1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2012 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64 
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION					\
69 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76 
77 /* Time in jiffies before concluding the transmitter is hung */
78 #define TX_TIMEOUT		(5*HZ)
79 
80 static char version[] __devinitdata =
81 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83 
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("Broadcom NetXtreme II "
86 		   "BCM57710/57711/57711E/"
87 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 		   "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_MODULE_VERSION);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93 MODULE_FIRMWARE(FW_FILE_NAME_E2);
94 
95 
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99 		 " Set number of queues (default is as a number of CPUs)");
100 
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104 
105 #define INT_MODE_INTx			1
106 #define INT_MODE_MSI			2
107 static int int_mode;
108 module_param(int_mode, int, 0);
109 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
110 				"(1 INT#x; 2 MSI)");
111 
112 static int dropless_fc;
113 module_param(dropless_fc, int, 0);
114 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
115 
116 static int mrrs = -1;
117 module_param(mrrs, int, 0);
118 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
119 
120 static int debug;
121 module_param(debug, int, 0);
122 MODULE_PARM_DESC(debug, " Default debug msglevel");
123 
124 
125 
126 struct workqueue_struct *bnx2x_wq;
127 
128 enum bnx2x_board_type {
129 	BCM57710 = 0,
130 	BCM57711,
131 	BCM57711E,
132 	BCM57712,
133 	BCM57712_MF,
134 	BCM57800,
135 	BCM57800_MF,
136 	BCM57810,
137 	BCM57810_MF,
138 	BCM57840,
139 	BCM57840_MF,
140 	BCM57811,
141 	BCM57811_MF
142 };
143 
144 /* indexed by board_type, above */
145 static struct {
146 	char *name;
147 } board_info[] __devinitdata = {
148 	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
149 	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
150 	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
151 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
152 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
153 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
154 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
155 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
156 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
157 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
158 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
159 	{ "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet"},
160 	{ "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function"},
161 };
162 
163 #ifndef PCI_DEVICE_ID_NX2_57710
164 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
165 #endif
166 #ifndef PCI_DEVICE_ID_NX2_57711
167 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
168 #endif
169 #ifndef PCI_DEVICE_ID_NX2_57711E
170 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
171 #endif
172 #ifndef PCI_DEVICE_ID_NX2_57712
173 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
174 #endif
175 #ifndef PCI_DEVICE_ID_NX2_57712_MF
176 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
177 #endif
178 #ifndef PCI_DEVICE_ID_NX2_57800
179 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
180 #endif
181 #ifndef PCI_DEVICE_ID_NX2_57800_MF
182 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
183 #endif
184 #ifndef PCI_DEVICE_ID_NX2_57810
185 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
186 #endif
187 #ifndef PCI_DEVICE_ID_NX2_57810_MF
188 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
189 #endif
190 #ifndef PCI_DEVICE_ID_NX2_57840
191 #define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57840_MF
194 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57811
197 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57811_MF
200 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
201 #endif
202 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
203 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
204 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
205 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
206 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
207 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
208 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
209 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
210 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
211 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
212 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
213 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
214 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
215 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
216 	{ 0 }
217 };
218 
219 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
220 
221 /* Global resources for unloading a previously loaded device */
222 #define BNX2X_PREV_WAIT_NEEDED 1
223 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
224 static LIST_HEAD(bnx2x_prev_list);
225 /****************************************************************************
226 * General service functions
227 ****************************************************************************/
228 
229 static void __storm_memset_dma_mapping(struct bnx2x *bp,
230 				       u32 addr, dma_addr_t mapping)
231 {
232 	REG_WR(bp,  addr, U64_LO(mapping));
233 	REG_WR(bp,  addr + 4, U64_HI(mapping));
234 }
235 
236 static void storm_memset_spq_addr(struct bnx2x *bp,
237 				  dma_addr_t mapping, u16 abs_fid)
238 {
239 	u32 addr = XSEM_REG_FAST_MEMORY +
240 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
241 
242 	__storm_memset_dma_mapping(bp, addr, mapping);
243 }
244 
245 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
246 				  u16 pf_id)
247 {
248 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
249 		pf_id);
250 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
251 		pf_id);
252 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
253 		pf_id);
254 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
255 		pf_id);
256 }
257 
258 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
259 				 u8 enable)
260 {
261 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
262 		enable);
263 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
264 		enable);
265 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
266 		enable);
267 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
268 		enable);
269 }
270 
271 static void storm_memset_eq_data(struct bnx2x *bp,
272 				 struct event_ring_data *eq_data,
273 				u16 pfid)
274 {
275 	size_t size = sizeof(struct event_ring_data);
276 
277 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
278 
279 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
280 }
281 
282 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
283 				 u16 pfid)
284 {
285 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
286 	REG_WR16(bp, addr, eq_prod);
287 }
288 
289 /* used only at init
290  * locking is done by mcp
291  */
292 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
293 {
294 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
295 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
296 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
297 			       PCICFG_VENDOR_ID_OFFSET);
298 }
299 
300 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
301 {
302 	u32 val;
303 
304 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
305 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
306 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
307 			       PCICFG_VENDOR_ID_OFFSET);
308 
309 	return val;
310 }
311 
312 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
313 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
314 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
315 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
316 #define DMAE_DP_DST_NONE	"dst_addr [none]"
317 
318 
319 /* copy command into DMAE command memory and set DMAE command go */
320 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
321 {
322 	u32 cmd_offset;
323 	int i;
324 
325 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
326 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
327 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
328 	}
329 	REG_WR(bp, dmae_reg_go_c[idx], 1);
330 }
331 
332 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
333 {
334 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
335 			   DMAE_CMD_C_ENABLE);
336 }
337 
338 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
339 {
340 	return opcode & ~DMAE_CMD_SRC_RESET;
341 }
342 
343 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
344 			     bool with_comp, u8 comp_type)
345 {
346 	u32 opcode = 0;
347 
348 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
349 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
350 
351 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
352 
353 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
354 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
355 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
356 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
357 
358 #ifdef __BIG_ENDIAN
359 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
360 #else
361 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
362 #endif
363 	if (with_comp)
364 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
365 	return opcode;
366 }
367 
368 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
369 				      struct dmae_command *dmae,
370 				      u8 src_type, u8 dst_type)
371 {
372 	memset(dmae, 0, sizeof(struct dmae_command));
373 
374 	/* set the opcode */
375 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
376 					 true, DMAE_COMP_PCI);
377 
378 	/* fill in the completion parameters */
379 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
380 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
381 	dmae->comp_val = DMAE_COMP_VAL;
382 }
383 
384 /* issue a dmae command over the init-channel and wailt for completion */
385 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
386 				      struct dmae_command *dmae)
387 {
388 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
389 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
390 	int rc = 0;
391 
392 	/*
393 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
394 	 * as long as this code is called both from syscall context and
395 	 * from ndo_set_rx_mode() flow that may be called from BH.
396 	 */
397 	spin_lock_bh(&bp->dmae_lock);
398 
399 	/* reset completion */
400 	*wb_comp = 0;
401 
402 	/* post the command on the channel used for initializations */
403 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
404 
405 	/* wait for completion */
406 	udelay(5);
407 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
408 
409 		if (!cnt ||
410 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
411 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
412 			BNX2X_ERR("DMAE timeout!\n");
413 			rc = DMAE_TIMEOUT;
414 			goto unlock;
415 		}
416 		cnt--;
417 		udelay(50);
418 	}
419 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
420 		BNX2X_ERR("DMAE PCI error!\n");
421 		rc = DMAE_PCI_ERROR;
422 	}
423 
424 unlock:
425 	spin_unlock_bh(&bp->dmae_lock);
426 	return rc;
427 }
428 
429 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
430 		      u32 len32)
431 {
432 	struct dmae_command dmae;
433 
434 	if (!bp->dmae_ready) {
435 		u32 *data = bnx2x_sp(bp, wb_data[0]);
436 
437 		if (CHIP_IS_E1(bp))
438 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
439 		else
440 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
441 		return;
442 	}
443 
444 	/* set opcode and fixed command fields */
445 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
446 
447 	/* fill in addresses and len */
448 	dmae.src_addr_lo = U64_LO(dma_addr);
449 	dmae.src_addr_hi = U64_HI(dma_addr);
450 	dmae.dst_addr_lo = dst_addr >> 2;
451 	dmae.dst_addr_hi = 0;
452 	dmae.len = len32;
453 
454 	/* issue the command and wait for completion */
455 	bnx2x_issue_dmae_with_comp(bp, &dmae);
456 }
457 
458 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
459 {
460 	struct dmae_command dmae;
461 
462 	if (!bp->dmae_ready) {
463 		u32 *data = bnx2x_sp(bp, wb_data[0]);
464 		int i;
465 
466 		if (CHIP_IS_E1(bp))
467 			for (i = 0; i < len32; i++)
468 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
469 		else
470 			for (i = 0; i < len32; i++)
471 				data[i] = REG_RD(bp, src_addr + i*4);
472 
473 		return;
474 	}
475 
476 	/* set opcode and fixed command fields */
477 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
478 
479 	/* fill in addresses and len */
480 	dmae.src_addr_lo = src_addr >> 2;
481 	dmae.src_addr_hi = 0;
482 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
483 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
484 	dmae.len = len32;
485 
486 	/* issue the command and wait for completion */
487 	bnx2x_issue_dmae_with_comp(bp, &dmae);
488 }
489 
490 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
491 				      u32 addr, u32 len)
492 {
493 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
494 	int offset = 0;
495 
496 	while (len > dmae_wr_max) {
497 		bnx2x_write_dmae(bp, phys_addr + offset,
498 				 addr + offset, dmae_wr_max);
499 		offset += dmae_wr_max * 4;
500 		len -= dmae_wr_max;
501 	}
502 
503 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
504 }
505 
506 static int bnx2x_mc_assert(struct bnx2x *bp)
507 {
508 	char last_idx;
509 	int i, rc = 0;
510 	u32 row0, row1, row2, row3;
511 
512 	/* XSTORM */
513 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
514 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
515 	if (last_idx)
516 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
517 
518 	/* print the asserts */
519 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
520 
521 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
522 			      XSTORM_ASSERT_LIST_OFFSET(i));
523 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
524 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
525 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
526 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
527 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
528 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
529 
530 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
531 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
532 				  i, row3, row2, row1, row0);
533 			rc++;
534 		} else {
535 			break;
536 		}
537 	}
538 
539 	/* TSTORM */
540 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
541 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
542 	if (last_idx)
543 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
544 
545 	/* print the asserts */
546 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
547 
548 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
549 			      TSTORM_ASSERT_LIST_OFFSET(i));
550 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
551 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
552 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
553 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
554 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
555 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
556 
557 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
558 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
559 				  i, row3, row2, row1, row0);
560 			rc++;
561 		} else {
562 			break;
563 		}
564 	}
565 
566 	/* CSTORM */
567 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
568 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
569 	if (last_idx)
570 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
571 
572 	/* print the asserts */
573 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
574 
575 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
576 			      CSTORM_ASSERT_LIST_OFFSET(i));
577 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
578 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
579 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
580 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
581 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
582 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
583 
584 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
585 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
586 				  i, row3, row2, row1, row0);
587 			rc++;
588 		} else {
589 			break;
590 		}
591 	}
592 
593 	/* USTORM */
594 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
595 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
596 	if (last_idx)
597 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
598 
599 	/* print the asserts */
600 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
601 
602 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
603 			      USTORM_ASSERT_LIST_OFFSET(i));
604 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
605 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
606 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
607 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
608 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
609 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
610 
611 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
612 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
613 				  i, row3, row2, row1, row0);
614 			rc++;
615 		} else {
616 			break;
617 		}
618 	}
619 
620 	return rc;
621 }
622 
623 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
624 {
625 	u32 addr, val;
626 	u32 mark, offset;
627 	__be32 data[9];
628 	int word;
629 	u32 trace_shmem_base;
630 	if (BP_NOMCP(bp)) {
631 		BNX2X_ERR("NO MCP - can not dump\n");
632 		return;
633 	}
634 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
635 		(bp->common.bc_ver & 0xff0000) >> 16,
636 		(bp->common.bc_ver & 0xff00) >> 8,
637 		(bp->common.bc_ver & 0xff));
638 
639 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
640 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
641 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
642 
643 	if (BP_PATH(bp) == 0)
644 		trace_shmem_base = bp->common.shmem_base;
645 	else
646 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
647 	addr = trace_shmem_base - 0x800;
648 
649 	/* validate TRCB signature */
650 	mark = REG_RD(bp, addr);
651 	if (mark != MFW_TRACE_SIGNATURE) {
652 		BNX2X_ERR("Trace buffer signature is missing.");
653 		return ;
654 	}
655 
656 	/* read cyclic buffer pointer */
657 	addr += 4;
658 	mark = REG_RD(bp, addr);
659 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
660 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
661 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
662 
663 	printk("%s", lvl);
664 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
665 		for (word = 0; word < 8; word++)
666 			data[word] = htonl(REG_RD(bp, offset + 4*word));
667 		data[8] = 0x0;
668 		pr_cont("%s", (char *)data);
669 	}
670 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
671 		for (word = 0; word < 8; word++)
672 			data[word] = htonl(REG_RD(bp, offset + 4*word));
673 		data[8] = 0x0;
674 		pr_cont("%s", (char *)data);
675 	}
676 	printk("%s" "end of fw dump\n", lvl);
677 }
678 
679 static void bnx2x_fw_dump(struct bnx2x *bp)
680 {
681 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
682 }
683 
684 void bnx2x_panic_dump(struct bnx2x *bp)
685 {
686 	int i;
687 	u16 j;
688 	struct hc_sp_status_block_data sp_sb_data;
689 	int func = BP_FUNC(bp);
690 #ifdef BNX2X_STOP_ON_ERROR
691 	u16 start = 0, end = 0;
692 	u8 cos;
693 #endif
694 
695 	bp->stats_state = STATS_STATE_DISABLED;
696 	bp->eth_stats.unrecoverable_error++;
697 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
698 
699 	BNX2X_ERR("begin crash dump -----------------\n");
700 
701 	/* Indices */
702 	/* Common */
703 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
704 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
705 		  bp->spq_prod_idx, bp->stats_counter);
706 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
707 		  bp->def_status_blk->atten_status_block.attn_bits,
708 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
709 		  bp->def_status_blk->atten_status_block.status_block_id,
710 		  bp->def_status_blk->atten_status_block.attn_bits_index);
711 	BNX2X_ERR("     def (");
712 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
713 		pr_cont("0x%x%s",
714 			bp->def_status_blk->sp_sb.index_values[i],
715 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
716 
717 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
718 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
719 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
720 			i*sizeof(u32));
721 
722 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
723 	       sp_sb_data.igu_sb_id,
724 	       sp_sb_data.igu_seg_id,
725 	       sp_sb_data.p_func.pf_id,
726 	       sp_sb_data.p_func.vnic_id,
727 	       sp_sb_data.p_func.vf_id,
728 	       sp_sb_data.p_func.vf_valid,
729 	       sp_sb_data.state);
730 
731 
732 	for_each_eth_queue(bp, i) {
733 		struct bnx2x_fastpath *fp = &bp->fp[i];
734 		int loop;
735 		struct hc_status_block_data_e2 sb_data_e2;
736 		struct hc_status_block_data_e1x sb_data_e1x;
737 		struct hc_status_block_sm  *hc_sm_p =
738 			CHIP_IS_E1x(bp) ?
739 			sb_data_e1x.common.state_machine :
740 			sb_data_e2.common.state_machine;
741 		struct hc_index_data *hc_index_p =
742 			CHIP_IS_E1x(bp) ?
743 			sb_data_e1x.index_data :
744 			sb_data_e2.index_data;
745 		u8 data_size, cos;
746 		u32 *sb_data_p;
747 		struct bnx2x_fp_txdata txdata;
748 
749 		/* Rx */
750 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
751 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
752 			  fp->rx_comp_prod,
753 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
754 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
755 			  fp->rx_sge_prod, fp->last_max_sge,
756 			  le16_to_cpu(fp->fp_hc_idx));
757 
758 		/* Tx */
759 		for_each_cos_in_tx_queue(fp, cos)
760 		{
761 			txdata = *fp->txdata_ptr[cos];
762 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
763 				  i, txdata.tx_pkt_prod,
764 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
765 				  txdata.tx_bd_cons,
766 				  le16_to_cpu(*txdata.tx_cons_sb));
767 		}
768 
769 		loop = CHIP_IS_E1x(bp) ?
770 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
771 
772 		/* host sb data */
773 
774 #ifdef BCM_CNIC
775 		if (IS_FCOE_FP(fp))
776 			continue;
777 #endif
778 		BNX2X_ERR("     run indexes (");
779 		for (j = 0; j < HC_SB_MAX_SM; j++)
780 			pr_cont("0x%x%s",
781 			       fp->sb_running_index[j],
782 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
783 
784 		BNX2X_ERR("     indexes (");
785 		for (j = 0; j < loop; j++)
786 			pr_cont("0x%x%s",
787 			       fp->sb_index_values[j],
788 			       (j == loop - 1) ? ")" : " ");
789 		/* fw sb data */
790 		data_size = CHIP_IS_E1x(bp) ?
791 			sizeof(struct hc_status_block_data_e1x) :
792 			sizeof(struct hc_status_block_data_e2);
793 		data_size /= sizeof(u32);
794 		sb_data_p = CHIP_IS_E1x(bp) ?
795 			(u32 *)&sb_data_e1x :
796 			(u32 *)&sb_data_e2;
797 		/* copy sb data in here */
798 		for (j = 0; j < data_size; j++)
799 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
800 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
801 				j * sizeof(u32));
802 
803 		if (!CHIP_IS_E1x(bp)) {
804 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
805 				sb_data_e2.common.p_func.pf_id,
806 				sb_data_e2.common.p_func.vf_id,
807 				sb_data_e2.common.p_func.vf_valid,
808 				sb_data_e2.common.p_func.vnic_id,
809 				sb_data_e2.common.same_igu_sb_1b,
810 				sb_data_e2.common.state);
811 		} else {
812 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
813 				sb_data_e1x.common.p_func.pf_id,
814 				sb_data_e1x.common.p_func.vf_id,
815 				sb_data_e1x.common.p_func.vf_valid,
816 				sb_data_e1x.common.p_func.vnic_id,
817 				sb_data_e1x.common.same_igu_sb_1b,
818 				sb_data_e1x.common.state);
819 		}
820 
821 		/* SB_SMs data */
822 		for (j = 0; j < HC_SB_MAX_SM; j++) {
823 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
824 				j, hc_sm_p[j].__flags,
825 				hc_sm_p[j].igu_sb_id,
826 				hc_sm_p[j].igu_seg_id,
827 				hc_sm_p[j].time_to_expire,
828 				hc_sm_p[j].timer_value);
829 		}
830 
831 		/* Indecies data */
832 		for (j = 0; j < loop; j++) {
833 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
834 			       hc_index_p[j].flags,
835 			       hc_index_p[j].timeout);
836 		}
837 	}
838 
839 #ifdef BNX2X_STOP_ON_ERROR
840 	/* Rings */
841 	/* Rx */
842 	for_each_rx_queue(bp, i) {
843 		struct bnx2x_fastpath *fp = &bp->fp[i];
844 
845 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
846 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
847 		for (j = start; j != end; j = RX_BD(j + 1)) {
848 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
849 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
850 
851 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
852 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
853 		}
854 
855 		start = RX_SGE(fp->rx_sge_prod);
856 		end = RX_SGE(fp->last_max_sge);
857 		for (j = start; j != end; j = RX_SGE(j + 1)) {
858 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
859 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
860 
861 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
862 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
863 		}
864 
865 		start = RCQ_BD(fp->rx_comp_cons - 10);
866 		end = RCQ_BD(fp->rx_comp_cons + 503);
867 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
868 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
869 
870 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
871 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
872 		}
873 	}
874 
875 	/* Tx */
876 	for_each_tx_queue(bp, i) {
877 		struct bnx2x_fastpath *fp = &bp->fp[i];
878 		for_each_cos_in_tx_queue(fp, cos) {
879 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
880 
881 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
882 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
883 			for (j = start; j != end; j = TX_BD(j + 1)) {
884 				struct sw_tx_bd *sw_bd =
885 					&txdata->tx_buf_ring[j];
886 
887 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
888 					  i, cos, j, sw_bd->skb,
889 					  sw_bd->first_bd);
890 			}
891 
892 			start = TX_BD(txdata->tx_bd_cons - 10);
893 			end = TX_BD(txdata->tx_bd_cons + 254);
894 			for (j = start; j != end; j = TX_BD(j + 1)) {
895 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
896 
897 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
898 					  i, cos, j, tx_bd[0], tx_bd[1],
899 					  tx_bd[2], tx_bd[3]);
900 			}
901 		}
902 	}
903 #endif
904 	bnx2x_fw_dump(bp);
905 	bnx2x_mc_assert(bp);
906 	BNX2X_ERR("end crash dump -----------------\n");
907 }
908 
909 /*
910  * FLR Support for E2
911  *
912  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
913  * initialization.
914  */
915 #define FLR_WAIT_USEC		10000	/* 10 miliseconds */
916 #define FLR_WAIT_INTERVAL	50	/* usec */
917 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
918 
919 struct pbf_pN_buf_regs {
920 	int pN;
921 	u32 init_crd;
922 	u32 crd;
923 	u32 crd_freed;
924 };
925 
926 struct pbf_pN_cmd_regs {
927 	int pN;
928 	u32 lines_occup;
929 	u32 lines_freed;
930 };
931 
932 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
933 				     struct pbf_pN_buf_regs *regs,
934 				     u32 poll_count)
935 {
936 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
937 	u32 cur_cnt = poll_count;
938 
939 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
940 	crd = crd_start = REG_RD(bp, regs->crd);
941 	init_crd = REG_RD(bp, regs->init_crd);
942 
943 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
944 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
945 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
946 
947 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
948 	       (init_crd - crd_start))) {
949 		if (cur_cnt--) {
950 			udelay(FLR_WAIT_INTERVAL);
951 			crd = REG_RD(bp, regs->crd);
952 			crd_freed = REG_RD(bp, regs->crd_freed);
953 		} else {
954 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
955 			   regs->pN);
956 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
957 			   regs->pN, crd);
958 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
959 			   regs->pN, crd_freed);
960 			break;
961 		}
962 	}
963 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
964 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
965 }
966 
967 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
968 				     struct pbf_pN_cmd_regs *regs,
969 				     u32 poll_count)
970 {
971 	u32 occup, to_free, freed, freed_start;
972 	u32 cur_cnt = poll_count;
973 
974 	occup = to_free = REG_RD(bp, regs->lines_occup);
975 	freed = freed_start = REG_RD(bp, regs->lines_freed);
976 
977 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
978 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
979 
980 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
981 		if (cur_cnt--) {
982 			udelay(FLR_WAIT_INTERVAL);
983 			occup = REG_RD(bp, regs->lines_occup);
984 			freed = REG_RD(bp, regs->lines_freed);
985 		} else {
986 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
987 			   regs->pN);
988 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
989 			   regs->pN, occup);
990 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
991 			   regs->pN, freed);
992 			break;
993 		}
994 	}
995 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
996 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
997 }
998 
999 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1000 				    u32 expected, u32 poll_count)
1001 {
1002 	u32 cur_cnt = poll_count;
1003 	u32 val;
1004 
1005 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1006 		udelay(FLR_WAIT_INTERVAL);
1007 
1008 	return val;
1009 }
1010 
1011 static int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1012 					   char *msg, u32 poll_cnt)
1013 {
1014 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1015 	if (val != 0) {
1016 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1017 		return 1;
1018 	}
1019 	return 0;
1020 }
1021 
1022 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1023 {
1024 	/* adjust polling timeout */
1025 	if (CHIP_REV_IS_EMUL(bp))
1026 		return FLR_POLL_CNT * 2000;
1027 
1028 	if (CHIP_REV_IS_FPGA(bp))
1029 		return FLR_POLL_CNT * 120;
1030 
1031 	return FLR_POLL_CNT;
1032 }
1033 
1034 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1035 {
1036 	struct pbf_pN_cmd_regs cmd_regs[] = {
1037 		{0, (CHIP_IS_E3B0(bp)) ?
1038 			PBF_REG_TQ_OCCUPANCY_Q0 :
1039 			PBF_REG_P0_TQ_OCCUPANCY,
1040 		    (CHIP_IS_E3B0(bp)) ?
1041 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1042 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1043 		{1, (CHIP_IS_E3B0(bp)) ?
1044 			PBF_REG_TQ_OCCUPANCY_Q1 :
1045 			PBF_REG_P1_TQ_OCCUPANCY,
1046 		    (CHIP_IS_E3B0(bp)) ?
1047 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1048 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1049 		{4, (CHIP_IS_E3B0(bp)) ?
1050 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1051 			PBF_REG_P4_TQ_OCCUPANCY,
1052 		    (CHIP_IS_E3B0(bp)) ?
1053 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1054 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1055 	};
1056 
1057 	struct pbf_pN_buf_regs buf_regs[] = {
1058 		{0, (CHIP_IS_E3B0(bp)) ?
1059 			PBF_REG_INIT_CRD_Q0 :
1060 			PBF_REG_P0_INIT_CRD ,
1061 		    (CHIP_IS_E3B0(bp)) ?
1062 			PBF_REG_CREDIT_Q0 :
1063 			PBF_REG_P0_CREDIT,
1064 		    (CHIP_IS_E3B0(bp)) ?
1065 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1066 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1067 		{1, (CHIP_IS_E3B0(bp)) ?
1068 			PBF_REG_INIT_CRD_Q1 :
1069 			PBF_REG_P1_INIT_CRD,
1070 		    (CHIP_IS_E3B0(bp)) ?
1071 			PBF_REG_CREDIT_Q1 :
1072 			PBF_REG_P1_CREDIT,
1073 		    (CHIP_IS_E3B0(bp)) ?
1074 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1075 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1076 		{4, (CHIP_IS_E3B0(bp)) ?
1077 			PBF_REG_INIT_CRD_LB_Q :
1078 			PBF_REG_P4_INIT_CRD,
1079 		    (CHIP_IS_E3B0(bp)) ?
1080 			PBF_REG_CREDIT_LB_Q :
1081 			PBF_REG_P4_CREDIT,
1082 		    (CHIP_IS_E3B0(bp)) ?
1083 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1084 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1085 	};
1086 
1087 	int i;
1088 
1089 	/* Verify the command queues are flushed P0, P1, P4 */
1090 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1091 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1092 
1093 
1094 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1095 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1096 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1097 }
1098 
1099 #define OP_GEN_PARAM(param) \
1100 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1101 
1102 #define OP_GEN_TYPE(type) \
1103 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1104 
1105 #define OP_GEN_AGG_VECT(index) \
1106 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1107 
1108 
1109 static int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1110 					 u32 poll_cnt)
1111 {
1112 	struct sdm_op_gen op_gen = {0};
1113 
1114 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1115 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1116 	int ret = 0;
1117 
1118 	if (REG_RD(bp, comp_addr)) {
1119 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1120 		return 1;
1121 	}
1122 
1123 	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1124 	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1125 	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1126 	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1127 
1128 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1129 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1130 
1131 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1132 		BNX2X_ERR("FW final cleanup did not succeed\n");
1133 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1134 		   (REG_RD(bp, comp_addr)));
1135 		ret = 1;
1136 	}
1137 	/* Zero completion for nxt FLR */
1138 	REG_WR(bp, comp_addr, 0);
1139 
1140 	return ret;
1141 }
1142 
1143 static u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1144 {
1145 	int pos;
1146 	u16 status;
1147 
1148 	pos = pci_pcie_cap(dev);
1149 	if (!pos)
1150 		return false;
1151 
1152 	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1153 	return status & PCI_EXP_DEVSTA_TRPND;
1154 }
1155 
1156 /* PF FLR specific routines
1157 */
1158 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1159 {
1160 
1161 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1162 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1163 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1164 			"CFC PF usage counter timed out",
1165 			poll_cnt))
1166 		return 1;
1167 
1168 
1169 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1170 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1171 			DORQ_REG_PF_USAGE_CNT,
1172 			"DQ PF usage counter timed out",
1173 			poll_cnt))
1174 		return 1;
1175 
1176 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1177 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1178 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1179 			"QM PF usage counter timed out",
1180 			poll_cnt))
1181 		return 1;
1182 
1183 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1184 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1185 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1186 			"Timers VNIC usage counter timed out",
1187 			poll_cnt))
1188 		return 1;
1189 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1190 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1191 			"Timers NUM_SCANS usage counter timed out",
1192 			poll_cnt))
1193 		return 1;
1194 
1195 	/* Wait DMAE PF usage counter to zero */
1196 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1197 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1198 			"DMAE dommand register timed out",
1199 			poll_cnt))
1200 		return 1;
1201 
1202 	return 0;
1203 }
1204 
1205 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1206 {
1207 	u32 val;
1208 
1209 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1210 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1211 
1212 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1213 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1214 
1215 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1216 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1217 
1218 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1219 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1220 
1221 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1222 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1223 
1224 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1225 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1226 
1227 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1228 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1229 
1230 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1231 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1232 	   val);
1233 }
1234 
1235 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1236 {
1237 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1238 
1239 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1240 
1241 	/* Re-enable PF target read access */
1242 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1243 
1244 	/* Poll HW usage counters */
1245 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1246 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1247 		return -EBUSY;
1248 
1249 	/* Zero the igu 'trailing edge' and 'leading edge' */
1250 
1251 	/* Send the FW cleanup command */
1252 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1253 		return -EBUSY;
1254 
1255 	/* ATC cleanup */
1256 
1257 	/* Verify TX hw is flushed */
1258 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1259 
1260 	/* Wait 100ms (not adjusted according to platform) */
1261 	msleep(100);
1262 
1263 	/* Verify no pending pci transactions */
1264 	if (bnx2x_is_pcie_pending(bp->pdev))
1265 		BNX2X_ERR("PCIE Transactions still pending\n");
1266 
1267 	/* Debug */
1268 	bnx2x_hw_enable_status(bp);
1269 
1270 	/*
1271 	 * Master enable - Due to WB DMAE writes performed before this
1272 	 * register is re-initialized as part of the regular function init
1273 	 */
1274 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1275 
1276 	return 0;
1277 }
1278 
1279 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1280 {
1281 	int port = BP_PORT(bp);
1282 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1283 	u32 val = REG_RD(bp, addr);
1284 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1285 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1286 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1287 
1288 	if (msix) {
1289 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1290 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1291 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1292 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1293 		if (single_msix)
1294 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1295 	} else if (msi) {
1296 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1297 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1298 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1299 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1300 	} else {
1301 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1302 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1303 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1304 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1305 
1306 		if (!CHIP_IS_E1(bp)) {
1307 			DP(NETIF_MSG_IFUP,
1308 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1309 
1310 			REG_WR(bp, addr, val);
1311 
1312 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1313 		}
1314 	}
1315 
1316 	if (CHIP_IS_E1(bp))
1317 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1318 
1319 	DP(NETIF_MSG_IFUP,
1320 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1321 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1322 
1323 	REG_WR(bp, addr, val);
1324 	/*
1325 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1326 	 */
1327 	mmiowb();
1328 	barrier();
1329 
1330 	if (!CHIP_IS_E1(bp)) {
1331 		/* init leading/trailing edge */
1332 		if (IS_MF(bp)) {
1333 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1334 			if (bp->port.pmf)
1335 				/* enable nig and gpio3 attention */
1336 				val |= 0x1100;
1337 		} else
1338 			val = 0xffff;
1339 
1340 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1341 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1342 	}
1343 
1344 	/* Make sure that interrupts are indeed enabled from here on */
1345 	mmiowb();
1346 }
1347 
1348 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1349 {
1350 	u32 val;
1351 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1352 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1353 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1354 
1355 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1356 
1357 	if (msix) {
1358 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1359 			 IGU_PF_CONF_SINGLE_ISR_EN);
1360 		val |= (IGU_PF_CONF_FUNC_EN |
1361 			IGU_PF_CONF_MSI_MSIX_EN |
1362 			IGU_PF_CONF_ATTN_BIT_EN);
1363 
1364 		if (single_msix)
1365 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1366 	} else if (msi) {
1367 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1368 		val |= (IGU_PF_CONF_FUNC_EN |
1369 			IGU_PF_CONF_MSI_MSIX_EN |
1370 			IGU_PF_CONF_ATTN_BIT_EN |
1371 			IGU_PF_CONF_SINGLE_ISR_EN);
1372 	} else {
1373 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1374 		val |= (IGU_PF_CONF_FUNC_EN |
1375 			IGU_PF_CONF_INT_LINE_EN |
1376 			IGU_PF_CONF_ATTN_BIT_EN |
1377 			IGU_PF_CONF_SINGLE_ISR_EN);
1378 	}
1379 
1380 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1381 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1382 
1383 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1384 
1385 	if (val & IGU_PF_CONF_INT_LINE_EN)
1386 		pci_intx(bp->pdev, true);
1387 
1388 	barrier();
1389 
1390 	/* init leading/trailing edge */
1391 	if (IS_MF(bp)) {
1392 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1393 		if (bp->port.pmf)
1394 			/* enable nig and gpio3 attention */
1395 			val |= 0x1100;
1396 	} else
1397 		val = 0xffff;
1398 
1399 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1400 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1401 
1402 	/* Make sure that interrupts are indeed enabled from here on */
1403 	mmiowb();
1404 }
1405 
1406 void bnx2x_int_enable(struct bnx2x *bp)
1407 {
1408 	if (bp->common.int_block == INT_BLOCK_HC)
1409 		bnx2x_hc_int_enable(bp);
1410 	else
1411 		bnx2x_igu_int_enable(bp);
1412 }
1413 
1414 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1415 {
1416 	int port = BP_PORT(bp);
1417 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1418 	u32 val = REG_RD(bp, addr);
1419 
1420 	/*
1421 	 * in E1 we must use only PCI configuration space to disable
1422 	 * MSI/MSIX capablility
1423 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1424 	 */
1425 	if (CHIP_IS_E1(bp)) {
1426 		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1427 		 *  Use mask register to prevent from HC sending interrupts
1428 		 *  after we exit the function
1429 		 */
1430 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1431 
1432 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1433 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1434 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1435 	} else
1436 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1437 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1438 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1439 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1440 
1441 	DP(NETIF_MSG_IFDOWN,
1442 	   "write %x to HC %d (addr 0x%x)\n",
1443 	   val, port, addr);
1444 
1445 	/* flush all outstanding writes */
1446 	mmiowb();
1447 
1448 	REG_WR(bp, addr, val);
1449 	if (REG_RD(bp, addr) != val)
1450 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1451 }
1452 
1453 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1454 {
1455 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1456 
1457 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1458 		 IGU_PF_CONF_INT_LINE_EN |
1459 		 IGU_PF_CONF_ATTN_BIT_EN);
1460 
1461 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1462 
1463 	/* flush all outstanding writes */
1464 	mmiowb();
1465 
1466 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1467 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1468 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1469 }
1470 
1471 void bnx2x_int_disable(struct bnx2x *bp)
1472 {
1473 	if (bp->common.int_block == INT_BLOCK_HC)
1474 		bnx2x_hc_int_disable(bp);
1475 	else
1476 		bnx2x_igu_int_disable(bp);
1477 }
1478 
1479 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1480 {
1481 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1482 	int i, offset;
1483 
1484 	if (disable_hw)
1485 		/* prevent the HW from sending interrupts */
1486 		bnx2x_int_disable(bp);
1487 
1488 	/* make sure all ISRs are done */
1489 	if (msix) {
1490 		synchronize_irq(bp->msix_table[0].vector);
1491 		offset = 1;
1492 #ifdef BCM_CNIC
1493 		offset++;
1494 #endif
1495 		for_each_eth_queue(bp, i)
1496 			synchronize_irq(bp->msix_table[offset++].vector);
1497 	} else
1498 		synchronize_irq(bp->pdev->irq);
1499 
1500 	/* make sure sp_task is not running */
1501 	cancel_delayed_work(&bp->sp_task);
1502 	cancel_delayed_work(&bp->period_task);
1503 	flush_workqueue(bnx2x_wq);
1504 }
1505 
1506 /* fast path */
1507 
1508 /*
1509  * General service functions
1510  */
1511 
1512 /* Return true if succeeded to acquire the lock */
1513 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1514 {
1515 	u32 lock_status;
1516 	u32 resource_bit = (1 << resource);
1517 	int func = BP_FUNC(bp);
1518 	u32 hw_lock_control_reg;
1519 
1520 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1521 	   "Trying to take a lock on resource %d\n", resource);
1522 
1523 	/* Validating that the resource is within range */
1524 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1525 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1526 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1527 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1528 		return false;
1529 	}
1530 
1531 	if (func <= 5)
1532 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1533 	else
1534 		hw_lock_control_reg =
1535 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1536 
1537 	/* Try to acquire the lock */
1538 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1539 	lock_status = REG_RD(bp, hw_lock_control_reg);
1540 	if (lock_status & resource_bit)
1541 		return true;
1542 
1543 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1544 	   "Failed to get a lock on resource %d\n", resource);
1545 	return false;
1546 }
1547 
1548 /**
1549  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1550  *
1551  * @bp:	driver handle
1552  *
1553  * Returns the recovery leader resource id according to the engine this function
1554  * belongs to. Currently only only 2 engines is supported.
1555  */
1556 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1557 {
1558 	if (BP_PATH(bp))
1559 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1560 	else
1561 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1562 }
1563 
1564 /**
1565  * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1566  *
1567  * @bp: driver handle
1568  *
1569  * Tries to aquire a leader lock for current engine.
1570  */
1571 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1572 {
1573 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1574 }
1575 
1576 #ifdef BCM_CNIC
1577 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1578 #endif
1579 
1580 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1581 {
1582 	struct bnx2x *bp = fp->bp;
1583 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1584 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1585 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1586 	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1587 
1588 	DP(BNX2X_MSG_SP,
1589 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1590 	   fp->index, cid, command, bp->state,
1591 	   rr_cqe->ramrod_cqe.ramrod_type);
1592 
1593 	switch (command) {
1594 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1595 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1596 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1597 		break;
1598 
1599 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1600 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1601 		drv_cmd = BNX2X_Q_CMD_SETUP;
1602 		break;
1603 
1604 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1605 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1606 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1607 		break;
1608 
1609 	case (RAMROD_CMD_ID_ETH_HALT):
1610 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1611 		drv_cmd = BNX2X_Q_CMD_HALT;
1612 		break;
1613 
1614 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1615 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1616 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1617 		break;
1618 
1619 	case (RAMROD_CMD_ID_ETH_EMPTY):
1620 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1621 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1622 		break;
1623 
1624 	default:
1625 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1626 			  command, fp->index);
1627 		return;
1628 	}
1629 
1630 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1631 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1632 		/* q_obj->complete_cmd() failure means that this was
1633 		 * an unexpected completion.
1634 		 *
1635 		 * In this case we don't want to increase the bp->spq_left
1636 		 * because apparently we haven't sent this command the first
1637 		 * place.
1638 		 */
1639 #ifdef BNX2X_STOP_ON_ERROR
1640 		bnx2x_panic();
1641 #else
1642 		return;
1643 #endif
1644 
1645 	smp_mb__before_atomic_inc();
1646 	atomic_inc(&bp->cq_spq_left);
1647 	/* push the change in bp->spq_left and towards the memory */
1648 	smp_mb__after_atomic_inc();
1649 
1650 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1651 
1652 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1653 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1654 		/* if Q update ramrod is completed for last Q in AFEX vif set
1655 		 * flow, then ACK MCP at the end
1656 		 *
1657 		 * mark pending ACK to MCP bit.
1658 		 * prevent case that both bits are cleared.
1659 		 * At the end of load/unload driver checks that
1660 		 * sp_state is cleaerd, and this order prevents
1661 		 * races
1662 		 */
1663 		smp_mb__before_clear_bit();
1664 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1665 		wmb();
1666 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1667 		smp_mb__after_clear_bit();
1668 
1669 		/* schedule workqueue to send ack to MCP */
1670 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1671 	}
1672 
1673 	return;
1674 }
1675 
1676 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1677 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1678 {
1679 	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1680 
1681 	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1682 				 start);
1683 }
1684 
1685 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1686 {
1687 	struct bnx2x *bp = netdev_priv(dev_instance);
1688 	u16 status = bnx2x_ack_int(bp);
1689 	u16 mask;
1690 	int i;
1691 	u8 cos;
1692 
1693 	/* Return here if interrupt is shared and it's not for us */
1694 	if (unlikely(status == 0)) {
1695 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1696 		return IRQ_NONE;
1697 	}
1698 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1699 
1700 #ifdef BNX2X_STOP_ON_ERROR
1701 	if (unlikely(bp->panic))
1702 		return IRQ_HANDLED;
1703 #endif
1704 
1705 	for_each_eth_queue(bp, i) {
1706 		struct bnx2x_fastpath *fp = &bp->fp[i];
1707 
1708 		mask = 0x2 << (fp->index + CNIC_PRESENT);
1709 		if (status & mask) {
1710 			/* Handle Rx or Tx according to SB id */
1711 			prefetch(fp->rx_cons_sb);
1712 			for_each_cos_in_tx_queue(fp, cos)
1713 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1714 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1715 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1716 			status &= ~mask;
1717 		}
1718 	}
1719 
1720 #ifdef BCM_CNIC
1721 	mask = 0x2;
1722 	if (status & (mask | 0x1)) {
1723 		struct cnic_ops *c_ops = NULL;
1724 
1725 		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1726 			rcu_read_lock();
1727 			c_ops = rcu_dereference(bp->cnic_ops);
1728 			if (c_ops)
1729 				c_ops->cnic_handler(bp->cnic_data, NULL);
1730 			rcu_read_unlock();
1731 		}
1732 
1733 		status &= ~mask;
1734 	}
1735 #endif
1736 
1737 	if (unlikely(status & 0x1)) {
1738 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1739 
1740 		status &= ~0x1;
1741 		if (!status)
1742 			return IRQ_HANDLED;
1743 	}
1744 
1745 	if (unlikely(status))
1746 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1747 		   status);
1748 
1749 	return IRQ_HANDLED;
1750 }
1751 
1752 /* Link */
1753 
1754 /*
1755  * General service functions
1756  */
1757 
1758 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1759 {
1760 	u32 lock_status;
1761 	u32 resource_bit = (1 << resource);
1762 	int func = BP_FUNC(bp);
1763 	u32 hw_lock_control_reg;
1764 	int cnt;
1765 
1766 	/* Validating that the resource is within range */
1767 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1768 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1769 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1770 		return -EINVAL;
1771 	}
1772 
1773 	if (func <= 5) {
1774 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1775 	} else {
1776 		hw_lock_control_reg =
1777 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1778 	}
1779 
1780 	/* Validating that the resource is not already taken */
1781 	lock_status = REG_RD(bp, hw_lock_control_reg);
1782 	if (lock_status & resource_bit) {
1783 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1784 		   lock_status, resource_bit);
1785 		return -EEXIST;
1786 	}
1787 
1788 	/* Try for 5 second every 5ms */
1789 	for (cnt = 0; cnt < 1000; cnt++) {
1790 		/* Try to acquire the lock */
1791 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1792 		lock_status = REG_RD(bp, hw_lock_control_reg);
1793 		if (lock_status & resource_bit)
1794 			return 0;
1795 
1796 		msleep(5);
1797 	}
1798 	BNX2X_ERR("Timeout\n");
1799 	return -EAGAIN;
1800 }
1801 
1802 int bnx2x_release_leader_lock(struct bnx2x *bp)
1803 {
1804 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1805 }
1806 
1807 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1808 {
1809 	u32 lock_status;
1810 	u32 resource_bit = (1 << resource);
1811 	int func = BP_FUNC(bp);
1812 	u32 hw_lock_control_reg;
1813 
1814 	/* Validating that the resource is within range */
1815 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1816 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1817 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1818 		return -EINVAL;
1819 	}
1820 
1821 	if (func <= 5) {
1822 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1823 	} else {
1824 		hw_lock_control_reg =
1825 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1826 	}
1827 
1828 	/* Validating that the resource is currently taken */
1829 	lock_status = REG_RD(bp, hw_lock_control_reg);
1830 	if (!(lock_status & resource_bit)) {
1831 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1832 		   lock_status, resource_bit);
1833 		return -EFAULT;
1834 	}
1835 
1836 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1837 	return 0;
1838 }
1839 
1840 
1841 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1842 {
1843 	/* The GPIO should be swapped if swap register is set and active */
1844 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1845 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1846 	int gpio_shift = gpio_num +
1847 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1848 	u32 gpio_mask = (1 << gpio_shift);
1849 	u32 gpio_reg;
1850 	int value;
1851 
1852 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1853 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1854 		return -EINVAL;
1855 	}
1856 
1857 	/* read GPIO value */
1858 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1859 
1860 	/* get the requested pin value */
1861 	if ((gpio_reg & gpio_mask) == gpio_mask)
1862 		value = 1;
1863 	else
1864 		value = 0;
1865 
1866 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1867 
1868 	return value;
1869 }
1870 
1871 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1872 {
1873 	/* The GPIO should be swapped if swap register is set and active */
1874 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1875 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1876 	int gpio_shift = gpio_num +
1877 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1878 	u32 gpio_mask = (1 << gpio_shift);
1879 	u32 gpio_reg;
1880 
1881 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1882 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1883 		return -EINVAL;
1884 	}
1885 
1886 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1887 	/* read GPIO and mask except the float bits */
1888 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1889 
1890 	switch (mode) {
1891 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1892 		DP(NETIF_MSG_LINK,
1893 		   "Set GPIO %d (shift %d) -> output low\n",
1894 		   gpio_num, gpio_shift);
1895 		/* clear FLOAT and set CLR */
1896 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1897 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1898 		break;
1899 
1900 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1901 		DP(NETIF_MSG_LINK,
1902 		   "Set GPIO %d (shift %d) -> output high\n",
1903 		   gpio_num, gpio_shift);
1904 		/* clear FLOAT and set SET */
1905 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1906 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1907 		break;
1908 
1909 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1910 		DP(NETIF_MSG_LINK,
1911 		   "Set GPIO %d (shift %d) -> input\n",
1912 		   gpio_num, gpio_shift);
1913 		/* set FLOAT */
1914 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1915 		break;
1916 
1917 	default:
1918 		break;
1919 	}
1920 
1921 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1922 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1923 
1924 	return 0;
1925 }
1926 
1927 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1928 {
1929 	u32 gpio_reg = 0;
1930 	int rc = 0;
1931 
1932 	/* Any port swapping should be handled by caller. */
1933 
1934 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1935 	/* read GPIO and mask except the float bits */
1936 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1937 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1938 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1939 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1940 
1941 	switch (mode) {
1942 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1943 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1944 		/* set CLR */
1945 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1946 		break;
1947 
1948 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1949 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1950 		/* set SET */
1951 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1952 		break;
1953 
1954 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1955 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
1956 		/* set FLOAT */
1957 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1958 		break;
1959 
1960 	default:
1961 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
1962 		rc = -EINVAL;
1963 		break;
1964 	}
1965 
1966 	if (rc == 0)
1967 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1968 
1969 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1970 
1971 	return rc;
1972 }
1973 
1974 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1975 {
1976 	/* The GPIO should be swapped if swap register is set and active */
1977 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1978 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1979 	int gpio_shift = gpio_num +
1980 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1981 	u32 gpio_mask = (1 << gpio_shift);
1982 	u32 gpio_reg;
1983 
1984 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1985 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1986 		return -EINVAL;
1987 	}
1988 
1989 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1990 	/* read GPIO int */
1991 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
1992 
1993 	switch (mode) {
1994 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
1995 		DP(NETIF_MSG_LINK,
1996 		   "Clear GPIO INT %d (shift %d) -> output low\n",
1997 		   gpio_num, gpio_shift);
1998 		/* clear SET and set CLR */
1999 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2000 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2001 		break;
2002 
2003 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2004 		DP(NETIF_MSG_LINK,
2005 		   "Set GPIO INT %d (shift %d) -> output high\n",
2006 		   gpio_num, gpio_shift);
2007 		/* clear CLR and set SET */
2008 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2009 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2010 		break;
2011 
2012 	default:
2013 		break;
2014 	}
2015 
2016 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2017 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2018 
2019 	return 0;
2020 }
2021 
2022 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2023 {
2024 	u32 spio_mask = (1 << spio_num);
2025 	u32 spio_reg;
2026 
2027 	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2028 	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2029 		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2030 		return -EINVAL;
2031 	}
2032 
2033 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2034 	/* read SPIO and mask except the float bits */
2035 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2036 
2037 	switch (mode) {
2038 	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2039 		DP(NETIF_MSG_HW, "Set SPIO %d -> output low\n", spio_num);
2040 		/* clear FLOAT and set CLR */
2041 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2042 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2043 		break;
2044 
2045 	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2046 		DP(NETIF_MSG_HW, "Set SPIO %d -> output high\n", spio_num);
2047 		/* clear FLOAT and set SET */
2048 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2049 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2050 		break;
2051 
2052 	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2053 		DP(NETIF_MSG_HW, "Set SPIO %d -> input\n", spio_num);
2054 		/* set FLOAT */
2055 		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2056 		break;
2057 
2058 	default:
2059 		break;
2060 	}
2061 
2062 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2063 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2064 
2065 	return 0;
2066 }
2067 
2068 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2069 {
2070 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2071 	switch (bp->link_vars.ieee_fc &
2072 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2073 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2074 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2075 						   ADVERTISED_Pause);
2076 		break;
2077 
2078 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2079 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2080 						  ADVERTISED_Pause);
2081 		break;
2082 
2083 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2084 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2085 		break;
2086 
2087 	default:
2088 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2089 						   ADVERTISED_Pause);
2090 		break;
2091 	}
2092 }
2093 
2094 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2095 {
2096 	if (!BP_NOMCP(bp)) {
2097 		u8 rc;
2098 		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2099 		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2100 		/*
2101 		 * Initialize link parameters structure variables
2102 		 * It is recommended to turn off RX FC for jumbo frames
2103 		 * for better performance
2104 		 */
2105 		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2106 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2107 		else
2108 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2109 
2110 		bnx2x_acquire_phy_lock(bp);
2111 
2112 		if (load_mode == LOAD_DIAG) {
2113 			struct link_params *lp = &bp->link_params;
2114 			lp->loopback_mode = LOOPBACK_XGXS;
2115 			/* do PHY loopback at 10G speed, if possible */
2116 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2117 				if (lp->speed_cap_mask[cfx_idx] &
2118 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2119 					lp->req_line_speed[cfx_idx] =
2120 					SPEED_10000;
2121 				else
2122 					lp->req_line_speed[cfx_idx] =
2123 					SPEED_1000;
2124 			}
2125 		}
2126 
2127 		if (load_mode == LOAD_LOOPBACK_EXT) {
2128 			struct link_params *lp = &bp->link_params;
2129 			lp->loopback_mode = LOOPBACK_EXT;
2130 		}
2131 
2132 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2133 
2134 		bnx2x_release_phy_lock(bp);
2135 
2136 		bnx2x_calc_fc_adv(bp);
2137 
2138 		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2139 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2140 			bnx2x_link_report(bp);
2141 		} else
2142 			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2143 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2144 		return rc;
2145 	}
2146 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2147 	return -EINVAL;
2148 }
2149 
2150 void bnx2x_link_set(struct bnx2x *bp)
2151 {
2152 	if (!BP_NOMCP(bp)) {
2153 		bnx2x_acquire_phy_lock(bp);
2154 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2155 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2156 		bnx2x_release_phy_lock(bp);
2157 
2158 		bnx2x_calc_fc_adv(bp);
2159 	} else
2160 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2161 }
2162 
2163 static void bnx2x__link_reset(struct bnx2x *bp)
2164 {
2165 	if (!BP_NOMCP(bp)) {
2166 		bnx2x_acquire_phy_lock(bp);
2167 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2168 		bnx2x_release_phy_lock(bp);
2169 	} else
2170 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2171 }
2172 
2173 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2174 {
2175 	u8 rc = 0;
2176 
2177 	if (!BP_NOMCP(bp)) {
2178 		bnx2x_acquire_phy_lock(bp);
2179 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2180 				     is_serdes);
2181 		bnx2x_release_phy_lock(bp);
2182 	} else
2183 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2184 
2185 	return rc;
2186 }
2187 
2188 
2189 /* Calculates the sum of vn_min_rates.
2190    It's needed for further normalizing of the min_rates.
2191    Returns:
2192      sum of vn_min_rates.
2193        or
2194      0 - if all the min_rates are 0.
2195      In the later case fainess algorithm should be deactivated.
2196      If not all min_rates are zero then those that are zeroes will be set to 1.
2197  */
2198 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2199 				      struct cmng_init_input *input)
2200 {
2201 	int all_zero = 1;
2202 	int vn;
2203 
2204 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2205 		u32 vn_cfg = bp->mf_config[vn];
2206 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2207 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2208 
2209 		/* Skip hidden vns */
2210 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2211 			vn_min_rate = 0;
2212 		/* If min rate is zero - set it to 1 */
2213 		else if (!vn_min_rate)
2214 			vn_min_rate = DEF_MIN_RATE;
2215 		else
2216 			all_zero = 0;
2217 
2218 		input->vnic_min_rate[vn] = vn_min_rate;
2219 	}
2220 
2221 	/* if ETS or all min rates are zeros - disable fairness */
2222 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2223 		input->flags.cmng_enables &=
2224 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2225 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2226 	} else if (all_zero) {
2227 		input->flags.cmng_enables &=
2228 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2229 		DP(NETIF_MSG_IFUP,
2230 		   "All MIN values are zeroes fairness will be disabled\n");
2231 	} else
2232 		input->flags.cmng_enables |=
2233 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2234 }
2235 
2236 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2237 				    struct cmng_init_input *input)
2238 {
2239 	u16 vn_max_rate;
2240 	u32 vn_cfg = bp->mf_config[vn];
2241 
2242 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2243 		vn_max_rate = 0;
2244 	else {
2245 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2246 
2247 		if (IS_MF_SI(bp)) {
2248 			/* maxCfg in percents of linkspeed */
2249 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2250 		} else /* SD modes */
2251 			/* maxCfg is absolute in 100Mb units */
2252 			vn_max_rate = maxCfg * 100;
2253 	}
2254 
2255 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2256 
2257 	input->vnic_max_rate[vn] = vn_max_rate;
2258 }
2259 
2260 
2261 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2262 {
2263 	if (CHIP_REV_IS_SLOW(bp))
2264 		return CMNG_FNS_NONE;
2265 	if (IS_MF(bp))
2266 		return CMNG_FNS_MINMAX;
2267 
2268 	return CMNG_FNS_NONE;
2269 }
2270 
2271 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2272 {
2273 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2274 
2275 	if (BP_NOMCP(bp))
2276 		return; /* what should be the default bvalue in this case */
2277 
2278 	/* For 2 port configuration the absolute function number formula
2279 	 * is:
2280 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2281 	 *
2282 	 *      and there are 4 functions per port
2283 	 *
2284 	 * For 4 port configuration it is
2285 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2286 	 *
2287 	 *      and there are 2 functions per port
2288 	 */
2289 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2290 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2291 
2292 		if (func >= E1H_FUNC_MAX)
2293 			break;
2294 
2295 		bp->mf_config[vn] =
2296 			MF_CFG_RD(bp, func_mf_config[func].config);
2297 	}
2298 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2299 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2300 		bp->flags |= MF_FUNC_DIS;
2301 	} else {
2302 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2303 		bp->flags &= ~MF_FUNC_DIS;
2304 	}
2305 }
2306 
2307 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2308 {
2309 	struct cmng_init_input input;
2310 	memset(&input, 0, sizeof(struct cmng_init_input));
2311 
2312 	input.port_rate = bp->link_vars.line_speed;
2313 
2314 	if (cmng_type == CMNG_FNS_MINMAX) {
2315 		int vn;
2316 
2317 		/* read mf conf from shmem */
2318 		if (read_cfg)
2319 			bnx2x_read_mf_cfg(bp);
2320 
2321 		/* vn_weight_sum and enable fairness if not 0 */
2322 		bnx2x_calc_vn_min(bp, &input);
2323 
2324 		/* calculate and set min-max rate for each vn */
2325 		if (bp->port.pmf)
2326 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2327 				bnx2x_calc_vn_max(bp, vn, &input);
2328 
2329 		/* always enable rate shaping and fairness */
2330 		input.flags.cmng_enables |=
2331 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2332 
2333 		bnx2x_init_cmng(&input, &bp->cmng);
2334 		return;
2335 	}
2336 
2337 	/* rate shaping and fairness are disabled */
2338 	DP(NETIF_MSG_IFUP,
2339 	   "rate shaping and fairness are disabled\n");
2340 }
2341 
2342 static void storm_memset_cmng(struct bnx2x *bp,
2343 			      struct cmng_init *cmng,
2344 			      u8 port)
2345 {
2346 	int vn;
2347 	size_t size = sizeof(struct cmng_struct_per_port);
2348 
2349 	u32 addr = BAR_XSTRORM_INTMEM +
2350 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2351 
2352 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2353 
2354 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2355 		int func = func_by_vn(bp, vn);
2356 
2357 		addr = BAR_XSTRORM_INTMEM +
2358 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2359 		size = sizeof(struct rate_shaping_vars_per_vn);
2360 		__storm_memset_struct(bp, addr, size,
2361 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2362 
2363 		addr = BAR_XSTRORM_INTMEM +
2364 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2365 		size = sizeof(struct fairness_vars_per_vn);
2366 		__storm_memset_struct(bp, addr, size,
2367 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2368 	}
2369 }
2370 
2371 /* This function is called upon link interrupt */
2372 static void bnx2x_link_attn(struct bnx2x *bp)
2373 {
2374 	/* Make sure that we are synced with the current statistics */
2375 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2376 
2377 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2378 
2379 	if (bp->link_vars.link_up) {
2380 
2381 		/* dropless flow control */
2382 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2383 			int port = BP_PORT(bp);
2384 			u32 pause_enabled = 0;
2385 
2386 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2387 				pause_enabled = 1;
2388 
2389 			REG_WR(bp, BAR_USTRORM_INTMEM +
2390 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2391 			       pause_enabled);
2392 		}
2393 
2394 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2395 			struct host_port_stats *pstats;
2396 
2397 			pstats = bnx2x_sp(bp, port_stats);
2398 			/* reset old mac stats */
2399 			memset(&(pstats->mac_stx[0]), 0,
2400 			       sizeof(struct mac_stx));
2401 		}
2402 		if (bp->state == BNX2X_STATE_OPEN)
2403 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2404 	}
2405 
2406 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2407 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2408 
2409 		if (cmng_fns != CMNG_FNS_NONE) {
2410 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2411 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2412 		} else
2413 			/* rate shaping and fairness are disabled */
2414 			DP(NETIF_MSG_IFUP,
2415 			   "single function mode without fairness\n");
2416 	}
2417 
2418 	__bnx2x_link_report(bp);
2419 
2420 	if (IS_MF(bp))
2421 		bnx2x_link_sync_notify(bp);
2422 }
2423 
2424 void bnx2x__link_status_update(struct bnx2x *bp)
2425 {
2426 	if (bp->state != BNX2X_STATE_OPEN)
2427 		return;
2428 
2429 	/* read updated dcb configuration */
2430 	bnx2x_dcbx_pmf_update(bp);
2431 
2432 	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2433 
2434 	if (bp->link_vars.link_up)
2435 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2436 	else
2437 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2438 
2439 	/* indicate link status */
2440 	bnx2x_link_report(bp);
2441 }
2442 
2443 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2444 				  u16 vlan_val, u8 allowed_prio)
2445 {
2446 	struct bnx2x_func_state_params func_params = {0};
2447 	struct bnx2x_func_afex_update_params *f_update_params =
2448 		&func_params.params.afex_update;
2449 
2450 	func_params.f_obj = &bp->func_obj;
2451 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2452 
2453 	/* no need to wait for RAMROD completion, so don't
2454 	 * set RAMROD_COMP_WAIT flag
2455 	 */
2456 
2457 	f_update_params->vif_id = vifid;
2458 	f_update_params->afex_default_vlan = vlan_val;
2459 	f_update_params->allowed_priorities = allowed_prio;
2460 
2461 	/* if ramrod can not be sent, response to MCP immediately */
2462 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2463 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2464 
2465 	return 0;
2466 }
2467 
2468 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2469 					  u16 vif_index, u8 func_bit_map)
2470 {
2471 	struct bnx2x_func_state_params func_params = {0};
2472 	struct bnx2x_func_afex_viflists_params *update_params =
2473 		&func_params.params.afex_viflists;
2474 	int rc;
2475 	u32 drv_msg_code;
2476 
2477 	/* validate only LIST_SET and LIST_GET are received from switch */
2478 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2479 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2480 			  cmd_type);
2481 
2482 	func_params.f_obj = &bp->func_obj;
2483 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2484 
2485 	/* set parameters according to cmd_type */
2486 	update_params->afex_vif_list_command = cmd_type;
2487 	update_params->vif_list_index = cpu_to_le16(vif_index);
2488 	update_params->func_bit_map =
2489 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2490 	update_params->func_to_clear = 0;
2491 	drv_msg_code =
2492 		(cmd_type == VIF_LIST_RULE_GET) ?
2493 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2494 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2495 
2496 	/* if ramrod can not be sent, respond to MCP immediately for
2497 	 * SET and GET requests (other are not triggered from MCP)
2498 	 */
2499 	rc = bnx2x_func_state_change(bp, &func_params);
2500 	if (rc < 0)
2501 		bnx2x_fw_command(bp, drv_msg_code, 0);
2502 
2503 	return 0;
2504 }
2505 
2506 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2507 {
2508 	struct afex_stats afex_stats;
2509 	u32 func = BP_ABS_FUNC(bp);
2510 	u32 mf_config;
2511 	u16 vlan_val;
2512 	u32 vlan_prio;
2513 	u16 vif_id;
2514 	u8 allowed_prio;
2515 	u8 vlan_mode;
2516 	u32 addr_to_write, vifid, addrs, stats_type, i;
2517 
2518 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2519 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2520 		DP(BNX2X_MSG_MCP,
2521 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2522 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2523 	}
2524 
2525 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2526 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2527 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2528 		DP(BNX2X_MSG_MCP,
2529 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2530 		   vifid, addrs);
2531 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2532 					       addrs);
2533 	}
2534 
2535 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2536 		addr_to_write = SHMEM2_RD(bp,
2537 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2538 		stats_type = SHMEM2_RD(bp,
2539 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2540 
2541 		DP(BNX2X_MSG_MCP,
2542 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2543 		   addr_to_write);
2544 
2545 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2546 
2547 		/* write response to scratchpad, for MCP */
2548 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2549 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2550 			       *(((u32 *)(&afex_stats))+i));
2551 
2552 		/* send ack message to MCP */
2553 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2554 	}
2555 
2556 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2557 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2558 		bp->mf_config[BP_VN(bp)] = mf_config;
2559 		DP(BNX2X_MSG_MCP,
2560 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2561 		   mf_config);
2562 
2563 		/* if VIF_SET is "enabled" */
2564 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2565 			/* set rate limit directly to internal RAM */
2566 			struct cmng_init_input cmng_input;
2567 			struct rate_shaping_vars_per_vn m_rs_vn;
2568 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2569 			u32 addr = BAR_XSTRORM_INTMEM +
2570 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2571 
2572 			bp->mf_config[BP_VN(bp)] = mf_config;
2573 
2574 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2575 			m_rs_vn.vn_counter.rate =
2576 				cmng_input.vnic_max_rate[BP_VN(bp)];
2577 			m_rs_vn.vn_counter.quota =
2578 				(m_rs_vn.vn_counter.rate *
2579 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2580 
2581 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2582 
2583 			/* read relevant values from mf_cfg struct in shmem */
2584 			vif_id =
2585 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2586 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2587 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2588 			vlan_val =
2589 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2590 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2591 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2592 			vlan_prio = (mf_config &
2593 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2594 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2595 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2596 			vlan_mode =
2597 				(MF_CFG_RD(bp,
2598 					   func_mf_config[func].afex_config) &
2599 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2600 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2601 			allowed_prio =
2602 				(MF_CFG_RD(bp,
2603 					   func_mf_config[func].afex_config) &
2604 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2605 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2606 
2607 			/* send ramrod to FW, return in case of failure */
2608 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2609 						   allowed_prio))
2610 				return;
2611 
2612 			bp->afex_def_vlan_tag = vlan_val;
2613 			bp->afex_vlan_mode = vlan_mode;
2614 		} else {
2615 			/* notify link down because BP->flags is disabled */
2616 			bnx2x_link_report(bp);
2617 
2618 			/* send INVALID VIF ramrod to FW */
2619 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2620 
2621 			/* Reset the default afex VLAN */
2622 			bp->afex_def_vlan_tag = -1;
2623 		}
2624 	}
2625 }
2626 
2627 static void bnx2x_pmf_update(struct bnx2x *bp)
2628 {
2629 	int port = BP_PORT(bp);
2630 	u32 val;
2631 
2632 	bp->port.pmf = 1;
2633 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2634 
2635 	/*
2636 	 * We need the mb() to ensure the ordering between the writing to
2637 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2638 	 */
2639 	smp_mb();
2640 
2641 	/* queue a periodic task */
2642 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2643 
2644 	bnx2x_dcbx_pmf_update(bp);
2645 
2646 	/* enable nig attention */
2647 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2648 	if (bp->common.int_block == INT_BLOCK_HC) {
2649 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2650 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2651 	} else if (!CHIP_IS_E1x(bp)) {
2652 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2653 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2654 	}
2655 
2656 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2657 }
2658 
2659 /* end of Link */
2660 
2661 /* slow path */
2662 
2663 /*
2664  * General service functions
2665  */
2666 
2667 /* send the MCP a request, block until there is a reply */
2668 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2669 {
2670 	int mb_idx = BP_FW_MB_IDX(bp);
2671 	u32 seq;
2672 	u32 rc = 0;
2673 	u32 cnt = 1;
2674 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2675 
2676 	mutex_lock(&bp->fw_mb_mutex);
2677 	seq = ++bp->fw_seq;
2678 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2679 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2680 
2681 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2682 			(command | seq), param);
2683 
2684 	do {
2685 		/* let the FW do it's magic ... */
2686 		msleep(delay);
2687 
2688 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2689 
2690 		/* Give the FW up to 5 second (500*10ms) */
2691 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2692 
2693 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2694 	   cnt*delay, rc, seq);
2695 
2696 	/* is this a reply to our command? */
2697 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2698 		rc &= FW_MSG_CODE_MASK;
2699 	else {
2700 		/* FW BUG! */
2701 		BNX2X_ERR("FW failed to respond!\n");
2702 		bnx2x_fw_dump(bp);
2703 		rc = 0;
2704 	}
2705 	mutex_unlock(&bp->fw_mb_mutex);
2706 
2707 	return rc;
2708 }
2709 
2710 
2711 static void storm_memset_func_cfg(struct bnx2x *bp,
2712 				 struct tstorm_eth_function_common_config *tcfg,
2713 				 u16 abs_fid)
2714 {
2715 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2716 
2717 	u32 addr = BAR_TSTRORM_INTMEM +
2718 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2719 
2720 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2721 }
2722 
2723 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2724 {
2725 	if (CHIP_IS_E1x(bp)) {
2726 		struct tstorm_eth_function_common_config tcfg = {0};
2727 
2728 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2729 	}
2730 
2731 	/* Enable the function in the FW */
2732 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2733 	storm_memset_func_en(bp, p->func_id, 1);
2734 
2735 	/* spq */
2736 	if (p->func_flgs & FUNC_FLG_SPQ) {
2737 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2738 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2739 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2740 	}
2741 }
2742 
2743 /**
2744  * bnx2x_get_tx_only_flags - Return common flags
2745  *
2746  * @bp		device handle
2747  * @fp		queue handle
2748  * @zero_stats	TRUE if statistics zeroing is needed
2749  *
2750  * Return the flags that are common for the Tx-only and not normal connections.
2751  */
2752 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2753 					    struct bnx2x_fastpath *fp,
2754 					    bool zero_stats)
2755 {
2756 	unsigned long flags = 0;
2757 
2758 	/* PF driver will always initialize the Queue to an ACTIVE state */
2759 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2760 
2761 	/* tx only connections collect statistics (on the same index as the
2762 	 *  parent connection). The statistics are zeroed when the parent
2763 	 *  connection is initialized.
2764 	 */
2765 
2766 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2767 	if (zero_stats)
2768 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2769 
2770 
2771 	return flags;
2772 }
2773 
2774 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2775 				       struct bnx2x_fastpath *fp,
2776 				       bool leading)
2777 {
2778 	unsigned long flags = 0;
2779 
2780 	/* calculate other queue flags */
2781 	if (IS_MF_SD(bp))
2782 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2783 
2784 	if (IS_FCOE_FP(fp)) {
2785 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2786 		/* For FCoE - force usage of default priority (for afex) */
2787 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2788 	}
2789 
2790 	if (!fp->disable_tpa) {
2791 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2792 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2793 		if (fp->mode == TPA_MODE_GRO)
2794 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2795 	}
2796 
2797 	if (leading) {
2798 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2799 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2800 	}
2801 
2802 	/* Always set HW VLAN stripping */
2803 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2804 
2805 	/* configure silent vlan removal */
2806 	if (IS_MF_AFEX(bp))
2807 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
2808 
2809 
2810 	return flags | bnx2x_get_common_flags(bp, fp, true);
2811 }
2812 
2813 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2814 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2815 	u8 cos)
2816 {
2817 	gen_init->stat_id = bnx2x_stats_id(fp);
2818 	gen_init->spcl_id = fp->cl_id;
2819 
2820 	/* Always use mini-jumbo MTU for FCoE L2 ring */
2821 	if (IS_FCOE_FP(fp))
2822 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2823 	else
2824 		gen_init->mtu = bp->dev->mtu;
2825 
2826 	gen_init->cos = cos;
2827 }
2828 
2829 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2830 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2831 	struct bnx2x_rxq_setup_params *rxq_init)
2832 {
2833 	u8 max_sge = 0;
2834 	u16 sge_sz = 0;
2835 	u16 tpa_agg_size = 0;
2836 
2837 	if (!fp->disable_tpa) {
2838 		pause->sge_th_lo = SGE_TH_LO(bp);
2839 		pause->sge_th_hi = SGE_TH_HI(bp);
2840 
2841 		/* validate SGE ring has enough to cross high threshold */
2842 		WARN_ON(bp->dropless_fc &&
2843 				pause->sge_th_hi + FW_PREFETCH_CNT >
2844 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2845 
2846 		tpa_agg_size = min_t(u32,
2847 			(min_t(u32, 8, MAX_SKB_FRAGS) *
2848 			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2849 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2850 			SGE_PAGE_SHIFT;
2851 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2852 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2853 		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2854 				    0xffff);
2855 	}
2856 
2857 	/* pause - not for e1 */
2858 	if (!CHIP_IS_E1(bp)) {
2859 		pause->bd_th_lo = BD_TH_LO(bp);
2860 		pause->bd_th_hi = BD_TH_HI(bp);
2861 
2862 		pause->rcq_th_lo = RCQ_TH_LO(bp);
2863 		pause->rcq_th_hi = RCQ_TH_HI(bp);
2864 		/*
2865 		 * validate that rings have enough entries to cross
2866 		 * high thresholds
2867 		 */
2868 		WARN_ON(bp->dropless_fc &&
2869 				pause->bd_th_hi + FW_PREFETCH_CNT >
2870 				bp->rx_ring_size);
2871 		WARN_ON(bp->dropless_fc &&
2872 				pause->rcq_th_hi + FW_PREFETCH_CNT >
2873 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2874 
2875 		pause->pri_map = 1;
2876 	}
2877 
2878 	/* rxq setup */
2879 	rxq_init->dscr_map = fp->rx_desc_mapping;
2880 	rxq_init->sge_map = fp->rx_sge_mapping;
2881 	rxq_init->rcq_map = fp->rx_comp_mapping;
2882 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2883 
2884 	/* This should be a maximum number of data bytes that may be
2885 	 * placed on the BD (not including paddings).
2886 	 */
2887 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2888 		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2889 
2890 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2891 	rxq_init->tpa_agg_sz = tpa_agg_size;
2892 	rxq_init->sge_buf_sz = sge_sz;
2893 	rxq_init->max_sges_pkt = max_sge;
2894 	rxq_init->rss_engine_id = BP_FUNC(bp);
2895 	rxq_init->mcast_engine_id = BP_FUNC(bp);
2896 
2897 	/* Maximum number or simultaneous TPA aggregation for this Queue.
2898 	 *
2899 	 * For PF Clients it should be the maximum avaliable number.
2900 	 * VF driver(s) may want to define it to a smaller value.
2901 	 */
2902 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2903 
2904 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2905 	rxq_init->fw_sb_id = fp->fw_sb_id;
2906 
2907 	if (IS_FCOE_FP(fp))
2908 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2909 	else
2910 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2911 	/* configure silent vlan removal
2912 	 * if multi function mode is afex, then mask default vlan
2913 	 */
2914 	if (IS_MF_AFEX(bp)) {
2915 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
2916 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
2917 	}
2918 }
2919 
2920 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2921 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2922 	u8 cos)
2923 {
2924 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
2925 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2926 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2927 	txq_init->fw_sb_id = fp->fw_sb_id;
2928 
2929 	/*
2930 	 * set the tss leading client id for TX classfication ==
2931 	 * leading RSS client id
2932 	 */
2933 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2934 
2935 	if (IS_FCOE_FP(fp)) {
2936 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2937 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2938 	}
2939 }
2940 
2941 static void bnx2x_pf_init(struct bnx2x *bp)
2942 {
2943 	struct bnx2x_func_init_params func_init = {0};
2944 	struct event_ring_data eq_data = { {0} };
2945 	u16 flags;
2946 
2947 	if (!CHIP_IS_E1x(bp)) {
2948 		/* reset IGU PF statistics: MSIX + ATTN */
2949 		/* PF */
2950 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2951 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2952 			   (CHIP_MODE_IS_4_PORT(bp) ?
2953 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2954 		/* ATTN */
2955 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2956 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2957 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2958 			   (CHIP_MODE_IS_4_PORT(bp) ?
2959 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2960 	}
2961 
2962 	/* function setup flags */
2963 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2964 
2965 	/* This flag is relevant for E1x only.
2966 	 * E2 doesn't have a TPA configuration in a function level.
2967 	 */
2968 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2969 
2970 	func_init.func_flgs = flags;
2971 	func_init.pf_id = BP_FUNC(bp);
2972 	func_init.func_id = BP_FUNC(bp);
2973 	func_init.spq_map = bp->spq_mapping;
2974 	func_init.spq_prod = bp->spq_prod_idx;
2975 
2976 	bnx2x_func_init(bp, &func_init);
2977 
2978 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2979 
2980 	/*
2981 	 * Congestion management values depend on the link rate
2982 	 * There is no active link so initial link rate is set to 10 Gbps.
2983 	 * When the link comes up The congestion management values are
2984 	 * re-calculated according to the actual link rate.
2985 	 */
2986 	bp->link_vars.line_speed = SPEED_10000;
2987 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2988 
2989 	/* Only the PMF sets the HW */
2990 	if (bp->port.pmf)
2991 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2992 
2993 	/* init Event Queue */
2994 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2995 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2996 	eq_data.producer = bp->eq_prod;
2997 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2998 	eq_data.sb_id = DEF_SB_ID;
2999 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3000 }
3001 
3002 
3003 static void bnx2x_e1h_disable(struct bnx2x *bp)
3004 {
3005 	int port = BP_PORT(bp);
3006 
3007 	bnx2x_tx_disable(bp);
3008 
3009 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3010 }
3011 
3012 static void bnx2x_e1h_enable(struct bnx2x *bp)
3013 {
3014 	int port = BP_PORT(bp);
3015 
3016 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3017 
3018 	/* Tx queue should be only reenabled */
3019 	netif_tx_wake_all_queues(bp->dev);
3020 
3021 	/*
3022 	 * Should not call netif_carrier_on since it will be called if the link
3023 	 * is up when checking for link state
3024 	 */
3025 }
3026 
3027 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3028 
3029 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3030 {
3031 	struct eth_stats_info *ether_stat =
3032 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3033 
3034 	/* leave last char as NULL */
3035 	memcpy(ether_stat->version, DRV_MODULE_VERSION,
3036 	       ETH_STAT_INFO_VERSION_LEN - 1);
3037 
3038 	bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
3039 					 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3040 					 ether_stat->mac_local);
3041 
3042 	ether_stat->mtu_size = bp->dev->mtu;
3043 
3044 	if (bp->dev->features & NETIF_F_RXCSUM)
3045 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3046 	if (bp->dev->features & NETIF_F_TSO)
3047 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3048 	ether_stat->feature_flags |= bp->common.boot_mode;
3049 
3050 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3051 
3052 	ether_stat->txq_size = bp->tx_ring_size;
3053 	ether_stat->rxq_size = bp->rx_ring_size;
3054 }
3055 
3056 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3057 {
3058 #ifdef BCM_CNIC
3059 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3060 	struct fcoe_stats_info *fcoe_stat =
3061 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3062 
3063 	memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
3064 
3065 	fcoe_stat->qos_priority =
3066 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3067 
3068 	/* insert FCoE stats from ramrod response */
3069 	if (!NO_FCOE(bp)) {
3070 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3071 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3072 			tstorm_queue_statistics;
3073 
3074 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3075 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3076 			xstorm_queue_statistics;
3077 
3078 		struct fcoe_statistics_params *fw_fcoe_stat =
3079 			&bp->fw_stats_data->fcoe;
3080 
3081 		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
3082 		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3083 
3084 		ADD_64(fcoe_stat->rx_bytes_hi,
3085 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3086 		       fcoe_stat->rx_bytes_lo,
3087 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3088 
3089 		ADD_64(fcoe_stat->rx_bytes_hi,
3090 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3091 		       fcoe_stat->rx_bytes_lo,
3092 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3093 
3094 		ADD_64(fcoe_stat->rx_bytes_hi,
3095 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3096 		       fcoe_stat->rx_bytes_lo,
3097 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3098 
3099 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3100 		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3101 
3102 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3103 		       fcoe_q_tstorm_stats->rcv_ucast_pkts);
3104 
3105 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3106 		       fcoe_q_tstorm_stats->rcv_bcast_pkts);
3107 
3108 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3109 		       fcoe_q_tstorm_stats->rcv_mcast_pkts);
3110 
3111 		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3112 		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3113 
3114 		ADD_64(fcoe_stat->tx_bytes_hi,
3115 		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3116 		       fcoe_stat->tx_bytes_lo,
3117 		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3118 
3119 		ADD_64(fcoe_stat->tx_bytes_hi,
3120 		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3121 		       fcoe_stat->tx_bytes_lo,
3122 		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3123 
3124 		ADD_64(fcoe_stat->tx_bytes_hi,
3125 		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3126 		       fcoe_stat->tx_bytes_lo,
3127 		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3128 
3129 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3130 		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3131 
3132 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3133 		       fcoe_q_xstorm_stats->ucast_pkts_sent);
3134 
3135 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3136 		       fcoe_q_xstorm_stats->bcast_pkts_sent);
3137 
3138 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3139 		       fcoe_q_xstorm_stats->mcast_pkts_sent);
3140 	}
3141 
3142 	/* ask L5 driver to add data to the struct */
3143 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3144 #endif
3145 }
3146 
3147 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3148 {
3149 #ifdef BCM_CNIC
3150 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3151 	struct iscsi_stats_info *iscsi_stat =
3152 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3153 
3154 	memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3155 
3156 	iscsi_stat->qos_priority =
3157 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3158 
3159 	/* ask L5 driver to add data to the struct */
3160 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3161 #endif
3162 }
3163 
3164 /* called due to MCP event (on pmf):
3165  *	reread new bandwidth configuration
3166  *	configure FW
3167  *	notify others function about the change
3168  */
3169 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3170 {
3171 	if (bp->link_vars.link_up) {
3172 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3173 		bnx2x_link_sync_notify(bp);
3174 	}
3175 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3176 }
3177 
3178 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3179 {
3180 	bnx2x_config_mf_bw(bp);
3181 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3182 }
3183 
3184 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3185 {
3186 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3187 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3188 }
3189 
3190 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3191 {
3192 	enum drv_info_opcode op_code;
3193 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3194 
3195 	/* if drv_info version supported by MFW doesn't match - send NACK */
3196 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3197 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3198 		return;
3199 	}
3200 
3201 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3202 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3203 
3204 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3205 	       sizeof(union drv_info_to_mcp));
3206 
3207 	switch (op_code) {
3208 	case ETH_STATS_OPCODE:
3209 		bnx2x_drv_info_ether_stat(bp);
3210 		break;
3211 	case FCOE_STATS_OPCODE:
3212 		bnx2x_drv_info_fcoe_stat(bp);
3213 		break;
3214 	case ISCSI_STATS_OPCODE:
3215 		bnx2x_drv_info_iscsi_stat(bp);
3216 		break;
3217 	default:
3218 		/* if op code isn't supported - send NACK */
3219 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3220 		return;
3221 	}
3222 
3223 	/* if we got drv_info attn from MFW then these fields are defined in
3224 	 * shmem2 for sure
3225 	 */
3226 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3227 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3228 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3229 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3230 
3231 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3232 }
3233 
3234 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3235 {
3236 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3237 
3238 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3239 
3240 		/*
3241 		 * This is the only place besides the function initialization
3242 		 * where the bp->flags can change so it is done without any
3243 		 * locks
3244 		 */
3245 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3246 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3247 			bp->flags |= MF_FUNC_DIS;
3248 
3249 			bnx2x_e1h_disable(bp);
3250 		} else {
3251 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3252 			bp->flags &= ~MF_FUNC_DIS;
3253 
3254 			bnx2x_e1h_enable(bp);
3255 		}
3256 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3257 	}
3258 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3259 		bnx2x_config_mf_bw(bp);
3260 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3261 	}
3262 
3263 	/* Report results to MCP */
3264 	if (dcc_event)
3265 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3266 	else
3267 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3268 }
3269 
3270 /* must be called under the spq lock */
3271 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3272 {
3273 	struct eth_spe *next_spe = bp->spq_prod_bd;
3274 
3275 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3276 		bp->spq_prod_bd = bp->spq;
3277 		bp->spq_prod_idx = 0;
3278 		DP(BNX2X_MSG_SP, "end of spq\n");
3279 	} else {
3280 		bp->spq_prod_bd++;
3281 		bp->spq_prod_idx++;
3282 	}
3283 	return next_spe;
3284 }
3285 
3286 /* must be called under the spq lock */
3287 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3288 {
3289 	int func = BP_FUNC(bp);
3290 
3291 	/*
3292 	 * Make sure that BD data is updated before writing the producer:
3293 	 * BD data is written to the memory, the producer is read from the
3294 	 * memory, thus we need a full memory barrier to ensure the ordering.
3295 	 */
3296 	mb();
3297 
3298 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3299 		 bp->spq_prod_idx);
3300 	mmiowb();
3301 }
3302 
3303 /**
3304  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3305  *
3306  * @cmd:	command to check
3307  * @cmd_type:	command type
3308  */
3309 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3310 {
3311 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3312 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3313 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3314 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3315 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3316 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3317 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3318 		return true;
3319 	else
3320 		return false;
3321 
3322 }
3323 
3324 
3325 /**
3326  * bnx2x_sp_post - place a single command on an SP ring
3327  *
3328  * @bp:		driver handle
3329  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3330  * @cid:	SW CID the command is related to
3331  * @data_hi:	command private data address (high 32 bits)
3332  * @data_lo:	command private data address (low 32 bits)
3333  * @cmd_type:	command type (e.g. NONE, ETH)
3334  *
3335  * SP data is handled as if it's always an address pair, thus data fields are
3336  * not swapped to little endian in upper functions. Instead this function swaps
3337  * data as if it's two u32 fields.
3338  */
3339 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3340 		  u32 data_hi, u32 data_lo, int cmd_type)
3341 {
3342 	struct eth_spe *spe;
3343 	u16 type;
3344 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3345 
3346 #ifdef BNX2X_STOP_ON_ERROR
3347 	if (unlikely(bp->panic)) {
3348 		BNX2X_ERR("Can't post SP when there is panic\n");
3349 		return -EIO;
3350 	}
3351 #endif
3352 
3353 	spin_lock_bh(&bp->spq_lock);
3354 
3355 	if (common) {
3356 		if (!atomic_read(&bp->eq_spq_left)) {
3357 			BNX2X_ERR("BUG! EQ ring full!\n");
3358 			spin_unlock_bh(&bp->spq_lock);
3359 			bnx2x_panic();
3360 			return -EBUSY;
3361 		}
3362 	} else if (!atomic_read(&bp->cq_spq_left)) {
3363 			BNX2X_ERR("BUG! SPQ ring full!\n");
3364 			spin_unlock_bh(&bp->spq_lock);
3365 			bnx2x_panic();
3366 			return -EBUSY;
3367 	}
3368 
3369 	spe = bnx2x_sp_get_next(bp);
3370 
3371 	/* CID needs port number to be encoded int it */
3372 	spe->hdr.conn_and_cmd_data =
3373 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3374 				    HW_CID(bp, cid));
3375 
3376 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3377 
3378 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3379 		 SPE_HDR_FUNCTION_ID);
3380 
3381 	spe->hdr.type = cpu_to_le16(type);
3382 
3383 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3384 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3385 
3386 	/*
3387 	 * It's ok if the actual decrement is issued towards the memory
3388 	 * somewhere between the spin_lock and spin_unlock. Thus no
3389 	 * more explict memory barrier is needed.
3390 	 */
3391 	if (common)
3392 		atomic_dec(&bp->eq_spq_left);
3393 	else
3394 		atomic_dec(&bp->cq_spq_left);
3395 
3396 
3397 	DP(BNX2X_MSG_SP,
3398 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3399 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3400 	   (u32)(U64_LO(bp->spq_mapping) +
3401 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3402 	   HW_CID(bp, cid), data_hi, data_lo, type,
3403 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3404 
3405 	bnx2x_sp_prod_update(bp);
3406 	spin_unlock_bh(&bp->spq_lock);
3407 	return 0;
3408 }
3409 
3410 /* acquire split MCP access lock register */
3411 static int bnx2x_acquire_alr(struct bnx2x *bp)
3412 {
3413 	u32 j, val;
3414 	int rc = 0;
3415 
3416 	might_sleep();
3417 	for (j = 0; j < 1000; j++) {
3418 		val = (1UL << 31);
3419 		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3420 		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3421 		if (val & (1L << 31))
3422 			break;
3423 
3424 		msleep(5);
3425 	}
3426 	if (!(val & (1L << 31))) {
3427 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3428 		rc = -EBUSY;
3429 	}
3430 
3431 	return rc;
3432 }
3433 
3434 /* release split MCP access lock register */
3435 static void bnx2x_release_alr(struct bnx2x *bp)
3436 {
3437 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3438 }
3439 
3440 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3441 #define BNX2X_DEF_SB_IDX	0x0002
3442 
3443 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3444 {
3445 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3446 	u16 rc = 0;
3447 
3448 	barrier(); /* status block is written to by the chip */
3449 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3450 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3451 		rc |= BNX2X_DEF_SB_ATT_IDX;
3452 	}
3453 
3454 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3455 		bp->def_idx = def_sb->sp_sb.running_index;
3456 		rc |= BNX2X_DEF_SB_IDX;
3457 	}
3458 
3459 	/* Do not reorder: indecies reading should complete before handling */
3460 	barrier();
3461 	return rc;
3462 }
3463 
3464 /*
3465  * slow path service functions
3466  */
3467 
3468 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3469 {
3470 	int port = BP_PORT(bp);
3471 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3472 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3473 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3474 				       NIG_REG_MASK_INTERRUPT_PORT0;
3475 	u32 aeu_mask;
3476 	u32 nig_mask = 0;
3477 	u32 reg_addr;
3478 
3479 	if (bp->attn_state & asserted)
3480 		BNX2X_ERR("IGU ERROR\n");
3481 
3482 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3483 	aeu_mask = REG_RD(bp, aeu_addr);
3484 
3485 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3486 	   aeu_mask, asserted);
3487 	aeu_mask &= ~(asserted & 0x3ff);
3488 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3489 
3490 	REG_WR(bp, aeu_addr, aeu_mask);
3491 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3492 
3493 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3494 	bp->attn_state |= asserted;
3495 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3496 
3497 	if (asserted & ATTN_HARD_WIRED_MASK) {
3498 		if (asserted & ATTN_NIG_FOR_FUNC) {
3499 
3500 			bnx2x_acquire_phy_lock(bp);
3501 
3502 			/* save nig interrupt mask */
3503 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3504 
3505 			/* If nig_mask is not set, no need to call the update
3506 			 * function.
3507 			 */
3508 			if (nig_mask) {
3509 				REG_WR(bp, nig_int_mask_addr, 0);
3510 
3511 				bnx2x_link_attn(bp);
3512 			}
3513 
3514 			/* handle unicore attn? */
3515 		}
3516 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3517 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3518 
3519 		if (asserted & GPIO_2_FUNC)
3520 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3521 
3522 		if (asserted & GPIO_3_FUNC)
3523 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3524 
3525 		if (asserted & GPIO_4_FUNC)
3526 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3527 
3528 		if (port == 0) {
3529 			if (asserted & ATTN_GENERAL_ATTN_1) {
3530 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3531 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3532 			}
3533 			if (asserted & ATTN_GENERAL_ATTN_2) {
3534 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3535 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3536 			}
3537 			if (asserted & ATTN_GENERAL_ATTN_3) {
3538 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3539 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3540 			}
3541 		} else {
3542 			if (asserted & ATTN_GENERAL_ATTN_4) {
3543 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3544 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3545 			}
3546 			if (asserted & ATTN_GENERAL_ATTN_5) {
3547 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3548 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3549 			}
3550 			if (asserted & ATTN_GENERAL_ATTN_6) {
3551 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3552 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3553 			}
3554 		}
3555 
3556 	} /* if hardwired */
3557 
3558 	if (bp->common.int_block == INT_BLOCK_HC)
3559 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3560 			    COMMAND_REG_ATTN_BITS_SET);
3561 	else
3562 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3563 
3564 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3565 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3566 	REG_WR(bp, reg_addr, asserted);
3567 
3568 	/* now set back the mask */
3569 	if (asserted & ATTN_NIG_FOR_FUNC) {
3570 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3571 		bnx2x_release_phy_lock(bp);
3572 	}
3573 }
3574 
3575 static void bnx2x_fan_failure(struct bnx2x *bp)
3576 {
3577 	int port = BP_PORT(bp);
3578 	u32 ext_phy_config;
3579 	/* mark the failure */
3580 	ext_phy_config =
3581 		SHMEM_RD(bp,
3582 			 dev_info.port_hw_config[port].external_phy_config);
3583 
3584 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3585 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3586 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3587 		 ext_phy_config);
3588 
3589 	/* log the failure */
3590 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3591 			    "Please contact OEM Support for assistance\n");
3592 
3593 	/*
3594 	 * Scheudle device reset (unload)
3595 	 * This is due to some boards consuming sufficient power when driver is
3596 	 * up to overheat if fan fails.
3597 	 */
3598 	smp_mb__before_clear_bit();
3599 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3600 	smp_mb__after_clear_bit();
3601 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3602 
3603 }
3604 
3605 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3606 {
3607 	int port = BP_PORT(bp);
3608 	int reg_offset;
3609 	u32 val;
3610 
3611 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3612 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3613 
3614 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3615 
3616 		val = REG_RD(bp, reg_offset);
3617 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3618 		REG_WR(bp, reg_offset, val);
3619 
3620 		BNX2X_ERR("SPIO5 hw attention\n");
3621 
3622 		/* Fan failure attention */
3623 		bnx2x_hw_reset_phy(&bp->link_params);
3624 		bnx2x_fan_failure(bp);
3625 	}
3626 
3627 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3628 		bnx2x_acquire_phy_lock(bp);
3629 		bnx2x_handle_module_detect_int(&bp->link_params);
3630 		bnx2x_release_phy_lock(bp);
3631 	}
3632 
3633 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3634 
3635 		val = REG_RD(bp, reg_offset);
3636 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3637 		REG_WR(bp, reg_offset, val);
3638 
3639 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3640 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3641 		bnx2x_panic();
3642 	}
3643 }
3644 
3645 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3646 {
3647 	u32 val;
3648 
3649 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3650 
3651 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3652 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3653 		/* DORQ discard attention */
3654 		if (val & 0x2)
3655 			BNX2X_ERR("FATAL error from DORQ\n");
3656 	}
3657 
3658 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3659 
3660 		int port = BP_PORT(bp);
3661 		int reg_offset;
3662 
3663 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3664 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3665 
3666 		val = REG_RD(bp, reg_offset);
3667 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3668 		REG_WR(bp, reg_offset, val);
3669 
3670 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3671 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3672 		bnx2x_panic();
3673 	}
3674 }
3675 
3676 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3677 {
3678 	u32 val;
3679 
3680 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3681 
3682 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3683 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3684 		/* CFC error attention */
3685 		if (val & 0x2)
3686 			BNX2X_ERR("FATAL error from CFC\n");
3687 	}
3688 
3689 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3690 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3691 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3692 		/* RQ_USDMDP_FIFO_OVERFLOW */
3693 		if (val & 0x18000)
3694 			BNX2X_ERR("FATAL error from PXP\n");
3695 
3696 		if (!CHIP_IS_E1x(bp)) {
3697 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3698 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3699 		}
3700 	}
3701 
3702 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3703 
3704 		int port = BP_PORT(bp);
3705 		int reg_offset;
3706 
3707 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3708 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3709 
3710 		val = REG_RD(bp, reg_offset);
3711 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3712 		REG_WR(bp, reg_offset, val);
3713 
3714 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3715 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3716 		bnx2x_panic();
3717 	}
3718 }
3719 
3720 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3721 {
3722 	u32 val;
3723 
3724 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3725 
3726 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3727 			int func = BP_FUNC(bp);
3728 
3729 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3730 			bnx2x_read_mf_cfg(bp);
3731 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3732 					func_mf_config[BP_ABS_FUNC(bp)].config);
3733 			val = SHMEM_RD(bp,
3734 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3735 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3736 				bnx2x_dcc_event(bp,
3737 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3738 
3739 			if (val & DRV_STATUS_SET_MF_BW)
3740 				bnx2x_set_mf_bw(bp);
3741 
3742 			if (val & DRV_STATUS_DRV_INFO_REQ)
3743 				bnx2x_handle_drv_info_req(bp);
3744 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3745 				bnx2x_pmf_update(bp);
3746 
3747 			if (bp->port.pmf &&
3748 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3749 				bp->dcbx_enabled > 0)
3750 				/* start dcbx state machine */
3751 				bnx2x_dcbx_set_params(bp,
3752 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3753 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
3754 				bnx2x_handle_afex_cmd(bp,
3755 					val & DRV_STATUS_AFEX_EVENT_MASK);
3756 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3757 				bnx2x_handle_eee_event(bp);
3758 			if (bp->link_vars.periodic_flags &
3759 			    PERIODIC_FLAGS_LINK_EVENT) {
3760 				/*  sync with link */
3761 				bnx2x_acquire_phy_lock(bp);
3762 				bp->link_vars.periodic_flags &=
3763 					~PERIODIC_FLAGS_LINK_EVENT;
3764 				bnx2x_release_phy_lock(bp);
3765 				if (IS_MF(bp))
3766 					bnx2x_link_sync_notify(bp);
3767 				bnx2x_link_report(bp);
3768 			}
3769 			/* Always call it here: bnx2x_link_report() will
3770 			 * prevent the link indication duplication.
3771 			 */
3772 			bnx2x__link_status_update(bp);
3773 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3774 
3775 			BNX2X_ERR("MC assert!\n");
3776 			bnx2x_mc_assert(bp);
3777 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3778 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3779 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3780 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3781 			bnx2x_panic();
3782 
3783 		} else if (attn & BNX2X_MCP_ASSERT) {
3784 
3785 			BNX2X_ERR("MCP assert!\n");
3786 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3787 			bnx2x_fw_dump(bp);
3788 
3789 		} else
3790 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3791 	}
3792 
3793 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3794 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3795 		if (attn & BNX2X_GRC_TIMEOUT) {
3796 			val = CHIP_IS_E1(bp) ? 0 :
3797 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3798 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3799 		}
3800 		if (attn & BNX2X_GRC_RSV) {
3801 			val = CHIP_IS_E1(bp) ? 0 :
3802 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3803 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3804 		}
3805 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3806 	}
3807 }
3808 
3809 /*
3810  * Bits map:
3811  * 0-7   - Engine0 load counter.
3812  * 8-15  - Engine1 load counter.
3813  * 16    - Engine0 RESET_IN_PROGRESS bit.
3814  * 17    - Engine1 RESET_IN_PROGRESS bit.
3815  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3816  *         on the engine
3817  * 19    - Engine1 ONE_IS_LOADED.
3818  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3819  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3820  *         just the one belonging to its engine).
3821  *
3822  */
3823 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3824 
3825 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3826 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3827 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3828 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3829 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3830 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3831 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
3832 
3833 /*
3834  * Set the GLOBAL_RESET bit.
3835  *
3836  * Should be run under rtnl lock
3837  */
3838 void bnx2x_set_reset_global(struct bnx2x *bp)
3839 {
3840 	u32 val;
3841 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3842 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3843 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3844 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3845 }
3846 
3847 /*
3848  * Clear the GLOBAL_RESET bit.
3849  *
3850  * Should be run under rtnl lock
3851  */
3852 static void bnx2x_clear_reset_global(struct bnx2x *bp)
3853 {
3854 	u32 val;
3855 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3856 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3857 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3858 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3859 }
3860 
3861 /*
3862  * Checks the GLOBAL_RESET bit.
3863  *
3864  * should be run under rtnl lock
3865  */
3866 static bool bnx2x_reset_is_global(struct bnx2x *bp)
3867 {
3868 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3869 
3870 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3871 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3872 }
3873 
3874 /*
3875  * Clear RESET_IN_PROGRESS bit for the current engine.
3876  *
3877  * Should be run under rtnl lock
3878  */
3879 static void bnx2x_set_reset_done(struct bnx2x *bp)
3880 {
3881 	u32 val;
3882 	u32 bit = BP_PATH(bp) ?
3883 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3884 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3885 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3886 
3887 	/* Clear the bit */
3888 	val &= ~bit;
3889 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3890 
3891 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3892 }
3893 
3894 /*
3895  * Set RESET_IN_PROGRESS for the current engine.
3896  *
3897  * should be run under rtnl lock
3898  */
3899 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3900 {
3901 	u32 val;
3902 	u32 bit = BP_PATH(bp) ?
3903 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3904 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3905 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3906 
3907 	/* Set the bit */
3908 	val |= bit;
3909 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3910 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3911 }
3912 
3913 /*
3914  * Checks the RESET_IN_PROGRESS bit for the given engine.
3915  * should be run under rtnl lock
3916  */
3917 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3918 {
3919 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3920 	u32 bit = engine ?
3921 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3922 
3923 	/* return false if bit is set */
3924 	return (val & bit) ? false : true;
3925 }
3926 
3927 /*
3928  * set pf load for the current pf.
3929  *
3930  * should be run under rtnl lock
3931  */
3932 void bnx2x_set_pf_load(struct bnx2x *bp)
3933 {
3934 	u32 val1, val;
3935 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3936 			     BNX2X_PATH0_LOAD_CNT_MASK;
3937 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3938 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3939 
3940 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3941 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3942 
3943 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
3944 
3945 	/* get the current counter value */
3946 	val1 = (val & mask) >> shift;
3947 
3948 	/* set bit of that PF */
3949 	val1 |= (1 << bp->pf_num);
3950 
3951 	/* clear the old value */
3952 	val &= ~mask;
3953 
3954 	/* set the new one */
3955 	val |= ((val1 << shift) & mask);
3956 
3957 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3958 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3959 }
3960 
3961 /**
3962  * bnx2x_clear_pf_load - clear pf load mark
3963  *
3964  * @bp:		driver handle
3965  *
3966  * Should be run under rtnl lock.
3967  * Decrements the load counter for the current engine. Returns
3968  * whether other functions are still loaded
3969  */
3970 bool bnx2x_clear_pf_load(struct bnx2x *bp)
3971 {
3972 	u32 val1, val;
3973 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3974 			     BNX2X_PATH0_LOAD_CNT_MASK;
3975 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3976 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3977 
3978 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3979 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3980 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
3981 
3982 	/* get the current counter value */
3983 	val1 = (val & mask) >> shift;
3984 
3985 	/* clear bit of that PF */
3986 	val1 &= ~(1 << bp->pf_num);
3987 
3988 	/* clear the old value */
3989 	val &= ~mask;
3990 
3991 	/* set the new one */
3992 	val |= ((val1 << shift) & mask);
3993 
3994 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3995 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3996 	return val1 != 0;
3997 }
3998 
3999 /*
4000  * Read the load status for the current engine.
4001  *
4002  * should be run under rtnl lock
4003  */
4004 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4005 {
4006 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4007 			     BNX2X_PATH0_LOAD_CNT_MASK);
4008 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4009 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4010 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4011 
4012 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4013 
4014 	val = (val & mask) >> shift;
4015 
4016 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4017 	   engine, val);
4018 
4019 	return val != 0;
4020 }
4021 
4022 /*
4023  * Reset the load status for the current engine.
4024  */
4025 static void bnx2x_clear_load_status(struct bnx2x *bp)
4026 {
4027 	u32 val;
4028 	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4029 		    BNX2X_PATH0_LOAD_CNT_MASK);
4030 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4031 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4032 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
4033 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4034 }
4035 
4036 static void _print_next_block(int idx, const char *blk)
4037 {
4038 	pr_cont("%s%s", idx ? ", " : "", blk);
4039 }
4040 
4041 static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
4042 					   bool print)
4043 {
4044 	int i = 0;
4045 	u32 cur_bit = 0;
4046 	for (i = 0; sig; i++) {
4047 		cur_bit = ((u32)0x1 << i);
4048 		if (sig & cur_bit) {
4049 			switch (cur_bit) {
4050 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4051 				if (print)
4052 					_print_next_block(par_num++, "BRB");
4053 				break;
4054 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4055 				if (print)
4056 					_print_next_block(par_num++, "PARSER");
4057 				break;
4058 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4059 				if (print)
4060 					_print_next_block(par_num++, "TSDM");
4061 				break;
4062 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4063 				if (print)
4064 					_print_next_block(par_num++,
4065 							  "SEARCHER");
4066 				break;
4067 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4068 				if (print)
4069 					_print_next_block(par_num++, "TCM");
4070 				break;
4071 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4072 				if (print)
4073 					_print_next_block(par_num++, "TSEMI");
4074 				break;
4075 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4076 				if (print)
4077 					_print_next_block(par_num++, "XPB");
4078 				break;
4079 			}
4080 
4081 			/* Clear the bit */
4082 			sig &= ~cur_bit;
4083 		}
4084 	}
4085 
4086 	return par_num;
4087 }
4088 
4089 static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
4090 					   bool *global, bool print)
4091 {
4092 	int i = 0;
4093 	u32 cur_bit = 0;
4094 	for (i = 0; sig; i++) {
4095 		cur_bit = ((u32)0x1 << i);
4096 		if (sig & cur_bit) {
4097 			switch (cur_bit) {
4098 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4099 				if (print)
4100 					_print_next_block(par_num++, "PBF");
4101 				break;
4102 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4103 				if (print)
4104 					_print_next_block(par_num++, "QM");
4105 				break;
4106 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4107 				if (print)
4108 					_print_next_block(par_num++, "TM");
4109 				break;
4110 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4111 				if (print)
4112 					_print_next_block(par_num++, "XSDM");
4113 				break;
4114 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4115 				if (print)
4116 					_print_next_block(par_num++, "XCM");
4117 				break;
4118 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4119 				if (print)
4120 					_print_next_block(par_num++, "XSEMI");
4121 				break;
4122 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4123 				if (print)
4124 					_print_next_block(par_num++,
4125 							  "DOORBELLQ");
4126 				break;
4127 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4128 				if (print)
4129 					_print_next_block(par_num++, "NIG");
4130 				break;
4131 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4132 				if (print)
4133 					_print_next_block(par_num++,
4134 							  "VAUX PCI CORE");
4135 				*global = true;
4136 				break;
4137 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4138 				if (print)
4139 					_print_next_block(par_num++, "DEBUG");
4140 				break;
4141 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4142 				if (print)
4143 					_print_next_block(par_num++, "USDM");
4144 				break;
4145 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4146 				if (print)
4147 					_print_next_block(par_num++, "UCM");
4148 				break;
4149 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4150 				if (print)
4151 					_print_next_block(par_num++, "USEMI");
4152 				break;
4153 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4154 				if (print)
4155 					_print_next_block(par_num++, "UPB");
4156 				break;
4157 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4158 				if (print)
4159 					_print_next_block(par_num++, "CSDM");
4160 				break;
4161 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4162 				if (print)
4163 					_print_next_block(par_num++, "CCM");
4164 				break;
4165 			}
4166 
4167 			/* Clear the bit */
4168 			sig &= ~cur_bit;
4169 		}
4170 	}
4171 
4172 	return par_num;
4173 }
4174 
4175 static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4176 					   bool print)
4177 {
4178 	int i = 0;
4179 	u32 cur_bit = 0;
4180 	for (i = 0; sig; i++) {
4181 		cur_bit = ((u32)0x1 << i);
4182 		if (sig & cur_bit) {
4183 			switch (cur_bit) {
4184 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4185 				if (print)
4186 					_print_next_block(par_num++, "CSEMI");
4187 				break;
4188 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4189 				if (print)
4190 					_print_next_block(par_num++, "PXP");
4191 				break;
4192 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4193 				if (print)
4194 					_print_next_block(par_num++,
4195 					"PXPPCICLOCKCLIENT");
4196 				break;
4197 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4198 				if (print)
4199 					_print_next_block(par_num++, "CFC");
4200 				break;
4201 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4202 				if (print)
4203 					_print_next_block(par_num++, "CDU");
4204 				break;
4205 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4206 				if (print)
4207 					_print_next_block(par_num++, "DMAE");
4208 				break;
4209 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4210 				if (print)
4211 					_print_next_block(par_num++, "IGU");
4212 				break;
4213 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4214 				if (print)
4215 					_print_next_block(par_num++, "MISC");
4216 				break;
4217 			}
4218 
4219 			/* Clear the bit */
4220 			sig &= ~cur_bit;
4221 		}
4222 	}
4223 
4224 	return par_num;
4225 }
4226 
4227 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4228 					   bool *global, bool print)
4229 {
4230 	int i = 0;
4231 	u32 cur_bit = 0;
4232 	for (i = 0; sig; i++) {
4233 		cur_bit = ((u32)0x1 << i);
4234 		if (sig & cur_bit) {
4235 			switch (cur_bit) {
4236 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4237 				if (print)
4238 					_print_next_block(par_num++, "MCP ROM");
4239 				*global = true;
4240 				break;
4241 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4242 				if (print)
4243 					_print_next_block(par_num++,
4244 							  "MCP UMP RX");
4245 				*global = true;
4246 				break;
4247 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4248 				if (print)
4249 					_print_next_block(par_num++,
4250 							  "MCP UMP TX");
4251 				*global = true;
4252 				break;
4253 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4254 				if (print)
4255 					_print_next_block(par_num++,
4256 							  "MCP SCPAD");
4257 				*global = true;
4258 				break;
4259 			}
4260 
4261 			/* Clear the bit */
4262 			sig &= ~cur_bit;
4263 		}
4264 	}
4265 
4266 	return par_num;
4267 }
4268 
4269 static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4270 					   bool print)
4271 {
4272 	int i = 0;
4273 	u32 cur_bit = 0;
4274 	for (i = 0; sig; i++) {
4275 		cur_bit = ((u32)0x1 << i);
4276 		if (sig & cur_bit) {
4277 			switch (cur_bit) {
4278 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4279 				if (print)
4280 					_print_next_block(par_num++, "PGLUE_B");
4281 				break;
4282 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4283 				if (print)
4284 					_print_next_block(par_num++, "ATC");
4285 				break;
4286 			}
4287 
4288 			/* Clear the bit */
4289 			sig &= ~cur_bit;
4290 		}
4291 	}
4292 
4293 	return par_num;
4294 }
4295 
4296 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4297 			      u32 *sig)
4298 {
4299 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4300 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4301 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4302 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4303 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4304 		int par_num = 0;
4305 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4306 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4307 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4308 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4309 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4310 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4311 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4312 		if (print)
4313 			netdev_err(bp->dev,
4314 				   "Parity errors detected in blocks: ");
4315 		par_num = bnx2x_check_blocks_with_parity0(
4316 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4317 		par_num = bnx2x_check_blocks_with_parity1(
4318 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4319 		par_num = bnx2x_check_blocks_with_parity2(
4320 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4321 		par_num = bnx2x_check_blocks_with_parity3(
4322 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4323 		par_num = bnx2x_check_blocks_with_parity4(
4324 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4325 
4326 		if (print)
4327 			pr_cont("\n");
4328 
4329 		return true;
4330 	} else
4331 		return false;
4332 }
4333 
4334 /**
4335  * bnx2x_chk_parity_attn - checks for parity attentions.
4336  *
4337  * @bp:		driver handle
4338  * @global:	true if there was a global attention
4339  * @print:	show parity attention in syslog
4340  */
4341 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4342 {
4343 	struct attn_route attn = { {0} };
4344 	int port = BP_PORT(bp);
4345 
4346 	attn.sig[0] = REG_RD(bp,
4347 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4348 			     port*4);
4349 	attn.sig[1] = REG_RD(bp,
4350 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4351 			     port*4);
4352 	attn.sig[2] = REG_RD(bp,
4353 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4354 			     port*4);
4355 	attn.sig[3] = REG_RD(bp,
4356 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4357 			     port*4);
4358 
4359 	if (!CHIP_IS_E1x(bp))
4360 		attn.sig[4] = REG_RD(bp,
4361 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4362 				     port*4);
4363 
4364 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4365 }
4366 
4367 
4368 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4369 {
4370 	u32 val;
4371 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4372 
4373 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4374 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4375 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4376 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4377 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4378 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4379 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4380 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4381 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4382 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4383 		if (val &
4384 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4385 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4386 		if (val &
4387 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4388 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4389 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4390 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4391 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4392 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4393 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4394 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4395 	}
4396 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4397 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4398 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4399 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4400 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4401 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4402 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4403 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4404 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4405 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4406 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4407 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4408 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4409 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4410 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4411 	}
4412 
4413 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4414 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4415 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4416 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4417 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4418 	}
4419 
4420 }
4421 
4422 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4423 {
4424 	struct attn_route attn, *group_mask;
4425 	int port = BP_PORT(bp);
4426 	int index;
4427 	u32 reg_addr;
4428 	u32 val;
4429 	u32 aeu_mask;
4430 	bool global = false;
4431 
4432 	/* need to take HW lock because MCP or other port might also
4433 	   try to handle this event */
4434 	bnx2x_acquire_alr(bp);
4435 
4436 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4437 #ifndef BNX2X_STOP_ON_ERROR
4438 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4439 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4440 		/* Disable HW interrupts */
4441 		bnx2x_int_disable(bp);
4442 		/* In case of parity errors don't handle attentions so that
4443 		 * other function would "see" parity errors.
4444 		 */
4445 #else
4446 		bnx2x_panic();
4447 #endif
4448 		bnx2x_release_alr(bp);
4449 		return;
4450 	}
4451 
4452 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4453 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4454 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4455 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4456 	if (!CHIP_IS_E1x(bp))
4457 		attn.sig[4] =
4458 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4459 	else
4460 		attn.sig[4] = 0;
4461 
4462 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4463 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4464 
4465 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4466 		if (deasserted & (1 << index)) {
4467 			group_mask = &bp->attn_group[index];
4468 
4469 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4470 			   index,
4471 			   group_mask->sig[0], group_mask->sig[1],
4472 			   group_mask->sig[2], group_mask->sig[3],
4473 			   group_mask->sig[4]);
4474 
4475 			bnx2x_attn_int_deasserted4(bp,
4476 					attn.sig[4] & group_mask->sig[4]);
4477 			bnx2x_attn_int_deasserted3(bp,
4478 					attn.sig[3] & group_mask->sig[3]);
4479 			bnx2x_attn_int_deasserted1(bp,
4480 					attn.sig[1] & group_mask->sig[1]);
4481 			bnx2x_attn_int_deasserted2(bp,
4482 					attn.sig[2] & group_mask->sig[2]);
4483 			bnx2x_attn_int_deasserted0(bp,
4484 					attn.sig[0] & group_mask->sig[0]);
4485 		}
4486 	}
4487 
4488 	bnx2x_release_alr(bp);
4489 
4490 	if (bp->common.int_block == INT_BLOCK_HC)
4491 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4492 			    COMMAND_REG_ATTN_BITS_CLR);
4493 	else
4494 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4495 
4496 	val = ~deasserted;
4497 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4498 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4499 	REG_WR(bp, reg_addr, val);
4500 
4501 	if (~bp->attn_state & deasserted)
4502 		BNX2X_ERR("IGU ERROR\n");
4503 
4504 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4505 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4506 
4507 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4508 	aeu_mask = REG_RD(bp, reg_addr);
4509 
4510 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4511 	   aeu_mask, deasserted);
4512 	aeu_mask |= (deasserted & 0x3ff);
4513 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4514 
4515 	REG_WR(bp, reg_addr, aeu_mask);
4516 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4517 
4518 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4519 	bp->attn_state &= ~deasserted;
4520 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4521 }
4522 
4523 static void bnx2x_attn_int(struct bnx2x *bp)
4524 {
4525 	/* read local copy of bits */
4526 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4527 								attn_bits);
4528 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4529 								attn_bits_ack);
4530 	u32 attn_state = bp->attn_state;
4531 
4532 	/* look for changed bits */
4533 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4534 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4535 
4536 	DP(NETIF_MSG_HW,
4537 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4538 	   attn_bits, attn_ack, asserted, deasserted);
4539 
4540 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4541 		BNX2X_ERR("BAD attention state\n");
4542 
4543 	/* handle bits that were raised */
4544 	if (asserted)
4545 		bnx2x_attn_int_asserted(bp, asserted);
4546 
4547 	if (deasserted)
4548 		bnx2x_attn_int_deasserted(bp, deasserted);
4549 }
4550 
4551 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4552 		      u16 index, u8 op, u8 update)
4553 {
4554 	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4555 
4556 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4557 			     igu_addr);
4558 }
4559 
4560 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4561 {
4562 	/* No memory barriers */
4563 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4564 	mmiowb(); /* keep prod updates ordered */
4565 }
4566 
4567 #ifdef BCM_CNIC
4568 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4569 				      union event_ring_elem *elem)
4570 {
4571 	u8 err = elem->message.error;
4572 
4573 	if (!bp->cnic_eth_dev.starting_cid  ||
4574 	    (cid < bp->cnic_eth_dev.starting_cid &&
4575 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4576 		return 1;
4577 
4578 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4579 
4580 	if (unlikely(err)) {
4581 
4582 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4583 			  cid);
4584 		bnx2x_panic_dump(bp);
4585 	}
4586 	bnx2x_cnic_cfc_comp(bp, cid, err);
4587 	return 0;
4588 }
4589 #endif
4590 
4591 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4592 {
4593 	struct bnx2x_mcast_ramrod_params rparam;
4594 	int rc;
4595 
4596 	memset(&rparam, 0, sizeof(rparam));
4597 
4598 	rparam.mcast_obj = &bp->mcast_obj;
4599 
4600 	netif_addr_lock_bh(bp->dev);
4601 
4602 	/* Clear pending state for the last command */
4603 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4604 
4605 	/* If there are pending mcast commands - send them */
4606 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4607 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4608 		if (rc < 0)
4609 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4610 				  rc);
4611 	}
4612 
4613 	netif_addr_unlock_bh(bp->dev);
4614 }
4615 
4616 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4617 					    union event_ring_elem *elem)
4618 {
4619 	unsigned long ramrod_flags = 0;
4620 	int rc = 0;
4621 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4622 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4623 
4624 	/* Always push next commands out, don't wait here */
4625 	__set_bit(RAMROD_CONT, &ramrod_flags);
4626 
4627 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4628 	case BNX2X_FILTER_MAC_PENDING:
4629 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4630 #ifdef BCM_CNIC
4631 		if (cid == BNX2X_ISCSI_ETH_CID(bp))
4632 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4633 		else
4634 #endif
4635 			vlan_mac_obj = &bp->fp[cid].mac_obj;
4636 
4637 		break;
4638 	case BNX2X_FILTER_MCAST_PENDING:
4639 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4640 		/* This is only relevant for 57710 where multicast MACs are
4641 		 * configured as unicast MACs using the same ramrod.
4642 		 */
4643 		bnx2x_handle_mcast_eqe(bp);
4644 		return;
4645 	default:
4646 		BNX2X_ERR("Unsupported classification command: %d\n",
4647 			  elem->message.data.eth_event.echo);
4648 		return;
4649 	}
4650 
4651 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4652 
4653 	if (rc < 0)
4654 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4655 	else if (rc > 0)
4656 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4657 
4658 }
4659 
4660 #ifdef BCM_CNIC
4661 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4662 #endif
4663 
4664 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4665 {
4666 	netif_addr_lock_bh(bp->dev);
4667 
4668 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4669 
4670 	/* Send rx_mode command again if was requested */
4671 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4672 		bnx2x_set_storm_rx_mode(bp);
4673 #ifdef BCM_CNIC
4674 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4675 				    &bp->sp_state))
4676 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4677 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4678 				    &bp->sp_state))
4679 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4680 #endif
4681 
4682 	netif_addr_unlock_bh(bp->dev);
4683 }
4684 
4685 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
4686 					      union event_ring_elem *elem)
4687 {
4688 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
4689 		DP(BNX2X_MSG_SP,
4690 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
4691 		   elem->message.data.vif_list_event.func_bit_map);
4692 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
4693 			elem->message.data.vif_list_event.func_bit_map);
4694 	} else if (elem->message.data.vif_list_event.echo ==
4695 		   VIF_LIST_RULE_SET) {
4696 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
4697 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
4698 	}
4699 }
4700 
4701 /* called with rtnl_lock */
4702 static void bnx2x_after_function_update(struct bnx2x *bp)
4703 {
4704 	int q, rc;
4705 	struct bnx2x_fastpath *fp;
4706 	struct bnx2x_queue_state_params queue_params = {NULL};
4707 	struct bnx2x_queue_update_params *q_update_params =
4708 		&queue_params.params.update;
4709 
4710 	/* Send Q update command with afex vlan removal values	for all Qs */
4711 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
4712 
4713 	/* set silent vlan removal values according to vlan mode */
4714 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4715 		  &q_update_params->update_flags);
4716 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
4717 		  &q_update_params->update_flags);
4718 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4719 
4720 	/* in access mode mark mask and value are 0 to strip all vlans */
4721 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
4722 		q_update_params->silent_removal_value = 0;
4723 		q_update_params->silent_removal_mask = 0;
4724 	} else {
4725 		q_update_params->silent_removal_value =
4726 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
4727 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
4728 	}
4729 
4730 	for_each_eth_queue(bp, q) {
4731 		/* Set the appropriate Queue object */
4732 		fp = &bp->fp[q];
4733 		queue_params.q_obj = &fp->q_obj;
4734 
4735 		/* send the ramrod */
4736 		rc = bnx2x_queue_state_change(bp, &queue_params);
4737 		if (rc < 0)
4738 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4739 				  q);
4740 	}
4741 
4742 #ifdef BCM_CNIC
4743 	if (!NO_FCOE(bp)) {
4744 		fp = &bp->fp[FCOE_IDX(bp)];
4745 		queue_params.q_obj = &fp->q_obj;
4746 
4747 		/* clear pending completion bit */
4748 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4749 
4750 		/* mark latest Q bit */
4751 		smp_mb__before_clear_bit();
4752 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
4753 		smp_mb__after_clear_bit();
4754 
4755 		/* send Q update ramrod for FCoE Q */
4756 		rc = bnx2x_queue_state_change(bp, &queue_params);
4757 		if (rc < 0)
4758 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4759 				  q);
4760 	} else {
4761 		/* If no FCoE ring - ACK MCP now */
4762 		bnx2x_link_report(bp);
4763 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4764 	}
4765 #else
4766 	/* If no FCoE ring - ACK MCP now */
4767 	bnx2x_link_report(bp);
4768 	bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4769 #endif /* BCM_CNIC */
4770 }
4771 
4772 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4773 	struct bnx2x *bp, u32 cid)
4774 {
4775 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4776 #ifdef BCM_CNIC
4777 	if (cid == BNX2X_FCOE_ETH_CID(bp))
4778 		return &bnx2x_fcoe(bp, q_obj);
4779 	else
4780 #endif
4781 		return &bnx2x_fp(bp, CID_TO_FP(cid, bp), q_obj);
4782 }
4783 
4784 static void bnx2x_eq_int(struct bnx2x *bp)
4785 {
4786 	u16 hw_cons, sw_cons, sw_prod;
4787 	union event_ring_elem *elem;
4788 	u32 cid;
4789 	u8 opcode;
4790 	int spqe_cnt = 0;
4791 	struct bnx2x_queue_sp_obj *q_obj;
4792 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4793 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4794 
4795 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4796 
4797 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4798 	 * when we get the the next-page we nned to adjust so the loop
4799 	 * condition below will be met. The next element is the size of a
4800 	 * regular element and hence incrementing by 1
4801 	 */
4802 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4803 		hw_cons++;
4804 
4805 	/* This function may never run in parallel with itself for a
4806 	 * specific bp, thus there is no need in "paired" read memory
4807 	 * barrier here.
4808 	 */
4809 	sw_cons = bp->eq_cons;
4810 	sw_prod = bp->eq_prod;
4811 
4812 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4813 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4814 
4815 	for (; sw_cons != hw_cons;
4816 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4817 
4818 
4819 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4820 
4821 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4822 		opcode = elem->message.opcode;
4823 
4824 
4825 		/* handle eq element */
4826 		switch (opcode) {
4827 		case EVENT_RING_OPCODE_STAT_QUERY:
4828 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4829 			   "got statistics comp event %d\n",
4830 			   bp->stats_comp++);
4831 			/* nothing to do with stats comp */
4832 			goto next_spqe;
4833 
4834 		case EVENT_RING_OPCODE_CFC_DEL:
4835 			/* handle according to cid range */
4836 			/*
4837 			 * we may want to verify here that the bp state is
4838 			 * HALTING
4839 			 */
4840 			DP(BNX2X_MSG_SP,
4841 			   "got delete ramrod for MULTI[%d]\n", cid);
4842 #ifdef BCM_CNIC
4843 			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4844 				goto next_spqe;
4845 #endif
4846 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4847 
4848 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4849 				break;
4850 
4851 
4852 
4853 			goto next_spqe;
4854 
4855 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4856 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4857 			if (f_obj->complete_cmd(bp, f_obj,
4858 						BNX2X_F_CMD_TX_STOP))
4859 				break;
4860 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4861 			goto next_spqe;
4862 
4863 		case EVENT_RING_OPCODE_START_TRAFFIC:
4864 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4865 			if (f_obj->complete_cmd(bp, f_obj,
4866 						BNX2X_F_CMD_TX_START))
4867 				break;
4868 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4869 			goto next_spqe;
4870 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4871 			DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
4872 			   "AFEX: ramrod completed FUNCTION_UPDATE\n");
4873 			f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_AFEX_UPDATE);
4874 
4875 			/* We will perform the Queues update from sp_rtnl task
4876 			 * as all Queue SP operations should run under
4877 			 * rtnl_lock.
4878 			 */
4879 			smp_mb__before_clear_bit();
4880 			set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
4881 				&bp->sp_rtnl_state);
4882 			smp_mb__after_clear_bit();
4883 
4884 			schedule_delayed_work(&bp->sp_rtnl_task, 0);
4885 			goto next_spqe;
4886 
4887 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
4888 			f_obj->complete_cmd(bp, f_obj,
4889 					    BNX2X_F_CMD_AFEX_VIFLISTS);
4890 			bnx2x_after_afex_vif_lists(bp, elem);
4891 			goto next_spqe;
4892 		case EVENT_RING_OPCODE_FUNCTION_START:
4893 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4894 			   "got FUNC_START ramrod\n");
4895 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4896 				break;
4897 
4898 			goto next_spqe;
4899 
4900 		case EVENT_RING_OPCODE_FUNCTION_STOP:
4901 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4902 			   "got FUNC_STOP ramrod\n");
4903 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4904 				break;
4905 
4906 			goto next_spqe;
4907 		}
4908 
4909 		switch (opcode | bp->state) {
4910 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4911 		      BNX2X_STATE_OPEN):
4912 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4913 		      BNX2X_STATE_OPENING_WAIT4_PORT):
4914 			cid = elem->message.data.eth_event.echo &
4915 				BNX2X_SWCID_MASK;
4916 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4917 			   cid);
4918 			rss_raw->clear_pending(rss_raw);
4919 			break;
4920 
4921 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4922 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4923 		case (EVENT_RING_OPCODE_SET_MAC |
4924 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4925 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4926 		      BNX2X_STATE_OPEN):
4927 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4928 		      BNX2X_STATE_DIAG):
4929 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4930 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4931 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4932 			bnx2x_handle_classification_eqe(bp, elem);
4933 			break;
4934 
4935 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4936 		      BNX2X_STATE_OPEN):
4937 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4938 		      BNX2X_STATE_DIAG):
4939 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4940 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4941 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4942 			bnx2x_handle_mcast_eqe(bp);
4943 			break;
4944 
4945 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4946 		      BNX2X_STATE_OPEN):
4947 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4948 		      BNX2X_STATE_DIAG):
4949 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4950 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4951 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4952 			bnx2x_handle_rx_mode_eqe(bp);
4953 			break;
4954 		default:
4955 			/* unknown event log error and continue */
4956 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4957 				  elem->message.opcode, bp->state);
4958 		}
4959 next_spqe:
4960 		spqe_cnt++;
4961 	} /* for */
4962 
4963 	smp_mb__before_atomic_inc();
4964 	atomic_add(spqe_cnt, &bp->eq_spq_left);
4965 
4966 	bp->eq_cons = sw_cons;
4967 	bp->eq_prod = sw_prod;
4968 	/* Make sure that above mem writes were issued towards the memory */
4969 	smp_wmb();
4970 
4971 	/* update producer */
4972 	bnx2x_update_eq_prod(bp, bp->eq_prod);
4973 }
4974 
4975 static void bnx2x_sp_task(struct work_struct *work)
4976 {
4977 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4978 	u16 status;
4979 
4980 	status = bnx2x_update_dsb_idx(bp);
4981 /*	if (status == 0)				     */
4982 /*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4983 
4984 	DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
4985 
4986 	/* HW attentions */
4987 	if (status & BNX2X_DEF_SB_ATT_IDX) {
4988 		bnx2x_attn_int(bp);
4989 		status &= ~BNX2X_DEF_SB_ATT_IDX;
4990 	}
4991 
4992 	/* SP events: STAT_QUERY and others */
4993 	if (status & BNX2X_DEF_SB_IDX) {
4994 #ifdef BCM_CNIC
4995 		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4996 
4997 		if ((!NO_FCOE(bp)) &&
4998 			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4999 			/*
5000 			 * Prevent local bottom-halves from running as
5001 			 * we are going to change the local NAPI list.
5002 			 */
5003 			local_bh_disable();
5004 			napi_schedule(&bnx2x_fcoe(bp, napi));
5005 			local_bh_enable();
5006 		}
5007 #endif
5008 		/* Handle EQ completions */
5009 		bnx2x_eq_int(bp);
5010 
5011 		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5012 			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5013 
5014 		status &= ~BNX2X_DEF_SB_IDX;
5015 	}
5016 
5017 	if (unlikely(status))
5018 		DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
5019 		   status);
5020 
5021 	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5022 	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5023 
5024 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5025 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5026 			       &bp->sp_state)) {
5027 		bnx2x_link_report(bp);
5028 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5029 	}
5030 }
5031 
5032 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5033 {
5034 	struct net_device *dev = dev_instance;
5035 	struct bnx2x *bp = netdev_priv(dev);
5036 
5037 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5038 		     IGU_INT_DISABLE, 0);
5039 
5040 #ifdef BNX2X_STOP_ON_ERROR
5041 	if (unlikely(bp->panic))
5042 		return IRQ_HANDLED;
5043 #endif
5044 
5045 #ifdef BCM_CNIC
5046 	{
5047 		struct cnic_ops *c_ops;
5048 
5049 		rcu_read_lock();
5050 		c_ops = rcu_dereference(bp->cnic_ops);
5051 		if (c_ops)
5052 			c_ops->cnic_handler(bp->cnic_data, NULL);
5053 		rcu_read_unlock();
5054 	}
5055 #endif
5056 	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
5057 
5058 	return IRQ_HANDLED;
5059 }
5060 
5061 /* end of slow path */
5062 
5063 
5064 void bnx2x_drv_pulse(struct bnx2x *bp)
5065 {
5066 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5067 		 bp->fw_drv_pulse_wr_seq);
5068 }
5069 
5070 
5071 static void bnx2x_timer(unsigned long data)
5072 {
5073 	struct bnx2x *bp = (struct bnx2x *) data;
5074 
5075 	if (!netif_running(bp->dev))
5076 		return;
5077 
5078 	if (!BP_NOMCP(bp)) {
5079 		int mb_idx = BP_FW_MB_IDX(bp);
5080 		u32 drv_pulse;
5081 		u32 mcp_pulse;
5082 
5083 		++bp->fw_drv_pulse_wr_seq;
5084 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5085 		/* TBD - add SYSTEM_TIME */
5086 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5087 		bnx2x_drv_pulse(bp);
5088 
5089 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5090 			     MCP_PULSE_SEQ_MASK);
5091 		/* The delta between driver pulse and mcp response
5092 		 * should be 1 (before mcp response) or 0 (after mcp response)
5093 		 */
5094 		if ((drv_pulse != mcp_pulse) &&
5095 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5096 			/* someone lost a heartbeat... */
5097 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5098 				  drv_pulse, mcp_pulse);
5099 		}
5100 	}
5101 
5102 	if (bp->state == BNX2X_STATE_OPEN)
5103 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5104 
5105 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5106 }
5107 
5108 /* end of Statistics */
5109 
5110 /* nic init */
5111 
5112 /*
5113  * nic init service functions
5114  */
5115 
5116 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5117 {
5118 	u32 i;
5119 	if (!(len%4) && !(addr%4))
5120 		for (i = 0; i < len; i += 4)
5121 			REG_WR(bp, addr + i, fill);
5122 	else
5123 		for (i = 0; i < len; i++)
5124 			REG_WR8(bp, addr + i, fill);
5125 
5126 }
5127 
5128 /* helper: writes FP SP data to FW - data_size in dwords */
5129 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5130 				int fw_sb_id,
5131 				u32 *sb_data_p,
5132 				u32 data_size)
5133 {
5134 	int index;
5135 	for (index = 0; index < data_size; index++)
5136 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5137 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5138 			sizeof(u32)*index,
5139 			*(sb_data_p + index));
5140 }
5141 
5142 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5143 {
5144 	u32 *sb_data_p;
5145 	u32 data_size = 0;
5146 	struct hc_status_block_data_e2 sb_data_e2;
5147 	struct hc_status_block_data_e1x sb_data_e1x;
5148 
5149 	/* disable the function first */
5150 	if (!CHIP_IS_E1x(bp)) {
5151 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5152 		sb_data_e2.common.state = SB_DISABLED;
5153 		sb_data_e2.common.p_func.vf_valid = false;
5154 		sb_data_p = (u32 *)&sb_data_e2;
5155 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5156 	} else {
5157 		memset(&sb_data_e1x, 0,
5158 		       sizeof(struct hc_status_block_data_e1x));
5159 		sb_data_e1x.common.state = SB_DISABLED;
5160 		sb_data_e1x.common.p_func.vf_valid = false;
5161 		sb_data_p = (u32 *)&sb_data_e1x;
5162 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5163 	}
5164 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5165 
5166 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5167 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5168 			CSTORM_STATUS_BLOCK_SIZE);
5169 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5170 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5171 			CSTORM_SYNC_BLOCK_SIZE);
5172 }
5173 
5174 /* helper:  writes SP SB data to FW */
5175 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5176 		struct hc_sp_status_block_data *sp_sb_data)
5177 {
5178 	int func = BP_FUNC(bp);
5179 	int i;
5180 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5181 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5182 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5183 			i*sizeof(u32),
5184 			*((u32 *)sp_sb_data + i));
5185 }
5186 
5187 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5188 {
5189 	int func = BP_FUNC(bp);
5190 	struct hc_sp_status_block_data sp_sb_data;
5191 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5192 
5193 	sp_sb_data.state = SB_DISABLED;
5194 	sp_sb_data.p_func.vf_valid = false;
5195 
5196 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5197 
5198 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5199 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5200 			CSTORM_SP_STATUS_BLOCK_SIZE);
5201 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5202 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5203 			CSTORM_SP_SYNC_BLOCK_SIZE);
5204 
5205 }
5206 
5207 
5208 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5209 					   int igu_sb_id, int igu_seg_id)
5210 {
5211 	hc_sm->igu_sb_id = igu_sb_id;
5212 	hc_sm->igu_seg_id = igu_seg_id;
5213 	hc_sm->timer_value = 0xFF;
5214 	hc_sm->time_to_expire = 0xFFFFFFFF;
5215 }
5216 
5217 
5218 /* allocates state machine ids. */
5219 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5220 {
5221 	/* zero out state machine indices */
5222 	/* rx indices */
5223 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5224 
5225 	/* tx indices */
5226 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5227 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5228 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5229 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5230 
5231 	/* map indices */
5232 	/* rx indices */
5233 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5234 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5235 
5236 	/* tx indices */
5237 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5238 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5239 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5240 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5241 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5242 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5243 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5244 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5245 }
5246 
5247 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5248 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5249 {
5250 	int igu_seg_id;
5251 
5252 	struct hc_status_block_data_e2 sb_data_e2;
5253 	struct hc_status_block_data_e1x sb_data_e1x;
5254 	struct hc_status_block_sm  *hc_sm_p;
5255 	int data_size;
5256 	u32 *sb_data_p;
5257 
5258 	if (CHIP_INT_MODE_IS_BC(bp))
5259 		igu_seg_id = HC_SEG_ACCESS_NORM;
5260 	else
5261 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5262 
5263 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5264 
5265 	if (!CHIP_IS_E1x(bp)) {
5266 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5267 		sb_data_e2.common.state = SB_ENABLED;
5268 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5269 		sb_data_e2.common.p_func.vf_id = vfid;
5270 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5271 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5272 		sb_data_e2.common.same_igu_sb_1b = true;
5273 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5274 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5275 		hc_sm_p = sb_data_e2.common.state_machine;
5276 		sb_data_p = (u32 *)&sb_data_e2;
5277 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5278 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5279 	} else {
5280 		memset(&sb_data_e1x, 0,
5281 		       sizeof(struct hc_status_block_data_e1x));
5282 		sb_data_e1x.common.state = SB_ENABLED;
5283 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5284 		sb_data_e1x.common.p_func.vf_id = 0xff;
5285 		sb_data_e1x.common.p_func.vf_valid = false;
5286 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5287 		sb_data_e1x.common.same_igu_sb_1b = true;
5288 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5289 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5290 		hc_sm_p = sb_data_e1x.common.state_machine;
5291 		sb_data_p = (u32 *)&sb_data_e1x;
5292 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5293 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5294 	}
5295 
5296 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5297 				       igu_sb_id, igu_seg_id);
5298 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5299 				       igu_sb_id, igu_seg_id);
5300 
5301 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5302 
5303 	/* write indecies to HW */
5304 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5305 }
5306 
5307 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5308 				     u16 tx_usec, u16 rx_usec)
5309 {
5310 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5311 				    false, rx_usec);
5312 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5313 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5314 				       tx_usec);
5315 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5316 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5317 				       tx_usec);
5318 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5319 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5320 				       tx_usec);
5321 }
5322 
5323 static void bnx2x_init_def_sb(struct bnx2x *bp)
5324 {
5325 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5326 	dma_addr_t mapping = bp->def_status_blk_mapping;
5327 	int igu_sp_sb_index;
5328 	int igu_seg_id;
5329 	int port = BP_PORT(bp);
5330 	int func = BP_FUNC(bp);
5331 	int reg_offset, reg_offset_en5;
5332 	u64 section;
5333 	int index;
5334 	struct hc_sp_status_block_data sp_sb_data;
5335 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5336 
5337 	if (CHIP_INT_MODE_IS_BC(bp)) {
5338 		igu_sp_sb_index = DEF_SB_IGU_ID;
5339 		igu_seg_id = HC_SEG_ACCESS_DEF;
5340 	} else {
5341 		igu_sp_sb_index = bp->igu_dsb_id;
5342 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5343 	}
5344 
5345 	/* ATTN */
5346 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5347 					    atten_status_block);
5348 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5349 
5350 	bp->attn_state = 0;
5351 
5352 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5353 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5354 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5355 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5356 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5357 		int sindex;
5358 		/* take care of sig[0]..sig[4] */
5359 		for (sindex = 0; sindex < 4; sindex++)
5360 			bp->attn_group[index].sig[sindex] =
5361 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5362 
5363 		if (!CHIP_IS_E1x(bp))
5364 			/*
5365 			 * enable5 is separate from the rest of the registers,
5366 			 * and therefore the address skip is 4
5367 			 * and not 16 between the different groups
5368 			 */
5369 			bp->attn_group[index].sig[4] = REG_RD(bp,
5370 					reg_offset_en5 + 0x4*index);
5371 		else
5372 			bp->attn_group[index].sig[4] = 0;
5373 	}
5374 
5375 	if (bp->common.int_block == INT_BLOCK_HC) {
5376 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5377 				     HC_REG_ATTN_MSG0_ADDR_L);
5378 
5379 		REG_WR(bp, reg_offset, U64_LO(section));
5380 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5381 	} else if (!CHIP_IS_E1x(bp)) {
5382 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5383 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5384 	}
5385 
5386 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5387 					    sp_sb);
5388 
5389 	bnx2x_zero_sp_sb(bp);
5390 
5391 	sp_sb_data.state		= SB_ENABLED;
5392 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5393 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5394 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5395 	sp_sb_data.igu_seg_id		= igu_seg_id;
5396 	sp_sb_data.p_func.pf_id		= func;
5397 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5398 	sp_sb_data.p_func.vf_id		= 0xff;
5399 
5400 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5401 
5402 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5403 }
5404 
5405 void bnx2x_update_coalesce(struct bnx2x *bp)
5406 {
5407 	int i;
5408 
5409 	for_each_eth_queue(bp, i)
5410 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5411 					 bp->tx_ticks, bp->rx_ticks);
5412 }
5413 
5414 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5415 {
5416 	spin_lock_init(&bp->spq_lock);
5417 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5418 
5419 	bp->spq_prod_idx = 0;
5420 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5421 	bp->spq_prod_bd = bp->spq;
5422 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5423 }
5424 
5425 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5426 {
5427 	int i;
5428 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5429 		union event_ring_elem *elem =
5430 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5431 
5432 		elem->next_page.addr.hi =
5433 			cpu_to_le32(U64_HI(bp->eq_mapping +
5434 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5435 		elem->next_page.addr.lo =
5436 			cpu_to_le32(U64_LO(bp->eq_mapping +
5437 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5438 	}
5439 	bp->eq_cons = 0;
5440 	bp->eq_prod = NUM_EQ_DESC;
5441 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5442 	/* we want a warning message before it gets rought... */
5443 	atomic_set(&bp->eq_spq_left,
5444 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5445 }
5446 
5447 
5448 /* called with netif_addr_lock_bh() */
5449 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5450 			 unsigned long rx_mode_flags,
5451 			 unsigned long rx_accept_flags,
5452 			 unsigned long tx_accept_flags,
5453 			 unsigned long ramrod_flags)
5454 {
5455 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5456 	int rc;
5457 
5458 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5459 
5460 	/* Prepare ramrod parameters */
5461 	ramrod_param.cid = 0;
5462 	ramrod_param.cl_id = cl_id;
5463 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5464 	ramrod_param.func_id = BP_FUNC(bp);
5465 
5466 	ramrod_param.pstate = &bp->sp_state;
5467 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5468 
5469 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5470 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5471 
5472 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5473 
5474 	ramrod_param.ramrod_flags = ramrod_flags;
5475 	ramrod_param.rx_mode_flags = rx_mode_flags;
5476 
5477 	ramrod_param.rx_accept_flags = rx_accept_flags;
5478 	ramrod_param.tx_accept_flags = tx_accept_flags;
5479 
5480 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5481 	if (rc < 0) {
5482 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5483 		return;
5484 	}
5485 }
5486 
5487 /* called with netif_addr_lock_bh() */
5488 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5489 {
5490 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5491 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5492 
5493 #ifdef BCM_CNIC
5494 	if (!NO_FCOE(bp))
5495 
5496 		/* Configure rx_mode of FCoE Queue */
5497 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5498 #endif
5499 
5500 	switch (bp->rx_mode) {
5501 	case BNX2X_RX_MODE_NONE:
5502 		/*
5503 		 * 'drop all' supersedes any accept flags that may have been
5504 		 * passed to the function.
5505 		 */
5506 		break;
5507 	case BNX2X_RX_MODE_NORMAL:
5508 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5509 		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5510 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5511 
5512 		/* internal switching mode */
5513 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5514 		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5515 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5516 
5517 		break;
5518 	case BNX2X_RX_MODE_ALLMULTI:
5519 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5520 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5521 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5522 
5523 		/* internal switching mode */
5524 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5525 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5526 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5527 
5528 		break;
5529 	case BNX2X_RX_MODE_PROMISC:
5530 		/* According to deffinition of SI mode, iface in promisc mode
5531 		 * should receive matched and unmatched (in resolution of port)
5532 		 * unicast packets.
5533 		 */
5534 		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5535 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5536 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5537 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5538 
5539 		/* internal switching mode */
5540 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5541 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5542 
5543 		if (IS_MF_SI(bp))
5544 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5545 		else
5546 			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5547 
5548 		break;
5549 	default:
5550 		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5551 		return;
5552 	}
5553 
5554 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5555 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5556 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5557 	}
5558 
5559 	__set_bit(RAMROD_RX, &ramrod_flags);
5560 	__set_bit(RAMROD_TX, &ramrod_flags);
5561 
5562 	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5563 			    tx_accept_flags, ramrod_flags);
5564 }
5565 
5566 static void bnx2x_init_internal_common(struct bnx2x *bp)
5567 {
5568 	int i;
5569 
5570 	if (IS_MF_SI(bp))
5571 		/*
5572 		 * In switch independent mode, the TSTORM needs to accept
5573 		 * packets that failed classification, since approximate match
5574 		 * mac addresses aren't written to NIG LLH
5575 		 */
5576 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5577 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5578 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5579 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5580 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5581 
5582 	/* Zero this manually as its initialization is
5583 	   currently missing in the initTool */
5584 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5585 		REG_WR(bp, BAR_USTRORM_INTMEM +
5586 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5587 	if (!CHIP_IS_E1x(bp)) {
5588 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5589 			CHIP_INT_MODE_IS_BC(bp) ?
5590 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5591 	}
5592 }
5593 
5594 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5595 {
5596 	switch (load_code) {
5597 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5598 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5599 		bnx2x_init_internal_common(bp);
5600 		/* no break */
5601 
5602 	case FW_MSG_CODE_DRV_LOAD_PORT:
5603 		/* nothing to do */
5604 		/* no break */
5605 
5606 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5607 		/* internal memory per function is
5608 		   initialized inside bnx2x_pf_init */
5609 		break;
5610 
5611 	default:
5612 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5613 		break;
5614 	}
5615 }
5616 
5617 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5618 {
5619 	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5620 }
5621 
5622 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5623 {
5624 	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5625 }
5626 
5627 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5628 {
5629 	if (CHIP_IS_E1x(fp->bp))
5630 		return BP_L_ID(fp->bp) + fp->index;
5631 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5632 		return bnx2x_fp_igu_sb_id(fp);
5633 }
5634 
5635 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5636 {
5637 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5638 	u8 cos;
5639 	unsigned long q_type = 0;
5640 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5641 	fp->rx_queue = fp_idx;
5642 	fp->cid = fp_idx;
5643 	fp->cl_id = bnx2x_fp_cl_id(fp);
5644 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5645 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5646 	/* qZone id equals to FW (per path) client id */
5647 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5648 
5649 	/* init shortcut */
5650 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5651 
5652 	/* Setup SB indicies */
5653 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5654 
5655 	/* Configure Queue State object */
5656 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5657 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5658 
5659 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5660 
5661 	/* init tx data */
5662 	for_each_cos_in_tx_queue(fp, cos) {
5663 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
5664 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
5665 				  FP_COS_TO_TXQ(fp, cos, bp),
5666 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
5667 		cids[cos] = fp->txdata_ptr[cos]->cid;
5668 	}
5669 
5670 	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5671 			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5672 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5673 
5674 	/**
5675 	 * Configure classification DBs: Always enable Tx switching
5676 	 */
5677 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5678 
5679 	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5680 		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5681 		   fp->igu_sb_id);
5682 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5683 		      fp->fw_sb_id, fp->igu_sb_id);
5684 
5685 	bnx2x_update_fpsb_idx(fp);
5686 }
5687 
5688 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
5689 {
5690 	int i;
5691 
5692 	for (i = 1; i <= NUM_TX_RINGS; i++) {
5693 		struct eth_tx_next_bd *tx_next_bd =
5694 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
5695 
5696 		tx_next_bd->addr_hi =
5697 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
5698 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5699 		tx_next_bd->addr_lo =
5700 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
5701 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5702 	}
5703 
5704 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
5705 	txdata->tx_db.data.zero_fill1 = 0;
5706 	txdata->tx_db.data.prod = 0;
5707 
5708 	txdata->tx_pkt_prod = 0;
5709 	txdata->tx_pkt_cons = 0;
5710 	txdata->tx_bd_prod = 0;
5711 	txdata->tx_bd_cons = 0;
5712 	txdata->tx_pkt = 0;
5713 }
5714 
5715 static void bnx2x_init_tx_rings(struct bnx2x *bp)
5716 {
5717 	int i;
5718 	u8 cos;
5719 
5720 	for_each_tx_queue(bp, i)
5721 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
5722 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
5723 }
5724 
5725 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5726 {
5727 	int i;
5728 
5729 	for_each_eth_queue(bp, i)
5730 		bnx2x_init_eth_fp(bp, i);
5731 #ifdef BCM_CNIC
5732 	if (!NO_FCOE(bp))
5733 		bnx2x_init_fcoe_fp(bp);
5734 
5735 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5736 		      BNX2X_VF_ID_INVALID, false,
5737 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5738 
5739 #endif
5740 
5741 	/* Initialize MOD_ABS interrupts */
5742 	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5743 			       bp->common.shmem_base, bp->common.shmem2_base,
5744 			       BP_PORT(bp));
5745 	/* ensure status block indices were read */
5746 	rmb();
5747 
5748 	bnx2x_init_def_sb(bp);
5749 	bnx2x_update_dsb_idx(bp);
5750 	bnx2x_init_rx_rings(bp);
5751 	bnx2x_init_tx_rings(bp);
5752 	bnx2x_init_sp_ring(bp);
5753 	bnx2x_init_eq_ring(bp);
5754 	bnx2x_init_internal(bp, load_code);
5755 	bnx2x_pf_init(bp);
5756 	bnx2x_stats_init(bp);
5757 
5758 	/* flush all before enabling interrupts */
5759 	mb();
5760 	mmiowb();
5761 
5762 	bnx2x_int_enable(bp);
5763 
5764 	/* Check for SPIO5 */
5765 	bnx2x_attn_int_deasserted0(bp,
5766 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5767 				   AEU_INPUTS_ATTN_BITS_SPIO5);
5768 }
5769 
5770 /* end of nic init */
5771 
5772 /*
5773  * gzip service functions
5774  */
5775 
5776 static int bnx2x_gunzip_init(struct bnx2x *bp)
5777 {
5778 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5779 					    &bp->gunzip_mapping, GFP_KERNEL);
5780 	if (bp->gunzip_buf  == NULL)
5781 		goto gunzip_nomem1;
5782 
5783 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5784 	if (bp->strm  == NULL)
5785 		goto gunzip_nomem2;
5786 
5787 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5788 	if (bp->strm->workspace == NULL)
5789 		goto gunzip_nomem3;
5790 
5791 	return 0;
5792 
5793 gunzip_nomem3:
5794 	kfree(bp->strm);
5795 	bp->strm = NULL;
5796 
5797 gunzip_nomem2:
5798 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5799 			  bp->gunzip_mapping);
5800 	bp->gunzip_buf = NULL;
5801 
5802 gunzip_nomem1:
5803 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5804 	return -ENOMEM;
5805 }
5806 
5807 static void bnx2x_gunzip_end(struct bnx2x *bp)
5808 {
5809 	if (bp->strm) {
5810 		vfree(bp->strm->workspace);
5811 		kfree(bp->strm);
5812 		bp->strm = NULL;
5813 	}
5814 
5815 	if (bp->gunzip_buf) {
5816 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5817 				  bp->gunzip_mapping);
5818 		bp->gunzip_buf = NULL;
5819 	}
5820 }
5821 
5822 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5823 {
5824 	int n, rc;
5825 
5826 	/* check gzip header */
5827 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5828 		BNX2X_ERR("Bad gzip header\n");
5829 		return -EINVAL;
5830 	}
5831 
5832 	n = 10;
5833 
5834 #define FNAME				0x8
5835 
5836 	if (zbuf[3] & FNAME)
5837 		while ((zbuf[n++] != 0) && (n < len));
5838 
5839 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5840 	bp->strm->avail_in = len - n;
5841 	bp->strm->next_out = bp->gunzip_buf;
5842 	bp->strm->avail_out = FW_BUF_SIZE;
5843 
5844 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5845 	if (rc != Z_OK)
5846 		return rc;
5847 
5848 	rc = zlib_inflate(bp->strm, Z_FINISH);
5849 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5850 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5851 			   bp->strm->msg);
5852 
5853 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5854 	if (bp->gunzip_outlen & 0x3)
5855 		netdev_err(bp->dev,
5856 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5857 				bp->gunzip_outlen);
5858 	bp->gunzip_outlen >>= 2;
5859 
5860 	zlib_inflateEnd(bp->strm);
5861 
5862 	if (rc == Z_STREAM_END)
5863 		return 0;
5864 
5865 	return rc;
5866 }
5867 
5868 /* nic load/unload */
5869 
5870 /*
5871  * General service functions
5872  */
5873 
5874 /* send a NIG loopback debug packet */
5875 static void bnx2x_lb_pckt(struct bnx2x *bp)
5876 {
5877 	u32 wb_write[3];
5878 
5879 	/* Ethernet source and destination addresses */
5880 	wb_write[0] = 0x55555555;
5881 	wb_write[1] = 0x55555555;
5882 	wb_write[2] = 0x20;		/* SOP */
5883 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5884 
5885 	/* NON-IP protocol */
5886 	wb_write[0] = 0x09000000;
5887 	wb_write[1] = 0x55555555;
5888 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5889 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5890 }
5891 
5892 /* some of the internal memories
5893  * are not directly readable from the driver
5894  * to test them we send debug packets
5895  */
5896 static int bnx2x_int_mem_test(struct bnx2x *bp)
5897 {
5898 	int factor;
5899 	int count, i;
5900 	u32 val = 0;
5901 
5902 	if (CHIP_REV_IS_FPGA(bp))
5903 		factor = 120;
5904 	else if (CHIP_REV_IS_EMUL(bp))
5905 		factor = 200;
5906 	else
5907 		factor = 1;
5908 
5909 	/* Disable inputs of parser neighbor blocks */
5910 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5911 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5912 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5913 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5914 
5915 	/*  Write 0 to parser credits for CFC search request */
5916 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5917 
5918 	/* send Ethernet packet */
5919 	bnx2x_lb_pckt(bp);
5920 
5921 	/* TODO do i reset NIG statistic? */
5922 	/* Wait until NIG register shows 1 packet of size 0x10 */
5923 	count = 1000 * factor;
5924 	while (count) {
5925 
5926 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5927 		val = *bnx2x_sp(bp, wb_data[0]);
5928 		if (val == 0x10)
5929 			break;
5930 
5931 		msleep(10);
5932 		count--;
5933 	}
5934 	if (val != 0x10) {
5935 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5936 		return -1;
5937 	}
5938 
5939 	/* Wait until PRS register shows 1 packet */
5940 	count = 1000 * factor;
5941 	while (count) {
5942 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5943 		if (val == 1)
5944 			break;
5945 
5946 		msleep(10);
5947 		count--;
5948 	}
5949 	if (val != 0x1) {
5950 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5951 		return -2;
5952 	}
5953 
5954 	/* Reset and init BRB, PRS */
5955 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5956 	msleep(50);
5957 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5958 	msleep(50);
5959 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5960 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5961 
5962 	DP(NETIF_MSG_HW, "part2\n");
5963 
5964 	/* Disable inputs of parser neighbor blocks */
5965 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5966 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5967 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5968 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5969 
5970 	/* Write 0 to parser credits for CFC search request */
5971 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5972 
5973 	/* send 10 Ethernet packets */
5974 	for (i = 0; i < 10; i++)
5975 		bnx2x_lb_pckt(bp);
5976 
5977 	/* Wait until NIG register shows 10 + 1
5978 	   packets of size 11*0x10 = 0xb0 */
5979 	count = 1000 * factor;
5980 	while (count) {
5981 
5982 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5983 		val = *bnx2x_sp(bp, wb_data[0]);
5984 		if (val == 0xb0)
5985 			break;
5986 
5987 		msleep(10);
5988 		count--;
5989 	}
5990 	if (val != 0xb0) {
5991 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5992 		return -3;
5993 	}
5994 
5995 	/* Wait until PRS register shows 2 packets */
5996 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5997 	if (val != 2)
5998 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5999 
6000 	/* Write 1 to parser credits for CFC search request */
6001 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6002 
6003 	/* Wait until PRS register shows 3 packets */
6004 	msleep(10 * factor);
6005 	/* Wait until NIG register shows 1 packet of size 0x10 */
6006 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6007 	if (val != 3)
6008 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6009 
6010 	/* clear NIG EOP FIFO */
6011 	for (i = 0; i < 11; i++)
6012 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6013 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6014 	if (val != 1) {
6015 		BNX2X_ERR("clear of NIG failed\n");
6016 		return -4;
6017 	}
6018 
6019 	/* Reset and init BRB, PRS, NIG */
6020 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6021 	msleep(50);
6022 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6023 	msleep(50);
6024 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6025 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6026 #ifndef BCM_CNIC
6027 	/* set NIC mode */
6028 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6029 #endif
6030 
6031 	/* Enable inputs of parser neighbor blocks */
6032 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6033 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6034 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6035 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6036 
6037 	DP(NETIF_MSG_HW, "done\n");
6038 
6039 	return 0; /* OK */
6040 }
6041 
6042 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6043 {
6044 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6045 	if (!CHIP_IS_E1x(bp))
6046 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6047 	else
6048 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6049 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6050 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6051 	/*
6052 	 * mask read length error interrupts in brb for parser
6053 	 * (parsing unit and 'checksum and crc' unit)
6054 	 * these errors are legal (PU reads fixed length and CAC can cause
6055 	 * read length error on truncated packets)
6056 	 */
6057 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6058 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6059 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6060 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6061 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6062 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6063 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6064 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6065 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6066 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6067 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6068 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6069 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6070 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6071 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6072 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6073 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6074 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6075 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6076 
6077 	if (CHIP_REV_IS_FPGA(bp))
6078 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
6079 	else if (!CHIP_IS_E1x(bp))
6080 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
6081 			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
6082 				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
6083 				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
6084 				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
6085 				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
6086 	else
6087 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
6088 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6089 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6090 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6091 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6092 
6093 	if (!CHIP_IS_E1x(bp))
6094 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6095 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6096 
6097 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6098 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6099 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6100 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6101 }
6102 
6103 static void bnx2x_reset_common(struct bnx2x *bp)
6104 {
6105 	u32 val = 0x1400;
6106 
6107 	/* reset_common */
6108 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6109 	       0xd3ffff7f);
6110 
6111 	if (CHIP_IS_E3(bp)) {
6112 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6113 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6114 	}
6115 
6116 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6117 }
6118 
6119 static void bnx2x_setup_dmae(struct bnx2x *bp)
6120 {
6121 	bp->dmae_ready = 0;
6122 	spin_lock_init(&bp->dmae_lock);
6123 }
6124 
6125 static void bnx2x_init_pxp(struct bnx2x *bp)
6126 {
6127 	u16 devctl;
6128 	int r_order, w_order;
6129 
6130 	pci_read_config_word(bp->pdev,
6131 			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
6132 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6133 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6134 	if (bp->mrrs == -1)
6135 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6136 	else {
6137 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6138 		r_order = bp->mrrs;
6139 	}
6140 
6141 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6142 }
6143 
6144 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6145 {
6146 	int is_required;
6147 	u32 val;
6148 	int port;
6149 
6150 	if (BP_NOMCP(bp))
6151 		return;
6152 
6153 	is_required = 0;
6154 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6155 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6156 
6157 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6158 		is_required = 1;
6159 
6160 	/*
6161 	 * The fan failure mechanism is usually related to the PHY type since
6162 	 * the power consumption of the board is affected by the PHY. Currently,
6163 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6164 	 */
6165 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6166 		for (port = PORT_0; port < PORT_MAX; port++) {
6167 			is_required |=
6168 				bnx2x_fan_failure_det_req(
6169 					bp,
6170 					bp->common.shmem_base,
6171 					bp->common.shmem2_base,
6172 					port);
6173 		}
6174 
6175 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6176 
6177 	if (is_required == 0)
6178 		return;
6179 
6180 	/* Fan failure is indicated by SPIO 5 */
6181 	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
6182 		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
6183 
6184 	/* set to active low mode */
6185 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6186 	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
6187 					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
6188 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6189 
6190 	/* enable interrupt to signal the IGU */
6191 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6192 	val |= (1 << MISC_REGISTERS_SPIO_5);
6193 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6194 }
6195 
6196 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
6197 {
6198 	u32 offset = 0;
6199 
6200 	if (CHIP_IS_E1(bp))
6201 		return;
6202 	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
6203 		return;
6204 
6205 	switch (BP_ABS_FUNC(bp)) {
6206 	case 0:
6207 		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
6208 		break;
6209 	case 1:
6210 		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
6211 		break;
6212 	case 2:
6213 		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
6214 		break;
6215 	case 3:
6216 		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
6217 		break;
6218 	case 4:
6219 		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
6220 		break;
6221 	case 5:
6222 		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
6223 		break;
6224 	case 6:
6225 		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
6226 		break;
6227 	case 7:
6228 		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
6229 		break;
6230 	default:
6231 		return;
6232 	}
6233 
6234 	REG_WR(bp, offset, pretend_func_num);
6235 	REG_RD(bp, offset);
6236 	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
6237 }
6238 
6239 void bnx2x_pf_disable(struct bnx2x *bp)
6240 {
6241 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6242 	val &= ~IGU_PF_CONF_FUNC_EN;
6243 
6244 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6245 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6246 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6247 }
6248 
6249 static void bnx2x__common_init_phy(struct bnx2x *bp)
6250 {
6251 	u32 shmem_base[2], shmem2_base[2];
6252 	shmem_base[0] =  bp->common.shmem_base;
6253 	shmem2_base[0] = bp->common.shmem2_base;
6254 	if (!CHIP_IS_E1x(bp)) {
6255 		shmem_base[1] =
6256 			SHMEM2_RD(bp, other_shmem_base_addr);
6257 		shmem2_base[1] =
6258 			SHMEM2_RD(bp, other_shmem2_base_addr);
6259 	}
6260 	bnx2x_acquire_phy_lock(bp);
6261 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6262 			      bp->common.chip_id);
6263 	bnx2x_release_phy_lock(bp);
6264 }
6265 
6266 /**
6267  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6268  *
6269  * @bp:		driver handle
6270  */
6271 static int bnx2x_init_hw_common(struct bnx2x *bp)
6272 {
6273 	u32 val;
6274 
6275 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6276 
6277 	/*
6278 	 * take the UNDI lock to protect undi_unload flow from accessing
6279 	 * registers while we're resetting the chip
6280 	 */
6281 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6282 
6283 	bnx2x_reset_common(bp);
6284 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6285 
6286 	val = 0xfffc;
6287 	if (CHIP_IS_E3(bp)) {
6288 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6289 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6290 	}
6291 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6292 
6293 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6294 
6295 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6296 
6297 	if (!CHIP_IS_E1x(bp)) {
6298 		u8 abs_func_id;
6299 
6300 		/**
6301 		 * 4-port mode or 2-port mode we need to turn of master-enable
6302 		 * for everyone, after that, turn it back on for self.
6303 		 * so, we disregard multi-function or not, and always disable
6304 		 * for all functions on the given path, this means 0,2,4,6 for
6305 		 * path 0 and 1,3,5,7 for path 1
6306 		 */
6307 		for (abs_func_id = BP_PATH(bp);
6308 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6309 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6310 				REG_WR(bp,
6311 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6312 				    1);
6313 				continue;
6314 			}
6315 
6316 			bnx2x_pretend_func(bp, abs_func_id);
6317 			/* clear pf enable */
6318 			bnx2x_pf_disable(bp);
6319 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6320 		}
6321 	}
6322 
6323 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6324 	if (CHIP_IS_E1(bp)) {
6325 		/* enable HW interrupt from PXP on USDM overflow
6326 		   bit 16 on INT_MASK_0 */
6327 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6328 	}
6329 
6330 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6331 	bnx2x_init_pxp(bp);
6332 
6333 #ifdef __BIG_ENDIAN
6334 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6335 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6336 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6337 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6338 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6339 	/* make sure this value is 0 */
6340 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6341 
6342 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6343 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6344 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6345 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6346 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6347 #endif
6348 
6349 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6350 
6351 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6352 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6353 
6354 	/* let the HW do it's magic ... */
6355 	msleep(100);
6356 	/* finish PXP init */
6357 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6358 	if (val != 1) {
6359 		BNX2X_ERR("PXP2 CFG failed\n");
6360 		return -EBUSY;
6361 	}
6362 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6363 	if (val != 1) {
6364 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6365 		return -EBUSY;
6366 	}
6367 
6368 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6369 	 * have entries with value "0" and valid bit on.
6370 	 * This needs to be done by the first PF that is loaded in a path
6371 	 * (i.e. common phase)
6372 	 */
6373 	if (!CHIP_IS_E1x(bp)) {
6374 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6375  * (i.e. vnic3) to start even if it is marked as "scan-off".
6376  * This occurs when a different function (func2,3) is being marked
6377  * as "scan-off". Real-life scenario for example: if a driver is being
6378  * load-unloaded while func6,7 are down. This will cause the timer to access
6379  * the ilt, translate to a logical address and send a request to read/write.
6380  * Since the ilt for the function that is down is not valid, this will cause
6381  * a translation error which is unrecoverable.
6382  * The Workaround is intended to make sure that when this happens nothing fatal
6383  * will occur. The workaround:
6384  *	1.  First PF driver which loads on a path will:
6385  *		a.  After taking the chip out of reset, by using pretend,
6386  *		    it will write "0" to the following registers of
6387  *		    the other vnics.
6388  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6389  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6390  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6391  *		    And for itself it will write '1' to
6392  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6393  *		    dmae-operations (writing to pram for example.)
6394  *		    note: can be done for only function 6,7 but cleaner this
6395  *			  way.
6396  *		b.  Write zero+valid to the entire ILT.
6397  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6398  *		    VNIC3 (of that port). The range allocated will be the
6399  *		    entire ILT. This is needed to prevent  ILT range error.
6400  *	2.  Any PF driver load flow:
6401  *		a.  ILT update with the physical addresses of the allocated
6402  *		    logical pages.
6403  *		b.  Wait 20msec. - note that this timeout is needed to make
6404  *		    sure there are no requests in one of the PXP internal
6405  *		    queues with "old" ILT addresses.
6406  *		c.  PF enable in the PGLC.
6407  *		d.  Clear the was_error of the PF in the PGLC. (could have
6408  *		    occured while driver was down)
6409  *		e.  PF enable in the CFC (WEAK + STRONG)
6410  *		f.  Timers scan enable
6411  *	3.  PF driver unload flow:
6412  *		a.  Clear the Timers scan_en.
6413  *		b.  Polling for scan_on=0 for that PF.
6414  *		c.  Clear the PF enable bit in the PXP.
6415  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6416  *		e.  Write zero+valid to all ILT entries (The valid bit must
6417  *		    stay set)
6418  *		f.  If this is VNIC 3 of a port then also init
6419  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6420  *		    to the last enrty in the ILT.
6421  *
6422  *	Notes:
6423  *	Currently the PF error in the PGLC is non recoverable.
6424  *	In the future the there will be a recovery routine for this error.
6425  *	Currently attention is masked.
6426  *	Having an MCP lock on the load/unload process does not guarantee that
6427  *	there is no Timer disable during Func6/7 enable. This is because the
6428  *	Timers scan is currently being cleared by the MCP on FLR.
6429  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6430  *	there is error before clearing it. But the flow above is simpler and
6431  *	more general.
6432  *	All ILT entries are written by zero+valid and not just PF6/7
6433  *	ILT entries since in the future the ILT entries allocation for
6434  *	PF-s might be dynamic.
6435  */
6436 		struct ilt_client_info ilt_cli;
6437 		struct bnx2x_ilt ilt;
6438 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6439 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6440 
6441 		/* initialize dummy TM client */
6442 		ilt_cli.start = 0;
6443 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6444 		ilt_cli.client_num = ILT_CLIENT_TM;
6445 
6446 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6447 		 * Step 2: set the timers first/last ilt entry to point
6448 		 * to the entire range to prevent ILT range error for 3rd/4th
6449 		 * vnic	(this code assumes existance of the vnic)
6450 		 *
6451 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6452 		 * with dummy TM client
6453 		 *
6454 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6455 		 * and his brother are split registers
6456 		 */
6457 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6458 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6459 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6460 
6461 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6462 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6463 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6464 	}
6465 
6466 
6467 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6468 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6469 
6470 	if (!CHIP_IS_E1x(bp)) {
6471 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6472 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6473 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6474 
6475 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6476 
6477 		/* let the HW do it's magic ... */
6478 		do {
6479 			msleep(200);
6480 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6481 		} while (factor-- && (val != 1));
6482 
6483 		if (val != 1) {
6484 			BNX2X_ERR("ATC_INIT failed\n");
6485 			return -EBUSY;
6486 		}
6487 	}
6488 
6489 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6490 
6491 	/* clean the DMAE memory */
6492 	bp->dmae_ready = 1;
6493 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6494 
6495 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6496 
6497 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6498 
6499 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6500 
6501 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6502 
6503 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6504 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6505 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6506 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6507 
6508 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6509 
6510 
6511 	/* QM queues pointers table */
6512 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6513 
6514 	/* soft reset pulse */
6515 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6516 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6517 
6518 #ifdef BCM_CNIC
6519 	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6520 #endif
6521 
6522 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6523 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6524 	if (!CHIP_REV_IS_SLOW(bp))
6525 		/* enable hw interrupt from doorbell Q */
6526 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6527 
6528 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6529 
6530 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6531 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6532 
6533 	if (!CHIP_IS_E1(bp))
6534 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6535 
6536 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6537 		if (IS_MF_AFEX(bp)) {
6538 			/* configure that VNTag and VLAN headers must be
6539 			 * received in afex mode
6540 			 */
6541 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6542 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6543 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6544 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6545 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6546 		} else {
6547 			/* Bit-map indicating which L2 hdrs may appear
6548 			 * after the basic Ethernet header
6549 			 */
6550 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6551 			       bp->path_has_ovlan ? 7 : 6);
6552 		}
6553 	}
6554 
6555 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6556 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6557 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6558 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6559 
6560 	if (!CHIP_IS_E1x(bp)) {
6561 		/* reset VFC memories */
6562 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6563 			   VFC_MEMORIES_RST_REG_CAM_RST |
6564 			   VFC_MEMORIES_RST_REG_RAM_RST);
6565 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6566 			   VFC_MEMORIES_RST_REG_CAM_RST |
6567 			   VFC_MEMORIES_RST_REG_RAM_RST);
6568 
6569 		msleep(20);
6570 	}
6571 
6572 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6573 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6574 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6575 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6576 
6577 	/* sync semi rtc */
6578 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6579 	       0x80000000);
6580 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6581 	       0x80000000);
6582 
6583 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6584 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6585 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6586 
6587 	if (!CHIP_IS_E1x(bp)) {
6588 		if (IS_MF_AFEX(bp)) {
6589 			/* configure that VNTag and VLAN headers must be
6590 			 * sent in afex mode
6591 			 */
6592 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6593 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6594 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6595 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6596 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6597 		} else {
6598 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6599 			       bp->path_has_ovlan ? 7 : 6);
6600 		}
6601 	}
6602 
6603 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6604 
6605 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6606 
6607 #ifdef BCM_CNIC
6608 	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6609 	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6610 	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6611 	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6612 	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6613 	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6614 	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6615 	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6616 	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6617 	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6618 #endif
6619 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6620 
6621 	if (sizeof(union cdu_context) != 1024)
6622 		/* we currently assume that a context is 1024 bytes */
6623 		dev_alert(&bp->pdev->dev,
6624 			  "please adjust the size of cdu_context(%ld)\n",
6625 			  (long)sizeof(union cdu_context));
6626 
6627 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6628 	val = (4 << 24) + (0 << 12) + 1024;
6629 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6630 
6631 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6632 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6633 	/* enable context validation interrupt from CFC */
6634 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6635 
6636 	/* set the thresholds to prevent CFC/CDU race */
6637 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6638 
6639 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6640 
6641 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6642 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6643 
6644 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6645 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6646 
6647 	/* Reset PCIE errors for debug */
6648 	REG_WR(bp, 0x2814, 0xffffffff);
6649 	REG_WR(bp, 0x3820, 0xffffffff);
6650 
6651 	if (!CHIP_IS_E1x(bp)) {
6652 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6653 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6654 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6655 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6656 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6657 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6658 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6659 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6660 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6661 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6662 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6663 	}
6664 
6665 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6666 	if (!CHIP_IS_E1(bp)) {
6667 		/* in E3 this done in per-port section */
6668 		if (!CHIP_IS_E3(bp))
6669 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6670 	}
6671 	if (CHIP_IS_E1H(bp))
6672 		/* not applicable for E2 (and above ...) */
6673 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6674 
6675 	if (CHIP_REV_IS_SLOW(bp))
6676 		msleep(200);
6677 
6678 	/* finish CFC init */
6679 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6680 	if (val != 1) {
6681 		BNX2X_ERR("CFC LL_INIT failed\n");
6682 		return -EBUSY;
6683 	}
6684 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6685 	if (val != 1) {
6686 		BNX2X_ERR("CFC AC_INIT failed\n");
6687 		return -EBUSY;
6688 	}
6689 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6690 	if (val != 1) {
6691 		BNX2X_ERR("CFC CAM_INIT failed\n");
6692 		return -EBUSY;
6693 	}
6694 	REG_WR(bp, CFC_REG_DEBUG0, 0);
6695 
6696 	if (CHIP_IS_E1(bp)) {
6697 		/* read NIG statistic
6698 		   to see if this is our first up since powerup */
6699 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6700 		val = *bnx2x_sp(bp, wb_data[0]);
6701 
6702 		/* do internal memory self test */
6703 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6704 			BNX2X_ERR("internal mem self test failed\n");
6705 			return -EBUSY;
6706 		}
6707 	}
6708 
6709 	bnx2x_setup_fan_failure_detection(bp);
6710 
6711 	/* clear PXP2 attentions */
6712 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6713 
6714 	bnx2x_enable_blocks_attention(bp);
6715 	bnx2x_enable_blocks_parity(bp);
6716 
6717 	if (!BP_NOMCP(bp)) {
6718 		if (CHIP_IS_E1x(bp))
6719 			bnx2x__common_init_phy(bp);
6720 	} else
6721 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6722 
6723 	return 0;
6724 }
6725 
6726 /**
6727  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6728  *
6729  * @bp:		driver handle
6730  */
6731 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6732 {
6733 	int rc = bnx2x_init_hw_common(bp);
6734 
6735 	if (rc)
6736 		return rc;
6737 
6738 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6739 	if (!BP_NOMCP(bp))
6740 		bnx2x__common_init_phy(bp);
6741 
6742 	return 0;
6743 }
6744 
6745 static int bnx2x_init_hw_port(struct bnx2x *bp)
6746 {
6747 	int port = BP_PORT(bp);
6748 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6749 	u32 low, high;
6750 	u32 val;
6751 
6752 	bnx2x__link_reset(bp);
6753 
6754 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
6755 
6756 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6757 
6758 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6759 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6760 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6761 
6762 	/* Timers bug workaround: disables the pf_master bit in pglue at
6763 	 * common phase, we need to enable it here before any dmae access are
6764 	 * attempted. Therefore we manually added the enable-master to the
6765 	 * port phase (it also happens in the function phase)
6766 	 */
6767 	if (!CHIP_IS_E1x(bp))
6768 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6769 
6770 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6771 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6772 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6773 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6774 
6775 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6776 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6777 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6778 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6779 
6780 	/* QM cid (connection) count */
6781 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6782 
6783 #ifdef BCM_CNIC
6784 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6785 	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6786 	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6787 #endif
6788 
6789 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6790 
6791 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6792 		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6793 
6794 		if (IS_MF(bp))
6795 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6796 		else if (bp->dev->mtu > 4096) {
6797 			if (bp->flags & ONE_PORT_FLAG)
6798 				low = 160;
6799 			else {
6800 				val = bp->dev->mtu;
6801 				/* (24*1024 + val*4)/256 */
6802 				low = 96 + (val/64) +
6803 						((val % 64) ? 1 : 0);
6804 			}
6805 		} else
6806 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6807 		high = low + 56;	/* 14*1024/256 */
6808 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6809 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6810 	}
6811 
6812 	if (CHIP_MODE_IS_4_PORT(bp))
6813 		REG_WR(bp, (BP_PORT(bp) ?
6814 			    BRB1_REG_MAC_GUARANTIED_1 :
6815 			    BRB1_REG_MAC_GUARANTIED_0), 40);
6816 
6817 
6818 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6819 	if (CHIP_IS_E3B0(bp)) {
6820 		if (IS_MF_AFEX(bp)) {
6821 			/* configure headers for AFEX mode */
6822 			REG_WR(bp, BP_PORT(bp) ?
6823 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6824 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
6825 			REG_WR(bp, BP_PORT(bp) ?
6826 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
6827 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
6828 			REG_WR(bp, BP_PORT(bp) ?
6829 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
6830 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
6831 		} else {
6832 			/* Ovlan exists only if we are in multi-function +
6833 			 * switch-dependent mode, in switch-independent there
6834 			 * is no ovlan headers
6835 			 */
6836 			REG_WR(bp, BP_PORT(bp) ?
6837 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6838 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6839 			       (bp->path_has_ovlan ? 7 : 6));
6840 		}
6841 	}
6842 
6843 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6844 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6845 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6846 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6847 
6848 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6849 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6850 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6851 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6852 
6853 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6854 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6855 
6856 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6857 
6858 	if (CHIP_IS_E1x(bp)) {
6859 		/* configure PBF to work without PAUSE mtu 9000 */
6860 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6861 
6862 		/* update threshold */
6863 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6864 		/* update init credit */
6865 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6866 
6867 		/* probe changes */
6868 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6869 		udelay(50);
6870 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6871 	}
6872 
6873 #ifdef BCM_CNIC
6874 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6875 #endif
6876 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6877 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6878 
6879 	if (CHIP_IS_E1(bp)) {
6880 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6881 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6882 	}
6883 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6884 
6885 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6886 
6887 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6888 	/* init aeu_mask_attn_func_0/1:
6889 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6890 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6891 	 *             bits 4-7 are used for "per vn group attention" */
6892 	val = IS_MF(bp) ? 0xF7 : 0x7;
6893 	/* Enable DCBX attention for all but E1 */
6894 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6895 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6896 
6897 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6898 
6899 	if (!CHIP_IS_E1x(bp)) {
6900 		/* Bit-map indicating which L2 hdrs may appear after the
6901 		 * basic Ethernet header
6902 		 */
6903 		if (IS_MF_AFEX(bp))
6904 			REG_WR(bp, BP_PORT(bp) ?
6905 			       NIG_REG_P1_HDRS_AFTER_BASIC :
6906 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
6907 		else
6908 			REG_WR(bp, BP_PORT(bp) ?
6909 			       NIG_REG_P1_HDRS_AFTER_BASIC :
6910 			       NIG_REG_P0_HDRS_AFTER_BASIC,
6911 			       IS_MF_SD(bp) ? 7 : 6);
6912 
6913 		if (CHIP_IS_E3(bp))
6914 			REG_WR(bp, BP_PORT(bp) ?
6915 				   NIG_REG_LLH1_MF_MODE :
6916 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6917 	}
6918 	if (!CHIP_IS_E3(bp))
6919 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6920 
6921 	if (!CHIP_IS_E1(bp)) {
6922 		/* 0x2 disable mf_ov, 0x1 enable */
6923 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6924 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6925 
6926 		if (!CHIP_IS_E1x(bp)) {
6927 			val = 0;
6928 			switch (bp->mf_mode) {
6929 			case MULTI_FUNCTION_SD:
6930 				val = 1;
6931 				break;
6932 			case MULTI_FUNCTION_SI:
6933 			case MULTI_FUNCTION_AFEX:
6934 				val = 2;
6935 				break;
6936 			}
6937 
6938 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6939 						  NIG_REG_LLH0_CLS_TYPE), val);
6940 		}
6941 		{
6942 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6943 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6944 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6945 		}
6946 	}
6947 
6948 
6949 	/* If SPIO5 is set to generate interrupts, enable it for this port */
6950 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6951 	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6952 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6953 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6954 		val = REG_RD(bp, reg_addr);
6955 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6956 		REG_WR(bp, reg_addr, val);
6957 	}
6958 
6959 	return 0;
6960 }
6961 
6962 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6963 {
6964 	int reg;
6965 	u32 wb_write[2];
6966 
6967 	if (CHIP_IS_E1(bp))
6968 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6969 	else
6970 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6971 
6972 	wb_write[0] = ONCHIP_ADDR1(addr);
6973 	wb_write[1] = ONCHIP_ADDR2(addr);
6974 	REG_WR_DMAE(bp, reg, wb_write, 2);
6975 }
6976 
6977 static void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
6978 				   u8 idu_sb_id, bool is_Pf)
6979 {
6980 	u32 data, ctl, cnt = 100;
6981 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
6982 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
6983 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
6984 	u32 sb_bit =  1 << (idu_sb_id%32);
6985 	u32 func_encode = func | (is_Pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
6986 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
6987 
6988 	/* Not supported in BC mode */
6989 	if (CHIP_INT_MODE_IS_BC(bp))
6990 		return;
6991 
6992 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
6993 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
6994 		IGU_REGULAR_CLEANUP_SET				|
6995 		IGU_REGULAR_BCLEANUP;
6996 
6997 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
6998 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
6999 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7000 
7001 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7002 			 data, igu_addr_data);
7003 	REG_WR(bp, igu_addr_data, data);
7004 	mmiowb();
7005 	barrier();
7006 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7007 			  ctl, igu_addr_ctl);
7008 	REG_WR(bp, igu_addr_ctl, ctl);
7009 	mmiowb();
7010 	barrier();
7011 
7012 	/* wait for clean up to finish */
7013 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7014 		msleep(20);
7015 
7016 
7017 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7018 		DP(NETIF_MSG_HW,
7019 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7020 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7021 	}
7022 }
7023 
7024 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7025 {
7026 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7027 }
7028 
7029 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7030 {
7031 	u32 i, base = FUNC_ILT_BASE(func);
7032 	for (i = base; i < base + ILT_PER_FUNC; i++)
7033 		bnx2x_ilt_wr(bp, i, 0);
7034 }
7035 
7036 static int bnx2x_init_hw_func(struct bnx2x *bp)
7037 {
7038 	int port = BP_PORT(bp);
7039 	int func = BP_FUNC(bp);
7040 	int init_phase = PHASE_PF0 + func;
7041 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7042 	u16 cdu_ilt_start;
7043 	u32 addr, val;
7044 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7045 	int i, main_mem_width, rc;
7046 
7047 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7048 
7049 	/* FLR cleanup - hmmm */
7050 	if (!CHIP_IS_E1x(bp)) {
7051 		rc = bnx2x_pf_flr_clnup(bp);
7052 		if (rc)
7053 			return rc;
7054 	}
7055 
7056 	/* set MSI reconfigure capability */
7057 	if (bp->common.int_block == INT_BLOCK_HC) {
7058 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7059 		val = REG_RD(bp, addr);
7060 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7061 		REG_WR(bp, addr, val);
7062 	}
7063 
7064 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7065 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7066 
7067 	ilt = BP_ILT(bp);
7068 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7069 
7070 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7071 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7072 		ilt->lines[cdu_ilt_start + i].page_mapping =
7073 			bp->context[i].cxt_mapping;
7074 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7075 	}
7076 	bnx2x_ilt_init_op(bp, INITOP_SET);
7077 
7078 #ifdef BCM_CNIC
7079 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7080 
7081 	/* T1 hash bits value determines the T1 number of entries */
7082 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7083 #endif
7084 
7085 #ifndef BCM_CNIC
7086 	/* set NIC mode */
7087 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
7088 #endif  /* BCM_CNIC */
7089 
7090 	if (!CHIP_IS_E1x(bp)) {
7091 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7092 
7093 		/* Turn on a single ISR mode in IGU if driver is going to use
7094 		 * INT#x or MSI
7095 		 */
7096 		if (!(bp->flags & USING_MSIX_FLAG))
7097 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7098 		/*
7099 		 * Timers workaround bug: function init part.
7100 		 * Need to wait 20msec after initializing ILT,
7101 		 * needed to make sure there are no requests in
7102 		 * one of the PXP internal queues with "old" ILT addresses
7103 		 */
7104 		msleep(20);
7105 		/*
7106 		 * Master enable - Due to WB DMAE writes performed before this
7107 		 * register is re-initialized as part of the regular function
7108 		 * init
7109 		 */
7110 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7111 		/* Enable the function in IGU */
7112 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7113 	}
7114 
7115 	bp->dmae_ready = 1;
7116 
7117 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7118 
7119 	if (!CHIP_IS_E1x(bp))
7120 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7121 
7122 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7123 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7124 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7125 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7126 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7127 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7128 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7129 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7130 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7131 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7132 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7133 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7134 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7135 
7136 	if (!CHIP_IS_E1x(bp))
7137 		REG_WR(bp, QM_REG_PF_EN, 1);
7138 
7139 	if (!CHIP_IS_E1x(bp)) {
7140 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7141 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7142 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7143 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7144 	}
7145 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7146 
7147 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7148 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7149 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7150 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7151 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7152 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7153 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7154 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7155 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7156 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7157 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7158 	if (!CHIP_IS_E1x(bp))
7159 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7160 
7161 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7162 
7163 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7164 
7165 	if (!CHIP_IS_E1x(bp))
7166 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7167 
7168 	if (IS_MF(bp)) {
7169 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7170 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7171 	}
7172 
7173 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7174 
7175 	/* HC init per function */
7176 	if (bp->common.int_block == INT_BLOCK_HC) {
7177 		if (CHIP_IS_E1H(bp)) {
7178 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7179 
7180 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7181 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7182 		}
7183 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7184 
7185 	} else {
7186 		int num_segs, sb_idx, prod_offset;
7187 
7188 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7189 
7190 		if (!CHIP_IS_E1x(bp)) {
7191 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7192 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7193 		}
7194 
7195 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7196 
7197 		if (!CHIP_IS_E1x(bp)) {
7198 			int dsb_idx = 0;
7199 			/**
7200 			 * Producer memory:
7201 			 * E2 mode: address 0-135 match to the mapping memory;
7202 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7203 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7204 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7205 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7206 			 * 144-147 reserved.
7207 			 *
7208 			 * E1.5 mode - In backward compatible mode;
7209 			 * for non default SB; each even line in the memory
7210 			 * holds the U producer and each odd line hold
7211 			 * the C producer. The first 128 producers are for
7212 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7213 			 * producers are for the DSB for each PF.
7214 			 * Each PF has five segments: (the order inside each
7215 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7216 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7217 			 * 144-147 attn prods;
7218 			 */
7219 			/* non-default-status-blocks */
7220 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7221 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7222 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7223 				prod_offset = (bp->igu_base_sb + sb_idx) *
7224 					num_segs;
7225 
7226 				for (i = 0; i < num_segs; i++) {
7227 					addr = IGU_REG_PROD_CONS_MEMORY +
7228 							(prod_offset + i) * 4;
7229 					REG_WR(bp, addr, 0);
7230 				}
7231 				/* send consumer update with value 0 */
7232 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7233 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7234 				bnx2x_igu_clear_sb(bp,
7235 						   bp->igu_base_sb + sb_idx);
7236 			}
7237 
7238 			/* default-status-blocks */
7239 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7240 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7241 
7242 			if (CHIP_MODE_IS_4_PORT(bp))
7243 				dsb_idx = BP_FUNC(bp);
7244 			else
7245 				dsb_idx = BP_VN(bp);
7246 
7247 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7248 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7249 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7250 
7251 			/*
7252 			 * igu prods come in chunks of E1HVN_MAX (4) -
7253 			 * does not matters what is the current chip mode
7254 			 */
7255 			for (i = 0; i < (num_segs * E1HVN_MAX);
7256 			     i += E1HVN_MAX) {
7257 				addr = IGU_REG_PROD_CONS_MEMORY +
7258 							(prod_offset + i)*4;
7259 				REG_WR(bp, addr, 0);
7260 			}
7261 			/* send consumer update with 0 */
7262 			if (CHIP_INT_MODE_IS_BC(bp)) {
7263 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7264 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7265 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7266 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7267 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7268 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7269 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7270 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7271 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7272 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7273 			} else {
7274 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7275 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7276 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7277 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7278 			}
7279 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7280 
7281 			/* !!! these should become driver const once
7282 			   rf-tool supports split-68 const */
7283 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7284 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7285 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7286 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7287 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7288 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7289 		}
7290 	}
7291 
7292 	/* Reset PCIE errors for debug */
7293 	REG_WR(bp, 0x2114, 0xffffffff);
7294 	REG_WR(bp, 0x2120, 0xffffffff);
7295 
7296 	if (CHIP_IS_E1x(bp)) {
7297 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7298 		main_mem_base = HC_REG_MAIN_MEMORY +
7299 				BP_PORT(bp) * (main_mem_size * 4);
7300 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7301 		main_mem_width = 8;
7302 
7303 		val = REG_RD(bp, main_mem_prty_clr);
7304 		if (val)
7305 			DP(NETIF_MSG_HW,
7306 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7307 			   val);
7308 
7309 		/* Clear "false" parity errors in MSI-X table */
7310 		for (i = main_mem_base;
7311 		     i < main_mem_base + main_mem_size * 4;
7312 		     i += main_mem_width) {
7313 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7314 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7315 					 i, main_mem_width / 4);
7316 		}
7317 		/* Clear HC parity attention */
7318 		REG_RD(bp, main_mem_prty_clr);
7319 	}
7320 
7321 #ifdef BNX2X_STOP_ON_ERROR
7322 	/* Enable STORMs SP logging */
7323 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7324 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7325 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7326 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7327 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7328 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7329 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7330 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7331 #endif
7332 
7333 	bnx2x_phy_probe(&bp->link_params);
7334 
7335 	return 0;
7336 }
7337 
7338 
7339 void bnx2x_free_mem(struct bnx2x *bp)
7340 {
7341 	int i;
7342 
7343 	/* fastpath */
7344 	bnx2x_free_fp_mem(bp);
7345 	/* end of fastpath */
7346 
7347 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7348 		       sizeof(struct host_sp_status_block));
7349 
7350 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7351 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7352 
7353 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7354 		       sizeof(struct bnx2x_slowpath));
7355 
7356 	for (i = 0; i < L2_ILT_LINES(bp); i++)
7357 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7358 			       bp->context[i].size);
7359 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7360 
7361 	BNX2X_FREE(bp->ilt->lines);
7362 
7363 #ifdef BCM_CNIC
7364 	if (!CHIP_IS_E1x(bp))
7365 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7366 			       sizeof(struct host_hc_status_block_e2));
7367 	else
7368 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7369 			       sizeof(struct host_hc_status_block_e1x));
7370 
7371 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7372 #endif
7373 
7374 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7375 
7376 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7377 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7378 }
7379 
7380 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7381 {
7382 	int num_groups;
7383 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7384 
7385 	/* number of queues for statistics is number of eth queues + FCoE */
7386 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7387 
7388 	/* Total number of FW statistics requests =
7389 	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7390 	 * num of queues
7391 	 */
7392 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7393 
7394 
7395 	/* Request is built from stats_query_header and an array of
7396 	 * stats_query_cmd_group each of which contains
7397 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7398 	 * configured in the stats_query_header.
7399 	 */
7400 	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7401 		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7402 
7403 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7404 			num_groups * sizeof(struct stats_query_cmd_group);
7405 
7406 	/* Data for statistics requests + stats_conter
7407 	 *
7408 	 * stats_counter holds per-STORM counters that are incremented
7409 	 * when STORM has finished with the current request.
7410 	 *
7411 	 * memory for FCoE offloaded statistics are counted anyway,
7412 	 * even if they will not be sent.
7413 	 */
7414 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7415 		sizeof(struct per_pf_stats) +
7416 		sizeof(struct fcoe_statistics_params) +
7417 		sizeof(struct per_queue_stats) * num_queue_stats +
7418 		sizeof(struct stats_counter);
7419 
7420 	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7421 			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7422 
7423 	/* Set shortcuts */
7424 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7425 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7426 
7427 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7428 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7429 
7430 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7431 				   bp->fw_stats_req_sz;
7432 	return 0;
7433 
7434 alloc_mem_err:
7435 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7436 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7437 	BNX2X_ERR("Can't allocate memory\n");
7438 	return -ENOMEM;
7439 }
7440 
7441 
7442 int bnx2x_alloc_mem(struct bnx2x *bp)
7443 {
7444 	int i, allocated, context_size;
7445 
7446 #ifdef BCM_CNIC
7447 	if (!CHIP_IS_E1x(bp))
7448 		/* size = the status block + ramrod buffers */
7449 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7450 				sizeof(struct host_hc_status_block_e2));
7451 	else
7452 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7453 				sizeof(struct host_hc_status_block_e1x));
7454 
7455 	/* allocate searcher T2 table */
7456 	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7457 #endif
7458 
7459 
7460 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7461 			sizeof(struct host_sp_status_block));
7462 
7463 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7464 			sizeof(struct bnx2x_slowpath));
7465 
7466 #ifdef BCM_CNIC
7467 	/* write address to which L5 should insert its values */
7468 	bp->cnic_eth_dev.addr_drv_info_to_mcp = &bp->slowpath->drv_info_to_mcp;
7469 #endif
7470 
7471 	/* Allocated memory for FW statistics  */
7472 	if (bnx2x_alloc_fw_stats_mem(bp))
7473 		goto alloc_mem_err;
7474 
7475 	/* Allocate memory for CDU context:
7476 	 * This memory is allocated separately and not in the generic ILT
7477 	 * functions because CDU differs in few aspects:
7478 	 * 1. There are multiple entities allocating memory for context -
7479 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7480 	 * its own ILT lines.
7481 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
7482 	 * for the other ILT clients), to be efficient we want to support
7483 	 * allocation of sub-page-size in the last entry.
7484 	 * 3. Context pointers are used by the driver to pass to FW / update
7485 	 * the context (for the other ILT clients the pointers are used just to
7486 	 * free the memory during unload).
7487 	 */
7488 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7489 
7490 	for (i = 0, allocated = 0; allocated < context_size; i++) {
7491 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7492 					  (context_size - allocated));
7493 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7494 				&bp->context[i].cxt_mapping,
7495 				bp->context[i].size);
7496 		allocated += bp->context[i].size;
7497 	}
7498 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7499 
7500 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7501 		goto alloc_mem_err;
7502 
7503 	/* Slow path ring */
7504 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7505 
7506 	/* EQ */
7507 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7508 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7509 
7510 
7511 	/* fastpath */
7512 	/* need to be done at the end, since it's self adjusting to amount
7513 	 * of memory available for RSS queues
7514 	 */
7515 	if (bnx2x_alloc_fp_mem(bp))
7516 		goto alloc_mem_err;
7517 	return 0;
7518 
7519 alloc_mem_err:
7520 	bnx2x_free_mem(bp);
7521 	BNX2X_ERR("Can't allocate memory\n");
7522 	return -ENOMEM;
7523 }
7524 
7525 /*
7526  * Init service functions
7527  */
7528 
7529 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7530 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7531 		      int mac_type, unsigned long *ramrod_flags)
7532 {
7533 	int rc;
7534 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7535 
7536 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7537 
7538 	/* Fill general parameters */
7539 	ramrod_param.vlan_mac_obj = obj;
7540 	ramrod_param.ramrod_flags = *ramrod_flags;
7541 
7542 	/* Fill a user request section if needed */
7543 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7544 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7545 
7546 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7547 
7548 		/* Set the command: ADD or DEL */
7549 		if (set)
7550 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7551 		else
7552 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7553 	}
7554 
7555 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7556 	if (rc < 0)
7557 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7558 	return rc;
7559 }
7560 
7561 int bnx2x_del_all_macs(struct bnx2x *bp,
7562 		       struct bnx2x_vlan_mac_obj *mac_obj,
7563 		       int mac_type, bool wait_for_comp)
7564 {
7565 	int rc;
7566 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7567 
7568 	/* Wait for completion of requested */
7569 	if (wait_for_comp)
7570 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7571 
7572 	/* Set the mac type of addresses we want to clear */
7573 	__set_bit(mac_type, &vlan_mac_flags);
7574 
7575 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7576 	if (rc < 0)
7577 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7578 
7579 	return rc;
7580 }
7581 
7582 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7583 {
7584 	unsigned long ramrod_flags = 0;
7585 
7586 #ifdef BCM_CNIC
7587 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
7588 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
7589 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7590 		   "Ignoring Zero MAC for STORAGE SD mode\n");
7591 		return 0;
7592 	}
7593 #endif
7594 
7595 	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7596 
7597 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7598 	/* Eth MAC is set on RSS leading client (fp[0]) */
7599 	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7600 				 BNX2X_ETH_MAC, &ramrod_flags);
7601 }
7602 
7603 int bnx2x_setup_leading(struct bnx2x *bp)
7604 {
7605 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7606 }
7607 
7608 /**
7609  * bnx2x_set_int_mode - configure interrupt mode
7610  *
7611  * @bp:		driver handle
7612  *
7613  * In case of MSI-X it will also try to enable MSI-X.
7614  */
7615 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7616 {
7617 	switch (int_mode) {
7618 	case INT_MODE_MSI:
7619 		bnx2x_enable_msi(bp);
7620 		/* falling through... */
7621 	case INT_MODE_INTx:
7622 		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7623 		BNX2X_DEV_INFO("set number of queues to 1\n");
7624 		break;
7625 	default:
7626 		/* Set number of queues for MSI-X mode */
7627 		bnx2x_set_num_queues(bp);
7628 
7629 		BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
7630 
7631 		/* if we can't use MSI-X we only need one fp,
7632 		 * so try to enable MSI-X with the requested number of fp's
7633 		 * and fallback to MSI or legacy INTx with one fp
7634 		 */
7635 		if (bnx2x_enable_msix(bp) ||
7636 		    bp->flags & USING_SINGLE_MSIX_FLAG) {
7637 			/* failed to enable multiple MSI-X */
7638 			BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
7639 				       bp->num_queues, 1 + NON_ETH_CONTEXT_USE);
7640 
7641 			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7642 
7643 			/* Try to enable MSI */
7644 			if (!(bp->flags & USING_SINGLE_MSIX_FLAG) &&
7645 			    !(bp->flags & DISABLE_MSI_FLAG))
7646 				bnx2x_enable_msi(bp);
7647 		}
7648 		break;
7649 	}
7650 }
7651 
7652 /* must be called prioir to any HW initializations */
7653 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7654 {
7655 	return L2_ILT_LINES(bp);
7656 }
7657 
7658 void bnx2x_ilt_set_info(struct bnx2x *bp)
7659 {
7660 	struct ilt_client_info *ilt_client;
7661 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7662 	u16 line = 0;
7663 
7664 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7665 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7666 
7667 	/* CDU */
7668 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7669 	ilt_client->client_num = ILT_CLIENT_CDU;
7670 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7671 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7672 	ilt_client->start = line;
7673 	line += bnx2x_cid_ilt_lines(bp);
7674 #ifdef BCM_CNIC
7675 	line += CNIC_ILT_LINES;
7676 #endif
7677 	ilt_client->end = line - 1;
7678 
7679 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7680 	   ilt_client->start,
7681 	   ilt_client->end,
7682 	   ilt_client->page_size,
7683 	   ilt_client->flags,
7684 	   ilog2(ilt_client->page_size >> 12));
7685 
7686 	/* QM */
7687 	if (QM_INIT(bp->qm_cid_count)) {
7688 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7689 		ilt_client->client_num = ILT_CLIENT_QM;
7690 		ilt_client->page_size = QM_ILT_PAGE_SZ;
7691 		ilt_client->flags = 0;
7692 		ilt_client->start = line;
7693 
7694 		/* 4 bytes for each cid */
7695 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7696 							 QM_ILT_PAGE_SZ);
7697 
7698 		ilt_client->end = line - 1;
7699 
7700 		DP(NETIF_MSG_IFUP,
7701 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7702 		   ilt_client->start,
7703 		   ilt_client->end,
7704 		   ilt_client->page_size,
7705 		   ilt_client->flags,
7706 		   ilog2(ilt_client->page_size >> 12));
7707 
7708 	}
7709 	/* SRC */
7710 	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7711 #ifdef BCM_CNIC
7712 	ilt_client->client_num = ILT_CLIENT_SRC;
7713 	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7714 	ilt_client->flags = 0;
7715 	ilt_client->start = line;
7716 	line += SRC_ILT_LINES;
7717 	ilt_client->end = line - 1;
7718 
7719 	DP(NETIF_MSG_IFUP,
7720 	   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7721 	   ilt_client->start,
7722 	   ilt_client->end,
7723 	   ilt_client->page_size,
7724 	   ilt_client->flags,
7725 	   ilog2(ilt_client->page_size >> 12));
7726 
7727 #else
7728 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7729 #endif
7730 
7731 	/* TM */
7732 	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7733 #ifdef BCM_CNIC
7734 	ilt_client->client_num = ILT_CLIENT_TM;
7735 	ilt_client->page_size = TM_ILT_PAGE_SZ;
7736 	ilt_client->flags = 0;
7737 	ilt_client->start = line;
7738 	line += TM_ILT_LINES;
7739 	ilt_client->end = line - 1;
7740 
7741 	DP(NETIF_MSG_IFUP,
7742 	   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7743 	   ilt_client->start,
7744 	   ilt_client->end,
7745 	   ilt_client->page_size,
7746 	   ilt_client->flags,
7747 	   ilog2(ilt_client->page_size >> 12));
7748 
7749 #else
7750 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7751 #endif
7752 	BUG_ON(line > ILT_MAX_LINES);
7753 }
7754 
7755 /**
7756  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7757  *
7758  * @bp:			driver handle
7759  * @fp:			pointer to fastpath
7760  * @init_params:	pointer to parameters structure
7761  *
7762  * parameters configured:
7763  *      - HC configuration
7764  *      - Queue's CDU context
7765  */
7766 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7767 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7768 {
7769 
7770 	u8 cos;
7771 	int cxt_index, cxt_offset;
7772 
7773 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7774 	if (!IS_FCOE_FP(fp)) {
7775 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7776 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7777 
7778 		/* If HC is supporterd, enable host coalescing in the transition
7779 		 * to INIT state.
7780 		 */
7781 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7782 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7783 
7784 		/* HC rate */
7785 		init_params->rx.hc_rate = bp->rx_ticks ?
7786 			(1000000 / bp->rx_ticks) : 0;
7787 		init_params->tx.hc_rate = bp->tx_ticks ?
7788 			(1000000 / bp->tx_ticks) : 0;
7789 
7790 		/* FW SB ID */
7791 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7792 			fp->fw_sb_id;
7793 
7794 		/*
7795 		 * CQ index among the SB indices: FCoE clients uses the default
7796 		 * SB, therefore it's different.
7797 		 */
7798 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7799 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7800 	}
7801 
7802 	/* set maximum number of COSs supported by this queue */
7803 	init_params->max_cos = fp->max_cos;
7804 
7805 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
7806 	    fp->index, init_params->max_cos);
7807 
7808 	/* set the context pointers queue object */
7809 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
7810 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
7811 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
7812 				ILT_PAGE_CIDS);
7813 		init_params->cxts[cos] =
7814 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
7815 	}
7816 }
7817 
7818 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7819 			struct bnx2x_queue_state_params *q_params,
7820 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7821 			int tx_index, bool leading)
7822 {
7823 	memset(tx_only_params, 0, sizeof(*tx_only_params));
7824 
7825 	/* Set the command */
7826 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7827 
7828 	/* Set tx-only QUEUE flags: don't zero statistics */
7829 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7830 
7831 	/* choose the index of the cid to send the slow path on */
7832 	tx_only_params->cid_index = tx_index;
7833 
7834 	/* Set general TX_ONLY_SETUP parameters */
7835 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7836 
7837 	/* Set Tx TX_ONLY_SETUP parameters */
7838 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7839 
7840 	DP(NETIF_MSG_IFUP,
7841 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
7842 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7843 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7844 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7845 
7846 	/* send the ramrod */
7847 	return bnx2x_queue_state_change(bp, q_params);
7848 }
7849 
7850 
7851 /**
7852  * bnx2x_setup_queue - setup queue
7853  *
7854  * @bp:		driver handle
7855  * @fp:		pointer to fastpath
7856  * @leading:	is leading
7857  *
7858  * This function performs 2 steps in a Queue state machine
7859  *      actually: 1) RESET->INIT 2) INIT->SETUP
7860  */
7861 
7862 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7863 		       bool leading)
7864 {
7865 	struct bnx2x_queue_state_params q_params = {NULL};
7866 	struct bnx2x_queue_setup_params *setup_params =
7867 						&q_params.params.setup;
7868 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7869 						&q_params.params.tx_only;
7870 	int rc;
7871 	u8 tx_index;
7872 
7873 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
7874 
7875 	/* reset IGU state skip FCoE L2 queue */
7876 	if (!IS_FCOE_FP(fp))
7877 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7878 			     IGU_INT_ENABLE, 0);
7879 
7880 	q_params.q_obj = &fp->q_obj;
7881 	/* We want to wait for completion in this context */
7882 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7883 
7884 	/* Prepare the INIT parameters */
7885 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7886 
7887 	/* Set the command */
7888 	q_params.cmd = BNX2X_Q_CMD_INIT;
7889 
7890 	/* Change the state to INIT */
7891 	rc = bnx2x_queue_state_change(bp, &q_params);
7892 	if (rc) {
7893 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7894 		return rc;
7895 	}
7896 
7897 	DP(NETIF_MSG_IFUP, "init complete\n");
7898 
7899 
7900 	/* Now move the Queue to the SETUP state... */
7901 	memset(setup_params, 0, sizeof(*setup_params));
7902 
7903 	/* Set QUEUE flags */
7904 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7905 
7906 	/* Set general SETUP parameters */
7907 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7908 				FIRST_TX_COS_INDEX);
7909 
7910 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7911 			    &setup_params->rxq_params);
7912 
7913 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7914 			   FIRST_TX_COS_INDEX);
7915 
7916 	/* Set the command */
7917 	q_params.cmd = BNX2X_Q_CMD_SETUP;
7918 
7919 	/* Change the state to SETUP */
7920 	rc = bnx2x_queue_state_change(bp, &q_params);
7921 	if (rc) {
7922 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7923 		return rc;
7924 	}
7925 
7926 	/* loop through the relevant tx-only indices */
7927 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7928 	      tx_index < fp->max_cos;
7929 	      tx_index++) {
7930 
7931 		/* prepare and send tx-only ramrod*/
7932 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7933 					  tx_only_params, tx_index, leading);
7934 		if (rc) {
7935 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7936 				  fp->index, tx_index);
7937 			return rc;
7938 		}
7939 	}
7940 
7941 	return rc;
7942 }
7943 
7944 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7945 {
7946 	struct bnx2x_fastpath *fp = &bp->fp[index];
7947 	struct bnx2x_fp_txdata *txdata;
7948 	struct bnx2x_queue_state_params q_params = {NULL};
7949 	int rc, tx_index;
7950 
7951 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
7952 
7953 	q_params.q_obj = &fp->q_obj;
7954 	/* We want to wait for completion in this context */
7955 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7956 
7957 
7958 	/* close tx-only connections */
7959 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7960 	     tx_index < fp->max_cos;
7961 	     tx_index++){
7962 
7963 		/* ascertain this is a normal queue*/
7964 		txdata = fp->txdata_ptr[tx_index];
7965 
7966 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
7967 							txdata->txq_index);
7968 
7969 		/* send halt terminate on tx-only connection */
7970 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7971 		memset(&q_params.params.terminate, 0,
7972 		       sizeof(q_params.params.terminate));
7973 		q_params.params.terminate.cid_index = tx_index;
7974 
7975 		rc = bnx2x_queue_state_change(bp, &q_params);
7976 		if (rc)
7977 			return rc;
7978 
7979 		/* send halt terminate on tx-only connection */
7980 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7981 		memset(&q_params.params.cfc_del, 0,
7982 		       sizeof(q_params.params.cfc_del));
7983 		q_params.params.cfc_del.cid_index = tx_index;
7984 		rc = bnx2x_queue_state_change(bp, &q_params);
7985 		if (rc)
7986 			return rc;
7987 	}
7988 	/* Stop the primary connection: */
7989 	/* ...halt the connection */
7990 	q_params.cmd = BNX2X_Q_CMD_HALT;
7991 	rc = bnx2x_queue_state_change(bp, &q_params);
7992 	if (rc)
7993 		return rc;
7994 
7995 	/* ...terminate the connection */
7996 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7997 	memset(&q_params.params.terminate, 0,
7998 	       sizeof(q_params.params.terminate));
7999 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8000 	rc = bnx2x_queue_state_change(bp, &q_params);
8001 	if (rc)
8002 		return rc;
8003 	/* ...delete cfc entry */
8004 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8005 	memset(&q_params.params.cfc_del, 0,
8006 	       sizeof(q_params.params.cfc_del));
8007 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8008 	return bnx2x_queue_state_change(bp, &q_params);
8009 }
8010 
8011 
8012 static void bnx2x_reset_func(struct bnx2x *bp)
8013 {
8014 	int port = BP_PORT(bp);
8015 	int func = BP_FUNC(bp);
8016 	int i;
8017 
8018 	/* Disable the function in the FW */
8019 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8020 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8021 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8022 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8023 
8024 	/* FP SBs */
8025 	for_each_eth_queue(bp, i) {
8026 		struct bnx2x_fastpath *fp = &bp->fp[i];
8027 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8028 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8029 			   SB_DISABLED);
8030 	}
8031 
8032 #ifdef BCM_CNIC
8033 	/* CNIC SB */
8034 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8035 		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
8036 		SB_DISABLED);
8037 #endif
8038 	/* SP SB */
8039 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8040 		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8041 		   SB_DISABLED);
8042 
8043 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8044 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8045 		       0);
8046 
8047 	/* Configure IGU */
8048 	if (bp->common.int_block == INT_BLOCK_HC) {
8049 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8050 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8051 	} else {
8052 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8053 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8054 	}
8055 
8056 #ifdef BCM_CNIC
8057 	/* Disable Timer scan */
8058 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8059 	/*
8060 	 * Wait for at least 10ms and up to 2 second for the timers scan to
8061 	 * complete
8062 	 */
8063 	for (i = 0; i < 200; i++) {
8064 		msleep(10);
8065 		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8066 			break;
8067 	}
8068 #endif
8069 	/* Clear ILT */
8070 	bnx2x_clear_func_ilt(bp, func);
8071 
8072 	/* Timers workaround bug for E2: if this is vnic-3,
8073 	 * we need to set the entire ilt range for this timers.
8074 	 */
8075 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8076 		struct ilt_client_info ilt_cli;
8077 		/* use dummy TM client */
8078 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8079 		ilt_cli.start = 0;
8080 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8081 		ilt_cli.client_num = ILT_CLIENT_TM;
8082 
8083 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8084 	}
8085 
8086 	/* this assumes that reset_port() called before reset_func()*/
8087 	if (!CHIP_IS_E1x(bp))
8088 		bnx2x_pf_disable(bp);
8089 
8090 	bp->dmae_ready = 0;
8091 }
8092 
8093 static void bnx2x_reset_port(struct bnx2x *bp)
8094 {
8095 	int port = BP_PORT(bp);
8096 	u32 val;
8097 
8098 	/* Reset physical Link */
8099 	bnx2x__link_reset(bp);
8100 
8101 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8102 
8103 	/* Do not rcv packets to BRB */
8104 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8105 	/* Do not direct rcv packets that are not for MCP to the BRB */
8106 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8107 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8108 
8109 	/* Configure AEU */
8110 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8111 
8112 	msleep(100);
8113 	/* Check for BRB port occupancy */
8114 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8115 	if (val)
8116 		DP(NETIF_MSG_IFDOWN,
8117 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8118 
8119 	/* TODO: Close Doorbell port? */
8120 }
8121 
8122 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8123 {
8124 	struct bnx2x_func_state_params func_params = {NULL};
8125 
8126 	/* Prepare parameters for function state transitions */
8127 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8128 
8129 	func_params.f_obj = &bp->func_obj;
8130 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8131 
8132 	func_params.params.hw_init.load_phase = load_code;
8133 
8134 	return bnx2x_func_state_change(bp, &func_params);
8135 }
8136 
8137 static int bnx2x_func_stop(struct bnx2x *bp)
8138 {
8139 	struct bnx2x_func_state_params func_params = {NULL};
8140 	int rc;
8141 
8142 	/* Prepare parameters for function state transitions */
8143 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8144 	func_params.f_obj = &bp->func_obj;
8145 	func_params.cmd = BNX2X_F_CMD_STOP;
8146 
8147 	/*
8148 	 * Try to stop the function the 'good way'. If fails (in case
8149 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8150 	 * not in a debug mode, perform a state transaction in order to
8151 	 * enable further HW_RESET transaction.
8152 	 */
8153 	rc = bnx2x_func_state_change(bp, &func_params);
8154 	if (rc) {
8155 #ifdef BNX2X_STOP_ON_ERROR
8156 		return rc;
8157 #else
8158 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8159 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8160 		return bnx2x_func_state_change(bp, &func_params);
8161 #endif
8162 	}
8163 
8164 	return 0;
8165 }
8166 
8167 /**
8168  * bnx2x_send_unload_req - request unload mode from the MCP.
8169  *
8170  * @bp:			driver handle
8171  * @unload_mode:	requested function's unload mode
8172  *
8173  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8174  */
8175 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8176 {
8177 	u32 reset_code = 0;
8178 	int port = BP_PORT(bp);
8179 
8180 	/* Select the UNLOAD request mode */
8181 	if (unload_mode == UNLOAD_NORMAL)
8182 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8183 
8184 	else if (bp->flags & NO_WOL_FLAG)
8185 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8186 
8187 	else if (bp->wol) {
8188 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8189 		u8 *mac_addr = bp->dev->dev_addr;
8190 		u32 val;
8191 		u16 pmc;
8192 
8193 		/* The mac address is written to entries 1-4 to
8194 		 * preserve entry 0 which is used by the PMF
8195 		 */
8196 		u8 entry = (BP_VN(bp) + 1)*8;
8197 
8198 		val = (mac_addr[0] << 8) | mac_addr[1];
8199 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8200 
8201 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8202 		      (mac_addr[4] << 8) | mac_addr[5];
8203 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8204 
8205 		/* Enable the PME and clear the status */
8206 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8207 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8208 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8209 
8210 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8211 
8212 	} else
8213 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8214 
8215 	/* Send the request to the MCP */
8216 	if (!BP_NOMCP(bp))
8217 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8218 	else {
8219 		int path = BP_PATH(bp);
8220 
8221 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8222 		   path, load_count[path][0], load_count[path][1],
8223 		   load_count[path][2]);
8224 		load_count[path][0]--;
8225 		load_count[path][1 + port]--;
8226 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8227 		   path, load_count[path][0], load_count[path][1],
8228 		   load_count[path][2]);
8229 		if (load_count[path][0] == 0)
8230 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8231 		else if (load_count[path][1 + port] == 0)
8232 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8233 		else
8234 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8235 	}
8236 
8237 	return reset_code;
8238 }
8239 
8240 /**
8241  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8242  *
8243  * @bp:		driver handle
8244  */
8245 void bnx2x_send_unload_done(struct bnx2x *bp)
8246 {
8247 	/* Report UNLOAD_DONE to MCP */
8248 	if (!BP_NOMCP(bp))
8249 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8250 }
8251 
8252 static int bnx2x_func_wait_started(struct bnx2x *bp)
8253 {
8254 	int tout = 50;
8255 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8256 
8257 	if (!bp->port.pmf)
8258 		return 0;
8259 
8260 	/*
8261 	 * (assumption: No Attention from MCP at this stage)
8262 	 * PMF probably in the middle of TXdisable/enable transaction
8263 	 * 1. Sync IRS for default SB
8264 	 * 2. Sync SP queue - this guarantes us that attention handling started
8265 	 * 3. Wait, that TXdisable/enable transaction completes
8266 	 *
8267 	 * 1+2 guranty that if DCBx attention was scheduled it already changed
8268 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
8269 	 * received complettion for the transaction the state is TX_STOPPED.
8270 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8271 	 * transaction.
8272 	 */
8273 
8274 	/* make sure default SB ISR is done */
8275 	if (msix)
8276 		synchronize_irq(bp->msix_table[0].vector);
8277 	else
8278 		synchronize_irq(bp->pdev->irq);
8279 
8280 	flush_workqueue(bnx2x_wq);
8281 
8282 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8283 				BNX2X_F_STATE_STARTED && tout--)
8284 		msleep(20);
8285 
8286 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8287 						BNX2X_F_STATE_STARTED) {
8288 #ifdef BNX2X_STOP_ON_ERROR
8289 		BNX2X_ERR("Wrong function state\n");
8290 		return -EBUSY;
8291 #else
8292 		/*
8293 		 * Failed to complete the transaction in a "good way"
8294 		 * Force both transactions with CLR bit
8295 		 */
8296 		struct bnx2x_func_state_params func_params = {NULL};
8297 
8298 		DP(NETIF_MSG_IFDOWN,
8299 		   "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8300 
8301 		func_params.f_obj = &bp->func_obj;
8302 		__set_bit(RAMROD_DRV_CLR_ONLY,
8303 					&func_params.ramrod_flags);
8304 
8305 		/* STARTED-->TX_ST0PPED */
8306 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8307 		bnx2x_func_state_change(bp, &func_params);
8308 
8309 		/* TX_ST0PPED-->STARTED */
8310 		func_params.cmd = BNX2X_F_CMD_TX_START;
8311 		return bnx2x_func_state_change(bp, &func_params);
8312 #endif
8313 	}
8314 
8315 	return 0;
8316 }
8317 
8318 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
8319 {
8320 	int port = BP_PORT(bp);
8321 	int i, rc = 0;
8322 	u8 cos;
8323 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8324 	u32 reset_code;
8325 
8326 	/* Wait until tx fastpath tasks complete */
8327 	for_each_tx_queue(bp, i) {
8328 		struct bnx2x_fastpath *fp = &bp->fp[i];
8329 
8330 		for_each_cos_in_tx_queue(fp, cos)
8331 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8332 #ifdef BNX2X_STOP_ON_ERROR
8333 		if (rc)
8334 			return;
8335 #endif
8336 	}
8337 
8338 	/* Give HW time to discard old tx messages */
8339 	usleep_range(1000, 1000);
8340 
8341 	/* Clean all ETH MACs */
8342 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
8343 	if (rc < 0)
8344 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8345 
8346 	/* Clean up UC list  */
8347 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
8348 				true);
8349 	if (rc < 0)
8350 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8351 			  rc);
8352 
8353 	/* Disable LLH */
8354 	if (!CHIP_IS_E1(bp))
8355 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8356 
8357 	/* Set "drop all" (stop Rx).
8358 	 * We need to take a netif_addr_lock() here in order to prevent
8359 	 * a race between the completion code and this code.
8360 	 */
8361 	netif_addr_lock_bh(bp->dev);
8362 	/* Schedule the rx_mode command */
8363 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8364 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8365 	else
8366 		bnx2x_set_storm_rx_mode(bp);
8367 
8368 	/* Cleanup multicast configuration */
8369 	rparam.mcast_obj = &bp->mcast_obj;
8370 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8371 	if (rc < 0)
8372 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8373 
8374 	netif_addr_unlock_bh(bp->dev);
8375 
8376 
8377 
8378 	/*
8379 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8380 	 * this function should perform FUNC, PORT or COMMON HW
8381 	 * reset.
8382 	 */
8383 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8384 
8385 	/*
8386 	 * (assumption: No Attention from MCP at this stage)
8387 	 * PMF probably in the middle of TXdisable/enable transaction
8388 	 */
8389 	rc = bnx2x_func_wait_started(bp);
8390 	if (rc) {
8391 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8392 #ifdef BNX2X_STOP_ON_ERROR
8393 		return;
8394 #endif
8395 	}
8396 
8397 	/* Close multi and leading connections
8398 	 * Completions for ramrods are collected in a synchronous way
8399 	 */
8400 	for_each_queue(bp, i)
8401 		if (bnx2x_stop_queue(bp, i))
8402 #ifdef BNX2X_STOP_ON_ERROR
8403 			return;
8404 #else
8405 			goto unload_error;
8406 #endif
8407 	/* If SP settings didn't get completed so far - something
8408 	 * very wrong has happen.
8409 	 */
8410 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8411 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8412 
8413 #ifndef BNX2X_STOP_ON_ERROR
8414 unload_error:
8415 #endif
8416 	rc = bnx2x_func_stop(bp);
8417 	if (rc) {
8418 		BNX2X_ERR("Function stop failed!\n");
8419 #ifdef BNX2X_STOP_ON_ERROR
8420 		return;
8421 #endif
8422 	}
8423 
8424 	/* Disable HW interrupts, NAPI */
8425 	bnx2x_netif_stop(bp, 1);
8426 
8427 	/* Release IRQs */
8428 	bnx2x_free_irq(bp);
8429 
8430 	/* Reset the chip */
8431 	rc = bnx2x_reset_hw(bp, reset_code);
8432 	if (rc)
8433 		BNX2X_ERR("HW_RESET failed\n");
8434 
8435 
8436 	/* Report UNLOAD_DONE to MCP */
8437 	bnx2x_send_unload_done(bp);
8438 }
8439 
8440 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8441 {
8442 	u32 val;
8443 
8444 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8445 
8446 	if (CHIP_IS_E1(bp)) {
8447 		int port = BP_PORT(bp);
8448 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8449 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8450 
8451 		val = REG_RD(bp, addr);
8452 		val &= ~(0x300);
8453 		REG_WR(bp, addr, val);
8454 	} else {
8455 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8456 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8457 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8458 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8459 	}
8460 }
8461 
8462 /* Close gates #2, #3 and #4: */
8463 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8464 {
8465 	u32 val;
8466 
8467 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8468 	if (!CHIP_IS_E1(bp)) {
8469 		/* #4 */
8470 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8471 		/* #2 */
8472 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8473 	}
8474 
8475 	/* #3 */
8476 	if (CHIP_IS_E1x(bp)) {
8477 		/* Prevent interrupts from HC on both ports */
8478 		val = REG_RD(bp, HC_REG_CONFIG_1);
8479 		REG_WR(bp, HC_REG_CONFIG_1,
8480 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8481 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8482 
8483 		val = REG_RD(bp, HC_REG_CONFIG_0);
8484 		REG_WR(bp, HC_REG_CONFIG_0,
8485 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8486 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8487 	} else {
8488 		/* Prevent incomming interrupts in IGU */
8489 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8490 
8491 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8492 		       (!close) ?
8493 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8494 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8495 	}
8496 
8497 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8498 		close ? "closing" : "opening");
8499 	mmiowb();
8500 }
8501 
8502 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8503 
8504 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8505 {
8506 	/* Do some magic... */
8507 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8508 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8509 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8510 }
8511 
8512 /**
8513  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8514  *
8515  * @bp:		driver handle
8516  * @magic_val:	old value of the `magic' bit.
8517  */
8518 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8519 {
8520 	/* Restore the `magic' bit value... */
8521 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8522 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8523 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8524 }
8525 
8526 /**
8527  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8528  *
8529  * @bp:		driver handle
8530  * @magic_val:	old value of 'magic' bit.
8531  *
8532  * Takes care of CLP configurations.
8533  */
8534 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8535 {
8536 	u32 shmem;
8537 	u32 validity_offset;
8538 
8539 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8540 
8541 	/* Set `magic' bit in order to save MF config */
8542 	if (!CHIP_IS_E1(bp))
8543 		bnx2x_clp_reset_prep(bp, magic_val);
8544 
8545 	/* Get shmem offset */
8546 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8547 	validity_offset = offsetof(struct shmem_region, validity_map[0]);
8548 
8549 	/* Clear validity map flags */
8550 	if (shmem > 0)
8551 		REG_WR(bp, shmem + validity_offset, 0);
8552 }
8553 
8554 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8555 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8556 
8557 /**
8558  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8559  *
8560  * @bp:	driver handle
8561  */
8562 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
8563 {
8564 	/* special handling for emulation and FPGA,
8565 	   wait 10 times longer */
8566 	if (CHIP_REV_IS_SLOW(bp))
8567 		msleep(MCP_ONE_TIMEOUT*10);
8568 	else
8569 		msleep(MCP_ONE_TIMEOUT);
8570 }
8571 
8572 /*
8573  * initializes bp->common.shmem_base and waits for validity signature to appear
8574  */
8575 static int bnx2x_init_shmem(struct bnx2x *bp)
8576 {
8577 	int cnt = 0;
8578 	u32 val = 0;
8579 
8580 	do {
8581 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8582 		if (bp->common.shmem_base) {
8583 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8584 			if (val & SHR_MEM_VALIDITY_MB)
8585 				return 0;
8586 		}
8587 
8588 		bnx2x_mcp_wait_one(bp);
8589 
8590 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8591 
8592 	BNX2X_ERR("BAD MCP validity signature\n");
8593 
8594 	return -ENODEV;
8595 }
8596 
8597 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8598 {
8599 	int rc = bnx2x_init_shmem(bp);
8600 
8601 	/* Restore the `magic' bit value */
8602 	if (!CHIP_IS_E1(bp))
8603 		bnx2x_clp_reset_done(bp, magic_val);
8604 
8605 	return rc;
8606 }
8607 
8608 static void bnx2x_pxp_prep(struct bnx2x *bp)
8609 {
8610 	if (!CHIP_IS_E1(bp)) {
8611 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8612 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8613 		mmiowb();
8614 	}
8615 }
8616 
8617 /*
8618  * Reset the whole chip except for:
8619  *      - PCIE core
8620  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8621  *              one reset bit)
8622  *      - IGU
8623  *      - MISC (including AEU)
8624  *      - GRC
8625  *      - RBCN, RBCP
8626  */
8627 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8628 {
8629 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8630 	u32 global_bits2, stay_reset2;
8631 
8632 	/*
8633 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8634 	 * (per chip) blocks.
8635 	 */
8636 	global_bits2 =
8637 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8638 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8639 
8640 	/* Don't reset the following blocks */
8641 	not_reset_mask1 =
8642 		MISC_REGISTERS_RESET_REG_1_RST_HC |
8643 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8644 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8645 
8646 	not_reset_mask2 =
8647 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8648 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8649 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8650 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8651 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8652 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8653 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8654 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8655 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8656 		MISC_REGISTERS_RESET_REG_2_PGLC;
8657 
8658 	/*
8659 	 * Keep the following blocks in reset:
8660 	 *  - all xxMACs are handled by the bnx2x_link code.
8661 	 */
8662 	stay_reset2 =
8663 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8664 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8665 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8666 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8667 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8668 		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8669 		MISC_REGISTERS_RESET_REG_2_XMAC |
8670 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8671 
8672 	/* Full reset masks according to the chip */
8673 	reset_mask1 = 0xffffffff;
8674 
8675 	if (CHIP_IS_E1(bp))
8676 		reset_mask2 = 0xffff;
8677 	else if (CHIP_IS_E1H(bp))
8678 		reset_mask2 = 0x1ffff;
8679 	else if (CHIP_IS_E2(bp))
8680 		reset_mask2 = 0xfffff;
8681 	else /* CHIP_IS_E3 */
8682 		reset_mask2 = 0x3ffffff;
8683 
8684 	/* Don't reset global blocks unless we need to */
8685 	if (!global)
8686 		reset_mask2 &= ~global_bits2;
8687 
8688 	/*
8689 	 * In case of attention in the QM, we need to reset PXP
8690 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8691 	 * because otherwise QM reset would release 'close the gates' shortly
8692 	 * before resetting the PXP, then the PSWRQ would send a write
8693 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8694 	 * read the payload data from PSWWR, but PSWWR would not
8695 	 * respond. The write queue in PGLUE would stuck, dmae commands
8696 	 * would not return. Therefore it's important to reset the second
8697 	 * reset register (containing the
8698 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8699 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8700 	 * bit).
8701 	 */
8702 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8703 	       reset_mask2 & (~not_reset_mask2));
8704 
8705 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8706 	       reset_mask1 & (~not_reset_mask1));
8707 
8708 	barrier();
8709 	mmiowb();
8710 
8711 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8712 	       reset_mask2 & (~stay_reset2));
8713 
8714 	barrier();
8715 	mmiowb();
8716 
8717 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8718 	mmiowb();
8719 }
8720 
8721 /**
8722  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8723  * It should get cleared in no more than 1s.
8724  *
8725  * @bp:	driver handle
8726  *
8727  * It should get cleared in no more than 1s. Returns 0 if
8728  * pending writes bit gets cleared.
8729  */
8730 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8731 {
8732 	u32 cnt = 1000;
8733 	u32 pend_bits = 0;
8734 
8735 	do {
8736 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8737 
8738 		if (pend_bits == 0)
8739 			break;
8740 
8741 		usleep_range(1000, 1000);
8742 	} while (cnt-- > 0);
8743 
8744 	if (cnt <= 0) {
8745 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8746 			  pend_bits);
8747 		return -EBUSY;
8748 	}
8749 
8750 	return 0;
8751 }
8752 
8753 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8754 {
8755 	int cnt = 1000;
8756 	u32 val = 0;
8757 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8758 
8759 
8760 	/* Empty the Tetris buffer, wait for 1s */
8761 	do {
8762 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8763 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8764 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8765 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8766 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8767 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8768 		    ((port_is_idle_0 & 0x1) == 0x1) &&
8769 		    ((port_is_idle_1 & 0x1) == 0x1) &&
8770 		    (pgl_exp_rom2 == 0xffffffff))
8771 			break;
8772 		usleep_range(1000, 1000);
8773 	} while (cnt-- > 0);
8774 
8775 	if (cnt <= 0) {
8776 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
8777 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8778 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8779 			  pgl_exp_rom2);
8780 		return -EAGAIN;
8781 	}
8782 
8783 	barrier();
8784 
8785 	/* Close gates #2, #3 and #4 */
8786 	bnx2x_set_234_gates(bp, true);
8787 
8788 	/* Poll for IGU VQs for 57712 and newer chips */
8789 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8790 		return -EAGAIN;
8791 
8792 
8793 	/* TBD: Indicate that "process kill" is in progress to MCP */
8794 
8795 	/* Clear "unprepared" bit */
8796 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8797 	barrier();
8798 
8799 	/* Make sure all is written to the chip before the reset */
8800 	mmiowb();
8801 
8802 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8803 	 * PSWHST, GRC and PSWRD Tetris buffer.
8804 	 */
8805 	usleep_range(1000, 1000);
8806 
8807 	/* Prepare to chip reset: */
8808 	/* MCP */
8809 	if (global)
8810 		bnx2x_reset_mcp_prep(bp, &val);
8811 
8812 	/* PXP */
8813 	bnx2x_pxp_prep(bp);
8814 	barrier();
8815 
8816 	/* reset the chip */
8817 	bnx2x_process_kill_chip_reset(bp, global);
8818 	barrier();
8819 
8820 	/* Recover after reset: */
8821 	/* MCP */
8822 	if (global && bnx2x_reset_mcp_comp(bp, val))
8823 		return -EAGAIN;
8824 
8825 	/* TBD: Add resetting the NO_MCP mode DB here */
8826 
8827 	/* PXP */
8828 	bnx2x_pxp_prep(bp);
8829 
8830 	/* Open the gates #2, #3 and #4 */
8831 	bnx2x_set_234_gates(bp, false);
8832 
8833 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8834 	 * reset state, re-enable attentions. */
8835 
8836 	return 0;
8837 }
8838 
8839 int bnx2x_leader_reset(struct bnx2x *bp)
8840 {
8841 	int rc = 0;
8842 	bool global = bnx2x_reset_is_global(bp);
8843 	u32 load_code;
8844 
8845 	/* if not going to reset MCP - load "fake" driver to reset HW while
8846 	 * driver is owner of the HW
8847 	 */
8848 	if (!global && !BP_NOMCP(bp)) {
8849 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 0);
8850 		if (!load_code) {
8851 			BNX2X_ERR("MCP response failure, aborting\n");
8852 			rc = -EAGAIN;
8853 			goto exit_leader_reset;
8854 		}
8855 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
8856 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
8857 			BNX2X_ERR("MCP unexpected resp, aborting\n");
8858 			rc = -EAGAIN;
8859 			goto exit_leader_reset2;
8860 		}
8861 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
8862 		if (!load_code) {
8863 			BNX2X_ERR("MCP response failure, aborting\n");
8864 			rc = -EAGAIN;
8865 			goto exit_leader_reset2;
8866 		}
8867 	}
8868 
8869 	/* Try to recover after the failure */
8870 	if (bnx2x_process_kill(bp, global)) {
8871 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
8872 			  BP_PATH(bp));
8873 		rc = -EAGAIN;
8874 		goto exit_leader_reset2;
8875 	}
8876 
8877 	/*
8878 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8879 	 * state.
8880 	 */
8881 	bnx2x_set_reset_done(bp);
8882 	if (global)
8883 		bnx2x_clear_reset_global(bp);
8884 
8885 exit_leader_reset2:
8886 	/* unload "fake driver" if it was loaded */
8887 	if (!global && !BP_NOMCP(bp)) {
8888 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
8889 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8890 	}
8891 exit_leader_reset:
8892 	bp->is_leader = 0;
8893 	bnx2x_release_leader_lock(bp);
8894 	smp_mb();
8895 	return rc;
8896 }
8897 
8898 static void bnx2x_recovery_failed(struct bnx2x *bp)
8899 {
8900 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8901 
8902 	/* Disconnect this device */
8903 	netif_device_detach(bp->dev);
8904 
8905 	/*
8906 	 * Block ifup for all function on this engine until "process kill"
8907 	 * or power cycle.
8908 	 */
8909 	bnx2x_set_reset_in_progress(bp);
8910 
8911 	/* Shut down the power */
8912 	bnx2x_set_power_state(bp, PCI_D3hot);
8913 
8914 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8915 
8916 	smp_mb();
8917 }
8918 
8919 /*
8920  * Assumption: runs under rtnl lock. This together with the fact
8921  * that it's called only from bnx2x_sp_rtnl() ensure that it
8922  * will never be called when netif_running(bp->dev) is false.
8923  */
8924 static void bnx2x_parity_recover(struct bnx2x *bp)
8925 {
8926 	bool global = false;
8927 	u32 error_recovered, error_unrecovered;
8928 	bool is_parity;
8929 
8930 	DP(NETIF_MSG_HW, "Handling parity\n");
8931 	while (1) {
8932 		switch (bp->recovery_state) {
8933 		case BNX2X_RECOVERY_INIT:
8934 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8935 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
8936 			WARN_ON(!is_parity);
8937 
8938 			/* Try to get a LEADER_LOCK HW lock */
8939 			if (bnx2x_trylock_leader_lock(bp)) {
8940 				bnx2x_set_reset_in_progress(bp);
8941 				/*
8942 				 * Check if there is a global attention and if
8943 				 * there was a global attention, set the global
8944 				 * reset bit.
8945 				 */
8946 
8947 				if (global)
8948 					bnx2x_set_reset_global(bp);
8949 
8950 				bp->is_leader = 1;
8951 			}
8952 
8953 			/* Stop the driver */
8954 			/* If interface has been removed - break */
8955 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8956 				return;
8957 
8958 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8959 
8960 			/* Ensure "is_leader", MCP command sequence and
8961 			 * "recovery_state" update values are seen on other
8962 			 * CPUs.
8963 			 */
8964 			smp_mb();
8965 			break;
8966 
8967 		case BNX2X_RECOVERY_WAIT:
8968 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8969 			if (bp->is_leader) {
8970 				int other_engine = BP_PATH(bp) ? 0 : 1;
8971 				bool other_load_status =
8972 					bnx2x_get_load_status(bp, other_engine);
8973 				bool load_status =
8974 					bnx2x_get_load_status(bp, BP_PATH(bp));
8975 				global = bnx2x_reset_is_global(bp);
8976 
8977 				/*
8978 				 * In case of a parity in a global block, let
8979 				 * the first leader that performs a
8980 				 * leader_reset() reset the global blocks in
8981 				 * order to clear global attentions. Otherwise
8982 				 * the the gates will remain closed for that
8983 				 * engine.
8984 				 */
8985 				if (load_status ||
8986 				    (global && other_load_status)) {
8987 					/* Wait until all other functions get
8988 					 * down.
8989 					 */
8990 					schedule_delayed_work(&bp->sp_rtnl_task,
8991 								HZ/10);
8992 					return;
8993 				} else {
8994 					/* If all other functions got down -
8995 					 * try to bring the chip back to
8996 					 * normal. In any case it's an exit
8997 					 * point for a leader.
8998 					 */
8999 					if (bnx2x_leader_reset(bp)) {
9000 						bnx2x_recovery_failed(bp);
9001 						return;
9002 					}
9003 
9004 					/* If we are here, means that the
9005 					 * leader has succeeded and doesn't
9006 					 * want to be a leader any more. Try
9007 					 * to continue as a none-leader.
9008 					 */
9009 					break;
9010 				}
9011 			} else { /* non-leader */
9012 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9013 					/* Try to get a LEADER_LOCK HW lock as
9014 					 * long as a former leader may have
9015 					 * been unloaded by the user or
9016 					 * released a leadership by another
9017 					 * reason.
9018 					 */
9019 					if (bnx2x_trylock_leader_lock(bp)) {
9020 						/* I'm a leader now! Restart a
9021 						 * switch case.
9022 						 */
9023 						bp->is_leader = 1;
9024 						break;
9025 					}
9026 
9027 					schedule_delayed_work(&bp->sp_rtnl_task,
9028 								HZ/10);
9029 					return;
9030 
9031 				} else {
9032 					/*
9033 					 * If there was a global attention, wait
9034 					 * for it to be cleared.
9035 					 */
9036 					if (bnx2x_reset_is_global(bp)) {
9037 						schedule_delayed_work(
9038 							&bp->sp_rtnl_task,
9039 							HZ/10);
9040 						return;
9041 					}
9042 
9043 					error_recovered =
9044 					  bp->eth_stats.recoverable_error;
9045 					error_unrecovered =
9046 					  bp->eth_stats.unrecoverable_error;
9047 					bp->recovery_state =
9048 						BNX2X_RECOVERY_NIC_LOADING;
9049 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9050 						error_unrecovered++;
9051 						netdev_err(bp->dev,
9052 							   "Recovery failed. Power cycle needed\n");
9053 						/* Disconnect this device */
9054 						netif_device_detach(bp->dev);
9055 						/* Shut down the power */
9056 						bnx2x_set_power_state(
9057 							bp, PCI_D3hot);
9058 						smp_mb();
9059 					} else {
9060 						bp->recovery_state =
9061 							BNX2X_RECOVERY_DONE;
9062 						error_recovered++;
9063 						smp_mb();
9064 					}
9065 					bp->eth_stats.recoverable_error =
9066 						error_recovered;
9067 					bp->eth_stats.unrecoverable_error =
9068 						error_unrecovered;
9069 
9070 					return;
9071 				}
9072 			}
9073 		default:
9074 			return;
9075 		}
9076 	}
9077 }
9078 
9079 static int bnx2x_close(struct net_device *dev);
9080 
9081 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9082  * scheduled on a general queue in order to prevent a dead lock.
9083  */
9084 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9085 {
9086 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9087 
9088 	rtnl_lock();
9089 
9090 	if (!netif_running(bp->dev))
9091 		goto sp_rtnl_exit;
9092 
9093 	/* if stop on error is defined no recovery flows should be executed */
9094 #ifdef BNX2X_STOP_ON_ERROR
9095 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9096 		  "you will need to reboot when done\n");
9097 	goto sp_rtnl_not_reset;
9098 #endif
9099 
9100 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9101 		/*
9102 		 * Clear all pending SP commands as we are going to reset the
9103 		 * function anyway.
9104 		 */
9105 		bp->sp_rtnl_state = 0;
9106 		smp_mb();
9107 
9108 		bnx2x_parity_recover(bp);
9109 
9110 		goto sp_rtnl_exit;
9111 	}
9112 
9113 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9114 		/*
9115 		 * Clear all pending SP commands as we are going to reset the
9116 		 * function anyway.
9117 		 */
9118 		bp->sp_rtnl_state = 0;
9119 		smp_mb();
9120 
9121 		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
9122 		bnx2x_nic_load(bp, LOAD_NORMAL);
9123 
9124 		goto sp_rtnl_exit;
9125 	}
9126 #ifdef BNX2X_STOP_ON_ERROR
9127 sp_rtnl_not_reset:
9128 #endif
9129 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9130 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9131 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9132 		bnx2x_after_function_update(bp);
9133 	/*
9134 	 * in case of fan failure we need to reset id if the "stop on error"
9135 	 * debug flag is set, since we trying to prevent permanent overheating
9136 	 * damage
9137 	 */
9138 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9139 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9140 		netif_device_detach(bp->dev);
9141 		bnx2x_close(bp->dev);
9142 	}
9143 
9144 sp_rtnl_exit:
9145 	rtnl_unlock();
9146 }
9147 
9148 /* end of nic load/unload */
9149 
9150 static void bnx2x_period_task(struct work_struct *work)
9151 {
9152 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9153 
9154 	if (!netif_running(bp->dev))
9155 		goto period_task_exit;
9156 
9157 	if (CHIP_REV_IS_SLOW(bp)) {
9158 		BNX2X_ERR("period task called on emulation, ignoring\n");
9159 		goto period_task_exit;
9160 	}
9161 
9162 	bnx2x_acquire_phy_lock(bp);
9163 	/*
9164 	 * The barrier is needed to ensure the ordering between the writing to
9165 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9166 	 * the reading here.
9167 	 */
9168 	smp_mb();
9169 	if (bp->port.pmf) {
9170 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9171 
9172 		/* Re-queue task in 1 sec */
9173 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9174 	}
9175 
9176 	bnx2x_release_phy_lock(bp);
9177 period_task_exit:
9178 	return;
9179 }
9180 
9181 /*
9182  * Init service functions
9183  */
9184 
9185 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9186 {
9187 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9188 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9189 	return base + (BP_ABS_FUNC(bp)) * stride;
9190 }
9191 
9192 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
9193 {
9194 	u32 reg = bnx2x_get_pretend_reg(bp);
9195 
9196 	/* Flush all outstanding writes */
9197 	mmiowb();
9198 
9199 	/* Pretend to be function 0 */
9200 	REG_WR(bp, reg, 0);
9201 	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
9202 
9203 	/* From now we are in the "like-E1" mode */
9204 	bnx2x_int_disable(bp);
9205 
9206 	/* Flush all outstanding writes */
9207 	mmiowb();
9208 
9209 	/* Restore the original function */
9210 	REG_WR(bp, reg, BP_ABS_FUNC(bp));
9211 	REG_RD(bp, reg);
9212 }
9213 
9214 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
9215 {
9216 	if (CHIP_IS_E1(bp))
9217 		bnx2x_int_disable(bp);
9218 	else
9219 		bnx2x_undi_int_disable_e1h(bp);
9220 }
9221 
9222 static void __devinit bnx2x_prev_unload_close_mac(struct bnx2x *bp)
9223 {
9224 	u32 val, base_addr, offset, mask, reset_reg;
9225 	bool mac_stopped = false;
9226 	u8 port = BP_PORT(bp);
9227 
9228 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9229 
9230 	if (!CHIP_IS_E3(bp)) {
9231 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9232 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9233 		if ((mask & reset_reg) && val) {
9234 			u32 wb_data[2];
9235 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9236 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9237 						: NIG_REG_INGRESS_BMAC0_MEM;
9238 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9239 						: BIGMAC_REGISTER_BMAC_CONTROL;
9240 
9241 			/*
9242 			 * use rd/wr since we cannot use dmae. This is safe
9243 			 * since MCP won't access the bus due to the request
9244 			 * to unload, and no function on the path can be
9245 			 * loaded at this time.
9246 			 */
9247 			wb_data[0] = REG_RD(bp, base_addr + offset);
9248 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9249 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9250 			REG_WR(bp, base_addr + offset, wb_data[0]);
9251 			REG_WR(bp, base_addr + offset + 0x4, wb_data[1]);
9252 
9253 		}
9254 		BNX2X_DEV_INFO("Disable emac Rx\n");
9255 		REG_WR(bp, NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4, 0);
9256 
9257 		mac_stopped = true;
9258 	} else {
9259 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9260 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9261 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9262 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9263 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9264 			       val & ~(1 << 1));
9265 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9266 			       val | (1 << 1));
9267 			REG_WR(bp, base_addr + XMAC_REG_CTRL, 0);
9268 			mac_stopped = true;
9269 		}
9270 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9271 		if (mask & reset_reg) {
9272 			BNX2X_DEV_INFO("Disable umac Rx\n");
9273 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9274 			REG_WR(bp, base_addr + UMAC_REG_COMMAND_CONFIG, 0);
9275 			mac_stopped = true;
9276 		}
9277 	}
9278 
9279 	if (mac_stopped)
9280 		msleep(20);
9281 
9282 }
9283 
9284 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9285 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9286 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9287 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9288 
9289 static void __devinit bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port,
9290 						 u8 inc)
9291 {
9292 	u16 rcq, bd;
9293 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9294 
9295 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9296 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9297 
9298 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9299 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9300 
9301 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9302 		       port, bd, rcq);
9303 }
9304 
9305 static int __devinit bnx2x_prev_mcp_done(struct bnx2x *bp)
9306 {
9307 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9308 	if (!rc) {
9309 		BNX2X_ERR("MCP response failure, aborting\n");
9310 		return -EBUSY;
9311 	}
9312 
9313 	return 0;
9314 }
9315 
9316 static bool __devinit bnx2x_prev_is_path_marked(struct bnx2x *bp)
9317 {
9318 	struct bnx2x_prev_path_list *tmp_list;
9319 	int rc = false;
9320 
9321 	if (down_trylock(&bnx2x_prev_sem))
9322 		return false;
9323 
9324 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
9325 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9326 		    bp->pdev->bus->number == tmp_list->bus &&
9327 		    BP_PATH(bp) == tmp_list->path) {
9328 			rc = true;
9329 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9330 				       BP_PATH(bp));
9331 			break;
9332 		}
9333 	}
9334 
9335 	up(&bnx2x_prev_sem);
9336 
9337 	return rc;
9338 }
9339 
9340 static int __devinit bnx2x_prev_mark_path(struct bnx2x *bp)
9341 {
9342 	struct bnx2x_prev_path_list *tmp_list;
9343 	int rc;
9344 
9345 	tmp_list = (struct bnx2x_prev_path_list *)
9346 		    kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9347 	if (!tmp_list) {
9348 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9349 		return -ENOMEM;
9350 	}
9351 
9352 	tmp_list->bus = bp->pdev->bus->number;
9353 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9354 	tmp_list->path = BP_PATH(bp);
9355 
9356 	rc = down_interruptible(&bnx2x_prev_sem);
9357 	if (rc) {
9358 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9359 		kfree(tmp_list);
9360 	} else {
9361 		BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
9362 				BP_PATH(bp));
9363 		list_add(&tmp_list->list, &bnx2x_prev_list);
9364 		up(&bnx2x_prev_sem);
9365 	}
9366 
9367 	return rc;
9368 }
9369 
9370 static bool __devinit bnx2x_can_flr(struct bnx2x *bp)
9371 {
9372 	int pos;
9373 	u32 cap;
9374 	struct pci_dev *dev = bp->pdev;
9375 
9376 	pos = pci_pcie_cap(dev);
9377 	if (!pos)
9378 		return false;
9379 
9380 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
9381 	if (!(cap & PCI_EXP_DEVCAP_FLR))
9382 		return false;
9383 
9384 	return true;
9385 }
9386 
9387 static int __devinit bnx2x_do_flr(struct bnx2x *bp)
9388 {
9389 	int i, pos;
9390 	u16 status;
9391 	struct pci_dev *dev = bp->pdev;
9392 
9393 	/* probe the capability first */
9394 	if (bnx2x_can_flr(bp))
9395 		return -ENOTTY;
9396 
9397 	pos = pci_pcie_cap(dev);
9398 	if (!pos)
9399 		return -ENOTTY;
9400 
9401 	/* Wait for Transaction Pending bit clean */
9402 	for (i = 0; i < 4; i++) {
9403 		if (i)
9404 			msleep((1 << (i - 1)) * 100);
9405 
9406 		pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
9407 		if (!(status & PCI_EXP_DEVSTA_TRPND))
9408 			goto clear;
9409 	}
9410 
9411 	dev_err(&dev->dev,
9412 		"transaction is not cleared; proceeding with reset anyway\n");
9413 
9414 clear:
9415 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9416 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9417 			  bp->common.bc_ver);
9418 		return -EINVAL;
9419 	}
9420 
9421 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9422 
9423 	return 0;
9424 }
9425 
9426 static int __devinit bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9427 {
9428 	int rc;
9429 
9430 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
9431 
9432 	/* Test if previous unload process was already finished for this path */
9433 	if (bnx2x_prev_is_path_marked(bp))
9434 		return bnx2x_prev_mcp_done(bp);
9435 
9436 	/* If function has FLR capabilities, and existing FW version matches
9437 	 * the one required, then FLR will be sufficient to clean any residue
9438 	 * left by previous driver
9439 	 */
9440 	if (bnx2x_test_firmware_version(bp, false) && bnx2x_can_flr(bp))
9441 		return bnx2x_do_flr(bp);
9442 
9443 	/* Close the MCP request, return failure*/
9444 	rc = bnx2x_prev_mcp_done(bp);
9445 	if (!rc)
9446 		rc = BNX2X_PREV_WAIT_NEEDED;
9447 
9448 	return rc;
9449 }
9450 
9451 static int __devinit bnx2x_prev_unload_common(struct bnx2x *bp)
9452 {
9453 	u32 reset_reg, tmp_reg = 0, rc;
9454 	/* It is possible a previous function received 'common' answer,
9455 	 * but hasn't loaded yet, therefore creating a scenario of
9456 	 * multiple functions receiving 'common' on the same path.
9457 	 */
9458 	BNX2X_DEV_INFO("Common unload Flow\n");
9459 
9460 	if (bnx2x_prev_is_path_marked(bp))
9461 		return bnx2x_prev_mcp_done(bp);
9462 
9463 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9464 
9465 	/* Reset should be performed after BRB is emptied */
9466 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9467 		u32 timer_count = 1000;
9468 		bool prev_undi = false;
9469 
9470 		/* Close the MAC Rx to prevent BRB from filling up */
9471 		bnx2x_prev_unload_close_mac(bp);
9472 
9473 		/* Check if the UNDI driver was previously loaded
9474 		 * UNDI driver initializes CID offset for normal bell to 0x7
9475 		 */
9476 		reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9477 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9478 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9479 			if (tmp_reg == 0x7) {
9480 				BNX2X_DEV_INFO("UNDI previously loaded\n");
9481 				prev_undi = true;
9482 				/* clear the UNDI indication */
9483 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9484 			}
9485 		}
9486 		/* wait until BRB is empty */
9487 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9488 		while (timer_count) {
9489 			u32 prev_brb = tmp_reg;
9490 
9491 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9492 			if (!tmp_reg)
9493 				break;
9494 
9495 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9496 
9497 			/* reset timer as long as BRB actually gets emptied */
9498 			if (prev_brb > tmp_reg)
9499 				timer_count = 1000;
9500 			else
9501 				timer_count--;
9502 
9503 			/* If UNDI resides in memory, manually increment it */
9504 			if (prev_undi)
9505 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9506 
9507 			udelay(10);
9508 		}
9509 
9510 		if (!timer_count)
9511 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9512 
9513 	}
9514 
9515 	/* No packets are in the pipeline, path is ready for reset */
9516 	bnx2x_reset_common(bp);
9517 
9518 	rc = bnx2x_prev_mark_path(bp);
9519 	if (rc) {
9520 		bnx2x_prev_mcp_done(bp);
9521 		return rc;
9522 	}
9523 
9524 	return bnx2x_prev_mcp_done(bp);
9525 }
9526 
9527 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
9528  * and boot began, or when kdump kernel was loaded. Either case would invalidate
9529  * the addresses of the transaction, resulting in was-error bit set in the pci
9530  * causing all hw-to-host pcie transactions to timeout. If this happened we want
9531  * to clear the interrupt which detected this from the pglueb and the was done
9532  * bit
9533  */
9534 static void __devinit bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
9535 {
9536 	u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
9537 	if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9538 		BNX2X_ERR("was error bit was found to be set in pglueb upon startup. Clearing");
9539 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << BP_FUNC(bp));
9540 	}
9541 }
9542 
9543 static int __devinit bnx2x_prev_unload(struct bnx2x *bp)
9544 {
9545 	int time_counter = 10;
9546 	u32 rc, fw, hw_lock_reg, hw_lock_val;
9547 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
9548 
9549 	/* clear hw from errors which may have resulted from an interrupted
9550 	 * dmae transaction.
9551 	 */
9552 	bnx2x_prev_interrupted_dmae(bp);
9553 
9554 	/* Release previously held locks */
9555 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
9556 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
9557 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
9558 
9559 	hw_lock_val = (REG_RD(bp, hw_lock_reg));
9560 	if (hw_lock_val) {
9561 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9562 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
9563 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
9564 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
9565 		}
9566 
9567 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
9568 		REG_WR(bp, hw_lock_reg, 0xffffffff);
9569 	} else
9570 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
9571 
9572 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
9573 		BNX2X_DEV_INFO("Release previously held alr\n");
9574 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
9575 	}
9576 
9577 
9578 	do {
9579 		/* Lock MCP using an unload request */
9580 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9581 		if (!fw) {
9582 			BNX2X_ERR("MCP response failure, aborting\n");
9583 			rc = -EBUSY;
9584 			break;
9585 		}
9586 
9587 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9588 			rc = bnx2x_prev_unload_common(bp);
9589 			break;
9590 		}
9591 
9592 		/* non-common reply from MCP night require looping */
9593 		rc = bnx2x_prev_unload_uncommon(bp);
9594 		if (rc != BNX2X_PREV_WAIT_NEEDED)
9595 			break;
9596 
9597 		msleep(20);
9598 	} while (--time_counter);
9599 
9600 	if (!time_counter || rc) {
9601 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
9602 		rc = -EBUSY;
9603 	}
9604 
9605 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
9606 
9607 	return rc;
9608 }
9609 
9610 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
9611 {
9612 	u32 val, val2, val3, val4, id, boot_mode;
9613 	u16 pmc;
9614 
9615 	/* Get the chip revision id and number. */
9616 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
9617 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
9618 	id = ((val & 0xffff) << 16);
9619 	val = REG_RD(bp, MISC_REG_CHIP_REV);
9620 	id |= ((val & 0xf) << 12);
9621 	val = REG_RD(bp, MISC_REG_CHIP_METAL);
9622 	id |= ((val & 0xff) << 4);
9623 	val = REG_RD(bp, MISC_REG_BOND_ID);
9624 	id |= (val & 0xf);
9625 	bp->common.chip_id = id;
9626 
9627 	/* force 57811 according to MISC register */
9628 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
9629 		if (CHIP_IS_57810(bp))
9630 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
9631 				(bp->common.chip_id & 0x0000FFFF);
9632 		else if (CHIP_IS_57810_MF(bp))
9633 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
9634 				(bp->common.chip_id & 0x0000FFFF);
9635 		bp->common.chip_id |= 0x1;
9636 	}
9637 
9638 	/* Set doorbell size */
9639 	bp->db_size = (1 << BNX2X_DB_SHIFT);
9640 
9641 	if (!CHIP_IS_E1x(bp)) {
9642 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
9643 		if ((val & 1) == 0)
9644 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
9645 		else
9646 			val = (val >> 1) & 1;
9647 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
9648 						       "2_PORT_MODE");
9649 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
9650 						 CHIP_2_PORT_MODE;
9651 
9652 		if (CHIP_MODE_IS_4_PORT(bp))
9653 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
9654 		else
9655 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
9656 	} else {
9657 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9658 		bp->pfid = bp->pf_num;			/* 0..7 */
9659 	}
9660 
9661 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
9662 
9663 	bp->link_params.chip_id = bp->common.chip_id;
9664 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9665 
9666 	val = (REG_RD(bp, 0x2874) & 0x55);
9667 	if ((bp->common.chip_id & 0x1) ||
9668 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9669 		bp->flags |= ONE_PORT_FLAG;
9670 		BNX2X_DEV_INFO("single port device\n");
9671 	}
9672 
9673 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9674 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9675 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
9676 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9677 		       bp->common.flash_size, bp->common.flash_size);
9678 
9679 	bnx2x_init_shmem(bp);
9680 
9681 
9682 
9683 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9684 					MISC_REG_GENERIC_CR_1 :
9685 					MISC_REG_GENERIC_CR_0));
9686 
9687 	bp->link_params.shmem_base = bp->common.shmem_base;
9688 	bp->link_params.shmem2_base = bp->common.shmem2_base;
9689 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
9690 		       bp->common.shmem_base, bp->common.shmem2_base);
9691 
9692 	if (!bp->common.shmem_base) {
9693 		BNX2X_DEV_INFO("MCP not active\n");
9694 		bp->flags |= NO_MCP_FLAG;
9695 		return;
9696 	}
9697 
9698 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
9699 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
9700 
9701 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
9702 					SHARED_HW_CFG_LED_MODE_MASK) >>
9703 				       SHARED_HW_CFG_LED_MODE_SHIFT);
9704 
9705 	bp->link_params.feature_config_flags = 0;
9706 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9707 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9708 		bp->link_params.feature_config_flags |=
9709 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9710 	else
9711 		bp->link_params.feature_config_flags &=
9712 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9713 
9714 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9715 	bp->common.bc_ver = val;
9716 	BNX2X_DEV_INFO("bc_ver %X\n", val);
9717 	if (val < BNX2X_BC_VER) {
9718 		/* for now only warn
9719 		 * later we might need to enforce this */
9720 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
9721 			  BNX2X_BC_VER, val);
9722 	}
9723 	bp->link_params.feature_config_flags |=
9724 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9725 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9726 
9727 	bp->link_params.feature_config_flags |=
9728 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9729 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9730 	bp->link_params.feature_config_flags |=
9731 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
9732 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
9733 	bp->link_params.feature_config_flags |=
9734 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9735 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9736 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9737 			BC_SUPPORTS_PFC_STATS : 0;
9738 
9739 	boot_mode = SHMEM_RD(bp,
9740 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9741 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9742 	switch (boot_mode) {
9743 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9744 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9745 		break;
9746 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9747 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9748 		break;
9749 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9750 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9751 		break;
9752 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9753 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9754 		break;
9755 	}
9756 
9757 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9758 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9759 
9760 	BNX2X_DEV_INFO("%sWoL capable\n",
9761 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
9762 
9763 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9764 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9765 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9766 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9767 
9768 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9769 		 val, val2, val3, val4);
9770 }
9771 
9772 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9773 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9774 
9775 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9776 {
9777 	int pfid = BP_FUNC(bp);
9778 	int igu_sb_id;
9779 	u32 val;
9780 	u8 fid, igu_sb_cnt = 0;
9781 
9782 	bp->igu_base_sb = 0xff;
9783 	if (CHIP_INT_MODE_IS_BC(bp)) {
9784 		int vn = BP_VN(bp);
9785 		igu_sb_cnt = bp->igu_sb_cnt;
9786 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9787 			FP_SB_MAX_E1x;
9788 
9789 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
9790 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9791 
9792 		return;
9793 	}
9794 
9795 	/* IGU in normal mode - read CAM */
9796 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9797 	     igu_sb_id++) {
9798 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9799 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9800 			continue;
9801 		fid = IGU_FID(val);
9802 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
9803 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9804 				continue;
9805 			if (IGU_VEC(val) == 0)
9806 				/* default status block */
9807 				bp->igu_dsb_id = igu_sb_id;
9808 			else {
9809 				if (bp->igu_base_sb == 0xff)
9810 					bp->igu_base_sb = igu_sb_id;
9811 				igu_sb_cnt++;
9812 			}
9813 		}
9814 	}
9815 
9816 #ifdef CONFIG_PCI_MSI
9817 	/*
9818 	 * It's expected that number of CAM entries for this functions is equal
9819 	 * to the number evaluated based on the MSI-X table size. We want a
9820 	 * harsh warning if these values are different!
9821 	 */
9822 	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9823 #endif
9824 
9825 	if (igu_sb_cnt == 0)
9826 		BNX2X_ERR("CAM configuration error\n");
9827 }
9828 
9829 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9830 						    u32 switch_cfg)
9831 {
9832 	int cfg_size = 0, idx, port = BP_PORT(bp);
9833 
9834 	/* Aggregation of supported attributes of all external phys */
9835 	bp->port.supported[0] = 0;
9836 	bp->port.supported[1] = 0;
9837 	switch (bp->link_params.num_phys) {
9838 	case 1:
9839 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9840 		cfg_size = 1;
9841 		break;
9842 	case 2:
9843 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9844 		cfg_size = 1;
9845 		break;
9846 	case 3:
9847 		if (bp->link_params.multi_phy_config &
9848 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9849 			bp->port.supported[1] =
9850 				bp->link_params.phy[EXT_PHY1].supported;
9851 			bp->port.supported[0] =
9852 				bp->link_params.phy[EXT_PHY2].supported;
9853 		} else {
9854 			bp->port.supported[0] =
9855 				bp->link_params.phy[EXT_PHY1].supported;
9856 			bp->port.supported[1] =
9857 				bp->link_params.phy[EXT_PHY2].supported;
9858 		}
9859 		cfg_size = 2;
9860 		break;
9861 	}
9862 
9863 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
9864 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
9865 			   SHMEM_RD(bp,
9866 			   dev_info.port_hw_config[port].external_phy_config),
9867 			   SHMEM_RD(bp,
9868 			   dev_info.port_hw_config[port].external_phy_config2));
9869 			return;
9870 	}
9871 
9872 	if (CHIP_IS_E3(bp))
9873 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9874 	else {
9875 		switch (switch_cfg) {
9876 		case SWITCH_CFG_1G:
9877 			bp->port.phy_addr = REG_RD(
9878 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9879 			break;
9880 		case SWITCH_CFG_10G:
9881 			bp->port.phy_addr = REG_RD(
9882 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9883 			break;
9884 		default:
9885 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9886 				  bp->port.link_config[0]);
9887 			return;
9888 		}
9889 	}
9890 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9891 	/* mask what we support according to speed_cap_mask per configuration */
9892 	for (idx = 0; idx < cfg_size; idx++) {
9893 		if (!(bp->link_params.speed_cap_mask[idx] &
9894 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9895 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9896 
9897 		if (!(bp->link_params.speed_cap_mask[idx] &
9898 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9899 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9900 
9901 		if (!(bp->link_params.speed_cap_mask[idx] &
9902 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9903 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9904 
9905 		if (!(bp->link_params.speed_cap_mask[idx] &
9906 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9907 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9908 
9909 		if (!(bp->link_params.speed_cap_mask[idx] &
9910 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9911 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9912 						     SUPPORTED_1000baseT_Full);
9913 
9914 		if (!(bp->link_params.speed_cap_mask[idx] &
9915 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9916 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9917 
9918 		if (!(bp->link_params.speed_cap_mask[idx] &
9919 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9920 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9921 
9922 	}
9923 
9924 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9925 		       bp->port.supported[1]);
9926 }
9927 
9928 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9929 {
9930 	u32 link_config, idx, cfg_size = 0;
9931 	bp->port.advertising[0] = 0;
9932 	bp->port.advertising[1] = 0;
9933 	switch (bp->link_params.num_phys) {
9934 	case 1:
9935 	case 2:
9936 		cfg_size = 1;
9937 		break;
9938 	case 3:
9939 		cfg_size = 2;
9940 		break;
9941 	}
9942 	for (idx = 0; idx < cfg_size; idx++) {
9943 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9944 		link_config = bp->port.link_config[idx];
9945 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9946 		case PORT_FEATURE_LINK_SPEED_AUTO:
9947 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9948 				bp->link_params.req_line_speed[idx] =
9949 					SPEED_AUTO_NEG;
9950 				bp->port.advertising[idx] |=
9951 					bp->port.supported[idx];
9952 				if (bp->link_params.phy[EXT_PHY1].type ==
9953 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
9954 					bp->port.advertising[idx] |=
9955 					(SUPPORTED_100baseT_Half |
9956 					 SUPPORTED_100baseT_Full);
9957 			} else {
9958 				/* force 10G, no AN */
9959 				bp->link_params.req_line_speed[idx] =
9960 					SPEED_10000;
9961 				bp->port.advertising[idx] |=
9962 					(ADVERTISED_10000baseT_Full |
9963 					 ADVERTISED_FIBRE);
9964 				continue;
9965 			}
9966 			break;
9967 
9968 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9969 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9970 				bp->link_params.req_line_speed[idx] =
9971 					SPEED_10;
9972 				bp->port.advertising[idx] |=
9973 					(ADVERTISED_10baseT_Full |
9974 					 ADVERTISED_TP);
9975 			} else {
9976 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9977 					    link_config,
9978 				    bp->link_params.speed_cap_mask[idx]);
9979 				return;
9980 			}
9981 			break;
9982 
9983 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
9984 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9985 				bp->link_params.req_line_speed[idx] =
9986 					SPEED_10;
9987 				bp->link_params.req_duplex[idx] =
9988 					DUPLEX_HALF;
9989 				bp->port.advertising[idx] |=
9990 					(ADVERTISED_10baseT_Half |
9991 					 ADVERTISED_TP);
9992 			} else {
9993 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9994 					    link_config,
9995 					  bp->link_params.speed_cap_mask[idx]);
9996 				return;
9997 			}
9998 			break;
9999 
10000 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10001 			if (bp->port.supported[idx] &
10002 			    SUPPORTED_100baseT_Full) {
10003 				bp->link_params.req_line_speed[idx] =
10004 					SPEED_100;
10005 				bp->port.advertising[idx] |=
10006 					(ADVERTISED_100baseT_Full |
10007 					 ADVERTISED_TP);
10008 			} else {
10009 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10010 					    link_config,
10011 					  bp->link_params.speed_cap_mask[idx]);
10012 				return;
10013 			}
10014 			break;
10015 
10016 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10017 			if (bp->port.supported[idx] &
10018 			    SUPPORTED_100baseT_Half) {
10019 				bp->link_params.req_line_speed[idx] =
10020 								SPEED_100;
10021 				bp->link_params.req_duplex[idx] =
10022 								DUPLEX_HALF;
10023 				bp->port.advertising[idx] |=
10024 					(ADVERTISED_100baseT_Half |
10025 					 ADVERTISED_TP);
10026 			} else {
10027 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10028 				    link_config,
10029 				    bp->link_params.speed_cap_mask[idx]);
10030 				return;
10031 			}
10032 			break;
10033 
10034 		case PORT_FEATURE_LINK_SPEED_1G:
10035 			if (bp->port.supported[idx] &
10036 			    SUPPORTED_1000baseT_Full) {
10037 				bp->link_params.req_line_speed[idx] =
10038 					SPEED_1000;
10039 				bp->port.advertising[idx] |=
10040 					(ADVERTISED_1000baseT_Full |
10041 					 ADVERTISED_TP);
10042 			} else {
10043 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10044 				    link_config,
10045 				    bp->link_params.speed_cap_mask[idx]);
10046 				return;
10047 			}
10048 			break;
10049 
10050 		case PORT_FEATURE_LINK_SPEED_2_5G:
10051 			if (bp->port.supported[idx] &
10052 			    SUPPORTED_2500baseX_Full) {
10053 				bp->link_params.req_line_speed[idx] =
10054 					SPEED_2500;
10055 				bp->port.advertising[idx] |=
10056 					(ADVERTISED_2500baseX_Full |
10057 						ADVERTISED_TP);
10058 			} else {
10059 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10060 				    link_config,
10061 				    bp->link_params.speed_cap_mask[idx]);
10062 				return;
10063 			}
10064 			break;
10065 
10066 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10067 			if (bp->port.supported[idx] &
10068 			    SUPPORTED_10000baseT_Full) {
10069 				bp->link_params.req_line_speed[idx] =
10070 					SPEED_10000;
10071 				bp->port.advertising[idx] |=
10072 					(ADVERTISED_10000baseT_Full |
10073 						ADVERTISED_FIBRE);
10074 			} else {
10075 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10076 				    link_config,
10077 				    bp->link_params.speed_cap_mask[idx]);
10078 				return;
10079 			}
10080 			break;
10081 		case PORT_FEATURE_LINK_SPEED_20G:
10082 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10083 
10084 			break;
10085 		default:
10086 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10087 				  link_config);
10088 				bp->link_params.req_line_speed[idx] =
10089 							SPEED_AUTO_NEG;
10090 				bp->port.advertising[idx] =
10091 						bp->port.supported[idx];
10092 			break;
10093 		}
10094 
10095 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10096 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10097 		if ((bp->link_params.req_flow_ctrl[idx] ==
10098 		     BNX2X_FLOW_CTRL_AUTO) &&
10099 		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
10100 			bp->link_params.req_flow_ctrl[idx] =
10101 				BNX2X_FLOW_CTRL_NONE;
10102 		}
10103 
10104 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10105 			       bp->link_params.req_line_speed[idx],
10106 			       bp->link_params.req_duplex[idx],
10107 			       bp->link_params.req_flow_ctrl[idx],
10108 			       bp->port.advertising[idx]);
10109 	}
10110 }
10111 
10112 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10113 {
10114 	mac_hi = cpu_to_be16(mac_hi);
10115 	mac_lo = cpu_to_be32(mac_lo);
10116 	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
10117 	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
10118 }
10119 
10120 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
10121 {
10122 	int port = BP_PORT(bp);
10123 	u32 config;
10124 	u32 ext_phy_type, ext_phy_config, eee_mode;
10125 
10126 	bp->link_params.bp = bp;
10127 	bp->link_params.port = port;
10128 
10129 	bp->link_params.lane_config =
10130 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10131 
10132 	bp->link_params.speed_cap_mask[0] =
10133 		SHMEM_RD(bp,
10134 			 dev_info.port_hw_config[port].speed_capability_mask);
10135 	bp->link_params.speed_cap_mask[1] =
10136 		SHMEM_RD(bp,
10137 			 dev_info.port_hw_config[port].speed_capability_mask2);
10138 	bp->port.link_config[0] =
10139 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10140 
10141 	bp->port.link_config[1] =
10142 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10143 
10144 	bp->link_params.multi_phy_config =
10145 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10146 	/* If the device is capable of WoL, set the default state according
10147 	 * to the HW
10148 	 */
10149 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10150 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10151 		   (config & PORT_FEATURE_WOL_ENABLED));
10152 
10153 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10154 		       bp->link_params.lane_config,
10155 		       bp->link_params.speed_cap_mask[0],
10156 		       bp->port.link_config[0]);
10157 
10158 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10159 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10160 	bnx2x_phy_probe(&bp->link_params);
10161 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10162 
10163 	bnx2x_link_settings_requested(bp);
10164 
10165 	/*
10166 	 * If connected directly, work with the internal PHY, otherwise, work
10167 	 * with the external PHY
10168 	 */
10169 	ext_phy_config =
10170 		SHMEM_RD(bp,
10171 			 dev_info.port_hw_config[port].external_phy_config);
10172 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10173 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10174 		bp->mdio.prtad = bp->port.phy_addr;
10175 
10176 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10177 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10178 		bp->mdio.prtad =
10179 			XGXS_EXT_PHY_ADDR(ext_phy_config);
10180 
10181 	/*
10182 	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
10183 	 * In MF mode, it is set to cover self test cases
10184 	 */
10185 	if (IS_MF(bp))
10186 		bp->port.need_hw_lock = 1;
10187 	else
10188 		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
10189 							bp->common.shmem_base,
10190 							bp->common.shmem2_base);
10191 
10192 	/* Configure link feature according to nvram value */
10193 	eee_mode = (((SHMEM_RD(bp, dev_info.
10194 		      port_feature_config[port].eee_power_mode)) &
10195 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10196 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10197 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10198 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10199 					   EEE_MODE_ENABLE_LPI |
10200 					   EEE_MODE_OUTPUT_TIME;
10201 	} else {
10202 		bp->link_params.eee_mode = 0;
10203 	}
10204 }
10205 
10206 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10207 {
10208 	u32 no_flags = NO_ISCSI_FLAG;
10209 #ifdef BCM_CNIC
10210 	int port = BP_PORT(bp);
10211 
10212 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10213 				drv_lic_key[port].max_iscsi_conn);
10214 
10215 	/* Get the number of maximum allowed iSCSI connections */
10216 	bp->cnic_eth_dev.max_iscsi_conn =
10217 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10218 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10219 
10220 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10221 		       bp->cnic_eth_dev.max_iscsi_conn);
10222 
10223 	/*
10224 	 * If maximum allowed number of connections is zero -
10225 	 * disable the feature.
10226 	 */
10227 	if (!bp->cnic_eth_dev.max_iscsi_conn)
10228 		bp->flags |= no_flags;
10229 #else
10230 	bp->flags |= no_flags;
10231 #endif
10232 }
10233 
10234 #ifdef BCM_CNIC
10235 static void __devinit bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10236 {
10237 	/* Port info */
10238 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10239 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10240 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10241 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10242 
10243 	/* Node info */
10244 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10245 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10246 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10247 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10248 }
10249 #endif
10250 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
10251 {
10252 #ifdef BCM_CNIC
10253 	int port = BP_PORT(bp);
10254 	int func = BP_ABS_FUNC(bp);
10255 
10256 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10257 				drv_lic_key[port].max_fcoe_conn);
10258 
10259 	/* Get the number of maximum allowed FCoE connections */
10260 	bp->cnic_eth_dev.max_fcoe_conn =
10261 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10262 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10263 
10264 	/* Read the WWN: */
10265 	if (!IS_MF(bp)) {
10266 		/* Port info */
10267 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10268 			SHMEM_RD(bp,
10269 				dev_info.port_hw_config[port].
10270 				 fcoe_wwn_port_name_upper);
10271 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10272 			SHMEM_RD(bp,
10273 				dev_info.port_hw_config[port].
10274 				 fcoe_wwn_port_name_lower);
10275 
10276 		/* Node info */
10277 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10278 			SHMEM_RD(bp,
10279 				dev_info.port_hw_config[port].
10280 				 fcoe_wwn_node_name_upper);
10281 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10282 			SHMEM_RD(bp,
10283 				dev_info.port_hw_config[port].
10284 				 fcoe_wwn_node_name_lower);
10285 	} else if (!IS_MF_SD(bp)) {
10286 		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10287 
10288 		/*
10289 		 * Read the WWN info only if the FCoE feature is enabled for
10290 		 * this function.
10291 		 */
10292 		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
10293 			bnx2x_get_ext_wwn_info(bp, func);
10294 
10295 	} else if (IS_MF_FCOE_SD(bp))
10296 		bnx2x_get_ext_wwn_info(bp, func);
10297 
10298 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10299 
10300 	/*
10301 	 * If maximum allowed number of connections is zero -
10302 	 * disable the feature.
10303 	 */
10304 	if (!bp->cnic_eth_dev.max_fcoe_conn)
10305 		bp->flags |= NO_FCOE_FLAG;
10306 #else
10307 	bp->flags |= NO_FCOE_FLAG;
10308 #endif
10309 }
10310 
10311 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
10312 {
10313 	/*
10314 	 * iSCSI may be dynamically disabled but reading
10315 	 * info here we will decrease memory usage by driver
10316 	 * if the feature is disabled for good
10317 	 */
10318 	bnx2x_get_iscsi_info(bp);
10319 	bnx2x_get_fcoe_info(bp);
10320 }
10321 
10322 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
10323 {
10324 	u32 val, val2;
10325 	int func = BP_ABS_FUNC(bp);
10326 	int port = BP_PORT(bp);
10327 #ifdef BCM_CNIC
10328 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10329 	u8 *fip_mac = bp->fip_mac;
10330 #endif
10331 
10332 	/* Zero primary MAC configuration */
10333 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
10334 
10335 	if (BP_NOMCP(bp)) {
10336 		BNX2X_ERROR("warning: random MAC workaround active\n");
10337 		eth_hw_addr_random(bp->dev);
10338 	} else if (IS_MF(bp)) {
10339 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
10340 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
10341 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
10342 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
10343 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10344 
10345 #ifdef BCM_CNIC
10346 		/*
10347 		 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
10348 		 * FCoE MAC then the appropriate feature should be disabled.
10349 		 *
10350 		 * In non SD mode features configuration comes from
10351 		 * struct func_ext_config.
10352 		 */
10353 		if (!IS_MF_SD(bp)) {
10354 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10355 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
10356 				val2 = MF_CFG_RD(bp, func_ext_config[func].
10357 						     iscsi_mac_addr_upper);
10358 				val = MF_CFG_RD(bp, func_ext_config[func].
10359 						    iscsi_mac_addr_lower);
10360 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
10361 				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
10362 					       iscsi_mac);
10363 			} else
10364 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10365 
10366 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
10367 				val2 = MF_CFG_RD(bp, func_ext_config[func].
10368 						     fcoe_mac_addr_upper);
10369 				val = MF_CFG_RD(bp, func_ext_config[func].
10370 						    fcoe_mac_addr_lower);
10371 				bnx2x_set_mac_buf(fip_mac, val, val2);
10372 				BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
10373 					       fip_mac);
10374 
10375 			} else
10376 				bp->flags |= NO_FCOE_FLAG;
10377 
10378 			bp->mf_ext_config = cfg;
10379 
10380 		} else { /* SD MODE */
10381 			if (IS_MF_STORAGE_SD(bp)) {
10382 				if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
10383 					/* use primary mac as iscsi mac */
10384 					memcpy(iscsi_mac, bp->dev->dev_addr,
10385 					       ETH_ALEN);
10386 
10387 					BNX2X_DEV_INFO("SD ISCSI MODE\n");
10388 					BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
10389 						       iscsi_mac);
10390 				} else { /* FCoE */
10391 					memcpy(fip_mac, bp->dev->dev_addr,
10392 					       ETH_ALEN);
10393 					BNX2X_DEV_INFO("SD FCoE MODE\n");
10394 					BNX2X_DEV_INFO("Read FIP MAC: %pM\n",
10395 						       fip_mac);
10396 				}
10397 				/* Zero primary MAC configuration */
10398 				memset(bp->dev->dev_addr, 0, ETH_ALEN);
10399 			}
10400 		}
10401 
10402 		if (IS_MF_FCOE_AFEX(bp))
10403 			/* use FIP MAC as primary MAC */
10404 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
10405 
10406 #endif
10407 	} else {
10408 		/* in SF read MACs from port configuration */
10409 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
10410 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
10411 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10412 
10413 #ifdef BCM_CNIC
10414 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10415 				    iscsi_mac_upper);
10416 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10417 				   iscsi_mac_lower);
10418 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
10419 
10420 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10421 				    fcoe_fip_mac_upper);
10422 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10423 				   fcoe_fip_mac_lower);
10424 		bnx2x_set_mac_buf(fip_mac, val, val2);
10425 #endif
10426 	}
10427 
10428 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
10429 	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
10430 
10431 #ifdef BCM_CNIC
10432 	/* Disable iSCSI if MAC configuration is
10433 	 * invalid.
10434 	 */
10435 	if (!is_valid_ether_addr(iscsi_mac)) {
10436 		bp->flags |= NO_ISCSI_FLAG;
10437 		memset(iscsi_mac, 0, ETH_ALEN);
10438 	}
10439 
10440 	/* Disable FCoE if MAC configuration is
10441 	 * invalid.
10442 	 */
10443 	if (!is_valid_ether_addr(fip_mac)) {
10444 		bp->flags |= NO_FCOE_FLAG;
10445 		memset(bp->fip_mac, 0, ETH_ALEN);
10446 	}
10447 #endif
10448 
10449 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10450 		dev_err(&bp->pdev->dev,
10451 			"bad Ethernet MAC address configuration: %pM\n"
10452 			"change it manually before bringing up the appropriate network interface\n",
10453 			bp->dev->dev_addr);
10454 
10455 
10456 }
10457 
10458 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
10459 {
10460 	int /*abs*/func = BP_ABS_FUNC(bp);
10461 	int vn;
10462 	u32 val = 0;
10463 	int rc = 0;
10464 
10465 	bnx2x_get_common_hwinfo(bp);
10466 
10467 	/*
10468 	 * initialize IGU parameters
10469 	 */
10470 	if (CHIP_IS_E1x(bp)) {
10471 		bp->common.int_block = INT_BLOCK_HC;
10472 
10473 		bp->igu_dsb_id = DEF_SB_IGU_ID;
10474 		bp->igu_base_sb = 0;
10475 	} else {
10476 		bp->common.int_block = INT_BLOCK_IGU;
10477 
10478 		/* do not allow device reset during IGU info preocessing */
10479 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10480 
10481 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
10482 
10483 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10484 			int tout = 5000;
10485 
10486 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
10487 
10488 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
10489 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
10490 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
10491 
10492 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10493 				tout--;
10494 				usleep_range(1000, 1000);
10495 			}
10496 
10497 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10498 				dev_err(&bp->pdev->dev,
10499 					"FORCING Normal Mode failed!!!\n");
10500 				return -EPERM;
10501 			}
10502 		}
10503 
10504 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10505 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
10506 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
10507 		} else
10508 			BNX2X_DEV_INFO("IGU Normal Mode\n");
10509 
10510 		bnx2x_get_igu_cam_info(bp);
10511 
10512 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10513 	}
10514 
10515 	/*
10516 	 * set base FW non-default (fast path) status block id, this value is
10517 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
10518 	 * determine the id used by the FW.
10519 	 */
10520 	if (CHIP_IS_E1x(bp))
10521 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
10522 	else /*
10523 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
10524 	      * the same queue are indicated on the same IGU SB). So we prefer
10525 	      * FW and IGU SBs to be the same value.
10526 	      */
10527 		bp->base_fw_ndsb = bp->igu_base_sb;
10528 
10529 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
10530 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
10531 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
10532 
10533 	/*
10534 	 * Initialize MF configuration
10535 	 */
10536 
10537 	bp->mf_ov = 0;
10538 	bp->mf_mode = 0;
10539 	vn = BP_VN(bp);
10540 
10541 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
10542 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
10543 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
10544 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
10545 
10546 		if (SHMEM2_HAS(bp, mf_cfg_addr))
10547 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
10548 		else
10549 			bp->common.mf_cfg_base = bp->common.shmem_base +
10550 				offsetof(struct shmem_region, func_mb) +
10551 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
10552 		/*
10553 		 * get mf configuration:
10554 		 * 1. existence of MF configuration
10555 		 * 2. MAC address must be legal (check only upper bytes)
10556 		 *    for  Switch-Independent mode;
10557 		 *    OVLAN must be legal for Switch-Dependent mode
10558 		 * 3. SF_MODE configures specific MF mode
10559 		 */
10560 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10561 			/* get mf configuration */
10562 			val = SHMEM_RD(bp,
10563 				       dev_info.shared_feature_config.config);
10564 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
10565 
10566 			switch (val) {
10567 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
10568 				val = MF_CFG_RD(bp, func_mf_config[func].
10569 						mac_upper);
10570 				/* check for legal mac (upper bytes)*/
10571 				if (val != 0xffff) {
10572 					bp->mf_mode = MULTI_FUNCTION_SI;
10573 					bp->mf_config[vn] = MF_CFG_RD(bp,
10574 						   func_mf_config[func].config);
10575 				} else
10576 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
10577 				break;
10578 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
10579 				if ((!CHIP_IS_E1x(bp)) &&
10580 				    (MF_CFG_RD(bp, func_mf_config[func].
10581 					       mac_upper) != 0xffff) &&
10582 				    (SHMEM2_HAS(bp,
10583 						afex_driver_support))) {
10584 					bp->mf_mode = MULTI_FUNCTION_AFEX;
10585 					bp->mf_config[vn] = MF_CFG_RD(bp,
10586 						func_mf_config[func].config);
10587 				} else {
10588 					BNX2X_DEV_INFO("can not configure afex mode\n");
10589 				}
10590 				break;
10591 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
10592 				/* get OV configuration */
10593 				val = MF_CFG_RD(bp,
10594 					func_mf_config[FUNC_0].e1hov_tag);
10595 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
10596 
10597 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10598 					bp->mf_mode = MULTI_FUNCTION_SD;
10599 					bp->mf_config[vn] = MF_CFG_RD(bp,
10600 						func_mf_config[func].config);
10601 				} else
10602 					BNX2X_DEV_INFO("illegal OV for SD\n");
10603 				break;
10604 			default:
10605 				/* Unknown configuration: reset mf_config */
10606 				bp->mf_config[vn] = 0;
10607 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
10608 			}
10609 		}
10610 
10611 		BNX2X_DEV_INFO("%s function mode\n",
10612 			       IS_MF(bp) ? "multi" : "single");
10613 
10614 		switch (bp->mf_mode) {
10615 		case MULTI_FUNCTION_SD:
10616 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
10617 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
10618 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10619 				bp->mf_ov = val;
10620 				bp->path_has_ovlan = true;
10621 
10622 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
10623 					       func, bp->mf_ov, bp->mf_ov);
10624 			} else {
10625 				dev_err(&bp->pdev->dev,
10626 					"No valid MF OV for func %d, aborting\n",
10627 					func);
10628 				return -EPERM;
10629 			}
10630 			break;
10631 		case MULTI_FUNCTION_AFEX:
10632 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
10633 			break;
10634 		case MULTI_FUNCTION_SI:
10635 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
10636 				       func);
10637 			break;
10638 		default:
10639 			if (vn) {
10640 				dev_err(&bp->pdev->dev,
10641 					"VN %d is in a single function mode, aborting\n",
10642 					vn);
10643 				return -EPERM;
10644 			}
10645 			break;
10646 		}
10647 
10648 		/* check if other port on the path needs ovlan:
10649 		 * Since MF configuration is shared between ports
10650 		 * Possible mixed modes are only
10651 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
10652 		 */
10653 		if (CHIP_MODE_IS_4_PORT(bp) &&
10654 		    !bp->path_has_ovlan &&
10655 		    !IS_MF(bp) &&
10656 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10657 			u8 other_port = !BP_PORT(bp);
10658 			u8 other_func = BP_PATH(bp) + 2*other_port;
10659 			val = MF_CFG_RD(bp,
10660 					func_mf_config[other_func].e1hov_tag);
10661 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
10662 				bp->path_has_ovlan = true;
10663 		}
10664 	}
10665 
10666 	/* adjust igu_sb_cnt to MF for E1x */
10667 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
10668 		bp->igu_sb_cnt /= E1HVN_MAX;
10669 
10670 	/* port info */
10671 	bnx2x_get_port_hwinfo(bp);
10672 
10673 	/* Get MAC addresses */
10674 	bnx2x_get_mac_hwinfo(bp);
10675 
10676 	bnx2x_get_cnic_info(bp);
10677 
10678 	return rc;
10679 }
10680 
10681 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
10682 {
10683 	int cnt, i, block_end, rodi;
10684 	char vpd_start[BNX2X_VPD_LEN+1];
10685 	char str_id_reg[VENDOR_ID_LEN+1];
10686 	char str_id_cap[VENDOR_ID_LEN+1];
10687 	char *vpd_data;
10688 	char *vpd_extended_data = NULL;
10689 	u8 len;
10690 
10691 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
10692 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
10693 
10694 	if (cnt < BNX2X_VPD_LEN)
10695 		goto out_not_found;
10696 
10697 	/* VPD RO tag should be first tag after identifier string, hence
10698 	 * we should be able to find it in first BNX2X_VPD_LEN chars
10699 	 */
10700 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
10701 			     PCI_VPD_LRDT_RO_DATA);
10702 	if (i < 0)
10703 		goto out_not_found;
10704 
10705 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
10706 		    pci_vpd_lrdt_size(&vpd_start[i]);
10707 
10708 	i += PCI_VPD_LRDT_TAG_SIZE;
10709 
10710 	if (block_end > BNX2X_VPD_LEN) {
10711 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
10712 		if (vpd_extended_data  == NULL)
10713 			goto out_not_found;
10714 
10715 		/* read rest of vpd image into vpd_extended_data */
10716 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
10717 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
10718 				   block_end - BNX2X_VPD_LEN,
10719 				   vpd_extended_data + BNX2X_VPD_LEN);
10720 		if (cnt < (block_end - BNX2X_VPD_LEN))
10721 			goto out_not_found;
10722 		vpd_data = vpd_extended_data;
10723 	} else
10724 		vpd_data = vpd_start;
10725 
10726 	/* now vpd_data holds full vpd content in both cases */
10727 
10728 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10729 				   PCI_VPD_RO_KEYWORD_MFR_ID);
10730 	if (rodi < 0)
10731 		goto out_not_found;
10732 
10733 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
10734 
10735 	if (len != VENDOR_ID_LEN)
10736 		goto out_not_found;
10737 
10738 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10739 
10740 	/* vendor specific info */
10741 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10742 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10743 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10744 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
10745 
10746 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10747 						PCI_VPD_RO_KEYWORD_VENDOR0);
10748 		if (rodi >= 0) {
10749 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
10750 
10751 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10752 
10753 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10754 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
10755 				bp->fw_ver[len] = ' ';
10756 			}
10757 		}
10758 		kfree(vpd_extended_data);
10759 		return;
10760 	}
10761 out_not_found:
10762 	kfree(vpd_extended_data);
10763 	return;
10764 }
10765 
10766 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10767 {
10768 	u32 flags = 0;
10769 
10770 	if (CHIP_REV_IS_FPGA(bp))
10771 		SET_FLAGS(flags, MODE_FPGA);
10772 	else if (CHIP_REV_IS_EMUL(bp))
10773 		SET_FLAGS(flags, MODE_EMUL);
10774 	else
10775 		SET_FLAGS(flags, MODE_ASIC);
10776 
10777 	if (CHIP_MODE_IS_4_PORT(bp))
10778 		SET_FLAGS(flags, MODE_PORT4);
10779 	else
10780 		SET_FLAGS(flags, MODE_PORT2);
10781 
10782 	if (CHIP_IS_E2(bp))
10783 		SET_FLAGS(flags, MODE_E2);
10784 	else if (CHIP_IS_E3(bp)) {
10785 		SET_FLAGS(flags, MODE_E3);
10786 		if (CHIP_REV(bp) == CHIP_REV_Ax)
10787 			SET_FLAGS(flags, MODE_E3_A0);
10788 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10789 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10790 	}
10791 
10792 	if (IS_MF(bp)) {
10793 		SET_FLAGS(flags, MODE_MF);
10794 		switch (bp->mf_mode) {
10795 		case MULTI_FUNCTION_SD:
10796 			SET_FLAGS(flags, MODE_MF_SD);
10797 			break;
10798 		case MULTI_FUNCTION_SI:
10799 			SET_FLAGS(flags, MODE_MF_SI);
10800 			break;
10801 		case MULTI_FUNCTION_AFEX:
10802 			SET_FLAGS(flags, MODE_MF_AFEX);
10803 			break;
10804 		}
10805 	} else
10806 		SET_FLAGS(flags, MODE_SF);
10807 
10808 #if defined(__LITTLE_ENDIAN)
10809 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10810 #else /*(__BIG_ENDIAN)*/
10811 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
10812 #endif
10813 	INIT_MODE_FLAGS(bp) = flags;
10814 }
10815 
10816 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10817 {
10818 	int func;
10819 	int rc;
10820 
10821 	mutex_init(&bp->port.phy_mutex);
10822 	mutex_init(&bp->fw_mb_mutex);
10823 	spin_lock_init(&bp->stats_lock);
10824 #ifdef BCM_CNIC
10825 	mutex_init(&bp->cnic_mutex);
10826 #endif
10827 
10828 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10829 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10830 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10831 	rc = bnx2x_get_hwinfo(bp);
10832 	if (rc)
10833 		return rc;
10834 
10835 	bnx2x_set_modes_bitmap(bp);
10836 
10837 	rc = bnx2x_alloc_mem_bp(bp);
10838 	if (rc)
10839 		return rc;
10840 
10841 	bnx2x_read_fwinfo(bp);
10842 
10843 	func = BP_FUNC(bp);
10844 
10845 	/* need to reset chip if undi was active */
10846 	if (!BP_NOMCP(bp)) {
10847 		/* init fw_seq */
10848 		bp->fw_seq =
10849 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10850 							DRV_MSG_SEQ_NUMBER_MASK;
10851 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10852 
10853 		bnx2x_prev_unload(bp);
10854 	}
10855 
10856 
10857 	if (CHIP_REV_IS_FPGA(bp))
10858 		dev_err(&bp->pdev->dev, "FPGA detected\n");
10859 
10860 	if (BP_NOMCP(bp) && (func == 0))
10861 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
10862 
10863 	bp->disable_tpa = disable_tpa;
10864 
10865 #ifdef BCM_CNIC
10866 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
10867 #endif
10868 
10869 	/* Set TPA flags */
10870 	if (bp->disable_tpa) {
10871 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10872 		bp->dev->features &= ~NETIF_F_LRO;
10873 	} else {
10874 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10875 		bp->dev->features |= NETIF_F_LRO;
10876 	}
10877 
10878 	if (CHIP_IS_E1(bp))
10879 		bp->dropless_fc = 0;
10880 	else
10881 		bp->dropless_fc = dropless_fc;
10882 
10883 	bp->mrrs = mrrs;
10884 
10885 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
10886 
10887 	/* make sure that the numbers are in the right granularity */
10888 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10889 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10890 
10891 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
10892 
10893 	init_timer(&bp->timer);
10894 	bp->timer.expires = jiffies + bp->current_interval;
10895 	bp->timer.data = (unsigned long) bp;
10896 	bp->timer.function = bnx2x_timer;
10897 
10898 	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10899 	bnx2x_dcbx_init_params(bp);
10900 
10901 #ifdef BCM_CNIC
10902 	if (CHIP_IS_E1x(bp))
10903 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10904 	else
10905 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
10906 #endif
10907 
10908 	/* multiple tx priority */
10909 	if (CHIP_IS_E1x(bp))
10910 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10911 	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10912 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10913 	if (CHIP_IS_E3B0(bp))
10914 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10915 
10916 	return rc;
10917 }
10918 
10919 
10920 /****************************************************************************
10921 * General service functions
10922 ****************************************************************************/
10923 
10924 /*
10925  * net_device service functions
10926  */
10927 
10928 /* called with rtnl_lock */
10929 static int bnx2x_open(struct net_device *dev)
10930 {
10931 	struct bnx2x *bp = netdev_priv(dev);
10932 	bool global = false;
10933 	int other_engine = BP_PATH(bp) ? 0 : 1;
10934 	bool other_load_status, load_status;
10935 
10936 	bp->stats_init = true;
10937 
10938 	netif_carrier_off(dev);
10939 
10940 	bnx2x_set_power_state(bp, PCI_D0);
10941 
10942 	other_load_status = bnx2x_get_load_status(bp, other_engine);
10943 	load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
10944 
10945 	/*
10946 	 * If parity had happen during the unload, then attentions
10947 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10948 	 * want the first function loaded on the current engine to
10949 	 * complete the recovery.
10950 	 */
10951 	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10952 	    bnx2x_chk_parity_attn(bp, &global, true))
10953 		do {
10954 			/*
10955 			 * If there are attentions and they are in a global
10956 			 * blocks, set the GLOBAL_RESET bit regardless whether
10957 			 * it will be this function that will complete the
10958 			 * recovery or not.
10959 			 */
10960 			if (global)
10961 				bnx2x_set_reset_global(bp);
10962 
10963 			/*
10964 			 * Only the first function on the current engine should
10965 			 * try to recover in open. In case of attentions in
10966 			 * global blocks only the first in the chip should try
10967 			 * to recover.
10968 			 */
10969 			if ((!load_status &&
10970 			     (!global || !other_load_status)) &&
10971 			    bnx2x_trylock_leader_lock(bp) &&
10972 			    !bnx2x_leader_reset(bp)) {
10973 				netdev_info(bp->dev, "Recovered in open\n");
10974 				break;
10975 			}
10976 
10977 			/* recovery has failed... */
10978 			bnx2x_set_power_state(bp, PCI_D3hot);
10979 			bp->recovery_state = BNX2X_RECOVERY_FAILED;
10980 
10981 			BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
10982 				  "If you still see this message after a few retries then power cycle is required.\n");
10983 
10984 			return -EAGAIN;
10985 		} while (0);
10986 
10987 	bp->recovery_state = BNX2X_RECOVERY_DONE;
10988 	return bnx2x_nic_load(bp, LOAD_OPEN);
10989 }
10990 
10991 /* called with rtnl_lock */
10992 static int bnx2x_close(struct net_device *dev)
10993 {
10994 	struct bnx2x *bp = netdev_priv(dev);
10995 
10996 	/* Unload the driver, release IRQs */
10997 	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10998 
10999 	/* Power off */
11000 	bnx2x_set_power_state(bp, PCI_D3hot);
11001 
11002 	return 0;
11003 }
11004 
11005 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11006 				      struct bnx2x_mcast_ramrod_params *p)
11007 {
11008 	int mc_count = netdev_mc_count(bp->dev);
11009 	struct bnx2x_mcast_list_elem *mc_mac =
11010 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11011 	struct netdev_hw_addr *ha;
11012 
11013 	if (!mc_mac)
11014 		return -ENOMEM;
11015 
11016 	INIT_LIST_HEAD(&p->mcast_list);
11017 
11018 	netdev_for_each_mc_addr(ha, bp->dev) {
11019 		mc_mac->mac = bnx2x_mc_addr(ha);
11020 		list_add_tail(&mc_mac->link, &p->mcast_list);
11021 		mc_mac++;
11022 	}
11023 
11024 	p->mcast_list_len = mc_count;
11025 
11026 	return 0;
11027 }
11028 
11029 static void bnx2x_free_mcast_macs_list(
11030 	struct bnx2x_mcast_ramrod_params *p)
11031 {
11032 	struct bnx2x_mcast_list_elem *mc_mac =
11033 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11034 				 link);
11035 
11036 	WARN_ON(!mc_mac);
11037 	kfree(mc_mac);
11038 }
11039 
11040 /**
11041  * bnx2x_set_uc_list - configure a new unicast MACs list.
11042  *
11043  * @bp: driver handle
11044  *
11045  * We will use zero (0) as a MAC type for these MACs.
11046  */
11047 static int bnx2x_set_uc_list(struct bnx2x *bp)
11048 {
11049 	int rc;
11050 	struct net_device *dev = bp->dev;
11051 	struct netdev_hw_addr *ha;
11052 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
11053 	unsigned long ramrod_flags = 0;
11054 
11055 	/* First schedule a cleanup up of old configuration */
11056 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11057 	if (rc < 0) {
11058 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11059 		return rc;
11060 	}
11061 
11062 	netdev_for_each_uc_addr(ha, dev) {
11063 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11064 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11065 		if (rc < 0) {
11066 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11067 				  rc);
11068 			return rc;
11069 		}
11070 	}
11071 
11072 	/* Execute the pending commands */
11073 	__set_bit(RAMROD_CONT, &ramrod_flags);
11074 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11075 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
11076 }
11077 
11078 static int bnx2x_set_mc_list(struct bnx2x *bp)
11079 {
11080 	struct net_device *dev = bp->dev;
11081 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
11082 	int rc = 0;
11083 
11084 	rparam.mcast_obj = &bp->mcast_obj;
11085 
11086 	/* first, clear all configured multicast MACs */
11087 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11088 	if (rc < 0) {
11089 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11090 		return rc;
11091 	}
11092 
11093 	/* then, configure a new MACs list */
11094 	if (netdev_mc_count(dev)) {
11095 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11096 		if (rc) {
11097 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11098 				  rc);
11099 			return rc;
11100 		}
11101 
11102 		/* Now add the new MACs */
11103 		rc = bnx2x_config_mcast(bp, &rparam,
11104 					BNX2X_MCAST_CMD_ADD);
11105 		if (rc < 0)
11106 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11107 				  rc);
11108 
11109 		bnx2x_free_mcast_macs_list(&rparam);
11110 	}
11111 
11112 	return rc;
11113 }
11114 
11115 
11116 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11117 void bnx2x_set_rx_mode(struct net_device *dev)
11118 {
11119 	struct bnx2x *bp = netdev_priv(dev);
11120 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11121 
11122 	if (bp->state != BNX2X_STATE_OPEN) {
11123 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11124 		return;
11125 	}
11126 
11127 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11128 
11129 	if (dev->flags & IFF_PROMISC)
11130 		rx_mode = BNX2X_RX_MODE_PROMISC;
11131 	else if ((dev->flags & IFF_ALLMULTI) ||
11132 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11133 		  CHIP_IS_E1(bp)))
11134 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
11135 	else {
11136 		/* some multicasts */
11137 		if (bnx2x_set_mc_list(bp) < 0)
11138 			rx_mode = BNX2X_RX_MODE_ALLMULTI;
11139 
11140 		if (bnx2x_set_uc_list(bp) < 0)
11141 			rx_mode = BNX2X_RX_MODE_PROMISC;
11142 	}
11143 
11144 	bp->rx_mode = rx_mode;
11145 #ifdef BCM_CNIC
11146 	/* handle ISCSI SD mode */
11147 	if (IS_MF_ISCSI_SD(bp))
11148 		bp->rx_mode = BNX2X_RX_MODE_NONE;
11149 #endif
11150 
11151 	/* Schedule the rx_mode command */
11152 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11153 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11154 		return;
11155 	}
11156 
11157 	bnx2x_set_storm_rx_mode(bp);
11158 }
11159 
11160 /* called with rtnl_lock */
11161 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11162 			   int devad, u16 addr)
11163 {
11164 	struct bnx2x *bp = netdev_priv(netdev);
11165 	u16 value;
11166 	int rc;
11167 
11168 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11169 	   prtad, devad, addr);
11170 
11171 	/* The HW expects different devad if CL22 is used */
11172 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11173 
11174 	bnx2x_acquire_phy_lock(bp);
11175 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11176 	bnx2x_release_phy_lock(bp);
11177 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11178 
11179 	if (!rc)
11180 		rc = value;
11181 	return rc;
11182 }
11183 
11184 /* called with rtnl_lock */
11185 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11186 			    u16 addr, u16 value)
11187 {
11188 	struct bnx2x *bp = netdev_priv(netdev);
11189 	int rc;
11190 
11191 	DP(NETIF_MSG_LINK,
11192 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11193 	   prtad, devad, addr, value);
11194 
11195 	/* The HW expects different devad if CL22 is used */
11196 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11197 
11198 	bnx2x_acquire_phy_lock(bp);
11199 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11200 	bnx2x_release_phy_lock(bp);
11201 	return rc;
11202 }
11203 
11204 /* called with rtnl_lock */
11205 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11206 {
11207 	struct bnx2x *bp = netdev_priv(dev);
11208 	struct mii_ioctl_data *mdio = if_mii(ifr);
11209 
11210 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11211 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
11212 
11213 	if (!netif_running(dev))
11214 		return -EAGAIN;
11215 
11216 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11217 }
11218 
11219 #ifdef CONFIG_NET_POLL_CONTROLLER
11220 static void poll_bnx2x(struct net_device *dev)
11221 {
11222 	struct bnx2x *bp = netdev_priv(dev);
11223 
11224 	disable_irq(bp->pdev->irq);
11225 	bnx2x_interrupt(bp->pdev->irq, dev);
11226 	enable_irq(bp->pdev->irq);
11227 }
11228 #endif
11229 
11230 static int bnx2x_validate_addr(struct net_device *dev)
11231 {
11232 	struct bnx2x *bp = netdev_priv(dev);
11233 
11234 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11235 		BNX2X_ERR("Non-valid Ethernet address\n");
11236 		return -EADDRNOTAVAIL;
11237 	}
11238 	return 0;
11239 }
11240 
11241 static const struct net_device_ops bnx2x_netdev_ops = {
11242 	.ndo_open		= bnx2x_open,
11243 	.ndo_stop		= bnx2x_close,
11244 	.ndo_start_xmit		= bnx2x_start_xmit,
11245 	.ndo_select_queue	= bnx2x_select_queue,
11246 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
11247 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
11248 	.ndo_validate_addr	= bnx2x_validate_addr,
11249 	.ndo_do_ioctl		= bnx2x_ioctl,
11250 	.ndo_change_mtu		= bnx2x_change_mtu,
11251 	.ndo_fix_features	= bnx2x_fix_features,
11252 	.ndo_set_features	= bnx2x_set_features,
11253 	.ndo_tx_timeout		= bnx2x_tx_timeout,
11254 #ifdef CONFIG_NET_POLL_CONTROLLER
11255 	.ndo_poll_controller	= poll_bnx2x,
11256 #endif
11257 	.ndo_setup_tc		= bnx2x_setup_tc,
11258 
11259 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
11260 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
11261 #endif
11262 };
11263 
11264 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
11265 {
11266 	struct device *dev = &bp->pdev->dev;
11267 
11268 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
11269 		bp->flags |= USING_DAC_FLAG;
11270 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
11271 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
11272 			return -EIO;
11273 		}
11274 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
11275 		dev_err(dev, "System does not support DMA, aborting\n");
11276 		return -EIO;
11277 	}
11278 
11279 	return 0;
11280 }
11281 
11282 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
11283 				    struct net_device *dev,
11284 				    unsigned long board_type)
11285 {
11286 	struct bnx2x *bp;
11287 	int rc;
11288 	u32 pci_cfg_dword;
11289 	bool chip_is_e1x = (board_type == BCM57710 ||
11290 			    board_type == BCM57711 ||
11291 			    board_type == BCM57711E);
11292 
11293 	SET_NETDEV_DEV(dev, &pdev->dev);
11294 	bp = netdev_priv(dev);
11295 
11296 	bp->dev = dev;
11297 	bp->pdev = pdev;
11298 	bp->flags = 0;
11299 
11300 	rc = pci_enable_device(pdev);
11301 	if (rc) {
11302 		dev_err(&bp->pdev->dev,
11303 			"Cannot enable PCI device, aborting\n");
11304 		goto err_out;
11305 	}
11306 
11307 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11308 		dev_err(&bp->pdev->dev,
11309 			"Cannot find PCI device base address, aborting\n");
11310 		rc = -ENODEV;
11311 		goto err_out_disable;
11312 	}
11313 
11314 	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
11315 		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
11316 		       " base address, aborting\n");
11317 		rc = -ENODEV;
11318 		goto err_out_disable;
11319 	}
11320 
11321 	if (atomic_read(&pdev->enable_cnt) == 1) {
11322 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11323 		if (rc) {
11324 			dev_err(&bp->pdev->dev,
11325 				"Cannot obtain PCI resources, aborting\n");
11326 			goto err_out_disable;
11327 		}
11328 
11329 		pci_set_master(pdev);
11330 		pci_save_state(pdev);
11331 	}
11332 
11333 	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
11334 	if (bp->pm_cap == 0) {
11335 		dev_err(&bp->pdev->dev,
11336 			"Cannot find power management capability, aborting\n");
11337 		rc = -EIO;
11338 		goto err_out_release;
11339 	}
11340 
11341 	if (!pci_is_pcie(pdev)) {
11342 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
11343 		rc = -EIO;
11344 		goto err_out_release;
11345 	}
11346 
11347 	rc = bnx2x_set_coherency_mask(bp);
11348 	if (rc)
11349 		goto err_out_release;
11350 
11351 	dev->mem_start = pci_resource_start(pdev, 0);
11352 	dev->base_addr = dev->mem_start;
11353 	dev->mem_end = pci_resource_end(pdev, 0);
11354 
11355 	dev->irq = pdev->irq;
11356 
11357 	bp->regview = pci_ioremap_bar(pdev, 0);
11358 	if (!bp->regview) {
11359 		dev_err(&bp->pdev->dev,
11360 			"Cannot map register space, aborting\n");
11361 		rc = -ENOMEM;
11362 		goto err_out_release;
11363 	}
11364 
11365 	/* In E1/E1H use pci device function given by kernel.
11366 	 * In E2/E3 read physical function from ME register since these chips
11367 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
11368 	 * (depending on hypervisor).
11369 	 */
11370 	if (chip_is_e1x)
11371 		bp->pf_num = PCI_FUNC(pdev->devfn);
11372 	else {/* chip is E2/3*/
11373 		pci_read_config_dword(bp->pdev,
11374 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
11375 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
11376 		    ME_REG_ABS_PF_NUM_SHIFT);
11377 	}
11378 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
11379 
11380 	bnx2x_set_power_state(bp, PCI_D0);
11381 
11382 	/* clean indirect addresses */
11383 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
11384 			       PCICFG_VENDOR_ID_OFFSET);
11385 	/*
11386 	 * Clean the following indirect addresses for all functions since it
11387 	 * is not used by the driver.
11388 	 */
11389 	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
11390 	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
11391 	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
11392 	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
11393 
11394 	if (chip_is_e1x) {
11395 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
11396 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
11397 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
11398 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
11399 	}
11400 
11401 	/*
11402 	 * Enable internal target-read (in case we are probed after PF FLR).
11403 	 * Must be done prior to any BAR read access. Only for 57712 and up
11404 	 */
11405 	if (!chip_is_e1x)
11406 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11407 
11408 	/* Reset the load counter */
11409 	bnx2x_clear_load_status(bp);
11410 
11411 	dev->watchdog_timeo = TX_TIMEOUT;
11412 
11413 	dev->netdev_ops = &bnx2x_netdev_ops;
11414 	bnx2x_set_ethtool_ops(dev);
11415 
11416 	dev->priv_flags |= IFF_UNICAST_FLT;
11417 
11418 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11419 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
11420 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
11421 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
11422 
11423 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11424 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
11425 
11426 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
11427 	if (bp->flags & USING_DAC_FLAG)
11428 		dev->features |= NETIF_F_HIGHDMA;
11429 
11430 	/* Add Loopback capability to the device */
11431 	dev->hw_features |= NETIF_F_LOOPBACK;
11432 
11433 #ifdef BCM_DCBNL
11434 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
11435 #endif
11436 
11437 	/* get_port_hwinfo() will set prtad and mmds properly */
11438 	bp->mdio.prtad = MDIO_PRTAD_NONE;
11439 	bp->mdio.mmds = 0;
11440 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
11441 	bp->mdio.dev = dev;
11442 	bp->mdio.mdio_read = bnx2x_mdio_read;
11443 	bp->mdio.mdio_write = bnx2x_mdio_write;
11444 
11445 	return 0;
11446 
11447 err_out_release:
11448 	if (atomic_read(&pdev->enable_cnt) == 1)
11449 		pci_release_regions(pdev);
11450 
11451 err_out_disable:
11452 	pci_disable_device(pdev);
11453 	pci_set_drvdata(pdev, NULL);
11454 
11455 err_out:
11456 	return rc;
11457 }
11458 
11459 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
11460 						 int *width, int *speed)
11461 {
11462 	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
11463 
11464 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
11465 
11466 	/* return value of 1=2.5GHz 2=5GHz */
11467 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
11468 }
11469 
11470 static int bnx2x_check_firmware(struct bnx2x *bp)
11471 {
11472 	const struct firmware *firmware = bp->firmware;
11473 	struct bnx2x_fw_file_hdr *fw_hdr;
11474 	struct bnx2x_fw_file_section *sections;
11475 	u32 offset, len, num_ops;
11476 	u16 *ops_offsets;
11477 	int i;
11478 	const u8 *fw_ver;
11479 
11480 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
11481 		BNX2X_ERR("Wrong FW size\n");
11482 		return -EINVAL;
11483 	}
11484 
11485 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
11486 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
11487 
11488 	/* Make sure none of the offsets and sizes make us read beyond
11489 	 * the end of the firmware data */
11490 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
11491 		offset = be32_to_cpu(sections[i].offset);
11492 		len = be32_to_cpu(sections[i].len);
11493 		if (offset + len > firmware->size) {
11494 			BNX2X_ERR("Section %d length is out of bounds\n", i);
11495 			return -EINVAL;
11496 		}
11497 	}
11498 
11499 	/* Likewise for the init_ops offsets */
11500 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
11501 	ops_offsets = (u16 *)(firmware->data + offset);
11502 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
11503 
11504 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
11505 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
11506 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
11507 			return -EINVAL;
11508 		}
11509 	}
11510 
11511 	/* Check FW version */
11512 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
11513 	fw_ver = firmware->data + offset;
11514 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
11515 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
11516 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
11517 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
11518 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
11519 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
11520 		       BCM_5710_FW_MAJOR_VERSION,
11521 		       BCM_5710_FW_MINOR_VERSION,
11522 		       BCM_5710_FW_REVISION_VERSION,
11523 		       BCM_5710_FW_ENGINEERING_VERSION);
11524 		return -EINVAL;
11525 	}
11526 
11527 	return 0;
11528 }
11529 
11530 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11531 {
11532 	const __be32 *source = (const __be32 *)_source;
11533 	u32 *target = (u32 *)_target;
11534 	u32 i;
11535 
11536 	for (i = 0; i < n/4; i++)
11537 		target[i] = be32_to_cpu(source[i]);
11538 }
11539 
11540 /*
11541    Ops array is stored in the following format:
11542    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
11543  */
11544 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
11545 {
11546 	const __be32 *source = (const __be32 *)_source;
11547 	struct raw_op *target = (struct raw_op *)_target;
11548 	u32 i, j, tmp;
11549 
11550 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
11551 		tmp = be32_to_cpu(source[j]);
11552 		target[i].op = (tmp >> 24) & 0xff;
11553 		target[i].offset = tmp & 0xffffff;
11554 		target[i].raw_data = be32_to_cpu(source[j + 1]);
11555 	}
11556 }
11557 
11558 /**
11559  * IRO array is stored in the following format:
11560  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
11561  */
11562 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
11563 {
11564 	const __be32 *source = (const __be32 *)_source;
11565 	struct iro *target = (struct iro *)_target;
11566 	u32 i, j, tmp;
11567 
11568 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
11569 		target[i].base = be32_to_cpu(source[j]);
11570 		j++;
11571 		tmp = be32_to_cpu(source[j]);
11572 		target[i].m1 = (tmp >> 16) & 0xffff;
11573 		target[i].m2 = tmp & 0xffff;
11574 		j++;
11575 		tmp = be32_to_cpu(source[j]);
11576 		target[i].m3 = (tmp >> 16) & 0xffff;
11577 		target[i].size = tmp & 0xffff;
11578 		j++;
11579 	}
11580 }
11581 
11582 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11583 {
11584 	const __be16 *source = (const __be16 *)_source;
11585 	u16 *target = (u16 *)_target;
11586 	u32 i;
11587 
11588 	for (i = 0; i < n/2; i++)
11589 		target[i] = be16_to_cpu(source[i]);
11590 }
11591 
11592 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
11593 do {									\
11594 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
11595 	bp->arr = kmalloc(len, GFP_KERNEL);				\
11596 	if (!bp->arr)							\
11597 		goto lbl;						\
11598 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
11599 	     (u8 *)bp->arr, len);					\
11600 } while (0)
11601 
11602 static int bnx2x_init_firmware(struct bnx2x *bp)
11603 {
11604 	const char *fw_file_name;
11605 	struct bnx2x_fw_file_hdr *fw_hdr;
11606 	int rc;
11607 
11608 	if (bp->firmware)
11609 		return 0;
11610 
11611 	if (CHIP_IS_E1(bp))
11612 		fw_file_name = FW_FILE_NAME_E1;
11613 	else if (CHIP_IS_E1H(bp))
11614 		fw_file_name = FW_FILE_NAME_E1H;
11615 	else if (!CHIP_IS_E1x(bp))
11616 		fw_file_name = FW_FILE_NAME_E2;
11617 	else {
11618 		BNX2X_ERR("Unsupported chip revision\n");
11619 		return -EINVAL;
11620 	}
11621 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
11622 
11623 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
11624 	if (rc) {
11625 		BNX2X_ERR("Can't load firmware file %s\n",
11626 			  fw_file_name);
11627 		goto request_firmware_exit;
11628 	}
11629 
11630 	rc = bnx2x_check_firmware(bp);
11631 	if (rc) {
11632 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
11633 		goto request_firmware_exit;
11634 	}
11635 
11636 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
11637 
11638 	/* Initialize the pointers to the init arrays */
11639 	/* Blob */
11640 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
11641 
11642 	/* Opcodes */
11643 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
11644 
11645 	/* Offsets */
11646 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
11647 			    be16_to_cpu_n);
11648 
11649 	/* STORMs firmware */
11650 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11651 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
11652 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
11653 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
11654 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11655 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
11656 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
11657 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
11658 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11659 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
11660 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
11661 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
11662 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11663 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
11664 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
11665 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
11666 	/* IRO */
11667 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
11668 
11669 	return 0;
11670 
11671 iro_alloc_err:
11672 	kfree(bp->init_ops_offsets);
11673 init_offsets_alloc_err:
11674 	kfree(bp->init_ops);
11675 init_ops_alloc_err:
11676 	kfree(bp->init_data);
11677 request_firmware_exit:
11678 	release_firmware(bp->firmware);
11679 	bp->firmware = NULL;
11680 
11681 	return rc;
11682 }
11683 
11684 static void bnx2x_release_firmware(struct bnx2x *bp)
11685 {
11686 	kfree(bp->init_ops_offsets);
11687 	kfree(bp->init_ops);
11688 	kfree(bp->init_data);
11689 	release_firmware(bp->firmware);
11690 	bp->firmware = NULL;
11691 }
11692 
11693 
11694 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
11695 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
11696 	.init_hw_cmn      = bnx2x_init_hw_common,
11697 	.init_hw_port     = bnx2x_init_hw_port,
11698 	.init_hw_func     = bnx2x_init_hw_func,
11699 
11700 	.reset_hw_cmn     = bnx2x_reset_common,
11701 	.reset_hw_port    = bnx2x_reset_port,
11702 	.reset_hw_func    = bnx2x_reset_func,
11703 
11704 	.gunzip_init      = bnx2x_gunzip_init,
11705 	.gunzip_end       = bnx2x_gunzip_end,
11706 
11707 	.init_fw          = bnx2x_init_firmware,
11708 	.release_fw       = bnx2x_release_firmware,
11709 };
11710 
11711 void bnx2x__init_func_obj(struct bnx2x *bp)
11712 {
11713 	/* Prepare DMAE related driver resources */
11714 	bnx2x_setup_dmae(bp);
11715 
11716 	bnx2x_init_func_obj(bp, &bp->func_obj,
11717 			    bnx2x_sp(bp, func_rdata),
11718 			    bnx2x_sp_mapping(bp, func_rdata),
11719 			    bnx2x_sp(bp, func_afex_rdata),
11720 			    bnx2x_sp_mapping(bp, func_afex_rdata),
11721 			    &bnx2x_func_sp_drv);
11722 }
11723 
11724 /* must be called after sriov-enable */
11725 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
11726 {
11727 	int cid_count = BNX2X_L2_MAX_CID(bp);
11728 
11729 #ifdef BCM_CNIC
11730 	cid_count += CNIC_CID_MAX;
11731 #endif
11732 	return roundup(cid_count, QM_CID_ROUND);
11733 }
11734 
11735 /**
11736  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
11737  *
11738  * @dev:	pci device
11739  *
11740  */
11741 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
11742 {
11743 	int pos;
11744 	u16 control;
11745 
11746 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
11747 
11748 	/*
11749 	 * If MSI-X is not supported - return number of SBs needed to support
11750 	 * one fast path queue: one FP queue + SB for CNIC
11751 	 */
11752 	if (!pos)
11753 		return 1 + CNIC_PRESENT;
11754 
11755 	/*
11756 	 * The value in the PCI configuration space is the index of the last
11757 	 * entry, namely one less than the actual size of the table, which is
11758 	 * exactly what we want to return from this function: number of all SBs
11759 	 * without the default SB.
11760 	 */
11761 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
11762 	return control & PCI_MSIX_FLAGS_QSIZE;
11763 }
11764 
11765 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11766 				    const struct pci_device_id *ent)
11767 {
11768 	struct net_device *dev = NULL;
11769 	struct bnx2x *bp;
11770 	int pcie_width, pcie_speed;
11771 	int rc, max_non_def_sbs;
11772 	int rx_count, tx_count, rss_count, doorbell_size;
11773 	/*
11774 	 * An estimated maximum supported CoS number according to the chip
11775 	 * version.
11776 	 * We will try to roughly estimate the maximum number of CoSes this chip
11777 	 * may support in order to minimize the memory allocated for Tx
11778 	 * netdev_queue's. This number will be accurately calculated during the
11779 	 * initialization of bp->max_cos based on the chip versions AND chip
11780 	 * revision in the bnx2x_init_bp().
11781 	 */
11782 	u8 max_cos_est = 0;
11783 
11784 	switch (ent->driver_data) {
11785 	case BCM57710:
11786 	case BCM57711:
11787 	case BCM57711E:
11788 		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11789 		break;
11790 
11791 	case BCM57712:
11792 	case BCM57712_MF:
11793 		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11794 		break;
11795 
11796 	case BCM57800:
11797 	case BCM57800_MF:
11798 	case BCM57810:
11799 	case BCM57810_MF:
11800 	case BCM57840:
11801 	case BCM57840_MF:
11802 	case BCM57811:
11803 	case BCM57811_MF:
11804 		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11805 		break;
11806 
11807 	default:
11808 		pr_err("Unknown board_type (%ld), aborting\n",
11809 			   ent->driver_data);
11810 		return -ENODEV;
11811 	}
11812 
11813 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11814 
11815 	/* !!! FIXME !!!
11816 	 * Do not allow the maximum SB count to grow above 16
11817 	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11818 	 * We will use the FP_SB_MAX_E1x macro for this matter.
11819 	 */
11820 	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11821 
11822 	WARN_ON(!max_non_def_sbs);
11823 
11824 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
11825 	rss_count = max_non_def_sbs - CNIC_PRESENT;
11826 
11827 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11828 	rx_count = rss_count + FCOE_PRESENT;
11829 
11830 	/*
11831 	 * Maximum number of netdev Tx queues:
11832 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
11833 	 */
11834 	tx_count = rss_count * max_cos_est + FCOE_PRESENT;
11835 
11836 	/* dev zeroed in init_etherdev */
11837 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11838 	if (!dev)
11839 		return -ENOMEM;
11840 
11841 	bp = netdev_priv(dev);
11842 
11843 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
11844 			  tx_count, rx_count);
11845 
11846 	bp->igu_sb_cnt = max_non_def_sbs;
11847 	bp->msg_enable = debug;
11848 	pci_set_drvdata(pdev, dev);
11849 
11850 	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11851 	if (rc < 0) {
11852 		free_netdev(dev);
11853 		return rc;
11854 	}
11855 
11856 	BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs);
11857 
11858 	rc = bnx2x_init_bp(bp);
11859 	if (rc)
11860 		goto init_one_exit;
11861 
11862 	/*
11863 	 * Map doorbels here as we need the real value of bp->max_cos which
11864 	 * is initialized in bnx2x_init_bp().
11865 	 */
11866 	doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
11867 	if (doorbell_size > pci_resource_len(pdev, 2)) {
11868 		dev_err(&bp->pdev->dev,
11869 			"Cannot map doorbells, bar size too small, aborting\n");
11870 		rc = -ENOMEM;
11871 		goto init_one_exit;
11872 	}
11873 	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11874 					doorbell_size);
11875 	if (!bp->doorbells) {
11876 		dev_err(&bp->pdev->dev,
11877 			"Cannot map doorbell space, aborting\n");
11878 		rc = -ENOMEM;
11879 		goto init_one_exit;
11880 	}
11881 
11882 	/* calc qm_cid_count */
11883 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11884 
11885 #ifdef BCM_CNIC
11886 	/* disable FCOE L2 queue for E1x */
11887 	if (CHIP_IS_E1x(bp))
11888 		bp->flags |= NO_FCOE_FLAG;
11889 
11890 #endif
11891 
11892 	/* Configure interrupt mode: try to enable MSI-X/MSI if
11893 	 * needed, set bp->num_queues appropriately.
11894 	 */
11895 	bnx2x_set_int_mode(bp);
11896 
11897 	/* Add all NAPI objects */
11898 	bnx2x_add_all_napi(bp);
11899 
11900 	rc = register_netdev(dev);
11901 	if (rc) {
11902 		dev_err(&pdev->dev, "Cannot register net device\n");
11903 		goto init_one_exit;
11904 	}
11905 
11906 #ifdef BCM_CNIC
11907 	if (!NO_FCOE(bp)) {
11908 		/* Add storage MAC address */
11909 		rtnl_lock();
11910 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11911 		rtnl_unlock();
11912 	}
11913 #endif
11914 
11915 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11916 
11917 	BNX2X_DEV_INFO(
11918 		"%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11919 		    board_info[ent->driver_data].name,
11920 		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11921 		    pcie_width,
11922 		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11923 		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11924 		    "5GHz (Gen2)" : "2.5GHz",
11925 		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
11926 
11927 	return 0;
11928 
11929 init_one_exit:
11930 	if (bp->regview)
11931 		iounmap(bp->regview);
11932 
11933 	if (bp->doorbells)
11934 		iounmap(bp->doorbells);
11935 
11936 	free_netdev(dev);
11937 
11938 	if (atomic_read(&pdev->enable_cnt) == 1)
11939 		pci_release_regions(pdev);
11940 
11941 	pci_disable_device(pdev);
11942 	pci_set_drvdata(pdev, NULL);
11943 
11944 	return rc;
11945 }
11946 
11947 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11948 {
11949 	struct net_device *dev = pci_get_drvdata(pdev);
11950 	struct bnx2x *bp;
11951 
11952 	if (!dev) {
11953 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11954 		return;
11955 	}
11956 	bp = netdev_priv(dev);
11957 
11958 #ifdef BCM_CNIC
11959 	/* Delete storage MAC address */
11960 	if (!NO_FCOE(bp)) {
11961 		rtnl_lock();
11962 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11963 		rtnl_unlock();
11964 	}
11965 #endif
11966 
11967 #ifdef BCM_DCBNL
11968 	/* Delete app tlvs from dcbnl */
11969 	bnx2x_dcbnl_update_applist(bp, true);
11970 #endif
11971 
11972 	unregister_netdev(dev);
11973 
11974 	/* Delete all NAPI objects */
11975 	bnx2x_del_all_napi(bp);
11976 
11977 	/* Power on: we can't let PCI layer write to us while we are in D3 */
11978 	bnx2x_set_power_state(bp, PCI_D0);
11979 
11980 	/* Disable MSI/MSI-X */
11981 	bnx2x_disable_msi(bp);
11982 
11983 	/* Power off */
11984 	bnx2x_set_power_state(bp, PCI_D3hot);
11985 
11986 	/* Make sure RESET task is not scheduled before continuing */
11987 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
11988 
11989 	if (bp->regview)
11990 		iounmap(bp->regview);
11991 
11992 	if (bp->doorbells)
11993 		iounmap(bp->doorbells);
11994 
11995 	bnx2x_release_firmware(bp);
11996 
11997 	bnx2x_free_mem_bp(bp);
11998 
11999 	free_netdev(dev);
12000 
12001 	if (atomic_read(&pdev->enable_cnt) == 1)
12002 		pci_release_regions(pdev);
12003 
12004 	pci_disable_device(pdev);
12005 	pci_set_drvdata(pdev, NULL);
12006 }
12007 
12008 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12009 {
12010 	int i;
12011 
12012 	bp->state = BNX2X_STATE_ERROR;
12013 
12014 	bp->rx_mode = BNX2X_RX_MODE_NONE;
12015 
12016 #ifdef BCM_CNIC
12017 	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12018 #endif
12019 	/* Stop Tx */
12020 	bnx2x_tx_disable(bp);
12021 
12022 	bnx2x_netif_stop(bp, 0);
12023 
12024 	del_timer_sync(&bp->timer);
12025 
12026 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
12027 
12028 	/* Release IRQs */
12029 	bnx2x_free_irq(bp);
12030 
12031 	/* Free SKBs, SGEs, TPA pool and driver internals */
12032 	bnx2x_free_skbs(bp);
12033 
12034 	for_each_rx_queue(bp, i)
12035 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
12036 
12037 	bnx2x_free_mem(bp);
12038 
12039 	bp->state = BNX2X_STATE_CLOSED;
12040 
12041 	netif_carrier_off(bp->dev);
12042 
12043 	return 0;
12044 }
12045 
12046 static void bnx2x_eeh_recover(struct bnx2x *bp)
12047 {
12048 	u32 val;
12049 
12050 	mutex_init(&bp->port.phy_mutex);
12051 
12052 
12053 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
12054 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12055 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12056 		BNX2X_ERR("BAD MCP validity signature\n");
12057 }
12058 
12059 /**
12060  * bnx2x_io_error_detected - called when PCI error is detected
12061  * @pdev: Pointer to PCI device
12062  * @state: The current pci connection state
12063  *
12064  * This function is called after a PCI bus error affecting
12065  * this device has been detected.
12066  */
12067 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12068 						pci_channel_state_t state)
12069 {
12070 	struct net_device *dev = pci_get_drvdata(pdev);
12071 	struct bnx2x *bp = netdev_priv(dev);
12072 
12073 	rtnl_lock();
12074 
12075 	netif_device_detach(dev);
12076 
12077 	if (state == pci_channel_io_perm_failure) {
12078 		rtnl_unlock();
12079 		return PCI_ERS_RESULT_DISCONNECT;
12080 	}
12081 
12082 	if (netif_running(dev))
12083 		bnx2x_eeh_nic_unload(bp);
12084 
12085 	pci_disable_device(pdev);
12086 
12087 	rtnl_unlock();
12088 
12089 	/* Request a slot reset */
12090 	return PCI_ERS_RESULT_NEED_RESET;
12091 }
12092 
12093 /**
12094  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12095  * @pdev: Pointer to PCI device
12096  *
12097  * Restart the card from scratch, as if from a cold-boot.
12098  */
12099 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12100 {
12101 	struct net_device *dev = pci_get_drvdata(pdev);
12102 	struct bnx2x *bp = netdev_priv(dev);
12103 
12104 	rtnl_lock();
12105 
12106 	if (pci_enable_device(pdev)) {
12107 		dev_err(&pdev->dev,
12108 			"Cannot re-enable PCI device after reset\n");
12109 		rtnl_unlock();
12110 		return PCI_ERS_RESULT_DISCONNECT;
12111 	}
12112 
12113 	pci_set_master(pdev);
12114 	pci_restore_state(pdev);
12115 
12116 	if (netif_running(dev))
12117 		bnx2x_set_power_state(bp, PCI_D0);
12118 
12119 	rtnl_unlock();
12120 
12121 	return PCI_ERS_RESULT_RECOVERED;
12122 }
12123 
12124 /**
12125  * bnx2x_io_resume - called when traffic can start flowing again
12126  * @pdev: Pointer to PCI device
12127  *
12128  * This callback is called when the error recovery driver tells us that
12129  * its OK to resume normal operation.
12130  */
12131 static void bnx2x_io_resume(struct pci_dev *pdev)
12132 {
12133 	struct net_device *dev = pci_get_drvdata(pdev);
12134 	struct bnx2x *bp = netdev_priv(dev);
12135 
12136 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
12137 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
12138 		return;
12139 	}
12140 
12141 	rtnl_lock();
12142 
12143 	bnx2x_eeh_recover(bp);
12144 
12145 	if (netif_running(dev))
12146 		bnx2x_nic_load(bp, LOAD_NORMAL);
12147 
12148 	netif_device_attach(dev);
12149 
12150 	rtnl_unlock();
12151 }
12152 
12153 static struct pci_error_handlers bnx2x_err_handler = {
12154 	.error_detected = bnx2x_io_error_detected,
12155 	.slot_reset     = bnx2x_io_slot_reset,
12156 	.resume         = bnx2x_io_resume,
12157 };
12158 
12159 static struct pci_driver bnx2x_pci_driver = {
12160 	.name        = DRV_MODULE_NAME,
12161 	.id_table    = bnx2x_pci_tbl,
12162 	.probe       = bnx2x_init_one,
12163 	.remove      = __devexit_p(bnx2x_remove_one),
12164 	.suspend     = bnx2x_suspend,
12165 	.resume      = bnx2x_resume,
12166 	.err_handler = &bnx2x_err_handler,
12167 };
12168 
12169 static int __init bnx2x_init(void)
12170 {
12171 	int ret;
12172 
12173 	pr_info("%s", version);
12174 
12175 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
12176 	if (bnx2x_wq == NULL) {
12177 		pr_err("Cannot create workqueue\n");
12178 		return -ENOMEM;
12179 	}
12180 
12181 	ret = pci_register_driver(&bnx2x_pci_driver);
12182 	if (ret) {
12183 		pr_err("Cannot register driver\n");
12184 		destroy_workqueue(bnx2x_wq);
12185 	}
12186 	return ret;
12187 }
12188 
12189 static void __exit bnx2x_cleanup(void)
12190 {
12191 	struct list_head *pos, *q;
12192 	pci_unregister_driver(&bnx2x_pci_driver);
12193 
12194 	destroy_workqueue(bnx2x_wq);
12195 
12196 	/* Free globablly allocated resources */
12197 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
12198 		struct bnx2x_prev_path_list *tmp =
12199 			list_entry(pos, struct bnx2x_prev_path_list, list);
12200 		list_del(pos);
12201 		kfree(tmp);
12202 	}
12203 }
12204 
12205 void bnx2x_notify_link_changed(struct bnx2x *bp)
12206 {
12207 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
12208 }
12209 
12210 module_init(bnx2x_init);
12211 module_exit(bnx2x_cleanup);
12212 
12213 #ifdef BCM_CNIC
12214 /**
12215  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
12216  *
12217  * @bp:		driver handle
12218  * @set:	set or clear the CAM entry
12219  *
12220  * This function will wait until the ramdord completion returns.
12221  * Return 0 if success, -ENODEV if ramrod doesn't return.
12222  */
12223 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
12224 {
12225 	unsigned long ramrod_flags = 0;
12226 
12227 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12228 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
12229 				 &bp->iscsi_l2_mac_obj, true,
12230 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
12231 }
12232 
12233 /* count denotes the number of new completions we have seen */
12234 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
12235 {
12236 	struct eth_spe *spe;
12237 	int cxt_index, cxt_offset;
12238 
12239 #ifdef BNX2X_STOP_ON_ERROR
12240 	if (unlikely(bp->panic))
12241 		return;
12242 #endif
12243 
12244 	spin_lock_bh(&bp->spq_lock);
12245 	BUG_ON(bp->cnic_spq_pending < count);
12246 	bp->cnic_spq_pending -= count;
12247 
12248 
12249 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
12250 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
12251 				& SPE_HDR_CONN_TYPE) >>
12252 				SPE_HDR_CONN_TYPE_SHIFT;
12253 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
12254 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
12255 
12256 		/* Set validation for iSCSI L2 client before sending SETUP
12257 		 *  ramrod
12258 		 */
12259 		if (type == ETH_CONNECTION_TYPE) {
12260 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
12261 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
12262 					ILT_PAGE_CIDS;
12263 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
12264 					(cxt_index * ILT_PAGE_CIDS);
12265 				bnx2x_set_ctx_validation(bp,
12266 					&bp->context[cxt_index].
12267 							 vcxt[cxt_offset].eth,
12268 					BNX2X_ISCSI_ETH_CID(bp));
12269 			}
12270 		}
12271 
12272 		/*
12273 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
12274 		 * and in the air. We also check that number of outstanding
12275 		 * COMMON ramrods is not more than the EQ and SPQ can
12276 		 * accommodate.
12277 		 */
12278 		if (type == ETH_CONNECTION_TYPE) {
12279 			if (!atomic_read(&bp->cq_spq_left))
12280 				break;
12281 			else
12282 				atomic_dec(&bp->cq_spq_left);
12283 		} else if (type == NONE_CONNECTION_TYPE) {
12284 			if (!atomic_read(&bp->eq_spq_left))
12285 				break;
12286 			else
12287 				atomic_dec(&bp->eq_spq_left);
12288 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
12289 			   (type == FCOE_CONNECTION_TYPE)) {
12290 			if (bp->cnic_spq_pending >=
12291 			    bp->cnic_eth_dev.max_kwqe_pending)
12292 				break;
12293 			else
12294 				bp->cnic_spq_pending++;
12295 		} else {
12296 			BNX2X_ERR("Unknown SPE type: %d\n", type);
12297 			bnx2x_panic();
12298 			break;
12299 		}
12300 
12301 		spe = bnx2x_sp_get_next(bp);
12302 		*spe = *bp->cnic_kwq_cons;
12303 
12304 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
12305 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
12306 
12307 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
12308 			bp->cnic_kwq_cons = bp->cnic_kwq;
12309 		else
12310 			bp->cnic_kwq_cons++;
12311 	}
12312 	bnx2x_sp_prod_update(bp);
12313 	spin_unlock_bh(&bp->spq_lock);
12314 }
12315 
12316 static int bnx2x_cnic_sp_queue(struct net_device *dev,
12317 			       struct kwqe_16 *kwqes[], u32 count)
12318 {
12319 	struct bnx2x *bp = netdev_priv(dev);
12320 	int i;
12321 
12322 #ifdef BNX2X_STOP_ON_ERROR
12323 	if (unlikely(bp->panic)) {
12324 		BNX2X_ERR("Can't post to SP queue while panic\n");
12325 		return -EIO;
12326 	}
12327 #endif
12328 
12329 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
12330 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
12331 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
12332 		return -EAGAIN;
12333 	}
12334 
12335 	spin_lock_bh(&bp->spq_lock);
12336 
12337 	for (i = 0; i < count; i++) {
12338 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
12339 
12340 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
12341 			break;
12342 
12343 		*bp->cnic_kwq_prod = *spe;
12344 
12345 		bp->cnic_kwq_pending++;
12346 
12347 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
12348 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
12349 		   spe->data.update_data_addr.hi,
12350 		   spe->data.update_data_addr.lo,
12351 		   bp->cnic_kwq_pending);
12352 
12353 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
12354 			bp->cnic_kwq_prod = bp->cnic_kwq;
12355 		else
12356 			bp->cnic_kwq_prod++;
12357 	}
12358 
12359 	spin_unlock_bh(&bp->spq_lock);
12360 
12361 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
12362 		bnx2x_cnic_sp_post(bp, 0);
12363 
12364 	return i;
12365 }
12366 
12367 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12368 {
12369 	struct cnic_ops *c_ops;
12370 	int rc = 0;
12371 
12372 	mutex_lock(&bp->cnic_mutex);
12373 	c_ops = rcu_dereference_protected(bp->cnic_ops,
12374 					  lockdep_is_held(&bp->cnic_mutex));
12375 	if (c_ops)
12376 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12377 	mutex_unlock(&bp->cnic_mutex);
12378 
12379 	return rc;
12380 }
12381 
12382 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12383 {
12384 	struct cnic_ops *c_ops;
12385 	int rc = 0;
12386 
12387 	rcu_read_lock();
12388 	c_ops = rcu_dereference(bp->cnic_ops);
12389 	if (c_ops)
12390 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12391 	rcu_read_unlock();
12392 
12393 	return rc;
12394 }
12395 
12396 /*
12397  * for commands that have no data
12398  */
12399 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
12400 {
12401 	struct cnic_ctl_info ctl = {0};
12402 
12403 	ctl.cmd = cmd;
12404 
12405 	return bnx2x_cnic_ctl_send(bp, &ctl);
12406 }
12407 
12408 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
12409 {
12410 	struct cnic_ctl_info ctl = {0};
12411 
12412 	/* first we tell CNIC and only then we count this as a completion */
12413 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
12414 	ctl.data.comp.cid = cid;
12415 	ctl.data.comp.error = err;
12416 
12417 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
12418 	bnx2x_cnic_sp_post(bp, 0);
12419 }
12420 
12421 
12422 /* Called with netif_addr_lock_bh() taken.
12423  * Sets an rx_mode config for an iSCSI ETH client.
12424  * Doesn't block.
12425  * Completion should be checked outside.
12426  */
12427 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
12428 {
12429 	unsigned long accept_flags = 0, ramrod_flags = 0;
12430 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12431 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
12432 
12433 	if (start) {
12434 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
12435 		 * because it's the only way for UIO Queue to accept
12436 		 * multicasts (in non-promiscuous mode only one Queue per
12437 		 * function will receive multicast packets (leading in our
12438 		 * case).
12439 		 */
12440 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
12441 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
12442 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
12443 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
12444 
12445 		/* Clear STOP_PENDING bit if START is requested */
12446 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
12447 
12448 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
12449 	} else
12450 		/* Clear START_PENDING bit if STOP is requested */
12451 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
12452 
12453 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
12454 		set_bit(sched_state, &bp->sp_state);
12455 	else {
12456 		__set_bit(RAMROD_RX, &ramrod_flags);
12457 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
12458 				    ramrod_flags);
12459 	}
12460 }
12461 
12462 
12463 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
12464 {
12465 	struct bnx2x *bp = netdev_priv(dev);
12466 	int rc = 0;
12467 
12468 	switch (ctl->cmd) {
12469 	case DRV_CTL_CTXTBL_WR_CMD: {
12470 		u32 index = ctl->data.io.offset;
12471 		dma_addr_t addr = ctl->data.io.dma_addr;
12472 
12473 		bnx2x_ilt_wr(bp, index, addr);
12474 		break;
12475 	}
12476 
12477 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
12478 		int count = ctl->data.credit.credit_count;
12479 
12480 		bnx2x_cnic_sp_post(bp, count);
12481 		break;
12482 	}
12483 
12484 	/* rtnl_lock is held.  */
12485 	case DRV_CTL_START_L2_CMD: {
12486 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12487 		unsigned long sp_bits = 0;
12488 
12489 		/* Configure the iSCSI classification object */
12490 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
12491 				   cp->iscsi_l2_client_id,
12492 				   cp->iscsi_l2_cid, BP_FUNC(bp),
12493 				   bnx2x_sp(bp, mac_rdata),
12494 				   bnx2x_sp_mapping(bp, mac_rdata),
12495 				   BNX2X_FILTER_MAC_PENDING,
12496 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
12497 				   &bp->macs_pool);
12498 
12499 		/* Set iSCSI MAC address */
12500 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
12501 		if (rc)
12502 			break;
12503 
12504 		mmiowb();
12505 		barrier();
12506 
12507 		/* Start accepting on iSCSI L2 ring */
12508 
12509 		netif_addr_lock_bh(dev);
12510 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
12511 		netif_addr_unlock_bh(dev);
12512 
12513 		/* bits to wait on */
12514 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12515 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
12516 
12517 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
12518 			BNX2X_ERR("rx_mode completion timed out!\n");
12519 
12520 		break;
12521 	}
12522 
12523 	/* rtnl_lock is held.  */
12524 	case DRV_CTL_STOP_L2_CMD: {
12525 		unsigned long sp_bits = 0;
12526 
12527 		/* Stop accepting on iSCSI L2 ring */
12528 		netif_addr_lock_bh(dev);
12529 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
12530 		netif_addr_unlock_bh(dev);
12531 
12532 		/* bits to wait on */
12533 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12534 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
12535 
12536 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
12537 			BNX2X_ERR("rx_mode completion timed out!\n");
12538 
12539 		mmiowb();
12540 		barrier();
12541 
12542 		/* Unset iSCSI L2 MAC */
12543 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
12544 					BNX2X_ISCSI_ETH_MAC, true);
12545 		break;
12546 	}
12547 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
12548 		int count = ctl->data.credit.credit_count;
12549 
12550 		smp_mb__before_atomic_inc();
12551 		atomic_add(count, &bp->cq_spq_left);
12552 		smp_mb__after_atomic_inc();
12553 		break;
12554 	}
12555 	case DRV_CTL_ULP_REGISTER_CMD: {
12556 		int ulp_type = ctl->data.ulp_type;
12557 
12558 		if (CHIP_IS_E3(bp)) {
12559 			int idx = BP_FW_MB_IDX(bp);
12560 			u32 cap;
12561 
12562 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12563 			if (ulp_type == CNIC_ULP_ISCSI)
12564 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12565 			else if (ulp_type == CNIC_ULP_FCOE)
12566 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12567 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12568 		}
12569 		break;
12570 	}
12571 	case DRV_CTL_ULP_UNREGISTER_CMD: {
12572 		int ulp_type = ctl->data.ulp_type;
12573 
12574 		if (CHIP_IS_E3(bp)) {
12575 			int idx = BP_FW_MB_IDX(bp);
12576 			u32 cap;
12577 
12578 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12579 			if (ulp_type == CNIC_ULP_ISCSI)
12580 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12581 			else if (ulp_type == CNIC_ULP_FCOE)
12582 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12583 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12584 		}
12585 		break;
12586 	}
12587 
12588 	default:
12589 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
12590 		rc = -EINVAL;
12591 	}
12592 
12593 	return rc;
12594 }
12595 
12596 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
12597 {
12598 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12599 
12600 	if (bp->flags & USING_MSIX_FLAG) {
12601 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
12602 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
12603 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
12604 	} else {
12605 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
12606 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
12607 	}
12608 	if (!CHIP_IS_E1x(bp))
12609 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
12610 	else
12611 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
12612 
12613 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
12614 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
12615 	cp->irq_arr[1].status_blk = bp->def_status_blk;
12616 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
12617 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
12618 
12619 	cp->num_irq = 2;
12620 }
12621 
12622 void bnx2x_setup_cnic_info(struct bnx2x *bp)
12623 {
12624 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12625 
12626 
12627 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12628 			     bnx2x_cid_ilt_lines(bp);
12629 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12630 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
12631 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
12632 
12633 	if (NO_ISCSI_OOO(bp))
12634 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12635 }
12636 
12637 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
12638 			       void *data)
12639 {
12640 	struct bnx2x *bp = netdev_priv(dev);
12641 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12642 
12643 	if (ops == NULL) {
12644 		BNX2X_ERR("NULL ops received\n");
12645 		return -EINVAL;
12646 	}
12647 
12648 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
12649 	if (!bp->cnic_kwq)
12650 		return -ENOMEM;
12651 
12652 	bp->cnic_kwq_cons = bp->cnic_kwq;
12653 	bp->cnic_kwq_prod = bp->cnic_kwq;
12654 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
12655 
12656 	bp->cnic_spq_pending = 0;
12657 	bp->cnic_kwq_pending = 0;
12658 
12659 	bp->cnic_data = data;
12660 
12661 	cp->num_irq = 0;
12662 	cp->drv_state |= CNIC_DRV_STATE_REGD;
12663 	cp->iro_arr = bp->iro_arr;
12664 
12665 	bnx2x_setup_cnic_irq_info(bp);
12666 
12667 	rcu_assign_pointer(bp->cnic_ops, ops);
12668 
12669 	return 0;
12670 }
12671 
12672 static int bnx2x_unregister_cnic(struct net_device *dev)
12673 {
12674 	struct bnx2x *bp = netdev_priv(dev);
12675 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12676 
12677 	mutex_lock(&bp->cnic_mutex);
12678 	cp->drv_state = 0;
12679 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
12680 	mutex_unlock(&bp->cnic_mutex);
12681 	synchronize_rcu();
12682 	kfree(bp->cnic_kwq);
12683 	bp->cnic_kwq = NULL;
12684 
12685 	return 0;
12686 }
12687 
12688 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
12689 {
12690 	struct bnx2x *bp = netdev_priv(dev);
12691 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12692 
12693 	/* If both iSCSI and FCoE are disabled - return NULL in
12694 	 * order to indicate CNIC that it should not try to work
12695 	 * with this device.
12696 	 */
12697 	if (NO_ISCSI(bp) && NO_FCOE(bp))
12698 		return NULL;
12699 
12700 	cp->drv_owner = THIS_MODULE;
12701 	cp->chip_id = CHIP_ID(bp);
12702 	cp->pdev = bp->pdev;
12703 	cp->io_base = bp->regview;
12704 	cp->io_base2 = bp->doorbells;
12705 	cp->max_kwqe_pending = 8;
12706 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
12707 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12708 			     bnx2x_cid_ilt_lines(bp);
12709 	cp->ctx_tbl_len = CNIC_ILT_LINES;
12710 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12711 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
12712 	cp->drv_ctl = bnx2x_drv_ctl;
12713 	cp->drv_register_cnic = bnx2x_register_cnic;
12714 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
12715 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
12716 	cp->iscsi_l2_client_id =
12717 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12718 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
12719 
12720 	if (NO_ISCSI_OOO(bp))
12721 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12722 
12723 	if (NO_ISCSI(bp))
12724 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
12725 
12726 	if (NO_FCOE(bp))
12727 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
12728 
12729 	BNX2X_DEV_INFO(
12730 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
12731 	   cp->ctx_blk_size,
12732 	   cp->ctx_tbl_offset,
12733 	   cp->ctx_tbl_len,
12734 	   cp->starting_cid);
12735 	return cp;
12736 }
12737 EXPORT_SYMBOL(bnx2x_cnic_probe);
12738 
12739 #endif /* BCM_CNIC */
12740 
12741