1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65 
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION					\
70 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
72 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
73 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77 
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT		(5*HZ)
80 
81 static char version[] =
82 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87 		   "BCM57710/57711/57711E/"
88 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89 		   "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95 
96 
97 int num_queues;
98 module_param(num_queues, int, 0);
99 MODULE_PARM_DESC(num_queues,
100 		 " Set number of queues (default is as a number of CPUs)");
101 
102 static int disable_tpa;
103 module_param(disable_tpa, int, 0);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105 
106 #define INT_MODE_INTx			1
107 #define INT_MODE_MSI			2
108 int int_mode;
109 module_param(int_mode, int, 0);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111 				"(1 INT#x; 2 MSI)");
112 
113 static int dropless_fc;
114 module_param(dropless_fc, int, 0);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116 
117 static int mrrs = -1;
118 module_param(mrrs, int, 0);
119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
120 
121 static int debug;
122 module_param(debug, int, 0);
123 MODULE_PARM_DESC(debug, " Default debug msglevel");
124 
125 
126 
127 struct workqueue_struct *bnx2x_wq;
128 
129 struct bnx2x_mac_vals {
130 	u32 xmac_addr;
131 	u32 xmac_val;
132 	u32 emac_addr;
133 	u32 emac_val;
134 	u32 umac_addr;
135 	u32 umac_val;
136 	u32 bmac_addr;
137 	u32 bmac_val[2];
138 };
139 
140 enum bnx2x_board_type {
141 	BCM57710 = 0,
142 	BCM57711,
143 	BCM57711E,
144 	BCM57712,
145 	BCM57712_MF,
146 	BCM57712_VF,
147 	BCM57800,
148 	BCM57800_MF,
149 	BCM57800_VF,
150 	BCM57810,
151 	BCM57810_MF,
152 	BCM57810_VF,
153 	BCM57840_4_10,
154 	BCM57840_2_20,
155 	BCM57840_MF,
156 	BCM57840_VF,
157 	BCM57811,
158 	BCM57811_MF,
159 	BCM57840_O,
160 	BCM57840_MFO,
161 	BCM57811_VF
162 };
163 
164 /* indexed by board_type, above */
165 static struct {
166 	char *name;
167 } board_info[] = {
168 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
169 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
170 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
171 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
172 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
173 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
174 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
175 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
176 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
177 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
178 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
179 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
180 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
181 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
182 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
184 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
185 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
186 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
187 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
188 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
189 };
190 
191 #ifndef PCI_DEVICE_ID_NX2_57710
192 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57711
195 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57711E
198 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712
201 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57712_MF
204 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57712_VF
207 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800
210 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57800_MF
213 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57800_VF
216 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57810
219 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57810_MF
222 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57840_O
225 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57810_VF
228 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
231 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
234 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
237 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_MF
240 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57840_VF
243 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811
246 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57811_MF
249 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
250 #endif
251 #ifndef PCI_DEVICE_ID_NX2_57811_VF
252 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
253 #endif
254 
255 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
273 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
274 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
275 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
276 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
277 	{ 0 }
278 };
279 
280 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
281 
282 /* Global resources for unloading a previously loaded device */
283 #define BNX2X_PREV_WAIT_NEEDED 1
284 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
285 static LIST_HEAD(bnx2x_prev_list);
286 /****************************************************************************
287 * General service functions
288 ****************************************************************************/
289 
290 static void __storm_memset_dma_mapping(struct bnx2x *bp,
291 				       u32 addr, dma_addr_t mapping)
292 {
293 	REG_WR(bp,  addr, U64_LO(mapping));
294 	REG_WR(bp,  addr + 4, U64_HI(mapping));
295 }
296 
297 static void storm_memset_spq_addr(struct bnx2x *bp,
298 				  dma_addr_t mapping, u16 abs_fid)
299 {
300 	u32 addr = XSEM_REG_FAST_MEMORY +
301 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
302 
303 	__storm_memset_dma_mapping(bp, addr, mapping);
304 }
305 
306 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
307 				  u16 pf_id)
308 {
309 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
310 		pf_id);
311 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
312 		pf_id);
313 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
314 		pf_id);
315 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
316 		pf_id);
317 }
318 
319 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
320 				 u8 enable)
321 {
322 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
323 		enable);
324 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
325 		enable);
326 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
327 		enable);
328 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
329 		enable);
330 }
331 
332 static void storm_memset_eq_data(struct bnx2x *bp,
333 				 struct event_ring_data *eq_data,
334 				u16 pfid)
335 {
336 	size_t size = sizeof(struct event_ring_data);
337 
338 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
339 
340 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
341 }
342 
343 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
344 				 u16 pfid)
345 {
346 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
347 	REG_WR16(bp, addr, eq_prod);
348 }
349 
350 /* used only at init
351  * locking is done by mcp
352  */
353 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
354 {
355 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
356 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
357 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
358 			       PCICFG_VENDOR_ID_OFFSET);
359 }
360 
361 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
362 {
363 	u32 val;
364 
365 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
366 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
367 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
368 			       PCICFG_VENDOR_ID_OFFSET);
369 
370 	return val;
371 }
372 
373 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
374 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
375 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
376 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
377 #define DMAE_DP_DST_NONE	"dst_addr [none]"
378 
379 void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae, int msglvl)
380 {
381 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
382 
383 	switch (dmae->opcode & DMAE_COMMAND_DST) {
384 	case DMAE_CMD_DST_PCI:
385 		if (src_type == DMAE_CMD_SRC_PCI)
386 			DP(msglvl, "DMAE: opcode 0x%08x\n"
387 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
388 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
389 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
390 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
391 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
392 			   dmae->comp_val);
393 		else
394 			DP(msglvl, "DMAE: opcode 0x%08x\n"
395 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
396 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
397 			   dmae->opcode, dmae->src_addr_lo >> 2,
398 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
399 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
400 			   dmae->comp_val);
401 		break;
402 	case DMAE_CMD_DST_GRC:
403 		if (src_type == DMAE_CMD_SRC_PCI)
404 			DP(msglvl, "DMAE: opcode 0x%08x\n"
405 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
406 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
407 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
408 			   dmae->len, dmae->dst_addr_lo >> 2,
409 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
410 			   dmae->comp_val);
411 		else
412 			DP(msglvl, "DMAE: opcode 0x%08x\n"
413 			   "src [%08x], len [%d*4], dst [%08x]\n"
414 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
415 			   dmae->opcode, dmae->src_addr_lo >> 2,
416 			   dmae->len, dmae->dst_addr_lo >> 2,
417 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
418 			   dmae->comp_val);
419 		break;
420 	default:
421 		if (src_type == DMAE_CMD_SRC_PCI)
422 			DP(msglvl, "DMAE: opcode 0x%08x\n"
423 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
424 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
425 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
426 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
427 			   dmae->comp_val);
428 		else
429 			DP(msglvl, "DMAE: opcode 0x%08x\n"
430 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
431 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
432 			   dmae->opcode, dmae->src_addr_lo >> 2,
433 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
434 			   dmae->comp_val);
435 		break;
436 	}
437 }
438 
439 /* copy command into DMAE command memory and set DMAE command go */
440 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
441 {
442 	u32 cmd_offset;
443 	int i;
444 
445 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
446 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
447 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
448 	}
449 	REG_WR(bp, dmae_reg_go_c[idx], 1);
450 }
451 
452 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
453 {
454 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
455 			   DMAE_CMD_C_ENABLE);
456 }
457 
458 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
459 {
460 	return opcode & ~DMAE_CMD_SRC_RESET;
461 }
462 
463 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
464 			     bool with_comp, u8 comp_type)
465 {
466 	u32 opcode = 0;
467 
468 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
469 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
470 
471 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
472 
473 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
474 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
475 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
476 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
477 
478 #ifdef __BIG_ENDIAN
479 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
480 #else
481 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
482 #endif
483 	if (with_comp)
484 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
485 	return opcode;
486 }
487 
488 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
489 				      struct dmae_command *dmae,
490 				      u8 src_type, u8 dst_type)
491 {
492 	memset(dmae, 0, sizeof(struct dmae_command));
493 
494 	/* set the opcode */
495 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
496 					 true, DMAE_COMP_PCI);
497 
498 	/* fill in the completion parameters */
499 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
500 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
501 	dmae->comp_val = DMAE_COMP_VAL;
502 }
503 
504 /* issue a dmae command over the init-channel and wait for completion */
505 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
506 {
507 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
508 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
509 	int rc = 0;
510 
511 	/*
512 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
513 	 * as long as this code is called both from syscall context and
514 	 * from ndo_set_rx_mode() flow that may be called from BH.
515 	 */
516 	spin_lock_bh(&bp->dmae_lock);
517 
518 	/* reset completion */
519 	*wb_comp = 0;
520 
521 	/* post the command on the channel used for initializations */
522 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
523 
524 	/* wait for completion */
525 	udelay(5);
526 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
527 
528 		if (!cnt ||
529 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
530 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
531 			BNX2X_ERR("DMAE timeout!\n");
532 			rc = DMAE_TIMEOUT;
533 			goto unlock;
534 		}
535 		cnt--;
536 		udelay(50);
537 	}
538 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
539 		BNX2X_ERR("DMAE PCI error!\n");
540 		rc = DMAE_PCI_ERROR;
541 	}
542 
543 unlock:
544 	spin_unlock_bh(&bp->dmae_lock);
545 	return rc;
546 }
547 
548 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
549 		      u32 len32)
550 {
551 	struct dmae_command dmae;
552 
553 	if (!bp->dmae_ready) {
554 		u32 *data = bnx2x_sp(bp, wb_data[0]);
555 
556 		if (CHIP_IS_E1(bp))
557 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
558 		else
559 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
560 		return;
561 	}
562 
563 	/* set opcode and fixed command fields */
564 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
565 
566 	/* fill in addresses and len */
567 	dmae.src_addr_lo = U64_LO(dma_addr);
568 	dmae.src_addr_hi = U64_HI(dma_addr);
569 	dmae.dst_addr_lo = dst_addr >> 2;
570 	dmae.dst_addr_hi = 0;
571 	dmae.len = len32;
572 
573 	/* issue the command and wait for completion */
574 	bnx2x_issue_dmae_with_comp(bp, &dmae);
575 }
576 
577 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
578 {
579 	struct dmae_command dmae;
580 
581 	if (!bp->dmae_ready) {
582 		u32 *data = bnx2x_sp(bp, wb_data[0]);
583 		int i;
584 
585 		if (CHIP_IS_E1(bp))
586 			for (i = 0; i < len32; i++)
587 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
588 		else
589 			for (i = 0; i < len32; i++)
590 				data[i] = REG_RD(bp, src_addr + i*4);
591 
592 		return;
593 	}
594 
595 	/* set opcode and fixed command fields */
596 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
597 
598 	/* fill in addresses and len */
599 	dmae.src_addr_lo = src_addr >> 2;
600 	dmae.src_addr_hi = 0;
601 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
602 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
603 	dmae.len = len32;
604 
605 	/* issue the command and wait for completion */
606 	bnx2x_issue_dmae_with_comp(bp, &dmae);
607 }
608 
609 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
610 				      u32 addr, u32 len)
611 {
612 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
613 	int offset = 0;
614 
615 	while (len > dmae_wr_max) {
616 		bnx2x_write_dmae(bp, phys_addr + offset,
617 				 addr + offset, dmae_wr_max);
618 		offset += dmae_wr_max * 4;
619 		len -= dmae_wr_max;
620 	}
621 
622 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
623 }
624 
625 static int bnx2x_mc_assert(struct bnx2x *bp)
626 {
627 	char last_idx;
628 	int i, rc = 0;
629 	u32 row0, row1, row2, row3;
630 
631 	/* XSTORM */
632 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
633 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
634 	if (last_idx)
635 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
636 
637 	/* print the asserts */
638 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
639 
640 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
641 			      XSTORM_ASSERT_LIST_OFFSET(i));
642 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
643 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
644 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
645 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
646 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
647 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
648 
649 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
650 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
651 				  i, row3, row2, row1, row0);
652 			rc++;
653 		} else {
654 			break;
655 		}
656 	}
657 
658 	/* TSTORM */
659 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
660 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
661 	if (last_idx)
662 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
663 
664 	/* print the asserts */
665 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
666 
667 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
668 			      TSTORM_ASSERT_LIST_OFFSET(i));
669 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
670 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
671 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
672 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
673 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
674 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
675 
676 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
677 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
678 				  i, row3, row2, row1, row0);
679 			rc++;
680 		} else {
681 			break;
682 		}
683 	}
684 
685 	/* CSTORM */
686 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
687 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
688 	if (last_idx)
689 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
690 
691 	/* print the asserts */
692 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
693 
694 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
695 			      CSTORM_ASSERT_LIST_OFFSET(i));
696 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
697 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
698 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
699 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
700 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
701 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
702 
703 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
704 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
705 				  i, row3, row2, row1, row0);
706 			rc++;
707 		} else {
708 			break;
709 		}
710 	}
711 
712 	/* USTORM */
713 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
714 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
715 	if (last_idx)
716 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
717 
718 	/* print the asserts */
719 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
720 
721 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
722 			      USTORM_ASSERT_LIST_OFFSET(i));
723 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
724 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
725 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
726 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
727 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
728 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
729 
730 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
731 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
732 				  i, row3, row2, row1, row0);
733 			rc++;
734 		} else {
735 			break;
736 		}
737 	}
738 
739 	return rc;
740 }
741 
742 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
743 {
744 	u32 addr, val;
745 	u32 mark, offset;
746 	__be32 data[9];
747 	int word;
748 	u32 trace_shmem_base;
749 	if (BP_NOMCP(bp)) {
750 		BNX2X_ERR("NO MCP - can not dump\n");
751 		return;
752 	}
753 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
754 		(bp->common.bc_ver & 0xff0000) >> 16,
755 		(bp->common.bc_ver & 0xff00) >> 8,
756 		(bp->common.bc_ver & 0xff));
757 
758 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
759 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
760 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
761 
762 	if (BP_PATH(bp) == 0)
763 		trace_shmem_base = bp->common.shmem_base;
764 	else
765 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
766 	addr = trace_shmem_base - 0x800;
767 
768 	/* validate TRCB signature */
769 	mark = REG_RD(bp, addr);
770 	if (mark != MFW_TRACE_SIGNATURE) {
771 		BNX2X_ERR("Trace buffer signature is missing.");
772 		return ;
773 	}
774 
775 	/* read cyclic buffer pointer */
776 	addr += 4;
777 	mark = REG_RD(bp, addr);
778 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
779 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
780 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
781 
782 	printk("%s", lvl);
783 
784 	/* dump buffer after the mark */
785 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
786 		for (word = 0; word < 8; word++)
787 			data[word] = htonl(REG_RD(bp, offset + 4*word));
788 		data[8] = 0x0;
789 		pr_cont("%s", (char *)data);
790 	}
791 
792 	/* dump buffer before the mark */
793 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
794 		for (word = 0; word < 8; word++)
795 			data[word] = htonl(REG_RD(bp, offset + 4*word));
796 		data[8] = 0x0;
797 		pr_cont("%s", (char *)data);
798 	}
799 	printk("%s" "end of fw dump\n", lvl);
800 }
801 
802 static void bnx2x_fw_dump(struct bnx2x *bp)
803 {
804 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
805 }
806 
807 static void bnx2x_hc_int_disable(struct bnx2x *bp)
808 {
809 	int port = BP_PORT(bp);
810 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
811 	u32 val = REG_RD(bp, addr);
812 
813 	/* in E1 we must use only PCI configuration space to disable
814 	 * MSI/MSIX capablility
815 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
816 	 */
817 	if (CHIP_IS_E1(bp)) {
818 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
819 		 * Use mask register to prevent from HC sending interrupts
820 		 * after we exit the function
821 		 */
822 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
823 
824 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
825 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
826 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
827 	} else
828 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
829 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
830 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
831 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
832 
833 	DP(NETIF_MSG_IFDOWN,
834 	   "write %x to HC %d (addr 0x%x)\n",
835 	   val, port, addr);
836 
837 	/* flush all outstanding writes */
838 	mmiowb();
839 
840 	REG_WR(bp, addr, val);
841 	if (REG_RD(bp, addr) != val)
842 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
843 }
844 
845 static void bnx2x_igu_int_disable(struct bnx2x *bp)
846 {
847 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
848 
849 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
850 		 IGU_PF_CONF_INT_LINE_EN |
851 		 IGU_PF_CONF_ATTN_BIT_EN);
852 
853 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
854 
855 	/* flush all outstanding writes */
856 	mmiowb();
857 
858 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
859 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
860 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
861 }
862 
863 static void bnx2x_int_disable(struct bnx2x *bp)
864 {
865 	if (bp->common.int_block == INT_BLOCK_HC)
866 		bnx2x_hc_int_disable(bp);
867 	else
868 		bnx2x_igu_int_disable(bp);
869 }
870 
871 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
872 {
873 	int i;
874 	u16 j;
875 	struct hc_sp_status_block_data sp_sb_data;
876 	int func = BP_FUNC(bp);
877 #ifdef BNX2X_STOP_ON_ERROR
878 	u16 start = 0, end = 0;
879 	u8 cos;
880 #endif
881 	if (disable_int)
882 		bnx2x_int_disable(bp);
883 
884 	bp->stats_state = STATS_STATE_DISABLED;
885 	bp->eth_stats.unrecoverable_error++;
886 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
887 
888 	BNX2X_ERR("begin crash dump -----------------\n");
889 
890 	/* Indices */
891 	/* Common */
892 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
893 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
894 		  bp->spq_prod_idx, bp->stats_counter);
895 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
896 		  bp->def_status_blk->atten_status_block.attn_bits,
897 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
898 		  bp->def_status_blk->atten_status_block.status_block_id,
899 		  bp->def_status_blk->atten_status_block.attn_bits_index);
900 	BNX2X_ERR("     def (");
901 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
902 		pr_cont("0x%x%s",
903 			bp->def_status_blk->sp_sb.index_values[i],
904 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
905 
906 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
907 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
908 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
909 			i*sizeof(u32));
910 
911 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
912 	       sp_sb_data.igu_sb_id,
913 	       sp_sb_data.igu_seg_id,
914 	       sp_sb_data.p_func.pf_id,
915 	       sp_sb_data.p_func.vnic_id,
916 	       sp_sb_data.p_func.vf_id,
917 	       sp_sb_data.p_func.vf_valid,
918 	       sp_sb_data.state);
919 
920 
921 	for_each_eth_queue(bp, i) {
922 		struct bnx2x_fastpath *fp = &bp->fp[i];
923 		int loop;
924 		struct hc_status_block_data_e2 sb_data_e2;
925 		struct hc_status_block_data_e1x sb_data_e1x;
926 		struct hc_status_block_sm  *hc_sm_p =
927 			CHIP_IS_E1x(bp) ?
928 			sb_data_e1x.common.state_machine :
929 			sb_data_e2.common.state_machine;
930 		struct hc_index_data *hc_index_p =
931 			CHIP_IS_E1x(bp) ?
932 			sb_data_e1x.index_data :
933 			sb_data_e2.index_data;
934 		u8 data_size, cos;
935 		u32 *sb_data_p;
936 		struct bnx2x_fp_txdata txdata;
937 
938 		/* Rx */
939 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
940 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
941 			  fp->rx_comp_prod,
942 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
943 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
944 			  fp->rx_sge_prod, fp->last_max_sge,
945 			  le16_to_cpu(fp->fp_hc_idx));
946 
947 		/* Tx */
948 		for_each_cos_in_tx_queue(fp, cos)
949 		{
950 			txdata = *fp->txdata_ptr[cos];
951 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
952 				  i, txdata.tx_pkt_prod,
953 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
954 				  txdata.tx_bd_cons,
955 				  le16_to_cpu(*txdata.tx_cons_sb));
956 		}
957 
958 		loop = CHIP_IS_E1x(bp) ?
959 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
960 
961 		/* host sb data */
962 
963 		if (IS_FCOE_FP(fp))
964 			continue;
965 
966 		BNX2X_ERR("     run indexes (");
967 		for (j = 0; j < HC_SB_MAX_SM; j++)
968 			pr_cont("0x%x%s",
969 			       fp->sb_running_index[j],
970 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
971 
972 		BNX2X_ERR("     indexes (");
973 		for (j = 0; j < loop; j++)
974 			pr_cont("0x%x%s",
975 			       fp->sb_index_values[j],
976 			       (j == loop - 1) ? ")" : " ");
977 		/* fw sb data */
978 		data_size = CHIP_IS_E1x(bp) ?
979 			sizeof(struct hc_status_block_data_e1x) :
980 			sizeof(struct hc_status_block_data_e2);
981 		data_size /= sizeof(u32);
982 		sb_data_p = CHIP_IS_E1x(bp) ?
983 			(u32 *)&sb_data_e1x :
984 			(u32 *)&sb_data_e2;
985 		/* copy sb data in here */
986 		for (j = 0; j < data_size; j++)
987 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
988 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
989 				j * sizeof(u32));
990 
991 		if (!CHIP_IS_E1x(bp)) {
992 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
993 				sb_data_e2.common.p_func.pf_id,
994 				sb_data_e2.common.p_func.vf_id,
995 				sb_data_e2.common.p_func.vf_valid,
996 				sb_data_e2.common.p_func.vnic_id,
997 				sb_data_e2.common.same_igu_sb_1b,
998 				sb_data_e2.common.state);
999 		} else {
1000 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1001 				sb_data_e1x.common.p_func.pf_id,
1002 				sb_data_e1x.common.p_func.vf_id,
1003 				sb_data_e1x.common.p_func.vf_valid,
1004 				sb_data_e1x.common.p_func.vnic_id,
1005 				sb_data_e1x.common.same_igu_sb_1b,
1006 				sb_data_e1x.common.state);
1007 		}
1008 
1009 		/* SB_SMs data */
1010 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1011 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1012 				j, hc_sm_p[j].__flags,
1013 				hc_sm_p[j].igu_sb_id,
1014 				hc_sm_p[j].igu_seg_id,
1015 				hc_sm_p[j].time_to_expire,
1016 				hc_sm_p[j].timer_value);
1017 		}
1018 
1019 		/* Indecies data */
1020 		for (j = 0; j < loop; j++) {
1021 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1022 			       hc_index_p[j].flags,
1023 			       hc_index_p[j].timeout);
1024 		}
1025 	}
1026 
1027 #ifdef BNX2X_STOP_ON_ERROR
1028 
1029 	/* event queue */
1030 	for (i = 0; i < NUM_EQ_DESC; i++) {
1031 		u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1032 
1033 		BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1034 			  i, bp->eq_ring[i].message.opcode,
1035 			  bp->eq_ring[i].message.error);
1036 		BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1037 	}
1038 
1039 	/* Rings */
1040 	/* Rx */
1041 	for_each_valid_rx_queue(bp, i) {
1042 		struct bnx2x_fastpath *fp = &bp->fp[i];
1043 
1044 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1045 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1046 		for (j = start; j != end; j = RX_BD(j + 1)) {
1047 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1048 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1049 
1050 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1051 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1052 		}
1053 
1054 		start = RX_SGE(fp->rx_sge_prod);
1055 		end = RX_SGE(fp->last_max_sge);
1056 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1057 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1058 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1059 
1060 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1061 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1062 		}
1063 
1064 		start = RCQ_BD(fp->rx_comp_cons - 10);
1065 		end = RCQ_BD(fp->rx_comp_cons + 503);
1066 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1067 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1068 
1069 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1070 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1071 		}
1072 	}
1073 
1074 	/* Tx */
1075 	for_each_valid_tx_queue(bp, i) {
1076 		struct bnx2x_fastpath *fp = &bp->fp[i];
1077 		for_each_cos_in_tx_queue(fp, cos) {
1078 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1079 
1080 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1081 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1082 			for (j = start; j != end; j = TX_BD(j + 1)) {
1083 				struct sw_tx_bd *sw_bd =
1084 					&txdata->tx_buf_ring[j];
1085 
1086 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1087 					  i, cos, j, sw_bd->skb,
1088 					  sw_bd->first_bd);
1089 			}
1090 
1091 			start = TX_BD(txdata->tx_bd_cons - 10);
1092 			end = TX_BD(txdata->tx_bd_cons + 254);
1093 			for (j = start; j != end; j = TX_BD(j + 1)) {
1094 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1095 
1096 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1097 					  i, cos, j, tx_bd[0], tx_bd[1],
1098 					  tx_bd[2], tx_bd[3]);
1099 			}
1100 		}
1101 	}
1102 #endif
1103 	bnx2x_fw_dump(bp);
1104 	bnx2x_mc_assert(bp);
1105 	BNX2X_ERR("end crash dump -----------------\n");
1106 }
1107 
1108 /*
1109  * FLR Support for E2
1110  *
1111  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1112  * initialization.
1113  */
1114 #define FLR_WAIT_USEC		10000	/* 10 miliseconds */
1115 #define FLR_WAIT_INTERVAL	50	/* usec */
1116 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1117 
1118 struct pbf_pN_buf_regs {
1119 	int pN;
1120 	u32 init_crd;
1121 	u32 crd;
1122 	u32 crd_freed;
1123 };
1124 
1125 struct pbf_pN_cmd_regs {
1126 	int pN;
1127 	u32 lines_occup;
1128 	u32 lines_freed;
1129 };
1130 
1131 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1132 				     struct pbf_pN_buf_regs *regs,
1133 				     u32 poll_count)
1134 {
1135 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1136 	u32 cur_cnt = poll_count;
1137 
1138 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1139 	crd = crd_start = REG_RD(bp, regs->crd);
1140 	init_crd = REG_RD(bp, regs->init_crd);
1141 
1142 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1143 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1144 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1145 
1146 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1147 	       (init_crd - crd_start))) {
1148 		if (cur_cnt--) {
1149 			udelay(FLR_WAIT_INTERVAL);
1150 			crd = REG_RD(bp, regs->crd);
1151 			crd_freed = REG_RD(bp, regs->crd_freed);
1152 		} else {
1153 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1154 			   regs->pN);
1155 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1156 			   regs->pN, crd);
1157 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1158 			   regs->pN, crd_freed);
1159 			break;
1160 		}
1161 	}
1162 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1163 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1164 }
1165 
1166 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1167 				     struct pbf_pN_cmd_regs *regs,
1168 				     u32 poll_count)
1169 {
1170 	u32 occup, to_free, freed, freed_start;
1171 	u32 cur_cnt = poll_count;
1172 
1173 	occup = to_free = REG_RD(bp, regs->lines_occup);
1174 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1175 
1176 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1177 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1178 
1179 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1180 		if (cur_cnt--) {
1181 			udelay(FLR_WAIT_INTERVAL);
1182 			occup = REG_RD(bp, regs->lines_occup);
1183 			freed = REG_RD(bp, regs->lines_freed);
1184 		} else {
1185 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1186 			   regs->pN);
1187 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1188 			   regs->pN, occup);
1189 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1190 			   regs->pN, freed);
1191 			break;
1192 		}
1193 	}
1194 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1195 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1196 }
1197 
1198 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1199 				    u32 expected, u32 poll_count)
1200 {
1201 	u32 cur_cnt = poll_count;
1202 	u32 val;
1203 
1204 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1205 		udelay(FLR_WAIT_INTERVAL);
1206 
1207 	return val;
1208 }
1209 
1210 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1211 				    char *msg, u32 poll_cnt)
1212 {
1213 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1214 	if (val != 0) {
1215 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1216 		return 1;
1217 	}
1218 	return 0;
1219 }
1220 
1221 /* Common routines with VF FLR cleanup */
1222 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1223 {
1224 	/* adjust polling timeout */
1225 	if (CHIP_REV_IS_EMUL(bp))
1226 		return FLR_POLL_CNT * 2000;
1227 
1228 	if (CHIP_REV_IS_FPGA(bp))
1229 		return FLR_POLL_CNT * 120;
1230 
1231 	return FLR_POLL_CNT;
1232 }
1233 
1234 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1235 {
1236 	struct pbf_pN_cmd_regs cmd_regs[] = {
1237 		{0, (CHIP_IS_E3B0(bp)) ?
1238 			PBF_REG_TQ_OCCUPANCY_Q0 :
1239 			PBF_REG_P0_TQ_OCCUPANCY,
1240 		    (CHIP_IS_E3B0(bp)) ?
1241 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1242 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1243 		{1, (CHIP_IS_E3B0(bp)) ?
1244 			PBF_REG_TQ_OCCUPANCY_Q1 :
1245 			PBF_REG_P1_TQ_OCCUPANCY,
1246 		    (CHIP_IS_E3B0(bp)) ?
1247 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1248 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1249 		{4, (CHIP_IS_E3B0(bp)) ?
1250 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1251 			PBF_REG_P4_TQ_OCCUPANCY,
1252 		    (CHIP_IS_E3B0(bp)) ?
1253 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1254 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1255 	};
1256 
1257 	struct pbf_pN_buf_regs buf_regs[] = {
1258 		{0, (CHIP_IS_E3B0(bp)) ?
1259 			PBF_REG_INIT_CRD_Q0 :
1260 			PBF_REG_P0_INIT_CRD ,
1261 		    (CHIP_IS_E3B0(bp)) ?
1262 			PBF_REG_CREDIT_Q0 :
1263 			PBF_REG_P0_CREDIT,
1264 		    (CHIP_IS_E3B0(bp)) ?
1265 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1266 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1267 		{1, (CHIP_IS_E3B0(bp)) ?
1268 			PBF_REG_INIT_CRD_Q1 :
1269 			PBF_REG_P1_INIT_CRD,
1270 		    (CHIP_IS_E3B0(bp)) ?
1271 			PBF_REG_CREDIT_Q1 :
1272 			PBF_REG_P1_CREDIT,
1273 		    (CHIP_IS_E3B0(bp)) ?
1274 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1275 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1276 		{4, (CHIP_IS_E3B0(bp)) ?
1277 			PBF_REG_INIT_CRD_LB_Q :
1278 			PBF_REG_P4_INIT_CRD,
1279 		    (CHIP_IS_E3B0(bp)) ?
1280 			PBF_REG_CREDIT_LB_Q :
1281 			PBF_REG_P4_CREDIT,
1282 		    (CHIP_IS_E3B0(bp)) ?
1283 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1284 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1285 	};
1286 
1287 	int i;
1288 
1289 	/* Verify the command queues are flushed P0, P1, P4 */
1290 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1291 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1292 
1293 
1294 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1295 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1296 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1297 }
1298 
1299 #define OP_GEN_PARAM(param) \
1300 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1301 
1302 #define OP_GEN_TYPE(type) \
1303 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1304 
1305 #define OP_GEN_AGG_VECT(index) \
1306 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1307 
1308 
1309 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1310 {
1311 	u32 op_gen_command = 0;
1312 
1313 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1314 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1315 	int ret = 0;
1316 
1317 	if (REG_RD(bp, comp_addr)) {
1318 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1319 		return 1;
1320 	}
1321 
1322 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1323 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1324 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1325 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1326 
1327 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1328 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1329 
1330 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1331 		BNX2X_ERR("FW final cleanup did not succeed\n");
1332 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1333 		   (REG_RD(bp, comp_addr)));
1334 		bnx2x_panic();
1335 		return 1;
1336 	}
1337 	/* Zero completion for nxt FLR */
1338 	REG_WR(bp, comp_addr, 0);
1339 
1340 	return ret;
1341 }
1342 
1343 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1344 {
1345 	u16 status;
1346 
1347 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1348 	return status & PCI_EXP_DEVSTA_TRPND;
1349 }
1350 
1351 /* PF FLR specific routines
1352 */
1353 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1354 {
1355 
1356 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1357 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1358 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1359 			"CFC PF usage counter timed out",
1360 			poll_cnt))
1361 		return 1;
1362 
1363 
1364 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1365 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366 			DORQ_REG_PF_USAGE_CNT,
1367 			"DQ PF usage counter timed out",
1368 			poll_cnt))
1369 		return 1;
1370 
1371 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1372 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1374 			"QM PF usage counter timed out",
1375 			poll_cnt))
1376 		return 1;
1377 
1378 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1379 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1381 			"Timers VNIC usage counter timed out",
1382 			poll_cnt))
1383 		return 1;
1384 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1385 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1386 			"Timers NUM_SCANS usage counter timed out",
1387 			poll_cnt))
1388 		return 1;
1389 
1390 	/* Wait DMAE PF usage counter to zero */
1391 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1393 			"DMAE dommand register timed out",
1394 			poll_cnt))
1395 		return 1;
1396 
1397 	return 0;
1398 }
1399 
1400 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1401 {
1402 	u32 val;
1403 
1404 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1405 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1406 
1407 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1408 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1409 
1410 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1411 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1412 
1413 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1414 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1415 
1416 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1417 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1418 
1419 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1420 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1421 
1422 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1423 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1424 
1425 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1426 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1427 	   val);
1428 }
1429 
1430 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1431 {
1432 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1433 
1434 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1435 
1436 	/* Re-enable PF target read access */
1437 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1438 
1439 	/* Poll HW usage counters */
1440 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1441 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1442 		return -EBUSY;
1443 
1444 	/* Zero the igu 'trailing edge' and 'leading edge' */
1445 
1446 	/* Send the FW cleanup command */
1447 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1448 		return -EBUSY;
1449 
1450 	/* ATC cleanup */
1451 
1452 	/* Verify TX hw is flushed */
1453 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1454 
1455 	/* Wait 100ms (not adjusted according to platform) */
1456 	msleep(100);
1457 
1458 	/* Verify no pending pci transactions */
1459 	if (bnx2x_is_pcie_pending(bp->pdev))
1460 		BNX2X_ERR("PCIE Transactions still pending\n");
1461 
1462 	/* Debug */
1463 	bnx2x_hw_enable_status(bp);
1464 
1465 	/*
1466 	 * Master enable - Due to WB DMAE writes performed before this
1467 	 * register is re-initialized as part of the regular function init
1468 	 */
1469 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1470 
1471 	return 0;
1472 }
1473 
1474 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1475 {
1476 	int port = BP_PORT(bp);
1477 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1478 	u32 val = REG_RD(bp, addr);
1479 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1480 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1481 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1482 
1483 	if (msix) {
1484 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1485 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1486 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1487 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1488 		if (single_msix)
1489 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1490 	} else if (msi) {
1491 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1492 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1493 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495 	} else {
1496 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1497 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1498 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1499 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1500 
1501 		if (!CHIP_IS_E1(bp)) {
1502 			DP(NETIF_MSG_IFUP,
1503 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1504 
1505 			REG_WR(bp, addr, val);
1506 
1507 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1508 		}
1509 	}
1510 
1511 	if (CHIP_IS_E1(bp))
1512 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1513 
1514 	DP(NETIF_MSG_IFUP,
1515 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1516 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1517 
1518 	REG_WR(bp, addr, val);
1519 	/*
1520 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1521 	 */
1522 	mmiowb();
1523 	barrier();
1524 
1525 	if (!CHIP_IS_E1(bp)) {
1526 		/* init leading/trailing edge */
1527 		if (IS_MF(bp)) {
1528 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1529 			if (bp->port.pmf)
1530 				/* enable nig and gpio3 attention */
1531 				val |= 0x1100;
1532 		} else
1533 			val = 0xffff;
1534 
1535 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1536 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1537 	}
1538 
1539 	/* Make sure that interrupts are indeed enabled from here on */
1540 	mmiowb();
1541 }
1542 
1543 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1544 {
1545 	u32 val;
1546 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1547 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1548 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1549 
1550 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1551 
1552 	if (msix) {
1553 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1554 			 IGU_PF_CONF_SINGLE_ISR_EN);
1555 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1556 			IGU_PF_CONF_ATTN_BIT_EN);
1557 
1558 		if (single_msix)
1559 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1560 	} else if (msi) {
1561 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1562 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563 			IGU_PF_CONF_ATTN_BIT_EN |
1564 			IGU_PF_CONF_SINGLE_ISR_EN);
1565 	} else {
1566 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1567 		val |= (IGU_PF_CONF_INT_LINE_EN |
1568 			IGU_PF_CONF_ATTN_BIT_EN |
1569 			IGU_PF_CONF_SINGLE_ISR_EN);
1570 	}
1571 
1572 	/* Clean previous status - need to configure igu prior to ack*/
1573 	if ((!msix) || single_msix) {
1574 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1575 		bnx2x_ack_int(bp);
1576 	}
1577 
1578 	val |= IGU_PF_CONF_FUNC_EN;
1579 
1580 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1581 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1582 
1583 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1584 
1585 	if (val & IGU_PF_CONF_INT_LINE_EN)
1586 		pci_intx(bp->pdev, true);
1587 
1588 	barrier();
1589 
1590 	/* init leading/trailing edge */
1591 	if (IS_MF(bp)) {
1592 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1593 		if (bp->port.pmf)
1594 			/* enable nig and gpio3 attention */
1595 			val |= 0x1100;
1596 	} else
1597 		val = 0xffff;
1598 
1599 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1600 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1601 
1602 	/* Make sure that interrupts are indeed enabled from here on */
1603 	mmiowb();
1604 }
1605 
1606 void bnx2x_int_enable(struct bnx2x *bp)
1607 {
1608 	if (bp->common.int_block == INT_BLOCK_HC)
1609 		bnx2x_hc_int_enable(bp);
1610 	else
1611 		bnx2x_igu_int_enable(bp);
1612 }
1613 
1614 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1615 {
1616 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1617 	int i, offset;
1618 
1619 	if (disable_hw)
1620 		/* prevent the HW from sending interrupts */
1621 		bnx2x_int_disable(bp);
1622 
1623 	/* make sure all ISRs are done */
1624 	if (msix) {
1625 		synchronize_irq(bp->msix_table[0].vector);
1626 		offset = 1;
1627 		if (CNIC_SUPPORT(bp))
1628 			offset++;
1629 		for_each_eth_queue(bp, i)
1630 			synchronize_irq(bp->msix_table[offset++].vector);
1631 	} else
1632 		synchronize_irq(bp->pdev->irq);
1633 
1634 	/* make sure sp_task is not running */
1635 	cancel_delayed_work(&bp->sp_task);
1636 	cancel_delayed_work(&bp->period_task);
1637 	flush_workqueue(bnx2x_wq);
1638 }
1639 
1640 /* fast path */
1641 
1642 /*
1643  * General service functions
1644  */
1645 
1646 /* Return true if succeeded to acquire the lock */
1647 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1648 {
1649 	u32 lock_status;
1650 	u32 resource_bit = (1 << resource);
1651 	int func = BP_FUNC(bp);
1652 	u32 hw_lock_control_reg;
1653 
1654 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1655 	   "Trying to take a lock on resource %d\n", resource);
1656 
1657 	/* Validating that the resource is within range */
1658 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1659 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1660 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1661 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1662 		return false;
1663 	}
1664 
1665 	if (func <= 5)
1666 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1667 	else
1668 		hw_lock_control_reg =
1669 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1670 
1671 	/* Try to acquire the lock */
1672 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1673 	lock_status = REG_RD(bp, hw_lock_control_reg);
1674 	if (lock_status & resource_bit)
1675 		return true;
1676 
1677 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1678 	   "Failed to get a lock on resource %d\n", resource);
1679 	return false;
1680 }
1681 
1682 /**
1683  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1684  *
1685  * @bp:	driver handle
1686  *
1687  * Returns the recovery leader resource id according to the engine this function
1688  * belongs to. Currently only only 2 engines is supported.
1689  */
1690 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1691 {
1692 	if (BP_PATH(bp))
1693 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1694 	else
1695 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1696 }
1697 
1698 /**
1699  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1700  *
1701  * @bp: driver handle
1702  *
1703  * Tries to acquire a leader lock for current engine.
1704  */
1705 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1706 {
1707 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1708 }
1709 
1710 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1711 
1712 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1713 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1714 {
1715 	/* Set the interrupt occurred bit for the sp-task to recognize it
1716 	 * must ack the interrupt and transition according to the IGU
1717 	 * state machine.
1718 	 */
1719 	atomic_set(&bp->interrupt_occurred, 1);
1720 
1721 	/* The sp_task must execute only after this bit
1722 	 * is set, otherwise we will get out of sync and miss all
1723 	 * further interrupts. Hence, the barrier.
1724 	 */
1725 	smp_wmb();
1726 
1727 	/* schedule sp_task to workqueue */
1728 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1729 }
1730 
1731 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1732 {
1733 	struct bnx2x *bp = fp->bp;
1734 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1735 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1736 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1737 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1738 
1739 	DP(BNX2X_MSG_SP,
1740 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1741 	   fp->index, cid, command, bp->state,
1742 	   rr_cqe->ramrod_cqe.ramrod_type);
1743 
1744 	/* If cid is within VF range, replace the slowpath object with the
1745 	 * one corresponding to this VF
1746 	 */
1747 	if (cid >= BNX2X_FIRST_VF_CID  &&
1748 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1749 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1750 
1751 	switch (command) {
1752 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1753 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1754 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1755 		break;
1756 
1757 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1758 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1759 		drv_cmd = BNX2X_Q_CMD_SETUP;
1760 		break;
1761 
1762 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1763 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1764 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1765 		break;
1766 
1767 	case (RAMROD_CMD_ID_ETH_HALT):
1768 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1769 		drv_cmd = BNX2X_Q_CMD_HALT;
1770 		break;
1771 
1772 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1773 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1774 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1775 		break;
1776 
1777 	case (RAMROD_CMD_ID_ETH_EMPTY):
1778 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1779 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1780 		break;
1781 
1782 	default:
1783 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1784 			  command, fp->index);
1785 		return;
1786 	}
1787 
1788 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1789 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1790 		/* q_obj->complete_cmd() failure means that this was
1791 		 * an unexpected completion.
1792 		 *
1793 		 * In this case we don't want to increase the bp->spq_left
1794 		 * because apparently we haven't sent this command the first
1795 		 * place.
1796 		 */
1797 #ifdef BNX2X_STOP_ON_ERROR
1798 		bnx2x_panic();
1799 #else
1800 		return;
1801 #endif
1802 	/* SRIOV: reschedule any 'in_progress' operations */
1803 	bnx2x_iov_sp_event(bp, cid, true);
1804 
1805 	smp_mb__before_atomic_inc();
1806 	atomic_inc(&bp->cq_spq_left);
1807 	/* push the change in bp->spq_left and towards the memory */
1808 	smp_mb__after_atomic_inc();
1809 
1810 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1811 
1812 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1813 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1814 		/* if Q update ramrod is completed for last Q in AFEX vif set
1815 		 * flow, then ACK MCP at the end
1816 		 *
1817 		 * mark pending ACK to MCP bit.
1818 		 * prevent case that both bits are cleared.
1819 		 * At the end of load/unload driver checks that
1820 		 * sp_state is cleared, and this order prevents
1821 		 * races
1822 		 */
1823 		smp_mb__before_clear_bit();
1824 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1825 		wmb();
1826 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1827 		smp_mb__after_clear_bit();
1828 
1829 		/* schedule the sp task as mcp ack is required */
1830 		bnx2x_schedule_sp_task(bp);
1831 	}
1832 
1833 	return;
1834 }
1835 
1836 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1837 {
1838 	struct bnx2x *bp = netdev_priv(dev_instance);
1839 	u16 status = bnx2x_ack_int(bp);
1840 	u16 mask;
1841 	int i;
1842 	u8 cos;
1843 
1844 	/* Return here if interrupt is shared and it's not for us */
1845 	if (unlikely(status == 0)) {
1846 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1847 		return IRQ_NONE;
1848 	}
1849 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1850 
1851 #ifdef BNX2X_STOP_ON_ERROR
1852 	if (unlikely(bp->panic))
1853 		return IRQ_HANDLED;
1854 #endif
1855 
1856 	for_each_eth_queue(bp, i) {
1857 		struct bnx2x_fastpath *fp = &bp->fp[i];
1858 
1859 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1860 		if (status & mask) {
1861 			/* Handle Rx or Tx according to SB id */
1862 			prefetch(fp->rx_cons_sb);
1863 			for_each_cos_in_tx_queue(fp, cos)
1864 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1865 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1866 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1867 			status &= ~mask;
1868 		}
1869 	}
1870 
1871 	if (CNIC_SUPPORT(bp)) {
1872 		mask = 0x2;
1873 		if (status & (mask | 0x1)) {
1874 			struct cnic_ops *c_ops = NULL;
1875 
1876 			rcu_read_lock();
1877 			c_ops = rcu_dereference(bp->cnic_ops);
1878 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1879 				      CNIC_DRV_STATE_HANDLES_IRQ))
1880 				c_ops->cnic_handler(bp->cnic_data, NULL);
1881 			rcu_read_unlock();
1882 
1883 			status &= ~mask;
1884 		}
1885 	}
1886 
1887 	if (unlikely(status & 0x1)) {
1888 
1889 		/* schedule sp task to perform default status block work, ack
1890 		 * attentions and enable interrupts.
1891 		 */
1892 		bnx2x_schedule_sp_task(bp);
1893 
1894 		status &= ~0x1;
1895 		if (!status)
1896 			return IRQ_HANDLED;
1897 	}
1898 
1899 	if (unlikely(status))
1900 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1901 		   status);
1902 
1903 	return IRQ_HANDLED;
1904 }
1905 
1906 /* Link */
1907 
1908 /*
1909  * General service functions
1910  */
1911 
1912 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1913 {
1914 	u32 lock_status;
1915 	u32 resource_bit = (1 << resource);
1916 	int func = BP_FUNC(bp);
1917 	u32 hw_lock_control_reg;
1918 	int cnt;
1919 
1920 	/* Validating that the resource is within range */
1921 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1922 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1923 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1924 		return -EINVAL;
1925 	}
1926 
1927 	if (func <= 5) {
1928 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1929 	} else {
1930 		hw_lock_control_reg =
1931 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1932 	}
1933 
1934 	/* Validating that the resource is not already taken */
1935 	lock_status = REG_RD(bp, hw_lock_control_reg);
1936 	if (lock_status & resource_bit) {
1937 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1938 		   lock_status, resource_bit);
1939 		return -EEXIST;
1940 	}
1941 
1942 	/* Try for 5 second every 5ms */
1943 	for (cnt = 0; cnt < 1000; cnt++) {
1944 		/* Try to acquire the lock */
1945 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1946 		lock_status = REG_RD(bp, hw_lock_control_reg);
1947 		if (lock_status & resource_bit)
1948 			return 0;
1949 
1950 		msleep(5);
1951 	}
1952 	BNX2X_ERR("Timeout\n");
1953 	return -EAGAIN;
1954 }
1955 
1956 int bnx2x_release_leader_lock(struct bnx2x *bp)
1957 {
1958 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1959 }
1960 
1961 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1962 {
1963 	u32 lock_status;
1964 	u32 resource_bit = (1 << resource);
1965 	int func = BP_FUNC(bp);
1966 	u32 hw_lock_control_reg;
1967 
1968 	/* Validating that the resource is within range */
1969 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1970 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1971 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1972 		return -EINVAL;
1973 	}
1974 
1975 	if (func <= 5) {
1976 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1977 	} else {
1978 		hw_lock_control_reg =
1979 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1980 	}
1981 
1982 	/* Validating that the resource is currently taken */
1983 	lock_status = REG_RD(bp, hw_lock_control_reg);
1984 	if (!(lock_status & resource_bit)) {
1985 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1986 		   lock_status, resource_bit);
1987 		return -EFAULT;
1988 	}
1989 
1990 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1991 	return 0;
1992 }
1993 
1994 
1995 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1996 {
1997 	/* The GPIO should be swapped if swap register is set and active */
1998 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1999 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2000 	int gpio_shift = gpio_num +
2001 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2002 	u32 gpio_mask = (1 << gpio_shift);
2003 	u32 gpio_reg;
2004 	int value;
2005 
2006 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2007 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2008 		return -EINVAL;
2009 	}
2010 
2011 	/* read GPIO value */
2012 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2013 
2014 	/* get the requested pin value */
2015 	if ((gpio_reg & gpio_mask) == gpio_mask)
2016 		value = 1;
2017 	else
2018 		value = 0;
2019 
2020 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2021 
2022 	return value;
2023 }
2024 
2025 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2026 {
2027 	/* The GPIO should be swapped if swap register is set and active */
2028 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2029 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2030 	int gpio_shift = gpio_num +
2031 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2032 	u32 gpio_mask = (1 << gpio_shift);
2033 	u32 gpio_reg;
2034 
2035 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2036 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2037 		return -EINVAL;
2038 	}
2039 
2040 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2041 	/* read GPIO and mask except the float bits */
2042 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2043 
2044 	switch (mode) {
2045 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2046 		DP(NETIF_MSG_LINK,
2047 		   "Set GPIO %d (shift %d) -> output low\n",
2048 		   gpio_num, gpio_shift);
2049 		/* clear FLOAT and set CLR */
2050 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2051 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2052 		break;
2053 
2054 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2055 		DP(NETIF_MSG_LINK,
2056 		   "Set GPIO %d (shift %d) -> output high\n",
2057 		   gpio_num, gpio_shift);
2058 		/* clear FLOAT and set SET */
2059 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2060 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2061 		break;
2062 
2063 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2064 		DP(NETIF_MSG_LINK,
2065 		   "Set GPIO %d (shift %d) -> input\n",
2066 		   gpio_num, gpio_shift);
2067 		/* set FLOAT */
2068 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2069 		break;
2070 
2071 	default:
2072 		break;
2073 	}
2074 
2075 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2076 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2077 
2078 	return 0;
2079 }
2080 
2081 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2082 {
2083 	u32 gpio_reg = 0;
2084 	int rc = 0;
2085 
2086 	/* Any port swapping should be handled by caller. */
2087 
2088 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2089 	/* read GPIO and mask except the float bits */
2090 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2091 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2092 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2093 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2094 
2095 	switch (mode) {
2096 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2097 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2098 		/* set CLR */
2099 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2100 		break;
2101 
2102 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2103 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2104 		/* set SET */
2105 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2106 		break;
2107 
2108 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2109 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2110 		/* set FLOAT */
2111 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2112 		break;
2113 
2114 	default:
2115 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2116 		rc = -EINVAL;
2117 		break;
2118 	}
2119 
2120 	if (rc == 0)
2121 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2122 
2123 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2124 
2125 	return rc;
2126 }
2127 
2128 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2129 {
2130 	/* The GPIO should be swapped if swap register is set and active */
2131 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2132 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2133 	int gpio_shift = gpio_num +
2134 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2135 	u32 gpio_mask = (1 << gpio_shift);
2136 	u32 gpio_reg;
2137 
2138 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2139 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2140 		return -EINVAL;
2141 	}
2142 
2143 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2144 	/* read GPIO int */
2145 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2146 
2147 	switch (mode) {
2148 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2149 		DP(NETIF_MSG_LINK,
2150 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2151 		   gpio_num, gpio_shift);
2152 		/* clear SET and set CLR */
2153 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2154 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2155 		break;
2156 
2157 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2158 		DP(NETIF_MSG_LINK,
2159 		   "Set GPIO INT %d (shift %d) -> output high\n",
2160 		   gpio_num, gpio_shift);
2161 		/* clear CLR and set SET */
2162 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2163 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2164 		break;
2165 
2166 	default:
2167 		break;
2168 	}
2169 
2170 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2171 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2172 
2173 	return 0;
2174 }
2175 
2176 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2177 {
2178 	u32 spio_reg;
2179 
2180 	/* Only 2 SPIOs are configurable */
2181 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2182 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2183 		return -EINVAL;
2184 	}
2185 
2186 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2187 	/* read SPIO and mask except the float bits */
2188 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2189 
2190 	switch (mode) {
2191 	case MISC_SPIO_OUTPUT_LOW:
2192 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2193 		/* clear FLOAT and set CLR */
2194 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2195 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2196 		break;
2197 
2198 	case MISC_SPIO_OUTPUT_HIGH:
2199 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2200 		/* clear FLOAT and set SET */
2201 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2202 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2203 		break;
2204 
2205 	case MISC_SPIO_INPUT_HI_Z:
2206 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2207 		/* set FLOAT */
2208 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2209 		break;
2210 
2211 	default:
2212 		break;
2213 	}
2214 
2215 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2216 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2217 
2218 	return 0;
2219 }
2220 
2221 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2222 {
2223 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2224 	switch (bp->link_vars.ieee_fc &
2225 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2226 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2227 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2228 						   ADVERTISED_Pause);
2229 		break;
2230 
2231 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2232 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2233 						  ADVERTISED_Pause);
2234 		break;
2235 
2236 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2237 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2238 		break;
2239 
2240 	default:
2241 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2242 						   ADVERTISED_Pause);
2243 		break;
2244 	}
2245 }
2246 
2247 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2248 {
2249 	/* Initialize link parameters structure variables
2250 	 * It is recommended to turn off RX FC for jumbo frames
2251 	 *  for better performance
2252 	 */
2253 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2254 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2255 	else
2256 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2257 }
2258 
2259 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2260 {
2261 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2262 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2263 
2264 	if (!BP_NOMCP(bp)) {
2265 		bnx2x_set_requested_fc(bp);
2266 		bnx2x_acquire_phy_lock(bp);
2267 
2268 		if (load_mode == LOAD_DIAG) {
2269 			struct link_params *lp = &bp->link_params;
2270 			lp->loopback_mode = LOOPBACK_XGXS;
2271 			/* do PHY loopback at 10G speed, if possible */
2272 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2273 				if (lp->speed_cap_mask[cfx_idx] &
2274 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2275 					lp->req_line_speed[cfx_idx] =
2276 					SPEED_10000;
2277 				else
2278 					lp->req_line_speed[cfx_idx] =
2279 					SPEED_1000;
2280 			}
2281 		}
2282 
2283 		if (load_mode == LOAD_LOOPBACK_EXT) {
2284 			struct link_params *lp = &bp->link_params;
2285 			lp->loopback_mode = LOOPBACK_EXT;
2286 		}
2287 
2288 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2289 
2290 		bnx2x_release_phy_lock(bp);
2291 
2292 		bnx2x_calc_fc_adv(bp);
2293 
2294 		if (bp->link_vars.link_up) {
2295 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2296 			bnx2x_link_report(bp);
2297 		}
2298 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2299 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2300 		return rc;
2301 	}
2302 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2303 	return -EINVAL;
2304 }
2305 
2306 void bnx2x_link_set(struct bnx2x *bp)
2307 {
2308 	if (!BP_NOMCP(bp)) {
2309 		bnx2x_acquire_phy_lock(bp);
2310 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2311 		bnx2x_release_phy_lock(bp);
2312 
2313 		bnx2x_calc_fc_adv(bp);
2314 	} else
2315 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2316 }
2317 
2318 static void bnx2x__link_reset(struct bnx2x *bp)
2319 {
2320 	if (!BP_NOMCP(bp)) {
2321 		bnx2x_acquire_phy_lock(bp);
2322 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2323 		bnx2x_release_phy_lock(bp);
2324 	} else
2325 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2326 }
2327 
2328 void bnx2x_force_link_reset(struct bnx2x *bp)
2329 {
2330 	bnx2x_acquire_phy_lock(bp);
2331 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2332 	bnx2x_release_phy_lock(bp);
2333 }
2334 
2335 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2336 {
2337 	u8 rc = 0;
2338 
2339 	if (!BP_NOMCP(bp)) {
2340 		bnx2x_acquire_phy_lock(bp);
2341 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2342 				     is_serdes);
2343 		bnx2x_release_phy_lock(bp);
2344 	} else
2345 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2346 
2347 	return rc;
2348 }
2349 
2350 
2351 /* Calculates the sum of vn_min_rates.
2352    It's needed for further normalizing of the min_rates.
2353    Returns:
2354      sum of vn_min_rates.
2355        or
2356      0 - if all the min_rates are 0.
2357      In the later case fainess algorithm should be deactivated.
2358      If not all min_rates are zero then those that are zeroes will be set to 1.
2359  */
2360 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2361 				      struct cmng_init_input *input)
2362 {
2363 	int all_zero = 1;
2364 	int vn;
2365 
2366 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2367 		u32 vn_cfg = bp->mf_config[vn];
2368 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2369 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2370 
2371 		/* Skip hidden vns */
2372 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2373 			vn_min_rate = 0;
2374 		/* If min rate is zero - set it to 1 */
2375 		else if (!vn_min_rate)
2376 			vn_min_rate = DEF_MIN_RATE;
2377 		else
2378 			all_zero = 0;
2379 
2380 		input->vnic_min_rate[vn] = vn_min_rate;
2381 	}
2382 
2383 	/* if ETS or all min rates are zeros - disable fairness */
2384 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2385 		input->flags.cmng_enables &=
2386 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2387 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2388 	} else if (all_zero) {
2389 		input->flags.cmng_enables &=
2390 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2391 		DP(NETIF_MSG_IFUP,
2392 		   "All MIN values are zeroes fairness will be disabled\n");
2393 	} else
2394 		input->flags.cmng_enables |=
2395 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2396 }
2397 
2398 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2399 				    struct cmng_init_input *input)
2400 {
2401 	u16 vn_max_rate;
2402 	u32 vn_cfg = bp->mf_config[vn];
2403 
2404 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2405 		vn_max_rate = 0;
2406 	else {
2407 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2408 
2409 		if (IS_MF_SI(bp)) {
2410 			/* maxCfg in percents of linkspeed */
2411 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2412 		} else /* SD modes */
2413 			/* maxCfg is absolute in 100Mb units */
2414 			vn_max_rate = maxCfg * 100;
2415 	}
2416 
2417 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2418 
2419 	input->vnic_max_rate[vn] = vn_max_rate;
2420 }
2421 
2422 
2423 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2424 {
2425 	if (CHIP_REV_IS_SLOW(bp))
2426 		return CMNG_FNS_NONE;
2427 	if (IS_MF(bp))
2428 		return CMNG_FNS_MINMAX;
2429 
2430 	return CMNG_FNS_NONE;
2431 }
2432 
2433 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2434 {
2435 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2436 
2437 	if (BP_NOMCP(bp))
2438 		return; /* what should be the default bvalue in this case */
2439 
2440 	/* For 2 port configuration the absolute function number formula
2441 	 * is:
2442 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2443 	 *
2444 	 *      and there are 4 functions per port
2445 	 *
2446 	 * For 4 port configuration it is
2447 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2448 	 *
2449 	 *      and there are 2 functions per port
2450 	 */
2451 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2452 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2453 
2454 		if (func >= E1H_FUNC_MAX)
2455 			break;
2456 
2457 		bp->mf_config[vn] =
2458 			MF_CFG_RD(bp, func_mf_config[func].config);
2459 	}
2460 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2461 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2462 		bp->flags |= MF_FUNC_DIS;
2463 	} else {
2464 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2465 		bp->flags &= ~MF_FUNC_DIS;
2466 	}
2467 }
2468 
2469 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2470 {
2471 	struct cmng_init_input input;
2472 	memset(&input, 0, sizeof(struct cmng_init_input));
2473 
2474 	input.port_rate = bp->link_vars.line_speed;
2475 
2476 	if (cmng_type == CMNG_FNS_MINMAX) {
2477 		int vn;
2478 
2479 		/* read mf conf from shmem */
2480 		if (read_cfg)
2481 			bnx2x_read_mf_cfg(bp);
2482 
2483 		/* vn_weight_sum and enable fairness if not 0 */
2484 		bnx2x_calc_vn_min(bp, &input);
2485 
2486 		/* calculate and set min-max rate for each vn */
2487 		if (bp->port.pmf)
2488 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2489 				bnx2x_calc_vn_max(bp, vn, &input);
2490 
2491 		/* always enable rate shaping and fairness */
2492 		input.flags.cmng_enables |=
2493 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2494 
2495 		bnx2x_init_cmng(&input, &bp->cmng);
2496 		return;
2497 	}
2498 
2499 	/* rate shaping and fairness are disabled */
2500 	DP(NETIF_MSG_IFUP,
2501 	   "rate shaping and fairness are disabled\n");
2502 }
2503 
2504 static void storm_memset_cmng(struct bnx2x *bp,
2505 			      struct cmng_init *cmng,
2506 			      u8 port)
2507 {
2508 	int vn;
2509 	size_t size = sizeof(struct cmng_struct_per_port);
2510 
2511 	u32 addr = BAR_XSTRORM_INTMEM +
2512 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2513 
2514 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2515 
2516 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2517 		int func = func_by_vn(bp, vn);
2518 
2519 		addr = BAR_XSTRORM_INTMEM +
2520 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2521 		size = sizeof(struct rate_shaping_vars_per_vn);
2522 		__storm_memset_struct(bp, addr, size,
2523 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2524 
2525 		addr = BAR_XSTRORM_INTMEM +
2526 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2527 		size = sizeof(struct fairness_vars_per_vn);
2528 		__storm_memset_struct(bp, addr, size,
2529 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2530 	}
2531 }
2532 
2533 /* This function is called upon link interrupt */
2534 static void bnx2x_link_attn(struct bnx2x *bp)
2535 {
2536 	/* Make sure that we are synced with the current statistics */
2537 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2538 
2539 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2540 
2541 	if (bp->link_vars.link_up) {
2542 
2543 		/* dropless flow control */
2544 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2545 			int port = BP_PORT(bp);
2546 			u32 pause_enabled = 0;
2547 
2548 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2549 				pause_enabled = 1;
2550 
2551 			REG_WR(bp, BAR_USTRORM_INTMEM +
2552 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2553 			       pause_enabled);
2554 		}
2555 
2556 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2557 			struct host_port_stats *pstats;
2558 
2559 			pstats = bnx2x_sp(bp, port_stats);
2560 			/* reset old mac stats */
2561 			memset(&(pstats->mac_stx[0]), 0,
2562 			       sizeof(struct mac_stx));
2563 		}
2564 		if (bp->state == BNX2X_STATE_OPEN)
2565 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2566 	}
2567 
2568 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2569 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2570 
2571 		if (cmng_fns != CMNG_FNS_NONE) {
2572 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2573 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2574 		} else
2575 			/* rate shaping and fairness are disabled */
2576 			DP(NETIF_MSG_IFUP,
2577 			   "single function mode without fairness\n");
2578 	}
2579 
2580 	__bnx2x_link_report(bp);
2581 
2582 	if (IS_MF(bp))
2583 		bnx2x_link_sync_notify(bp);
2584 }
2585 
2586 void bnx2x__link_status_update(struct bnx2x *bp)
2587 {
2588 	if (bp->state != BNX2X_STATE_OPEN)
2589 		return;
2590 
2591 	/* read updated dcb configuration */
2592 	if (IS_PF(bp)) {
2593 		bnx2x_dcbx_pmf_update(bp);
2594 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2595 		if (bp->link_vars.link_up)
2596 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2597 		else
2598 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2599 			/* indicate link status */
2600 		bnx2x_link_report(bp);
2601 
2602 	} else { /* VF */
2603 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2604 					  SUPPORTED_10baseT_Full |
2605 					  SUPPORTED_100baseT_Half |
2606 					  SUPPORTED_100baseT_Full |
2607 					  SUPPORTED_1000baseT_Full |
2608 					  SUPPORTED_2500baseX_Full |
2609 					  SUPPORTED_10000baseT_Full |
2610 					  SUPPORTED_TP |
2611 					  SUPPORTED_FIBRE |
2612 					  SUPPORTED_Autoneg |
2613 					  SUPPORTED_Pause |
2614 					  SUPPORTED_Asym_Pause);
2615 		bp->port.advertising[0] = bp->port.supported[0];
2616 
2617 		bp->link_params.bp = bp;
2618 		bp->link_params.port = BP_PORT(bp);
2619 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2620 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2621 		bp->link_params.req_line_speed[0] = SPEED_10000;
2622 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2623 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2624 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2625 		bp->link_vars.line_speed = SPEED_10000;
2626 		bp->link_vars.link_status =
2627 			(LINK_STATUS_LINK_UP |
2628 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2629 		bp->link_vars.link_up = 1;
2630 		bp->link_vars.duplex = DUPLEX_FULL;
2631 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2632 		__bnx2x_link_report(bp);
2633 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2634 	}
2635 }
2636 
2637 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2638 				  u16 vlan_val, u8 allowed_prio)
2639 {
2640 	struct bnx2x_func_state_params func_params = {NULL};
2641 	struct bnx2x_func_afex_update_params *f_update_params =
2642 		&func_params.params.afex_update;
2643 
2644 	func_params.f_obj = &bp->func_obj;
2645 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2646 
2647 	/* no need to wait for RAMROD completion, so don't
2648 	 * set RAMROD_COMP_WAIT flag
2649 	 */
2650 
2651 	f_update_params->vif_id = vifid;
2652 	f_update_params->afex_default_vlan = vlan_val;
2653 	f_update_params->allowed_priorities = allowed_prio;
2654 
2655 	/* if ramrod can not be sent, response to MCP immediately */
2656 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2657 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2658 
2659 	return 0;
2660 }
2661 
2662 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2663 					  u16 vif_index, u8 func_bit_map)
2664 {
2665 	struct bnx2x_func_state_params func_params = {NULL};
2666 	struct bnx2x_func_afex_viflists_params *update_params =
2667 		&func_params.params.afex_viflists;
2668 	int rc;
2669 	u32 drv_msg_code;
2670 
2671 	/* validate only LIST_SET and LIST_GET are received from switch */
2672 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2673 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2674 			  cmd_type);
2675 
2676 	func_params.f_obj = &bp->func_obj;
2677 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2678 
2679 	/* set parameters according to cmd_type */
2680 	update_params->afex_vif_list_command = cmd_type;
2681 	update_params->vif_list_index = vif_index;
2682 	update_params->func_bit_map =
2683 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2684 	update_params->func_to_clear = 0;
2685 	drv_msg_code =
2686 		(cmd_type == VIF_LIST_RULE_GET) ?
2687 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2688 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2689 
2690 	/* if ramrod can not be sent, respond to MCP immediately for
2691 	 * SET and GET requests (other are not triggered from MCP)
2692 	 */
2693 	rc = bnx2x_func_state_change(bp, &func_params);
2694 	if (rc < 0)
2695 		bnx2x_fw_command(bp, drv_msg_code, 0);
2696 
2697 	return 0;
2698 }
2699 
2700 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2701 {
2702 	struct afex_stats afex_stats;
2703 	u32 func = BP_ABS_FUNC(bp);
2704 	u32 mf_config;
2705 	u16 vlan_val;
2706 	u32 vlan_prio;
2707 	u16 vif_id;
2708 	u8 allowed_prio;
2709 	u8 vlan_mode;
2710 	u32 addr_to_write, vifid, addrs, stats_type, i;
2711 
2712 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2713 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2714 		DP(BNX2X_MSG_MCP,
2715 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2716 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2717 	}
2718 
2719 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2720 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2721 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2722 		DP(BNX2X_MSG_MCP,
2723 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2724 		   vifid, addrs);
2725 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2726 					       addrs);
2727 	}
2728 
2729 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2730 		addr_to_write = SHMEM2_RD(bp,
2731 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2732 		stats_type = SHMEM2_RD(bp,
2733 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2734 
2735 		DP(BNX2X_MSG_MCP,
2736 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2737 		   addr_to_write);
2738 
2739 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2740 
2741 		/* write response to scratchpad, for MCP */
2742 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2743 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2744 			       *(((u32 *)(&afex_stats))+i));
2745 
2746 		/* send ack message to MCP */
2747 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2748 	}
2749 
2750 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2751 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2752 		bp->mf_config[BP_VN(bp)] = mf_config;
2753 		DP(BNX2X_MSG_MCP,
2754 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2755 		   mf_config);
2756 
2757 		/* if VIF_SET is "enabled" */
2758 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2759 			/* set rate limit directly to internal RAM */
2760 			struct cmng_init_input cmng_input;
2761 			struct rate_shaping_vars_per_vn m_rs_vn;
2762 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2763 			u32 addr = BAR_XSTRORM_INTMEM +
2764 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2765 
2766 			bp->mf_config[BP_VN(bp)] = mf_config;
2767 
2768 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2769 			m_rs_vn.vn_counter.rate =
2770 				cmng_input.vnic_max_rate[BP_VN(bp)];
2771 			m_rs_vn.vn_counter.quota =
2772 				(m_rs_vn.vn_counter.rate *
2773 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2774 
2775 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2776 
2777 			/* read relevant values from mf_cfg struct in shmem */
2778 			vif_id =
2779 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2780 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2781 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2782 			vlan_val =
2783 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2784 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2785 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2786 			vlan_prio = (mf_config &
2787 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2788 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2789 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2790 			vlan_mode =
2791 				(MF_CFG_RD(bp,
2792 					   func_mf_config[func].afex_config) &
2793 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2794 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2795 			allowed_prio =
2796 				(MF_CFG_RD(bp,
2797 					   func_mf_config[func].afex_config) &
2798 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2799 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2800 
2801 			/* send ramrod to FW, return in case of failure */
2802 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2803 						   allowed_prio))
2804 				return;
2805 
2806 			bp->afex_def_vlan_tag = vlan_val;
2807 			bp->afex_vlan_mode = vlan_mode;
2808 		} else {
2809 			/* notify link down because BP->flags is disabled */
2810 			bnx2x_link_report(bp);
2811 
2812 			/* send INVALID VIF ramrod to FW */
2813 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2814 
2815 			/* Reset the default afex VLAN */
2816 			bp->afex_def_vlan_tag = -1;
2817 		}
2818 	}
2819 }
2820 
2821 static void bnx2x_pmf_update(struct bnx2x *bp)
2822 {
2823 	int port = BP_PORT(bp);
2824 	u32 val;
2825 
2826 	bp->port.pmf = 1;
2827 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2828 
2829 	/*
2830 	 * We need the mb() to ensure the ordering between the writing to
2831 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2832 	 */
2833 	smp_mb();
2834 
2835 	/* queue a periodic task */
2836 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2837 
2838 	bnx2x_dcbx_pmf_update(bp);
2839 
2840 	/* enable nig attention */
2841 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2842 	if (bp->common.int_block == INT_BLOCK_HC) {
2843 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2844 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2845 	} else if (!CHIP_IS_E1x(bp)) {
2846 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2847 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2848 	}
2849 
2850 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2851 }
2852 
2853 /* end of Link */
2854 
2855 /* slow path */
2856 
2857 /*
2858  * General service functions
2859  */
2860 
2861 /* send the MCP a request, block until there is a reply */
2862 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2863 {
2864 	int mb_idx = BP_FW_MB_IDX(bp);
2865 	u32 seq;
2866 	u32 rc = 0;
2867 	u32 cnt = 1;
2868 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2869 
2870 	mutex_lock(&bp->fw_mb_mutex);
2871 	seq = ++bp->fw_seq;
2872 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2873 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2874 
2875 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2876 			(command | seq), param);
2877 
2878 	do {
2879 		/* let the FW do it's magic ... */
2880 		msleep(delay);
2881 
2882 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2883 
2884 		/* Give the FW up to 5 second (500*10ms) */
2885 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2886 
2887 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2888 	   cnt*delay, rc, seq);
2889 
2890 	/* is this a reply to our command? */
2891 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2892 		rc &= FW_MSG_CODE_MASK;
2893 	else {
2894 		/* FW BUG! */
2895 		BNX2X_ERR("FW failed to respond!\n");
2896 		bnx2x_fw_dump(bp);
2897 		rc = 0;
2898 	}
2899 	mutex_unlock(&bp->fw_mb_mutex);
2900 
2901 	return rc;
2902 }
2903 
2904 
2905 static void storm_memset_func_cfg(struct bnx2x *bp,
2906 				 struct tstorm_eth_function_common_config *tcfg,
2907 				 u16 abs_fid)
2908 {
2909 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2910 
2911 	u32 addr = BAR_TSTRORM_INTMEM +
2912 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2913 
2914 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2915 }
2916 
2917 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2918 {
2919 	if (CHIP_IS_E1x(bp)) {
2920 		struct tstorm_eth_function_common_config tcfg = {0};
2921 
2922 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2923 	}
2924 
2925 	/* Enable the function in the FW */
2926 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2927 	storm_memset_func_en(bp, p->func_id, 1);
2928 
2929 	/* spq */
2930 	if (p->func_flgs & FUNC_FLG_SPQ) {
2931 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2932 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2933 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2934 	}
2935 }
2936 
2937 /**
2938  * bnx2x_get_tx_only_flags - Return common flags
2939  *
2940  * @bp		device handle
2941  * @fp		queue handle
2942  * @zero_stats	TRUE if statistics zeroing is needed
2943  *
2944  * Return the flags that are common for the Tx-only and not normal connections.
2945  */
2946 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2947 					    struct bnx2x_fastpath *fp,
2948 					    bool zero_stats)
2949 {
2950 	unsigned long flags = 0;
2951 
2952 	/* PF driver will always initialize the Queue to an ACTIVE state */
2953 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2954 
2955 	/* tx only connections collect statistics (on the same index as the
2956 	 * parent connection). The statistics are zeroed when the parent
2957 	 * connection is initialized.
2958 	 */
2959 
2960 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2961 	if (zero_stats)
2962 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2963 
2964 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2965 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2966 
2967 #ifdef BNX2X_STOP_ON_ERROR
2968 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2969 #endif
2970 
2971 	return flags;
2972 }
2973 
2974 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2975 				       struct bnx2x_fastpath *fp,
2976 				       bool leading)
2977 {
2978 	unsigned long flags = 0;
2979 
2980 	/* calculate other queue flags */
2981 	if (IS_MF_SD(bp))
2982 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2983 
2984 	if (IS_FCOE_FP(fp)) {
2985 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2986 		/* For FCoE - force usage of default priority (for afex) */
2987 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2988 	}
2989 
2990 	if (!fp->disable_tpa) {
2991 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2992 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2993 		if (fp->mode == TPA_MODE_GRO)
2994 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2995 	}
2996 
2997 	if (leading) {
2998 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2999 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3000 	}
3001 
3002 	/* Always set HW VLAN stripping */
3003 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3004 
3005 	/* configure silent vlan removal */
3006 	if (IS_MF_AFEX(bp))
3007 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3008 
3009 
3010 	return flags | bnx2x_get_common_flags(bp, fp, true);
3011 }
3012 
3013 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3014 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3015 	u8 cos)
3016 {
3017 	gen_init->stat_id = bnx2x_stats_id(fp);
3018 	gen_init->spcl_id = fp->cl_id;
3019 
3020 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3021 	if (IS_FCOE_FP(fp))
3022 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3023 	else
3024 		gen_init->mtu = bp->dev->mtu;
3025 
3026 	gen_init->cos = cos;
3027 }
3028 
3029 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3030 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3031 	struct bnx2x_rxq_setup_params *rxq_init)
3032 {
3033 	u8 max_sge = 0;
3034 	u16 sge_sz = 0;
3035 	u16 tpa_agg_size = 0;
3036 
3037 	if (!fp->disable_tpa) {
3038 		pause->sge_th_lo = SGE_TH_LO(bp);
3039 		pause->sge_th_hi = SGE_TH_HI(bp);
3040 
3041 		/* validate SGE ring has enough to cross high threshold */
3042 		WARN_ON(bp->dropless_fc &&
3043 				pause->sge_th_hi + FW_PREFETCH_CNT >
3044 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3045 
3046 		tpa_agg_size = TPA_AGG_SIZE;
3047 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3048 			SGE_PAGE_SHIFT;
3049 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3050 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3051 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3052 	}
3053 
3054 	/* pause - not for e1 */
3055 	if (!CHIP_IS_E1(bp)) {
3056 		pause->bd_th_lo = BD_TH_LO(bp);
3057 		pause->bd_th_hi = BD_TH_HI(bp);
3058 
3059 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3060 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3061 		/*
3062 		 * validate that rings have enough entries to cross
3063 		 * high thresholds
3064 		 */
3065 		WARN_ON(bp->dropless_fc &&
3066 				pause->bd_th_hi + FW_PREFETCH_CNT >
3067 				bp->rx_ring_size);
3068 		WARN_ON(bp->dropless_fc &&
3069 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3070 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3071 
3072 		pause->pri_map = 1;
3073 	}
3074 
3075 	/* rxq setup */
3076 	rxq_init->dscr_map = fp->rx_desc_mapping;
3077 	rxq_init->sge_map = fp->rx_sge_mapping;
3078 	rxq_init->rcq_map = fp->rx_comp_mapping;
3079 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3080 
3081 	/* This should be a maximum number of data bytes that may be
3082 	 * placed on the BD (not including paddings).
3083 	 */
3084 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3085 		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
3086 
3087 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3088 	rxq_init->tpa_agg_sz = tpa_agg_size;
3089 	rxq_init->sge_buf_sz = sge_sz;
3090 	rxq_init->max_sges_pkt = max_sge;
3091 	rxq_init->rss_engine_id = BP_FUNC(bp);
3092 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3093 
3094 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3095 	 *
3096 	 * For PF Clients it should be the maximum available number.
3097 	 * VF driver(s) may want to define it to a smaller value.
3098 	 */
3099 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3100 
3101 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3102 	rxq_init->fw_sb_id = fp->fw_sb_id;
3103 
3104 	if (IS_FCOE_FP(fp))
3105 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3106 	else
3107 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3108 	/* configure silent vlan removal
3109 	 * if multi function mode is afex, then mask default vlan
3110 	 */
3111 	if (IS_MF_AFEX(bp)) {
3112 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3113 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3114 	}
3115 }
3116 
3117 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3118 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3119 	u8 cos)
3120 {
3121 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3122 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3123 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3124 	txq_init->fw_sb_id = fp->fw_sb_id;
3125 
3126 	/*
3127 	 * set the tss leading client id for TX classfication ==
3128 	 * leading RSS client id
3129 	 */
3130 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3131 
3132 	if (IS_FCOE_FP(fp)) {
3133 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3134 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3135 	}
3136 }
3137 
3138 static void bnx2x_pf_init(struct bnx2x *bp)
3139 {
3140 	struct bnx2x_func_init_params func_init = {0};
3141 	struct event_ring_data eq_data = { {0} };
3142 	u16 flags;
3143 
3144 	if (!CHIP_IS_E1x(bp)) {
3145 		/* reset IGU PF statistics: MSIX + ATTN */
3146 		/* PF */
3147 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3148 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3149 			   (CHIP_MODE_IS_4_PORT(bp) ?
3150 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3151 		/* ATTN */
3152 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3153 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3154 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3155 			   (CHIP_MODE_IS_4_PORT(bp) ?
3156 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3157 	}
3158 
3159 	/* function setup flags */
3160 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3161 
3162 	/* This flag is relevant for E1x only.
3163 	 * E2 doesn't have a TPA configuration in a function level.
3164 	 */
3165 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3166 
3167 	func_init.func_flgs = flags;
3168 	func_init.pf_id = BP_FUNC(bp);
3169 	func_init.func_id = BP_FUNC(bp);
3170 	func_init.spq_map = bp->spq_mapping;
3171 	func_init.spq_prod = bp->spq_prod_idx;
3172 
3173 	bnx2x_func_init(bp, &func_init);
3174 
3175 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3176 
3177 	/*
3178 	 * Congestion management values depend on the link rate
3179 	 * There is no active link so initial link rate is set to 10 Gbps.
3180 	 * When the link comes up The congestion management values are
3181 	 * re-calculated according to the actual link rate.
3182 	 */
3183 	bp->link_vars.line_speed = SPEED_10000;
3184 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3185 
3186 	/* Only the PMF sets the HW */
3187 	if (bp->port.pmf)
3188 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3189 
3190 	/* init Event Queue - PCI bus guarantees correct endianity*/
3191 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3192 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3193 	eq_data.producer = bp->eq_prod;
3194 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3195 	eq_data.sb_id = DEF_SB_ID;
3196 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3197 }
3198 
3199 
3200 static void bnx2x_e1h_disable(struct bnx2x *bp)
3201 {
3202 	int port = BP_PORT(bp);
3203 
3204 	bnx2x_tx_disable(bp);
3205 
3206 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3207 }
3208 
3209 static void bnx2x_e1h_enable(struct bnx2x *bp)
3210 {
3211 	int port = BP_PORT(bp);
3212 
3213 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3214 
3215 	/* Tx queue should be only reenabled */
3216 	netif_tx_wake_all_queues(bp->dev);
3217 
3218 	/*
3219 	 * Should not call netif_carrier_on since it will be called if the link
3220 	 * is up when checking for link state
3221 	 */
3222 }
3223 
3224 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3225 
3226 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3227 {
3228 	struct eth_stats_info *ether_stat =
3229 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3230 	struct bnx2x_vlan_mac_obj *mac_obj =
3231 		&bp->sp_objs->mac_obj;
3232 	int i;
3233 
3234 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3235 		ETH_STAT_INFO_VERSION_LEN);
3236 
3237 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3238 	 * mac_local field in ether_stat struct. The base address is offset by 2
3239 	 * bytes to account for the field being 8 bytes but a mac address is
3240 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3241 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3242 	 * allocated by the ether_stat struct, so the macs will land in their
3243 	 * proper positions.
3244 	 */
3245 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3246 		memset(ether_stat->mac_local + i, 0,
3247 		       sizeof(ether_stat->mac_local[0]));
3248 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3249 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3250 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3251 				ETH_ALEN);
3252 	ether_stat->mtu_size = bp->dev->mtu;
3253 	if (bp->dev->features & NETIF_F_RXCSUM)
3254 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3255 	if (bp->dev->features & NETIF_F_TSO)
3256 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3257 	ether_stat->feature_flags |= bp->common.boot_mode;
3258 
3259 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3260 
3261 	ether_stat->txq_size = bp->tx_ring_size;
3262 	ether_stat->rxq_size = bp->rx_ring_size;
3263 }
3264 
3265 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3266 {
3267 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3268 	struct fcoe_stats_info *fcoe_stat =
3269 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3270 
3271 	if (!CNIC_LOADED(bp))
3272 		return;
3273 
3274 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3275 
3276 	fcoe_stat->qos_priority =
3277 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3278 
3279 	/* insert FCoE stats from ramrod response */
3280 	if (!NO_FCOE(bp)) {
3281 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3282 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3283 			tstorm_queue_statistics;
3284 
3285 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3286 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3287 			xstorm_queue_statistics;
3288 
3289 		struct fcoe_statistics_params *fw_fcoe_stat =
3290 			&bp->fw_stats_data->fcoe;
3291 
3292 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3293 			  fcoe_stat->rx_bytes_lo,
3294 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3295 
3296 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3297 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3298 			  fcoe_stat->rx_bytes_lo,
3299 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3300 
3301 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3302 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3303 			  fcoe_stat->rx_bytes_lo,
3304 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3305 
3306 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3307 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3308 			  fcoe_stat->rx_bytes_lo,
3309 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3310 
3311 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3312 			  fcoe_stat->rx_frames_lo,
3313 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3314 
3315 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3316 			  fcoe_stat->rx_frames_lo,
3317 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3318 
3319 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3320 			  fcoe_stat->rx_frames_lo,
3321 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3322 
3323 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3324 			  fcoe_stat->rx_frames_lo,
3325 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3326 
3327 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3328 			  fcoe_stat->tx_bytes_lo,
3329 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3330 
3331 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3332 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3333 			  fcoe_stat->tx_bytes_lo,
3334 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3335 
3336 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3337 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3338 			  fcoe_stat->tx_bytes_lo,
3339 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3340 
3341 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3342 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3343 			  fcoe_stat->tx_bytes_lo,
3344 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3345 
3346 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3347 			  fcoe_stat->tx_frames_lo,
3348 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3349 
3350 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3351 			  fcoe_stat->tx_frames_lo,
3352 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3353 
3354 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3355 			  fcoe_stat->tx_frames_lo,
3356 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3357 
3358 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3359 			  fcoe_stat->tx_frames_lo,
3360 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3361 	}
3362 
3363 	/* ask L5 driver to add data to the struct */
3364 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3365 }
3366 
3367 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3368 {
3369 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3370 	struct iscsi_stats_info *iscsi_stat =
3371 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3372 
3373 	if (!CNIC_LOADED(bp))
3374 		return;
3375 
3376 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3377 	       ETH_ALEN);
3378 
3379 	iscsi_stat->qos_priority =
3380 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3381 
3382 	/* ask L5 driver to add data to the struct */
3383 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3384 }
3385 
3386 /* called due to MCP event (on pmf):
3387  *	reread new bandwidth configuration
3388  *	configure FW
3389  *	notify others function about the change
3390  */
3391 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3392 {
3393 	if (bp->link_vars.link_up) {
3394 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3395 		bnx2x_link_sync_notify(bp);
3396 	}
3397 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3398 }
3399 
3400 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3401 {
3402 	bnx2x_config_mf_bw(bp);
3403 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3404 }
3405 
3406 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3407 {
3408 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3409 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3410 }
3411 
3412 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3413 {
3414 	enum drv_info_opcode op_code;
3415 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3416 
3417 	/* if drv_info version supported by MFW doesn't match - send NACK */
3418 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3419 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3420 		return;
3421 	}
3422 
3423 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3424 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3425 
3426 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3427 	       sizeof(union drv_info_to_mcp));
3428 
3429 	switch (op_code) {
3430 	case ETH_STATS_OPCODE:
3431 		bnx2x_drv_info_ether_stat(bp);
3432 		break;
3433 	case FCOE_STATS_OPCODE:
3434 		bnx2x_drv_info_fcoe_stat(bp);
3435 		break;
3436 	case ISCSI_STATS_OPCODE:
3437 		bnx2x_drv_info_iscsi_stat(bp);
3438 		break;
3439 	default:
3440 		/* if op code isn't supported - send NACK */
3441 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3442 		return;
3443 	}
3444 
3445 	/* if we got drv_info attn from MFW then these fields are defined in
3446 	 * shmem2 for sure
3447 	 */
3448 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3449 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3450 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3451 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3452 
3453 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3454 }
3455 
3456 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3457 {
3458 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3459 
3460 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3461 
3462 		/*
3463 		 * This is the only place besides the function initialization
3464 		 * where the bp->flags can change so it is done without any
3465 		 * locks
3466 		 */
3467 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3468 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3469 			bp->flags |= MF_FUNC_DIS;
3470 
3471 			bnx2x_e1h_disable(bp);
3472 		} else {
3473 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3474 			bp->flags &= ~MF_FUNC_DIS;
3475 
3476 			bnx2x_e1h_enable(bp);
3477 		}
3478 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3479 	}
3480 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3481 		bnx2x_config_mf_bw(bp);
3482 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3483 	}
3484 
3485 	/* Report results to MCP */
3486 	if (dcc_event)
3487 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3488 	else
3489 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3490 }
3491 
3492 /* must be called under the spq lock */
3493 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3494 {
3495 	struct eth_spe *next_spe = bp->spq_prod_bd;
3496 
3497 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3498 		bp->spq_prod_bd = bp->spq;
3499 		bp->spq_prod_idx = 0;
3500 		DP(BNX2X_MSG_SP, "end of spq\n");
3501 	} else {
3502 		bp->spq_prod_bd++;
3503 		bp->spq_prod_idx++;
3504 	}
3505 	return next_spe;
3506 }
3507 
3508 /* must be called under the spq lock */
3509 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3510 {
3511 	int func = BP_FUNC(bp);
3512 
3513 	/*
3514 	 * Make sure that BD data is updated before writing the producer:
3515 	 * BD data is written to the memory, the producer is read from the
3516 	 * memory, thus we need a full memory barrier to ensure the ordering.
3517 	 */
3518 	mb();
3519 
3520 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3521 		 bp->spq_prod_idx);
3522 	mmiowb();
3523 }
3524 
3525 /**
3526  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3527  *
3528  * @cmd:	command to check
3529  * @cmd_type:	command type
3530  */
3531 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3532 {
3533 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3534 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3535 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3536 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3537 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3538 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3539 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3540 		return true;
3541 	else
3542 		return false;
3543 
3544 }
3545 
3546 
3547 /**
3548  * bnx2x_sp_post - place a single command on an SP ring
3549  *
3550  * @bp:		driver handle
3551  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3552  * @cid:	SW CID the command is related to
3553  * @data_hi:	command private data address (high 32 bits)
3554  * @data_lo:	command private data address (low 32 bits)
3555  * @cmd_type:	command type (e.g. NONE, ETH)
3556  *
3557  * SP data is handled as if it's always an address pair, thus data fields are
3558  * not swapped to little endian in upper functions. Instead this function swaps
3559  * data as if it's two u32 fields.
3560  */
3561 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3562 		  u32 data_hi, u32 data_lo, int cmd_type)
3563 {
3564 	struct eth_spe *spe;
3565 	u16 type;
3566 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3567 
3568 #ifdef BNX2X_STOP_ON_ERROR
3569 	if (unlikely(bp->panic)) {
3570 		BNX2X_ERR("Can't post SP when there is panic\n");
3571 		return -EIO;
3572 	}
3573 #endif
3574 
3575 	spin_lock_bh(&bp->spq_lock);
3576 
3577 	if (common) {
3578 		if (!atomic_read(&bp->eq_spq_left)) {
3579 			BNX2X_ERR("BUG! EQ ring full!\n");
3580 			spin_unlock_bh(&bp->spq_lock);
3581 			bnx2x_panic();
3582 			return -EBUSY;
3583 		}
3584 	} else if (!atomic_read(&bp->cq_spq_left)) {
3585 			BNX2X_ERR("BUG! SPQ ring full!\n");
3586 			spin_unlock_bh(&bp->spq_lock);
3587 			bnx2x_panic();
3588 			return -EBUSY;
3589 	}
3590 
3591 	spe = bnx2x_sp_get_next(bp);
3592 
3593 	/* CID needs port number to be encoded int it */
3594 	spe->hdr.conn_and_cmd_data =
3595 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3596 				    HW_CID(bp, cid));
3597 
3598 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3599 
3600 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3601 		 SPE_HDR_FUNCTION_ID);
3602 
3603 	spe->hdr.type = cpu_to_le16(type);
3604 
3605 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3606 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3607 
3608 	/*
3609 	 * It's ok if the actual decrement is issued towards the memory
3610 	 * somewhere between the spin_lock and spin_unlock. Thus no
3611 	 * more explict memory barrier is needed.
3612 	 */
3613 	if (common)
3614 		atomic_dec(&bp->eq_spq_left);
3615 	else
3616 		atomic_dec(&bp->cq_spq_left);
3617 
3618 
3619 	DP(BNX2X_MSG_SP,
3620 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3621 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3622 	   (u32)(U64_LO(bp->spq_mapping) +
3623 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3624 	   HW_CID(bp, cid), data_hi, data_lo, type,
3625 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3626 
3627 	bnx2x_sp_prod_update(bp);
3628 	spin_unlock_bh(&bp->spq_lock);
3629 	return 0;
3630 }
3631 
3632 /* acquire split MCP access lock register */
3633 static int bnx2x_acquire_alr(struct bnx2x *bp)
3634 {
3635 	u32 j, val;
3636 	int rc = 0;
3637 
3638 	might_sleep();
3639 	for (j = 0; j < 1000; j++) {
3640 		val = (1UL << 31);
3641 		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3642 		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3643 		if (val & (1L << 31))
3644 			break;
3645 
3646 		msleep(5);
3647 	}
3648 	if (!(val & (1L << 31))) {
3649 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3650 		rc = -EBUSY;
3651 	}
3652 
3653 	return rc;
3654 }
3655 
3656 /* release split MCP access lock register */
3657 static void bnx2x_release_alr(struct bnx2x *bp)
3658 {
3659 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3660 }
3661 
3662 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3663 #define BNX2X_DEF_SB_IDX	0x0002
3664 
3665 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3666 {
3667 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3668 	u16 rc = 0;
3669 
3670 	barrier(); /* status block is written to by the chip */
3671 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3672 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3673 		rc |= BNX2X_DEF_SB_ATT_IDX;
3674 	}
3675 
3676 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3677 		bp->def_idx = def_sb->sp_sb.running_index;
3678 		rc |= BNX2X_DEF_SB_IDX;
3679 	}
3680 
3681 	/* Do not reorder: indecies reading should complete before handling */
3682 	barrier();
3683 	return rc;
3684 }
3685 
3686 /*
3687  * slow path service functions
3688  */
3689 
3690 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3691 {
3692 	int port = BP_PORT(bp);
3693 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3694 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3695 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3696 				       NIG_REG_MASK_INTERRUPT_PORT0;
3697 	u32 aeu_mask;
3698 	u32 nig_mask = 0;
3699 	u32 reg_addr;
3700 
3701 	if (bp->attn_state & asserted)
3702 		BNX2X_ERR("IGU ERROR\n");
3703 
3704 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3705 	aeu_mask = REG_RD(bp, aeu_addr);
3706 
3707 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3708 	   aeu_mask, asserted);
3709 	aeu_mask &= ~(asserted & 0x3ff);
3710 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3711 
3712 	REG_WR(bp, aeu_addr, aeu_mask);
3713 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3714 
3715 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3716 	bp->attn_state |= asserted;
3717 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3718 
3719 	if (asserted & ATTN_HARD_WIRED_MASK) {
3720 		if (asserted & ATTN_NIG_FOR_FUNC) {
3721 
3722 			bnx2x_acquire_phy_lock(bp);
3723 
3724 			/* save nig interrupt mask */
3725 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3726 
3727 			/* If nig_mask is not set, no need to call the update
3728 			 * function.
3729 			 */
3730 			if (nig_mask) {
3731 				REG_WR(bp, nig_int_mask_addr, 0);
3732 
3733 				bnx2x_link_attn(bp);
3734 			}
3735 
3736 			/* handle unicore attn? */
3737 		}
3738 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3739 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3740 
3741 		if (asserted & GPIO_2_FUNC)
3742 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3743 
3744 		if (asserted & GPIO_3_FUNC)
3745 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3746 
3747 		if (asserted & GPIO_4_FUNC)
3748 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3749 
3750 		if (port == 0) {
3751 			if (asserted & ATTN_GENERAL_ATTN_1) {
3752 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3753 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3754 			}
3755 			if (asserted & ATTN_GENERAL_ATTN_2) {
3756 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3757 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3758 			}
3759 			if (asserted & ATTN_GENERAL_ATTN_3) {
3760 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3761 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3762 			}
3763 		} else {
3764 			if (asserted & ATTN_GENERAL_ATTN_4) {
3765 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3766 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3767 			}
3768 			if (asserted & ATTN_GENERAL_ATTN_5) {
3769 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3770 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3771 			}
3772 			if (asserted & ATTN_GENERAL_ATTN_6) {
3773 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3774 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3775 			}
3776 		}
3777 
3778 	} /* if hardwired */
3779 
3780 	if (bp->common.int_block == INT_BLOCK_HC)
3781 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3782 			    COMMAND_REG_ATTN_BITS_SET);
3783 	else
3784 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3785 
3786 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3787 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3788 	REG_WR(bp, reg_addr, asserted);
3789 
3790 	/* now set back the mask */
3791 	if (asserted & ATTN_NIG_FOR_FUNC) {
3792 		/* Verify that IGU ack through BAR was written before restoring
3793 		 * NIG mask. This loop should exit after 2-3 iterations max.
3794 		 */
3795 		if (bp->common.int_block != INT_BLOCK_HC) {
3796 			u32 cnt = 0, igu_acked;
3797 			do {
3798 				igu_acked = REG_RD(bp,
3799 						   IGU_REG_ATTENTION_ACK_BITS);
3800 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3801 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3802 			if (!igu_acked)
3803 				DP(NETIF_MSG_HW,
3804 				   "Failed to verify IGU ack on time\n");
3805 			barrier();
3806 		}
3807 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3808 		bnx2x_release_phy_lock(bp);
3809 	}
3810 }
3811 
3812 static void bnx2x_fan_failure(struct bnx2x *bp)
3813 {
3814 	int port = BP_PORT(bp);
3815 	u32 ext_phy_config;
3816 	/* mark the failure */
3817 	ext_phy_config =
3818 		SHMEM_RD(bp,
3819 			 dev_info.port_hw_config[port].external_phy_config);
3820 
3821 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3822 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3823 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3824 		 ext_phy_config);
3825 
3826 	/* log the failure */
3827 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3828 			    "Please contact OEM Support for assistance\n");
3829 
3830 	/*
3831 	 * Schedule device reset (unload)
3832 	 * This is due to some boards consuming sufficient power when driver is
3833 	 * up to overheat if fan fails.
3834 	 */
3835 	smp_mb__before_clear_bit();
3836 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3837 	smp_mb__after_clear_bit();
3838 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3839 
3840 }
3841 
3842 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3843 {
3844 	int port = BP_PORT(bp);
3845 	int reg_offset;
3846 	u32 val;
3847 
3848 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3849 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3850 
3851 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3852 
3853 		val = REG_RD(bp, reg_offset);
3854 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3855 		REG_WR(bp, reg_offset, val);
3856 
3857 		BNX2X_ERR("SPIO5 hw attention\n");
3858 
3859 		/* Fan failure attention */
3860 		bnx2x_hw_reset_phy(&bp->link_params);
3861 		bnx2x_fan_failure(bp);
3862 	}
3863 
3864 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3865 		bnx2x_acquire_phy_lock(bp);
3866 		bnx2x_handle_module_detect_int(&bp->link_params);
3867 		bnx2x_release_phy_lock(bp);
3868 	}
3869 
3870 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3871 
3872 		val = REG_RD(bp, reg_offset);
3873 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3874 		REG_WR(bp, reg_offset, val);
3875 
3876 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3877 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3878 		bnx2x_panic();
3879 	}
3880 }
3881 
3882 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3883 {
3884 	u32 val;
3885 
3886 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3887 
3888 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3889 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3890 		/* DORQ discard attention */
3891 		if (val & 0x2)
3892 			BNX2X_ERR("FATAL error from DORQ\n");
3893 	}
3894 
3895 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3896 
3897 		int port = BP_PORT(bp);
3898 		int reg_offset;
3899 
3900 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3901 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3902 
3903 		val = REG_RD(bp, reg_offset);
3904 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3905 		REG_WR(bp, reg_offset, val);
3906 
3907 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3908 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3909 		bnx2x_panic();
3910 	}
3911 }
3912 
3913 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3914 {
3915 	u32 val;
3916 
3917 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3918 
3919 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3920 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3921 		/* CFC error attention */
3922 		if (val & 0x2)
3923 			BNX2X_ERR("FATAL error from CFC\n");
3924 	}
3925 
3926 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3927 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3928 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3929 		/* RQ_USDMDP_FIFO_OVERFLOW */
3930 		if (val & 0x18000)
3931 			BNX2X_ERR("FATAL error from PXP\n");
3932 
3933 		if (!CHIP_IS_E1x(bp)) {
3934 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3935 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3936 		}
3937 	}
3938 
3939 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3940 
3941 		int port = BP_PORT(bp);
3942 		int reg_offset;
3943 
3944 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3945 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3946 
3947 		val = REG_RD(bp, reg_offset);
3948 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3949 		REG_WR(bp, reg_offset, val);
3950 
3951 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3952 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3953 		bnx2x_panic();
3954 	}
3955 }
3956 
3957 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3958 {
3959 	u32 val;
3960 
3961 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3962 
3963 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3964 			int func = BP_FUNC(bp);
3965 
3966 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3967 			bnx2x_read_mf_cfg(bp);
3968 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3969 					func_mf_config[BP_ABS_FUNC(bp)].config);
3970 			val = SHMEM_RD(bp,
3971 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3972 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3973 				bnx2x_dcc_event(bp,
3974 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3975 
3976 			if (val & DRV_STATUS_SET_MF_BW)
3977 				bnx2x_set_mf_bw(bp);
3978 
3979 			if (val & DRV_STATUS_DRV_INFO_REQ)
3980 				bnx2x_handle_drv_info_req(bp);
3981 
3982 			if (val & DRV_STATUS_VF_DISABLED)
3983 				bnx2x_vf_handle_flr_event(bp);
3984 
3985 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3986 				bnx2x_pmf_update(bp);
3987 
3988 			if (bp->port.pmf &&
3989 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3990 				bp->dcbx_enabled > 0)
3991 				/* start dcbx state machine */
3992 				bnx2x_dcbx_set_params(bp,
3993 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3994 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
3995 				bnx2x_handle_afex_cmd(bp,
3996 					val & DRV_STATUS_AFEX_EVENT_MASK);
3997 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3998 				bnx2x_handle_eee_event(bp);
3999 			if (bp->link_vars.periodic_flags &
4000 			    PERIODIC_FLAGS_LINK_EVENT) {
4001 				/*  sync with link */
4002 				bnx2x_acquire_phy_lock(bp);
4003 				bp->link_vars.periodic_flags &=
4004 					~PERIODIC_FLAGS_LINK_EVENT;
4005 				bnx2x_release_phy_lock(bp);
4006 				if (IS_MF(bp))
4007 					bnx2x_link_sync_notify(bp);
4008 				bnx2x_link_report(bp);
4009 			}
4010 			/* Always call it here: bnx2x_link_report() will
4011 			 * prevent the link indication duplication.
4012 			 */
4013 			bnx2x__link_status_update(bp);
4014 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4015 
4016 			BNX2X_ERR("MC assert!\n");
4017 			bnx2x_mc_assert(bp);
4018 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4019 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4020 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4021 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4022 			bnx2x_panic();
4023 
4024 		} else if (attn & BNX2X_MCP_ASSERT) {
4025 
4026 			BNX2X_ERR("MCP assert!\n");
4027 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4028 			bnx2x_fw_dump(bp);
4029 
4030 		} else
4031 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4032 	}
4033 
4034 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4035 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4036 		if (attn & BNX2X_GRC_TIMEOUT) {
4037 			val = CHIP_IS_E1(bp) ? 0 :
4038 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4039 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4040 		}
4041 		if (attn & BNX2X_GRC_RSV) {
4042 			val = CHIP_IS_E1(bp) ? 0 :
4043 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4044 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4045 		}
4046 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4047 	}
4048 }
4049 
4050 /*
4051  * Bits map:
4052  * 0-7   - Engine0 load counter.
4053  * 8-15  - Engine1 load counter.
4054  * 16    - Engine0 RESET_IN_PROGRESS bit.
4055  * 17    - Engine1 RESET_IN_PROGRESS bit.
4056  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4057  *         on the engine
4058  * 19    - Engine1 ONE_IS_LOADED.
4059  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4060  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4061  *         just the one belonging to its engine).
4062  *
4063  */
4064 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4065 
4066 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4067 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4068 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4069 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4070 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4071 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4072 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4073 
4074 /*
4075  * Set the GLOBAL_RESET bit.
4076  *
4077  * Should be run under rtnl lock
4078  */
4079 void bnx2x_set_reset_global(struct bnx2x *bp)
4080 {
4081 	u32 val;
4082 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4083 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4084 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4085 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4086 }
4087 
4088 /*
4089  * Clear the GLOBAL_RESET bit.
4090  *
4091  * Should be run under rtnl lock
4092  */
4093 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4094 {
4095 	u32 val;
4096 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4097 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4098 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4099 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4100 }
4101 
4102 /*
4103  * Checks the GLOBAL_RESET bit.
4104  *
4105  * should be run under rtnl lock
4106  */
4107 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4108 {
4109 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4110 
4111 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4112 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4113 }
4114 
4115 /*
4116  * Clear RESET_IN_PROGRESS bit for the current engine.
4117  *
4118  * Should be run under rtnl lock
4119  */
4120 static void bnx2x_set_reset_done(struct bnx2x *bp)
4121 {
4122 	u32 val;
4123 	u32 bit = BP_PATH(bp) ?
4124 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4125 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4126 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4127 
4128 	/* Clear the bit */
4129 	val &= ~bit;
4130 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4131 
4132 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4133 }
4134 
4135 /*
4136  * Set RESET_IN_PROGRESS for the current engine.
4137  *
4138  * should be run under rtnl lock
4139  */
4140 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4141 {
4142 	u32 val;
4143 	u32 bit = BP_PATH(bp) ?
4144 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4145 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4146 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4147 
4148 	/* Set the bit */
4149 	val |= bit;
4150 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4151 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4152 }
4153 
4154 /*
4155  * Checks the RESET_IN_PROGRESS bit for the given engine.
4156  * should be run under rtnl lock
4157  */
4158 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4159 {
4160 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4161 	u32 bit = engine ?
4162 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4163 
4164 	/* return false if bit is set */
4165 	return (val & bit) ? false : true;
4166 }
4167 
4168 /*
4169  * set pf load for the current pf.
4170  *
4171  * should be run under rtnl lock
4172  */
4173 void bnx2x_set_pf_load(struct bnx2x *bp)
4174 {
4175 	u32 val1, val;
4176 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4177 			     BNX2X_PATH0_LOAD_CNT_MASK;
4178 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4179 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4180 
4181 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4182 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4183 
4184 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4185 
4186 	/* get the current counter value */
4187 	val1 = (val & mask) >> shift;
4188 
4189 	/* set bit of that PF */
4190 	val1 |= (1 << bp->pf_num);
4191 
4192 	/* clear the old value */
4193 	val &= ~mask;
4194 
4195 	/* set the new one */
4196 	val |= ((val1 << shift) & mask);
4197 
4198 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4199 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4200 }
4201 
4202 /**
4203  * bnx2x_clear_pf_load - clear pf load mark
4204  *
4205  * @bp:		driver handle
4206  *
4207  * Should be run under rtnl lock.
4208  * Decrements the load counter for the current engine. Returns
4209  * whether other functions are still loaded
4210  */
4211 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4212 {
4213 	u32 val1, val;
4214 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4215 			     BNX2X_PATH0_LOAD_CNT_MASK;
4216 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4217 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4218 
4219 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4220 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4221 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4222 
4223 	/* get the current counter value */
4224 	val1 = (val & mask) >> shift;
4225 
4226 	/* clear bit of that PF */
4227 	val1 &= ~(1 << bp->pf_num);
4228 
4229 	/* clear the old value */
4230 	val &= ~mask;
4231 
4232 	/* set the new one */
4233 	val |= ((val1 << shift) & mask);
4234 
4235 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4236 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4237 	return val1 != 0;
4238 }
4239 
4240 /*
4241  * Read the load status for the current engine.
4242  *
4243  * should be run under rtnl lock
4244  */
4245 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4246 {
4247 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4248 			     BNX2X_PATH0_LOAD_CNT_MASK);
4249 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4250 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4251 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4252 
4253 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4254 
4255 	val = (val & mask) >> shift;
4256 
4257 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4258 	   engine, val);
4259 
4260 	return val != 0;
4261 }
4262 
4263 static void _print_next_block(int idx, const char *blk)
4264 {
4265 	pr_cont("%s%s", idx ? ", " : "", blk);
4266 }
4267 
4268 static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
4269 					   bool print)
4270 {
4271 	int i = 0;
4272 	u32 cur_bit = 0;
4273 	for (i = 0; sig; i++) {
4274 		cur_bit = ((u32)0x1 << i);
4275 		if (sig & cur_bit) {
4276 			switch (cur_bit) {
4277 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4278 				if (print)
4279 					_print_next_block(par_num++, "BRB");
4280 				break;
4281 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4282 				if (print)
4283 					_print_next_block(par_num++, "PARSER");
4284 				break;
4285 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4286 				if (print)
4287 					_print_next_block(par_num++, "TSDM");
4288 				break;
4289 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4290 				if (print)
4291 					_print_next_block(par_num++,
4292 							  "SEARCHER");
4293 				break;
4294 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4295 				if (print)
4296 					_print_next_block(par_num++, "TCM");
4297 				break;
4298 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4299 				if (print)
4300 					_print_next_block(par_num++, "TSEMI");
4301 				break;
4302 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4303 				if (print)
4304 					_print_next_block(par_num++, "XPB");
4305 				break;
4306 			}
4307 
4308 			/* Clear the bit */
4309 			sig &= ~cur_bit;
4310 		}
4311 	}
4312 
4313 	return par_num;
4314 }
4315 
4316 static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
4317 					   bool *global, bool print)
4318 {
4319 	int i = 0;
4320 	u32 cur_bit = 0;
4321 	for (i = 0; sig; i++) {
4322 		cur_bit = ((u32)0x1 << i);
4323 		if (sig & cur_bit) {
4324 			switch (cur_bit) {
4325 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4326 				if (print)
4327 					_print_next_block(par_num++, "PBF");
4328 				break;
4329 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4330 				if (print)
4331 					_print_next_block(par_num++, "QM");
4332 				break;
4333 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4334 				if (print)
4335 					_print_next_block(par_num++, "TM");
4336 				break;
4337 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4338 				if (print)
4339 					_print_next_block(par_num++, "XSDM");
4340 				break;
4341 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4342 				if (print)
4343 					_print_next_block(par_num++, "XCM");
4344 				break;
4345 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4346 				if (print)
4347 					_print_next_block(par_num++, "XSEMI");
4348 				break;
4349 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4350 				if (print)
4351 					_print_next_block(par_num++,
4352 							  "DOORBELLQ");
4353 				break;
4354 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4355 				if (print)
4356 					_print_next_block(par_num++, "NIG");
4357 				break;
4358 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4359 				if (print)
4360 					_print_next_block(par_num++,
4361 							  "VAUX PCI CORE");
4362 				*global = true;
4363 				break;
4364 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4365 				if (print)
4366 					_print_next_block(par_num++, "DEBUG");
4367 				break;
4368 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4369 				if (print)
4370 					_print_next_block(par_num++, "USDM");
4371 				break;
4372 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4373 				if (print)
4374 					_print_next_block(par_num++, "UCM");
4375 				break;
4376 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4377 				if (print)
4378 					_print_next_block(par_num++, "USEMI");
4379 				break;
4380 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4381 				if (print)
4382 					_print_next_block(par_num++, "UPB");
4383 				break;
4384 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4385 				if (print)
4386 					_print_next_block(par_num++, "CSDM");
4387 				break;
4388 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4389 				if (print)
4390 					_print_next_block(par_num++, "CCM");
4391 				break;
4392 			}
4393 
4394 			/* Clear the bit */
4395 			sig &= ~cur_bit;
4396 		}
4397 	}
4398 
4399 	return par_num;
4400 }
4401 
4402 static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4403 					   bool print)
4404 {
4405 	int i = 0;
4406 	u32 cur_bit = 0;
4407 	for (i = 0; sig; i++) {
4408 		cur_bit = ((u32)0x1 << i);
4409 		if (sig & cur_bit) {
4410 			switch (cur_bit) {
4411 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4412 				if (print)
4413 					_print_next_block(par_num++, "CSEMI");
4414 				break;
4415 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4416 				if (print)
4417 					_print_next_block(par_num++, "PXP");
4418 				break;
4419 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4420 				if (print)
4421 					_print_next_block(par_num++,
4422 					"PXPPCICLOCKCLIENT");
4423 				break;
4424 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4425 				if (print)
4426 					_print_next_block(par_num++, "CFC");
4427 				break;
4428 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4429 				if (print)
4430 					_print_next_block(par_num++, "CDU");
4431 				break;
4432 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4433 				if (print)
4434 					_print_next_block(par_num++, "DMAE");
4435 				break;
4436 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4437 				if (print)
4438 					_print_next_block(par_num++, "IGU");
4439 				break;
4440 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4441 				if (print)
4442 					_print_next_block(par_num++, "MISC");
4443 				break;
4444 			}
4445 
4446 			/* Clear the bit */
4447 			sig &= ~cur_bit;
4448 		}
4449 	}
4450 
4451 	return par_num;
4452 }
4453 
4454 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4455 					   bool *global, bool print)
4456 {
4457 	int i = 0;
4458 	u32 cur_bit = 0;
4459 	for (i = 0; sig; i++) {
4460 		cur_bit = ((u32)0x1 << i);
4461 		if (sig & cur_bit) {
4462 			switch (cur_bit) {
4463 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4464 				if (print)
4465 					_print_next_block(par_num++, "MCP ROM");
4466 				*global = true;
4467 				break;
4468 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4469 				if (print)
4470 					_print_next_block(par_num++,
4471 							  "MCP UMP RX");
4472 				*global = true;
4473 				break;
4474 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4475 				if (print)
4476 					_print_next_block(par_num++,
4477 							  "MCP UMP TX");
4478 				*global = true;
4479 				break;
4480 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4481 				if (print)
4482 					_print_next_block(par_num++,
4483 							  "MCP SCPAD");
4484 				*global = true;
4485 				break;
4486 			}
4487 
4488 			/* Clear the bit */
4489 			sig &= ~cur_bit;
4490 		}
4491 	}
4492 
4493 	return par_num;
4494 }
4495 
4496 static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4497 					   bool print)
4498 {
4499 	int i = 0;
4500 	u32 cur_bit = 0;
4501 	for (i = 0; sig; i++) {
4502 		cur_bit = ((u32)0x1 << i);
4503 		if (sig & cur_bit) {
4504 			switch (cur_bit) {
4505 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4506 				if (print)
4507 					_print_next_block(par_num++, "PGLUE_B");
4508 				break;
4509 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4510 				if (print)
4511 					_print_next_block(par_num++, "ATC");
4512 				break;
4513 			}
4514 
4515 			/* Clear the bit */
4516 			sig &= ~cur_bit;
4517 		}
4518 	}
4519 
4520 	return par_num;
4521 }
4522 
4523 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4524 			      u32 *sig)
4525 {
4526 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4527 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4528 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4529 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4530 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4531 		int par_num = 0;
4532 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4533 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4534 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4535 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4536 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4537 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4538 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4539 		if (print)
4540 			netdev_err(bp->dev,
4541 				   "Parity errors detected in blocks: ");
4542 		par_num = bnx2x_check_blocks_with_parity0(
4543 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4544 		par_num = bnx2x_check_blocks_with_parity1(
4545 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4546 		par_num = bnx2x_check_blocks_with_parity2(
4547 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4548 		par_num = bnx2x_check_blocks_with_parity3(
4549 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4550 		par_num = bnx2x_check_blocks_with_parity4(
4551 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4552 
4553 		if (print)
4554 			pr_cont("\n");
4555 
4556 		return true;
4557 	} else
4558 		return false;
4559 }
4560 
4561 /**
4562  * bnx2x_chk_parity_attn - checks for parity attentions.
4563  *
4564  * @bp:		driver handle
4565  * @global:	true if there was a global attention
4566  * @print:	show parity attention in syslog
4567  */
4568 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4569 {
4570 	struct attn_route attn = { {0} };
4571 	int port = BP_PORT(bp);
4572 
4573 	attn.sig[0] = REG_RD(bp,
4574 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4575 			     port*4);
4576 	attn.sig[1] = REG_RD(bp,
4577 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4578 			     port*4);
4579 	attn.sig[2] = REG_RD(bp,
4580 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4581 			     port*4);
4582 	attn.sig[3] = REG_RD(bp,
4583 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4584 			     port*4);
4585 
4586 	if (!CHIP_IS_E1x(bp))
4587 		attn.sig[4] = REG_RD(bp,
4588 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4589 				     port*4);
4590 
4591 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4592 }
4593 
4594 
4595 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4596 {
4597 	u32 val;
4598 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4599 
4600 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4601 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4602 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4603 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4604 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4605 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4606 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4607 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4608 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4609 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4610 		if (val &
4611 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4612 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4613 		if (val &
4614 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4615 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4616 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4617 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4618 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4619 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4620 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4621 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4622 	}
4623 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4624 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4625 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4626 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4627 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4628 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4629 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4630 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4631 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4632 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4633 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4634 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4635 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4636 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4637 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4638 	}
4639 
4640 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4641 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4642 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4643 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4644 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4645 	}
4646 
4647 }
4648 
4649 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4650 {
4651 	struct attn_route attn, *group_mask;
4652 	int port = BP_PORT(bp);
4653 	int index;
4654 	u32 reg_addr;
4655 	u32 val;
4656 	u32 aeu_mask;
4657 	bool global = false;
4658 
4659 	/* need to take HW lock because MCP or other port might also
4660 	   try to handle this event */
4661 	bnx2x_acquire_alr(bp);
4662 
4663 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4664 #ifndef BNX2X_STOP_ON_ERROR
4665 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4666 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4667 		/* Disable HW interrupts */
4668 		bnx2x_int_disable(bp);
4669 		/* In case of parity errors don't handle attentions so that
4670 		 * other function would "see" parity errors.
4671 		 */
4672 #else
4673 		bnx2x_panic();
4674 #endif
4675 		bnx2x_release_alr(bp);
4676 		return;
4677 	}
4678 
4679 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4680 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4681 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4682 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4683 	if (!CHIP_IS_E1x(bp))
4684 		attn.sig[4] =
4685 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4686 	else
4687 		attn.sig[4] = 0;
4688 
4689 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4690 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4691 
4692 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4693 		if (deasserted & (1 << index)) {
4694 			group_mask = &bp->attn_group[index];
4695 
4696 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4697 			   index,
4698 			   group_mask->sig[0], group_mask->sig[1],
4699 			   group_mask->sig[2], group_mask->sig[3],
4700 			   group_mask->sig[4]);
4701 
4702 			bnx2x_attn_int_deasserted4(bp,
4703 					attn.sig[4] & group_mask->sig[4]);
4704 			bnx2x_attn_int_deasserted3(bp,
4705 					attn.sig[3] & group_mask->sig[3]);
4706 			bnx2x_attn_int_deasserted1(bp,
4707 					attn.sig[1] & group_mask->sig[1]);
4708 			bnx2x_attn_int_deasserted2(bp,
4709 					attn.sig[2] & group_mask->sig[2]);
4710 			bnx2x_attn_int_deasserted0(bp,
4711 					attn.sig[0] & group_mask->sig[0]);
4712 		}
4713 	}
4714 
4715 	bnx2x_release_alr(bp);
4716 
4717 	if (bp->common.int_block == INT_BLOCK_HC)
4718 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4719 			    COMMAND_REG_ATTN_BITS_CLR);
4720 	else
4721 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4722 
4723 	val = ~deasserted;
4724 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4725 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4726 	REG_WR(bp, reg_addr, val);
4727 
4728 	if (~bp->attn_state & deasserted)
4729 		BNX2X_ERR("IGU ERROR\n");
4730 
4731 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4732 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4733 
4734 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4735 	aeu_mask = REG_RD(bp, reg_addr);
4736 
4737 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4738 	   aeu_mask, deasserted);
4739 	aeu_mask |= (deasserted & 0x3ff);
4740 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4741 
4742 	REG_WR(bp, reg_addr, aeu_mask);
4743 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4744 
4745 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4746 	bp->attn_state &= ~deasserted;
4747 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4748 }
4749 
4750 static void bnx2x_attn_int(struct bnx2x *bp)
4751 {
4752 	/* read local copy of bits */
4753 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4754 								attn_bits);
4755 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4756 								attn_bits_ack);
4757 	u32 attn_state = bp->attn_state;
4758 
4759 	/* look for changed bits */
4760 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4761 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4762 
4763 	DP(NETIF_MSG_HW,
4764 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4765 	   attn_bits, attn_ack, asserted, deasserted);
4766 
4767 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4768 		BNX2X_ERR("BAD attention state\n");
4769 
4770 	/* handle bits that were raised */
4771 	if (asserted)
4772 		bnx2x_attn_int_asserted(bp, asserted);
4773 
4774 	if (deasserted)
4775 		bnx2x_attn_int_deasserted(bp, deasserted);
4776 }
4777 
4778 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4779 		      u16 index, u8 op, u8 update)
4780 {
4781 	u32 igu_addr = bp->igu_base_addr;
4782 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4783 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4784 			     igu_addr);
4785 }
4786 
4787 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4788 {
4789 	/* No memory barriers */
4790 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4791 	mmiowb(); /* keep prod updates ordered */
4792 }
4793 
4794 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4795 				      union event_ring_elem *elem)
4796 {
4797 	u8 err = elem->message.error;
4798 
4799 	if (!bp->cnic_eth_dev.starting_cid  ||
4800 	    (cid < bp->cnic_eth_dev.starting_cid &&
4801 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4802 		return 1;
4803 
4804 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4805 
4806 	if (unlikely(err)) {
4807 
4808 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4809 			  cid);
4810 		bnx2x_panic_dump(bp, false);
4811 	}
4812 	bnx2x_cnic_cfc_comp(bp, cid, err);
4813 	return 0;
4814 }
4815 
4816 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4817 {
4818 	struct bnx2x_mcast_ramrod_params rparam;
4819 	int rc;
4820 
4821 	memset(&rparam, 0, sizeof(rparam));
4822 
4823 	rparam.mcast_obj = &bp->mcast_obj;
4824 
4825 	netif_addr_lock_bh(bp->dev);
4826 
4827 	/* Clear pending state for the last command */
4828 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4829 
4830 	/* If there are pending mcast commands - send them */
4831 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4832 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4833 		if (rc < 0)
4834 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4835 				  rc);
4836 	}
4837 
4838 	netif_addr_unlock_bh(bp->dev);
4839 }
4840 
4841 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4842 					    union event_ring_elem *elem)
4843 {
4844 	unsigned long ramrod_flags = 0;
4845 	int rc = 0;
4846 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4847 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4848 
4849 	/* Always push next commands out, don't wait here */
4850 	__set_bit(RAMROD_CONT, &ramrod_flags);
4851 
4852 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4853 			    >> BNX2X_SWCID_SHIFT) {
4854 	case BNX2X_FILTER_MAC_PENDING:
4855 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4856 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4857 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4858 		else
4859 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4860 
4861 		break;
4862 	case BNX2X_FILTER_MCAST_PENDING:
4863 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4864 		/* This is only relevant for 57710 where multicast MACs are
4865 		 * configured as unicast MACs using the same ramrod.
4866 		 */
4867 		bnx2x_handle_mcast_eqe(bp);
4868 		return;
4869 	default:
4870 		BNX2X_ERR("Unsupported classification command: %d\n",
4871 			  elem->message.data.eth_event.echo);
4872 		return;
4873 	}
4874 
4875 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4876 
4877 	if (rc < 0)
4878 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4879 	else if (rc > 0)
4880 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4881 
4882 }
4883 
4884 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4885 
4886 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4887 {
4888 	netif_addr_lock_bh(bp->dev);
4889 
4890 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4891 
4892 	/* Send rx_mode command again if was requested */
4893 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4894 		bnx2x_set_storm_rx_mode(bp);
4895 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4896 				    &bp->sp_state))
4897 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4898 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4899 				    &bp->sp_state))
4900 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4901 
4902 	netif_addr_unlock_bh(bp->dev);
4903 }
4904 
4905 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
4906 					      union event_ring_elem *elem)
4907 {
4908 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
4909 		DP(BNX2X_MSG_SP,
4910 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
4911 		   elem->message.data.vif_list_event.func_bit_map);
4912 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
4913 			elem->message.data.vif_list_event.func_bit_map);
4914 	} else if (elem->message.data.vif_list_event.echo ==
4915 		   VIF_LIST_RULE_SET) {
4916 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
4917 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
4918 	}
4919 }
4920 
4921 /* called with rtnl_lock */
4922 static void bnx2x_after_function_update(struct bnx2x *bp)
4923 {
4924 	int q, rc;
4925 	struct bnx2x_fastpath *fp;
4926 	struct bnx2x_queue_state_params queue_params = {NULL};
4927 	struct bnx2x_queue_update_params *q_update_params =
4928 		&queue_params.params.update;
4929 
4930 	/* Send Q update command with afex vlan removal values for all Qs */
4931 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
4932 
4933 	/* set silent vlan removal values according to vlan mode */
4934 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4935 		  &q_update_params->update_flags);
4936 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
4937 		  &q_update_params->update_flags);
4938 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4939 
4940 	/* in access mode mark mask and value are 0 to strip all vlans */
4941 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
4942 		q_update_params->silent_removal_value = 0;
4943 		q_update_params->silent_removal_mask = 0;
4944 	} else {
4945 		q_update_params->silent_removal_value =
4946 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
4947 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
4948 	}
4949 
4950 	for_each_eth_queue(bp, q) {
4951 		/* Set the appropriate Queue object */
4952 		fp = &bp->fp[q];
4953 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4954 
4955 		/* send the ramrod */
4956 		rc = bnx2x_queue_state_change(bp, &queue_params);
4957 		if (rc < 0)
4958 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4959 				  q);
4960 	}
4961 
4962 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
4963 		fp = &bp->fp[FCOE_IDX(bp)];
4964 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4965 
4966 		/* clear pending completion bit */
4967 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4968 
4969 		/* mark latest Q bit */
4970 		smp_mb__before_clear_bit();
4971 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
4972 		smp_mb__after_clear_bit();
4973 
4974 		/* send Q update ramrod for FCoE Q */
4975 		rc = bnx2x_queue_state_change(bp, &queue_params);
4976 		if (rc < 0)
4977 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4978 				  q);
4979 	} else {
4980 		/* If no FCoE ring - ACK MCP now */
4981 		bnx2x_link_report(bp);
4982 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4983 	}
4984 }
4985 
4986 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4987 	struct bnx2x *bp, u32 cid)
4988 {
4989 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4990 
4991 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
4992 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
4993 	else
4994 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
4995 }
4996 
4997 static void bnx2x_eq_int(struct bnx2x *bp)
4998 {
4999 	u16 hw_cons, sw_cons, sw_prod;
5000 	union event_ring_elem *elem;
5001 	u8 echo;
5002 	u32 cid;
5003 	u8 opcode;
5004 	int rc, spqe_cnt = 0;
5005 	struct bnx2x_queue_sp_obj *q_obj;
5006 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5007 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5008 
5009 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5010 
5011 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5012 	 * when we get the the next-page we nned to adjust so the loop
5013 	 * condition below will be met. The next element is the size of a
5014 	 * regular element and hence incrementing by 1
5015 	 */
5016 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5017 		hw_cons++;
5018 
5019 	/* This function may never run in parallel with itself for a
5020 	 * specific bp, thus there is no need in "paired" read memory
5021 	 * barrier here.
5022 	 */
5023 	sw_cons = bp->eq_cons;
5024 	sw_prod = bp->eq_prod;
5025 
5026 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5027 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5028 
5029 	for (; sw_cons != hw_cons;
5030 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5031 
5032 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5033 
5034 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5035 		if (!rc) {
5036 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5037 			   rc);
5038 			goto next_spqe;
5039 		}
5040 
5041 		/* elem CID originates from FW; actually LE */
5042 		cid = SW_CID((__force __le32)
5043 			     elem->message.data.cfc_del_event.cid);
5044 		opcode = elem->message.opcode;
5045 
5046 		/* handle eq element */
5047 		switch (opcode) {
5048 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5049 			DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5050 			bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5051 			continue;
5052 
5053 		case EVENT_RING_OPCODE_STAT_QUERY:
5054 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5055 			   "got statistics comp event %d\n",
5056 			   bp->stats_comp++);
5057 			/* nothing to do with stats comp */
5058 			goto next_spqe;
5059 
5060 		case EVENT_RING_OPCODE_CFC_DEL:
5061 			/* handle according to cid range */
5062 			/*
5063 			 * we may want to verify here that the bp state is
5064 			 * HALTING
5065 			 */
5066 			DP(BNX2X_MSG_SP,
5067 			   "got delete ramrod for MULTI[%d]\n", cid);
5068 
5069 			if (CNIC_LOADED(bp) &&
5070 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5071 				goto next_spqe;
5072 
5073 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5074 
5075 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5076 				break;
5077 
5078 
5079 
5080 			goto next_spqe;
5081 
5082 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5083 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5084 			if (f_obj->complete_cmd(bp, f_obj,
5085 						BNX2X_F_CMD_TX_STOP))
5086 				break;
5087 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5088 			goto next_spqe;
5089 
5090 		case EVENT_RING_OPCODE_START_TRAFFIC:
5091 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5092 			if (f_obj->complete_cmd(bp, f_obj,
5093 						BNX2X_F_CMD_TX_START))
5094 				break;
5095 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5096 			goto next_spqe;
5097 
5098 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5099 			echo = elem->message.data.function_update_event.echo;
5100 			if (echo == SWITCH_UPDATE) {
5101 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5102 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5103 				if (f_obj->complete_cmd(
5104 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5105 					break;
5106 
5107 			} else {
5108 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5109 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5110 				f_obj->complete_cmd(bp, f_obj,
5111 						    BNX2X_F_CMD_AFEX_UPDATE);
5112 
5113 				/* We will perform the Queues update from
5114 				 * sp_rtnl task as all Queue SP operations
5115 				 * should run under rtnl_lock.
5116 				 */
5117 				smp_mb__before_clear_bit();
5118 				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5119 					&bp->sp_rtnl_state);
5120 				smp_mb__after_clear_bit();
5121 
5122 				schedule_delayed_work(&bp->sp_rtnl_task, 0);
5123 			}
5124 
5125 			goto next_spqe;
5126 
5127 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5128 			f_obj->complete_cmd(bp, f_obj,
5129 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5130 			bnx2x_after_afex_vif_lists(bp, elem);
5131 			goto next_spqe;
5132 		case EVENT_RING_OPCODE_FUNCTION_START:
5133 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5134 			   "got FUNC_START ramrod\n");
5135 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5136 				break;
5137 
5138 			goto next_spqe;
5139 
5140 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5141 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5142 			   "got FUNC_STOP ramrod\n");
5143 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5144 				break;
5145 
5146 			goto next_spqe;
5147 		}
5148 
5149 		switch (opcode | bp->state) {
5150 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5151 		      BNX2X_STATE_OPEN):
5152 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5153 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5154 			cid = elem->message.data.eth_event.echo &
5155 				BNX2X_SWCID_MASK;
5156 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5157 			   cid);
5158 			rss_raw->clear_pending(rss_raw);
5159 			break;
5160 
5161 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5162 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5163 		case (EVENT_RING_OPCODE_SET_MAC |
5164 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5165 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5166 		      BNX2X_STATE_OPEN):
5167 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5168 		      BNX2X_STATE_DIAG):
5169 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5170 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5171 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5172 			bnx2x_handle_classification_eqe(bp, elem);
5173 			break;
5174 
5175 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5176 		      BNX2X_STATE_OPEN):
5177 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5178 		      BNX2X_STATE_DIAG):
5179 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5180 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5181 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5182 			bnx2x_handle_mcast_eqe(bp);
5183 			break;
5184 
5185 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5186 		      BNX2X_STATE_OPEN):
5187 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5188 		      BNX2X_STATE_DIAG):
5189 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5190 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5191 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5192 			bnx2x_handle_rx_mode_eqe(bp);
5193 			break;
5194 		default:
5195 			/* unknown event log error and continue */
5196 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5197 				  elem->message.opcode, bp->state);
5198 		}
5199 next_spqe:
5200 		spqe_cnt++;
5201 	} /* for */
5202 
5203 	smp_mb__before_atomic_inc();
5204 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5205 
5206 	bp->eq_cons = sw_cons;
5207 	bp->eq_prod = sw_prod;
5208 	/* Make sure that above mem writes were issued towards the memory */
5209 	smp_wmb();
5210 
5211 	/* update producer */
5212 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5213 }
5214 
5215 static void bnx2x_sp_task(struct work_struct *work)
5216 {
5217 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5218 
5219 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5220 
5221 	/* make sure the atomic interupt_occurred has been written */
5222 	smp_rmb();
5223 	if (atomic_read(&bp->interrupt_occurred)) {
5224 
5225 		/* what work needs to be performed? */
5226 		u16 status = bnx2x_update_dsb_idx(bp);
5227 
5228 		DP(BNX2X_MSG_SP, "status %x\n", status);
5229 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5230 		atomic_set(&bp->interrupt_occurred, 0);
5231 
5232 		/* HW attentions */
5233 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5234 			bnx2x_attn_int(bp);
5235 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5236 		}
5237 
5238 		/* SP events: STAT_QUERY and others */
5239 		if (status & BNX2X_DEF_SB_IDX) {
5240 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5241 
5242 		if (FCOE_INIT(bp) &&
5243 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5244 				/* Prevent local bottom-halves from running as
5245 				 * we are going to change the local NAPI list.
5246 				 */
5247 				local_bh_disable();
5248 				napi_schedule(&bnx2x_fcoe(bp, napi));
5249 				local_bh_enable();
5250 			}
5251 
5252 			/* Handle EQ completions */
5253 			bnx2x_eq_int(bp);
5254 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5255 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5256 
5257 			status &= ~BNX2X_DEF_SB_IDX;
5258 		}
5259 
5260 		/* if status is non zero then perhaps something went wrong */
5261 		if (unlikely(status))
5262 			DP(BNX2X_MSG_SP,
5263 			   "got an unknown interrupt! (status 0x%x)\n", status);
5264 
5265 		/* ack status block only if something was actually handled */
5266 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5267 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5268 
5269 	}
5270 
5271 	/* must be called after the EQ processing (since eq leads to sriov
5272 	 * ramrod completion flows).
5273 	 * This flow may have been scheduled by the arrival of a ramrod
5274 	 * completion, or by the sriov code rescheduling itself.
5275 	 */
5276 	bnx2x_iov_sp_task(bp);
5277 
5278 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5279 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5280 			       &bp->sp_state)) {
5281 		bnx2x_link_report(bp);
5282 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5283 	}
5284 }
5285 
5286 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5287 {
5288 	struct net_device *dev = dev_instance;
5289 	struct bnx2x *bp = netdev_priv(dev);
5290 
5291 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5292 		     IGU_INT_DISABLE, 0);
5293 
5294 #ifdef BNX2X_STOP_ON_ERROR
5295 	if (unlikely(bp->panic))
5296 		return IRQ_HANDLED;
5297 #endif
5298 
5299 	if (CNIC_LOADED(bp)) {
5300 		struct cnic_ops *c_ops;
5301 
5302 		rcu_read_lock();
5303 		c_ops = rcu_dereference(bp->cnic_ops);
5304 		if (c_ops)
5305 			c_ops->cnic_handler(bp->cnic_data, NULL);
5306 		rcu_read_unlock();
5307 	}
5308 
5309 	/* schedule sp task to perform default status block work, ack
5310 	 * attentions and enable interrupts.
5311 	 */
5312 	bnx2x_schedule_sp_task(bp);
5313 
5314 	return IRQ_HANDLED;
5315 }
5316 
5317 /* end of slow path */
5318 
5319 
5320 void bnx2x_drv_pulse(struct bnx2x *bp)
5321 {
5322 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5323 		 bp->fw_drv_pulse_wr_seq);
5324 }
5325 
5326 static void bnx2x_timer(unsigned long data)
5327 {
5328 	struct bnx2x *bp = (struct bnx2x *) data;
5329 
5330 	if (!netif_running(bp->dev))
5331 		return;
5332 
5333 	if (IS_PF(bp) &&
5334 	    !BP_NOMCP(bp)) {
5335 		int mb_idx = BP_FW_MB_IDX(bp);
5336 		u32 drv_pulse;
5337 		u32 mcp_pulse;
5338 
5339 		++bp->fw_drv_pulse_wr_seq;
5340 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5341 		/* TBD - add SYSTEM_TIME */
5342 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5343 		bnx2x_drv_pulse(bp);
5344 
5345 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5346 			     MCP_PULSE_SEQ_MASK);
5347 		/* The delta between driver pulse and mcp response
5348 		 * should be 1 (before mcp response) or 0 (after mcp response)
5349 		 */
5350 		if ((drv_pulse != mcp_pulse) &&
5351 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5352 			/* someone lost a heartbeat... */
5353 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5354 				  drv_pulse, mcp_pulse);
5355 		}
5356 	}
5357 
5358 	if (bp->state == BNX2X_STATE_OPEN)
5359 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5360 
5361 	/* sample pf vf bulletin board for new posts from pf */
5362 	if (IS_VF(bp))
5363 		bnx2x_sample_bulletin(bp);
5364 
5365 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5366 }
5367 
5368 /* end of Statistics */
5369 
5370 /* nic init */
5371 
5372 /*
5373  * nic init service functions
5374  */
5375 
5376 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5377 {
5378 	u32 i;
5379 	if (!(len%4) && !(addr%4))
5380 		for (i = 0; i < len; i += 4)
5381 			REG_WR(bp, addr + i, fill);
5382 	else
5383 		for (i = 0; i < len; i++)
5384 			REG_WR8(bp, addr + i, fill);
5385 
5386 }
5387 
5388 /* helper: writes FP SP data to FW - data_size in dwords */
5389 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5390 				int fw_sb_id,
5391 				u32 *sb_data_p,
5392 				u32 data_size)
5393 {
5394 	int index;
5395 	for (index = 0; index < data_size; index++)
5396 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5397 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5398 			sizeof(u32)*index,
5399 			*(sb_data_p + index));
5400 }
5401 
5402 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5403 {
5404 	u32 *sb_data_p;
5405 	u32 data_size = 0;
5406 	struct hc_status_block_data_e2 sb_data_e2;
5407 	struct hc_status_block_data_e1x sb_data_e1x;
5408 
5409 	/* disable the function first */
5410 	if (!CHIP_IS_E1x(bp)) {
5411 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5412 		sb_data_e2.common.state = SB_DISABLED;
5413 		sb_data_e2.common.p_func.vf_valid = false;
5414 		sb_data_p = (u32 *)&sb_data_e2;
5415 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5416 	} else {
5417 		memset(&sb_data_e1x, 0,
5418 		       sizeof(struct hc_status_block_data_e1x));
5419 		sb_data_e1x.common.state = SB_DISABLED;
5420 		sb_data_e1x.common.p_func.vf_valid = false;
5421 		sb_data_p = (u32 *)&sb_data_e1x;
5422 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5423 	}
5424 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5425 
5426 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5427 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5428 			CSTORM_STATUS_BLOCK_SIZE);
5429 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5430 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5431 			CSTORM_SYNC_BLOCK_SIZE);
5432 }
5433 
5434 /* helper:  writes SP SB data to FW */
5435 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5436 		struct hc_sp_status_block_data *sp_sb_data)
5437 {
5438 	int func = BP_FUNC(bp);
5439 	int i;
5440 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5441 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5442 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5443 			i*sizeof(u32),
5444 			*((u32 *)sp_sb_data + i));
5445 }
5446 
5447 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5448 {
5449 	int func = BP_FUNC(bp);
5450 	struct hc_sp_status_block_data sp_sb_data;
5451 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5452 
5453 	sp_sb_data.state = SB_DISABLED;
5454 	sp_sb_data.p_func.vf_valid = false;
5455 
5456 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5457 
5458 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5459 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5460 			CSTORM_SP_STATUS_BLOCK_SIZE);
5461 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5462 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5463 			CSTORM_SP_SYNC_BLOCK_SIZE);
5464 
5465 }
5466 
5467 
5468 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5469 					   int igu_sb_id, int igu_seg_id)
5470 {
5471 	hc_sm->igu_sb_id = igu_sb_id;
5472 	hc_sm->igu_seg_id = igu_seg_id;
5473 	hc_sm->timer_value = 0xFF;
5474 	hc_sm->time_to_expire = 0xFFFFFFFF;
5475 }
5476 
5477 
5478 /* allocates state machine ids. */
5479 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5480 {
5481 	/* zero out state machine indices */
5482 	/* rx indices */
5483 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5484 
5485 	/* tx indices */
5486 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5487 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5488 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5489 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5490 
5491 	/* map indices */
5492 	/* rx indices */
5493 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5494 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5495 
5496 	/* tx indices */
5497 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5498 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5499 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5500 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5501 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5502 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5503 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5504 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5505 }
5506 
5507 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5508 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5509 {
5510 	int igu_seg_id;
5511 
5512 	struct hc_status_block_data_e2 sb_data_e2;
5513 	struct hc_status_block_data_e1x sb_data_e1x;
5514 	struct hc_status_block_sm  *hc_sm_p;
5515 	int data_size;
5516 	u32 *sb_data_p;
5517 
5518 	if (CHIP_INT_MODE_IS_BC(bp))
5519 		igu_seg_id = HC_SEG_ACCESS_NORM;
5520 	else
5521 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5522 
5523 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5524 
5525 	if (!CHIP_IS_E1x(bp)) {
5526 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5527 		sb_data_e2.common.state = SB_ENABLED;
5528 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5529 		sb_data_e2.common.p_func.vf_id = vfid;
5530 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5531 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5532 		sb_data_e2.common.same_igu_sb_1b = true;
5533 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5534 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5535 		hc_sm_p = sb_data_e2.common.state_machine;
5536 		sb_data_p = (u32 *)&sb_data_e2;
5537 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5538 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5539 	} else {
5540 		memset(&sb_data_e1x, 0,
5541 		       sizeof(struct hc_status_block_data_e1x));
5542 		sb_data_e1x.common.state = SB_ENABLED;
5543 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5544 		sb_data_e1x.common.p_func.vf_id = 0xff;
5545 		sb_data_e1x.common.p_func.vf_valid = false;
5546 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5547 		sb_data_e1x.common.same_igu_sb_1b = true;
5548 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5549 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5550 		hc_sm_p = sb_data_e1x.common.state_machine;
5551 		sb_data_p = (u32 *)&sb_data_e1x;
5552 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5553 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5554 	}
5555 
5556 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5557 				       igu_sb_id, igu_seg_id);
5558 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5559 				       igu_sb_id, igu_seg_id);
5560 
5561 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5562 
5563 	/* write indices to HW - PCI guarantees endianity of regpairs */
5564 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5565 }
5566 
5567 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5568 				     u16 tx_usec, u16 rx_usec)
5569 {
5570 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5571 				    false, rx_usec);
5572 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5573 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5574 				       tx_usec);
5575 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5576 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5577 				       tx_usec);
5578 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5579 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5580 				       tx_usec);
5581 }
5582 
5583 static void bnx2x_init_def_sb(struct bnx2x *bp)
5584 {
5585 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5586 	dma_addr_t mapping = bp->def_status_blk_mapping;
5587 	int igu_sp_sb_index;
5588 	int igu_seg_id;
5589 	int port = BP_PORT(bp);
5590 	int func = BP_FUNC(bp);
5591 	int reg_offset, reg_offset_en5;
5592 	u64 section;
5593 	int index;
5594 	struct hc_sp_status_block_data sp_sb_data;
5595 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5596 
5597 	if (CHIP_INT_MODE_IS_BC(bp)) {
5598 		igu_sp_sb_index = DEF_SB_IGU_ID;
5599 		igu_seg_id = HC_SEG_ACCESS_DEF;
5600 	} else {
5601 		igu_sp_sb_index = bp->igu_dsb_id;
5602 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5603 	}
5604 
5605 	/* ATTN */
5606 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5607 					    atten_status_block);
5608 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5609 
5610 	bp->attn_state = 0;
5611 
5612 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5613 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5614 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5615 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5616 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5617 		int sindex;
5618 		/* take care of sig[0]..sig[4] */
5619 		for (sindex = 0; sindex < 4; sindex++)
5620 			bp->attn_group[index].sig[sindex] =
5621 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5622 
5623 		if (!CHIP_IS_E1x(bp))
5624 			/*
5625 			 * enable5 is separate from the rest of the registers,
5626 			 * and therefore the address skip is 4
5627 			 * and not 16 between the different groups
5628 			 */
5629 			bp->attn_group[index].sig[4] = REG_RD(bp,
5630 					reg_offset_en5 + 0x4*index);
5631 		else
5632 			bp->attn_group[index].sig[4] = 0;
5633 	}
5634 
5635 	if (bp->common.int_block == INT_BLOCK_HC) {
5636 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5637 				     HC_REG_ATTN_MSG0_ADDR_L);
5638 
5639 		REG_WR(bp, reg_offset, U64_LO(section));
5640 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5641 	} else if (!CHIP_IS_E1x(bp)) {
5642 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5643 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5644 	}
5645 
5646 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5647 					    sp_sb);
5648 
5649 	bnx2x_zero_sp_sb(bp);
5650 
5651 	/* PCI guarantees endianity of regpairs */
5652 	sp_sb_data.state		= SB_ENABLED;
5653 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5654 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5655 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5656 	sp_sb_data.igu_seg_id		= igu_seg_id;
5657 	sp_sb_data.p_func.pf_id		= func;
5658 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5659 	sp_sb_data.p_func.vf_id		= 0xff;
5660 
5661 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5662 
5663 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5664 }
5665 
5666 void bnx2x_update_coalesce(struct bnx2x *bp)
5667 {
5668 	int i;
5669 
5670 	for_each_eth_queue(bp, i)
5671 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5672 					 bp->tx_ticks, bp->rx_ticks);
5673 }
5674 
5675 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5676 {
5677 	spin_lock_init(&bp->spq_lock);
5678 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5679 
5680 	bp->spq_prod_idx = 0;
5681 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5682 	bp->spq_prod_bd = bp->spq;
5683 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5684 }
5685 
5686 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5687 {
5688 	int i;
5689 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5690 		union event_ring_elem *elem =
5691 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5692 
5693 		elem->next_page.addr.hi =
5694 			cpu_to_le32(U64_HI(bp->eq_mapping +
5695 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5696 		elem->next_page.addr.lo =
5697 			cpu_to_le32(U64_LO(bp->eq_mapping +
5698 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5699 	}
5700 	bp->eq_cons = 0;
5701 	bp->eq_prod = NUM_EQ_DESC;
5702 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5703 	/* we want a warning message before it gets rought... */
5704 	atomic_set(&bp->eq_spq_left,
5705 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5706 }
5707 
5708 /* called with netif_addr_lock_bh() */
5709 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5710 			unsigned long rx_mode_flags,
5711 			unsigned long rx_accept_flags,
5712 			unsigned long tx_accept_flags,
5713 			unsigned long ramrod_flags)
5714 {
5715 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5716 	int rc;
5717 
5718 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5719 
5720 	/* Prepare ramrod parameters */
5721 	ramrod_param.cid = 0;
5722 	ramrod_param.cl_id = cl_id;
5723 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5724 	ramrod_param.func_id = BP_FUNC(bp);
5725 
5726 	ramrod_param.pstate = &bp->sp_state;
5727 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5728 
5729 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5730 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5731 
5732 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5733 
5734 	ramrod_param.ramrod_flags = ramrod_flags;
5735 	ramrod_param.rx_mode_flags = rx_mode_flags;
5736 
5737 	ramrod_param.rx_accept_flags = rx_accept_flags;
5738 	ramrod_param.tx_accept_flags = tx_accept_flags;
5739 
5740 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5741 	if (rc < 0) {
5742 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5743 		return rc;
5744 	}
5745 
5746 	return 0;
5747 }
5748 
5749 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5750 				   unsigned long *rx_accept_flags,
5751 				   unsigned long *tx_accept_flags)
5752 {
5753 	/* Clear the flags first */
5754 	*rx_accept_flags = 0;
5755 	*tx_accept_flags = 0;
5756 
5757 	switch (rx_mode) {
5758 	case BNX2X_RX_MODE_NONE:
5759 		/*
5760 		 * 'drop all' supersedes any accept flags that may have been
5761 		 * passed to the function.
5762 		 */
5763 		break;
5764 	case BNX2X_RX_MODE_NORMAL:
5765 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5766 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5767 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5768 
5769 		/* internal switching mode */
5770 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5771 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5772 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5773 
5774 		break;
5775 	case BNX2X_RX_MODE_ALLMULTI:
5776 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5777 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5778 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5779 
5780 		/* internal switching mode */
5781 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5782 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5783 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5784 
5785 		break;
5786 	case BNX2X_RX_MODE_PROMISC:
5787 		/* According to deffinition of SI mode, iface in promisc mode
5788 		 * should receive matched and unmatched (in resolution of port)
5789 		 * unicast packets.
5790 		 */
5791 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5792 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5793 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5794 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5795 
5796 		/* internal switching mode */
5797 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5798 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5799 
5800 		if (IS_MF_SI(bp))
5801 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5802 		else
5803 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5804 
5805 		break;
5806 	default:
5807 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5808 		return -EINVAL;
5809 	}
5810 
5811 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5812 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5813 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5814 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5815 	}
5816 
5817 	return 0;
5818 }
5819 
5820 /* called with netif_addr_lock_bh() */
5821 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5822 {
5823 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5824 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5825 	int rc;
5826 
5827 	if (!NO_FCOE(bp))
5828 		/* Configure rx_mode of FCoE Queue */
5829 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5830 
5831 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5832 				     &tx_accept_flags);
5833 	if (rc)
5834 		return rc;
5835 
5836 	__set_bit(RAMROD_RX, &ramrod_flags);
5837 	__set_bit(RAMROD_TX, &ramrod_flags);
5838 
5839 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5840 				   rx_accept_flags, tx_accept_flags,
5841 				   ramrod_flags);
5842 }
5843 
5844 static void bnx2x_init_internal_common(struct bnx2x *bp)
5845 {
5846 	int i;
5847 
5848 	if (IS_MF_SI(bp))
5849 		/*
5850 		 * In switch independent mode, the TSTORM needs to accept
5851 		 * packets that failed classification, since approximate match
5852 		 * mac addresses aren't written to NIG LLH
5853 		 */
5854 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5855 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5856 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5857 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5858 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5859 
5860 	/* Zero this manually as its initialization is
5861 	   currently missing in the initTool */
5862 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5863 		REG_WR(bp, BAR_USTRORM_INTMEM +
5864 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5865 	if (!CHIP_IS_E1x(bp)) {
5866 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5867 			CHIP_INT_MODE_IS_BC(bp) ?
5868 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5869 	}
5870 }
5871 
5872 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5873 {
5874 	switch (load_code) {
5875 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5876 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5877 		bnx2x_init_internal_common(bp);
5878 		/* no break */
5879 
5880 	case FW_MSG_CODE_DRV_LOAD_PORT:
5881 		/* nothing to do */
5882 		/* no break */
5883 
5884 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5885 		/* internal memory per function is
5886 		   initialized inside bnx2x_pf_init */
5887 		break;
5888 
5889 	default:
5890 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5891 		break;
5892 	}
5893 }
5894 
5895 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5896 {
5897 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5898 }
5899 
5900 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5901 {
5902 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
5903 }
5904 
5905 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5906 {
5907 	if (CHIP_IS_E1x(fp->bp))
5908 		return BP_L_ID(fp->bp) + fp->index;
5909 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5910 		return bnx2x_fp_igu_sb_id(fp);
5911 }
5912 
5913 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5914 {
5915 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5916 	u8 cos;
5917 	unsigned long q_type = 0;
5918 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5919 	fp->rx_queue = fp_idx;
5920 	fp->cid = fp_idx;
5921 	fp->cl_id = bnx2x_fp_cl_id(fp);
5922 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5923 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5924 	/* qZone id equals to FW (per path) client id */
5925 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5926 
5927 	/* init shortcut */
5928 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5929 
5930 	/* Setup SB indicies */
5931 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5932 
5933 	/* Configure Queue State object */
5934 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5935 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5936 
5937 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5938 
5939 	/* init tx data */
5940 	for_each_cos_in_tx_queue(fp, cos) {
5941 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
5942 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
5943 				  FP_COS_TO_TXQ(fp, cos, bp),
5944 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
5945 		cids[cos] = fp->txdata_ptr[cos]->cid;
5946 	}
5947 
5948 	/* nothing more for vf to do here */
5949 	if (IS_VF(bp))
5950 		return;
5951 
5952 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5953 		      fp->fw_sb_id, fp->igu_sb_id);
5954 	bnx2x_update_fpsb_idx(fp);
5955 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
5956 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5957 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5958 
5959 	/**
5960 	 * Configure classification DBs: Always enable Tx switching
5961 	 */
5962 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5963 
5964 	DP(NETIF_MSG_IFUP,
5965 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5966 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5967 	   fp->igu_sb_id);
5968 }
5969 
5970 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
5971 {
5972 	int i;
5973 
5974 	for (i = 1; i <= NUM_TX_RINGS; i++) {
5975 		struct eth_tx_next_bd *tx_next_bd =
5976 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
5977 
5978 		tx_next_bd->addr_hi =
5979 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
5980 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5981 		tx_next_bd->addr_lo =
5982 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
5983 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5984 	}
5985 
5986 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
5987 	txdata->tx_db.data.zero_fill1 = 0;
5988 	txdata->tx_db.data.prod = 0;
5989 
5990 	txdata->tx_pkt_prod = 0;
5991 	txdata->tx_pkt_cons = 0;
5992 	txdata->tx_bd_prod = 0;
5993 	txdata->tx_bd_cons = 0;
5994 	txdata->tx_pkt = 0;
5995 }
5996 
5997 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
5998 {
5999 	int i;
6000 
6001 	for_each_tx_queue_cnic(bp, i)
6002 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6003 }
6004 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6005 {
6006 	int i;
6007 	u8 cos;
6008 
6009 	for_each_eth_queue(bp, i)
6010 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6011 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6012 }
6013 
6014 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6015 {
6016 	if (!NO_FCOE(bp))
6017 		bnx2x_init_fcoe_fp(bp);
6018 
6019 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6020 		      BNX2X_VF_ID_INVALID, false,
6021 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6022 
6023 	/* ensure status block indices were read */
6024 	rmb();
6025 	bnx2x_init_rx_rings_cnic(bp);
6026 	bnx2x_init_tx_rings_cnic(bp);
6027 
6028 	/* flush all */
6029 	mb();
6030 	mmiowb();
6031 }
6032 
6033 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6034 {
6035 	int i;
6036 
6037 	/* Setup NIC internals and enable interrupts */
6038 	for_each_eth_queue(bp, i)
6039 		bnx2x_init_eth_fp(bp, i);
6040 
6041 	/* ensure status block indices were read */
6042 	rmb();
6043 	bnx2x_init_rx_rings(bp);
6044 	bnx2x_init_tx_rings(bp);
6045 
6046 	if (IS_VF(bp)) {
6047 		bnx2x_memset_stats(bp);
6048 		return;
6049 	}
6050 
6051 	if (IS_PF(bp)) {
6052 		/* Initialize MOD_ABS interrupts */
6053 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6054 				       bp->common.shmem_base,
6055 				       bp->common.shmem2_base, BP_PORT(bp));
6056 
6057 		/* initialize the default status block and sp ring */
6058 		bnx2x_init_def_sb(bp);
6059 		bnx2x_update_dsb_idx(bp);
6060 		bnx2x_init_sp_ring(bp);
6061 	}
6062 }
6063 
6064 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6065 {
6066 	bnx2x_init_eq_ring(bp);
6067 	bnx2x_init_internal(bp, load_code);
6068 	bnx2x_pf_init(bp);
6069 	bnx2x_stats_init(bp);
6070 
6071 	/* flush all before enabling interrupts */
6072 	mb();
6073 	mmiowb();
6074 
6075 	bnx2x_int_enable(bp);
6076 
6077 	/* Check for SPIO5 */
6078 	bnx2x_attn_int_deasserted0(bp,
6079 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6080 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6081 }
6082 
6083 /* gzip service functions */
6084 static int bnx2x_gunzip_init(struct bnx2x *bp)
6085 {
6086 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6087 					    &bp->gunzip_mapping, GFP_KERNEL);
6088 	if (bp->gunzip_buf  == NULL)
6089 		goto gunzip_nomem1;
6090 
6091 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6092 	if (bp->strm  == NULL)
6093 		goto gunzip_nomem2;
6094 
6095 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6096 	if (bp->strm->workspace == NULL)
6097 		goto gunzip_nomem3;
6098 
6099 	return 0;
6100 
6101 gunzip_nomem3:
6102 	kfree(bp->strm);
6103 	bp->strm = NULL;
6104 
6105 gunzip_nomem2:
6106 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6107 			  bp->gunzip_mapping);
6108 	bp->gunzip_buf = NULL;
6109 
6110 gunzip_nomem1:
6111 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6112 	return -ENOMEM;
6113 }
6114 
6115 static void bnx2x_gunzip_end(struct bnx2x *bp)
6116 {
6117 	if (bp->strm) {
6118 		vfree(bp->strm->workspace);
6119 		kfree(bp->strm);
6120 		bp->strm = NULL;
6121 	}
6122 
6123 	if (bp->gunzip_buf) {
6124 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6125 				  bp->gunzip_mapping);
6126 		bp->gunzip_buf = NULL;
6127 	}
6128 }
6129 
6130 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6131 {
6132 	int n, rc;
6133 
6134 	/* check gzip header */
6135 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6136 		BNX2X_ERR("Bad gzip header\n");
6137 		return -EINVAL;
6138 	}
6139 
6140 	n = 10;
6141 
6142 #define FNAME				0x8
6143 
6144 	if (zbuf[3] & FNAME)
6145 		while ((zbuf[n++] != 0) && (n < len));
6146 
6147 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6148 	bp->strm->avail_in = len - n;
6149 	bp->strm->next_out = bp->gunzip_buf;
6150 	bp->strm->avail_out = FW_BUF_SIZE;
6151 
6152 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6153 	if (rc != Z_OK)
6154 		return rc;
6155 
6156 	rc = zlib_inflate(bp->strm, Z_FINISH);
6157 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6158 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6159 			   bp->strm->msg);
6160 
6161 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6162 	if (bp->gunzip_outlen & 0x3)
6163 		netdev_err(bp->dev,
6164 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6165 				bp->gunzip_outlen);
6166 	bp->gunzip_outlen >>= 2;
6167 
6168 	zlib_inflateEnd(bp->strm);
6169 
6170 	if (rc == Z_STREAM_END)
6171 		return 0;
6172 
6173 	return rc;
6174 }
6175 
6176 /* nic load/unload */
6177 
6178 /*
6179  * General service functions
6180  */
6181 
6182 /* send a NIG loopback debug packet */
6183 static void bnx2x_lb_pckt(struct bnx2x *bp)
6184 {
6185 	u32 wb_write[3];
6186 
6187 	/* Ethernet source and destination addresses */
6188 	wb_write[0] = 0x55555555;
6189 	wb_write[1] = 0x55555555;
6190 	wb_write[2] = 0x20;		/* SOP */
6191 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6192 
6193 	/* NON-IP protocol */
6194 	wb_write[0] = 0x09000000;
6195 	wb_write[1] = 0x55555555;
6196 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6197 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6198 }
6199 
6200 /* some of the internal memories
6201  * are not directly readable from the driver
6202  * to test them we send debug packets
6203  */
6204 static int bnx2x_int_mem_test(struct bnx2x *bp)
6205 {
6206 	int factor;
6207 	int count, i;
6208 	u32 val = 0;
6209 
6210 	if (CHIP_REV_IS_FPGA(bp))
6211 		factor = 120;
6212 	else if (CHIP_REV_IS_EMUL(bp))
6213 		factor = 200;
6214 	else
6215 		factor = 1;
6216 
6217 	/* Disable inputs of parser neighbor blocks */
6218 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6219 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6220 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6221 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6222 
6223 	/*  Write 0 to parser credits for CFC search request */
6224 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6225 
6226 	/* send Ethernet packet */
6227 	bnx2x_lb_pckt(bp);
6228 
6229 	/* TODO do i reset NIG statistic? */
6230 	/* Wait until NIG register shows 1 packet of size 0x10 */
6231 	count = 1000 * factor;
6232 	while (count) {
6233 
6234 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6235 		val = *bnx2x_sp(bp, wb_data[0]);
6236 		if (val == 0x10)
6237 			break;
6238 
6239 		msleep(10);
6240 		count--;
6241 	}
6242 	if (val != 0x10) {
6243 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6244 		return -1;
6245 	}
6246 
6247 	/* Wait until PRS register shows 1 packet */
6248 	count = 1000 * factor;
6249 	while (count) {
6250 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6251 		if (val == 1)
6252 			break;
6253 
6254 		msleep(10);
6255 		count--;
6256 	}
6257 	if (val != 0x1) {
6258 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6259 		return -2;
6260 	}
6261 
6262 	/* Reset and init BRB, PRS */
6263 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6264 	msleep(50);
6265 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6266 	msleep(50);
6267 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6268 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6269 
6270 	DP(NETIF_MSG_HW, "part2\n");
6271 
6272 	/* Disable inputs of parser neighbor blocks */
6273 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6274 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6275 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6276 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6277 
6278 	/* Write 0 to parser credits for CFC search request */
6279 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6280 
6281 	/* send 10 Ethernet packets */
6282 	for (i = 0; i < 10; i++)
6283 		bnx2x_lb_pckt(bp);
6284 
6285 	/* Wait until NIG register shows 10 + 1
6286 	   packets of size 11*0x10 = 0xb0 */
6287 	count = 1000 * factor;
6288 	while (count) {
6289 
6290 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6291 		val = *bnx2x_sp(bp, wb_data[0]);
6292 		if (val == 0xb0)
6293 			break;
6294 
6295 		msleep(10);
6296 		count--;
6297 	}
6298 	if (val != 0xb0) {
6299 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6300 		return -3;
6301 	}
6302 
6303 	/* Wait until PRS register shows 2 packets */
6304 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6305 	if (val != 2)
6306 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6307 
6308 	/* Write 1 to parser credits for CFC search request */
6309 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6310 
6311 	/* Wait until PRS register shows 3 packets */
6312 	msleep(10 * factor);
6313 	/* Wait until NIG register shows 1 packet of size 0x10 */
6314 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6315 	if (val != 3)
6316 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6317 
6318 	/* clear NIG EOP FIFO */
6319 	for (i = 0; i < 11; i++)
6320 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6321 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6322 	if (val != 1) {
6323 		BNX2X_ERR("clear of NIG failed\n");
6324 		return -4;
6325 	}
6326 
6327 	/* Reset and init BRB, PRS, NIG */
6328 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6329 	msleep(50);
6330 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6331 	msleep(50);
6332 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6333 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6334 	if (!CNIC_SUPPORT(bp))
6335 		/* set NIC mode */
6336 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6337 
6338 	/* Enable inputs of parser neighbor blocks */
6339 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6340 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6341 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6342 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6343 
6344 	DP(NETIF_MSG_HW, "done\n");
6345 
6346 	return 0; /* OK */
6347 }
6348 
6349 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6350 {
6351 	u32 val;
6352 
6353 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6354 	if (!CHIP_IS_E1x(bp))
6355 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6356 	else
6357 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6358 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6359 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6360 	/*
6361 	 * mask read length error interrupts in brb for parser
6362 	 * (parsing unit and 'checksum and crc' unit)
6363 	 * these errors are legal (PU reads fixed length and CAC can cause
6364 	 * read length error on truncated packets)
6365 	 */
6366 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6367 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6368 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6369 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6370 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6371 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6372 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6373 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6374 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6375 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6376 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6377 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6378 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6379 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6380 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6381 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6382 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6383 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6384 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6385 
6386 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6387 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6388 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6389 	if (!CHIP_IS_E1x(bp))
6390 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6391 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6392 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6393 
6394 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6395 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6396 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6397 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6398 
6399 	if (!CHIP_IS_E1x(bp))
6400 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6401 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6402 
6403 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6404 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6405 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6406 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6407 }
6408 
6409 static void bnx2x_reset_common(struct bnx2x *bp)
6410 {
6411 	u32 val = 0x1400;
6412 
6413 	/* reset_common */
6414 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6415 	       0xd3ffff7f);
6416 
6417 	if (CHIP_IS_E3(bp)) {
6418 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6419 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6420 	}
6421 
6422 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6423 }
6424 
6425 static void bnx2x_setup_dmae(struct bnx2x *bp)
6426 {
6427 	bp->dmae_ready = 0;
6428 	spin_lock_init(&bp->dmae_lock);
6429 }
6430 
6431 static void bnx2x_init_pxp(struct bnx2x *bp)
6432 {
6433 	u16 devctl;
6434 	int r_order, w_order;
6435 
6436 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6437 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6438 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6439 	if (bp->mrrs == -1)
6440 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6441 	else {
6442 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6443 		r_order = bp->mrrs;
6444 	}
6445 
6446 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6447 }
6448 
6449 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6450 {
6451 	int is_required;
6452 	u32 val;
6453 	int port;
6454 
6455 	if (BP_NOMCP(bp))
6456 		return;
6457 
6458 	is_required = 0;
6459 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6460 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6461 
6462 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6463 		is_required = 1;
6464 
6465 	/*
6466 	 * The fan failure mechanism is usually related to the PHY type since
6467 	 * the power consumption of the board is affected by the PHY. Currently,
6468 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6469 	 */
6470 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6471 		for (port = PORT_0; port < PORT_MAX; port++) {
6472 			is_required |=
6473 				bnx2x_fan_failure_det_req(
6474 					bp,
6475 					bp->common.shmem_base,
6476 					bp->common.shmem2_base,
6477 					port);
6478 		}
6479 
6480 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6481 
6482 	if (is_required == 0)
6483 		return;
6484 
6485 	/* Fan failure is indicated by SPIO 5 */
6486 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6487 
6488 	/* set to active low mode */
6489 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6490 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6491 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6492 
6493 	/* enable interrupt to signal the IGU */
6494 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6495 	val |= MISC_SPIO_SPIO5;
6496 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6497 }
6498 
6499 void bnx2x_pf_disable(struct bnx2x *bp)
6500 {
6501 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6502 	val &= ~IGU_PF_CONF_FUNC_EN;
6503 
6504 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6505 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6506 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6507 }
6508 
6509 static void bnx2x__common_init_phy(struct bnx2x *bp)
6510 {
6511 	u32 shmem_base[2], shmem2_base[2];
6512 	/* Avoid common init in case MFW supports LFA */
6513 	if (SHMEM2_RD(bp, size) >
6514 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6515 		return;
6516 	shmem_base[0] =  bp->common.shmem_base;
6517 	shmem2_base[0] = bp->common.shmem2_base;
6518 	if (!CHIP_IS_E1x(bp)) {
6519 		shmem_base[1] =
6520 			SHMEM2_RD(bp, other_shmem_base_addr);
6521 		shmem2_base[1] =
6522 			SHMEM2_RD(bp, other_shmem2_base_addr);
6523 	}
6524 	bnx2x_acquire_phy_lock(bp);
6525 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6526 			      bp->common.chip_id);
6527 	bnx2x_release_phy_lock(bp);
6528 }
6529 
6530 /**
6531  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6532  *
6533  * @bp:		driver handle
6534  */
6535 static int bnx2x_init_hw_common(struct bnx2x *bp)
6536 {
6537 	u32 val;
6538 
6539 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6540 
6541 	/*
6542 	 * take the RESET lock to protect undi_unload flow from accessing
6543 	 * registers while we're resetting the chip
6544 	 */
6545 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6546 
6547 	bnx2x_reset_common(bp);
6548 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6549 
6550 	val = 0xfffc;
6551 	if (CHIP_IS_E3(bp)) {
6552 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6553 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6554 	}
6555 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6556 
6557 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6558 
6559 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6560 
6561 	if (!CHIP_IS_E1x(bp)) {
6562 		u8 abs_func_id;
6563 
6564 		/**
6565 		 * 4-port mode or 2-port mode we need to turn of master-enable
6566 		 * for everyone, after that, turn it back on for self.
6567 		 * so, we disregard multi-function or not, and always disable
6568 		 * for all functions on the given path, this means 0,2,4,6 for
6569 		 * path 0 and 1,3,5,7 for path 1
6570 		 */
6571 		for (abs_func_id = BP_PATH(bp);
6572 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6573 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6574 				REG_WR(bp,
6575 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6576 				    1);
6577 				continue;
6578 			}
6579 
6580 			bnx2x_pretend_func(bp, abs_func_id);
6581 			/* clear pf enable */
6582 			bnx2x_pf_disable(bp);
6583 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6584 		}
6585 	}
6586 
6587 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6588 	if (CHIP_IS_E1(bp)) {
6589 		/* enable HW interrupt from PXP on USDM overflow
6590 		   bit 16 on INT_MASK_0 */
6591 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6592 	}
6593 
6594 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6595 	bnx2x_init_pxp(bp);
6596 
6597 #ifdef __BIG_ENDIAN
6598 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6599 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6600 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6601 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6602 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6603 	/* make sure this value is 0 */
6604 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6605 
6606 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6607 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6608 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6609 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6610 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6611 #endif
6612 
6613 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6614 
6615 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6616 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6617 
6618 	/* let the HW do it's magic ... */
6619 	msleep(100);
6620 	/* finish PXP init */
6621 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6622 	if (val != 1) {
6623 		BNX2X_ERR("PXP2 CFG failed\n");
6624 		return -EBUSY;
6625 	}
6626 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6627 	if (val != 1) {
6628 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6629 		return -EBUSY;
6630 	}
6631 
6632 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6633 	 * have entries with value "0" and valid bit on.
6634 	 * This needs to be done by the first PF that is loaded in a path
6635 	 * (i.e. common phase)
6636 	 */
6637 	if (!CHIP_IS_E1x(bp)) {
6638 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6639  * (i.e. vnic3) to start even if it is marked as "scan-off".
6640  * This occurs when a different function (func2,3) is being marked
6641  * as "scan-off". Real-life scenario for example: if a driver is being
6642  * load-unloaded while func6,7 are down. This will cause the timer to access
6643  * the ilt, translate to a logical address and send a request to read/write.
6644  * Since the ilt for the function that is down is not valid, this will cause
6645  * a translation error which is unrecoverable.
6646  * The Workaround is intended to make sure that when this happens nothing fatal
6647  * will occur. The workaround:
6648  *	1.  First PF driver which loads on a path will:
6649  *		a.  After taking the chip out of reset, by using pretend,
6650  *		    it will write "0" to the following registers of
6651  *		    the other vnics.
6652  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6653  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6654  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6655  *		    And for itself it will write '1' to
6656  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6657  *		    dmae-operations (writing to pram for example.)
6658  *		    note: can be done for only function 6,7 but cleaner this
6659  *			  way.
6660  *		b.  Write zero+valid to the entire ILT.
6661  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6662  *		    VNIC3 (of that port). The range allocated will be the
6663  *		    entire ILT. This is needed to prevent  ILT range error.
6664  *	2.  Any PF driver load flow:
6665  *		a.  ILT update with the physical addresses of the allocated
6666  *		    logical pages.
6667  *		b.  Wait 20msec. - note that this timeout is needed to make
6668  *		    sure there are no requests in one of the PXP internal
6669  *		    queues with "old" ILT addresses.
6670  *		c.  PF enable in the PGLC.
6671  *		d.  Clear the was_error of the PF in the PGLC. (could have
6672  *		    occurred while driver was down)
6673  *		e.  PF enable in the CFC (WEAK + STRONG)
6674  *		f.  Timers scan enable
6675  *	3.  PF driver unload flow:
6676  *		a.  Clear the Timers scan_en.
6677  *		b.  Polling for scan_on=0 for that PF.
6678  *		c.  Clear the PF enable bit in the PXP.
6679  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6680  *		e.  Write zero+valid to all ILT entries (The valid bit must
6681  *		    stay set)
6682  *		f.  If this is VNIC 3 of a port then also init
6683  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6684  *		    to the last enrty in the ILT.
6685  *
6686  *	Notes:
6687  *	Currently the PF error in the PGLC is non recoverable.
6688  *	In the future the there will be a recovery routine for this error.
6689  *	Currently attention is masked.
6690  *	Having an MCP lock on the load/unload process does not guarantee that
6691  *	there is no Timer disable during Func6/7 enable. This is because the
6692  *	Timers scan is currently being cleared by the MCP on FLR.
6693  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6694  *	there is error before clearing it. But the flow above is simpler and
6695  *	more general.
6696  *	All ILT entries are written by zero+valid and not just PF6/7
6697  *	ILT entries since in the future the ILT entries allocation for
6698  *	PF-s might be dynamic.
6699  */
6700 		struct ilt_client_info ilt_cli;
6701 		struct bnx2x_ilt ilt;
6702 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6703 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6704 
6705 		/* initialize dummy TM client */
6706 		ilt_cli.start = 0;
6707 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6708 		ilt_cli.client_num = ILT_CLIENT_TM;
6709 
6710 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6711 		 * Step 2: set the timers first/last ilt entry to point
6712 		 * to the entire range to prevent ILT range error for 3rd/4th
6713 		 * vnic	(this code assumes existence of the vnic)
6714 		 *
6715 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6716 		 * with dummy TM client
6717 		 *
6718 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6719 		 * and his brother are split registers
6720 		 */
6721 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6722 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6723 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6724 
6725 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6726 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6727 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6728 	}
6729 
6730 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6731 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6732 
6733 	if (!CHIP_IS_E1x(bp)) {
6734 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6735 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6736 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6737 
6738 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6739 
6740 		/* let the HW do it's magic ... */
6741 		do {
6742 			msleep(200);
6743 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6744 		} while (factor-- && (val != 1));
6745 
6746 		if (val != 1) {
6747 			BNX2X_ERR("ATC_INIT failed\n");
6748 			return -EBUSY;
6749 		}
6750 	}
6751 
6752 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6753 
6754 	bnx2x_iov_init_dmae(bp);
6755 
6756 	/* clean the DMAE memory */
6757 	bp->dmae_ready = 1;
6758 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6759 
6760 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6761 
6762 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6763 
6764 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6765 
6766 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6767 
6768 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6769 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6770 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6771 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6772 
6773 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6774 
6775 
6776 	/* QM queues pointers table */
6777 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6778 
6779 	/* soft reset pulse */
6780 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6781 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6782 
6783 	if (CNIC_SUPPORT(bp))
6784 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6785 
6786 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6787 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6788 	if (!CHIP_REV_IS_SLOW(bp))
6789 		/* enable hw interrupt from doorbell Q */
6790 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6791 
6792 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6793 
6794 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6795 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6796 
6797 	if (!CHIP_IS_E1(bp))
6798 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6799 
6800 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6801 		if (IS_MF_AFEX(bp)) {
6802 			/* configure that VNTag and VLAN headers must be
6803 			 * received in afex mode
6804 			 */
6805 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6806 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6807 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6808 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6809 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6810 		} else {
6811 			/* Bit-map indicating which L2 hdrs may appear
6812 			 * after the basic Ethernet header
6813 			 */
6814 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6815 			       bp->path_has_ovlan ? 7 : 6);
6816 		}
6817 	}
6818 
6819 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6820 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6821 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6822 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6823 
6824 	if (!CHIP_IS_E1x(bp)) {
6825 		/* reset VFC memories */
6826 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6827 			   VFC_MEMORIES_RST_REG_CAM_RST |
6828 			   VFC_MEMORIES_RST_REG_RAM_RST);
6829 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6830 			   VFC_MEMORIES_RST_REG_CAM_RST |
6831 			   VFC_MEMORIES_RST_REG_RAM_RST);
6832 
6833 		msleep(20);
6834 	}
6835 
6836 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6837 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6838 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6839 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6840 
6841 	/* sync semi rtc */
6842 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6843 	       0x80000000);
6844 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6845 	       0x80000000);
6846 
6847 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6848 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6849 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6850 
6851 	if (!CHIP_IS_E1x(bp)) {
6852 		if (IS_MF_AFEX(bp)) {
6853 			/* configure that VNTag and VLAN headers must be
6854 			 * sent in afex mode
6855 			 */
6856 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6857 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6858 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6859 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6860 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6861 		} else {
6862 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6863 			       bp->path_has_ovlan ? 7 : 6);
6864 		}
6865 	}
6866 
6867 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6868 
6869 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6870 
6871 	if (CNIC_SUPPORT(bp)) {
6872 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6873 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6874 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6875 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6876 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6877 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6878 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6879 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6880 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6881 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6882 	}
6883 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6884 
6885 	if (sizeof(union cdu_context) != 1024)
6886 		/* we currently assume that a context is 1024 bytes */
6887 		dev_alert(&bp->pdev->dev,
6888 			  "please adjust the size of cdu_context(%ld)\n",
6889 			  (long)sizeof(union cdu_context));
6890 
6891 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6892 	val = (4 << 24) + (0 << 12) + 1024;
6893 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6894 
6895 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6896 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6897 	/* enable context validation interrupt from CFC */
6898 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6899 
6900 	/* set the thresholds to prevent CFC/CDU race */
6901 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6902 
6903 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6904 
6905 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6906 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6907 
6908 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6909 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6910 
6911 	/* Reset PCIE errors for debug */
6912 	REG_WR(bp, 0x2814, 0xffffffff);
6913 	REG_WR(bp, 0x3820, 0xffffffff);
6914 
6915 	if (!CHIP_IS_E1x(bp)) {
6916 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6917 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6918 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6919 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6920 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6921 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6922 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6923 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6924 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6925 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6926 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6927 	}
6928 
6929 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6930 	if (!CHIP_IS_E1(bp)) {
6931 		/* in E3 this done in per-port section */
6932 		if (!CHIP_IS_E3(bp))
6933 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6934 	}
6935 	if (CHIP_IS_E1H(bp))
6936 		/* not applicable for E2 (and above ...) */
6937 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6938 
6939 	if (CHIP_REV_IS_SLOW(bp))
6940 		msleep(200);
6941 
6942 	/* finish CFC init */
6943 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6944 	if (val != 1) {
6945 		BNX2X_ERR("CFC LL_INIT failed\n");
6946 		return -EBUSY;
6947 	}
6948 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6949 	if (val != 1) {
6950 		BNX2X_ERR("CFC AC_INIT failed\n");
6951 		return -EBUSY;
6952 	}
6953 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6954 	if (val != 1) {
6955 		BNX2X_ERR("CFC CAM_INIT failed\n");
6956 		return -EBUSY;
6957 	}
6958 	REG_WR(bp, CFC_REG_DEBUG0, 0);
6959 
6960 	if (CHIP_IS_E1(bp)) {
6961 		/* read NIG statistic
6962 		   to see if this is our first up since powerup */
6963 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6964 		val = *bnx2x_sp(bp, wb_data[0]);
6965 
6966 		/* do internal memory self test */
6967 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6968 			BNX2X_ERR("internal mem self test failed\n");
6969 			return -EBUSY;
6970 		}
6971 	}
6972 
6973 	bnx2x_setup_fan_failure_detection(bp);
6974 
6975 	/* clear PXP2 attentions */
6976 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6977 
6978 	bnx2x_enable_blocks_attention(bp);
6979 	bnx2x_enable_blocks_parity(bp);
6980 
6981 	if (!BP_NOMCP(bp)) {
6982 		if (CHIP_IS_E1x(bp))
6983 			bnx2x__common_init_phy(bp);
6984 	} else
6985 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6986 
6987 	return 0;
6988 }
6989 
6990 /**
6991  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6992  *
6993  * @bp:		driver handle
6994  */
6995 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6996 {
6997 	int rc = bnx2x_init_hw_common(bp);
6998 
6999 	if (rc)
7000 		return rc;
7001 
7002 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7003 	if (!BP_NOMCP(bp))
7004 		bnx2x__common_init_phy(bp);
7005 
7006 	return 0;
7007 }
7008 
7009 static int bnx2x_init_hw_port(struct bnx2x *bp)
7010 {
7011 	int port = BP_PORT(bp);
7012 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7013 	u32 low, high;
7014 	u32 val;
7015 
7016 
7017 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7018 
7019 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7020 
7021 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7022 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7023 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7024 
7025 	/* Timers bug workaround: disables the pf_master bit in pglue at
7026 	 * common phase, we need to enable it here before any dmae access are
7027 	 * attempted. Therefore we manually added the enable-master to the
7028 	 * port phase (it also happens in the function phase)
7029 	 */
7030 	if (!CHIP_IS_E1x(bp))
7031 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7032 
7033 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7034 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7035 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7036 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7037 
7038 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7039 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7040 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7041 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7042 
7043 	/* QM cid (connection) count */
7044 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7045 
7046 	if (CNIC_SUPPORT(bp)) {
7047 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7048 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7049 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7050 	}
7051 
7052 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7053 
7054 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7055 
7056 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7057 
7058 		if (IS_MF(bp))
7059 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7060 		else if (bp->dev->mtu > 4096) {
7061 			if (bp->flags & ONE_PORT_FLAG)
7062 				low = 160;
7063 			else {
7064 				val = bp->dev->mtu;
7065 				/* (24*1024 + val*4)/256 */
7066 				low = 96 + (val/64) +
7067 						((val % 64) ? 1 : 0);
7068 			}
7069 		} else
7070 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7071 		high = low + 56;	/* 14*1024/256 */
7072 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7073 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7074 	}
7075 
7076 	if (CHIP_MODE_IS_4_PORT(bp))
7077 		REG_WR(bp, (BP_PORT(bp) ?
7078 			    BRB1_REG_MAC_GUARANTIED_1 :
7079 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7080 
7081 
7082 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7083 	if (CHIP_IS_E3B0(bp)) {
7084 		if (IS_MF_AFEX(bp)) {
7085 			/* configure headers for AFEX mode */
7086 			REG_WR(bp, BP_PORT(bp) ?
7087 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7088 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7089 			REG_WR(bp, BP_PORT(bp) ?
7090 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7091 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7092 			REG_WR(bp, BP_PORT(bp) ?
7093 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7094 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7095 		} else {
7096 			/* Ovlan exists only if we are in multi-function +
7097 			 * switch-dependent mode, in switch-independent there
7098 			 * is no ovlan headers
7099 			 */
7100 			REG_WR(bp, BP_PORT(bp) ?
7101 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7102 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7103 			       (bp->path_has_ovlan ? 7 : 6));
7104 		}
7105 	}
7106 
7107 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7108 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7109 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7110 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7111 
7112 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7113 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7114 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7115 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7116 
7117 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7118 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7119 
7120 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7121 
7122 	if (CHIP_IS_E1x(bp)) {
7123 		/* configure PBF to work without PAUSE mtu 9000 */
7124 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7125 
7126 		/* update threshold */
7127 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7128 		/* update init credit */
7129 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7130 
7131 		/* probe changes */
7132 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7133 		udelay(50);
7134 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7135 	}
7136 
7137 	if (CNIC_SUPPORT(bp))
7138 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7139 
7140 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7141 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7142 
7143 	if (CHIP_IS_E1(bp)) {
7144 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7145 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7146 	}
7147 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7148 
7149 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7150 
7151 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7152 	/* init aeu_mask_attn_func_0/1:
7153 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
7154 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
7155 	 *             bits 4-7 are used for "per vn group attention" */
7156 	val = IS_MF(bp) ? 0xF7 : 0x7;
7157 	/* Enable DCBX attention for all but E1 */
7158 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7159 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7160 
7161 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7162 
7163 	if (!CHIP_IS_E1x(bp)) {
7164 		/* Bit-map indicating which L2 hdrs may appear after the
7165 		 * basic Ethernet header
7166 		 */
7167 		if (IS_MF_AFEX(bp))
7168 			REG_WR(bp, BP_PORT(bp) ?
7169 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7170 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7171 		else
7172 			REG_WR(bp, BP_PORT(bp) ?
7173 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7174 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7175 			       IS_MF_SD(bp) ? 7 : 6);
7176 
7177 		if (CHIP_IS_E3(bp))
7178 			REG_WR(bp, BP_PORT(bp) ?
7179 				   NIG_REG_LLH1_MF_MODE :
7180 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7181 	}
7182 	if (!CHIP_IS_E3(bp))
7183 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7184 
7185 	if (!CHIP_IS_E1(bp)) {
7186 		/* 0x2 disable mf_ov, 0x1 enable */
7187 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7188 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7189 
7190 		if (!CHIP_IS_E1x(bp)) {
7191 			val = 0;
7192 			switch (bp->mf_mode) {
7193 			case MULTI_FUNCTION_SD:
7194 				val = 1;
7195 				break;
7196 			case MULTI_FUNCTION_SI:
7197 			case MULTI_FUNCTION_AFEX:
7198 				val = 2;
7199 				break;
7200 			}
7201 
7202 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7203 						  NIG_REG_LLH0_CLS_TYPE), val);
7204 		}
7205 		{
7206 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7207 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7208 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7209 		}
7210 	}
7211 
7212 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7213 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7214 	if (val & MISC_SPIO_SPIO5) {
7215 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7216 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7217 		val = REG_RD(bp, reg_addr);
7218 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7219 		REG_WR(bp, reg_addr, val);
7220 	}
7221 
7222 	return 0;
7223 }
7224 
7225 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7226 {
7227 	int reg;
7228 	u32 wb_write[2];
7229 
7230 	if (CHIP_IS_E1(bp))
7231 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7232 	else
7233 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7234 
7235 	wb_write[0] = ONCHIP_ADDR1(addr);
7236 	wb_write[1] = ONCHIP_ADDR2(addr);
7237 	REG_WR_DMAE(bp, reg, wb_write, 2);
7238 }
7239 
7240 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7241 {
7242 	u32 data, ctl, cnt = 100;
7243 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7244 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7245 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7246 	u32 sb_bit =  1 << (idu_sb_id%32);
7247 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7248 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7249 
7250 	/* Not supported in BC mode */
7251 	if (CHIP_INT_MODE_IS_BC(bp))
7252 		return;
7253 
7254 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7255 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7256 		IGU_REGULAR_CLEANUP_SET				|
7257 		IGU_REGULAR_BCLEANUP;
7258 
7259 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7260 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7261 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7262 
7263 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7264 			 data, igu_addr_data);
7265 	REG_WR(bp, igu_addr_data, data);
7266 	mmiowb();
7267 	barrier();
7268 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7269 			  ctl, igu_addr_ctl);
7270 	REG_WR(bp, igu_addr_ctl, ctl);
7271 	mmiowb();
7272 	barrier();
7273 
7274 	/* wait for clean up to finish */
7275 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7276 		msleep(20);
7277 
7278 
7279 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7280 		DP(NETIF_MSG_HW,
7281 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7282 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7283 	}
7284 }
7285 
7286 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7287 {
7288 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7289 }
7290 
7291 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7292 {
7293 	u32 i, base = FUNC_ILT_BASE(func);
7294 	for (i = base; i < base + ILT_PER_FUNC; i++)
7295 		bnx2x_ilt_wr(bp, i, 0);
7296 }
7297 
7298 
7299 static void bnx2x_init_searcher(struct bnx2x *bp)
7300 {
7301 	int port = BP_PORT(bp);
7302 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7303 	/* T1 hash bits value determines the T1 number of entries */
7304 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7305 }
7306 
7307 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7308 {
7309 	int rc;
7310 	struct bnx2x_func_state_params func_params = {NULL};
7311 	struct bnx2x_func_switch_update_params *switch_update_params =
7312 		&func_params.params.switch_update;
7313 
7314 	/* Prepare parameters for function state transitions */
7315 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7316 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7317 
7318 	func_params.f_obj = &bp->func_obj;
7319 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7320 
7321 	/* Function parameters */
7322 	switch_update_params->suspend = suspend;
7323 
7324 	rc = bnx2x_func_state_change(bp, &func_params);
7325 
7326 	return rc;
7327 }
7328 
7329 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7330 {
7331 	int rc, i, port = BP_PORT(bp);
7332 	int vlan_en = 0, mac_en[NUM_MACS];
7333 
7334 
7335 	/* Close input from network */
7336 	if (bp->mf_mode == SINGLE_FUNCTION) {
7337 		bnx2x_set_rx_filter(&bp->link_params, 0);
7338 	} else {
7339 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7340 				   NIG_REG_LLH0_FUNC_EN);
7341 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7342 			  NIG_REG_LLH0_FUNC_EN, 0);
7343 		for (i = 0; i < NUM_MACS; i++) {
7344 			mac_en[i] = REG_RD(bp, port ?
7345 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7346 					      4 * i) :
7347 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7348 					      4 * i));
7349 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7350 					      4 * i) :
7351 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7352 		}
7353 	}
7354 
7355 	/* Close BMC to host */
7356 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7357 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7358 
7359 	/* Suspend Tx switching to the PF. Completion of this ramrod
7360 	 * further guarantees that all the packets of that PF / child
7361 	 * VFs in BRB were processed by the Parser, so it is safe to
7362 	 * change the NIC_MODE register.
7363 	 */
7364 	rc = bnx2x_func_switch_update(bp, 1);
7365 	if (rc) {
7366 		BNX2X_ERR("Can't suspend tx-switching!\n");
7367 		return rc;
7368 	}
7369 
7370 	/* Change NIC_MODE register */
7371 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7372 
7373 	/* Open input from network */
7374 	if (bp->mf_mode == SINGLE_FUNCTION) {
7375 		bnx2x_set_rx_filter(&bp->link_params, 1);
7376 	} else {
7377 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7378 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7379 		for (i = 0; i < NUM_MACS; i++) {
7380 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7381 					      4 * i) :
7382 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7383 				  mac_en[i]);
7384 		}
7385 	}
7386 
7387 	/* Enable BMC to host */
7388 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7389 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7390 
7391 	/* Resume Tx switching to the PF */
7392 	rc = bnx2x_func_switch_update(bp, 0);
7393 	if (rc) {
7394 		BNX2X_ERR("Can't resume tx-switching!\n");
7395 		return rc;
7396 	}
7397 
7398 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7399 	return 0;
7400 }
7401 
7402 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7403 {
7404 	int rc;
7405 
7406 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7407 
7408 	if (CONFIGURE_NIC_MODE(bp)) {
7409 		/* Configrue searcher as part of function hw init */
7410 		bnx2x_init_searcher(bp);
7411 
7412 		/* Reset NIC mode */
7413 		rc = bnx2x_reset_nic_mode(bp);
7414 		if (rc)
7415 			BNX2X_ERR("Can't change NIC mode!\n");
7416 		return rc;
7417 	}
7418 
7419 	return 0;
7420 }
7421 
7422 static int bnx2x_init_hw_func(struct bnx2x *bp)
7423 {
7424 	int port = BP_PORT(bp);
7425 	int func = BP_FUNC(bp);
7426 	int init_phase = PHASE_PF0 + func;
7427 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7428 	u16 cdu_ilt_start;
7429 	u32 addr, val;
7430 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7431 	int i, main_mem_width, rc;
7432 
7433 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7434 
7435 	/* FLR cleanup - hmmm */
7436 	if (!CHIP_IS_E1x(bp)) {
7437 		rc = bnx2x_pf_flr_clnup(bp);
7438 		if (rc) {
7439 			bnx2x_fw_dump(bp);
7440 			return rc;
7441 		}
7442 	}
7443 
7444 	/* set MSI reconfigure capability */
7445 	if (bp->common.int_block == INT_BLOCK_HC) {
7446 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7447 		val = REG_RD(bp, addr);
7448 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7449 		REG_WR(bp, addr, val);
7450 	}
7451 
7452 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7453 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7454 
7455 	ilt = BP_ILT(bp);
7456 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7457 
7458 	if (IS_SRIOV(bp))
7459 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7460 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7461 
7462 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7463 	 * those of the VFs, so start line should be reset
7464 	 */
7465 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7466 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7467 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7468 		ilt->lines[cdu_ilt_start + i].page_mapping =
7469 			bp->context[i].cxt_mapping;
7470 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7471 	}
7472 
7473 	bnx2x_ilt_init_op(bp, INITOP_SET);
7474 
7475 	if (!CONFIGURE_NIC_MODE(bp)) {
7476 		bnx2x_init_searcher(bp);
7477 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7478 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7479 	} else {
7480 		/* Set NIC mode */
7481 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7482 		DP(NETIF_MSG_IFUP, "NIC MODE configrued\n");
7483 
7484 	}
7485 
7486 	if (!CHIP_IS_E1x(bp)) {
7487 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7488 
7489 		/* Turn on a single ISR mode in IGU if driver is going to use
7490 		 * INT#x or MSI
7491 		 */
7492 		if (!(bp->flags & USING_MSIX_FLAG))
7493 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7494 		/*
7495 		 * Timers workaround bug: function init part.
7496 		 * Need to wait 20msec after initializing ILT,
7497 		 * needed to make sure there are no requests in
7498 		 * one of the PXP internal queues with "old" ILT addresses
7499 		 */
7500 		msleep(20);
7501 		/*
7502 		 * Master enable - Due to WB DMAE writes performed before this
7503 		 * register is re-initialized as part of the regular function
7504 		 * init
7505 		 */
7506 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7507 		/* Enable the function in IGU */
7508 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7509 	}
7510 
7511 	bp->dmae_ready = 1;
7512 
7513 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7514 
7515 	if (!CHIP_IS_E1x(bp))
7516 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7517 
7518 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7519 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7520 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7521 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7522 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7523 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7524 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7525 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7526 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7527 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7528 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7529 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7530 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7531 
7532 	if (!CHIP_IS_E1x(bp))
7533 		REG_WR(bp, QM_REG_PF_EN, 1);
7534 
7535 	if (!CHIP_IS_E1x(bp)) {
7536 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7537 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7538 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7539 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7540 	}
7541 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7542 
7543 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7544 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7545 
7546 	bnx2x_iov_init_dq(bp);
7547 
7548 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7549 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7550 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7551 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7552 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7553 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7554 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7555 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7556 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7557 	if (!CHIP_IS_E1x(bp))
7558 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7559 
7560 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7561 
7562 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7563 
7564 	if (!CHIP_IS_E1x(bp))
7565 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7566 
7567 	if (IS_MF(bp)) {
7568 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7569 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7570 	}
7571 
7572 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7573 
7574 	/* HC init per function */
7575 	if (bp->common.int_block == INT_BLOCK_HC) {
7576 		if (CHIP_IS_E1H(bp)) {
7577 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7578 
7579 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7580 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7581 		}
7582 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7583 
7584 	} else {
7585 		int num_segs, sb_idx, prod_offset;
7586 
7587 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7588 
7589 		if (!CHIP_IS_E1x(bp)) {
7590 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7591 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7592 		}
7593 
7594 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7595 
7596 		if (!CHIP_IS_E1x(bp)) {
7597 			int dsb_idx = 0;
7598 			/**
7599 			 * Producer memory:
7600 			 * E2 mode: address 0-135 match to the mapping memory;
7601 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7602 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7603 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7604 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7605 			 * 144-147 reserved.
7606 			 *
7607 			 * E1.5 mode - In backward compatible mode;
7608 			 * for non default SB; each even line in the memory
7609 			 * holds the U producer and each odd line hold
7610 			 * the C producer. The first 128 producers are for
7611 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7612 			 * producers are for the DSB for each PF.
7613 			 * Each PF has five segments: (the order inside each
7614 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7615 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7616 			 * 144-147 attn prods;
7617 			 */
7618 			/* non-default-status-blocks */
7619 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7620 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7621 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7622 				prod_offset = (bp->igu_base_sb + sb_idx) *
7623 					num_segs;
7624 
7625 				for (i = 0; i < num_segs; i++) {
7626 					addr = IGU_REG_PROD_CONS_MEMORY +
7627 							(prod_offset + i) * 4;
7628 					REG_WR(bp, addr, 0);
7629 				}
7630 				/* send consumer update with value 0 */
7631 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7632 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7633 				bnx2x_igu_clear_sb(bp,
7634 						   bp->igu_base_sb + sb_idx);
7635 			}
7636 
7637 			/* default-status-blocks */
7638 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7639 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7640 
7641 			if (CHIP_MODE_IS_4_PORT(bp))
7642 				dsb_idx = BP_FUNC(bp);
7643 			else
7644 				dsb_idx = BP_VN(bp);
7645 
7646 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7647 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7648 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7649 
7650 			/*
7651 			 * igu prods come in chunks of E1HVN_MAX (4) -
7652 			 * does not matters what is the current chip mode
7653 			 */
7654 			for (i = 0; i < (num_segs * E1HVN_MAX);
7655 			     i += E1HVN_MAX) {
7656 				addr = IGU_REG_PROD_CONS_MEMORY +
7657 							(prod_offset + i)*4;
7658 				REG_WR(bp, addr, 0);
7659 			}
7660 			/* send consumer update with 0 */
7661 			if (CHIP_INT_MODE_IS_BC(bp)) {
7662 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7663 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7664 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7665 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7666 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7667 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7668 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7669 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7670 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7671 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7672 			} else {
7673 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7674 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7675 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7676 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7677 			}
7678 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7679 
7680 			/* !!! these should become driver const once
7681 			   rf-tool supports split-68 const */
7682 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7683 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7684 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7685 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7686 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7687 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7688 		}
7689 	}
7690 
7691 	/* Reset PCIE errors for debug */
7692 	REG_WR(bp, 0x2114, 0xffffffff);
7693 	REG_WR(bp, 0x2120, 0xffffffff);
7694 
7695 	if (CHIP_IS_E1x(bp)) {
7696 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7697 		main_mem_base = HC_REG_MAIN_MEMORY +
7698 				BP_PORT(bp) * (main_mem_size * 4);
7699 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7700 		main_mem_width = 8;
7701 
7702 		val = REG_RD(bp, main_mem_prty_clr);
7703 		if (val)
7704 			DP(NETIF_MSG_HW,
7705 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7706 			   val);
7707 
7708 		/* Clear "false" parity errors in MSI-X table */
7709 		for (i = main_mem_base;
7710 		     i < main_mem_base + main_mem_size * 4;
7711 		     i += main_mem_width) {
7712 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7713 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7714 					 i, main_mem_width / 4);
7715 		}
7716 		/* Clear HC parity attention */
7717 		REG_RD(bp, main_mem_prty_clr);
7718 	}
7719 
7720 #ifdef BNX2X_STOP_ON_ERROR
7721 	/* Enable STORMs SP logging */
7722 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7723 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7724 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7725 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7726 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7727 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7728 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7729 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7730 #endif
7731 
7732 	bnx2x_phy_probe(&bp->link_params);
7733 
7734 	return 0;
7735 }
7736 
7737 
7738 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7739 {
7740 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7741 
7742 	if (!CHIP_IS_E1x(bp))
7743 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7744 			       sizeof(struct host_hc_status_block_e2));
7745 	else
7746 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7747 			       sizeof(struct host_hc_status_block_e1x));
7748 
7749 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7750 }
7751 
7752 void bnx2x_free_mem(struct bnx2x *bp)
7753 {
7754 	int i;
7755 
7756 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7757 		       sizeof(struct host_sp_status_block));
7758 
7759 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7760 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7761 
7762 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7763 		       sizeof(struct bnx2x_slowpath));
7764 
7765 	for (i = 0; i < L2_ILT_LINES(bp); i++)
7766 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7767 			       bp->context[i].size);
7768 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7769 
7770 	BNX2X_FREE(bp->ilt->lines);
7771 
7772 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7773 
7774 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7775 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7776 
7777 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7778 
7779 	bnx2x_iov_free_mem(bp);
7780 }
7781 
7782 
7783 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7784 {
7785 	if (!CHIP_IS_E1x(bp))
7786 		/* size = the status block + ramrod buffers */
7787 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7788 				sizeof(struct host_hc_status_block_e2));
7789 	else
7790 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7791 				&bp->cnic_sb_mapping,
7792 				sizeof(struct
7793 				       host_hc_status_block_e1x));
7794 
7795 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7796 		/* allocate searcher T2 table, as it wan't allocated before */
7797 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7798 
7799 	/* write address to which L5 should insert its values */
7800 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
7801 		&bp->slowpath->drv_info_to_mcp;
7802 
7803 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7804 		goto alloc_mem_err;
7805 
7806 	return 0;
7807 
7808 alloc_mem_err:
7809 	bnx2x_free_mem_cnic(bp);
7810 	BNX2X_ERR("Can't allocate memory\n");
7811 	return -ENOMEM;
7812 }
7813 
7814 int bnx2x_alloc_mem(struct bnx2x *bp)
7815 {
7816 	int i, allocated, context_size;
7817 
7818 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7819 		/* allocate searcher T2 table */
7820 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7821 
7822 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7823 			sizeof(struct host_sp_status_block));
7824 
7825 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7826 			sizeof(struct bnx2x_slowpath));
7827 
7828 	/* Allocate memory for CDU context:
7829 	 * This memory is allocated separately and not in the generic ILT
7830 	 * functions because CDU differs in few aspects:
7831 	 * 1. There are multiple entities allocating memory for context -
7832 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7833 	 * its own ILT lines.
7834 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
7835 	 * for the other ILT clients), to be efficient we want to support
7836 	 * allocation of sub-page-size in the last entry.
7837 	 * 3. Context pointers are used by the driver to pass to FW / update
7838 	 * the context (for the other ILT clients the pointers are used just to
7839 	 * free the memory during unload).
7840 	 */
7841 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7842 
7843 	for (i = 0, allocated = 0; allocated < context_size; i++) {
7844 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7845 					  (context_size - allocated));
7846 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7847 				&bp->context[i].cxt_mapping,
7848 				bp->context[i].size);
7849 		allocated += bp->context[i].size;
7850 	}
7851 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7852 
7853 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7854 		goto alloc_mem_err;
7855 
7856 	if (bnx2x_iov_alloc_mem(bp))
7857 		goto alloc_mem_err;
7858 
7859 	/* Slow path ring */
7860 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7861 
7862 	/* EQ */
7863 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7864 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7865 
7866 	return 0;
7867 
7868 alloc_mem_err:
7869 	bnx2x_free_mem(bp);
7870 	BNX2X_ERR("Can't allocate memory\n");
7871 	return -ENOMEM;
7872 }
7873 
7874 /*
7875  * Init service functions
7876  */
7877 
7878 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7879 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7880 		      int mac_type, unsigned long *ramrod_flags)
7881 {
7882 	int rc;
7883 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7884 
7885 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7886 
7887 	/* Fill general parameters */
7888 	ramrod_param.vlan_mac_obj = obj;
7889 	ramrod_param.ramrod_flags = *ramrod_flags;
7890 
7891 	/* Fill a user request section if needed */
7892 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7893 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7894 
7895 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7896 
7897 		/* Set the command: ADD or DEL */
7898 		if (set)
7899 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7900 		else
7901 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7902 	}
7903 
7904 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7905 
7906 	if (rc == -EEXIST) {
7907 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7908 		/* do not treat adding same MAC as error */
7909 		rc = 0;
7910 	} else if (rc < 0)
7911 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7912 
7913 	return rc;
7914 }
7915 
7916 int bnx2x_del_all_macs(struct bnx2x *bp,
7917 		       struct bnx2x_vlan_mac_obj *mac_obj,
7918 		       int mac_type, bool wait_for_comp)
7919 {
7920 	int rc;
7921 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7922 
7923 	/* Wait for completion of requested */
7924 	if (wait_for_comp)
7925 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7926 
7927 	/* Set the mac type of addresses we want to clear */
7928 	__set_bit(mac_type, &vlan_mac_flags);
7929 
7930 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7931 	if (rc < 0)
7932 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7933 
7934 	return rc;
7935 }
7936 
7937 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7938 {
7939 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
7940 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
7941 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7942 		   "Ignoring Zero MAC for STORAGE SD mode\n");
7943 		return 0;
7944 	}
7945 
7946 	if (IS_PF(bp)) {
7947 		unsigned long ramrod_flags = 0;
7948 
7949 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7950 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7951 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
7952 					 &bp->sp_objs->mac_obj, set,
7953 					 BNX2X_ETH_MAC, &ramrod_flags);
7954 	} else { /* vf */
7955 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
7956 					     bp->fp->index, true);
7957 	}
7958 }
7959 
7960 int bnx2x_setup_leading(struct bnx2x *bp)
7961 {
7962 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7963 }
7964 
7965 /**
7966  * bnx2x_set_int_mode - configure interrupt mode
7967  *
7968  * @bp:		driver handle
7969  *
7970  * In case of MSI-X it will also try to enable MSI-X.
7971  */
7972 int bnx2x_set_int_mode(struct bnx2x *bp)
7973 {
7974 	int rc = 0;
7975 
7976 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX)
7977 		return -EINVAL;
7978 
7979 	switch (int_mode) {
7980 	case BNX2X_INT_MODE_MSIX:
7981 		/* attempt to enable msix */
7982 		rc = bnx2x_enable_msix(bp);
7983 
7984 		/* msix attained */
7985 		if (!rc)
7986 			return 0;
7987 
7988 		/* vfs use only msix */
7989 		if (rc && IS_VF(bp))
7990 			return rc;
7991 
7992 		/* failed to enable multiple MSI-X */
7993 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
7994 			       bp->num_queues,
7995 			       1 + bp->num_cnic_queues);
7996 
7997 		/* falling through... */
7998 	case BNX2X_INT_MODE_MSI:
7999 		bnx2x_enable_msi(bp);
8000 
8001 		/* falling through... */
8002 	case BNX2X_INT_MODE_INTX:
8003 		bp->num_ethernet_queues = 1;
8004 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8005 		BNX2X_DEV_INFO("set number of queues to 1\n");
8006 		break;
8007 	default:
8008 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8009 		return -EINVAL;
8010 	}
8011 	return 0;
8012 }
8013 
8014 /* must be called prior to any HW initializations */
8015 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8016 {
8017 	if (IS_SRIOV(bp))
8018 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8019 	return L2_ILT_LINES(bp);
8020 }
8021 
8022 void bnx2x_ilt_set_info(struct bnx2x *bp)
8023 {
8024 	struct ilt_client_info *ilt_client;
8025 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8026 	u16 line = 0;
8027 
8028 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8029 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8030 
8031 	/* CDU */
8032 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8033 	ilt_client->client_num = ILT_CLIENT_CDU;
8034 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8035 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8036 	ilt_client->start = line;
8037 	line += bnx2x_cid_ilt_lines(bp);
8038 
8039 	if (CNIC_SUPPORT(bp))
8040 		line += CNIC_ILT_LINES;
8041 	ilt_client->end = line - 1;
8042 
8043 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8044 	   ilt_client->start,
8045 	   ilt_client->end,
8046 	   ilt_client->page_size,
8047 	   ilt_client->flags,
8048 	   ilog2(ilt_client->page_size >> 12));
8049 
8050 	/* QM */
8051 	if (QM_INIT(bp->qm_cid_count)) {
8052 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8053 		ilt_client->client_num = ILT_CLIENT_QM;
8054 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8055 		ilt_client->flags = 0;
8056 		ilt_client->start = line;
8057 
8058 		/* 4 bytes for each cid */
8059 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8060 							 QM_ILT_PAGE_SZ);
8061 
8062 		ilt_client->end = line - 1;
8063 
8064 		DP(NETIF_MSG_IFUP,
8065 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8066 		   ilt_client->start,
8067 		   ilt_client->end,
8068 		   ilt_client->page_size,
8069 		   ilt_client->flags,
8070 		   ilog2(ilt_client->page_size >> 12));
8071 
8072 	}
8073 
8074 	if (CNIC_SUPPORT(bp)) {
8075 		/* SRC */
8076 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8077 		ilt_client->client_num = ILT_CLIENT_SRC;
8078 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8079 		ilt_client->flags = 0;
8080 		ilt_client->start = line;
8081 		line += SRC_ILT_LINES;
8082 		ilt_client->end = line - 1;
8083 
8084 		DP(NETIF_MSG_IFUP,
8085 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8086 		   ilt_client->start,
8087 		   ilt_client->end,
8088 		   ilt_client->page_size,
8089 		   ilt_client->flags,
8090 		   ilog2(ilt_client->page_size >> 12));
8091 
8092 		/* TM */
8093 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8094 		ilt_client->client_num = ILT_CLIENT_TM;
8095 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8096 		ilt_client->flags = 0;
8097 		ilt_client->start = line;
8098 		line += TM_ILT_LINES;
8099 		ilt_client->end = line - 1;
8100 
8101 		DP(NETIF_MSG_IFUP,
8102 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8103 		   ilt_client->start,
8104 		   ilt_client->end,
8105 		   ilt_client->page_size,
8106 		   ilt_client->flags,
8107 		   ilog2(ilt_client->page_size >> 12));
8108 	}
8109 
8110 	BUG_ON(line > ILT_MAX_LINES);
8111 }
8112 
8113 /**
8114  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8115  *
8116  * @bp:			driver handle
8117  * @fp:			pointer to fastpath
8118  * @init_params:	pointer to parameters structure
8119  *
8120  * parameters configured:
8121  *      - HC configuration
8122  *      - Queue's CDU context
8123  */
8124 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8125 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8126 {
8127 
8128 	u8 cos;
8129 	int cxt_index, cxt_offset;
8130 
8131 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8132 	if (!IS_FCOE_FP(fp)) {
8133 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8134 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8135 
8136 		/* If HC is supporterd, enable host coalescing in the transition
8137 		 * to INIT state.
8138 		 */
8139 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8140 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8141 
8142 		/* HC rate */
8143 		init_params->rx.hc_rate = bp->rx_ticks ?
8144 			(1000000 / bp->rx_ticks) : 0;
8145 		init_params->tx.hc_rate = bp->tx_ticks ?
8146 			(1000000 / bp->tx_ticks) : 0;
8147 
8148 		/* FW SB ID */
8149 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8150 			fp->fw_sb_id;
8151 
8152 		/*
8153 		 * CQ index among the SB indices: FCoE clients uses the default
8154 		 * SB, therefore it's different.
8155 		 */
8156 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8157 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8158 	}
8159 
8160 	/* set maximum number of COSs supported by this queue */
8161 	init_params->max_cos = fp->max_cos;
8162 
8163 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8164 	    fp->index, init_params->max_cos);
8165 
8166 	/* set the context pointers queue object */
8167 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8168 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8169 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8170 				ILT_PAGE_CIDS);
8171 		init_params->cxts[cos] =
8172 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8173 	}
8174 }
8175 
8176 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8177 			struct bnx2x_queue_state_params *q_params,
8178 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8179 			int tx_index, bool leading)
8180 {
8181 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8182 
8183 	/* Set the command */
8184 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8185 
8186 	/* Set tx-only QUEUE flags: don't zero statistics */
8187 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8188 
8189 	/* choose the index of the cid to send the slow path on */
8190 	tx_only_params->cid_index = tx_index;
8191 
8192 	/* Set general TX_ONLY_SETUP parameters */
8193 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8194 
8195 	/* Set Tx TX_ONLY_SETUP parameters */
8196 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8197 
8198 	DP(NETIF_MSG_IFUP,
8199 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8200 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8201 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8202 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8203 
8204 	/* send the ramrod */
8205 	return bnx2x_queue_state_change(bp, q_params);
8206 }
8207 
8208 
8209 /**
8210  * bnx2x_setup_queue - setup queue
8211  *
8212  * @bp:		driver handle
8213  * @fp:		pointer to fastpath
8214  * @leading:	is leading
8215  *
8216  * This function performs 2 steps in a Queue state machine
8217  *      actually: 1) RESET->INIT 2) INIT->SETUP
8218  */
8219 
8220 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8221 		       bool leading)
8222 {
8223 	struct bnx2x_queue_state_params q_params = {NULL};
8224 	struct bnx2x_queue_setup_params *setup_params =
8225 						&q_params.params.setup;
8226 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8227 						&q_params.params.tx_only;
8228 	int rc;
8229 	u8 tx_index;
8230 
8231 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8232 
8233 	/* reset IGU state skip FCoE L2 queue */
8234 	if (!IS_FCOE_FP(fp))
8235 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8236 			     IGU_INT_ENABLE, 0);
8237 
8238 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8239 	/* We want to wait for completion in this context */
8240 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8241 
8242 	/* Prepare the INIT parameters */
8243 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8244 
8245 	/* Set the command */
8246 	q_params.cmd = BNX2X_Q_CMD_INIT;
8247 
8248 	/* Change the state to INIT */
8249 	rc = bnx2x_queue_state_change(bp, &q_params);
8250 	if (rc) {
8251 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8252 		return rc;
8253 	}
8254 
8255 	DP(NETIF_MSG_IFUP, "init complete\n");
8256 
8257 
8258 	/* Now move the Queue to the SETUP state... */
8259 	memset(setup_params, 0, sizeof(*setup_params));
8260 
8261 	/* Set QUEUE flags */
8262 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8263 
8264 	/* Set general SETUP parameters */
8265 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8266 				FIRST_TX_COS_INDEX);
8267 
8268 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8269 			    &setup_params->rxq_params);
8270 
8271 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8272 			   FIRST_TX_COS_INDEX);
8273 
8274 	/* Set the command */
8275 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8276 
8277 	if (IS_FCOE_FP(fp))
8278 		bp->fcoe_init = true;
8279 
8280 	/* Change the state to SETUP */
8281 	rc = bnx2x_queue_state_change(bp, &q_params);
8282 	if (rc) {
8283 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8284 		return rc;
8285 	}
8286 
8287 	/* loop through the relevant tx-only indices */
8288 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8289 	      tx_index < fp->max_cos;
8290 	      tx_index++) {
8291 
8292 		/* prepare and send tx-only ramrod*/
8293 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8294 					  tx_only_params, tx_index, leading);
8295 		if (rc) {
8296 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8297 				  fp->index, tx_index);
8298 			return rc;
8299 		}
8300 	}
8301 
8302 	return rc;
8303 }
8304 
8305 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8306 {
8307 	struct bnx2x_fastpath *fp = &bp->fp[index];
8308 	struct bnx2x_fp_txdata *txdata;
8309 	struct bnx2x_queue_state_params q_params = {NULL};
8310 	int rc, tx_index;
8311 
8312 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8313 
8314 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8315 	/* We want to wait for completion in this context */
8316 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8317 
8318 
8319 	/* close tx-only connections */
8320 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8321 	     tx_index < fp->max_cos;
8322 	     tx_index++){
8323 
8324 		/* ascertain this is a normal queue*/
8325 		txdata = fp->txdata_ptr[tx_index];
8326 
8327 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8328 							txdata->txq_index);
8329 
8330 		/* send halt terminate on tx-only connection */
8331 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8332 		memset(&q_params.params.terminate, 0,
8333 		       sizeof(q_params.params.terminate));
8334 		q_params.params.terminate.cid_index = tx_index;
8335 
8336 		rc = bnx2x_queue_state_change(bp, &q_params);
8337 		if (rc)
8338 			return rc;
8339 
8340 		/* send halt terminate on tx-only connection */
8341 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8342 		memset(&q_params.params.cfc_del, 0,
8343 		       sizeof(q_params.params.cfc_del));
8344 		q_params.params.cfc_del.cid_index = tx_index;
8345 		rc = bnx2x_queue_state_change(bp, &q_params);
8346 		if (rc)
8347 			return rc;
8348 	}
8349 	/* Stop the primary connection: */
8350 	/* ...halt the connection */
8351 	q_params.cmd = BNX2X_Q_CMD_HALT;
8352 	rc = bnx2x_queue_state_change(bp, &q_params);
8353 	if (rc)
8354 		return rc;
8355 
8356 	/* ...terminate the connection */
8357 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8358 	memset(&q_params.params.terminate, 0,
8359 	       sizeof(q_params.params.terminate));
8360 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8361 	rc = bnx2x_queue_state_change(bp, &q_params);
8362 	if (rc)
8363 		return rc;
8364 	/* ...delete cfc entry */
8365 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8366 	memset(&q_params.params.cfc_del, 0,
8367 	       sizeof(q_params.params.cfc_del));
8368 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8369 	return bnx2x_queue_state_change(bp, &q_params);
8370 }
8371 
8372 
8373 static void bnx2x_reset_func(struct bnx2x *bp)
8374 {
8375 	int port = BP_PORT(bp);
8376 	int func = BP_FUNC(bp);
8377 	int i;
8378 
8379 	/* Disable the function in the FW */
8380 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8381 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8382 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8383 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8384 
8385 	/* FP SBs */
8386 	for_each_eth_queue(bp, i) {
8387 		struct bnx2x_fastpath *fp = &bp->fp[i];
8388 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8389 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8390 			   SB_DISABLED);
8391 	}
8392 
8393 	if (CNIC_LOADED(bp))
8394 		/* CNIC SB */
8395 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8396 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8397 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8398 
8399 	/* SP SB */
8400 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8401 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8402 		SB_DISABLED);
8403 
8404 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8405 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8406 		       0);
8407 
8408 	/* Configure IGU */
8409 	if (bp->common.int_block == INT_BLOCK_HC) {
8410 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8411 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8412 	} else {
8413 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8414 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8415 	}
8416 
8417 	if (CNIC_LOADED(bp)) {
8418 		/* Disable Timer scan */
8419 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8420 		/*
8421 		 * Wait for at least 10ms and up to 2 second for the timers
8422 		 * scan to complete
8423 		 */
8424 		for (i = 0; i < 200; i++) {
8425 			msleep(10);
8426 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8427 				break;
8428 		}
8429 	}
8430 	/* Clear ILT */
8431 	bnx2x_clear_func_ilt(bp, func);
8432 
8433 	/* Timers workaround bug for E2: if this is vnic-3,
8434 	 * we need to set the entire ilt range for this timers.
8435 	 */
8436 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8437 		struct ilt_client_info ilt_cli;
8438 		/* use dummy TM client */
8439 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8440 		ilt_cli.start = 0;
8441 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8442 		ilt_cli.client_num = ILT_CLIENT_TM;
8443 
8444 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8445 	}
8446 
8447 	/* this assumes that reset_port() called before reset_func()*/
8448 	if (!CHIP_IS_E1x(bp))
8449 		bnx2x_pf_disable(bp);
8450 
8451 	bp->dmae_ready = 0;
8452 }
8453 
8454 static void bnx2x_reset_port(struct bnx2x *bp)
8455 {
8456 	int port = BP_PORT(bp);
8457 	u32 val;
8458 
8459 	/* Reset physical Link */
8460 	bnx2x__link_reset(bp);
8461 
8462 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8463 
8464 	/* Do not rcv packets to BRB */
8465 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8466 	/* Do not direct rcv packets that are not for MCP to the BRB */
8467 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8468 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8469 
8470 	/* Configure AEU */
8471 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8472 
8473 	msleep(100);
8474 	/* Check for BRB port occupancy */
8475 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8476 	if (val)
8477 		DP(NETIF_MSG_IFDOWN,
8478 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8479 
8480 	/* TODO: Close Doorbell port? */
8481 }
8482 
8483 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8484 {
8485 	struct bnx2x_func_state_params func_params = {NULL};
8486 
8487 	/* Prepare parameters for function state transitions */
8488 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8489 
8490 	func_params.f_obj = &bp->func_obj;
8491 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8492 
8493 	func_params.params.hw_init.load_phase = load_code;
8494 
8495 	return bnx2x_func_state_change(bp, &func_params);
8496 }
8497 
8498 static int bnx2x_func_stop(struct bnx2x *bp)
8499 {
8500 	struct bnx2x_func_state_params func_params = {NULL};
8501 	int rc;
8502 
8503 	/* Prepare parameters for function state transitions */
8504 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8505 	func_params.f_obj = &bp->func_obj;
8506 	func_params.cmd = BNX2X_F_CMD_STOP;
8507 
8508 	/*
8509 	 * Try to stop the function the 'good way'. If fails (in case
8510 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8511 	 * not in a debug mode, perform a state transaction in order to
8512 	 * enable further HW_RESET transaction.
8513 	 */
8514 	rc = bnx2x_func_state_change(bp, &func_params);
8515 	if (rc) {
8516 #ifdef BNX2X_STOP_ON_ERROR
8517 		return rc;
8518 #else
8519 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8520 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8521 		return bnx2x_func_state_change(bp, &func_params);
8522 #endif
8523 	}
8524 
8525 	return 0;
8526 }
8527 
8528 /**
8529  * bnx2x_send_unload_req - request unload mode from the MCP.
8530  *
8531  * @bp:			driver handle
8532  * @unload_mode:	requested function's unload mode
8533  *
8534  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8535  */
8536 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8537 {
8538 	u32 reset_code = 0;
8539 	int port = BP_PORT(bp);
8540 
8541 	/* Select the UNLOAD request mode */
8542 	if (unload_mode == UNLOAD_NORMAL)
8543 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8544 
8545 	else if (bp->flags & NO_WOL_FLAG)
8546 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8547 
8548 	else if (bp->wol) {
8549 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8550 		u8 *mac_addr = bp->dev->dev_addr;
8551 		u32 val;
8552 		u16 pmc;
8553 
8554 		/* The mac address is written to entries 1-4 to
8555 		 * preserve entry 0 which is used by the PMF
8556 		 */
8557 		u8 entry = (BP_VN(bp) + 1)*8;
8558 
8559 		val = (mac_addr[0] << 8) | mac_addr[1];
8560 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8561 
8562 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8563 		      (mac_addr[4] << 8) | mac_addr[5];
8564 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8565 
8566 		/* Enable the PME and clear the status */
8567 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8568 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8569 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8570 
8571 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8572 
8573 	} else
8574 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8575 
8576 	/* Send the request to the MCP */
8577 	if (!BP_NOMCP(bp))
8578 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8579 	else {
8580 		int path = BP_PATH(bp);
8581 
8582 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8583 		   path, load_count[path][0], load_count[path][1],
8584 		   load_count[path][2]);
8585 		load_count[path][0]--;
8586 		load_count[path][1 + port]--;
8587 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8588 		   path, load_count[path][0], load_count[path][1],
8589 		   load_count[path][2]);
8590 		if (load_count[path][0] == 0)
8591 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8592 		else if (load_count[path][1 + port] == 0)
8593 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8594 		else
8595 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8596 	}
8597 
8598 	return reset_code;
8599 }
8600 
8601 /**
8602  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8603  *
8604  * @bp:		driver handle
8605  * @keep_link:		true iff link should be kept up
8606  */
8607 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8608 {
8609 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8610 
8611 	/* Report UNLOAD_DONE to MCP */
8612 	if (!BP_NOMCP(bp))
8613 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8614 }
8615 
8616 static int bnx2x_func_wait_started(struct bnx2x *bp)
8617 {
8618 	int tout = 50;
8619 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8620 
8621 	if (!bp->port.pmf)
8622 		return 0;
8623 
8624 	/*
8625 	 * (assumption: No Attention from MCP at this stage)
8626 	 * PMF probably in the middle of TXdisable/enable transaction
8627 	 * 1. Sync IRS for default SB
8628 	 * 2. Sync SP queue - this guarantes us that attention handling started
8629 	 * 3. Wait, that TXdisable/enable transaction completes
8630 	 *
8631 	 * 1+2 guranty that if DCBx attention was scheduled it already changed
8632 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
8633 	 * received complettion for the transaction the state is TX_STOPPED.
8634 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8635 	 * transaction.
8636 	 */
8637 
8638 	/* make sure default SB ISR is done */
8639 	if (msix)
8640 		synchronize_irq(bp->msix_table[0].vector);
8641 	else
8642 		synchronize_irq(bp->pdev->irq);
8643 
8644 	flush_workqueue(bnx2x_wq);
8645 
8646 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8647 				BNX2X_F_STATE_STARTED && tout--)
8648 		msleep(20);
8649 
8650 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8651 						BNX2X_F_STATE_STARTED) {
8652 #ifdef BNX2X_STOP_ON_ERROR
8653 		BNX2X_ERR("Wrong function state\n");
8654 		return -EBUSY;
8655 #else
8656 		/*
8657 		 * Failed to complete the transaction in a "good way"
8658 		 * Force both transactions with CLR bit
8659 		 */
8660 		struct bnx2x_func_state_params func_params = {NULL};
8661 
8662 		DP(NETIF_MSG_IFDOWN,
8663 		   "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8664 
8665 		func_params.f_obj = &bp->func_obj;
8666 		__set_bit(RAMROD_DRV_CLR_ONLY,
8667 					&func_params.ramrod_flags);
8668 
8669 		/* STARTED-->TX_ST0PPED */
8670 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8671 		bnx2x_func_state_change(bp, &func_params);
8672 
8673 		/* TX_ST0PPED-->STARTED */
8674 		func_params.cmd = BNX2X_F_CMD_TX_START;
8675 		return bnx2x_func_state_change(bp, &func_params);
8676 #endif
8677 	}
8678 
8679 	return 0;
8680 }
8681 
8682 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8683 {
8684 	int port = BP_PORT(bp);
8685 	int i, rc = 0;
8686 	u8 cos;
8687 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8688 	u32 reset_code;
8689 
8690 	/* Wait until tx fastpath tasks complete */
8691 	for_each_tx_queue(bp, i) {
8692 		struct bnx2x_fastpath *fp = &bp->fp[i];
8693 
8694 		for_each_cos_in_tx_queue(fp, cos)
8695 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8696 #ifdef BNX2X_STOP_ON_ERROR
8697 		if (rc)
8698 			return;
8699 #endif
8700 	}
8701 
8702 	/* Give HW time to discard old tx messages */
8703 	usleep_range(1000, 2000);
8704 
8705 	/* Clean all ETH MACs */
8706 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8707 				false);
8708 	if (rc < 0)
8709 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8710 
8711 	/* Clean up UC list  */
8712 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8713 				true);
8714 	if (rc < 0)
8715 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8716 			  rc);
8717 
8718 	/* Disable LLH */
8719 	if (!CHIP_IS_E1(bp))
8720 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8721 
8722 	/* Set "drop all" (stop Rx).
8723 	 * We need to take a netif_addr_lock() here in order to prevent
8724 	 * a race between the completion code and this code.
8725 	 */
8726 	netif_addr_lock_bh(bp->dev);
8727 	/* Schedule the rx_mode command */
8728 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8729 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8730 	else
8731 		bnx2x_set_storm_rx_mode(bp);
8732 
8733 	/* Cleanup multicast configuration */
8734 	rparam.mcast_obj = &bp->mcast_obj;
8735 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8736 	if (rc < 0)
8737 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8738 
8739 	netif_addr_unlock_bh(bp->dev);
8740 
8741 	bnx2x_iov_chip_cleanup(bp);
8742 
8743 
8744 	/*
8745 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8746 	 * this function should perform FUNC, PORT or COMMON HW
8747 	 * reset.
8748 	 */
8749 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8750 
8751 	/*
8752 	 * (assumption: No Attention from MCP at this stage)
8753 	 * PMF probably in the middle of TXdisable/enable transaction
8754 	 */
8755 	rc = bnx2x_func_wait_started(bp);
8756 	if (rc) {
8757 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8758 #ifdef BNX2X_STOP_ON_ERROR
8759 		return;
8760 #endif
8761 	}
8762 
8763 	/* Close multi and leading connections
8764 	 * Completions for ramrods are collected in a synchronous way
8765 	 */
8766 	for_each_eth_queue(bp, i)
8767 		if (bnx2x_stop_queue(bp, i))
8768 #ifdef BNX2X_STOP_ON_ERROR
8769 			return;
8770 #else
8771 			goto unload_error;
8772 #endif
8773 
8774 	if (CNIC_LOADED(bp)) {
8775 		for_each_cnic_queue(bp, i)
8776 			if (bnx2x_stop_queue(bp, i))
8777 #ifdef BNX2X_STOP_ON_ERROR
8778 				return;
8779 #else
8780 				goto unload_error;
8781 #endif
8782 	}
8783 
8784 	/* If SP settings didn't get completed so far - something
8785 	 * very wrong has happen.
8786 	 */
8787 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8788 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8789 
8790 #ifndef BNX2X_STOP_ON_ERROR
8791 unload_error:
8792 #endif
8793 	rc = bnx2x_func_stop(bp);
8794 	if (rc) {
8795 		BNX2X_ERR("Function stop failed!\n");
8796 #ifdef BNX2X_STOP_ON_ERROR
8797 		return;
8798 #endif
8799 	}
8800 
8801 	/* Disable HW interrupts, NAPI */
8802 	bnx2x_netif_stop(bp, 1);
8803 	/* Delete all NAPI objects */
8804 	bnx2x_del_all_napi(bp);
8805 	if (CNIC_LOADED(bp))
8806 		bnx2x_del_all_napi_cnic(bp);
8807 
8808 	/* Release IRQs */
8809 	bnx2x_free_irq(bp);
8810 
8811 	/* Reset the chip */
8812 	rc = bnx2x_reset_hw(bp, reset_code);
8813 	if (rc)
8814 		BNX2X_ERR("HW_RESET failed\n");
8815 
8816 
8817 	/* Report UNLOAD_DONE to MCP */
8818 	bnx2x_send_unload_done(bp, keep_link);
8819 }
8820 
8821 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8822 {
8823 	u32 val;
8824 
8825 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8826 
8827 	if (CHIP_IS_E1(bp)) {
8828 		int port = BP_PORT(bp);
8829 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8830 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8831 
8832 		val = REG_RD(bp, addr);
8833 		val &= ~(0x300);
8834 		REG_WR(bp, addr, val);
8835 	} else {
8836 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8837 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8838 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8839 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8840 	}
8841 }
8842 
8843 /* Close gates #2, #3 and #4: */
8844 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8845 {
8846 	u32 val;
8847 
8848 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8849 	if (!CHIP_IS_E1(bp)) {
8850 		/* #4 */
8851 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8852 		/* #2 */
8853 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8854 	}
8855 
8856 	/* #3 */
8857 	if (CHIP_IS_E1x(bp)) {
8858 		/* Prevent interrupts from HC on both ports */
8859 		val = REG_RD(bp, HC_REG_CONFIG_1);
8860 		REG_WR(bp, HC_REG_CONFIG_1,
8861 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8862 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8863 
8864 		val = REG_RD(bp, HC_REG_CONFIG_0);
8865 		REG_WR(bp, HC_REG_CONFIG_0,
8866 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8867 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8868 	} else {
8869 		/* Prevent incoming interrupts in IGU */
8870 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8871 
8872 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8873 		       (!close) ?
8874 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8875 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8876 	}
8877 
8878 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8879 		close ? "closing" : "opening");
8880 	mmiowb();
8881 }
8882 
8883 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8884 
8885 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8886 {
8887 	/* Do some magic... */
8888 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8889 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8890 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8891 }
8892 
8893 /**
8894  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8895  *
8896  * @bp:		driver handle
8897  * @magic_val:	old value of the `magic' bit.
8898  */
8899 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8900 {
8901 	/* Restore the `magic' bit value... */
8902 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8903 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8904 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8905 }
8906 
8907 /**
8908  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8909  *
8910  * @bp:		driver handle
8911  * @magic_val:	old value of 'magic' bit.
8912  *
8913  * Takes care of CLP configurations.
8914  */
8915 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8916 {
8917 	u32 shmem;
8918 	u32 validity_offset;
8919 
8920 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8921 
8922 	/* Set `magic' bit in order to save MF config */
8923 	if (!CHIP_IS_E1(bp))
8924 		bnx2x_clp_reset_prep(bp, magic_val);
8925 
8926 	/* Get shmem offset */
8927 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8928 	validity_offset =
8929 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
8930 
8931 	/* Clear validity map flags */
8932 	if (shmem > 0)
8933 		REG_WR(bp, shmem + validity_offset, 0);
8934 }
8935 
8936 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8937 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8938 
8939 /**
8940  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8941  *
8942  * @bp:	driver handle
8943  */
8944 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
8945 {
8946 	/* special handling for emulation and FPGA,
8947 	   wait 10 times longer */
8948 	if (CHIP_REV_IS_SLOW(bp))
8949 		msleep(MCP_ONE_TIMEOUT*10);
8950 	else
8951 		msleep(MCP_ONE_TIMEOUT);
8952 }
8953 
8954 /*
8955  * initializes bp->common.shmem_base and waits for validity signature to appear
8956  */
8957 static int bnx2x_init_shmem(struct bnx2x *bp)
8958 {
8959 	int cnt = 0;
8960 	u32 val = 0;
8961 
8962 	do {
8963 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8964 		if (bp->common.shmem_base) {
8965 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8966 			if (val & SHR_MEM_VALIDITY_MB)
8967 				return 0;
8968 		}
8969 
8970 		bnx2x_mcp_wait_one(bp);
8971 
8972 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8973 
8974 	BNX2X_ERR("BAD MCP validity signature\n");
8975 
8976 	return -ENODEV;
8977 }
8978 
8979 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8980 {
8981 	int rc = bnx2x_init_shmem(bp);
8982 
8983 	/* Restore the `magic' bit value */
8984 	if (!CHIP_IS_E1(bp))
8985 		bnx2x_clp_reset_done(bp, magic_val);
8986 
8987 	return rc;
8988 }
8989 
8990 static void bnx2x_pxp_prep(struct bnx2x *bp)
8991 {
8992 	if (!CHIP_IS_E1(bp)) {
8993 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8994 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8995 		mmiowb();
8996 	}
8997 }
8998 
8999 /*
9000  * Reset the whole chip except for:
9001  *      - PCIE core
9002  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9003  *              one reset bit)
9004  *      - IGU
9005  *      - MISC (including AEU)
9006  *      - GRC
9007  *      - RBCN, RBCP
9008  */
9009 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9010 {
9011 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9012 	u32 global_bits2, stay_reset2;
9013 
9014 	/*
9015 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9016 	 * (per chip) blocks.
9017 	 */
9018 	global_bits2 =
9019 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9020 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9021 
9022 	/* Don't reset the following blocks.
9023 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9024 	 *            reset, as in 4 port device they might still be owned
9025 	 *            by the MCP (there is only one leader per path).
9026 	 */
9027 	not_reset_mask1 =
9028 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9029 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9030 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9031 
9032 	not_reset_mask2 =
9033 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9034 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9035 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9036 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9037 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9038 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9039 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9040 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9041 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9042 		MISC_REGISTERS_RESET_REG_2_PGLC |
9043 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9044 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9045 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9046 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9047 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9048 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9049 
9050 	/*
9051 	 * Keep the following blocks in reset:
9052 	 *  - all xxMACs are handled by the bnx2x_link code.
9053 	 */
9054 	stay_reset2 =
9055 		MISC_REGISTERS_RESET_REG_2_XMAC |
9056 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9057 
9058 	/* Full reset masks according to the chip */
9059 	reset_mask1 = 0xffffffff;
9060 
9061 	if (CHIP_IS_E1(bp))
9062 		reset_mask2 = 0xffff;
9063 	else if (CHIP_IS_E1H(bp))
9064 		reset_mask2 = 0x1ffff;
9065 	else if (CHIP_IS_E2(bp))
9066 		reset_mask2 = 0xfffff;
9067 	else /* CHIP_IS_E3 */
9068 		reset_mask2 = 0x3ffffff;
9069 
9070 	/* Don't reset global blocks unless we need to */
9071 	if (!global)
9072 		reset_mask2 &= ~global_bits2;
9073 
9074 	/*
9075 	 * In case of attention in the QM, we need to reset PXP
9076 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9077 	 * because otherwise QM reset would release 'close the gates' shortly
9078 	 * before resetting the PXP, then the PSWRQ would send a write
9079 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9080 	 * read the payload data from PSWWR, but PSWWR would not
9081 	 * respond. The write queue in PGLUE would stuck, dmae commands
9082 	 * would not return. Therefore it's important to reset the second
9083 	 * reset register (containing the
9084 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9085 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9086 	 * bit).
9087 	 */
9088 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9089 	       reset_mask2 & (~not_reset_mask2));
9090 
9091 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9092 	       reset_mask1 & (~not_reset_mask1));
9093 
9094 	barrier();
9095 	mmiowb();
9096 
9097 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9098 	       reset_mask2 & (~stay_reset2));
9099 
9100 	barrier();
9101 	mmiowb();
9102 
9103 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9104 	mmiowb();
9105 }
9106 
9107 /**
9108  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9109  * It should get cleared in no more than 1s.
9110  *
9111  * @bp:	driver handle
9112  *
9113  * It should get cleared in no more than 1s. Returns 0 if
9114  * pending writes bit gets cleared.
9115  */
9116 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9117 {
9118 	u32 cnt = 1000;
9119 	u32 pend_bits = 0;
9120 
9121 	do {
9122 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9123 
9124 		if (pend_bits == 0)
9125 			break;
9126 
9127 		usleep_range(1000, 2000);
9128 	} while (cnt-- > 0);
9129 
9130 	if (cnt <= 0) {
9131 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9132 			  pend_bits);
9133 		return -EBUSY;
9134 	}
9135 
9136 	return 0;
9137 }
9138 
9139 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9140 {
9141 	int cnt = 1000;
9142 	u32 val = 0;
9143 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9144 	u32 tags_63_32 = 0;
9145 
9146 	/* Empty the Tetris buffer, wait for 1s */
9147 	do {
9148 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9149 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9150 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9151 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9152 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9153 		if (CHIP_IS_E3(bp))
9154 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9155 
9156 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9157 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9158 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9159 		    (pgl_exp_rom2 == 0xffffffff) &&
9160 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9161 			break;
9162 		usleep_range(1000, 2000);
9163 	} while (cnt-- > 0);
9164 
9165 	if (cnt <= 0) {
9166 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9167 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9168 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9169 			  pgl_exp_rom2);
9170 		return -EAGAIN;
9171 	}
9172 
9173 	barrier();
9174 
9175 	/* Close gates #2, #3 and #4 */
9176 	bnx2x_set_234_gates(bp, true);
9177 
9178 	/* Poll for IGU VQs for 57712 and newer chips */
9179 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9180 		return -EAGAIN;
9181 
9182 
9183 	/* TBD: Indicate that "process kill" is in progress to MCP */
9184 
9185 	/* Clear "unprepared" bit */
9186 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9187 	barrier();
9188 
9189 	/* Make sure all is written to the chip before the reset */
9190 	mmiowb();
9191 
9192 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9193 	 * PSWHST, GRC and PSWRD Tetris buffer.
9194 	 */
9195 	usleep_range(1000, 2000);
9196 
9197 	/* Prepare to chip reset: */
9198 	/* MCP */
9199 	if (global)
9200 		bnx2x_reset_mcp_prep(bp, &val);
9201 
9202 	/* PXP */
9203 	bnx2x_pxp_prep(bp);
9204 	barrier();
9205 
9206 	/* reset the chip */
9207 	bnx2x_process_kill_chip_reset(bp, global);
9208 	barrier();
9209 
9210 	/* Recover after reset: */
9211 	/* MCP */
9212 	if (global && bnx2x_reset_mcp_comp(bp, val))
9213 		return -EAGAIN;
9214 
9215 	/* TBD: Add resetting the NO_MCP mode DB here */
9216 
9217 	/* Open the gates #2, #3 and #4 */
9218 	bnx2x_set_234_gates(bp, false);
9219 
9220 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9221 	 * reset state, re-enable attentions. */
9222 
9223 	return 0;
9224 }
9225 
9226 static int bnx2x_leader_reset(struct bnx2x *bp)
9227 {
9228 	int rc = 0;
9229 	bool global = bnx2x_reset_is_global(bp);
9230 	u32 load_code;
9231 
9232 	/* if not going to reset MCP - load "fake" driver to reset HW while
9233 	 * driver is owner of the HW
9234 	 */
9235 	if (!global && !BP_NOMCP(bp)) {
9236 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9237 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9238 		if (!load_code) {
9239 			BNX2X_ERR("MCP response failure, aborting\n");
9240 			rc = -EAGAIN;
9241 			goto exit_leader_reset;
9242 		}
9243 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9244 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9245 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9246 			rc = -EAGAIN;
9247 			goto exit_leader_reset2;
9248 		}
9249 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9250 		if (!load_code) {
9251 			BNX2X_ERR("MCP response failure, aborting\n");
9252 			rc = -EAGAIN;
9253 			goto exit_leader_reset2;
9254 		}
9255 	}
9256 
9257 	/* Try to recover after the failure */
9258 	if (bnx2x_process_kill(bp, global)) {
9259 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9260 			  BP_PATH(bp));
9261 		rc = -EAGAIN;
9262 		goto exit_leader_reset2;
9263 	}
9264 
9265 	/*
9266 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9267 	 * state.
9268 	 */
9269 	bnx2x_set_reset_done(bp);
9270 	if (global)
9271 		bnx2x_clear_reset_global(bp);
9272 
9273 exit_leader_reset2:
9274 	/* unload "fake driver" if it was loaded */
9275 	if (!global && !BP_NOMCP(bp)) {
9276 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9277 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9278 	}
9279 exit_leader_reset:
9280 	bp->is_leader = 0;
9281 	bnx2x_release_leader_lock(bp);
9282 	smp_mb();
9283 	return rc;
9284 }
9285 
9286 static void bnx2x_recovery_failed(struct bnx2x *bp)
9287 {
9288 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9289 
9290 	/* Disconnect this device */
9291 	netif_device_detach(bp->dev);
9292 
9293 	/*
9294 	 * Block ifup for all function on this engine until "process kill"
9295 	 * or power cycle.
9296 	 */
9297 	bnx2x_set_reset_in_progress(bp);
9298 
9299 	/* Shut down the power */
9300 	bnx2x_set_power_state(bp, PCI_D3hot);
9301 
9302 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9303 
9304 	smp_mb();
9305 }
9306 
9307 /*
9308  * Assumption: runs under rtnl lock. This together with the fact
9309  * that it's called only from bnx2x_sp_rtnl() ensure that it
9310  * will never be called when netif_running(bp->dev) is false.
9311  */
9312 static void bnx2x_parity_recover(struct bnx2x *bp)
9313 {
9314 	bool global = false;
9315 	u32 error_recovered, error_unrecovered;
9316 	bool is_parity;
9317 
9318 	DP(NETIF_MSG_HW, "Handling parity\n");
9319 	while (1) {
9320 		switch (bp->recovery_state) {
9321 		case BNX2X_RECOVERY_INIT:
9322 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9323 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9324 			WARN_ON(!is_parity);
9325 
9326 			/* Try to get a LEADER_LOCK HW lock */
9327 			if (bnx2x_trylock_leader_lock(bp)) {
9328 				bnx2x_set_reset_in_progress(bp);
9329 				/*
9330 				 * Check if there is a global attention and if
9331 				 * there was a global attention, set the global
9332 				 * reset bit.
9333 				 */
9334 
9335 				if (global)
9336 					bnx2x_set_reset_global(bp);
9337 
9338 				bp->is_leader = 1;
9339 			}
9340 
9341 			/* Stop the driver */
9342 			/* If interface has been removed - break */
9343 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9344 				return;
9345 
9346 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9347 
9348 			/* Ensure "is_leader", MCP command sequence and
9349 			 * "recovery_state" update values are seen on other
9350 			 * CPUs.
9351 			 */
9352 			smp_mb();
9353 			break;
9354 
9355 		case BNX2X_RECOVERY_WAIT:
9356 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9357 			if (bp->is_leader) {
9358 				int other_engine = BP_PATH(bp) ? 0 : 1;
9359 				bool other_load_status =
9360 					bnx2x_get_load_status(bp, other_engine);
9361 				bool load_status =
9362 					bnx2x_get_load_status(bp, BP_PATH(bp));
9363 				global = bnx2x_reset_is_global(bp);
9364 
9365 				/*
9366 				 * In case of a parity in a global block, let
9367 				 * the first leader that performs a
9368 				 * leader_reset() reset the global blocks in
9369 				 * order to clear global attentions. Otherwise
9370 				 * the the gates will remain closed for that
9371 				 * engine.
9372 				 */
9373 				if (load_status ||
9374 				    (global && other_load_status)) {
9375 					/* Wait until all other functions get
9376 					 * down.
9377 					 */
9378 					schedule_delayed_work(&bp->sp_rtnl_task,
9379 								HZ/10);
9380 					return;
9381 				} else {
9382 					/* If all other functions got down -
9383 					 * try to bring the chip back to
9384 					 * normal. In any case it's an exit
9385 					 * point for a leader.
9386 					 */
9387 					if (bnx2x_leader_reset(bp)) {
9388 						bnx2x_recovery_failed(bp);
9389 						return;
9390 					}
9391 
9392 					/* If we are here, means that the
9393 					 * leader has succeeded and doesn't
9394 					 * want to be a leader any more. Try
9395 					 * to continue as a none-leader.
9396 					 */
9397 					break;
9398 				}
9399 			} else { /* non-leader */
9400 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9401 					/* Try to get a LEADER_LOCK HW lock as
9402 					 * long as a former leader may have
9403 					 * been unloaded by the user or
9404 					 * released a leadership by another
9405 					 * reason.
9406 					 */
9407 					if (bnx2x_trylock_leader_lock(bp)) {
9408 						/* I'm a leader now! Restart a
9409 						 * switch case.
9410 						 */
9411 						bp->is_leader = 1;
9412 						break;
9413 					}
9414 
9415 					schedule_delayed_work(&bp->sp_rtnl_task,
9416 								HZ/10);
9417 					return;
9418 
9419 				} else {
9420 					/*
9421 					 * If there was a global attention, wait
9422 					 * for it to be cleared.
9423 					 */
9424 					if (bnx2x_reset_is_global(bp)) {
9425 						schedule_delayed_work(
9426 							&bp->sp_rtnl_task,
9427 							HZ/10);
9428 						return;
9429 					}
9430 
9431 					error_recovered =
9432 					  bp->eth_stats.recoverable_error;
9433 					error_unrecovered =
9434 					  bp->eth_stats.unrecoverable_error;
9435 					bp->recovery_state =
9436 						BNX2X_RECOVERY_NIC_LOADING;
9437 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9438 						error_unrecovered++;
9439 						netdev_err(bp->dev,
9440 							   "Recovery failed. Power cycle needed\n");
9441 						/* Disconnect this device */
9442 						netif_device_detach(bp->dev);
9443 						/* Shut down the power */
9444 						bnx2x_set_power_state(
9445 							bp, PCI_D3hot);
9446 						smp_mb();
9447 					} else {
9448 						bp->recovery_state =
9449 							BNX2X_RECOVERY_DONE;
9450 						error_recovered++;
9451 						smp_mb();
9452 					}
9453 					bp->eth_stats.recoverable_error =
9454 						error_recovered;
9455 					bp->eth_stats.unrecoverable_error =
9456 						error_unrecovered;
9457 
9458 					return;
9459 				}
9460 			}
9461 		default:
9462 			return;
9463 		}
9464 	}
9465 }
9466 
9467 static int bnx2x_close(struct net_device *dev);
9468 
9469 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9470  * scheduled on a general queue in order to prevent a dead lock.
9471  */
9472 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9473 {
9474 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9475 
9476 	rtnl_lock();
9477 
9478 	if (!netif_running(bp->dev)) {
9479 		rtnl_unlock();
9480 		return;
9481 	}
9482 
9483 	/* if stop on error is defined no recovery flows should be executed */
9484 #ifdef BNX2X_STOP_ON_ERROR
9485 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9486 		  "you will need to reboot when done\n");
9487 	goto sp_rtnl_not_reset;
9488 #endif
9489 
9490 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9491 		/*
9492 		 * Clear all pending SP commands as we are going to reset the
9493 		 * function anyway.
9494 		 */
9495 		bp->sp_rtnl_state = 0;
9496 		smp_mb();
9497 
9498 		bnx2x_parity_recover(bp);
9499 
9500 		rtnl_unlock();
9501 		return;
9502 	}
9503 
9504 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9505 		/*
9506 		 * Clear all pending SP commands as we are going to reset the
9507 		 * function anyway.
9508 		 */
9509 		bp->sp_rtnl_state = 0;
9510 		smp_mb();
9511 
9512 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9513 		bnx2x_nic_load(bp, LOAD_NORMAL);
9514 
9515 		rtnl_unlock();
9516 		return;
9517 	}
9518 #ifdef BNX2X_STOP_ON_ERROR
9519 sp_rtnl_not_reset:
9520 #endif
9521 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9522 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9523 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9524 		bnx2x_after_function_update(bp);
9525 	/*
9526 	 * in case of fan failure we need to reset id if the "stop on error"
9527 	 * debug flag is set, since we trying to prevent permanent overheating
9528 	 * damage
9529 	 */
9530 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9531 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9532 		netif_device_detach(bp->dev);
9533 		bnx2x_close(bp->dev);
9534 		rtnl_unlock();
9535 		return;
9536 	}
9537 
9538 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9539 		DP(BNX2X_MSG_SP,
9540 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
9541 		bnx2x_vfpf_set_mcast(bp->dev);
9542 	}
9543 
9544 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
9545 			       &bp->sp_rtnl_state)) {
9546 		DP(BNX2X_MSG_SP,
9547 		   "sending set storm rx mode vf pf channel message from rtnl sp-task\n");
9548 		bnx2x_vfpf_storm_rx_mode(bp);
9549 	}
9550 
9551 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9552 			       &bp->sp_rtnl_state))
9553 		bnx2x_pf_set_vfs_vlan(bp);
9554 
9555 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
9556 	 * can be called from other contexts as well)
9557 	 */
9558 	rtnl_unlock();
9559 
9560 	/* enable SR-IOV if applicable */
9561 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9562 					       &bp->sp_rtnl_state)) {
9563 		bnx2x_disable_sriov(bp);
9564 		bnx2x_enable_sriov(bp);
9565 	}
9566 }
9567 
9568 static void bnx2x_period_task(struct work_struct *work)
9569 {
9570 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9571 
9572 	if (!netif_running(bp->dev))
9573 		goto period_task_exit;
9574 
9575 	if (CHIP_REV_IS_SLOW(bp)) {
9576 		BNX2X_ERR("period task called on emulation, ignoring\n");
9577 		goto period_task_exit;
9578 	}
9579 
9580 	bnx2x_acquire_phy_lock(bp);
9581 	/*
9582 	 * The barrier is needed to ensure the ordering between the writing to
9583 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9584 	 * the reading here.
9585 	 */
9586 	smp_mb();
9587 	if (bp->port.pmf) {
9588 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9589 
9590 		/* Re-queue task in 1 sec */
9591 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9592 	}
9593 
9594 	bnx2x_release_phy_lock(bp);
9595 period_task_exit:
9596 	return;
9597 }
9598 
9599 /*
9600  * Init service functions
9601  */
9602 
9603 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9604 {
9605 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9606 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9607 	return base + (BP_ABS_FUNC(bp)) * stride;
9608 }
9609 
9610 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9611 					struct bnx2x_mac_vals *vals)
9612 {
9613 	u32 val, base_addr, offset, mask, reset_reg;
9614 	bool mac_stopped = false;
9615 	u8 port = BP_PORT(bp);
9616 
9617 	/* reset addresses as they also mark which values were changed */
9618 	vals->bmac_addr = 0;
9619 	vals->umac_addr = 0;
9620 	vals->xmac_addr = 0;
9621 	vals->emac_addr = 0;
9622 
9623 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9624 
9625 	if (!CHIP_IS_E3(bp)) {
9626 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9627 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9628 		if ((mask & reset_reg) && val) {
9629 			u32 wb_data[2];
9630 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9631 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9632 						: NIG_REG_INGRESS_BMAC0_MEM;
9633 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9634 						: BIGMAC_REGISTER_BMAC_CONTROL;
9635 
9636 			/*
9637 			 * use rd/wr since we cannot use dmae. This is safe
9638 			 * since MCP won't access the bus due to the request
9639 			 * to unload, and no function on the path can be
9640 			 * loaded at this time.
9641 			 */
9642 			wb_data[0] = REG_RD(bp, base_addr + offset);
9643 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9644 			vals->bmac_addr = base_addr + offset;
9645 			vals->bmac_val[0] = wb_data[0];
9646 			vals->bmac_val[1] = wb_data[1];
9647 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9648 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
9649 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9650 
9651 		}
9652 		BNX2X_DEV_INFO("Disable emac Rx\n");
9653 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9654 		vals->emac_val = REG_RD(bp, vals->emac_addr);
9655 		REG_WR(bp, vals->emac_addr, 0);
9656 		mac_stopped = true;
9657 	} else {
9658 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9659 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9660 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9661 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9662 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9663 			       val & ~(1 << 1));
9664 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9665 			       val | (1 << 1));
9666 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9667 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9668 			REG_WR(bp, vals->xmac_addr, 0);
9669 			mac_stopped = true;
9670 		}
9671 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9672 		if (mask & reset_reg) {
9673 			BNX2X_DEV_INFO("Disable umac Rx\n");
9674 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9675 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9676 			vals->umac_val = REG_RD(bp, vals->umac_addr);
9677 			REG_WR(bp, vals->umac_addr, 0);
9678 			mac_stopped = true;
9679 		}
9680 	}
9681 
9682 	if (mac_stopped)
9683 		msleep(20);
9684 
9685 }
9686 
9687 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9688 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9689 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9690 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9691 
9692 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9693 {
9694 	u16 rcq, bd;
9695 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9696 
9697 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9698 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9699 
9700 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9701 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9702 
9703 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9704 		       port, bd, rcq);
9705 }
9706 
9707 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9708 {
9709 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9710 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9711 	if (!rc) {
9712 		BNX2X_ERR("MCP response failure, aborting\n");
9713 		return -EBUSY;
9714 	}
9715 
9716 	return 0;
9717 }
9718 
9719 static struct bnx2x_prev_path_list *
9720 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
9721 {
9722 	struct bnx2x_prev_path_list *tmp_list;
9723 
9724 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9725 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9726 		    bp->pdev->bus->number == tmp_list->bus &&
9727 		    BP_PATH(bp) == tmp_list->path)
9728 			return tmp_list;
9729 
9730 	return NULL;
9731 }
9732 
9733 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9734 {
9735 	struct bnx2x_prev_path_list *tmp_list;
9736 	int rc;
9737 
9738 	rc = down_interruptible(&bnx2x_prev_sem);
9739 	if (rc) {
9740 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9741 		return rc;
9742 	}
9743 
9744 	tmp_list = bnx2x_prev_path_get_entry(bp);
9745 	if (tmp_list) {
9746 		tmp_list->aer = 1;
9747 		rc = 0;
9748 	} else {
9749 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9750 			  BP_PATH(bp));
9751 	}
9752 
9753 	up(&bnx2x_prev_sem);
9754 
9755 	return rc;
9756 }
9757 
9758 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9759 {
9760 	struct bnx2x_prev_path_list *tmp_list;
9761 	int rc = false;
9762 
9763 	if (down_trylock(&bnx2x_prev_sem))
9764 		return false;
9765 
9766 	tmp_list = bnx2x_prev_path_get_entry(bp);
9767 	if (tmp_list) {
9768 		if (tmp_list->aer) {
9769 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9770 			   BP_PATH(bp));
9771 		} else {
9772 			rc = true;
9773 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9774 				       BP_PATH(bp));
9775 		}
9776 	}
9777 
9778 	up(&bnx2x_prev_sem);
9779 
9780 	return rc;
9781 }
9782 
9783 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9784 {
9785 	struct bnx2x_prev_path_list *tmp_list;
9786 	int rc;
9787 
9788 	rc = down_interruptible(&bnx2x_prev_sem);
9789 	if (rc) {
9790 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9791 		return rc;
9792 	}
9793 
9794 	/* Check whether the entry for this path already exists */
9795 	tmp_list = bnx2x_prev_path_get_entry(bp);
9796 	if (tmp_list) {
9797 		if (!tmp_list->aer) {
9798 			BNX2X_ERR("Re-Marking the path.\n");
9799 		} else {
9800 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9801 			   BP_PATH(bp));
9802 			tmp_list->aer = 0;
9803 		}
9804 		up(&bnx2x_prev_sem);
9805 		return 0;
9806 	}
9807 	up(&bnx2x_prev_sem);
9808 
9809 	/* Create an entry for this path and add it */
9810 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9811 	if (!tmp_list) {
9812 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9813 		return -ENOMEM;
9814 	}
9815 
9816 	tmp_list->bus = bp->pdev->bus->number;
9817 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9818 	tmp_list->path = BP_PATH(bp);
9819 	tmp_list->aer = 0;
9820 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9821 
9822 	rc = down_interruptible(&bnx2x_prev_sem);
9823 	if (rc) {
9824 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9825 		kfree(tmp_list);
9826 	} else {
9827 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9828 		   BP_PATH(bp));
9829 		list_add(&tmp_list->list, &bnx2x_prev_list);
9830 		up(&bnx2x_prev_sem);
9831 	}
9832 
9833 	return rc;
9834 }
9835 
9836 static int bnx2x_do_flr(struct bnx2x *bp)
9837 {
9838 	int i;
9839 	u16 status;
9840 	struct pci_dev *dev = bp->pdev;
9841 
9842 
9843 	if (CHIP_IS_E1x(bp)) {
9844 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9845 		return -EINVAL;
9846 	}
9847 
9848 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9849 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9850 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9851 			  bp->common.bc_ver);
9852 		return -EINVAL;
9853 	}
9854 
9855 	/* Wait for Transaction Pending bit clean */
9856 	for (i = 0; i < 4; i++) {
9857 		if (i)
9858 			msleep((1 << (i - 1)) * 100);
9859 
9860 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9861 		if (!(status & PCI_EXP_DEVSTA_TRPND))
9862 			goto clear;
9863 	}
9864 
9865 	dev_err(&dev->dev,
9866 		"transaction is not cleared; proceeding with reset anyway\n");
9867 
9868 clear:
9869 
9870 	BNX2X_DEV_INFO("Initiating FLR\n");
9871 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9872 
9873 	return 0;
9874 }
9875 
9876 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9877 {
9878 	int rc;
9879 
9880 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
9881 
9882 	/* Test if previous unload process was already finished for this path */
9883 	if (bnx2x_prev_is_path_marked(bp))
9884 		return bnx2x_prev_mcp_done(bp);
9885 
9886 	BNX2X_DEV_INFO("Path is unmarked\n");
9887 
9888 	/* If function has FLR capabilities, and existing FW version matches
9889 	 * the one required, then FLR will be sufficient to clean any residue
9890 	 * left by previous driver
9891 	 */
9892 	rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9893 
9894 	if (!rc) {
9895 		/* fw version is good */
9896 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9897 		rc = bnx2x_do_flr(bp);
9898 	}
9899 
9900 	if (!rc) {
9901 		/* FLR was performed */
9902 		BNX2X_DEV_INFO("FLR successful\n");
9903 		return 0;
9904 	}
9905 
9906 	BNX2X_DEV_INFO("Could not FLR\n");
9907 
9908 	/* Close the MCP request, return failure*/
9909 	rc = bnx2x_prev_mcp_done(bp);
9910 	if (!rc)
9911 		rc = BNX2X_PREV_WAIT_NEEDED;
9912 
9913 	return rc;
9914 }
9915 
9916 static int bnx2x_prev_unload_common(struct bnx2x *bp)
9917 {
9918 	u32 reset_reg, tmp_reg = 0, rc;
9919 	bool prev_undi = false;
9920 	struct bnx2x_mac_vals mac_vals;
9921 
9922 	/* It is possible a previous function received 'common' answer,
9923 	 * but hasn't loaded yet, therefore creating a scenario of
9924 	 * multiple functions receiving 'common' on the same path.
9925 	 */
9926 	BNX2X_DEV_INFO("Common unload Flow\n");
9927 
9928 	memset(&mac_vals, 0, sizeof(mac_vals));
9929 
9930 	if (bnx2x_prev_is_path_marked(bp))
9931 		return bnx2x_prev_mcp_done(bp);
9932 
9933 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9934 
9935 	/* Reset should be performed after BRB is emptied */
9936 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9937 		u32 timer_count = 1000;
9938 
9939 		/* Close the MAC Rx to prevent BRB from filling up */
9940 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
9941 
9942 		/* close LLH filters towards the BRB */
9943 		bnx2x_set_rx_filter(&bp->link_params, 0);
9944 
9945 		/* Check if the UNDI driver was previously loaded
9946 		 * UNDI driver initializes CID offset for normal bell to 0x7
9947 		 */
9948 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9949 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9950 			if (tmp_reg == 0x7) {
9951 				BNX2X_DEV_INFO("UNDI previously loaded\n");
9952 				prev_undi = true;
9953 				/* clear the UNDI indication */
9954 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9955 				/* clear possible idle check errors */
9956 				REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
9957 			}
9958 		}
9959 		if (!CHIP_IS_E1x(bp))
9960 			/* block FW from writing to host */
9961 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9962 
9963 		/* wait until BRB is empty */
9964 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9965 		while (timer_count) {
9966 			u32 prev_brb = tmp_reg;
9967 
9968 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9969 			if (!tmp_reg)
9970 				break;
9971 
9972 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9973 
9974 			/* reset timer as long as BRB actually gets emptied */
9975 			if (prev_brb > tmp_reg)
9976 				timer_count = 1000;
9977 			else
9978 				timer_count--;
9979 
9980 			/* If UNDI resides in memory, manually increment it */
9981 			if (prev_undi)
9982 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9983 
9984 			udelay(10);
9985 		}
9986 
9987 		if (!timer_count)
9988 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9989 
9990 	}
9991 
9992 	/* No packets are in the pipeline, path is ready for reset */
9993 	bnx2x_reset_common(bp);
9994 
9995 	if (mac_vals.xmac_addr)
9996 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
9997 	if (mac_vals.umac_addr)
9998 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
9999 	if (mac_vals.emac_addr)
10000 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10001 	if (mac_vals.bmac_addr) {
10002 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10003 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10004 	}
10005 
10006 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10007 	if (rc) {
10008 		bnx2x_prev_mcp_done(bp);
10009 		return rc;
10010 	}
10011 
10012 	return bnx2x_prev_mcp_done(bp);
10013 }
10014 
10015 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10016  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10017  * the addresses of the transaction, resulting in was-error bit set in the pci
10018  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10019  * to clear the interrupt which detected this from the pglueb and the was done
10020  * bit
10021  */
10022 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10023 {
10024 	if (!CHIP_IS_E1x(bp)) {
10025 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10026 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10027 			DP(BNX2X_MSG_SP,
10028 			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10029 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10030 			       1 << BP_FUNC(bp));
10031 		}
10032 	}
10033 }
10034 
10035 static int bnx2x_prev_unload(struct bnx2x *bp)
10036 {
10037 	int time_counter = 10;
10038 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10039 	struct bnx2x_prev_path_list *prev_list;
10040 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10041 
10042 	/* clear hw from errors which may have resulted from an interrupted
10043 	 * dmae transaction.
10044 	 */
10045 	bnx2x_prev_interrupted_dmae(bp);
10046 
10047 	/* Release previously held locks */
10048 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10049 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10050 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10051 
10052 	hw_lock_val = (REG_RD(bp, hw_lock_reg));
10053 	if (hw_lock_val) {
10054 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10055 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10056 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10057 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10058 		}
10059 
10060 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10061 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10062 	} else
10063 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10064 
10065 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10066 		BNX2X_DEV_INFO("Release previously held alr\n");
10067 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
10068 	}
10069 
10070 	do {
10071 		int aer = 0;
10072 		/* Lock MCP using an unload request */
10073 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10074 		if (!fw) {
10075 			BNX2X_ERR("MCP response failure, aborting\n");
10076 			rc = -EBUSY;
10077 			break;
10078 		}
10079 
10080 		rc = down_interruptible(&bnx2x_prev_sem);
10081 		if (rc) {
10082 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10083 				  rc);
10084 		} else {
10085 			/* If Path is marked by EEH, ignore unload status */
10086 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10087 				 bnx2x_prev_path_get_entry(bp)->aer);
10088 			up(&bnx2x_prev_sem);
10089 		}
10090 
10091 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10092 			rc = bnx2x_prev_unload_common(bp);
10093 			break;
10094 		}
10095 
10096 		/* non-common reply from MCP night require looping */
10097 		rc = bnx2x_prev_unload_uncommon(bp);
10098 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10099 			break;
10100 
10101 		msleep(20);
10102 	} while (--time_counter);
10103 
10104 	if (!time_counter || rc) {
10105 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
10106 		rc = -EBUSY;
10107 	}
10108 
10109 	/* Mark function if its port was used to boot from SAN */
10110 	prev_list = bnx2x_prev_path_get_entry(bp);
10111 	if (prev_list && (prev_list->undi & (1 << BP_PORT(bp))))
10112 		bp->link_params.feature_config_flags |=
10113 			FEATURE_CONFIG_BOOT_FROM_SAN;
10114 
10115 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10116 
10117 	return rc;
10118 }
10119 
10120 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10121 {
10122 	u32 val, val2, val3, val4, id, boot_mode;
10123 	u16 pmc;
10124 
10125 	/* Get the chip revision id and number. */
10126 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10127 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10128 	id = ((val & 0xffff) << 16);
10129 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10130 	id |= ((val & 0xf) << 12);
10131 
10132 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10133 	 * the configuration space (so we need to reg_rd)
10134 	 */
10135 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10136 	id |= (((val >> 24) & 0xf) << 4);
10137 	val = REG_RD(bp, MISC_REG_BOND_ID);
10138 	id |= (val & 0xf);
10139 	bp->common.chip_id = id;
10140 
10141 	/* force 57811 according to MISC register */
10142 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10143 		if (CHIP_IS_57810(bp))
10144 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10145 				(bp->common.chip_id & 0x0000FFFF);
10146 		else if (CHIP_IS_57810_MF(bp))
10147 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10148 				(bp->common.chip_id & 0x0000FFFF);
10149 		bp->common.chip_id |= 0x1;
10150 	}
10151 
10152 	/* Set doorbell size */
10153 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10154 
10155 	if (!CHIP_IS_E1x(bp)) {
10156 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10157 		if ((val & 1) == 0)
10158 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10159 		else
10160 			val = (val >> 1) & 1;
10161 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10162 						       "2_PORT_MODE");
10163 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10164 						 CHIP_2_PORT_MODE;
10165 
10166 		if (CHIP_MODE_IS_4_PORT(bp))
10167 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10168 		else
10169 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10170 	} else {
10171 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10172 		bp->pfid = bp->pf_num;			/* 0..7 */
10173 	}
10174 
10175 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10176 
10177 	bp->link_params.chip_id = bp->common.chip_id;
10178 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10179 
10180 	val = (REG_RD(bp, 0x2874) & 0x55);
10181 	if ((bp->common.chip_id & 0x1) ||
10182 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10183 		bp->flags |= ONE_PORT_FLAG;
10184 		BNX2X_DEV_INFO("single port device\n");
10185 	}
10186 
10187 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10188 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10189 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10190 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10191 		       bp->common.flash_size, bp->common.flash_size);
10192 
10193 	bnx2x_init_shmem(bp);
10194 
10195 
10196 
10197 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10198 					MISC_REG_GENERIC_CR_1 :
10199 					MISC_REG_GENERIC_CR_0));
10200 
10201 	bp->link_params.shmem_base = bp->common.shmem_base;
10202 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10203 	if (SHMEM2_RD(bp, size) >
10204 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10205 		bp->link_params.lfa_base =
10206 		REG_RD(bp, bp->common.shmem2_base +
10207 		       (u32)offsetof(struct shmem2_region,
10208 				     lfa_host_addr[BP_PORT(bp)]));
10209 	else
10210 		bp->link_params.lfa_base = 0;
10211 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10212 		       bp->common.shmem_base, bp->common.shmem2_base);
10213 
10214 	if (!bp->common.shmem_base) {
10215 		BNX2X_DEV_INFO("MCP not active\n");
10216 		bp->flags |= NO_MCP_FLAG;
10217 		return;
10218 	}
10219 
10220 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10221 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10222 
10223 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10224 					SHARED_HW_CFG_LED_MODE_MASK) >>
10225 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10226 
10227 	bp->link_params.feature_config_flags = 0;
10228 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10229 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10230 		bp->link_params.feature_config_flags |=
10231 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10232 	else
10233 		bp->link_params.feature_config_flags &=
10234 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10235 
10236 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10237 	bp->common.bc_ver = val;
10238 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10239 	if (val < BNX2X_BC_VER) {
10240 		/* for now only warn
10241 		 * later we might need to enforce this */
10242 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10243 			  BNX2X_BC_VER, val);
10244 	}
10245 	bp->link_params.feature_config_flags |=
10246 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10247 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10248 
10249 	bp->link_params.feature_config_flags |=
10250 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10251 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10252 	bp->link_params.feature_config_flags |=
10253 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10254 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10255 	bp->link_params.feature_config_flags |=
10256 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10257 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10258 
10259 	bp->link_params.feature_config_flags |=
10260 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10261 		FEATURE_CONFIG_MT_SUPPORT : 0;
10262 
10263 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10264 			BC_SUPPORTS_PFC_STATS : 0;
10265 
10266 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10267 			BC_SUPPORTS_FCOE_FEATURES : 0;
10268 
10269 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10270 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10271 	boot_mode = SHMEM_RD(bp,
10272 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10273 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10274 	switch (boot_mode) {
10275 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10276 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10277 		break;
10278 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10279 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10280 		break;
10281 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10282 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10283 		break;
10284 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10285 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10286 		break;
10287 	}
10288 
10289 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10290 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10291 
10292 	BNX2X_DEV_INFO("%sWoL capable\n",
10293 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10294 
10295 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10296 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10297 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10298 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10299 
10300 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10301 		 val, val2, val3, val4);
10302 }
10303 
10304 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10305 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10306 
10307 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10308 {
10309 	int pfid = BP_FUNC(bp);
10310 	int igu_sb_id;
10311 	u32 val;
10312 	u8 fid, igu_sb_cnt = 0;
10313 
10314 	bp->igu_base_sb = 0xff;
10315 	if (CHIP_INT_MODE_IS_BC(bp)) {
10316 		int vn = BP_VN(bp);
10317 		igu_sb_cnt = bp->igu_sb_cnt;
10318 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10319 			FP_SB_MAX_E1x;
10320 
10321 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10322 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10323 
10324 		return 0;
10325 	}
10326 
10327 	/* IGU in normal mode - read CAM */
10328 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10329 	     igu_sb_id++) {
10330 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10331 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10332 			continue;
10333 		fid = IGU_FID(val);
10334 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10335 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10336 				continue;
10337 			if (IGU_VEC(val) == 0)
10338 				/* default status block */
10339 				bp->igu_dsb_id = igu_sb_id;
10340 			else {
10341 				if (bp->igu_base_sb == 0xff)
10342 					bp->igu_base_sb = igu_sb_id;
10343 				igu_sb_cnt++;
10344 			}
10345 		}
10346 	}
10347 
10348 #ifdef CONFIG_PCI_MSI
10349 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10350 	 * optional that number of CAM entries will not be equal to the value
10351 	 * advertised in PCI.
10352 	 * Driver should use the minimal value of both as the actual status
10353 	 * block count
10354 	 */
10355 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10356 #endif
10357 
10358 	if (igu_sb_cnt == 0) {
10359 		BNX2X_ERR("CAM configuration error\n");
10360 		return -EINVAL;
10361 	}
10362 
10363 	return 0;
10364 }
10365 
10366 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10367 {
10368 	int cfg_size = 0, idx, port = BP_PORT(bp);
10369 
10370 	/* Aggregation of supported attributes of all external phys */
10371 	bp->port.supported[0] = 0;
10372 	bp->port.supported[1] = 0;
10373 	switch (bp->link_params.num_phys) {
10374 	case 1:
10375 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10376 		cfg_size = 1;
10377 		break;
10378 	case 2:
10379 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10380 		cfg_size = 1;
10381 		break;
10382 	case 3:
10383 		if (bp->link_params.multi_phy_config &
10384 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10385 			bp->port.supported[1] =
10386 				bp->link_params.phy[EXT_PHY1].supported;
10387 			bp->port.supported[0] =
10388 				bp->link_params.phy[EXT_PHY2].supported;
10389 		} else {
10390 			bp->port.supported[0] =
10391 				bp->link_params.phy[EXT_PHY1].supported;
10392 			bp->port.supported[1] =
10393 				bp->link_params.phy[EXT_PHY2].supported;
10394 		}
10395 		cfg_size = 2;
10396 		break;
10397 	}
10398 
10399 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10400 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10401 			   SHMEM_RD(bp,
10402 			   dev_info.port_hw_config[port].external_phy_config),
10403 			   SHMEM_RD(bp,
10404 			   dev_info.port_hw_config[port].external_phy_config2));
10405 			return;
10406 	}
10407 
10408 	if (CHIP_IS_E3(bp))
10409 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10410 	else {
10411 		switch (switch_cfg) {
10412 		case SWITCH_CFG_1G:
10413 			bp->port.phy_addr = REG_RD(
10414 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10415 			break;
10416 		case SWITCH_CFG_10G:
10417 			bp->port.phy_addr = REG_RD(
10418 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10419 			break;
10420 		default:
10421 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10422 				  bp->port.link_config[0]);
10423 			return;
10424 		}
10425 	}
10426 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10427 	/* mask what we support according to speed_cap_mask per configuration */
10428 	for (idx = 0; idx < cfg_size; idx++) {
10429 		if (!(bp->link_params.speed_cap_mask[idx] &
10430 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10431 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10432 
10433 		if (!(bp->link_params.speed_cap_mask[idx] &
10434 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10435 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10436 
10437 		if (!(bp->link_params.speed_cap_mask[idx] &
10438 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10439 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10440 
10441 		if (!(bp->link_params.speed_cap_mask[idx] &
10442 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10443 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10444 
10445 		if (!(bp->link_params.speed_cap_mask[idx] &
10446 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10447 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10448 						     SUPPORTED_1000baseT_Full);
10449 
10450 		if (!(bp->link_params.speed_cap_mask[idx] &
10451 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10452 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10453 
10454 		if (!(bp->link_params.speed_cap_mask[idx] &
10455 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10456 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10457 
10458 	}
10459 
10460 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10461 		       bp->port.supported[1]);
10462 }
10463 
10464 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10465 {
10466 	u32 link_config, idx, cfg_size = 0;
10467 	bp->port.advertising[0] = 0;
10468 	bp->port.advertising[1] = 0;
10469 	switch (bp->link_params.num_phys) {
10470 	case 1:
10471 	case 2:
10472 		cfg_size = 1;
10473 		break;
10474 	case 3:
10475 		cfg_size = 2;
10476 		break;
10477 	}
10478 	for (idx = 0; idx < cfg_size; idx++) {
10479 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10480 		link_config = bp->port.link_config[idx];
10481 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10482 		case PORT_FEATURE_LINK_SPEED_AUTO:
10483 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10484 				bp->link_params.req_line_speed[idx] =
10485 					SPEED_AUTO_NEG;
10486 				bp->port.advertising[idx] |=
10487 					bp->port.supported[idx];
10488 				if (bp->link_params.phy[EXT_PHY1].type ==
10489 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10490 					bp->port.advertising[idx] |=
10491 					(SUPPORTED_100baseT_Half |
10492 					 SUPPORTED_100baseT_Full);
10493 			} else {
10494 				/* force 10G, no AN */
10495 				bp->link_params.req_line_speed[idx] =
10496 					SPEED_10000;
10497 				bp->port.advertising[idx] |=
10498 					(ADVERTISED_10000baseT_Full |
10499 					 ADVERTISED_FIBRE);
10500 				continue;
10501 			}
10502 			break;
10503 
10504 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10505 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10506 				bp->link_params.req_line_speed[idx] =
10507 					SPEED_10;
10508 				bp->port.advertising[idx] |=
10509 					(ADVERTISED_10baseT_Full |
10510 					 ADVERTISED_TP);
10511 			} else {
10512 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10513 					    link_config,
10514 				    bp->link_params.speed_cap_mask[idx]);
10515 				return;
10516 			}
10517 			break;
10518 
10519 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10520 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10521 				bp->link_params.req_line_speed[idx] =
10522 					SPEED_10;
10523 				bp->link_params.req_duplex[idx] =
10524 					DUPLEX_HALF;
10525 				bp->port.advertising[idx] |=
10526 					(ADVERTISED_10baseT_Half |
10527 					 ADVERTISED_TP);
10528 			} else {
10529 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10530 					    link_config,
10531 					  bp->link_params.speed_cap_mask[idx]);
10532 				return;
10533 			}
10534 			break;
10535 
10536 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10537 			if (bp->port.supported[idx] &
10538 			    SUPPORTED_100baseT_Full) {
10539 				bp->link_params.req_line_speed[idx] =
10540 					SPEED_100;
10541 				bp->port.advertising[idx] |=
10542 					(ADVERTISED_100baseT_Full |
10543 					 ADVERTISED_TP);
10544 			} else {
10545 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10546 					    link_config,
10547 					  bp->link_params.speed_cap_mask[idx]);
10548 				return;
10549 			}
10550 			break;
10551 
10552 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10553 			if (bp->port.supported[idx] &
10554 			    SUPPORTED_100baseT_Half) {
10555 				bp->link_params.req_line_speed[idx] =
10556 								SPEED_100;
10557 				bp->link_params.req_duplex[idx] =
10558 								DUPLEX_HALF;
10559 				bp->port.advertising[idx] |=
10560 					(ADVERTISED_100baseT_Half |
10561 					 ADVERTISED_TP);
10562 			} else {
10563 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10564 				    link_config,
10565 				    bp->link_params.speed_cap_mask[idx]);
10566 				return;
10567 			}
10568 			break;
10569 
10570 		case PORT_FEATURE_LINK_SPEED_1G:
10571 			if (bp->port.supported[idx] &
10572 			    SUPPORTED_1000baseT_Full) {
10573 				bp->link_params.req_line_speed[idx] =
10574 					SPEED_1000;
10575 				bp->port.advertising[idx] |=
10576 					(ADVERTISED_1000baseT_Full |
10577 					 ADVERTISED_TP);
10578 			} else {
10579 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10580 				    link_config,
10581 				    bp->link_params.speed_cap_mask[idx]);
10582 				return;
10583 			}
10584 			break;
10585 
10586 		case PORT_FEATURE_LINK_SPEED_2_5G:
10587 			if (bp->port.supported[idx] &
10588 			    SUPPORTED_2500baseX_Full) {
10589 				bp->link_params.req_line_speed[idx] =
10590 					SPEED_2500;
10591 				bp->port.advertising[idx] |=
10592 					(ADVERTISED_2500baseX_Full |
10593 						ADVERTISED_TP);
10594 			} else {
10595 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10596 				    link_config,
10597 				    bp->link_params.speed_cap_mask[idx]);
10598 				return;
10599 			}
10600 			break;
10601 
10602 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10603 			if (bp->port.supported[idx] &
10604 			    SUPPORTED_10000baseT_Full) {
10605 				bp->link_params.req_line_speed[idx] =
10606 					SPEED_10000;
10607 				bp->port.advertising[idx] |=
10608 					(ADVERTISED_10000baseT_Full |
10609 						ADVERTISED_FIBRE);
10610 			} else {
10611 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10612 				    link_config,
10613 				    bp->link_params.speed_cap_mask[idx]);
10614 				return;
10615 			}
10616 			break;
10617 		case PORT_FEATURE_LINK_SPEED_20G:
10618 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10619 
10620 			break;
10621 		default:
10622 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10623 				  link_config);
10624 				bp->link_params.req_line_speed[idx] =
10625 							SPEED_AUTO_NEG;
10626 				bp->port.advertising[idx] =
10627 						bp->port.supported[idx];
10628 			break;
10629 		}
10630 
10631 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10632 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10633 		if (bp->link_params.req_flow_ctrl[idx] ==
10634 		    BNX2X_FLOW_CTRL_AUTO) {
10635 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10636 				bp->link_params.req_flow_ctrl[idx] =
10637 							BNX2X_FLOW_CTRL_NONE;
10638 			else
10639 				bnx2x_set_requested_fc(bp);
10640 		}
10641 
10642 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10643 			       bp->link_params.req_line_speed[idx],
10644 			       bp->link_params.req_duplex[idx],
10645 			       bp->link_params.req_flow_ctrl[idx],
10646 			       bp->port.advertising[idx]);
10647 	}
10648 }
10649 
10650 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10651 {
10652 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
10653 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
10654 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10655 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10656 }
10657 
10658 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10659 {
10660 	int port = BP_PORT(bp);
10661 	u32 config;
10662 	u32 ext_phy_type, ext_phy_config, eee_mode;
10663 
10664 	bp->link_params.bp = bp;
10665 	bp->link_params.port = port;
10666 
10667 	bp->link_params.lane_config =
10668 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10669 
10670 	bp->link_params.speed_cap_mask[0] =
10671 		SHMEM_RD(bp,
10672 			 dev_info.port_hw_config[port].speed_capability_mask) &
10673 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10674 	bp->link_params.speed_cap_mask[1] =
10675 		SHMEM_RD(bp,
10676 			 dev_info.port_hw_config[port].speed_capability_mask2) &
10677 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10678 	bp->port.link_config[0] =
10679 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10680 
10681 	bp->port.link_config[1] =
10682 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10683 
10684 	bp->link_params.multi_phy_config =
10685 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10686 	/* If the device is capable of WoL, set the default state according
10687 	 * to the HW
10688 	 */
10689 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10690 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10691 		   (config & PORT_FEATURE_WOL_ENABLED));
10692 
10693 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10694 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10695 		bp->flags |= NO_ISCSI_FLAG;
10696 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10697 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10698 		bp->flags |= NO_FCOE_FLAG;
10699 
10700 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10701 		       bp->link_params.lane_config,
10702 		       bp->link_params.speed_cap_mask[0],
10703 		       bp->port.link_config[0]);
10704 
10705 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10706 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10707 	bnx2x_phy_probe(&bp->link_params);
10708 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10709 
10710 	bnx2x_link_settings_requested(bp);
10711 
10712 	/*
10713 	 * If connected directly, work with the internal PHY, otherwise, work
10714 	 * with the external PHY
10715 	 */
10716 	ext_phy_config =
10717 		SHMEM_RD(bp,
10718 			 dev_info.port_hw_config[port].external_phy_config);
10719 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10720 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10721 		bp->mdio.prtad = bp->port.phy_addr;
10722 
10723 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10724 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10725 		bp->mdio.prtad =
10726 			XGXS_EXT_PHY_ADDR(ext_phy_config);
10727 
10728 	/* Configure link feature according to nvram value */
10729 	eee_mode = (((SHMEM_RD(bp, dev_info.
10730 		      port_feature_config[port].eee_power_mode)) &
10731 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10732 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10733 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10734 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10735 					   EEE_MODE_ENABLE_LPI |
10736 					   EEE_MODE_OUTPUT_TIME;
10737 	} else {
10738 		bp->link_params.eee_mode = 0;
10739 	}
10740 }
10741 
10742 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10743 {
10744 	u32 no_flags = NO_ISCSI_FLAG;
10745 	int port = BP_PORT(bp);
10746 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10747 				drv_lic_key[port].max_iscsi_conn);
10748 
10749 	if (!CNIC_SUPPORT(bp)) {
10750 		bp->flags |= no_flags;
10751 		return;
10752 	}
10753 
10754 	/* Get the number of maximum allowed iSCSI connections */
10755 	bp->cnic_eth_dev.max_iscsi_conn =
10756 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10757 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10758 
10759 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10760 		       bp->cnic_eth_dev.max_iscsi_conn);
10761 
10762 	/*
10763 	 * If maximum allowed number of connections is zero -
10764 	 * disable the feature.
10765 	 */
10766 	if (!bp->cnic_eth_dev.max_iscsi_conn)
10767 		bp->flags |= no_flags;
10768 
10769 }
10770 
10771 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10772 {
10773 	/* Port info */
10774 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10775 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10776 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10777 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10778 
10779 	/* Node info */
10780 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10781 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10782 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10783 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10784 }
10785 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10786 {
10787 	int port = BP_PORT(bp);
10788 	int func = BP_ABS_FUNC(bp);
10789 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10790 				drv_lic_key[port].max_fcoe_conn);
10791 
10792 	if (!CNIC_SUPPORT(bp)) {
10793 		bp->flags |= NO_FCOE_FLAG;
10794 		return;
10795 	}
10796 
10797 	/* Get the number of maximum allowed FCoE connections */
10798 	bp->cnic_eth_dev.max_fcoe_conn =
10799 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10800 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10801 
10802 	/* Calculate the number of maximum allowed FCoE tasks */
10803 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10804 	if (IS_MF(bp) || CHIP_MODE_IS_4_PORT(bp))
10805 		bp->cnic_eth_dev.max_fcoe_exchanges /=
10806 						MAX_FCOE_FUNCS_PER_ENGINE;
10807 
10808 	/* Read the WWN: */
10809 	if (!IS_MF(bp)) {
10810 		/* Port info */
10811 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10812 			SHMEM_RD(bp,
10813 				 dev_info.port_hw_config[port].
10814 				 fcoe_wwn_port_name_upper);
10815 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10816 			SHMEM_RD(bp,
10817 				 dev_info.port_hw_config[port].
10818 				 fcoe_wwn_port_name_lower);
10819 
10820 		/* Node info */
10821 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10822 			SHMEM_RD(bp,
10823 				 dev_info.port_hw_config[port].
10824 				 fcoe_wwn_node_name_upper);
10825 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10826 			SHMEM_RD(bp,
10827 				 dev_info.port_hw_config[port].
10828 				 fcoe_wwn_node_name_lower);
10829 	} else if (!IS_MF_SD(bp)) {
10830 		/*
10831 		 * Read the WWN info only if the FCoE feature is enabled for
10832 		 * this function.
10833 		 */
10834 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10835 			bnx2x_get_ext_wwn_info(bp, func);
10836 
10837 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10838 		bnx2x_get_ext_wwn_info(bp, func);
10839 	}
10840 
10841 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10842 
10843 	/*
10844 	 * If maximum allowed number of connections is zero -
10845 	 * disable the feature.
10846 	 */
10847 	if (!bp->cnic_eth_dev.max_fcoe_conn)
10848 		bp->flags |= NO_FCOE_FLAG;
10849 }
10850 
10851 static void bnx2x_get_cnic_info(struct bnx2x *bp)
10852 {
10853 	/*
10854 	 * iSCSI may be dynamically disabled but reading
10855 	 * info here we will decrease memory usage by driver
10856 	 * if the feature is disabled for good
10857 	 */
10858 	bnx2x_get_iscsi_info(bp);
10859 	bnx2x_get_fcoe_info(bp);
10860 }
10861 
10862 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
10863 {
10864 	u32 val, val2;
10865 	int func = BP_ABS_FUNC(bp);
10866 	int port = BP_PORT(bp);
10867 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10868 	u8 *fip_mac = bp->fip_mac;
10869 
10870 	if (IS_MF(bp)) {
10871 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
10872 		 * FCoE MAC then the appropriate feature should be disabled.
10873 		 * In non SD mode features configuration comes from struct
10874 		 * func_ext_config.
10875 		 */
10876 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
10877 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10878 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
10879 				val2 = MF_CFG_RD(bp, func_ext_config[func].
10880 						 iscsi_mac_addr_upper);
10881 				val = MF_CFG_RD(bp, func_ext_config[func].
10882 						iscsi_mac_addr_lower);
10883 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
10884 				BNX2X_DEV_INFO
10885 					("Read iSCSI MAC: %pM\n", iscsi_mac);
10886 			} else {
10887 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10888 			}
10889 
10890 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
10891 				val2 = MF_CFG_RD(bp, func_ext_config[func].
10892 						 fcoe_mac_addr_upper);
10893 				val = MF_CFG_RD(bp, func_ext_config[func].
10894 						fcoe_mac_addr_lower);
10895 				bnx2x_set_mac_buf(fip_mac, val, val2);
10896 				BNX2X_DEV_INFO
10897 					("Read FCoE L2 MAC: %pM\n", fip_mac);
10898 			} else {
10899 				bp->flags |= NO_FCOE_FLAG;
10900 			}
10901 
10902 			bp->mf_ext_config = cfg;
10903 
10904 		} else { /* SD MODE */
10905 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
10906 				/* use primary mac as iscsi mac */
10907 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
10908 
10909 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
10910 				BNX2X_DEV_INFO
10911 					("Read iSCSI MAC: %pM\n", iscsi_mac);
10912 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
10913 				/* use primary mac as fip mac */
10914 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
10915 				BNX2X_DEV_INFO("SD FCoE MODE\n");
10916 				BNX2X_DEV_INFO
10917 					("Read FIP MAC: %pM\n", fip_mac);
10918 			}
10919 		}
10920 
10921 		/* If this is a storage-only interface, use SAN mac as
10922 		 * primary MAC. Notice that for SD this is already the case,
10923 		 * as the SAN mac was copied from the primary MAC.
10924 		 */
10925 		if (IS_MF_FCOE_AFEX(bp))
10926 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
10927 	} else {
10928 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10929 				iscsi_mac_upper);
10930 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10931 			       iscsi_mac_lower);
10932 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
10933 
10934 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10935 				fcoe_fip_mac_upper);
10936 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10937 			       fcoe_fip_mac_lower);
10938 		bnx2x_set_mac_buf(fip_mac, val, val2);
10939 	}
10940 
10941 	/* Disable iSCSI OOO if MAC configuration is invalid. */
10942 	if (!is_valid_ether_addr(iscsi_mac)) {
10943 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10944 		memset(iscsi_mac, 0, ETH_ALEN);
10945 	}
10946 
10947 	/* Disable FCoE if MAC configuration is invalid. */
10948 	if (!is_valid_ether_addr(fip_mac)) {
10949 		bp->flags |= NO_FCOE_FLAG;
10950 		memset(bp->fip_mac, 0, ETH_ALEN);
10951 	}
10952 }
10953 
10954 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
10955 {
10956 	u32 val, val2;
10957 	int func = BP_ABS_FUNC(bp);
10958 	int port = BP_PORT(bp);
10959 
10960 	/* Zero primary MAC configuration */
10961 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
10962 
10963 	if (BP_NOMCP(bp)) {
10964 		BNX2X_ERROR("warning: random MAC workaround active\n");
10965 		eth_hw_addr_random(bp->dev);
10966 	} else if (IS_MF(bp)) {
10967 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
10968 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
10969 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
10970 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
10971 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10972 
10973 		if (CNIC_SUPPORT(bp))
10974 			bnx2x_get_cnic_mac_hwinfo(bp);
10975 	} else {
10976 		/* in SF read MACs from port configuration */
10977 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
10978 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
10979 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10980 
10981 		if (CNIC_SUPPORT(bp))
10982 			bnx2x_get_cnic_mac_hwinfo(bp);
10983 	}
10984 
10985 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
10986 
10987 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10988 		dev_err(&bp->pdev->dev,
10989 			"bad Ethernet MAC address configuration: %pM\n"
10990 			"change it manually before bringing up the appropriate network interface\n",
10991 			bp->dev->dev_addr);
10992 }
10993 
10994 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
10995 {
10996 	int tmp;
10997 	u32 cfg;
10998 
10999 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11000 		/* Take function: tmp = func */
11001 		tmp = BP_ABS_FUNC(bp);
11002 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11003 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11004 	} else {
11005 		/* Take port: tmp = port */
11006 		tmp = BP_PORT(bp);
11007 		cfg = SHMEM_RD(bp,
11008 			       dev_info.port_hw_config[tmp].generic_features);
11009 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11010 	}
11011 	return cfg;
11012 }
11013 
11014 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11015 {
11016 	int /*abs*/func = BP_ABS_FUNC(bp);
11017 	int vn;
11018 	u32 val = 0;
11019 	int rc = 0;
11020 
11021 	bnx2x_get_common_hwinfo(bp);
11022 
11023 	/*
11024 	 * initialize IGU parameters
11025 	 */
11026 	if (CHIP_IS_E1x(bp)) {
11027 		bp->common.int_block = INT_BLOCK_HC;
11028 
11029 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11030 		bp->igu_base_sb = 0;
11031 	} else {
11032 		bp->common.int_block = INT_BLOCK_IGU;
11033 
11034 		/* do not allow device reset during IGU info preocessing */
11035 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11036 
11037 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11038 
11039 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11040 			int tout = 5000;
11041 
11042 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11043 
11044 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11045 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11046 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11047 
11048 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11049 				tout--;
11050 				usleep_range(1000, 2000);
11051 			}
11052 
11053 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11054 				dev_err(&bp->pdev->dev,
11055 					"FORCING Normal Mode failed!!!\n");
11056 				bnx2x_release_hw_lock(bp,
11057 						      HW_LOCK_RESOURCE_RESET);
11058 				return -EPERM;
11059 			}
11060 		}
11061 
11062 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11063 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11064 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11065 		} else
11066 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11067 
11068 		rc = bnx2x_get_igu_cam_info(bp);
11069 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11070 		if (rc)
11071 			return rc;
11072 	}
11073 
11074 	/*
11075 	 * set base FW non-default (fast path) status block id, this value is
11076 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11077 	 * determine the id used by the FW.
11078 	 */
11079 	if (CHIP_IS_E1x(bp))
11080 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11081 	else /*
11082 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11083 	      * the same queue are indicated on the same IGU SB). So we prefer
11084 	      * FW and IGU SBs to be the same value.
11085 	      */
11086 		bp->base_fw_ndsb = bp->igu_base_sb;
11087 
11088 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11089 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11090 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11091 
11092 	/*
11093 	 * Initialize MF configuration
11094 	 */
11095 
11096 	bp->mf_ov = 0;
11097 	bp->mf_mode = 0;
11098 	vn = BP_VN(bp);
11099 
11100 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11101 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11102 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11103 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11104 
11105 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11106 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11107 		else
11108 			bp->common.mf_cfg_base = bp->common.shmem_base +
11109 				offsetof(struct shmem_region, func_mb) +
11110 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11111 		/*
11112 		 * get mf configuration:
11113 		 * 1. existence of MF configuration
11114 		 * 2. MAC address must be legal (check only upper bytes)
11115 		 *    for  Switch-Independent mode;
11116 		 *    OVLAN must be legal for Switch-Dependent mode
11117 		 * 3. SF_MODE configures specific MF mode
11118 		 */
11119 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11120 			/* get mf configuration */
11121 			val = SHMEM_RD(bp,
11122 				       dev_info.shared_feature_config.config);
11123 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11124 
11125 			switch (val) {
11126 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11127 				val = MF_CFG_RD(bp, func_mf_config[func].
11128 						mac_upper);
11129 				/* check for legal mac (upper bytes)*/
11130 				if (val != 0xffff) {
11131 					bp->mf_mode = MULTI_FUNCTION_SI;
11132 					bp->mf_config[vn] = MF_CFG_RD(bp,
11133 						   func_mf_config[func].config);
11134 				} else
11135 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
11136 				break;
11137 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11138 				if ((!CHIP_IS_E1x(bp)) &&
11139 				    (MF_CFG_RD(bp, func_mf_config[func].
11140 					       mac_upper) != 0xffff) &&
11141 				    (SHMEM2_HAS(bp,
11142 						afex_driver_support))) {
11143 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11144 					bp->mf_config[vn] = MF_CFG_RD(bp,
11145 						func_mf_config[func].config);
11146 				} else {
11147 					BNX2X_DEV_INFO("can not configure afex mode\n");
11148 				}
11149 				break;
11150 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11151 				/* get OV configuration */
11152 				val = MF_CFG_RD(bp,
11153 					func_mf_config[FUNC_0].e1hov_tag);
11154 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11155 
11156 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11157 					bp->mf_mode = MULTI_FUNCTION_SD;
11158 					bp->mf_config[vn] = MF_CFG_RD(bp,
11159 						func_mf_config[func].config);
11160 				} else
11161 					BNX2X_DEV_INFO("illegal OV for SD\n");
11162 				break;
11163 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11164 				bp->mf_config[vn] = 0;
11165 				break;
11166 			default:
11167 				/* Unknown configuration: reset mf_config */
11168 				bp->mf_config[vn] = 0;
11169 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11170 			}
11171 		}
11172 
11173 		BNX2X_DEV_INFO("%s function mode\n",
11174 			       IS_MF(bp) ? "multi" : "single");
11175 
11176 		switch (bp->mf_mode) {
11177 		case MULTI_FUNCTION_SD:
11178 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11179 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11180 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11181 				bp->mf_ov = val;
11182 				bp->path_has_ovlan = true;
11183 
11184 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11185 					       func, bp->mf_ov, bp->mf_ov);
11186 			} else {
11187 				dev_err(&bp->pdev->dev,
11188 					"No valid MF OV for func %d, aborting\n",
11189 					func);
11190 				return -EPERM;
11191 			}
11192 			break;
11193 		case MULTI_FUNCTION_AFEX:
11194 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11195 			break;
11196 		case MULTI_FUNCTION_SI:
11197 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11198 				       func);
11199 			break;
11200 		default:
11201 			if (vn) {
11202 				dev_err(&bp->pdev->dev,
11203 					"VN %d is in a single function mode, aborting\n",
11204 					vn);
11205 				return -EPERM;
11206 			}
11207 			break;
11208 		}
11209 
11210 		/* check if other port on the path needs ovlan:
11211 		 * Since MF configuration is shared between ports
11212 		 * Possible mixed modes are only
11213 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11214 		 */
11215 		if (CHIP_MODE_IS_4_PORT(bp) &&
11216 		    !bp->path_has_ovlan &&
11217 		    !IS_MF(bp) &&
11218 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11219 			u8 other_port = !BP_PORT(bp);
11220 			u8 other_func = BP_PATH(bp) + 2*other_port;
11221 			val = MF_CFG_RD(bp,
11222 					func_mf_config[other_func].e1hov_tag);
11223 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11224 				bp->path_has_ovlan = true;
11225 		}
11226 	}
11227 
11228 	/* adjust igu_sb_cnt to MF for E1x */
11229 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
11230 		bp->igu_sb_cnt /= E1HVN_MAX;
11231 
11232 	/* port info */
11233 	bnx2x_get_port_hwinfo(bp);
11234 
11235 	/* Get MAC addresses */
11236 	bnx2x_get_mac_hwinfo(bp);
11237 
11238 	bnx2x_get_cnic_info(bp);
11239 
11240 	return rc;
11241 }
11242 
11243 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11244 {
11245 	int cnt, i, block_end, rodi;
11246 	char vpd_start[BNX2X_VPD_LEN+1];
11247 	char str_id_reg[VENDOR_ID_LEN+1];
11248 	char str_id_cap[VENDOR_ID_LEN+1];
11249 	char *vpd_data;
11250 	char *vpd_extended_data = NULL;
11251 	u8 len;
11252 
11253 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11254 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11255 
11256 	if (cnt < BNX2X_VPD_LEN)
11257 		goto out_not_found;
11258 
11259 	/* VPD RO tag should be first tag after identifier string, hence
11260 	 * we should be able to find it in first BNX2X_VPD_LEN chars
11261 	 */
11262 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11263 			     PCI_VPD_LRDT_RO_DATA);
11264 	if (i < 0)
11265 		goto out_not_found;
11266 
11267 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11268 		    pci_vpd_lrdt_size(&vpd_start[i]);
11269 
11270 	i += PCI_VPD_LRDT_TAG_SIZE;
11271 
11272 	if (block_end > BNX2X_VPD_LEN) {
11273 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11274 		if (vpd_extended_data  == NULL)
11275 			goto out_not_found;
11276 
11277 		/* read rest of vpd image into vpd_extended_data */
11278 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11279 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11280 				   block_end - BNX2X_VPD_LEN,
11281 				   vpd_extended_data + BNX2X_VPD_LEN);
11282 		if (cnt < (block_end - BNX2X_VPD_LEN))
11283 			goto out_not_found;
11284 		vpd_data = vpd_extended_data;
11285 	} else
11286 		vpd_data = vpd_start;
11287 
11288 	/* now vpd_data holds full vpd content in both cases */
11289 
11290 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11291 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11292 	if (rodi < 0)
11293 		goto out_not_found;
11294 
11295 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11296 
11297 	if (len != VENDOR_ID_LEN)
11298 		goto out_not_found;
11299 
11300 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11301 
11302 	/* vendor specific info */
11303 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11304 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11305 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11306 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11307 
11308 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11309 						PCI_VPD_RO_KEYWORD_VENDOR0);
11310 		if (rodi >= 0) {
11311 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11312 
11313 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11314 
11315 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11316 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11317 				bp->fw_ver[len] = ' ';
11318 			}
11319 		}
11320 		kfree(vpd_extended_data);
11321 		return;
11322 	}
11323 out_not_found:
11324 	kfree(vpd_extended_data);
11325 	return;
11326 }
11327 
11328 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11329 {
11330 	u32 flags = 0;
11331 
11332 	if (CHIP_REV_IS_FPGA(bp))
11333 		SET_FLAGS(flags, MODE_FPGA);
11334 	else if (CHIP_REV_IS_EMUL(bp))
11335 		SET_FLAGS(flags, MODE_EMUL);
11336 	else
11337 		SET_FLAGS(flags, MODE_ASIC);
11338 
11339 	if (CHIP_MODE_IS_4_PORT(bp))
11340 		SET_FLAGS(flags, MODE_PORT4);
11341 	else
11342 		SET_FLAGS(flags, MODE_PORT2);
11343 
11344 	if (CHIP_IS_E2(bp))
11345 		SET_FLAGS(flags, MODE_E2);
11346 	else if (CHIP_IS_E3(bp)) {
11347 		SET_FLAGS(flags, MODE_E3);
11348 		if (CHIP_REV(bp) == CHIP_REV_Ax)
11349 			SET_FLAGS(flags, MODE_E3_A0);
11350 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11351 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11352 	}
11353 
11354 	if (IS_MF(bp)) {
11355 		SET_FLAGS(flags, MODE_MF);
11356 		switch (bp->mf_mode) {
11357 		case MULTI_FUNCTION_SD:
11358 			SET_FLAGS(flags, MODE_MF_SD);
11359 			break;
11360 		case MULTI_FUNCTION_SI:
11361 			SET_FLAGS(flags, MODE_MF_SI);
11362 			break;
11363 		case MULTI_FUNCTION_AFEX:
11364 			SET_FLAGS(flags, MODE_MF_AFEX);
11365 			break;
11366 		}
11367 	} else
11368 		SET_FLAGS(flags, MODE_SF);
11369 
11370 #if defined(__LITTLE_ENDIAN)
11371 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11372 #else /*(__BIG_ENDIAN)*/
11373 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11374 #endif
11375 	INIT_MODE_FLAGS(bp) = flags;
11376 }
11377 
11378 static int bnx2x_init_bp(struct bnx2x *bp)
11379 {
11380 	int func;
11381 	int rc;
11382 
11383 	mutex_init(&bp->port.phy_mutex);
11384 	mutex_init(&bp->fw_mb_mutex);
11385 	spin_lock_init(&bp->stats_lock);
11386 
11387 
11388 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11389 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11390 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11391 	if (IS_PF(bp)) {
11392 		rc = bnx2x_get_hwinfo(bp);
11393 		if (rc)
11394 			return rc;
11395 	} else {
11396 		random_ether_addr(bp->dev->dev_addr);
11397 	}
11398 
11399 	bnx2x_set_modes_bitmap(bp);
11400 
11401 	rc = bnx2x_alloc_mem_bp(bp);
11402 	if (rc)
11403 		return rc;
11404 
11405 	bnx2x_read_fwinfo(bp);
11406 
11407 	func = BP_FUNC(bp);
11408 
11409 	/* need to reset chip if undi was active */
11410 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
11411 		/* init fw_seq */
11412 		bp->fw_seq =
11413 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11414 							DRV_MSG_SEQ_NUMBER_MASK;
11415 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11416 
11417 		bnx2x_prev_unload(bp);
11418 	}
11419 
11420 
11421 	if (CHIP_REV_IS_FPGA(bp))
11422 		dev_err(&bp->pdev->dev, "FPGA detected\n");
11423 
11424 	if (BP_NOMCP(bp) && (func == 0))
11425 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11426 
11427 	bp->disable_tpa = disable_tpa;
11428 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11429 
11430 	/* Set TPA flags */
11431 	if (bp->disable_tpa) {
11432 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11433 		bp->dev->features &= ~NETIF_F_LRO;
11434 	} else {
11435 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11436 		bp->dev->features |= NETIF_F_LRO;
11437 	}
11438 
11439 	if (CHIP_IS_E1(bp))
11440 		bp->dropless_fc = 0;
11441 	else
11442 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11443 
11444 	bp->mrrs = mrrs;
11445 
11446 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11447 	if (IS_VF(bp))
11448 		bp->rx_ring_size = MAX_RX_AVAIL;
11449 
11450 	/* make sure that the numbers are in the right granularity */
11451 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11452 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11453 
11454 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11455 
11456 	init_timer(&bp->timer);
11457 	bp->timer.expires = jiffies + bp->current_interval;
11458 	bp->timer.data = (unsigned long) bp;
11459 	bp->timer.function = bnx2x_timer;
11460 
11461 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11462 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11463 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11464 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11465 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11466 		bnx2x_dcbx_init_params(bp);
11467 	} else {
11468 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11469 	}
11470 
11471 	if (CHIP_IS_E1x(bp))
11472 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11473 	else
11474 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11475 
11476 	/* multiple tx priority */
11477 	if (IS_VF(bp))
11478 		bp->max_cos = 1;
11479 	else if (CHIP_IS_E1x(bp))
11480 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11481 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11482 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11483 	else if (CHIP_IS_E3B0(bp))
11484 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11485 	else
11486 		BNX2X_ERR("unknown chip %x revision %x\n",
11487 			  CHIP_NUM(bp), CHIP_REV(bp));
11488 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11489 
11490 	/* We need at least one default status block for slow-path events,
11491 	 * second status block for the L2 queue, and a third status block for
11492 	 * CNIC if supproted.
11493 	 */
11494 	if (CNIC_SUPPORT(bp))
11495 		bp->min_msix_vec_cnt = 3;
11496 	else
11497 		bp->min_msix_vec_cnt = 2;
11498 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11499 
11500 	return rc;
11501 }
11502 
11503 
11504 /****************************************************************************
11505 * General service functions
11506 ****************************************************************************/
11507 
11508 /*
11509  * net_device service functions
11510  */
11511 
11512 /* called with rtnl_lock */
11513 static int bnx2x_open(struct net_device *dev)
11514 {
11515 	struct bnx2x *bp = netdev_priv(dev);
11516 	bool global = false;
11517 	int other_engine = BP_PATH(bp) ? 0 : 1;
11518 	bool other_load_status, load_status;
11519 	int rc;
11520 
11521 	bp->stats_init = true;
11522 
11523 	netif_carrier_off(dev);
11524 
11525 	bnx2x_set_power_state(bp, PCI_D0);
11526 
11527 	/* If parity had happen during the unload, then attentions
11528 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11529 	 * want the first function loaded on the current engine to
11530 	 * complete the recovery.
11531 	 * Parity recovery is only relevant for PF driver.
11532 	 */
11533 	if (IS_PF(bp)) {
11534 		other_load_status = bnx2x_get_load_status(bp, other_engine);
11535 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11536 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11537 		    bnx2x_chk_parity_attn(bp, &global, true)) {
11538 			do {
11539 				/* If there are attentions and they are in a
11540 				 * global blocks, set the GLOBAL_RESET bit
11541 				 * regardless whether it will be this function
11542 				 * that will complete the recovery or not.
11543 				 */
11544 				if (global)
11545 					bnx2x_set_reset_global(bp);
11546 
11547 				/* Only the first function on the current
11548 				 * engine should try to recover in open. In case
11549 				 * of attentions in global blocks only the first
11550 				 * in the chip should try to recover.
11551 				 */
11552 				if ((!load_status &&
11553 				     (!global || !other_load_status)) &&
11554 				      bnx2x_trylock_leader_lock(bp) &&
11555 				      !bnx2x_leader_reset(bp)) {
11556 					netdev_info(bp->dev,
11557 						    "Recovered in open\n");
11558 					break;
11559 				}
11560 
11561 				/* recovery has failed... */
11562 				bnx2x_set_power_state(bp, PCI_D3hot);
11563 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
11564 
11565 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11566 					  "If you still see this message after a few retries then power cycle is required.\n");
11567 
11568 				return -EAGAIN;
11569 			} while (0);
11570 		}
11571 	}
11572 
11573 	bp->recovery_state = BNX2X_RECOVERY_DONE;
11574 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
11575 	if (rc)
11576 		return rc;
11577 	return bnx2x_open_epilog(bp);
11578 }
11579 
11580 /* called with rtnl_lock */
11581 static int bnx2x_close(struct net_device *dev)
11582 {
11583 	struct bnx2x *bp = netdev_priv(dev);
11584 
11585 	/* Unload the driver, release IRQs */
11586 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11587 
11588 	/* Power off */
11589 	bnx2x_set_power_state(bp, PCI_D3hot);
11590 
11591 	return 0;
11592 }
11593 
11594 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11595 				      struct bnx2x_mcast_ramrod_params *p)
11596 {
11597 	int mc_count = netdev_mc_count(bp->dev);
11598 	struct bnx2x_mcast_list_elem *mc_mac =
11599 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11600 	struct netdev_hw_addr *ha;
11601 
11602 	if (!mc_mac)
11603 		return -ENOMEM;
11604 
11605 	INIT_LIST_HEAD(&p->mcast_list);
11606 
11607 	netdev_for_each_mc_addr(ha, bp->dev) {
11608 		mc_mac->mac = bnx2x_mc_addr(ha);
11609 		list_add_tail(&mc_mac->link, &p->mcast_list);
11610 		mc_mac++;
11611 	}
11612 
11613 	p->mcast_list_len = mc_count;
11614 
11615 	return 0;
11616 }
11617 
11618 static void bnx2x_free_mcast_macs_list(
11619 	struct bnx2x_mcast_ramrod_params *p)
11620 {
11621 	struct bnx2x_mcast_list_elem *mc_mac =
11622 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11623 				 link);
11624 
11625 	WARN_ON(!mc_mac);
11626 	kfree(mc_mac);
11627 }
11628 
11629 /**
11630  * bnx2x_set_uc_list - configure a new unicast MACs list.
11631  *
11632  * @bp: driver handle
11633  *
11634  * We will use zero (0) as a MAC type for these MACs.
11635  */
11636 static int bnx2x_set_uc_list(struct bnx2x *bp)
11637 {
11638 	int rc;
11639 	struct net_device *dev = bp->dev;
11640 	struct netdev_hw_addr *ha;
11641 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11642 	unsigned long ramrod_flags = 0;
11643 
11644 	/* First schedule a cleanup up of old configuration */
11645 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11646 	if (rc < 0) {
11647 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11648 		return rc;
11649 	}
11650 
11651 	netdev_for_each_uc_addr(ha, dev) {
11652 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11653 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11654 		if (rc == -EEXIST) {
11655 			DP(BNX2X_MSG_SP,
11656 			   "Failed to schedule ADD operations: %d\n", rc);
11657 			/* do not treat adding same MAC as error */
11658 			rc = 0;
11659 
11660 		} else if (rc < 0) {
11661 
11662 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11663 				  rc);
11664 			return rc;
11665 		}
11666 	}
11667 
11668 	/* Execute the pending commands */
11669 	__set_bit(RAMROD_CONT, &ramrod_flags);
11670 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11671 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
11672 }
11673 
11674 static int bnx2x_set_mc_list(struct bnx2x *bp)
11675 {
11676 	struct net_device *dev = bp->dev;
11677 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
11678 	int rc = 0;
11679 
11680 	rparam.mcast_obj = &bp->mcast_obj;
11681 
11682 	/* first, clear all configured multicast MACs */
11683 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11684 	if (rc < 0) {
11685 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11686 		return rc;
11687 	}
11688 
11689 	/* then, configure a new MACs list */
11690 	if (netdev_mc_count(dev)) {
11691 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11692 		if (rc) {
11693 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11694 				  rc);
11695 			return rc;
11696 		}
11697 
11698 		/* Now add the new MACs */
11699 		rc = bnx2x_config_mcast(bp, &rparam,
11700 					BNX2X_MCAST_CMD_ADD);
11701 		if (rc < 0)
11702 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11703 				  rc);
11704 
11705 		bnx2x_free_mcast_macs_list(&rparam);
11706 	}
11707 
11708 	return rc;
11709 }
11710 
11711 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11712 void bnx2x_set_rx_mode(struct net_device *dev)
11713 {
11714 	struct bnx2x *bp = netdev_priv(dev);
11715 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11716 
11717 	if (bp->state != BNX2X_STATE_OPEN) {
11718 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11719 		return;
11720 	}
11721 
11722 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11723 
11724 	if (dev->flags & IFF_PROMISC)
11725 		rx_mode = BNX2X_RX_MODE_PROMISC;
11726 	else if ((dev->flags & IFF_ALLMULTI) ||
11727 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11728 		  CHIP_IS_E1(bp)))
11729 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
11730 	else {
11731 		if (IS_PF(bp)) {
11732 			/* some multicasts */
11733 			if (bnx2x_set_mc_list(bp) < 0)
11734 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
11735 
11736 			if (bnx2x_set_uc_list(bp) < 0)
11737 				rx_mode = BNX2X_RX_MODE_PROMISC;
11738 		} else {
11739 			/* configuring mcast to a vf involves sleeping (when we
11740 			 * wait for the pf's response). Since this function is
11741 			 * called from non sleepable context we must schedule
11742 			 * a work item for this purpose
11743 			 */
11744 			smp_mb__before_clear_bit();
11745 			set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11746 				&bp->sp_rtnl_state);
11747 			smp_mb__after_clear_bit();
11748 			schedule_delayed_work(&bp->sp_rtnl_task, 0);
11749 		}
11750 	}
11751 
11752 	bp->rx_mode = rx_mode;
11753 	/* handle ISCSI SD mode */
11754 	if (IS_MF_ISCSI_SD(bp))
11755 		bp->rx_mode = BNX2X_RX_MODE_NONE;
11756 
11757 	/* Schedule the rx_mode command */
11758 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11759 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11760 		return;
11761 	}
11762 
11763 	if (IS_PF(bp)) {
11764 		bnx2x_set_storm_rx_mode(bp);
11765 	} else {
11766 		/* configuring rx mode to storms in a vf involves sleeping (when
11767 		 * we wait for the pf's response). Since this function is
11768 		 * called from non sleepable context we must schedule
11769 		 * a work item for this purpose
11770 		 */
11771 		smp_mb__before_clear_bit();
11772 		set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
11773 			&bp->sp_rtnl_state);
11774 		smp_mb__after_clear_bit();
11775 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
11776 	}
11777 }
11778 
11779 /* called with rtnl_lock */
11780 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11781 			   int devad, u16 addr)
11782 {
11783 	struct bnx2x *bp = netdev_priv(netdev);
11784 	u16 value;
11785 	int rc;
11786 
11787 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11788 	   prtad, devad, addr);
11789 
11790 	/* The HW expects different devad if CL22 is used */
11791 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11792 
11793 	bnx2x_acquire_phy_lock(bp);
11794 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11795 	bnx2x_release_phy_lock(bp);
11796 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11797 
11798 	if (!rc)
11799 		rc = value;
11800 	return rc;
11801 }
11802 
11803 /* called with rtnl_lock */
11804 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11805 			    u16 addr, u16 value)
11806 {
11807 	struct bnx2x *bp = netdev_priv(netdev);
11808 	int rc;
11809 
11810 	DP(NETIF_MSG_LINK,
11811 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11812 	   prtad, devad, addr, value);
11813 
11814 	/* The HW expects different devad if CL22 is used */
11815 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11816 
11817 	bnx2x_acquire_phy_lock(bp);
11818 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11819 	bnx2x_release_phy_lock(bp);
11820 	return rc;
11821 }
11822 
11823 /* called with rtnl_lock */
11824 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11825 {
11826 	struct bnx2x *bp = netdev_priv(dev);
11827 	struct mii_ioctl_data *mdio = if_mii(ifr);
11828 
11829 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11830 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
11831 
11832 	if (!netif_running(dev))
11833 		return -EAGAIN;
11834 
11835 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11836 }
11837 
11838 #ifdef CONFIG_NET_POLL_CONTROLLER
11839 static void poll_bnx2x(struct net_device *dev)
11840 {
11841 	struct bnx2x *bp = netdev_priv(dev);
11842 	int i;
11843 
11844 	for_each_eth_queue(bp, i) {
11845 		struct bnx2x_fastpath *fp = &bp->fp[i];
11846 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11847 	}
11848 }
11849 #endif
11850 
11851 static int bnx2x_validate_addr(struct net_device *dev)
11852 {
11853 	struct bnx2x *bp = netdev_priv(dev);
11854 
11855 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11856 		BNX2X_ERR("Non-valid Ethernet address\n");
11857 		return -EADDRNOTAVAIL;
11858 	}
11859 	return 0;
11860 }
11861 
11862 static const struct net_device_ops bnx2x_netdev_ops = {
11863 	.ndo_open		= bnx2x_open,
11864 	.ndo_stop		= bnx2x_close,
11865 	.ndo_start_xmit		= bnx2x_start_xmit,
11866 	.ndo_select_queue	= bnx2x_select_queue,
11867 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
11868 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
11869 	.ndo_validate_addr	= bnx2x_validate_addr,
11870 	.ndo_do_ioctl		= bnx2x_ioctl,
11871 	.ndo_change_mtu		= bnx2x_change_mtu,
11872 	.ndo_fix_features	= bnx2x_fix_features,
11873 	.ndo_set_features	= bnx2x_set_features,
11874 	.ndo_tx_timeout		= bnx2x_tx_timeout,
11875 #ifdef CONFIG_NET_POLL_CONTROLLER
11876 	.ndo_poll_controller	= poll_bnx2x,
11877 #endif
11878 	.ndo_setup_tc		= bnx2x_setup_tc,
11879 #ifdef CONFIG_BNX2X_SRIOV
11880 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
11881 	.ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
11882 	.ndo_get_vf_config	= bnx2x_get_vf_config,
11883 #endif
11884 #ifdef NETDEV_FCOE_WWNN
11885 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
11886 #endif
11887 };
11888 
11889 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
11890 {
11891 	struct device *dev = &bp->pdev->dev;
11892 
11893 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
11894 		bp->flags |= USING_DAC_FLAG;
11895 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
11896 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
11897 			return -EIO;
11898 		}
11899 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
11900 		dev_err(dev, "System does not support DMA, aborting\n");
11901 		return -EIO;
11902 	}
11903 
11904 	return 0;
11905 }
11906 
11907 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
11908 			  struct net_device *dev, unsigned long board_type)
11909 {
11910 	int rc;
11911 	u32 pci_cfg_dword;
11912 	bool chip_is_e1x = (board_type == BCM57710 ||
11913 			    board_type == BCM57711 ||
11914 			    board_type == BCM57711E);
11915 
11916 	SET_NETDEV_DEV(dev, &pdev->dev);
11917 
11918 	bp->dev = dev;
11919 	bp->pdev = pdev;
11920 
11921 	rc = pci_enable_device(pdev);
11922 	if (rc) {
11923 		dev_err(&bp->pdev->dev,
11924 			"Cannot enable PCI device, aborting\n");
11925 		goto err_out;
11926 	}
11927 
11928 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11929 		dev_err(&bp->pdev->dev,
11930 			"Cannot find PCI device base address, aborting\n");
11931 		rc = -ENODEV;
11932 		goto err_out_disable;
11933 	}
11934 
11935 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
11936 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
11937 		rc = -ENODEV;
11938 		goto err_out_disable;
11939 	}
11940 
11941 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
11942 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
11943 	    PCICFG_REVESION_ID_ERROR_VAL) {
11944 		pr_err("PCI device error, probably due to fan failure, aborting\n");
11945 		rc = -ENODEV;
11946 		goto err_out_disable;
11947 	}
11948 
11949 	if (atomic_read(&pdev->enable_cnt) == 1) {
11950 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11951 		if (rc) {
11952 			dev_err(&bp->pdev->dev,
11953 				"Cannot obtain PCI resources, aborting\n");
11954 			goto err_out_disable;
11955 		}
11956 
11957 		pci_set_master(pdev);
11958 		pci_save_state(pdev);
11959 	}
11960 
11961 	if (IS_PF(bp)) {
11962 		bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
11963 		if (bp->pm_cap == 0) {
11964 			dev_err(&bp->pdev->dev,
11965 				"Cannot find power management capability, aborting\n");
11966 			rc = -EIO;
11967 			goto err_out_release;
11968 		}
11969 	}
11970 
11971 	if (!pci_is_pcie(pdev)) {
11972 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
11973 		rc = -EIO;
11974 		goto err_out_release;
11975 	}
11976 
11977 	rc = bnx2x_set_coherency_mask(bp);
11978 	if (rc)
11979 		goto err_out_release;
11980 
11981 	dev->mem_start = pci_resource_start(pdev, 0);
11982 	dev->base_addr = dev->mem_start;
11983 	dev->mem_end = pci_resource_end(pdev, 0);
11984 
11985 	dev->irq = pdev->irq;
11986 
11987 	bp->regview = pci_ioremap_bar(pdev, 0);
11988 	if (!bp->regview) {
11989 		dev_err(&bp->pdev->dev,
11990 			"Cannot map register space, aborting\n");
11991 		rc = -ENOMEM;
11992 		goto err_out_release;
11993 	}
11994 
11995 	/* In E1/E1H use pci device function given by kernel.
11996 	 * In E2/E3 read physical function from ME register since these chips
11997 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
11998 	 * (depending on hypervisor).
11999 	 */
12000 	if (chip_is_e1x) {
12001 		bp->pf_num = PCI_FUNC(pdev->devfn);
12002 	} else {
12003 		/* chip is E2/3*/
12004 		pci_read_config_dword(bp->pdev,
12005 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12006 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12007 				  ME_REG_ABS_PF_NUM_SHIFT);
12008 	}
12009 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12010 
12011 	bnx2x_set_power_state(bp, PCI_D0);
12012 
12013 	/* clean indirect addresses */
12014 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12015 			       PCICFG_VENDOR_ID_OFFSET);
12016 	/*
12017 	 * Clean the following indirect addresses for all functions since it
12018 	 * is not used by the driver.
12019 	 */
12020 	if (IS_PF(bp)) {
12021 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12022 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12023 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12024 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12025 
12026 		if (chip_is_e1x) {
12027 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12028 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12029 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12030 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12031 		}
12032 
12033 		/* Enable internal target-read (in case we are probed after PF
12034 		 * FLR). Must be done prior to any BAR read access. Only for
12035 		 * 57712 and up
12036 		 */
12037 		if (!chip_is_e1x)
12038 			REG_WR(bp,
12039 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12040 	}
12041 
12042 	dev->watchdog_timeo = TX_TIMEOUT;
12043 
12044 	dev->netdev_ops = &bnx2x_netdev_ops;
12045 	bnx2x_set_ethtool_ops(bp, dev);
12046 
12047 	dev->priv_flags |= IFF_UNICAST_FLT;
12048 
12049 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12050 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12051 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12052 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12053 	if (!CHIP_IS_E1x(bp)) {
12054 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12055 		dev->hw_enc_features =
12056 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12057 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12058 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12059 	}
12060 
12061 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12062 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12063 
12064 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12065 	if (bp->flags & USING_DAC_FLAG)
12066 		dev->features |= NETIF_F_HIGHDMA;
12067 
12068 	/* Add Loopback capability to the device */
12069 	dev->hw_features |= NETIF_F_LOOPBACK;
12070 
12071 #ifdef BCM_DCBNL
12072 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12073 #endif
12074 
12075 	/* get_port_hwinfo() will set prtad and mmds properly */
12076 	bp->mdio.prtad = MDIO_PRTAD_NONE;
12077 	bp->mdio.mmds = 0;
12078 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12079 	bp->mdio.dev = dev;
12080 	bp->mdio.mdio_read = bnx2x_mdio_read;
12081 	bp->mdio.mdio_write = bnx2x_mdio_write;
12082 
12083 	return 0;
12084 
12085 err_out_release:
12086 	if (atomic_read(&pdev->enable_cnt) == 1)
12087 		pci_release_regions(pdev);
12088 
12089 err_out_disable:
12090 	pci_disable_device(pdev);
12091 	pci_set_drvdata(pdev, NULL);
12092 
12093 err_out:
12094 	return rc;
12095 }
12096 
12097 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, int *speed)
12098 {
12099 	u32 val = 0;
12100 
12101 	pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12102 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12103 
12104 	/* return value of 1=2.5GHz 2=5GHz */
12105 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12106 }
12107 
12108 static int bnx2x_check_firmware(struct bnx2x *bp)
12109 {
12110 	const struct firmware *firmware = bp->firmware;
12111 	struct bnx2x_fw_file_hdr *fw_hdr;
12112 	struct bnx2x_fw_file_section *sections;
12113 	u32 offset, len, num_ops;
12114 	__be16 *ops_offsets;
12115 	int i;
12116 	const u8 *fw_ver;
12117 
12118 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12119 		BNX2X_ERR("Wrong FW size\n");
12120 		return -EINVAL;
12121 	}
12122 
12123 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12124 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12125 
12126 	/* Make sure none of the offsets and sizes make us read beyond
12127 	 * the end of the firmware data */
12128 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12129 		offset = be32_to_cpu(sections[i].offset);
12130 		len = be32_to_cpu(sections[i].len);
12131 		if (offset + len > firmware->size) {
12132 			BNX2X_ERR("Section %d length is out of bounds\n", i);
12133 			return -EINVAL;
12134 		}
12135 	}
12136 
12137 	/* Likewise for the init_ops offsets */
12138 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12139 	ops_offsets = (__force __be16 *)(firmware->data + offset);
12140 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12141 
12142 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12143 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12144 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12145 			return -EINVAL;
12146 		}
12147 	}
12148 
12149 	/* Check FW version */
12150 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12151 	fw_ver = firmware->data + offset;
12152 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12153 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12154 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12155 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12156 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12157 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12158 		       BCM_5710_FW_MAJOR_VERSION,
12159 		       BCM_5710_FW_MINOR_VERSION,
12160 		       BCM_5710_FW_REVISION_VERSION,
12161 		       BCM_5710_FW_ENGINEERING_VERSION);
12162 		return -EINVAL;
12163 	}
12164 
12165 	return 0;
12166 }
12167 
12168 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12169 {
12170 	const __be32 *source = (const __be32 *)_source;
12171 	u32 *target = (u32 *)_target;
12172 	u32 i;
12173 
12174 	for (i = 0; i < n/4; i++)
12175 		target[i] = be32_to_cpu(source[i]);
12176 }
12177 
12178 /*
12179    Ops array is stored in the following format:
12180    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12181  */
12182 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12183 {
12184 	const __be32 *source = (const __be32 *)_source;
12185 	struct raw_op *target = (struct raw_op *)_target;
12186 	u32 i, j, tmp;
12187 
12188 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12189 		tmp = be32_to_cpu(source[j]);
12190 		target[i].op = (tmp >> 24) & 0xff;
12191 		target[i].offset = tmp & 0xffffff;
12192 		target[i].raw_data = be32_to_cpu(source[j + 1]);
12193 	}
12194 }
12195 
12196 /* IRO array is stored in the following format:
12197  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12198  */
12199 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12200 {
12201 	const __be32 *source = (const __be32 *)_source;
12202 	struct iro *target = (struct iro *)_target;
12203 	u32 i, j, tmp;
12204 
12205 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12206 		target[i].base = be32_to_cpu(source[j]);
12207 		j++;
12208 		tmp = be32_to_cpu(source[j]);
12209 		target[i].m1 = (tmp >> 16) & 0xffff;
12210 		target[i].m2 = tmp & 0xffff;
12211 		j++;
12212 		tmp = be32_to_cpu(source[j]);
12213 		target[i].m3 = (tmp >> 16) & 0xffff;
12214 		target[i].size = tmp & 0xffff;
12215 		j++;
12216 	}
12217 }
12218 
12219 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12220 {
12221 	const __be16 *source = (const __be16 *)_source;
12222 	u16 *target = (u16 *)_target;
12223 	u32 i;
12224 
12225 	for (i = 0; i < n/2; i++)
12226 		target[i] = be16_to_cpu(source[i]);
12227 }
12228 
12229 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12230 do {									\
12231 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12232 	bp->arr = kmalloc(len, GFP_KERNEL);				\
12233 	if (!bp->arr)							\
12234 		goto lbl;						\
12235 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12236 	     (u8 *)bp->arr, len);					\
12237 } while (0)
12238 
12239 static int bnx2x_init_firmware(struct bnx2x *bp)
12240 {
12241 	const char *fw_file_name;
12242 	struct bnx2x_fw_file_hdr *fw_hdr;
12243 	int rc;
12244 
12245 	if (bp->firmware)
12246 		return 0;
12247 
12248 	if (CHIP_IS_E1(bp))
12249 		fw_file_name = FW_FILE_NAME_E1;
12250 	else if (CHIP_IS_E1H(bp))
12251 		fw_file_name = FW_FILE_NAME_E1H;
12252 	else if (!CHIP_IS_E1x(bp))
12253 		fw_file_name = FW_FILE_NAME_E2;
12254 	else {
12255 		BNX2X_ERR("Unsupported chip revision\n");
12256 		return -EINVAL;
12257 	}
12258 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12259 
12260 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12261 	if (rc) {
12262 		BNX2X_ERR("Can't load firmware file %s\n",
12263 			  fw_file_name);
12264 		goto request_firmware_exit;
12265 	}
12266 
12267 	rc = bnx2x_check_firmware(bp);
12268 	if (rc) {
12269 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12270 		goto request_firmware_exit;
12271 	}
12272 
12273 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12274 
12275 	/* Initialize the pointers to the init arrays */
12276 	/* Blob */
12277 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12278 
12279 	/* Opcodes */
12280 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12281 
12282 	/* Offsets */
12283 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12284 			    be16_to_cpu_n);
12285 
12286 	/* STORMs firmware */
12287 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12288 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12289 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12290 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12291 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12292 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12293 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12294 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12295 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12296 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12297 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12298 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12299 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12300 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12301 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12302 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12303 	/* IRO */
12304 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12305 
12306 	return 0;
12307 
12308 iro_alloc_err:
12309 	kfree(bp->init_ops_offsets);
12310 init_offsets_alloc_err:
12311 	kfree(bp->init_ops);
12312 init_ops_alloc_err:
12313 	kfree(bp->init_data);
12314 request_firmware_exit:
12315 	release_firmware(bp->firmware);
12316 	bp->firmware = NULL;
12317 
12318 	return rc;
12319 }
12320 
12321 static void bnx2x_release_firmware(struct bnx2x *bp)
12322 {
12323 	kfree(bp->init_ops_offsets);
12324 	kfree(bp->init_ops);
12325 	kfree(bp->init_data);
12326 	release_firmware(bp->firmware);
12327 	bp->firmware = NULL;
12328 }
12329 
12330 
12331 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12332 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12333 	.init_hw_cmn      = bnx2x_init_hw_common,
12334 	.init_hw_port     = bnx2x_init_hw_port,
12335 	.init_hw_func     = bnx2x_init_hw_func,
12336 
12337 	.reset_hw_cmn     = bnx2x_reset_common,
12338 	.reset_hw_port    = bnx2x_reset_port,
12339 	.reset_hw_func    = bnx2x_reset_func,
12340 
12341 	.gunzip_init      = bnx2x_gunzip_init,
12342 	.gunzip_end       = bnx2x_gunzip_end,
12343 
12344 	.init_fw          = bnx2x_init_firmware,
12345 	.release_fw       = bnx2x_release_firmware,
12346 };
12347 
12348 void bnx2x__init_func_obj(struct bnx2x *bp)
12349 {
12350 	/* Prepare DMAE related driver resources */
12351 	bnx2x_setup_dmae(bp);
12352 
12353 	bnx2x_init_func_obj(bp, &bp->func_obj,
12354 			    bnx2x_sp(bp, func_rdata),
12355 			    bnx2x_sp_mapping(bp, func_rdata),
12356 			    bnx2x_sp(bp, func_afex_rdata),
12357 			    bnx2x_sp_mapping(bp, func_afex_rdata),
12358 			    &bnx2x_func_sp_drv);
12359 }
12360 
12361 /* must be called after sriov-enable */
12362 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12363 {
12364 	int cid_count = BNX2X_L2_MAX_CID(bp);
12365 
12366 	if (IS_SRIOV(bp))
12367 		cid_count += BNX2X_VF_CIDS;
12368 
12369 	if (CNIC_SUPPORT(bp))
12370 		cid_count += CNIC_CID_MAX;
12371 
12372 	return roundup(cid_count, QM_CID_ROUND);
12373 }
12374 
12375 /**
12376  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12377  *
12378  * @dev:	pci device
12379  *
12380  */
12381 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12382 				     int cnic_cnt, bool is_vf)
12383 {
12384 	int pos, index;
12385 	u16 control = 0;
12386 
12387 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12388 
12389 	/*
12390 	 * If MSI-X is not supported - return number of SBs needed to support
12391 	 * one fast path queue: one FP queue + SB for CNIC
12392 	 */
12393 	if (!pos) {
12394 		dev_info(&pdev->dev, "no msix capability found\n");
12395 		return 1 + cnic_cnt;
12396 	}
12397 	dev_info(&pdev->dev, "msix capability found\n");
12398 
12399 	/*
12400 	 * The value in the PCI configuration space is the index of the last
12401 	 * entry, namely one less than the actual size of the table, which is
12402 	 * exactly what we want to return from this function: number of all SBs
12403 	 * without the default SB.
12404 	 * For VFs there is no default SB, then we return (index+1).
12405 	 */
12406 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
12407 
12408 	index = control & PCI_MSIX_FLAGS_QSIZE;
12409 
12410 	return is_vf ? index + 1 : index;
12411 }
12412 
12413 static int set_max_cos_est(int chip_id)
12414 {
12415 	switch (chip_id) {
12416 	case BCM57710:
12417 	case BCM57711:
12418 	case BCM57711E:
12419 		return BNX2X_MULTI_TX_COS_E1X;
12420 	case BCM57712:
12421 	case BCM57712_MF:
12422 	case BCM57712_VF:
12423 		return BNX2X_MULTI_TX_COS_E2_E3A0;
12424 	case BCM57800:
12425 	case BCM57800_MF:
12426 	case BCM57800_VF:
12427 	case BCM57810:
12428 	case BCM57810_MF:
12429 	case BCM57840_4_10:
12430 	case BCM57840_2_20:
12431 	case BCM57840_O:
12432 	case BCM57840_MFO:
12433 	case BCM57810_VF:
12434 	case BCM57840_MF:
12435 	case BCM57840_VF:
12436 	case BCM57811:
12437 	case BCM57811_MF:
12438 	case BCM57811_VF:
12439 		return BNX2X_MULTI_TX_COS_E3B0;
12440 		return 1;
12441 	default:
12442 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
12443 		return -ENODEV;
12444 	}
12445 }
12446 
12447 static int set_is_vf(int chip_id)
12448 {
12449 	switch (chip_id) {
12450 	case BCM57712_VF:
12451 	case BCM57800_VF:
12452 	case BCM57810_VF:
12453 	case BCM57840_VF:
12454 	case BCM57811_VF:
12455 		return true;
12456 	default:
12457 		return false;
12458 	}
12459 }
12460 
12461 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12462 
12463 static int bnx2x_init_one(struct pci_dev *pdev,
12464 				    const struct pci_device_id *ent)
12465 {
12466 	struct net_device *dev = NULL;
12467 	struct bnx2x *bp;
12468 	int pcie_width, pcie_speed;
12469 	int rc, max_non_def_sbs;
12470 	int rx_count, tx_count, rss_count, doorbell_size;
12471 	int max_cos_est;
12472 	bool is_vf;
12473 	int cnic_cnt;
12474 
12475 	/* An estimated maximum supported CoS number according to the chip
12476 	 * version.
12477 	 * We will try to roughly estimate the maximum number of CoSes this chip
12478 	 * may support in order to minimize the memory allocated for Tx
12479 	 * netdev_queue's. This number will be accurately calculated during the
12480 	 * initialization of bp->max_cos based on the chip versions AND chip
12481 	 * revision in the bnx2x_init_bp().
12482 	 */
12483 	max_cos_est = set_max_cos_est(ent->driver_data);
12484 	if (max_cos_est < 0)
12485 		return max_cos_est;
12486 	is_vf = set_is_vf(ent->driver_data);
12487 	cnic_cnt = is_vf ? 0 : 1;
12488 
12489 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf);
12490 
12491 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
12492 	rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt;
12493 
12494 	if (rss_count < 1)
12495 		return -EINVAL;
12496 
12497 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12498 	rx_count = rss_count + cnic_cnt;
12499 
12500 	/* Maximum number of netdev Tx queues:
12501 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12502 	 */
12503 	tx_count = rss_count * max_cos_est + cnic_cnt;
12504 
12505 	/* dev zeroed in init_etherdev */
12506 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12507 	if (!dev)
12508 		return -ENOMEM;
12509 
12510 	bp = netdev_priv(dev);
12511 
12512 	bp->flags = 0;
12513 	if (is_vf)
12514 		bp->flags |= IS_VF_FLAG;
12515 
12516 	bp->igu_sb_cnt = max_non_def_sbs;
12517 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12518 	bp->msg_enable = debug;
12519 	bp->cnic_support = cnic_cnt;
12520 	bp->cnic_probe = bnx2x_cnic_probe;
12521 
12522 	pci_set_drvdata(pdev, dev);
12523 
12524 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12525 	if (rc < 0) {
12526 		free_netdev(dev);
12527 		return rc;
12528 	}
12529 
12530 	BNX2X_DEV_INFO("This is a %s function\n",
12531 		       IS_PF(bp) ? "physical" : "virtual");
12532 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12533 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12534 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12535 		       tx_count, rx_count);
12536 
12537 	rc = bnx2x_init_bp(bp);
12538 	if (rc)
12539 		goto init_one_exit;
12540 
12541 	/* Map doorbells here as we need the real value of bp->max_cos which
12542 	 * is initialized in bnx2x_init_bp() to determine the number of
12543 	 * l2 connections.
12544 	 */
12545 	if (IS_VF(bp)) {
12546 		bp->doorbells = bnx2x_vf_doorbells(bp);
12547 		rc = bnx2x_vf_pci_alloc(bp);
12548 		if (rc)
12549 			goto init_one_exit;
12550 	} else {
12551 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12552 		if (doorbell_size > pci_resource_len(pdev, 2)) {
12553 			dev_err(&bp->pdev->dev,
12554 				"Cannot map doorbells, bar size too small, aborting\n");
12555 			rc = -ENOMEM;
12556 			goto init_one_exit;
12557 		}
12558 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12559 						doorbell_size);
12560 	}
12561 	if (!bp->doorbells) {
12562 		dev_err(&bp->pdev->dev,
12563 			"Cannot map doorbell space, aborting\n");
12564 		rc = -ENOMEM;
12565 		goto init_one_exit;
12566 	}
12567 
12568 	if (IS_VF(bp)) {
12569 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12570 		if (rc)
12571 			goto init_one_exit;
12572 	}
12573 
12574 	/* Enable SRIOV if capability found in configuration space */
12575 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12576 	if (rc)
12577 		goto init_one_exit;
12578 
12579 	/* calc qm_cid_count */
12580 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12581 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12582 
12583 	/* disable FCOE L2 queue for E1x*/
12584 	if (CHIP_IS_E1x(bp))
12585 		bp->flags |= NO_FCOE_FLAG;
12586 
12587 	/* Set bp->num_queues for MSI-X mode*/
12588 	bnx2x_set_num_queues(bp);
12589 
12590 	/* Configure interrupt mode: try to enable MSI-X/MSI if
12591 	 * needed.
12592 	 */
12593 	rc = bnx2x_set_int_mode(bp);
12594 	if (rc) {
12595 		dev_err(&pdev->dev, "Cannot set interrupts\n");
12596 		goto init_one_exit;
12597 	}
12598 	BNX2X_DEV_INFO("set interrupts successfully\n");
12599 
12600 	/* register the net device */
12601 	rc = register_netdev(dev);
12602 	if (rc) {
12603 		dev_err(&pdev->dev, "Cannot register net device\n");
12604 		goto init_one_exit;
12605 	}
12606 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12607 
12608 
12609 	if (!NO_FCOE(bp)) {
12610 		/* Add storage MAC address */
12611 		rtnl_lock();
12612 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12613 		rtnl_unlock();
12614 	}
12615 
12616 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12617 	BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12618 		       pcie_width, pcie_speed);
12619 
12620 	BNX2X_DEV_INFO(
12621 		"%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12622 		    board_info[ent->driver_data].name,
12623 		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12624 		    pcie_width,
12625 		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
12626 		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
12627 		    "5GHz (Gen2)" : "2.5GHz",
12628 		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
12629 
12630 	return 0;
12631 
12632 init_one_exit:
12633 	if (bp->regview)
12634 		iounmap(bp->regview);
12635 
12636 	if (IS_PF(bp) && bp->doorbells)
12637 		iounmap(bp->doorbells);
12638 
12639 	free_netdev(dev);
12640 
12641 	if (atomic_read(&pdev->enable_cnt) == 1)
12642 		pci_release_regions(pdev);
12643 
12644 	pci_disable_device(pdev);
12645 	pci_set_drvdata(pdev, NULL);
12646 
12647 	return rc;
12648 }
12649 
12650 static void bnx2x_remove_one(struct pci_dev *pdev)
12651 {
12652 	struct net_device *dev = pci_get_drvdata(pdev);
12653 	struct bnx2x *bp;
12654 
12655 	if (!dev) {
12656 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12657 		return;
12658 	}
12659 	bp = netdev_priv(dev);
12660 
12661 	/* Delete storage MAC address */
12662 	if (!NO_FCOE(bp)) {
12663 		rtnl_lock();
12664 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12665 		rtnl_unlock();
12666 	}
12667 
12668 #ifdef BCM_DCBNL
12669 	/* Delete app tlvs from dcbnl */
12670 	bnx2x_dcbnl_update_applist(bp, true);
12671 #endif
12672 
12673 	unregister_netdev(dev);
12674 
12675 	/* Power on: we can't let PCI layer write to us while we are in D3 */
12676 	if (IS_PF(bp))
12677 		bnx2x_set_power_state(bp, PCI_D0);
12678 
12679 	/* Disable MSI/MSI-X */
12680 	bnx2x_disable_msi(bp);
12681 
12682 	/* Power off */
12683 	if (IS_PF(bp))
12684 		bnx2x_set_power_state(bp, PCI_D3hot);
12685 
12686 	/* Make sure RESET task is not scheduled before continuing */
12687 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
12688 
12689 	bnx2x_iov_remove_one(bp);
12690 
12691 	/* send message via vfpf channel to release the resources of this vf */
12692 	if (IS_VF(bp))
12693 		bnx2x_vfpf_release(bp);
12694 
12695 	if (bp->regview)
12696 		iounmap(bp->regview);
12697 
12698 	/* for vf doorbells are part of the regview and were unmapped along with
12699 	 * it. FW is only loaded by PF.
12700 	 */
12701 	if (IS_PF(bp)) {
12702 		if (bp->doorbells)
12703 			iounmap(bp->doorbells);
12704 
12705 		bnx2x_release_firmware(bp);
12706 	}
12707 	bnx2x_free_mem_bp(bp);
12708 
12709 	free_netdev(dev);
12710 
12711 	if (atomic_read(&pdev->enable_cnt) == 1)
12712 		pci_release_regions(pdev);
12713 
12714 	pci_disable_device(pdev);
12715 	pci_set_drvdata(pdev, NULL);
12716 }
12717 
12718 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12719 {
12720 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12721 
12722 	bp->rx_mode = BNX2X_RX_MODE_NONE;
12723 
12724 	if (CNIC_LOADED(bp))
12725 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12726 
12727 	/* Stop Tx */
12728 	bnx2x_tx_disable(bp);
12729 	/* Delete all NAPI objects */
12730 	bnx2x_del_all_napi(bp);
12731 	if (CNIC_LOADED(bp))
12732 		bnx2x_del_all_napi_cnic(bp);
12733 	netdev_reset_tc(bp->dev);
12734 
12735 	del_timer_sync(&bp->timer);
12736 	cancel_delayed_work(&bp->sp_task);
12737 	cancel_delayed_work(&bp->period_task);
12738 
12739 	spin_lock_bh(&bp->stats_lock);
12740 	bp->stats_state = STATS_STATE_DISABLED;
12741 	spin_unlock_bh(&bp->stats_lock);
12742 
12743 	bnx2x_save_statistics(bp);
12744 
12745 	netif_carrier_off(bp->dev);
12746 
12747 	return 0;
12748 }
12749 
12750 static void bnx2x_eeh_recover(struct bnx2x *bp)
12751 {
12752 	u32 val;
12753 
12754 	mutex_init(&bp->port.phy_mutex);
12755 
12756 
12757 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
12758 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12759 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12760 		BNX2X_ERR("BAD MCP validity signature\n");
12761 }
12762 
12763 /**
12764  * bnx2x_io_error_detected - called when PCI error is detected
12765  * @pdev: Pointer to PCI device
12766  * @state: The current pci connection state
12767  *
12768  * This function is called after a PCI bus error affecting
12769  * this device has been detected.
12770  */
12771 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12772 						pci_channel_state_t state)
12773 {
12774 	struct net_device *dev = pci_get_drvdata(pdev);
12775 	struct bnx2x *bp = netdev_priv(dev);
12776 
12777 	rtnl_lock();
12778 
12779 	BNX2X_ERR("IO error detected\n");
12780 
12781 	netif_device_detach(dev);
12782 
12783 	if (state == pci_channel_io_perm_failure) {
12784 		rtnl_unlock();
12785 		return PCI_ERS_RESULT_DISCONNECT;
12786 	}
12787 
12788 	if (netif_running(dev))
12789 		bnx2x_eeh_nic_unload(bp);
12790 
12791 	bnx2x_prev_path_mark_eeh(bp);
12792 
12793 	pci_disable_device(pdev);
12794 
12795 	rtnl_unlock();
12796 
12797 	/* Request a slot reset */
12798 	return PCI_ERS_RESULT_NEED_RESET;
12799 }
12800 
12801 /**
12802  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12803  * @pdev: Pointer to PCI device
12804  *
12805  * Restart the card from scratch, as if from a cold-boot.
12806  */
12807 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12808 {
12809 	struct net_device *dev = pci_get_drvdata(pdev);
12810 	struct bnx2x *bp = netdev_priv(dev);
12811 	int i;
12812 
12813 	rtnl_lock();
12814 	BNX2X_ERR("IO slot reset initializing...\n");
12815 	if (pci_enable_device(pdev)) {
12816 		dev_err(&pdev->dev,
12817 			"Cannot re-enable PCI device after reset\n");
12818 		rtnl_unlock();
12819 		return PCI_ERS_RESULT_DISCONNECT;
12820 	}
12821 
12822 	pci_set_master(pdev);
12823 	pci_restore_state(pdev);
12824 	pci_save_state(pdev);
12825 
12826 	if (netif_running(dev))
12827 		bnx2x_set_power_state(bp, PCI_D0);
12828 
12829 	if (netif_running(dev)) {
12830 		BNX2X_ERR("IO slot reset --> driver unload\n");
12831 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
12832 			u32 v;
12833 
12834 			v = SHMEM2_RD(bp,
12835 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
12836 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
12837 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
12838 		}
12839 		bnx2x_drain_tx_queues(bp);
12840 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
12841 		bnx2x_netif_stop(bp, 1);
12842 		bnx2x_free_irq(bp);
12843 
12844 		/* Report UNLOAD_DONE to MCP */
12845 		bnx2x_send_unload_done(bp, true);
12846 
12847 		bp->sp_state = 0;
12848 		bp->port.pmf = 0;
12849 
12850 		bnx2x_prev_unload(bp);
12851 
12852 		/* We should have resetted the engine, so It's fair to
12853 		 * assume the FW will no longer write to the bnx2x driver.
12854 		 */
12855 		bnx2x_squeeze_objects(bp);
12856 		bnx2x_free_skbs(bp);
12857 		for_each_rx_queue(bp, i)
12858 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
12859 		bnx2x_free_fp_mem(bp);
12860 		bnx2x_free_mem(bp);
12861 
12862 		bp->state = BNX2X_STATE_CLOSED;
12863 	}
12864 
12865 	rtnl_unlock();
12866 
12867 	return PCI_ERS_RESULT_RECOVERED;
12868 }
12869 
12870 /**
12871  * bnx2x_io_resume - called when traffic can start flowing again
12872  * @pdev: Pointer to PCI device
12873  *
12874  * This callback is called when the error recovery driver tells us that
12875  * its OK to resume normal operation.
12876  */
12877 static void bnx2x_io_resume(struct pci_dev *pdev)
12878 {
12879 	struct net_device *dev = pci_get_drvdata(pdev);
12880 	struct bnx2x *bp = netdev_priv(dev);
12881 
12882 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
12883 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
12884 		return;
12885 	}
12886 
12887 	rtnl_lock();
12888 
12889 	bnx2x_eeh_recover(bp);
12890 
12891 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12892 							DRV_MSG_SEQ_NUMBER_MASK;
12893 
12894 	if (netif_running(dev))
12895 		bnx2x_nic_load(bp, LOAD_NORMAL);
12896 
12897 	netif_device_attach(dev);
12898 
12899 	rtnl_unlock();
12900 }
12901 
12902 static const struct pci_error_handlers bnx2x_err_handler = {
12903 	.error_detected = bnx2x_io_error_detected,
12904 	.slot_reset     = bnx2x_io_slot_reset,
12905 	.resume         = bnx2x_io_resume,
12906 };
12907 
12908 static struct pci_driver bnx2x_pci_driver = {
12909 	.name        = DRV_MODULE_NAME,
12910 	.id_table    = bnx2x_pci_tbl,
12911 	.probe       = bnx2x_init_one,
12912 	.remove      = bnx2x_remove_one,
12913 	.suspend     = bnx2x_suspend,
12914 	.resume      = bnx2x_resume,
12915 	.err_handler = &bnx2x_err_handler,
12916 #ifdef CONFIG_BNX2X_SRIOV
12917 	.sriov_configure = bnx2x_sriov_configure,
12918 #endif
12919 };
12920 
12921 static int __init bnx2x_init(void)
12922 {
12923 	int ret;
12924 
12925 	pr_info("%s", version);
12926 
12927 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
12928 	if (bnx2x_wq == NULL) {
12929 		pr_err("Cannot create workqueue\n");
12930 		return -ENOMEM;
12931 	}
12932 
12933 	ret = pci_register_driver(&bnx2x_pci_driver);
12934 	if (ret) {
12935 		pr_err("Cannot register driver\n");
12936 		destroy_workqueue(bnx2x_wq);
12937 	}
12938 	return ret;
12939 }
12940 
12941 static void __exit bnx2x_cleanup(void)
12942 {
12943 	struct list_head *pos, *q;
12944 	pci_unregister_driver(&bnx2x_pci_driver);
12945 
12946 	destroy_workqueue(bnx2x_wq);
12947 
12948 	/* Free globablly allocated resources */
12949 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
12950 		struct bnx2x_prev_path_list *tmp =
12951 			list_entry(pos, struct bnx2x_prev_path_list, list);
12952 		list_del(pos);
12953 		kfree(tmp);
12954 	}
12955 }
12956 
12957 void bnx2x_notify_link_changed(struct bnx2x *bp)
12958 {
12959 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
12960 }
12961 
12962 module_init(bnx2x_init);
12963 module_exit(bnx2x_cleanup);
12964 
12965 /**
12966  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
12967  *
12968  * @bp:		driver handle
12969  * @set:	set or clear the CAM entry
12970  *
12971  * This function will wait until the ramdord completion returns.
12972  * Return 0 if success, -ENODEV if ramrod doesn't return.
12973  */
12974 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
12975 {
12976 	unsigned long ramrod_flags = 0;
12977 
12978 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12979 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
12980 				 &bp->iscsi_l2_mac_obj, true,
12981 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
12982 }
12983 
12984 /* count denotes the number of new completions we have seen */
12985 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
12986 {
12987 	struct eth_spe *spe;
12988 	int cxt_index, cxt_offset;
12989 
12990 #ifdef BNX2X_STOP_ON_ERROR
12991 	if (unlikely(bp->panic))
12992 		return;
12993 #endif
12994 
12995 	spin_lock_bh(&bp->spq_lock);
12996 	BUG_ON(bp->cnic_spq_pending < count);
12997 	bp->cnic_spq_pending -= count;
12998 
12999 
13000 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13001 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13002 				& SPE_HDR_CONN_TYPE) >>
13003 				SPE_HDR_CONN_TYPE_SHIFT;
13004 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13005 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13006 
13007 		/* Set validation for iSCSI L2 client before sending SETUP
13008 		 *  ramrod
13009 		 */
13010 		if (type == ETH_CONNECTION_TYPE) {
13011 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13012 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13013 					ILT_PAGE_CIDS;
13014 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13015 					(cxt_index * ILT_PAGE_CIDS);
13016 				bnx2x_set_ctx_validation(bp,
13017 					&bp->context[cxt_index].
13018 							 vcxt[cxt_offset].eth,
13019 					BNX2X_ISCSI_ETH_CID(bp));
13020 			}
13021 		}
13022 
13023 		/*
13024 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13025 		 * and in the air. We also check that number of outstanding
13026 		 * COMMON ramrods is not more than the EQ and SPQ can
13027 		 * accommodate.
13028 		 */
13029 		if (type == ETH_CONNECTION_TYPE) {
13030 			if (!atomic_read(&bp->cq_spq_left))
13031 				break;
13032 			else
13033 				atomic_dec(&bp->cq_spq_left);
13034 		} else if (type == NONE_CONNECTION_TYPE) {
13035 			if (!atomic_read(&bp->eq_spq_left))
13036 				break;
13037 			else
13038 				atomic_dec(&bp->eq_spq_left);
13039 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13040 			   (type == FCOE_CONNECTION_TYPE)) {
13041 			if (bp->cnic_spq_pending >=
13042 			    bp->cnic_eth_dev.max_kwqe_pending)
13043 				break;
13044 			else
13045 				bp->cnic_spq_pending++;
13046 		} else {
13047 			BNX2X_ERR("Unknown SPE type: %d\n", type);
13048 			bnx2x_panic();
13049 			break;
13050 		}
13051 
13052 		spe = bnx2x_sp_get_next(bp);
13053 		*spe = *bp->cnic_kwq_cons;
13054 
13055 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13056 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13057 
13058 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13059 			bp->cnic_kwq_cons = bp->cnic_kwq;
13060 		else
13061 			bp->cnic_kwq_cons++;
13062 	}
13063 	bnx2x_sp_prod_update(bp);
13064 	spin_unlock_bh(&bp->spq_lock);
13065 }
13066 
13067 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13068 			       struct kwqe_16 *kwqes[], u32 count)
13069 {
13070 	struct bnx2x *bp = netdev_priv(dev);
13071 	int i;
13072 
13073 #ifdef BNX2X_STOP_ON_ERROR
13074 	if (unlikely(bp->panic)) {
13075 		BNX2X_ERR("Can't post to SP queue while panic\n");
13076 		return -EIO;
13077 	}
13078 #endif
13079 
13080 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13081 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13082 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
13083 		return -EAGAIN;
13084 	}
13085 
13086 	spin_lock_bh(&bp->spq_lock);
13087 
13088 	for (i = 0; i < count; i++) {
13089 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13090 
13091 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13092 			break;
13093 
13094 		*bp->cnic_kwq_prod = *spe;
13095 
13096 		bp->cnic_kwq_pending++;
13097 
13098 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13099 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
13100 		   spe->data.update_data_addr.hi,
13101 		   spe->data.update_data_addr.lo,
13102 		   bp->cnic_kwq_pending);
13103 
13104 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13105 			bp->cnic_kwq_prod = bp->cnic_kwq;
13106 		else
13107 			bp->cnic_kwq_prod++;
13108 	}
13109 
13110 	spin_unlock_bh(&bp->spq_lock);
13111 
13112 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13113 		bnx2x_cnic_sp_post(bp, 0);
13114 
13115 	return i;
13116 }
13117 
13118 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13119 {
13120 	struct cnic_ops *c_ops;
13121 	int rc = 0;
13122 
13123 	mutex_lock(&bp->cnic_mutex);
13124 	c_ops = rcu_dereference_protected(bp->cnic_ops,
13125 					  lockdep_is_held(&bp->cnic_mutex));
13126 	if (c_ops)
13127 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13128 	mutex_unlock(&bp->cnic_mutex);
13129 
13130 	return rc;
13131 }
13132 
13133 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13134 {
13135 	struct cnic_ops *c_ops;
13136 	int rc = 0;
13137 
13138 	rcu_read_lock();
13139 	c_ops = rcu_dereference(bp->cnic_ops);
13140 	if (c_ops)
13141 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13142 	rcu_read_unlock();
13143 
13144 	return rc;
13145 }
13146 
13147 /*
13148  * for commands that have no data
13149  */
13150 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13151 {
13152 	struct cnic_ctl_info ctl = {0};
13153 
13154 	ctl.cmd = cmd;
13155 
13156 	return bnx2x_cnic_ctl_send(bp, &ctl);
13157 }
13158 
13159 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13160 {
13161 	struct cnic_ctl_info ctl = {0};
13162 
13163 	/* first we tell CNIC and only then we count this as a completion */
13164 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13165 	ctl.data.comp.cid = cid;
13166 	ctl.data.comp.error = err;
13167 
13168 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
13169 	bnx2x_cnic_sp_post(bp, 0);
13170 }
13171 
13172 
13173 /* Called with netif_addr_lock_bh() taken.
13174  * Sets an rx_mode config for an iSCSI ETH client.
13175  * Doesn't block.
13176  * Completion should be checked outside.
13177  */
13178 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13179 {
13180 	unsigned long accept_flags = 0, ramrod_flags = 0;
13181 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13182 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13183 
13184 	if (start) {
13185 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
13186 		 * because it's the only way for UIO Queue to accept
13187 		 * multicasts (in non-promiscuous mode only one Queue per
13188 		 * function will receive multicast packets (leading in our
13189 		 * case).
13190 		 */
13191 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13192 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13193 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13194 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13195 
13196 		/* Clear STOP_PENDING bit if START is requested */
13197 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13198 
13199 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13200 	} else
13201 		/* Clear START_PENDING bit if STOP is requested */
13202 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13203 
13204 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13205 		set_bit(sched_state, &bp->sp_state);
13206 	else {
13207 		__set_bit(RAMROD_RX, &ramrod_flags);
13208 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13209 				    ramrod_flags);
13210 	}
13211 }
13212 
13213 
13214 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13215 {
13216 	struct bnx2x *bp = netdev_priv(dev);
13217 	int rc = 0;
13218 
13219 	switch (ctl->cmd) {
13220 	case DRV_CTL_CTXTBL_WR_CMD: {
13221 		u32 index = ctl->data.io.offset;
13222 		dma_addr_t addr = ctl->data.io.dma_addr;
13223 
13224 		bnx2x_ilt_wr(bp, index, addr);
13225 		break;
13226 	}
13227 
13228 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13229 		int count = ctl->data.credit.credit_count;
13230 
13231 		bnx2x_cnic_sp_post(bp, count);
13232 		break;
13233 	}
13234 
13235 	/* rtnl_lock is held.  */
13236 	case DRV_CTL_START_L2_CMD: {
13237 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13238 		unsigned long sp_bits = 0;
13239 
13240 		/* Configure the iSCSI classification object */
13241 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13242 				   cp->iscsi_l2_client_id,
13243 				   cp->iscsi_l2_cid, BP_FUNC(bp),
13244 				   bnx2x_sp(bp, mac_rdata),
13245 				   bnx2x_sp_mapping(bp, mac_rdata),
13246 				   BNX2X_FILTER_MAC_PENDING,
13247 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13248 				   &bp->macs_pool);
13249 
13250 		/* Set iSCSI MAC address */
13251 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13252 		if (rc)
13253 			break;
13254 
13255 		mmiowb();
13256 		barrier();
13257 
13258 		/* Start accepting on iSCSI L2 ring */
13259 
13260 		netif_addr_lock_bh(dev);
13261 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
13262 		netif_addr_unlock_bh(dev);
13263 
13264 		/* bits to wait on */
13265 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13266 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13267 
13268 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13269 			BNX2X_ERR("rx_mode completion timed out!\n");
13270 
13271 		break;
13272 	}
13273 
13274 	/* rtnl_lock is held.  */
13275 	case DRV_CTL_STOP_L2_CMD: {
13276 		unsigned long sp_bits = 0;
13277 
13278 		/* Stop accepting on iSCSI L2 ring */
13279 		netif_addr_lock_bh(dev);
13280 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
13281 		netif_addr_unlock_bh(dev);
13282 
13283 		/* bits to wait on */
13284 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13285 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13286 
13287 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13288 			BNX2X_ERR("rx_mode completion timed out!\n");
13289 
13290 		mmiowb();
13291 		barrier();
13292 
13293 		/* Unset iSCSI L2 MAC */
13294 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13295 					BNX2X_ISCSI_ETH_MAC, true);
13296 		break;
13297 	}
13298 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13299 		int count = ctl->data.credit.credit_count;
13300 
13301 		smp_mb__before_atomic_inc();
13302 		atomic_add(count, &bp->cq_spq_left);
13303 		smp_mb__after_atomic_inc();
13304 		break;
13305 	}
13306 	case DRV_CTL_ULP_REGISTER_CMD: {
13307 		int ulp_type = ctl->data.register_data.ulp_type;
13308 
13309 		if (CHIP_IS_E3(bp)) {
13310 			int idx = BP_FW_MB_IDX(bp);
13311 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13312 			int path = BP_PATH(bp);
13313 			int port = BP_PORT(bp);
13314 			int i;
13315 			u32 scratch_offset;
13316 			u32 *host_addr;
13317 
13318 			/* first write capability to shmem2 */
13319 			if (ulp_type == CNIC_ULP_ISCSI)
13320 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13321 			else if (ulp_type == CNIC_ULP_FCOE)
13322 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13323 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13324 
13325 			if ((ulp_type != CNIC_ULP_FCOE) ||
13326 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13327 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13328 				break;
13329 
13330 			/* if reached here - should write fcoe capabilities */
13331 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13332 			if (!scratch_offset)
13333 				break;
13334 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
13335 						   fcoe_features[path][port]);
13336 			host_addr = (u32 *) &(ctl->data.register_data.
13337 					      fcoe_features);
13338 			for (i = 0; i < sizeof(struct fcoe_capabilities);
13339 			     i += 4)
13340 				REG_WR(bp, scratch_offset + i,
13341 				       *(host_addr + i/4));
13342 		}
13343 		break;
13344 	}
13345 
13346 	case DRV_CTL_ULP_UNREGISTER_CMD: {
13347 		int ulp_type = ctl->data.ulp_type;
13348 
13349 		if (CHIP_IS_E3(bp)) {
13350 			int idx = BP_FW_MB_IDX(bp);
13351 			u32 cap;
13352 
13353 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13354 			if (ulp_type == CNIC_ULP_ISCSI)
13355 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13356 			else if (ulp_type == CNIC_ULP_FCOE)
13357 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13358 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13359 		}
13360 		break;
13361 	}
13362 
13363 	default:
13364 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
13365 		rc = -EINVAL;
13366 	}
13367 
13368 	return rc;
13369 }
13370 
13371 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13372 {
13373 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13374 
13375 	if (bp->flags & USING_MSIX_FLAG) {
13376 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13377 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13378 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
13379 	} else {
13380 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13381 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13382 	}
13383 	if (!CHIP_IS_E1x(bp))
13384 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13385 	else
13386 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13387 
13388 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13389 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13390 	cp->irq_arr[1].status_blk = bp->def_status_blk;
13391 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13392 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13393 
13394 	cp->num_irq = 2;
13395 }
13396 
13397 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13398 {
13399 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13400 
13401 
13402 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13403 			     bnx2x_cid_ilt_lines(bp);
13404 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13405 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13406 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13407 
13408 	if (NO_ISCSI_OOO(bp))
13409 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13410 }
13411 
13412 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13413 			       void *data)
13414 {
13415 	struct bnx2x *bp = netdev_priv(dev);
13416 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13417 	int rc;
13418 
13419 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13420 
13421 	if (ops == NULL) {
13422 		BNX2X_ERR("NULL ops received\n");
13423 		return -EINVAL;
13424 	}
13425 
13426 	if (!CNIC_SUPPORT(bp)) {
13427 		BNX2X_ERR("Can't register CNIC when not supported\n");
13428 		return -EOPNOTSUPP;
13429 	}
13430 
13431 	if (!CNIC_LOADED(bp)) {
13432 		rc = bnx2x_load_cnic(bp);
13433 		if (rc) {
13434 			BNX2X_ERR("CNIC-related load failed\n");
13435 			return rc;
13436 		}
13437 
13438 	}
13439 
13440 	bp->cnic_enabled = true;
13441 
13442 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13443 	if (!bp->cnic_kwq)
13444 		return -ENOMEM;
13445 
13446 	bp->cnic_kwq_cons = bp->cnic_kwq;
13447 	bp->cnic_kwq_prod = bp->cnic_kwq;
13448 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13449 
13450 	bp->cnic_spq_pending = 0;
13451 	bp->cnic_kwq_pending = 0;
13452 
13453 	bp->cnic_data = data;
13454 
13455 	cp->num_irq = 0;
13456 	cp->drv_state |= CNIC_DRV_STATE_REGD;
13457 	cp->iro_arr = bp->iro_arr;
13458 
13459 	bnx2x_setup_cnic_irq_info(bp);
13460 
13461 	rcu_assign_pointer(bp->cnic_ops, ops);
13462 
13463 	return 0;
13464 }
13465 
13466 static int bnx2x_unregister_cnic(struct net_device *dev)
13467 {
13468 	struct bnx2x *bp = netdev_priv(dev);
13469 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13470 
13471 	mutex_lock(&bp->cnic_mutex);
13472 	cp->drv_state = 0;
13473 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
13474 	mutex_unlock(&bp->cnic_mutex);
13475 	synchronize_rcu();
13476 	bp->cnic_enabled = false;
13477 	kfree(bp->cnic_kwq);
13478 	bp->cnic_kwq = NULL;
13479 
13480 	return 0;
13481 }
13482 
13483 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13484 {
13485 	struct bnx2x *bp = netdev_priv(dev);
13486 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13487 
13488 	/* If both iSCSI and FCoE are disabled - return NULL in
13489 	 * order to indicate CNIC that it should not try to work
13490 	 * with this device.
13491 	 */
13492 	if (NO_ISCSI(bp) && NO_FCOE(bp))
13493 		return NULL;
13494 
13495 	cp->drv_owner = THIS_MODULE;
13496 	cp->chip_id = CHIP_ID(bp);
13497 	cp->pdev = bp->pdev;
13498 	cp->io_base = bp->regview;
13499 	cp->io_base2 = bp->doorbells;
13500 	cp->max_kwqe_pending = 8;
13501 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13502 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13503 			     bnx2x_cid_ilt_lines(bp);
13504 	cp->ctx_tbl_len = CNIC_ILT_LINES;
13505 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13506 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13507 	cp->drv_ctl = bnx2x_drv_ctl;
13508 	cp->drv_register_cnic = bnx2x_register_cnic;
13509 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13510 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13511 	cp->iscsi_l2_client_id =
13512 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13513 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13514 
13515 	if (NO_ISCSI_OOO(bp))
13516 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13517 
13518 	if (NO_ISCSI(bp))
13519 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13520 
13521 	if (NO_FCOE(bp))
13522 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13523 
13524 	BNX2X_DEV_INFO(
13525 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13526 	   cp->ctx_blk_size,
13527 	   cp->ctx_tbl_offset,
13528 	   cp->ctx_tbl_len,
13529 	   cp->starting_cid);
13530 	return cp;
13531 }
13532 
13533 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13534 {
13535 	struct bnx2x *bp = fp->bp;
13536 	u32 offset = BAR_USTRORM_INTMEM;
13537 
13538 	if (IS_VF(bp))
13539 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
13540 	else if (!CHIP_IS_E1x(bp))
13541 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13542 	else
13543 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13544 
13545 	return offset;
13546 }
13547 
13548 /* called only on E1H or E2.
13549  * When pretending to be PF, the pretend value is the function number 0...7
13550  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13551  * combination
13552  */
13553 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13554 {
13555 	u32 pretend_reg;
13556 
13557 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13558 		return -1;
13559 
13560 	/* get my own pretend register */
13561 	pretend_reg = bnx2x_get_pretend_reg(bp);
13562 	REG_WR(bp, pretend_reg, pretend_func_val);
13563 	REG_RD(bp, pretend_reg);
13564 	return 0;
13565 }
13566