1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/aer.h>
31 #include <linux/init.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/bitops.h>
37 #include <linux/irq.h>
38 #include <linux/delay.h>
39 #include <asm/byteorder.h>
40 #include <linux/time.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/semaphore.h>
56 #include <linux/stringify.h>
57 #include <linux/vmalloc.h>
58 
59 #include "bnx2x.h"
60 #include "bnx2x_init.h"
61 #include "bnx2x_init_ops.h"
62 #include "bnx2x_cmn.h"
63 #include "bnx2x_vfpf.h"
64 #include "bnx2x_dcb.h"
65 #include "bnx2x_sp.h"
66 
67 #include <linux/firmware.h>
68 #include "bnx2x_fw_file_hdr.h"
69 /* FW files */
70 #define FW_FILE_VERSION					\
71 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
72 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
73 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
74 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
75 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78 
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT		(5*HZ)
81 
82 static char version[] =
83 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85 
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88 		   "BCM57710/57711/57711E/"
89 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90 		   "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96 
97 int bnx2x_num_queues;
98 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
99 MODULE_PARM_DESC(num_queues,
100 		 " Set number of queues (default is as a number of CPUs)");
101 
102 static int disable_tpa;
103 module_param(disable_tpa, int, S_IRUGO);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105 
106 static int int_mode;
107 module_param(int_mode, int, S_IRUGO);
108 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
109 				"(1 INT#x; 2 MSI)");
110 
111 static int dropless_fc;
112 module_param(dropless_fc, int, S_IRUGO);
113 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114 
115 static int mrrs = -1;
116 module_param(mrrs, int, S_IRUGO);
117 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118 
119 static int debug;
120 module_param(debug, int, S_IRUGO);
121 MODULE_PARM_DESC(debug, " Default debug msglevel");
122 
123 static struct workqueue_struct *bnx2x_wq;
124 struct workqueue_struct *bnx2x_iov_wq;
125 
126 struct bnx2x_mac_vals {
127 	u32 xmac_addr;
128 	u32 xmac_val;
129 	u32 emac_addr;
130 	u32 emac_val;
131 	u32 umac_addr;
132 	u32 umac_val;
133 	u32 bmac_addr;
134 	u32 bmac_val[2];
135 };
136 
137 enum bnx2x_board_type {
138 	BCM57710 = 0,
139 	BCM57711,
140 	BCM57711E,
141 	BCM57712,
142 	BCM57712_MF,
143 	BCM57712_VF,
144 	BCM57800,
145 	BCM57800_MF,
146 	BCM57800_VF,
147 	BCM57810,
148 	BCM57810_MF,
149 	BCM57810_VF,
150 	BCM57840_4_10,
151 	BCM57840_2_20,
152 	BCM57840_MF,
153 	BCM57840_VF,
154 	BCM57811,
155 	BCM57811_MF,
156 	BCM57840_O,
157 	BCM57840_MFO,
158 	BCM57811_VF
159 };
160 
161 /* indexed by board_type, above */
162 static struct {
163 	char *name;
164 } board_info[] = {
165 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
166 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
167 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
168 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
169 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
170 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
171 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
172 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
173 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
174 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
175 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
176 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
177 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
178 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
179 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
180 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
181 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
182 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
183 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
184 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
185 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
186 };
187 
188 #ifndef PCI_DEVICE_ID_NX2_57710
189 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57711
192 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57711E
195 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57712
198 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712_MF
201 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57712_VF
204 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57800
207 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800_MF
210 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57800_VF
213 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57810
216 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57810_MF
219 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57840_O
222 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57810_VF
225 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
228 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
231 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
234 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_MF
237 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_VF
240 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57811
243 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811_MF
246 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57811_VF
249 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
250 #endif
251 
252 static const struct pci_device_id bnx2x_pci_tbl[] = {
253 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
254 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
273 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
274 	{ 0 }
275 };
276 
277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
278 
279 /* Global resources for unloading a previously loaded device */
280 #define BNX2X_PREV_WAIT_NEEDED 1
281 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
282 static LIST_HEAD(bnx2x_prev_list);
283 
284 /* Forward declaration */
285 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
286 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
287 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
288 
289 /****************************************************************************
290 * General service functions
291 ****************************************************************************/
292 
293 static void __storm_memset_dma_mapping(struct bnx2x *bp,
294 				       u32 addr, dma_addr_t mapping)
295 {
296 	REG_WR(bp,  addr, U64_LO(mapping));
297 	REG_WR(bp,  addr + 4, U64_HI(mapping));
298 }
299 
300 static void storm_memset_spq_addr(struct bnx2x *bp,
301 				  dma_addr_t mapping, u16 abs_fid)
302 {
303 	u32 addr = XSEM_REG_FAST_MEMORY +
304 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
305 
306 	__storm_memset_dma_mapping(bp, addr, mapping);
307 }
308 
309 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
310 				  u16 pf_id)
311 {
312 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
313 		pf_id);
314 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
315 		pf_id);
316 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
317 		pf_id);
318 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
319 		pf_id);
320 }
321 
322 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
323 				 u8 enable)
324 {
325 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
326 		enable);
327 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
328 		enable);
329 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
330 		enable);
331 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
332 		enable);
333 }
334 
335 static void storm_memset_eq_data(struct bnx2x *bp,
336 				 struct event_ring_data *eq_data,
337 				u16 pfid)
338 {
339 	size_t size = sizeof(struct event_ring_data);
340 
341 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
342 
343 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
344 }
345 
346 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
347 				 u16 pfid)
348 {
349 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
350 	REG_WR16(bp, addr, eq_prod);
351 }
352 
353 /* used only at init
354  * locking is done by mcp
355  */
356 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
357 {
358 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
359 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
360 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
361 			       PCICFG_VENDOR_ID_OFFSET);
362 }
363 
364 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
365 {
366 	u32 val;
367 
368 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
369 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
370 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
371 			       PCICFG_VENDOR_ID_OFFSET);
372 
373 	return val;
374 }
375 
376 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
377 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
378 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
379 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
380 #define DMAE_DP_DST_NONE	"dst_addr [none]"
381 
382 static void bnx2x_dp_dmae(struct bnx2x *bp,
383 			  struct dmae_command *dmae, int msglvl)
384 {
385 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
386 	int i;
387 
388 	switch (dmae->opcode & DMAE_COMMAND_DST) {
389 	case DMAE_CMD_DST_PCI:
390 		if (src_type == DMAE_CMD_SRC_PCI)
391 			DP(msglvl, "DMAE: opcode 0x%08x\n"
392 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
393 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
394 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
395 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
397 			   dmae->comp_val);
398 		else
399 			DP(msglvl, "DMAE: opcode 0x%08x\n"
400 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
401 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
402 			   dmae->opcode, dmae->src_addr_lo >> 2,
403 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
404 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
405 			   dmae->comp_val);
406 		break;
407 	case DMAE_CMD_DST_GRC:
408 		if (src_type == DMAE_CMD_SRC_PCI)
409 			DP(msglvl, "DMAE: opcode 0x%08x\n"
410 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
411 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
412 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
413 			   dmae->len, dmae->dst_addr_lo >> 2,
414 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
415 			   dmae->comp_val);
416 		else
417 			DP(msglvl, "DMAE: opcode 0x%08x\n"
418 			   "src [%08x], len [%d*4], dst [%08x]\n"
419 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
420 			   dmae->opcode, dmae->src_addr_lo >> 2,
421 			   dmae->len, dmae->dst_addr_lo >> 2,
422 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
423 			   dmae->comp_val);
424 		break;
425 	default:
426 		if (src_type == DMAE_CMD_SRC_PCI)
427 			DP(msglvl, "DMAE: opcode 0x%08x\n"
428 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
429 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
430 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
431 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
432 			   dmae->comp_val);
433 		else
434 			DP(msglvl, "DMAE: opcode 0x%08x\n"
435 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
436 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
437 			   dmae->opcode, dmae->src_addr_lo >> 2,
438 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439 			   dmae->comp_val);
440 		break;
441 	}
442 
443 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
444 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
445 		   i, *(((u32 *)dmae) + i));
446 }
447 
448 /* copy command into DMAE command memory and set DMAE command go */
449 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
450 {
451 	u32 cmd_offset;
452 	int i;
453 
454 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
455 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
456 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
457 	}
458 	REG_WR(bp, dmae_reg_go_c[idx], 1);
459 }
460 
461 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
462 {
463 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
464 			   DMAE_CMD_C_ENABLE);
465 }
466 
467 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
468 {
469 	return opcode & ~DMAE_CMD_SRC_RESET;
470 }
471 
472 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
473 			     bool with_comp, u8 comp_type)
474 {
475 	u32 opcode = 0;
476 
477 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
478 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
479 
480 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
481 
482 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
483 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
484 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
485 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
486 
487 #ifdef __BIG_ENDIAN
488 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
489 #else
490 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
491 #endif
492 	if (with_comp)
493 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
494 	return opcode;
495 }
496 
497 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
498 				      struct dmae_command *dmae,
499 				      u8 src_type, u8 dst_type)
500 {
501 	memset(dmae, 0, sizeof(struct dmae_command));
502 
503 	/* set the opcode */
504 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
505 					 true, DMAE_COMP_PCI);
506 
507 	/* fill in the completion parameters */
508 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
509 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
510 	dmae->comp_val = DMAE_COMP_VAL;
511 }
512 
513 /* issue a dmae command over the init-channel and wait for completion */
514 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
515 			       u32 *comp)
516 {
517 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
518 	int rc = 0;
519 
520 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
521 
522 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
523 	 * as long as this code is called both from syscall context and
524 	 * from ndo_set_rx_mode() flow that may be called from BH.
525 	 */
526 	spin_lock_bh(&bp->dmae_lock);
527 
528 	/* reset completion */
529 	*comp = 0;
530 
531 	/* post the command on the channel used for initializations */
532 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
533 
534 	/* wait for completion */
535 	udelay(5);
536 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
537 
538 		if (!cnt ||
539 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
540 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
541 			BNX2X_ERR("DMAE timeout!\n");
542 			rc = DMAE_TIMEOUT;
543 			goto unlock;
544 		}
545 		cnt--;
546 		udelay(50);
547 	}
548 	if (*comp & DMAE_PCI_ERR_FLAG) {
549 		BNX2X_ERR("DMAE PCI error!\n");
550 		rc = DMAE_PCI_ERROR;
551 	}
552 
553 unlock:
554 	spin_unlock_bh(&bp->dmae_lock);
555 	return rc;
556 }
557 
558 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
559 		      u32 len32)
560 {
561 	int rc;
562 	struct dmae_command dmae;
563 
564 	if (!bp->dmae_ready) {
565 		u32 *data = bnx2x_sp(bp, wb_data[0]);
566 
567 		if (CHIP_IS_E1(bp))
568 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
569 		else
570 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
571 		return;
572 	}
573 
574 	/* set opcode and fixed command fields */
575 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
576 
577 	/* fill in addresses and len */
578 	dmae.src_addr_lo = U64_LO(dma_addr);
579 	dmae.src_addr_hi = U64_HI(dma_addr);
580 	dmae.dst_addr_lo = dst_addr >> 2;
581 	dmae.dst_addr_hi = 0;
582 	dmae.len = len32;
583 
584 	/* issue the command and wait for completion */
585 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
586 	if (rc) {
587 		BNX2X_ERR("DMAE returned failure %d\n", rc);
588 #ifdef BNX2X_STOP_ON_ERROR
589 		bnx2x_panic();
590 #endif
591 	}
592 }
593 
594 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
595 {
596 	int rc;
597 	struct dmae_command dmae;
598 
599 	if (!bp->dmae_ready) {
600 		u32 *data = bnx2x_sp(bp, wb_data[0]);
601 		int i;
602 
603 		if (CHIP_IS_E1(bp))
604 			for (i = 0; i < len32; i++)
605 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
606 		else
607 			for (i = 0; i < len32; i++)
608 				data[i] = REG_RD(bp, src_addr + i*4);
609 
610 		return;
611 	}
612 
613 	/* set opcode and fixed command fields */
614 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
615 
616 	/* fill in addresses and len */
617 	dmae.src_addr_lo = src_addr >> 2;
618 	dmae.src_addr_hi = 0;
619 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
620 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
621 	dmae.len = len32;
622 
623 	/* issue the command and wait for completion */
624 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
625 	if (rc) {
626 		BNX2X_ERR("DMAE returned failure %d\n", rc);
627 #ifdef BNX2X_STOP_ON_ERROR
628 		bnx2x_panic();
629 #endif
630 	}
631 }
632 
633 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
634 				      u32 addr, u32 len)
635 {
636 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
637 	int offset = 0;
638 
639 	while (len > dmae_wr_max) {
640 		bnx2x_write_dmae(bp, phys_addr + offset,
641 				 addr + offset, dmae_wr_max);
642 		offset += dmae_wr_max * 4;
643 		len -= dmae_wr_max;
644 	}
645 
646 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
647 }
648 
649 static int bnx2x_mc_assert(struct bnx2x *bp)
650 {
651 	char last_idx;
652 	int i, rc = 0;
653 	u32 row0, row1, row2, row3;
654 
655 	/* XSTORM */
656 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
657 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
658 	if (last_idx)
659 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
660 
661 	/* print the asserts */
662 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
663 
664 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
665 			      XSTORM_ASSERT_LIST_OFFSET(i));
666 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
667 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
668 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
669 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
670 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
671 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
672 
673 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
674 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
675 				  i, row3, row2, row1, row0);
676 			rc++;
677 		} else {
678 			break;
679 		}
680 	}
681 
682 	/* TSTORM */
683 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
684 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
685 	if (last_idx)
686 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
687 
688 	/* print the asserts */
689 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
690 
691 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
692 			      TSTORM_ASSERT_LIST_OFFSET(i));
693 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
694 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
695 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
696 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
697 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
698 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
699 
700 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
701 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
702 				  i, row3, row2, row1, row0);
703 			rc++;
704 		} else {
705 			break;
706 		}
707 	}
708 
709 	/* CSTORM */
710 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
711 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
712 	if (last_idx)
713 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
714 
715 	/* print the asserts */
716 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
717 
718 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
719 			      CSTORM_ASSERT_LIST_OFFSET(i));
720 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
721 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
722 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
723 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
724 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
725 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
726 
727 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
728 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
729 				  i, row3, row2, row1, row0);
730 			rc++;
731 		} else {
732 			break;
733 		}
734 	}
735 
736 	/* USTORM */
737 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
738 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
739 	if (last_idx)
740 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
741 
742 	/* print the asserts */
743 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
744 
745 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
746 			      USTORM_ASSERT_LIST_OFFSET(i));
747 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
748 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
749 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
750 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
751 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
752 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
753 
754 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
755 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
756 				  i, row3, row2, row1, row0);
757 			rc++;
758 		} else {
759 			break;
760 		}
761 	}
762 
763 	return rc;
764 }
765 
766 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
767 #define SCRATCH_BUFFER_SIZE(bp)	\
768 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
769 
770 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
771 {
772 	u32 addr, val;
773 	u32 mark, offset;
774 	__be32 data[9];
775 	int word;
776 	u32 trace_shmem_base;
777 	if (BP_NOMCP(bp)) {
778 		BNX2X_ERR("NO MCP - can not dump\n");
779 		return;
780 	}
781 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
782 		(bp->common.bc_ver & 0xff0000) >> 16,
783 		(bp->common.bc_ver & 0xff00) >> 8,
784 		(bp->common.bc_ver & 0xff));
785 
786 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
787 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
788 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
789 
790 	if (BP_PATH(bp) == 0)
791 		trace_shmem_base = bp->common.shmem_base;
792 	else
793 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
794 
795 	/* sanity */
796 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
797 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
798 				SCRATCH_BUFFER_SIZE(bp)) {
799 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
800 			  trace_shmem_base);
801 		return;
802 	}
803 
804 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
805 
806 	/* validate TRCB signature */
807 	mark = REG_RD(bp, addr);
808 	if (mark != MFW_TRACE_SIGNATURE) {
809 		BNX2X_ERR("Trace buffer signature is missing.");
810 		return ;
811 	}
812 
813 	/* read cyclic buffer pointer */
814 	addr += 4;
815 	mark = REG_RD(bp, addr);
816 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
817 	if (mark >= trace_shmem_base || mark < addr + 4) {
818 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
819 		return;
820 	}
821 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
822 
823 	printk("%s", lvl);
824 
825 	/* dump buffer after the mark */
826 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
827 		for (word = 0; word < 8; word++)
828 			data[word] = htonl(REG_RD(bp, offset + 4*word));
829 		data[8] = 0x0;
830 		pr_cont("%s", (char *)data);
831 	}
832 
833 	/* dump buffer before the mark */
834 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
835 		for (word = 0; word < 8; word++)
836 			data[word] = htonl(REG_RD(bp, offset + 4*word));
837 		data[8] = 0x0;
838 		pr_cont("%s", (char *)data);
839 	}
840 	printk("%s" "end of fw dump\n", lvl);
841 }
842 
843 static void bnx2x_fw_dump(struct bnx2x *bp)
844 {
845 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
846 }
847 
848 static void bnx2x_hc_int_disable(struct bnx2x *bp)
849 {
850 	int port = BP_PORT(bp);
851 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
852 	u32 val = REG_RD(bp, addr);
853 
854 	/* in E1 we must use only PCI configuration space to disable
855 	 * MSI/MSIX capability
856 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
857 	 */
858 	if (CHIP_IS_E1(bp)) {
859 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
860 		 * Use mask register to prevent from HC sending interrupts
861 		 * after we exit the function
862 		 */
863 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
864 
865 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
866 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
867 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
868 	} else
869 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
870 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
871 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
872 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
873 
874 	DP(NETIF_MSG_IFDOWN,
875 	   "write %x to HC %d (addr 0x%x)\n",
876 	   val, port, addr);
877 
878 	/* flush all outstanding writes */
879 	mmiowb();
880 
881 	REG_WR(bp, addr, val);
882 	if (REG_RD(bp, addr) != val)
883 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
884 }
885 
886 static void bnx2x_igu_int_disable(struct bnx2x *bp)
887 {
888 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
889 
890 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
891 		 IGU_PF_CONF_INT_LINE_EN |
892 		 IGU_PF_CONF_ATTN_BIT_EN);
893 
894 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
895 
896 	/* flush all outstanding writes */
897 	mmiowb();
898 
899 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
900 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
901 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
902 }
903 
904 static void bnx2x_int_disable(struct bnx2x *bp)
905 {
906 	if (bp->common.int_block == INT_BLOCK_HC)
907 		bnx2x_hc_int_disable(bp);
908 	else
909 		bnx2x_igu_int_disable(bp);
910 }
911 
912 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
913 {
914 	int i;
915 	u16 j;
916 	struct hc_sp_status_block_data sp_sb_data;
917 	int func = BP_FUNC(bp);
918 #ifdef BNX2X_STOP_ON_ERROR
919 	u16 start = 0, end = 0;
920 	u8 cos;
921 #endif
922 	if (IS_PF(bp) && disable_int)
923 		bnx2x_int_disable(bp);
924 
925 	bp->stats_state = STATS_STATE_DISABLED;
926 	bp->eth_stats.unrecoverable_error++;
927 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
928 
929 	BNX2X_ERR("begin crash dump -----------------\n");
930 
931 	/* Indices */
932 	/* Common */
933 	if (IS_PF(bp)) {
934 		struct host_sp_status_block *def_sb = bp->def_status_blk;
935 		int data_size, cstorm_offset;
936 
937 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
938 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
939 			  bp->spq_prod_idx, bp->stats_counter);
940 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
941 			  def_sb->atten_status_block.attn_bits,
942 			  def_sb->atten_status_block.attn_bits_ack,
943 			  def_sb->atten_status_block.status_block_id,
944 			  def_sb->atten_status_block.attn_bits_index);
945 		BNX2X_ERR("     def (");
946 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
947 			pr_cont("0x%x%s",
948 				def_sb->sp_sb.index_values[i],
949 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
950 
951 		data_size = sizeof(struct hc_sp_status_block_data) /
952 			    sizeof(u32);
953 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
954 		for (i = 0; i < data_size; i++)
955 			*((u32 *)&sp_sb_data + i) =
956 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
957 					   i * sizeof(u32));
958 
959 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
960 			sp_sb_data.igu_sb_id,
961 			sp_sb_data.igu_seg_id,
962 			sp_sb_data.p_func.pf_id,
963 			sp_sb_data.p_func.vnic_id,
964 			sp_sb_data.p_func.vf_id,
965 			sp_sb_data.p_func.vf_valid,
966 			sp_sb_data.state);
967 	}
968 
969 	for_each_eth_queue(bp, i) {
970 		struct bnx2x_fastpath *fp = &bp->fp[i];
971 		int loop;
972 		struct hc_status_block_data_e2 sb_data_e2;
973 		struct hc_status_block_data_e1x sb_data_e1x;
974 		struct hc_status_block_sm  *hc_sm_p =
975 			CHIP_IS_E1x(bp) ?
976 			sb_data_e1x.common.state_machine :
977 			sb_data_e2.common.state_machine;
978 		struct hc_index_data *hc_index_p =
979 			CHIP_IS_E1x(bp) ?
980 			sb_data_e1x.index_data :
981 			sb_data_e2.index_data;
982 		u8 data_size, cos;
983 		u32 *sb_data_p;
984 		struct bnx2x_fp_txdata txdata;
985 
986 		/* Rx */
987 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
988 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
989 			  fp->rx_comp_prod,
990 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
991 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
992 			  fp->rx_sge_prod, fp->last_max_sge,
993 			  le16_to_cpu(fp->fp_hc_idx));
994 
995 		/* Tx */
996 		for_each_cos_in_tx_queue(fp, cos)
997 		{
998 			txdata = *fp->txdata_ptr[cos];
999 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1000 				  i, txdata.tx_pkt_prod,
1001 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1002 				  txdata.tx_bd_cons,
1003 				  le16_to_cpu(*txdata.tx_cons_sb));
1004 		}
1005 
1006 		loop = CHIP_IS_E1x(bp) ?
1007 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1008 
1009 		/* host sb data */
1010 
1011 		if (IS_FCOE_FP(fp))
1012 			continue;
1013 
1014 		BNX2X_ERR("     run indexes (");
1015 		for (j = 0; j < HC_SB_MAX_SM; j++)
1016 			pr_cont("0x%x%s",
1017 			       fp->sb_running_index[j],
1018 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1019 
1020 		BNX2X_ERR("     indexes (");
1021 		for (j = 0; j < loop; j++)
1022 			pr_cont("0x%x%s",
1023 			       fp->sb_index_values[j],
1024 			       (j == loop - 1) ? ")" : " ");
1025 
1026 		/* VF cannot access FW refelection for status block */
1027 		if (IS_VF(bp))
1028 			continue;
1029 
1030 		/* fw sb data */
1031 		data_size = CHIP_IS_E1x(bp) ?
1032 			sizeof(struct hc_status_block_data_e1x) :
1033 			sizeof(struct hc_status_block_data_e2);
1034 		data_size /= sizeof(u32);
1035 		sb_data_p = CHIP_IS_E1x(bp) ?
1036 			(u32 *)&sb_data_e1x :
1037 			(u32 *)&sb_data_e2;
1038 		/* copy sb data in here */
1039 		for (j = 0; j < data_size; j++)
1040 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1041 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1042 				j * sizeof(u32));
1043 
1044 		if (!CHIP_IS_E1x(bp)) {
1045 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1046 				sb_data_e2.common.p_func.pf_id,
1047 				sb_data_e2.common.p_func.vf_id,
1048 				sb_data_e2.common.p_func.vf_valid,
1049 				sb_data_e2.common.p_func.vnic_id,
1050 				sb_data_e2.common.same_igu_sb_1b,
1051 				sb_data_e2.common.state);
1052 		} else {
1053 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1054 				sb_data_e1x.common.p_func.pf_id,
1055 				sb_data_e1x.common.p_func.vf_id,
1056 				sb_data_e1x.common.p_func.vf_valid,
1057 				sb_data_e1x.common.p_func.vnic_id,
1058 				sb_data_e1x.common.same_igu_sb_1b,
1059 				sb_data_e1x.common.state);
1060 		}
1061 
1062 		/* SB_SMs data */
1063 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1064 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1065 				j, hc_sm_p[j].__flags,
1066 				hc_sm_p[j].igu_sb_id,
1067 				hc_sm_p[j].igu_seg_id,
1068 				hc_sm_p[j].time_to_expire,
1069 				hc_sm_p[j].timer_value);
1070 		}
1071 
1072 		/* Indices data */
1073 		for (j = 0; j < loop; j++) {
1074 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1075 			       hc_index_p[j].flags,
1076 			       hc_index_p[j].timeout);
1077 		}
1078 	}
1079 
1080 #ifdef BNX2X_STOP_ON_ERROR
1081 	if (IS_PF(bp)) {
1082 		/* event queue */
1083 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1084 		for (i = 0; i < NUM_EQ_DESC; i++) {
1085 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1086 
1087 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1088 				  i, bp->eq_ring[i].message.opcode,
1089 				  bp->eq_ring[i].message.error);
1090 			BNX2X_ERR("data: %x %x %x\n",
1091 				  data[0], data[1], data[2]);
1092 		}
1093 	}
1094 
1095 	/* Rings */
1096 	/* Rx */
1097 	for_each_valid_rx_queue(bp, i) {
1098 		struct bnx2x_fastpath *fp = &bp->fp[i];
1099 
1100 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1101 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1102 		for (j = start; j != end; j = RX_BD(j + 1)) {
1103 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1104 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1105 
1106 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1107 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1108 		}
1109 
1110 		start = RX_SGE(fp->rx_sge_prod);
1111 		end = RX_SGE(fp->last_max_sge);
1112 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1113 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1114 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1115 
1116 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1117 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1118 		}
1119 
1120 		start = RCQ_BD(fp->rx_comp_cons - 10);
1121 		end = RCQ_BD(fp->rx_comp_cons + 503);
1122 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1123 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1124 
1125 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1126 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1127 		}
1128 	}
1129 
1130 	/* Tx */
1131 	for_each_valid_tx_queue(bp, i) {
1132 		struct bnx2x_fastpath *fp = &bp->fp[i];
1133 		for_each_cos_in_tx_queue(fp, cos) {
1134 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1135 
1136 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1137 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1138 			for (j = start; j != end; j = TX_BD(j + 1)) {
1139 				struct sw_tx_bd *sw_bd =
1140 					&txdata->tx_buf_ring[j];
1141 
1142 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1143 					  i, cos, j, sw_bd->skb,
1144 					  sw_bd->first_bd);
1145 			}
1146 
1147 			start = TX_BD(txdata->tx_bd_cons - 10);
1148 			end = TX_BD(txdata->tx_bd_cons + 254);
1149 			for (j = start; j != end; j = TX_BD(j + 1)) {
1150 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1151 
1152 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1153 					  i, cos, j, tx_bd[0], tx_bd[1],
1154 					  tx_bd[2], tx_bd[3]);
1155 			}
1156 		}
1157 	}
1158 #endif
1159 	if (IS_PF(bp)) {
1160 		bnx2x_fw_dump(bp);
1161 		bnx2x_mc_assert(bp);
1162 	}
1163 	BNX2X_ERR("end crash dump -----------------\n");
1164 }
1165 
1166 /*
1167  * FLR Support for E2
1168  *
1169  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1170  * initialization.
1171  */
1172 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1173 #define FLR_WAIT_INTERVAL	50	/* usec */
1174 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1175 
1176 struct pbf_pN_buf_regs {
1177 	int pN;
1178 	u32 init_crd;
1179 	u32 crd;
1180 	u32 crd_freed;
1181 };
1182 
1183 struct pbf_pN_cmd_regs {
1184 	int pN;
1185 	u32 lines_occup;
1186 	u32 lines_freed;
1187 };
1188 
1189 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1190 				     struct pbf_pN_buf_regs *regs,
1191 				     u32 poll_count)
1192 {
1193 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1194 	u32 cur_cnt = poll_count;
1195 
1196 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1197 	crd = crd_start = REG_RD(bp, regs->crd);
1198 	init_crd = REG_RD(bp, regs->init_crd);
1199 
1200 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1201 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1202 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1203 
1204 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1205 	       (init_crd - crd_start))) {
1206 		if (cur_cnt--) {
1207 			udelay(FLR_WAIT_INTERVAL);
1208 			crd = REG_RD(bp, regs->crd);
1209 			crd_freed = REG_RD(bp, regs->crd_freed);
1210 		} else {
1211 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1212 			   regs->pN);
1213 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1214 			   regs->pN, crd);
1215 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1216 			   regs->pN, crd_freed);
1217 			break;
1218 		}
1219 	}
1220 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1221 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1222 }
1223 
1224 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1225 				     struct pbf_pN_cmd_regs *regs,
1226 				     u32 poll_count)
1227 {
1228 	u32 occup, to_free, freed, freed_start;
1229 	u32 cur_cnt = poll_count;
1230 
1231 	occup = to_free = REG_RD(bp, regs->lines_occup);
1232 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1233 
1234 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1235 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1236 
1237 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1238 		if (cur_cnt--) {
1239 			udelay(FLR_WAIT_INTERVAL);
1240 			occup = REG_RD(bp, regs->lines_occup);
1241 			freed = REG_RD(bp, regs->lines_freed);
1242 		} else {
1243 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1244 			   regs->pN);
1245 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1246 			   regs->pN, occup);
1247 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1248 			   regs->pN, freed);
1249 			break;
1250 		}
1251 	}
1252 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1253 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1254 }
1255 
1256 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1257 				    u32 expected, u32 poll_count)
1258 {
1259 	u32 cur_cnt = poll_count;
1260 	u32 val;
1261 
1262 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1263 		udelay(FLR_WAIT_INTERVAL);
1264 
1265 	return val;
1266 }
1267 
1268 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1269 				    char *msg, u32 poll_cnt)
1270 {
1271 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1272 	if (val != 0) {
1273 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1274 		return 1;
1275 	}
1276 	return 0;
1277 }
1278 
1279 /* Common routines with VF FLR cleanup */
1280 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1281 {
1282 	/* adjust polling timeout */
1283 	if (CHIP_REV_IS_EMUL(bp))
1284 		return FLR_POLL_CNT * 2000;
1285 
1286 	if (CHIP_REV_IS_FPGA(bp))
1287 		return FLR_POLL_CNT * 120;
1288 
1289 	return FLR_POLL_CNT;
1290 }
1291 
1292 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1293 {
1294 	struct pbf_pN_cmd_regs cmd_regs[] = {
1295 		{0, (CHIP_IS_E3B0(bp)) ?
1296 			PBF_REG_TQ_OCCUPANCY_Q0 :
1297 			PBF_REG_P0_TQ_OCCUPANCY,
1298 		    (CHIP_IS_E3B0(bp)) ?
1299 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1300 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1301 		{1, (CHIP_IS_E3B0(bp)) ?
1302 			PBF_REG_TQ_OCCUPANCY_Q1 :
1303 			PBF_REG_P1_TQ_OCCUPANCY,
1304 		    (CHIP_IS_E3B0(bp)) ?
1305 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1306 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1307 		{4, (CHIP_IS_E3B0(bp)) ?
1308 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1309 			PBF_REG_P4_TQ_OCCUPANCY,
1310 		    (CHIP_IS_E3B0(bp)) ?
1311 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1312 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1313 	};
1314 
1315 	struct pbf_pN_buf_regs buf_regs[] = {
1316 		{0, (CHIP_IS_E3B0(bp)) ?
1317 			PBF_REG_INIT_CRD_Q0 :
1318 			PBF_REG_P0_INIT_CRD ,
1319 		    (CHIP_IS_E3B0(bp)) ?
1320 			PBF_REG_CREDIT_Q0 :
1321 			PBF_REG_P0_CREDIT,
1322 		    (CHIP_IS_E3B0(bp)) ?
1323 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1324 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1325 		{1, (CHIP_IS_E3B0(bp)) ?
1326 			PBF_REG_INIT_CRD_Q1 :
1327 			PBF_REG_P1_INIT_CRD,
1328 		    (CHIP_IS_E3B0(bp)) ?
1329 			PBF_REG_CREDIT_Q1 :
1330 			PBF_REG_P1_CREDIT,
1331 		    (CHIP_IS_E3B0(bp)) ?
1332 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1333 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1334 		{4, (CHIP_IS_E3B0(bp)) ?
1335 			PBF_REG_INIT_CRD_LB_Q :
1336 			PBF_REG_P4_INIT_CRD,
1337 		    (CHIP_IS_E3B0(bp)) ?
1338 			PBF_REG_CREDIT_LB_Q :
1339 			PBF_REG_P4_CREDIT,
1340 		    (CHIP_IS_E3B0(bp)) ?
1341 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1342 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1343 	};
1344 
1345 	int i;
1346 
1347 	/* Verify the command queues are flushed P0, P1, P4 */
1348 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1349 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1350 
1351 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1352 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1353 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1354 }
1355 
1356 #define OP_GEN_PARAM(param) \
1357 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1358 
1359 #define OP_GEN_TYPE(type) \
1360 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1361 
1362 #define OP_GEN_AGG_VECT(index) \
1363 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1364 
1365 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1366 {
1367 	u32 op_gen_command = 0;
1368 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1369 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1370 	int ret = 0;
1371 
1372 	if (REG_RD(bp, comp_addr)) {
1373 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1374 		return 1;
1375 	}
1376 
1377 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1378 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1379 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1380 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1381 
1382 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1383 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1384 
1385 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1386 		BNX2X_ERR("FW final cleanup did not succeed\n");
1387 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1388 		   (REG_RD(bp, comp_addr)));
1389 		bnx2x_panic();
1390 		return 1;
1391 	}
1392 	/* Zero completion for next FLR */
1393 	REG_WR(bp, comp_addr, 0);
1394 
1395 	return ret;
1396 }
1397 
1398 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1399 {
1400 	u16 status;
1401 
1402 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1403 	return status & PCI_EXP_DEVSTA_TRPND;
1404 }
1405 
1406 /* PF FLR specific routines
1407 */
1408 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1409 {
1410 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1411 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1412 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1413 			"CFC PF usage counter timed out",
1414 			poll_cnt))
1415 		return 1;
1416 
1417 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1418 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1419 			DORQ_REG_PF_USAGE_CNT,
1420 			"DQ PF usage counter timed out",
1421 			poll_cnt))
1422 		return 1;
1423 
1424 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1425 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1426 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1427 			"QM PF usage counter timed out",
1428 			poll_cnt))
1429 		return 1;
1430 
1431 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1432 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1433 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1434 			"Timers VNIC usage counter timed out",
1435 			poll_cnt))
1436 		return 1;
1437 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1438 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1439 			"Timers NUM_SCANS usage counter timed out",
1440 			poll_cnt))
1441 		return 1;
1442 
1443 	/* Wait DMAE PF usage counter to zero */
1444 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1445 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1446 			"DMAE command register timed out",
1447 			poll_cnt))
1448 		return 1;
1449 
1450 	return 0;
1451 }
1452 
1453 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1454 {
1455 	u32 val;
1456 
1457 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1458 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1459 
1460 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1461 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1462 
1463 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1464 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1465 
1466 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1467 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1468 
1469 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1470 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1471 
1472 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1473 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1474 
1475 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1476 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1477 
1478 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1479 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1480 	   val);
1481 }
1482 
1483 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1484 {
1485 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1486 
1487 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1488 
1489 	/* Re-enable PF target read access */
1490 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1491 
1492 	/* Poll HW usage counters */
1493 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1494 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1495 		return -EBUSY;
1496 
1497 	/* Zero the igu 'trailing edge' and 'leading edge' */
1498 
1499 	/* Send the FW cleanup command */
1500 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1501 		return -EBUSY;
1502 
1503 	/* ATC cleanup */
1504 
1505 	/* Verify TX hw is flushed */
1506 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1507 
1508 	/* Wait 100ms (not adjusted according to platform) */
1509 	msleep(100);
1510 
1511 	/* Verify no pending pci transactions */
1512 	if (bnx2x_is_pcie_pending(bp->pdev))
1513 		BNX2X_ERR("PCIE Transactions still pending\n");
1514 
1515 	/* Debug */
1516 	bnx2x_hw_enable_status(bp);
1517 
1518 	/*
1519 	 * Master enable - Due to WB DMAE writes performed before this
1520 	 * register is re-initialized as part of the regular function init
1521 	 */
1522 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1523 
1524 	return 0;
1525 }
1526 
1527 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1528 {
1529 	int port = BP_PORT(bp);
1530 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1531 	u32 val = REG_RD(bp, addr);
1532 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1533 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1534 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1535 
1536 	if (msix) {
1537 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1538 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1539 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1540 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1541 		if (single_msix)
1542 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1543 	} else if (msi) {
1544 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1545 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1546 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1547 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1548 	} else {
1549 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1550 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1551 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1552 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1553 
1554 		if (!CHIP_IS_E1(bp)) {
1555 			DP(NETIF_MSG_IFUP,
1556 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1557 
1558 			REG_WR(bp, addr, val);
1559 
1560 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1561 		}
1562 	}
1563 
1564 	if (CHIP_IS_E1(bp))
1565 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1566 
1567 	DP(NETIF_MSG_IFUP,
1568 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1569 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1570 
1571 	REG_WR(bp, addr, val);
1572 	/*
1573 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1574 	 */
1575 	mmiowb();
1576 	barrier();
1577 
1578 	if (!CHIP_IS_E1(bp)) {
1579 		/* init leading/trailing edge */
1580 		if (IS_MF(bp)) {
1581 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1582 			if (bp->port.pmf)
1583 				/* enable nig and gpio3 attention */
1584 				val |= 0x1100;
1585 		} else
1586 			val = 0xffff;
1587 
1588 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1589 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1590 	}
1591 
1592 	/* Make sure that interrupts are indeed enabled from here on */
1593 	mmiowb();
1594 }
1595 
1596 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1597 {
1598 	u32 val;
1599 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1600 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1601 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1602 
1603 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1604 
1605 	if (msix) {
1606 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1607 			 IGU_PF_CONF_SINGLE_ISR_EN);
1608 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1609 			IGU_PF_CONF_ATTN_BIT_EN);
1610 
1611 		if (single_msix)
1612 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1613 	} else if (msi) {
1614 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1615 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1616 			IGU_PF_CONF_ATTN_BIT_EN |
1617 			IGU_PF_CONF_SINGLE_ISR_EN);
1618 	} else {
1619 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1620 		val |= (IGU_PF_CONF_INT_LINE_EN |
1621 			IGU_PF_CONF_ATTN_BIT_EN |
1622 			IGU_PF_CONF_SINGLE_ISR_EN);
1623 	}
1624 
1625 	/* Clean previous status - need to configure igu prior to ack*/
1626 	if ((!msix) || single_msix) {
1627 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1628 		bnx2x_ack_int(bp);
1629 	}
1630 
1631 	val |= IGU_PF_CONF_FUNC_EN;
1632 
1633 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1634 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1635 
1636 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1637 
1638 	if (val & IGU_PF_CONF_INT_LINE_EN)
1639 		pci_intx(bp->pdev, true);
1640 
1641 	barrier();
1642 
1643 	/* init leading/trailing edge */
1644 	if (IS_MF(bp)) {
1645 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1646 		if (bp->port.pmf)
1647 			/* enable nig and gpio3 attention */
1648 			val |= 0x1100;
1649 	} else
1650 		val = 0xffff;
1651 
1652 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1653 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1654 
1655 	/* Make sure that interrupts are indeed enabled from here on */
1656 	mmiowb();
1657 }
1658 
1659 void bnx2x_int_enable(struct bnx2x *bp)
1660 {
1661 	if (bp->common.int_block == INT_BLOCK_HC)
1662 		bnx2x_hc_int_enable(bp);
1663 	else
1664 		bnx2x_igu_int_enable(bp);
1665 }
1666 
1667 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1668 {
1669 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1670 	int i, offset;
1671 
1672 	if (disable_hw)
1673 		/* prevent the HW from sending interrupts */
1674 		bnx2x_int_disable(bp);
1675 
1676 	/* make sure all ISRs are done */
1677 	if (msix) {
1678 		synchronize_irq(bp->msix_table[0].vector);
1679 		offset = 1;
1680 		if (CNIC_SUPPORT(bp))
1681 			offset++;
1682 		for_each_eth_queue(bp, i)
1683 			synchronize_irq(bp->msix_table[offset++].vector);
1684 	} else
1685 		synchronize_irq(bp->pdev->irq);
1686 
1687 	/* make sure sp_task is not running */
1688 	cancel_delayed_work(&bp->sp_task);
1689 	cancel_delayed_work(&bp->period_task);
1690 	flush_workqueue(bnx2x_wq);
1691 }
1692 
1693 /* fast path */
1694 
1695 /*
1696  * General service functions
1697  */
1698 
1699 /* Return true if succeeded to acquire the lock */
1700 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1701 {
1702 	u32 lock_status;
1703 	u32 resource_bit = (1 << resource);
1704 	int func = BP_FUNC(bp);
1705 	u32 hw_lock_control_reg;
1706 
1707 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1708 	   "Trying to take a lock on resource %d\n", resource);
1709 
1710 	/* Validating that the resource is within range */
1711 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1712 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1713 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1714 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1715 		return false;
1716 	}
1717 
1718 	if (func <= 5)
1719 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1720 	else
1721 		hw_lock_control_reg =
1722 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1723 
1724 	/* Try to acquire the lock */
1725 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1726 	lock_status = REG_RD(bp, hw_lock_control_reg);
1727 	if (lock_status & resource_bit)
1728 		return true;
1729 
1730 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731 	   "Failed to get a lock on resource %d\n", resource);
1732 	return false;
1733 }
1734 
1735 /**
1736  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1737  *
1738  * @bp:	driver handle
1739  *
1740  * Returns the recovery leader resource id according to the engine this function
1741  * belongs to. Currently only only 2 engines is supported.
1742  */
1743 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1744 {
1745 	if (BP_PATH(bp))
1746 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1747 	else
1748 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1749 }
1750 
1751 /**
1752  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1753  *
1754  * @bp: driver handle
1755  *
1756  * Tries to acquire a leader lock for current engine.
1757  */
1758 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1759 {
1760 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1761 }
1762 
1763 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1764 
1765 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1766 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1767 {
1768 	/* Set the interrupt occurred bit for the sp-task to recognize it
1769 	 * must ack the interrupt and transition according to the IGU
1770 	 * state machine.
1771 	 */
1772 	atomic_set(&bp->interrupt_occurred, 1);
1773 
1774 	/* The sp_task must execute only after this bit
1775 	 * is set, otherwise we will get out of sync and miss all
1776 	 * further interrupts. Hence, the barrier.
1777 	 */
1778 	smp_wmb();
1779 
1780 	/* schedule sp_task to workqueue */
1781 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1782 }
1783 
1784 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1785 {
1786 	struct bnx2x *bp = fp->bp;
1787 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1788 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1789 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1790 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1791 
1792 	DP(BNX2X_MSG_SP,
1793 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1794 	   fp->index, cid, command, bp->state,
1795 	   rr_cqe->ramrod_cqe.ramrod_type);
1796 
1797 	/* If cid is within VF range, replace the slowpath object with the
1798 	 * one corresponding to this VF
1799 	 */
1800 	if (cid >= BNX2X_FIRST_VF_CID  &&
1801 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1802 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1803 
1804 	switch (command) {
1805 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1806 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1807 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1808 		break;
1809 
1810 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1811 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1812 		drv_cmd = BNX2X_Q_CMD_SETUP;
1813 		break;
1814 
1815 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1816 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1817 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1818 		break;
1819 
1820 	case (RAMROD_CMD_ID_ETH_HALT):
1821 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1822 		drv_cmd = BNX2X_Q_CMD_HALT;
1823 		break;
1824 
1825 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1826 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1827 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1828 		break;
1829 
1830 	case (RAMROD_CMD_ID_ETH_EMPTY):
1831 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1832 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1833 		break;
1834 
1835 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1836 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1837 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1838 		break;
1839 
1840 	default:
1841 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1842 			  command, fp->index);
1843 		return;
1844 	}
1845 
1846 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1847 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1848 		/* q_obj->complete_cmd() failure means that this was
1849 		 * an unexpected completion.
1850 		 *
1851 		 * In this case we don't want to increase the bp->spq_left
1852 		 * because apparently we haven't sent this command the first
1853 		 * place.
1854 		 */
1855 #ifdef BNX2X_STOP_ON_ERROR
1856 		bnx2x_panic();
1857 #else
1858 		return;
1859 #endif
1860 
1861 	smp_mb__before_atomic();
1862 	atomic_inc(&bp->cq_spq_left);
1863 	/* push the change in bp->spq_left and towards the memory */
1864 	smp_mb__after_atomic();
1865 
1866 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1867 
1868 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1869 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1870 		/* if Q update ramrod is completed for last Q in AFEX vif set
1871 		 * flow, then ACK MCP at the end
1872 		 *
1873 		 * mark pending ACK to MCP bit.
1874 		 * prevent case that both bits are cleared.
1875 		 * At the end of load/unload driver checks that
1876 		 * sp_state is cleared, and this order prevents
1877 		 * races
1878 		 */
1879 		smp_mb__before_atomic();
1880 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1881 		wmb();
1882 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1883 		smp_mb__after_atomic();
1884 
1885 		/* schedule the sp task as mcp ack is required */
1886 		bnx2x_schedule_sp_task(bp);
1887 	}
1888 
1889 	return;
1890 }
1891 
1892 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1893 {
1894 	struct bnx2x *bp = netdev_priv(dev_instance);
1895 	u16 status = bnx2x_ack_int(bp);
1896 	u16 mask;
1897 	int i;
1898 	u8 cos;
1899 
1900 	/* Return here if interrupt is shared and it's not for us */
1901 	if (unlikely(status == 0)) {
1902 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1903 		return IRQ_NONE;
1904 	}
1905 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1906 
1907 #ifdef BNX2X_STOP_ON_ERROR
1908 	if (unlikely(bp->panic))
1909 		return IRQ_HANDLED;
1910 #endif
1911 
1912 	for_each_eth_queue(bp, i) {
1913 		struct bnx2x_fastpath *fp = &bp->fp[i];
1914 
1915 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1916 		if (status & mask) {
1917 			/* Handle Rx or Tx according to SB id */
1918 			for_each_cos_in_tx_queue(fp, cos)
1919 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1920 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1921 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1922 			status &= ~mask;
1923 		}
1924 	}
1925 
1926 	if (CNIC_SUPPORT(bp)) {
1927 		mask = 0x2;
1928 		if (status & (mask | 0x1)) {
1929 			struct cnic_ops *c_ops = NULL;
1930 
1931 			rcu_read_lock();
1932 			c_ops = rcu_dereference(bp->cnic_ops);
1933 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1934 				      CNIC_DRV_STATE_HANDLES_IRQ))
1935 				c_ops->cnic_handler(bp->cnic_data, NULL);
1936 			rcu_read_unlock();
1937 
1938 			status &= ~mask;
1939 		}
1940 	}
1941 
1942 	if (unlikely(status & 0x1)) {
1943 
1944 		/* schedule sp task to perform default status block work, ack
1945 		 * attentions and enable interrupts.
1946 		 */
1947 		bnx2x_schedule_sp_task(bp);
1948 
1949 		status &= ~0x1;
1950 		if (!status)
1951 			return IRQ_HANDLED;
1952 	}
1953 
1954 	if (unlikely(status))
1955 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1956 		   status);
1957 
1958 	return IRQ_HANDLED;
1959 }
1960 
1961 /* Link */
1962 
1963 /*
1964  * General service functions
1965  */
1966 
1967 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969 	u32 lock_status;
1970 	u32 resource_bit = (1 << resource);
1971 	int func = BP_FUNC(bp);
1972 	u32 hw_lock_control_reg;
1973 	int cnt;
1974 
1975 	/* Validating that the resource is within range */
1976 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1977 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1978 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1979 		return -EINVAL;
1980 	}
1981 
1982 	if (func <= 5) {
1983 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1984 	} else {
1985 		hw_lock_control_reg =
1986 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1987 	}
1988 
1989 	/* Validating that the resource is not already taken */
1990 	lock_status = REG_RD(bp, hw_lock_control_reg);
1991 	if (lock_status & resource_bit) {
1992 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1993 		   lock_status, resource_bit);
1994 		return -EEXIST;
1995 	}
1996 
1997 	/* Try for 5 second every 5ms */
1998 	for (cnt = 0; cnt < 1000; cnt++) {
1999 		/* Try to acquire the lock */
2000 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2001 		lock_status = REG_RD(bp, hw_lock_control_reg);
2002 		if (lock_status & resource_bit)
2003 			return 0;
2004 
2005 		usleep_range(5000, 10000);
2006 	}
2007 	BNX2X_ERR("Timeout\n");
2008 	return -EAGAIN;
2009 }
2010 
2011 int bnx2x_release_leader_lock(struct bnx2x *bp)
2012 {
2013 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2014 }
2015 
2016 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2017 {
2018 	u32 lock_status;
2019 	u32 resource_bit = (1 << resource);
2020 	int func = BP_FUNC(bp);
2021 	u32 hw_lock_control_reg;
2022 
2023 	/* Validating that the resource is within range */
2024 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2025 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2026 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2027 		return -EINVAL;
2028 	}
2029 
2030 	if (func <= 5) {
2031 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2032 	} else {
2033 		hw_lock_control_reg =
2034 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2035 	}
2036 
2037 	/* Validating that the resource is currently taken */
2038 	lock_status = REG_RD(bp, hw_lock_control_reg);
2039 	if (!(lock_status & resource_bit)) {
2040 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2041 			  lock_status, resource_bit);
2042 		return -EFAULT;
2043 	}
2044 
2045 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2046 	return 0;
2047 }
2048 
2049 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2050 {
2051 	/* The GPIO should be swapped if swap register is set and active */
2052 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2053 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2054 	int gpio_shift = gpio_num +
2055 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2056 	u32 gpio_mask = (1 << gpio_shift);
2057 	u32 gpio_reg;
2058 	int value;
2059 
2060 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2061 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2062 		return -EINVAL;
2063 	}
2064 
2065 	/* read GPIO value */
2066 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2067 
2068 	/* get the requested pin value */
2069 	if ((gpio_reg & gpio_mask) == gpio_mask)
2070 		value = 1;
2071 	else
2072 		value = 0;
2073 
2074 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2075 
2076 	return value;
2077 }
2078 
2079 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2080 {
2081 	/* The GPIO should be swapped if swap register is set and active */
2082 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2083 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2084 	int gpio_shift = gpio_num +
2085 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2086 	u32 gpio_mask = (1 << gpio_shift);
2087 	u32 gpio_reg;
2088 
2089 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2090 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2091 		return -EINVAL;
2092 	}
2093 
2094 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2095 	/* read GPIO and mask except the float bits */
2096 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2097 
2098 	switch (mode) {
2099 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2100 		DP(NETIF_MSG_LINK,
2101 		   "Set GPIO %d (shift %d) -> output low\n",
2102 		   gpio_num, gpio_shift);
2103 		/* clear FLOAT and set CLR */
2104 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2105 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2106 		break;
2107 
2108 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2109 		DP(NETIF_MSG_LINK,
2110 		   "Set GPIO %d (shift %d) -> output high\n",
2111 		   gpio_num, gpio_shift);
2112 		/* clear FLOAT and set SET */
2113 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2114 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2115 		break;
2116 
2117 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2118 		DP(NETIF_MSG_LINK,
2119 		   "Set GPIO %d (shift %d) -> input\n",
2120 		   gpio_num, gpio_shift);
2121 		/* set FLOAT */
2122 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2123 		break;
2124 
2125 	default:
2126 		break;
2127 	}
2128 
2129 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2130 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2131 
2132 	return 0;
2133 }
2134 
2135 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2136 {
2137 	u32 gpio_reg = 0;
2138 	int rc = 0;
2139 
2140 	/* Any port swapping should be handled by caller. */
2141 
2142 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2143 	/* read GPIO and mask except the float bits */
2144 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2145 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2146 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2147 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2148 
2149 	switch (mode) {
2150 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2151 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2152 		/* set CLR */
2153 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2154 		break;
2155 
2156 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2157 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2158 		/* set SET */
2159 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2160 		break;
2161 
2162 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2163 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2164 		/* set FLOAT */
2165 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2166 		break;
2167 
2168 	default:
2169 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2170 		rc = -EINVAL;
2171 		break;
2172 	}
2173 
2174 	if (rc == 0)
2175 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2176 
2177 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2178 
2179 	return rc;
2180 }
2181 
2182 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2183 {
2184 	/* The GPIO should be swapped if swap register is set and active */
2185 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2186 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2187 	int gpio_shift = gpio_num +
2188 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2189 	u32 gpio_mask = (1 << gpio_shift);
2190 	u32 gpio_reg;
2191 
2192 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2193 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2194 		return -EINVAL;
2195 	}
2196 
2197 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2198 	/* read GPIO int */
2199 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2200 
2201 	switch (mode) {
2202 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2203 		DP(NETIF_MSG_LINK,
2204 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2205 		   gpio_num, gpio_shift);
2206 		/* clear SET and set CLR */
2207 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2208 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2209 		break;
2210 
2211 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2212 		DP(NETIF_MSG_LINK,
2213 		   "Set GPIO INT %d (shift %d) -> output high\n",
2214 		   gpio_num, gpio_shift);
2215 		/* clear CLR and set SET */
2216 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2217 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2218 		break;
2219 
2220 	default:
2221 		break;
2222 	}
2223 
2224 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2225 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2226 
2227 	return 0;
2228 }
2229 
2230 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2231 {
2232 	u32 spio_reg;
2233 
2234 	/* Only 2 SPIOs are configurable */
2235 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2236 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2237 		return -EINVAL;
2238 	}
2239 
2240 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2241 	/* read SPIO and mask except the float bits */
2242 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2243 
2244 	switch (mode) {
2245 	case MISC_SPIO_OUTPUT_LOW:
2246 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2247 		/* clear FLOAT and set CLR */
2248 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2249 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2250 		break;
2251 
2252 	case MISC_SPIO_OUTPUT_HIGH:
2253 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2254 		/* clear FLOAT and set SET */
2255 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2256 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2257 		break;
2258 
2259 	case MISC_SPIO_INPUT_HI_Z:
2260 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2261 		/* set FLOAT */
2262 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2263 		break;
2264 
2265 	default:
2266 		break;
2267 	}
2268 
2269 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2270 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2271 
2272 	return 0;
2273 }
2274 
2275 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2276 {
2277 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2278 	switch (bp->link_vars.ieee_fc &
2279 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2280 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2281 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2282 						   ADVERTISED_Pause);
2283 		break;
2284 
2285 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2286 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2287 						  ADVERTISED_Pause);
2288 		break;
2289 
2290 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2291 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2292 		break;
2293 
2294 	default:
2295 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2296 						   ADVERTISED_Pause);
2297 		break;
2298 	}
2299 }
2300 
2301 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2302 {
2303 	/* Initialize link parameters structure variables
2304 	 * It is recommended to turn off RX FC for jumbo frames
2305 	 *  for better performance
2306 	 */
2307 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2308 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2309 	else
2310 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2311 }
2312 
2313 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2314 {
2315 	u32 pause_enabled = 0;
2316 
2317 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2318 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2319 			pause_enabled = 1;
2320 
2321 		REG_WR(bp, BAR_USTRORM_INTMEM +
2322 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2323 		       pause_enabled);
2324 	}
2325 
2326 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2327 	   pause_enabled ? "enabled" : "disabled");
2328 }
2329 
2330 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2331 {
2332 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2333 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2334 
2335 	if (!BP_NOMCP(bp)) {
2336 		bnx2x_set_requested_fc(bp);
2337 		bnx2x_acquire_phy_lock(bp);
2338 
2339 		if (load_mode == LOAD_DIAG) {
2340 			struct link_params *lp = &bp->link_params;
2341 			lp->loopback_mode = LOOPBACK_XGXS;
2342 			/* do PHY loopback at 10G speed, if possible */
2343 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2344 				if (lp->speed_cap_mask[cfx_idx] &
2345 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2346 					lp->req_line_speed[cfx_idx] =
2347 					SPEED_10000;
2348 				else
2349 					lp->req_line_speed[cfx_idx] =
2350 					SPEED_1000;
2351 			}
2352 		}
2353 
2354 		if (load_mode == LOAD_LOOPBACK_EXT) {
2355 			struct link_params *lp = &bp->link_params;
2356 			lp->loopback_mode = LOOPBACK_EXT;
2357 		}
2358 
2359 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2360 
2361 		bnx2x_release_phy_lock(bp);
2362 
2363 		bnx2x_init_dropless_fc(bp);
2364 
2365 		bnx2x_calc_fc_adv(bp);
2366 
2367 		if (bp->link_vars.link_up) {
2368 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2369 			bnx2x_link_report(bp);
2370 		}
2371 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2372 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2373 		return rc;
2374 	}
2375 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2376 	return -EINVAL;
2377 }
2378 
2379 void bnx2x_link_set(struct bnx2x *bp)
2380 {
2381 	if (!BP_NOMCP(bp)) {
2382 		bnx2x_acquire_phy_lock(bp);
2383 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2384 		bnx2x_release_phy_lock(bp);
2385 
2386 		bnx2x_init_dropless_fc(bp);
2387 
2388 		bnx2x_calc_fc_adv(bp);
2389 	} else
2390 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2391 }
2392 
2393 static void bnx2x__link_reset(struct bnx2x *bp)
2394 {
2395 	if (!BP_NOMCP(bp)) {
2396 		bnx2x_acquire_phy_lock(bp);
2397 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2398 		bnx2x_release_phy_lock(bp);
2399 	} else
2400 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2401 }
2402 
2403 void bnx2x_force_link_reset(struct bnx2x *bp)
2404 {
2405 	bnx2x_acquire_phy_lock(bp);
2406 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2407 	bnx2x_release_phy_lock(bp);
2408 }
2409 
2410 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2411 {
2412 	u8 rc = 0;
2413 
2414 	if (!BP_NOMCP(bp)) {
2415 		bnx2x_acquire_phy_lock(bp);
2416 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2417 				     is_serdes);
2418 		bnx2x_release_phy_lock(bp);
2419 	} else
2420 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2421 
2422 	return rc;
2423 }
2424 
2425 /* Calculates the sum of vn_min_rates.
2426    It's needed for further normalizing of the min_rates.
2427    Returns:
2428      sum of vn_min_rates.
2429        or
2430      0 - if all the min_rates are 0.
2431      In the later case fairness algorithm should be deactivated.
2432      If not all min_rates are zero then those that are zeroes will be set to 1.
2433  */
2434 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2435 				      struct cmng_init_input *input)
2436 {
2437 	int all_zero = 1;
2438 	int vn;
2439 
2440 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2441 		u32 vn_cfg = bp->mf_config[vn];
2442 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2443 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2444 
2445 		/* Skip hidden vns */
2446 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2447 			vn_min_rate = 0;
2448 		/* If min rate is zero - set it to 1 */
2449 		else if (!vn_min_rate)
2450 			vn_min_rate = DEF_MIN_RATE;
2451 		else
2452 			all_zero = 0;
2453 
2454 		input->vnic_min_rate[vn] = vn_min_rate;
2455 	}
2456 
2457 	/* if ETS or all min rates are zeros - disable fairness */
2458 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2459 		input->flags.cmng_enables &=
2460 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2461 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2462 	} else if (all_zero) {
2463 		input->flags.cmng_enables &=
2464 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2465 		DP(NETIF_MSG_IFUP,
2466 		   "All MIN values are zeroes fairness will be disabled\n");
2467 	} else
2468 		input->flags.cmng_enables |=
2469 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2470 }
2471 
2472 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2473 				    struct cmng_init_input *input)
2474 {
2475 	u16 vn_max_rate;
2476 	u32 vn_cfg = bp->mf_config[vn];
2477 
2478 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2479 		vn_max_rate = 0;
2480 	else {
2481 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2482 
2483 		if (IS_MF_SI(bp)) {
2484 			/* maxCfg in percents of linkspeed */
2485 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2486 		} else /* SD modes */
2487 			/* maxCfg is absolute in 100Mb units */
2488 			vn_max_rate = maxCfg * 100;
2489 	}
2490 
2491 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2492 
2493 	input->vnic_max_rate[vn] = vn_max_rate;
2494 }
2495 
2496 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2497 {
2498 	if (CHIP_REV_IS_SLOW(bp))
2499 		return CMNG_FNS_NONE;
2500 	if (IS_MF(bp))
2501 		return CMNG_FNS_MINMAX;
2502 
2503 	return CMNG_FNS_NONE;
2504 }
2505 
2506 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2507 {
2508 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2509 
2510 	if (BP_NOMCP(bp))
2511 		return; /* what should be the default value in this case */
2512 
2513 	/* For 2 port configuration the absolute function number formula
2514 	 * is:
2515 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2516 	 *
2517 	 *      and there are 4 functions per port
2518 	 *
2519 	 * For 4 port configuration it is
2520 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2521 	 *
2522 	 *      and there are 2 functions per port
2523 	 */
2524 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2525 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2526 
2527 		if (func >= E1H_FUNC_MAX)
2528 			break;
2529 
2530 		bp->mf_config[vn] =
2531 			MF_CFG_RD(bp, func_mf_config[func].config);
2532 	}
2533 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2534 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2535 		bp->flags |= MF_FUNC_DIS;
2536 	} else {
2537 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2538 		bp->flags &= ~MF_FUNC_DIS;
2539 	}
2540 }
2541 
2542 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2543 {
2544 	struct cmng_init_input input;
2545 	memset(&input, 0, sizeof(struct cmng_init_input));
2546 
2547 	input.port_rate = bp->link_vars.line_speed;
2548 
2549 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2550 		int vn;
2551 
2552 		/* read mf conf from shmem */
2553 		if (read_cfg)
2554 			bnx2x_read_mf_cfg(bp);
2555 
2556 		/* vn_weight_sum and enable fairness if not 0 */
2557 		bnx2x_calc_vn_min(bp, &input);
2558 
2559 		/* calculate and set min-max rate for each vn */
2560 		if (bp->port.pmf)
2561 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2562 				bnx2x_calc_vn_max(bp, vn, &input);
2563 
2564 		/* always enable rate shaping and fairness */
2565 		input.flags.cmng_enables |=
2566 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2567 
2568 		bnx2x_init_cmng(&input, &bp->cmng);
2569 		return;
2570 	}
2571 
2572 	/* rate shaping and fairness are disabled */
2573 	DP(NETIF_MSG_IFUP,
2574 	   "rate shaping and fairness are disabled\n");
2575 }
2576 
2577 static void storm_memset_cmng(struct bnx2x *bp,
2578 			      struct cmng_init *cmng,
2579 			      u8 port)
2580 {
2581 	int vn;
2582 	size_t size = sizeof(struct cmng_struct_per_port);
2583 
2584 	u32 addr = BAR_XSTRORM_INTMEM +
2585 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2586 
2587 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2588 
2589 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2590 		int func = func_by_vn(bp, vn);
2591 
2592 		addr = BAR_XSTRORM_INTMEM +
2593 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2594 		size = sizeof(struct rate_shaping_vars_per_vn);
2595 		__storm_memset_struct(bp, addr, size,
2596 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2597 
2598 		addr = BAR_XSTRORM_INTMEM +
2599 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2600 		size = sizeof(struct fairness_vars_per_vn);
2601 		__storm_memset_struct(bp, addr, size,
2602 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2603 	}
2604 }
2605 
2606 /* init cmng mode in HW according to local configuration */
2607 void bnx2x_set_local_cmng(struct bnx2x *bp)
2608 {
2609 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2610 
2611 	if (cmng_fns != CMNG_FNS_NONE) {
2612 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2613 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2614 	} else {
2615 		/* rate shaping and fairness are disabled */
2616 		DP(NETIF_MSG_IFUP,
2617 		   "single function mode without fairness\n");
2618 	}
2619 }
2620 
2621 /* This function is called upon link interrupt */
2622 static void bnx2x_link_attn(struct bnx2x *bp)
2623 {
2624 	/* Make sure that we are synced with the current statistics */
2625 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2626 
2627 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2628 
2629 	bnx2x_init_dropless_fc(bp);
2630 
2631 	if (bp->link_vars.link_up) {
2632 
2633 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2634 			struct host_port_stats *pstats;
2635 
2636 			pstats = bnx2x_sp(bp, port_stats);
2637 			/* reset old mac stats */
2638 			memset(&(pstats->mac_stx[0]), 0,
2639 			       sizeof(struct mac_stx));
2640 		}
2641 		if (bp->state == BNX2X_STATE_OPEN)
2642 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2643 	}
2644 
2645 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2646 		bnx2x_set_local_cmng(bp);
2647 
2648 	__bnx2x_link_report(bp);
2649 
2650 	if (IS_MF(bp))
2651 		bnx2x_link_sync_notify(bp);
2652 }
2653 
2654 void bnx2x__link_status_update(struct bnx2x *bp)
2655 {
2656 	if (bp->state != BNX2X_STATE_OPEN)
2657 		return;
2658 
2659 	/* read updated dcb configuration */
2660 	if (IS_PF(bp)) {
2661 		bnx2x_dcbx_pmf_update(bp);
2662 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2663 		if (bp->link_vars.link_up)
2664 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2665 		else
2666 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2667 			/* indicate link status */
2668 		bnx2x_link_report(bp);
2669 
2670 	} else { /* VF */
2671 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2672 					  SUPPORTED_10baseT_Full |
2673 					  SUPPORTED_100baseT_Half |
2674 					  SUPPORTED_100baseT_Full |
2675 					  SUPPORTED_1000baseT_Full |
2676 					  SUPPORTED_2500baseX_Full |
2677 					  SUPPORTED_10000baseT_Full |
2678 					  SUPPORTED_TP |
2679 					  SUPPORTED_FIBRE |
2680 					  SUPPORTED_Autoneg |
2681 					  SUPPORTED_Pause |
2682 					  SUPPORTED_Asym_Pause);
2683 		bp->port.advertising[0] = bp->port.supported[0];
2684 
2685 		bp->link_params.bp = bp;
2686 		bp->link_params.port = BP_PORT(bp);
2687 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2688 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2689 		bp->link_params.req_line_speed[0] = SPEED_10000;
2690 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2691 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2692 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2693 		bp->link_vars.line_speed = SPEED_10000;
2694 		bp->link_vars.link_status =
2695 			(LINK_STATUS_LINK_UP |
2696 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2697 		bp->link_vars.link_up = 1;
2698 		bp->link_vars.duplex = DUPLEX_FULL;
2699 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2700 		__bnx2x_link_report(bp);
2701 
2702 		bnx2x_sample_bulletin(bp);
2703 
2704 		/* if bulletin board did not have an update for link status
2705 		 * __bnx2x_link_report will report current status
2706 		 * but it will NOT duplicate report in case of already reported
2707 		 * during sampling bulletin board.
2708 		 */
2709 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2710 	}
2711 }
2712 
2713 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2714 				  u16 vlan_val, u8 allowed_prio)
2715 {
2716 	struct bnx2x_func_state_params func_params = {NULL};
2717 	struct bnx2x_func_afex_update_params *f_update_params =
2718 		&func_params.params.afex_update;
2719 
2720 	func_params.f_obj = &bp->func_obj;
2721 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2722 
2723 	/* no need to wait for RAMROD completion, so don't
2724 	 * set RAMROD_COMP_WAIT flag
2725 	 */
2726 
2727 	f_update_params->vif_id = vifid;
2728 	f_update_params->afex_default_vlan = vlan_val;
2729 	f_update_params->allowed_priorities = allowed_prio;
2730 
2731 	/* if ramrod can not be sent, response to MCP immediately */
2732 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2733 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2734 
2735 	return 0;
2736 }
2737 
2738 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2739 					  u16 vif_index, u8 func_bit_map)
2740 {
2741 	struct bnx2x_func_state_params func_params = {NULL};
2742 	struct bnx2x_func_afex_viflists_params *update_params =
2743 		&func_params.params.afex_viflists;
2744 	int rc;
2745 	u32 drv_msg_code;
2746 
2747 	/* validate only LIST_SET and LIST_GET are received from switch */
2748 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2749 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2750 			  cmd_type);
2751 
2752 	func_params.f_obj = &bp->func_obj;
2753 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2754 
2755 	/* set parameters according to cmd_type */
2756 	update_params->afex_vif_list_command = cmd_type;
2757 	update_params->vif_list_index = vif_index;
2758 	update_params->func_bit_map =
2759 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2760 	update_params->func_to_clear = 0;
2761 	drv_msg_code =
2762 		(cmd_type == VIF_LIST_RULE_GET) ?
2763 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2764 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2765 
2766 	/* if ramrod can not be sent, respond to MCP immediately for
2767 	 * SET and GET requests (other are not triggered from MCP)
2768 	 */
2769 	rc = bnx2x_func_state_change(bp, &func_params);
2770 	if (rc < 0)
2771 		bnx2x_fw_command(bp, drv_msg_code, 0);
2772 
2773 	return 0;
2774 }
2775 
2776 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2777 {
2778 	struct afex_stats afex_stats;
2779 	u32 func = BP_ABS_FUNC(bp);
2780 	u32 mf_config;
2781 	u16 vlan_val;
2782 	u32 vlan_prio;
2783 	u16 vif_id;
2784 	u8 allowed_prio;
2785 	u8 vlan_mode;
2786 	u32 addr_to_write, vifid, addrs, stats_type, i;
2787 
2788 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2789 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2790 		DP(BNX2X_MSG_MCP,
2791 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2792 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2793 	}
2794 
2795 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2796 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2797 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2798 		DP(BNX2X_MSG_MCP,
2799 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2800 		   vifid, addrs);
2801 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2802 					       addrs);
2803 	}
2804 
2805 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2806 		addr_to_write = SHMEM2_RD(bp,
2807 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2808 		stats_type = SHMEM2_RD(bp,
2809 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2810 
2811 		DP(BNX2X_MSG_MCP,
2812 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2813 		   addr_to_write);
2814 
2815 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2816 
2817 		/* write response to scratchpad, for MCP */
2818 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2819 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2820 			       *(((u32 *)(&afex_stats))+i));
2821 
2822 		/* send ack message to MCP */
2823 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2824 	}
2825 
2826 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2827 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2828 		bp->mf_config[BP_VN(bp)] = mf_config;
2829 		DP(BNX2X_MSG_MCP,
2830 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2831 		   mf_config);
2832 
2833 		/* if VIF_SET is "enabled" */
2834 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2835 			/* set rate limit directly to internal RAM */
2836 			struct cmng_init_input cmng_input;
2837 			struct rate_shaping_vars_per_vn m_rs_vn;
2838 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2839 			u32 addr = BAR_XSTRORM_INTMEM +
2840 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2841 
2842 			bp->mf_config[BP_VN(bp)] = mf_config;
2843 
2844 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2845 			m_rs_vn.vn_counter.rate =
2846 				cmng_input.vnic_max_rate[BP_VN(bp)];
2847 			m_rs_vn.vn_counter.quota =
2848 				(m_rs_vn.vn_counter.rate *
2849 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2850 
2851 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2852 
2853 			/* read relevant values from mf_cfg struct in shmem */
2854 			vif_id =
2855 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2856 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2857 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2858 			vlan_val =
2859 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2860 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2861 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2862 			vlan_prio = (mf_config &
2863 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2864 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2865 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2866 			vlan_mode =
2867 				(MF_CFG_RD(bp,
2868 					   func_mf_config[func].afex_config) &
2869 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2870 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2871 			allowed_prio =
2872 				(MF_CFG_RD(bp,
2873 					   func_mf_config[func].afex_config) &
2874 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2875 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2876 
2877 			/* send ramrod to FW, return in case of failure */
2878 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2879 						   allowed_prio))
2880 				return;
2881 
2882 			bp->afex_def_vlan_tag = vlan_val;
2883 			bp->afex_vlan_mode = vlan_mode;
2884 		} else {
2885 			/* notify link down because BP->flags is disabled */
2886 			bnx2x_link_report(bp);
2887 
2888 			/* send INVALID VIF ramrod to FW */
2889 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2890 
2891 			/* Reset the default afex VLAN */
2892 			bp->afex_def_vlan_tag = -1;
2893 		}
2894 	}
2895 }
2896 
2897 static void bnx2x_pmf_update(struct bnx2x *bp)
2898 {
2899 	int port = BP_PORT(bp);
2900 	u32 val;
2901 
2902 	bp->port.pmf = 1;
2903 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2904 
2905 	/*
2906 	 * We need the mb() to ensure the ordering between the writing to
2907 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2908 	 */
2909 	smp_mb();
2910 
2911 	/* queue a periodic task */
2912 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2913 
2914 	bnx2x_dcbx_pmf_update(bp);
2915 
2916 	/* enable nig attention */
2917 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2918 	if (bp->common.int_block == INT_BLOCK_HC) {
2919 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2920 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2921 	} else if (!CHIP_IS_E1x(bp)) {
2922 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2923 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2924 	}
2925 
2926 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2927 }
2928 
2929 /* end of Link */
2930 
2931 /* slow path */
2932 
2933 /*
2934  * General service functions
2935  */
2936 
2937 /* send the MCP a request, block until there is a reply */
2938 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2939 {
2940 	int mb_idx = BP_FW_MB_IDX(bp);
2941 	u32 seq;
2942 	u32 rc = 0;
2943 	u32 cnt = 1;
2944 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2945 
2946 	mutex_lock(&bp->fw_mb_mutex);
2947 	seq = ++bp->fw_seq;
2948 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2949 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2950 
2951 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2952 			(command | seq), param);
2953 
2954 	do {
2955 		/* let the FW do it's magic ... */
2956 		msleep(delay);
2957 
2958 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2959 
2960 		/* Give the FW up to 5 second (500*10ms) */
2961 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2962 
2963 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2964 	   cnt*delay, rc, seq);
2965 
2966 	/* is this a reply to our command? */
2967 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2968 		rc &= FW_MSG_CODE_MASK;
2969 	else {
2970 		/* FW BUG! */
2971 		BNX2X_ERR("FW failed to respond!\n");
2972 		bnx2x_fw_dump(bp);
2973 		rc = 0;
2974 	}
2975 	mutex_unlock(&bp->fw_mb_mutex);
2976 
2977 	return rc;
2978 }
2979 
2980 static void storm_memset_func_cfg(struct bnx2x *bp,
2981 				 struct tstorm_eth_function_common_config *tcfg,
2982 				 u16 abs_fid)
2983 {
2984 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2985 
2986 	u32 addr = BAR_TSTRORM_INTMEM +
2987 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2988 
2989 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2990 }
2991 
2992 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2993 {
2994 	if (CHIP_IS_E1x(bp)) {
2995 		struct tstorm_eth_function_common_config tcfg = {0};
2996 
2997 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2998 	}
2999 
3000 	/* Enable the function in the FW */
3001 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3002 	storm_memset_func_en(bp, p->func_id, 1);
3003 
3004 	/* spq */
3005 	if (p->func_flgs & FUNC_FLG_SPQ) {
3006 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3007 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3008 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3009 	}
3010 }
3011 
3012 /**
3013  * bnx2x_get_common_flags - Return common flags
3014  *
3015  * @bp		device handle
3016  * @fp		queue handle
3017  * @zero_stats	TRUE if statistics zeroing is needed
3018  *
3019  * Return the flags that are common for the Tx-only and not normal connections.
3020  */
3021 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3022 					    struct bnx2x_fastpath *fp,
3023 					    bool zero_stats)
3024 {
3025 	unsigned long flags = 0;
3026 
3027 	/* PF driver will always initialize the Queue to an ACTIVE state */
3028 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3029 
3030 	/* tx only connections collect statistics (on the same index as the
3031 	 * parent connection). The statistics are zeroed when the parent
3032 	 * connection is initialized.
3033 	 */
3034 
3035 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3036 	if (zero_stats)
3037 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3038 
3039 	if (bp->flags & TX_SWITCHING)
3040 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3041 
3042 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3043 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3044 
3045 #ifdef BNX2X_STOP_ON_ERROR
3046 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3047 #endif
3048 
3049 	return flags;
3050 }
3051 
3052 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3053 				       struct bnx2x_fastpath *fp,
3054 				       bool leading)
3055 {
3056 	unsigned long flags = 0;
3057 
3058 	/* calculate other queue flags */
3059 	if (IS_MF_SD(bp))
3060 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3061 
3062 	if (IS_FCOE_FP(fp)) {
3063 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3064 		/* For FCoE - force usage of default priority (for afex) */
3065 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3066 	}
3067 
3068 	if (!fp->disable_tpa) {
3069 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3070 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3071 		if (fp->mode == TPA_MODE_GRO)
3072 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3073 	}
3074 
3075 	if (leading) {
3076 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3077 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3078 	}
3079 
3080 	/* Always set HW VLAN stripping */
3081 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3082 
3083 	/* configure silent vlan removal */
3084 	if (IS_MF_AFEX(bp))
3085 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3086 
3087 	return flags | bnx2x_get_common_flags(bp, fp, true);
3088 }
3089 
3090 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3091 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3092 	u8 cos)
3093 {
3094 	gen_init->stat_id = bnx2x_stats_id(fp);
3095 	gen_init->spcl_id = fp->cl_id;
3096 
3097 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3098 	if (IS_FCOE_FP(fp))
3099 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3100 	else
3101 		gen_init->mtu = bp->dev->mtu;
3102 
3103 	gen_init->cos = cos;
3104 }
3105 
3106 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3107 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3108 	struct bnx2x_rxq_setup_params *rxq_init)
3109 {
3110 	u8 max_sge = 0;
3111 	u16 sge_sz = 0;
3112 	u16 tpa_agg_size = 0;
3113 
3114 	if (!fp->disable_tpa) {
3115 		pause->sge_th_lo = SGE_TH_LO(bp);
3116 		pause->sge_th_hi = SGE_TH_HI(bp);
3117 
3118 		/* validate SGE ring has enough to cross high threshold */
3119 		WARN_ON(bp->dropless_fc &&
3120 				pause->sge_th_hi + FW_PREFETCH_CNT >
3121 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3122 
3123 		tpa_agg_size = TPA_AGG_SIZE;
3124 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3125 			SGE_PAGE_SHIFT;
3126 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3127 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3128 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3129 	}
3130 
3131 	/* pause - not for e1 */
3132 	if (!CHIP_IS_E1(bp)) {
3133 		pause->bd_th_lo = BD_TH_LO(bp);
3134 		pause->bd_th_hi = BD_TH_HI(bp);
3135 
3136 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3137 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3138 		/*
3139 		 * validate that rings have enough entries to cross
3140 		 * high thresholds
3141 		 */
3142 		WARN_ON(bp->dropless_fc &&
3143 				pause->bd_th_hi + FW_PREFETCH_CNT >
3144 				bp->rx_ring_size);
3145 		WARN_ON(bp->dropless_fc &&
3146 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3147 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3148 
3149 		pause->pri_map = 1;
3150 	}
3151 
3152 	/* rxq setup */
3153 	rxq_init->dscr_map = fp->rx_desc_mapping;
3154 	rxq_init->sge_map = fp->rx_sge_mapping;
3155 	rxq_init->rcq_map = fp->rx_comp_mapping;
3156 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3157 
3158 	/* This should be a maximum number of data bytes that may be
3159 	 * placed on the BD (not including paddings).
3160 	 */
3161 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3162 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3163 
3164 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3165 	rxq_init->tpa_agg_sz = tpa_agg_size;
3166 	rxq_init->sge_buf_sz = sge_sz;
3167 	rxq_init->max_sges_pkt = max_sge;
3168 	rxq_init->rss_engine_id = BP_FUNC(bp);
3169 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3170 
3171 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3172 	 *
3173 	 * For PF Clients it should be the maximum available number.
3174 	 * VF driver(s) may want to define it to a smaller value.
3175 	 */
3176 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3177 
3178 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3179 	rxq_init->fw_sb_id = fp->fw_sb_id;
3180 
3181 	if (IS_FCOE_FP(fp))
3182 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3183 	else
3184 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3185 	/* configure silent vlan removal
3186 	 * if multi function mode is afex, then mask default vlan
3187 	 */
3188 	if (IS_MF_AFEX(bp)) {
3189 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3190 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3191 	}
3192 }
3193 
3194 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3195 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3196 	u8 cos)
3197 {
3198 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3199 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3200 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3201 	txq_init->fw_sb_id = fp->fw_sb_id;
3202 
3203 	/*
3204 	 * set the tss leading client id for TX classification ==
3205 	 * leading RSS client id
3206 	 */
3207 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3208 
3209 	if (IS_FCOE_FP(fp)) {
3210 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3211 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3212 	}
3213 }
3214 
3215 static void bnx2x_pf_init(struct bnx2x *bp)
3216 {
3217 	struct bnx2x_func_init_params func_init = {0};
3218 	struct event_ring_data eq_data = { {0} };
3219 	u16 flags;
3220 
3221 	if (!CHIP_IS_E1x(bp)) {
3222 		/* reset IGU PF statistics: MSIX + ATTN */
3223 		/* PF */
3224 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3225 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3226 			   (CHIP_MODE_IS_4_PORT(bp) ?
3227 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3228 		/* ATTN */
3229 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3230 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3231 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3232 			   (CHIP_MODE_IS_4_PORT(bp) ?
3233 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3234 	}
3235 
3236 	/* function setup flags */
3237 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3238 
3239 	/* This flag is relevant for E1x only.
3240 	 * E2 doesn't have a TPA configuration in a function level.
3241 	 */
3242 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3243 
3244 	func_init.func_flgs = flags;
3245 	func_init.pf_id = BP_FUNC(bp);
3246 	func_init.func_id = BP_FUNC(bp);
3247 	func_init.spq_map = bp->spq_mapping;
3248 	func_init.spq_prod = bp->spq_prod_idx;
3249 
3250 	bnx2x_func_init(bp, &func_init);
3251 
3252 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3253 
3254 	/*
3255 	 * Congestion management values depend on the link rate
3256 	 * There is no active link so initial link rate is set to 10 Gbps.
3257 	 * When the link comes up The congestion management values are
3258 	 * re-calculated according to the actual link rate.
3259 	 */
3260 	bp->link_vars.line_speed = SPEED_10000;
3261 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3262 
3263 	/* Only the PMF sets the HW */
3264 	if (bp->port.pmf)
3265 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3266 
3267 	/* init Event Queue - PCI bus guarantees correct endianity*/
3268 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3269 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3270 	eq_data.producer = bp->eq_prod;
3271 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3272 	eq_data.sb_id = DEF_SB_ID;
3273 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3274 }
3275 
3276 static void bnx2x_e1h_disable(struct bnx2x *bp)
3277 {
3278 	int port = BP_PORT(bp);
3279 
3280 	bnx2x_tx_disable(bp);
3281 
3282 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3283 }
3284 
3285 static void bnx2x_e1h_enable(struct bnx2x *bp)
3286 {
3287 	int port = BP_PORT(bp);
3288 
3289 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3290 
3291 	/* Tx queue should be only re-enabled */
3292 	netif_tx_wake_all_queues(bp->dev);
3293 
3294 	/*
3295 	 * Should not call netif_carrier_on since it will be called if the link
3296 	 * is up when checking for link state
3297 	 */
3298 }
3299 
3300 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3301 
3302 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3303 {
3304 	struct eth_stats_info *ether_stat =
3305 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3306 	struct bnx2x_vlan_mac_obj *mac_obj =
3307 		&bp->sp_objs->mac_obj;
3308 	int i;
3309 
3310 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3311 		ETH_STAT_INFO_VERSION_LEN);
3312 
3313 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3314 	 * mac_local field in ether_stat struct. The base address is offset by 2
3315 	 * bytes to account for the field being 8 bytes but a mac address is
3316 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3317 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3318 	 * allocated by the ether_stat struct, so the macs will land in their
3319 	 * proper positions.
3320 	 */
3321 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3322 		memset(ether_stat->mac_local + i, 0,
3323 		       sizeof(ether_stat->mac_local[0]));
3324 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3325 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3326 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3327 				ETH_ALEN);
3328 	ether_stat->mtu_size = bp->dev->mtu;
3329 	if (bp->dev->features & NETIF_F_RXCSUM)
3330 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3331 	if (bp->dev->features & NETIF_F_TSO)
3332 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3333 	ether_stat->feature_flags |= bp->common.boot_mode;
3334 
3335 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3336 
3337 	ether_stat->txq_size = bp->tx_ring_size;
3338 	ether_stat->rxq_size = bp->rx_ring_size;
3339 
3340 #ifdef CONFIG_BNX2X_SRIOV
3341 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3342 #endif
3343 }
3344 
3345 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3346 {
3347 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3348 	struct fcoe_stats_info *fcoe_stat =
3349 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3350 
3351 	if (!CNIC_LOADED(bp))
3352 		return;
3353 
3354 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3355 
3356 	fcoe_stat->qos_priority =
3357 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3358 
3359 	/* insert FCoE stats from ramrod response */
3360 	if (!NO_FCOE(bp)) {
3361 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3362 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3363 			tstorm_queue_statistics;
3364 
3365 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3366 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3367 			xstorm_queue_statistics;
3368 
3369 		struct fcoe_statistics_params *fw_fcoe_stat =
3370 			&bp->fw_stats_data->fcoe;
3371 
3372 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3373 			  fcoe_stat->rx_bytes_lo,
3374 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3375 
3376 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3377 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3378 			  fcoe_stat->rx_bytes_lo,
3379 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3380 
3381 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3382 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3383 			  fcoe_stat->rx_bytes_lo,
3384 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3385 
3386 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3387 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3388 			  fcoe_stat->rx_bytes_lo,
3389 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3390 
3391 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3392 			  fcoe_stat->rx_frames_lo,
3393 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3394 
3395 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3396 			  fcoe_stat->rx_frames_lo,
3397 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3398 
3399 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3400 			  fcoe_stat->rx_frames_lo,
3401 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3402 
3403 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3404 			  fcoe_stat->rx_frames_lo,
3405 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3406 
3407 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3408 			  fcoe_stat->tx_bytes_lo,
3409 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3410 
3411 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3412 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3413 			  fcoe_stat->tx_bytes_lo,
3414 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3415 
3416 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3417 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3418 			  fcoe_stat->tx_bytes_lo,
3419 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3420 
3421 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3422 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3423 			  fcoe_stat->tx_bytes_lo,
3424 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3425 
3426 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3427 			  fcoe_stat->tx_frames_lo,
3428 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3429 
3430 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3431 			  fcoe_stat->tx_frames_lo,
3432 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3433 
3434 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3435 			  fcoe_stat->tx_frames_lo,
3436 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3437 
3438 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3439 			  fcoe_stat->tx_frames_lo,
3440 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3441 	}
3442 
3443 	/* ask L5 driver to add data to the struct */
3444 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3445 }
3446 
3447 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3448 {
3449 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3450 	struct iscsi_stats_info *iscsi_stat =
3451 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3452 
3453 	if (!CNIC_LOADED(bp))
3454 		return;
3455 
3456 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3457 	       ETH_ALEN);
3458 
3459 	iscsi_stat->qos_priority =
3460 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3461 
3462 	/* ask L5 driver to add data to the struct */
3463 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3464 }
3465 
3466 /* called due to MCP event (on pmf):
3467  *	reread new bandwidth configuration
3468  *	configure FW
3469  *	notify others function about the change
3470  */
3471 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3472 {
3473 	if (bp->link_vars.link_up) {
3474 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3475 		bnx2x_link_sync_notify(bp);
3476 	}
3477 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3478 }
3479 
3480 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3481 {
3482 	bnx2x_config_mf_bw(bp);
3483 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3484 }
3485 
3486 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3487 {
3488 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3489 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3490 }
3491 
3492 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3493 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3494 
3495 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3496 {
3497 	enum drv_info_opcode op_code;
3498 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3499 	bool release = false;
3500 	int wait;
3501 
3502 	/* if drv_info version supported by MFW doesn't match - send NACK */
3503 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3504 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3505 		return;
3506 	}
3507 
3508 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3509 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3510 
3511 	/* Must prevent other flows from accessing drv_info_to_mcp */
3512 	mutex_lock(&bp->drv_info_mutex);
3513 
3514 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3515 	       sizeof(union drv_info_to_mcp));
3516 
3517 	switch (op_code) {
3518 	case ETH_STATS_OPCODE:
3519 		bnx2x_drv_info_ether_stat(bp);
3520 		break;
3521 	case FCOE_STATS_OPCODE:
3522 		bnx2x_drv_info_fcoe_stat(bp);
3523 		break;
3524 	case ISCSI_STATS_OPCODE:
3525 		bnx2x_drv_info_iscsi_stat(bp);
3526 		break;
3527 	default:
3528 		/* if op code isn't supported - send NACK */
3529 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3530 		goto out;
3531 	}
3532 
3533 	/* if we got drv_info attn from MFW then these fields are defined in
3534 	 * shmem2 for sure
3535 	 */
3536 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3537 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3538 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3539 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3540 
3541 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3542 
3543 	/* Since possible management wants both this and get_driver_version
3544 	 * need to wait until management notifies us it finished utilizing
3545 	 * the buffer.
3546 	 */
3547 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3548 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3549 	} else if (!bp->drv_info_mng_owner) {
3550 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3551 
3552 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3553 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3554 
3555 			/* Management is done; need to clear indication */
3556 			if (indication & bit) {
3557 				SHMEM2_WR(bp, mfw_drv_indication,
3558 					  indication & ~bit);
3559 				release = true;
3560 				break;
3561 			}
3562 
3563 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3564 		}
3565 	}
3566 	if (!release) {
3567 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3568 		bp->drv_info_mng_owner = true;
3569 	}
3570 
3571 out:
3572 	mutex_unlock(&bp->drv_info_mutex);
3573 }
3574 
3575 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3576 {
3577 	u8 vals[4];
3578 	int i = 0;
3579 
3580 	if (bnx2x_format) {
3581 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3582 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3583 		if (i > 0)
3584 			vals[0] -= '0';
3585 	} else {
3586 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3587 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3588 	}
3589 
3590 	while (i < 4)
3591 		vals[i++] = 0;
3592 
3593 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3594 }
3595 
3596 void bnx2x_update_mng_version(struct bnx2x *bp)
3597 {
3598 	u32 iscsiver = DRV_VER_NOT_LOADED;
3599 	u32 fcoever = DRV_VER_NOT_LOADED;
3600 	u32 ethver = DRV_VER_NOT_LOADED;
3601 	int idx = BP_FW_MB_IDX(bp);
3602 	u8 *version;
3603 
3604 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3605 		return;
3606 
3607 	mutex_lock(&bp->drv_info_mutex);
3608 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3609 	if (bp->drv_info_mng_owner)
3610 		goto out;
3611 
3612 	if (bp->state != BNX2X_STATE_OPEN)
3613 		goto out;
3614 
3615 	/* Parse ethernet driver version */
3616 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3617 	if (!CNIC_LOADED(bp))
3618 		goto out;
3619 
3620 	/* Try getting storage driver version via cnic */
3621 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3622 	       sizeof(union drv_info_to_mcp));
3623 	bnx2x_drv_info_iscsi_stat(bp);
3624 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3625 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3626 
3627 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3628 	       sizeof(union drv_info_to_mcp));
3629 	bnx2x_drv_info_fcoe_stat(bp);
3630 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3631 	fcoever = bnx2x_update_mng_version_utility(version, false);
3632 
3633 out:
3634 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3635 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3636 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3637 
3638 	mutex_unlock(&bp->drv_info_mutex);
3639 
3640 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3641 	   ethver, iscsiver, fcoever);
3642 }
3643 
3644 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3645 {
3646 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3647 
3648 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3649 
3650 		/*
3651 		 * This is the only place besides the function initialization
3652 		 * where the bp->flags can change so it is done without any
3653 		 * locks
3654 		 */
3655 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3656 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3657 			bp->flags |= MF_FUNC_DIS;
3658 
3659 			bnx2x_e1h_disable(bp);
3660 		} else {
3661 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3662 			bp->flags &= ~MF_FUNC_DIS;
3663 
3664 			bnx2x_e1h_enable(bp);
3665 		}
3666 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3667 	}
3668 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3669 		bnx2x_config_mf_bw(bp);
3670 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3671 	}
3672 
3673 	/* Report results to MCP */
3674 	if (dcc_event)
3675 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3676 	else
3677 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3678 }
3679 
3680 /* must be called under the spq lock */
3681 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3682 {
3683 	struct eth_spe *next_spe = bp->spq_prod_bd;
3684 
3685 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3686 		bp->spq_prod_bd = bp->spq;
3687 		bp->spq_prod_idx = 0;
3688 		DP(BNX2X_MSG_SP, "end of spq\n");
3689 	} else {
3690 		bp->spq_prod_bd++;
3691 		bp->spq_prod_idx++;
3692 	}
3693 	return next_spe;
3694 }
3695 
3696 /* must be called under the spq lock */
3697 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3698 {
3699 	int func = BP_FUNC(bp);
3700 
3701 	/*
3702 	 * Make sure that BD data is updated before writing the producer:
3703 	 * BD data is written to the memory, the producer is read from the
3704 	 * memory, thus we need a full memory barrier to ensure the ordering.
3705 	 */
3706 	mb();
3707 
3708 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3709 		 bp->spq_prod_idx);
3710 	mmiowb();
3711 }
3712 
3713 /**
3714  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3715  *
3716  * @cmd:	command to check
3717  * @cmd_type:	command type
3718  */
3719 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3720 {
3721 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3722 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3723 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3724 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3725 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3726 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3727 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3728 		return true;
3729 	else
3730 		return false;
3731 }
3732 
3733 /**
3734  * bnx2x_sp_post - place a single command on an SP ring
3735  *
3736  * @bp:		driver handle
3737  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3738  * @cid:	SW CID the command is related to
3739  * @data_hi:	command private data address (high 32 bits)
3740  * @data_lo:	command private data address (low 32 bits)
3741  * @cmd_type:	command type (e.g. NONE, ETH)
3742  *
3743  * SP data is handled as if it's always an address pair, thus data fields are
3744  * not swapped to little endian in upper functions. Instead this function swaps
3745  * data as if it's two u32 fields.
3746  */
3747 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3748 		  u32 data_hi, u32 data_lo, int cmd_type)
3749 {
3750 	struct eth_spe *spe;
3751 	u16 type;
3752 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3753 
3754 #ifdef BNX2X_STOP_ON_ERROR
3755 	if (unlikely(bp->panic)) {
3756 		BNX2X_ERR("Can't post SP when there is panic\n");
3757 		return -EIO;
3758 	}
3759 #endif
3760 
3761 	spin_lock_bh(&bp->spq_lock);
3762 
3763 	if (common) {
3764 		if (!atomic_read(&bp->eq_spq_left)) {
3765 			BNX2X_ERR("BUG! EQ ring full!\n");
3766 			spin_unlock_bh(&bp->spq_lock);
3767 			bnx2x_panic();
3768 			return -EBUSY;
3769 		}
3770 	} else if (!atomic_read(&bp->cq_spq_left)) {
3771 			BNX2X_ERR("BUG! SPQ ring full!\n");
3772 			spin_unlock_bh(&bp->spq_lock);
3773 			bnx2x_panic();
3774 			return -EBUSY;
3775 	}
3776 
3777 	spe = bnx2x_sp_get_next(bp);
3778 
3779 	/* CID needs port number to be encoded int it */
3780 	spe->hdr.conn_and_cmd_data =
3781 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3782 				    HW_CID(bp, cid));
3783 
3784 	/* In some cases, type may already contain the func-id
3785 	 * mainly in SRIOV related use cases, so we add it here only
3786 	 * if it's not already set.
3787 	 */
3788 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3789 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3790 			SPE_HDR_CONN_TYPE;
3791 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3792 			 SPE_HDR_FUNCTION_ID);
3793 	} else {
3794 		type = cmd_type;
3795 	}
3796 
3797 	spe->hdr.type = cpu_to_le16(type);
3798 
3799 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3800 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3801 
3802 	/*
3803 	 * It's ok if the actual decrement is issued towards the memory
3804 	 * somewhere between the spin_lock and spin_unlock. Thus no
3805 	 * more explicit memory barrier is needed.
3806 	 */
3807 	if (common)
3808 		atomic_dec(&bp->eq_spq_left);
3809 	else
3810 		atomic_dec(&bp->cq_spq_left);
3811 
3812 	DP(BNX2X_MSG_SP,
3813 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3814 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3815 	   (u32)(U64_LO(bp->spq_mapping) +
3816 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3817 	   HW_CID(bp, cid), data_hi, data_lo, type,
3818 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3819 
3820 	bnx2x_sp_prod_update(bp);
3821 	spin_unlock_bh(&bp->spq_lock);
3822 	return 0;
3823 }
3824 
3825 /* acquire split MCP access lock register */
3826 static int bnx2x_acquire_alr(struct bnx2x *bp)
3827 {
3828 	u32 j, val;
3829 	int rc = 0;
3830 
3831 	might_sleep();
3832 	for (j = 0; j < 1000; j++) {
3833 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3834 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3835 		if (val & MCPR_ACCESS_LOCK_LOCK)
3836 			break;
3837 
3838 		usleep_range(5000, 10000);
3839 	}
3840 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3841 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3842 		rc = -EBUSY;
3843 	}
3844 
3845 	return rc;
3846 }
3847 
3848 /* release split MCP access lock register */
3849 static void bnx2x_release_alr(struct bnx2x *bp)
3850 {
3851 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3852 }
3853 
3854 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3855 #define BNX2X_DEF_SB_IDX	0x0002
3856 
3857 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3858 {
3859 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3860 	u16 rc = 0;
3861 
3862 	barrier(); /* status block is written to by the chip */
3863 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3864 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3865 		rc |= BNX2X_DEF_SB_ATT_IDX;
3866 	}
3867 
3868 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3869 		bp->def_idx = def_sb->sp_sb.running_index;
3870 		rc |= BNX2X_DEF_SB_IDX;
3871 	}
3872 
3873 	/* Do not reorder: indices reading should complete before handling */
3874 	barrier();
3875 	return rc;
3876 }
3877 
3878 /*
3879  * slow path service functions
3880  */
3881 
3882 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3883 {
3884 	int port = BP_PORT(bp);
3885 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3886 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3887 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3888 				       NIG_REG_MASK_INTERRUPT_PORT0;
3889 	u32 aeu_mask;
3890 	u32 nig_mask = 0;
3891 	u32 reg_addr;
3892 
3893 	if (bp->attn_state & asserted)
3894 		BNX2X_ERR("IGU ERROR\n");
3895 
3896 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3897 	aeu_mask = REG_RD(bp, aeu_addr);
3898 
3899 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3900 	   aeu_mask, asserted);
3901 	aeu_mask &= ~(asserted & 0x3ff);
3902 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3903 
3904 	REG_WR(bp, aeu_addr, aeu_mask);
3905 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3906 
3907 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3908 	bp->attn_state |= asserted;
3909 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3910 
3911 	if (asserted & ATTN_HARD_WIRED_MASK) {
3912 		if (asserted & ATTN_NIG_FOR_FUNC) {
3913 
3914 			bnx2x_acquire_phy_lock(bp);
3915 
3916 			/* save nig interrupt mask */
3917 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3918 
3919 			/* If nig_mask is not set, no need to call the update
3920 			 * function.
3921 			 */
3922 			if (nig_mask) {
3923 				REG_WR(bp, nig_int_mask_addr, 0);
3924 
3925 				bnx2x_link_attn(bp);
3926 			}
3927 
3928 			/* handle unicore attn? */
3929 		}
3930 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3931 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3932 
3933 		if (asserted & GPIO_2_FUNC)
3934 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3935 
3936 		if (asserted & GPIO_3_FUNC)
3937 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3938 
3939 		if (asserted & GPIO_4_FUNC)
3940 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3941 
3942 		if (port == 0) {
3943 			if (asserted & ATTN_GENERAL_ATTN_1) {
3944 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3945 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3946 			}
3947 			if (asserted & ATTN_GENERAL_ATTN_2) {
3948 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3949 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3950 			}
3951 			if (asserted & ATTN_GENERAL_ATTN_3) {
3952 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3953 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3954 			}
3955 		} else {
3956 			if (asserted & ATTN_GENERAL_ATTN_4) {
3957 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3958 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3959 			}
3960 			if (asserted & ATTN_GENERAL_ATTN_5) {
3961 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3962 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3963 			}
3964 			if (asserted & ATTN_GENERAL_ATTN_6) {
3965 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3966 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3967 			}
3968 		}
3969 
3970 	} /* if hardwired */
3971 
3972 	if (bp->common.int_block == INT_BLOCK_HC)
3973 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3974 			    COMMAND_REG_ATTN_BITS_SET);
3975 	else
3976 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3977 
3978 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3979 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3980 	REG_WR(bp, reg_addr, asserted);
3981 
3982 	/* now set back the mask */
3983 	if (asserted & ATTN_NIG_FOR_FUNC) {
3984 		/* Verify that IGU ack through BAR was written before restoring
3985 		 * NIG mask. This loop should exit after 2-3 iterations max.
3986 		 */
3987 		if (bp->common.int_block != INT_BLOCK_HC) {
3988 			u32 cnt = 0, igu_acked;
3989 			do {
3990 				igu_acked = REG_RD(bp,
3991 						   IGU_REG_ATTENTION_ACK_BITS);
3992 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3993 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3994 			if (!igu_acked)
3995 				DP(NETIF_MSG_HW,
3996 				   "Failed to verify IGU ack on time\n");
3997 			barrier();
3998 		}
3999 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4000 		bnx2x_release_phy_lock(bp);
4001 	}
4002 }
4003 
4004 static void bnx2x_fan_failure(struct bnx2x *bp)
4005 {
4006 	int port = BP_PORT(bp);
4007 	u32 ext_phy_config;
4008 	/* mark the failure */
4009 	ext_phy_config =
4010 		SHMEM_RD(bp,
4011 			 dev_info.port_hw_config[port].external_phy_config);
4012 
4013 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4014 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4015 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4016 		 ext_phy_config);
4017 
4018 	/* log the failure */
4019 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4020 			    "Please contact OEM Support for assistance\n");
4021 
4022 	/* Schedule device reset (unload)
4023 	 * This is due to some boards consuming sufficient power when driver is
4024 	 * up to overheat if fan fails.
4025 	 */
4026 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4027 }
4028 
4029 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4030 {
4031 	int port = BP_PORT(bp);
4032 	int reg_offset;
4033 	u32 val;
4034 
4035 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4036 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4037 
4038 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4039 
4040 		val = REG_RD(bp, reg_offset);
4041 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4042 		REG_WR(bp, reg_offset, val);
4043 
4044 		BNX2X_ERR("SPIO5 hw attention\n");
4045 
4046 		/* Fan failure attention */
4047 		bnx2x_hw_reset_phy(&bp->link_params);
4048 		bnx2x_fan_failure(bp);
4049 	}
4050 
4051 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4052 		bnx2x_acquire_phy_lock(bp);
4053 		bnx2x_handle_module_detect_int(&bp->link_params);
4054 		bnx2x_release_phy_lock(bp);
4055 	}
4056 
4057 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
4058 
4059 		val = REG_RD(bp, reg_offset);
4060 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4061 		REG_WR(bp, reg_offset, val);
4062 
4063 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4064 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4065 		bnx2x_panic();
4066 	}
4067 }
4068 
4069 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4070 {
4071 	u32 val;
4072 
4073 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4074 
4075 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4076 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4077 		/* DORQ discard attention */
4078 		if (val & 0x2)
4079 			BNX2X_ERR("FATAL error from DORQ\n");
4080 	}
4081 
4082 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
4083 
4084 		int port = BP_PORT(bp);
4085 		int reg_offset;
4086 
4087 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4088 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4089 
4090 		val = REG_RD(bp, reg_offset);
4091 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4092 		REG_WR(bp, reg_offset, val);
4093 
4094 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4095 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4096 		bnx2x_panic();
4097 	}
4098 }
4099 
4100 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4101 {
4102 	u32 val;
4103 
4104 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4105 
4106 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4107 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4108 		/* CFC error attention */
4109 		if (val & 0x2)
4110 			BNX2X_ERR("FATAL error from CFC\n");
4111 	}
4112 
4113 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4114 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4115 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4116 		/* RQ_USDMDP_FIFO_OVERFLOW */
4117 		if (val & 0x18000)
4118 			BNX2X_ERR("FATAL error from PXP\n");
4119 
4120 		if (!CHIP_IS_E1x(bp)) {
4121 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4122 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4123 		}
4124 	}
4125 
4126 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
4127 
4128 		int port = BP_PORT(bp);
4129 		int reg_offset;
4130 
4131 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4132 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4133 
4134 		val = REG_RD(bp, reg_offset);
4135 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4136 		REG_WR(bp, reg_offset, val);
4137 
4138 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4139 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4140 		bnx2x_panic();
4141 	}
4142 }
4143 
4144 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4145 {
4146 	u32 val;
4147 
4148 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4149 
4150 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4151 			int func = BP_FUNC(bp);
4152 
4153 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4154 			bnx2x_read_mf_cfg(bp);
4155 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4156 					func_mf_config[BP_ABS_FUNC(bp)].config);
4157 			val = SHMEM_RD(bp,
4158 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4159 			if (val & DRV_STATUS_DCC_EVENT_MASK)
4160 				bnx2x_dcc_event(bp,
4161 					    (val & DRV_STATUS_DCC_EVENT_MASK));
4162 
4163 			if (val & DRV_STATUS_SET_MF_BW)
4164 				bnx2x_set_mf_bw(bp);
4165 
4166 			if (val & DRV_STATUS_DRV_INFO_REQ)
4167 				bnx2x_handle_drv_info_req(bp);
4168 
4169 			if (val & DRV_STATUS_VF_DISABLED)
4170 				bnx2x_schedule_iov_task(bp,
4171 							BNX2X_IOV_HANDLE_FLR);
4172 
4173 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4174 				bnx2x_pmf_update(bp);
4175 
4176 			if (bp->port.pmf &&
4177 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4178 				bp->dcbx_enabled > 0)
4179 				/* start dcbx state machine */
4180 				bnx2x_dcbx_set_params(bp,
4181 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4182 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4183 				bnx2x_handle_afex_cmd(bp,
4184 					val & DRV_STATUS_AFEX_EVENT_MASK);
4185 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4186 				bnx2x_handle_eee_event(bp);
4187 			if (bp->link_vars.periodic_flags &
4188 			    PERIODIC_FLAGS_LINK_EVENT) {
4189 				/*  sync with link */
4190 				bnx2x_acquire_phy_lock(bp);
4191 				bp->link_vars.periodic_flags &=
4192 					~PERIODIC_FLAGS_LINK_EVENT;
4193 				bnx2x_release_phy_lock(bp);
4194 				if (IS_MF(bp))
4195 					bnx2x_link_sync_notify(bp);
4196 				bnx2x_link_report(bp);
4197 			}
4198 			/* Always call it here: bnx2x_link_report() will
4199 			 * prevent the link indication duplication.
4200 			 */
4201 			bnx2x__link_status_update(bp);
4202 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4203 
4204 			BNX2X_ERR("MC assert!\n");
4205 			bnx2x_mc_assert(bp);
4206 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4207 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4208 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4209 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4210 			bnx2x_panic();
4211 
4212 		} else if (attn & BNX2X_MCP_ASSERT) {
4213 
4214 			BNX2X_ERR("MCP assert!\n");
4215 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4216 			bnx2x_fw_dump(bp);
4217 
4218 		} else
4219 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4220 	}
4221 
4222 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4223 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4224 		if (attn & BNX2X_GRC_TIMEOUT) {
4225 			val = CHIP_IS_E1(bp) ? 0 :
4226 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4227 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4228 		}
4229 		if (attn & BNX2X_GRC_RSV) {
4230 			val = CHIP_IS_E1(bp) ? 0 :
4231 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4232 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4233 		}
4234 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4235 	}
4236 }
4237 
4238 /*
4239  * Bits map:
4240  * 0-7   - Engine0 load counter.
4241  * 8-15  - Engine1 load counter.
4242  * 16    - Engine0 RESET_IN_PROGRESS bit.
4243  * 17    - Engine1 RESET_IN_PROGRESS bit.
4244  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4245  *         on the engine
4246  * 19    - Engine1 ONE_IS_LOADED.
4247  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4248  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4249  *         just the one belonging to its engine).
4250  *
4251  */
4252 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4253 
4254 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4255 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4256 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4257 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4258 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4259 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4260 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4261 
4262 /*
4263  * Set the GLOBAL_RESET bit.
4264  *
4265  * Should be run under rtnl lock
4266  */
4267 void bnx2x_set_reset_global(struct bnx2x *bp)
4268 {
4269 	u32 val;
4270 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4271 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4272 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4273 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4274 }
4275 
4276 /*
4277  * Clear the GLOBAL_RESET bit.
4278  *
4279  * Should be run under rtnl lock
4280  */
4281 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4282 {
4283 	u32 val;
4284 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4285 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4286 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4287 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4288 }
4289 
4290 /*
4291  * Checks the GLOBAL_RESET bit.
4292  *
4293  * should be run under rtnl lock
4294  */
4295 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4296 {
4297 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4298 
4299 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4300 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4301 }
4302 
4303 /*
4304  * Clear RESET_IN_PROGRESS bit for the current engine.
4305  *
4306  * Should be run under rtnl lock
4307  */
4308 static void bnx2x_set_reset_done(struct bnx2x *bp)
4309 {
4310 	u32 val;
4311 	u32 bit = BP_PATH(bp) ?
4312 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4313 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4314 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4315 
4316 	/* Clear the bit */
4317 	val &= ~bit;
4318 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4319 
4320 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4321 }
4322 
4323 /*
4324  * Set RESET_IN_PROGRESS for the current engine.
4325  *
4326  * should be run under rtnl lock
4327  */
4328 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4329 {
4330 	u32 val;
4331 	u32 bit = BP_PATH(bp) ?
4332 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4333 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4334 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4335 
4336 	/* Set the bit */
4337 	val |= bit;
4338 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4339 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4340 }
4341 
4342 /*
4343  * Checks the RESET_IN_PROGRESS bit for the given engine.
4344  * should be run under rtnl lock
4345  */
4346 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4347 {
4348 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4349 	u32 bit = engine ?
4350 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4351 
4352 	/* return false if bit is set */
4353 	return (val & bit) ? false : true;
4354 }
4355 
4356 /*
4357  * set pf load for the current pf.
4358  *
4359  * should be run under rtnl lock
4360  */
4361 void bnx2x_set_pf_load(struct bnx2x *bp)
4362 {
4363 	u32 val1, val;
4364 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4365 			     BNX2X_PATH0_LOAD_CNT_MASK;
4366 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4367 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4368 
4369 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4370 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4371 
4372 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4373 
4374 	/* get the current counter value */
4375 	val1 = (val & mask) >> shift;
4376 
4377 	/* set bit of that PF */
4378 	val1 |= (1 << bp->pf_num);
4379 
4380 	/* clear the old value */
4381 	val &= ~mask;
4382 
4383 	/* set the new one */
4384 	val |= ((val1 << shift) & mask);
4385 
4386 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4387 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4388 }
4389 
4390 /**
4391  * bnx2x_clear_pf_load - clear pf load mark
4392  *
4393  * @bp:		driver handle
4394  *
4395  * Should be run under rtnl lock.
4396  * Decrements the load counter for the current engine. Returns
4397  * whether other functions are still loaded
4398  */
4399 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4400 {
4401 	u32 val1, val;
4402 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4403 			     BNX2X_PATH0_LOAD_CNT_MASK;
4404 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4405 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4406 
4407 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4408 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4409 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4410 
4411 	/* get the current counter value */
4412 	val1 = (val & mask) >> shift;
4413 
4414 	/* clear bit of that PF */
4415 	val1 &= ~(1 << bp->pf_num);
4416 
4417 	/* clear the old value */
4418 	val &= ~mask;
4419 
4420 	/* set the new one */
4421 	val |= ((val1 << shift) & mask);
4422 
4423 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4424 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4425 	return val1 != 0;
4426 }
4427 
4428 /*
4429  * Read the load status for the current engine.
4430  *
4431  * should be run under rtnl lock
4432  */
4433 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4434 {
4435 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4436 			     BNX2X_PATH0_LOAD_CNT_MASK);
4437 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4438 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4439 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4440 
4441 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4442 
4443 	val = (val & mask) >> shift;
4444 
4445 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4446 	   engine, val);
4447 
4448 	return val != 0;
4449 }
4450 
4451 static void _print_parity(struct bnx2x *bp, u32 reg)
4452 {
4453 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4454 }
4455 
4456 static void _print_next_block(int idx, const char *blk)
4457 {
4458 	pr_cont("%s%s", idx ? ", " : "", blk);
4459 }
4460 
4461 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4462 					    int *par_num, bool print)
4463 {
4464 	u32 cur_bit;
4465 	bool res;
4466 	int i;
4467 
4468 	res = false;
4469 
4470 	for (i = 0; sig; i++) {
4471 		cur_bit = (0x1UL << i);
4472 		if (sig & cur_bit) {
4473 			res |= true; /* Each bit is real error! */
4474 
4475 			if (print) {
4476 				switch (cur_bit) {
4477 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4478 					_print_next_block((*par_num)++, "BRB");
4479 					_print_parity(bp,
4480 						      BRB1_REG_BRB1_PRTY_STS);
4481 					break;
4482 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4483 					_print_next_block((*par_num)++,
4484 							  "PARSER");
4485 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4486 					break;
4487 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4488 					_print_next_block((*par_num)++, "TSDM");
4489 					_print_parity(bp,
4490 						      TSDM_REG_TSDM_PRTY_STS);
4491 					break;
4492 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4493 					_print_next_block((*par_num)++,
4494 							  "SEARCHER");
4495 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4496 					break;
4497 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4498 					_print_next_block((*par_num)++, "TCM");
4499 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4500 					break;
4501 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4502 					_print_next_block((*par_num)++,
4503 							  "TSEMI");
4504 					_print_parity(bp,
4505 						      TSEM_REG_TSEM_PRTY_STS_0);
4506 					_print_parity(bp,
4507 						      TSEM_REG_TSEM_PRTY_STS_1);
4508 					break;
4509 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4510 					_print_next_block((*par_num)++, "XPB");
4511 					_print_parity(bp, GRCBASE_XPB +
4512 							  PB_REG_PB_PRTY_STS);
4513 					break;
4514 				}
4515 			}
4516 
4517 			/* Clear the bit */
4518 			sig &= ~cur_bit;
4519 		}
4520 	}
4521 
4522 	return res;
4523 }
4524 
4525 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4526 					    int *par_num, bool *global,
4527 					    bool print)
4528 {
4529 	u32 cur_bit;
4530 	bool res;
4531 	int i;
4532 
4533 	res = false;
4534 
4535 	for (i = 0; sig; i++) {
4536 		cur_bit = (0x1UL << i);
4537 		if (sig & cur_bit) {
4538 			res |= true; /* Each bit is real error! */
4539 			switch (cur_bit) {
4540 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4541 				if (print) {
4542 					_print_next_block((*par_num)++, "PBF");
4543 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4544 				}
4545 				break;
4546 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4547 				if (print) {
4548 					_print_next_block((*par_num)++, "QM");
4549 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4550 				}
4551 				break;
4552 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4553 				if (print) {
4554 					_print_next_block((*par_num)++, "TM");
4555 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4556 				}
4557 				break;
4558 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4559 				if (print) {
4560 					_print_next_block((*par_num)++, "XSDM");
4561 					_print_parity(bp,
4562 						      XSDM_REG_XSDM_PRTY_STS);
4563 				}
4564 				break;
4565 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4566 				if (print) {
4567 					_print_next_block((*par_num)++, "XCM");
4568 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4569 				}
4570 				break;
4571 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4572 				if (print) {
4573 					_print_next_block((*par_num)++,
4574 							  "XSEMI");
4575 					_print_parity(bp,
4576 						      XSEM_REG_XSEM_PRTY_STS_0);
4577 					_print_parity(bp,
4578 						      XSEM_REG_XSEM_PRTY_STS_1);
4579 				}
4580 				break;
4581 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4582 				if (print) {
4583 					_print_next_block((*par_num)++,
4584 							  "DOORBELLQ");
4585 					_print_parity(bp,
4586 						      DORQ_REG_DORQ_PRTY_STS);
4587 				}
4588 				break;
4589 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4590 				if (print) {
4591 					_print_next_block((*par_num)++, "NIG");
4592 					if (CHIP_IS_E1x(bp)) {
4593 						_print_parity(bp,
4594 							NIG_REG_NIG_PRTY_STS);
4595 					} else {
4596 						_print_parity(bp,
4597 							NIG_REG_NIG_PRTY_STS_0);
4598 						_print_parity(bp,
4599 							NIG_REG_NIG_PRTY_STS_1);
4600 					}
4601 				}
4602 				break;
4603 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4604 				if (print)
4605 					_print_next_block((*par_num)++,
4606 							  "VAUX PCI CORE");
4607 				*global = true;
4608 				break;
4609 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4610 				if (print) {
4611 					_print_next_block((*par_num)++,
4612 							  "DEBUG");
4613 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4614 				}
4615 				break;
4616 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4617 				if (print) {
4618 					_print_next_block((*par_num)++, "USDM");
4619 					_print_parity(bp,
4620 						      USDM_REG_USDM_PRTY_STS);
4621 				}
4622 				break;
4623 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4624 				if (print) {
4625 					_print_next_block((*par_num)++, "UCM");
4626 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4627 				}
4628 				break;
4629 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4630 				if (print) {
4631 					_print_next_block((*par_num)++,
4632 							  "USEMI");
4633 					_print_parity(bp,
4634 						      USEM_REG_USEM_PRTY_STS_0);
4635 					_print_parity(bp,
4636 						      USEM_REG_USEM_PRTY_STS_1);
4637 				}
4638 				break;
4639 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4640 				if (print) {
4641 					_print_next_block((*par_num)++, "UPB");
4642 					_print_parity(bp, GRCBASE_UPB +
4643 							  PB_REG_PB_PRTY_STS);
4644 				}
4645 				break;
4646 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4647 				if (print) {
4648 					_print_next_block((*par_num)++, "CSDM");
4649 					_print_parity(bp,
4650 						      CSDM_REG_CSDM_PRTY_STS);
4651 				}
4652 				break;
4653 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4654 				if (print) {
4655 					_print_next_block((*par_num)++, "CCM");
4656 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4657 				}
4658 				break;
4659 			}
4660 
4661 			/* Clear the bit */
4662 			sig &= ~cur_bit;
4663 		}
4664 	}
4665 
4666 	return res;
4667 }
4668 
4669 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4670 					    int *par_num, bool print)
4671 {
4672 	u32 cur_bit;
4673 	bool res;
4674 	int i;
4675 
4676 	res = false;
4677 
4678 	for (i = 0; sig; i++) {
4679 		cur_bit = (0x1UL << i);
4680 		if (sig & cur_bit) {
4681 			res |= true; /* Each bit is real error! */
4682 			if (print) {
4683 				switch (cur_bit) {
4684 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4685 					_print_next_block((*par_num)++,
4686 							  "CSEMI");
4687 					_print_parity(bp,
4688 						      CSEM_REG_CSEM_PRTY_STS_0);
4689 					_print_parity(bp,
4690 						      CSEM_REG_CSEM_PRTY_STS_1);
4691 					break;
4692 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4693 					_print_next_block((*par_num)++, "PXP");
4694 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4695 					_print_parity(bp,
4696 						      PXP2_REG_PXP2_PRTY_STS_0);
4697 					_print_parity(bp,
4698 						      PXP2_REG_PXP2_PRTY_STS_1);
4699 					break;
4700 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4701 					_print_next_block((*par_num)++,
4702 							  "PXPPCICLOCKCLIENT");
4703 					break;
4704 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4705 					_print_next_block((*par_num)++, "CFC");
4706 					_print_parity(bp,
4707 						      CFC_REG_CFC_PRTY_STS);
4708 					break;
4709 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4710 					_print_next_block((*par_num)++, "CDU");
4711 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4712 					break;
4713 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4714 					_print_next_block((*par_num)++, "DMAE");
4715 					_print_parity(bp,
4716 						      DMAE_REG_DMAE_PRTY_STS);
4717 					break;
4718 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4719 					_print_next_block((*par_num)++, "IGU");
4720 					if (CHIP_IS_E1x(bp))
4721 						_print_parity(bp,
4722 							HC_REG_HC_PRTY_STS);
4723 					else
4724 						_print_parity(bp,
4725 							IGU_REG_IGU_PRTY_STS);
4726 					break;
4727 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4728 					_print_next_block((*par_num)++, "MISC");
4729 					_print_parity(bp,
4730 						      MISC_REG_MISC_PRTY_STS);
4731 					break;
4732 				}
4733 			}
4734 
4735 			/* Clear the bit */
4736 			sig &= ~cur_bit;
4737 		}
4738 	}
4739 
4740 	return res;
4741 }
4742 
4743 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4744 					    int *par_num, bool *global,
4745 					    bool print)
4746 {
4747 	bool res = false;
4748 	u32 cur_bit;
4749 	int i;
4750 
4751 	for (i = 0; sig; i++) {
4752 		cur_bit = (0x1UL << i);
4753 		if (sig & cur_bit) {
4754 			switch (cur_bit) {
4755 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4756 				if (print)
4757 					_print_next_block((*par_num)++,
4758 							  "MCP ROM");
4759 				*global = true;
4760 				res |= true;
4761 				break;
4762 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4763 				if (print)
4764 					_print_next_block((*par_num)++,
4765 							  "MCP UMP RX");
4766 				*global = true;
4767 				res |= true;
4768 				break;
4769 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4770 				if (print)
4771 					_print_next_block((*par_num)++,
4772 							  "MCP UMP TX");
4773 				*global = true;
4774 				res |= true;
4775 				break;
4776 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4777 				if (print)
4778 					_print_next_block((*par_num)++,
4779 							  "MCP SCPAD");
4780 				/* clear latched SCPAD PATIRY from MCP */
4781 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4782 				       1UL << 10);
4783 				break;
4784 			}
4785 
4786 			/* Clear the bit */
4787 			sig &= ~cur_bit;
4788 		}
4789 	}
4790 
4791 	return res;
4792 }
4793 
4794 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4795 					    int *par_num, bool print)
4796 {
4797 	u32 cur_bit;
4798 	bool res;
4799 	int i;
4800 
4801 	res = false;
4802 
4803 	for (i = 0; sig; i++) {
4804 		cur_bit = (0x1UL << i);
4805 		if (sig & cur_bit) {
4806 			res |= true; /* Each bit is real error! */
4807 			if (print) {
4808 				switch (cur_bit) {
4809 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4810 					_print_next_block((*par_num)++,
4811 							  "PGLUE_B");
4812 					_print_parity(bp,
4813 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4814 					break;
4815 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4816 					_print_next_block((*par_num)++, "ATC");
4817 					_print_parity(bp,
4818 						      ATC_REG_ATC_PRTY_STS);
4819 					break;
4820 				}
4821 			}
4822 			/* Clear the bit */
4823 			sig &= ~cur_bit;
4824 		}
4825 	}
4826 
4827 	return res;
4828 }
4829 
4830 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4831 			      u32 *sig)
4832 {
4833 	bool res = false;
4834 
4835 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4836 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4837 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4838 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4839 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4840 		int par_num = 0;
4841 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4842 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4843 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4844 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4845 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4846 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4847 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4848 		if (print)
4849 			netdev_err(bp->dev,
4850 				   "Parity errors detected in blocks: ");
4851 		res |= bnx2x_check_blocks_with_parity0(bp,
4852 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4853 		res |= bnx2x_check_blocks_with_parity1(bp,
4854 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4855 		res |= bnx2x_check_blocks_with_parity2(bp,
4856 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4857 		res |= bnx2x_check_blocks_with_parity3(bp,
4858 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4859 		res |= bnx2x_check_blocks_with_parity4(bp,
4860 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4861 
4862 		if (print)
4863 			pr_cont("\n");
4864 	}
4865 
4866 	return res;
4867 }
4868 
4869 /**
4870  * bnx2x_chk_parity_attn - checks for parity attentions.
4871  *
4872  * @bp:		driver handle
4873  * @global:	true if there was a global attention
4874  * @print:	show parity attention in syslog
4875  */
4876 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4877 {
4878 	struct attn_route attn = { {0} };
4879 	int port = BP_PORT(bp);
4880 
4881 	attn.sig[0] = REG_RD(bp,
4882 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4883 			     port*4);
4884 	attn.sig[1] = REG_RD(bp,
4885 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4886 			     port*4);
4887 	attn.sig[2] = REG_RD(bp,
4888 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4889 			     port*4);
4890 	attn.sig[3] = REG_RD(bp,
4891 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4892 			     port*4);
4893 	/* Since MCP attentions can't be disabled inside the block, we need to
4894 	 * read AEU registers to see whether they're currently disabled
4895 	 */
4896 	attn.sig[3] &= ((REG_RD(bp,
4897 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4898 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4899 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4900 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4901 
4902 	if (!CHIP_IS_E1x(bp))
4903 		attn.sig[4] = REG_RD(bp,
4904 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4905 				     port*4);
4906 
4907 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4908 }
4909 
4910 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4911 {
4912 	u32 val;
4913 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4914 
4915 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4916 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4917 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4918 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4919 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4920 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4921 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4922 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4923 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4924 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4925 		if (val &
4926 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4927 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4928 		if (val &
4929 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4930 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4931 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4932 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4933 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4934 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4935 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4936 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4937 	}
4938 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4939 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4940 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4941 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4942 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4943 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4944 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4945 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4946 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4947 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4948 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4949 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4950 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4951 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4952 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4953 	}
4954 
4955 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4956 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4957 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4958 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4959 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4960 	}
4961 }
4962 
4963 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4964 {
4965 	struct attn_route attn, *group_mask;
4966 	int port = BP_PORT(bp);
4967 	int index;
4968 	u32 reg_addr;
4969 	u32 val;
4970 	u32 aeu_mask;
4971 	bool global = false;
4972 
4973 	/* need to take HW lock because MCP or other port might also
4974 	   try to handle this event */
4975 	bnx2x_acquire_alr(bp);
4976 
4977 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4978 #ifndef BNX2X_STOP_ON_ERROR
4979 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4980 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4981 		/* Disable HW interrupts */
4982 		bnx2x_int_disable(bp);
4983 		/* In case of parity errors don't handle attentions so that
4984 		 * other function would "see" parity errors.
4985 		 */
4986 #else
4987 		bnx2x_panic();
4988 #endif
4989 		bnx2x_release_alr(bp);
4990 		return;
4991 	}
4992 
4993 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4994 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4995 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4996 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4997 	if (!CHIP_IS_E1x(bp))
4998 		attn.sig[4] =
4999 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5000 	else
5001 		attn.sig[4] = 0;
5002 
5003 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5004 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5005 
5006 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5007 		if (deasserted & (1 << index)) {
5008 			group_mask = &bp->attn_group[index];
5009 
5010 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5011 			   index,
5012 			   group_mask->sig[0], group_mask->sig[1],
5013 			   group_mask->sig[2], group_mask->sig[3],
5014 			   group_mask->sig[4]);
5015 
5016 			bnx2x_attn_int_deasserted4(bp,
5017 					attn.sig[4] & group_mask->sig[4]);
5018 			bnx2x_attn_int_deasserted3(bp,
5019 					attn.sig[3] & group_mask->sig[3]);
5020 			bnx2x_attn_int_deasserted1(bp,
5021 					attn.sig[1] & group_mask->sig[1]);
5022 			bnx2x_attn_int_deasserted2(bp,
5023 					attn.sig[2] & group_mask->sig[2]);
5024 			bnx2x_attn_int_deasserted0(bp,
5025 					attn.sig[0] & group_mask->sig[0]);
5026 		}
5027 	}
5028 
5029 	bnx2x_release_alr(bp);
5030 
5031 	if (bp->common.int_block == INT_BLOCK_HC)
5032 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5033 			    COMMAND_REG_ATTN_BITS_CLR);
5034 	else
5035 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5036 
5037 	val = ~deasserted;
5038 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5039 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5040 	REG_WR(bp, reg_addr, val);
5041 
5042 	if (~bp->attn_state & deasserted)
5043 		BNX2X_ERR("IGU ERROR\n");
5044 
5045 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5046 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5047 
5048 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5049 	aeu_mask = REG_RD(bp, reg_addr);
5050 
5051 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5052 	   aeu_mask, deasserted);
5053 	aeu_mask |= (deasserted & 0x3ff);
5054 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5055 
5056 	REG_WR(bp, reg_addr, aeu_mask);
5057 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5058 
5059 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5060 	bp->attn_state &= ~deasserted;
5061 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5062 }
5063 
5064 static void bnx2x_attn_int(struct bnx2x *bp)
5065 {
5066 	/* read local copy of bits */
5067 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5068 								attn_bits);
5069 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5070 								attn_bits_ack);
5071 	u32 attn_state = bp->attn_state;
5072 
5073 	/* look for changed bits */
5074 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5075 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5076 
5077 	DP(NETIF_MSG_HW,
5078 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5079 	   attn_bits, attn_ack, asserted, deasserted);
5080 
5081 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5082 		BNX2X_ERR("BAD attention state\n");
5083 
5084 	/* handle bits that were raised */
5085 	if (asserted)
5086 		bnx2x_attn_int_asserted(bp, asserted);
5087 
5088 	if (deasserted)
5089 		bnx2x_attn_int_deasserted(bp, deasserted);
5090 }
5091 
5092 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5093 		      u16 index, u8 op, u8 update)
5094 {
5095 	u32 igu_addr = bp->igu_base_addr;
5096 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5097 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5098 			     igu_addr);
5099 }
5100 
5101 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5102 {
5103 	/* No memory barriers */
5104 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5105 	mmiowb(); /* keep prod updates ordered */
5106 }
5107 
5108 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5109 				      union event_ring_elem *elem)
5110 {
5111 	u8 err = elem->message.error;
5112 
5113 	if (!bp->cnic_eth_dev.starting_cid  ||
5114 	    (cid < bp->cnic_eth_dev.starting_cid &&
5115 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5116 		return 1;
5117 
5118 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5119 
5120 	if (unlikely(err)) {
5121 
5122 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5123 			  cid);
5124 		bnx2x_panic_dump(bp, false);
5125 	}
5126 	bnx2x_cnic_cfc_comp(bp, cid, err);
5127 	return 0;
5128 }
5129 
5130 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5131 {
5132 	struct bnx2x_mcast_ramrod_params rparam;
5133 	int rc;
5134 
5135 	memset(&rparam, 0, sizeof(rparam));
5136 
5137 	rparam.mcast_obj = &bp->mcast_obj;
5138 
5139 	netif_addr_lock_bh(bp->dev);
5140 
5141 	/* Clear pending state for the last command */
5142 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5143 
5144 	/* If there are pending mcast commands - send them */
5145 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5146 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5147 		if (rc < 0)
5148 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5149 				  rc);
5150 	}
5151 
5152 	netif_addr_unlock_bh(bp->dev);
5153 }
5154 
5155 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5156 					    union event_ring_elem *elem)
5157 {
5158 	unsigned long ramrod_flags = 0;
5159 	int rc = 0;
5160 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5161 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5162 
5163 	/* Always push next commands out, don't wait here */
5164 	__set_bit(RAMROD_CONT, &ramrod_flags);
5165 
5166 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5167 			    >> BNX2X_SWCID_SHIFT) {
5168 	case BNX2X_FILTER_MAC_PENDING:
5169 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5170 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5171 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5172 		else
5173 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5174 
5175 		break;
5176 	case BNX2X_FILTER_MCAST_PENDING:
5177 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5178 		/* This is only relevant for 57710 where multicast MACs are
5179 		 * configured as unicast MACs using the same ramrod.
5180 		 */
5181 		bnx2x_handle_mcast_eqe(bp);
5182 		return;
5183 	default:
5184 		BNX2X_ERR("Unsupported classification command: %d\n",
5185 			  elem->message.data.eth_event.echo);
5186 		return;
5187 	}
5188 
5189 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5190 
5191 	if (rc < 0)
5192 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5193 	else if (rc > 0)
5194 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5195 }
5196 
5197 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5198 
5199 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5200 {
5201 	netif_addr_lock_bh(bp->dev);
5202 
5203 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5204 
5205 	/* Send rx_mode command again if was requested */
5206 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5207 		bnx2x_set_storm_rx_mode(bp);
5208 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5209 				    &bp->sp_state))
5210 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5211 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5212 				    &bp->sp_state))
5213 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5214 
5215 	netif_addr_unlock_bh(bp->dev);
5216 }
5217 
5218 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5219 					      union event_ring_elem *elem)
5220 {
5221 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5222 		DP(BNX2X_MSG_SP,
5223 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5224 		   elem->message.data.vif_list_event.func_bit_map);
5225 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5226 			elem->message.data.vif_list_event.func_bit_map);
5227 	} else if (elem->message.data.vif_list_event.echo ==
5228 		   VIF_LIST_RULE_SET) {
5229 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5230 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5231 	}
5232 }
5233 
5234 /* called with rtnl_lock */
5235 static void bnx2x_after_function_update(struct bnx2x *bp)
5236 {
5237 	int q, rc;
5238 	struct bnx2x_fastpath *fp;
5239 	struct bnx2x_queue_state_params queue_params = {NULL};
5240 	struct bnx2x_queue_update_params *q_update_params =
5241 		&queue_params.params.update;
5242 
5243 	/* Send Q update command with afex vlan removal values for all Qs */
5244 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5245 
5246 	/* set silent vlan removal values according to vlan mode */
5247 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5248 		  &q_update_params->update_flags);
5249 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5250 		  &q_update_params->update_flags);
5251 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5252 
5253 	/* in access mode mark mask and value are 0 to strip all vlans */
5254 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5255 		q_update_params->silent_removal_value = 0;
5256 		q_update_params->silent_removal_mask = 0;
5257 	} else {
5258 		q_update_params->silent_removal_value =
5259 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5260 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5261 	}
5262 
5263 	for_each_eth_queue(bp, q) {
5264 		/* Set the appropriate Queue object */
5265 		fp = &bp->fp[q];
5266 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5267 
5268 		/* send the ramrod */
5269 		rc = bnx2x_queue_state_change(bp, &queue_params);
5270 		if (rc < 0)
5271 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5272 				  q);
5273 	}
5274 
5275 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5276 		fp = &bp->fp[FCOE_IDX(bp)];
5277 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5278 
5279 		/* clear pending completion bit */
5280 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5281 
5282 		/* mark latest Q bit */
5283 		smp_mb__before_atomic();
5284 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5285 		smp_mb__after_atomic();
5286 
5287 		/* send Q update ramrod for FCoE Q */
5288 		rc = bnx2x_queue_state_change(bp, &queue_params);
5289 		if (rc < 0)
5290 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5291 				  q);
5292 	} else {
5293 		/* If no FCoE ring - ACK MCP now */
5294 		bnx2x_link_report(bp);
5295 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5296 	}
5297 }
5298 
5299 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5300 	struct bnx2x *bp, u32 cid)
5301 {
5302 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5303 
5304 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5305 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5306 	else
5307 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5308 }
5309 
5310 static void bnx2x_eq_int(struct bnx2x *bp)
5311 {
5312 	u16 hw_cons, sw_cons, sw_prod;
5313 	union event_ring_elem *elem;
5314 	u8 echo;
5315 	u32 cid;
5316 	u8 opcode;
5317 	int rc, spqe_cnt = 0;
5318 	struct bnx2x_queue_sp_obj *q_obj;
5319 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5320 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5321 
5322 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5323 
5324 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5325 	 * when we get the next-page we need to adjust so the loop
5326 	 * condition below will be met. The next element is the size of a
5327 	 * regular element and hence incrementing by 1
5328 	 */
5329 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5330 		hw_cons++;
5331 
5332 	/* This function may never run in parallel with itself for a
5333 	 * specific bp, thus there is no need in "paired" read memory
5334 	 * barrier here.
5335 	 */
5336 	sw_cons = bp->eq_cons;
5337 	sw_prod = bp->eq_prod;
5338 
5339 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5340 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5341 
5342 	for (; sw_cons != hw_cons;
5343 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5344 
5345 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5346 
5347 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5348 		if (!rc) {
5349 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5350 			   rc);
5351 			goto next_spqe;
5352 		}
5353 
5354 		/* elem CID originates from FW; actually LE */
5355 		cid = SW_CID((__force __le32)
5356 			     elem->message.data.cfc_del_event.cid);
5357 		opcode = elem->message.opcode;
5358 
5359 		/* handle eq element */
5360 		switch (opcode) {
5361 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5362 			bnx2x_vf_mbx_schedule(bp,
5363 					      &elem->message.data.vf_pf_event);
5364 			continue;
5365 
5366 		case EVENT_RING_OPCODE_STAT_QUERY:
5367 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5368 			       "got statistics comp event %d\n",
5369 			       bp->stats_comp++);
5370 			/* nothing to do with stats comp */
5371 			goto next_spqe;
5372 
5373 		case EVENT_RING_OPCODE_CFC_DEL:
5374 			/* handle according to cid range */
5375 			/*
5376 			 * we may want to verify here that the bp state is
5377 			 * HALTING
5378 			 */
5379 			DP(BNX2X_MSG_SP,
5380 			   "got delete ramrod for MULTI[%d]\n", cid);
5381 
5382 			if (CNIC_LOADED(bp) &&
5383 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5384 				goto next_spqe;
5385 
5386 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5387 
5388 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5389 				break;
5390 
5391 			goto next_spqe;
5392 
5393 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5394 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5395 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5396 			if (f_obj->complete_cmd(bp, f_obj,
5397 						BNX2X_F_CMD_TX_STOP))
5398 				break;
5399 			goto next_spqe;
5400 
5401 		case EVENT_RING_OPCODE_START_TRAFFIC:
5402 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5403 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5404 			if (f_obj->complete_cmd(bp, f_obj,
5405 						BNX2X_F_CMD_TX_START))
5406 				break;
5407 			goto next_spqe;
5408 
5409 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5410 			echo = elem->message.data.function_update_event.echo;
5411 			if (echo == SWITCH_UPDATE) {
5412 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5413 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5414 				if (f_obj->complete_cmd(
5415 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5416 					break;
5417 
5418 			} else {
5419 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5420 
5421 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5422 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5423 				f_obj->complete_cmd(bp, f_obj,
5424 						    BNX2X_F_CMD_AFEX_UPDATE);
5425 
5426 				/* We will perform the Queues update from
5427 				 * sp_rtnl task as all Queue SP operations
5428 				 * should run under rtnl_lock.
5429 				 */
5430 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5431 			}
5432 
5433 			goto next_spqe;
5434 
5435 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5436 			f_obj->complete_cmd(bp, f_obj,
5437 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5438 			bnx2x_after_afex_vif_lists(bp, elem);
5439 			goto next_spqe;
5440 		case EVENT_RING_OPCODE_FUNCTION_START:
5441 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5442 			   "got FUNC_START ramrod\n");
5443 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5444 				break;
5445 
5446 			goto next_spqe;
5447 
5448 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5449 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5450 			   "got FUNC_STOP ramrod\n");
5451 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5452 				break;
5453 
5454 			goto next_spqe;
5455 		}
5456 
5457 		switch (opcode | bp->state) {
5458 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5459 		      BNX2X_STATE_OPEN):
5460 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5461 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5462 			cid = elem->message.data.eth_event.echo &
5463 				BNX2X_SWCID_MASK;
5464 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5465 			   cid);
5466 			rss_raw->clear_pending(rss_raw);
5467 			break;
5468 
5469 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5470 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5471 		case (EVENT_RING_OPCODE_SET_MAC |
5472 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5473 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5474 		      BNX2X_STATE_OPEN):
5475 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5476 		      BNX2X_STATE_DIAG):
5477 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5478 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5479 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5480 			bnx2x_handle_classification_eqe(bp, elem);
5481 			break;
5482 
5483 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5484 		      BNX2X_STATE_OPEN):
5485 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5486 		      BNX2X_STATE_DIAG):
5487 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5488 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5489 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5490 			bnx2x_handle_mcast_eqe(bp);
5491 			break;
5492 
5493 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5494 		      BNX2X_STATE_OPEN):
5495 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5496 		      BNX2X_STATE_DIAG):
5497 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5498 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5499 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5500 			bnx2x_handle_rx_mode_eqe(bp);
5501 			break;
5502 		default:
5503 			/* unknown event log error and continue */
5504 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5505 				  elem->message.opcode, bp->state);
5506 		}
5507 next_spqe:
5508 		spqe_cnt++;
5509 	} /* for */
5510 
5511 	smp_mb__before_atomic();
5512 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5513 
5514 	bp->eq_cons = sw_cons;
5515 	bp->eq_prod = sw_prod;
5516 	/* Make sure that above mem writes were issued towards the memory */
5517 	smp_wmb();
5518 
5519 	/* update producer */
5520 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5521 }
5522 
5523 static void bnx2x_sp_task(struct work_struct *work)
5524 {
5525 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5526 
5527 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5528 
5529 	/* make sure the atomic interrupt_occurred has been written */
5530 	smp_rmb();
5531 	if (atomic_read(&bp->interrupt_occurred)) {
5532 
5533 		/* what work needs to be performed? */
5534 		u16 status = bnx2x_update_dsb_idx(bp);
5535 
5536 		DP(BNX2X_MSG_SP, "status %x\n", status);
5537 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5538 		atomic_set(&bp->interrupt_occurred, 0);
5539 
5540 		/* HW attentions */
5541 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5542 			bnx2x_attn_int(bp);
5543 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5544 		}
5545 
5546 		/* SP events: STAT_QUERY and others */
5547 		if (status & BNX2X_DEF_SB_IDX) {
5548 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5549 
5550 		if (FCOE_INIT(bp) &&
5551 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5552 				/* Prevent local bottom-halves from running as
5553 				 * we are going to change the local NAPI list.
5554 				 */
5555 				local_bh_disable();
5556 				napi_schedule(&bnx2x_fcoe(bp, napi));
5557 				local_bh_enable();
5558 			}
5559 
5560 			/* Handle EQ completions */
5561 			bnx2x_eq_int(bp);
5562 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5563 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5564 
5565 			status &= ~BNX2X_DEF_SB_IDX;
5566 		}
5567 
5568 		/* if status is non zero then perhaps something went wrong */
5569 		if (unlikely(status))
5570 			DP(BNX2X_MSG_SP,
5571 			   "got an unknown interrupt! (status 0x%x)\n", status);
5572 
5573 		/* ack status block only if something was actually handled */
5574 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5575 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5576 	}
5577 
5578 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5579 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5580 			       &bp->sp_state)) {
5581 		bnx2x_link_report(bp);
5582 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5583 	}
5584 }
5585 
5586 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5587 {
5588 	struct net_device *dev = dev_instance;
5589 	struct bnx2x *bp = netdev_priv(dev);
5590 
5591 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5592 		     IGU_INT_DISABLE, 0);
5593 
5594 #ifdef BNX2X_STOP_ON_ERROR
5595 	if (unlikely(bp->panic))
5596 		return IRQ_HANDLED;
5597 #endif
5598 
5599 	if (CNIC_LOADED(bp)) {
5600 		struct cnic_ops *c_ops;
5601 
5602 		rcu_read_lock();
5603 		c_ops = rcu_dereference(bp->cnic_ops);
5604 		if (c_ops)
5605 			c_ops->cnic_handler(bp->cnic_data, NULL);
5606 		rcu_read_unlock();
5607 	}
5608 
5609 	/* schedule sp task to perform default status block work, ack
5610 	 * attentions and enable interrupts.
5611 	 */
5612 	bnx2x_schedule_sp_task(bp);
5613 
5614 	return IRQ_HANDLED;
5615 }
5616 
5617 /* end of slow path */
5618 
5619 void bnx2x_drv_pulse(struct bnx2x *bp)
5620 {
5621 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5622 		 bp->fw_drv_pulse_wr_seq);
5623 }
5624 
5625 static void bnx2x_timer(unsigned long data)
5626 {
5627 	struct bnx2x *bp = (struct bnx2x *) data;
5628 
5629 	if (!netif_running(bp->dev))
5630 		return;
5631 
5632 	if (IS_PF(bp) &&
5633 	    !BP_NOMCP(bp)) {
5634 		int mb_idx = BP_FW_MB_IDX(bp);
5635 		u16 drv_pulse;
5636 		u16 mcp_pulse;
5637 
5638 		++bp->fw_drv_pulse_wr_seq;
5639 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5640 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5641 		bnx2x_drv_pulse(bp);
5642 
5643 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5644 			     MCP_PULSE_SEQ_MASK);
5645 		/* The delta between driver pulse and mcp response
5646 		 * should not get too big. If the MFW is more than 5 pulses
5647 		 * behind, we should worry about it enough to generate an error
5648 		 * log.
5649 		 */
5650 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5651 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5652 				  drv_pulse, mcp_pulse);
5653 	}
5654 
5655 	if (bp->state == BNX2X_STATE_OPEN)
5656 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5657 
5658 	/* sample pf vf bulletin board for new posts from pf */
5659 	if (IS_VF(bp))
5660 		bnx2x_timer_sriov(bp);
5661 
5662 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5663 }
5664 
5665 /* end of Statistics */
5666 
5667 /* nic init */
5668 
5669 /*
5670  * nic init service functions
5671  */
5672 
5673 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5674 {
5675 	u32 i;
5676 	if (!(len%4) && !(addr%4))
5677 		for (i = 0; i < len; i += 4)
5678 			REG_WR(bp, addr + i, fill);
5679 	else
5680 		for (i = 0; i < len; i++)
5681 			REG_WR8(bp, addr + i, fill);
5682 }
5683 
5684 /* helper: writes FP SP data to FW - data_size in dwords */
5685 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5686 				int fw_sb_id,
5687 				u32 *sb_data_p,
5688 				u32 data_size)
5689 {
5690 	int index;
5691 	for (index = 0; index < data_size; index++)
5692 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5693 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5694 			sizeof(u32)*index,
5695 			*(sb_data_p + index));
5696 }
5697 
5698 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5699 {
5700 	u32 *sb_data_p;
5701 	u32 data_size = 0;
5702 	struct hc_status_block_data_e2 sb_data_e2;
5703 	struct hc_status_block_data_e1x sb_data_e1x;
5704 
5705 	/* disable the function first */
5706 	if (!CHIP_IS_E1x(bp)) {
5707 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5708 		sb_data_e2.common.state = SB_DISABLED;
5709 		sb_data_e2.common.p_func.vf_valid = false;
5710 		sb_data_p = (u32 *)&sb_data_e2;
5711 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5712 	} else {
5713 		memset(&sb_data_e1x, 0,
5714 		       sizeof(struct hc_status_block_data_e1x));
5715 		sb_data_e1x.common.state = SB_DISABLED;
5716 		sb_data_e1x.common.p_func.vf_valid = false;
5717 		sb_data_p = (u32 *)&sb_data_e1x;
5718 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5719 	}
5720 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5721 
5722 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5723 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5724 			CSTORM_STATUS_BLOCK_SIZE);
5725 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5726 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5727 			CSTORM_SYNC_BLOCK_SIZE);
5728 }
5729 
5730 /* helper:  writes SP SB data to FW */
5731 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5732 		struct hc_sp_status_block_data *sp_sb_data)
5733 {
5734 	int func = BP_FUNC(bp);
5735 	int i;
5736 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5737 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5738 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5739 			i*sizeof(u32),
5740 			*((u32 *)sp_sb_data + i));
5741 }
5742 
5743 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5744 {
5745 	int func = BP_FUNC(bp);
5746 	struct hc_sp_status_block_data sp_sb_data;
5747 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5748 
5749 	sp_sb_data.state = SB_DISABLED;
5750 	sp_sb_data.p_func.vf_valid = false;
5751 
5752 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5753 
5754 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5755 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5756 			CSTORM_SP_STATUS_BLOCK_SIZE);
5757 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5758 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5759 			CSTORM_SP_SYNC_BLOCK_SIZE);
5760 }
5761 
5762 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5763 					   int igu_sb_id, int igu_seg_id)
5764 {
5765 	hc_sm->igu_sb_id = igu_sb_id;
5766 	hc_sm->igu_seg_id = igu_seg_id;
5767 	hc_sm->timer_value = 0xFF;
5768 	hc_sm->time_to_expire = 0xFFFFFFFF;
5769 }
5770 
5771 /* allocates state machine ids. */
5772 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5773 {
5774 	/* zero out state machine indices */
5775 	/* rx indices */
5776 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5777 
5778 	/* tx indices */
5779 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5780 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5781 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5782 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5783 
5784 	/* map indices */
5785 	/* rx indices */
5786 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5787 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5788 
5789 	/* tx indices */
5790 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5791 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5792 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5793 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5794 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5795 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5796 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5797 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5798 }
5799 
5800 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5801 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5802 {
5803 	int igu_seg_id;
5804 
5805 	struct hc_status_block_data_e2 sb_data_e2;
5806 	struct hc_status_block_data_e1x sb_data_e1x;
5807 	struct hc_status_block_sm  *hc_sm_p;
5808 	int data_size;
5809 	u32 *sb_data_p;
5810 
5811 	if (CHIP_INT_MODE_IS_BC(bp))
5812 		igu_seg_id = HC_SEG_ACCESS_NORM;
5813 	else
5814 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5815 
5816 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5817 
5818 	if (!CHIP_IS_E1x(bp)) {
5819 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5820 		sb_data_e2.common.state = SB_ENABLED;
5821 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5822 		sb_data_e2.common.p_func.vf_id = vfid;
5823 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5824 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5825 		sb_data_e2.common.same_igu_sb_1b = true;
5826 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5827 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5828 		hc_sm_p = sb_data_e2.common.state_machine;
5829 		sb_data_p = (u32 *)&sb_data_e2;
5830 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5831 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5832 	} else {
5833 		memset(&sb_data_e1x, 0,
5834 		       sizeof(struct hc_status_block_data_e1x));
5835 		sb_data_e1x.common.state = SB_ENABLED;
5836 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5837 		sb_data_e1x.common.p_func.vf_id = 0xff;
5838 		sb_data_e1x.common.p_func.vf_valid = false;
5839 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5840 		sb_data_e1x.common.same_igu_sb_1b = true;
5841 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5842 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5843 		hc_sm_p = sb_data_e1x.common.state_machine;
5844 		sb_data_p = (u32 *)&sb_data_e1x;
5845 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5846 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5847 	}
5848 
5849 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5850 				       igu_sb_id, igu_seg_id);
5851 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5852 				       igu_sb_id, igu_seg_id);
5853 
5854 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5855 
5856 	/* write indices to HW - PCI guarantees endianity of regpairs */
5857 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5858 }
5859 
5860 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5861 				     u16 tx_usec, u16 rx_usec)
5862 {
5863 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5864 				    false, rx_usec);
5865 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5866 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5867 				       tx_usec);
5868 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5869 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5870 				       tx_usec);
5871 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5872 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5873 				       tx_usec);
5874 }
5875 
5876 static void bnx2x_init_def_sb(struct bnx2x *bp)
5877 {
5878 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5879 	dma_addr_t mapping = bp->def_status_blk_mapping;
5880 	int igu_sp_sb_index;
5881 	int igu_seg_id;
5882 	int port = BP_PORT(bp);
5883 	int func = BP_FUNC(bp);
5884 	int reg_offset, reg_offset_en5;
5885 	u64 section;
5886 	int index;
5887 	struct hc_sp_status_block_data sp_sb_data;
5888 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5889 
5890 	if (CHIP_INT_MODE_IS_BC(bp)) {
5891 		igu_sp_sb_index = DEF_SB_IGU_ID;
5892 		igu_seg_id = HC_SEG_ACCESS_DEF;
5893 	} else {
5894 		igu_sp_sb_index = bp->igu_dsb_id;
5895 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5896 	}
5897 
5898 	/* ATTN */
5899 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5900 					    atten_status_block);
5901 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5902 
5903 	bp->attn_state = 0;
5904 
5905 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5906 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5907 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5908 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5909 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5910 		int sindex;
5911 		/* take care of sig[0]..sig[4] */
5912 		for (sindex = 0; sindex < 4; sindex++)
5913 			bp->attn_group[index].sig[sindex] =
5914 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5915 
5916 		if (!CHIP_IS_E1x(bp))
5917 			/*
5918 			 * enable5 is separate from the rest of the registers,
5919 			 * and therefore the address skip is 4
5920 			 * and not 16 between the different groups
5921 			 */
5922 			bp->attn_group[index].sig[4] = REG_RD(bp,
5923 					reg_offset_en5 + 0x4*index);
5924 		else
5925 			bp->attn_group[index].sig[4] = 0;
5926 	}
5927 
5928 	if (bp->common.int_block == INT_BLOCK_HC) {
5929 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5930 				     HC_REG_ATTN_MSG0_ADDR_L);
5931 
5932 		REG_WR(bp, reg_offset, U64_LO(section));
5933 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5934 	} else if (!CHIP_IS_E1x(bp)) {
5935 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5936 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5937 	}
5938 
5939 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5940 					    sp_sb);
5941 
5942 	bnx2x_zero_sp_sb(bp);
5943 
5944 	/* PCI guarantees endianity of regpairs */
5945 	sp_sb_data.state		= SB_ENABLED;
5946 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5947 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5948 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5949 	sp_sb_data.igu_seg_id		= igu_seg_id;
5950 	sp_sb_data.p_func.pf_id		= func;
5951 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5952 	sp_sb_data.p_func.vf_id		= 0xff;
5953 
5954 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5955 
5956 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5957 }
5958 
5959 void bnx2x_update_coalesce(struct bnx2x *bp)
5960 {
5961 	int i;
5962 
5963 	for_each_eth_queue(bp, i)
5964 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5965 					 bp->tx_ticks, bp->rx_ticks);
5966 }
5967 
5968 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5969 {
5970 	spin_lock_init(&bp->spq_lock);
5971 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5972 
5973 	bp->spq_prod_idx = 0;
5974 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5975 	bp->spq_prod_bd = bp->spq;
5976 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5977 }
5978 
5979 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5980 {
5981 	int i;
5982 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5983 		union event_ring_elem *elem =
5984 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5985 
5986 		elem->next_page.addr.hi =
5987 			cpu_to_le32(U64_HI(bp->eq_mapping +
5988 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5989 		elem->next_page.addr.lo =
5990 			cpu_to_le32(U64_LO(bp->eq_mapping +
5991 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5992 	}
5993 	bp->eq_cons = 0;
5994 	bp->eq_prod = NUM_EQ_DESC;
5995 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5996 	/* we want a warning message before it gets wrought... */
5997 	atomic_set(&bp->eq_spq_left,
5998 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5999 }
6000 
6001 /* called with netif_addr_lock_bh() */
6002 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6003 			       unsigned long rx_mode_flags,
6004 			       unsigned long rx_accept_flags,
6005 			       unsigned long tx_accept_flags,
6006 			       unsigned long ramrod_flags)
6007 {
6008 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6009 	int rc;
6010 
6011 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6012 
6013 	/* Prepare ramrod parameters */
6014 	ramrod_param.cid = 0;
6015 	ramrod_param.cl_id = cl_id;
6016 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6017 	ramrod_param.func_id = BP_FUNC(bp);
6018 
6019 	ramrod_param.pstate = &bp->sp_state;
6020 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6021 
6022 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6023 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6024 
6025 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6026 
6027 	ramrod_param.ramrod_flags = ramrod_flags;
6028 	ramrod_param.rx_mode_flags = rx_mode_flags;
6029 
6030 	ramrod_param.rx_accept_flags = rx_accept_flags;
6031 	ramrod_param.tx_accept_flags = tx_accept_flags;
6032 
6033 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6034 	if (rc < 0) {
6035 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6036 		return rc;
6037 	}
6038 
6039 	return 0;
6040 }
6041 
6042 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6043 				   unsigned long *rx_accept_flags,
6044 				   unsigned long *tx_accept_flags)
6045 {
6046 	/* Clear the flags first */
6047 	*rx_accept_flags = 0;
6048 	*tx_accept_flags = 0;
6049 
6050 	switch (rx_mode) {
6051 	case BNX2X_RX_MODE_NONE:
6052 		/*
6053 		 * 'drop all' supersedes any accept flags that may have been
6054 		 * passed to the function.
6055 		 */
6056 		break;
6057 	case BNX2X_RX_MODE_NORMAL:
6058 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6059 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6060 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6061 
6062 		/* internal switching mode */
6063 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6064 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6065 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6066 
6067 		break;
6068 	case BNX2X_RX_MODE_ALLMULTI:
6069 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6070 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6071 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6072 
6073 		/* internal switching mode */
6074 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6075 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6076 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6077 
6078 		break;
6079 	case BNX2X_RX_MODE_PROMISC:
6080 		/* According to definition of SI mode, iface in promisc mode
6081 		 * should receive matched and unmatched (in resolution of port)
6082 		 * unicast packets.
6083 		 */
6084 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6085 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6086 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6087 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6088 
6089 		/* internal switching mode */
6090 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6091 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6092 
6093 		if (IS_MF_SI(bp))
6094 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6095 		else
6096 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6097 
6098 		break;
6099 	default:
6100 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6101 		return -EINVAL;
6102 	}
6103 
6104 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6105 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
6106 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6107 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6108 	}
6109 
6110 	return 0;
6111 }
6112 
6113 /* called with netif_addr_lock_bh() */
6114 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6115 {
6116 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6117 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6118 	int rc;
6119 
6120 	if (!NO_FCOE(bp))
6121 		/* Configure rx_mode of FCoE Queue */
6122 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6123 
6124 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6125 				     &tx_accept_flags);
6126 	if (rc)
6127 		return rc;
6128 
6129 	__set_bit(RAMROD_RX, &ramrod_flags);
6130 	__set_bit(RAMROD_TX, &ramrod_flags);
6131 
6132 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6133 				   rx_accept_flags, tx_accept_flags,
6134 				   ramrod_flags);
6135 }
6136 
6137 static void bnx2x_init_internal_common(struct bnx2x *bp)
6138 {
6139 	int i;
6140 
6141 	/* Zero this manually as its initialization is
6142 	   currently missing in the initTool */
6143 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6144 		REG_WR(bp, BAR_USTRORM_INTMEM +
6145 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6146 	if (!CHIP_IS_E1x(bp)) {
6147 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6148 			CHIP_INT_MODE_IS_BC(bp) ?
6149 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6150 	}
6151 }
6152 
6153 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6154 {
6155 	switch (load_code) {
6156 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6157 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6158 		bnx2x_init_internal_common(bp);
6159 		/* no break */
6160 
6161 	case FW_MSG_CODE_DRV_LOAD_PORT:
6162 		/* nothing to do */
6163 		/* no break */
6164 
6165 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6166 		/* internal memory per function is
6167 		   initialized inside bnx2x_pf_init */
6168 		break;
6169 
6170 	default:
6171 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6172 		break;
6173 	}
6174 }
6175 
6176 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6177 {
6178 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6179 }
6180 
6181 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6182 {
6183 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6184 }
6185 
6186 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6187 {
6188 	if (CHIP_IS_E1x(fp->bp))
6189 		return BP_L_ID(fp->bp) + fp->index;
6190 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6191 		return bnx2x_fp_igu_sb_id(fp);
6192 }
6193 
6194 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6195 {
6196 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6197 	u8 cos;
6198 	unsigned long q_type = 0;
6199 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6200 	fp->rx_queue = fp_idx;
6201 	fp->cid = fp_idx;
6202 	fp->cl_id = bnx2x_fp_cl_id(fp);
6203 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6204 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6205 	/* qZone id equals to FW (per path) client id */
6206 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6207 
6208 	/* init shortcut */
6209 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6210 
6211 	/* Setup SB indices */
6212 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6213 
6214 	/* Configure Queue State object */
6215 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6216 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6217 
6218 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6219 
6220 	/* init tx data */
6221 	for_each_cos_in_tx_queue(fp, cos) {
6222 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6223 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6224 				  FP_COS_TO_TXQ(fp, cos, bp),
6225 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6226 		cids[cos] = fp->txdata_ptr[cos]->cid;
6227 	}
6228 
6229 	/* nothing more for vf to do here */
6230 	if (IS_VF(bp))
6231 		return;
6232 
6233 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6234 		      fp->fw_sb_id, fp->igu_sb_id);
6235 	bnx2x_update_fpsb_idx(fp);
6236 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6237 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6238 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6239 
6240 	/**
6241 	 * Configure classification DBs: Always enable Tx switching
6242 	 */
6243 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6244 
6245 	DP(NETIF_MSG_IFUP,
6246 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6247 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6248 	   fp->igu_sb_id);
6249 }
6250 
6251 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6252 {
6253 	int i;
6254 
6255 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6256 		struct eth_tx_next_bd *tx_next_bd =
6257 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6258 
6259 		tx_next_bd->addr_hi =
6260 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6261 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6262 		tx_next_bd->addr_lo =
6263 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6264 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6265 	}
6266 
6267 	*txdata->tx_cons_sb = cpu_to_le16(0);
6268 
6269 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6270 	txdata->tx_db.data.zero_fill1 = 0;
6271 	txdata->tx_db.data.prod = 0;
6272 
6273 	txdata->tx_pkt_prod = 0;
6274 	txdata->tx_pkt_cons = 0;
6275 	txdata->tx_bd_prod = 0;
6276 	txdata->tx_bd_cons = 0;
6277 	txdata->tx_pkt = 0;
6278 }
6279 
6280 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6281 {
6282 	int i;
6283 
6284 	for_each_tx_queue_cnic(bp, i)
6285 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6286 }
6287 
6288 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6289 {
6290 	int i;
6291 	u8 cos;
6292 
6293 	for_each_eth_queue(bp, i)
6294 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6295 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6296 }
6297 
6298 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6299 {
6300 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6301 	unsigned long q_type = 0;
6302 
6303 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6304 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6305 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6306 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6307 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6308 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6309 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6310 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6311 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6312 			  fp);
6313 
6314 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6315 
6316 	/* qZone id equals to FW (per path) client id */
6317 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6318 	/* init shortcut */
6319 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6320 		bnx2x_rx_ustorm_prods_offset(fp);
6321 
6322 	/* Configure Queue State object */
6323 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6324 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6325 
6326 	/* No multi-CoS for FCoE L2 client */
6327 	BUG_ON(fp->max_cos != 1);
6328 
6329 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6330 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6331 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6332 
6333 	DP(NETIF_MSG_IFUP,
6334 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6335 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6336 	   fp->igu_sb_id);
6337 }
6338 
6339 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6340 {
6341 	if (!NO_FCOE(bp))
6342 		bnx2x_init_fcoe_fp(bp);
6343 
6344 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6345 		      BNX2X_VF_ID_INVALID, false,
6346 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6347 
6348 	/* ensure status block indices were read */
6349 	rmb();
6350 	bnx2x_init_rx_rings_cnic(bp);
6351 	bnx2x_init_tx_rings_cnic(bp);
6352 
6353 	/* flush all */
6354 	mb();
6355 	mmiowb();
6356 }
6357 
6358 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6359 {
6360 	int i;
6361 
6362 	/* Setup NIC internals and enable interrupts */
6363 	for_each_eth_queue(bp, i)
6364 		bnx2x_init_eth_fp(bp, i);
6365 
6366 	/* ensure status block indices were read */
6367 	rmb();
6368 	bnx2x_init_rx_rings(bp);
6369 	bnx2x_init_tx_rings(bp);
6370 
6371 	if (IS_PF(bp)) {
6372 		/* Initialize MOD_ABS interrupts */
6373 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6374 				       bp->common.shmem_base,
6375 				       bp->common.shmem2_base, BP_PORT(bp));
6376 
6377 		/* initialize the default status block and sp ring */
6378 		bnx2x_init_def_sb(bp);
6379 		bnx2x_update_dsb_idx(bp);
6380 		bnx2x_init_sp_ring(bp);
6381 	} else {
6382 		bnx2x_memset_stats(bp);
6383 	}
6384 }
6385 
6386 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6387 {
6388 	bnx2x_init_eq_ring(bp);
6389 	bnx2x_init_internal(bp, load_code);
6390 	bnx2x_pf_init(bp);
6391 	bnx2x_stats_init(bp);
6392 
6393 	/* flush all before enabling interrupts */
6394 	mb();
6395 	mmiowb();
6396 
6397 	bnx2x_int_enable(bp);
6398 
6399 	/* Check for SPIO5 */
6400 	bnx2x_attn_int_deasserted0(bp,
6401 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6402 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6403 }
6404 
6405 /* gzip service functions */
6406 static int bnx2x_gunzip_init(struct bnx2x *bp)
6407 {
6408 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6409 					    &bp->gunzip_mapping, GFP_KERNEL);
6410 	if (bp->gunzip_buf  == NULL)
6411 		goto gunzip_nomem1;
6412 
6413 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6414 	if (bp->strm  == NULL)
6415 		goto gunzip_nomem2;
6416 
6417 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6418 	if (bp->strm->workspace == NULL)
6419 		goto gunzip_nomem3;
6420 
6421 	return 0;
6422 
6423 gunzip_nomem3:
6424 	kfree(bp->strm);
6425 	bp->strm = NULL;
6426 
6427 gunzip_nomem2:
6428 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6429 			  bp->gunzip_mapping);
6430 	bp->gunzip_buf = NULL;
6431 
6432 gunzip_nomem1:
6433 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6434 	return -ENOMEM;
6435 }
6436 
6437 static void bnx2x_gunzip_end(struct bnx2x *bp)
6438 {
6439 	if (bp->strm) {
6440 		vfree(bp->strm->workspace);
6441 		kfree(bp->strm);
6442 		bp->strm = NULL;
6443 	}
6444 
6445 	if (bp->gunzip_buf) {
6446 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6447 				  bp->gunzip_mapping);
6448 		bp->gunzip_buf = NULL;
6449 	}
6450 }
6451 
6452 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6453 {
6454 	int n, rc;
6455 
6456 	/* check gzip header */
6457 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6458 		BNX2X_ERR("Bad gzip header\n");
6459 		return -EINVAL;
6460 	}
6461 
6462 	n = 10;
6463 
6464 #define FNAME				0x8
6465 
6466 	if (zbuf[3] & FNAME)
6467 		while ((zbuf[n++] != 0) && (n < len));
6468 
6469 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6470 	bp->strm->avail_in = len - n;
6471 	bp->strm->next_out = bp->gunzip_buf;
6472 	bp->strm->avail_out = FW_BUF_SIZE;
6473 
6474 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6475 	if (rc != Z_OK)
6476 		return rc;
6477 
6478 	rc = zlib_inflate(bp->strm, Z_FINISH);
6479 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6480 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6481 			   bp->strm->msg);
6482 
6483 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6484 	if (bp->gunzip_outlen & 0x3)
6485 		netdev_err(bp->dev,
6486 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6487 				bp->gunzip_outlen);
6488 	bp->gunzip_outlen >>= 2;
6489 
6490 	zlib_inflateEnd(bp->strm);
6491 
6492 	if (rc == Z_STREAM_END)
6493 		return 0;
6494 
6495 	return rc;
6496 }
6497 
6498 /* nic load/unload */
6499 
6500 /*
6501  * General service functions
6502  */
6503 
6504 /* send a NIG loopback debug packet */
6505 static void bnx2x_lb_pckt(struct bnx2x *bp)
6506 {
6507 	u32 wb_write[3];
6508 
6509 	/* Ethernet source and destination addresses */
6510 	wb_write[0] = 0x55555555;
6511 	wb_write[1] = 0x55555555;
6512 	wb_write[2] = 0x20;		/* SOP */
6513 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6514 
6515 	/* NON-IP protocol */
6516 	wb_write[0] = 0x09000000;
6517 	wb_write[1] = 0x55555555;
6518 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6519 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6520 }
6521 
6522 /* some of the internal memories
6523  * are not directly readable from the driver
6524  * to test them we send debug packets
6525  */
6526 static int bnx2x_int_mem_test(struct bnx2x *bp)
6527 {
6528 	int factor;
6529 	int count, i;
6530 	u32 val = 0;
6531 
6532 	if (CHIP_REV_IS_FPGA(bp))
6533 		factor = 120;
6534 	else if (CHIP_REV_IS_EMUL(bp))
6535 		factor = 200;
6536 	else
6537 		factor = 1;
6538 
6539 	/* Disable inputs of parser neighbor blocks */
6540 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6541 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6542 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6543 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6544 
6545 	/*  Write 0 to parser credits for CFC search request */
6546 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6547 
6548 	/* send Ethernet packet */
6549 	bnx2x_lb_pckt(bp);
6550 
6551 	/* TODO do i reset NIG statistic? */
6552 	/* Wait until NIG register shows 1 packet of size 0x10 */
6553 	count = 1000 * factor;
6554 	while (count) {
6555 
6556 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6557 		val = *bnx2x_sp(bp, wb_data[0]);
6558 		if (val == 0x10)
6559 			break;
6560 
6561 		usleep_range(10000, 20000);
6562 		count--;
6563 	}
6564 	if (val != 0x10) {
6565 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6566 		return -1;
6567 	}
6568 
6569 	/* Wait until PRS register shows 1 packet */
6570 	count = 1000 * factor;
6571 	while (count) {
6572 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6573 		if (val == 1)
6574 			break;
6575 
6576 		usleep_range(10000, 20000);
6577 		count--;
6578 	}
6579 	if (val != 0x1) {
6580 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6581 		return -2;
6582 	}
6583 
6584 	/* Reset and init BRB, PRS */
6585 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6586 	msleep(50);
6587 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6588 	msleep(50);
6589 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6590 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6591 
6592 	DP(NETIF_MSG_HW, "part2\n");
6593 
6594 	/* Disable inputs of parser neighbor blocks */
6595 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6596 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6597 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6598 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6599 
6600 	/* Write 0 to parser credits for CFC search request */
6601 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6602 
6603 	/* send 10 Ethernet packets */
6604 	for (i = 0; i < 10; i++)
6605 		bnx2x_lb_pckt(bp);
6606 
6607 	/* Wait until NIG register shows 10 + 1
6608 	   packets of size 11*0x10 = 0xb0 */
6609 	count = 1000 * factor;
6610 	while (count) {
6611 
6612 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6613 		val = *bnx2x_sp(bp, wb_data[0]);
6614 		if (val == 0xb0)
6615 			break;
6616 
6617 		usleep_range(10000, 20000);
6618 		count--;
6619 	}
6620 	if (val != 0xb0) {
6621 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6622 		return -3;
6623 	}
6624 
6625 	/* Wait until PRS register shows 2 packets */
6626 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6627 	if (val != 2)
6628 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6629 
6630 	/* Write 1 to parser credits for CFC search request */
6631 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6632 
6633 	/* Wait until PRS register shows 3 packets */
6634 	msleep(10 * factor);
6635 	/* Wait until NIG register shows 1 packet of size 0x10 */
6636 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6637 	if (val != 3)
6638 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6639 
6640 	/* clear NIG EOP FIFO */
6641 	for (i = 0; i < 11; i++)
6642 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6643 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6644 	if (val != 1) {
6645 		BNX2X_ERR("clear of NIG failed\n");
6646 		return -4;
6647 	}
6648 
6649 	/* Reset and init BRB, PRS, NIG */
6650 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6651 	msleep(50);
6652 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6653 	msleep(50);
6654 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6655 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6656 	if (!CNIC_SUPPORT(bp))
6657 		/* set NIC mode */
6658 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6659 
6660 	/* Enable inputs of parser neighbor blocks */
6661 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6662 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6663 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6664 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6665 
6666 	DP(NETIF_MSG_HW, "done\n");
6667 
6668 	return 0; /* OK */
6669 }
6670 
6671 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6672 {
6673 	u32 val;
6674 
6675 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6676 	if (!CHIP_IS_E1x(bp))
6677 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6678 	else
6679 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6680 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6681 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6682 	/*
6683 	 * mask read length error interrupts in brb for parser
6684 	 * (parsing unit and 'checksum and crc' unit)
6685 	 * these errors are legal (PU reads fixed length and CAC can cause
6686 	 * read length error on truncated packets)
6687 	 */
6688 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6689 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6690 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6691 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6692 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6693 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6694 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6695 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6696 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6697 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6698 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6699 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6700 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6701 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6702 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6703 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6704 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6705 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6706 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6707 
6708 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6709 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6710 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6711 	if (!CHIP_IS_E1x(bp))
6712 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6713 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6714 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6715 
6716 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6717 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6718 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6719 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6720 
6721 	if (!CHIP_IS_E1x(bp))
6722 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6723 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6724 
6725 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6726 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6727 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6728 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6729 }
6730 
6731 static void bnx2x_reset_common(struct bnx2x *bp)
6732 {
6733 	u32 val = 0x1400;
6734 
6735 	/* reset_common */
6736 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6737 	       0xd3ffff7f);
6738 
6739 	if (CHIP_IS_E3(bp)) {
6740 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6741 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6742 	}
6743 
6744 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6745 }
6746 
6747 static void bnx2x_setup_dmae(struct bnx2x *bp)
6748 {
6749 	bp->dmae_ready = 0;
6750 	spin_lock_init(&bp->dmae_lock);
6751 }
6752 
6753 static void bnx2x_init_pxp(struct bnx2x *bp)
6754 {
6755 	u16 devctl;
6756 	int r_order, w_order;
6757 
6758 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6759 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6760 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6761 	if (bp->mrrs == -1)
6762 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6763 	else {
6764 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6765 		r_order = bp->mrrs;
6766 	}
6767 
6768 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6769 }
6770 
6771 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6772 {
6773 	int is_required;
6774 	u32 val;
6775 	int port;
6776 
6777 	if (BP_NOMCP(bp))
6778 		return;
6779 
6780 	is_required = 0;
6781 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6782 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6783 
6784 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6785 		is_required = 1;
6786 
6787 	/*
6788 	 * The fan failure mechanism is usually related to the PHY type since
6789 	 * the power consumption of the board is affected by the PHY. Currently,
6790 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6791 	 */
6792 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6793 		for (port = PORT_0; port < PORT_MAX; port++) {
6794 			is_required |=
6795 				bnx2x_fan_failure_det_req(
6796 					bp,
6797 					bp->common.shmem_base,
6798 					bp->common.shmem2_base,
6799 					port);
6800 		}
6801 
6802 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6803 
6804 	if (is_required == 0)
6805 		return;
6806 
6807 	/* Fan failure is indicated by SPIO 5 */
6808 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6809 
6810 	/* set to active low mode */
6811 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6812 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6813 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6814 
6815 	/* enable interrupt to signal the IGU */
6816 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6817 	val |= MISC_SPIO_SPIO5;
6818 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6819 }
6820 
6821 void bnx2x_pf_disable(struct bnx2x *bp)
6822 {
6823 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6824 	val &= ~IGU_PF_CONF_FUNC_EN;
6825 
6826 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6827 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6828 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6829 }
6830 
6831 static void bnx2x__common_init_phy(struct bnx2x *bp)
6832 {
6833 	u32 shmem_base[2], shmem2_base[2];
6834 	/* Avoid common init in case MFW supports LFA */
6835 	if (SHMEM2_RD(bp, size) >
6836 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6837 		return;
6838 	shmem_base[0] =  bp->common.shmem_base;
6839 	shmem2_base[0] = bp->common.shmem2_base;
6840 	if (!CHIP_IS_E1x(bp)) {
6841 		shmem_base[1] =
6842 			SHMEM2_RD(bp, other_shmem_base_addr);
6843 		shmem2_base[1] =
6844 			SHMEM2_RD(bp, other_shmem2_base_addr);
6845 	}
6846 	bnx2x_acquire_phy_lock(bp);
6847 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6848 			      bp->common.chip_id);
6849 	bnx2x_release_phy_lock(bp);
6850 }
6851 
6852 /**
6853  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6854  *
6855  * @bp:		driver handle
6856  */
6857 static int bnx2x_init_hw_common(struct bnx2x *bp)
6858 {
6859 	u32 val;
6860 
6861 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6862 
6863 	/*
6864 	 * take the RESET lock to protect undi_unload flow from accessing
6865 	 * registers while we're resetting the chip
6866 	 */
6867 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6868 
6869 	bnx2x_reset_common(bp);
6870 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6871 
6872 	val = 0xfffc;
6873 	if (CHIP_IS_E3(bp)) {
6874 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6875 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6876 	}
6877 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6878 
6879 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6880 
6881 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6882 
6883 	if (!CHIP_IS_E1x(bp)) {
6884 		u8 abs_func_id;
6885 
6886 		/**
6887 		 * 4-port mode or 2-port mode we need to turn of master-enable
6888 		 * for everyone, after that, turn it back on for self.
6889 		 * so, we disregard multi-function or not, and always disable
6890 		 * for all functions on the given path, this means 0,2,4,6 for
6891 		 * path 0 and 1,3,5,7 for path 1
6892 		 */
6893 		for (abs_func_id = BP_PATH(bp);
6894 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6895 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6896 				REG_WR(bp,
6897 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6898 				    1);
6899 				continue;
6900 			}
6901 
6902 			bnx2x_pretend_func(bp, abs_func_id);
6903 			/* clear pf enable */
6904 			bnx2x_pf_disable(bp);
6905 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6906 		}
6907 	}
6908 
6909 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6910 	if (CHIP_IS_E1(bp)) {
6911 		/* enable HW interrupt from PXP on USDM overflow
6912 		   bit 16 on INT_MASK_0 */
6913 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6914 	}
6915 
6916 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6917 	bnx2x_init_pxp(bp);
6918 
6919 #ifdef __BIG_ENDIAN
6920 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6921 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6922 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6923 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6924 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6925 	/* make sure this value is 0 */
6926 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6927 
6928 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6929 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6930 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6931 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6932 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6933 #endif
6934 
6935 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6936 
6937 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6938 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6939 
6940 	/* let the HW do it's magic ... */
6941 	msleep(100);
6942 	/* finish PXP init */
6943 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6944 	if (val != 1) {
6945 		BNX2X_ERR("PXP2 CFG failed\n");
6946 		return -EBUSY;
6947 	}
6948 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6949 	if (val != 1) {
6950 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6951 		return -EBUSY;
6952 	}
6953 
6954 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6955 	 * have entries with value "0" and valid bit on.
6956 	 * This needs to be done by the first PF that is loaded in a path
6957 	 * (i.e. common phase)
6958 	 */
6959 	if (!CHIP_IS_E1x(bp)) {
6960 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6961  * (i.e. vnic3) to start even if it is marked as "scan-off".
6962  * This occurs when a different function (func2,3) is being marked
6963  * as "scan-off". Real-life scenario for example: if a driver is being
6964  * load-unloaded while func6,7 are down. This will cause the timer to access
6965  * the ilt, translate to a logical address and send a request to read/write.
6966  * Since the ilt for the function that is down is not valid, this will cause
6967  * a translation error which is unrecoverable.
6968  * The Workaround is intended to make sure that when this happens nothing fatal
6969  * will occur. The workaround:
6970  *	1.  First PF driver which loads on a path will:
6971  *		a.  After taking the chip out of reset, by using pretend,
6972  *		    it will write "0" to the following registers of
6973  *		    the other vnics.
6974  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6975  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6976  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6977  *		    And for itself it will write '1' to
6978  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6979  *		    dmae-operations (writing to pram for example.)
6980  *		    note: can be done for only function 6,7 but cleaner this
6981  *			  way.
6982  *		b.  Write zero+valid to the entire ILT.
6983  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6984  *		    VNIC3 (of that port). The range allocated will be the
6985  *		    entire ILT. This is needed to prevent  ILT range error.
6986  *	2.  Any PF driver load flow:
6987  *		a.  ILT update with the physical addresses of the allocated
6988  *		    logical pages.
6989  *		b.  Wait 20msec. - note that this timeout is needed to make
6990  *		    sure there are no requests in one of the PXP internal
6991  *		    queues with "old" ILT addresses.
6992  *		c.  PF enable in the PGLC.
6993  *		d.  Clear the was_error of the PF in the PGLC. (could have
6994  *		    occurred while driver was down)
6995  *		e.  PF enable in the CFC (WEAK + STRONG)
6996  *		f.  Timers scan enable
6997  *	3.  PF driver unload flow:
6998  *		a.  Clear the Timers scan_en.
6999  *		b.  Polling for scan_on=0 for that PF.
7000  *		c.  Clear the PF enable bit in the PXP.
7001  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7002  *		e.  Write zero+valid to all ILT entries (The valid bit must
7003  *		    stay set)
7004  *		f.  If this is VNIC 3 of a port then also init
7005  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7006  *		    to the last entry in the ILT.
7007  *
7008  *	Notes:
7009  *	Currently the PF error in the PGLC is non recoverable.
7010  *	In the future the there will be a recovery routine for this error.
7011  *	Currently attention is masked.
7012  *	Having an MCP lock on the load/unload process does not guarantee that
7013  *	there is no Timer disable during Func6/7 enable. This is because the
7014  *	Timers scan is currently being cleared by the MCP on FLR.
7015  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7016  *	there is error before clearing it. But the flow above is simpler and
7017  *	more general.
7018  *	All ILT entries are written by zero+valid and not just PF6/7
7019  *	ILT entries since in the future the ILT entries allocation for
7020  *	PF-s might be dynamic.
7021  */
7022 		struct ilt_client_info ilt_cli;
7023 		struct bnx2x_ilt ilt;
7024 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7025 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7026 
7027 		/* initialize dummy TM client */
7028 		ilt_cli.start = 0;
7029 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7030 		ilt_cli.client_num = ILT_CLIENT_TM;
7031 
7032 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7033 		 * Step 2: set the timers first/last ilt entry to point
7034 		 * to the entire range to prevent ILT range error for 3rd/4th
7035 		 * vnic	(this code assumes existence of the vnic)
7036 		 *
7037 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7038 		 * with dummy TM client
7039 		 *
7040 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7041 		 * and his brother are split registers
7042 		 */
7043 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7044 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7045 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7046 
7047 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7048 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7049 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7050 	}
7051 
7052 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7053 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7054 
7055 	if (!CHIP_IS_E1x(bp)) {
7056 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7057 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7058 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7059 
7060 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7061 
7062 		/* let the HW do it's magic ... */
7063 		do {
7064 			msleep(200);
7065 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7066 		} while (factor-- && (val != 1));
7067 
7068 		if (val != 1) {
7069 			BNX2X_ERR("ATC_INIT failed\n");
7070 			return -EBUSY;
7071 		}
7072 	}
7073 
7074 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7075 
7076 	bnx2x_iov_init_dmae(bp);
7077 
7078 	/* clean the DMAE memory */
7079 	bp->dmae_ready = 1;
7080 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7081 
7082 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7083 
7084 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7085 
7086 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7087 
7088 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7089 
7090 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7091 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7092 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7093 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7094 
7095 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7096 
7097 	/* QM queues pointers table */
7098 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7099 
7100 	/* soft reset pulse */
7101 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7102 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7103 
7104 	if (CNIC_SUPPORT(bp))
7105 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7106 
7107 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7108 
7109 	if (!CHIP_REV_IS_SLOW(bp))
7110 		/* enable hw interrupt from doorbell Q */
7111 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7112 
7113 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7114 
7115 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7116 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7117 
7118 	if (!CHIP_IS_E1(bp))
7119 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7120 
7121 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7122 		if (IS_MF_AFEX(bp)) {
7123 			/* configure that VNTag and VLAN headers must be
7124 			 * received in afex mode
7125 			 */
7126 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7127 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7128 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7129 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7130 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7131 		} else {
7132 			/* Bit-map indicating which L2 hdrs may appear
7133 			 * after the basic Ethernet header
7134 			 */
7135 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7136 			       bp->path_has_ovlan ? 7 : 6);
7137 		}
7138 	}
7139 
7140 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7141 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7142 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7143 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7144 
7145 	if (!CHIP_IS_E1x(bp)) {
7146 		/* reset VFC memories */
7147 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7148 			   VFC_MEMORIES_RST_REG_CAM_RST |
7149 			   VFC_MEMORIES_RST_REG_RAM_RST);
7150 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7151 			   VFC_MEMORIES_RST_REG_CAM_RST |
7152 			   VFC_MEMORIES_RST_REG_RAM_RST);
7153 
7154 		msleep(20);
7155 	}
7156 
7157 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7158 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7159 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7160 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7161 
7162 	/* sync semi rtc */
7163 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7164 	       0x80000000);
7165 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7166 	       0x80000000);
7167 
7168 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7169 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7170 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7171 
7172 	if (!CHIP_IS_E1x(bp)) {
7173 		if (IS_MF_AFEX(bp)) {
7174 			/* configure that VNTag and VLAN headers must be
7175 			 * sent in afex mode
7176 			 */
7177 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7178 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7179 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7180 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7181 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7182 		} else {
7183 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7184 			       bp->path_has_ovlan ? 7 : 6);
7185 		}
7186 	}
7187 
7188 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7189 
7190 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7191 
7192 	if (CNIC_SUPPORT(bp)) {
7193 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7194 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7195 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7196 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7197 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7198 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7199 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7200 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7201 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7202 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7203 	}
7204 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7205 
7206 	if (sizeof(union cdu_context) != 1024)
7207 		/* we currently assume that a context is 1024 bytes */
7208 		dev_alert(&bp->pdev->dev,
7209 			  "please adjust the size of cdu_context(%ld)\n",
7210 			  (long)sizeof(union cdu_context));
7211 
7212 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7213 	val = (4 << 24) + (0 << 12) + 1024;
7214 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7215 
7216 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7217 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7218 	/* enable context validation interrupt from CFC */
7219 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7220 
7221 	/* set the thresholds to prevent CFC/CDU race */
7222 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7223 
7224 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7225 
7226 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7227 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7228 
7229 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7230 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7231 
7232 	/* Reset PCIE errors for debug */
7233 	REG_WR(bp, 0x2814, 0xffffffff);
7234 	REG_WR(bp, 0x3820, 0xffffffff);
7235 
7236 	if (!CHIP_IS_E1x(bp)) {
7237 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7238 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7239 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7240 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7241 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7242 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7243 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7244 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7245 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7246 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7247 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7248 	}
7249 
7250 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7251 	if (!CHIP_IS_E1(bp)) {
7252 		/* in E3 this done in per-port section */
7253 		if (!CHIP_IS_E3(bp))
7254 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7255 	}
7256 	if (CHIP_IS_E1H(bp))
7257 		/* not applicable for E2 (and above ...) */
7258 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7259 
7260 	if (CHIP_REV_IS_SLOW(bp))
7261 		msleep(200);
7262 
7263 	/* finish CFC init */
7264 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7265 	if (val != 1) {
7266 		BNX2X_ERR("CFC LL_INIT failed\n");
7267 		return -EBUSY;
7268 	}
7269 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7270 	if (val != 1) {
7271 		BNX2X_ERR("CFC AC_INIT failed\n");
7272 		return -EBUSY;
7273 	}
7274 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7275 	if (val != 1) {
7276 		BNX2X_ERR("CFC CAM_INIT failed\n");
7277 		return -EBUSY;
7278 	}
7279 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7280 
7281 	if (CHIP_IS_E1(bp)) {
7282 		/* read NIG statistic
7283 		   to see if this is our first up since powerup */
7284 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7285 		val = *bnx2x_sp(bp, wb_data[0]);
7286 
7287 		/* do internal memory self test */
7288 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7289 			BNX2X_ERR("internal mem self test failed\n");
7290 			return -EBUSY;
7291 		}
7292 	}
7293 
7294 	bnx2x_setup_fan_failure_detection(bp);
7295 
7296 	/* clear PXP2 attentions */
7297 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7298 
7299 	bnx2x_enable_blocks_attention(bp);
7300 	bnx2x_enable_blocks_parity(bp);
7301 
7302 	if (!BP_NOMCP(bp)) {
7303 		if (CHIP_IS_E1x(bp))
7304 			bnx2x__common_init_phy(bp);
7305 	} else
7306 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7307 
7308 	return 0;
7309 }
7310 
7311 /**
7312  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7313  *
7314  * @bp:		driver handle
7315  */
7316 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7317 {
7318 	int rc = bnx2x_init_hw_common(bp);
7319 
7320 	if (rc)
7321 		return rc;
7322 
7323 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7324 	if (!BP_NOMCP(bp))
7325 		bnx2x__common_init_phy(bp);
7326 
7327 	return 0;
7328 }
7329 
7330 static int bnx2x_init_hw_port(struct bnx2x *bp)
7331 {
7332 	int port = BP_PORT(bp);
7333 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7334 	u32 low, high;
7335 	u32 val, reg;
7336 
7337 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7338 
7339 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7340 
7341 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7342 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7343 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7344 
7345 	/* Timers bug workaround: disables the pf_master bit in pglue at
7346 	 * common phase, we need to enable it here before any dmae access are
7347 	 * attempted. Therefore we manually added the enable-master to the
7348 	 * port phase (it also happens in the function phase)
7349 	 */
7350 	if (!CHIP_IS_E1x(bp))
7351 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7352 
7353 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7354 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7355 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7356 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7357 
7358 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7359 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7360 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7361 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7362 
7363 	/* QM cid (connection) count */
7364 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7365 
7366 	if (CNIC_SUPPORT(bp)) {
7367 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7368 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7369 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7370 	}
7371 
7372 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7373 
7374 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7375 
7376 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7377 
7378 		if (IS_MF(bp))
7379 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7380 		else if (bp->dev->mtu > 4096) {
7381 			if (bp->flags & ONE_PORT_FLAG)
7382 				low = 160;
7383 			else {
7384 				val = bp->dev->mtu;
7385 				/* (24*1024 + val*4)/256 */
7386 				low = 96 + (val/64) +
7387 						((val % 64) ? 1 : 0);
7388 			}
7389 		} else
7390 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7391 		high = low + 56;	/* 14*1024/256 */
7392 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7393 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7394 	}
7395 
7396 	if (CHIP_MODE_IS_4_PORT(bp))
7397 		REG_WR(bp, (BP_PORT(bp) ?
7398 			    BRB1_REG_MAC_GUARANTIED_1 :
7399 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7400 
7401 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7402 	if (CHIP_IS_E3B0(bp)) {
7403 		if (IS_MF_AFEX(bp)) {
7404 			/* configure headers for AFEX mode */
7405 			REG_WR(bp, BP_PORT(bp) ?
7406 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7407 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7408 			REG_WR(bp, BP_PORT(bp) ?
7409 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7410 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7411 			REG_WR(bp, BP_PORT(bp) ?
7412 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7413 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7414 		} else {
7415 			/* Ovlan exists only if we are in multi-function +
7416 			 * switch-dependent mode, in switch-independent there
7417 			 * is no ovlan headers
7418 			 */
7419 			REG_WR(bp, BP_PORT(bp) ?
7420 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7421 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7422 			       (bp->path_has_ovlan ? 7 : 6));
7423 		}
7424 	}
7425 
7426 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7427 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7428 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7429 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7430 
7431 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7432 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7433 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7434 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7435 
7436 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7437 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7438 
7439 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7440 
7441 	if (CHIP_IS_E1x(bp)) {
7442 		/* configure PBF to work without PAUSE mtu 9000 */
7443 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7444 
7445 		/* update threshold */
7446 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7447 		/* update init credit */
7448 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7449 
7450 		/* probe changes */
7451 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7452 		udelay(50);
7453 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7454 	}
7455 
7456 	if (CNIC_SUPPORT(bp))
7457 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7458 
7459 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7460 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7461 
7462 	if (CHIP_IS_E1(bp)) {
7463 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7464 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7465 	}
7466 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7467 
7468 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7469 
7470 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7471 	/* init aeu_mask_attn_func_0/1:
7472 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7473 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7474 	 *             bits 4-7 are used for "per vn group attention" */
7475 	val = IS_MF(bp) ? 0xF7 : 0x7;
7476 	/* Enable DCBX attention for all but E1 */
7477 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7478 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7479 
7480 	/* SCPAD_PARITY should NOT trigger close the gates */
7481 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7482 	REG_WR(bp, reg,
7483 	       REG_RD(bp, reg) &
7484 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7485 
7486 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7487 	REG_WR(bp, reg,
7488 	       REG_RD(bp, reg) &
7489 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7490 
7491 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7492 
7493 	if (!CHIP_IS_E1x(bp)) {
7494 		/* Bit-map indicating which L2 hdrs may appear after the
7495 		 * basic Ethernet header
7496 		 */
7497 		if (IS_MF_AFEX(bp))
7498 			REG_WR(bp, BP_PORT(bp) ?
7499 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7500 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7501 		else
7502 			REG_WR(bp, BP_PORT(bp) ?
7503 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7504 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7505 			       IS_MF_SD(bp) ? 7 : 6);
7506 
7507 		if (CHIP_IS_E3(bp))
7508 			REG_WR(bp, BP_PORT(bp) ?
7509 				   NIG_REG_LLH1_MF_MODE :
7510 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7511 	}
7512 	if (!CHIP_IS_E3(bp))
7513 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7514 
7515 	if (!CHIP_IS_E1(bp)) {
7516 		/* 0x2 disable mf_ov, 0x1 enable */
7517 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7518 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7519 
7520 		if (!CHIP_IS_E1x(bp)) {
7521 			val = 0;
7522 			switch (bp->mf_mode) {
7523 			case MULTI_FUNCTION_SD:
7524 				val = 1;
7525 				break;
7526 			case MULTI_FUNCTION_SI:
7527 			case MULTI_FUNCTION_AFEX:
7528 				val = 2;
7529 				break;
7530 			}
7531 
7532 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7533 						  NIG_REG_LLH0_CLS_TYPE), val);
7534 		}
7535 		{
7536 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7537 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7538 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7539 		}
7540 	}
7541 
7542 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7543 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7544 	if (val & MISC_SPIO_SPIO5) {
7545 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7546 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7547 		val = REG_RD(bp, reg_addr);
7548 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7549 		REG_WR(bp, reg_addr, val);
7550 	}
7551 
7552 	return 0;
7553 }
7554 
7555 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7556 {
7557 	int reg;
7558 	u32 wb_write[2];
7559 
7560 	if (CHIP_IS_E1(bp))
7561 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7562 	else
7563 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7564 
7565 	wb_write[0] = ONCHIP_ADDR1(addr);
7566 	wb_write[1] = ONCHIP_ADDR2(addr);
7567 	REG_WR_DMAE(bp, reg, wb_write, 2);
7568 }
7569 
7570 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7571 {
7572 	u32 data, ctl, cnt = 100;
7573 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7574 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7575 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7576 	u32 sb_bit =  1 << (idu_sb_id%32);
7577 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7578 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7579 
7580 	/* Not supported in BC mode */
7581 	if (CHIP_INT_MODE_IS_BC(bp))
7582 		return;
7583 
7584 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7585 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7586 		IGU_REGULAR_CLEANUP_SET				|
7587 		IGU_REGULAR_BCLEANUP;
7588 
7589 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7590 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7591 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7592 
7593 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7594 			 data, igu_addr_data);
7595 	REG_WR(bp, igu_addr_data, data);
7596 	mmiowb();
7597 	barrier();
7598 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7599 			  ctl, igu_addr_ctl);
7600 	REG_WR(bp, igu_addr_ctl, ctl);
7601 	mmiowb();
7602 	barrier();
7603 
7604 	/* wait for clean up to finish */
7605 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7606 		msleep(20);
7607 
7608 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7609 		DP(NETIF_MSG_HW,
7610 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7611 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7612 	}
7613 }
7614 
7615 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7616 {
7617 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7618 }
7619 
7620 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7621 {
7622 	u32 i, base = FUNC_ILT_BASE(func);
7623 	for (i = base; i < base + ILT_PER_FUNC; i++)
7624 		bnx2x_ilt_wr(bp, i, 0);
7625 }
7626 
7627 static void bnx2x_init_searcher(struct bnx2x *bp)
7628 {
7629 	int port = BP_PORT(bp);
7630 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7631 	/* T1 hash bits value determines the T1 number of entries */
7632 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7633 }
7634 
7635 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7636 {
7637 	int rc;
7638 	struct bnx2x_func_state_params func_params = {NULL};
7639 	struct bnx2x_func_switch_update_params *switch_update_params =
7640 		&func_params.params.switch_update;
7641 
7642 	/* Prepare parameters for function state transitions */
7643 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7644 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7645 
7646 	func_params.f_obj = &bp->func_obj;
7647 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7648 
7649 	/* Function parameters */
7650 	switch_update_params->suspend = suspend;
7651 
7652 	rc = bnx2x_func_state_change(bp, &func_params);
7653 
7654 	return rc;
7655 }
7656 
7657 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7658 {
7659 	int rc, i, port = BP_PORT(bp);
7660 	int vlan_en = 0, mac_en[NUM_MACS];
7661 
7662 	/* Close input from network */
7663 	if (bp->mf_mode == SINGLE_FUNCTION) {
7664 		bnx2x_set_rx_filter(&bp->link_params, 0);
7665 	} else {
7666 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7667 				   NIG_REG_LLH0_FUNC_EN);
7668 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7669 			  NIG_REG_LLH0_FUNC_EN, 0);
7670 		for (i = 0; i < NUM_MACS; i++) {
7671 			mac_en[i] = REG_RD(bp, port ?
7672 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7673 					      4 * i) :
7674 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7675 					      4 * i));
7676 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7677 					      4 * i) :
7678 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7679 		}
7680 	}
7681 
7682 	/* Close BMC to host */
7683 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7684 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7685 
7686 	/* Suspend Tx switching to the PF. Completion of this ramrod
7687 	 * further guarantees that all the packets of that PF / child
7688 	 * VFs in BRB were processed by the Parser, so it is safe to
7689 	 * change the NIC_MODE register.
7690 	 */
7691 	rc = bnx2x_func_switch_update(bp, 1);
7692 	if (rc) {
7693 		BNX2X_ERR("Can't suspend tx-switching!\n");
7694 		return rc;
7695 	}
7696 
7697 	/* Change NIC_MODE register */
7698 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7699 
7700 	/* Open input from network */
7701 	if (bp->mf_mode == SINGLE_FUNCTION) {
7702 		bnx2x_set_rx_filter(&bp->link_params, 1);
7703 	} else {
7704 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7705 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7706 		for (i = 0; i < NUM_MACS; i++) {
7707 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7708 					      4 * i) :
7709 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7710 				  mac_en[i]);
7711 		}
7712 	}
7713 
7714 	/* Enable BMC to host */
7715 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7716 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7717 
7718 	/* Resume Tx switching to the PF */
7719 	rc = bnx2x_func_switch_update(bp, 0);
7720 	if (rc) {
7721 		BNX2X_ERR("Can't resume tx-switching!\n");
7722 		return rc;
7723 	}
7724 
7725 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7726 	return 0;
7727 }
7728 
7729 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7730 {
7731 	int rc;
7732 
7733 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7734 
7735 	if (CONFIGURE_NIC_MODE(bp)) {
7736 		/* Configure searcher as part of function hw init */
7737 		bnx2x_init_searcher(bp);
7738 
7739 		/* Reset NIC mode */
7740 		rc = bnx2x_reset_nic_mode(bp);
7741 		if (rc)
7742 			BNX2X_ERR("Can't change NIC mode!\n");
7743 		return rc;
7744 	}
7745 
7746 	return 0;
7747 }
7748 
7749 static int bnx2x_init_hw_func(struct bnx2x *bp)
7750 {
7751 	int port = BP_PORT(bp);
7752 	int func = BP_FUNC(bp);
7753 	int init_phase = PHASE_PF0 + func;
7754 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7755 	u16 cdu_ilt_start;
7756 	u32 addr, val;
7757 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7758 	int i, main_mem_width, rc;
7759 
7760 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7761 
7762 	/* FLR cleanup - hmmm */
7763 	if (!CHIP_IS_E1x(bp)) {
7764 		rc = bnx2x_pf_flr_clnup(bp);
7765 		if (rc) {
7766 			bnx2x_fw_dump(bp);
7767 			return rc;
7768 		}
7769 	}
7770 
7771 	/* set MSI reconfigure capability */
7772 	if (bp->common.int_block == INT_BLOCK_HC) {
7773 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7774 		val = REG_RD(bp, addr);
7775 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7776 		REG_WR(bp, addr, val);
7777 	}
7778 
7779 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7780 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7781 
7782 	ilt = BP_ILT(bp);
7783 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7784 
7785 	if (IS_SRIOV(bp))
7786 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7787 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7788 
7789 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7790 	 * those of the VFs, so start line should be reset
7791 	 */
7792 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7793 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7794 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7795 		ilt->lines[cdu_ilt_start + i].page_mapping =
7796 			bp->context[i].cxt_mapping;
7797 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7798 	}
7799 
7800 	bnx2x_ilt_init_op(bp, INITOP_SET);
7801 
7802 	if (!CONFIGURE_NIC_MODE(bp)) {
7803 		bnx2x_init_searcher(bp);
7804 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7805 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7806 	} else {
7807 		/* Set NIC mode */
7808 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7809 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7810 	}
7811 
7812 	if (!CHIP_IS_E1x(bp)) {
7813 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7814 
7815 		/* Turn on a single ISR mode in IGU if driver is going to use
7816 		 * INT#x or MSI
7817 		 */
7818 		if (!(bp->flags & USING_MSIX_FLAG))
7819 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7820 		/*
7821 		 * Timers workaround bug: function init part.
7822 		 * Need to wait 20msec after initializing ILT,
7823 		 * needed to make sure there are no requests in
7824 		 * one of the PXP internal queues with "old" ILT addresses
7825 		 */
7826 		msleep(20);
7827 		/*
7828 		 * Master enable - Due to WB DMAE writes performed before this
7829 		 * register is re-initialized as part of the regular function
7830 		 * init
7831 		 */
7832 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7833 		/* Enable the function in IGU */
7834 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7835 	}
7836 
7837 	bp->dmae_ready = 1;
7838 
7839 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7840 
7841 	if (!CHIP_IS_E1x(bp))
7842 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7843 
7844 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7845 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7846 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7847 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7848 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7849 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7850 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7851 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7852 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7853 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7854 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7855 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7856 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7857 
7858 	if (!CHIP_IS_E1x(bp))
7859 		REG_WR(bp, QM_REG_PF_EN, 1);
7860 
7861 	if (!CHIP_IS_E1x(bp)) {
7862 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7863 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7864 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7865 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7866 	}
7867 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7868 
7869 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7870 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7871 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7872 
7873 	bnx2x_iov_init_dq(bp);
7874 
7875 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7876 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7877 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7878 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7879 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7880 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7881 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7882 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7883 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7884 	if (!CHIP_IS_E1x(bp))
7885 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7886 
7887 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7888 
7889 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7890 
7891 	if (!CHIP_IS_E1x(bp))
7892 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7893 
7894 	if (IS_MF(bp)) {
7895 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7896 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7897 	}
7898 
7899 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7900 
7901 	/* HC init per function */
7902 	if (bp->common.int_block == INT_BLOCK_HC) {
7903 		if (CHIP_IS_E1H(bp)) {
7904 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7905 
7906 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7907 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7908 		}
7909 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7910 
7911 	} else {
7912 		int num_segs, sb_idx, prod_offset;
7913 
7914 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7915 
7916 		if (!CHIP_IS_E1x(bp)) {
7917 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7918 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7919 		}
7920 
7921 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7922 
7923 		if (!CHIP_IS_E1x(bp)) {
7924 			int dsb_idx = 0;
7925 			/**
7926 			 * Producer memory:
7927 			 * E2 mode: address 0-135 match to the mapping memory;
7928 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7929 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7930 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7931 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7932 			 * 144-147 reserved.
7933 			 *
7934 			 * E1.5 mode - In backward compatible mode;
7935 			 * for non default SB; each even line in the memory
7936 			 * holds the U producer and each odd line hold
7937 			 * the C producer. The first 128 producers are for
7938 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7939 			 * producers are for the DSB for each PF.
7940 			 * Each PF has five segments: (the order inside each
7941 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7942 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7943 			 * 144-147 attn prods;
7944 			 */
7945 			/* non-default-status-blocks */
7946 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7947 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7948 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7949 				prod_offset = (bp->igu_base_sb + sb_idx) *
7950 					num_segs;
7951 
7952 				for (i = 0; i < num_segs; i++) {
7953 					addr = IGU_REG_PROD_CONS_MEMORY +
7954 							(prod_offset + i) * 4;
7955 					REG_WR(bp, addr, 0);
7956 				}
7957 				/* send consumer update with value 0 */
7958 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7959 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7960 				bnx2x_igu_clear_sb(bp,
7961 						   bp->igu_base_sb + sb_idx);
7962 			}
7963 
7964 			/* default-status-blocks */
7965 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7966 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7967 
7968 			if (CHIP_MODE_IS_4_PORT(bp))
7969 				dsb_idx = BP_FUNC(bp);
7970 			else
7971 				dsb_idx = BP_VN(bp);
7972 
7973 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7974 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7975 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7976 
7977 			/*
7978 			 * igu prods come in chunks of E1HVN_MAX (4) -
7979 			 * does not matters what is the current chip mode
7980 			 */
7981 			for (i = 0; i < (num_segs * E1HVN_MAX);
7982 			     i += E1HVN_MAX) {
7983 				addr = IGU_REG_PROD_CONS_MEMORY +
7984 							(prod_offset + i)*4;
7985 				REG_WR(bp, addr, 0);
7986 			}
7987 			/* send consumer update with 0 */
7988 			if (CHIP_INT_MODE_IS_BC(bp)) {
7989 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7990 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7991 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7992 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7993 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7994 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7995 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7996 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7997 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7998 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7999 			} else {
8000 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8001 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8002 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8003 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8004 			}
8005 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8006 
8007 			/* !!! These should become driver const once
8008 			   rf-tool supports split-68 const */
8009 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8010 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8011 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8012 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8013 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8014 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8015 		}
8016 	}
8017 
8018 	/* Reset PCIE errors for debug */
8019 	REG_WR(bp, 0x2114, 0xffffffff);
8020 	REG_WR(bp, 0x2120, 0xffffffff);
8021 
8022 	if (CHIP_IS_E1x(bp)) {
8023 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8024 		main_mem_base = HC_REG_MAIN_MEMORY +
8025 				BP_PORT(bp) * (main_mem_size * 4);
8026 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8027 		main_mem_width = 8;
8028 
8029 		val = REG_RD(bp, main_mem_prty_clr);
8030 		if (val)
8031 			DP(NETIF_MSG_HW,
8032 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8033 			   val);
8034 
8035 		/* Clear "false" parity errors in MSI-X table */
8036 		for (i = main_mem_base;
8037 		     i < main_mem_base + main_mem_size * 4;
8038 		     i += main_mem_width) {
8039 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8040 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8041 					 i, main_mem_width / 4);
8042 		}
8043 		/* Clear HC parity attention */
8044 		REG_RD(bp, main_mem_prty_clr);
8045 	}
8046 
8047 #ifdef BNX2X_STOP_ON_ERROR
8048 	/* Enable STORMs SP logging */
8049 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8050 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8051 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8052 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8053 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8054 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8055 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8056 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8057 #endif
8058 
8059 	bnx2x_phy_probe(&bp->link_params);
8060 
8061 	return 0;
8062 }
8063 
8064 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8065 {
8066 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8067 
8068 	if (!CHIP_IS_E1x(bp))
8069 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8070 			       sizeof(struct host_hc_status_block_e2));
8071 	else
8072 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8073 			       sizeof(struct host_hc_status_block_e1x));
8074 
8075 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8076 }
8077 
8078 void bnx2x_free_mem(struct bnx2x *bp)
8079 {
8080 	int i;
8081 
8082 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8083 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8084 
8085 	if (IS_VF(bp))
8086 		return;
8087 
8088 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8089 		       sizeof(struct host_sp_status_block));
8090 
8091 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8092 		       sizeof(struct bnx2x_slowpath));
8093 
8094 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8095 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8096 			       bp->context[i].size);
8097 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8098 
8099 	BNX2X_FREE(bp->ilt->lines);
8100 
8101 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8102 
8103 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8104 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8105 
8106 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8107 
8108 	bnx2x_iov_free_mem(bp);
8109 }
8110 
8111 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8112 {
8113 	if (!CHIP_IS_E1x(bp)) {
8114 		/* size = the status block + ramrod buffers */
8115 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8116 						    sizeof(struct host_hc_status_block_e2));
8117 		if (!bp->cnic_sb.e2_sb)
8118 			goto alloc_mem_err;
8119 	} else {
8120 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8121 						     sizeof(struct host_hc_status_block_e1x));
8122 		if (!bp->cnic_sb.e1x_sb)
8123 			goto alloc_mem_err;
8124 	}
8125 
8126 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8127 		/* allocate searcher T2 table, as it wasn't allocated before */
8128 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8129 		if (!bp->t2)
8130 			goto alloc_mem_err;
8131 	}
8132 
8133 	/* write address to which L5 should insert its values */
8134 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8135 		&bp->slowpath->drv_info_to_mcp;
8136 
8137 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8138 		goto alloc_mem_err;
8139 
8140 	return 0;
8141 
8142 alloc_mem_err:
8143 	bnx2x_free_mem_cnic(bp);
8144 	BNX2X_ERR("Can't allocate memory\n");
8145 	return -ENOMEM;
8146 }
8147 
8148 int bnx2x_alloc_mem(struct bnx2x *bp)
8149 {
8150 	int i, allocated, context_size;
8151 
8152 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8153 		/* allocate searcher T2 table */
8154 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8155 		if (!bp->t2)
8156 			goto alloc_mem_err;
8157 	}
8158 
8159 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8160 					     sizeof(struct host_sp_status_block));
8161 	if (!bp->def_status_blk)
8162 		goto alloc_mem_err;
8163 
8164 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8165 				       sizeof(struct bnx2x_slowpath));
8166 	if (!bp->slowpath)
8167 		goto alloc_mem_err;
8168 
8169 	/* Allocate memory for CDU context:
8170 	 * This memory is allocated separately and not in the generic ILT
8171 	 * functions because CDU differs in few aspects:
8172 	 * 1. There are multiple entities allocating memory for context -
8173 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8174 	 * its own ILT lines.
8175 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8176 	 * for the other ILT clients), to be efficient we want to support
8177 	 * allocation of sub-page-size in the last entry.
8178 	 * 3. Context pointers are used by the driver to pass to FW / update
8179 	 * the context (for the other ILT clients the pointers are used just to
8180 	 * free the memory during unload).
8181 	 */
8182 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8183 
8184 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8185 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8186 					  (context_size - allocated));
8187 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8188 						      bp->context[i].size);
8189 		if (!bp->context[i].vcxt)
8190 			goto alloc_mem_err;
8191 		allocated += bp->context[i].size;
8192 	}
8193 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8194 				 GFP_KERNEL);
8195 	if (!bp->ilt->lines)
8196 		goto alloc_mem_err;
8197 
8198 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8199 		goto alloc_mem_err;
8200 
8201 	if (bnx2x_iov_alloc_mem(bp))
8202 		goto alloc_mem_err;
8203 
8204 	/* Slow path ring */
8205 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8206 	if (!bp->spq)
8207 		goto alloc_mem_err;
8208 
8209 	/* EQ */
8210 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8211 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8212 	if (!bp->eq_ring)
8213 		goto alloc_mem_err;
8214 
8215 	return 0;
8216 
8217 alloc_mem_err:
8218 	bnx2x_free_mem(bp);
8219 	BNX2X_ERR("Can't allocate memory\n");
8220 	return -ENOMEM;
8221 }
8222 
8223 /*
8224  * Init service functions
8225  */
8226 
8227 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8228 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8229 		      int mac_type, unsigned long *ramrod_flags)
8230 {
8231 	int rc;
8232 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8233 
8234 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8235 
8236 	/* Fill general parameters */
8237 	ramrod_param.vlan_mac_obj = obj;
8238 	ramrod_param.ramrod_flags = *ramrod_flags;
8239 
8240 	/* Fill a user request section if needed */
8241 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8242 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8243 
8244 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8245 
8246 		/* Set the command: ADD or DEL */
8247 		if (set)
8248 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8249 		else
8250 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8251 	}
8252 
8253 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8254 
8255 	if (rc == -EEXIST) {
8256 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8257 		/* do not treat adding same MAC as error */
8258 		rc = 0;
8259 	} else if (rc < 0)
8260 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8261 
8262 	return rc;
8263 }
8264 
8265 int bnx2x_del_all_macs(struct bnx2x *bp,
8266 		       struct bnx2x_vlan_mac_obj *mac_obj,
8267 		       int mac_type, bool wait_for_comp)
8268 {
8269 	int rc;
8270 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8271 
8272 	/* Wait for completion of requested */
8273 	if (wait_for_comp)
8274 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8275 
8276 	/* Set the mac type of addresses we want to clear */
8277 	__set_bit(mac_type, &vlan_mac_flags);
8278 
8279 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8280 	if (rc < 0)
8281 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8282 
8283 	return rc;
8284 }
8285 
8286 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8287 {
8288 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
8289 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8290 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8291 		   "Ignoring Zero MAC for STORAGE SD mode\n");
8292 		return 0;
8293 	}
8294 
8295 	if (IS_PF(bp)) {
8296 		unsigned long ramrod_flags = 0;
8297 
8298 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8299 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8300 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8301 					 &bp->sp_objs->mac_obj, set,
8302 					 BNX2X_ETH_MAC, &ramrod_flags);
8303 	} else { /* vf */
8304 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8305 					     bp->fp->index, true);
8306 	}
8307 }
8308 
8309 int bnx2x_setup_leading(struct bnx2x *bp)
8310 {
8311 	if (IS_PF(bp))
8312 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8313 	else /* VF */
8314 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8315 }
8316 
8317 /**
8318  * bnx2x_set_int_mode - configure interrupt mode
8319  *
8320  * @bp:		driver handle
8321  *
8322  * In case of MSI-X it will also try to enable MSI-X.
8323  */
8324 int bnx2x_set_int_mode(struct bnx2x *bp)
8325 {
8326 	int rc = 0;
8327 
8328 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8329 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8330 		return -EINVAL;
8331 	}
8332 
8333 	switch (int_mode) {
8334 	case BNX2X_INT_MODE_MSIX:
8335 		/* attempt to enable msix */
8336 		rc = bnx2x_enable_msix(bp);
8337 
8338 		/* msix attained */
8339 		if (!rc)
8340 			return 0;
8341 
8342 		/* vfs use only msix */
8343 		if (rc && IS_VF(bp))
8344 			return rc;
8345 
8346 		/* failed to enable multiple MSI-X */
8347 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8348 			       bp->num_queues,
8349 			       1 + bp->num_cnic_queues);
8350 
8351 		/* falling through... */
8352 	case BNX2X_INT_MODE_MSI:
8353 		bnx2x_enable_msi(bp);
8354 
8355 		/* falling through... */
8356 	case BNX2X_INT_MODE_INTX:
8357 		bp->num_ethernet_queues = 1;
8358 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8359 		BNX2X_DEV_INFO("set number of queues to 1\n");
8360 		break;
8361 	default:
8362 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8363 		return -EINVAL;
8364 	}
8365 	return 0;
8366 }
8367 
8368 /* must be called prior to any HW initializations */
8369 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8370 {
8371 	if (IS_SRIOV(bp))
8372 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8373 	return L2_ILT_LINES(bp);
8374 }
8375 
8376 void bnx2x_ilt_set_info(struct bnx2x *bp)
8377 {
8378 	struct ilt_client_info *ilt_client;
8379 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8380 	u16 line = 0;
8381 
8382 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8383 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8384 
8385 	/* CDU */
8386 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8387 	ilt_client->client_num = ILT_CLIENT_CDU;
8388 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8389 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8390 	ilt_client->start = line;
8391 	line += bnx2x_cid_ilt_lines(bp);
8392 
8393 	if (CNIC_SUPPORT(bp))
8394 		line += CNIC_ILT_LINES;
8395 	ilt_client->end = line - 1;
8396 
8397 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8398 	   ilt_client->start,
8399 	   ilt_client->end,
8400 	   ilt_client->page_size,
8401 	   ilt_client->flags,
8402 	   ilog2(ilt_client->page_size >> 12));
8403 
8404 	/* QM */
8405 	if (QM_INIT(bp->qm_cid_count)) {
8406 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8407 		ilt_client->client_num = ILT_CLIENT_QM;
8408 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8409 		ilt_client->flags = 0;
8410 		ilt_client->start = line;
8411 
8412 		/* 4 bytes for each cid */
8413 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8414 							 QM_ILT_PAGE_SZ);
8415 
8416 		ilt_client->end = line - 1;
8417 
8418 		DP(NETIF_MSG_IFUP,
8419 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8420 		   ilt_client->start,
8421 		   ilt_client->end,
8422 		   ilt_client->page_size,
8423 		   ilt_client->flags,
8424 		   ilog2(ilt_client->page_size >> 12));
8425 	}
8426 
8427 	if (CNIC_SUPPORT(bp)) {
8428 		/* SRC */
8429 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8430 		ilt_client->client_num = ILT_CLIENT_SRC;
8431 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8432 		ilt_client->flags = 0;
8433 		ilt_client->start = line;
8434 		line += SRC_ILT_LINES;
8435 		ilt_client->end = line - 1;
8436 
8437 		DP(NETIF_MSG_IFUP,
8438 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8439 		   ilt_client->start,
8440 		   ilt_client->end,
8441 		   ilt_client->page_size,
8442 		   ilt_client->flags,
8443 		   ilog2(ilt_client->page_size >> 12));
8444 
8445 		/* TM */
8446 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8447 		ilt_client->client_num = ILT_CLIENT_TM;
8448 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8449 		ilt_client->flags = 0;
8450 		ilt_client->start = line;
8451 		line += TM_ILT_LINES;
8452 		ilt_client->end = line - 1;
8453 
8454 		DP(NETIF_MSG_IFUP,
8455 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8456 		   ilt_client->start,
8457 		   ilt_client->end,
8458 		   ilt_client->page_size,
8459 		   ilt_client->flags,
8460 		   ilog2(ilt_client->page_size >> 12));
8461 	}
8462 
8463 	BUG_ON(line > ILT_MAX_LINES);
8464 }
8465 
8466 /**
8467  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8468  *
8469  * @bp:			driver handle
8470  * @fp:			pointer to fastpath
8471  * @init_params:	pointer to parameters structure
8472  *
8473  * parameters configured:
8474  *      - HC configuration
8475  *      - Queue's CDU context
8476  */
8477 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8478 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8479 {
8480 	u8 cos;
8481 	int cxt_index, cxt_offset;
8482 
8483 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8484 	if (!IS_FCOE_FP(fp)) {
8485 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8486 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8487 
8488 		/* If HC is supported, enable host coalescing in the transition
8489 		 * to INIT state.
8490 		 */
8491 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8492 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8493 
8494 		/* HC rate */
8495 		init_params->rx.hc_rate = bp->rx_ticks ?
8496 			(1000000 / bp->rx_ticks) : 0;
8497 		init_params->tx.hc_rate = bp->tx_ticks ?
8498 			(1000000 / bp->tx_ticks) : 0;
8499 
8500 		/* FW SB ID */
8501 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8502 			fp->fw_sb_id;
8503 
8504 		/*
8505 		 * CQ index among the SB indices: FCoE clients uses the default
8506 		 * SB, therefore it's different.
8507 		 */
8508 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8509 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8510 	}
8511 
8512 	/* set maximum number of COSs supported by this queue */
8513 	init_params->max_cos = fp->max_cos;
8514 
8515 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8516 	    fp->index, init_params->max_cos);
8517 
8518 	/* set the context pointers queue object */
8519 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8520 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8521 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8522 				ILT_PAGE_CIDS);
8523 		init_params->cxts[cos] =
8524 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8525 	}
8526 }
8527 
8528 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8529 			struct bnx2x_queue_state_params *q_params,
8530 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8531 			int tx_index, bool leading)
8532 {
8533 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8534 
8535 	/* Set the command */
8536 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8537 
8538 	/* Set tx-only QUEUE flags: don't zero statistics */
8539 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8540 
8541 	/* choose the index of the cid to send the slow path on */
8542 	tx_only_params->cid_index = tx_index;
8543 
8544 	/* Set general TX_ONLY_SETUP parameters */
8545 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8546 
8547 	/* Set Tx TX_ONLY_SETUP parameters */
8548 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8549 
8550 	DP(NETIF_MSG_IFUP,
8551 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8552 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8553 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8554 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8555 
8556 	/* send the ramrod */
8557 	return bnx2x_queue_state_change(bp, q_params);
8558 }
8559 
8560 /**
8561  * bnx2x_setup_queue - setup queue
8562  *
8563  * @bp:		driver handle
8564  * @fp:		pointer to fastpath
8565  * @leading:	is leading
8566  *
8567  * This function performs 2 steps in a Queue state machine
8568  *      actually: 1) RESET->INIT 2) INIT->SETUP
8569  */
8570 
8571 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8572 		       bool leading)
8573 {
8574 	struct bnx2x_queue_state_params q_params = {NULL};
8575 	struct bnx2x_queue_setup_params *setup_params =
8576 						&q_params.params.setup;
8577 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8578 						&q_params.params.tx_only;
8579 	int rc;
8580 	u8 tx_index;
8581 
8582 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8583 
8584 	/* reset IGU state skip FCoE L2 queue */
8585 	if (!IS_FCOE_FP(fp))
8586 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8587 			     IGU_INT_ENABLE, 0);
8588 
8589 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8590 	/* We want to wait for completion in this context */
8591 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8592 
8593 	/* Prepare the INIT parameters */
8594 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8595 
8596 	/* Set the command */
8597 	q_params.cmd = BNX2X_Q_CMD_INIT;
8598 
8599 	/* Change the state to INIT */
8600 	rc = bnx2x_queue_state_change(bp, &q_params);
8601 	if (rc) {
8602 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8603 		return rc;
8604 	}
8605 
8606 	DP(NETIF_MSG_IFUP, "init complete\n");
8607 
8608 	/* Now move the Queue to the SETUP state... */
8609 	memset(setup_params, 0, sizeof(*setup_params));
8610 
8611 	/* Set QUEUE flags */
8612 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8613 
8614 	/* Set general SETUP parameters */
8615 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8616 				FIRST_TX_COS_INDEX);
8617 
8618 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8619 			    &setup_params->rxq_params);
8620 
8621 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8622 			   FIRST_TX_COS_INDEX);
8623 
8624 	/* Set the command */
8625 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8626 
8627 	if (IS_FCOE_FP(fp))
8628 		bp->fcoe_init = true;
8629 
8630 	/* Change the state to SETUP */
8631 	rc = bnx2x_queue_state_change(bp, &q_params);
8632 	if (rc) {
8633 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8634 		return rc;
8635 	}
8636 
8637 	/* loop through the relevant tx-only indices */
8638 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8639 	      tx_index < fp->max_cos;
8640 	      tx_index++) {
8641 
8642 		/* prepare and send tx-only ramrod*/
8643 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8644 					  tx_only_params, tx_index, leading);
8645 		if (rc) {
8646 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8647 				  fp->index, tx_index);
8648 			return rc;
8649 		}
8650 	}
8651 
8652 	return rc;
8653 }
8654 
8655 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8656 {
8657 	struct bnx2x_fastpath *fp = &bp->fp[index];
8658 	struct bnx2x_fp_txdata *txdata;
8659 	struct bnx2x_queue_state_params q_params = {NULL};
8660 	int rc, tx_index;
8661 
8662 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8663 
8664 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8665 	/* We want to wait for completion in this context */
8666 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8667 
8668 	/* close tx-only connections */
8669 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8670 	     tx_index < fp->max_cos;
8671 	     tx_index++){
8672 
8673 		/* ascertain this is a normal queue*/
8674 		txdata = fp->txdata_ptr[tx_index];
8675 
8676 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8677 							txdata->txq_index);
8678 
8679 		/* send halt terminate on tx-only connection */
8680 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8681 		memset(&q_params.params.terminate, 0,
8682 		       sizeof(q_params.params.terminate));
8683 		q_params.params.terminate.cid_index = tx_index;
8684 
8685 		rc = bnx2x_queue_state_change(bp, &q_params);
8686 		if (rc)
8687 			return rc;
8688 
8689 		/* send halt terminate on tx-only connection */
8690 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8691 		memset(&q_params.params.cfc_del, 0,
8692 		       sizeof(q_params.params.cfc_del));
8693 		q_params.params.cfc_del.cid_index = tx_index;
8694 		rc = bnx2x_queue_state_change(bp, &q_params);
8695 		if (rc)
8696 			return rc;
8697 	}
8698 	/* Stop the primary connection: */
8699 	/* ...halt the connection */
8700 	q_params.cmd = BNX2X_Q_CMD_HALT;
8701 	rc = bnx2x_queue_state_change(bp, &q_params);
8702 	if (rc)
8703 		return rc;
8704 
8705 	/* ...terminate the connection */
8706 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8707 	memset(&q_params.params.terminate, 0,
8708 	       sizeof(q_params.params.terminate));
8709 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8710 	rc = bnx2x_queue_state_change(bp, &q_params);
8711 	if (rc)
8712 		return rc;
8713 	/* ...delete cfc entry */
8714 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8715 	memset(&q_params.params.cfc_del, 0,
8716 	       sizeof(q_params.params.cfc_del));
8717 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8718 	return bnx2x_queue_state_change(bp, &q_params);
8719 }
8720 
8721 static void bnx2x_reset_func(struct bnx2x *bp)
8722 {
8723 	int port = BP_PORT(bp);
8724 	int func = BP_FUNC(bp);
8725 	int i;
8726 
8727 	/* Disable the function in the FW */
8728 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8729 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8730 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8731 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8732 
8733 	/* FP SBs */
8734 	for_each_eth_queue(bp, i) {
8735 		struct bnx2x_fastpath *fp = &bp->fp[i];
8736 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8737 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8738 			   SB_DISABLED);
8739 	}
8740 
8741 	if (CNIC_LOADED(bp))
8742 		/* CNIC SB */
8743 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8744 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8745 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8746 
8747 	/* SP SB */
8748 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8749 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8750 		SB_DISABLED);
8751 
8752 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8753 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8754 		       0);
8755 
8756 	/* Configure IGU */
8757 	if (bp->common.int_block == INT_BLOCK_HC) {
8758 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8759 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8760 	} else {
8761 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8762 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8763 	}
8764 
8765 	if (CNIC_LOADED(bp)) {
8766 		/* Disable Timer scan */
8767 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8768 		/*
8769 		 * Wait for at least 10ms and up to 2 second for the timers
8770 		 * scan to complete
8771 		 */
8772 		for (i = 0; i < 200; i++) {
8773 			usleep_range(10000, 20000);
8774 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8775 				break;
8776 		}
8777 	}
8778 	/* Clear ILT */
8779 	bnx2x_clear_func_ilt(bp, func);
8780 
8781 	/* Timers workaround bug for E2: if this is vnic-3,
8782 	 * we need to set the entire ilt range for this timers.
8783 	 */
8784 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8785 		struct ilt_client_info ilt_cli;
8786 		/* use dummy TM client */
8787 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8788 		ilt_cli.start = 0;
8789 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8790 		ilt_cli.client_num = ILT_CLIENT_TM;
8791 
8792 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8793 	}
8794 
8795 	/* this assumes that reset_port() called before reset_func()*/
8796 	if (!CHIP_IS_E1x(bp))
8797 		bnx2x_pf_disable(bp);
8798 
8799 	bp->dmae_ready = 0;
8800 }
8801 
8802 static void bnx2x_reset_port(struct bnx2x *bp)
8803 {
8804 	int port = BP_PORT(bp);
8805 	u32 val;
8806 
8807 	/* Reset physical Link */
8808 	bnx2x__link_reset(bp);
8809 
8810 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8811 
8812 	/* Do not rcv packets to BRB */
8813 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8814 	/* Do not direct rcv packets that are not for MCP to the BRB */
8815 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8816 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8817 
8818 	/* Configure AEU */
8819 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8820 
8821 	msleep(100);
8822 	/* Check for BRB port occupancy */
8823 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8824 	if (val)
8825 		DP(NETIF_MSG_IFDOWN,
8826 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8827 
8828 	/* TODO: Close Doorbell port? */
8829 }
8830 
8831 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8832 {
8833 	struct bnx2x_func_state_params func_params = {NULL};
8834 
8835 	/* Prepare parameters for function state transitions */
8836 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8837 
8838 	func_params.f_obj = &bp->func_obj;
8839 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8840 
8841 	func_params.params.hw_init.load_phase = load_code;
8842 
8843 	return bnx2x_func_state_change(bp, &func_params);
8844 }
8845 
8846 static int bnx2x_func_stop(struct bnx2x *bp)
8847 {
8848 	struct bnx2x_func_state_params func_params = {NULL};
8849 	int rc;
8850 
8851 	/* Prepare parameters for function state transitions */
8852 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8853 	func_params.f_obj = &bp->func_obj;
8854 	func_params.cmd = BNX2X_F_CMD_STOP;
8855 
8856 	/*
8857 	 * Try to stop the function the 'good way'. If fails (in case
8858 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8859 	 * not in a debug mode, perform a state transaction in order to
8860 	 * enable further HW_RESET transaction.
8861 	 */
8862 	rc = bnx2x_func_state_change(bp, &func_params);
8863 	if (rc) {
8864 #ifdef BNX2X_STOP_ON_ERROR
8865 		return rc;
8866 #else
8867 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8868 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8869 		return bnx2x_func_state_change(bp, &func_params);
8870 #endif
8871 	}
8872 
8873 	return 0;
8874 }
8875 
8876 /**
8877  * bnx2x_send_unload_req - request unload mode from the MCP.
8878  *
8879  * @bp:			driver handle
8880  * @unload_mode:	requested function's unload mode
8881  *
8882  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8883  */
8884 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8885 {
8886 	u32 reset_code = 0;
8887 	int port = BP_PORT(bp);
8888 
8889 	/* Select the UNLOAD request mode */
8890 	if (unload_mode == UNLOAD_NORMAL)
8891 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8892 
8893 	else if (bp->flags & NO_WOL_FLAG)
8894 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8895 
8896 	else if (bp->wol) {
8897 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8898 		u8 *mac_addr = bp->dev->dev_addr;
8899 		struct pci_dev *pdev = bp->pdev;
8900 		u32 val;
8901 		u16 pmc;
8902 
8903 		/* The mac address is written to entries 1-4 to
8904 		 * preserve entry 0 which is used by the PMF
8905 		 */
8906 		u8 entry = (BP_VN(bp) + 1)*8;
8907 
8908 		val = (mac_addr[0] << 8) | mac_addr[1];
8909 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8910 
8911 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8912 		      (mac_addr[4] << 8) | mac_addr[5];
8913 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8914 
8915 		/* Enable the PME and clear the status */
8916 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8917 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8918 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8919 
8920 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8921 
8922 	} else
8923 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8924 
8925 	/* Send the request to the MCP */
8926 	if (!BP_NOMCP(bp))
8927 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8928 	else {
8929 		int path = BP_PATH(bp);
8930 
8931 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8932 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8933 		   bnx2x_load_count[path][2]);
8934 		bnx2x_load_count[path][0]--;
8935 		bnx2x_load_count[path][1 + port]--;
8936 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8937 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8938 		   bnx2x_load_count[path][2]);
8939 		if (bnx2x_load_count[path][0] == 0)
8940 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8941 		else if (bnx2x_load_count[path][1 + port] == 0)
8942 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8943 		else
8944 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8945 	}
8946 
8947 	return reset_code;
8948 }
8949 
8950 /**
8951  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8952  *
8953  * @bp:		driver handle
8954  * @keep_link:		true iff link should be kept up
8955  */
8956 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8957 {
8958 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8959 
8960 	/* Report UNLOAD_DONE to MCP */
8961 	if (!BP_NOMCP(bp))
8962 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8963 }
8964 
8965 static int bnx2x_func_wait_started(struct bnx2x *bp)
8966 {
8967 	int tout = 50;
8968 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8969 
8970 	if (!bp->port.pmf)
8971 		return 0;
8972 
8973 	/*
8974 	 * (assumption: No Attention from MCP at this stage)
8975 	 * PMF probably in the middle of TX disable/enable transaction
8976 	 * 1. Sync IRS for default SB
8977 	 * 2. Sync SP queue - this guarantees us that attention handling started
8978 	 * 3. Wait, that TX disable/enable transaction completes
8979 	 *
8980 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8981 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8982 	 * received completion for the transaction the state is TX_STOPPED.
8983 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8984 	 * transaction.
8985 	 */
8986 
8987 	/* make sure default SB ISR is done */
8988 	if (msix)
8989 		synchronize_irq(bp->msix_table[0].vector);
8990 	else
8991 		synchronize_irq(bp->pdev->irq);
8992 
8993 	flush_workqueue(bnx2x_wq);
8994 	flush_workqueue(bnx2x_iov_wq);
8995 
8996 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8997 				BNX2X_F_STATE_STARTED && tout--)
8998 		msleep(20);
8999 
9000 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9001 						BNX2X_F_STATE_STARTED) {
9002 #ifdef BNX2X_STOP_ON_ERROR
9003 		BNX2X_ERR("Wrong function state\n");
9004 		return -EBUSY;
9005 #else
9006 		/*
9007 		 * Failed to complete the transaction in a "good way"
9008 		 * Force both transactions with CLR bit
9009 		 */
9010 		struct bnx2x_func_state_params func_params = {NULL};
9011 
9012 		DP(NETIF_MSG_IFDOWN,
9013 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
9014 
9015 		func_params.f_obj = &bp->func_obj;
9016 		__set_bit(RAMROD_DRV_CLR_ONLY,
9017 					&func_params.ramrod_flags);
9018 
9019 		/* STARTED-->TX_ST0PPED */
9020 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9021 		bnx2x_func_state_change(bp, &func_params);
9022 
9023 		/* TX_ST0PPED-->STARTED */
9024 		func_params.cmd = BNX2X_F_CMD_TX_START;
9025 		return bnx2x_func_state_change(bp, &func_params);
9026 #endif
9027 	}
9028 
9029 	return 0;
9030 }
9031 
9032 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9033 {
9034 	int port = BP_PORT(bp);
9035 	int i, rc = 0;
9036 	u8 cos;
9037 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9038 	u32 reset_code;
9039 
9040 	/* Wait until tx fastpath tasks complete */
9041 	for_each_tx_queue(bp, i) {
9042 		struct bnx2x_fastpath *fp = &bp->fp[i];
9043 
9044 		for_each_cos_in_tx_queue(fp, cos)
9045 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9046 #ifdef BNX2X_STOP_ON_ERROR
9047 		if (rc)
9048 			return;
9049 #endif
9050 	}
9051 
9052 	/* Give HW time to discard old tx messages */
9053 	usleep_range(1000, 2000);
9054 
9055 	/* Clean all ETH MACs */
9056 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9057 				false);
9058 	if (rc < 0)
9059 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9060 
9061 	/* Clean up UC list  */
9062 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9063 				true);
9064 	if (rc < 0)
9065 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9066 			  rc);
9067 
9068 	/* Disable LLH */
9069 	if (!CHIP_IS_E1(bp))
9070 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9071 
9072 	/* Set "drop all" (stop Rx).
9073 	 * We need to take a netif_addr_lock() here in order to prevent
9074 	 * a race between the completion code and this code.
9075 	 */
9076 	netif_addr_lock_bh(bp->dev);
9077 	/* Schedule the rx_mode command */
9078 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9079 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9080 	else
9081 		bnx2x_set_storm_rx_mode(bp);
9082 
9083 	/* Cleanup multicast configuration */
9084 	rparam.mcast_obj = &bp->mcast_obj;
9085 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9086 	if (rc < 0)
9087 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9088 
9089 	netif_addr_unlock_bh(bp->dev);
9090 
9091 	bnx2x_iov_chip_cleanup(bp);
9092 
9093 	/*
9094 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9095 	 * this function should perform FUNC, PORT or COMMON HW
9096 	 * reset.
9097 	 */
9098 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9099 
9100 	/*
9101 	 * (assumption: No Attention from MCP at this stage)
9102 	 * PMF probably in the middle of TX disable/enable transaction
9103 	 */
9104 	rc = bnx2x_func_wait_started(bp);
9105 	if (rc) {
9106 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9107 #ifdef BNX2X_STOP_ON_ERROR
9108 		return;
9109 #endif
9110 	}
9111 
9112 	/* Close multi and leading connections
9113 	 * Completions for ramrods are collected in a synchronous way
9114 	 */
9115 	for_each_eth_queue(bp, i)
9116 		if (bnx2x_stop_queue(bp, i))
9117 #ifdef BNX2X_STOP_ON_ERROR
9118 			return;
9119 #else
9120 			goto unload_error;
9121 #endif
9122 
9123 	if (CNIC_LOADED(bp)) {
9124 		for_each_cnic_queue(bp, i)
9125 			if (bnx2x_stop_queue(bp, i))
9126 #ifdef BNX2X_STOP_ON_ERROR
9127 				return;
9128 #else
9129 				goto unload_error;
9130 #endif
9131 	}
9132 
9133 	/* If SP settings didn't get completed so far - something
9134 	 * very wrong has happen.
9135 	 */
9136 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9137 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9138 
9139 #ifndef BNX2X_STOP_ON_ERROR
9140 unload_error:
9141 #endif
9142 	rc = bnx2x_func_stop(bp);
9143 	if (rc) {
9144 		BNX2X_ERR("Function stop failed!\n");
9145 #ifdef BNX2X_STOP_ON_ERROR
9146 		return;
9147 #endif
9148 	}
9149 
9150 	/* Disable HW interrupts, NAPI */
9151 	bnx2x_netif_stop(bp, 1);
9152 	/* Delete all NAPI objects */
9153 	bnx2x_del_all_napi(bp);
9154 	if (CNIC_LOADED(bp))
9155 		bnx2x_del_all_napi_cnic(bp);
9156 
9157 	/* Release IRQs */
9158 	bnx2x_free_irq(bp);
9159 
9160 	/* Reset the chip */
9161 	rc = bnx2x_reset_hw(bp, reset_code);
9162 	if (rc)
9163 		BNX2X_ERR("HW_RESET failed\n");
9164 
9165 	/* Report UNLOAD_DONE to MCP */
9166 	bnx2x_send_unload_done(bp, keep_link);
9167 }
9168 
9169 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9170 {
9171 	u32 val;
9172 
9173 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9174 
9175 	if (CHIP_IS_E1(bp)) {
9176 		int port = BP_PORT(bp);
9177 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9178 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9179 
9180 		val = REG_RD(bp, addr);
9181 		val &= ~(0x300);
9182 		REG_WR(bp, addr, val);
9183 	} else {
9184 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9185 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9186 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9187 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9188 	}
9189 }
9190 
9191 /* Close gates #2, #3 and #4: */
9192 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9193 {
9194 	u32 val;
9195 
9196 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9197 	if (!CHIP_IS_E1(bp)) {
9198 		/* #4 */
9199 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9200 		/* #2 */
9201 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9202 	}
9203 
9204 	/* #3 */
9205 	if (CHIP_IS_E1x(bp)) {
9206 		/* Prevent interrupts from HC on both ports */
9207 		val = REG_RD(bp, HC_REG_CONFIG_1);
9208 		REG_WR(bp, HC_REG_CONFIG_1,
9209 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9210 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9211 
9212 		val = REG_RD(bp, HC_REG_CONFIG_0);
9213 		REG_WR(bp, HC_REG_CONFIG_0,
9214 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9215 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9216 	} else {
9217 		/* Prevent incoming interrupts in IGU */
9218 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9219 
9220 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9221 		       (!close) ?
9222 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9223 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9224 	}
9225 
9226 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9227 		close ? "closing" : "opening");
9228 	mmiowb();
9229 }
9230 
9231 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9232 
9233 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9234 {
9235 	/* Do some magic... */
9236 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9237 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9238 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9239 }
9240 
9241 /**
9242  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9243  *
9244  * @bp:		driver handle
9245  * @magic_val:	old value of the `magic' bit.
9246  */
9247 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9248 {
9249 	/* Restore the `magic' bit value... */
9250 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9251 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9252 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9253 }
9254 
9255 /**
9256  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9257  *
9258  * @bp:		driver handle
9259  * @magic_val:	old value of 'magic' bit.
9260  *
9261  * Takes care of CLP configurations.
9262  */
9263 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9264 {
9265 	u32 shmem;
9266 	u32 validity_offset;
9267 
9268 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9269 
9270 	/* Set `magic' bit in order to save MF config */
9271 	if (!CHIP_IS_E1(bp))
9272 		bnx2x_clp_reset_prep(bp, magic_val);
9273 
9274 	/* Get shmem offset */
9275 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9276 	validity_offset =
9277 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9278 
9279 	/* Clear validity map flags */
9280 	if (shmem > 0)
9281 		REG_WR(bp, shmem + validity_offset, 0);
9282 }
9283 
9284 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9285 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9286 
9287 /**
9288  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9289  *
9290  * @bp:	driver handle
9291  */
9292 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9293 {
9294 	/* special handling for emulation and FPGA,
9295 	   wait 10 times longer */
9296 	if (CHIP_REV_IS_SLOW(bp))
9297 		msleep(MCP_ONE_TIMEOUT*10);
9298 	else
9299 		msleep(MCP_ONE_TIMEOUT);
9300 }
9301 
9302 /*
9303  * initializes bp->common.shmem_base and waits for validity signature to appear
9304  */
9305 static int bnx2x_init_shmem(struct bnx2x *bp)
9306 {
9307 	int cnt = 0;
9308 	u32 val = 0;
9309 
9310 	do {
9311 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9312 		if (bp->common.shmem_base) {
9313 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9314 			if (val & SHR_MEM_VALIDITY_MB)
9315 				return 0;
9316 		}
9317 
9318 		bnx2x_mcp_wait_one(bp);
9319 
9320 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9321 
9322 	BNX2X_ERR("BAD MCP validity signature\n");
9323 
9324 	return -ENODEV;
9325 }
9326 
9327 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9328 {
9329 	int rc = bnx2x_init_shmem(bp);
9330 
9331 	/* Restore the `magic' bit value */
9332 	if (!CHIP_IS_E1(bp))
9333 		bnx2x_clp_reset_done(bp, magic_val);
9334 
9335 	return rc;
9336 }
9337 
9338 static void bnx2x_pxp_prep(struct bnx2x *bp)
9339 {
9340 	if (!CHIP_IS_E1(bp)) {
9341 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9342 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9343 		mmiowb();
9344 	}
9345 }
9346 
9347 /*
9348  * Reset the whole chip except for:
9349  *      - PCIE core
9350  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9351  *              one reset bit)
9352  *      - IGU
9353  *      - MISC (including AEU)
9354  *      - GRC
9355  *      - RBCN, RBCP
9356  */
9357 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9358 {
9359 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9360 	u32 global_bits2, stay_reset2;
9361 
9362 	/*
9363 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9364 	 * (per chip) blocks.
9365 	 */
9366 	global_bits2 =
9367 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9368 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9369 
9370 	/* Don't reset the following blocks.
9371 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9372 	 *            reset, as in 4 port device they might still be owned
9373 	 *            by the MCP (there is only one leader per path).
9374 	 */
9375 	not_reset_mask1 =
9376 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9377 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9378 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9379 
9380 	not_reset_mask2 =
9381 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9382 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9383 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9384 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9385 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9386 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9387 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9388 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9389 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9390 		MISC_REGISTERS_RESET_REG_2_PGLC |
9391 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9392 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9393 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9394 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9395 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9396 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9397 
9398 	/*
9399 	 * Keep the following blocks in reset:
9400 	 *  - all xxMACs are handled by the bnx2x_link code.
9401 	 */
9402 	stay_reset2 =
9403 		MISC_REGISTERS_RESET_REG_2_XMAC |
9404 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9405 
9406 	/* Full reset masks according to the chip */
9407 	reset_mask1 = 0xffffffff;
9408 
9409 	if (CHIP_IS_E1(bp))
9410 		reset_mask2 = 0xffff;
9411 	else if (CHIP_IS_E1H(bp))
9412 		reset_mask2 = 0x1ffff;
9413 	else if (CHIP_IS_E2(bp))
9414 		reset_mask2 = 0xfffff;
9415 	else /* CHIP_IS_E3 */
9416 		reset_mask2 = 0x3ffffff;
9417 
9418 	/* Don't reset global blocks unless we need to */
9419 	if (!global)
9420 		reset_mask2 &= ~global_bits2;
9421 
9422 	/*
9423 	 * In case of attention in the QM, we need to reset PXP
9424 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9425 	 * because otherwise QM reset would release 'close the gates' shortly
9426 	 * before resetting the PXP, then the PSWRQ would send a write
9427 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9428 	 * read the payload data from PSWWR, but PSWWR would not
9429 	 * respond. The write queue in PGLUE would stuck, dmae commands
9430 	 * would not return. Therefore it's important to reset the second
9431 	 * reset register (containing the
9432 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9433 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9434 	 * bit).
9435 	 */
9436 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9437 	       reset_mask2 & (~not_reset_mask2));
9438 
9439 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9440 	       reset_mask1 & (~not_reset_mask1));
9441 
9442 	barrier();
9443 	mmiowb();
9444 
9445 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9446 	       reset_mask2 & (~stay_reset2));
9447 
9448 	barrier();
9449 	mmiowb();
9450 
9451 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9452 	mmiowb();
9453 }
9454 
9455 /**
9456  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9457  * It should get cleared in no more than 1s.
9458  *
9459  * @bp:	driver handle
9460  *
9461  * It should get cleared in no more than 1s. Returns 0 if
9462  * pending writes bit gets cleared.
9463  */
9464 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9465 {
9466 	u32 cnt = 1000;
9467 	u32 pend_bits = 0;
9468 
9469 	do {
9470 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9471 
9472 		if (pend_bits == 0)
9473 			break;
9474 
9475 		usleep_range(1000, 2000);
9476 	} while (cnt-- > 0);
9477 
9478 	if (cnt <= 0) {
9479 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9480 			  pend_bits);
9481 		return -EBUSY;
9482 	}
9483 
9484 	return 0;
9485 }
9486 
9487 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9488 {
9489 	int cnt = 1000;
9490 	u32 val = 0;
9491 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9492 	u32 tags_63_32 = 0;
9493 
9494 	/* Empty the Tetris buffer, wait for 1s */
9495 	do {
9496 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9497 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9498 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9499 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9500 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9501 		if (CHIP_IS_E3(bp))
9502 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9503 
9504 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9505 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9506 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9507 		    (pgl_exp_rom2 == 0xffffffff) &&
9508 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9509 			break;
9510 		usleep_range(1000, 2000);
9511 	} while (cnt-- > 0);
9512 
9513 	if (cnt <= 0) {
9514 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9515 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9516 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9517 			  pgl_exp_rom2);
9518 		return -EAGAIN;
9519 	}
9520 
9521 	barrier();
9522 
9523 	/* Close gates #2, #3 and #4 */
9524 	bnx2x_set_234_gates(bp, true);
9525 
9526 	/* Poll for IGU VQs for 57712 and newer chips */
9527 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9528 		return -EAGAIN;
9529 
9530 	/* TBD: Indicate that "process kill" is in progress to MCP */
9531 
9532 	/* Clear "unprepared" bit */
9533 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9534 	barrier();
9535 
9536 	/* Make sure all is written to the chip before the reset */
9537 	mmiowb();
9538 
9539 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9540 	 * PSWHST, GRC and PSWRD Tetris buffer.
9541 	 */
9542 	usleep_range(1000, 2000);
9543 
9544 	/* Prepare to chip reset: */
9545 	/* MCP */
9546 	if (global)
9547 		bnx2x_reset_mcp_prep(bp, &val);
9548 
9549 	/* PXP */
9550 	bnx2x_pxp_prep(bp);
9551 	barrier();
9552 
9553 	/* reset the chip */
9554 	bnx2x_process_kill_chip_reset(bp, global);
9555 	barrier();
9556 
9557 	/* clear errors in PGB */
9558 	if (!CHIP_IS_E1x(bp))
9559 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9560 
9561 	/* Recover after reset: */
9562 	/* MCP */
9563 	if (global && bnx2x_reset_mcp_comp(bp, val))
9564 		return -EAGAIN;
9565 
9566 	/* TBD: Add resetting the NO_MCP mode DB here */
9567 
9568 	/* Open the gates #2, #3 and #4 */
9569 	bnx2x_set_234_gates(bp, false);
9570 
9571 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9572 	 * reset state, re-enable attentions. */
9573 
9574 	return 0;
9575 }
9576 
9577 static int bnx2x_leader_reset(struct bnx2x *bp)
9578 {
9579 	int rc = 0;
9580 	bool global = bnx2x_reset_is_global(bp);
9581 	u32 load_code;
9582 
9583 	/* if not going to reset MCP - load "fake" driver to reset HW while
9584 	 * driver is owner of the HW
9585 	 */
9586 	if (!global && !BP_NOMCP(bp)) {
9587 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9588 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9589 		if (!load_code) {
9590 			BNX2X_ERR("MCP response failure, aborting\n");
9591 			rc = -EAGAIN;
9592 			goto exit_leader_reset;
9593 		}
9594 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9595 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9596 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9597 			rc = -EAGAIN;
9598 			goto exit_leader_reset2;
9599 		}
9600 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9601 		if (!load_code) {
9602 			BNX2X_ERR("MCP response failure, aborting\n");
9603 			rc = -EAGAIN;
9604 			goto exit_leader_reset2;
9605 		}
9606 	}
9607 
9608 	/* Try to recover after the failure */
9609 	if (bnx2x_process_kill(bp, global)) {
9610 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9611 			  BP_PATH(bp));
9612 		rc = -EAGAIN;
9613 		goto exit_leader_reset2;
9614 	}
9615 
9616 	/*
9617 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9618 	 * state.
9619 	 */
9620 	bnx2x_set_reset_done(bp);
9621 	if (global)
9622 		bnx2x_clear_reset_global(bp);
9623 
9624 exit_leader_reset2:
9625 	/* unload "fake driver" if it was loaded */
9626 	if (!global && !BP_NOMCP(bp)) {
9627 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9628 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9629 	}
9630 exit_leader_reset:
9631 	bp->is_leader = 0;
9632 	bnx2x_release_leader_lock(bp);
9633 	smp_mb();
9634 	return rc;
9635 }
9636 
9637 static void bnx2x_recovery_failed(struct bnx2x *bp)
9638 {
9639 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9640 
9641 	/* Disconnect this device */
9642 	netif_device_detach(bp->dev);
9643 
9644 	/*
9645 	 * Block ifup for all function on this engine until "process kill"
9646 	 * or power cycle.
9647 	 */
9648 	bnx2x_set_reset_in_progress(bp);
9649 
9650 	/* Shut down the power */
9651 	bnx2x_set_power_state(bp, PCI_D3hot);
9652 
9653 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9654 
9655 	smp_mb();
9656 }
9657 
9658 /*
9659  * Assumption: runs under rtnl lock. This together with the fact
9660  * that it's called only from bnx2x_sp_rtnl() ensure that it
9661  * will never be called when netif_running(bp->dev) is false.
9662  */
9663 static void bnx2x_parity_recover(struct bnx2x *bp)
9664 {
9665 	bool global = false;
9666 	u32 error_recovered, error_unrecovered;
9667 	bool is_parity;
9668 
9669 	DP(NETIF_MSG_HW, "Handling parity\n");
9670 	while (1) {
9671 		switch (bp->recovery_state) {
9672 		case BNX2X_RECOVERY_INIT:
9673 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9674 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9675 			WARN_ON(!is_parity);
9676 
9677 			/* Try to get a LEADER_LOCK HW lock */
9678 			if (bnx2x_trylock_leader_lock(bp)) {
9679 				bnx2x_set_reset_in_progress(bp);
9680 				/*
9681 				 * Check if there is a global attention and if
9682 				 * there was a global attention, set the global
9683 				 * reset bit.
9684 				 */
9685 
9686 				if (global)
9687 					bnx2x_set_reset_global(bp);
9688 
9689 				bp->is_leader = 1;
9690 			}
9691 
9692 			/* Stop the driver */
9693 			/* If interface has been removed - break */
9694 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9695 				return;
9696 
9697 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9698 
9699 			/* Ensure "is_leader", MCP command sequence and
9700 			 * "recovery_state" update values are seen on other
9701 			 * CPUs.
9702 			 */
9703 			smp_mb();
9704 			break;
9705 
9706 		case BNX2X_RECOVERY_WAIT:
9707 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9708 			if (bp->is_leader) {
9709 				int other_engine = BP_PATH(bp) ? 0 : 1;
9710 				bool other_load_status =
9711 					bnx2x_get_load_status(bp, other_engine);
9712 				bool load_status =
9713 					bnx2x_get_load_status(bp, BP_PATH(bp));
9714 				global = bnx2x_reset_is_global(bp);
9715 
9716 				/*
9717 				 * In case of a parity in a global block, let
9718 				 * the first leader that performs a
9719 				 * leader_reset() reset the global blocks in
9720 				 * order to clear global attentions. Otherwise
9721 				 * the gates will remain closed for that
9722 				 * engine.
9723 				 */
9724 				if (load_status ||
9725 				    (global && other_load_status)) {
9726 					/* Wait until all other functions get
9727 					 * down.
9728 					 */
9729 					schedule_delayed_work(&bp->sp_rtnl_task,
9730 								HZ/10);
9731 					return;
9732 				} else {
9733 					/* If all other functions got down -
9734 					 * try to bring the chip back to
9735 					 * normal. In any case it's an exit
9736 					 * point for a leader.
9737 					 */
9738 					if (bnx2x_leader_reset(bp)) {
9739 						bnx2x_recovery_failed(bp);
9740 						return;
9741 					}
9742 
9743 					/* If we are here, means that the
9744 					 * leader has succeeded and doesn't
9745 					 * want to be a leader any more. Try
9746 					 * to continue as a none-leader.
9747 					 */
9748 					break;
9749 				}
9750 			} else { /* non-leader */
9751 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9752 					/* Try to get a LEADER_LOCK HW lock as
9753 					 * long as a former leader may have
9754 					 * been unloaded by the user or
9755 					 * released a leadership by another
9756 					 * reason.
9757 					 */
9758 					if (bnx2x_trylock_leader_lock(bp)) {
9759 						/* I'm a leader now! Restart a
9760 						 * switch case.
9761 						 */
9762 						bp->is_leader = 1;
9763 						break;
9764 					}
9765 
9766 					schedule_delayed_work(&bp->sp_rtnl_task,
9767 								HZ/10);
9768 					return;
9769 
9770 				} else {
9771 					/*
9772 					 * If there was a global attention, wait
9773 					 * for it to be cleared.
9774 					 */
9775 					if (bnx2x_reset_is_global(bp)) {
9776 						schedule_delayed_work(
9777 							&bp->sp_rtnl_task,
9778 							HZ/10);
9779 						return;
9780 					}
9781 
9782 					error_recovered =
9783 					  bp->eth_stats.recoverable_error;
9784 					error_unrecovered =
9785 					  bp->eth_stats.unrecoverable_error;
9786 					bp->recovery_state =
9787 						BNX2X_RECOVERY_NIC_LOADING;
9788 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9789 						error_unrecovered++;
9790 						netdev_err(bp->dev,
9791 							   "Recovery failed. Power cycle needed\n");
9792 						/* Disconnect this device */
9793 						netif_device_detach(bp->dev);
9794 						/* Shut down the power */
9795 						bnx2x_set_power_state(
9796 							bp, PCI_D3hot);
9797 						smp_mb();
9798 					} else {
9799 						bp->recovery_state =
9800 							BNX2X_RECOVERY_DONE;
9801 						error_recovered++;
9802 						smp_mb();
9803 					}
9804 					bp->eth_stats.recoverable_error =
9805 						error_recovered;
9806 					bp->eth_stats.unrecoverable_error =
9807 						error_unrecovered;
9808 
9809 					return;
9810 				}
9811 			}
9812 		default:
9813 			return;
9814 		}
9815 	}
9816 }
9817 
9818 static int bnx2x_close(struct net_device *dev);
9819 
9820 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9821  * scheduled on a general queue in order to prevent a dead lock.
9822  */
9823 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9824 {
9825 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9826 
9827 	rtnl_lock();
9828 
9829 	if (!netif_running(bp->dev)) {
9830 		rtnl_unlock();
9831 		return;
9832 	}
9833 
9834 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9835 #ifdef BNX2X_STOP_ON_ERROR
9836 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9837 			  "you will need to reboot when done\n");
9838 		goto sp_rtnl_not_reset;
9839 #endif
9840 		/*
9841 		 * Clear all pending SP commands as we are going to reset the
9842 		 * function anyway.
9843 		 */
9844 		bp->sp_rtnl_state = 0;
9845 		smp_mb();
9846 
9847 		bnx2x_parity_recover(bp);
9848 
9849 		rtnl_unlock();
9850 		return;
9851 	}
9852 
9853 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9854 #ifdef BNX2X_STOP_ON_ERROR
9855 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9856 			  "you will need to reboot when done\n");
9857 		goto sp_rtnl_not_reset;
9858 #endif
9859 
9860 		/*
9861 		 * Clear all pending SP commands as we are going to reset the
9862 		 * function anyway.
9863 		 */
9864 		bp->sp_rtnl_state = 0;
9865 		smp_mb();
9866 
9867 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9868 		bnx2x_nic_load(bp, LOAD_NORMAL);
9869 
9870 		rtnl_unlock();
9871 		return;
9872 	}
9873 #ifdef BNX2X_STOP_ON_ERROR
9874 sp_rtnl_not_reset:
9875 #endif
9876 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9877 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9878 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9879 		bnx2x_after_function_update(bp);
9880 	/*
9881 	 * in case of fan failure we need to reset id if the "stop on error"
9882 	 * debug flag is set, since we trying to prevent permanent overheating
9883 	 * damage
9884 	 */
9885 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9886 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9887 		netif_device_detach(bp->dev);
9888 		bnx2x_close(bp->dev);
9889 		rtnl_unlock();
9890 		return;
9891 	}
9892 
9893 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9894 		DP(BNX2X_MSG_SP,
9895 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
9896 		bnx2x_vfpf_set_mcast(bp->dev);
9897 	}
9898 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9899 			       &bp->sp_rtnl_state)){
9900 		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9901 			bnx2x_tx_disable(bp);
9902 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9903 		}
9904 	}
9905 
9906 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9907 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9908 		bnx2x_set_rx_mode_inner(bp);
9909 	}
9910 
9911 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9912 			       &bp->sp_rtnl_state))
9913 		bnx2x_pf_set_vfs_vlan(bp);
9914 
9915 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
9916 		bnx2x_dcbx_stop_hw_tx(bp);
9917 		bnx2x_dcbx_resume_hw_tx(bp);
9918 	}
9919 
9920 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
9921 			       &bp->sp_rtnl_state))
9922 		bnx2x_update_mng_version(bp);
9923 
9924 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
9925 	 * can be called from other contexts as well)
9926 	 */
9927 	rtnl_unlock();
9928 
9929 	/* enable SR-IOV if applicable */
9930 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9931 					       &bp->sp_rtnl_state)) {
9932 		bnx2x_disable_sriov(bp);
9933 		bnx2x_enable_sriov(bp);
9934 	}
9935 }
9936 
9937 static void bnx2x_period_task(struct work_struct *work)
9938 {
9939 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9940 
9941 	if (!netif_running(bp->dev))
9942 		goto period_task_exit;
9943 
9944 	if (CHIP_REV_IS_SLOW(bp)) {
9945 		BNX2X_ERR("period task called on emulation, ignoring\n");
9946 		goto period_task_exit;
9947 	}
9948 
9949 	bnx2x_acquire_phy_lock(bp);
9950 	/*
9951 	 * The barrier is needed to ensure the ordering between the writing to
9952 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9953 	 * the reading here.
9954 	 */
9955 	smp_mb();
9956 	if (bp->port.pmf) {
9957 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9958 
9959 		/* Re-queue task in 1 sec */
9960 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9961 	}
9962 
9963 	bnx2x_release_phy_lock(bp);
9964 period_task_exit:
9965 	return;
9966 }
9967 
9968 /*
9969  * Init service functions
9970  */
9971 
9972 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9973 {
9974 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9975 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9976 	return base + (BP_ABS_FUNC(bp)) * stride;
9977 }
9978 
9979 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9980 					struct bnx2x_mac_vals *vals)
9981 {
9982 	u32 val, base_addr, offset, mask, reset_reg;
9983 	bool mac_stopped = false;
9984 	u8 port = BP_PORT(bp);
9985 
9986 	/* reset addresses as they also mark which values were changed */
9987 	vals->bmac_addr = 0;
9988 	vals->umac_addr = 0;
9989 	vals->xmac_addr = 0;
9990 	vals->emac_addr = 0;
9991 
9992 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9993 
9994 	if (!CHIP_IS_E3(bp)) {
9995 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9996 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9997 		if ((mask & reset_reg) && val) {
9998 			u32 wb_data[2];
9999 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10000 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10001 						: NIG_REG_INGRESS_BMAC0_MEM;
10002 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10003 						: BIGMAC_REGISTER_BMAC_CONTROL;
10004 
10005 			/*
10006 			 * use rd/wr since we cannot use dmae. This is safe
10007 			 * since MCP won't access the bus due to the request
10008 			 * to unload, and no function on the path can be
10009 			 * loaded at this time.
10010 			 */
10011 			wb_data[0] = REG_RD(bp, base_addr + offset);
10012 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10013 			vals->bmac_addr = base_addr + offset;
10014 			vals->bmac_val[0] = wb_data[0];
10015 			vals->bmac_val[1] = wb_data[1];
10016 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10017 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10018 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10019 		}
10020 		BNX2X_DEV_INFO("Disable emac Rx\n");
10021 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10022 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10023 		REG_WR(bp, vals->emac_addr, 0);
10024 		mac_stopped = true;
10025 	} else {
10026 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10027 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10028 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10029 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10030 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10031 			       val & ~(1 << 1));
10032 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10033 			       val | (1 << 1));
10034 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10035 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10036 			REG_WR(bp, vals->xmac_addr, 0);
10037 			mac_stopped = true;
10038 		}
10039 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10040 		if (mask & reset_reg) {
10041 			BNX2X_DEV_INFO("Disable umac Rx\n");
10042 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10043 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
10044 			vals->umac_val = REG_RD(bp, vals->umac_addr);
10045 			REG_WR(bp, vals->umac_addr, 0);
10046 			mac_stopped = true;
10047 		}
10048 	}
10049 
10050 	if (mac_stopped)
10051 		msleep(20);
10052 }
10053 
10054 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10055 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10056 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10057 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10058 
10059 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10060 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10061 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10062 #define BNX2X_PREV_UNDI_MF_PORT(p) (BAR_TSTRORM_INTMEM + 0x150c + ((p) << 4))
10063 #define BNX2X_PREV_UNDI_MF_FUNC(f) (BAR_TSTRORM_INTMEM + 0x184c + ((f) << 4))
10064 
10065 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10066 {
10067 	/* UNDI marks its presence in DORQ -
10068 	 * it initializes CID offset for normal bell to 0x7
10069 	 */
10070 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10071 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10072 		return false;
10073 
10074 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10075 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10076 		return true;
10077 	}
10078 
10079 	return false;
10080 }
10081 
10082 static bool bnx2x_prev_unload_undi_fw_supports_mf(struct bnx2x *bp)
10083 {
10084 	u8 major, minor, version;
10085 	u32 fw;
10086 
10087 	/* Must check that FW is loaded */
10088 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10089 	     MISC_REGISTERS_RESET_REG_1_RST_XSEM)) {
10090 		BNX2X_DEV_INFO("XSEM is reset - UNDI MF FW is not loaded\n");
10091 		return false;
10092 	}
10093 
10094 	/* Read Currently loaded FW version */
10095 	fw = REG_RD(bp, XSEM_REG_PRAM);
10096 	major = fw & 0xff;
10097 	minor = (fw >> 0x8) & 0xff;
10098 	version = (fw >> 0x10) & 0xff;
10099 	BNX2X_DEV_INFO("Loaded FW: 0x%08x: Major 0x%02x Minor 0x%02x Version 0x%02x\n",
10100 		       fw, major, minor, version);
10101 
10102 	if (major > BCM_5710_UNDI_FW_MF_MAJOR)
10103 		return true;
10104 
10105 	if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
10106 	    (minor > BCM_5710_UNDI_FW_MF_MINOR))
10107 		return true;
10108 
10109 	if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
10110 	    (minor == BCM_5710_UNDI_FW_MF_MINOR) &&
10111 	    (version >= BCM_5710_UNDI_FW_MF_VERS))
10112 		return true;
10113 
10114 	return false;
10115 }
10116 
10117 static void bnx2x_prev_unload_undi_mf(struct bnx2x *bp)
10118 {
10119 	int i;
10120 
10121 	/* Due to legacy (FW) code, the first function on each engine has a
10122 	 * different offset macro from the rest of the functions.
10123 	 * Setting this for all 8 functions is harmless regardless of whether
10124 	 * this is actually a multi-function device.
10125 	 */
10126 	for (i = 0; i < 2; i++)
10127 		REG_WR(bp, BNX2X_PREV_UNDI_MF_PORT(i), 1);
10128 
10129 	for (i = 2; i < 8; i++)
10130 		REG_WR(bp, BNX2X_PREV_UNDI_MF_FUNC(i - 2), 1);
10131 
10132 	BNX2X_DEV_INFO("UNDI FW (MF) set to discard\n");
10133 }
10134 
10135 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
10136 {
10137 	u16 rcq, bd;
10138 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
10139 
10140 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10141 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10142 
10143 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10144 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
10145 
10146 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10147 		       port, bd, rcq);
10148 }
10149 
10150 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10151 {
10152 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10153 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10154 	if (!rc) {
10155 		BNX2X_ERR("MCP response failure, aborting\n");
10156 		return -EBUSY;
10157 	}
10158 
10159 	return 0;
10160 }
10161 
10162 static struct bnx2x_prev_path_list *
10163 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10164 {
10165 	struct bnx2x_prev_path_list *tmp_list;
10166 
10167 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10168 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10169 		    bp->pdev->bus->number == tmp_list->bus &&
10170 		    BP_PATH(bp) == tmp_list->path)
10171 			return tmp_list;
10172 
10173 	return NULL;
10174 }
10175 
10176 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10177 {
10178 	struct bnx2x_prev_path_list *tmp_list;
10179 	int rc;
10180 
10181 	rc = down_interruptible(&bnx2x_prev_sem);
10182 	if (rc) {
10183 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10184 		return rc;
10185 	}
10186 
10187 	tmp_list = bnx2x_prev_path_get_entry(bp);
10188 	if (tmp_list) {
10189 		tmp_list->aer = 1;
10190 		rc = 0;
10191 	} else {
10192 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10193 			  BP_PATH(bp));
10194 	}
10195 
10196 	up(&bnx2x_prev_sem);
10197 
10198 	return rc;
10199 }
10200 
10201 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10202 {
10203 	struct bnx2x_prev_path_list *tmp_list;
10204 	bool rc = false;
10205 
10206 	if (down_trylock(&bnx2x_prev_sem))
10207 		return false;
10208 
10209 	tmp_list = bnx2x_prev_path_get_entry(bp);
10210 	if (tmp_list) {
10211 		if (tmp_list->aer) {
10212 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10213 			   BP_PATH(bp));
10214 		} else {
10215 			rc = true;
10216 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10217 				       BP_PATH(bp));
10218 		}
10219 	}
10220 
10221 	up(&bnx2x_prev_sem);
10222 
10223 	return rc;
10224 }
10225 
10226 bool bnx2x_port_after_undi(struct bnx2x *bp)
10227 {
10228 	struct bnx2x_prev_path_list *entry;
10229 	bool val;
10230 
10231 	down(&bnx2x_prev_sem);
10232 
10233 	entry = bnx2x_prev_path_get_entry(bp);
10234 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10235 
10236 	up(&bnx2x_prev_sem);
10237 
10238 	return val;
10239 }
10240 
10241 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10242 {
10243 	struct bnx2x_prev_path_list *tmp_list;
10244 	int rc;
10245 
10246 	rc = down_interruptible(&bnx2x_prev_sem);
10247 	if (rc) {
10248 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10249 		return rc;
10250 	}
10251 
10252 	/* Check whether the entry for this path already exists */
10253 	tmp_list = bnx2x_prev_path_get_entry(bp);
10254 	if (tmp_list) {
10255 		if (!tmp_list->aer) {
10256 			BNX2X_ERR("Re-Marking the path.\n");
10257 		} else {
10258 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10259 			   BP_PATH(bp));
10260 			tmp_list->aer = 0;
10261 		}
10262 		up(&bnx2x_prev_sem);
10263 		return 0;
10264 	}
10265 	up(&bnx2x_prev_sem);
10266 
10267 	/* Create an entry for this path and add it */
10268 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10269 	if (!tmp_list) {
10270 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10271 		return -ENOMEM;
10272 	}
10273 
10274 	tmp_list->bus = bp->pdev->bus->number;
10275 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10276 	tmp_list->path = BP_PATH(bp);
10277 	tmp_list->aer = 0;
10278 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10279 
10280 	rc = down_interruptible(&bnx2x_prev_sem);
10281 	if (rc) {
10282 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10283 		kfree(tmp_list);
10284 	} else {
10285 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10286 		   BP_PATH(bp));
10287 		list_add(&tmp_list->list, &bnx2x_prev_list);
10288 		up(&bnx2x_prev_sem);
10289 	}
10290 
10291 	return rc;
10292 }
10293 
10294 static int bnx2x_do_flr(struct bnx2x *bp)
10295 {
10296 	struct pci_dev *dev = bp->pdev;
10297 
10298 	if (CHIP_IS_E1x(bp)) {
10299 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10300 		return -EINVAL;
10301 	}
10302 
10303 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10304 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10305 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10306 			  bp->common.bc_ver);
10307 		return -EINVAL;
10308 	}
10309 
10310 	if (!pci_wait_for_pending_transaction(dev))
10311 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10312 
10313 	BNX2X_DEV_INFO("Initiating FLR\n");
10314 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10315 
10316 	return 0;
10317 }
10318 
10319 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10320 {
10321 	int rc;
10322 
10323 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10324 
10325 	/* Test if previous unload process was already finished for this path */
10326 	if (bnx2x_prev_is_path_marked(bp))
10327 		return bnx2x_prev_mcp_done(bp);
10328 
10329 	BNX2X_DEV_INFO("Path is unmarked\n");
10330 
10331 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10332 	if (bnx2x_prev_is_after_undi(bp))
10333 		goto out;
10334 
10335 	/* If function has FLR capabilities, and existing FW version matches
10336 	 * the one required, then FLR will be sufficient to clean any residue
10337 	 * left by previous driver
10338 	 */
10339 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10340 
10341 	if (!rc) {
10342 		/* fw version is good */
10343 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10344 		rc = bnx2x_do_flr(bp);
10345 	}
10346 
10347 	if (!rc) {
10348 		/* FLR was performed */
10349 		BNX2X_DEV_INFO("FLR successful\n");
10350 		return 0;
10351 	}
10352 
10353 	BNX2X_DEV_INFO("Could not FLR\n");
10354 
10355 out:
10356 	/* Close the MCP request, return failure*/
10357 	rc = bnx2x_prev_mcp_done(bp);
10358 	if (!rc)
10359 		rc = BNX2X_PREV_WAIT_NEEDED;
10360 
10361 	return rc;
10362 }
10363 
10364 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10365 {
10366 	u32 reset_reg, tmp_reg = 0, rc;
10367 	bool prev_undi = false;
10368 	struct bnx2x_mac_vals mac_vals;
10369 
10370 	/* It is possible a previous function received 'common' answer,
10371 	 * but hasn't loaded yet, therefore creating a scenario of
10372 	 * multiple functions receiving 'common' on the same path.
10373 	 */
10374 	BNX2X_DEV_INFO("Common unload Flow\n");
10375 
10376 	memset(&mac_vals, 0, sizeof(mac_vals));
10377 
10378 	if (bnx2x_prev_is_path_marked(bp))
10379 		return bnx2x_prev_mcp_done(bp);
10380 
10381 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10382 
10383 	/* Reset should be performed after BRB is emptied */
10384 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10385 		u32 timer_count = 1000;
10386 		bool need_write = true;
10387 
10388 		/* Close the MAC Rx to prevent BRB from filling up */
10389 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10390 
10391 		/* close LLH filters towards the BRB */
10392 		bnx2x_set_rx_filter(&bp->link_params, 0);
10393 
10394 		/* Check if the UNDI driver was previously loaded */
10395 		if (bnx2x_prev_is_after_undi(bp)) {
10396 			prev_undi = true;
10397 			/* clear the UNDI indication */
10398 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10399 			/* clear possible idle check errors */
10400 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10401 		}
10402 		if (!CHIP_IS_E1x(bp))
10403 			/* block FW from writing to host */
10404 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10405 
10406 		/* wait until BRB is empty */
10407 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10408 		while (timer_count) {
10409 			u32 prev_brb = tmp_reg;
10410 
10411 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10412 			if (!tmp_reg)
10413 				break;
10414 
10415 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10416 
10417 			/* reset timer as long as BRB actually gets emptied */
10418 			if (prev_brb > tmp_reg)
10419 				timer_count = 1000;
10420 			else
10421 				timer_count--;
10422 
10423 			/* New UNDI FW supports MF and contains better
10424 			 * cleaning methods - might be redundant but harmless.
10425 			 */
10426 			if (bnx2x_prev_unload_undi_fw_supports_mf(bp)) {
10427 				if (need_write) {
10428 					bnx2x_prev_unload_undi_mf(bp);
10429 					need_write = false;
10430 				}
10431 			} else if (prev_undi) {
10432 				/* If UNDI resides in memory,
10433 				 * manually increment it
10434 				 */
10435 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10436 			}
10437 			udelay(10);
10438 		}
10439 
10440 		if (!timer_count)
10441 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10442 	}
10443 
10444 	/* No packets are in the pipeline, path is ready for reset */
10445 	bnx2x_reset_common(bp);
10446 
10447 	if (mac_vals.xmac_addr)
10448 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10449 	if (mac_vals.umac_addr)
10450 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10451 	if (mac_vals.emac_addr)
10452 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10453 	if (mac_vals.bmac_addr) {
10454 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10455 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10456 	}
10457 
10458 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10459 	if (rc) {
10460 		bnx2x_prev_mcp_done(bp);
10461 		return rc;
10462 	}
10463 
10464 	return bnx2x_prev_mcp_done(bp);
10465 }
10466 
10467 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10468  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10469  * the addresses of the transaction, resulting in was-error bit set in the pci
10470  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10471  * to clear the interrupt which detected this from the pglueb and the was done
10472  * bit
10473  */
10474 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10475 {
10476 	if (!CHIP_IS_E1x(bp)) {
10477 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10478 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10479 			DP(BNX2X_MSG_SP,
10480 			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10481 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10482 			       1 << BP_FUNC(bp));
10483 		}
10484 	}
10485 }
10486 
10487 static int bnx2x_prev_unload(struct bnx2x *bp)
10488 {
10489 	int time_counter = 10;
10490 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10491 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10492 
10493 	/* clear hw from errors which may have resulted from an interrupted
10494 	 * dmae transaction.
10495 	 */
10496 	bnx2x_prev_interrupted_dmae(bp);
10497 
10498 	/* Release previously held locks */
10499 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10500 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10501 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10502 
10503 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10504 	if (hw_lock_val) {
10505 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10506 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10507 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10508 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10509 		}
10510 
10511 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10512 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10513 	} else
10514 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10515 
10516 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10517 		BNX2X_DEV_INFO("Release previously held alr\n");
10518 		bnx2x_release_alr(bp);
10519 	}
10520 
10521 	do {
10522 		int aer = 0;
10523 		/* Lock MCP using an unload request */
10524 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10525 		if (!fw) {
10526 			BNX2X_ERR("MCP response failure, aborting\n");
10527 			rc = -EBUSY;
10528 			break;
10529 		}
10530 
10531 		rc = down_interruptible(&bnx2x_prev_sem);
10532 		if (rc) {
10533 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10534 				  rc);
10535 		} else {
10536 			/* If Path is marked by EEH, ignore unload status */
10537 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10538 				 bnx2x_prev_path_get_entry(bp)->aer);
10539 			up(&bnx2x_prev_sem);
10540 		}
10541 
10542 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10543 			rc = bnx2x_prev_unload_common(bp);
10544 			break;
10545 		}
10546 
10547 		/* non-common reply from MCP might require looping */
10548 		rc = bnx2x_prev_unload_uncommon(bp);
10549 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10550 			break;
10551 
10552 		msleep(20);
10553 	} while (--time_counter);
10554 
10555 	if (!time_counter || rc) {
10556 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10557 		rc = -EPROBE_DEFER;
10558 	}
10559 
10560 	/* Mark function if its port was used to boot from SAN */
10561 	if (bnx2x_port_after_undi(bp))
10562 		bp->link_params.feature_config_flags |=
10563 			FEATURE_CONFIG_BOOT_FROM_SAN;
10564 
10565 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10566 
10567 	return rc;
10568 }
10569 
10570 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10571 {
10572 	u32 val, val2, val3, val4, id, boot_mode;
10573 	u16 pmc;
10574 
10575 	/* Get the chip revision id and number. */
10576 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10577 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10578 	id = ((val & 0xffff) << 16);
10579 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10580 	id |= ((val & 0xf) << 12);
10581 
10582 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10583 	 * the configuration space (so we need to reg_rd)
10584 	 */
10585 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10586 	id |= (((val >> 24) & 0xf) << 4);
10587 	val = REG_RD(bp, MISC_REG_BOND_ID);
10588 	id |= (val & 0xf);
10589 	bp->common.chip_id = id;
10590 
10591 	/* force 57811 according to MISC register */
10592 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10593 		if (CHIP_IS_57810(bp))
10594 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10595 				(bp->common.chip_id & 0x0000FFFF);
10596 		else if (CHIP_IS_57810_MF(bp))
10597 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10598 				(bp->common.chip_id & 0x0000FFFF);
10599 		bp->common.chip_id |= 0x1;
10600 	}
10601 
10602 	/* Set doorbell size */
10603 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10604 
10605 	if (!CHIP_IS_E1x(bp)) {
10606 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10607 		if ((val & 1) == 0)
10608 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10609 		else
10610 			val = (val >> 1) & 1;
10611 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10612 						       "2_PORT_MODE");
10613 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10614 						 CHIP_2_PORT_MODE;
10615 
10616 		if (CHIP_MODE_IS_4_PORT(bp))
10617 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10618 		else
10619 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10620 	} else {
10621 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10622 		bp->pfid = bp->pf_num;			/* 0..7 */
10623 	}
10624 
10625 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10626 
10627 	bp->link_params.chip_id = bp->common.chip_id;
10628 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10629 
10630 	val = (REG_RD(bp, 0x2874) & 0x55);
10631 	if ((bp->common.chip_id & 0x1) ||
10632 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10633 		bp->flags |= ONE_PORT_FLAG;
10634 		BNX2X_DEV_INFO("single port device\n");
10635 	}
10636 
10637 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10638 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10639 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10640 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10641 		       bp->common.flash_size, bp->common.flash_size);
10642 
10643 	bnx2x_init_shmem(bp);
10644 
10645 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10646 					MISC_REG_GENERIC_CR_1 :
10647 					MISC_REG_GENERIC_CR_0));
10648 
10649 	bp->link_params.shmem_base = bp->common.shmem_base;
10650 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10651 	if (SHMEM2_RD(bp, size) >
10652 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10653 		bp->link_params.lfa_base =
10654 		REG_RD(bp, bp->common.shmem2_base +
10655 		       (u32)offsetof(struct shmem2_region,
10656 				     lfa_host_addr[BP_PORT(bp)]));
10657 	else
10658 		bp->link_params.lfa_base = 0;
10659 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10660 		       bp->common.shmem_base, bp->common.shmem2_base);
10661 
10662 	if (!bp->common.shmem_base) {
10663 		BNX2X_DEV_INFO("MCP not active\n");
10664 		bp->flags |= NO_MCP_FLAG;
10665 		return;
10666 	}
10667 
10668 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10669 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10670 
10671 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10672 					SHARED_HW_CFG_LED_MODE_MASK) >>
10673 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10674 
10675 	bp->link_params.feature_config_flags = 0;
10676 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10677 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10678 		bp->link_params.feature_config_flags |=
10679 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10680 	else
10681 		bp->link_params.feature_config_flags &=
10682 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10683 
10684 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10685 	bp->common.bc_ver = val;
10686 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10687 	if (val < BNX2X_BC_VER) {
10688 		/* for now only warn
10689 		 * later we might need to enforce this */
10690 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10691 			  BNX2X_BC_VER, val);
10692 	}
10693 	bp->link_params.feature_config_flags |=
10694 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10695 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10696 
10697 	bp->link_params.feature_config_flags |=
10698 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10699 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10700 	bp->link_params.feature_config_flags |=
10701 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10702 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10703 	bp->link_params.feature_config_flags |=
10704 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10705 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10706 
10707 	bp->link_params.feature_config_flags |=
10708 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10709 		FEATURE_CONFIG_MT_SUPPORT : 0;
10710 
10711 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10712 			BC_SUPPORTS_PFC_STATS : 0;
10713 
10714 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10715 			BC_SUPPORTS_FCOE_FEATURES : 0;
10716 
10717 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10718 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10719 
10720 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10721 			BC_SUPPORTS_RMMOD_CMD : 0;
10722 
10723 	boot_mode = SHMEM_RD(bp,
10724 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10725 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10726 	switch (boot_mode) {
10727 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10728 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10729 		break;
10730 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10731 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10732 		break;
10733 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10734 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10735 		break;
10736 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10737 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10738 		break;
10739 	}
10740 
10741 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10742 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10743 
10744 	BNX2X_DEV_INFO("%sWoL capable\n",
10745 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10746 
10747 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10748 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10749 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10750 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10751 
10752 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10753 		 val, val2, val3, val4);
10754 }
10755 
10756 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10757 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10758 
10759 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10760 {
10761 	int pfid = BP_FUNC(bp);
10762 	int igu_sb_id;
10763 	u32 val;
10764 	u8 fid, igu_sb_cnt = 0;
10765 
10766 	bp->igu_base_sb = 0xff;
10767 	if (CHIP_INT_MODE_IS_BC(bp)) {
10768 		int vn = BP_VN(bp);
10769 		igu_sb_cnt = bp->igu_sb_cnt;
10770 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10771 			FP_SB_MAX_E1x;
10772 
10773 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10774 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10775 
10776 		return 0;
10777 	}
10778 
10779 	/* IGU in normal mode - read CAM */
10780 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10781 	     igu_sb_id++) {
10782 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10783 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10784 			continue;
10785 		fid = IGU_FID(val);
10786 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10787 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10788 				continue;
10789 			if (IGU_VEC(val) == 0)
10790 				/* default status block */
10791 				bp->igu_dsb_id = igu_sb_id;
10792 			else {
10793 				if (bp->igu_base_sb == 0xff)
10794 					bp->igu_base_sb = igu_sb_id;
10795 				igu_sb_cnt++;
10796 			}
10797 		}
10798 	}
10799 
10800 #ifdef CONFIG_PCI_MSI
10801 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10802 	 * optional that number of CAM entries will not be equal to the value
10803 	 * advertised in PCI.
10804 	 * Driver should use the minimal value of both as the actual status
10805 	 * block count
10806 	 */
10807 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10808 #endif
10809 
10810 	if (igu_sb_cnt == 0) {
10811 		BNX2X_ERR("CAM configuration error\n");
10812 		return -EINVAL;
10813 	}
10814 
10815 	return 0;
10816 }
10817 
10818 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10819 {
10820 	int cfg_size = 0, idx, port = BP_PORT(bp);
10821 
10822 	/* Aggregation of supported attributes of all external phys */
10823 	bp->port.supported[0] = 0;
10824 	bp->port.supported[1] = 0;
10825 	switch (bp->link_params.num_phys) {
10826 	case 1:
10827 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10828 		cfg_size = 1;
10829 		break;
10830 	case 2:
10831 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10832 		cfg_size = 1;
10833 		break;
10834 	case 3:
10835 		if (bp->link_params.multi_phy_config &
10836 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10837 			bp->port.supported[1] =
10838 				bp->link_params.phy[EXT_PHY1].supported;
10839 			bp->port.supported[0] =
10840 				bp->link_params.phy[EXT_PHY2].supported;
10841 		} else {
10842 			bp->port.supported[0] =
10843 				bp->link_params.phy[EXT_PHY1].supported;
10844 			bp->port.supported[1] =
10845 				bp->link_params.phy[EXT_PHY2].supported;
10846 		}
10847 		cfg_size = 2;
10848 		break;
10849 	}
10850 
10851 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10852 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10853 			   SHMEM_RD(bp,
10854 			   dev_info.port_hw_config[port].external_phy_config),
10855 			   SHMEM_RD(bp,
10856 			   dev_info.port_hw_config[port].external_phy_config2));
10857 			return;
10858 	}
10859 
10860 	if (CHIP_IS_E3(bp))
10861 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10862 	else {
10863 		switch (switch_cfg) {
10864 		case SWITCH_CFG_1G:
10865 			bp->port.phy_addr = REG_RD(
10866 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10867 			break;
10868 		case SWITCH_CFG_10G:
10869 			bp->port.phy_addr = REG_RD(
10870 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10871 			break;
10872 		default:
10873 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10874 				  bp->port.link_config[0]);
10875 			return;
10876 		}
10877 	}
10878 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10879 	/* mask what we support according to speed_cap_mask per configuration */
10880 	for (idx = 0; idx < cfg_size; idx++) {
10881 		if (!(bp->link_params.speed_cap_mask[idx] &
10882 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10883 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10884 
10885 		if (!(bp->link_params.speed_cap_mask[idx] &
10886 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10887 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10888 
10889 		if (!(bp->link_params.speed_cap_mask[idx] &
10890 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10891 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10892 
10893 		if (!(bp->link_params.speed_cap_mask[idx] &
10894 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10895 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10896 
10897 		if (!(bp->link_params.speed_cap_mask[idx] &
10898 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10899 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10900 						     SUPPORTED_1000baseT_Full);
10901 
10902 		if (!(bp->link_params.speed_cap_mask[idx] &
10903 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10904 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10905 
10906 		if (!(bp->link_params.speed_cap_mask[idx] &
10907 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10908 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10909 
10910 		if (!(bp->link_params.speed_cap_mask[idx] &
10911 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10912 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10913 	}
10914 
10915 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10916 		       bp->port.supported[1]);
10917 }
10918 
10919 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10920 {
10921 	u32 link_config, idx, cfg_size = 0;
10922 	bp->port.advertising[0] = 0;
10923 	bp->port.advertising[1] = 0;
10924 	switch (bp->link_params.num_phys) {
10925 	case 1:
10926 	case 2:
10927 		cfg_size = 1;
10928 		break;
10929 	case 3:
10930 		cfg_size = 2;
10931 		break;
10932 	}
10933 	for (idx = 0; idx < cfg_size; idx++) {
10934 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10935 		link_config = bp->port.link_config[idx];
10936 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10937 		case PORT_FEATURE_LINK_SPEED_AUTO:
10938 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10939 				bp->link_params.req_line_speed[idx] =
10940 					SPEED_AUTO_NEG;
10941 				bp->port.advertising[idx] |=
10942 					bp->port.supported[idx];
10943 				if (bp->link_params.phy[EXT_PHY1].type ==
10944 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10945 					bp->port.advertising[idx] |=
10946 					(SUPPORTED_100baseT_Half |
10947 					 SUPPORTED_100baseT_Full);
10948 			} else {
10949 				/* force 10G, no AN */
10950 				bp->link_params.req_line_speed[idx] =
10951 					SPEED_10000;
10952 				bp->port.advertising[idx] |=
10953 					(ADVERTISED_10000baseT_Full |
10954 					 ADVERTISED_FIBRE);
10955 				continue;
10956 			}
10957 			break;
10958 
10959 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10960 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10961 				bp->link_params.req_line_speed[idx] =
10962 					SPEED_10;
10963 				bp->port.advertising[idx] |=
10964 					(ADVERTISED_10baseT_Full |
10965 					 ADVERTISED_TP);
10966 			} else {
10967 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10968 					    link_config,
10969 				    bp->link_params.speed_cap_mask[idx]);
10970 				return;
10971 			}
10972 			break;
10973 
10974 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10975 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10976 				bp->link_params.req_line_speed[idx] =
10977 					SPEED_10;
10978 				bp->link_params.req_duplex[idx] =
10979 					DUPLEX_HALF;
10980 				bp->port.advertising[idx] |=
10981 					(ADVERTISED_10baseT_Half |
10982 					 ADVERTISED_TP);
10983 			} else {
10984 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10985 					    link_config,
10986 					  bp->link_params.speed_cap_mask[idx]);
10987 				return;
10988 			}
10989 			break;
10990 
10991 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10992 			if (bp->port.supported[idx] &
10993 			    SUPPORTED_100baseT_Full) {
10994 				bp->link_params.req_line_speed[idx] =
10995 					SPEED_100;
10996 				bp->port.advertising[idx] |=
10997 					(ADVERTISED_100baseT_Full |
10998 					 ADVERTISED_TP);
10999 			} else {
11000 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11001 					    link_config,
11002 					  bp->link_params.speed_cap_mask[idx]);
11003 				return;
11004 			}
11005 			break;
11006 
11007 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11008 			if (bp->port.supported[idx] &
11009 			    SUPPORTED_100baseT_Half) {
11010 				bp->link_params.req_line_speed[idx] =
11011 								SPEED_100;
11012 				bp->link_params.req_duplex[idx] =
11013 								DUPLEX_HALF;
11014 				bp->port.advertising[idx] |=
11015 					(ADVERTISED_100baseT_Half |
11016 					 ADVERTISED_TP);
11017 			} else {
11018 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11019 				    link_config,
11020 				    bp->link_params.speed_cap_mask[idx]);
11021 				return;
11022 			}
11023 			break;
11024 
11025 		case PORT_FEATURE_LINK_SPEED_1G:
11026 			if (bp->port.supported[idx] &
11027 			    SUPPORTED_1000baseT_Full) {
11028 				bp->link_params.req_line_speed[idx] =
11029 					SPEED_1000;
11030 				bp->port.advertising[idx] |=
11031 					(ADVERTISED_1000baseT_Full |
11032 					 ADVERTISED_TP);
11033 			} else {
11034 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11035 				    link_config,
11036 				    bp->link_params.speed_cap_mask[idx]);
11037 				return;
11038 			}
11039 			break;
11040 
11041 		case PORT_FEATURE_LINK_SPEED_2_5G:
11042 			if (bp->port.supported[idx] &
11043 			    SUPPORTED_2500baseX_Full) {
11044 				bp->link_params.req_line_speed[idx] =
11045 					SPEED_2500;
11046 				bp->port.advertising[idx] |=
11047 					(ADVERTISED_2500baseX_Full |
11048 						ADVERTISED_TP);
11049 			} else {
11050 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11051 				    link_config,
11052 				    bp->link_params.speed_cap_mask[idx]);
11053 				return;
11054 			}
11055 			break;
11056 
11057 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11058 			if (bp->port.supported[idx] &
11059 			    SUPPORTED_10000baseT_Full) {
11060 				bp->link_params.req_line_speed[idx] =
11061 					SPEED_10000;
11062 				bp->port.advertising[idx] |=
11063 					(ADVERTISED_10000baseT_Full |
11064 						ADVERTISED_FIBRE);
11065 			} else {
11066 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11067 				    link_config,
11068 				    bp->link_params.speed_cap_mask[idx]);
11069 				return;
11070 			}
11071 			break;
11072 		case PORT_FEATURE_LINK_SPEED_20G:
11073 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11074 
11075 			break;
11076 		default:
11077 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11078 				  link_config);
11079 				bp->link_params.req_line_speed[idx] =
11080 							SPEED_AUTO_NEG;
11081 				bp->port.advertising[idx] =
11082 						bp->port.supported[idx];
11083 			break;
11084 		}
11085 
11086 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11087 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11088 		if (bp->link_params.req_flow_ctrl[idx] ==
11089 		    BNX2X_FLOW_CTRL_AUTO) {
11090 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11091 				bp->link_params.req_flow_ctrl[idx] =
11092 							BNX2X_FLOW_CTRL_NONE;
11093 			else
11094 				bnx2x_set_requested_fc(bp);
11095 		}
11096 
11097 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11098 			       bp->link_params.req_line_speed[idx],
11099 			       bp->link_params.req_duplex[idx],
11100 			       bp->link_params.req_flow_ctrl[idx],
11101 			       bp->port.advertising[idx]);
11102 	}
11103 }
11104 
11105 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11106 {
11107 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11108 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11109 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11110 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11111 }
11112 
11113 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11114 {
11115 	int port = BP_PORT(bp);
11116 	u32 config;
11117 	u32 ext_phy_type, ext_phy_config, eee_mode;
11118 
11119 	bp->link_params.bp = bp;
11120 	bp->link_params.port = port;
11121 
11122 	bp->link_params.lane_config =
11123 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11124 
11125 	bp->link_params.speed_cap_mask[0] =
11126 		SHMEM_RD(bp,
11127 			 dev_info.port_hw_config[port].speed_capability_mask) &
11128 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11129 	bp->link_params.speed_cap_mask[1] =
11130 		SHMEM_RD(bp,
11131 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11132 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11133 	bp->port.link_config[0] =
11134 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11135 
11136 	bp->port.link_config[1] =
11137 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11138 
11139 	bp->link_params.multi_phy_config =
11140 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11141 	/* If the device is capable of WoL, set the default state according
11142 	 * to the HW
11143 	 */
11144 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11145 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11146 		   (config & PORT_FEATURE_WOL_ENABLED));
11147 
11148 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11149 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11150 		bp->flags |= NO_ISCSI_FLAG;
11151 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11152 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11153 		bp->flags |= NO_FCOE_FLAG;
11154 
11155 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11156 		       bp->link_params.lane_config,
11157 		       bp->link_params.speed_cap_mask[0],
11158 		       bp->port.link_config[0]);
11159 
11160 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11161 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11162 	bnx2x_phy_probe(&bp->link_params);
11163 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11164 
11165 	bnx2x_link_settings_requested(bp);
11166 
11167 	/*
11168 	 * If connected directly, work with the internal PHY, otherwise, work
11169 	 * with the external PHY
11170 	 */
11171 	ext_phy_config =
11172 		SHMEM_RD(bp,
11173 			 dev_info.port_hw_config[port].external_phy_config);
11174 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11175 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11176 		bp->mdio.prtad = bp->port.phy_addr;
11177 
11178 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11179 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11180 		bp->mdio.prtad =
11181 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11182 
11183 	/* Configure link feature according to nvram value */
11184 	eee_mode = (((SHMEM_RD(bp, dev_info.
11185 		      port_feature_config[port].eee_power_mode)) &
11186 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11187 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11188 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11189 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11190 					   EEE_MODE_ENABLE_LPI |
11191 					   EEE_MODE_OUTPUT_TIME;
11192 	} else {
11193 		bp->link_params.eee_mode = 0;
11194 	}
11195 }
11196 
11197 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11198 {
11199 	u32 no_flags = NO_ISCSI_FLAG;
11200 	int port = BP_PORT(bp);
11201 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11202 				drv_lic_key[port].max_iscsi_conn);
11203 
11204 	if (!CNIC_SUPPORT(bp)) {
11205 		bp->flags |= no_flags;
11206 		return;
11207 	}
11208 
11209 	/* Get the number of maximum allowed iSCSI connections */
11210 	bp->cnic_eth_dev.max_iscsi_conn =
11211 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11212 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11213 
11214 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11215 		       bp->cnic_eth_dev.max_iscsi_conn);
11216 
11217 	/*
11218 	 * If maximum allowed number of connections is zero -
11219 	 * disable the feature.
11220 	 */
11221 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11222 		bp->flags |= no_flags;
11223 }
11224 
11225 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11226 {
11227 	/* Port info */
11228 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11229 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11230 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11231 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11232 
11233 	/* Node info */
11234 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11235 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11236 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11237 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11238 }
11239 
11240 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11241 {
11242 	u8 count = 0;
11243 
11244 	if (IS_MF(bp)) {
11245 		u8 fid;
11246 
11247 		/* iterate over absolute function ids for this path: */
11248 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11249 			if (IS_MF_SD(bp)) {
11250 				u32 cfg = MF_CFG_RD(bp,
11251 						    func_mf_config[fid].config);
11252 
11253 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11254 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11255 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11256 					count++;
11257 			} else {
11258 				u32 cfg = MF_CFG_RD(bp,
11259 						    func_ext_config[fid].
11260 								      func_cfg);
11261 
11262 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11263 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11264 					count++;
11265 			}
11266 		}
11267 	} else { /* SF */
11268 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11269 
11270 		for (port = 0; port < port_cnt; port++) {
11271 			u32 lic = SHMEM_RD(bp,
11272 					   drv_lic_key[port].max_fcoe_conn) ^
11273 				  FW_ENCODE_32BIT_PATTERN;
11274 			if (lic)
11275 				count++;
11276 		}
11277 	}
11278 
11279 	return count;
11280 }
11281 
11282 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11283 {
11284 	int port = BP_PORT(bp);
11285 	int func = BP_ABS_FUNC(bp);
11286 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11287 				drv_lic_key[port].max_fcoe_conn);
11288 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11289 
11290 	if (!CNIC_SUPPORT(bp)) {
11291 		bp->flags |= NO_FCOE_FLAG;
11292 		return;
11293 	}
11294 
11295 	/* Get the number of maximum allowed FCoE connections */
11296 	bp->cnic_eth_dev.max_fcoe_conn =
11297 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11298 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11299 
11300 	/* Calculate the number of maximum allowed FCoE tasks */
11301 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11302 
11303 	/* check if FCoE resources must be shared between different functions */
11304 	if (num_fcoe_func)
11305 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11306 
11307 	/* Read the WWN: */
11308 	if (!IS_MF(bp)) {
11309 		/* Port info */
11310 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11311 			SHMEM_RD(bp,
11312 				 dev_info.port_hw_config[port].
11313 				 fcoe_wwn_port_name_upper);
11314 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11315 			SHMEM_RD(bp,
11316 				 dev_info.port_hw_config[port].
11317 				 fcoe_wwn_port_name_lower);
11318 
11319 		/* Node info */
11320 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11321 			SHMEM_RD(bp,
11322 				 dev_info.port_hw_config[port].
11323 				 fcoe_wwn_node_name_upper);
11324 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11325 			SHMEM_RD(bp,
11326 				 dev_info.port_hw_config[port].
11327 				 fcoe_wwn_node_name_lower);
11328 	} else if (!IS_MF_SD(bp)) {
11329 		/*
11330 		 * Read the WWN info only if the FCoE feature is enabled for
11331 		 * this function.
11332 		 */
11333 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11334 			bnx2x_get_ext_wwn_info(bp, func);
11335 
11336 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11337 		bnx2x_get_ext_wwn_info(bp, func);
11338 	}
11339 
11340 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11341 
11342 	/*
11343 	 * If maximum allowed number of connections is zero -
11344 	 * disable the feature.
11345 	 */
11346 	if (!bp->cnic_eth_dev.max_fcoe_conn)
11347 		bp->flags |= NO_FCOE_FLAG;
11348 }
11349 
11350 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11351 {
11352 	/*
11353 	 * iSCSI may be dynamically disabled but reading
11354 	 * info here we will decrease memory usage by driver
11355 	 * if the feature is disabled for good
11356 	 */
11357 	bnx2x_get_iscsi_info(bp);
11358 	bnx2x_get_fcoe_info(bp);
11359 }
11360 
11361 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11362 {
11363 	u32 val, val2;
11364 	int func = BP_ABS_FUNC(bp);
11365 	int port = BP_PORT(bp);
11366 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11367 	u8 *fip_mac = bp->fip_mac;
11368 
11369 	if (IS_MF(bp)) {
11370 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11371 		 * FCoE MAC then the appropriate feature should be disabled.
11372 		 * In non SD mode features configuration comes from struct
11373 		 * func_ext_config.
11374 		 */
11375 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11376 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11377 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11378 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11379 						 iscsi_mac_addr_upper);
11380 				val = MF_CFG_RD(bp, func_ext_config[func].
11381 						iscsi_mac_addr_lower);
11382 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11383 				BNX2X_DEV_INFO
11384 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11385 			} else {
11386 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11387 			}
11388 
11389 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11390 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11391 						 fcoe_mac_addr_upper);
11392 				val = MF_CFG_RD(bp, func_ext_config[func].
11393 						fcoe_mac_addr_lower);
11394 				bnx2x_set_mac_buf(fip_mac, val, val2);
11395 				BNX2X_DEV_INFO
11396 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11397 			} else {
11398 				bp->flags |= NO_FCOE_FLAG;
11399 			}
11400 
11401 			bp->mf_ext_config = cfg;
11402 
11403 		} else { /* SD MODE */
11404 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11405 				/* use primary mac as iscsi mac */
11406 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11407 
11408 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11409 				BNX2X_DEV_INFO
11410 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11411 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11412 				/* use primary mac as fip mac */
11413 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11414 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11415 				BNX2X_DEV_INFO
11416 					("Read FIP MAC: %pM\n", fip_mac);
11417 			}
11418 		}
11419 
11420 		/* If this is a storage-only interface, use SAN mac as
11421 		 * primary MAC. Notice that for SD this is already the case,
11422 		 * as the SAN mac was copied from the primary MAC.
11423 		 */
11424 		if (IS_MF_FCOE_AFEX(bp))
11425 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11426 	} else {
11427 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11428 				iscsi_mac_upper);
11429 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11430 			       iscsi_mac_lower);
11431 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11432 
11433 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11434 				fcoe_fip_mac_upper);
11435 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11436 			       fcoe_fip_mac_lower);
11437 		bnx2x_set_mac_buf(fip_mac, val, val2);
11438 	}
11439 
11440 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11441 	if (!is_valid_ether_addr(iscsi_mac)) {
11442 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11443 		memset(iscsi_mac, 0, ETH_ALEN);
11444 	}
11445 
11446 	/* Disable FCoE if MAC configuration is invalid. */
11447 	if (!is_valid_ether_addr(fip_mac)) {
11448 		bp->flags |= NO_FCOE_FLAG;
11449 		memset(bp->fip_mac, 0, ETH_ALEN);
11450 	}
11451 }
11452 
11453 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11454 {
11455 	u32 val, val2;
11456 	int func = BP_ABS_FUNC(bp);
11457 	int port = BP_PORT(bp);
11458 
11459 	/* Zero primary MAC configuration */
11460 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
11461 
11462 	if (BP_NOMCP(bp)) {
11463 		BNX2X_ERROR("warning: random MAC workaround active\n");
11464 		eth_hw_addr_random(bp->dev);
11465 	} else if (IS_MF(bp)) {
11466 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11467 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11468 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11469 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11470 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11471 
11472 		if (CNIC_SUPPORT(bp))
11473 			bnx2x_get_cnic_mac_hwinfo(bp);
11474 	} else {
11475 		/* in SF read MACs from port configuration */
11476 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11477 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11478 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11479 
11480 		if (CNIC_SUPPORT(bp))
11481 			bnx2x_get_cnic_mac_hwinfo(bp);
11482 	}
11483 
11484 	if (!BP_NOMCP(bp)) {
11485 		/* Read physical port identifier from shmem */
11486 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11487 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11488 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11489 		bp->flags |= HAS_PHYS_PORT_ID;
11490 	}
11491 
11492 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11493 
11494 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11495 		dev_err(&bp->pdev->dev,
11496 			"bad Ethernet MAC address configuration: %pM\n"
11497 			"change it manually before bringing up the appropriate network interface\n",
11498 			bp->dev->dev_addr);
11499 }
11500 
11501 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11502 {
11503 	int tmp;
11504 	u32 cfg;
11505 
11506 	if (IS_VF(bp))
11507 		return 0;
11508 
11509 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11510 		/* Take function: tmp = func */
11511 		tmp = BP_ABS_FUNC(bp);
11512 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11513 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11514 	} else {
11515 		/* Take port: tmp = port */
11516 		tmp = BP_PORT(bp);
11517 		cfg = SHMEM_RD(bp,
11518 			       dev_info.port_hw_config[tmp].generic_features);
11519 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11520 	}
11521 	return cfg;
11522 }
11523 
11524 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11525 {
11526 	int /*abs*/func = BP_ABS_FUNC(bp);
11527 	int vn;
11528 	u32 val = 0;
11529 	int rc = 0;
11530 
11531 	bnx2x_get_common_hwinfo(bp);
11532 
11533 	/*
11534 	 * initialize IGU parameters
11535 	 */
11536 	if (CHIP_IS_E1x(bp)) {
11537 		bp->common.int_block = INT_BLOCK_HC;
11538 
11539 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11540 		bp->igu_base_sb = 0;
11541 	} else {
11542 		bp->common.int_block = INT_BLOCK_IGU;
11543 
11544 		/* do not allow device reset during IGU info processing */
11545 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11546 
11547 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11548 
11549 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11550 			int tout = 5000;
11551 
11552 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11553 
11554 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11555 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11556 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11557 
11558 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11559 				tout--;
11560 				usleep_range(1000, 2000);
11561 			}
11562 
11563 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11564 				dev_err(&bp->pdev->dev,
11565 					"FORCING Normal Mode failed!!!\n");
11566 				bnx2x_release_hw_lock(bp,
11567 						      HW_LOCK_RESOURCE_RESET);
11568 				return -EPERM;
11569 			}
11570 		}
11571 
11572 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11573 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11574 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11575 		} else
11576 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11577 
11578 		rc = bnx2x_get_igu_cam_info(bp);
11579 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11580 		if (rc)
11581 			return rc;
11582 	}
11583 
11584 	/*
11585 	 * set base FW non-default (fast path) status block id, this value is
11586 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11587 	 * determine the id used by the FW.
11588 	 */
11589 	if (CHIP_IS_E1x(bp))
11590 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11591 	else /*
11592 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11593 	      * the same queue are indicated on the same IGU SB). So we prefer
11594 	      * FW and IGU SBs to be the same value.
11595 	      */
11596 		bp->base_fw_ndsb = bp->igu_base_sb;
11597 
11598 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11599 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11600 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11601 
11602 	/*
11603 	 * Initialize MF configuration
11604 	 */
11605 
11606 	bp->mf_ov = 0;
11607 	bp->mf_mode = 0;
11608 	vn = BP_VN(bp);
11609 
11610 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11611 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11612 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11613 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11614 
11615 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11616 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11617 		else
11618 			bp->common.mf_cfg_base = bp->common.shmem_base +
11619 				offsetof(struct shmem_region, func_mb) +
11620 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11621 		/*
11622 		 * get mf configuration:
11623 		 * 1. Existence of MF configuration
11624 		 * 2. MAC address must be legal (check only upper bytes)
11625 		 *    for  Switch-Independent mode;
11626 		 *    OVLAN must be legal for Switch-Dependent mode
11627 		 * 3. SF_MODE configures specific MF mode
11628 		 */
11629 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11630 			/* get mf configuration */
11631 			val = SHMEM_RD(bp,
11632 				       dev_info.shared_feature_config.config);
11633 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11634 
11635 			switch (val) {
11636 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11637 				val = MF_CFG_RD(bp, func_mf_config[func].
11638 						mac_upper);
11639 				/* check for legal mac (upper bytes)*/
11640 				if (val != 0xffff) {
11641 					bp->mf_mode = MULTI_FUNCTION_SI;
11642 					bp->mf_config[vn] = MF_CFG_RD(bp,
11643 						   func_mf_config[func].config);
11644 				} else
11645 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
11646 				break;
11647 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11648 				if ((!CHIP_IS_E1x(bp)) &&
11649 				    (MF_CFG_RD(bp, func_mf_config[func].
11650 					       mac_upper) != 0xffff) &&
11651 				    (SHMEM2_HAS(bp,
11652 						afex_driver_support))) {
11653 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11654 					bp->mf_config[vn] = MF_CFG_RD(bp,
11655 						func_mf_config[func].config);
11656 				} else {
11657 					BNX2X_DEV_INFO("can not configure afex mode\n");
11658 				}
11659 				break;
11660 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11661 				/* get OV configuration */
11662 				val = MF_CFG_RD(bp,
11663 					func_mf_config[FUNC_0].e1hov_tag);
11664 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11665 
11666 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11667 					bp->mf_mode = MULTI_FUNCTION_SD;
11668 					bp->mf_config[vn] = MF_CFG_RD(bp,
11669 						func_mf_config[func].config);
11670 				} else
11671 					BNX2X_DEV_INFO("illegal OV for SD\n");
11672 				break;
11673 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11674 				bp->mf_config[vn] = 0;
11675 				break;
11676 			default:
11677 				/* Unknown configuration: reset mf_config */
11678 				bp->mf_config[vn] = 0;
11679 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11680 			}
11681 		}
11682 
11683 		BNX2X_DEV_INFO("%s function mode\n",
11684 			       IS_MF(bp) ? "multi" : "single");
11685 
11686 		switch (bp->mf_mode) {
11687 		case MULTI_FUNCTION_SD:
11688 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11689 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11690 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11691 				bp->mf_ov = val;
11692 				bp->path_has_ovlan = true;
11693 
11694 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11695 					       func, bp->mf_ov, bp->mf_ov);
11696 			} else {
11697 				dev_err(&bp->pdev->dev,
11698 					"No valid MF OV for func %d, aborting\n",
11699 					func);
11700 				return -EPERM;
11701 			}
11702 			break;
11703 		case MULTI_FUNCTION_AFEX:
11704 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11705 			break;
11706 		case MULTI_FUNCTION_SI:
11707 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11708 				       func);
11709 			break;
11710 		default:
11711 			if (vn) {
11712 				dev_err(&bp->pdev->dev,
11713 					"VN %d is in a single function mode, aborting\n",
11714 					vn);
11715 				return -EPERM;
11716 			}
11717 			break;
11718 		}
11719 
11720 		/* check if other port on the path needs ovlan:
11721 		 * Since MF configuration is shared between ports
11722 		 * Possible mixed modes are only
11723 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11724 		 */
11725 		if (CHIP_MODE_IS_4_PORT(bp) &&
11726 		    !bp->path_has_ovlan &&
11727 		    !IS_MF(bp) &&
11728 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11729 			u8 other_port = !BP_PORT(bp);
11730 			u8 other_func = BP_PATH(bp) + 2*other_port;
11731 			val = MF_CFG_RD(bp,
11732 					func_mf_config[other_func].e1hov_tag);
11733 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11734 				bp->path_has_ovlan = true;
11735 		}
11736 	}
11737 
11738 	/* adjust igu_sb_cnt to MF for E1H */
11739 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
11740 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11741 
11742 	/* port info */
11743 	bnx2x_get_port_hwinfo(bp);
11744 
11745 	/* Get MAC addresses */
11746 	bnx2x_get_mac_hwinfo(bp);
11747 
11748 	bnx2x_get_cnic_info(bp);
11749 
11750 	return rc;
11751 }
11752 
11753 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11754 {
11755 	int cnt, i, block_end, rodi;
11756 	char vpd_start[BNX2X_VPD_LEN+1];
11757 	char str_id_reg[VENDOR_ID_LEN+1];
11758 	char str_id_cap[VENDOR_ID_LEN+1];
11759 	char *vpd_data;
11760 	char *vpd_extended_data = NULL;
11761 	u8 len;
11762 
11763 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11764 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11765 
11766 	if (cnt < BNX2X_VPD_LEN)
11767 		goto out_not_found;
11768 
11769 	/* VPD RO tag should be first tag after identifier string, hence
11770 	 * we should be able to find it in first BNX2X_VPD_LEN chars
11771 	 */
11772 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11773 			     PCI_VPD_LRDT_RO_DATA);
11774 	if (i < 0)
11775 		goto out_not_found;
11776 
11777 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11778 		    pci_vpd_lrdt_size(&vpd_start[i]);
11779 
11780 	i += PCI_VPD_LRDT_TAG_SIZE;
11781 
11782 	if (block_end > BNX2X_VPD_LEN) {
11783 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11784 		if (vpd_extended_data  == NULL)
11785 			goto out_not_found;
11786 
11787 		/* read rest of vpd image into vpd_extended_data */
11788 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11789 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11790 				   block_end - BNX2X_VPD_LEN,
11791 				   vpd_extended_data + BNX2X_VPD_LEN);
11792 		if (cnt < (block_end - BNX2X_VPD_LEN))
11793 			goto out_not_found;
11794 		vpd_data = vpd_extended_data;
11795 	} else
11796 		vpd_data = vpd_start;
11797 
11798 	/* now vpd_data holds full vpd content in both cases */
11799 
11800 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11801 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11802 	if (rodi < 0)
11803 		goto out_not_found;
11804 
11805 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11806 
11807 	if (len != VENDOR_ID_LEN)
11808 		goto out_not_found;
11809 
11810 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11811 
11812 	/* vendor specific info */
11813 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11814 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11815 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11816 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11817 
11818 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11819 						PCI_VPD_RO_KEYWORD_VENDOR0);
11820 		if (rodi >= 0) {
11821 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11822 
11823 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11824 
11825 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11826 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11827 				bp->fw_ver[len] = ' ';
11828 			}
11829 		}
11830 		kfree(vpd_extended_data);
11831 		return;
11832 	}
11833 out_not_found:
11834 	kfree(vpd_extended_data);
11835 	return;
11836 }
11837 
11838 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11839 {
11840 	u32 flags = 0;
11841 
11842 	if (CHIP_REV_IS_FPGA(bp))
11843 		SET_FLAGS(flags, MODE_FPGA);
11844 	else if (CHIP_REV_IS_EMUL(bp))
11845 		SET_FLAGS(flags, MODE_EMUL);
11846 	else
11847 		SET_FLAGS(flags, MODE_ASIC);
11848 
11849 	if (CHIP_MODE_IS_4_PORT(bp))
11850 		SET_FLAGS(flags, MODE_PORT4);
11851 	else
11852 		SET_FLAGS(flags, MODE_PORT2);
11853 
11854 	if (CHIP_IS_E2(bp))
11855 		SET_FLAGS(flags, MODE_E2);
11856 	else if (CHIP_IS_E3(bp)) {
11857 		SET_FLAGS(flags, MODE_E3);
11858 		if (CHIP_REV(bp) == CHIP_REV_Ax)
11859 			SET_FLAGS(flags, MODE_E3_A0);
11860 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11861 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11862 	}
11863 
11864 	if (IS_MF(bp)) {
11865 		SET_FLAGS(flags, MODE_MF);
11866 		switch (bp->mf_mode) {
11867 		case MULTI_FUNCTION_SD:
11868 			SET_FLAGS(flags, MODE_MF_SD);
11869 			break;
11870 		case MULTI_FUNCTION_SI:
11871 			SET_FLAGS(flags, MODE_MF_SI);
11872 			break;
11873 		case MULTI_FUNCTION_AFEX:
11874 			SET_FLAGS(flags, MODE_MF_AFEX);
11875 			break;
11876 		}
11877 	} else
11878 		SET_FLAGS(flags, MODE_SF);
11879 
11880 #if defined(__LITTLE_ENDIAN)
11881 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11882 #else /*(__BIG_ENDIAN)*/
11883 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11884 #endif
11885 	INIT_MODE_FLAGS(bp) = flags;
11886 }
11887 
11888 static int bnx2x_init_bp(struct bnx2x *bp)
11889 {
11890 	int func;
11891 	int rc;
11892 
11893 	mutex_init(&bp->port.phy_mutex);
11894 	mutex_init(&bp->fw_mb_mutex);
11895 	mutex_init(&bp->drv_info_mutex);
11896 	bp->drv_info_mng_owner = false;
11897 	spin_lock_init(&bp->stats_lock);
11898 	sema_init(&bp->stats_sema, 1);
11899 
11900 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11901 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11902 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11903 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
11904 	if (IS_PF(bp)) {
11905 		rc = bnx2x_get_hwinfo(bp);
11906 		if (rc)
11907 			return rc;
11908 	} else {
11909 		eth_zero_addr(bp->dev->dev_addr);
11910 	}
11911 
11912 	bnx2x_set_modes_bitmap(bp);
11913 
11914 	rc = bnx2x_alloc_mem_bp(bp);
11915 	if (rc)
11916 		return rc;
11917 
11918 	bnx2x_read_fwinfo(bp);
11919 
11920 	func = BP_FUNC(bp);
11921 
11922 	/* need to reset chip if undi was active */
11923 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
11924 		/* init fw_seq */
11925 		bp->fw_seq =
11926 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11927 							DRV_MSG_SEQ_NUMBER_MASK;
11928 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11929 
11930 		rc = bnx2x_prev_unload(bp);
11931 		if (rc) {
11932 			bnx2x_free_mem_bp(bp);
11933 			return rc;
11934 		}
11935 	}
11936 
11937 	if (CHIP_REV_IS_FPGA(bp))
11938 		dev_err(&bp->pdev->dev, "FPGA detected\n");
11939 
11940 	if (BP_NOMCP(bp) && (func == 0))
11941 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11942 
11943 	bp->disable_tpa = disable_tpa;
11944 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11945 	/* Reduce memory usage in kdump environment by disabling TPA */
11946 	bp->disable_tpa |= reset_devices;
11947 
11948 	/* Set TPA flags */
11949 	if (bp->disable_tpa) {
11950 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11951 		bp->dev->features &= ~NETIF_F_LRO;
11952 	} else {
11953 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11954 		bp->dev->features |= NETIF_F_LRO;
11955 	}
11956 
11957 	if (CHIP_IS_E1(bp))
11958 		bp->dropless_fc = 0;
11959 	else
11960 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11961 
11962 	bp->mrrs = mrrs;
11963 
11964 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11965 	if (IS_VF(bp))
11966 		bp->rx_ring_size = MAX_RX_AVAIL;
11967 
11968 	/* make sure that the numbers are in the right granularity */
11969 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11970 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11971 
11972 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11973 
11974 	init_timer(&bp->timer);
11975 	bp->timer.expires = jiffies + bp->current_interval;
11976 	bp->timer.data = (unsigned long) bp;
11977 	bp->timer.function = bnx2x_timer;
11978 
11979 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11980 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11981 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11982 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11983 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11984 		bnx2x_dcbx_init_params(bp);
11985 	} else {
11986 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11987 	}
11988 
11989 	if (CHIP_IS_E1x(bp))
11990 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11991 	else
11992 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11993 
11994 	/* multiple tx priority */
11995 	if (IS_VF(bp))
11996 		bp->max_cos = 1;
11997 	else if (CHIP_IS_E1x(bp))
11998 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11999 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12000 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12001 	else if (CHIP_IS_E3B0(bp))
12002 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12003 	else
12004 		BNX2X_ERR("unknown chip %x revision %x\n",
12005 			  CHIP_NUM(bp), CHIP_REV(bp));
12006 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12007 
12008 	/* We need at least one default status block for slow-path events,
12009 	 * second status block for the L2 queue, and a third status block for
12010 	 * CNIC if supported.
12011 	 */
12012 	if (IS_VF(bp))
12013 		bp->min_msix_vec_cnt = 1;
12014 	else if (CNIC_SUPPORT(bp))
12015 		bp->min_msix_vec_cnt = 3;
12016 	else /* PF w/o cnic */
12017 		bp->min_msix_vec_cnt = 2;
12018 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12019 
12020 	bp->dump_preset_idx = 1;
12021 
12022 	return rc;
12023 }
12024 
12025 /****************************************************************************
12026 * General service functions
12027 ****************************************************************************/
12028 
12029 /*
12030  * net_device service functions
12031  */
12032 
12033 /* called with rtnl_lock */
12034 static int bnx2x_open(struct net_device *dev)
12035 {
12036 	struct bnx2x *bp = netdev_priv(dev);
12037 	int rc;
12038 
12039 	bp->stats_init = true;
12040 
12041 	netif_carrier_off(dev);
12042 
12043 	bnx2x_set_power_state(bp, PCI_D0);
12044 
12045 	/* If parity had happen during the unload, then attentions
12046 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12047 	 * want the first function loaded on the current engine to
12048 	 * complete the recovery.
12049 	 * Parity recovery is only relevant for PF driver.
12050 	 */
12051 	if (IS_PF(bp)) {
12052 		int other_engine = BP_PATH(bp) ? 0 : 1;
12053 		bool other_load_status, load_status;
12054 		bool global = false;
12055 
12056 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12057 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12058 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12059 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12060 			do {
12061 				/* If there are attentions and they are in a
12062 				 * global blocks, set the GLOBAL_RESET bit
12063 				 * regardless whether it will be this function
12064 				 * that will complete the recovery or not.
12065 				 */
12066 				if (global)
12067 					bnx2x_set_reset_global(bp);
12068 
12069 				/* Only the first function on the current
12070 				 * engine should try to recover in open. In case
12071 				 * of attentions in global blocks only the first
12072 				 * in the chip should try to recover.
12073 				 */
12074 				if ((!load_status &&
12075 				     (!global || !other_load_status)) &&
12076 				      bnx2x_trylock_leader_lock(bp) &&
12077 				      !bnx2x_leader_reset(bp)) {
12078 					netdev_info(bp->dev,
12079 						    "Recovered in open\n");
12080 					break;
12081 				}
12082 
12083 				/* recovery has failed... */
12084 				bnx2x_set_power_state(bp, PCI_D3hot);
12085 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12086 
12087 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12088 					  "If you still see this message after a few retries then power cycle is required.\n");
12089 
12090 				return -EAGAIN;
12091 			} while (0);
12092 		}
12093 	}
12094 
12095 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12096 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12097 	if (rc)
12098 		return rc;
12099 	return 0;
12100 }
12101 
12102 /* called with rtnl_lock */
12103 static int bnx2x_close(struct net_device *dev)
12104 {
12105 	struct bnx2x *bp = netdev_priv(dev);
12106 
12107 	/* Unload the driver, release IRQs */
12108 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12109 
12110 	return 0;
12111 }
12112 
12113 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12114 				      struct bnx2x_mcast_ramrod_params *p)
12115 {
12116 	int mc_count = netdev_mc_count(bp->dev);
12117 	struct bnx2x_mcast_list_elem *mc_mac =
12118 		kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12119 	struct netdev_hw_addr *ha;
12120 
12121 	if (!mc_mac)
12122 		return -ENOMEM;
12123 
12124 	INIT_LIST_HEAD(&p->mcast_list);
12125 
12126 	netdev_for_each_mc_addr(ha, bp->dev) {
12127 		mc_mac->mac = bnx2x_mc_addr(ha);
12128 		list_add_tail(&mc_mac->link, &p->mcast_list);
12129 		mc_mac++;
12130 	}
12131 
12132 	p->mcast_list_len = mc_count;
12133 
12134 	return 0;
12135 }
12136 
12137 static void bnx2x_free_mcast_macs_list(
12138 	struct bnx2x_mcast_ramrod_params *p)
12139 {
12140 	struct bnx2x_mcast_list_elem *mc_mac =
12141 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12142 				 link);
12143 
12144 	WARN_ON(!mc_mac);
12145 	kfree(mc_mac);
12146 }
12147 
12148 /**
12149  * bnx2x_set_uc_list - configure a new unicast MACs list.
12150  *
12151  * @bp: driver handle
12152  *
12153  * We will use zero (0) as a MAC type for these MACs.
12154  */
12155 static int bnx2x_set_uc_list(struct bnx2x *bp)
12156 {
12157 	int rc;
12158 	struct net_device *dev = bp->dev;
12159 	struct netdev_hw_addr *ha;
12160 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12161 	unsigned long ramrod_flags = 0;
12162 
12163 	/* First schedule a cleanup up of old configuration */
12164 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12165 	if (rc < 0) {
12166 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12167 		return rc;
12168 	}
12169 
12170 	netdev_for_each_uc_addr(ha, dev) {
12171 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12172 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12173 		if (rc == -EEXIST) {
12174 			DP(BNX2X_MSG_SP,
12175 			   "Failed to schedule ADD operations: %d\n", rc);
12176 			/* do not treat adding same MAC as error */
12177 			rc = 0;
12178 
12179 		} else if (rc < 0) {
12180 
12181 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12182 				  rc);
12183 			return rc;
12184 		}
12185 	}
12186 
12187 	/* Execute the pending commands */
12188 	__set_bit(RAMROD_CONT, &ramrod_flags);
12189 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12190 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12191 }
12192 
12193 static int bnx2x_set_mc_list(struct bnx2x *bp)
12194 {
12195 	struct net_device *dev = bp->dev;
12196 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12197 	int rc = 0;
12198 
12199 	rparam.mcast_obj = &bp->mcast_obj;
12200 
12201 	/* first, clear all configured multicast MACs */
12202 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12203 	if (rc < 0) {
12204 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12205 		return rc;
12206 	}
12207 
12208 	/* then, configure a new MACs list */
12209 	if (netdev_mc_count(dev)) {
12210 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12211 		if (rc) {
12212 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12213 				  rc);
12214 			return rc;
12215 		}
12216 
12217 		/* Now add the new MACs */
12218 		rc = bnx2x_config_mcast(bp, &rparam,
12219 					BNX2X_MCAST_CMD_ADD);
12220 		if (rc < 0)
12221 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12222 				  rc);
12223 
12224 		bnx2x_free_mcast_macs_list(&rparam);
12225 	}
12226 
12227 	return rc;
12228 }
12229 
12230 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12231 static void bnx2x_set_rx_mode(struct net_device *dev)
12232 {
12233 	struct bnx2x *bp = netdev_priv(dev);
12234 
12235 	if (bp->state != BNX2X_STATE_OPEN) {
12236 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12237 		return;
12238 	} else {
12239 		/* Schedule an SP task to handle rest of change */
12240 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12241 				       NETIF_MSG_IFUP);
12242 	}
12243 }
12244 
12245 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12246 {
12247 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12248 
12249 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12250 
12251 	netif_addr_lock_bh(bp->dev);
12252 
12253 	if (bp->dev->flags & IFF_PROMISC) {
12254 		rx_mode = BNX2X_RX_MODE_PROMISC;
12255 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12256 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12257 		    CHIP_IS_E1(bp))) {
12258 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12259 	} else {
12260 		if (IS_PF(bp)) {
12261 			/* some multicasts */
12262 			if (bnx2x_set_mc_list(bp) < 0)
12263 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12264 
12265 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12266 			netif_addr_unlock_bh(bp->dev);
12267 			if (bnx2x_set_uc_list(bp) < 0)
12268 				rx_mode = BNX2X_RX_MODE_PROMISC;
12269 			netif_addr_lock_bh(bp->dev);
12270 		} else {
12271 			/* configuring mcast to a vf involves sleeping (when we
12272 			 * wait for the pf's response).
12273 			 */
12274 			bnx2x_schedule_sp_rtnl(bp,
12275 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12276 		}
12277 	}
12278 
12279 	bp->rx_mode = rx_mode;
12280 	/* handle ISCSI SD mode */
12281 	if (IS_MF_ISCSI_SD(bp))
12282 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12283 
12284 	/* Schedule the rx_mode command */
12285 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12286 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12287 		netif_addr_unlock_bh(bp->dev);
12288 		return;
12289 	}
12290 
12291 	if (IS_PF(bp)) {
12292 		bnx2x_set_storm_rx_mode(bp);
12293 		netif_addr_unlock_bh(bp->dev);
12294 	} else {
12295 		/* VF will need to request the PF to make this change, and so
12296 		 * the VF needs to release the bottom-half lock prior to the
12297 		 * request (as it will likely require sleep on the VF side)
12298 		 */
12299 		netif_addr_unlock_bh(bp->dev);
12300 		bnx2x_vfpf_storm_rx_mode(bp);
12301 	}
12302 }
12303 
12304 /* called with rtnl_lock */
12305 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12306 			   int devad, u16 addr)
12307 {
12308 	struct bnx2x *bp = netdev_priv(netdev);
12309 	u16 value;
12310 	int rc;
12311 
12312 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12313 	   prtad, devad, addr);
12314 
12315 	/* The HW expects different devad if CL22 is used */
12316 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12317 
12318 	bnx2x_acquire_phy_lock(bp);
12319 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12320 	bnx2x_release_phy_lock(bp);
12321 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12322 
12323 	if (!rc)
12324 		rc = value;
12325 	return rc;
12326 }
12327 
12328 /* called with rtnl_lock */
12329 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12330 			    u16 addr, u16 value)
12331 {
12332 	struct bnx2x *bp = netdev_priv(netdev);
12333 	int rc;
12334 
12335 	DP(NETIF_MSG_LINK,
12336 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12337 	   prtad, devad, addr, value);
12338 
12339 	/* The HW expects different devad if CL22 is used */
12340 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12341 
12342 	bnx2x_acquire_phy_lock(bp);
12343 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12344 	bnx2x_release_phy_lock(bp);
12345 	return rc;
12346 }
12347 
12348 /* called with rtnl_lock */
12349 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12350 {
12351 	struct bnx2x *bp = netdev_priv(dev);
12352 	struct mii_ioctl_data *mdio = if_mii(ifr);
12353 
12354 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12355 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
12356 
12357 	if (!netif_running(dev))
12358 		return -EAGAIN;
12359 
12360 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12361 }
12362 
12363 #ifdef CONFIG_NET_POLL_CONTROLLER
12364 static void poll_bnx2x(struct net_device *dev)
12365 {
12366 	struct bnx2x *bp = netdev_priv(dev);
12367 	int i;
12368 
12369 	for_each_eth_queue(bp, i) {
12370 		struct bnx2x_fastpath *fp = &bp->fp[i];
12371 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12372 	}
12373 }
12374 #endif
12375 
12376 static int bnx2x_validate_addr(struct net_device *dev)
12377 {
12378 	struct bnx2x *bp = netdev_priv(dev);
12379 
12380 	/* query the bulletin board for mac address configured by the PF */
12381 	if (IS_VF(bp))
12382 		bnx2x_sample_bulletin(bp);
12383 
12384 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12385 		BNX2X_ERR("Non-valid Ethernet address\n");
12386 		return -EADDRNOTAVAIL;
12387 	}
12388 	return 0;
12389 }
12390 
12391 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12392 				  struct netdev_phys_port_id *ppid)
12393 {
12394 	struct bnx2x *bp = netdev_priv(netdev);
12395 
12396 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12397 		return -EOPNOTSUPP;
12398 
12399 	ppid->id_len = sizeof(bp->phys_port_id);
12400 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12401 
12402 	return 0;
12403 }
12404 
12405 static const struct net_device_ops bnx2x_netdev_ops = {
12406 	.ndo_open		= bnx2x_open,
12407 	.ndo_stop		= bnx2x_close,
12408 	.ndo_start_xmit		= bnx2x_start_xmit,
12409 	.ndo_select_queue	= bnx2x_select_queue,
12410 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12411 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12412 	.ndo_validate_addr	= bnx2x_validate_addr,
12413 	.ndo_do_ioctl		= bnx2x_ioctl,
12414 	.ndo_change_mtu		= bnx2x_change_mtu,
12415 	.ndo_fix_features	= bnx2x_fix_features,
12416 	.ndo_set_features	= bnx2x_set_features,
12417 	.ndo_tx_timeout		= bnx2x_tx_timeout,
12418 #ifdef CONFIG_NET_POLL_CONTROLLER
12419 	.ndo_poll_controller	= poll_bnx2x,
12420 #endif
12421 	.ndo_setup_tc		= bnx2x_setup_tc,
12422 #ifdef CONFIG_BNX2X_SRIOV
12423 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12424 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12425 	.ndo_get_vf_config	= bnx2x_get_vf_config,
12426 #endif
12427 #ifdef NETDEV_FCOE_WWNN
12428 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12429 #endif
12430 
12431 #ifdef CONFIG_NET_RX_BUSY_POLL
12432 	.ndo_busy_poll		= bnx2x_low_latency_recv,
12433 #endif
12434 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
12435 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
12436 };
12437 
12438 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12439 {
12440 	struct device *dev = &bp->pdev->dev;
12441 
12442 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12443 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12444 		dev_err(dev, "System does not support DMA, aborting\n");
12445 		return -EIO;
12446 	}
12447 
12448 	return 0;
12449 }
12450 
12451 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12452 {
12453 	if (bp->flags & AER_ENABLED) {
12454 		pci_disable_pcie_error_reporting(bp->pdev);
12455 		bp->flags &= ~AER_ENABLED;
12456 	}
12457 }
12458 
12459 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12460 			  struct net_device *dev, unsigned long board_type)
12461 {
12462 	int rc;
12463 	u32 pci_cfg_dword;
12464 	bool chip_is_e1x = (board_type == BCM57710 ||
12465 			    board_type == BCM57711 ||
12466 			    board_type == BCM57711E);
12467 
12468 	SET_NETDEV_DEV(dev, &pdev->dev);
12469 
12470 	bp->dev = dev;
12471 	bp->pdev = pdev;
12472 
12473 	rc = pci_enable_device(pdev);
12474 	if (rc) {
12475 		dev_err(&bp->pdev->dev,
12476 			"Cannot enable PCI device, aborting\n");
12477 		goto err_out;
12478 	}
12479 
12480 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12481 		dev_err(&bp->pdev->dev,
12482 			"Cannot find PCI device base address, aborting\n");
12483 		rc = -ENODEV;
12484 		goto err_out_disable;
12485 	}
12486 
12487 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12488 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12489 		rc = -ENODEV;
12490 		goto err_out_disable;
12491 	}
12492 
12493 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12494 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12495 	    PCICFG_REVESION_ID_ERROR_VAL) {
12496 		pr_err("PCI device error, probably due to fan failure, aborting\n");
12497 		rc = -ENODEV;
12498 		goto err_out_disable;
12499 	}
12500 
12501 	if (atomic_read(&pdev->enable_cnt) == 1) {
12502 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12503 		if (rc) {
12504 			dev_err(&bp->pdev->dev,
12505 				"Cannot obtain PCI resources, aborting\n");
12506 			goto err_out_disable;
12507 		}
12508 
12509 		pci_set_master(pdev);
12510 		pci_save_state(pdev);
12511 	}
12512 
12513 	if (IS_PF(bp)) {
12514 		if (!pdev->pm_cap) {
12515 			dev_err(&bp->pdev->dev,
12516 				"Cannot find power management capability, aborting\n");
12517 			rc = -EIO;
12518 			goto err_out_release;
12519 		}
12520 	}
12521 
12522 	if (!pci_is_pcie(pdev)) {
12523 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12524 		rc = -EIO;
12525 		goto err_out_release;
12526 	}
12527 
12528 	rc = bnx2x_set_coherency_mask(bp);
12529 	if (rc)
12530 		goto err_out_release;
12531 
12532 	dev->mem_start = pci_resource_start(pdev, 0);
12533 	dev->base_addr = dev->mem_start;
12534 	dev->mem_end = pci_resource_end(pdev, 0);
12535 
12536 	dev->irq = pdev->irq;
12537 
12538 	bp->regview = pci_ioremap_bar(pdev, 0);
12539 	if (!bp->regview) {
12540 		dev_err(&bp->pdev->dev,
12541 			"Cannot map register space, aborting\n");
12542 		rc = -ENOMEM;
12543 		goto err_out_release;
12544 	}
12545 
12546 	/* In E1/E1H use pci device function given by kernel.
12547 	 * In E2/E3 read physical function from ME register since these chips
12548 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12549 	 * (depending on hypervisor).
12550 	 */
12551 	if (chip_is_e1x) {
12552 		bp->pf_num = PCI_FUNC(pdev->devfn);
12553 	} else {
12554 		/* chip is E2/3*/
12555 		pci_read_config_dword(bp->pdev,
12556 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12557 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12558 				  ME_REG_ABS_PF_NUM_SHIFT);
12559 	}
12560 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12561 
12562 	/* clean indirect addresses */
12563 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12564 			       PCICFG_VENDOR_ID_OFFSET);
12565 
12566 	/* AER (Advanced Error reporting) configuration */
12567 	rc = pci_enable_pcie_error_reporting(pdev);
12568 	if (!rc)
12569 		bp->flags |= AER_ENABLED;
12570 	else
12571 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12572 
12573 	/*
12574 	 * Clean the following indirect addresses for all functions since it
12575 	 * is not used by the driver.
12576 	 */
12577 	if (IS_PF(bp)) {
12578 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12579 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12580 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12581 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12582 
12583 		if (chip_is_e1x) {
12584 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12585 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12586 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12587 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12588 		}
12589 
12590 		/* Enable internal target-read (in case we are probed after PF
12591 		 * FLR). Must be done prior to any BAR read access. Only for
12592 		 * 57712 and up
12593 		 */
12594 		if (!chip_is_e1x)
12595 			REG_WR(bp,
12596 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12597 	}
12598 
12599 	dev->watchdog_timeo = TX_TIMEOUT;
12600 
12601 	dev->netdev_ops = &bnx2x_netdev_ops;
12602 	bnx2x_set_ethtool_ops(bp, dev);
12603 
12604 	dev->priv_flags |= IFF_UNICAST_FLT;
12605 
12606 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12607 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12608 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12609 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12610 	if (!CHIP_IS_E1x(bp)) {
12611 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12612 				    NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12613 		dev->hw_enc_features =
12614 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12615 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12616 			NETIF_F_GSO_IPIP |
12617 			NETIF_F_GSO_SIT |
12618 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12619 	}
12620 
12621 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12622 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12623 
12624 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12625 	dev->features |= NETIF_F_HIGHDMA;
12626 
12627 	/* Add Loopback capability to the device */
12628 	dev->hw_features |= NETIF_F_LOOPBACK;
12629 
12630 #ifdef BCM_DCBNL
12631 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12632 #endif
12633 
12634 	/* get_port_hwinfo() will set prtad and mmds properly */
12635 	bp->mdio.prtad = MDIO_PRTAD_NONE;
12636 	bp->mdio.mmds = 0;
12637 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12638 	bp->mdio.dev = dev;
12639 	bp->mdio.mdio_read = bnx2x_mdio_read;
12640 	bp->mdio.mdio_write = bnx2x_mdio_write;
12641 
12642 	return 0;
12643 
12644 err_out_release:
12645 	if (atomic_read(&pdev->enable_cnt) == 1)
12646 		pci_release_regions(pdev);
12647 
12648 err_out_disable:
12649 	pci_disable_device(pdev);
12650 
12651 err_out:
12652 	return rc;
12653 }
12654 
12655 static int bnx2x_check_firmware(struct bnx2x *bp)
12656 {
12657 	const struct firmware *firmware = bp->firmware;
12658 	struct bnx2x_fw_file_hdr *fw_hdr;
12659 	struct bnx2x_fw_file_section *sections;
12660 	u32 offset, len, num_ops;
12661 	__be16 *ops_offsets;
12662 	int i;
12663 	const u8 *fw_ver;
12664 
12665 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12666 		BNX2X_ERR("Wrong FW size\n");
12667 		return -EINVAL;
12668 	}
12669 
12670 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12671 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12672 
12673 	/* Make sure none of the offsets and sizes make us read beyond
12674 	 * the end of the firmware data */
12675 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12676 		offset = be32_to_cpu(sections[i].offset);
12677 		len = be32_to_cpu(sections[i].len);
12678 		if (offset + len > firmware->size) {
12679 			BNX2X_ERR("Section %d length is out of bounds\n", i);
12680 			return -EINVAL;
12681 		}
12682 	}
12683 
12684 	/* Likewise for the init_ops offsets */
12685 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12686 	ops_offsets = (__force __be16 *)(firmware->data + offset);
12687 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12688 
12689 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12690 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12691 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12692 			return -EINVAL;
12693 		}
12694 	}
12695 
12696 	/* Check FW version */
12697 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12698 	fw_ver = firmware->data + offset;
12699 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12700 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12701 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12702 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12703 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12704 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12705 		       BCM_5710_FW_MAJOR_VERSION,
12706 		       BCM_5710_FW_MINOR_VERSION,
12707 		       BCM_5710_FW_REVISION_VERSION,
12708 		       BCM_5710_FW_ENGINEERING_VERSION);
12709 		return -EINVAL;
12710 	}
12711 
12712 	return 0;
12713 }
12714 
12715 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12716 {
12717 	const __be32 *source = (const __be32 *)_source;
12718 	u32 *target = (u32 *)_target;
12719 	u32 i;
12720 
12721 	for (i = 0; i < n/4; i++)
12722 		target[i] = be32_to_cpu(source[i]);
12723 }
12724 
12725 /*
12726    Ops array is stored in the following format:
12727    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12728  */
12729 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12730 {
12731 	const __be32 *source = (const __be32 *)_source;
12732 	struct raw_op *target = (struct raw_op *)_target;
12733 	u32 i, j, tmp;
12734 
12735 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12736 		tmp = be32_to_cpu(source[j]);
12737 		target[i].op = (tmp >> 24) & 0xff;
12738 		target[i].offset = tmp & 0xffffff;
12739 		target[i].raw_data = be32_to_cpu(source[j + 1]);
12740 	}
12741 }
12742 
12743 /* IRO array is stored in the following format:
12744  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12745  */
12746 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12747 {
12748 	const __be32 *source = (const __be32 *)_source;
12749 	struct iro *target = (struct iro *)_target;
12750 	u32 i, j, tmp;
12751 
12752 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12753 		target[i].base = be32_to_cpu(source[j]);
12754 		j++;
12755 		tmp = be32_to_cpu(source[j]);
12756 		target[i].m1 = (tmp >> 16) & 0xffff;
12757 		target[i].m2 = tmp & 0xffff;
12758 		j++;
12759 		tmp = be32_to_cpu(source[j]);
12760 		target[i].m3 = (tmp >> 16) & 0xffff;
12761 		target[i].size = tmp & 0xffff;
12762 		j++;
12763 	}
12764 }
12765 
12766 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12767 {
12768 	const __be16 *source = (const __be16 *)_source;
12769 	u16 *target = (u16 *)_target;
12770 	u32 i;
12771 
12772 	for (i = 0; i < n/2; i++)
12773 		target[i] = be16_to_cpu(source[i]);
12774 }
12775 
12776 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12777 do {									\
12778 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12779 	bp->arr = kmalloc(len, GFP_KERNEL);				\
12780 	if (!bp->arr)							\
12781 		goto lbl;						\
12782 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12783 	     (u8 *)bp->arr, len);					\
12784 } while (0)
12785 
12786 static int bnx2x_init_firmware(struct bnx2x *bp)
12787 {
12788 	const char *fw_file_name;
12789 	struct bnx2x_fw_file_hdr *fw_hdr;
12790 	int rc;
12791 
12792 	if (bp->firmware)
12793 		return 0;
12794 
12795 	if (CHIP_IS_E1(bp))
12796 		fw_file_name = FW_FILE_NAME_E1;
12797 	else if (CHIP_IS_E1H(bp))
12798 		fw_file_name = FW_FILE_NAME_E1H;
12799 	else if (!CHIP_IS_E1x(bp))
12800 		fw_file_name = FW_FILE_NAME_E2;
12801 	else {
12802 		BNX2X_ERR("Unsupported chip revision\n");
12803 		return -EINVAL;
12804 	}
12805 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12806 
12807 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12808 	if (rc) {
12809 		BNX2X_ERR("Can't load firmware file %s\n",
12810 			  fw_file_name);
12811 		goto request_firmware_exit;
12812 	}
12813 
12814 	rc = bnx2x_check_firmware(bp);
12815 	if (rc) {
12816 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12817 		goto request_firmware_exit;
12818 	}
12819 
12820 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12821 
12822 	/* Initialize the pointers to the init arrays */
12823 	/* Blob */
12824 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12825 
12826 	/* Opcodes */
12827 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12828 
12829 	/* Offsets */
12830 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12831 			    be16_to_cpu_n);
12832 
12833 	/* STORMs firmware */
12834 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12835 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12836 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12837 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12838 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12839 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12840 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12841 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12842 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12843 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12844 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12845 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12846 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12847 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12848 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12849 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12850 	/* IRO */
12851 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12852 
12853 	return 0;
12854 
12855 iro_alloc_err:
12856 	kfree(bp->init_ops_offsets);
12857 init_offsets_alloc_err:
12858 	kfree(bp->init_ops);
12859 init_ops_alloc_err:
12860 	kfree(bp->init_data);
12861 request_firmware_exit:
12862 	release_firmware(bp->firmware);
12863 	bp->firmware = NULL;
12864 
12865 	return rc;
12866 }
12867 
12868 static void bnx2x_release_firmware(struct bnx2x *bp)
12869 {
12870 	kfree(bp->init_ops_offsets);
12871 	kfree(bp->init_ops);
12872 	kfree(bp->init_data);
12873 	release_firmware(bp->firmware);
12874 	bp->firmware = NULL;
12875 }
12876 
12877 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12878 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12879 	.init_hw_cmn      = bnx2x_init_hw_common,
12880 	.init_hw_port     = bnx2x_init_hw_port,
12881 	.init_hw_func     = bnx2x_init_hw_func,
12882 
12883 	.reset_hw_cmn     = bnx2x_reset_common,
12884 	.reset_hw_port    = bnx2x_reset_port,
12885 	.reset_hw_func    = bnx2x_reset_func,
12886 
12887 	.gunzip_init      = bnx2x_gunzip_init,
12888 	.gunzip_end       = bnx2x_gunzip_end,
12889 
12890 	.init_fw          = bnx2x_init_firmware,
12891 	.release_fw       = bnx2x_release_firmware,
12892 };
12893 
12894 void bnx2x__init_func_obj(struct bnx2x *bp)
12895 {
12896 	/* Prepare DMAE related driver resources */
12897 	bnx2x_setup_dmae(bp);
12898 
12899 	bnx2x_init_func_obj(bp, &bp->func_obj,
12900 			    bnx2x_sp(bp, func_rdata),
12901 			    bnx2x_sp_mapping(bp, func_rdata),
12902 			    bnx2x_sp(bp, func_afex_rdata),
12903 			    bnx2x_sp_mapping(bp, func_afex_rdata),
12904 			    &bnx2x_func_sp_drv);
12905 }
12906 
12907 /* must be called after sriov-enable */
12908 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12909 {
12910 	int cid_count = BNX2X_L2_MAX_CID(bp);
12911 
12912 	if (IS_SRIOV(bp))
12913 		cid_count += BNX2X_VF_CIDS;
12914 
12915 	if (CNIC_SUPPORT(bp))
12916 		cid_count += CNIC_CID_MAX;
12917 
12918 	return roundup(cid_count, QM_CID_ROUND);
12919 }
12920 
12921 /**
12922  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12923  *
12924  * @dev:	pci device
12925  *
12926  */
12927 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12928 {
12929 	int index;
12930 	u16 control = 0;
12931 
12932 	/*
12933 	 * If MSI-X is not supported - return number of SBs needed to support
12934 	 * one fast path queue: one FP queue + SB for CNIC
12935 	 */
12936 	if (!pdev->msix_cap) {
12937 		dev_info(&pdev->dev, "no msix capability found\n");
12938 		return 1 + cnic_cnt;
12939 	}
12940 	dev_info(&pdev->dev, "msix capability found\n");
12941 
12942 	/*
12943 	 * The value in the PCI configuration space is the index of the last
12944 	 * entry, namely one less than the actual size of the table, which is
12945 	 * exactly what we want to return from this function: number of all SBs
12946 	 * without the default SB.
12947 	 * For VFs there is no default SB, then we return (index+1).
12948 	 */
12949 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
12950 
12951 	index = control & PCI_MSIX_FLAGS_QSIZE;
12952 
12953 	return index;
12954 }
12955 
12956 static int set_max_cos_est(int chip_id)
12957 {
12958 	switch (chip_id) {
12959 	case BCM57710:
12960 	case BCM57711:
12961 	case BCM57711E:
12962 		return BNX2X_MULTI_TX_COS_E1X;
12963 	case BCM57712:
12964 	case BCM57712_MF:
12965 		return BNX2X_MULTI_TX_COS_E2_E3A0;
12966 	case BCM57800:
12967 	case BCM57800_MF:
12968 	case BCM57810:
12969 	case BCM57810_MF:
12970 	case BCM57840_4_10:
12971 	case BCM57840_2_20:
12972 	case BCM57840_O:
12973 	case BCM57840_MFO:
12974 	case BCM57840_MF:
12975 	case BCM57811:
12976 	case BCM57811_MF:
12977 		return BNX2X_MULTI_TX_COS_E3B0;
12978 	case BCM57712_VF:
12979 	case BCM57800_VF:
12980 	case BCM57810_VF:
12981 	case BCM57840_VF:
12982 	case BCM57811_VF:
12983 		return 1;
12984 	default:
12985 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
12986 		return -ENODEV;
12987 	}
12988 }
12989 
12990 static int set_is_vf(int chip_id)
12991 {
12992 	switch (chip_id) {
12993 	case BCM57712_VF:
12994 	case BCM57800_VF:
12995 	case BCM57810_VF:
12996 	case BCM57840_VF:
12997 	case BCM57811_VF:
12998 		return true;
12999 	default:
13000 		return false;
13001 	}
13002 }
13003 
13004 static int bnx2x_init_one(struct pci_dev *pdev,
13005 				    const struct pci_device_id *ent)
13006 {
13007 	struct net_device *dev = NULL;
13008 	struct bnx2x *bp;
13009 	enum pcie_link_width pcie_width;
13010 	enum pci_bus_speed pcie_speed;
13011 	int rc, max_non_def_sbs;
13012 	int rx_count, tx_count, rss_count, doorbell_size;
13013 	int max_cos_est;
13014 	bool is_vf;
13015 	int cnic_cnt;
13016 
13017 	/* An estimated maximum supported CoS number according to the chip
13018 	 * version.
13019 	 * We will try to roughly estimate the maximum number of CoSes this chip
13020 	 * may support in order to minimize the memory allocated for Tx
13021 	 * netdev_queue's. This number will be accurately calculated during the
13022 	 * initialization of bp->max_cos based on the chip versions AND chip
13023 	 * revision in the bnx2x_init_bp().
13024 	 */
13025 	max_cos_est = set_max_cos_est(ent->driver_data);
13026 	if (max_cos_est < 0)
13027 		return max_cos_est;
13028 	is_vf = set_is_vf(ent->driver_data);
13029 	cnic_cnt = is_vf ? 0 : 1;
13030 
13031 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13032 
13033 	/* add another SB for VF as it has no default SB */
13034 	max_non_def_sbs += is_vf ? 1 : 0;
13035 
13036 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13037 	rss_count = max_non_def_sbs - cnic_cnt;
13038 
13039 	if (rss_count < 1)
13040 		return -EINVAL;
13041 
13042 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13043 	rx_count = rss_count + cnic_cnt;
13044 
13045 	/* Maximum number of netdev Tx queues:
13046 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13047 	 */
13048 	tx_count = rss_count * max_cos_est + cnic_cnt;
13049 
13050 	/* dev zeroed in init_etherdev */
13051 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13052 	if (!dev)
13053 		return -ENOMEM;
13054 
13055 	bp = netdev_priv(dev);
13056 
13057 	bp->flags = 0;
13058 	if (is_vf)
13059 		bp->flags |= IS_VF_FLAG;
13060 
13061 	bp->igu_sb_cnt = max_non_def_sbs;
13062 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13063 	bp->msg_enable = debug;
13064 	bp->cnic_support = cnic_cnt;
13065 	bp->cnic_probe = bnx2x_cnic_probe;
13066 
13067 	pci_set_drvdata(pdev, dev);
13068 
13069 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13070 	if (rc < 0) {
13071 		free_netdev(dev);
13072 		return rc;
13073 	}
13074 
13075 	BNX2X_DEV_INFO("This is a %s function\n",
13076 		       IS_PF(bp) ? "physical" : "virtual");
13077 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13078 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13079 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13080 		       tx_count, rx_count);
13081 
13082 	rc = bnx2x_init_bp(bp);
13083 	if (rc)
13084 		goto init_one_exit;
13085 
13086 	/* Map doorbells here as we need the real value of bp->max_cos which
13087 	 * is initialized in bnx2x_init_bp() to determine the number of
13088 	 * l2 connections.
13089 	 */
13090 	if (IS_VF(bp)) {
13091 		bp->doorbells = bnx2x_vf_doorbells(bp);
13092 		rc = bnx2x_vf_pci_alloc(bp);
13093 		if (rc)
13094 			goto init_one_exit;
13095 	} else {
13096 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13097 		if (doorbell_size > pci_resource_len(pdev, 2)) {
13098 			dev_err(&bp->pdev->dev,
13099 				"Cannot map doorbells, bar size too small, aborting\n");
13100 			rc = -ENOMEM;
13101 			goto init_one_exit;
13102 		}
13103 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13104 						doorbell_size);
13105 	}
13106 	if (!bp->doorbells) {
13107 		dev_err(&bp->pdev->dev,
13108 			"Cannot map doorbell space, aborting\n");
13109 		rc = -ENOMEM;
13110 		goto init_one_exit;
13111 	}
13112 
13113 	if (IS_VF(bp)) {
13114 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13115 		if (rc)
13116 			goto init_one_exit;
13117 	}
13118 
13119 	/* Enable SRIOV if capability found in configuration space */
13120 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13121 	if (rc)
13122 		goto init_one_exit;
13123 
13124 	/* calc qm_cid_count */
13125 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13126 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13127 
13128 	/* disable FCOE L2 queue for E1x*/
13129 	if (CHIP_IS_E1x(bp))
13130 		bp->flags |= NO_FCOE_FLAG;
13131 
13132 	/* Set bp->num_queues for MSI-X mode*/
13133 	bnx2x_set_num_queues(bp);
13134 
13135 	/* Configure interrupt mode: try to enable MSI-X/MSI if
13136 	 * needed.
13137 	 */
13138 	rc = bnx2x_set_int_mode(bp);
13139 	if (rc) {
13140 		dev_err(&pdev->dev, "Cannot set interrupts\n");
13141 		goto init_one_exit;
13142 	}
13143 	BNX2X_DEV_INFO("set interrupts successfully\n");
13144 
13145 	/* register the net device */
13146 	rc = register_netdev(dev);
13147 	if (rc) {
13148 		dev_err(&pdev->dev, "Cannot register net device\n");
13149 		goto init_one_exit;
13150 	}
13151 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13152 
13153 	if (!NO_FCOE(bp)) {
13154 		/* Add storage MAC address */
13155 		rtnl_lock();
13156 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13157 		rtnl_unlock();
13158 	}
13159 	if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13160 	    pcie_speed == PCI_SPEED_UNKNOWN ||
13161 	    pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13162 		BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13163 	else
13164 		BNX2X_DEV_INFO(
13165 		       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13166 		       board_info[ent->driver_data].name,
13167 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13168 		       pcie_width,
13169 		       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13170 		       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13171 		       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13172 		       "Unknown",
13173 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13174 
13175 	return 0;
13176 
13177 init_one_exit:
13178 	bnx2x_disable_pcie_error_reporting(bp);
13179 
13180 	if (bp->regview)
13181 		iounmap(bp->regview);
13182 
13183 	if (IS_PF(bp) && bp->doorbells)
13184 		iounmap(bp->doorbells);
13185 
13186 	free_netdev(dev);
13187 
13188 	if (atomic_read(&pdev->enable_cnt) == 1)
13189 		pci_release_regions(pdev);
13190 
13191 	pci_disable_device(pdev);
13192 
13193 	return rc;
13194 }
13195 
13196 static void __bnx2x_remove(struct pci_dev *pdev,
13197 			   struct net_device *dev,
13198 			   struct bnx2x *bp,
13199 			   bool remove_netdev)
13200 {
13201 	/* Delete storage MAC address */
13202 	if (!NO_FCOE(bp)) {
13203 		rtnl_lock();
13204 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13205 		rtnl_unlock();
13206 	}
13207 
13208 #ifdef BCM_DCBNL
13209 	/* Delete app tlvs from dcbnl */
13210 	bnx2x_dcbnl_update_applist(bp, true);
13211 #endif
13212 
13213 	if (IS_PF(bp) &&
13214 	    !BP_NOMCP(bp) &&
13215 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13216 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13217 
13218 	/* Close the interface - either directly or implicitly */
13219 	if (remove_netdev) {
13220 		unregister_netdev(dev);
13221 	} else {
13222 		rtnl_lock();
13223 		dev_close(dev);
13224 		rtnl_unlock();
13225 	}
13226 
13227 	bnx2x_iov_remove_one(bp);
13228 
13229 	/* Power on: we can't let PCI layer write to us while we are in D3 */
13230 	if (IS_PF(bp))
13231 		bnx2x_set_power_state(bp, PCI_D0);
13232 
13233 	/* Disable MSI/MSI-X */
13234 	bnx2x_disable_msi(bp);
13235 
13236 	/* Power off */
13237 	if (IS_PF(bp))
13238 		bnx2x_set_power_state(bp, PCI_D3hot);
13239 
13240 	/* Make sure RESET task is not scheduled before continuing */
13241 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
13242 
13243 	/* send message via vfpf channel to release the resources of this vf */
13244 	if (IS_VF(bp))
13245 		bnx2x_vfpf_release(bp);
13246 
13247 	/* Assumes no further PCIe PM changes will occur */
13248 	if (system_state == SYSTEM_POWER_OFF) {
13249 		pci_wake_from_d3(pdev, bp->wol);
13250 		pci_set_power_state(pdev, PCI_D3hot);
13251 	}
13252 
13253 	bnx2x_disable_pcie_error_reporting(bp);
13254 	if (remove_netdev) {
13255 		if (bp->regview)
13256 			iounmap(bp->regview);
13257 
13258 		/* For vfs, doorbells are part of the regview and were unmapped
13259 		 * along with it. FW is only loaded by PF.
13260 		 */
13261 		if (IS_PF(bp)) {
13262 			if (bp->doorbells)
13263 				iounmap(bp->doorbells);
13264 
13265 			bnx2x_release_firmware(bp);
13266 		} else {
13267 			bnx2x_vf_pci_dealloc(bp);
13268 		}
13269 		bnx2x_free_mem_bp(bp);
13270 
13271 		free_netdev(dev);
13272 
13273 		if (atomic_read(&pdev->enable_cnt) == 1)
13274 			pci_release_regions(pdev);
13275 
13276 		pci_disable_device(pdev);
13277 	}
13278 }
13279 
13280 static void bnx2x_remove_one(struct pci_dev *pdev)
13281 {
13282 	struct net_device *dev = pci_get_drvdata(pdev);
13283 	struct bnx2x *bp;
13284 
13285 	if (!dev) {
13286 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13287 		return;
13288 	}
13289 	bp = netdev_priv(dev);
13290 
13291 	__bnx2x_remove(pdev, dev, bp, true);
13292 }
13293 
13294 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13295 {
13296 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13297 
13298 	bp->rx_mode = BNX2X_RX_MODE_NONE;
13299 
13300 	if (CNIC_LOADED(bp))
13301 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13302 
13303 	/* Stop Tx */
13304 	bnx2x_tx_disable(bp);
13305 	/* Delete all NAPI objects */
13306 	bnx2x_del_all_napi(bp);
13307 	if (CNIC_LOADED(bp))
13308 		bnx2x_del_all_napi_cnic(bp);
13309 	netdev_reset_tc(bp->dev);
13310 
13311 	del_timer_sync(&bp->timer);
13312 	cancel_delayed_work_sync(&bp->sp_task);
13313 	cancel_delayed_work_sync(&bp->period_task);
13314 
13315 	spin_lock_bh(&bp->stats_lock);
13316 	bp->stats_state = STATS_STATE_DISABLED;
13317 	spin_unlock_bh(&bp->stats_lock);
13318 
13319 	bnx2x_save_statistics(bp);
13320 
13321 	netif_carrier_off(bp->dev);
13322 
13323 	return 0;
13324 }
13325 
13326 /**
13327  * bnx2x_io_error_detected - called when PCI error is detected
13328  * @pdev: Pointer to PCI device
13329  * @state: The current pci connection state
13330  *
13331  * This function is called after a PCI bus error affecting
13332  * this device has been detected.
13333  */
13334 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13335 						pci_channel_state_t state)
13336 {
13337 	struct net_device *dev = pci_get_drvdata(pdev);
13338 	struct bnx2x *bp = netdev_priv(dev);
13339 
13340 	rtnl_lock();
13341 
13342 	BNX2X_ERR("IO error detected\n");
13343 
13344 	netif_device_detach(dev);
13345 
13346 	if (state == pci_channel_io_perm_failure) {
13347 		rtnl_unlock();
13348 		return PCI_ERS_RESULT_DISCONNECT;
13349 	}
13350 
13351 	if (netif_running(dev))
13352 		bnx2x_eeh_nic_unload(bp);
13353 
13354 	bnx2x_prev_path_mark_eeh(bp);
13355 
13356 	pci_disable_device(pdev);
13357 
13358 	rtnl_unlock();
13359 
13360 	/* Request a slot reset */
13361 	return PCI_ERS_RESULT_NEED_RESET;
13362 }
13363 
13364 /**
13365  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13366  * @pdev: Pointer to PCI device
13367  *
13368  * Restart the card from scratch, as if from a cold-boot.
13369  */
13370 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13371 {
13372 	struct net_device *dev = pci_get_drvdata(pdev);
13373 	struct bnx2x *bp = netdev_priv(dev);
13374 	int i;
13375 
13376 	rtnl_lock();
13377 	BNX2X_ERR("IO slot reset initializing...\n");
13378 	if (pci_enable_device(pdev)) {
13379 		dev_err(&pdev->dev,
13380 			"Cannot re-enable PCI device after reset\n");
13381 		rtnl_unlock();
13382 		return PCI_ERS_RESULT_DISCONNECT;
13383 	}
13384 
13385 	pci_set_master(pdev);
13386 	pci_restore_state(pdev);
13387 	pci_save_state(pdev);
13388 
13389 	if (netif_running(dev))
13390 		bnx2x_set_power_state(bp, PCI_D0);
13391 
13392 	if (netif_running(dev)) {
13393 		BNX2X_ERR("IO slot reset --> driver unload\n");
13394 
13395 		/* MCP should have been reset; Need to wait for validity */
13396 		bnx2x_init_shmem(bp);
13397 
13398 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13399 			u32 v;
13400 
13401 			v = SHMEM2_RD(bp,
13402 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13403 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13404 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13405 		}
13406 		bnx2x_drain_tx_queues(bp);
13407 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13408 		bnx2x_netif_stop(bp, 1);
13409 		bnx2x_free_irq(bp);
13410 
13411 		/* Report UNLOAD_DONE to MCP */
13412 		bnx2x_send_unload_done(bp, true);
13413 
13414 		bp->sp_state = 0;
13415 		bp->port.pmf = 0;
13416 
13417 		bnx2x_prev_unload(bp);
13418 
13419 		/* We should have reseted the engine, so It's fair to
13420 		 * assume the FW will no longer write to the bnx2x driver.
13421 		 */
13422 		bnx2x_squeeze_objects(bp);
13423 		bnx2x_free_skbs(bp);
13424 		for_each_rx_queue(bp, i)
13425 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13426 		bnx2x_free_fp_mem(bp);
13427 		bnx2x_free_mem(bp);
13428 
13429 		bp->state = BNX2X_STATE_CLOSED;
13430 	}
13431 
13432 	rtnl_unlock();
13433 
13434 	/* If AER, perform cleanup of the PCIe registers */
13435 	if (bp->flags & AER_ENABLED) {
13436 		if (pci_cleanup_aer_uncorrect_error_status(pdev))
13437 			BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13438 		else
13439 			DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13440 	}
13441 
13442 	return PCI_ERS_RESULT_RECOVERED;
13443 }
13444 
13445 /**
13446  * bnx2x_io_resume - called when traffic can start flowing again
13447  * @pdev: Pointer to PCI device
13448  *
13449  * This callback is called when the error recovery driver tells us that
13450  * its OK to resume normal operation.
13451  */
13452 static void bnx2x_io_resume(struct pci_dev *pdev)
13453 {
13454 	struct net_device *dev = pci_get_drvdata(pdev);
13455 	struct bnx2x *bp = netdev_priv(dev);
13456 
13457 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13458 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13459 		return;
13460 	}
13461 
13462 	rtnl_lock();
13463 
13464 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13465 							DRV_MSG_SEQ_NUMBER_MASK;
13466 
13467 	if (netif_running(dev))
13468 		bnx2x_nic_load(bp, LOAD_NORMAL);
13469 
13470 	netif_device_attach(dev);
13471 
13472 	rtnl_unlock();
13473 }
13474 
13475 static const struct pci_error_handlers bnx2x_err_handler = {
13476 	.error_detected = bnx2x_io_error_detected,
13477 	.slot_reset     = bnx2x_io_slot_reset,
13478 	.resume         = bnx2x_io_resume,
13479 };
13480 
13481 static void bnx2x_shutdown(struct pci_dev *pdev)
13482 {
13483 	struct net_device *dev = pci_get_drvdata(pdev);
13484 	struct bnx2x *bp;
13485 
13486 	if (!dev)
13487 		return;
13488 
13489 	bp = netdev_priv(dev);
13490 	if (!bp)
13491 		return;
13492 
13493 	rtnl_lock();
13494 	netif_device_detach(dev);
13495 	rtnl_unlock();
13496 
13497 	/* Don't remove the netdevice, as there are scenarios which will cause
13498 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13499 	 * rootfs is mounted from SAN.
13500 	 */
13501 	__bnx2x_remove(pdev, dev, bp, false);
13502 }
13503 
13504 static struct pci_driver bnx2x_pci_driver = {
13505 	.name        = DRV_MODULE_NAME,
13506 	.id_table    = bnx2x_pci_tbl,
13507 	.probe       = bnx2x_init_one,
13508 	.remove      = bnx2x_remove_one,
13509 	.suspend     = bnx2x_suspend,
13510 	.resume      = bnx2x_resume,
13511 	.err_handler = &bnx2x_err_handler,
13512 #ifdef CONFIG_BNX2X_SRIOV
13513 	.sriov_configure = bnx2x_sriov_configure,
13514 #endif
13515 	.shutdown    = bnx2x_shutdown,
13516 };
13517 
13518 static int __init bnx2x_init(void)
13519 {
13520 	int ret;
13521 
13522 	pr_info("%s", version);
13523 
13524 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13525 	if (bnx2x_wq == NULL) {
13526 		pr_err("Cannot create workqueue\n");
13527 		return -ENOMEM;
13528 	}
13529 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13530 	if (!bnx2x_iov_wq) {
13531 		pr_err("Cannot create iov workqueue\n");
13532 		destroy_workqueue(bnx2x_wq);
13533 		return -ENOMEM;
13534 	}
13535 
13536 	ret = pci_register_driver(&bnx2x_pci_driver);
13537 	if (ret) {
13538 		pr_err("Cannot register driver\n");
13539 		destroy_workqueue(bnx2x_wq);
13540 		destroy_workqueue(bnx2x_iov_wq);
13541 	}
13542 	return ret;
13543 }
13544 
13545 static void __exit bnx2x_cleanup(void)
13546 {
13547 	struct list_head *pos, *q;
13548 
13549 	pci_unregister_driver(&bnx2x_pci_driver);
13550 
13551 	destroy_workqueue(bnx2x_wq);
13552 	destroy_workqueue(bnx2x_iov_wq);
13553 
13554 	/* Free globally allocated resources */
13555 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13556 		struct bnx2x_prev_path_list *tmp =
13557 			list_entry(pos, struct bnx2x_prev_path_list, list);
13558 		list_del(pos);
13559 		kfree(tmp);
13560 	}
13561 }
13562 
13563 void bnx2x_notify_link_changed(struct bnx2x *bp)
13564 {
13565 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13566 }
13567 
13568 module_init(bnx2x_init);
13569 module_exit(bnx2x_cleanup);
13570 
13571 /**
13572  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13573  *
13574  * @bp:		driver handle
13575  * @set:	set or clear the CAM entry
13576  *
13577  * This function will wait until the ramrod completion returns.
13578  * Return 0 if success, -ENODEV if ramrod doesn't return.
13579  */
13580 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13581 {
13582 	unsigned long ramrod_flags = 0;
13583 
13584 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13585 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13586 				 &bp->iscsi_l2_mac_obj, true,
13587 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13588 }
13589 
13590 /* count denotes the number of new completions we have seen */
13591 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13592 {
13593 	struct eth_spe *spe;
13594 	int cxt_index, cxt_offset;
13595 
13596 #ifdef BNX2X_STOP_ON_ERROR
13597 	if (unlikely(bp->panic))
13598 		return;
13599 #endif
13600 
13601 	spin_lock_bh(&bp->spq_lock);
13602 	BUG_ON(bp->cnic_spq_pending < count);
13603 	bp->cnic_spq_pending -= count;
13604 
13605 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13606 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13607 				& SPE_HDR_CONN_TYPE) >>
13608 				SPE_HDR_CONN_TYPE_SHIFT;
13609 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13610 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13611 
13612 		/* Set validation for iSCSI L2 client before sending SETUP
13613 		 *  ramrod
13614 		 */
13615 		if (type == ETH_CONNECTION_TYPE) {
13616 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13617 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13618 					ILT_PAGE_CIDS;
13619 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13620 					(cxt_index * ILT_PAGE_CIDS);
13621 				bnx2x_set_ctx_validation(bp,
13622 					&bp->context[cxt_index].
13623 							 vcxt[cxt_offset].eth,
13624 					BNX2X_ISCSI_ETH_CID(bp));
13625 			}
13626 		}
13627 
13628 		/*
13629 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13630 		 * and in the air. We also check that number of outstanding
13631 		 * COMMON ramrods is not more than the EQ and SPQ can
13632 		 * accommodate.
13633 		 */
13634 		if (type == ETH_CONNECTION_TYPE) {
13635 			if (!atomic_read(&bp->cq_spq_left))
13636 				break;
13637 			else
13638 				atomic_dec(&bp->cq_spq_left);
13639 		} else if (type == NONE_CONNECTION_TYPE) {
13640 			if (!atomic_read(&bp->eq_spq_left))
13641 				break;
13642 			else
13643 				atomic_dec(&bp->eq_spq_left);
13644 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13645 			   (type == FCOE_CONNECTION_TYPE)) {
13646 			if (bp->cnic_spq_pending >=
13647 			    bp->cnic_eth_dev.max_kwqe_pending)
13648 				break;
13649 			else
13650 				bp->cnic_spq_pending++;
13651 		} else {
13652 			BNX2X_ERR("Unknown SPE type: %d\n", type);
13653 			bnx2x_panic();
13654 			break;
13655 		}
13656 
13657 		spe = bnx2x_sp_get_next(bp);
13658 		*spe = *bp->cnic_kwq_cons;
13659 
13660 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13661 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13662 
13663 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13664 			bp->cnic_kwq_cons = bp->cnic_kwq;
13665 		else
13666 			bp->cnic_kwq_cons++;
13667 	}
13668 	bnx2x_sp_prod_update(bp);
13669 	spin_unlock_bh(&bp->spq_lock);
13670 }
13671 
13672 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13673 			       struct kwqe_16 *kwqes[], u32 count)
13674 {
13675 	struct bnx2x *bp = netdev_priv(dev);
13676 	int i;
13677 
13678 #ifdef BNX2X_STOP_ON_ERROR
13679 	if (unlikely(bp->panic)) {
13680 		BNX2X_ERR("Can't post to SP queue while panic\n");
13681 		return -EIO;
13682 	}
13683 #endif
13684 
13685 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13686 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13687 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
13688 		return -EAGAIN;
13689 	}
13690 
13691 	spin_lock_bh(&bp->spq_lock);
13692 
13693 	for (i = 0; i < count; i++) {
13694 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13695 
13696 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13697 			break;
13698 
13699 		*bp->cnic_kwq_prod = *spe;
13700 
13701 		bp->cnic_kwq_pending++;
13702 
13703 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13704 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
13705 		   spe->data.update_data_addr.hi,
13706 		   spe->data.update_data_addr.lo,
13707 		   bp->cnic_kwq_pending);
13708 
13709 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13710 			bp->cnic_kwq_prod = bp->cnic_kwq;
13711 		else
13712 			bp->cnic_kwq_prod++;
13713 	}
13714 
13715 	spin_unlock_bh(&bp->spq_lock);
13716 
13717 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13718 		bnx2x_cnic_sp_post(bp, 0);
13719 
13720 	return i;
13721 }
13722 
13723 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13724 {
13725 	struct cnic_ops *c_ops;
13726 	int rc = 0;
13727 
13728 	mutex_lock(&bp->cnic_mutex);
13729 	c_ops = rcu_dereference_protected(bp->cnic_ops,
13730 					  lockdep_is_held(&bp->cnic_mutex));
13731 	if (c_ops)
13732 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13733 	mutex_unlock(&bp->cnic_mutex);
13734 
13735 	return rc;
13736 }
13737 
13738 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13739 {
13740 	struct cnic_ops *c_ops;
13741 	int rc = 0;
13742 
13743 	rcu_read_lock();
13744 	c_ops = rcu_dereference(bp->cnic_ops);
13745 	if (c_ops)
13746 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13747 	rcu_read_unlock();
13748 
13749 	return rc;
13750 }
13751 
13752 /*
13753  * for commands that have no data
13754  */
13755 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13756 {
13757 	struct cnic_ctl_info ctl = {0};
13758 
13759 	ctl.cmd = cmd;
13760 
13761 	return bnx2x_cnic_ctl_send(bp, &ctl);
13762 }
13763 
13764 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13765 {
13766 	struct cnic_ctl_info ctl = {0};
13767 
13768 	/* first we tell CNIC and only then we count this as a completion */
13769 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13770 	ctl.data.comp.cid = cid;
13771 	ctl.data.comp.error = err;
13772 
13773 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
13774 	bnx2x_cnic_sp_post(bp, 0);
13775 }
13776 
13777 /* Called with netif_addr_lock_bh() taken.
13778  * Sets an rx_mode config for an iSCSI ETH client.
13779  * Doesn't block.
13780  * Completion should be checked outside.
13781  */
13782 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13783 {
13784 	unsigned long accept_flags = 0, ramrod_flags = 0;
13785 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13786 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13787 
13788 	if (start) {
13789 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
13790 		 * because it's the only way for UIO Queue to accept
13791 		 * multicasts (in non-promiscuous mode only one Queue per
13792 		 * function will receive multicast packets (leading in our
13793 		 * case).
13794 		 */
13795 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13796 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13797 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13798 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13799 
13800 		/* Clear STOP_PENDING bit if START is requested */
13801 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13802 
13803 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13804 	} else
13805 		/* Clear START_PENDING bit if STOP is requested */
13806 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13807 
13808 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13809 		set_bit(sched_state, &bp->sp_state);
13810 	else {
13811 		__set_bit(RAMROD_RX, &ramrod_flags);
13812 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13813 				    ramrod_flags);
13814 	}
13815 }
13816 
13817 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13818 {
13819 	struct bnx2x *bp = netdev_priv(dev);
13820 	int rc = 0;
13821 
13822 	switch (ctl->cmd) {
13823 	case DRV_CTL_CTXTBL_WR_CMD: {
13824 		u32 index = ctl->data.io.offset;
13825 		dma_addr_t addr = ctl->data.io.dma_addr;
13826 
13827 		bnx2x_ilt_wr(bp, index, addr);
13828 		break;
13829 	}
13830 
13831 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13832 		int count = ctl->data.credit.credit_count;
13833 
13834 		bnx2x_cnic_sp_post(bp, count);
13835 		break;
13836 	}
13837 
13838 	/* rtnl_lock is held.  */
13839 	case DRV_CTL_START_L2_CMD: {
13840 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13841 		unsigned long sp_bits = 0;
13842 
13843 		/* Configure the iSCSI classification object */
13844 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13845 				   cp->iscsi_l2_client_id,
13846 				   cp->iscsi_l2_cid, BP_FUNC(bp),
13847 				   bnx2x_sp(bp, mac_rdata),
13848 				   bnx2x_sp_mapping(bp, mac_rdata),
13849 				   BNX2X_FILTER_MAC_PENDING,
13850 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13851 				   &bp->macs_pool);
13852 
13853 		/* Set iSCSI MAC address */
13854 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13855 		if (rc)
13856 			break;
13857 
13858 		mmiowb();
13859 		barrier();
13860 
13861 		/* Start accepting on iSCSI L2 ring */
13862 
13863 		netif_addr_lock_bh(dev);
13864 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
13865 		netif_addr_unlock_bh(dev);
13866 
13867 		/* bits to wait on */
13868 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13869 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13870 
13871 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13872 			BNX2X_ERR("rx_mode completion timed out!\n");
13873 
13874 		break;
13875 	}
13876 
13877 	/* rtnl_lock is held.  */
13878 	case DRV_CTL_STOP_L2_CMD: {
13879 		unsigned long sp_bits = 0;
13880 
13881 		/* Stop accepting on iSCSI L2 ring */
13882 		netif_addr_lock_bh(dev);
13883 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
13884 		netif_addr_unlock_bh(dev);
13885 
13886 		/* bits to wait on */
13887 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13888 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13889 
13890 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13891 			BNX2X_ERR("rx_mode completion timed out!\n");
13892 
13893 		mmiowb();
13894 		barrier();
13895 
13896 		/* Unset iSCSI L2 MAC */
13897 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13898 					BNX2X_ISCSI_ETH_MAC, true);
13899 		break;
13900 	}
13901 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13902 		int count = ctl->data.credit.credit_count;
13903 
13904 		smp_mb__before_atomic();
13905 		atomic_add(count, &bp->cq_spq_left);
13906 		smp_mb__after_atomic();
13907 		break;
13908 	}
13909 	case DRV_CTL_ULP_REGISTER_CMD: {
13910 		int ulp_type = ctl->data.register_data.ulp_type;
13911 
13912 		if (CHIP_IS_E3(bp)) {
13913 			int idx = BP_FW_MB_IDX(bp);
13914 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13915 			int path = BP_PATH(bp);
13916 			int port = BP_PORT(bp);
13917 			int i;
13918 			u32 scratch_offset;
13919 			u32 *host_addr;
13920 
13921 			/* first write capability to shmem2 */
13922 			if (ulp_type == CNIC_ULP_ISCSI)
13923 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13924 			else if (ulp_type == CNIC_ULP_FCOE)
13925 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13926 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13927 
13928 			if ((ulp_type != CNIC_ULP_FCOE) ||
13929 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13930 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13931 				break;
13932 
13933 			/* if reached here - should write fcoe capabilities */
13934 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13935 			if (!scratch_offset)
13936 				break;
13937 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
13938 						   fcoe_features[path][port]);
13939 			host_addr = (u32 *) &(ctl->data.register_data.
13940 					      fcoe_features);
13941 			for (i = 0; i < sizeof(struct fcoe_capabilities);
13942 			     i += 4)
13943 				REG_WR(bp, scratch_offset + i,
13944 				       *(host_addr + i/4));
13945 		}
13946 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
13947 		break;
13948 	}
13949 
13950 	case DRV_CTL_ULP_UNREGISTER_CMD: {
13951 		int ulp_type = ctl->data.ulp_type;
13952 
13953 		if (CHIP_IS_E3(bp)) {
13954 			int idx = BP_FW_MB_IDX(bp);
13955 			u32 cap;
13956 
13957 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13958 			if (ulp_type == CNIC_ULP_ISCSI)
13959 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13960 			else if (ulp_type == CNIC_ULP_FCOE)
13961 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13962 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13963 		}
13964 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
13965 		break;
13966 	}
13967 
13968 	default:
13969 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
13970 		rc = -EINVAL;
13971 	}
13972 
13973 	return rc;
13974 }
13975 
13976 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13977 {
13978 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13979 
13980 	if (bp->flags & USING_MSIX_FLAG) {
13981 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13982 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13983 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
13984 	} else {
13985 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13986 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13987 	}
13988 	if (!CHIP_IS_E1x(bp))
13989 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13990 	else
13991 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13992 
13993 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13994 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13995 	cp->irq_arr[1].status_blk = bp->def_status_blk;
13996 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13997 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13998 
13999 	cp->num_irq = 2;
14000 }
14001 
14002 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14003 {
14004 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14005 
14006 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14007 			     bnx2x_cid_ilt_lines(bp);
14008 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14009 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14010 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14011 
14012 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14013 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14014 	   cp->iscsi_l2_cid);
14015 
14016 	if (NO_ISCSI_OOO(bp))
14017 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14018 }
14019 
14020 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14021 			       void *data)
14022 {
14023 	struct bnx2x *bp = netdev_priv(dev);
14024 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14025 	int rc;
14026 
14027 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14028 
14029 	if (ops == NULL) {
14030 		BNX2X_ERR("NULL ops received\n");
14031 		return -EINVAL;
14032 	}
14033 
14034 	if (!CNIC_SUPPORT(bp)) {
14035 		BNX2X_ERR("Can't register CNIC when not supported\n");
14036 		return -EOPNOTSUPP;
14037 	}
14038 
14039 	if (!CNIC_LOADED(bp)) {
14040 		rc = bnx2x_load_cnic(bp);
14041 		if (rc) {
14042 			BNX2X_ERR("CNIC-related load failed\n");
14043 			return rc;
14044 		}
14045 	}
14046 
14047 	bp->cnic_enabled = true;
14048 
14049 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14050 	if (!bp->cnic_kwq)
14051 		return -ENOMEM;
14052 
14053 	bp->cnic_kwq_cons = bp->cnic_kwq;
14054 	bp->cnic_kwq_prod = bp->cnic_kwq;
14055 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14056 
14057 	bp->cnic_spq_pending = 0;
14058 	bp->cnic_kwq_pending = 0;
14059 
14060 	bp->cnic_data = data;
14061 
14062 	cp->num_irq = 0;
14063 	cp->drv_state |= CNIC_DRV_STATE_REGD;
14064 	cp->iro_arr = bp->iro_arr;
14065 
14066 	bnx2x_setup_cnic_irq_info(bp);
14067 
14068 	rcu_assign_pointer(bp->cnic_ops, ops);
14069 
14070 	/* Schedule driver to read CNIC driver versions */
14071 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14072 
14073 	return 0;
14074 }
14075 
14076 static int bnx2x_unregister_cnic(struct net_device *dev)
14077 {
14078 	struct bnx2x *bp = netdev_priv(dev);
14079 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14080 
14081 	mutex_lock(&bp->cnic_mutex);
14082 	cp->drv_state = 0;
14083 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
14084 	mutex_unlock(&bp->cnic_mutex);
14085 	synchronize_rcu();
14086 	bp->cnic_enabled = false;
14087 	kfree(bp->cnic_kwq);
14088 	bp->cnic_kwq = NULL;
14089 
14090 	return 0;
14091 }
14092 
14093 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14094 {
14095 	struct bnx2x *bp = netdev_priv(dev);
14096 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14097 
14098 	/* If both iSCSI and FCoE are disabled - return NULL in
14099 	 * order to indicate CNIC that it should not try to work
14100 	 * with this device.
14101 	 */
14102 	if (NO_ISCSI(bp) && NO_FCOE(bp))
14103 		return NULL;
14104 
14105 	cp->drv_owner = THIS_MODULE;
14106 	cp->chip_id = CHIP_ID(bp);
14107 	cp->pdev = bp->pdev;
14108 	cp->io_base = bp->regview;
14109 	cp->io_base2 = bp->doorbells;
14110 	cp->max_kwqe_pending = 8;
14111 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14112 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14113 			     bnx2x_cid_ilt_lines(bp);
14114 	cp->ctx_tbl_len = CNIC_ILT_LINES;
14115 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14116 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14117 	cp->drv_ctl = bnx2x_drv_ctl;
14118 	cp->drv_register_cnic = bnx2x_register_cnic;
14119 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14120 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14121 	cp->iscsi_l2_client_id =
14122 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14123 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14124 
14125 	if (NO_ISCSI_OOO(bp))
14126 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14127 
14128 	if (NO_ISCSI(bp))
14129 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14130 
14131 	if (NO_FCOE(bp))
14132 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14133 
14134 	BNX2X_DEV_INFO(
14135 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14136 	   cp->ctx_blk_size,
14137 	   cp->ctx_tbl_offset,
14138 	   cp->ctx_tbl_len,
14139 	   cp->starting_cid);
14140 	return cp;
14141 }
14142 
14143 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14144 {
14145 	struct bnx2x *bp = fp->bp;
14146 	u32 offset = BAR_USTRORM_INTMEM;
14147 
14148 	if (IS_VF(bp))
14149 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
14150 	else if (!CHIP_IS_E1x(bp))
14151 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14152 	else
14153 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14154 
14155 	return offset;
14156 }
14157 
14158 /* called only on E1H or E2.
14159  * When pretending to be PF, the pretend value is the function number 0...7
14160  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14161  * combination
14162  */
14163 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14164 {
14165 	u32 pretend_reg;
14166 
14167 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14168 		return -1;
14169 
14170 	/* get my own pretend register */
14171 	pretend_reg = bnx2x_get_pretend_reg(bp);
14172 	REG_WR(bp, pretend_reg, pretend_func_val);
14173 	REG_RD(bp, pretend_reg);
14174 	return 0;
14175 }
14176