indicating which L2 hdrs may appear after the
6570 		 * basic Ethernet header
6571 		 */
6572 		REG_WR(bp, BP_PORT(bp) ?
6573 			   NIG_REG_P1_HDRS_AFTER_BASIC :
6574 			   NIG_REG_P0_HDRS_AFTER_BASIC,
6575 			   IS_MF_SD(bp) ? 7 : 6);
6576 
6577 		if (CHIP_IS_E3(bp))
6578 			REG_WR(bp, BP_PORT(bp) ?
6579 				   NIG_REG_LLH1_MF_MODE :
6580 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6581 	}
6582 	if (!CHIP_IS_E3(bp))
6583 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6584 
6585 	if (!CHIP_IS_E1(bp)) {
6586 		/* 0x2 disable mf_ov, 0x1 enable */
6587 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6588 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6589 
6590 		if (!CHIP_IS_E1x(bp)) {
6591 			val = 0;
6592 			switch (bp->mf_mode) {
6593 			case MULTI_FUNCTION_SD:
6594 				val = 1;
6595 				break;
6596 			case MULTI_FUNCTION_SI:
6597 				val = 2;
6598 				break;
6599 			}
6600 
6601 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6602 						  NIG_REG_LLH0_CLS_TYPE), val);
6603 		}
6604 		{
6605 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6606 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6607 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6608 		}
6609 	}
6610 
6611 
6612 	/* If SPIO5 is set to generate interrupts, enable it for this port */
6613 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6614 	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6615 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6616 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6617 		val = REG_RD(bp, reg_addr);
6618 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6619 		REG_WR(bp, reg_addr, val);
6620 	}
6621 
6622 	return 0;
6623 }
6624 
6625 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6626 {
6627 	int reg;
6628 
6629 	if (CHIP_IS_E1(bp))
6630 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6631 	else
6632 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6633 
6634 	bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6635 }
6636 
6637 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6638 {
6639 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6640 }
6641 
6642 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6643 {
6644 	u32 i, base = FUNC_ILT_BASE(func);
6645 	for (i = base; i < base + ILT_PER_FUNC; i++)
6646 		bnx2x_ilt_wr(bp, i, 0);
6647 }
6648 
6649 static int bnx2x_init_hw_func(struct bnx2x *bp)
6650 {
6651 	int port = BP_PORT(bp);
6652 	int func = BP_FUNC(bp);
6653 	int init_phase = PHASE_PF0 + func;
6654 	struct bnx2x_ilt *ilt = BP_ILT(bp);
6655 	u16 cdu_ilt_start;
6656 	u32 addr, val;
6657 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6658 	int i, main_mem_width, rc;
6659 
6660 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
6661 
6662 	/* FLR cleanup - hmmm */
6663 	if (!CHIP_IS_E1x(bp)) {
6664 		rc = bnx2x_pf_flr_clnup(bp);
6665 		if (rc)
6666 			return rc;
6667 	}
6668 
6669 	/* set MSI reconfigure capability */
6670 	if (bp->common.int_block == INT_BLOCK_HC) {
6671 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6672 		val = REG_RD(bp, addr);
6673 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6674 		REG_WR(bp, addr, val);
6675 	}
6676 
6677 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6678 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6679 
6680 	ilt = BP_ILT(bp);
6681 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6682 
6683 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
6684 		ilt->lines[cdu_ilt_start + i].page =
6685 			bp->context.vcxt + (ILT_PAGE_CIDS * i);
6686 		ilt->lines[cdu_ilt_start + i].page_mapping =
6687 			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6688 		/* cdu ilt pages are allocated manually so there's no need to
6689 		set the size */
6690 	}
6691 	bnx2x_ilt_init_op(bp, INITOP_SET);
6692 
6693 #ifdef BCM_CNIC
6694 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6695 
6696 	/* T1 hash bits value determines the T1 number of entries */
6697 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6698 #endif
6699 
6700 #ifndef BCM_CNIC
6701 	/* set NIC mode */
6702 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6703 #endif  /* BCM_CNIC */
6704 
6705 	if (!CHIP_IS_E1x(bp)) {
6706 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6707 
6708 		/* Turn on a single ISR mode in IGU if driver is going to use
6709 		 * INT#x or MSI
6710 		 */
6711 		if (!(bp->flags & USING_MSIX_FLAG))
6712 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6713 		/*
6714 		 * Timers workaround bug: function init part.
6715 		 * Need to wait 20msec after initializing ILT,
6716 		 * needed to make sure there are no requests in
6717 		 * one of the PXP internal queues with "old" ILT addresses
6718 		 */
6719 		msleep(20);
6720 		/*
6721 		 * Master enable - Due to WB DMAE writes performed before this
6722 		 * register is re-initialized as part of the regular function
6723 		 * init
6724 		 */
6725 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6726 		/* Enable the function in IGU */
6727 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6728 	}
6729 
6730 	bp->dmae_ready = 1;
6731 
6732 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6733 
6734 	if (!CHIP_IS_E1x(bp))
6735 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6736 
6737 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6738 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6739 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6740 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6741 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6742 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6743 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6744 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6745 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6746 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6747 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6748 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6749 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6750 
6751 	if (!CHIP_IS_E1x(bp))
6752 		REG_WR(bp, QM_REG_PF_EN, 1);
6753 
6754 	if (!CHIP_IS_E1x(bp)) {
6755 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6756 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6757 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6758 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6759 	}
6760 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6761 
6762 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6763 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6764 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6765 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6766 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6767 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6768 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6769 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6770 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6771 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6772 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6773 	if (!CHIP_IS_E1x(bp))
6774 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6775 
6776 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6777 
6778 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6779 
6780 	if (!CHIP_IS_E1x(bp))
6781 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6782 
6783 	if (IS_MF(bp)) {
6784 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6785 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6786 	}
6787 
6788 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6789 
6790 	/* HC init per function */
6791 	if (bp->common.int_block == INT_BLOCK_HC) {
6792 		if (CHIP_IS_E1H(bp)) {
6793 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6794 
6795 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6796 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6797 		}
6798 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
6799 
6800 	} else {
6801 		int num_segs, sb_idx, prod_offset;
6802 
6803 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6804 
6805 		if (!CHIP_IS_E1x(bp)) {
6806 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6807 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6808 		}
6809 
6810 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6811 
6812 		if (!CHIP_IS_E1x(bp)) {
6813 			int dsb_idx = 0;
6814 			/**
6815 			 * Producer memory:
6816 			 * E2 mode: address 0-135 match to the mapping memory;
6817 			 * 136 - PF0 default prod; 137 - PF1 default prod;
6818 			 * 138 - PF2 default prod; 139 - PF3 default prod;
6819 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
6820 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
6821 			 * 144-147 reserved.
6822 			 *
6823 			 * E1.5 mode - In backward compatible mode;
6824 			 * for non default SB; each even line in the memory
6825 			 * holds the U producer and each odd line hold
6826 			 * the C producer. The first 128 producers are for
6827 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6828 			 * producers are for the DSB for each PF.
6829 			 * Each PF has five segments: (the order inside each
6830 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6831 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6832 			 * 144-147 attn prods;
6833 			 */
6834 			/* non-default-status-blocks */
6835 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6836 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6837 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6838 				prod_offset = (bp->igu_base_sb + sb_idx) *
6839 					num_segs;
6840 
6841 				for (i = 0; i < num_segs; i++) {
6842 					addr = IGU_REG_PROD_CONS_MEMORY +
6843 							(prod_offset + i) * 4;
6844 					REG_WR(bp, addr, 0);
6845 				}
6846 				/* send consumer update with value 0 */
6847 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6848 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6849 				bnx2x_igu_clear_sb(bp,
6850 						   bp->igu_base_sb + sb_idx);
6851 			}
6852 
6853 			/* default-status-blocks */
6854 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6855 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6856 
6857 			if (CHIP_MODE_IS_4_PORT(bp))
6858 				dsb_idx = BP_FUNC(bp);
6859 			else
6860 				dsb_idx = BP_VN(bp);
6861 
6862 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6863 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
6864 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
6865 
6866 			/*
6867 			 * igu prods come in chunks of E1HVN_MAX (4) -
6868 			 * does not matters what is the current chip mode
6869 			 */
6870 			for (i = 0; i < (num_segs * E1HVN_MAX);
6871 			     i += E1HVN_MAX) {
6872 				addr = IGU_REG_PROD_CONS_MEMORY +
6873 							(prod_offset + i)*4;
6874 				REG_WR(bp, addr, 0);
6875 			}
6876 			/* send consumer update with 0 */
6877 			if (CHIP_INT_MODE_IS_BC(bp)) {
6878 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6879 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6880 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6881 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
6882 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6883 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
6884 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6885 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
6886 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6887 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6888 			} else {
6889 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6890 					     USTORM_ID, 0, IGU_INT_NOP, 1);
6891 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
6892 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
6893 			}
6894 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6895 
6896 			/* !!! these should become driver const once
6897 			   rf-tool supports split-68 const */
6898 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6899 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6900 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6901 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6902 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6903 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6904 		}
6905 	}
6906 
6907 	/* Reset PCIE errors for debug */
6908 	REG_WR(bp, 0x2114, 0xffffffff);
6909 	REG_WR(bp, 0x2120, 0xffffffff);
6910 
6911 	if (CHIP_IS_E1x(bp)) {
6912 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6913 		main_mem_base = HC_REG_MAIN_MEMORY +
6914 				BP_PORT(bp) * (main_mem_size * 4);
6915 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6916 		main_mem_width = 8;
6917 
6918 		val = REG_RD(bp, main_mem_prty_clr);
6919 		if (val)
6920 			DP(NETIF_MSG_HW,
6921 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
6922 			   val);
6923 
6924 		/* Clear "false" parity errors in MSI-X table */
6925 		for (i = main_mem_base;
6926 		     i < main_mem_base + main_mem_size * 4;
6927 		     i += main_mem_width) {
6928 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
6929 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6930 					 i, main_mem_width / 4);
6931 		}
6932 		/* Clear HC parity attention */
6933 		REG_RD(bp, main_mem_prty_clr);
6934 	}
6935 
6936 #ifdef BNX2X_STOP_ON_ERROR
6937 	/* Enable STORMs SP logging */
6938 	REG_WR8(bp, BAR_USTRORM_INTMEM +
6939 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6940 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
6941 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6942 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
6943 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6944 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
6945 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6946 #endif
6947 
6948 	bnx2x_phy_probe(&bp->link_params);
6949 
6950 	return 0;
6951 }
6952 
6953 
6954 void bnx2x_free_mem(struct bnx2x *bp)
6955 {
6956 	/* fastpath */
6957 	bnx2x_free_fp_mem(bp);
6958 	/* end of fastpath */
6959 
6960 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6961 		       sizeof(struct host_sp_status_block));
6962 
6963 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6964 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6965 
6966 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6967 		       sizeof(struct bnx2x_slowpath));
6968 
6969 	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6970 		       bp->context.size);
6971 
6972 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
6973 
6974 	BNX2X_FREE(bp->ilt->lines);
6975 
6976 #ifdef BCM_CNIC
6977 	if (!CHIP_IS_E1x(bp))
6978 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
6979 			       sizeof(struct host_hc_status_block_e2));
6980 	else
6981 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
6982 			       sizeof(struct host_hc_status_block_e1x));
6983 
6984 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
6985 #endif
6986 
6987 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
6988 
6989 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
6990 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
6991 }
6992 
6993 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
6994 {
6995 	int num_groups;
6996 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
6997 
6998 	/* number of queues for statistics is number of eth queues + FCoE */
6999 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7000 
7001 	/* Total number of FW statistics requests =
7002 	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7003 	 * num of queues
7004 	 */
7005 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7006 
7007 
7008 	/* Request is built from stats_query_header and an array of
7009 	 * stats_query_cmd_group each of which contains
7010 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7011 	 * configured in the stats_query_header.
7012 	 */
7013 	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7014 		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7015 
7016 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7017 			num_groups * sizeof(struct stats_query_cmd_group);
7018 
7019 	/* Data for statistics requests + stats_conter
7020 	 *
7021 	 * stats_counter holds per-STORM counters that are incremented
7022 	 * when STORM has finished with the current request.
7023 	 *
7024 	 * memory for FCoE offloaded statistics are counted anyway,
7025 	 * even if they will not be sent.
7026 	 */
7027 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7028 		sizeof(struct per_pf_stats) +
7029 		sizeof(struct fcoe_statistics_params) +
7030 		sizeof(struct per_queue_stats) * num_queue_stats +
7031 		sizeof(struct stats_counter);
7032 
7033 	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7034 			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7035 
7036 	/* Set shortcuts */
7037 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7038 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7039 
7040 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7041 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7042 
7043 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7044 				   bp->fw_stats_req_sz;
7045 	return 0;
7046 
7047 alloc_mem_err:
7048 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7049 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7050 	BNX2X_ERR("Can't allocate memory\n");
7051 	return -ENOMEM;
7052 }
7053 
7054 
7055 int bnx2x_alloc_mem(struct bnx2x *bp)
7056 {
7057 #ifdef BCM_CNIC
7058 	if (!CHIP_IS_E1x(bp))
7059 		/* size = the status block + ramrod buffers */
7060 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7061 				sizeof(struct host_hc_status_block_e2));
7062 	else
7063 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7064 				sizeof(struct host_hc_status_block_e1x));
7065 
7066 	/* allocate searcher T2 table */
7067 	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7068 #endif
7069 
7070 
7071 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7072 			sizeof(struct host_sp_status_block));
7073 
7074 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7075 			sizeof(struct bnx2x_slowpath));
7076 
7077 #ifdef BCM_CNIC
7078 	/* write address to which L5 should insert its values */
7079 	bp->cnic_eth_dev.addr_drv_info_to_mcp = &bp->slowpath->drv_info_to_mcp;
7080 #endif
7081 
7082 	/* Allocated memory for FW statistics  */
7083 	if (bnx2x_alloc_fw_stats_mem(bp))
7084 		goto alloc_mem_err;
7085 
7086 	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7087 
7088 	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7089 			bp->context.size);
7090 
7091 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7092 
7093 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7094 		goto alloc_mem_err;
7095 
7096 	/* Slow path ring */
7097 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7098 
7099 	/* EQ */
7100 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7101 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7102 
7103 
7104 	/* fastpath */
7105 	/* need to be done at the end, since it's self adjusting to amount
7106 	 * of memory available for RSS queues
7107 	 */
7108 	if (bnx2x_alloc_fp_mem(bp))
7109 		goto alloc_mem_err;
7110 	return 0;
7111 
7112 alloc_mem_err:
7113 	bnx2x_free_mem(bp);
7114 	BNX2X_ERR("Can't allocate memory\n");
7115 	return -ENOMEM;
7116 }
7117 
7118 /*
7119  * Init service functions
7120  */
7121 
7122 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7123 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7124 		      int mac_type, unsigned long *ramrod_flags)
7125 {
7126 	int rc;
7127 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7128 
7129 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7130 
7131 	/* Fill general parameters */
7132 	ramrod_param.vlan_mac_obj = obj;
7133 	ramrod_param.ramrod_flags = *ramrod_flags;
7134 
7135 	/* Fill a user request section if needed */
7136 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7137 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7138 
7139 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7140 
7141 		/* Set the command: ADD or DEL */
7142 		if (set)
7143 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7144 		else
7145 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7146 	}
7147 
7148 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7149 	if (rc < 0)
7150 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7151 	return rc;
7152 }
7153 
7154 int bnx2x_del_all_macs(struct bnx2x *bp,
7155 		       struct bnx2x_vlan_mac_obj *mac_obj,
7156 		       int mac_type, bool wait_for_comp)
7157 {
7158 	int rc;
7159 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7160 
7161 	/* Wait for completion of requested */
7162 	if (wait_for_comp)
7163 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7164 
7165 	/* Set the mac type of addresses we want to clear */
7166 	__set_bit(mac_type, &vlan_mac_flags);
7167 
7168 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7169 	if (rc < 0)
7170 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7171 
7172 	return rc;
7173 }
7174 
7175 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7176 {
7177 	unsigned long ramrod_flags = 0;
7178 
7179 #ifdef BCM_CNIC
7180 	if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_ISCSI_SD(bp)) {
7181 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7182 		   "Ignoring Zero MAC for STORAGE SD mode\n");
7183 		return 0;
7184 	}
7185 #endif
7186 
7187 	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7188 
7189 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7190 	/* Eth MAC is set on RSS leading client (fp[0]) */
7191 	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7192 				 BNX2X_ETH_MAC, &ramrod_flags);
7193 }
7194 
7195 int bnx2x_setup_leading(struct bnx2x *bp)
7196 {
7197 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7198 }
7199 
7200 /**
7201  * bnx2x_set_int_mode - configure interrupt mode
7202  *
7203  * @bp:		driver handle
7204  *
7205  * In case of MSI-X it will also try to enable MSI-X.
7206  */
7207 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7208 {
7209 	switch (int_mode) {
7210 	case INT_MODE_MSI:
7211 		bnx2x_enable_msi(bp);
7212 		/* falling through... */
7213 	case INT_MODE_INTx:
7214 		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7215 		BNX2X_DEV_INFO("set number of queues to 1\n");
7216 		break;
7217 	default:
7218 		/* Set number of queues according to bp->multi_mode value */
7219 		bnx2x_set_num_queues(bp);
7220 
7221 		BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
7222 
7223 		/* if we can't use MSI-X we only need one fp,
7224 		 * so try to enable MSI-X with the requested number of fp's
7225 		 * and fallback to MSI or legacy INTx with one fp
7226 		 */
7227 		if (bnx2x_enable_msix(bp)) {
7228 			/* failed to enable MSI-X */
7229 			BNX2X_DEV_INFO("Failed to enable MSI-X (%d), set number of queues to %d\n",
7230 				       bp->num_queues, 1 + NON_ETH_CONTEXT_USE);
7231 
7232 			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7233 
7234 			/* Try to enable MSI */
7235 			if (!(bp->flags & DISABLE_MSI_FLAG))
7236 				bnx2x_enable_msi(bp);
7237 		}
7238 		break;
7239 	}
7240 }
7241 
7242 /* must be called prioir to any HW initializations */
7243 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7244 {
7245 	return L2_ILT_LINES(bp);
7246 }
7247 
7248 void bnx2x_ilt_set_info(struct bnx2x *bp)
7249 {
7250 	struct ilt_client_info *ilt_client;
7251 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7252 	u16 line = 0;
7253 
7254 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7255 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7256 
7257 	/* CDU */
7258 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7259 	ilt_client->client_num = ILT_CLIENT_CDU;
7260 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7261 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7262 	ilt_client->start = line;
7263 	line += bnx2x_cid_ilt_lines(bp);
7264 #ifdef BCM_CNIC
7265 	line += CNIC_ILT_LINES;
7266 #endif
7267 	ilt_client->end = line - 1;
7268 
7269 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7270 	   ilt_client->start,
7271 	   ilt_client->end,
7272 	   ilt_client->page_size,
7273 	   ilt_client->flags,
7274 	   ilog2(ilt_client->page_size >> 12));
7275 
7276 	/* QM */
7277 	if (QM_INIT(bp->qm_cid_count)) {
7278 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7279 		ilt_client->client_num = ILT_CLIENT_QM;
7280 		ilt_client->page_size = QM_ILT_PAGE_SZ;
7281 		ilt_client->flags = 0;
7282 		ilt_client->start = line;
7283 
7284 		/* 4 bytes for each cid */
7285 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7286 							 QM_ILT_PAGE_SZ);
7287 
7288 		ilt_client->end = line - 1;
7289 
7290 		DP(NETIF_MSG_IFUP,
7291 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7292 		   ilt_client->start,
7293 		   ilt_client->end,
7294 		   ilt_client->page_size,
7295 		   ilt_client->flags,
7296 		   ilog2(ilt_client->page_size >> 12));
7297 
7298 	}
7299 	/* SRC */
7300 	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7301 #ifdef BCM_CNIC
7302 	ilt_client->client_num = ILT_CLIENT_SRC;
7303 	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7304 	ilt_client->flags = 0;
7305 	ilt_client->start = line;
7306 	line += SRC_ILT_LINES;
7307 	ilt_client->end = line - 1;
7308 
7309 	DP(NETIF_MSG_IFUP,
7310 	   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7311 	   ilt_client->start,
7312 	   ilt_client->end,
7313 	   ilt_client->page_size,
7314 	   ilt_client->flags,
7315 	   ilog2(ilt_client->page_size >> 12));
7316 
7317 #else
7318 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7319 #endif
7320 
7321 	/* TM */
7322 	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7323 #ifdef BCM_CNIC
7324 	ilt_client->client_num = ILT_CLIENT_TM;
7325 	ilt_client->page_size = TM_ILT_PAGE_SZ;
7326 	ilt_client->flags = 0;
7327 	ilt_client->start = line;
7328 	line += TM_ILT_LINES;
7329 	ilt_client->end = line - 1;
7330 
7331 	DP(NETIF_MSG_IFUP,
7332 	   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7333 	   ilt_client->start,
7334 	   ilt_client->end,
7335 	   ilt_client->page_size,
7336 	   ilt_client->flags,
7337 	   ilog2(ilt_client->page_size >> 12));
7338 
7339 #else
7340 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7341 #endif
7342 	BUG_ON(line > ILT_MAX_LINES);
7343 }
7344 
7345 /**
7346  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7347  *
7348  * @bp:			driver handle
7349  * @fp:			pointer to fastpath
7350  * @init_params:	pointer to parameters structure
7351  *
7352  * parameters configured:
7353  *      - HC configuration
7354  *      - Queue's CDU context
7355  */
7356 static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7357 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7358 {
7359 
7360 	u8 cos;
7361 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7362 	if (!IS_FCOE_FP(fp)) {
7363 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7364 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7365 
7366 		/* If HC is supporterd, enable host coalescing in the transition
7367 		 * to INIT state.
7368 		 */
7369 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7370 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7371 
7372 		/* HC rate */
7373 		init_params->rx.hc_rate = bp->rx_ticks ?
7374 			(1000000 / bp->rx_ticks) : 0;
7375 		init_params->tx.hc_rate = bp->tx_ticks ?
7376 			(1000000 / bp->tx_ticks) : 0;
7377 
7378 		/* FW SB ID */
7379 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7380 			fp->fw_sb_id;
7381 
7382 		/*
7383 		 * CQ index among the SB indices: FCoE clients uses the default
7384 		 * SB, therefore it's different.
7385 		 */
7386 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7387 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7388 	}
7389 
7390 	/* set maximum number of COSs supported by this queue */
7391 	init_params->max_cos = fp->max_cos;
7392 
7393 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
7394 	    fp->index, init_params->max_cos);
7395 
7396 	/* set the context pointers queue object */
7397 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7398 		init_params->cxts[cos] =
7399 			&bp->context.vcxt[fp->txdata[cos].cid].eth;
7400 }
7401 
7402 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7403 			struct bnx2x_queue_state_params *q_params,
7404 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7405 			int tx_index, bool leading)
7406 {
7407 	memset(tx_only_params, 0, sizeof(*tx_only_params));
7408 
7409 	/* Set the command */
7410 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7411 
7412 	/* Set tx-only QUEUE flags: don't zero statistics */
7413 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7414 
7415 	/* choose the index of the cid to send the slow path on */
7416 	tx_only_params->cid_index = tx_index;
7417 
7418 	/* Set general TX_ONLY_SETUP parameters */
7419 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7420 
7421 	/* Set Tx TX_ONLY_SETUP parameters */
7422 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7423 
7424 	DP(NETIF_MSG_IFUP,
7425 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
7426 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7427 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7428 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7429 
7430 	/* send the ramrod */
7431 	return bnx2x_queue_state_change(bp, q_params);
7432 }
7433 
7434 
7435 /**
7436  * bnx2x_setup_queue - setup queue
7437  *
7438  * @bp:		driver handle
7439  * @fp:		pointer to fastpath
7440  * @leading:	is leading
7441  *
7442  * This function performs 2 steps in a Queue state machine
7443  *      actually: 1) RESET->INIT 2) INIT->SETUP
7444  */
7445 
7446 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7447 		       bool leading)
7448 {
7449 	struct bnx2x_queue_state_params q_params = {NULL};
7450 	struct bnx2x_queue_setup_params *setup_params =
7451 						&q_params.params.setup;
7452 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7453 						&q_params.params.tx_only;
7454 	int rc;
7455 	u8 tx_index;
7456 
7457 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
7458 
7459 	/* reset IGU state skip FCoE L2 queue */
7460 	if (!IS_FCOE_FP(fp))
7461 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7462 			     IGU_INT_ENABLE, 0);
7463 
7464 	q_params.q_obj = &fp->q_obj;
7465 	/* We want to wait for completion in this context */
7466 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7467 
7468 	/* Prepare the INIT parameters */
7469 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7470 
7471 	/* Set the command */
7472 	q_params.cmd = BNX2X_Q_CMD_INIT;
7473 
7474 	/* Change the state to INIT */
7475 	rc = bnx2x_queue_state_change(bp, &q_params);
7476 	if (rc) {
7477 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7478 		return rc;
7479 	}
7480 
7481 	DP(NETIF_MSG_IFUP, "init complete\n");
7482 
7483 
7484 	/* Now move the Queue to the SETUP state... */
7485 	memset(setup_params, 0, sizeof(*setup_params));
7486 
7487 	/* Set QUEUE flags */
7488 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7489 
7490 	/* Set general SETUP parameters */
7491 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7492 				FIRST_TX_COS_INDEX);
7493 
7494 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7495 			    &setup_params->rxq_params);
7496 
7497 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7498 			   FIRST_TX_COS_INDEX);
7499 
7500 	/* Set the command */
7501 	q_params.cmd = BNX2X_Q_CMD_SETUP;
7502 
7503 	/* Change the state to SETUP */
7504 	rc = bnx2x_queue_state_change(bp, &q_params);
7505 	if (rc) {
7506 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7507 		return rc;
7508 	}
7509 
7510 	/* loop through the relevant tx-only indices */
7511 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7512 	      tx_index < fp->max_cos;
7513 	      tx_index++) {
7514 
7515 		/* prepare and send tx-only ramrod*/
7516 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7517 					  tx_only_params, tx_index, leading);
7518 		if (rc) {
7519 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7520 				  fp->index, tx_index);
7521 			return rc;
7522 		}
7523 	}
7524 
7525 	return rc;
7526 }
7527 
7528 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7529 {
7530 	struct bnx2x_fastpath *fp = &bp->fp[index];
7531 	struct bnx2x_fp_txdata *txdata;
7532 	struct bnx2x_queue_state_params q_params = {NULL};
7533 	int rc, tx_index;
7534 
7535 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
7536 
7537 	q_params.q_obj = &fp->q_obj;
7538 	/* We want to wait for completion in this context */
7539 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7540 
7541 
7542 	/* close tx-only connections */
7543 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7544 	     tx_index < fp->max_cos;
7545 	     tx_index++){
7546 
7547 		/* ascertain this is a normal queue*/
7548 		txdata = &fp->txdata[tx_index];
7549 
7550 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
7551 							txdata->txq_index);
7552 
7553 		/* send halt terminate on tx-only connection */
7554 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7555 		memset(&q_params.params.terminate, 0,
7556 		       sizeof(q_params.params.terminate));
7557 		q_params.params.terminate.cid_index = tx_index;
7558 
7559 		rc = bnx2x_queue_state_change(bp, &q_params);
7560 		if (rc)
7561 			return rc;
7562 
7563 		/* send halt terminate on tx-only connection */
7564 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7565 		memset(&q_params.params.cfc_del, 0,
7566 		       sizeof(q_params.params.cfc_del));
7567 		q_params.params.cfc_del.cid_index = tx_index;
7568 		rc = bnx2x_queue_state_change(bp, &q_params);
7569 		if (rc)
7570 			return rc;
7571 	}
7572 	/* Stop the primary connection: */
7573 	/* ...halt the connection */
7574 	q_params.cmd = BNX2X_Q_CMD_HALT;
7575 	rc = bnx2x_queue_state_change(bp, &q_params);
7576 	if (rc)
7577 		return rc;
7578 
7579 	/* ...terminate the connection */
7580 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7581 	memset(&q_params.params.terminate, 0,
7582 	       sizeof(q_params.params.terminate));
7583 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7584 	rc = bnx2x_queue_state_change(bp, &q_params);
7585 	if (rc)
7586 		return rc;
7587 	/* ...delete cfc entry */
7588 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7589 	memset(&q_params.params.cfc_del, 0,
7590 	       sizeof(q_params.params.cfc_del));
7591 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7592 	return bnx2x_queue_state_change(bp, &q_params);
7593 }
7594 
7595 
7596 static void bnx2x_reset_func(struct bnx2x *bp)
7597 {
7598 	int port = BP_PORT(bp);
7599 	int func = BP_FUNC(bp);
7600 	int i;
7601 
7602 	/* Disable the function in the FW */
7603 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7604 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7605 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7606 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7607 
7608 	/* FP SBs */
7609 	for_each_eth_queue(bp, i) {
7610 		struct bnx2x_fastpath *fp = &bp->fp[i];
7611 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
7612 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7613 			   SB_DISABLED);
7614 	}
7615 
7616 #ifdef BCM_CNIC
7617 	/* CNIC SB */
7618 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7619 		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7620 		SB_DISABLED);
7621 #endif
7622 	/* SP SB */
7623 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7624 		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7625 		   SB_DISABLED);
7626 
7627 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7628 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7629 		       0);
7630 
7631 	/* Configure IGU */
7632 	if (bp->common.int_block == INT_BLOCK_HC) {
7633 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7634 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7635 	} else {
7636 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7637 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7638 	}
7639 
7640 #ifdef BCM_CNIC
7641 	/* Disable Timer scan */
7642 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7643 	/*
7644 	 * Wait for at least 10ms and up to 2 second for the timers scan to
7645 	 * complete
7646 	 */
7647 	for (i = 0; i < 200; i++) {
7648 		msleep(10);
7649 		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7650 			break;
7651 	}
7652 #endif
7653 	/* Clear ILT */
7654 	bnx2x_clear_func_ilt(bp, func);
7655 
7656 	/* Timers workaround bug for E2: if this is vnic-3,
7657 	 * we need to set the entire ilt range for this timers.
7658 	 */
7659 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7660 		struct ilt_client_info ilt_cli;
7661 		/* use dummy TM client */
7662 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7663 		ilt_cli.start = 0;
7664 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7665 		ilt_cli.client_num = ILT_CLIENT_TM;
7666 
7667 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7668 	}
7669 
7670 	/* this assumes that reset_port() called before reset_func()*/
7671 	if (!CHIP_IS_E1x(bp))
7672 		bnx2x_pf_disable(bp);
7673 
7674 	bp->dmae_ready = 0;
7675 }
7676 
7677 static void bnx2x_reset_port(struct bnx2x *bp)
7678 {
7679 	int port = BP_PORT(bp);
7680 	u32 val;
7681 
7682 	/* Reset physical Link */
7683 	bnx2x__link_reset(bp);
7684 
7685 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7686 
7687 	/* Do not rcv packets to BRB */
7688 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7689 	/* Do not direct rcv packets that are not for MCP to the BRB */
7690 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7691 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7692 
7693 	/* Configure AEU */
7694 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7695 
7696 	msleep(100);
7697 	/* Check for BRB port occupancy */
7698 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7699 	if (val)
7700 		DP(NETIF_MSG_IFDOWN,
7701 		   "BRB1 is not empty  %d blocks are occupied\n", val);
7702 
7703 	/* TODO: Close Doorbell port? */
7704 }
7705 
7706 static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7707 {
7708 	struct bnx2x_func_state_params func_params = {NULL};
7709 
7710 	/* Prepare parameters for function state transitions */
7711 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7712 
7713 	func_params.f_obj = &bp->func_obj;
7714 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
7715 
7716 	func_params.params.hw_init.load_phase = load_code;
7717 
7718 	return bnx2x_func_state_change(bp, &func_params);
7719 }
7720 
7721 static inline int bnx2x_func_stop(struct bnx2x *bp)
7722 {
7723 	struct bnx2x_func_state_params func_params = {NULL};
7724 	int rc;
7725 
7726 	/* Prepare parameters for function state transitions */
7727 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7728 	func_params.f_obj = &bp->func_obj;
7729 	func_params.cmd = BNX2X_F_CMD_STOP;
7730 
7731 	/*
7732 	 * Try to stop the function the 'good way'. If fails (in case
7733 	 * of a parity error during bnx2x_chip_cleanup()) and we are
7734 	 * not in a debug mode, perform a state transaction in order to
7735 	 * enable further HW_RESET transaction.
7736 	 */
7737 	rc = bnx2x_func_state_change(bp, &func_params);
7738 	if (rc) {
7739 #ifdef BNX2X_STOP_ON_ERROR
7740 		return rc;
7741 #else
7742 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
7743 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7744 		return bnx2x_func_state_change(bp, &func_params);
7745 #endif
7746 	}
7747 
7748 	return 0;
7749 }
7750 
7751 /**
7752  * bnx2x_send_unload_req - request unload mode from the MCP.
7753  *
7754  * @bp:			driver handle
7755  * @unload_mode:	requested function's unload mode
7756  *
7757  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7758  */
7759 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7760 {
7761 	u32 reset_code = 0;
7762 	int port = BP_PORT(bp);
7763 
7764 	/* Select the UNLOAD request mode */
7765 	if (unload_mode == UNLOAD_NORMAL)
7766 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7767 
7768 	else if (bp->flags & NO_WOL_FLAG)
7769 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7770 
7771 	else if (bp->wol) {
7772 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7773 		u8 *mac_addr = bp->dev->dev_addr;
7774 		u32 val;
7775 		u16 pmc;
7776 
7777 		/* The mac address is written to entries 1-4 to
7778 		 * preserve entry 0 which is used by the PMF
7779 		 */
7780 		u8 entry = (BP_VN(bp) + 1)*8;
7781 
7782 		val = (mac_addr[0] << 8) | mac_addr[1];
7783 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7784 
7785 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7786 		      (mac_addr[4] << 8) | mac_addr[5];
7787 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7788 
7789 		/* Enable the PME and clear the status */
7790 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7791 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7792 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7793 
7794 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7795 
7796 	} else
7797 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7798 
7799 	/* Send the request to the MCP */
7800 	if (!BP_NOMCP(bp))
7801 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
7802 	else {
7803 		int path = BP_PATH(bp);
7804 
7805 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
7806 		   path, load_count[path][0], load_count[path][1],
7807 		   load_count[path][2]);
7808 		load_count[path][0]--;
7809 		load_count[path][1 + port]--;
7810 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
7811 		   path, load_count[path][0], load_count[path][1],
7812 		   load_count[path][2]);
7813 		if (load_count[path][0] == 0)
7814 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7815 		else if (load_count[path][1 + port] == 0)
7816 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7817 		else
7818 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7819 	}
7820 
7821 	return reset_code;
7822 }
7823 
7824 /**
7825  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7826  *
7827  * @bp:		driver handle
7828  */
7829 void bnx2x_send_unload_done(struct bnx2x *bp)
7830 {
7831 	/* Report UNLOAD_DONE to MCP */
7832 	if (!BP_NOMCP(bp))
7833 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7834 }
7835 
7836 static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7837 {
7838 	int tout = 50;
7839 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7840 
7841 	if (!bp->port.pmf)
7842 		return 0;
7843 
7844 	/*
7845 	 * (assumption: No Attention from MCP at this stage)
7846 	 * PMF probably in the middle of TXdisable/enable transaction
7847 	 * 1. Sync IRS for default SB
7848 	 * 2. Sync SP queue - this guarantes us that attention handling started
7849 	 * 3. Wait, that TXdisable/enable transaction completes
7850 	 *
7851 	 * 1+2 guranty that if DCBx attention was scheduled it already changed
7852 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7853 	 * received complettion for the transaction the state is TX_STOPPED.
7854 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7855 	 * transaction.
7856 	 */
7857 
7858 	/* make sure default SB ISR is done */
7859 	if (msix)
7860 		synchronize_irq(bp->msix_table[0].vector);
7861 	else
7862 		synchronize_irq(bp->pdev->irq);
7863 
7864 	flush_workqueue(bnx2x_wq);
7865 
7866 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7867 				BNX2X_F_STATE_STARTED && tout--)
7868 		msleep(20);
7869 
7870 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7871 						BNX2X_F_STATE_STARTED) {
7872 #ifdef BNX2X_STOP_ON_ERROR
7873 		BNX2X_ERR("Wrong function state\n");
7874 		return -EBUSY;
7875 #else
7876 		/*
7877 		 * Failed to complete the transaction in a "good way"
7878 		 * Force both transactions with CLR bit
7879 		 */
7880 		struct bnx2x_func_state_params func_params = {NULL};
7881 
7882 		DP(NETIF_MSG_IFDOWN,
7883 		   "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7884 
7885 		func_params.f_obj = &bp->func_obj;
7886 		__set_bit(RAMROD_DRV_CLR_ONLY,
7887 					&func_params.ramrod_flags);
7888 
7889 		/* STARTED-->TX_ST0PPED */
7890 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
7891 		bnx2x_func_state_change(bp, &func_params);
7892 
7893 		/* TX_ST0PPED-->STARTED */
7894 		func_params.cmd = BNX2X_F_CMD_TX_START;
7895 		return bnx2x_func_state_change(bp, &func_params);
7896 #endif
7897 	}
7898 
7899 	return 0;
7900 }
7901 
7902 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7903 {
7904 	int port = BP_PORT(bp);
7905 	int i, rc = 0;
7906 	u8 cos;
7907 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
7908 	u32 reset_code;
7909 
7910 	/* Wait until tx fastpath tasks complete */
7911 	for_each_tx_queue(bp, i) {
7912 		struct bnx2x_fastpath *fp = &bp->fp[i];
7913 
7914 		for_each_cos_in_tx_queue(fp, cos)
7915 			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7916 #ifdef BNX2X_STOP_ON_ERROR
7917 		if (rc)
7918 			return;
7919 #endif
7920 	}
7921 
7922 	/* Give HW time to discard old tx messages */
7923 	usleep_range(1000, 1000);
7924 
7925 	/* Clean all ETH MACs */
7926 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7927 	if (rc < 0)
7928 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7929 
7930 	/* Clean up UC list  */
7931 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7932 				true);
7933 	if (rc < 0)
7934 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
7935 			  rc);
7936 
7937 	/* Disable LLH */
7938 	if (!CHIP_IS_E1(bp))
7939 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7940 
7941 	/* Set "drop all" (stop Rx).
7942 	 * We need to take a netif_addr_lock() here in order to prevent
7943 	 * a race between the completion code and this code.
7944 	 */
7945 	netif_addr_lock_bh(bp->dev);
7946 	/* Schedule the rx_mode command */
7947 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7948 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7949 	else
7950 		bnx2x_set_storm_rx_mode(bp);
7951 
7952 	/* Cleanup multicast configuration */
7953 	rparam.mcast_obj = &bp->mcast_obj;
7954 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7955 	if (rc < 0)
7956 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7957 
7958 	netif_addr_unlock_bh(bp->dev);
7959 
7960 
7961 
7962 	/*
7963 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
7964 	 * this function should perform FUNC, PORT or COMMON HW
7965 	 * reset.
7966 	 */
7967 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
7968 
7969 	/*
7970 	 * (assumption: No Attention from MCP at this stage)
7971 	 * PMF probably in the middle of TXdisable/enable transaction
7972 	 */
7973 	rc = bnx2x_func_wait_started(bp);
7974 	if (rc) {
7975 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
7976 #ifdef BNX2X_STOP_ON_ERROR
7977 		return;
7978 #endif
7979 	}
7980 
7981 	/* Close multi and leading connections
7982 	 * Completions for ramrods are collected in a synchronous way
7983 	 */
7984 	for_each_queue(bp, i)
7985 		if (bnx2x_stop_queue(bp, i))
7986 #ifdef BNX2X_STOP_ON_ERROR
7987 			return;
7988 #else
7989 			goto unload_error;
7990 #endif
7991 	/* If SP settings didn't get completed so far - something
7992 	 * very wrong has happen.
7993 	 */
7994 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
7995 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
7996 
7997 #ifndef BNX2X_STOP_ON_ERROR
7998 unload_error:
7999 #endif
8000 	rc = bnx2x_func_stop(bp);
8001 	if (rc) {
8002 		BNX2X_ERR("Function stop failed!\n");
8003 #ifdef BNX2X_STOP_ON_ERROR
8004 		return;
8005 #endif
8006 	}
8007 
8008 	/* Disable HW interrupts, NAPI */
8009 	bnx2x_netif_stop(bp, 1);
8010 
8011 	/* Release IRQs */
8012 	bnx2x_free_irq(bp);
8013 
8014 	/* Reset the chip */
8015 	rc = bnx2x_reset_hw(bp, reset_code);
8016 	if (rc)
8017 		BNX2X_ERR("HW_RESET failed\n");
8018 
8019 
8020 	/* Report UNLOAD_DONE to MCP */
8021 	bnx2x_send_unload_done(bp);
8022 }
8023 
8024 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8025 {
8026 	u32 val;
8027 
8028 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8029 
8030 	if (CHIP_IS_E1(bp)) {
8031 		int port = BP_PORT(bp);
8032 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8033 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8034 
8035 		val = REG_RD(bp, addr);
8036 		val &= ~(0x300);
8037 		REG_WR(bp, addr, val);
8038 	} else {
8039 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8040 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8041 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8042 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8043 	}
8044 }
8045 
8046 /* Close gates #2, #3 and #4: */
8047 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8048 {
8049 	u32 val;
8050 
8051 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8052 	if (!CHIP_IS_E1(bp)) {
8053 		/* #4 */
8054 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8055 		/* #2 */
8056 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8057 	}
8058 
8059 	/* #3 */
8060 	if (CHIP_IS_E1x(bp)) {
8061 		/* Prevent interrupts from HC on both ports */
8062 		val = REG_RD(bp, HC_REG_CONFIG_1);
8063 		REG_WR(bp, HC_REG_CONFIG_1,
8064 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8065 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8066 
8067 		val = REG_RD(bp, HC_REG_CONFIG_0);
8068 		REG_WR(bp, HC_REG_CONFIG_0,
8069 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8070 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8071 	} else {
8072 		/* Prevent incomming interrupts in IGU */
8073 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8074 
8075 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8076 		       (!close) ?
8077 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8078 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8079 	}
8080 
8081 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8082 		close ? "closing" : "opening");
8083 	mmiowb();
8084 }
8085 
8086 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8087 
8088 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8089 {
8090 	/* Do some magic... */
8091 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8092 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8093 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8094 }
8095 
8096 /**
8097  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8098  *
8099  * @bp:		driver handle
8100  * @magic_val:	old value of the `magic' bit.
8101  */
8102 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8103 {
8104 	/* Restore the `magic' bit value... */
8105 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8106 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8107 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8108 }
8109 
8110 /**
8111  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8112  *
8113  * @bp:		driver handle
8114  * @magic_val:	old value of 'magic' bit.
8115  *
8116  * Takes care of CLP configurations.
8117  */
8118 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8119 {
8120 	u32 shmem;
8121 	u32 validity_offset;
8122 
8123 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8124 
8125 	/* Set `magic' bit in order to save MF config */
8126 	if (!CHIP_IS_E1(bp))
8127 		bnx2x_clp_reset_prep(bp, magic_val);
8128 
8129 	/* Get shmem offset */
8130 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8131 	validity_offset = offsetof(struct shmem_region, validity_map[0]);
8132 
8133 	/* Clear validity map flags */
8134 	if (shmem > 0)
8135 		REG_WR(bp, shmem + validity_offset, 0);
8136 }
8137 
8138 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8139 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8140 
8141 /**
8142  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8143  *
8144  * @bp:	driver handle
8145  */
8146 static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
8147 {
8148 	/* special handling for emulation and FPGA,
8149 	   wait 10 times longer */
8150 	if (CHIP_REV_IS_SLOW(bp))
8151 		msleep(MCP_ONE_TIMEOUT*10);
8152 	else
8153 		msleep(MCP_ONE_TIMEOUT);
8154 }
8155 
8156 /*
8157  * initializes bp->common.shmem_base and waits for validity signature to appear
8158  */
8159 static int bnx2x_init_shmem(struct bnx2x *bp)
8160 {
8161 	int cnt = 0;
8162 	u32 val = 0;
8163 
8164 	do {
8165 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8166 		if (bp->common.shmem_base) {
8167 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8168 			if (val & SHR_MEM_VALIDITY_MB)
8169 				return 0;
8170 		}
8171 
8172 		bnx2x_mcp_wait_one(bp);
8173 
8174 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8175 
8176 	BNX2X_ERR("BAD MCP validity signature\n");
8177 
8178 	return -ENODEV;
8179 }
8180 
8181 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8182 {
8183 	int rc = bnx2x_init_shmem(bp);
8184 
8185 	/* Restore the `magic' bit value */
8186 	if (!CHIP_IS_E1(bp))
8187 		bnx2x_clp_reset_done(bp, magic_val);
8188 
8189 	return rc;
8190 }
8191 
8192 static void bnx2x_pxp_prep(struct bnx2x *bp)
8193 {
8194 	if (!CHIP_IS_E1(bp)) {
8195 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8196 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8197 		mmiowb();
8198 	}
8199 }
8200 
8201 /*
8202  * Reset the whole chip except for:
8203  *      - PCIE core
8204  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8205  *              one reset bit)
8206  *      - IGU
8207  *      - MISC (including AEU)
8208  *      - GRC
8209  *      - RBCN, RBCP
8210  */
8211 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8212 {
8213 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8214 	u32 global_bits2, stay_reset2;
8215 
8216 	/*
8217 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8218 	 * (per chip) blocks.
8219 	 */
8220 	global_bits2 =
8221 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8222 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8223 
8224 	/* Don't reset the following blocks */
8225 	not_reset_mask1 =
8226 		MISC_REGISTERS_RESET_REG_1_RST_HC |
8227 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8228 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8229 
8230 	not_reset_mask2 =
8231 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8232 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8233 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8234 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8235 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8236 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8237 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8238 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8239 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8240 		MISC_REGISTERS_RESET_REG_2_PGLC;
8241 
8242 	/*
8243 	 * Keep the following blocks in reset:
8244 	 *  - all xxMACs are handled by the bnx2x_link code.
8245 	 */
8246 	stay_reset2 =
8247 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8248 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8249 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8250 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8251 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8252 		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8253 		MISC_REGISTERS_RESET_REG_2_XMAC |
8254 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8255 
8256 	/* Full reset masks according to the chip */
8257 	reset_mask1 = 0xffffffff;
8258 
8259 	if (CHIP_IS_E1(bp))
8260 		reset_mask2 = 0xffff;
8261 	else if (CHIP_IS_E1H(bp))
8262 		reset_mask2 = 0x1ffff;
8263 	else if (CHIP_IS_E2(bp))
8264 		reset_mask2 = 0xfffff;
8265 	else /* CHIP_IS_E3 */
8266 		reset_mask2 = 0x3ffffff;
8267 
8268 	/* Don't reset global blocks unless we need to */
8269 	if (!global)
8270 		reset_mask2 &= ~global_bits2;
8271 
8272 	/*
8273 	 * In case of attention in the QM, we need to reset PXP
8274 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8275 	 * because otherwise QM reset would release 'close the gates' shortly
8276 	 * before resetting the PXP, then the PSWRQ would send a write
8277 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8278 	 * read the payload data from PSWWR, but PSWWR would not
8279 	 * respond. The write queue in PGLUE would stuck, dmae commands
8280 	 * would not return. Therefore it's important to reset the second
8281 	 * reset register (containing the
8282 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8283 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8284 	 * bit).
8285 	 */
8286 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8287 	       reset_mask2 & (~not_reset_mask2));
8288 
8289 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8290 	       reset_mask1 & (~not_reset_mask1));
8291 
8292 	barrier();
8293 	mmiowb();
8294 
8295 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8296 	       reset_mask2 & (~stay_reset2));
8297 
8298 	barrier();
8299 	mmiowb();
8300 
8301 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8302 	mmiowb();
8303 }
8304 
8305 /**
8306  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8307  * It should get cleared in no more than 1s.
8308  *
8309  * @bp:	driver handle
8310  *
8311  * It should get cleared in no more than 1s. Returns 0 if
8312  * pending writes bit gets cleared.
8313  */
8314 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8315 {
8316 	u32 cnt = 1000;
8317 	u32 pend_bits = 0;
8318 
8319 	do {
8320 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8321 
8322 		if (pend_bits == 0)
8323 			break;
8324 
8325 		usleep_range(1000, 1000);
8326 	} while (cnt-- > 0);
8327 
8328 	if (cnt <= 0) {
8329 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8330 			  pend_bits);
8331 		return -EBUSY;
8332 	}
8333 
8334 	return 0;
8335 }
8336 
8337 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8338 {
8339 	int cnt = 1000;
8340 	u32 val = 0;
8341 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8342 
8343 
8344 	/* Empty the Tetris buffer, wait for 1s */
8345 	do {
8346 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8347 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8348 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8349 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8350 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8351 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8352 		    ((port_is_idle_0 & 0x1) == 0x1) &&
8353 		    ((port_is_idle_1 & 0x1) == 0x1) &&
8354 		    (pgl_exp_rom2 == 0xffffffff))
8355 			break;
8356 		usleep_range(1000, 1000);
8357 	} while (cnt-- > 0);
8358 
8359 	if (cnt <= 0) {
8360 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
8361 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8362 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8363 			  pgl_exp_rom2);
8364 		return -EAGAIN;
8365 	}
8366 
8367 	barrier();
8368 
8369 	/* Close gates #2, #3 and #4 */
8370 	bnx2x_set_234_gates(bp, true);
8371 
8372 	/* Poll for IGU VQs for 57712 and newer chips */
8373 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8374 		return -EAGAIN;
8375 
8376 
8377 	/* TBD: Indicate that "process kill" is in progress to MCP */
8378 
8379 	/* Clear "unprepared" bit */
8380 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8381 	barrier();
8382 
8383 	/* Make sure all is written to the chip before the reset */
8384 	mmiowb();
8385 
8386 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8387 	 * PSWHST, GRC and PSWRD Tetris buffer.
8388 	 */
8389 	usleep_range(1000, 1000);
8390 
8391 	/* Prepare to chip reset: */
8392 	/* MCP */
8393 	if (global)
8394 		bnx2x_reset_mcp_prep(bp, &val);
8395 
8396 	/* PXP */
8397 	bnx2x_pxp_prep(bp);
8398 	barrier();
8399 
8400 	/* reset the chip */
8401 	bnx2x_process_kill_chip_reset(bp, global);
8402 	barrier();
8403 
8404 	/* Recover after reset: */
8405 	/* MCP */
8406 	if (global && bnx2x_reset_mcp_comp(bp, val))
8407 		return -EAGAIN;
8408 
8409 	/* TBD: Add resetting the NO_MCP mode DB here */
8410 
8411 	/* PXP */
8412 	bnx2x_pxp_prep(bp);
8413 
8414 	/* Open the gates #2, #3 and #4 */
8415 	bnx2x_set_234_gates(bp, false);
8416 
8417 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8418 	 * reset state, re-enable attentions. */
8419 
8420 	return 0;
8421 }
8422 
8423 int bnx2x_leader_reset(struct bnx2x *bp)
8424 {
8425 	int rc = 0;
8426 	bool global = bnx2x_reset_is_global(bp);
8427 	u32 load_code;
8428 
8429 	/* if not going to reset MCP - load "fake" driver to reset HW while
8430 	 * driver is owner of the HW
8431 	 */
8432 	if (!global && !BP_NOMCP(bp)) {
8433 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 0);
8434 		if (!load_code) {
8435 			BNX2X_ERR("MCP response failure, aborting\n");
8436 			rc = -EAGAIN;
8437 			goto exit_leader_reset;
8438 		}
8439 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
8440 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
8441 			BNX2X_ERR("MCP unexpected resp, aborting\n");
8442 			rc = -EAGAIN;
8443 			goto exit_leader_reset2;
8444 		}
8445 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
8446 		if (!load_code) {
8447 			BNX2X_ERR("MCP response failure, aborting\n");
8448 			rc = -EAGAIN;
8449 			goto exit_leader_reset2;
8450 		}
8451 	}
8452 
8453 	/* Try to recover after the failure */
8454 	if (bnx2x_process_kill(bp, global)) {
8455 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
8456 			  BP_PATH(bp));
8457 		rc = -EAGAIN;
8458 		goto exit_leader_reset2;
8459 	}
8460 
8461 	/*
8462 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8463 	 * state.
8464 	 */
8465 	bnx2x_set_reset_done(bp);
8466 	if (global)
8467 		bnx2x_clear_reset_global(bp);
8468 
8469 exit_leader_reset2:
8470 	/* unload "fake driver" if it was loaded */
8471 	if (!global && !BP_NOMCP(bp)) {
8472 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
8473 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8474 	}
8475 exit_leader_reset:
8476 	bp->is_leader = 0;
8477 	bnx2x_release_leader_lock(bp);
8478 	smp_mb();
8479 	return rc;
8480 }
8481 
8482 static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8483 {
8484 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8485 
8486 	/* Disconnect this device */
8487 	netif_device_detach(bp->dev);
8488 
8489 	/*
8490 	 * Block ifup for all function on this engine until "process kill"
8491 	 * or power cycle.
8492 	 */
8493 	bnx2x_set_reset_in_progress(bp);
8494 
8495 	/* Shut down the power */
8496 	bnx2x_set_power_state(bp, PCI_D3hot);
8497 
8498 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8499 
8500 	smp_mb();
8501 }
8502 
8503 /*
8504  * Assumption: runs under rtnl lock. This together with the fact
8505  * that it's called only from bnx2x_sp_rtnl() ensure that it
8506  * will never be called when netif_running(bp->dev) is false.
8507  */
8508 static void bnx2x_parity_recover(struct bnx2x *bp)
8509 {
8510 	bool global = false;
8511 	u32 error_recovered, error_unrecovered;
8512 	bool is_parity;
8513 
8514 	DP(NETIF_MSG_HW, "Handling parity\n");
8515 	while (1) {
8516 		switch (bp->recovery_state) {
8517 		case BNX2X_RECOVERY_INIT:
8518 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8519 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
8520 			WARN_ON(!is_parity);
8521 
8522 			/* Try to get a LEADER_LOCK HW lock */
8523 			if (bnx2x_trylock_leader_lock(bp)) {
8524 				bnx2x_set_reset_in_progress(bp);
8525 				/*
8526 				 * Check if there is a global attention and if
8527 				 * there was a global attention, set the global
8528 				 * reset bit.
8529 				 */
8530 
8531 				if (global)
8532 					bnx2x_set_reset_global(bp);
8533 
8534 				bp->is_leader = 1;
8535 			}
8536 
8537 			/* Stop the driver */
8538 			/* If interface has been removed - break */
8539 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8540 				return;
8541 
8542 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8543 
8544 			/* Ensure "is_leader", MCP command sequence and
8545 			 * "recovery_state" update values are seen on other
8546 			 * CPUs.
8547 			 */
8548 			smp_mb();
8549 			break;
8550 
8551 		case BNX2X_RECOVERY_WAIT:
8552 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8553 			if (bp->is_leader) {
8554 				int other_engine = BP_PATH(bp) ? 0 : 1;
8555 				bool other_load_status =
8556 					bnx2x_get_load_status(bp, other_engine);
8557 				bool load_status =
8558 					bnx2x_get_load_status(bp, BP_PATH(bp));
8559 				global = bnx2x_reset_is_global(bp);
8560 
8561 				/*
8562 				 * In case of a parity in a global block, let
8563 				 * the first leader that performs a
8564 				 * leader_reset() reset the global blocks in
8565 				 * order to clear global attentions. Otherwise
8566 				 * the the gates will remain closed for that
8567 				 * engine.
8568 				 */
8569 				if (load_status ||
8570 				    (global && other_load_status)) {
8571 					/* Wait until all other functions get
8572 					 * down.
8573 					 */
8574 					schedule_delayed_work(&bp->sp_rtnl_task,
8575 								HZ/10);
8576 					return;
8577 				} else {
8578 					/* If all other functions got down -
8579 					 * try to bring the chip back to
8580 					 * normal. In any case it's an exit
8581 					 * point for a leader.
8582 					 */
8583 					if (bnx2x_leader_reset(bp)) {
8584 						bnx2x_recovery_failed(bp);
8585 						return;
8586 					}
8587 
8588 					/* If we are here, means that the
8589 					 * leader has succeeded and doesn't
8590 					 * want to be a leader any more. Try
8591 					 * to continue as a none-leader.
8592 					 */
8593 					break;
8594 				}
8595 			} else { /* non-leader */
8596 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8597 					/* Try to get a LEADER_LOCK HW lock as
8598 					 * long as a former leader may have
8599 					 * been unloaded by the user or
8600 					 * released a leadership by another
8601 					 * reason.
8602 					 */
8603 					if (bnx2x_trylock_leader_lock(bp)) {
8604 						/* I'm a leader now! Restart a
8605 						 * switch case.
8606 						 */
8607 						bp->is_leader = 1;
8608 						break;
8609 					}
8610 
8611 					schedule_delayed_work(&bp->sp_rtnl_task,
8612 								HZ/10);
8613 					return;
8614 
8615 				} else {
8616 					/*
8617 					 * If there was a global attention, wait
8618 					 * for it to be cleared.
8619 					 */
8620 					if (bnx2x_reset_is_global(bp)) {
8621 						schedule_delayed_work(
8622 							&bp->sp_rtnl_task,
8623 							HZ/10);
8624 						return;
8625 					}
8626 
8627 					error_recovered =
8628 					  bp->eth_stats.recoverable_error;
8629 					error_unrecovered =
8630 					  bp->eth_stats.unrecoverable_error;
8631 					bp->recovery_state =
8632 						BNX2X_RECOVERY_NIC_LOADING;
8633 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
8634 						error_unrecovered++;
8635 						netdev_err(bp->dev,
8636 							   "Recovery failed. Power cycle needed\n");
8637 						/* Disconnect this device */
8638 						netif_device_detach(bp->dev);
8639 						/* Shut down the power */
8640 						bnx2x_set_power_state(
8641 							bp, PCI_D3hot);
8642 						smp_mb();
8643 					} else {
8644 						bp->recovery_state =
8645 							BNX2X_RECOVERY_DONE;
8646 						error_recovered++;
8647 						smp_mb();
8648 					}
8649 					bp->eth_stats.recoverable_error =
8650 						error_recovered;
8651 					bp->eth_stats.unrecoverable_error =
8652 						error_unrecovered;
8653 
8654 					return;
8655 				}
8656 			}
8657 		default:
8658 			return;
8659 		}
8660 	}
8661 }
8662 
8663 static int bnx2x_close(struct net_device *dev);
8664 
8665 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8666  * scheduled on a general queue in order to prevent a dead lock.
8667  */
8668 static void bnx2x_sp_rtnl_task(struct work_struct *work)
8669 {
8670 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8671 
8672 	rtnl_lock();
8673 
8674 	if (!netif_running(bp->dev))
8675 		goto sp_rtnl_exit;
8676 
8677 	/* if stop on error is defined no recovery flows should be executed */
8678 #ifdef BNX2X_STOP_ON_ERROR
8679 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
8680 		  "you will need to reboot when done\n");
8681 	goto sp_rtnl_not_reset;
8682 #endif
8683 
8684 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8685 		/*
8686 		 * Clear all pending SP commands as we are going to reset the
8687 		 * function anyway.
8688 		 */
8689 		bp->sp_rtnl_state = 0;
8690 		smp_mb();
8691 
8692 		bnx2x_parity_recover(bp);
8693 
8694 		goto sp_rtnl_exit;
8695 	}
8696 
8697 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8698 		/*
8699 		 * Clear all pending SP commands as we are going to reset the
8700 		 * function anyway.
8701 		 */
8702 		bp->sp_rtnl_state = 0;
8703 		smp_mb();
8704 
8705 		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8706 		bnx2x_nic_load(bp, LOAD_NORMAL);
8707 
8708 		goto sp_rtnl_exit;
8709 	}
8710 #ifdef BNX2X_STOP_ON_ERROR
8711 sp_rtnl_not_reset:
8712 #endif
8713 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8714 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8715 
8716 	/*
8717 	 * in case of fan failure we need to reset id if the "stop on error"
8718 	 * debug flag is set, since we trying to prevent permanent overheating
8719 	 * damage
8720 	 */
8721 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8722 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
8723 		netif_device_detach(bp->dev);
8724 		bnx2x_close(bp->dev);
8725 	}
8726 
8727 sp_rtnl_exit:
8728 	rtnl_unlock();
8729 }
8730 
8731 /* end of nic load/unload */
8732 
8733 static void bnx2x_period_task(struct work_struct *work)
8734 {
8735 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8736 
8737 	if (!netif_running(bp->dev))
8738 		goto period_task_exit;
8739 
8740 	if (CHIP_REV_IS_SLOW(bp)) {
8741 		BNX2X_ERR("period task called on emulation, ignoring\n");
8742 		goto period_task_exit;
8743 	}
8744 
8745 	bnx2x_acquire_phy_lock(bp);
8746 	/*
8747 	 * The barrier is needed to ensure the ordering between the writing to
8748 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8749 	 * the reading here.
8750 	 */
8751 	smp_mb();
8752 	if (bp->port.pmf) {
8753 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
8754 
8755 		/* Re-queue task in 1 sec */
8756 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8757 	}
8758 
8759 	bnx2x_release_phy_lock(bp);
8760 period_task_exit:
8761 	return;
8762 }
8763 
8764 /*
8765  * Init service functions
8766  */
8767 
8768 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8769 {
8770 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8771 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8772 	return base + (BP_ABS_FUNC(bp)) * stride;
8773 }
8774 
8775 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8776 {
8777 	u32 reg = bnx2x_get_pretend_reg(bp);
8778 
8779 	/* Flush all outstanding writes */
8780 	mmiowb();
8781 
8782 	/* Pretend to be function 0 */
8783 	REG_WR(bp, reg, 0);
8784 	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
8785 
8786 	/* From now we are in the "like-E1" mode */
8787 	bnx2x_int_disable(bp);
8788 
8789 	/* Flush all outstanding writes */
8790 	mmiowb();
8791 
8792 	/* Restore the original function */
8793 	REG_WR(bp, reg, BP_ABS_FUNC(bp));
8794 	REG_RD(bp, reg);
8795 }
8796 
8797 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8798 {
8799 	if (CHIP_IS_E1(bp))
8800 		bnx2x_int_disable(bp);
8801 	else
8802 		bnx2x_undi_int_disable_e1h(bp);
8803 }
8804 
8805 static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8806 {
8807 	u32 val;
8808 
8809 	/* possibly another driver is trying to reset the chip */
8810 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8811 
8812 	/* check if doorbell queue is reset */
8813 	if (REG_RD(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET)
8814 	    & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
8815 
8816 		/*
8817 		 * Check if it is the UNDI driver
8818 		 * UNDI driver initializes CID offset for normal bell to 0x7
8819 		 */
8820 		val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8821 		if (val == 0x7) {
8822 			u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8823 			/* save our pf_num */
8824 			int orig_pf_num = bp->pf_num;
8825 			int port;
8826 			u32 swap_en, swap_val, value;
8827 
8828 			/* clear the UNDI indication */
8829 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8830 
8831 			BNX2X_DEV_INFO("UNDI is active! reset device\n");
8832 
8833 			/* try unload UNDI on port 0 */
8834 			bp->pf_num = 0;
8835 			bp->fw_seq =
8836 			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8837 				DRV_MSG_SEQ_NUMBER_MASK);
8838 			reset_code = bnx2x_fw_command(bp, reset_code, 0);
8839 
8840 			/* if UNDI is loaded on the other port */
8841 			if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8842 
8843 				/* send "DONE" for previous unload */
8844 				bnx2x_fw_command(bp,
8845 						 DRV_MSG_CODE_UNLOAD_DONE, 0);
8846 
8847 				/* unload UNDI on port 1 */
8848 				bp->pf_num = 1;
8849 				bp->fw_seq =
8850 			      (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8851 					DRV_MSG_SEQ_NUMBER_MASK);
8852 				reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8853 
8854 				bnx2x_fw_command(bp, reset_code, 0);
8855 			}
8856 
8857 			bnx2x_undi_int_disable(bp);
8858 			port = BP_PORT(bp);
8859 
8860 			/* close input traffic and wait for it */
8861 			/* Do not rcv packets to BRB */
8862 			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8863 					   NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8864 			/* Do not direct rcv packets that are not for MCP to
8865 			 * the BRB */
8866 			REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8867 					   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8868 			/* clear AEU */
8869 			REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8870 					   MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8871 			msleep(10);
8872 
8873 			/* save NIG port swap info */
8874 			swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8875 			swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8876 			/* reset device */
8877 			REG_WR(bp,
8878 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8879 			       0xd3ffffff);
8880 
8881 			value = 0x1400;
8882 			if (CHIP_IS_E3(bp)) {
8883 				value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8884 				value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8885 			}
8886 
8887 			REG_WR(bp,
8888 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8889 			       value);
8890 
8891 			/* take the NIG out of reset and restore swap values */
8892 			REG_WR(bp,
8893 			       GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8894 			       MISC_REGISTERS_RESET_REG_1_RST_NIG);
8895 			REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8896 			REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8897 
8898 			/* send unload done to the MCP */
8899 			bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8900 
8901 			/* restore our func and fw_seq */
8902 			bp->pf_num = orig_pf_num;
8903 		}
8904 	}
8905 
8906 	/* now it's safe to release the lock */
8907 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8908 }
8909 
8910 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8911 {
8912 	u32 val, val2, val3, val4, id, boot_mode;
8913 	u16 pmc;
8914 
8915 	/* Get the chip revision id and number. */
8916 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8917 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
8918 	id = ((val & 0xffff) << 16);
8919 	val = REG_RD(bp, MISC_REG_CHIP_REV);
8920 	id |= ((val & 0xf) << 12);
8921 	val = REG_RD(bp, MISC_REG_CHIP_METAL);
8922 	id |= ((val & 0xff) << 4);
8923 	val = REG_RD(bp, MISC_REG_BOND_ID);
8924 	id |= (val & 0xf);
8925 	bp->common.chip_id = id;
8926 
8927 	/* Set doorbell size */
8928 	bp->db_size = (1 << BNX2X_DB_SHIFT);
8929 
8930 	if (!CHIP_IS_E1x(bp)) {
8931 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8932 		if ((val & 1) == 0)
8933 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8934 		else
8935 			val = (val >> 1) & 1;
8936 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8937 						       "2_PORT_MODE");
8938 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8939 						 CHIP_2_PORT_MODE;
8940 
8941 		if (CHIP_MODE_IS_4_PORT(bp))
8942 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
8943 		else
8944 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
8945 	} else {
8946 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8947 		bp->pfid = bp->pf_num;			/* 0..7 */
8948 	}
8949 
8950 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
8951 
8952 	bp->link_params.chip_id = bp->common.chip_id;
8953 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8954 
8955 	val = (REG_RD(bp, 0x2874) & 0x55);
8956 	if ((bp->common.chip_id & 0x1) ||
8957 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8958 		bp->flags |= ONE_PORT_FLAG;
8959 		BNX2X_DEV_INFO("single port device\n");
8960 	}
8961 
8962 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8963 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8964 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8965 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8966 		       bp->common.flash_size, bp->common.flash_size);
8967 
8968 	bnx2x_init_shmem(bp);
8969 
8970 
8971 
8972 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8973 					MISC_REG_GENERIC_CR_1 :
8974 					MISC_REG_GENERIC_CR_0));
8975 
8976 	bp->link_params.shmem_base = bp->common.shmem_base;
8977 	bp->link_params.shmem2_base = bp->common.shmem2_base;
8978 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
8979 		       bp->common.shmem_base, bp->common.shmem2_base);
8980 
8981 	if (!bp->common.shmem_base) {
8982 		BNX2X_DEV_INFO("MCP not active\n");
8983 		bp->flags |= NO_MCP_FLAG;
8984 		return;
8985 	}
8986 
8987 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8988 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8989 
8990 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
8991 					SHARED_HW_CFG_LED_MODE_MASK) >>
8992 				       SHARED_HW_CFG_LED_MODE_SHIFT);
8993 
8994 	bp->link_params.feature_config_flags = 0;
8995 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8996 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8997 		bp->link_params.feature_config_flags |=
8998 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8999 	else
9000 		bp->link_params.feature_config_flags &=
9001 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9002 
9003 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9004 	bp->common.bc_ver = val;
9005 	BNX2X_DEV_INFO("bc_ver %X\n", val);
9006 	if (val < BNX2X_BC_VER) {
9007 		/* for now only warn
9008 		 * later we might need to enforce this */
9009 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
9010 			  BNX2X_BC_VER, val);
9011 	}
9012 	bp->link_params.feature_config_flags |=
9013 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9014 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9015 
9016 	bp->link_params.feature_config_flags |=
9017 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9018 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9019 
9020 	bp->link_params.feature_config_flags |=
9021 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9022 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9023 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9024 			BC_SUPPORTS_PFC_STATS : 0;
9025 
9026 	boot_mode = SHMEM_RD(bp,
9027 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9028 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9029 	switch (boot_mode) {
9030 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9031 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9032 		break;
9033 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9034 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9035 		break;
9036 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9037 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9038 		break;
9039 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9040 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9041 		break;
9042 	}
9043 
9044 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9045 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9046 
9047 	BNX2X_DEV_INFO("%sWoL capable\n",
9048 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
9049 
9050 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9051 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9052 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9053 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9054 
9055 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9056 		 val, val2, val3, val4);
9057 }
9058 
9059 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9060 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9061 
9062 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9063 {
9064 	int pfid = BP_FUNC(bp);
9065 	int igu_sb_id;
9066 	u32 val;
9067 	u8 fid, igu_sb_cnt = 0;
9068 
9069 	bp->igu_base_sb = 0xff;
9070 	if (CHIP_INT_MODE_IS_BC(bp)) {
9071 		int vn = BP_VN(bp);
9072 		igu_sb_cnt = bp->igu_sb_cnt;
9073 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9074 			FP_SB_MAX_E1x;
9075 
9076 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
9077 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9078 
9079 		return;
9080 	}
9081 
9082 	/* IGU in normal mode - read CAM */
9083 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9084 	     igu_sb_id++) {
9085 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9086 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9087 			continue;
9088 		fid = IGU_FID(val);
9089 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
9090 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9091 				continue;
9092 			if (IGU_VEC(val) == 0)
9093 				/* default status block */
9094 				bp->igu_dsb_id = igu_sb_id;
9095 			else {
9096 				if (bp->igu_base_sb == 0xff)
9097 					bp->igu_base_sb = igu_sb_id;
9098 				igu_sb_cnt++;
9099 			}
9100 		}
9101 	}
9102 
9103 #ifdef CONFIG_PCI_MSI
9104 	/*
9105 	 * It's expected that number of CAM entries for this functions is equal
9106 	 * to the number evaluated based on the MSI-X table size. We want a
9107 	 * harsh warning if these values are different!
9108 	 */
9109 	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9110 #endif
9111 
9112 	if (igu_sb_cnt == 0)
9113 		BNX2X_ERR("CAM configuration error\n");
9114 }
9115 
9116 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9117 						    u32 switch_cfg)
9118 {
9119 	int cfg_size = 0, idx, port = BP_PORT(bp);
9120 
9121 	/* Aggregation of supported attributes of all external phys */
9122 	bp->port.supported[0] = 0;
9123 	bp->port.supported[1] = 0;
9124 	switch (bp->link_params.num_phys) {
9125 	case 1:
9126 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9127 		cfg_size = 1;
9128 		break;
9129 	case 2:
9130 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9131 		cfg_size = 1;
9132 		break;
9133 	case 3:
9134 		if (bp->link_params.multi_phy_config &
9135 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9136 			bp->port.supported[1] =
9137 				bp->link_params.phy[EXT_PHY1].supported;
9138 			bp->port.supported[0] =
9139 				bp->link_params.phy[EXT_PHY2].supported;
9140 		} else {
9141 			bp->port.supported[0] =
9142 				bp->link_params.phy[EXT_PHY1].supported;
9143 			bp->port.supported[1] =
9144 				bp->link_params.phy[EXT_PHY2].supported;
9145 		}
9146 		cfg_size = 2;
9147 		break;
9148 	}
9149 
9150 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
9151 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
9152 			   SHMEM_RD(bp,
9153 			   dev_info.port_hw_config[port].external_phy_config),
9154 			   SHMEM_RD(bp,
9155 			   dev_info.port_hw_config[port].external_phy_config2));
9156 			return;
9157 	}
9158 
9159 	if (CHIP_IS_E3(bp))
9160 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9161 	else {
9162 		switch (switch_cfg) {
9163 		case SWITCH_CFG_1G:
9164 			bp->port.phy_addr = REG_RD(
9165 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9166 			break;
9167 		case SWITCH_CFG_10G:
9168 			bp->port.phy_addr = REG_RD(
9169 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9170 			break;
9171 		default:
9172 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9173 				  bp->port.link_config[0]);
9174 			return;
9175 		}
9176 	}
9177 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9178 	/* mask what we support according to speed_cap_mask per configuration */
9179 	for (idx = 0; idx < cfg_size; idx++) {
9180 		if (!(bp->link_params.speed_cap_mask[idx] &
9181 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9182 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9183 
9184 		if (!(bp->link_params.speed_cap_mask[idx] &
9185 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9186 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9187 
9188 		if (!(bp->link_params.speed_cap_mask[idx] &
9189 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9190 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9191 
9192 		if (!(bp->link_params.speed_cap_mask[idx] &
9193 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9194 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9195 
9196 		if (!(bp->link_params.speed_cap_mask[idx] &
9197 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9198 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9199 						     SUPPORTED_1000baseT_Full);
9200 
9201 		if (!(bp->link_params.speed_cap_mask[idx] &
9202 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9203 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9204 
9205 		if (!(bp->link_params.speed_cap_mask[idx] &
9206 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9207 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9208 
9209 	}
9210 
9211 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9212 		       bp->port.supported[1]);
9213 }
9214 
9215 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9216 {
9217 	u32 link_config, idx, cfg_size = 0;
9218 	bp->port.advertising[0] = 0;
9219 	bp->port.advertising[1] = 0;
9220 	switch (bp->link_params.num_phys) {
9221 	case 1:
9222 	case 2:
9223 		cfg_size = 1;
9224 		break;
9225 	case 3:
9226 		cfg_size = 2;
9227 		break;
9228 	}
9229 	for (idx = 0; idx < cfg_size; idx++) {
9230 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9231 		link_config = bp->port.link_config[idx];
9232 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9233 		case PORT_FEATURE_LINK_SPEED_AUTO:
9234 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9235 				bp->link_params.req_line_speed[idx] =
9236 					SPEED_AUTO_NEG;
9237 				bp->port.advertising[idx] |=
9238 					bp->port.supported[idx];
9239 				if (bp->link_params.phy[EXT_PHY1].type ==
9240 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
9241 					bp->port.advertising[idx] |=
9242 					(SUPPORTED_100baseT_Half |
9243 					 SUPPORTED_100baseT_Full);
9244 			} else {
9245 				/* force 10G, no AN */
9246 				bp->link_params.req_line_speed[idx] =
9247 					SPEED_10000;
9248 				bp->port.advertising[idx] |=
9249 					(ADVERTISED_10000baseT_Full |
9250 					 ADVERTISED_FIBRE);
9251 				continue;
9252 			}
9253 			break;
9254 
9255 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9256 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9257 				bp->link_params.req_line_speed[idx] =
9258 					SPEED_10;
9259 				bp->port.advertising[idx] |=
9260 					(ADVERTISED_10baseT_Full |
9261 					 ADVERTISED_TP);
9262 			} else {
9263 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9264 					    link_config,
9265 				    bp->link_params.speed_cap_mask[idx]);
9266 				return;
9267 			}
9268 			break;
9269 
9270 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
9271 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9272 				bp->link_params.req_line_speed[idx] =
9273 					SPEED_10;
9274 				bp->link_params.req_duplex[idx] =
9275 					DUPLEX_HALF;
9276 				bp->port.advertising[idx] |=
9277 					(ADVERTISED_10baseT_Half |
9278 					 ADVERTISED_TP);
9279 			} else {
9280 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9281 					    link_config,
9282 					  bp->link_params.speed_cap_mask[idx]);
9283 				return;
9284 			}
9285 			break;
9286 
9287 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
9288 			if (bp->port.supported[idx] &
9289 			    SUPPORTED_100baseT_Full) {
9290 				bp->link_params.req_line_speed[idx] =
9291 					SPEED_100;
9292 				bp->port.advertising[idx] |=
9293 					(ADVERTISED_100baseT_Full |
9294 					 ADVERTISED_TP);
9295 			} else {
9296 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9297 					    link_config,
9298 					  bp->link_params.speed_cap_mask[idx]);
9299 				return;
9300 			}
9301 			break;
9302 
9303 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
9304 			if (bp->port.supported[idx] &
9305 			    SUPPORTED_100baseT_Half) {
9306 				bp->link_params.req_line_speed[idx] =
9307 								SPEED_100;
9308 				bp->link_params.req_duplex[idx] =
9309 								DUPLEX_HALF;
9310 				bp->port.advertising[idx] |=
9311 					(ADVERTISED_100baseT_Half |
9312 					 ADVERTISED_TP);
9313 			} else {
9314 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9315 				    link_config,
9316 				    bp->link_params.speed_cap_mask[idx]);
9317 				return;
9318 			}
9319 			break;
9320 
9321 		case PORT_FEATURE_LINK_SPEED_1G:
9322 			if (bp->port.supported[idx] &
9323 			    SUPPORTED_1000baseT_Full) {
9324 				bp->link_params.req_line_speed[idx] =
9325 					SPEED_1000;
9326 				bp->port.advertising[idx] |=
9327 					(ADVERTISED_1000baseT_Full |
9328 					 ADVERTISED_TP);
9329 			} else {
9330 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9331 				    link_config,
9332 				    bp->link_params.speed_cap_mask[idx]);
9333 				return;
9334 			}
9335 			break;
9336 
9337 		case PORT_FEATURE_LINK_SPEED_2_5G:
9338 			if (bp->port.supported[idx] &
9339 			    SUPPORTED_2500baseX_Full) {
9340 				bp->link_params.req_line_speed[idx] =
9341 					SPEED_2500;
9342 				bp->port.advertising[idx] |=
9343 					(ADVERTISED_2500baseX_Full |
9344 						ADVERTISED_TP);
9345 			} else {
9346 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9347 				    link_config,
9348 				    bp->link_params.speed_cap_mask[idx]);
9349 				return;
9350 			}
9351 			break;
9352 
9353 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
9354 			if (bp->port.supported[idx] &
9355 			    SUPPORTED_10000baseT_Full) {
9356 				bp->link_params.req_line_speed[idx] =
9357 					SPEED_10000;
9358 				bp->port.advertising[idx] |=
9359 					(ADVERTISED_10000baseT_Full |
9360 						ADVERTISED_FIBRE);
9361 			} else {
9362 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9363 				    link_config,
9364 				    bp->link_params.speed_cap_mask[idx]);
9365 				return;
9366 			}
9367 			break;
9368 		case PORT_FEATURE_LINK_SPEED_20G:
9369 			bp->link_params.req_line_speed[idx] = SPEED_20000;
9370 
9371 			break;
9372 		default:
9373 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
9374 				  link_config);
9375 				bp->link_params.req_line_speed[idx] =
9376 							SPEED_AUTO_NEG;
9377 				bp->port.advertising[idx] =
9378 						bp->port.supported[idx];
9379 			break;
9380 		}
9381 
9382 		bp->link_params.req_flow_ctrl[idx] = (link_config &
9383 					 PORT_FEATURE_FLOW_CONTROL_MASK);
9384 		if ((bp->link_params.req_flow_ctrl[idx] ==
9385 		     BNX2X_FLOW_CTRL_AUTO) &&
9386 		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9387 			bp->link_params.req_flow_ctrl[idx] =
9388 				BNX2X_FLOW_CTRL_NONE;
9389 		}
9390 
9391 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
9392 			       bp->link_params.req_line_speed[idx],
9393 			       bp->link_params.req_duplex[idx],
9394 			       bp->link_params.req_flow_ctrl[idx],
9395 			       bp->port.advertising[idx]);
9396 	}
9397 }
9398 
9399 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9400 {
9401 	mac_hi = cpu_to_be16(mac_hi);
9402 	mac_lo = cpu_to_be32(mac_lo);
9403 	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9404 	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9405 }
9406 
9407 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9408 {
9409 	int port = BP_PORT(bp);
9410 	u32 config;
9411 	u32 ext_phy_type, ext_phy_config;
9412 
9413 	bp->link_params.bp = bp;
9414 	bp->link_params.port = port;
9415 
9416 	bp->link_params.lane_config =
9417 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9418 
9419 	bp->link_params.speed_cap_mask[0] =
9420 		SHMEM_RD(bp,
9421 			 dev_info.port_hw_config[port].speed_capability_mask);
9422 	bp->link_params.speed_cap_mask[1] =
9423 		SHMEM_RD(bp,
9424 			 dev_info.port_hw_config[port].speed_capability_mask2);
9425 	bp->port.link_config[0] =
9426 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9427 
9428 	bp->port.link_config[1] =
9429 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9430 
9431 	bp->link_params.multi_phy_config =
9432 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9433 	/* If the device is capable of WoL, set the default state according
9434 	 * to the HW
9435 	 */
9436 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9437 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9438 		   (config & PORT_FEATURE_WOL_ENABLED));
9439 
9440 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
9441 		       bp->link_params.lane_config,
9442 		       bp->link_params.speed_cap_mask[0],
9443 		       bp->port.link_config[0]);
9444 
9445 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
9446 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
9447 	bnx2x_phy_probe(&bp->link_params);
9448 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9449 
9450 	bnx2x_link_settings_requested(bp);
9451 
9452 	/*
9453 	 * If connected directly, work with the internal PHY, otherwise, work
9454 	 * with the external PHY
9455 	 */
9456 	ext_phy_config =
9457 		SHMEM_RD(bp,
9458 			 dev_info.port_hw_config[port].external_phy_config);
9459 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9460 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9461 		bp->mdio.prtad = bp->port.phy_addr;
9462 
9463 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9464 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9465 		bp->mdio.prtad =
9466 			XGXS_EXT_PHY_ADDR(ext_phy_config);
9467 
9468 	/*
9469 	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9470 	 * In MF mode, it is set to cover self test cases
9471 	 */
9472 	if (IS_MF(bp))
9473 		bp->port.need_hw_lock = 1;
9474 	else
9475 		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9476 							bp->common.shmem_base,
9477 							bp->common.shmem2_base);
9478 }
9479 
9480 void bnx2x_get_iscsi_info(struct bnx2x *bp)
9481 {
9482 #ifdef BCM_CNIC
9483 	int port = BP_PORT(bp);
9484 
9485 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9486 				drv_lic_key[port].max_iscsi_conn);
9487 
9488 	/* Get the number of maximum allowed iSCSI connections */
9489 	bp->cnic_eth_dev.max_iscsi_conn =
9490 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9491 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9492 
9493 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9494 		       bp->cnic_eth_dev.max_iscsi_conn);
9495 
9496 	/*
9497 	 * If maximum allowed number of connections is zero -
9498 	 * disable the feature.
9499 	 */
9500 	if (!bp->cnic_eth_dev.max_iscsi_conn)
9501 		bp->flags |= NO_ISCSI_FLAG;
9502 #else
9503 	bp->flags |= NO_ISCSI_FLAG;
9504 #endif
9505 }
9506 
9507 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9508 {
9509 #ifdef BCM_CNIC
9510 	int port = BP_PORT(bp);
9511 	int func = BP_ABS_FUNC(bp);
9512 
9513 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9514 				drv_lic_key[port].max_fcoe_conn);
9515 
9516 	/* Get the number of maximum allowed FCoE connections */
9517 	bp->cnic_eth_dev.max_fcoe_conn =
9518 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9519 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9520 
9521 	/* Read the WWN: */
9522 	if (!IS_MF(bp)) {
9523 		/* Port info */
9524 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9525 			SHMEM_RD(bp,
9526 				dev_info.port_hw_config[port].
9527 				 fcoe_wwn_port_name_upper);
9528 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9529 			SHMEM_RD(bp,
9530 				dev_info.port_hw_config[port].
9531 				 fcoe_wwn_port_name_lower);
9532 
9533 		/* Node info */
9534 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9535 			SHMEM_RD(bp,
9536 				dev_info.port_hw_config[port].
9537 				 fcoe_wwn_node_name_upper);
9538 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9539 			SHMEM_RD(bp,
9540 				dev_info.port_hw_config[port].
9541 				 fcoe_wwn_node_name_lower);
9542 	} else if (!IS_MF_SD(bp)) {
9543 		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9544 
9545 		/*
9546 		 * Read the WWN info only if the FCoE feature is enabled for
9547 		 * this function.
9548 		 */
9549 		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9550 			/* Port info */
9551 			bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9552 				MF_CFG_RD(bp, func_ext_config[func].
9553 						fcoe_wwn_port_name_upper);
9554 			bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9555 				MF_CFG_RD(bp, func_ext_config[func].
9556 						fcoe_wwn_port_name_lower);
9557 
9558 			/* Node info */
9559 			bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9560 				MF_CFG_RD(bp, func_ext_config[func].
9561 						fcoe_wwn_node_name_upper);
9562 			bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9563 				MF_CFG_RD(bp, func_ext_config[func].
9564 						fcoe_wwn_node_name_lower);
9565 		}
9566 	}
9567 
9568 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9569 
9570 	/*
9571 	 * If maximum allowed number of connections is zero -
9572 	 * disable the feature.
9573 	 */
9574 	if (!bp->cnic_eth_dev.max_fcoe_conn)
9575 		bp->flags |= NO_FCOE_FLAG;
9576 #else
9577 	bp->flags |= NO_FCOE_FLAG;
9578 #endif
9579 }
9580 
9581 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9582 {
9583 	/*
9584 	 * iSCSI may be dynamically disabled but reading
9585 	 * info here we will decrease memory usage by driver
9586 	 * if the feature is disabled for good
9587 	 */
9588 	bnx2x_get_iscsi_info(bp);
9589 	bnx2x_get_fcoe_info(bp);
9590 }
9591 
9592 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9593 {
9594 	u32 val, val2;
9595 	int func = BP_ABS_FUNC(bp);
9596 	int port = BP_PORT(bp);
9597 #ifdef BCM_CNIC
9598 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9599 	u8 *fip_mac = bp->fip_mac;
9600 #endif
9601 
9602 	/* Zero primary MAC configuration */
9603 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
9604 
9605 	if (BP_NOMCP(bp)) {
9606 		BNX2X_ERROR("warning: random MAC workaround active\n");
9607 		eth_hw_addr_random(bp->dev);
9608 	} else if (IS_MF(bp)) {
9609 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9610 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9611 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9612 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9613 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9614 
9615 #ifdef BCM_CNIC
9616 		/*
9617 		 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9618 		 * FCoE MAC then the appropriate feature should be disabled.
9619 		 */
9620 		if (IS_MF_SI(bp)) {
9621 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9622 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9623 				val2 = MF_CFG_RD(bp, func_ext_config[func].
9624 						     iscsi_mac_addr_upper);
9625 				val = MF_CFG_RD(bp, func_ext_config[func].
9626 						    iscsi_mac_addr_lower);
9627 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
9628 				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9629 					       iscsi_mac);
9630 			} else
9631 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9632 
9633 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9634 				val2 = MF_CFG_RD(bp, func_ext_config[func].
9635 						     fcoe_mac_addr_upper);
9636 				val = MF_CFG_RD(bp, func_ext_config[func].
9637 						    fcoe_mac_addr_lower);
9638 				bnx2x_set_mac_buf(fip_mac, val, val2);
9639 				BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9640 					       fip_mac);
9641 
9642 			} else
9643 				bp->flags |= NO_FCOE_FLAG;
9644 		} else { /* SD mode */
9645 			if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp)) {
9646 				/* use primary mac as iscsi mac */
9647 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
9648 				/* Zero primary MAC configuration */
9649 				memset(bp->dev->dev_addr, 0, ETH_ALEN);
9650 
9651 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
9652 				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9653 					       iscsi_mac);
9654 			}
9655 		}
9656 #endif
9657 	} else {
9658 		/* in SF read MACs from port configuration */
9659 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9660 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9661 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9662 
9663 #ifdef BCM_CNIC
9664 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9665 				    iscsi_mac_upper);
9666 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9667 				   iscsi_mac_lower);
9668 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
9669 
9670 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9671 				    fcoe_fip_mac_upper);
9672 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9673 				   fcoe_fip_mac_lower);
9674 		bnx2x_set_mac_buf(fip_mac, val, val2);
9675 #endif
9676 	}
9677 
9678 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9679 	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9680 
9681 #ifdef BCM_CNIC
9682 	/* Set the FCoE MAC in MF_SD mode */
9683 	if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9684 		memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9685 
9686 	/* Disable iSCSI if MAC configuration is
9687 	 * invalid.
9688 	 */
9689 	if (!is_valid_ether_addr(iscsi_mac)) {
9690 		bp->flags |= NO_ISCSI_FLAG;
9691 		memset(iscsi_mac, 0, ETH_ALEN);
9692 	}
9693 
9694 	/* Disable FCoE if MAC configuration is
9695 	 * invalid.
9696 	 */
9697 	if (!is_valid_ether_addr(fip_mac)) {
9698 		bp->flags |= NO_FCOE_FLAG;
9699 		memset(bp->fip_mac, 0, ETH_ALEN);
9700 	}
9701 #endif
9702 
9703 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
9704 		dev_err(&bp->pdev->dev,
9705 			"bad Ethernet MAC address configuration: %pM\n"
9706 			"change it manually before bringing up the appropriate network interface\n",
9707 			bp->dev->dev_addr);
9708 
9709 
9710 }
9711 
9712 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9713 {
9714 	int /*abs*/func = BP_ABS_FUNC(bp);
9715 	int vn;
9716 	u32 val = 0;
9717 	int rc = 0;
9718 
9719 	bnx2x_get_common_hwinfo(bp);
9720 
9721 	/*
9722 	 * initialize IGU parameters
9723 	 */
9724 	if (CHIP_IS_E1x(bp)) {
9725 		bp->common.int_block = INT_BLOCK_HC;
9726 
9727 		bp->igu_dsb_id = DEF_SB_IGU_ID;
9728 		bp->igu_base_sb = 0;
9729 	} else {
9730 		bp->common.int_block = INT_BLOCK_IGU;
9731 
9732 		/* do not allow device reset during IGU info preocessing */
9733 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9734 
9735 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9736 
9737 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9738 			int tout = 5000;
9739 
9740 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
9741 
9742 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9743 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9744 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9745 
9746 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9747 				tout--;
9748 				usleep_range(1000, 1000);
9749 			}
9750 
9751 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9752 				dev_err(&bp->pdev->dev,
9753 					"FORCING Normal Mode failed!!!\n");
9754 				return -EPERM;
9755 			}
9756 		}
9757 
9758 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9759 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9760 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9761 		} else
9762 			BNX2X_DEV_INFO("IGU Normal Mode\n");
9763 
9764 		bnx2x_get_igu_cam_info(bp);
9765 
9766 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9767 	}
9768 
9769 	/*
9770 	 * set base FW non-default (fast path) status block id, this value is
9771 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
9772 	 * determine the id used by the FW.
9773 	 */
9774 	if (CHIP_IS_E1x(bp))
9775 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9776 	else /*
9777 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9778 	      * the same queue are indicated on the same IGU SB). So we prefer
9779 	      * FW and IGU SBs to be the same value.
9780 	      */
9781 		bp->base_fw_ndsb = bp->igu_base_sb;
9782 
9783 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
9784 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9785 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
9786 
9787 	/*
9788 	 * Initialize MF configuration
9789 	 */
9790 
9791 	bp->mf_ov = 0;
9792 	bp->mf_mode = 0;
9793 	vn = BP_VN(bp);
9794 
9795 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9796 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9797 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
9798 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9799 
9800 		if (SHMEM2_HAS(bp, mf_cfg_addr))
9801 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9802 		else
9803 			bp->common.mf_cfg_base = bp->common.shmem_base +
9804 				offsetof(struct shmem_region, func_mb) +
9805 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9806 		/*
9807 		 * get mf configuration:
9808 		 * 1. existence of MF configuration
9809 		 * 2. MAC address must be legal (check only upper bytes)
9810 		 *    for  Switch-Independent mode;
9811 		 *    OVLAN must be legal for Switch-Dependent mode
9812 		 * 3. SF_MODE configures specific MF mode
9813 		 */
9814 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9815 			/* get mf configuration */
9816 			val = SHMEM_RD(bp,
9817 				       dev_info.shared_feature_config.config);
9818 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9819 
9820 			switch (val) {
9821 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9822 				val = MF_CFG_RD(bp, func_mf_config[func].
9823 						mac_upper);
9824 				/* check for legal mac (upper bytes)*/
9825 				if (val != 0xffff) {
9826 					bp->mf_mode = MULTI_FUNCTION_SI;
9827 					bp->mf_config[vn] = MF_CFG_RD(bp,
9828 						   func_mf_config[func].config);
9829 				} else
9830 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
9831 				break;
9832 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9833 				/* get OV configuration */
9834 				val = MF_CFG_RD(bp,
9835 					func_mf_config[FUNC_0].e1hov_tag);
9836 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9837 
9838 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9839 					bp->mf_mode = MULTI_FUNCTION_SD;
9840 					bp->mf_config[vn] = MF_CFG_RD(bp,
9841 						func_mf_config[func].config);
9842 				} else
9843 					BNX2X_DEV_INFO("illegal OV for SD\n");
9844 				break;
9845 			default:
9846 				/* Unknown configuration: reset mf_config */
9847 				bp->mf_config[vn] = 0;
9848 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
9849 			}
9850 		}
9851 
9852 		BNX2X_DEV_INFO("%s function mode\n",
9853 			       IS_MF(bp) ? "multi" : "single");
9854 
9855 		switch (bp->mf_mode) {
9856 		case MULTI_FUNCTION_SD:
9857 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9858 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
9859 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9860 				bp->mf_ov = val;
9861 				bp->path_has_ovlan = true;
9862 
9863 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
9864 					       func, bp->mf_ov, bp->mf_ov);
9865 			} else {
9866 				dev_err(&bp->pdev->dev,
9867 					"No valid MF OV for func %d, aborting\n",
9868 					func);
9869 				return -EPERM;
9870 			}
9871 			break;
9872 		case MULTI_FUNCTION_SI:
9873 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
9874 				       func);
9875 			break;
9876 		default:
9877 			if (vn) {
9878 				dev_err(&bp->pdev->dev,
9879 					"VN %d is in a single function mode, aborting\n",
9880 					vn);
9881 				return -EPERM;
9882 			}
9883 			break;
9884 		}
9885 
9886 		/* check if other port on the path needs ovlan:
9887 		 * Since MF configuration is shared between ports
9888 		 * Possible mixed modes are only
9889 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9890 		 */
9891 		if (CHIP_MODE_IS_4_PORT(bp) &&
9892 		    !bp->path_has_ovlan &&
9893 		    !IS_MF(bp) &&
9894 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9895 			u8 other_port = !BP_PORT(bp);
9896 			u8 other_func = BP_PATH(bp) + 2*other_port;
9897 			val = MF_CFG_RD(bp,
9898 					func_mf_config[other_func].e1hov_tag);
9899 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9900 				bp->path_has_ovlan = true;
9901 		}
9902 	}
9903 
9904 	/* adjust igu_sb_cnt to MF for E1x */
9905 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
9906 		bp->igu_sb_cnt /= E1HVN_MAX;
9907 
9908 	/* port info */
9909 	bnx2x_get_port_hwinfo(bp);
9910 
9911 	/* Get MAC addresses */
9912 	bnx2x_get_mac_hwinfo(bp);
9913 
9914 	bnx2x_get_cnic_info(bp);
9915 
9916 	return rc;
9917 }
9918 
9919 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9920 {
9921 	int cnt, i, block_end, rodi;
9922 	char vpd_start[BNX2X_VPD_LEN+1];
9923 	char str_id_reg[VENDOR_ID_LEN+1];
9924 	char str_id_cap[VENDOR_ID_LEN+1];
9925 	char *vpd_data;
9926 	char *vpd_extended_data = NULL;
9927 	u8 len;
9928 
9929 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
9930 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9931 
9932 	if (cnt < BNX2X_VPD_LEN)
9933 		goto out_not_found;
9934 
9935 	/* VPD RO tag should be first tag after identifier string, hence
9936 	 * we should be able to find it in first BNX2X_VPD_LEN chars
9937 	 */
9938 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
9939 			     PCI_VPD_LRDT_RO_DATA);
9940 	if (i < 0)
9941 		goto out_not_found;
9942 
9943 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9944 		    pci_vpd_lrdt_size(&vpd_start[i]);
9945 
9946 	i += PCI_VPD_LRDT_TAG_SIZE;
9947 
9948 	if (block_end > BNX2X_VPD_LEN) {
9949 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
9950 		if (vpd_extended_data  == NULL)
9951 			goto out_not_found;
9952 
9953 		/* read rest of vpd image into vpd_extended_data */
9954 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
9955 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
9956 				   block_end - BNX2X_VPD_LEN,
9957 				   vpd_extended_data + BNX2X_VPD_LEN);
9958 		if (cnt < (block_end - BNX2X_VPD_LEN))
9959 			goto out_not_found;
9960 		vpd_data = vpd_extended_data;
9961 	} else
9962 		vpd_data = vpd_start;
9963 
9964 	/* now vpd_data holds full vpd content in both cases */
9965 
9966 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9967 				   PCI_VPD_RO_KEYWORD_MFR_ID);
9968 	if (rodi < 0)
9969 		goto out_not_found;
9970 
9971 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
9972 
9973 	if (len != VENDOR_ID_LEN)
9974 		goto out_not_found;
9975 
9976 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9977 
9978 	/* vendor specific info */
9979 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
9980 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
9981 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
9982 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
9983 
9984 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9985 						PCI_VPD_RO_KEYWORD_VENDOR0);
9986 		if (rodi >= 0) {
9987 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
9988 
9989 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9990 
9991 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
9992 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
9993 				bp->fw_ver[len] = ' ';
9994 			}
9995 		}
9996 		kfree(vpd_extended_data);
9997 		return;
9998 	}
9999 out_not_found:
10000 	kfree(vpd_extended_data);
10001 	return;
10002 }
10003 
10004 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10005 {
10006 	u32 flags = 0;
10007 
10008 	if (CHIP_REV_IS_FPGA(bp))
10009 		SET_FLAGS(flags, MODE_FPGA);
10010 	else if (CHIP_REV_IS_EMUL(bp))
10011 		SET_FLAGS(flags, MODE_EMUL);
10012 	else
10013 		SET_FLAGS(flags, MODE_ASIC);
10014 
10015 	if (CHIP_MODE_IS_4_PORT(bp))
10016 		SET_FLAGS(flags, MODE_PORT4);
10017 	else
10018 		SET_FLAGS(flags, MODE_PORT2);
10019 
10020 	if (CHIP_IS_E2(bp))
10021 		SET_FLAGS(flags, MODE_E2);
10022 	else if (CHIP_IS_E3(bp)) {
10023 		SET_FLAGS(flags, MODE_E3);
10024 		if (CHIP_REV(bp) == CHIP_REV_Ax)
10025 			SET_FLAGS(flags, MODE_E3_A0);
10026 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10027 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10028 	}
10029 
10030 	if (IS_MF(bp)) {
10031 		SET_FLAGS(flags, MODE_MF);
10032 		switch (bp->mf_mode) {
10033 		case MULTI_FUNCTION_SD:
10034 			SET_FLAGS(flags, MODE_MF_SD);
10035 			break;
10036 		case MULTI_FUNCTION_SI:
10037 			SET_FLAGS(flags, MODE_MF_SI);
10038 			break;
10039 		}
10040 	} else
10041 		SET_FLAGS(flags, MODE_SF);
10042 
10043 #if defined(__LITTLE_ENDIAN)
10044 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10045 #else /*(__BIG_ENDIAN)*/
10046 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
10047 #endif
10048 	INIT_MODE_FLAGS(bp) = flags;
10049 }
10050 
10051 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10052 {
10053 	int func;
10054 	int rc;
10055 
10056 	mutex_init(&bp->port.phy_mutex);
10057 	mutex_init(&bp->fw_mb_mutex);
10058 	spin_lock_init(&bp->stats_lock);
10059 #ifdef BCM_CNIC
10060 	mutex_init(&bp->cnic_mutex);
10061 #endif
10062 
10063 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10064 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10065 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10066 	rc = bnx2x_get_hwinfo(bp);
10067 	if (rc)
10068 		return rc;
10069 
10070 	bnx2x_set_modes_bitmap(bp);
10071 
10072 	rc = bnx2x_alloc_mem_bp(bp);
10073 	if (rc)
10074 		return rc;
10075 
10076 	bnx2x_read_fwinfo(bp);
10077 
10078 	func = BP_FUNC(bp);
10079 
10080 	/* need to reset chip if undi was active */
10081 	if (!BP_NOMCP(bp))
10082 		bnx2x_undi_unload(bp);
10083 
10084 	if (CHIP_REV_IS_FPGA(bp))
10085 		dev_err(&bp->pdev->dev, "FPGA detected\n");
10086 
10087 	if (BP_NOMCP(bp) && (func == 0))
10088 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
10089 
10090 	bp->multi_mode = multi_mode;
10091 
10092 	bp->disable_tpa = disable_tpa;
10093 
10094 #ifdef BCM_CNIC
10095 	bp->disable_tpa |= IS_MF_ISCSI_SD(bp);
10096 #endif
10097 
10098 	/* Set TPA flags */
10099 	if (bp->disable_tpa) {
10100 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10101 		bp->dev->features &= ~NETIF_F_LRO;
10102 	} else {
10103 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10104 		bp->dev->features |= NETIF_F_LRO;
10105 	}
10106 
10107 	if (CHIP_IS_E1(bp))
10108 		bp->dropless_fc = 0;
10109 	else
10110 		bp->dropless_fc = dropless_fc;
10111 
10112 	bp->mrrs = mrrs;
10113 
10114 	bp->tx_ring_size = MAX_TX_AVAIL;
10115 
10116 	/* make sure that the numbers are in the right granularity */
10117 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10118 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10119 
10120 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
10121 
10122 	init_timer(&bp->timer);
10123 	bp->timer.expires = jiffies + bp->current_interval;
10124 	bp->timer.data = (unsigned long) bp;
10125 	bp->timer.function = bnx2x_timer;
10126 
10127 	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10128 	bnx2x_dcbx_init_params(bp);
10129 
10130 #ifdef BCM_CNIC
10131 	if (CHIP_IS_E1x(bp))
10132 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10133 	else
10134 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
10135 #endif
10136 
10137 	/* multiple tx priority */
10138 	if (CHIP_IS_E1x(bp))
10139 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10140 	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10141 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10142 	if (CHIP_IS_E3B0(bp))
10143 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10144 
10145 	bp->gro_check = bnx2x_need_gro_check(bp->dev->mtu);
10146 
10147 	return rc;
10148 }
10149 
10150 
10151 /****************************************************************************
10152 * General service functions
10153 ****************************************************************************/
10154 
10155 /*
10156  * net_device service functions
10157  */
10158 
10159 /* called with rtnl_lock */
10160 static int bnx2x_open(struct net_device *dev)
10161 {
10162 	struct bnx2x *bp = netdev_priv(dev);
10163 	bool global = false;
10164 	int other_engine = BP_PATH(bp) ? 0 : 1;
10165 	bool other_load_status, load_status;
10166 
10167 	bp->stats_init = true;
10168 
10169 	netif_carrier_off(dev);
10170 
10171 	bnx2x_set_power_state(bp, PCI_D0);
10172 
10173 	other_load_status = bnx2x_get_load_status(bp, other_engine);
10174 	load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
10175 
10176 	/*
10177 	 * If parity had happen during the unload, then attentions
10178 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10179 	 * want the first function loaded on the current engine to
10180 	 * complete the recovery.
10181 	 */
10182 	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10183 	    bnx2x_chk_parity_attn(bp, &global, true))
10184 		do {
10185 			/*
10186 			 * If there are attentions and they are in a global
10187 			 * blocks, set the GLOBAL_RESET bit regardless whether
10188 			 * it will be this function that will complete the
10189 			 * recovery or not.
10190 			 */
10191 			if (global)
10192 				bnx2x_set_reset_global(bp);
10193 
10194 			/*
10195 			 * Only the first function on the current engine should
10196 			 * try to recover in open. In case of attentions in
10197 			 * global blocks only the first in the chip should try
10198 			 * to recover.
10199 			 */
10200 			if ((!load_status &&
10201 			     (!global || !other_load_status)) &&
10202 			    bnx2x_trylock_leader_lock(bp) &&
10203 			    !bnx2x_leader_reset(bp)) {
10204 				netdev_info(bp->dev, "Recovered in open\n");
10205 				break;
10206 			}
10207 
10208 			/* recovery has failed... */
10209 			bnx2x_set_power_state(bp, PCI_D3hot);
10210 			bp->recovery_state = BNX2X_RECOVERY_FAILED;
10211 
10212 			BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
10213 				  "If you still see this message after a few retries then power cycle is required.\n");
10214 
10215 			return -EAGAIN;
10216 		} while (0);
10217 
10218 	bp->recovery_state = BNX2X_RECOVERY_DONE;
10219 	return bnx2x_nic_load(bp, LOAD_OPEN);
10220 }
10221 
10222 /* called with rtnl_lock */
10223 static int bnx2x_close(struct net_device *dev)
10224 {
10225 	struct bnx2x *bp = netdev_priv(dev);
10226 
10227 	/* Unload the driver, release IRQs */
10228 	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10229 
10230 	/* Power off */
10231 	bnx2x_set_power_state(bp, PCI_D3hot);
10232 
10233 	return 0;
10234 }
10235 
10236 static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10237 					 struct bnx2x_mcast_ramrod_params *p)
10238 {
10239 	int mc_count = netdev_mc_count(bp->dev);
10240 	struct bnx2x_mcast_list_elem *mc_mac =
10241 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10242 	struct netdev_hw_addr *ha;
10243 
10244 	if (!mc_mac)
10245 		return -ENOMEM;
10246 
10247 	INIT_LIST_HEAD(&p->mcast_list);
10248 
10249 	netdev_for_each_mc_addr(ha, bp->dev) {
10250 		mc_mac->mac = bnx2x_mc_addr(ha);
10251 		list_add_tail(&mc_mac->link, &p->mcast_list);
10252 		mc_mac++;
10253 	}
10254 
10255 	p->mcast_list_len = mc_count;
10256 
10257 	return 0;
10258 }
10259 
10260 static inline void bnx2x_free_mcast_macs_list(
10261 	struct bnx2x_mcast_ramrod_params *p)
10262 {
10263 	struct bnx2x_mcast_list_elem *mc_mac =
10264 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10265 				 link);
10266 
10267 	WARN_ON(!mc_mac);
10268 	kfree(mc_mac);
10269 }
10270 
10271 /**
10272  * bnx2x_set_uc_list - configure a new unicast MACs list.
10273  *
10274  * @bp: driver handle
10275  *
10276  * We will use zero (0) as a MAC type for these MACs.
10277  */
10278 static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10279 {
10280 	int rc;
10281 	struct net_device *dev = bp->dev;
10282 	struct netdev_hw_addr *ha;
10283 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10284 	unsigned long ramrod_flags = 0;
10285 
10286 	/* First schedule a cleanup up of old configuration */
10287 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10288 	if (rc < 0) {
10289 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10290 		return rc;
10291 	}
10292 
10293 	netdev_for_each_uc_addr(ha, dev) {
10294 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10295 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
10296 		if (rc < 0) {
10297 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10298 				  rc);
10299 			return rc;
10300 		}
10301 	}
10302 
10303 	/* Execute the pending commands */
10304 	__set_bit(RAMROD_CONT, &ramrod_flags);
10305 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10306 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
10307 }
10308 
10309 static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10310 {
10311 	struct net_device *dev = bp->dev;
10312 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
10313 	int rc = 0;
10314 
10315 	rparam.mcast_obj = &bp->mcast_obj;
10316 
10317 	/* first, clear all configured multicast MACs */
10318 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10319 	if (rc < 0) {
10320 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
10321 		return rc;
10322 	}
10323 
10324 	/* then, configure a new MACs list */
10325 	if (netdev_mc_count(dev)) {
10326 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10327 		if (rc) {
10328 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
10329 				  rc);
10330 			return rc;
10331 		}
10332 
10333 		/* Now add the new MACs */
10334 		rc = bnx2x_config_mcast(bp, &rparam,
10335 					BNX2X_MCAST_CMD_ADD);
10336 		if (rc < 0)
10337 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
10338 				  rc);
10339 
10340 		bnx2x_free_mcast_macs_list(&rparam);
10341 	}
10342 
10343 	return rc;
10344 }
10345 
10346 
10347 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10348 void bnx2x_set_rx_mode(struct net_device *dev)
10349 {
10350 	struct bnx2x *bp = netdev_priv(dev);
10351 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10352 
10353 	if (bp->state != BNX2X_STATE_OPEN) {
10354 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10355 		return;
10356 	}
10357 
10358 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10359 
10360 	if (dev->flags & IFF_PROMISC)
10361 		rx_mode = BNX2X_RX_MODE_PROMISC;
10362 	else if ((dev->flags & IFF_ALLMULTI) ||
10363 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10364 		  CHIP_IS_E1(bp)))
10365 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
10366 	else {
10367 		/* some multicasts */
10368 		if (bnx2x_set_mc_list(bp) < 0)
10369 			rx_mode = BNX2X_RX_MODE_ALLMULTI;
10370 
10371 		if (bnx2x_set_uc_list(bp) < 0)
10372 			rx_mode = BNX2X_RX_MODE_PROMISC;
10373 	}
10374 
10375 	bp->rx_mode = rx_mode;
10376 #ifdef BCM_CNIC
10377 	/* handle ISCSI SD mode */
10378 	if (IS_MF_ISCSI_SD(bp))
10379 		bp->rx_mode = BNX2X_RX_MODE_NONE;
10380 #endif
10381 
10382 	/* Schedule the rx_mode command */
10383 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10384 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10385 		return;
10386 	}
10387 
10388 	bnx2x_set_storm_rx_mode(bp);
10389 }
10390 
10391 /* called with rtnl_lock */
10392 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10393 			   int devad, u16 addr)
10394 {
10395 	struct bnx2x *bp = netdev_priv(netdev);
10396 	u16 value;
10397 	int rc;
10398 
10399 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10400 	   prtad, devad, addr);
10401 
10402 	/* The HW expects different devad if CL22 is used */
10403 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10404 
10405 	bnx2x_acquire_phy_lock(bp);
10406 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10407 	bnx2x_release_phy_lock(bp);
10408 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10409 
10410 	if (!rc)
10411 		rc = value;
10412 	return rc;
10413 }
10414 
10415 /* called with rtnl_lock */
10416 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10417 			    u16 addr, u16 value)
10418 {
10419 	struct bnx2x *bp = netdev_priv(netdev);
10420 	int rc;
10421 
10422 	DP(NETIF_MSG_LINK,
10423 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
10424 	   prtad, devad, addr, value);
10425 
10426 	/* The HW expects different devad if CL22 is used */
10427 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10428 
10429 	bnx2x_acquire_phy_lock(bp);
10430 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10431 	bnx2x_release_phy_lock(bp);
10432 	return rc;
10433 }
10434 
10435 /* called with rtnl_lock */
10436 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10437 {
10438 	struct bnx2x *bp = netdev_priv(dev);
10439 	struct mii_ioctl_data *mdio = if_mii(ifr);
10440 
10441 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10442 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
10443 
10444 	if (!netif_running(dev))
10445 		return -EAGAIN;
10446 
10447 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10448 }
10449 
10450 #ifdef CONFIG_NET_POLL_CONTROLLER
10451 static void poll_bnx2x(struct net_device *dev)
10452 {
10453 	struct bnx2x *bp = netdev_priv(dev);
10454 
10455 	disable_irq(bp->pdev->irq);
10456 	bnx2x_interrupt(bp->pdev->irq, dev);
10457 	enable_irq(bp->pdev->irq);
10458 }
10459 #endif
10460 
10461 static int bnx2x_validate_addr(struct net_device *dev)
10462 {
10463 	struct bnx2x *bp = netdev_priv(dev);
10464 
10465 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
10466 		BNX2X_ERR("Non-valid Ethernet address\n");
10467 		return -EADDRNOTAVAIL;
10468 	}
10469 	return 0;
10470 }
10471 
10472 static const struct net_device_ops bnx2x_netdev_ops = {
10473 	.ndo_open		= bnx2x_open,
10474 	.ndo_stop		= bnx2x_close,
10475 	.ndo_start_xmit		= bnx2x_start_xmit,
10476 	.ndo_select_queue	= bnx2x_select_queue,
10477 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
10478 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
10479 	.ndo_validate_addr	= bnx2x_validate_addr,
10480 	.ndo_do_ioctl		= bnx2x_ioctl,
10481 	.ndo_change_mtu		= bnx2x_change_mtu,
10482 	.ndo_fix_features	= bnx2x_fix_features,
10483 	.ndo_set_features	= bnx2x_set_features,
10484 	.ndo_tx_timeout		= bnx2x_tx_timeout,
10485 #ifdef CONFIG_NET_POLL_CONTROLLER
10486 	.ndo_poll_controller	= poll_bnx2x,
10487 #endif
10488 	.ndo_setup_tc		= bnx2x_setup_tc,
10489 
10490 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10491 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
10492 #endif
10493 };
10494 
10495 static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10496 {
10497 	struct device *dev = &bp->pdev->dev;
10498 
10499 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10500 		bp->flags |= USING_DAC_FLAG;
10501 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10502 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
10503 			return -EIO;
10504 		}
10505 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10506 		dev_err(dev, "System does not support DMA, aborting\n");
10507 		return -EIO;
10508 	}
10509 
10510 	return 0;
10511 }
10512 
10513 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10514 				    struct net_device *dev,
10515 				    unsigned long board_type)
10516 {
10517 	struct bnx2x *bp;
10518 	int rc;
10519 	u32 pci_cfg_dword;
10520 	bool chip_is_e1x = (board_type == BCM57710 ||
10521 			    board_type == BCM57711 ||
10522 			    board_type == BCM57711E);
10523 
10524 	SET_NETDEV_DEV(dev, &pdev->dev);
10525 	bp = netdev_priv(dev);
10526 
10527 	bp->dev = dev;
10528 	bp->pdev = pdev;
10529 	bp->flags = 0;
10530 
10531 	rc = pci_enable_device(pdev);
10532 	if (rc) {
10533 		dev_err(&bp->pdev->dev,
10534 			"Cannot enable PCI device, aborting\n");
10535 		goto err_out;
10536 	}
10537 
10538 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10539 		dev_err(&bp->pdev->dev,
10540 			"Cannot find PCI device base address, aborting\n");
10541 		rc = -ENODEV;
10542 		goto err_out_disable;
10543 	}
10544 
10545 	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10546 		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10547 		       " base address, aborting\n");
10548 		rc = -ENODEV;
10549 		goto err_out_disable;
10550 	}
10551 
10552 	if (atomic_read(&pdev->enable_cnt) == 1) {
10553 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10554 		if (rc) {
10555 			dev_err(&bp->pdev->dev,
10556 				"Cannot obtain PCI resources, aborting\n");
10557 			goto err_out_disable;
10558 		}
10559 
10560 		pci_set_master(pdev);
10561 		pci_save_state(pdev);
10562 	}
10563 
10564 	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10565 	if (bp->pm_cap == 0) {
10566 		dev_err(&bp->pdev->dev,
10567 			"Cannot find power management capability, aborting\n");
10568 		rc = -EIO;
10569 		goto err_out_release;
10570 	}
10571 
10572 	if (!pci_is_pcie(pdev)) {
10573 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
10574 		rc = -EIO;
10575 		goto err_out_release;
10576 	}
10577 
10578 	rc = bnx2x_set_coherency_mask(bp);
10579 	if (rc)
10580 		goto err_out_release;
10581 
10582 	dev->mem_start = pci_resource_start(pdev, 0);
10583 	dev->base_addr = dev->mem_start;
10584 	dev->mem_end = pci_resource_end(pdev, 0);
10585 
10586 	dev->irq = pdev->irq;
10587 
10588 	bp->regview = pci_ioremap_bar(pdev, 0);
10589 	if (!bp->regview) {
10590 		dev_err(&bp->pdev->dev,
10591 			"Cannot map register space, aborting\n");
10592 		rc = -ENOMEM;
10593 		goto err_out_release;
10594 	}
10595 
10596 	/* In E1/E1H use pci device function given by kernel.
10597 	 * In E2/E3 read physical function from ME register since these chips
10598 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
10599 	 * (depending on hypervisor).
10600 	 */
10601 	if (chip_is_e1x)
10602 		bp->pf_num = PCI_FUNC(pdev->devfn);
10603 	else {/* chip is E2/3*/
10604 		pci_read_config_dword(bp->pdev,
10605 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
10606 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
10607 		    ME_REG_ABS_PF_NUM_SHIFT);
10608 	}
10609 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
10610 
10611 	bnx2x_set_power_state(bp, PCI_D0);
10612 
10613 	/* clean indirect addresses */
10614 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10615 			       PCICFG_VENDOR_ID_OFFSET);
10616 	/*
10617 	 * Clean the following indirect addresses for all functions since it
10618 	 * is not used by the driver.
10619 	 */
10620 	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10621 	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10622 	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10623 	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10624 
10625 	if (chip_is_e1x) {
10626 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10627 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10628 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10629 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10630 	}
10631 
10632 	/*
10633 	 * Enable internal target-read (in case we are probed after PF FLR).
10634 	 * Must be done prior to any BAR read access. Only for 57712 and up
10635 	 */
10636 	if (!chip_is_e1x)
10637 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10638 
10639 	/* Reset the load counter */
10640 	bnx2x_clear_load_status(bp);
10641 
10642 	dev->watchdog_timeo = TX_TIMEOUT;
10643 
10644 	dev->netdev_ops = &bnx2x_netdev_ops;
10645 	bnx2x_set_ethtool_ops(dev);
10646 
10647 	dev->priv_flags |= IFF_UNICAST_FLT;
10648 
10649 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10650 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
10651 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
10652 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10653 
10654 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10655 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10656 
10657 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10658 	if (bp->flags & USING_DAC_FLAG)
10659 		dev->features |= NETIF_F_HIGHDMA;
10660 
10661 	/* Add Loopback capability to the device */
10662 	dev->hw_features |= NETIF_F_LOOPBACK;
10663 
10664 #ifdef BCM_DCBNL
10665 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10666 #endif
10667 
10668 	/* get_port_hwinfo() will set prtad and mmds properly */
10669 	bp->mdio.prtad = MDIO_PRTAD_NONE;
10670 	bp->mdio.mmds = 0;
10671 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10672 	bp->mdio.dev = dev;
10673 	bp->mdio.mdio_read = bnx2x_mdio_read;
10674 	bp->mdio.mdio_write = bnx2x_mdio_write;
10675 
10676 	return 0;
10677 
10678 err_out_release:
10679 	if (atomic_read(&pdev->enable_cnt) == 1)
10680 		pci_release_regions(pdev);
10681 
10682 err_out_disable:
10683 	pci_disable_device(pdev);
10684 	pci_set_drvdata(pdev, NULL);
10685 
10686 err_out:
10687 	return rc;
10688 }
10689 
10690 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10691 						 int *width, int *speed)
10692 {
10693 	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10694 
10695 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10696 
10697 	/* return value of 1=2.5GHz 2=5GHz */
10698 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10699 }
10700 
10701 static int bnx2x_check_firmware(struct bnx2x *bp)
10702 {
10703 	const struct firmware *firmware = bp->firmware;
10704 	struct bnx2x_fw_file_hdr *fw_hdr;
10705 	struct bnx2x_fw_file_section *sections;
10706 	u32 offset, len, num_ops;
10707 	u16 *ops_offsets;
10708 	int i;
10709 	const u8 *fw_ver;
10710 
10711 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
10712 		BNX2X_ERR("Wrong FW size\n");
10713 		return -EINVAL;
10714 	}
10715 
10716 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10717 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
10718 
10719 	/* Make sure none of the offsets and sizes make us read beyond
10720 	 * the end of the firmware data */
10721 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10722 		offset = be32_to_cpu(sections[i].offset);
10723 		len = be32_to_cpu(sections[i].len);
10724 		if (offset + len > firmware->size) {
10725 			BNX2X_ERR("Section %d length is out of bounds\n", i);
10726 			return -EINVAL;
10727 		}
10728 	}
10729 
10730 	/* Likewise for the init_ops offsets */
10731 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10732 	ops_offsets = (u16 *)(firmware->data + offset);
10733 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10734 
10735 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10736 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10737 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
10738 			return -EINVAL;
10739 		}
10740 	}
10741 
10742 	/* Check FW version */
10743 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
10744 	fw_ver = firmware->data + offset;
10745 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10746 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10747 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10748 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10749 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10750 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
10751 		       BCM_5710_FW_MAJOR_VERSION,
10752 		       BCM_5710_FW_MINOR_VERSION,
10753 		       BCM_5710_FW_REVISION_VERSION,
10754 		       BCM_5710_FW_ENGINEERING_VERSION);
10755 		return -EINVAL;
10756 	}
10757 
10758 	return 0;
10759 }
10760 
10761 static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10762 {
10763 	const __be32 *source = (const __be32 *)_source;
10764 	u32 *target = (u32 *)_target;
10765 	u32 i;
10766 
10767 	for (i = 0; i < n/4; i++)
10768 		target[i] = be32_to_cpu(source[i]);
10769 }
10770 
10771 /*
10772    Ops array is stored in the following format:
10773    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10774  */
10775 static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10776 {
10777 	const __be32 *source = (const __be32 *)_source;
10778 	struct raw_op *target = (struct raw_op *)_target;
10779 	u32 i, j, tmp;
10780 
10781 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
10782 		tmp = be32_to_cpu(source[j]);
10783 		target[i].op = (tmp >> 24) & 0xff;
10784 		target[i].offset = tmp & 0xffffff;
10785 		target[i].raw_data = be32_to_cpu(source[j + 1]);
10786 	}
10787 }
10788 
10789 /**
10790  * IRO array is stored in the following format:
10791  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10792  */
10793 static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10794 {
10795 	const __be32 *source = (const __be32 *)_source;
10796 	struct iro *target = (struct iro *)_target;
10797 	u32 i, j, tmp;
10798 
10799 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10800 		target[i].base = be32_to_cpu(source[j]);
10801 		j++;
10802 		tmp = be32_to_cpu(source[j]);
10803 		target[i].m1 = (tmp >> 16) & 0xffff;
10804 		target[i].m2 = tmp & 0xffff;
10805 		j++;
10806 		tmp = be32_to_cpu(source[j]);
10807 		target[i].m3 = (tmp >> 16) & 0xffff;
10808 		target[i].size = tmp & 0xffff;
10809 		j++;
10810 	}
10811 }
10812 
10813 static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10814 {
10815 	const __be16 *source = (const __be16 *)_source;
10816 	u16 *target = (u16 *)_target;
10817 	u32 i;
10818 
10819 	for (i = 0; i < n/2; i++)
10820 		target[i] = be16_to_cpu(source[i]);
10821 }
10822 
10823 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
10824 do {									\
10825 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
10826 	bp->arr = kmalloc(len, GFP_KERNEL);				\
10827 	if (!bp->arr)							\
10828 		goto lbl;						\
10829 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
10830 	     (u8 *)bp->arr, len);					\
10831 } while (0)
10832 
10833 static int bnx2x_init_firmware(struct bnx2x *bp)
10834 {
10835 	const char *fw_file_name;
10836 	struct bnx2x_fw_file_hdr *fw_hdr;
10837 	int rc;
10838 
10839 	if (bp->firmware)
10840 		return 0;
10841 
10842 	if (CHIP_IS_E1(bp))
10843 		fw_file_name = FW_FILE_NAME_E1;
10844 	else if (CHIP_IS_E1H(bp))
10845 		fw_file_name = FW_FILE_NAME_E1H;
10846 	else if (!CHIP_IS_E1x(bp))
10847 		fw_file_name = FW_FILE_NAME_E2;
10848 	else {
10849 		BNX2X_ERR("Unsupported chip revision\n");
10850 		return -EINVAL;
10851 	}
10852 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10853 
10854 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
10855 	if (rc) {
10856 		BNX2X_ERR("Can't load firmware file %s\n",
10857 			  fw_file_name);
10858 		goto request_firmware_exit;
10859 	}
10860 
10861 	rc = bnx2x_check_firmware(bp);
10862 	if (rc) {
10863 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10864 		goto request_firmware_exit;
10865 	}
10866 
10867 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10868 
10869 	/* Initialize the pointers to the init arrays */
10870 	/* Blob */
10871 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10872 
10873 	/* Opcodes */
10874 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10875 
10876 	/* Offsets */
10877 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10878 			    be16_to_cpu_n);
10879 
10880 	/* STORMs firmware */
10881 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10882 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10883 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
10884 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10885 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10886 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10887 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
10888 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
10889 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10890 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10891 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
10892 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10893 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10894 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10895 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
10896 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
10897 	/* IRO */
10898 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10899 
10900 	return 0;
10901 
10902 iro_alloc_err:
10903 	kfree(bp->init_ops_offsets);
10904 init_offsets_alloc_err:
10905 	kfree(bp->init_ops);
10906 init_ops_alloc_err:
10907 	kfree(bp->init_data);
10908 request_firmware_exit:
10909 	release_firmware(bp->firmware);
10910 	bp->firmware = NULL;
10911 
10912 	return rc;
10913 }
10914 
10915 static void bnx2x_release_firmware(struct bnx2x *bp)
10916 {
10917 	kfree(bp->init_ops_offsets);
10918 	kfree(bp->init_ops);
10919 	kfree(bp->init_data);
10920 	release_firmware(bp->firmware);
10921 	bp->firmware = NULL;
10922 }
10923 
10924 
10925 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10926 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10927 	.init_hw_cmn      = bnx2x_init_hw_common,
10928 	.init_hw_port     = bnx2x_init_hw_port,
10929 	.init_hw_func     = bnx2x_init_hw_func,
10930 
10931 	.reset_hw_cmn     = bnx2x_reset_common,
10932 	.reset_hw_port    = bnx2x_reset_port,
10933 	.reset_hw_func    = bnx2x_reset_func,
10934 
10935 	.gunzip_init      = bnx2x_gunzip_init,
10936 	.gunzip_end       = bnx2x_gunzip_end,
10937 
10938 	.init_fw          = bnx2x_init_firmware,
10939 	.release_fw       = bnx2x_release_firmware,
10940 };
10941 
10942 void bnx2x__init_func_obj(struct bnx2x *bp)
10943 {
10944 	/* Prepare DMAE related driver resources */
10945 	bnx2x_setup_dmae(bp);
10946 
10947 	bnx2x_init_func_obj(bp, &bp->func_obj,
10948 			    bnx2x_sp(bp, func_rdata),
10949 			    bnx2x_sp_mapping(bp, func_rdata),
10950 			    &bnx2x_func_sp_drv);
10951 }
10952 
10953 /* must be called after sriov-enable */
10954 static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10955 {
10956 	int cid_count = BNX2X_L2_CID_COUNT(bp);
10957 
10958 #ifdef BCM_CNIC
10959 	cid_count += CNIC_CID_MAX;
10960 #endif
10961 	return roundup(cid_count, QM_CID_ROUND);
10962 }
10963 
10964 /**
10965  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10966  *
10967  * @dev:	pci device
10968  *
10969  */
10970 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
10971 {
10972 	int pos;
10973 	u16 control;
10974 
10975 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
10976 
10977 	/*
10978 	 * If MSI-X is not supported - return number of SBs needed to support
10979 	 * one fast path queue: one FP queue + SB for CNIC
10980 	 */
10981 	if (!pos)
10982 		return 1 + CNIC_PRESENT;
10983 
10984 	/*
10985 	 * The value in the PCI configuration space is the index of the last
10986 	 * entry, namely one less than the actual size of the table, which is
10987 	 * exactly what we want to return from this function: number of all SBs
10988 	 * without the default SB.
10989 	 */
10990 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
10991 	return control & PCI_MSIX_FLAGS_QSIZE;
10992 }
10993 
10994 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
10995 				    const struct pci_device_id *ent)
10996 {
10997 	struct net_device *dev = NULL;
10998 	struct bnx2x *bp;
10999 	int pcie_width, pcie_speed;
11000 	int rc, max_non_def_sbs;
11001 	int rx_count, tx_count, rss_count;
11002 	/*
11003 	 * An estimated maximum supported CoS number according to the chip
11004 	 * version.
11005 	 * We will try to roughly estimate the maximum number of CoSes this chip
11006 	 * may support in order to minimize the memory allocated for Tx
11007 	 * netdev_queue's. This number will be accurately calculated during the
11008 	 * initialization of bp->max_cos based on the chip versions AND chip
11009 	 * revision in the bnx2x_init_bp().
11010 	 */
11011 	u8 max_cos_est = 0;
11012 
11013 	switch (ent->driver_data) {
11014 	case BCM57710:
11015 	case BCM57711:
11016 	case BCM57711E:
11017 		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11018 		break;
11019 
11020 	case BCM57712:
11021 	case BCM57712_MF:
11022 		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11023 		break;
11024 
11025 	case BCM57800:
11026 	case BCM57800_MF:
11027 	case BCM57810:
11028 	case BCM57810_MF:
11029 	case BCM57840:
11030 	case BCM57840_MF:
11031 		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11032 		break;
11033 
11034 	default:
11035 		pr_err("Unknown board_type (%ld), aborting\n",
11036 			   ent->driver_data);
11037 		return -ENODEV;
11038 	}
11039 
11040 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11041 
11042 	/* !!! FIXME !!!
11043 	 * Do not allow the maximum SB count to grow above 16
11044 	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11045 	 * We will use the FP_SB_MAX_E1x macro for this matter.
11046 	 */
11047 	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11048 
11049 	WARN_ON(!max_non_def_sbs);
11050 
11051 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
11052 	rss_count = max_non_def_sbs - CNIC_PRESENT;
11053 
11054 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11055 	rx_count = rss_count + FCOE_PRESENT;
11056 
11057 	/*
11058 	 * Maximum number of netdev Tx queues:
11059 	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
11060 	 */
11061 	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11062 
11063 	/* dev zeroed in init_etherdev */
11064 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11065 	if (!dev)
11066 		return -ENOMEM;
11067 
11068 	bp = netdev_priv(dev);
11069 
11070 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
11071 			  tx_count, rx_count);
11072 
11073 	bp->igu_sb_cnt = max_non_def_sbs;
11074 	bp->msg_enable = debug;
11075 	pci_set_drvdata(pdev, dev);
11076 
11077 	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11078 	if (rc < 0) {
11079 		free_netdev(dev);
11080 		return rc;
11081 	}
11082 
11083 	BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs);
11084 
11085 	rc = bnx2x_init_bp(bp);
11086 	if (rc)
11087 		goto init_one_exit;
11088 
11089 	/*
11090 	 * Map doorbels here as we need the real value of bp->max_cos which
11091 	 * is initialized in bnx2x_init_bp().
11092 	 */
11093 	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11094 					min_t(u64, BNX2X_DB_SIZE(bp),
11095 					      pci_resource_len(pdev, 2)));
11096 	if (!bp->doorbells) {
11097 		dev_err(&bp->pdev->dev,
11098 			"Cannot map doorbell space, aborting\n");
11099 		rc = -ENOMEM;
11100 		goto init_one_exit;
11101 	}
11102 
11103 	/* calc qm_cid_count */
11104 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11105 
11106 #ifdef BCM_CNIC
11107 	/* disable FCOE L2 queue for E1x */
11108 	if (CHIP_IS_E1x(bp))
11109 		bp->flags |= NO_FCOE_FLAG;
11110 
11111 #endif
11112 
11113 	/* Configure interrupt mode: try to enable MSI-X/MSI if
11114 	 * needed, set bp->num_queues appropriately.
11115 	 */
11116 	bnx2x_set_int_mode(bp);
11117 
11118 	/* Add all NAPI objects */
11119 	bnx2x_add_all_napi(bp);
11120 
11121 	rc = register_netdev(dev);
11122 	if (rc) {
11123 		dev_err(&pdev->dev, "Cannot register net device\n");
11124 		goto init_one_exit;
11125 	}
11126 
11127 #ifdef BCM_CNIC
11128 	if (!NO_FCOE(bp)) {
11129 		/* Add storage MAC address */
11130 		rtnl_lock();
11131 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11132 		rtnl_unlock();
11133 	}
11134 #endif
11135 
11136 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11137 
11138 	BNX2X_DEV_INFO(
11139 		"%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11140 		    board_info[ent->driver_data].name,
11141 		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11142 		    pcie_width,
11143 		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11144 		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11145 		    "5GHz (Gen2)" : "2.5GHz",
11146 		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
11147 
11148 	return 0;
11149 
11150 init_one_exit:
11151 	if (bp->regview)
11152 		iounmap(bp->regview);
11153 
11154 	if (bp->doorbells)
11155 		iounmap(bp->doorbells);
11156 
11157 	free_netdev(dev);
11158 
11159 	if (atomic_read(&pdev->enable_cnt) == 1)
11160 		pci_release_regions(pdev);
11161 
11162 	pci_disable_device(pdev);
11163 	pci_set_drvdata(pdev, NULL);
11164 
11165 	return rc;
11166 }
11167 
11168 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11169 {
11170 	struct net_device *dev = pci_get_drvdata(pdev);
11171 	struct bnx2x *bp;
11172 
11173 	if (!dev) {
11174 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11175 		return;
11176 	}
11177 	bp = netdev_priv(dev);
11178 
11179 #ifdef BCM_CNIC
11180 	/* Delete storage MAC address */
11181 	if (!NO_FCOE(bp)) {
11182 		rtnl_lock();
11183 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11184 		rtnl_unlock();
11185 	}
11186 #endif
11187 
11188 #ifdef BCM_DCBNL
11189 	/* Delete app tlvs from dcbnl */
11190 	bnx2x_dcbnl_update_applist(bp, true);
11191 #endif
11192 
11193 	unregister_netdev(dev);
11194 
11195 	/* Delete all NAPI objects */
11196 	bnx2x_del_all_napi(bp);
11197 
11198 	/* Power on: we can't let PCI layer write to us while we are in D3 */
11199 	bnx2x_set_power_state(bp, PCI_D0);
11200 
11201 	/* Disable MSI/MSI-X */
11202 	bnx2x_disable_msi(bp);
11203 
11204 	/* Power off */
11205 	bnx2x_set_power_state(bp, PCI_D3hot);
11206 
11207 	/* Make sure RESET task is not scheduled before continuing */
11208 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
11209 
11210 	if (bp->regview)
11211 		iounmap(bp->regview);
11212 
11213 	if (bp->doorbells)
11214 		iounmap(bp->doorbells);
11215 
11216 	bnx2x_release_firmware(bp);
11217 
11218 	bnx2x_free_mem_bp(bp);
11219 
11220 	free_netdev(dev);
11221 
11222 	if (atomic_read(&pdev->enable_cnt) == 1)
11223 		pci_release_regions(pdev);
11224 
11225 	pci_disable_device(pdev);
11226 	pci_set_drvdata(pdev, NULL);
11227 }
11228 
11229 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11230 {
11231 	int i;
11232 
11233 	bp->state = BNX2X_STATE_ERROR;
11234 
11235 	bp->rx_mode = BNX2X_RX_MODE_NONE;
11236 
11237 #ifdef BCM_CNIC
11238 	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11239 #endif
11240 	/* Stop Tx */
11241 	bnx2x_tx_disable(bp);
11242 
11243 	bnx2x_netif_stop(bp, 0);
11244 
11245 	del_timer_sync(&bp->timer);
11246 
11247 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11248 
11249 	/* Release IRQs */
11250 	bnx2x_free_irq(bp);
11251 
11252 	/* Free SKBs, SGEs, TPA pool and driver internals */
11253 	bnx2x_free_skbs(bp);
11254 
11255 	for_each_rx_queue(bp, i)
11256 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11257 
11258 	bnx2x_free_mem(bp);
11259 
11260 	bp->state = BNX2X_STATE_CLOSED;
11261 
11262 	netif_carrier_off(bp->dev);
11263 
11264 	return 0;
11265 }
11266 
11267 static void bnx2x_eeh_recover(struct bnx2x *bp)
11268 {
11269 	u32 val;
11270 
11271 	mutex_init(&bp->port.phy_mutex);
11272 
11273 
11274 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11275 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11276 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11277 		BNX2X_ERR("BAD MCP validity signature\n");
11278 }
11279 
11280 /**
11281  * bnx2x_io_error_detected - called when PCI error is detected
11282  * @pdev: Pointer to PCI device
11283  * @state: The current pci connection state
11284  *
11285  * This function is called after a PCI bus error affecting
11286  * this device has been detected.
11287  */
11288 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11289 						pci_channel_state_t state)
11290 {
11291 	struct net_device *dev = pci_get_drvdata(pdev);
11292 	struct bnx2x *bp = netdev_priv(dev);
11293 
11294 	rtnl_lock();
11295 
11296 	netif_device_detach(dev);
11297 
11298 	if (state == pci_channel_io_perm_failure) {
11299 		rtnl_unlock();
11300 		return PCI_ERS_RESULT_DISCONNECT;
11301 	}
11302 
11303 	if (netif_running(dev))
11304 		bnx2x_eeh_nic_unload(bp);
11305 
11306 	pci_disable_device(pdev);
11307 
11308 	rtnl_unlock();
11309 
11310 	/* Request a slot reset */
11311 	return PCI_ERS_RESULT_NEED_RESET;
11312 }
11313 
11314 /**
11315  * bnx2x_io_slot_reset - called after the PCI bus has been reset
11316  * @pdev: Pointer to PCI device
11317  *
11318  * Restart the card from scratch, as if from a cold-boot.
11319  */
11320 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11321 {
11322 	struct net_device *dev = pci_get_drvdata(pdev);
11323 	struct bnx2x *bp = netdev_priv(dev);
11324 
11325 	rtnl_lock();
11326 
11327 	if (pci_enable_device(pdev)) {
11328 		dev_err(&pdev->dev,
11329 			"Cannot re-enable PCI device after reset\n");
11330 		rtnl_unlock();
11331 		return PCI_ERS_RESULT_DISCONNECT;
11332 	}
11333 
11334 	pci_set_master(pdev);
11335 	pci_restore_state(pdev);
11336 
11337 	if (netif_running(dev))
11338 		bnx2x_set_power_state(bp, PCI_D0);
11339 
11340 	rtnl_unlock();
11341 
11342 	return PCI_ERS_RESULT_RECOVERED;
11343 }
11344 
11345 /**
11346  * bnx2x_io_resume - called when traffic can start flowing again
11347  * @pdev: Pointer to PCI device
11348  *
11349  * This callback is called when the error recovery driver tells us that
11350  * its OK to resume normal operation.
11351  */
11352 static void bnx2x_io_resume(struct pci_dev *pdev)
11353 {
11354 	struct net_device *dev = pci_get_drvdata(pdev);
11355 	struct bnx2x *bp = netdev_priv(dev);
11356 
11357 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11358 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
11359 		return;
11360 	}
11361 
11362 	rtnl_lock();
11363 
11364 	bnx2x_eeh_recover(bp);
11365 
11366 	if (netif_running(dev))
11367 		bnx2x_nic_load(bp, LOAD_NORMAL);
11368 
11369 	netif_device_attach(dev);
11370 
11371 	rtnl_unlock();
11372 }
11373 
11374 static struct pci_error_handlers bnx2x_err_handler = {
11375 	.error_detected = bnx2x_io_error_detected,
11376 	.slot_reset     = bnx2x_io_slot_reset,
11377 	.resume         = bnx2x_io_resume,
11378 };
11379 
11380 static struct pci_driver bnx2x_pci_driver = {
11381 	.name        = DRV_MODULE_NAME,
11382 	.id_table    = bnx2x_pci_tbl,
11383 	.probe       = bnx2x_init_one,
11384 	.remove      = __devexit_p(bnx2x_remove_one),
11385 	.suspend     = bnx2x_suspend,
11386 	.resume      = bnx2x_resume,
11387 	.err_handler = &bnx2x_err_handler,
11388 };
11389 
11390 static int __init bnx2x_init(void)
11391 {
11392 	int ret;
11393 
11394 	pr_info("%s", version);
11395 
11396 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
11397 	if (bnx2x_wq == NULL) {
11398 		pr_err("Cannot create workqueue\n");
11399 		return -ENOMEM;
11400 	}
11401 
11402 	ret = pci_register_driver(&bnx2x_pci_driver);
11403 	if (ret) {
11404 		pr_err("Cannot register driver\n");
11405 		destroy_workqueue(bnx2x_wq);
11406 	}
11407 	return ret;
11408 }
11409 
11410 static void __exit bnx2x_cleanup(void)
11411 {
11412 	pci_unregister_driver(&bnx2x_pci_driver);
11413 
11414 	destroy_workqueue(bnx2x_wq);
11415 }
11416 
11417 void bnx2x_notify_link_changed(struct bnx2x *bp)
11418 {
11419 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11420 }
11421 
11422 module_init(bnx2x_init);
11423 module_exit(bnx2x_cleanup);
11424 
11425 #ifdef BCM_CNIC
11426 /**
11427  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11428  *
11429  * @bp:		driver handle
11430  * @set:	set or clear the CAM entry
11431  *
11432  * This function will wait until the ramdord completion returns.
11433  * Return 0 if success, -ENODEV if ramrod doesn't return.
11434  */
11435 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11436 {
11437 	unsigned long ramrod_flags = 0;
11438 
11439 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11440 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11441 				 &bp->iscsi_l2_mac_obj, true,
11442 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11443 }
11444 
11445 /* count denotes the number of new completions we have seen */
11446 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11447 {
11448 	struct eth_spe *spe;
11449 
11450 #ifdef BNX2X_STOP_ON_ERROR
11451 	if (unlikely(bp->panic))
11452 		return;
11453 #endif
11454 
11455 	spin_lock_bh(&bp->spq_lock);
11456 	BUG_ON(bp->cnic_spq_pending < count);
11457 	bp->cnic_spq_pending -= count;
11458 
11459 
11460 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11461 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11462 				& SPE_HDR_CONN_TYPE) >>
11463 				SPE_HDR_CONN_TYPE_SHIFT;
11464 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11465 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11466 
11467 		/* Set validation for iSCSI L2 client before sending SETUP
11468 		 *  ramrod
11469 		 */
11470 		if (type == ETH_CONNECTION_TYPE) {
11471 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11472 				bnx2x_set_ctx_validation(bp, &bp->context.
11473 					vcxt[BNX2X_ISCSI_ETH_CID].eth,
11474 					BNX2X_ISCSI_ETH_CID);
11475 		}
11476 
11477 		/*
11478 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
11479 		 * and in the air. We also check that number of outstanding
11480 		 * COMMON ramrods is not more than the EQ and SPQ can
11481 		 * accommodate.
11482 		 */
11483 		if (type == ETH_CONNECTION_TYPE) {
11484 			if (!atomic_read(&bp->cq_spq_left))
11485 				break;
11486 			else
11487 				atomic_dec(&bp->cq_spq_left);
11488 		} else if (type == NONE_CONNECTION_TYPE) {
11489 			if (!atomic_read(&bp->eq_spq_left))
11490 				break;
11491 			else
11492 				atomic_dec(&bp->eq_spq_left);
11493 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
11494 			   (type == FCOE_CONNECTION_TYPE)) {
11495 			if (bp->cnic_spq_pending >=
11496 			    bp->cnic_eth_dev.max_kwqe_pending)
11497 				break;
11498 			else
11499 				bp->cnic_spq_pending++;
11500 		} else {
11501 			BNX2X_ERR("Unknown SPE type: %d\n", type);
11502 			bnx2x_panic();
11503 			break;
11504 		}
11505 
11506 		spe = bnx2x_sp_get_next(bp);
11507 		*spe = *bp->cnic_kwq_cons;
11508 
11509 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
11510 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11511 
11512 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11513 			bp->cnic_kwq_cons = bp->cnic_kwq;
11514 		else
11515 			bp->cnic_kwq_cons++;
11516 	}
11517 	bnx2x_sp_prod_update(bp);
11518 	spin_unlock_bh(&bp->spq_lock);
11519 }
11520 
11521 static int bnx2x_cnic_sp_queue(struct net_device *dev,
11522 			       struct kwqe_16 *kwqes[], u32 count)
11523 {
11524 	struct bnx2x *bp = netdev_priv(dev);
11525 	int i;
11526 
11527 #ifdef BNX2X_STOP_ON_ERROR
11528 	if (unlikely(bp->panic)) {
11529 		BNX2X_ERR("Can't post to SP queue while panic\n");
11530 		return -EIO;
11531 	}
11532 #endif
11533 
11534 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
11535 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
11536 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
11537 		return -EAGAIN;
11538 	}
11539 
11540 	spin_lock_bh(&bp->spq_lock);
11541 
11542 	for (i = 0; i < count; i++) {
11543 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11544 
11545 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11546 			break;
11547 
11548 		*bp->cnic_kwq_prod = *spe;
11549 
11550 		bp->cnic_kwq_pending++;
11551 
11552 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
11553 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
11554 		   spe->data.update_data_addr.hi,
11555 		   spe->data.update_data_addr.lo,
11556 		   bp->cnic_kwq_pending);
11557 
11558 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11559 			bp->cnic_kwq_prod = bp->cnic_kwq;
11560 		else
11561 			bp->cnic_kwq_prod++;
11562 	}
11563 
11564 	spin_unlock_bh(&bp->spq_lock);
11565 
11566 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11567 		bnx2x_cnic_sp_post(bp, 0);
11568 
11569 	return i;
11570 }
11571 
11572 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11573 {
11574 	struct cnic_ops *c_ops;
11575 	int rc = 0;
11576 
11577 	mutex_lock(&bp->cnic_mutex);
11578 	c_ops = rcu_dereference_protected(bp->cnic_ops,
11579 					  lockdep_is_held(&bp->cnic_mutex));
11580 	if (c_ops)
11581 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11582 	mutex_unlock(&bp->cnic_mutex);
11583 
11584 	return rc;
11585 }
11586 
11587 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11588 {
11589 	struct cnic_ops *c_ops;
11590 	int rc = 0;
11591 
11592 	rcu_read_lock();
11593 	c_ops = rcu_dereference(bp->cnic_ops);
11594 	if (c_ops)
11595 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11596 	rcu_read_unlock();
11597 
11598 	return rc;
11599 }
11600 
11601 /*
11602  * for commands that have no data
11603  */
11604 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11605 {
11606 	struct cnic_ctl_info ctl = {0};
11607 
11608 	ctl.cmd = cmd;
11609 
11610 	return bnx2x_cnic_ctl_send(bp, &ctl);
11611 }
11612 
11613 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11614 {
11615 	struct cnic_ctl_info ctl = {0};
11616 
11617 	/* first we tell CNIC and only then we count this as a completion */
11618 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11619 	ctl.data.comp.cid = cid;
11620 	ctl.data.comp.error = err;
11621 
11622 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
11623 	bnx2x_cnic_sp_post(bp, 0);
11624 }
11625 
11626 
11627 /* Called with netif_addr_lock_bh() taken.
11628  * Sets an rx_mode config for an iSCSI ETH client.
11629  * Doesn't block.
11630  * Completion should be checked outside.
11631  */
11632 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11633 {
11634 	unsigned long accept_flags = 0, ramrod_flags = 0;
11635 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11636 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11637 
11638 	if (start) {
11639 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
11640 		 * because it's the only way for UIO Queue to accept
11641 		 * multicasts (in non-promiscuous mode only one Queue per
11642 		 * function will receive multicast packets (leading in our
11643 		 * case).
11644 		 */
11645 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11646 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11647 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11648 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11649 
11650 		/* Clear STOP_PENDING bit if START is requested */
11651 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11652 
11653 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11654 	} else
11655 		/* Clear START_PENDING bit if STOP is requested */
11656 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11657 
11658 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11659 		set_bit(sched_state, &bp->sp_state);
11660 	else {
11661 		__set_bit(RAMROD_RX, &ramrod_flags);
11662 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11663 				    ramrod_flags);
11664 	}
11665 }
11666 
11667 
11668 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11669 {
11670 	struct bnx2x *bp = netdev_priv(dev);
11671 	int rc = 0;
11672 
11673 	switch (ctl->cmd) {
11674 	case DRV_CTL_CTXTBL_WR_CMD: {
11675 		u32 index = ctl->data.io.offset;
11676 		dma_addr_t addr = ctl->data.io.dma_addr;
11677 
11678 		bnx2x_ilt_wr(bp, index, addr);
11679 		break;
11680 	}
11681 
11682 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11683 		int count = ctl->data.credit.credit_count;
11684 
11685 		bnx2x_cnic_sp_post(bp, count);
11686 		break;
11687 	}
11688 
11689 	/* rtnl_lock is held.  */
11690 	case DRV_CTL_START_L2_CMD: {
11691 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11692 		unsigned long sp_bits = 0;
11693 
11694 		/* Configure the iSCSI classification object */
11695 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11696 				   cp->iscsi_l2_client_id,
11697 				   cp->iscsi_l2_cid, BP_FUNC(bp),
11698 				   bnx2x_sp(bp, mac_rdata),
11699 				   bnx2x_sp_mapping(bp, mac_rdata),
11700 				   BNX2X_FILTER_MAC_PENDING,
11701 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11702 				   &bp->macs_pool);
11703 
11704 		/* Set iSCSI MAC address */
11705 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11706 		if (rc)
11707 			break;
11708 
11709 		mmiowb();
11710 		barrier();
11711 
11712 		/* Start accepting on iSCSI L2 ring */
11713 
11714 		netif_addr_lock_bh(dev);
11715 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
11716 		netif_addr_unlock_bh(dev);
11717 
11718 		/* bits to wait on */
11719 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11720 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11721 
11722 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11723 			BNX2X_ERR("rx_mode completion timed out!\n");
11724 
11725 		break;
11726 	}
11727 
11728 	/* rtnl_lock is held.  */
11729 	case DRV_CTL_STOP_L2_CMD: {
11730 		unsigned long sp_bits = 0;
11731 
11732 		/* Stop accepting on iSCSI L2 ring */
11733 		netif_addr_lock_bh(dev);
11734 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
11735 		netif_addr_unlock_bh(dev);
11736 
11737 		/* bits to wait on */
11738 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11739 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11740 
11741 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
11742 			BNX2X_ERR("rx_mode completion timed out!\n");
11743 
11744 		mmiowb();
11745 		barrier();
11746 
11747 		/* Unset iSCSI L2 MAC */
11748 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11749 					BNX2X_ISCSI_ETH_MAC, true);
11750 		break;
11751 	}
11752 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11753 		int count = ctl->data.credit.credit_count;
11754 
11755 		smp_mb__before_atomic_inc();
11756 		atomic_add(count, &bp->cq_spq_left);
11757 		smp_mb__after_atomic_inc();
11758 		break;
11759 	}
11760 	case DRV_CTL_ULP_REGISTER_CMD: {
11761 		int ulp_type = ctl->data.ulp_type;
11762 
11763 		if (CHIP_IS_E3(bp)) {
11764 			int idx = BP_FW_MB_IDX(bp);
11765 			u32 cap;
11766 
11767 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11768 			if (ulp_type == CNIC_ULP_ISCSI)
11769 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11770 			else if (ulp_type == CNIC_ULP_FCOE)
11771 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11772 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11773 		}
11774 		break;
11775 	}
11776 	case DRV_CTL_ULP_UNREGISTER_CMD: {
11777 		int ulp_type = ctl->data.ulp_type;
11778 
11779 		if (CHIP_IS_E3(bp)) {
11780 			int idx = BP_FW_MB_IDX(bp);
11781 			u32 cap;
11782 
11783 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11784 			if (ulp_type == CNIC_ULP_ISCSI)
11785 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11786 			else if (ulp_type == CNIC_ULP_FCOE)
11787 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11788 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11789 		}
11790 		break;
11791 	}
11792 
11793 	default:
11794 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
11795 		rc = -EINVAL;
11796 	}
11797 
11798 	return rc;
11799 }
11800 
11801 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11802 {
11803 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11804 
11805 	if (bp->flags & USING_MSIX_FLAG) {
11806 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11807 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11808 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
11809 	} else {
11810 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11811 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11812 	}
11813 	if (!CHIP_IS_E1x(bp))
11814 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11815 	else
11816 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11817 
11818 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
11819 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11820 	cp->irq_arr[1].status_blk = bp->def_status_blk;
11821 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11822 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11823 
11824 	cp->num_irq = 2;
11825 }
11826 
11827 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11828 			       void *data)
11829 {
11830 	struct bnx2x *bp = netdev_priv(dev);
11831 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11832 
11833 	if (ops == NULL) {
11834 		BNX2X_ERR("NULL ops received\n");
11835 		return -EINVAL;
11836 	}
11837 
11838 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11839 	if (!bp->cnic_kwq)
11840 		return -ENOMEM;
11841 
11842 	bp->cnic_kwq_cons = bp->cnic_kwq;
11843 	bp->cnic_kwq_prod = bp->cnic_kwq;
11844 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11845 
11846 	bp->cnic_spq_pending = 0;
11847 	bp->cnic_kwq_pending = 0;
11848 
11849 	bp->cnic_data = data;
11850 
11851 	cp->num_irq = 0;
11852 	cp->drv_state |= CNIC_DRV_STATE_REGD;
11853 	cp->iro_arr = bp->iro_arr;
11854 
11855 	bnx2x_setup_cnic_irq_info(bp);
11856 
11857 	rcu_assign_pointer(bp->cnic_ops, ops);
11858 
11859 	return 0;
11860 }
11861 
11862 static int bnx2x_unregister_cnic(struct net_device *dev)
11863 {
11864 	struct bnx2x *bp = netdev_priv(dev);
11865 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11866 
11867 	mutex_lock(&bp->cnic_mutex);
11868 	cp->drv_state = 0;
11869 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
11870 	mutex_unlock(&bp->cnic_mutex);
11871 	synchronize_rcu();
11872 	kfree(bp->cnic_kwq);
11873 	bp->cnic_kwq = NULL;
11874 
11875 	return 0;
11876 }
11877 
11878 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11879 {
11880 	struct bnx2x *bp = netdev_priv(dev);
11881 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11882 
11883 	/* If both iSCSI and FCoE are disabled - return NULL in
11884 	 * order to indicate CNIC that it should not try to work
11885 	 * with this device.
11886 	 */
11887 	if (NO_ISCSI(bp) && NO_FCOE(bp))
11888 		return NULL;
11889 
11890 	cp->drv_owner = THIS_MODULE;
11891 	cp->chip_id = CHIP_ID(bp);
11892 	cp->pdev = bp->pdev;
11893 	cp->io_base = bp->regview;
11894 	cp->io_base2 = bp->doorbells;
11895 	cp->max_kwqe_pending = 8;
11896 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11897 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11898 			     bnx2x_cid_ilt_lines(bp);
11899 	cp->ctx_tbl_len = CNIC_ILT_LINES;
11900 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11901 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11902 	cp->drv_ctl = bnx2x_drv_ctl;
11903 	cp->drv_register_cnic = bnx2x_register_cnic;
11904 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11905 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11906 	cp->iscsi_l2_client_id =
11907 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11908 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11909 
11910 	if (NO_ISCSI_OOO(bp))
11911 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11912 
11913 	if (NO_ISCSI(bp))
11914 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11915 
11916 	if (NO_FCOE(bp))
11917 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11918 
11919 	BNX2X_DEV_INFO(
11920 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
11921 	   cp->ctx_blk_size,
11922 	   cp->ctx_tbl_offset,
11923 	   cp->ctx_tbl_len,
11924 	   cp->starting_cid);
11925 	return cp;
11926 }
11927 EXPORT_SYMBOL(bnx2x_cnic_probe);
11928 
11929 #endif /* BCM_CNIC */
11930 
11931