1 /* bnx2x_main.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/module.h> 23 #include <linux/moduleparam.h> 24 #include <linux/kernel.h> 25 #include <linux/device.h> /* for dev_info() */ 26 #include <linux/timer.h> 27 #include <linux/errno.h> 28 #include <linux/ioport.h> 29 #include <linux/slab.h> 30 #include <linux/interrupt.h> 31 #include <linux/pci.h> 32 #include <linux/aer.h> 33 #include <linux/init.h> 34 #include <linux/netdevice.h> 35 #include <linux/etherdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/bitops.h> 39 #include <linux/irq.h> 40 #include <linux/delay.h> 41 #include <asm/byteorder.h> 42 #include <linux/time.h> 43 #include <linux/ethtool.h> 44 #include <linux/mii.h> 45 #include <linux/if_vlan.h> 46 #include <linux/crash_dump.h> 47 #include <net/ip.h> 48 #include <net/ipv6.h> 49 #include <net/tcp.h> 50 #include <net/vxlan.h> 51 #include <net/checksum.h> 52 #include <net/ip6_checksum.h> 53 #include <linux/workqueue.h> 54 #include <linux/crc32.h> 55 #include <linux/crc32c.h> 56 #include <linux/prefetch.h> 57 #include <linux/zlib.h> 58 #include <linux/io.h> 59 #include <linux/semaphore.h> 60 #include <linux/stringify.h> 61 #include <linux/vmalloc.h> 62 #include "bnx2x.h" 63 #include "bnx2x_init.h" 64 #include "bnx2x_init_ops.h" 65 #include "bnx2x_cmn.h" 66 #include "bnx2x_vfpf.h" 67 #include "bnx2x_dcb.h" 68 #include "bnx2x_sp.h" 69 #include <linux/firmware.h> 70 #include "bnx2x_fw_file_hdr.h" 71 /* FW files */ 72 #define FW_FILE_VERSION \ 73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ 74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \ 75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \ 76 __stringify(BCM_5710_FW_ENGINEERING_VERSION) 77 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" 78 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" 79 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" 80 81 /* Time in jiffies before concluding the transmitter is hung */ 82 #define TX_TIMEOUT (5*HZ) 83 84 MODULE_AUTHOR("Eliezer Tamir"); 85 MODULE_DESCRIPTION("QLogic " 86 "BCM57710/57711/57711E/" 87 "57712/57712_MF/57800/57800_MF/57810/57810_MF/" 88 "57840/57840_MF Driver"); 89 MODULE_LICENSE("GPL"); 90 MODULE_FIRMWARE(FW_FILE_NAME_E1); 91 MODULE_FIRMWARE(FW_FILE_NAME_E1H); 92 MODULE_FIRMWARE(FW_FILE_NAME_E2); 93 94 int bnx2x_num_queues; 95 module_param_named(num_queues, bnx2x_num_queues, int, 0444); 96 MODULE_PARM_DESC(num_queues, 97 " Set number of queues (default is as a number of CPUs)"); 98 99 static int disable_tpa; 100 module_param(disable_tpa, int, 0444); 101 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); 102 103 static int int_mode; 104 module_param(int_mode, int, 0444); 105 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " 106 "(1 INT#x; 2 MSI)"); 107 108 static int dropless_fc; 109 module_param(dropless_fc, int, 0444); 110 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); 111 112 static int mrrs = -1; 113 module_param(mrrs, int, 0444); 114 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); 115 116 static int debug; 117 module_param(debug, int, 0444); 118 MODULE_PARM_DESC(debug, " Default debug msglevel"); 119 120 static struct workqueue_struct *bnx2x_wq; 121 struct workqueue_struct *bnx2x_iov_wq; 122 123 struct bnx2x_mac_vals { 124 u32 xmac_addr; 125 u32 xmac_val; 126 u32 emac_addr; 127 u32 emac_val; 128 u32 umac_addr[2]; 129 u32 umac_val[2]; 130 u32 bmac_addr; 131 u32 bmac_val[2]; 132 }; 133 134 enum bnx2x_board_type { 135 BCM57710 = 0, 136 BCM57711, 137 BCM57711E, 138 BCM57712, 139 BCM57712_MF, 140 BCM57712_VF, 141 BCM57800, 142 BCM57800_MF, 143 BCM57800_VF, 144 BCM57810, 145 BCM57810_MF, 146 BCM57810_VF, 147 BCM57840_4_10, 148 BCM57840_2_20, 149 BCM57840_MF, 150 BCM57840_VF, 151 BCM57811, 152 BCM57811_MF, 153 BCM57840_O, 154 BCM57840_MFO, 155 BCM57811_VF 156 }; 157 158 /* indexed by board_type, above */ 159 static struct { 160 char *name; 161 } board_info[] = { 162 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" }, 163 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" }, 164 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" }, 165 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" }, 166 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" }, 167 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" }, 168 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" }, 169 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" }, 170 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" }, 171 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" }, 172 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" }, 173 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" }, 174 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" }, 175 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" }, 176 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 177 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }, 178 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" }, 179 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" }, 180 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" }, 181 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 182 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" } 183 }; 184 185 #ifndef PCI_DEVICE_ID_NX2_57710 186 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 187 #endif 188 #ifndef PCI_DEVICE_ID_NX2_57711 189 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 190 #endif 191 #ifndef PCI_DEVICE_ID_NX2_57711E 192 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E 193 #endif 194 #ifndef PCI_DEVICE_ID_NX2_57712 195 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 196 #endif 197 #ifndef PCI_DEVICE_ID_NX2_57712_MF 198 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF 199 #endif 200 #ifndef PCI_DEVICE_ID_NX2_57712_VF 201 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF 202 #endif 203 #ifndef PCI_DEVICE_ID_NX2_57800 204 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 205 #endif 206 #ifndef PCI_DEVICE_ID_NX2_57800_MF 207 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF 208 #endif 209 #ifndef PCI_DEVICE_ID_NX2_57800_VF 210 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF 211 #endif 212 #ifndef PCI_DEVICE_ID_NX2_57810 213 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 214 #endif 215 #ifndef PCI_DEVICE_ID_NX2_57810_MF 216 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF 217 #endif 218 #ifndef PCI_DEVICE_ID_NX2_57840_O 219 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE 220 #endif 221 #ifndef PCI_DEVICE_ID_NX2_57810_VF 222 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF 223 #endif 224 #ifndef PCI_DEVICE_ID_NX2_57840_4_10 225 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 226 #endif 227 #ifndef PCI_DEVICE_ID_NX2_57840_2_20 228 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 229 #endif 230 #ifndef PCI_DEVICE_ID_NX2_57840_MFO 231 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE 232 #endif 233 #ifndef PCI_DEVICE_ID_NX2_57840_MF 234 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF 235 #endif 236 #ifndef PCI_DEVICE_ID_NX2_57840_VF 237 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF 238 #endif 239 #ifndef PCI_DEVICE_ID_NX2_57811 240 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 241 #endif 242 #ifndef PCI_DEVICE_ID_NX2_57811_MF 243 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF 244 #endif 245 #ifndef PCI_DEVICE_ID_NX2_57811_VF 246 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF 247 #endif 248 249 static const struct pci_device_id bnx2x_pci_tbl[] = { 250 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, 251 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, 252 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, 253 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, 254 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, 255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, 256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, 257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, 258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, 259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, 260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, 261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, 262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 263 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, 265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, 266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, 267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 268 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 270 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, 272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, 273 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, 274 { 0 } 275 }; 276 277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); 278 279 /* Global resources for unloading a previously loaded device */ 280 #define BNX2X_PREV_WAIT_NEEDED 1 281 static DEFINE_SEMAPHORE(bnx2x_prev_sem); 282 static LIST_HEAD(bnx2x_prev_list); 283 284 /* Forward declaration */ 285 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); 286 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp); 287 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp); 288 289 /**************************************************************************** 290 * General service functions 291 ****************************************************************************/ 292 293 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr); 294 295 static void __storm_memset_dma_mapping(struct bnx2x *bp, 296 u32 addr, dma_addr_t mapping) 297 { 298 REG_WR(bp, addr, U64_LO(mapping)); 299 REG_WR(bp, addr + 4, U64_HI(mapping)); 300 } 301 302 static void storm_memset_spq_addr(struct bnx2x *bp, 303 dma_addr_t mapping, u16 abs_fid) 304 { 305 u32 addr = XSEM_REG_FAST_MEMORY + 306 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); 307 308 __storm_memset_dma_mapping(bp, addr, mapping); 309 } 310 311 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 312 u16 pf_id) 313 { 314 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 315 pf_id); 316 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 317 pf_id); 318 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 319 pf_id); 320 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 321 pf_id); 322 } 323 324 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 325 u8 enable) 326 { 327 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 328 enable); 329 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 330 enable); 331 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 332 enable); 333 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 334 enable); 335 } 336 337 static void storm_memset_eq_data(struct bnx2x *bp, 338 struct event_ring_data *eq_data, 339 u16 pfid) 340 { 341 size_t size = sizeof(struct event_ring_data); 342 343 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); 344 345 __storm_memset_struct(bp, addr, size, (u32 *)eq_data); 346 } 347 348 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, 349 u16 pfid) 350 { 351 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); 352 REG_WR16(bp, addr, eq_prod); 353 } 354 355 /* used only at init 356 * locking is done by mcp 357 */ 358 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) 359 { 360 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 361 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); 362 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 363 PCICFG_VENDOR_ID_OFFSET); 364 } 365 366 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) 367 { 368 u32 val; 369 370 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 371 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); 372 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 373 PCICFG_VENDOR_ID_OFFSET); 374 375 return val; 376 } 377 378 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" 379 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" 380 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" 381 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" 382 #define DMAE_DP_DST_NONE "dst_addr [none]" 383 384 static void bnx2x_dp_dmae(struct bnx2x *bp, 385 struct dmae_command *dmae, int msglvl) 386 { 387 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; 388 int i; 389 390 switch (dmae->opcode & DMAE_COMMAND_DST) { 391 case DMAE_CMD_DST_PCI: 392 if (src_type == DMAE_CMD_SRC_PCI) 393 DP(msglvl, "DMAE: opcode 0x%08x\n" 394 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 395 "comp_addr [%x:%08x], comp_val 0x%08x\n", 396 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 397 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 398 dmae->comp_addr_hi, dmae->comp_addr_lo, 399 dmae->comp_val); 400 else 401 DP(msglvl, "DMAE: opcode 0x%08x\n" 402 "src [%08x], len [%d*4], dst [%x:%08x]\n" 403 "comp_addr [%x:%08x], comp_val 0x%08x\n", 404 dmae->opcode, dmae->src_addr_lo >> 2, 405 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 406 dmae->comp_addr_hi, dmae->comp_addr_lo, 407 dmae->comp_val); 408 break; 409 case DMAE_CMD_DST_GRC: 410 if (src_type == DMAE_CMD_SRC_PCI) 411 DP(msglvl, "DMAE: opcode 0x%08x\n" 412 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 413 "comp_addr [%x:%08x], comp_val 0x%08x\n", 414 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 415 dmae->len, dmae->dst_addr_lo >> 2, 416 dmae->comp_addr_hi, dmae->comp_addr_lo, 417 dmae->comp_val); 418 else 419 DP(msglvl, "DMAE: opcode 0x%08x\n" 420 "src [%08x], len [%d*4], dst [%08x]\n" 421 "comp_addr [%x:%08x], comp_val 0x%08x\n", 422 dmae->opcode, dmae->src_addr_lo >> 2, 423 dmae->len, dmae->dst_addr_lo >> 2, 424 dmae->comp_addr_hi, dmae->comp_addr_lo, 425 dmae->comp_val); 426 break; 427 default: 428 if (src_type == DMAE_CMD_SRC_PCI) 429 DP(msglvl, "DMAE: opcode 0x%08x\n" 430 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 431 "comp_addr [%x:%08x] comp_val 0x%08x\n", 432 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 433 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 434 dmae->comp_val); 435 else 436 DP(msglvl, "DMAE: opcode 0x%08x\n" 437 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 438 "comp_addr [%x:%08x] comp_val 0x%08x\n", 439 dmae->opcode, dmae->src_addr_lo >> 2, 440 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 441 dmae->comp_val); 442 break; 443 } 444 445 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) 446 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", 447 i, *(((u32 *)dmae) + i)); 448 } 449 450 /* copy command into DMAE command memory and set DMAE command go */ 451 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) 452 { 453 u32 cmd_offset; 454 int i; 455 456 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); 457 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { 458 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); 459 } 460 REG_WR(bp, dmae_reg_go_c[idx], 1); 461 } 462 463 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) 464 { 465 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 466 DMAE_CMD_C_ENABLE); 467 } 468 469 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) 470 { 471 return opcode & ~DMAE_CMD_SRC_RESET; 472 } 473 474 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 475 bool with_comp, u8 comp_type) 476 { 477 u32 opcode = 0; 478 479 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 480 (dst_type << DMAE_COMMAND_DST_SHIFT)); 481 482 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 483 484 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 485 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | 486 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); 487 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 488 489 #ifdef __BIG_ENDIAN 490 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 491 #else 492 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 493 #endif 494 if (with_comp) 495 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); 496 return opcode; 497 } 498 499 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, 500 struct dmae_command *dmae, 501 u8 src_type, u8 dst_type) 502 { 503 memset(dmae, 0, sizeof(struct dmae_command)); 504 505 /* set the opcode */ 506 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, 507 true, DMAE_COMP_PCI); 508 509 /* fill in the completion parameters */ 510 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); 511 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); 512 dmae->comp_val = DMAE_COMP_VAL; 513 } 514 515 /* issue a dmae command over the init-channel and wait for completion */ 516 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 517 u32 *comp) 518 { 519 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; 520 int rc = 0; 521 522 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); 523 524 /* Lock the dmae channel. Disable BHs to prevent a dead-lock 525 * as long as this code is called both from syscall context and 526 * from ndo_set_rx_mode() flow that may be called from BH. 527 */ 528 529 spin_lock_bh(&bp->dmae_lock); 530 531 /* reset completion */ 532 *comp = 0; 533 534 /* post the command on the channel used for initializations */ 535 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); 536 537 /* wait for completion */ 538 udelay(5); 539 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 540 541 if (!cnt || 542 (bp->recovery_state != BNX2X_RECOVERY_DONE && 543 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 544 BNX2X_ERR("DMAE timeout!\n"); 545 rc = DMAE_TIMEOUT; 546 goto unlock; 547 } 548 cnt--; 549 udelay(50); 550 } 551 if (*comp & DMAE_PCI_ERR_FLAG) { 552 BNX2X_ERR("DMAE PCI error!\n"); 553 rc = DMAE_PCI_ERROR; 554 } 555 556 unlock: 557 558 spin_unlock_bh(&bp->dmae_lock); 559 560 return rc; 561 } 562 563 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 564 u32 len32) 565 { 566 int rc; 567 struct dmae_command dmae; 568 569 if (!bp->dmae_ready) { 570 u32 *data = bnx2x_sp(bp, wb_data[0]); 571 572 if (CHIP_IS_E1(bp)) 573 bnx2x_init_ind_wr(bp, dst_addr, data, len32); 574 else 575 bnx2x_init_str_wr(bp, dst_addr, data, len32); 576 return; 577 } 578 579 /* set opcode and fixed command fields */ 580 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 581 582 /* fill in addresses and len */ 583 dmae.src_addr_lo = U64_LO(dma_addr); 584 dmae.src_addr_hi = U64_HI(dma_addr); 585 dmae.dst_addr_lo = dst_addr >> 2; 586 dmae.dst_addr_hi = 0; 587 dmae.len = len32; 588 589 /* issue the command and wait for completion */ 590 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 591 if (rc) { 592 BNX2X_ERR("DMAE returned failure %d\n", rc); 593 #ifdef BNX2X_STOP_ON_ERROR 594 bnx2x_panic(); 595 #endif 596 } 597 } 598 599 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) 600 { 601 int rc; 602 struct dmae_command dmae; 603 604 if (!bp->dmae_ready) { 605 u32 *data = bnx2x_sp(bp, wb_data[0]); 606 int i; 607 608 if (CHIP_IS_E1(bp)) 609 for (i = 0; i < len32; i++) 610 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); 611 else 612 for (i = 0; i < len32; i++) 613 data[i] = REG_RD(bp, src_addr + i*4); 614 615 return; 616 } 617 618 /* set opcode and fixed command fields */ 619 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 620 621 /* fill in addresses and len */ 622 dmae.src_addr_lo = src_addr >> 2; 623 dmae.src_addr_hi = 0; 624 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); 625 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); 626 dmae.len = len32; 627 628 /* issue the command and wait for completion */ 629 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 630 if (rc) { 631 BNX2X_ERR("DMAE returned failure %d\n", rc); 632 #ifdef BNX2X_STOP_ON_ERROR 633 bnx2x_panic(); 634 #endif 635 } 636 } 637 638 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, 639 u32 addr, u32 len) 640 { 641 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); 642 int offset = 0; 643 644 while (len > dmae_wr_max) { 645 bnx2x_write_dmae(bp, phys_addr + offset, 646 addr + offset, dmae_wr_max); 647 offset += dmae_wr_max * 4; 648 len -= dmae_wr_max; 649 } 650 651 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); 652 } 653 654 enum storms { 655 XSTORM, 656 TSTORM, 657 CSTORM, 658 USTORM, 659 MAX_STORMS 660 }; 661 662 #define STORMS_NUM 4 663 #define REGS_IN_ENTRY 4 664 665 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp, 666 enum storms storm, 667 int entry) 668 { 669 switch (storm) { 670 case XSTORM: 671 return XSTORM_ASSERT_LIST_OFFSET(entry); 672 case TSTORM: 673 return TSTORM_ASSERT_LIST_OFFSET(entry); 674 case CSTORM: 675 return CSTORM_ASSERT_LIST_OFFSET(entry); 676 case USTORM: 677 return USTORM_ASSERT_LIST_OFFSET(entry); 678 case MAX_STORMS: 679 default: 680 BNX2X_ERR("unknown storm\n"); 681 } 682 return -EINVAL; 683 } 684 685 static int bnx2x_mc_assert(struct bnx2x *bp) 686 { 687 char last_idx; 688 int i, j, rc = 0; 689 enum storms storm; 690 u32 regs[REGS_IN_ENTRY]; 691 u32 bar_storm_intmem[STORMS_NUM] = { 692 BAR_XSTRORM_INTMEM, 693 BAR_TSTRORM_INTMEM, 694 BAR_CSTRORM_INTMEM, 695 BAR_USTRORM_INTMEM 696 }; 697 u32 storm_assert_list_index[STORMS_NUM] = { 698 XSTORM_ASSERT_LIST_INDEX_OFFSET, 699 TSTORM_ASSERT_LIST_INDEX_OFFSET, 700 CSTORM_ASSERT_LIST_INDEX_OFFSET, 701 USTORM_ASSERT_LIST_INDEX_OFFSET 702 }; 703 char *storms_string[STORMS_NUM] = { 704 "XSTORM", 705 "TSTORM", 706 "CSTORM", 707 "USTORM" 708 }; 709 710 for (storm = XSTORM; storm < MAX_STORMS; storm++) { 711 last_idx = REG_RD8(bp, bar_storm_intmem[storm] + 712 storm_assert_list_index[storm]); 713 if (last_idx) 714 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n", 715 storms_string[storm], last_idx); 716 717 /* print the asserts */ 718 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 719 /* read a single assert entry */ 720 for (j = 0; j < REGS_IN_ENTRY; j++) 721 regs[j] = REG_RD(bp, bar_storm_intmem[storm] + 722 bnx2x_get_assert_list_entry(bp, 723 storm, 724 i) + 725 sizeof(u32) * j); 726 727 /* log entry if it contains a valid assert */ 728 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) { 729 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 730 storms_string[storm], i, regs[3], 731 regs[2], regs[1], regs[0]); 732 rc++; 733 } else { 734 break; 735 } 736 } 737 } 738 739 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n", 740 CHIP_IS_E1(bp) ? "everest1" : 741 CHIP_IS_E1H(bp) ? "everest1h" : 742 CHIP_IS_E2(bp) ? "everest2" : "everest3", 743 BCM_5710_FW_MAJOR_VERSION, 744 BCM_5710_FW_MINOR_VERSION, 745 BCM_5710_FW_REVISION_VERSION); 746 747 return rc; 748 } 749 750 #define MCPR_TRACE_BUFFER_SIZE (0x800) 751 #define SCRATCH_BUFFER_SIZE(bp) \ 752 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000)) 753 754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) 755 { 756 u32 addr, val; 757 u32 mark, offset; 758 __be32 data[9]; 759 int word; 760 u32 trace_shmem_base; 761 if (BP_NOMCP(bp)) { 762 BNX2X_ERR("NO MCP - can not dump\n"); 763 return; 764 } 765 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", 766 (bp->common.bc_ver & 0xff0000) >> 16, 767 (bp->common.bc_ver & 0xff00) >> 8, 768 (bp->common.bc_ver & 0xff)); 769 770 if (pci_channel_offline(bp->pdev)) { 771 BNX2X_ERR("Cannot dump MCP info while in PCI error\n"); 772 return; 773 } 774 775 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); 776 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) 777 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); 778 779 if (BP_PATH(bp) == 0) 780 trace_shmem_base = bp->common.shmem_base; 781 else 782 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); 783 784 /* sanity */ 785 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE || 786 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) + 787 SCRATCH_BUFFER_SIZE(bp)) { 788 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n", 789 trace_shmem_base); 790 return; 791 } 792 793 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE; 794 795 /* validate TRCB signature */ 796 mark = REG_RD(bp, addr); 797 if (mark != MFW_TRACE_SIGNATURE) { 798 BNX2X_ERR("Trace buffer signature is missing."); 799 return ; 800 } 801 802 /* read cyclic buffer pointer */ 803 addr += 4; 804 mark = REG_RD(bp, addr); 805 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000; 806 if (mark >= trace_shmem_base || mark < addr + 4) { 807 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n"); 808 return; 809 } 810 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); 811 812 printk("%s", lvl); 813 814 /* dump buffer after the mark */ 815 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) { 816 for (word = 0; word < 8; word++) 817 data[word] = htonl(REG_RD(bp, offset + 4*word)); 818 data[8] = 0x0; 819 pr_cont("%s", (char *)data); 820 } 821 822 /* dump buffer before the mark */ 823 for (offset = addr + 4; offset <= mark; offset += 0x8*4) { 824 for (word = 0; word < 8; word++) 825 data[word] = htonl(REG_RD(bp, offset + 4*word)); 826 data[8] = 0x0; 827 pr_cont("%s", (char *)data); 828 } 829 printk("%s" "end of fw dump\n", lvl); 830 } 831 832 static void bnx2x_fw_dump(struct bnx2x *bp) 833 { 834 bnx2x_fw_dump_lvl(bp, KERN_ERR); 835 } 836 837 static void bnx2x_hc_int_disable(struct bnx2x *bp) 838 { 839 int port = BP_PORT(bp); 840 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 841 u32 val = REG_RD(bp, addr); 842 843 /* in E1 we must use only PCI configuration space to disable 844 * MSI/MSIX capability 845 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block 846 */ 847 if (CHIP_IS_E1(bp)) { 848 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on 849 * Use mask register to prevent from HC sending interrupts 850 * after we exit the function 851 */ 852 REG_WR(bp, HC_REG_INT_MASK + port*4, 0); 853 854 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 855 HC_CONFIG_0_REG_INT_LINE_EN_0 | 856 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 857 } else 858 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 859 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 860 HC_CONFIG_0_REG_INT_LINE_EN_0 | 861 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 862 863 DP(NETIF_MSG_IFDOWN, 864 "write %x to HC %d (addr 0x%x)\n", 865 val, port, addr); 866 867 REG_WR(bp, addr, val); 868 if (REG_RD(bp, addr) != val) 869 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 870 } 871 872 static void bnx2x_igu_int_disable(struct bnx2x *bp) 873 { 874 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 875 876 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 877 IGU_PF_CONF_INT_LINE_EN | 878 IGU_PF_CONF_ATTN_BIT_EN); 879 880 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); 881 882 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 883 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) 884 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 885 } 886 887 static void bnx2x_int_disable(struct bnx2x *bp) 888 { 889 if (bp->common.int_block == INT_BLOCK_HC) 890 bnx2x_hc_int_disable(bp); 891 else 892 bnx2x_igu_int_disable(bp); 893 } 894 895 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) 896 { 897 int i; 898 u16 j; 899 struct hc_sp_status_block_data sp_sb_data; 900 int func = BP_FUNC(bp); 901 #ifdef BNX2X_STOP_ON_ERROR 902 u16 start = 0, end = 0; 903 u8 cos; 904 #endif 905 if (IS_PF(bp) && disable_int) 906 bnx2x_int_disable(bp); 907 908 bp->stats_state = STATS_STATE_DISABLED; 909 bp->eth_stats.unrecoverable_error++; 910 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); 911 912 BNX2X_ERR("begin crash dump -----------------\n"); 913 914 /* Indices */ 915 /* Common */ 916 if (IS_PF(bp)) { 917 struct host_sp_status_block *def_sb = bp->def_status_blk; 918 int data_size, cstorm_offset; 919 920 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", 921 bp->def_idx, bp->def_att_idx, bp->attn_state, 922 bp->spq_prod_idx, bp->stats_counter); 923 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", 924 def_sb->atten_status_block.attn_bits, 925 def_sb->atten_status_block.attn_bits_ack, 926 def_sb->atten_status_block.status_block_id, 927 def_sb->atten_status_block.attn_bits_index); 928 BNX2X_ERR(" def ("); 929 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) 930 pr_cont("0x%x%s", 931 def_sb->sp_sb.index_values[i], 932 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); 933 934 data_size = sizeof(struct hc_sp_status_block_data) / 935 sizeof(u32); 936 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func); 937 for (i = 0; i < data_size; i++) 938 *((u32 *)&sp_sb_data + i) = 939 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset + 940 i * sizeof(u32)); 941 942 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", 943 sp_sb_data.igu_sb_id, 944 sp_sb_data.igu_seg_id, 945 sp_sb_data.p_func.pf_id, 946 sp_sb_data.p_func.vnic_id, 947 sp_sb_data.p_func.vf_id, 948 sp_sb_data.p_func.vf_valid, 949 sp_sb_data.state); 950 } 951 952 for_each_eth_queue(bp, i) { 953 struct bnx2x_fastpath *fp = &bp->fp[i]; 954 int loop; 955 struct hc_status_block_data_e2 sb_data_e2; 956 struct hc_status_block_data_e1x sb_data_e1x; 957 struct hc_status_block_sm *hc_sm_p = 958 CHIP_IS_E1x(bp) ? 959 sb_data_e1x.common.state_machine : 960 sb_data_e2.common.state_machine; 961 struct hc_index_data *hc_index_p = 962 CHIP_IS_E1x(bp) ? 963 sb_data_e1x.index_data : 964 sb_data_e2.index_data; 965 u8 data_size, cos; 966 u32 *sb_data_p; 967 struct bnx2x_fp_txdata txdata; 968 969 if (!bp->fp) 970 break; 971 972 if (!fp->rx_cons_sb) 973 continue; 974 975 /* Rx */ 976 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", 977 i, fp->rx_bd_prod, fp->rx_bd_cons, 978 fp->rx_comp_prod, 979 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); 980 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", 981 fp->rx_sge_prod, fp->last_max_sge, 982 le16_to_cpu(fp->fp_hc_idx)); 983 984 /* Tx */ 985 for_each_cos_in_tx_queue(fp, cos) 986 { 987 if (!fp->txdata_ptr[cos]) 988 break; 989 990 txdata = *fp->txdata_ptr[cos]; 991 992 if (!txdata.tx_cons_sb) 993 continue; 994 995 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", 996 i, txdata.tx_pkt_prod, 997 txdata.tx_pkt_cons, txdata.tx_bd_prod, 998 txdata.tx_bd_cons, 999 le16_to_cpu(*txdata.tx_cons_sb)); 1000 } 1001 1002 loop = CHIP_IS_E1x(bp) ? 1003 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; 1004 1005 /* host sb data */ 1006 1007 if (IS_FCOE_FP(fp)) 1008 continue; 1009 1010 BNX2X_ERR(" run indexes ("); 1011 for (j = 0; j < HC_SB_MAX_SM; j++) 1012 pr_cont("0x%x%s", 1013 fp->sb_running_index[j], 1014 (j == HC_SB_MAX_SM - 1) ? ")" : " "); 1015 1016 BNX2X_ERR(" indexes ("); 1017 for (j = 0; j < loop; j++) 1018 pr_cont("0x%x%s", 1019 fp->sb_index_values[j], 1020 (j == loop - 1) ? ")" : " "); 1021 1022 /* VF cannot access FW refelection for status block */ 1023 if (IS_VF(bp)) 1024 continue; 1025 1026 /* fw sb data */ 1027 data_size = CHIP_IS_E1x(bp) ? 1028 sizeof(struct hc_status_block_data_e1x) : 1029 sizeof(struct hc_status_block_data_e2); 1030 data_size /= sizeof(u32); 1031 sb_data_p = CHIP_IS_E1x(bp) ? 1032 (u32 *)&sb_data_e1x : 1033 (u32 *)&sb_data_e2; 1034 /* copy sb data in here */ 1035 for (j = 0; j < data_size; j++) 1036 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + 1037 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + 1038 j * sizeof(u32)); 1039 1040 if (!CHIP_IS_E1x(bp)) { 1041 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1042 sb_data_e2.common.p_func.pf_id, 1043 sb_data_e2.common.p_func.vf_id, 1044 sb_data_e2.common.p_func.vf_valid, 1045 sb_data_e2.common.p_func.vnic_id, 1046 sb_data_e2.common.same_igu_sb_1b, 1047 sb_data_e2.common.state); 1048 } else { 1049 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1050 sb_data_e1x.common.p_func.pf_id, 1051 sb_data_e1x.common.p_func.vf_id, 1052 sb_data_e1x.common.p_func.vf_valid, 1053 sb_data_e1x.common.p_func.vnic_id, 1054 sb_data_e1x.common.same_igu_sb_1b, 1055 sb_data_e1x.common.state); 1056 } 1057 1058 /* SB_SMs data */ 1059 for (j = 0; j < HC_SB_MAX_SM; j++) { 1060 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", 1061 j, hc_sm_p[j].__flags, 1062 hc_sm_p[j].igu_sb_id, 1063 hc_sm_p[j].igu_seg_id, 1064 hc_sm_p[j].time_to_expire, 1065 hc_sm_p[j].timer_value); 1066 } 1067 1068 /* Indices data */ 1069 for (j = 0; j < loop; j++) { 1070 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, 1071 hc_index_p[j].flags, 1072 hc_index_p[j].timeout); 1073 } 1074 } 1075 1076 #ifdef BNX2X_STOP_ON_ERROR 1077 if (IS_PF(bp)) { 1078 /* event queue */ 1079 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); 1080 for (i = 0; i < NUM_EQ_DESC; i++) { 1081 u32 *data = (u32 *)&bp->eq_ring[i].message.data; 1082 1083 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", 1084 i, bp->eq_ring[i].message.opcode, 1085 bp->eq_ring[i].message.error); 1086 BNX2X_ERR("data: %x %x %x\n", 1087 data[0], data[1], data[2]); 1088 } 1089 } 1090 1091 /* Rings */ 1092 /* Rx */ 1093 for_each_valid_rx_queue(bp, i) { 1094 struct bnx2x_fastpath *fp = &bp->fp[i]; 1095 1096 if (!bp->fp) 1097 break; 1098 1099 if (!fp->rx_cons_sb) 1100 continue; 1101 1102 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); 1103 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); 1104 for (j = start; j != end; j = RX_BD(j + 1)) { 1105 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; 1106 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; 1107 1108 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", 1109 i, j, rx_bd[1], rx_bd[0], sw_bd->data); 1110 } 1111 1112 start = RX_SGE(fp->rx_sge_prod); 1113 end = RX_SGE(fp->last_max_sge); 1114 for (j = start; j != end; j = RX_SGE(j + 1)) { 1115 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; 1116 struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; 1117 1118 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", 1119 i, j, rx_sge[1], rx_sge[0], sw_page->page); 1120 } 1121 1122 start = RCQ_BD(fp->rx_comp_cons - 10); 1123 end = RCQ_BD(fp->rx_comp_cons + 503); 1124 for (j = start; j != end; j = RCQ_BD(j + 1)) { 1125 u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; 1126 1127 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", 1128 i, j, cqe[0], cqe[1], cqe[2], cqe[3]); 1129 } 1130 } 1131 1132 /* Tx */ 1133 for_each_valid_tx_queue(bp, i) { 1134 struct bnx2x_fastpath *fp = &bp->fp[i]; 1135 1136 if (!bp->fp) 1137 break; 1138 1139 for_each_cos_in_tx_queue(fp, cos) { 1140 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1141 1142 if (!fp->txdata_ptr[cos]) 1143 break; 1144 1145 if (!txdata->tx_cons_sb) 1146 continue; 1147 1148 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); 1149 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); 1150 for (j = start; j != end; j = TX_BD(j + 1)) { 1151 struct sw_tx_bd *sw_bd = 1152 &txdata->tx_buf_ring[j]; 1153 1154 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", 1155 i, cos, j, sw_bd->skb, 1156 sw_bd->first_bd); 1157 } 1158 1159 start = TX_BD(txdata->tx_bd_cons - 10); 1160 end = TX_BD(txdata->tx_bd_cons + 254); 1161 for (j = start; j != end; j = TX_BD(j + 1)) { 1162 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; 1163 1164 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", 1165 i, cos, j, tx_bd[0], tx_bd[1], 1166 tx_bd[2], tx_bd[3]); 1167 } 1168 } 1169 } 1170 #endif 1171 if (IS_PF(bp)) { 1172 bnx2x_fw_dump(bp); 1173 bnx2x_mc_assert(bp); 1174 } 1175 BNX2X_ERR("end crash dump -----------------\n"); 1176 } 1177 1178 /* 1179 * FLR Support for E2 1180 * 1181 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW 1182 * initialization. 1183 */ 1184 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */ 1185 #define FLR_WAIT_INTERVAL 50 /* usec */ 1186 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ 1187 1188 struct pbf_pN_buf_regs { 1189 int pN; 1190 u32 init_crd; 1191 u32 crd; 1192 u32 crd_freed; 1193 }; 1194 1195 struct pbf_pN_cmd_regs { 1196 int pN; 1197 u32 lines_occup; 1198 u32 lines_freed; 1199 }; 1200 1201 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, 1202 struct pbf_pN_buf_regs *regs, 1203 u32 poll_count) 1204 { 1205 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; 1206 u32 cur_cnt = poll_count; 1207 1208 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); 1209 crd = crd_start = REG_RD(bp, regs->crd); 1210 init_crd = REG_RD(bp, regs->init_crd); 1211 1212 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 1213 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); 1214 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 1215 1216 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < 1217 (init_crd - crd_start))) { 1218 if (cur_cnt--) { 1219 udelay(FLR_WAIT_INTERVAL); 1220 crd = REG_RD(bp, regs->crd); 1221 crd_freed = REG_RD(bp, regs->crd_freed); 1222 } else { 1223 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", 1224 regs->pN); 1225 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", 1226 regs->pN, crd); 1227 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", 1228 regs->pN, crd_freed); 1229 break; 1230 } 1231 } 1232 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", 1233 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1234 } 1235 1236 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, 1237 struct pbf_pN_cmd_regs *regs, 1238 u32 poll_count) 1239 { 1240 u32 occup, to_free, freed, freed_start; 1241 u32 cur_cnt = poll_count; 1242 1243 occup = to_free = REG_RD(bp, regs->lines_occup); 1244 freed = freed_start = REG_RD(bp, regs->lines_freed); 1245 1246 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 1247 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 1248 1249 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { 1250 if (cur_cnt--) { 1251 udelay(FLR_WAIT_INTERVAL); 1252 occup = REG_RD(bp, regs->lines_occup); 1253 freed = REG_RD(bp, regs->lines_freed); 1254 } else { 1255 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", 1256 regs->pN); 1257 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", 1258 regs->pN, occup); 1259 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", 1260 regs->pN, freed); 1261 break; 1262 } 1263 } 1264 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", 1265 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1266 } 1267 1268 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, 1269 u32 expected, u32 poll_count) 1270 { 1271 u32 cur_cnt = poll_count; 1272 u32 val; 1273 1274 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) 1275 udelay(FLR_WAIT_INTERVAL); 1276 1277 return val; 1278 } 1279 1280 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 1281 char *msg, u32 poll_cnt) 1282 { 1283 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); 1284 if (val != 0) { 1285 BNX2X_ERR("%s usage count=%d\n", msg, val); 1286 return 1; 1287 } 1288 return 0; 1289 } 1290 1291 /* Common routines with VF FLR cleanup */ 1292 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) 1293 { 1294 /* adjust polling timeout */ 1295 if (CHIP_REV_IS_EMUL(bp)) 1296 return FLR_POLL_CNT * 2000; 1297 1298 if (CHIP_REV_IS_FPGA(bp)) 1299 return FLR_POLL_CNT * 120; 1300 1301 return FLR_POLL_CNT; 1302 } 1303 1304 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) 1305 { 1306 struct pbf_pN_cmd_regs cmd_regs[] = { 1307 {0, (CHIP_IS_E3B0(bp)) ? 1308 PBF_REG_TQ_OCCUPANCY_Q0 : 1309 PBF_REG_P0_TQ_OCCUPANCY, 1310 (CHIP_IS_E3B0(bp)) ? 1311 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 1312 PBF_REG_P0_TQ_LINES_FREED_CNT}, 1313 {1, (CHIP_IS_E3B0(bp)) ? 1314 PBF_REG_TQ_OCCUPANCY_Q1 : 1315 PBF_REG_P1_TQ_OCCUPANCY, 1316 (CHIP_IS_E3B0(bp)) ? 1317 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 1318 PBF_REG_P1_TQ_LINES_FREED_CNT}, 1319 {4, (CHIP_IS_E3B0(bp)) ? 1320 PBF_REG_TQ_OCCUPANCY_LB_Q : 1321 PBF_REG_P4_TQ_OCCUPANCY, 1322 (CHIP_IS_E3B0(bp)) ? 1323 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 1324 PBF_REG_P4_TQ_LINES_FREED_CNT} 1325 }; 1326 1327 struct pbf_pN_buf_regs buf_regs[] = { 1328 {0, (CHIP_IS_E3B0(bp)) ? 1329 PBF_REG_INIT_CRD_Q0 : 1330 PBF_REG_P0_INIT_CRD , 1331 (CHIP_IS_E3B0(bp)) ? 1332 PBF_REG_CREDIT_Q0 : 1333 PBF_REG_P0_CREDIT, 1334 (CHIP_IS_E3B0(bp)) ? 1335 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 1336 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 1337 {1, (CHIP_IS_E3B0(bp)) ? 1338 PBF_REG_INIT_CRD_Q1 : 1339 PBF_REG_P1_INIT_CRD, 1340 (CHIP_IS_E3B0(bp)) ? 1341 PBF_REG_CREDIT_Q1 : 1342 PBF_REG_P1_CREDIT, 1343 (CHIP_IS_E3B0(bp)) ? 1344 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 1345 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 1346 {4, (CHIP_IS_E3B0(bp)) ? 1347 PBF_REG_INIT_CRD_LB_Q : 1348 PBF_REG_P4_INIT_CRD, 1349 (CHIP_IS_E3B0(bp)) ? 1350 PBF_REG_CREDIT_LB_Q : 1351 PBF_REG_P4_CREDIT, 1352 (CHIP_IS_E3B0(bp)) ? 1353 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 1354 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 1355 }; 1356 1357 int i; 1358 1359 /* Verify the command queues are flushed P0, P1, P4 */ 1360 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) 1361 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); 1362 1363 /* Verify the transmission buffers are flushed P0, P1, P4 */ 1364 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) 1365 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); 1366 } 1367 1368 #define OP_GEN_PARAM(param) \ 1369 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 1370 1371 #define OP_GEN_TYPE(type) \ 1372 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 1373 1374 #define OP_GEN_AGG_VECT(index) \ 1375 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 1376 1377 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) 1378 { 1379 u32 op_gen_command = 0; 1380 u32 comp_addr = BAR_CSTRORM_INTMEM + 1381 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); 1382 int ret = 0; 1383 1384 if (REG_RD(bp, comp_addr)) { 1385 BNX2X_ERR("Cleanup complete was not 0 before sending\n"); 1386 return 1; 1387 } 1388 1389 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 1390 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 1391 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 1392 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 1393 1394 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); 1395 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); 1396 1397 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { 1398 BNX2X_ERR("FW final cleanup did not succeed\n"); 1399 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", 1400 (REG_RD(bp, comp_addr))); 1401 bnx2x_panic(); 1402 return 1; 1403 } 1404 /* Zero completion for next FLR */ 1405 REG_WR(bp, comp_addr, 0); 1406 1407 return ret; 1408 } 1409 1410 u8 bnx2x_is_pcie_pending(struct pci_dev *dev) 1411 { 1412 u16 status; 1413 1414 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 1415 return status & PCI_EXP_DEVSTA_TRPND; 1416 } 1417 1418 /* PF FLR specific routines 1419 */ 1420 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) 1421 { 1422 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 1423 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1424 CFC_REG_NUM_LCIDS_INSIDE_PF, 1425 "CFC PF usage counter timed out", 1426 poll_cnt)) 1427 return 1; 1428 1429 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 1430 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1431 DORQ_REG_PF_USAGE_CNT, 1432 "DQ PF usage counter timed out", 1433 poll_cnt)) 1434 return 1; 1435 1436 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 1437 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1438 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), 1439 "QM PF usage counter timed out", 1440 poll_cnt)) 1441 return 1; 1442 1443 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 1444 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1445 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), 1446 "Timers VNIC usage counter timed out", 1447 poll_cnt)) 1448 return 1; 1449 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1450 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), 1451 "Timers NUM_SCANS usage counter timed out", 1452 poll_cnt)) 1453 return 1; 1454 1455 /* Wait DMAE PF usage counter to zero */ 1456 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1457 dmae_reg_go_c[INIT_DMAE_C(bp)], 1458 "DMAE command register timed out", 1459 poll_cnt)) 1460 return 1; 1461 1462 return 0; 1463 } 1464 1465 static void bnx2x_hw_enable_status(struct bnx2x *bp) 1466 { 1467 u32 val; 1468 1469 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); 1470 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 1471 1472 val = REG_RD(bp, PBF_REG_DISABLE_PF); 1473 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); 1474 1475 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); 1476 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 1477 1478 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); 1479 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 1480 1481 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 1482 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 1483 1484 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 1485 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 1486 1487 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 1488 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 1489 1490 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1491 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", 1492 val); 1493 } 1494 1495 static int bnx2x_pf_flr_clnup(struct bnx2x *bp) 1496 { 1497 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 1498 1499 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); 1500 1501 /* Re-enable PF target read access */ 1502 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 1503 1504 /* Poll HW usage counters */ 1505 DP(BNX2X_MSG_SP, "Polling usage counters\n"); 1506 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) 1507 return -EBUSY; 1508 1509 /* Zero the igu 'trailing edge' and 'leading edge' */ 1510 1511 /* Send the FW cleanup command */ 1512 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) 1513 return -EBUSY; 1514 1515 /* ATC cleanup */ 1516 1517 /* Verify TX hw is flushed */ 1518 bnx2x_tx_hw_flushed(bp, poll_cnt); 1519 1520 /* Wait 100ms (not adjusted according to platform) */ 1521 msleep(100); 1522 1523 /* Verify no pending pci transactions */ 1524 if (bnx2x_is_pcie_pending(bp->pdev)) 1525 BNX2X_ERR("PCIE Transactions still pending\n"); 1526 1527 /* Debug */ 1528 bnx2x_hw_enable_status(bp); 1529 1530 /* 1531 * Master enable - Due to WB DMAE writes performed before this 1532 * register is re-initialized as part of the regular function init 1533 */ 1534 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 1535 1536 return 0; 1537 } 1538 1539 static void bnx2x_hc_int_enable(struct bnx2x *bp) 1540 { 1541 int port = BP_PORT(bp); 1542 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 1543 u32 val = REG_RD(bp, addr); 1544 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1545 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1546 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1547 1548 if (msix) { 1549 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1550 HC_CONFIG_0_REG_INT_LINE_EN_0); 1551 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1552 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1553 if (single_msix) 1554 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 1555 } else if (msi) { 1556 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 1557 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1558 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1559 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1560 } else { 1561 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1562 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1563 HC_CONFIG_0_REG_INT_LINE_EN_0 | 1564 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1565 1566 if (!CHIP_IS_E1(bp)) { 1567 DP(NETIF_MSG_IFUP, 1568 "write %x to HC %d (addr 0x%x)\n", val, port, addr); 1569 1570 REG_WR(bp, addr, val); 1571 1572 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 1573 } 1574 } 1575 1576 if (CHIP_IS_E1(bp)) 1577 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); 1578 1579 DP(NETIF_MSG_IFUP, 1580 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, 1581 (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1582 1583 REG_WR(bp, addr, val); 1584 /* 1585 * Ensure that HC_CONFIG is written before leading/trailing edge config 1586 */ 1587 barrier(); 1588 1589 if (!CHIP_IS_E1(bp)) { 1590 /* init leading/trailing edge */ 1591 if (IS_MF(bp)) { 1592 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1593 if (bp->port.pmf) 1594 /* enable nig and gpio3 attention */ 1595 val |= 0x1100; 1596 } else 1597 val = 0xffff; 1598 1599 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 1600 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 1601 } 1602 } 1603 1604 static void bnx2x_igu_int_enable(struct bnx2x *bp) 1605 { 1606 u32 val; 1607 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1608 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1609 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1610 1611 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 1612 1613 if (msix) { 1614 val &= ~(IGU_PF_CONF_INT_LINE_EN | 1615 IGU_PF_CONF_SINGLE_ISR_EN); 1616 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1617 IGU_PF_CONF_ATTN_BIT_EN); 1618 1619 if (single_msix) 1620 val |= IGU_PF_CONF_SINGLE_ISR_EN; 1621 } else if (msi) { 1622 val &= ~IGU_PF_CONF_INT_LINE_EN; 1623 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1624 IGU_PF_CONF_ATTN_BIT_EN | 1625 IGU_PF_CONF_SINGLE_ISR_EN); 1626 } else { 1627 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 1628 val |= (IGU_PF_CONF_INT_LINE_EN | 1629 IGU_PF_CONF_ATTN_BIT_EN | 1630 IGU_PF_CONF_SINGLE_ISR_EN); 1631 } 1632 1633 /* Clean previous status - need to configure igu prior to ack*/ 1634 if ((!msix) || single_msix) { 1635 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1636 bnx2x_ack_int(bp); 1637 } 1638 1639 val |= IGU_PF_CONF_FUNC_EN; 1640 1641 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", 1642 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1643 1644 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1645 1646 if (val & IGU_PF_CONF_INT_LINE_EN) 1647 pci_intx(bp->pdev, true); 1648 1649 barrier(); 1650 1651 /* init leading/trailing edge */ 1652 if (IS_MF(bp)) { 1653 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1654 if (bp->port.pmf) 1655 /* enable nig and gpio3 attention */ 1656 val |= 0x1100; 1657 } else 1658 val = 0xffff; 1659 1660 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 1661 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 1662 } 1663 1664 void bnx2x_int_enable(struct bnx2x *bp) 1665 { 1666 if (bp->common.int_block == INT_BLOCK_HC) 1667 bnx2x_hc_int_enable(bp); 1668 else 1669 bnx2x_igu_int_enable(bp); 1670 } 1671 1672 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) 1673 { 1674 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 1675 int i, offset; 1676 1677 if (disable_hw) 1678 /* prevent the HW from sending interrupts */ 1679 bnx2x_int_disable(bp); 1680 1681 /* make sure all ISRs are done */ 1682 if (msix) { 1683 synchronize_irq(bp->msix_table[0].vector); 1684 offset = 1; 1685 if (CNIC_SUPPORT(bp)) 1686 offset++; 1687 for_each_eth_queue(bp, i) 1688 synchronize_irq(bp->msix_table[offset++].vector); 1689 } else 1690 synchronize_irq(bp->pdev->irq); 1691 1692 /* make sure sp_task is not running */ 1693 cancel_delayed_work(&bp->sp_task); 1694 cancel_delayed_work(&bp->period_task); 1695 flush_workqueue(bnx2x_wq); 1696 } 1697 1698 /* fast path */ 1699 1700 /* 1701 * General service functions 1702 */ 1703 1704 /* Return true if succeeded to acquire the lock */ 1705 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) 1706 { 1707 u32 lock_status; 1708 u32 resource_bit = (1 << resource); 1709 int func = BP_FUNC(bp); 1710 u32 hw_lock_control_reg; 1711 1712 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1713 "Trying to take a lock on resource %d\n", resource); 1714 1715 /* Validating that the resource is within range */ 1716 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1717 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1718 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1719 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1720 return false; 1721 } 1722 1723 if (func <= 5) 1724 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1725 else 1726 hw_lock_control_reg = 1727 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1728 1729 /* Try to acquire the lock */ 1730 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1731 lock_status = REG_RD(bp, hw_lock_control_reg); 1732 if (lock_status & resource_bit) 1733 return true; 1734 1735 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1736 "Failed to get a lock on resource %d\n", resource); 1737 return false; 1738 } 1739 1740 /** 1741 * bnx2x_get_leader_lock_resource - get the recovery leader resource id 1742 * 1743 * @bp: driver handle 1744 * 1745 * Returns the recovery leader resource id according to the engine this function 1746 * belongs to. Currently only only 2 engines is supported. 1747 */ 1748 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) 1749 { 1750 if (BP_PATH(bp)) 1751 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; 1752 else 1753 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; 1754 } 1755 1756 /** 1757 * bnx2x_trylock_leader_lock- try to acquire a leader lock. 1758 * 1759 * @bp: driver handle 1760 * 1761 * Tries to acquire a leader lock for current engine. 1762 */ 1763 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) 1764 { 1765 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1766 } 1767 1768 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); 1769 1770 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ 1771 static int bnx2x_schedule_sp_task(struct bnx2x *bp) 1772 { 1773 /* Set the interrupt occurred bit for the sp-task to recognize it 1774 * must ack the interrupt and transition according to the IGU 1775 * state machine. 1776 */ 1777 atomic_set(&bp->interrupt_occurred, 1); 1778 1779 /* The sp_task must execute only after this bit 1780 * is set, otherwise we will get out of sync and miss all 1781 * further interrupts. Hence, the barrier. 1782 */ 1783 smp_wmb(); 1784 1785 /* schedule sp_task to workqueue */ 1786 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); 1787 } 1788 1789 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) 1790 { 1791 struct bnx2x *bp = fp->bp; 1792 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1793 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1794 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; 1795 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 1796 1797 DP(BNX2X_MSG_SP, 1798 "fp %d cid %d got ramrod #%d state is %x type is %d\n", 1799 fp->index, cid, command, bp->state, 1800 rr_cqe->ramrod_cqe.ramrod_type); 1801 1802 /* If cid is within VF range, replace the slowpath object with the 1803 * one corresponding to this VF 1804 */ 1805 if (cid >= BNX2X_FIRST_VF_CID && 1806 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) 1807 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); 1808 1809 switch (command) { 1810 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 1811 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); 1812 drv_cmd = BNX2X_Q_CMD_UPDATE; 1813 break; 1814 1815 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 1816 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); 1817 drv_cmd = BNX2X_Q_CMD_SETUP; 1818 break; 1819 1820 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 1821 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 1822 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 1823 break; 1824 1825 case (RAMROD_CMD_ID_ETH_HALT): 1826 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); 1827 drv_cmd = BNX2X_Q_CMD_HALT; 1828 break; 1829 1830 case (RAMROD_CMD_ID_ETH_TERMINATE): 1831 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); 1832 drv_cmd = BNX2X_Q_CMD_TERMINATE; 1833 break; 1834 1835 case (RAMROD_CMD_ID_ETH_EMPTY): 1836 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); 1837 drv_cmd = BNX2X_Q_CMD_EMPTY; 1838 break; 1839 1840 case (RAMROD_CMD_ID_ETH_TPA_UPDATE): 1841 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid); 1842 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA; 1843 break; 1844 1845 default: 1846 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", 1847 command, fp->index); 1848 return; 1849 } 1850 1851 if ((drv_cmd != BNX2X_Q_CMD_MAX) && 1852 q_obj->complete_cmd(bp, q_obj, drv_cmd)) 1853 /* q_obj->complete_cmd() failure means that this was 1854 * an unexpected completion. 1855 * 1856 * In this case we don't want to increase the bp->spq_left 1857 * because apparently we haven't sent this command the first 1858 * place. 1859 */ 1860 #ifdef BNX2X_STOP_ON_ERROR 1861 bnx2x_panic(); 1862 #else 1863 return; 1864 #endif 1865 1866 smp_mb__before_atomic(); 1867 atomic_inc(&bp->cq_spq_left); 1868 /* push the change in bp->spq_left and towards the memory */ 1869 smp_mb__after_atomic(); 1870 1871 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); 1872 1873 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 1874 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { 1875 /* if Q update ramrod is completed for last Q in AFEX vif set 1876 * flow, then ACK MCP at the end 1877 * 1878 * mark pending ACK to MCP bit. 1879 * prevent case that both bits are cleared. 1880 * At the end of load/unload driver checks that 1881 * sp_state is cleared, and this order prevents 1882 * races 1883 */ 1884 smp_mb__before_atomic(); 1885 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); 1886 wmb(); 1887 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 1888 smp_mb__after_atomic(); 1889 1890 /* schedule the sp task as mcp ack is required */ 1891 bnx2x_schedule_sp_task(bp); 1892 } 1893 1894 return; 1895 } 1896 1897 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) 1898 { 1899 struct bnx2x *bp = netdev_priv(dev_instance); 1900 u16 status = bnx2x_ack_int(bp); 1901 u16 mask; 1902 int i; 1903 u8 cos; 1904 1905 /* Return here if interrupt is shared and it's not for us */ 1906 if (unlikely(status == 0)) { 1907 DP(NETIF_MSG_INTR, "not our interrupt!\n"); 1908 return IRQ_NONE; 1909 } 1910 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); 1911 1912 #ifdef BNX2X_STOP_ON_ERROR 1913 if (unlikely(bp->panic)) 1914 return IRQ_HANDLED; 1915 #endif 1916 1917 for_each_eth_queue(bp, i) { 1918 struct bnx2x_fastpath *fp = &bp->fp[i]; 1919 1920 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); 1921 if (status & mask) { 1922 /* Handle Rx or Tx according to SB id */ 1923 for_each_cos_in_tx_queue(fp, cos) 1924 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1925 prefetch(&fp->sb_running_index[SM_RX_ID]); 1926 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1927 status &= ~mask; 1928 } 1929 } 1930 1931 if (CNIC_SUPPORT(bp)) { 1932 mask = 0x2; 1933 if (status & (mask | 0x1)) { 1934 struct cnic_ops *c_ops = NULL; 1935 1936 rcu_read_lock(); 1937 c_ops = rcu_dereference(bp->cnic_ops); 1938 if (c_ops && (bp->cnic_eth_dev.drv_state & 1939 CNIC_DRV_STATE_HANDLES_IRQ)) 1940 c_ops->cnic_handler(bp->cnic_data, NULL); 1941 rcu_read_unlock(); 1942 1943 status &= ~mask; 1944 } 1945 } 1946 1947 if (unlikely(status & 0x1)) { 1948 1949 /* schedule sp task to perform default status block work, ack 1950 * attentions and enable interrupts. 1951 */ 1952 bnx2x_schedule_sp_task(bp); 1953 1954 status &= ~0x1; 1955 if (!status) 1956 return IRQ_HANDLED; 1957 } 1958 1959 if (unlikely(status)) 1960 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", 1961 status); 1962 1963 return IRQ_HANDLED; 1964 } 1965 1966 /* Link */ 1967 1968 /* 1969 * General service functions 1970 */ 1971 1972 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) 1973 { 1974 u32 lock_status; 1975 u32 resource_bit = (1 << resource); 1976 int func = BP_FUNC(bp); 1977 u32 hw_lock_control_reg; 1978 int cnt; 1979 1980 /* Validating that the resource is within range */ 1981 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1982 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1983 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1984 return -EINVAL; 1985 } 1986 1987 if (func <= 5) { 1988 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1989 } else { 1990 hw_lock_control_reg = 1991 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1992 } 1993 1994 /* Validating that the resource is not already taken */ 1995 lock_status = REG_RD(bp, hw_lock_control_reg); 1996 if (lock_status & resource_bit) { 1997 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", 1998 lock_status, resource_bit); 1999 return -EEXIST; 2000 } 2001 2002 /* Try for 5 second every 5ms */ 2003 for (cnt = 0; cnt < 1000; cnt++) { 2004 /* Try to acquire the lock */ 2005 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 2006 lock_status = REG_RD(bp, hw_lock_control_reg); 2007 if (lock_status & resource_bit) 2008 return 0; 2009 2010 usleep_range(5000, 10000); 2011 } 2012 BNX2X_ERR("Timeout\n"); 2013 return -EAGAIN; 2014 } 2015 2016 int bnx2x_release_leader_lock(struct bnx2x *bp) 2017 { 2018 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 2019 } 2020 2021 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) 2022 { 2023 u32 lock_status; 2024 u32 resource_bit = (1 << resource); 2025 int func = BP_FUNC(bp); 2026 u32 hw_lock_control_reg; 2027 2028 /* Validating that the resource is within range */ 2029 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 2030 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 2031 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2032 return -EINVAL; 2033 } 2034 2035 if (func <= 5) { 2036 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2037 } else { 2038 hw_lock_control_reg = 2039 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2040 } 2041 2042 /* Validating that the resource is currently taken */ 2043 lock_status = REG_RD(bp, hw_lock_control_reg); 2044 if (!(lock_status & resource_bit)) { 2045 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", 2046 lock_status, resource_bit); 2047 return -EFAULT; 2048 } 2049 2050 REG_WR(bp, hw_lock_control_reg, resource_bit); 2051 return 0; 2052 } 2053 2054 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) 2055 { 2056 /* The GPIO should be swapped if swap register is set and active */ 2057 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2058 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2059 int gpio_shift = gpio_num + 2060 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2061 u32 gpio_mask = (1 << gpio_shift); 2062 u32 gpio_reg; 2063 int value; 2064 2065 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2066 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2067 return -EINVAL; 2068 } 2069 2070 /* read GPIO value */ 2071 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2072 2073 /* get the requested pin value */ 2074 if ((gpio_reg & gpio_mask) == gpio_mask) 2075 value = 1; 2076 else 2077 value = 0; 2078 2079 return value; 2080 } 2081 2082 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2083 { 2084 /* The GPIO should be swapped if swap register is set and active */ 2085 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2086 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2087 int gpio_shift = gpio_num + 2088 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2089 u32 gpio_mask = (1 << gpio_shift); 2090 u32 gpio_reg; 2091 2092 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2093 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2094 return -EINVAL; 2095 } 2096 2097 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2098 /* read GPIO and mask except the float bits */ 2099 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2100 2101 switch (mode) { 2102 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2103 DP(NETIF_MSG_LINK, 2104 "Set GPIO %d (shift %d) -> output low\n", 2105 gpio_num, gpio_shift); 2106 /* clear FLOAT and set CLR */ 2107 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2108 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2109 break; 2110 2111 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2112 DP(NETIF_MSG_LINK, 2113 "Set GPIO %d (shift %d) -> output high\n", 2114 gpio_num, gpio_shift); 2115 /* clear FLOAT and set SET */ 2116 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2117 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2118 break; 2119 2120 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2121 DP(NETIF_MSG_LINK, 2122 "Set GPIO %d (shift %d) -> input\n", 2123 gpio_num, gpio_shift); 2124 /* set FLOAT */ 2125 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2126 break; 2127 2128 default: 2129 break; 2130 } 2131 2132 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2133 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2134 2135 return 0; 2136 } 2137 2138 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) 2139 { 2140 u32 gpio_reg = 0; 2141 int rc = 0; 2142 2143 /* Any port swapping should be handled by caller. */ 2144 2145 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2146 /* read GPIO and mask except the float bits */ 2147 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2148 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2149 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2150 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2151 2152 switch (mode) { 2153 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2154 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); 2155 /* set CLR */ 2156 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2157 break; 2158 2159 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2160 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); 2161 /* set SET */ 2162 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2163 break; 2164 2165 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2166 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); 2167 /* set FLOAT */ 2168 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2169 break; 2170 2171 default: 2172 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); 2173 rc = -EINVAL; 2174 break; 2175 } 2176 2177 if (rc == 0) 2178 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2179 2180 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2181 2182 return rc; 2183 } 2184 2185 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2186 { 2187 /* The GPIO should be swapped if swap register is set and active */ 2188 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2189 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2190 int gpio_shift = gpio_num + 2191 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2192 u32 gpio_mask = (1 << gpio_shift); 2193 u32 gpio_reg; 2194 2195 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2196 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2197 return -EINVAL; 2198 } 2199 2200 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2201 /* read GPIO int */ 2202 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); 2203 2204 switch (mode) { 2205 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2206 DP(NETIF_MSG_LINK, 2207 "Clear GPIO INT %d (shift %d) -> output low\n", 2208 gpio_num, gpio_shift); 2209 /* clear SET and set CLR */ 2210 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2211 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2212 break; 2213 2214 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2215 DP(NETIF_MSG_LINK, 2216 "Set GPIO INT %d (shift %d) -> output high\n", 2217 gpio_num, gpio_shift); 2218 /* clear CLR and set SET */ 2219 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2220 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2221 break; 2222 2223 default: 2224 break; 2225 } 2226 2227 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); 2228 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2229 2230 return 0; 2231 } 2232 2233 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) 2234 { 2235 u32 spio_reg; 2236 2237 /* Only 2 SPIOs are configurable */ 2238 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 2239 BNX2X_ERR("Invalid SPIO 0x%x\n", spio); 2240 return -EINVAL; 2241 } 2242 2243 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2244 /* read SPIO and mask except the float bits */ 2245 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 2246 2247 switch (mode) { 2248 case MISC_SPIO_OUTPUT_LOW: 2249 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); 2250 /* clear FLOAT and set CLR */ 2251 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2252 spio_reg |= (spio << MISC_SPIO_CLR_POS); 2253 break; 2254 2255 case MISC_SPIO_OUTPUT_HIGH: 2256 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); 2257 /* clear FLOAT and set SET */ 2258 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2259 spio_reg |= (spio << MISC_SPIO_SET_POS); 2260 break; 2261 2262 case MISC_SPIO_INPUT_HI_Z: 2263 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); 2264 /* set FLOAT */ 2265 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 2266 break; 2267 2268 default: 2269 break; 2270 } 2271 2272 REG_WR(bp, MISC_REG_SPIO, spio_reg); 2273 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2274 2275 return 0; 2276 } 2277 2278 void bnx2x_calc_fc_adv(struct bnx2x *bp) 2279 { 2280 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); 2281 2282 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2283 ADVERTISED_Pause); 2284 switch (bp->link_vars.ieee_fc & 2285 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 2286 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 2287 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 2288 ADVERTISED_Pause); 2289 break; 2290 2291 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 2292 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 2293 break; 2294 2295 default: 2296 break; 2297 } 2298 } 2299 2300 static void bnx2x_set_requested_fc(struct bnx2x *bp) 2301 { 2302 /* Initialize link parameters structure variables 2303 * It is recommended to turn off RX FC for jumbo frames 2304 * for better performance 2305 */ 2306 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) 2307 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; 2308 else 2309 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; 2310 } 2311 2312 static void bnx2x_init_dropless_fc(struct bnx2x *bp) 2313 { 2314 u32 pause_enabled = 0; 2315 2316 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { 2317 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 2318 pause_enabled = 1; 2319 2320 REG_WR(bp, BAR_USTRORM_INTMEM + 2321 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), 2322 pause_enabled); 2323 } 2324 2325 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", 2326 pause_enabled ? "enabled" : "disabled"); 2327 } 2328 2329 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) 2330 { 2331 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); 2332 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; 2333 2334 if (!BP_NOMCP(bp)) { 2335 bnx2x_set_requested_fc(bp); 2336 bnx2x_acquire_phy_lock(bp); 2337 2338 if (load_mode == LOAD_DIAG) { 2339 struct link_params *lp = &bp->link_params; 2340 lp->loopback_mode = LOOPBACK_XGXS; 2341 /* Prefer doing PHY loopback at highest speed */ 2342 if (lp->req_line_speed[cfx_idx] < SPEED_20000) { 2343 if (lp->speed_cap_mask[cfx_idx] & 2344 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G) 2345 lp->req_line_speed[cfx_idx] = 2346 SPEED_20000; 2347 else if (lp->speed_cap_mask[cfx_idx] & 2348 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) 2349 lp->req_line_speed[cfx_idx] = 2350 SPEED_10000; 2351 else 2352 lp->req_line_speed[cfx_idx] = 2353 SPEED_1000; 2354 } 2355 } 2356 2357 if (load_mode == LOAD_LOOPBACK_EXT) { 2358 struct link_params *lp = &bp->link_params; 2359 lp->loopback_mode = LOOPBACK_EXT; 2360 } 2361 2362 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2363 2364 bnx2x_release_phy_lock(bp); 2365 2366 bnx2x_init_dropless_fc(bp); 2367 2368 bnx2x_calc_fc_adv(bp); 2369 2370 if (bp->link_vars.link_up) { 2371 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2372 bnx2x_link_report(bp); 2373 } 2374 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2375 bp->link_params.req_line_speed[cfx_idx] = req_line_speed; 2376 return rc; 2377 } 2378 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 2379 return -EINVAL; 2380 } 2381 2382 void bnx2x_link_set(struct bnx2x *bp) 2383 { 2384 if (!BP_NOMCP(bp)) { 2385 bnx2x_acquire_phy_lock(bp); 2386 bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2387 bnx2x_release_phy_lock(bp); 2388 2389 bnx2x_init_dropless_fc(bp); 2390 2391 bnx2x_calc_fc_adv(bp); 2392 } else 2393 BNX2X_ERR("Bootcode is missing - can not set link\n"); 2394 } 2395 2396 static void bnx2x__link_reset(struct bnx2x *bp) 2397 { 2398 if (!BP_NOMCP(bp)) { 2399 bnx2x_acquire_phy_lock(bp); 2400 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); 2401 bnx2x_release_phy_lock(bp); 2402 } else 2403 BNX2X_ERR("Bootcode is missing - can not reset link\n"); 2404 } 2405 2406 void bnx2x_force_link_reset(struct bnx2x *bp) 2407 { 2408 bnx2x_acquire_phy_lock(bp); 2409 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); 2410 bnx2x_release_phy_lock(bp); 2411 } 2412 2413 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) 2414 { 2415 u8 rc = 0; 2416 2417 if (!BP_NOMCP(bp)) { 2418 bnx2x_acquire_phy_lock(bp); 2419 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, 2420 is_serdes); 2421 bnx2x_release_phy_lock(bp); 2422 } else 2423 BNX2X_ERR("Bootcode is missing - can not test link\n"); 2424 2425 return rc; 2426 } 2427 2428 /* Calculates the sum of vn_min_rates. 2429 It's needed for further normalizing of the min_rates. 2430 Returns: 2431 sum of vn_min_rates. 2432 or 2433 0 - if all the min_rates are 0. 2434 In the later case fairness algorithm should be deactivated. 2435 If not all min_rates are zero then those that are zeroes will be set to 1. 2436 */ 2437 static void bnx2x_calc_vn_min(struct bnx2x *bp, 2438 struct cmng_init_input *input) 2439 { 2440 int all_zero = 1; 2441 int vn; 2442 2443 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2444 u32 vn_cfg = bp->mf_config[vn]; 2445 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 2446 FUNC_MF_CFG_MIN_BW_SHIFT) * 100; 2447 2448 /* Skip hidden vns */ 2449 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2450 vn_min_rate = 0; 2451 /* If min rate is zero - set it to 1 */ 2452 else if (!vn_min_rate) 2453 vn_min_rate = DEF_MIN_RATE; 2454 else 2455 all_zero = 0; 2456 2457 input->vnic_min_rate[vn] = vn_min_rate; 2458 } 2459 2460 /* if ETS or all min rates are zeros - disable fairness */ 2461 if (BNX2X_IS_ETS_ENABLED(bp)) { 2462 input->flags.cmng_enables &= 2463 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2464 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); 2465 } else if (all_zero) { 2466 input->flags.cmng_enables &= 2467 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2468 DP(NETIF_MSG_IFUP, 2469 "All MIN values are zeroes fairness will be disabled\n"); 2470 } else 2471 input->flags.cmng_enables |= 2472 CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2473 } 2474 2475 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, 2476 struct cmng_init_input *input) 2477 { 2478 u16 vn_max_rate; 2479 u32 vn_cfg = bp->mf_config[vn]; 2480 2481 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2482 vn_max_rate = 0; 2483 else { 2484 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); 2485 2486 if (IS_MF_PERCENT_BW(bp)) { 2487 /* maxCfg in percents of linkspeed */ 2488 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; 2489 } else /* SD modes */ 2490 /* maxCfg is absolute in 100Mb units */ 2491 vn_max_rate = maxCfg * 100; 2492 } 2493 2494 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 2495 2496 input->vnic_max_rate[vn] = vn_max_rate; 2497 } 2498 2499 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) 2500 { 2501 if (CHIP_REV_IS_SLOW(bp)) 2502 return CMNG_FNS_NONE; 2503 if (IS_MF(bp)) 2504 return CMNG_FNS_MINMAX; 2505 2506 return CMNG_FNS_NONE; 2507 } 2508 2509 void bnx2x_read_mf_cfg(struct bnx2x *bp) 2510 { 2511 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); 2512 2513 if (BP_NOMCP(bp)) 2514 return; /* what should be the default value in this case */ 2515 2516 /* For 2 port configuration the absolute function number formula 2517 * is: 2518 * abs_func = 2 * vn + BP_PORT + BP_PATH 2519 * 2520 * and there are 4 functions per port 2521 * 2522 * For 4 port configuration it is 2523 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH 2524 * 2525 * and there are 2 functions per port 2526 */ 2527 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2528 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); 2529 2530 if (func >= E1H_FUNC_MAX) 2531 break; 2532 2533 bp->mf_config[vn] = 2534 MF_CFG_RD(bp, func_mf_config[func].config); 2535 } 2536 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 2537 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); 2538 bp->flags |= MF_FUNC_DIS; 2539 } else { 2540 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); 2541 bp->flags &= ~MF_FUNC_DIS; 2542 } 2543 } 2544 2545 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) 2546 { 2547 struct cmng_init_input input; 2548 memset(&input, 0, sizeof(struct cmng_init_input)); 2549 2550 input.port_rate = bp->link_vars.line_speed; 2551 2552 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { 2553 int vn; 2554 2555 /* read mf conf from shmem */ 2556 if (read_cfg) 2557 bnx2x_read_mf_cfg(bp); 2558 2559 /* vn_weight_sum and enable fairness if not 0 */ 2560 bnx2x_calc_vn_min(bp, &input); 2561 2562 /* calculate and set min-max rate for each vn */ 2563 if (bp->port.pmf) 2564 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) 2565 bnx2x_calc_vn_max(bp, vn, &input); 2566 2567 /* always enable rate shaping and fairness */ 2568 input.flags.cmng_enables |= 2569 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 2570 2571 bnx2x_init_cmng(&input, &bp->cmng); 2572 return; 2573 } 2574 2575 /* rate shaping and fairness are disabled */ 2576 DP(NETIF_MSG_IFUP, 2577 "rate shaping and fairness are disabled\n"); 2578 } 2579 2580 static void storm_memset_cmng(struct bnx2x *bp, 2581 struct cmng_init *cmng, 2582 u8 port) 2583 { 2584 int vn; 2585 size_t size = sizeof(struct cmng_struct_per_port); 2586 2587 u32 addr = BAR_XSTRORM_INTMEM + 2588 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); 2589 2590 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); 2591 2592 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2593 int func = func_by_vn(bp, vn); 2594 2595 addr = BAR_XSTRORM_INTMEM + 2596 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); 2597 size = sizeof(struct rate_shaping_vars_per_vn); 2598 __storm_memset_struct(bp, addr, size, 2599 (u32 *)&cmng->vnic.vnic_max_rate[vn]); 2600 2601 addr = BAR_XSTRORM_INTMEM + 2602 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); 2603 size = sizeof(struct fairness_vars_per_vn); 2604 __storm_memset_struct(bp, addr, size, 2605 (u32 *)&cmng->vnic.vnic_min_rate[vn]); 2606 } 2607 } 2608 2609 /* init cmng mode in HW according to local configuration */ 2610 void bnx2x_set_local_cmng(struct bnx2x *bp) 2611 { 2612 int cmng_fns = bnx2x_get_cmng_fns_mode(bp); 2613 2614 if (cmng_fns != CMNG_FNS_NONE) { 2615 bnx2x_cmng_fns_init(bp, false, cmng_fns); 2616 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 2617 } else { 2618 /* rate shaping and fairness are disabled */ 2619 DP(NETIF_MSG_IFUP, 2620 "single function mode without fairness\n"); 2621 } 2622 } 2623 2624 /* This function is called upon link interrupt */ 2625 static void bnx2x_link_attn(struct bnx2x *bp) 2626 { 2627 /* Make sure that we are synced with the current statistics */ 2628 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2629 2630 bnx2x_link_update(&bp->link_params, &bp->link_vars); 2631 2632 bnx2x_init_dropless_fc(bp); 2633 2634 if (bp->link_vars.link_up) { 2635 2636 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { 2637 struct host_port_stats *pstats; 2638 2639 pstats = bnx2x_sp(bp, port_stats); 2640 /* reset old mac stats */ 2641 memset(&(pstats->mac_stx[0]), 0, 2642 sizeof(struct mac_stx)); 2643 } 2644 if (bp->state == BNX2X_STATE_OPEN) 2645 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2646 } 2647 2648 if (bp->link_vars.link_up && bp->link_vars.line_speed) 2649 bnx2x_set_local_cmng(bp); 2650 2651 __bnx2x_link_report(bp); 2652 2653 if (IS_MF(bp)) 2654 bnx2x_link_sync_notify(bp); 2655 } 2656 2657 void bnx2x__link_status_update(struct bnx2x *bp) 2658 { 2659 if (bp->state != BNX2X_STATE_OPEN) 2660 return; 2661 2662 /* read updated dcb configuration */ 2663 if (IS_PF(bp)) { 2664 bnx2x_dcbx_pmf_update(bp); 2665 bnx2x_link_status_update(&bp->link_params, &bp->link_vars); 2666 if (bp->link_vars.link_up) 2667 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2668 else 2669 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2670 /* indicate link status */ 2671 bnx2x_link_report(bp); 2672 2673 } else { /* VF */ 2674 bp->port.supported[0] |= (SUPPORTED_10baseT_Half | 2675 SUPPORTED_10baseT_Full | 2676 SUPPORTED_100baseT_Half | 2677 SUPPORTED_100baseT_Full | 2678 SUPPORTED_1000baseT_Full | 2679 SUPPORTED_2500baseX_Full | 2680 SUPPORTED_10000baseT_Full | 2681 SUPPORTED_TP | 2682 SUPPORTED_FIBRE | 2683 SUPPORTED_Autoneg | 2684 SUPPORTED_Pause | 2685 SUPPORTED_Asym_Pause); 2686 bp->port.advertising[0] = bp->port.supported[0]; 2687 2688 bp->link_params.bp = bp; 2689 bp->link_params.port = BP_PORT(bp); 2690 bp->link_params.req_duplex[0] = DUPLEX_FULL; 2691 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; 2692 bp->link_params.req_line_speed[0] = SPEED_10000; 2693 bp->link_params.speed_cap_mask[0] = 0x7f0000; 2694 bp->link_params.switch_cfg = SWITCH_CFG_10G; 2695 bp->link_vars.mac_type = MAC_TYPE_BMAC; 2696 bp->link_vars.line_speed = SPEED_10000; 2697 bp->link_vars.link_status = 2698 (LINK_STATUS_LINK_UP | 2699 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 2700 bp->link_vars.link_up = 1; 2701 bp->link_vars.duplex = DUPLEX_FULL; 2702 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; 2703 __bnx2x_link_report(bp); 2704 2705 bnx2x_sample_bulletin(bp); 2706 2707 /* if bulletin board did not have an update for link status 2708 * __bnx2x_link_report will report current status 2709 * but it will NOT duplicate report in case of already reported 2710 * during sampling bulletin board. 2711 */ 2712 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2713 } 2714 } 2715 2716 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, 2717 u16 vlan_val, u8 allowed_prio) 2718 { 2719 struct bnx2x_func_state_params func_params = {NULL}; 2720 struct bnx2x_func_afex_update_params *f_update_params = 2721 &func_params.params.afex_update; 2722 2723 func_params.f_obj = &bp->func_obj; 2724 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; 2725 2726 /* no need to wait for RAMROD completion, so don't 2727 * set RAMROD_COMP_WAIT flag 2728 */ 2729 2730 f_update_params->vif_id = vifid; 2731 f_update_params->afex_default_vlan = vlan_val; 2732 f_update_params->allowed_priorities = allowed_prio; 2733 2734 /* if ramrod can not be sent, response to MCP immediately */ 2735 if (bnx2x_func_state_change(bp, &func_params) < 0) 2736 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 2737 2738 return 0; 2739 } 2740 2741 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, 2742 u16 vif_index, u8 func_bit_map) 2743 { 2744 struct bnx2x_func_state_params func_params = {NULL}; 2745 struct bnx2x_func_afex_viflists_params *update_params = 2746 &func_params.params.afex_viflists; 2747 int rc; 2748 u32 drv_msg_code; 2749 2750 /* validate only LIST_SET and LIST_GET are received from switch */ 2751 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) 2752 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", 2753 cmd_type); 2754 2755 func_params.f_obj = &bp->func_obj; 2756 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; 2757 2758 /* set parameters according to cmd_type */ 2759 update_params->afex_vif_list_command = cmd_type; 2760 update_params->vif_list_index = vif_index; 2761 update_params->func_bit_map = 2762 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; 2763 update_params->func_to_clear = 0; 2764 drv_msg_code = 2765 (cmd_type == VIF_LIST_RULE_GET) ? 2766 DRV_MSG_CODE_AFEX_LISTGET_ACK : 2767 DRV_MSG_CODE_AFEX_LISTSET_ACK; 2768 2769 /* if ramrod can not be sent, respond to MCP immediately for 2770 * SET and GET requests (other are not triggered from MCP) 2771 */ 2772 rc = bnx2x_func_state_change(bp, &func_params); 2773 if (rc < 0) 2774 bnx2x_fw_command(bp, drv_msg_code, 0); 2775 2776 return 0; 2777 } 2778 2779 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) 2780 { 2781 struct afex_stats afex_stats; 2782 u32 func = BP_ABS_FUNC(bp); 2783 u32 mf_config; 2784 u16 vlan_val; 2785 u32 vlan_prio; 2786 u16 vif_id; 2787 u8 allowed_prio; 2788 u8 vlan_mode; 2789 u32 addr_to_write, vifid, addrs, stats_type, i; 2790 2791 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { 2792 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2793 DP(BNX2X_MSG_MCP, 2794 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); 2795 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); 2796 } 2797 2798 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { 2799 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2800 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); 2801 DP(BNX2X_MSG_MCP, 2802 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", 2803 vifid, addrs); 2804 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, 2805 addrs); 2806 } 2807 2808 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { 2809 addr_to_write = SHMEM2_RD(bp, 2810 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); 2811 stats_type = SHMEM2_RD(bp, 2812 afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2813 2814 DP(BNX2X_MSG_MCP, 2815 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", 2816 addr_to_write); 2817 2818 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); 2819 2820 /* write response to scratchpad, for MCP */ 2821 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) 2822 REG_WR(bp, addr_to_write + i*sizeof(u32), 2823 *(((u32 *)(&afex_stats))+i)); 2824 2825 /* send ack message to MCP */ 2826 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); 2827 } 2828 2829 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { 2830 mf_config = MF_CFG_RD(bp, func_mf_config[func].config); 2831 bp->mf_config[BP_VN(bp)] = mf_config; 2832 DP(BNX2X_MSG_MCP, 2833 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", 2834 mf_config); 2835 2836 /* if VIF_SET is "enabled" */ 2837 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { 2838 /* set rate limit directly to internal RAM */ 2839 struct cmng_init_input cmng_input; 2840 struct rate_shaping_vars_per_vn m_rs_vn; 2841 size_t size = sizeof(struct rate_shaping_vars_per_vn); 2842 u32 addr = BAR_XSTRORM_INTMEM + 2843 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); 2844 2845 bp->mf_config[BP_VN(bp)] = mf_config; 2846 2847 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); 2848 m_rs_vn.vn_counter.rate = 2849 cmng_input.vnic_max_rate[BP_VN(bp)]; 2850 m_rs_vn.vn_counter.quota = 2851 (m_rs_vn.vn_counter.rate * 2852 RS_PERIODIC_TIMEOUT_USEC) / 8; 2853 2854 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); 2855 2856 /* read relevant values from mf_cfg struct in shmem */ 2857 vif_id = 2858 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2859 FUNC_MF_CFG_E1HOV_TAG_MASK) >> 2860 FUNC_MF_CFG_E1HOV_TAG_SHIFT; 2861 vlan_val = 2862 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2863 FUNC_MF_CFG_AFEX_VLAN_MASK) >> 2864 FUNC_MF_CFG_AFEX_VLAN_SHIFT; 2865 vlan_prio = (mf_config & 2866 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 2867 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; 2868 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); 2869 vlan_mode = 2870 (MF_CFG_RD(bp, 2871 func_mf_config[func].afex_config) & 2872 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 2873 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; 2874 allowed_prio = 2875 (MF_CFG_RD(bp, 2876 func_mf_config[func].afex_config) & 2877 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 2878 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; 2879 2880 /* send ramrod to FW, return in case of failure */ 2881 if (bnx2x_afex_func_update(bp, vif_id, vlan_val, 2882 allowed_prio)) 2883 return; 2884 2885 bp->afex_def_vlan_tag = vlan_val; 2886 bp->afex_vlan_mode = vlan_mode; 2887 } else { 2888 /* notify link down because BP->flags is disabled */ 2889 bnx2x_link_report(bp); 2890 2891 /* send INVALID VIF ramrod to FW */ 2892 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); 2893 2894 /* Reset the default afex VLAN */ 2895 bp->afex_def_vlan_tag = -1; 2896 } 2897 } 2898 } 2899 2900 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp) 2901 { 2902 struct bnx2x_func_switch_update_params *switch_update_params; 2903 struct bnx2x_func_state_params func_params; 2904 2905 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params)); 2906 switch_update_params = &func_params.params.switch_update; 2907 func_params.f_obj = &bp->func_obj; 2908 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 2909 2910 /* Prepare parameters for function state transitions */ 2911 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2912 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 2913 2914 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) { 2915 int func = BP_ABS_FUNC(bp); 2916 u32 val; 2917 2918 /* Re-learn the S-tag from shmem */ 2919 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2920 FUNC_MF_CFG_E1HOV_TAG_MASK; 2921 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 2922 bp->mf_ov = val; 2923 } else { 2924 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n"); 2925 goto fail; 2926 } 2927 2928 /* Configure new S-tag in LLH */ 2929 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8, 2930 bp->mf_ov); 2931 2932 /* Send Ramrod to update FW of change */ 2933 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG, 2934 &switch_update_params->changes); 2935 switch_update_params->vlan = bp->mf_ov; 2936 2937 if (bnx2x_func_state_change(bp, &func_params) < 0) { 2938 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n", 2939 bp->mf_ov); 2940 goto fail; 2941 } else { 2942 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", 2943 bp->mf_ov); 2944 } 2945 } else { 2946 goto fail; 2947 } 2948 2949 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0); 2950 return; 2951 fail: 2952 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0); 2953 } 2954 2955 static void bnx2x_pmf_update(struct bnx2x *bp) 2956 { 2957 int port = BP_PORT(bp); 2958 u32 val; 2959 2960 bp->port.pmf = 1; 2961 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); 2962 2963 /* 2964 * We need the mb() to ensure the ordering between the writing to 2965 * bp->port.pmf here and reading it from the bnx2x_periodic_task(). 2966 */ 2967 smp_mb(); 2968 2969 /* queue a periodic task */ 2970 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2971 2972 bnx2x_dcbx_pmf_update(bp); 2973 2974 /* enable nig attention */ 2975 val = (0xff0f | (1 << (BP_VN(bp) + 4))); 2976 if (bp->common.int_block == INT_BLOCK_HC) { 2977 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 2978 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 2979 } else if (!CHIP_IS_E1x(bp)) { 2980 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 2981 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 2982 } 2983 2984 bnx2x_stats_handle(bp, STATS_EVENT_PMF); 2985 } 2986 2987 /* end of Link */ 2988 2989 /* slow path */ 2990 2991 /* 2992 * General service functions 2993 */ 2994 2995 /* send the MCP a request, block until there is a reply */ 2996 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) 2997 { 2998 int mb_idx = BP_FW_MB_IDX(bp); 2999 u32 seq; 3000 u32 rc = 0; 3001 u32 cnt = 1; 3002 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; 3003 3004 mutex_lock(&bp->fw_mb_mutex); 3005 seq = ++bp->fw_seq; 3006 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); 3007 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); 3008 3009 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", 3010 (command | seq), param); 3011 3012 do { 3013 /* let the FW do it's magic ... */ 3014 msleep(delay); 3015 3016 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); 3017 3018 /* Give the FW up to 5 second (500*10ms) */ 3019 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 3020 3021 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", 3022 cnt*delay, rc, seq); 3023 3024 /* is this a reply to our command? */ 3025 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) 3026 rc &= FW_MSG_CODE_MASK; 3027 else { 3028 /* FW BUG! */ 3029 BNX2X_ERR("FW failed to respond!\n"); 3030 bnx2x_fw_dump(bp); 3031 rc = 0; 3032 } 3033 mutex_unlock(&bp->fw_mb_mutex); 3034 3035 return rc; 3036 } 3037 3038 static void storm_memset_func_cfg(struct bnx2x *bp, 3039 struct tstorm_eth_function_common_config *tcfg, 3040 u16 abs_fid) 3041 { 3042 size_t size = sizeof(struct tstorm_eth_function_common_config); 3043 3044 u32 addr = BAR_TSTRORM_INTMEM + 3045 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); 3046 3047 __storm_memset_struct(bp, addr, size, (u32 *)tcfg); 3048 } 3049 3050 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) 3051 { 3052 if (CHIP_IS_E1x(bp)) { 3053 struct tstorm_eth_function_common_config tcfg = {0}; 3054 3055 storm_memset_func_cfg(bp, &tcfg, p->func_id); 3056 } 3057 3058 /* Enable the function in the FW */ 3059 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); 3060 storm_memset_func_en(bp, p->func_id, 1); 3061 3062 /* spq */ 3063 if (p->spq_active) { 3064 storm_memset_spq_addr(bp, p->spq_map, p->func_id); 3065 REG_WR(bp, XSEM_REG_FAST_MEMORY + 3066 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); 3067 } 3068 } 3069 3070 /** 3071 * bnx2x_get_common_flags - Return common flags 3072 * 3073 * @bp device handle 3074 * @fp queue handle 3075 * @zero_stats TRUE if statistics zeroing is needed 3076 * 3077 * Return the flags that are common for the Tx-only and not normal connections. 3078 */ 3079 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, 3080 struct bnx2x_fastpath *fp, 3081 bool zero_stats) 3082 { 3083 unsigned long flags = 0; 3084 3085 /* PF driver will always initialize the Queue to an ACTIVE state */ 3086 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); 3087 3088 /* tx only connections collect statistics (on the same index as the 3089 * parent connection). The statistics are zeroed when the parent 3090 * connection is initialized. 3091 */ 3092 3093 __set_bit(BNX2X_Q_FLG_STATS, &flags); 3094 if (zero_stats) 3095 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); 3096 3097 if (bp->flags & TX_SWITCHING) 3098 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags); 3099 3100 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); 3101 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); 3102 3103 #ifdef BNX2X_STOP_ON_ERROR 3104 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); 3105 #endif 3106 3107 return flags; 3108 } 3109 3110 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, 3111 struct bnx2x_fastpath *fp, 3112 bool leading) 3113 { 3114 unsigned long flags = 0; 3115 3116 /* calculate other queue flags */ 3117 if (IS_MF_SD(bp)) 3118 __set_bit(BNX2X_Q_FLG_OV, &flags); 3119 3120 if (IS_FCOE_FP(fp)) { 3121 __set_bit(BNX2X_Q_FLG_FCOE, &flags); 3122 /* For FCoE - force usage of default priority (for afex) */ 3123 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); 3124 } 3125 3126 if (fp->mode != TPA_MODE_DISABLED) { 3127 __set_bit(BNX2X_Q_FLG_TPA, &flags); 3128 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); 3129 if (fp->mode == TPA_MODE_GRO) 3130 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); 3131 } 3132 3133 if (leading) { 3134 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); 3135 __set_bit(BNX2X_Q_FLG_MCAST, &flags); 3136 } 3137 3138 /* Always set HW VLAN stripping */ 3139 __set_bit(BNX2X_Q_FLG_VLAN, &flags); 3140 3141 /* configure silent vlan removal */ 3142 if (IS_MF_AFEX(bp)) 3143 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); 3144 3145 return flags | bnx2x_get_common_flags(bp, fp, true); 3146 } 3147 3148 static void bnx2x_pf_q_prep_general(struct bnx2x *bp, 3149 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, 3150 u8 cos) 3151 { 3152 gen_init->stat_id = bnx2x_stats_id(fp); 3153 gen_init->spcl_id = fp->cl_id; 3154 3155 /* Always use mini-jumbo MTU for FCoE L2 ring */ 3156 if (IS_FCOE_FP(fp)) 3157 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 3158 else 3159 gen_init->mtu = bp->dev->mtu; 3160 3161 gen_init->cos = cos; 3162 3163 gen_init->fp_hsi = ETH_FP_HSI_VERSION; 3164 } 3165 3166 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, 3167 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, 3168 struct bnx2x_rxq_setup_params *rxq_init) 3169 { 3170 u8 max_sge = 0; 3171 u16 sge_sz = 0; 3172 u16 tpa_agg_size = 0; 3173 3174 if (fp->mode != TPA_MODE_DISABLED) { 3175 pause->sge_th_lo = SGE_TH_LO(bp); 3176 pause->sge_th_hi = SGE_TH_HI(bp); 3177 3178 /* validate SGE ring has enough to cross high threshold */ 3179 WARN_ON(bp->dropless_fc && 3180 pause->sge_th_hi + FW_PREFETCH_CNT > 3181 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); 3182 3183 tpa_agg_size = TPA_AGG_SIZE; 3184 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> 3185 SGE_PAGE_SHIFT; 3186 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 3187 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; 3188 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); 3189 } 3190 3191 /* pause - not for e1 */ 3192 if (!CHIP_IS_E1(bp)) { 3193 pause->bd_th_lo = BD_TH_LO(bp); 3194 pause->bd_th_hi = BD_TH_HI(bp); 3195 3196 pause->rcq_th_lo = RCQ_TH_LO(bp); 3197 pause->rcq_th_hi = RCQ_TH_HI(bp); 3198 /* 3199 * validate that rings have enough entries to cross 3200 * high thresholds 3201 */ 3202 WARN_ON(bp->dropless_fc && 3203 pause->bd_th_hi + FW_PREFETCH_CNT > 3204 bp->rx_ring_size); 3205 WARN_ON(bp->dropless_fc && 3206 pause->rcq_th_hi + FW_PREFETCH_CNT > 3207 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); 3208 3209 pause->pri_map = 1; 3210 } 3211 3212 /* rxq setup */ 3213 rxq_init->dscr_map = fp->rx_desc_mapping; 3214 rxq_init->sge_map = fp->rx_sge_mapping; 3215 rxq_init->rcq_map = fp->rx_comp_mapping; 3216 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; 3217 3218 /* This should be a maximum number of data bytes that may be 3219 * placed on the BD (not including paddings). 3220 */ 3221 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - 3222 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; 3223 3224 rxq_init->cl_qzone_id = fp->cl_qzone_id; 3225 rxq_init->tpa_agg_sz = tpa_agg_size; 3226 rxq_init->sge_buf_sz = sge_sz; 3227 rxq_init->max_sges_pkt = max_sge; 3228 rxq_init->rss_engine_id = BP_FUNC(bp); 3229 rxq_init->mcast_engine_id = BP_FUNC(bp); 3230 3231 /* Maximum number or simultaneous TPA aggregation for this Queue. 3232 * 3233 * For PF Clients it should be the maximum available number. 3234 * VF driver(s) may want to define it to a smaller value. 3235 */ 3236 rxq_init->max_tpa_queues = MAX_AGG_QS(bp); 3237 3238 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; 3239 rxq_init->fw_sb_id = fp->fw_sb_id; 3240 3241 if (IS_FCOE_FP(fp)) 3242 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; 3243 else 3244 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 3245 /* configure silent vlan removal 3246 * if multi function mode is afex, then mask default vlan 3247 */ 3248 if (IS_MF_AFEX(bp)) { 3249 rxq_init->silent_removal_value = bp->afex_def_vlan_tag; 3250 rxq_init->silent_removal_mask = VLAN_VID_MASK; 3251 } 3252 } 3253 3254 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, 3255 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, 3256 u8 cos) 3257 { 3258 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; 3259 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 3260 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 3261 txq_init->fw_sb_id = fp->fw_sb_id; 3262 3263 /* 3264 * set the tss leading client id for TX classification == 3265 * leading RSS client id 3266 */ 3267 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); 3268 3269 if (IS_FCOE_FP(fp)) { 3270 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; 3271 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; 3272 } 3273 } 3274 3275 static void bnx2x_pf_init(struct bnx2x *bp) 3276 { 3277 struct bnx2x_func_init_params func_init = {0}; 3278 struct event_ring_data eq_data = { {0} }; 3279 3280 if (!CHIP_IS_E1x(bp)) { 3281 /* reset IGU PF statistics: MSIX + ATTN */ 3282 /* PF */ 3283 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3284 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3285 (CHIP_MODE_IS_4_PORT(bp) ? 3286 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3287 /* ATTN */ 3288 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3289 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3290 BNX2X_IGU_STAS_MSG_PF_CNT*4 + 3291 (CHIP_MODE_IS_4_PORT(bp) ? 3292 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3293 } 3294 3295 func_init.spq_active = true; 3296 func_init.pf_id = BP_FUNC(bp); 3297 func_init.func_id = BP_FUNC(bp); 3298 func_init.spq_map = bp->spq_mapping; 3299 func_init.spq_prod = bp->spq_prod_idx; 3300 3301 bnx2x_func_init(bp, &func_init); 3302 3303 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); 3304 3305 /* 3306 * Congestion management values depend on the link rate 3307 * There is no active link so initial link rate is set to 10 Gbps. 3308 * When the link comes up The congestion management values are 3309 * re-calculated according to the actual link rate. 3310 */ 3311 bp->link_vars.line_speed = SPEED_10000; 3312 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); 3313 3314 /* Only the PMF sets the HW */ 3315 if (bp->port.pmf) 3316 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3317 3318 /* init Event Queue - PCI bus guarantees correct endianity*/ 3319 eq_data.base_addr.hi = U64_HI(bp->eq_mapping); 3320 eq_data.base_addr.lo = U64_LO(bp->eq_mapping); 3321 eq_data.producer = bp->eq_prod; 3322 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 3323 eq_data.sb_id = DEF_SB_ID; 3324 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); 3325 } 3326 3327 static void bnx2x_e1h_disable(struct bnx2x *bp) 3328 { 3329 int port = BP_PORT(bp); 3330 3331 bnx2x_tx_disable(bp); 3332 3333 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 3334 } 3335 3336 static void bnx2x_e1h_enable(struct bnx2x *bp) 3337 { 3338 int port = BP_PORT(bp); 3339 3340 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 3341 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 3342 3343 /* Tx queue should be only re-enabled */ 3344 netif_tx_wake_all_queues(bp->dev); 3345 3346 /* 3347 * Should not call netif_carrier_on since it will be called if the link 3348 * is up when checking for link state 3349 */ 3350 } 3351 3352 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 3353 3354 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) 3355 { 3356 struct eth_stats_info *ether_stat = 3357 &bp->slowpath->drv_info_to_mcp.ether_stat; 3358 struct bnx2x_vlan_mac_obj *mac_obj = 3359 &bp->sp_objs->mac_obj; 3360 int i; 3361 3362 strlcpy(ether_stat->version, DRV_MODULE_VERSION, 3363 ETH_STAT_INFO_VERSION_LEN); 3364 3365 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the 3366 * mac_local field in ether_stat struct. The base address is offset by 2 3367 * bytes to account for the field being 8 bytes but a mac address is 3368 * only 6 bytes. Likewise, the stride for the get_n_elements function is 3369 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes 3370 * allocated by the ether_stat struct, so the macs will land in their 3371 * proper positions. 3372 */ 3373 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) 3374 memset(ether_stat->mac_local + i, 0, 3375 sizeof(ether_stat->mac_local[0])); 3376 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, 3377 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 3378 ether_stat->mac_local + MAC_PAD, MAC_PAD, 3379 ETH_ALEN); 3380 ether_stat->mtu_size = bp->dev->mtu; 3381 if (bp->dev->features & NETIF_F_RXCSUM) 3382 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 3383 if (bp->dev->features & NETIF_F_TSO) 3384 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 3385 ether_stat->feature_flags |= bp->common.boot_mode; 3386 3387 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; 3388 3389 ether_stat->txq_size = bp->tx_ring_size; 3390 ether_stat->rxq_size = bp->rx_ring_size; 3391 3392 #ifdef CONFIG_BNX2X_SRIOV 3393 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0; 3394 #endif 3395 } 3396 3397 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) 3398 { 3399 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3400 struct fcoe_stats_info *fcoe_stat = 3401 &bp->slowpath->drv_info_to_mcp.fcoe_stat; 3402 3403 if (!CNIC_LOADED(bp)) 3404 return; 3405 3406 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN); 3407 3408 fcoe_stat->qos_priority = 3409 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; 3410 3411 /* insert FCoE stats from ramrod response */ 3412 if (!NO_FCOE(bp)) { 3413 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = 3414 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3415 tstorm_queue_statistics; 3416 3417 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = 3418 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3419 xstorm_queue_statistics; 3420 3421 struct fcoe_statistics_params *fw_fcoe_stat = 3422 &bp->fw_stats_data->fcoe; 3423 3424 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, 3425 fcoe_stat->rx_bytes_lo, 3426 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); 3427 3428 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3429 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, 3430 fcoe_stat->rx_bytes_lo, 3431 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); 3432 3433 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3434 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, 3435 fcoe_stat->rx_bytes_lo, 3436 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); 3437 3438 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3439 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, 3440 fcoe_stat->rx_bytes_lo, 3441 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); 3442 3443 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3444 fcoe_stat->rx_frames_lo, 3445 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); 3446 3447 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3448 fcoe_stat->rx_frames_lo, 3449 fcoe_q_tstorm_stats->rcv_ucast_pkts); 3450 3451 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3452 fcoe_stat->rx_frames_lo, 3453 fcoe_q_tstorm_stats->rcv_bcast_pkts); 3454 3455 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3456 fcoe_stat->rx_frames_lo, 3457 fcoe_q_tstorm_stats->rcv_mcast_pkts); 3458 3459 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, 3460 fcoe_stat->tx_bytes_lo, 3461 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); 3462 3463 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3464 fcoe_q_xstorm_stats->ucast_bytes_sent.hi, 3465 fcoe_stat->tx_bytes_lo, 3466 fcoe_q_xstorm_stats->ucast_bytes_sent.lo); 3467 3468 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3469 fcoe_q_xstorm_stats->bcast_bytes_sent.hi, 3470 fcoe_stat->tx_bytes_lo, 3471 fcoe_q_xstorm_stats->bcast_bytes_sent.lo); 3472 3473 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3474 fcoe_q_xstorm_stats->mcast_bytes_sent.hi, 3475 fcoe_stat->tx_bytes_lo, 3476 fcoe_q_xstorm_stats->mcast_bytes_sent.lo); 3477 3478 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3479 fcoe_stat->tx_frames_lo, 3480 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); 3481 3482 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3483 fcoe_stat->tx_frames_lo, 3484 fcoe_q_xstorm_stats->ucast_pkts_sent); 3485 3486 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3487 fcoe_stat->tx_frames_lo, 3488 fcoe_q_xstorm_stats->bcast_pkts_sent); 3489 3490 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3491 fcoe_stat->tx_frames_lo, 3492 fcoe_q_xstorm_stats->mcast_pkts_sent); 3493 } 3494 3495 /* ask L5 driver to add data to the struct */ 3496 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); 3497 } 3498 3499 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) 3500 { 3501 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3502 struct iscsi_stats_info *iscsi_stat = 3503 &bp->slowpath->drv_info_to_mcp.iscsi_stat; 3504 3505 if (!CNIC_LOADED(bp)) 3506 return; 3507 3508 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, 3509 ETH_ALEN); 3510 3511 iscsi_stat->qos_priority = 3512 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; 3513 3514 /* ask L5 driver to add data to the struct */ 3515 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); 3516 } 3517 3518 /* called due to MCP event (on pmf): 3519 * reread new bandwidth configuration 3520 * configure FW 3521 * notify others function about the change 3522 */ 3523 static void bnx2x_config_mf_bw(struct bnx2x *bp) 3524 { 3525 /* Workaround for MFW bug. 3526 * MFW is not supposed to generate BW attention in 3527 * single function mode. 3528 */ 3529 if (!IS_MF(bp)) { 3530 DP(BNX2X_MSG_MCP, 3531 "Ignoring MF BW config in single function mode\n"); 3532 return; 3533 } 3534 3535 if (bp->link_vars.link_up) { 3536 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); 3537 bnx2x_link_sync_notify(bp); 3538 } 3539 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3540 } 3541 3542 static void bnx2x_set_mf_bw(struct bnx2x *bp) 3543 { 3544 bnx2x_config_mf_bw(bp); 3545 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 3546 } 3547 3548 static void bnx2x_handle_eee_event(struct bnx2x *bp) 3549 { 3550 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); 3551 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 3552 } 3553 3554 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20) 3555 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25) 3556 3557 static void bnx2x_handle_drv_info_req(struct bnx2x *bp) 3558 { 3559 enum drv_info_opcode op_code; 3560 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); 3561 bool release = false; 3562 int wait; 3563 3564 /* if drv_info version supported by MFW doesn't match - send NACK */ 3565 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 3566 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3567 return; 3568 } 3569 3570 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 3571 DRV_INFO_CONTROL_OP_CODE_SHIFT; 3572 3573 /* Must prevent other flows from accessing drv_info_to_mcp */ 3574 mutex_lock(&bp->drv_info_mutex); 3575 3576 memset(&bp->slowpath->drv_info_to_mcp, 0, 3577 sizeof(union drv_info_to_mcp)); 3578 3579 switch (op_code) { 3580 case ETH_STATS_OPCODE: 3581 bnx2x_drv_info_ether_stat(bp); 3582 break; 3583 case FCOE_STATS_OPCODE: 3584 bnx2x_drv_info_fcoe_stat(bp); 3585 break; 3586 case ISCSI_STATS_OPCODE: 3587 bnx2x_drv_info_iscsi_stat(bp); 3588 break; 3589 default: 3590 /* if op code isn't supported - send NACK */ 3591 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3592 goto out; 3593 } 3594 3595 /* if we got drv_info attn from MFW then these fields are defined in 3596 * shmem2 for sure 3597 */ 3598 SHMEM2_WR(bp, drv_info_host_addr_lo, 3599 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3600 SHMEM2_WR(bp, drv_info_host_addr_hi, 3601 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3602 3603 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); 3604 3605 /* Since possible management wants both this and get_driver_version 3606 * need to wait until management notifies us it finished utilizing 3607 * the buffer. 3608 */ 3609 if (!SHMEM2_HAS(bp, mfw_drv_indication)) { 3610 DP(BNX2X_MSG_MCP, "Management does not support indication\n"); 3611 } else if (!bp->drv_info_mng_owner) { 3612 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1)); 3613 3614 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) { 3615 u32 indication = SHMEM2_RD(bp, mfw_drv_indication); 3616 3617 /* Management is done; need to clear indication */ 3618 if (indication & bit) { 3619 SHMEM2_WR(bp, mfw_drv_indication, 3620 indication & ~bit); 3621 release = true; 3622 break; 3623 } 3624 3625 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH); 3626 } 3627 } 3628 if (!release) { 3629 DP(BNX2X_MSG_MCP, "Management did not release indication\n"); 3630 bp->drv_info_mng_owner = true; 3631 } 3632 3633 out: 3634 mutex_unlock(&bp->drv_info_mutex); 3635 } 3636 3637 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format) 3638 { 3639 u8 vals[4]; 3640 int i = 0; 3641 3642 if (bnx2x_format) { 3643 i = sscanf(version, "1.%c%hhd.%hhd.%hhd", 3644 &vals[0], &vals[1], &vals[2], &vals[3]); 3645 if (i > 0) 3646 vals[0] -= '0'; 3647 } else { 3648 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd", 3649 &vals[0], &vals[1], &vals[2], &vals[3]); 3650 } 3651 3652 while (i < 4) 3653 vals[i++] = 0; 3654 3655 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3]; 3656 } 3657 3658 void bnx2x_update_mng_version(struct bnx2x *bp) 3659 { 3660 u32 iscsiver = DRV_VER_NOT_LOADED; 3661 u32 fcoever = DRV_VER_NOT_LOADED; 3662 u32 ethver = DRV_VER_NOT_LOADED; 3663 int idx = BP_FW_MB_IDX(bp); 3664 u8 *version; 3665 3666 if (!SHMEM2_HAS(bp, func_os_drv_ver)) 3667 return; 3668 3669 mutex_lock(&bp->drv_info_mutex); 3670 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */ 3671 if (bp->drv_info_mng_owner) 3672 goto out; 3673 3674 if (bp->state != BNX2X_STATE_OPEN) 3675 goto out; 3676 3677 /* Parse ethernet driver version */ 3678 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3679 if (!CNIC_LOADED(bp)) 3680 goto out; 3681 3682 /* Try getting storage driver version via cnic */ 3683 memset(&bp->slowpath->drv_info_to_mcp, 0, 3684 sizeof(union drv_info_to_mcp)); 3685 bnx2x_drv_info_iscsi_stat(bp); 3686 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version; 3687 iscsiver = bnx2x_update_mng_version_utility(version, false); 3688 3689 memset(&bp->slowpath->drv_info_to_mcp, 0, 3690 sizeof(union drv_info_to_mcp)); 3691 bnx2x_drv_info_fcoe_stat(bp); 3692 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version; 3693 fcoever = bnx2x_update_mng_version_utility(version, false); 3694 3695 out: 3696 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver); 3697 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver); 3698 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever); 3699 3700 mutex_unlock(&bp->drv_info_mutex); 3701 3702 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n", 3703 ethver, iscsiver, fcoever); 3704 } 3705 3706 void bnx2x_update_mfw_dump(struct bnx2x *bp) 3707 { 3708 u32 drv_ver; 3709 u32 valid_dump; 3710 3711 if (!SHMEM2_HAS(bp, drv_info)) 3712 return; 3713 3714 /* Update Driver load time, possibly broken in y2038 */ 3715 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds()); 3716 3717 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3718 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver); 3719 3720 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 3721 3722 /* Check & notify On-Chip dump. */ 3723 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump); 3724 3725 if (valid_dump & FIRST_DUMP_VALID) 3726 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n"); 3727 3728 if (valid_dump & SECOND_DUMP_VALID) 3729 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n"); 3730 } 3731 3732 static void bnx2x_oem_event(struct bnx2x *bp, u32 event) 3733 { 3734 u32 cmd_ok, cmd_fail; 3735 3736 /* sanity */ 3737 if (event & DRV_STATUS_DCC_EVENT_MASK && 3738 event & DRV_STATUS_OEM_EVENT_MASK) { 3739 BNX2X_ERR("Received simultaneous events %08x\n", event); 3740 return; 3741 } 3742 3743 if (event & DRV_STATUS_DCC_EVENT_MASK) { 3744 cmd_fail = DRV_MSG_CODE_DCC_FAILURE; 3745 cmd_ok = DRV_MSG_CODE_DCC_OK; 3746 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ { 3747 cmd_fail = DRV_MSG_CODE_OEM_FAILURE; 3748 cmd_ok = DRV_MSG_CODE_OEM_OK; 3749 } 3750 3751 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event); 3752 3753 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3754 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) { 3755 /* This is the only place besides the function initialization 3756 * where the bp->flags can change so it is done without any 3757 * locks 3758 */ 3759 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 3760 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); 3761 bp->flags |= MF_FUNC_DIS; 3762 3763 bnx2x_e1h_disable(bp); 3764 } else { 3765 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); 3766 bp->flags &= ~MF_FUNC_DIS; 3767 3768 bnx2x_e1h_enable(bp); 3769 } 3770 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3771 DRV_STATUS_OEM_DISABLE_ENABLE_PF); 3772 } 3773 3774 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3775 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) { 3776 bnx2x_config_mf_bw(bp); 3777 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3778 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION); 3779 } 3780 3781 /* Report results to MCP */ 3782 if (event) 3783 bnx2x_fw_command(bp, cmd_fail, 0); 3784 else 3785 bnx2x_fw_command(bp, cmd_ok, 0); 3786 } 3787 3788 /* must be called under the spq lock */ 3789 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) 3790 { 3791 struct eth_spe *next_spe = bp->spq_prod_bd; 3792 3793 if (bp->spq_prod_bd == bp->spq_last_bd) { 3794 bp->spq_prod_bd = bp->spq; 3795 bp->spq_prod_idx = 0; 3796 DP(BNX2X_MSG_SP, "end of spq\n"); 3797 } else { 3798 bp->spq_prod_bd++; 3799 bp->spq_prod_idx++; 3800 } 3801 return next_spe; 3802 } 3803 3804 /* must be called under the spq lock */ 3805 static void bnx2x_sp_prod_update(struct bnx2x *bp) 3806 { 3807 int func = BP_FUNC(bp); 3808 3809 /* 3810 * Make sure that BD data is updated before writing the producer: 3811 * BD data is written to the memory, the producer is read from the 3812 * memory, thus we need a full memory barrier to ensure the ordering. 3813 */ 3814 mb(); 3815 3816 REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), 3817 bp->spq_prod_idx); 3818 } 3819 3820 /** 3821 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ 3822 * 3823 * @cmd: command to check 3824 * @cmd_type: command type 3825 */ 3826 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) 3827 { 3828 if ((cmd_type == NONE_CONNECTION_TYPE) || 3829 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 3830 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 3831 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 3832 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 3833 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 3834 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) 3835 return true; 3836 else 3837 return false; 3838 } 3839 3840 /** 3841 * bnx2x_sp_post - place a single command on an SP ring 3842 * 3843 * @bp: driver handle 3844 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 3845 * @cid: SW CID the command is related to 3846 * @data_hi: command private data address (high 32 bits) 3847 * @data_lo: command private data address (low 32 bits) 3848 * @cmd_type: command type (e.g. NONE, ETH) 3849 * 3850 * SP data is handled as if it's always an address pair, thus data fields are 3851 * not swapped to little endian in upper functions. Instead this function swaps 3852 * data as if it's two u32 fields. 3853 */ 3854 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 3855 u32 data_hi, u32 data_lo, int cmd_type) 3856 { 3857 struct eth_spe *spe; 3858 u16 type; 3859 bool common = bnx2x_is_contextless_ramrod(command, cmd_type); 3860 3861 #ifdef BNX2X_STOP_ON_ERROR 3862 if (unlikely(bp->panic)) { 3863 BNX2X_ERR("Can't post SP when there is panic\n"); 3864 return -EIO; 3865 } 3866 #endif 3867 3868 spin_lock_bh(&bp->spq_lock); 3869 3870 if (common) { 3871 if (!atomic_read(&bp->eq_spq_left)) { 3872 BNX2X_ERR("BUG! EQ ring full!\n"); 3873 spin_unlock_bh(&bp->spq_lock); 3874 bnx2x_panic(); 3875 return -EBUSY; 3876 } 3877 } else if (!atomic_read(&bp->cq_spq_left)) { 3878 BNX2X_ERR("BUG! SPQ ring full!\n"); 3879 spin_unlock_bh(&bp->spq_lock); 3880 bnx2x_panic(); 3881 return -EBUSY; 3882 } 3883 3884 spe = bnx2x_sp_get_next(bp); 3885 3886 /* CID needs port number to be encoded int it */ 3887 spe->hdr.conn_and_cmd_data = 3888 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | 3889 HW_CID(bp, cid)); 3890 3891 /* In some cases, type may already contain the func-id 3892 * mainly in SRIOV related use cases, so we add it here only 3893 * if it's not already set. 3894 */ 3895 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) { 3896 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & 3897 SPE_HDR_CONN_TYPE; 3898 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & 3899 SPE_HDR_FUNCTION_ID); 3900 } else { 3901 type = cmd_type; 3902 } 3903 3904 spe->hdr.type = cpu_to_le16(type); 3905 3906 spe->data.update_data_addr.hi = cpu_to_le32(data_hi); 3907 spe->data.update_data_addr.lo = cpu_to_le32(data_lo); 3908 3909 /* 3910 * It's ok if the actual decrement is issued towards the memory 3911 * somewhere between the spin_lock and spin_unlock. Thus no 3912 * more explicit memory barrier is needed. 3913 */ 3914 if (common) 3915 atomic_dec(&bp->eq_spq_left); 3916 else 3917 atomic_dec(&bp->cq_spq_left); 3918 3919 DP(BNX2X_MSG_SP, 3920 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", 3921 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), 3922 (u32)(U64_LO(bp->spq_mapping) + 3923 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, 3924 HW_CID(bp, cid), data_hi, data_lo, type, 3925 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); 3926 3927 bnx2x_sp_prod_update(bp); 3928 spin_unlock_bh(&bp->spq_lock); 3929 return 0; 3930 } 3931 3932 /* acquire split MCP access lock register */ 3933 static int bnx2x_acquire_alr(struct bnx2x *bp) 3934 { 3935 u32 j, val; 3936 int rc = 0; 3937 3938 might_sleep(); 3939 for (j = 0; j < 1000; j++) { 3940 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); 3941 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); 3942 if (val & MCPR_ACCESS_LOCK_LOCK) 3943 break; 3944 3945 usleep_range(5000, 10000); 3946 } 3947 if (!(val & MCPR_ACCESS_LOCK_LOCK)) { 3948 BNX2X_ERR("Cannot acquire MCP access lock register\n"); 3949 rc = -EBUSY; 3950 } 3951 3952 return rc; 3953 } 3954 3955 /* release split MCP access lock register */ 3956 static void bnx2x_release_alr(struct bnx2x *bp) 3957 { 3958 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); 3959 } 3960 3961 #define BNX2X_DEF_SB_ATT_IDX 0x0001 3962 #define BNX2X_DEF_SB_IDX 0x0002 3963 3964 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) 3965 { 3966 struct host_sp_status_block *def_sb = bp->def_status_blk; 3967 u16 rc = 0; 3968 3969 barrier(); /* status block is written to by the chip */ 3970 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 3971 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; 3972 rc |= BNX2X_DEF_SB_ATT_IDX; 3973 } 3974 3975 if (bp->def_idx != def_sb->sp_sb.running_index) { 3976 bp->def_idx = def_sb->sp_sb.running_index; 3977 rc |= BNX2X_DEF_SB_IDX; 3978 } 3979 3980 /* Do not reorder: indices reading should complete before handling */ 3981 barrier(); 3982 return rc; 3983 } 3984 3985 /* 3986 * slow path service functions 3987 */ 3988 3989 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) 3990 { 3991 int port = BP_PORT(bp); 3992 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 3993 MISC_REG_AEU_MASK_ATTN_FUNC_0; 3994 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 3995 NIG_REG_MASK_INTERRUPT_PORT0; 3996 u32 aeu_mask; 3997 u32 nig_mask = 0; 3998 u32 reg_addr; 3999 4000 if (bp->attn_state & asserted) 4001 BNX2X_ERR("IGU ERROR\n"); 4002 4003 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4004 aeu_mask = REG_RD(bp, aeu_addr); 4005 4006 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", 4007 aeu_mask, asserted); 4008 aeu_mask &= ~(asserted & 0x3ff); 4009 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 4010 4011 REG_WR(bp, aeu_addr, aeu_mask); 4012 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4013 4014 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 4015 bp->attn_state |= asserted; 4016 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 4017 4018 if (asserted & ATTN_HARD_WIRED_MASK) { 4019 if (asserted & ATTN_NIG_FOR_FUNC) { 4020 4021 bnx2x_acquire_phy_lock(bp); 4022 4023 /* save nig interrupt mask */ 4024 nig_mask = REG_RD(bp, nig_int_mask_addr); 4025 4026 /* If nig_mask is not set, no need to call the update 4027 * function. 4028 */ 4029 if (nig_mask) { 4030 REG_WR(bp, nig_int_mask_addr, 0); 4031 4032 bnx2x_link_attn(bp); 4033 } 4034 4035 /* handle unicore attn? */ 4036 } 4037 if (asserted & ATTN_SW_TIMER_4_FUNC) 4038 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); 4039 4040 if (asserted & GPIO_2_FUNC) 4041 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); 4042 4043 if (asserted & GPIO_3_FUNC) 4044 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); 4045 4046 if (asserted & GPIO_4_FUNC) 4047 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); 4048 4049 if (port == 0) { 4050 if (asserted & ATTN_GENERAL_ATTN_1) { 4051 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); 4052 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 4053 } 4054 if (asserted & ATTN_GENERAL_ATTN_2) { 4055 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); 4056 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 4057 } 4058 if (asserted & ATTN_GENERAL_ATTN_3) { 4059 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); 4060 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 4061 } 4062 } else { 4063 if (asserted & ATTN_GENERAL_ATTN_4) { 4064 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); 4065 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 4066 } 4067 if (asserted & ATTN_GENERAL_ATTN_5) { 4068 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); 4069 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 4070 } 4071 if (asserted & ATTN_GENERAL_ATTN_6) { 4072 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); 4073 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 4074 } 4075 } 4076 4077 } /* if hardwired */ 4078 4079 if (bp->common.int_block == INT_BLOCK_HC) 4080 reg_addr = (HC_REG_COMMAND_REG + port*32 + 4081 COMMAND_REG_ATTN_BITS_SET); 4082 else 4083 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 4084 4085 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, 4086 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 4087 REG_WR(bp, reg_addr, asserted); 4088 4089 /* now set back the mask */ 4090 if (asserted & ATTN_NIG_FOR_FUNC) { 4091 /* Verify that IGU ack through BAR was written before restoring 4092 * NIG mask. This loop should exit after 2-3 iterations max. 4093 */ 4094 if (bp->common.int_block != INT_BLOCK_HC) { 4095 u32 cnt = 0, igu_acked; 4096 do { 4097 igu_acked = REG_RD(bp, 4098 IGU_REG_ATTENTION_ACK_BITS); 4099 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 4100 (++cnt < MAX_IGU_ATTN_ACK_TO)); 4101 if (!igu_acked) 4102 DP(NETIF_MSG_HW, 4103 "Failed to verify IGU ack on time\n"); 4104 barrier(); 4105 } 4106 REG_WR(bp, nig_int_mask_addr, nig_mask); 4107 bnx2x_release_phy_lock(bp); 4108 } 4109 } 4110 4111 static void bnx2x_fan_failure(struct bnx2x *bp) 4112 { 4113 int port = BP_PORT(bp); 4114 u32 ext_phy_config; 4115 /* mark the failure */ 4116 ext_phy_config = 4117 SHMEM_RD(bp, 4118 dev_info.port_hw_config[port].external_phy_config); 4119 4120 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 4121 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 4122 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, 4123 ext_phy_config); 4124 4125 /* log the failure */ 4126 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" 4127 "Please contact OEM Support for assistance\n"); 4128 4129 /* Schedule device reset (unload) 4130 * This is due to some boards consuming sufficient power when driver is 4131 * up to overheat if fan fails. 4132 */ 4133 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0); 4134 } 4135 4136 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) 4137 { 4138 int port = BP_PORT(bp); 4139 int reg_offset; 4140 u32 val; 4141 4142 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 4143 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 4144 4145 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 4146 4147 val = REG_RD(bp, reg_offset); 4148 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 4149 REG_WR(bp, reg_offset, val); 4150 4151 BNX2X_ERR("SPIO5 hw attention\n"); 4152 4153 /* Fan failure attention */ 4154 bnx2x_hw_reset_phy(&bp->link_params); 4155 bnx2x_fan_failure(bp); 4156 } 4157 4158 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { 4159 bnx2x_acquire_phy_lock(bp); 4160 bnx2x_handle_module_detect_int(&bp->link_params); 4161 bnx2x_release_phy_lock(bp); 4162 } 4163 4164 if (attn & HW_INTERRUPT_ASSERT_SET_0) { 4165 4166 val = REG_RD(bp, reg_offset); 4167 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0); 4168 REG_WR(bp, reg_offset, val); 4169 4170 BNX2X_ERR("FATAL HW block attention set0 0x%x\n", 4171 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0)); 4172 bnx2x_panic(); 4173 } 4174 } 4175 4176 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) 4177 { 4178 u32 val; 4179 4180 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 4181 4182 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); 4183 BNX2X_ERR("DB hw attention 0x%x\n", val); 4184 /* DORQ discard attention */ 4185 if (val & 0x2) 4186 BNX2X_ERR("FATAL error from DORQ\n"); 4187 } 4188 4189 if (attn & HW_INTERRUPT_ASSERT_SET_1) { 4190 4191 int port = BP_PORT(bp); 4192 int reg_offset; 4193 4194 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 4195 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 4196 4197 val = REG_RD(bp, reg_offset); 4198 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1); 4199 REG_WR(bp, reg_offset, val); 4200 4201 BNX2X_ERR("FATAL HW block attention set1 0x%x\n", 4202 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1)); 4203 bnx2x_panic(); 4204 } 4205 } 4206 4207 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) 4208 { 4209 u32 val; 4210 4211 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 4212 4213 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); 4214 BNX2X_ERR("CFC hw attention 0x%x\n", val); 4215 /* CFC error attention */ 4216 if (val & 0x2) 4217 BNX2X_ERR("FATAL error from CFC\n"); 4218 } 4219 4220 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 4221 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); 4222 BNX2X_ERR("PXP hw attention-0 0x%x\n", val); 4223 /* RQ_USDMDP_FIFO_OVERFLOW */ 4224 if (val & 0x18000) 4225 BNX2X_ERR("FATAL error from PXP\n"); 4226 4227 if (!CHIP_IS_E1x(bp)) { 4228 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); 4229 BNX2X_ERR("PXP hw attention-1 0x%x\n", val); 4230 } 4231 } 4232 4233 if (attn & HW_INTERRUPT_ASSERT_SET_2) { 4234 4235 int port = BP_PORT(bp); 4236 int reg_offset; 4237 4238 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 4239 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 4240 4241 val = REG_RD(bp, reg_offset); 4242 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2); 4243 REG_WR(bp, reg_offset, val); 4244 4245 BNX2X_ERR("FATAL HW block attention set2 0x%x\n", 4246 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2)); 4247 bnx2x_panic(); 4248 } 4249 } 4250 4251 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) 4252 { 4253 u32 val; 4254 4255 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 4256 4257 if (attn & BNX2X_PMF_LINK_ASSERT) { 4258 int func = BP_FUNC(bp); 4259 4260 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 4261 bnx2x_read_mf_cfg(bp); 4262 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, 4263 func_mf_config[BP_ABS_FUNC(bp)].config); 4264 val = SHMEM_RD(bp, 4265 func_mb[BP_FW_MB_IDX(bp)].drv_status); 4266 4267 if (val & (DRV_STATUS_DCC_EVENT_MASK | 4268 DRV_STATUS_OEM_EVENT_MASK)) 4269 bnx2x_oem_event(bp, 4270 (val & (DRV_STATUS_DCC_EVENT_MASK | 4271 DRV_STATUS_OEM_EVENT_MASK))); 4272 4273 if (val & DRV_STATUS_SET_MF_BW) 4274 bnx2x_set_mf_bw(bp); 4275 4276 if (val & DRV_STATUS_DRV_INFO_REQ) 4277 bnx2x_handle_drv_info_req(bp); 4278 4279 if (val & DRV_STATUS_VF_DISABLED) 4280 bnx2x_schedule_iov_task(bp, 4281 BNX2X_IOV_HANDLE_FLR); 4282 4283 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) 4284 bnx2x_pmf_update(bp); 4285 4286 if (bp->port.pmf && 4287 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 4288 bp->dcbx_enabled > 0) 4289 /* start dcbx state machine */ 4290 bnx2x_dcbx_set_params(bp, 4291 BNX2X_DCBX_STATE_NEG_RECEIVED); 4292 if (val & DRV_STATUS_AFEX_EVENT_MASK) 4293 bnx2x_handle_afex_cmd(bp, 4294 val & DRV_STATUS_AFEX_EVENT_MASK); 4295 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 4296 bnx2x_handle_eee_event(bp); 4297 4298 if (val & DRV_STATUS_OEM_UPDATE_SVID) 4299 bnx2x_schedule_sp_rtnl(bp, 4300 BNX2X_SP_RTNL_UPDATE_SVID, 0); 4301 4302 if (bp->link_vars.periodic_flags & 4303 PERIODIC_FLAGS_LINK_EVENT) { 4304 /* sync with link */ 4305 bnx2x_acquire_phy_lock(bp); 4306 bp->link_vars.periodic_flags &= 4307 ~PERIODIC_FLAGS_LINK_EVENT; 4308 bnx2x_release_phy_lock(bp); 4309 if (IS_MF(bp)) 4310 bnx2x_link_sync_notify(bp); 4311 bnx2x_link_report(bp); 4312 } 4313 /* Always call it here: bnx2x_link_report() will 4314 * prevent the link indication duplication. 4315 */ 4316 bnx2x__link_status_update(bp); 4317 } else if (attn & BNX2X_MC_ASSERT_BITS) { 4318 4319 BNX2X_ERR("MC assert!\n"); 4320 bnx2x_mc_assert(bp); 4321 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); 4322 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); 4323 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); 4324 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); 4325 bnx2x_panic(); 4326 4327 } else if (attn & BNX2X_MCP_ASSERT) { 4328 4329 BNX2X_ERR("MCP assert!\n"); 4330 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); 4331 bnx2x_fw_dump(bp); 4332 4333 } else 4334 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); 4335 } 4336 4337 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 4338 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); 4339 if (attn & BNX2X_GRC_TIMEOUT) { 4340 val = CHIP_IS_E1(bp) ? 0 : 4341 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); 4342 BNX2X_ERR("GRC time-out 0x%08x\n", val); 4343 } 4344 if (attn & BNX2X_GRC_RSV) { 4345 val = CHIP_IS_E1(bp) ? 0 : 4346 REG_RD(bp, MISC_REG_GRC_RSV_ATTN); 4347 BNX2X_ERR("GRC reserved 0x%08x\n", val); 4348 } 4349 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 4350 } 4351 } 4352 4353 /* 4354 * Bits map: 4355 * 0-7 - Engine0 load counter. 4356 * 8-15 - Engine1 load counter. 4357 * 16 - Engine0 RESET_IN_PROGRESS bit. 4358 * 17 - Engine1 RESET_IN_PROGRESS bit. 4359 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function 4360 * on the engine 4361 * 19 - Engine1 ONE_IS_LOADED. 4362 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 4363 * leader to complete (check for both RESET_IN_PROGRESS bits and not for 4364 * just the one belonging to its engine). 4365 * 4366 */ 4367 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 4368 4369 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff 4370 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 4371 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 4372 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 4373 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 4374 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 4375 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 4376 4377 /* 4378 * Set the GLOBAL_RESET bit. 4379 * 4380 * Should be run under rtnl lock 4381 */ 4382 void bnx2x_set_reset_global(struct bnx2x *bp) 4383 { 4384 u32 val; 4385 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4386 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4387 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); 4388 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4389 } 4390 4391 /* 4392 * Clear the GLOBAL_RESET bit. 4393 * 4394 * Should be run under rtnl lock 4395 */ 4396 static void bnx2x_clear_reset_global(struct bnx2x *bp) 4397 { 4398 u32 val; 4399 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4400 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4401 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); 4402 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4403 } 4404 4405 /* 4406 * Checks the GLOBAL_RESET bit. 4407 * 4408 * should be run under rtnl lock 4409 */ 4410 static bool bnx2x_reset_is_global(struct bnx2x *bp) 4411 { 4412 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4413 4414 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); 4415 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; 4416 } 4417 4418 /* 4419 * Clear RESET_IN_PROGRESS bit for the current engine. 4420 * 4421 * Should be run under rtnl lock 4422 */ 4423 static void bnx2x_set_reset_done(struct bnx2x *bp) 4424 { 4425 u32 val; 4426 u32 bit = BP_PATH(bp) ? 4427 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4428 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4429 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4430 4431 /* Clear the bit */ 4432 val &= ~bit; 4433 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4434 4435 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4436 } 4437 4438 /* 4439 * Set RESET_IN_PROGRESS for the current engine. 4440 * 4441 * should be run under rtnl lock 4442 */ 4443 void bnx2x_set_reset_in_progress(struct bnx2x *bp) 4444 { 4445 u32 val; 4446 u32 bit = BP_PATH(bp) ? 4447 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4448 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4449 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4450 4451 /* Set the bit */ 4452 val |= bit; 4453 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4454 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4455 } 4456 4457 /* 4458 * Checks the RESET_IN_PROGRESS bit for the given engine. 4459 * should be run under rtnl lock 4460 */ 4461 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) 4462 { 4463 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4464 u32 bit = engine ? 4465 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4466 4467 /* return false if bit is set */ 4468 return (val & bit) ? false : true; 4469 } 4470 4471 /* 4472 * set pf load for the current pf. 4473 * 4474 * should be run under rtnl lock 4475 */ 4476 void bnx2x_set_pf_load(struct bnx2x *bp) 4477 { 4478 u32 val1, val; 4479 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4480 BNX2X_PATH0_LOAD_CNT_MASK; 4481 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4482 BNX2X_PATH0_LOAD_CNT_SHIFT; 4483 4484 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4485 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4486 4487 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); 4488 4489 /* get the current counter value */ 4490 val1 = (val & mask) >> shift; 4491 4492 /* set bit of that PF */ 4493 val1 |= (1 << bp->pf_num); 4494 4495 /* clear the old value */ 4496 val &= ~mask; 4497 4498 /* set the new one */ 4499 val |= ((val1 << shift) & mask); 4500 4501 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4502 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4503 } 4504 4505 /** 4506 * bnx2x_clear_pf_load - clear pf load mark 4507 * 4508 * @bp: driver handle 4509 * 4510 * Should be run under rtnl lock. 4511 * Decrements the load counter for the current engine. Returns 4512 * whether other functions are still loaded 4513 */ 4514 bool bnx2x_clear_pf_load(struct bnx2x *bp) 4515 { 4516 u32 val1, val; 4517 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4518 BNX2X_PATH0_LOAD_CNT_MASK; 4519 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4520 BNX2X_PATH0_LOAD_CNT_SHIFT; 4521 4522 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4523 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4524 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); 4525 4526 /* get the current counter value */ 4527 val1 = (val & mask) >> shift; 4528 4529 /* clear bit of that PF */ 4530 val1 &= ~(1 << bp->pf_num); 4531 4532 /* clear the old value */ 4533 val &= ~mask; 4534 4535 /* set the new one */ 4536 val |= ((val1 << shift) & mask); 4537 4538 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4539 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4540 return val1 != 0; 4541 } 4542 4543 /* 4544 * Read the load status for the current engine. 4545 * 4546 * should be run under rtnl lock 4547 */ 4548 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) 4549 { 4550 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : 4551 BNX2X_PATH0_LOAD_CNT_MASK); 4552 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4553 BNX2X_PATH0_LOAD_CNT_SHIFT); 4554 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4555 4556 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); 4557 4558 val = (val & mask) >> shift; 4559 4560 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", 4561 engine, val); 4562 4563 return val != 0; 4564 } 4565 4566 static void _print_parity(struct bnx2x *bp, u32 reg) 4567 { 4568 pr_cont(" [0x%08x] ", REG_RD(bp, reg)); 4569 } 4570 4571 static void _print_next_block(int idx, const char *blk) 4572 { 4573 pr_cont("%s%s", idx ? ", " : "", blk); 4574 } 4575 4576 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig, 4577 int *par_num, bool print) 4578 { 4579 u32 cur_bit; 4580 bool res; 4581 int i; 4582 4583 res = false; 4584 4585 for (i = 0; sig; i++) { 4586 cur_bit = (0x1UL << i); 4587 if (sig & cur_bit) { 4588 res |= true; /* Each bit is real error! */ 4589 4590 if (print) { 4591 switch (cur_bit) { 4592 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 4593 _print_next_block((*par_num)++, "BRB"); 4594 _print_parity(bp, 4595 BRB1_REG_BRB1_PRTY_STS); 4596 break; 4597 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 4598 _print_next_block((*par_num)++, 4599 "PARSER"); 4600 _print_parity(bp, PRS_REG_PRS_PRTY_STS); 4601 break; 4602 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 4603 _print_next_block((*par_num)++, "TSDM"); 4604 _print_parity(bp, 4605 TSDM_REG_TSDM_PRTY_STS); 4606 break; 4607 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 4608 _print_next_block((*par_num)++, 4609 "SEARCHER"); 4610 _print_parity(bp, SRC_REG_SRC_PRTY_STS); 4611 break; 4612 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 4613 _print_next_block((*par_num)++, "TCM"); 4614 _print_parity(bp, TCM_REG_TCM_PRTY_STS); 4615 break; 4616 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 4617 _print_next_block((*par_num)++, 4618 "TSEMI"); 4619 _print_parity(bp, 4620 TSEM_REG_TSEM_PRTY_STS_0); 4621 _print_parity(bp, 4622 TSEM_REG_TSEM_PRTY_STS_1); 4623 break; 4624 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 4625 _print_next_block((*par_num)++, "XPB"); 4626 _print_parity(bp, GRCBASE_XPB + 4627 PB_REG_PB_PRTY_STS); 4628 break; 4629 } 4630 } 4631 4632 /* Clear the bit */ 4633 sig &= ~cur_bit; 4634 } 4635 } 4636 4637 return res; 4638 } 4639 4640 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig, 4641 int *par_num, bool *global, 4642 bool print) 4643 { 4644 u32 cur_bit; 4645 bool res; 4646 int i; 4647 4648 res = false; 4649 4650 for (i = 0; sig; i++) { 4651 cur_bit = (0x1UL << i); 4652 if (sig & cur_bit) { 4653 res |= true; /* Each bit is real error! */ 4654 switch (cur_bit) { 4655 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 4656 if (print) { 4657 _print_next_block((*par_num)++, "PBF"); 4658 _print_parity(bp, PBF_REG_PBF_PRTY_STS); 4659 } 4660 break; 4661 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 4662 if (print) { 4663 _print_next_block((*par_num)++, "QM"); 4664 _print_parity(bp, QM_REG_QM_PRTY_STS); 4665 } 4666 break; 4667 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 4668 if (print) { 4669 _print_next_block((*par_num)++, "TM"); 4670 _print_parity(bp, TM_REG_TM_PRTY_STS); 4671 } 4672 break; 4673 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 4674 if (print) { 4675 _print_next_block((*par_num)++, "XSDM"); 4676 _print_parity(bp, 4677 XSDM_REG_XSDM_PRTY_STS); 4678 } 4679 break; 4680 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 4681 if (print) { 4682 _print_next_block((*par_num)++, "XCM"); 4683 _print_parity(bp, XCM_REG_XCM_PRTY_STS); 4684 } 4685 break; 4686 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 4687 if (print) { 4688 _print_next_block((*par_num)++, 4689 "XSEMI"); 4690 _print_parity(bp, 4691 XSEM_REG_XSEM_PRTY_STS_0); 4692 _print_parity(bp, 4693 XSEM_REG_XSEM_PRTY_STS_1); 4694 } 4695 break; 4696 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 4697 if (print) { 4698 _print_next_block((*par_num)++, 4699 "DOORBELLQ"); 4700 _print_parity(bp, 4701 DORQ_REG_DORQ_PRTY_STS); 4702 } 4703 break; 4704 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 4705 if (print) { 4706 _print_next_block((*par_num)++, "NIG"); 4707 if (CHIP_IS_E1x(bp)) { 4708 _print_parity(bp, 4709 NIG_REG_NIG_PRTY_STS); 4710 } else { 4711 _print_parity(bp, 4712 NIG_REG_NIG_PRTY_STS_0); 4713 _print_parity(bp, 4714 NIG_REG_NIG_PRTY_STS_1); 4715 } 4716 } 4717 break; 4718 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 4719 if (print) 4720 _print_next_block((*par_num)++, 4721 "VAUX PCI CORE"); 4722 *global = true; 4723 break; 4724 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 4725 if (print) { 4726 _print_next_block((*par_num)++, 4727 "DEBUG"); 4728 _print_parity(bp, DBG_REG_DBG_PRTY_STS); 4729 } 4730 break; 4731 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 4732 if (print) { 4733 _print_next_block((*par_num)++, "USDM"); 4734 _print_parity(bp, 4735 USDM_REG_USDM_PRTY_STS); 4736 } 4737 break; 4738 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 4739 if (print) { 4740 _print_next_block((*par_num)++, "UCM"); 4741 _print_parity(bp, UCM_REG_UCM_PRTY_STS); 4742 } 4743 break; 4744 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 4745 if (print) { 4746 _print_next_block((*par_num)++, 4747 "USEMI"); 4748 _print_parity(bp, 4749 USEM_REG_USEM_PRTY_STS_0); 4750 _print_parity(bp, 4751 USEM_REG_USEM_PRTY_STS_1); 4752 } 4753 break; 4754 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 4755 if (print) { 4756 _print_next_block((*par_num)++, "UPB"); 4757 _print_parity(bp, GRCBASE_UPB + 4758 PB_REG_PB_PRTY_STS); 4759 } 4760 break; 4761 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 4762 if (print) { 4763 _print_next_block((*par_num)++, "CSDM"); 4764 _print_parity(bp, 4765 CSDM_REG_CSDM_PRTY_STS); 4766 } 4767 break; 4768 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 4769 if (print) { 4770 _print_next_block((*par_num)++, "CCM"); 4771 _print_parity(bp, CCM_REG_CCM_PRTY_STS); 4772 } 4773 break; 4774 } 4775 4776 /* Clear the bit */ 4777 sig &= ~cur_bit; 4778 } 4779 } 4780 4781 return res; 4782 } 4783 4784 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig, 4785 int *par_num, bool print) 4786 { 4787 u32 cur_bit; 4788 bool res; 4789 int i; 4790 4791 res = false; 4792 4793 for (i = 0; sig; i++) { 4794 cur_bit = (0x1UL << i); 4795 if (sig & cur_bit) { 4796 res = true; /* Each bit is real error! */ 4797 if (print) { 4798 switch (cur_bit) { 4799 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 4800 _print_next_block((*par_num)++, 4801 "CSEMI"); 4802 _print_parity(bp, 4803 CSEM_REG_CSEM_PRTY_STS_0); 4804 _print_parity(bp, 4805 CSEM_REG_CSEM_PRTY_STS_1); 4806 break; 4807 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 4808 _print_next_block((*par_num)++, "PXP"); 4809 _print_parity(bp, PXP_REG_PXP_PRTY_STS); 4810 _print_parity(bp, 4811 PXP2_REG_PXP2_PRTY_STS_0); 4812 _print_parity(bp, 4813 PXP2_REG_PXP2_PRTY_STS_1); 4814 break; 4815 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 4816 _print_next_block((*par_num)++, 4817 "PXPPCICLOCKCLIENT"); 4818 break; 4819 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 4820 _print_next_block((*par_num)++, "CFC"); 4821 _print_parity(bp, 4822 CFC_REG_CFC_PRTY_STS); 4823 break; 4824 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 4825 _print_next_block((*par_num)++, "CDU"); 4826 _print_parity(bp, CDU_REG_CDU_PRTY_STS); 4827 break; 4828 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 4829 _print_next_block((*par_num)++, "DMAE"); 4830 _print_parity(bp, 4831 DMAE_REG_DMAE_PRTY_STS); 4832 break; 4833 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 4834 _print_next_block((*par_num)++, "IGU"); 4835 if (CHIP_IS_E1x(bp)) 4836 _print_parity(bp, 4837 HC_REG_HC_PRTY_STS); 4838 else 4839 _print_parity(bp, 4840 IGU_REG_IGU_PRTY_STS); 4841 break; 4842 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 4843 _print_next_block((*par_num)++, "MISC"); 4844 _print_parity(bp, 4845 MISC_REG_MISC_PRTY_STS); 4846 break; 4847 } 4848 } 4849 4850 /* Clear the bit */ 4851 sig &= ~cur_bit; 4852 } 4853 } 4854 4855 return res; 4856 } 4857 4858 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig, 4859 int *par_num, bool *global, 4860 bool print) 4861 { 4862 bool res = false; 4863 u32 cur_bit; 4864 int i; 4865 4866 for (i = 0; sig; i++) { 4867 cur_bit = (0x1UL << i); 4868 if (sig & cur_bit) { 4869 switch (cur_bit) { 4870 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 4871 if (print) 4872 _print_next_block((*par_num)++, 4873 "MCP ROM"); 4874 *global = true; 4875 res = true; 4876 break; 4877 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 4878 if (print) 4879 _print_next_block((*par_num)++, 4880 "MCP UMP RX"); 4881 *global = true; 4882 res = true; 4883 break; 4884 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 4885 if (print) 4886 _print_next_block((*par_num)++, 4887 "MCP UMP TX"); 4888 *global = true; 4889 res = true; 4890 break; 4891 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 4892 (*par_num)++; 4893 /* clear latched SCPAD PATIRY from MCP */ 4894 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 4895 1UL << 10); 4896 break; 4897 } 4898 4899 /* Clear the bit */ 4900 sig &= ~cur_bit; 4901 } 4902 } 4903 4904 return res; 4905 } 4906 4907 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig, 4908 int *par_num, bool print) 4909 { 4910 u32 cur_bit; 4911 bool res; 4912 int i; 4913 4914 res = false; 4915 4916 for (i = 0; sig; i++) { 4917 cur_bit = (0x1UL << i); 4918 if (sig & cur_bit) { 4919 res = true; /* Each bit is real error! */ 4920 if (print) { 4921 switch (cur_bit) { 4922 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 4923 _print_next_block((*par_num)++, 4924 "PGLUE_B"); 4925 _print_parity(bp, 4926 PGLUE_B_REG_PGLUE_B_PRTY_STS); 4927 break; 4928 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 4929 _print_next_block((*par_num)++, "ATC"); 4930 _print_parity(bp, 4931 ATC_REG_ATC_PRTY_STS); 4932 break; 4933 } 4934 } 4935 /* Clear the bit */ 4936 sig &= ~cur_bit; 4937 } 4938 } 4939 4940 return res; 4941 } 4942 4943 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, 4944 u32 *sig) 4945 { 4946 bool res = false; 4947 4948 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 4949 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4950 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4951 (sig[3] & HW_PRTY_ASSERT_SET_3) || 4952 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 4953 int par_num = 0; 4954 4955 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" 4956 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 4957 sig[0] & HW_PRTY_ASSERT_SET_0, 4958 sig[1] & HW_PRTY_ASSERT_SET_1, 4959 sig[2] & HW_PRTY_ASSERT_SET_2, 4960 sig[3] & HW_PRTY_ASSERT_SET_3, 4961 sig[4] & HW_PRTY_ASSERT_SET_4); 4962 if (print) { 4963 if (((sig[0] & HW_PRTY_ASSERT_SET_0) || 4964 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4965 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4966 (sig[4] & HW_PRTY_ASSERT_SET_4)) || 4967 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) { 4968 netdev_err(bp->dev, 4969 "Parity errors detected in blocks: "); 4970 } else { 4971 print = false; 4972 } 4973 } 4974 res |= bnx2x_check_blocks_with_parity0(bp, 4975 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print); 4976 res |= bnx2x_check_blocks_with_parity1(bp, 4977 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print); 4978 res |= bnx2x_check_blocks_with_parity2(bp, 4979 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print); 4980 res |= bnx2x_check_blocks_with_parity3(bp, 4981 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print); 4982 res |= bnx2x_check_blocks_with_parity4(bp, 4983 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print); 4984 4985 if (print) 4986 pr_cont("\n"); 4987 } 4988 4989 return res; 4990 } 4991 4992 /** 4993 * bnx2x_chk_parity_attn - checks for parity attentions. 4994 * 4995 * @bp: driver handle 4996 * @global: true if there was a global attention 4997 * @print: show parity attention in syslog 4998 */ 4999 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) 5000 { 5001 struct attn_route attn = { {0} }; 5002 int port = BP_PORT(bp); 5003 5004 attn.sig[0] = REG_RD(bp, 5005 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 5006 port*4); 5007 attn.sig[1] = REG_RD(bp, 5008 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + 5009 port*4); 5010 attn.sig[2] = REG_RD(bp, 5011 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + 5012 port*4); 5013 attn.sig[3] = REG_RD(bp, 5014 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + 5015 port*4); 5016 /* Since MCP attentions can't be disabled inside the block, we need to 5017 * read AEU registers to see whether they're currently disabled 5018 */ 5019 attn.sig[3] &= ((REG_RD(bp, 5020 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 5021 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) & 5022 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 5023 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 5024 5025 if (!CHIP_IS_E1x(bp)) 5026 attn.sig[4] = REG_RD(bp, 5027 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + 5028 port*4); 5029 5030 return bnx2x_parity_attn(bp, global, print, attn.sig); 5031 } 5032 5033 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) 5034 { 5035 u32 val; 5036 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 5037 5038 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 5039 BNX2X_ERR("PGLUE hw attention 0x%x\n", val); 5040 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 5041 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 5042 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 5043 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 5044 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 5045 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 5046 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 5047 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 5048 if (val & 5049 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 5050 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 5051 if (val & 5052 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 5053 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 5054 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 5055 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 5056 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 5057 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 5058 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 5059 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 5060 } 5061 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 5062 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); 5063 BNX2X_ERR("ATC hw attention 0x%x\n", val); 5064 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 5065 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 5066 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 5067 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 5068 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 5069 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 5070 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 5071 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 5072 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 5073 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 5074 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 5075 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 5076 } 5077 5078 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5079 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 5080 BNX2X_ERR("FATAL parity attention set4 0x%x\n", 5081 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5082 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 5083 } 5084 } 5085 5086 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) 5087 { 5088 struct attn_route attn, *group_mask; 5089 int port = BP_PORT(bp); 5090 int index; 5091 u32 reg_addr; 5092 u32 val; 5093 u32 aeu_mask; 5094 bool global = false; 5095 5096 /* need to take HW lock because MCP or other port might also 5097 try to handle this event */ 5098 bnx2x_acquire_alr(bp); 5099 5100 if (bnx2x_chk_parity_attn(bp, &global, true)) { 5101 #ifndef BNX2X_STOP_ON_ERROR 5102 bp->recovery_state = BNX2X_RECOVERY_INIT; 5103 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5104 /* Disable HW interrupts */ 5105 bnx2x_int_disable(bp); 5106 /* In case of parity errors don't handle attentions so that 5107 * other function would "see" parity errors. 5108 */ 5109 #else 5110 bnx2x_panic(); 5111 #endif 5112 bnx2x_release_alr(bp); 5113 return; 5114 } 5115 5116 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 5117 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 5118 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 5119 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 5120 if (!CHIP_IS_E1x(bp)) 5121 attn.sig[4] = 5122 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 5123 else 5124 attn.sig[4] = 0; 5125 5126 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", 5127 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 5128 5129 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 5130 if (deasserted & (1 << index)) { 5131 group_mask = &bp->attn_group[index]; 5132 5133 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", 5134 index, 5135 group_mask->sig[0], group_mask->sig[1], 5136 group_mask->sig[2], group_mask->sig[3], 5137 group_mask->sig[4]); 5138 5139 bnx2x_attn_int_deasserted4(bp, 5140 attn.sig[4] & group_mask->sig[4]); 5141 bnx2x_attn_int_deasserted3(bp, 5142 attn.sig[3] & group_mask->sig[3]); 5143 bnx2x_attn_int_deasserted1(bp, 5144 attn.sig[1] & group_mask->sig[1]); 5145 bnx2x_attn_int_deasserted2(bp, 5146 attn.sig[2] & group_mask->sig[2]); 5147 bnx2x_attn_int_deasserted0(bp, 5148 attn.sig[0] & group_mask->sig[0]); 5149 } 5150 } 5151 5152 bnx2x_release_alr(bp); 5153 5154 if (bp->common.int_block == INT_BLOCK_HC) 5155 reg_addr = (HC_REG_COMMAND_REG + port*32 + 5156 COMMAND_REG_ATTN_BITS_CLR); 5157 else 5158 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 5159 5160 val = ~deasserted; 5161 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, 5162 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 5163 REG_WR(bp, reg_addr, val); 5164 5165 if (~bp->attn_state & deasserted) 5166 BNX2X_ERR("IGU ERROR\n"); 5167 5168 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 5169 MISC_REG_AEU_MASK_ATTN_FUNC_0; 5170 5171 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5172 aeu_mask = REG_RD(bp, reg_addr); 5173 5174 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", 5175 aeu_mask, deasserted); 5176 aeu_mask |= (deasserted & 0x3ff); 5177 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 5178 5179 REG_WR(bp, reg_addr, aeu_mask); 5180 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5181 5182 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 5183 bp->attn_state &= ~deasserted; 5184 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 5185 } 5186 5187 static void bnx2x_attn_int(struct bnx2x *bp) 5188 { 5189 /* read local copy of bits */ 5190 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. 5191 attn_bits); 5192 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. 5193 attn_bits_ack); 5194 u32 attn_state = bp->attn_state; 5195 5196 /* look for changed bits */ 5197 u32 asserted = attn_bits & ~attn_ack & ~attn_state; 5198 u32 deasserted = ~attn_bits & attn_ack & attn_state; 5199 5200 DP(NETIF_MSG_HW, 5201 "attn_bits %x attn_ack %x asserted %x deasserted %x\n", 5202 attn_bits, attn_ack, asserted, deasserted); 5203 5204 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) 5205 BNX2X_ERR("BAD attention state\n"); 5206 5207 /* handle bits that were raised */ 5208 if (asserted) 5209 bnx2x_attn_int_asserted(bp, asserted); 5210 5211 if (deasserted) 5212 bnx2x_attn_int_deasserted(bp, deasserted); 5213 } 5214 5215 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, 5216 u16 index, u8 op, u8 update) 5217 { 5218 u32 igu_addr = bp->igu_base_addr; 5219 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 5220 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, 5221 igu_addr); 5222 } 5223 5224 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) 5225 { 5226 /* No memory barriers */ 5227 storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); 5228 } 5229 5230 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, 5231 union event_ring_elem *elem) 5232 { 5233 u8 err = elem->message.error; 5234 5235 if (!bp->cnic_eth_dev.starting_cid || 5236 (cid < bp->cnic_eth_dev.starting_cid && 5237 cid != bp->cnic_eth_dev.iscsi_l2_cid)) 5238 return 1; 5239 5240 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); 5241 5242 if (unlikely(err)) { 5243 5244 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", 5245 cid); 5246 bnx2x_panic_dump(bp, false); 5247 } 5248 bnx2x_cnic_cfc_comp(bp, cid, err); 5249 return 0; 5250 } 5251 5252 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) 5253 { 5254 struct bnx2x_mcast_ramrod_params rparam; 5255 int rc; 5256 5257 memset(&rparam, 0, sizeof(rparam)); 5258 5259 rparam.mcast_obj = &bp->mcast_obj; 5260 5261 netif_addr_lock_bh(bp->dev); 5262 5263 /* Clear pending state for the last command */ 5264 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); 5265 5266 /* If there are pending mcast commands - send them */ 5267 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { 5268 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 5269 if (rc < 0) 5270 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 5271 rc); 5272 } 5273 5274 netif_addr_unlock_bh(bp->dev); 5275 } 5276 5277 static void bnx2x_handle_classification_eqe(struct bnx2x *bp, 5278 union event_ring_elem *elem) 5279 { 5280 unsigned long ramrod_flags = 0; 5281 int rc = 0; 5282 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 5283 u32 cid = echo & BNX2X_SWCID_MASK; 5284 struct bnx2x_vlan_mac_obj *vlan_mac_obj; 5285 5286 /* Always push next commands out, don't wait here */ 5287 __set_bit(RAMROD_CONT, &ramrod_flags); 5288 5289 switch (echo >> BNX2X_SWCID_SHIFT) { 5290 case BNX2X_FILTER_MAC_PENDING: 5291 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); 5292 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) 5293 vlan_mac_obj = &bp->iscsi_l2_mac_obj; 5294 else 5295 vlan_mac_obj = &bp->sp_objs[cid].mac_obj; 5296 5297 break; 5298 case BNX2X_FILTER_VLAN_PENDING: 5299 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n"); 5300 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj; 5301 break; 5302 case BNX2X_FILTER_MCAST_PENDING: 5303 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); 5304 /* This is only relevant for 57710 where multicast MACs are 5305 * configured as unicast MACs using the same ramrod. 5306 */ 5307 bnx2x_handle_mcast_eqe(bp); 5308 return; 5309 default: 5310 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 5311 return; 5312 } 5313 5314 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); 5315 5316 if (rc < 0) 5317 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 5318 else if (rc > 0) 5319 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); 5320 } 5321 5322 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); 5323 5324 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) 5325 { 5326 netif_addr_lock_bh(bp->dev); 5327 5328 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5329 5330 /* Send rx_mode command again if was requested */ 5331 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) 5332 bnx2x_set_storm_rx_mode(bp); 5333 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, 5334 &bp->sp_state)) 5335 bnx2x_set_iscsi_eth_rx_mode(bp, true); 5336 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, 5337 &bp->sp_state)) 5338 bnx2x_set_iscsi_eth_rx_mode(bp, false); 5339 5340 netif_addr_unlock_bh(bp->dev); 5341 } 5342 5343 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, 5344 union event_ring_elem *elem) 5345 { 5346 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { 5347 DP(BNX2X_MSG_SP, 5348 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", 5349 elem->message.data.vif_list_event.func_bit_map); 5350 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, 5351 elem->message.data.vif_list_event.func_bit_map); 5352 } else if (elem->message.data.vif_list_event.echo == 5353 VIF_LIST_RULE_SET) { 5354 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); 5355 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); 5356 } 5357 } 5358 5359 /* called with rtnl_lock */ 5360 static void bnx2x_after_function_update(struct bnx2x *bp) 5361 { 5362 int q, rc; 5363 struct bnx2x_fastpath *fp; 5364 struct bnx2x_queue_state_params queue_params = {NULL}; 5365 struct bnx2x_queue_update_params *q_update_params = 5366 &queue_params.params.update; 5367 5368 /* Send Q update command with afex vlan removal values for all Qs */ 5369 queue_params.cmd = BNX2X_Q_CMD_UPDATE; 5370 5371 /* set silent vlan removal values according to vlan mode */ 5372 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 5373 &q_update_params->update_flags); 5374 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 5375 &q_update_params->update_flags); 5376 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5377 5378 /* in access mode mark mask and value are 0 to strip all vlans */ 5379 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { 5380 q_update_params->silent_removal_value = 0; 5381 q_update_params->silent_removal_mask = 0; 5382 } else { 5383 q_update_params->silent_removal_value = 5384 (bp->afex_def_vlan_tag & VLAN_VID_MASK); 5385 q_update_params->silent_removal_mask = VLAN_VID_MASK; 5386 } 5387 5388 for_each_eth_queue(bp, q) { 5389 /* Set the appropriate Queue object */ 5390 fp = &bp->fp[q]; 5391 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5392 5393 /* send the ramrod */ 5394 rc = bnx2x_queue_state_change(bp, &queue_params); 5395 if (rc < 0) 5396 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5397 q); 5398 } 5399 5400 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { 5401 fp = &bp->fp[FCOE_IDX(bp)]; 5402 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5403 5404 /* clear pending completion bit */ 5405 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5406 5407 /* mark latest Q bit */ 5408 smp_mb__before_atomic(); 5409 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 5410 smp_mb__after_atomic(); 5411 5412 /* send Q update ramrod for FCoE Q */ 5413 rc = bnx2x_queue_state_change(bp, &queue_params); 5414 if (rc < 0) 5415 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5416 q); 5417 } else { 5418 /* If no FCoE ring - ACK MCP now */ 5419 bnx2x_link_report(bp); 5420 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5421 } 5422 } 5423 5424 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( 5425 struct bnx2x *bp, u32 cid) 5426 { 5427 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); 5428 5429 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) 5430 return &bnx2x_fcoe_sp_obj(bp, q_obj); 5431 else 5432 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; 5433 } 5434 5435 static void bnx2x_eq_int(struct bnx2x *bp) 5436 { 5437 u16 hw_cons, sw_cons, sw_prod; 5438 union event_ring_elem *elem; 5439 u8 echo; 5440 u32 cid; 5441 u8 opcode; 5442 int rc, spqe_cnt = 0; 5443 struct bnx2x_queue_sp_obj *q_obj; 5444 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; 5445 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; 5446 5447 hw_cons = le16_to_cpu(*bp->eq_cons_sb); 5448 5449 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. 5450 * when we get the next-page we need to adjust so the loop 5451 * condition below will be met. The next element is the size of a 5452 * regular element and hence incrementing by 1 5453 */ 5454 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) 5455 hw_cons++; 5456 5457 /* This function may never run in parallel with itself for a 5458 * specific bp, thus there is no need in "paired" read memory 5459 * barrier here. 5460 */ 5461 sw_cons = bp->eq_cons; 5462 sw_prod = bp->eq_prod; 5463 5464 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", 5465 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); 5466 5467 for (; sw_cons != hw_cons; 5468 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 5469 5470 elem = &bp->eq_ring[EQ_DESC(sw_cons)]; 5471 5472 rc = bnx2x_iov_eq_sp_event(bp, elem); 5473 if (!rc) { 5474 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", 5475 rc); 5476 goto next_spqe; 5477 } 5478 5479 opcode = elem->message.opcode; 5480 5481 /* handle eq element */ 5482 switch (opcode) { 5483 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 5484 bnx2x_vf_mbx_schedule(bp, 5485 &elem->message.data.vf_pf_event); 5486 continue; 5487 5488 case EVENT_RING_OPCODE_STAT_QUERY: 5489 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS), 5490 "got statistics comp event %d\n", 5491 bp->stats_comp++); 5492 /* nothing to do with stats comp */ 5493 goto next_spqe; 5494 5495 case EVENT_RING_OPCODE_CFC_DEL: 5496 /* handle according to cid range */ 5497 /* 5498 * we may want to verify here that the bp state is 5499 * HALTING 5500 */ 5501 5502 /* elem CID originates from FW; actually LE */ 5503 cid = SW_CID(elem->message.data.cfc_del_event.cid); 5504 5505 DP(BNX2X_MSG_SP, 5506 "got delete ramrod for MULTI[%d]\n", cid); 5507 5508 if (CNIC_LOADED(bp) && 5509 !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) 5510 goto next_spqe; 5511 5512 q_obj = bnx2x_cid_to_q_obj(bp, cid); 5513 5514 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) 5515 break; 5516 5517 goto next_spqe; 5518 5519 case EVENT_RING_OPCODE_STOP_TRAFFIC: 5520 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); 5521 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); 5522 if (f_obj->complete_cmd(bp, f_obj, 5523 BNX2X_F_CMD_TX_STOP)) 5524 break; 5525 goto next_spqe; 5526 5527 case EVENT_RING_OPCODE_START_TRAFFIC: 5528 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); 5529 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); 5530 if (f_obj->complete_cmd(bp, f_obj, 5531 BNX2X_F_CMD_TX_START)) 5532 break; 5533 goto next_spqe; 5534 5535 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 5536 echo = elem->message.data.function_update_event.echo; 5537 if (echo == SWITCH_UPDATE) { 5538 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5539 "got FUNC_SWITCH_UPDATE ramrod\n"); 5540 if (f_obj->complete_cmd( 5541 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) 5542 break; 5543 5544 } else { 5545 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE; 5546 5547 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, 5548 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 5549 f_obj->complete_cmd(bp, f_obj, 5550 BNX2X_F_CMD_AFEX_UPDATE); 5551 5552 /* We will perform the Queues update from 5553 * sp_rtnl task as all Queue SP operations 5554 * should run under rtnl_lock. 5555 */ 5556 bnx2x_schedule_sp_rtnl(bp, cmd, 0); 5557 } 5558 5559 goto next_spqe; 5560 5561 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 5562 f_obj->complete_cmd(bp, f_obj, 5563 BNX2X_F_CMD_AFEX_VIFLISTS); 5564 bnx2x_after_afex_vif_lists(bp, elem); 5565 goto next_spqe; 5566 case EVENT_RING_OPCODE_FUNCTION_START: 5567 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5568 "got FUNC_START ramrod\n"); 5569 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) 5570 break; 5571 5572 goto next_spqe; 5573 5574 case EVENT_RING_OPCODE_FUNCTION_STOP: 5575 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5576 "got FUNC_STOP ramrod\n"); 5577 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) 5578 break; 5579 5580 goto next_spqe; 5581 5582 case EVENT_RING_OPCODE_SET_TIMESYNC: 5583 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP, 5584 "got set_timesync ramrod completion\n"); 5585 if (f_obj->complete_cmd(bp, f_obj, 5586 BNX2X_F_CMD_SET_TIMESYNC)) 5587 break; 5588 goto next_spqe; 5589 } 5590 5591 switch (opcode | bp->state) { 5592 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5593 BNX2X_STATE_OPEN): 5594 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5595 BNX2X_STATE_OPENING_WAIT4_PORT): 5596 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5597 BNX2X_STATE_CLOSING_WAIT4_HALT): 5598 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", 5599 SW_CID(elem->message.data.eth_event.echo)); 5600 rss_raw->clear_pending(rss_raw); 5601 break; 5602 5603 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): 5604 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): 5605 case (EVENT_RING_OPCODE_SET_MAC | 5606 BNX2X_STATE_CLOSING_WAIT4_HALT): 5607 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5608 BNX2X_STATE_OPEN): 5609 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5610 BNX2X_STATE_DIAG): 5611 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5612 BNX2X_STATE_CLOSING_WAIT4_HALT): 5613 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n"); 5614 bnx2x_handle_classification_eqe(bp, elem); 5615 break; 5616 5617 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5618 BNX2X_STATE_OPEN): 5619 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5620 BNX2X_STATE_DIAG): 5621 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5622 BNX2X_STATE_CLOSING_WAIT4_HALT): 5623 DP(BNX2X_MSG_SP, "got mcast ramrod\n"); 5624 bnx2x_handle_mcast_eqe(bp); 5625 break; 5626 5627 case (EVENT_RING_OPCODE_FILTERS_RULES | 5628 BNX2X_STATE_OPEN): 5629 case (EVENT_RING_OPCODE_FILTERS_RULES | 5630 BNX2X_STATE_DIAG): 5631 case (EVENT_RING_OPCODE_FILTERS_RULES | 5632 BNX2X_STATE_CLOSING_WAIT4_HALT): 5633 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); 5634 bnx2x_handle_rx_mode_eqe(bp); 5635 break; 5636 default: 5637 /* unknown event log error and continue */ 5638 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", 5639 elem->message.opcode, bp->state); 5640 } 5641 next_spqe: 5642 spqe_cnt++; 5643 } /* for */ 5644 5645 smp_mb__before_atomic(); 5646 atomic_add(spqe_cnt, &bp->eq_spq_left); 5647 5648 bp->eq_cons = sw_cons; 5649 bp->eq_prod = sw_prod; 5650 /* Make sure that above mem writes were issued towards the memory */ 5651 smp_wmb(); 5652 5653 /* update producer */ 5654 bnx2x_update_eq_prod(bp, bp->eq_prod); 5655 } 5656 5657 static void bnx2x_sp_task(struct work_struct *work) 5658 { 5659 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); 5660 5661 DP(BNX2X_MSG_SP, "sp task invoked\n"); 5662 5663 /* make sure the atomic interrupt_occurred has been written */ 5664 smp_rmb(); 5665 if (atomic_read(&bp->interrupt_occurred)) { 5666 5667 /* what work needs to be performed? */ 5668 u16 status = bnx2x_update_dsb_idx(bp); 5669 5670 DP(BNX2X_MSG_SP, "status %x\n", status); 5671 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); 5672 atomic_set(&bp->interrupt_occurred, 0); 5673 5674 /* HW attentions */ 5675 if (status & BNX2X_DEF_SB_ATT_IDX) { 5676 bnx2x_attn_int(bp); 5677 status &= ~BNX2X_DEF_SB_ATT_IDX; 5678 } 5679 5680 /* SP events: STAT_QUERY and others */ 5681 if (status & BNX2X_DEF_SB_IDX) { 5682 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 5683 5684 if (FCOE_INIT(bp) && 5685 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 5686 /* Prevent local bottom-halves from running as 5687 * we are going to change the local NAPI list. 5688 */ 5689 local_bh_disable(); 5690 napi_schedule(&bnx2x_fcoe(bp, napi)); 5691 local_bh_enable(); 5692 } 5693 5694 /* Handle EQ completions */ 5695 bnx2x_eq_int(bp); 5696 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 5697 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); 5698 5699 status &= ~BNX2X_DEF_SB_IDX; 5700 } 5701 5702 /* if status is non zero then perhaps something went wrong */ 5703 if (unlikely(status)) 5704 DP(BNX2X_MSG_SP, 5705 "got an unknown interrupt! (status 0x%x)\n", status); 5706 5707 /* ack status block only if something was actually handled */ 5708 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 5709 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); 5710 } 5711 5712 /* afex - poll to check if VIFSET_ACK should be sent to MFW */ 5713 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, 5714 &bp->sp_state)) { 5715 bnx2x_link_report(bp); 5716 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5717 } 5718 } 5719 5720 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) 5721 { 5722 struct net_device *dev = dev_instance; 5723 struct bnx2x *bp = netdev_priv(dev); 5724 5725 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, 5726 IGU_INT_DISABLE, 0); 5727 5728 #ifdef BNX2X_STOP_ON_ERROR 5729 if (unlikely(bp->panic)) 5730 return IRQ_HANDLED; 5731 #endif 5732 5733 if (CNIC_LOADED(bp)) { 5734 struct cnic_ops *c_ops; 5735 5736 rcu_read_lock(); 5737 c_ops = rcu_dereference(bp->cnic_ops); 5738 if (c_ops) 5739 c_ops->cnic_handler(bp->cnic_data, NULL); 5740 rcu_read_unlock(); 5741 } 5742 5743 /* schedule sp task to perform default status block work, ack 5744 * attentions and enable interrupts. 5745 */ 5746 bnx2x_schedule_sp_task(bp); 5747 5748 return IRQ_HANDLED; 5749 } 5750 5751 /* end of slow path */ 5752 5753 void bnx2x_drv_pulse(struct bnx2x *bp) 5754 { 5755 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, 5756 bp->fw_drv_pulse_wr_seq); 5757 } 5758 5759 static void bnx2x_timer(struct timer_list *t) 5760 { 5761 struct bnx2x *bp = from_timer(bp, t, timer); 5762 5763 if (!netif_running(bp->dev)) 5764 return; 5765 5766 if (IS_PF(bp) && 5767 !BP_NOMCP(bp)) { 5768 int mb_idx = BP_FW_MB_IDX(bp); 5769 u16 drv_pulse; 5770 u16 mcp_pulse; 5771 5772 ++bp->fw_drv_pulse_wr_seq; 5773 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 5774 drv_pulse = bp->fw_drv_pulse_wr_seq; 5775 bnx2x_drv_pulse(bp); 5776 5777 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & 5778 MCP_PULSE_SEQ_MASK); 5779 /* The delta between driver pulse and mcp response 5780 * should not get too big. If the MFW is more than 5 pulses 5781 * behind, we should worry about it enough to generate an error 5782 * log. 5783 */ 5784 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5) 5785 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 5786 drv_pulse, mcp_pulse); 5787 } 5788 5789 if (bp->state == BNX2X_STATE_OPEN) 5790 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); 5791 5792 /* sample pf vf bulletin board for new posts from pf */ 5793 if (IS_VF(bp)) 5794 bnx2x_timer_sriov(bp); 5795 5796 mod_timer(&bp->timer, jiffies + bp->current_interval); 5797 } 5798 5799 /* end of Statistics */ 5800 5801 /* nic init */ 5802 5803 /* 5804 * nic init service functions 5805 */ 5806 5807 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) 5808 { 5809 u32 i; 5810 if (!(len%4) && !(addr%4)) 5811 for (i = 0; i < len; i += 4) 5812 REG_WR(bp, addr + i, fill); 5813 else 5814 for (i = 0; i < len; i++) 5815 REG_WR8(bp, addr + i, fill); 5816 } 5817 5818 /* helper: writes FP SP data to FW - data_size in dwords */ 5819 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, 5820 int fw_sb_id, 5821 u32 *sb_data_p, 5822 u32 data_size) 5823 { 5824 int index; 5825 for (index = 0; index < data_size; index++) 5826 REG_WR(bp, BAR_CSTRORM_INTMEM + 5827 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 5828 sizeof(u32)*index, 5829 *(sb_data_p + index)); 5830 } 5831 5832 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) 5833 { 5834 u32 *sb_data_p; 5835 u32 data_size = 0; 5836 struct hc_status_block_data_e2 sb_data_e2; 5837 struct hc_status_block_data_e1x sb_data_e1x; 5838 5839 /* disable the function first */ 5840 if (!CHIP_IS_E1x(bp)) { 5841 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5842 sb_data_e2.common.state = SB_DISABLED; 5843 sb_data_e2.common.p_func.vf_valid = false; 5844 sb_data_p = (u32 *)&sb_data_e2; 5845 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5846 } else { 5847 memset(&sb_data_e1x, 0, 5848 sizeof(struct hc_status_block_data_e1x)); 5849 sb_data_e1x.common.state = SB_DISABLED; 5850 sb_data_e1x.common.p_func.vf_valid = false; 5851 sb_data_p = (u32 *)&sb_data_e1x; 5852 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5853 } 5854 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5855 5856 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5857 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, 5858 CSTORM_STATUS_BLOCK_SIZE); 5859 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5860 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, 5861 CSTORM_SYNC_BLOCK_SIZE); 5862 } 5863 5864 /* helper: writes SP SB data to FW */ 5865 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, 5866 struct hc_sp_status_block_data *sp_sb_data) 5867 { 5868 int func = BP_FUNC(bp); 5869 int i; 5870 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 5871 REG_WR(bp, BAR_CSTRORM_INTMEM + 5872 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 5873 i*sizeof(u32), 5874 *((u32 *)sp_sb_data + i)); 5875 } 5876 5877 static void bnx2x_zero_sp_sb(struct bnx2x *bp) 5878 { 5879 int func = BP_FUNC(bp); 5880 struct hc_sp_status_block_data sp_sb_data; 5881 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5882 5883 sp_sb_data.state = SB_DISABLED; 5884 sp_sb_data.p_func.vf_valid = false; 5885 5886 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5887 5888 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5889 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, 5890 CSTORM_SP_STATUS_BLOCK_SIZE); 5891 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5892 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, 5893 CSTORM_SP_SYNC_BLOCK_SIZE); 5894 } 5895 5896 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 5897 int igu_sb_id, int igu_seg_id) 5898 { 5899 hc_sm->igu_sb_id = igu_sb_id; 5900 hc_sm->igu_seg_id = igu_seg_id; 5901 hc_sm->timer_value = 0xFF; 5902 hc_sm->time_to_expire = 0xFFFFFFFF; 5903 } 5904 5905 /* allocates state machine ids. */ 5906 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) 5907 { 5908 /* zero out state machine indices */ 5909 /* rx indices */ 5910 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5911 5912 /* tx indices */ 5913 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5914 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 5915 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 5916 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 5917 5918 /* map indices */ 5919 /* rx indices */ 5920 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 5921 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5922 5923 /* tx indices */ 5924 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 5925 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5926 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 5927 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5928 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 5929 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5930 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 5931 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5932 } 5933 5934 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 5935 u8 vf_valid, int fw_sb_id, int igu_sb_id) 5936 { 5937 int igu_seg_id; 5938 5939 struct hc_status_block_data_e2 sb_data_e2; 5940 struct hc_status_block_data_e1x sb_data_e1x; 5941 struct hc_status_block_sm *hc_sm_p; 5942 int data_size; 5943 u32 *sb_data_p; 5944 5945 if (CHIP_INT_MODE_IS_BC(bp)) 5946 igu_seg_id = HC_SEG_ACCESS_NORM; 5947 else 5948 igu_seg_id = IGU_SEG_ACCESS_NORM; 5949 5950 bnx2x_zero_fp_sb(bp, fw_sb_id); 5951 5952 if (!CHIP_IS_E1x(bp)) { 5953 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5954 sb_data_e2.common.state = SB_ENABLED; 5955 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); 5956 sb_data_e2.common.p_func.vf_id = vfid; 5957 sb_data_e2.common.p_func.vf_valid = vf_valid; 5958 sb_data_e2.common.p_func.vnic_id = BP_VN(bp); 5959 sb_data_e2.common.same_igu_sb_1b = true; 5960 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); 5961 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); 5962 hc_sm_p = sb_data_e2.common.state_machine; 5963 sb_data_p = (u32 *)&sb_data_e2; 5964 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5965 bnx2x_map_sb_state_machines(sb_data_e2.index_data); 5966 } else { 5967 memset(&sb_data_e1x, 0, 5968 sizeof(struct hc_status_block_data_e1x)); 5969 sb_data_e1x.common.state = SB_ENABLED; 5970 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); 5971 sb_data_e1x.common.p_func.vf_id = 0xff; 5972 sb_data_e1x.common.p_func.vf_valid = false; 5973 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); 5974 sb_data_e1x.common.same_igu_sb_1b = true; 5975 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); 5976 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); 5977 hc_sm_p = sb_data_e1x.common.state_machine; 5978 sb_data_p = (u32 *)&sb_data_e1x; 5979 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5980 bnx2x_map_sb_state_machines(sb_data_e1x.index_data); 5981 } 5982 5983 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], 5984 igu_sb_id, igu_seg_id); 5985 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], 5986 igu_sb_id, igu_seg_id); 5987 5988 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); 5989 5990 /* write indices to HW - PCI guarantees endianity of regpairs */ 5991 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5992 } 5993 5994 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, 5995 u16 tx_usec, u16 rx_usec) 5996 { 5997 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, 5998 false, rx_usec); 5999 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6000 HC_INDEX_ETH_TX_CQ_CONS_COS0, false, 6001 tx_usec); 6002 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6003 HC_INDEX_ETH_TX_CQ_CONS_COS1, false, 6004 tx_usec); 6005 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6006 HC_INDEX_ETH_TX_CQ_CONS_COS2, false, 6007 tx_usec); 6008 } 6009 6010 static void bnx2x_init_def_sb(struct bnx2x *bp) 6011 { 6012 struct host_sp_status_block *def_sb = bp->def_status_blk; 6013 dma_addr_t mapping = bp->def_status_blk_mapping; 6014 int igu_sp_sb_index; 6015 int igu_seg_id; 6016 int port = BP_PORT(bp); 6017 int func = BP_FUNC(bp); 6018 int reg_offset, reg_offset_en5; 6019 u64 section; 6020 int index; 6021 struct hc_sp_status_block_data sp_sb_data; 6022 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 6023 6024 if (CHIP_INT_MODE_IS_BC(bp)) { 6025 igu_sp_sb_index = DEF_SB_IGU_ID; 6026 igu_seg_id = HC_SEG_ACCESS_DEF; 6027 } else { 6028 igu_sp_sb_index = bp->igu_dsb_id; 6029 igu_seg_id = IGU_SEG_ACCESS_DEF; 6030 } 6031 6032 /* ATTN */ 6033 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6034 atten_status_block); 6035 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 6036 6037 bp->attn_state = 0; 6038 6039 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 6040 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 6041 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 6042 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); 6043 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 6044 int sindex; 6045 /* take care of sig[0]..sig[4] */ 6046 for (sindex = 0; sindex < 4; sindex++) 6047 bp->attn_group[index].sig[sindex] = 6048 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); 6049 6050 if (!CHIP_IS_E1x(bp)) 6051 /* 6052 * enable5 is separate from the rest of the registers, 6053 * and therefore the address skip is 4 6054 * and not 16 between the different groups 6055 */ 6056 bp->attn_group[index].sig[4] = REG_RD(bp, 6057 reg_offset_en5 + 0x4*index); 6058 else 6059 bp->attn_group[index].sig[4] = 0; 6060 } 6061 6062 if (bp->common.int_block == INT_BLOCK_HC) { 6063 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : 6064 HC_REG_ATTN_MSG0_ADDR_L); 6065 6066 REG_WR(bp, reg_offset, U64_LO(section)); 6067 REG_WR(bp, reg_offset + 4, U64_HI(section)); 6068 } else if (!CHIP_IS_E1x(bp)) { 6069 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 6070 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 6071 } 6072 6073 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6074 sp_sb); 6075 6076 bnx2x_zero_sp_sb(bp); 6077 6078 /* PCI guarantees endianity of regpairs */ 6079 sp_sb_data.state = SB_ENABLED; 6080 sp_sb_data.host_sb_addr.lo = U64_LO(section); 6081 sp_sb_data.host_sb_addr.hi = U64_HI(section); 6082 sp_sb_data.igu_sb_id = igu_sp_sb_index; 6083 sp_sb_data.igu_seg_id = igu_seg_id; 6084 sp_sb_data.p_func.pf_id = func; 6085 sp_sb_data.p_func.vnic_id = BP_VN(bp); 6086 sp_sb_data.p_func.vf_id = 0xff; 6087 6088 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 6089 6090 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 6091 } 6092 6093 void bnx2x_update_coalesce(struct bnx2x *bp) 6094 { 6095 int i; 6096 6097 for_each_eth_queue(bp, i) 6098 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, 6099 bp->tx_ticks, bp->rx_ticks); 6100 } 6101 6102 static void bnx2x_init_sp_ring(struct bnx2x *bp) 6103 { 6104 spin_lock_init(&bp->spq_lock); 6105 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); 6106 6107 bp->spq_prod_idx = 0; 6108 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; 6109 bp->spq_prod_bd = bp->spq; 6110 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; 6111 } 6112 6113 static void bnx2x_init_eq_ring(struct bnx2x *bp) 6114 { 6115 int i; 6116 for (i = 1; i <= NUM_EQ_PAGES; i++) { 6117 union event_ring_elem *elem = 6118 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; 6119 6120 elem->next_page.addr.hi = 6121 cpu_to_le32(U64_HI(bp->eq_mapping + 6122 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); 6123 elem->next_page.addr.lo = 6124 cpu_to_le32(U64_LO(bp->eq_mapping + 6125 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); 6126 } 6127 bp->eq_cons = 0; 6128 bp->eq_prod = NUM_EQ_DESC; 6129 bp->eq_cons_sb = BNX2X_EQ_INDEX; 6130 /* we want a warning message before it gets wrought... */ 6131 atomic_set(&bp->eq_spq_left, 6132 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); 6133 } 6134 6135 /* called with netif_addr_lock_bh() */ 6136 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, 6137 unsigned long rx_mode_flags, 6138 unsigned long rx_accept_flags, 6139 unsigned long tx_accept_flags, 6140 unsigned long ramrod_flags) 6141 { 6142 struct bnx2x_rx_mode_ramrod_params ramrod_param; 6143 int rc; 6144 6145 memset(&ramrod_param, 0, sizeof(ramrod_param)); 6146 6147 /* Prepare ramrod parameters */ 6148 ramrod_param.cid = 0; 6149 ramrod_param.cl_id = cl_id; 6150 ramrod_param.rx_mode_obj = &bp->rx_mode_obj; 6151 ramrod_param.func_id = BP_FUNC(bp); 6152 6153 ramrod_param.pstate = &bp->sp_state; 6154 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; 6155 6156 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); 6157 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); 6158 6159 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 6160 6161 ramrod_param.ramrod_flags = ramrod_flags; 6162 ramrod_param.rx_mode_flags = rx_mode_flags; 6163 6164 ramrod_param.rx_accept_flags = rx_accept_flags; 6165 ramrod_param.tx_accept_flags = tx_accept_flags; 6166 6167 rc = bnx2x_config_rx_mode(bp, &ramrod_param); 6168 if (rc < 0) { 6169 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); 6170 return rc; 6171 } 6172 6173 return 0; 6174 } 6175 6176 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, 6177 unsigned long *rx_accept_flags, 6178 unsigned long *tx_accept_flags) 6179 { 6180 /* Clear the flags first */ 6181 *rx_accept_flags = 0; 6182 *tx_accept_flags = 0; 6183 6184 switch (rx_mode) { 6185 case BNX2X_RX_MODE_NONE: 6186 /* 6187 * 'drop all' supersedes any accept flags that may have been 6188 * passed to the function. 6189 */ 6190 break; 6191 case BNX2X_RX_MODE_NORMAL: 6192 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6193 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); 6194 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6195 6196 /* internal switching mode */ 6197 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6198 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); 6199 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6200 6201 if (bp->accept_any_vlan) { 6202 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6203 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6204 } 6205 6206 break; 6207 case BNX2X_RX_MODE_ALLMULTI: 6208 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6209 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6210 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6211 6212 /* internal switching mode */ 6213 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6214 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6215 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6216 6217 if (bp->accept_any_vlan) { 6218 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6219 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6220 } 6221 6222 break; 6223 case BNX2X_RX_MODE_PROMISC: 6224 /* According to definition of SI mode, iface in promisc mode 6225 * should receive matched and unmatched (in resolution of port) 6226 * unicast packets. 6227 */ 6228 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); 6229 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6230 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6231 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6232 6233 /* internal switching mode */ 6234 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6235 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6236 6237 if (IS_MF_SI(bp)) 6238 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); 6239 else 6240 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6241 6242 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6243 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6244 6245 break; 6246 default: 6247 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); 6248 return -EINVAL; 6249 } 6250 6251 return 0; 6252 } 6253 6254 /* called with netif_addr_lock_bh() */ 6255 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp) 6256 { 6257 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 6258 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 6259 int rc; 6260 6261 if (!NO_FCOE(bp)) 6262 /* Configure rx_mode of FCoE Queue */ 6263 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); 6264 6265 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, 6266 &tx_accept_flags); 6267 if (rc) 6268 return rc; 6269 6270 __set_bit(RAMROD_RX, &ramrod_flags); 6271 __set_bit(RAMROD_TX, &ramrod_flags); 6272 6273 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, 6274 rx_accept_flags, tx_accept_flags, 6275 ramrod_flags); 6276 } 6277 6278 static void bnx2x_init_internal_common(struct bnx2x *bp) 6279 { 6280 int i; 6281 6282 /* Zero this manually as its initialization is 6283 currently missing in the initTool */ 6284 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) 6285 REG_WR(bp, BAR_USTRORM_INTMEM + 6286 USTORM_AGG_DATA_OFFSET + i * 4, 0); 6287 if (!CHIP_IS_E1x(bp)) { 6288 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, 6289 CHIP_INT_MODE_IS_BC(bp) ? 6290 HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 6291 } 6292 } 6293 6294 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) 6295 { 6296 switch (load_code) { 6297 case FW_MSG_CODE_DRV_LOAD_COMMON: 6298 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 6299 bnx2x_init_internal_common(bp); 6300 /* no break */ 6301 6302 case FW_MSG_CODE_DRV_LOAD_PORT: 6303 /* nothing to do */ 6304 /* no break */ 6305 6306 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 6307 /* internal memory per function is 6308 initialized inside bnx2x_pf_init */ 6309 break; 6310 6311 default: 6312 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); 6313 break; 6314 } 6315 } 6316 6317 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) 6318 { 6319 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); 6320 } 6321 6322 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) 6323 { 6324 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); 6325 } 6326 6327 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) 6328 { 6329 if (CHIP_IS_E1x(fp->bp)) 6330 return BP_L_ID(fp->bp) + fp->index; 6331 else /* We want Client ID to be the same as IGU SB ID for 57712 */ 6332 return bnx2x_fp_igu_sb_id(fp); 6333 } 6334 6335 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) 6336 { 6337 struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; 6338 u8 cos; 6339 unsigned long q_type = 0; 6340 u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; 6341 fp->rx_queue = fp_idx; 6342 fp->cid = fp_idx; 6343 fp->cl_id = bnx2x_fp_cl_id(fp); 6344 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); 6345 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); 6346 /* qZone id equals to FW (per path) client id */ 6347 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); 6348 6349 /* init shortcut */ 6350 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); 6351 6352 /* Setup SB indices */ 6353 fp->rx_cons_sb = BNX2X_RX_SB_INDEX; 6354 6355 /* Configure Queue State object */ 6356 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6357 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6358 6359 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); 6360 6361 /* init tx data */ 6362 for_each_cos_in_tx_queue(fp, cos) { 6363 bnx2x_init_txdata(bp, fp->txdata_ptr[cos], 6364 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), 6365 FP_COS_TO_TXQ(fp, cos, bp), 6366 BNX2X_TX_SB_INDEX_BASE + cos, fp); 6367 cids[cos] = fp->txdata_ptr[cos]->cid; 6368 } 6369 6370 /* nothing more for vf to do here */ 6371 if (IS_VF(bp)) 6372 return; 6373 6374 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, 6375 fp->fw_sb_id, fp->igu_sb_id); 6376 bnx2x_update_fpsb_idx(fp); 6377 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, 6378 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6379 bnx2x_sp_mapping(bp, q_rdata), q_type); 6380 6381 /** 6382 * Configure classification DBs: Always enable Tx switching 6383 */ 6384 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); 6385 6386 DP(NETIF_MSG_IFUP, 6387 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6388 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6389 fp->igu_sb_id); 6390 } 6391 6392 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) 6393 { 6394 int i; 6395 6396 for (i = 1; i <= NUM_TX_RINGS; i++) { 6397 struct eth_tx_next_bd *tx_next_bd = 6398 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; 6399 6400 tx_next_bd->addr_hi = 6401 cpu_to_le32(U64_HI(txdata->tx_desc_mapping + 6402 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6403 tx_next_bd->addr_lo = 6404 cpu_to_le32(U64_LO(txdata->tx_desc_mapping + 6405 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6406 } 6407 6408 *txdata->tx_cons_sb = cpu_to_le16(0); 6409 6410 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 6411 txdata->tx_db.data.zero_fill1 = 0; 6412 txdata->tx_db.data.prod = 0; 6413 6414 txdata->tx_pkt_prod = 0; 6415 txdata->tx_pkt_cons = 0; 6416 txdata->tx_bd_prod = 0; 6417 txdata->tx_bd_cons = 0; 6418 txdata->tx_pkt = 0; 6419 } 6420 6421 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) 6422 { 6423 int i; 6424 6425 for_each_tx_queue_cnic(bp, i) 6426 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); 6427 } 6428 6429 static void bnx2x_init_tx_rings(struct bnx2x *bp) 6430 { 6431 int i; 6432 u8 cos; 6433 6434 for_each_eth_queue(bp, i) 6435 for_each_cos_in_tx_queue(&bp->fp[i], cos) 6436 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); 6437 } 6438 6439 static void bnx2x_init_fcoe_fp(struct bnx2x *bp) 6440 { 6441 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 6442 unsigned long q_type = 0; 6443 6444 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp); 6445 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp, 6446 BNX2X_FCOE_ETH_CL_ID_IDX); 6447 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp); 6448 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID; 6449 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id; 6450 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX; 6451 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]), 6452 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX, 6453 fp); 6454 6455 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index); 6456 6457 /* qZone id equals to FW (per path) client id */ 6458 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp); 6459 /* init shortcut */ 6460 bnx2x_fcoe(bp, ustorm_rx_prods_offset) = 6461 bnx2x_rx_ustorm_prods_offset(fp); 6462 6463 /* Configure Queue State object */ 6464 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6465 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6466 6467 /* No multi-CoS for FCoE L2 client */ 6468 BUG_ON(fp->max_cos != 1); 6469 6470 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, 6471 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6472 bnx2x_sp_mapping(bp, q_rdata), q_type); 6473 6474 DP(NETIF_MSG_IFUP, 6475 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6476 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6477 fp->igu_sb_id); 6478 } 6479 6480 void bnx2x_nic_init_cnic(struct bnx2x *bp) 6481 { 6482 if (!NO_FCOE(bp)) 6483 bnx2x_init_fcoe_fp(bp); 6484 6485 bnx2x_init_sb(bp, bp->cnic_sb_mapping, 6486 BNX2X_VF_ID_INVALID, false, 6487 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); 6488 6489 /* ensure status block indices were read */ 6490 rmb(); 6491 bnx2x_init_rx_rings_cnic(bp); 6492 bnx2x_init_tx_rings_cnic(bp); 6493 6494 /* flush all */ 6495 mb(); 6496 } 6497 6498 void bnx2x_pre_irq_nic_init(struct bnx2x *bp) 6499 { 6500 int i; 6501 6502 /* Setup NIC internals and enable interrupts */ 6503 for_each_eth_queue(bp, i) 6504 bnx2x_init_eth_fp(bp, i); 6505 6506 /* ensure status block indices were read */ 6507 rmb(); 6508 bnx2x_init_rx_rings(bp); 6509 bnx2x_init_tx_rings(bp); 6510 6511 if (IS_PF(bp)) { 6512 /* Initialize MOD_ABS interrupts */ 6513 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, 6514 bp->common.shmem_base, 6515 bp->common.shmem2_base, BP_PORT(bp)); 6516 6517 /* initialize the default status block and sp ring */ 6518 bnx2x_init_def_sb(bp); 6519 bnx2x_update_dsb_idx(bp); 6520 bnx2x_init_sp_ring(bp); 6521 } else { 6522 bnx2x_memset_stats(bp); 6523 } 6524 } 6525 6526 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code) 6527 { 6528 bnx2x_init_eq_ring(bp); 6529 bnx2x_init_internal(bp, load_code); 6530 bnx2x_pf_init(bp); 6531 bnx2x_stats_init(bp); 6532 6533 /* flush all before enabling interrupts */ 6534 mb(); 6535 6536 bnx2x_int_enable(bp); 6537 6538 /* Check for SPIO5 */ 6539 bnx2x_attn_int_deasserted0(bp, 6540 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & 6541 AEU_INPUTS_ATTN_BITS_SPIO5); 6542 } 6543 6544 /* gzip service functions */ 6545 static int bnx2x_gunzip_init(struct bnx2x *bp) 6546 { 6547 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, 6548 &bp->gunzip_mapping, GFP_KERNEL); 6549 if (bp->gunzip_buf == NULL) 6550 goto gunzip_nomem1; 6551 6552 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); 6553 if (bp->strm == NULL) 6554 goto gunzip_nomem2; 6555 6556 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); 6557 if (bp->strm->workspace == NULL) 6558 goto gunzip_nomem3; 6559 6560 return 0; 6561 6562 gunzip_nomem3: 6563 kfree(bp->strm); 6564 bp->strm = NULL; 6565 6566 gunzip_nomem2: 6567 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6568 bp->gunzip_mapping); 6569 bp->gunzip_buf = NULL; 6570 6571 gunzip_nomem1: 6572 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); 6573 return -ENOMEM; 6574 } 6575 6576 static void bnx2x_gunzip_end(struct bnx2x *bp) 6577 { 6578 if (bp->strm) { 6579 vfree(bp->strm->workspace); 6580 kfree(bp->strm); 6581 bp->strm = NULL; 6582 } 6583 6584 if (bp->gunzip_buf) { 6585 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6586 bp->gunzip_mapping); 6587 bp->gunzip_buf = NULL; 6588 } 6589 } 6590 6591 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) 6592 { 6593 int n, rc; 6594 6595 /* check gzip header */ 6596 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { 6597 BNX2X_ERR("Bad gzip header\n"); 6598 return -EINVAL; 6599 } 6600 6601 n = 10; 6602 6603 #define FNAME 0x8 6604 6605 if (zbuf[3] & FNAME) 6606 while ((zbuf[n++] != 0) && (n < len)); 6607 6608 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; 6609 bp->strm->avail_in = len - n; 6610 bp->strm->next_out = bp->gunzip_buf; 6611 bp->strm->avail_out = FW_BUF_SIZE; 6612 6613 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); 6614 if (rc != Z_OK) 6615 return rc; 6616 6617 rc = zlib_inflate(bp->strm, Z_FINISH); 6618 if ((rc != Z_OK) && (rc != Z_STREAM_END)) 6619 netdev_err(bp->dev, "Firmware decompression error: %s\n", 6620 bp->strm->msg); 6621 6622 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); 6623 if (bp->gunzip_outlen & 0x3) 6624 netdev_err(bp->dev, 6625 "Firmware decompression error: gunzip_outlen (%d) not aligned\n", 6626 bp->gunzip_outlen); 6627 bp->gunzip_outlen >>= 2; 6628 6629 zlib_inflateEnd(bp->strm); 6630 6631 if (rc == Z_STREAM_END) 6632 return 0; 6633 6634 return rc; 6635 } 6636 6637 /* nic load/unload */ 6638 6639 /* 6640 * General service functions 6641 */ 6642 6643 /* send a NIG loopback debug packet */ 6644 static void bnx2x_lb_pckt(struct bnx2x *bp) 6645 { 6646 u32 wb_write[3]; 6647 6648 /* Ethernet source and destination addresses */ 6649 wb_write[0] = 0x55555555; 6650 wb_write[1] = 0x55555555; 6651 wb_write[2] = 0x20; /* SOP */ 6652 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6653 6654 /* NON-IP protocol */ 6655 wb_write[0] = 0x09000000; 6656 wb_write[1] = 0x55555555; 6657 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 6658 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6659 } 6660 6661 /* some of the internal memories 6662 * are not directly readable from the driver 6663 * to test them we send debug packets 6664 */ 6665 static int bnx2x_int_mem_test(struct bnx2x *bp) 6666 { 6667 int factor; 6668 int count, i; 6669 u32 val = 0; 6670 6671 if (CHIP_REV_IS_FPGA(bp)) 6672 factor = 120; 6673 else if (CHIP_REV_IS_EMUL(bp)) 6674 factor = 200; 6675 else 6676 factor = 1; 6677 6678 /* Disable inputs of parser neighbor blocks */ 6679 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6680 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6681 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6682 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6683 6684 /* Write 0 to parser credits for CFC search request */ 6685 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6686 6687 /* send Ethernet packet */ 6688 bnx2x_lb_pckt(bp); 6689 6690 /* TODO do i reset NIG statistic? */ 6691 /* Wait until NIG register shows 1 packet of size 0x10 */ 6692 count = 1000 * factor; 6693 while (count) { 6694 6695 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6696 val = *bnx2x_sp(bp, wb_data[0]); 6697 if (val == 0x10) 6698 break; 6699 6700 usleep_range(10000, 20000); 6701 count--; 6702 } 6703 if (val != 0x10) { 6704 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6705 return -1; 6706 } 6707 6708 /* Wait until PRS register shows 1 packet */ 6709 count = 1000 * factor; 6710 while (count) { 6711 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6712 if (val == 1) 6713 break; 6714 6715 usleep_range(10000, 20000); 6716 count--; 6717 } 6718 if (val != 0x1) { 6719 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6720 return -2; 6721 } 6722 6723 /* Reset and init BRB, PRS */ 6724 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6725 msleep(50); 6726 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6727 msleep(50); 6728 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6729 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6730 6731 DP(NETIF_MSG_HW, "part2\n"); 6732 6733 /* Disable inputs of parser neighbor blocks */ 6734 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6735 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6736 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6737 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6738 6739 /* Write 0 to parser credits for CFC search request */ 6740 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6741 6742 /* send 10 Ethernet packets */ 6743 for (i = 0; i < 10; i++) 6744 bnx2x_lb_pckt(bp); 6745 6746 /* Wait until NIG register shows 10 + 1 6747 packets of size 11*0x10 = 0xb0 */ 6748 count = 1000 * factor; 6749 while (count) { 6750 6751 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6752 val = *bnx2x_sp(bp, wb_data[0]); 6753 if (val == 0xb0) 6754 break; 6755 6756 usleep_range(10000, 20000); 6757 count--; 6758 } 6759 if (val != 0xb0) { 6760 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6761 return -3; 6762 } 6763 6764 /* Wait until PRS register shows 2 packets */ 6765 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6766 if (val != 2) 6767 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6768 6769 /* Write 1 to parser credits for CFC search request */ 6770 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 6771 6772 /* Wait until PRS register shows 3 packets */ 6773 msleep(10 * factor); 6774 /* Wait until NIG register shows 1 packet of size 0x10 */ 6775 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6776 if (val != 3) 6777 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6778 6779 /* clear NIG EOP FIFO */ 6780 for (i = 0; i < 11; i++) 6781 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); 6782 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); 6783 if (val != 1) { 6784 BNX2X_ERR("clear of NIG failed\n"); 6785 return -4; 6786 } 6787 6788 /* Reset and init BRB, PRS, NIG */ 6789 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6790 msleep(50); 6791 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6792 msleep(50); 6793 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6794 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6795 if (!CNIC_SUPPORT(bp)) 6796 /* set NIC mode */ 6797 REG_WR(bp, PRS_REG_NIC_MODE, 1); 6798 6799 /* Enable inputs of parser neighbor blocks */ 6800 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); 6801 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); 6802 REG_WR(bp, CFC_REG_DEBUG0, 0x0); 6803 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); 6804 6805 DP(NETIF_MSG_HW, "done\n"); 6806 6807 return 0; /* OK */ 6808 } 6809 6810 static void bnx2x_enable_blocks_attention(struct bnx2x *bp) 6811 { 6812 u32 val; 6813 6814 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6815 if (!CHIP_IS_E1x(bp)) 6816 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); 6817 else 6818 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); 6819 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6820 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 6821 /* 6822 * mask read length error interrupts in brb for parser 6823 * (parsing unit and 'checksum and crc' unit) 6824 * these errors are legal (PU reads fixed length and CAC can cause 6825 * read length error on truncated packets) 6826 */ 6827 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); 6828 REG_WR(bp, QM_REG_QM_INT_MASK, 0); 6829 REG_WR(bp, TM_REG_TM_INT_MASK, 0); 6830 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); 6831 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); 6832 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); 6833 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ 6834 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ 6835 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); 6836 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); 6837 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); 6838 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ 6839 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ 6840 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 6841 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); 6842 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); 6843 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); 6844 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ 6845 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ 6846 6847 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 6848 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 6849 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; 6850 if (!CHIP_IS_E1x(bp)) 6851 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 6852 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; 6853 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); 6854 6855 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); 6856 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); 6857 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); 6858 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ 6859 6860 if (!CHIP_IS_E1x(bp)) 6861 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 6862 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 6863 6864 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); 6865 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); 6866 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ 6867 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 6868 } 6869 6870 static void bnx2x_reset_common(struct bnx2x *bp) 6871 { 6872 u32 val = 0x1400; 6873 6874 /* reset_common */ 6875 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6876 0xd3ffff7f); 6877 6878 if (CHIP_IS_E3(bp)) { 6879 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6880 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6881 } 6882 6883 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); 6884 } 6885 6886 static void bnx2x_setup_dmae(struct bnx2x *bp) 6887 { 6888 bp->dmae_ready = 0; 6889 spin_lock_init(&bp->dmae_lock); 6890 } 6891 6892 static void bnx2x_init_pxp(struct bnx2x *bp) 6893 { 6894 u16 devctl; 6895 int r_order, w_order; 6896 6897 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); 6898 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); 6899 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6900 if (bp->mrrs == -1) 6901 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6902 else { 6903 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); 6904 r_order = bp->mrrs; 6905 } 6906 6907 bnx2x_init_pxp_arb(bp, r_order, w_order); 6908 } 6909 6910 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) 6911 { 6912 int is_required; 6913 u32 val; 6914 int port; 6915 6916 if (BP_NOMCP(bp)) 6917 return; 6918 6919 is_required = 0; 6920 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & 6921 SHARED_HW_CFG_FAN_FAILURE_MASK; 6922 6923 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) 6924 is_required = 1; 6925 6926 /* 6927 * The fan failure mechanism is usually related to the PHY type since 6928 * the power consumption of the board is affected by the PHY. Currently, 6929 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 6930 */ 6931 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) 6932 for (port = PORT_0; port < PORT_MAX; port++) { 6933 is_required |= 6934 bnx2x_fan_failure_det_req( 6935 bp, 6936 bp->common.shmem_base, 6937 bp->common.shmem2_base, 6938 port); 6939 } 6940 6941 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); 6942 6943 if (is_required == 0) 6944 return; 6945 6946 /* Fan failure is indicated by SPIO 5 */ 6947 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 6948 6949 /* set to active low mode */ 6950 val = REG_RD(bp, MISC_REG_SPIO_INT); 6951 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 6952 REG_WR(bp, MISC_REG_SPIO_INT, val); 6953 6954 /* enable interrupt to signal the IGU */ 6955 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 6956 val |= MISC_SPIO_SPIO5; 6957 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); 6958 } 6959 6960 void bnx2x_pf_disable(struct bnx2x *bp) 6961 { 6962 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 6963 val &= ~IGU_PF_CONF_FUNC_EN; 6964 6965 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 6966 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6967 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); 6968 } 6969 6970 static void bnx2x__common_init_phy(struct bnx2x *bp) 6971 { 6972 u32 shmem_base[2], shmem2_base[2]; 6973 /* Avoid common init in case MFW supports LFA */ 6974 if (SHMEM2_RD(bp, size) > 6975 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 6976 return; 6977 shmem_base[0] = bp->common.shmem_base; 6978 shmem2_base[0] = bp->common.shmem2_base; 6979 if (!CHIP_IS_E1x(bp)) { 6980 shmem_base[1] = 6981 SHMEM2_RD(bp, other_shmem_base_addr); 6982 shmem2_base[1] = 6983 SHMEM2_RD(bp, other_shmem2_base_addr); 6984 } 6985 bnx2x_acquire_phy_lock(bp); 6986 bnx2x_common_init_phy(bp, shmem_base, shmem2_base, 6987 bp->common.chip_id); 6988 bnx2x_release_phy_lock(bp); 6989 } 6990 6991 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val) 6992 { 6993 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val); 6994 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val); 6995 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val); 6996 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val); 6997 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val); 6998 6999 /* make sure this value is 0 */ 7000 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); 7001 7002 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val); 7003 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val); 7004 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val); 7005 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val); 7006 } 7007 7008 static void bnx2x_set_endianity(struct bnx2x *bp) 7009 { 7010 #ifdef __BIG_ENDIAN 7011 bnx2x_config_endianity(bp, 1); 7012 #else 7013 bnx2x_config_endianity(bp, 0); 7014 #endif 7015 } 7016 7017 static void bnx2x_reset_endianity(struct bnx2x *bp) 7018 { 7019 bnx2x_config_endianity(bp, 0); 7020 } 7021 7022 /** 7023 * bnx2x_init_hw_common - initialize the HW at the COMMON phase. 7024 * 7025 * @bp: driver handle 7026 */ 7027 static int bnx2x_init_hw_common(struct bnx2x *bp) 7028 { 7029 u32 val; 7030 7031 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); 7032 7033 /* 7034 * take the RESET lock to protect undi_unload flow from accessing 7035 * registers while we're resetting the chip 7036 */ 7037 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7038 7039 bnx2x_reset_common(bp); 7040 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); 7041 7042 val = 0xfffc; 7043 if (CHIP_IS_E3(bp)) { 7044 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 7045 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 7046 } 7047 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); 7048 7049 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7050 7051 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); 7052 7053 if (!CHIP_IS_E1x(bp)) { 7054 u8 abs_func_id; 7055 7056 /** 7057 * 4-port mode or 2-port mode we need to turn of master-enable 7058 * for everyone, after that, turn it back on for self. 7059 * so, we disregard multi-function or not, and always disable 7060 * for all functions on the given path, this means 0,2,4,6 for 7061 * path 0 and 1,3,5,7 for path 1 7062 */ 7063 for (abs_func_id = BP_PATH(bp); 7064 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { 7065 if (abs_func_id == BP_ABS_FUNC(bp)) { 7066 REG_WR(bp, 7067 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 7068 1); 7069 continue; 7070 } 7071 7072 bnx2x_pretend_func(bp, abs_func_id); 7073 /* clear pf enable */ 7074 bnx2x_pf_disable(bp); 7075 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7076 } 7077 } 7078 7079 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); 7080 if (CHIP_IS_E1(bp)) { 7081 /* enable HW interrupt from PXP on USDM overflow 7082 bit 16 on INT_MASK_0 */ 7083 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 7084 } 7085 7086 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); 7087 bnx2x_init_pxp(bp); 7088 bnx2x_set_endianity(bp); 7089 bnx2x_ilt_init_page_size(bp, INITOP_SET); 7090 7091 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) 7092 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 7093 7094 /* let the HW do it's magic ... */ 7095 msleep(100); 7096 /* finish PXP init */ 7097 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); 7098 if (val != 1) { 7099 BNX2X_ERR("PXP2 CFG failed\n"); 7100 return -EBUSY; 7101 } 7102 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); 7103 if (val != 1) { 7104 BNX2X_ERR("PXP2 RD_INIT failed\n"); 7105 return -EBUSY; 7106 } 7107 7108 /* Timers bug workaround E2 only. We need to set the entire ILT to 7109 * have entries with value "0" and valid bit on. 7110 * This needs to be done by the first PF that is loaded in a path 7111 * (i.e. common phase) 7112 */ 7113 if (!CHIP_IS_E1x(bp)) { 7114 /* In E2 there is a bug in the timers block that can cause function 6 / 7 7115 * (i.e. vnic3) to start even if it is marked as "scan-off". 7116 * This occurs when a different function (func2,3) is being marked 7117 * as "scan-off". Real-life scenario for example: if a driver is being 7118 * load-unloaded while func6,7 are down. This will cause the timer to access 7119 * the ilt, translate to a logical address and send a request to read/write. 7120 * Since the ilt for the function that is down is not valid, this will cause 7121 * a translation error which is unrecoverable. 7122 * The Workaround is intended to make sure that when this happens nothing fatal 7123 * will occur. The workaround: 7124 * 1. First PF driver which loads on a path will: 7125 * a. After taking the chip out of reset, by using pretend, 7126 * it will write "0" to the following registers of 7127 * the other vnics. 7128 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 7129 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 7130 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 7131 * And for itself it will write '1' to 7132 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 7133 * dmae-operations (writing to pram for example.) 7134 * note: can be done for only function 6,7 but cleaner this 7135 * way. 7136 * b. Write zero+valid to the entire ILT. 7137 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 7138 * VNIC3 (of that port). The range allocated will be the 7139 * entire ILT. This is needed to prevent ILT range error. 7140 * 2. Any PF driver load flow: 7141 * a. ILT update with the physical addresses of the allocated 7142 * logical pages. 7143 * b. Wait 20msec. - note that this timeout is needed to make 7144 * sure there are no requests in one of the PXP internal 7145 * queues with "old" ILT addresses. 7146 * c. PF enable in the PGLC. 7147 * d. Clear the was_error of the PF in the PGLC. (could have 7148 * occurred while driver was down) 7149 * e. PF enable in the CFC (WEAK + STRONG) 7150 * f. Timers scan enable 7151 * 3. PF driver unload flow: 7152 * a. Clear the Timers scan_en. 7153 * b. Polling for scan_on=0 for that PF. 7154 * c. Clear the PF enable bit in the PXP. 7155 * d. Clear the PF enable in the CFC (WEAK + STRONG) 7156 * e. Write zero+valid to all ILT entries (The valid bit must 7157 * stay set) 7158 * f. If this is VNIC 3 of a port then also init 7159 * first_timers_ilt_entry to zero and last_timers_ilt_entry 7160 * to the last entry in the ILT. 7161 * 7162 * Notes: 7163 * Currently the PF error in the PGLC is non recoverable. 7164 * In the future the there will be a recovery routine for this error. 7165 * Currently attention is masked. 7166 * Having an MCP lock on the load/unload process does not guarantee that 7167 * there is no Timer disable during Func6/7 enable. This is because the 7168 * Timers scan is currently being cleared by the MCP on FLR. 7169 * Step 2.d can be done only for PF6/7 and the driver can also check if 7170 * there is error before clearing it. But the flow above is simpler and 7171 * more general. 7172 * All ILT entries are written by zero+valid and not just PF6/7 7173 * ILT entries since in the future the ILT entries allocation for 7174 * PF-s might be dynamic. 7175 */ 7176 struct ilt_client_info ilt_cli; 7177 struct bnx2x_ilt ilt; 7178 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 7179 memset(&ilt, 0, sizeof(struct bnx2x_ilt)); 7180 7181 /* initialize dummy TM client */ 7182 ilt_cli.start = 0; 7183 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 7184 ilt_cli.client_num = ILT_CLIENT_TM; 7185 7186 /* Step 1: set zeroes to all ilt page entries with valid bit on 7187 * Step 2: set the timers first/last ilt entry to point 7188 * to the entire range to prevent ILT range error for 3rd/4th 7189 * vnic (this code assumes existence of the vnic) 7190 * 7191 * both steps performed by call to bnx2x_ilt_client_init_op() 7192 * with dummy TM client 7193 * 7194 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 7195 * and his brother are split registers 7196 */ 7197 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); 7198 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); 7199 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7200 7201 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); 7202 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); 7203 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 7204 } 7205 7206 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); 7207 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); 7208 7209 if (!CHIP_IS_E1x(bp)) { 7210 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : 7211 (CHIP_REV_IS_FPGA(bp) ? 400 : 0); 7212 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); 7213 7214 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); 7215 7216 /* let the HW do it's magic ... */ 7217 do { 7218 msleep(200); 7219 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); 7220 } while (factor-- && (val != 1)); 7221 7222 if (val != 1) { 7223 BNX2X_ERR("ATC_INIT failed\n"); 7224 return -EBUSY; 7225 } 7226 } 7227 7228 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); 7229 7230 bnx2x_iov_init_dmae(bp); 7231 7232 /* clean the DMAE memory */ 7233 bp->dmae_ready = 1; 7234 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); 7235 7236 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); 7237 7238 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); 7239 7240 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); 7241 7242 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); 7243 7244 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); 7245 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); 7246 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); 7247 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); 7248 7249 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); 7250 7251 /* QM queues pointers table */ 7252 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); 7253 7254 /* soft reset pulse */ 7255 REG_WR(bp, QM_REG_SOFT_RESET, 1); 7256 REG_WR(bp, QM_REG_SOFT_RESET, 0); 7257 7258 if (CNIC_SUPPORT(bp)) 7259 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); 7260 7261 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); 7262 7263 if (!CHIP_REV_IS_SLOW(bp)) 7264 /* enable hw interrupt from doorbell Q */ 7265 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 7266 7267 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 7268 7269 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 7270 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); 7271 7272 if (!CHIP_IS_E1(bp)) 7273 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); 7274 7275 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { 7276 if (IS_MF_AFEX(bp)) { 7277 /* configure that VNTag and VLAN headers must be 7278 * received in afex mode 7279 */ 7280 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); 7281 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); 7282 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 7283 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 7284 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); 7285 } else { 7286 /* Bit-map indicating which L2 hdrs may appear 7287 * after the basic Ethernet header 7288 */ 7289 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 7290 bp->path_has_ovlan ? 7 : 6); 7291 } 7292 } 7293 7294 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); 7295 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); 7296 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); 7297 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); 7298 7299 if (!CHIP_IS_E1x(bp)) { 7300 /* reset VFC memories */ 7301 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7302 VFC_MEMORIES_RST_REG_CAM_RST | 7303 VFC_MEMORIES_RST_REG_RAM_RST); 7304 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7305 VFC_MEMORIES_RST_REG_CAM_RST | 7306 VFC_MEMORIES_RST_REG_RAM_RST); 7307 7308 msleep(20); 7309 } 7310 7311 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); 7312 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); 7313 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); 7314 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); 7315 7316 /* sync semi rtc */ 7317 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 7318 0x80000000); 7319 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 7320 0x80000000); 7321 7322 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); 7323 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); 7324 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); 7325 7326 if (!CHIP_IS_E1x(bp)) { 7327 if (IS_MF_AFEX(bp)) { 7328 /* configure that VNTag and VLAN headers must be 7329 * sent in afex mode 7330 */ 7331 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); 7332 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); 7333 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 7334 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 7335 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); 7336 } else { 7337 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 7338 bp->path_has_ovlan ? 7 : 6); 7339 } 7340 } 7341 7342 REG_WR(bp, SRC_REG_SOFT_RST, 1); 7343 7344 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); 7345 7346 if (CNIC_SUPPORT(bp)) { 7347 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); 7348 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 7349 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); 7350 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); 7351 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); 7352 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 7353 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); 7354 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 7355 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); 7356 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); 7357 } 7358 REG_WR(bp, SRC_REG_SOFT_RST, 0); 7359 7360 if (sizeof(union cdu_context) != 1024) 7361 /* we currently assume that a context is 1024 bytes */ 7362 dev_alert(&bp->pdev->dev, 7363 "please adjust the size of cdu_context(%ld)\n", 7364 (long)sizeof(union cdu_context)); 7365 7366 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); 7367 val = (4 << 24) + (0 << 12) + 1024; 7368 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); 7369 7370 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); 7371 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); 7372 /* enable context validation interrupt from CFC */ 7373 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 7374 7375 /* set the thresholds to prevent CFC/CDU race */ 7376 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); 7377 7378 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); 7379 7380 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) 7381 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); 7382 7383 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); 7384 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); 7385 7386 /* Reset PCIE errors for debug */ 7387 REG_WR(bp, 0x2814, 0xffffffff); 7388 REG_WR(bp, 0x3820, 0xffffffff); 7389 7390 if (!CHIP_IS_E1x(bp)) { 7391 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 7392 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 7393 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 7394 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 7395 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 7396 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 7397 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 7398 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 7399 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 7400 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 7401 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 7402 } 7403 7404 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); 7405 if (!CHIP_IS_E1(bp)) { 7406 /* in E3 this done in per-port section */ 7407 if (!CHIP_IS_E3(bp)) 7408 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7409 } 7410 if (CHIP_IS_E1H(bp)) 7411 /* not applicable for E2 (and above ...) */ 7412 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); 7413 7414 if (CHIP_REV_IS_SLOW(bp)) 7415 msleep(200); 7416 7417 /* finish CFC init */ 7418 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); 7419 if (val != 1) { 7420 BNX2X_ERR("CFC LL_INIT failed\n"); 7421 return -EBUSY; 7422 } 7423 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); 7424 if (val != 1) { 7425 BNX2X_ERR("CFC AC_INIT failed\n"); 7426 return -EBUSY; 7427 } 7428 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 7429 if (val != 1) { 7430 BNX2X_ERR("CFC CAM_INIT failed\n"); 7431 return -EBUSY; 7432 } 7433 REG_WR(bp, CFC_REG_DEBUG0, 0); 7434 7435 if (CHIP_IS_E1(bp)) { 7436 /* read NIG statistic 7437 to see if this is our first up since powerup */ 7438 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 7439 val = *bnx2x_sp(bp, wb_data[0]); 7440 7441 /* do internal memory self test */ 7442 if ((val == 0) && bnx2x_int_mem_test(bp)) { 7443 BNX2X_ERR("internal mem self test failed\n"); 7444 return -EBUSY; 7445 } 7446 } 7447 7448 bnx2x_setup_fan_failure_detection(bp); 7449 7450 /* clear PXP2 attentions */ 7451 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); 7452 7453 bnx2x_enable_blocks_attention(bp); 7454 bnx2x_enable_blocks_parity(bp); 7455 7456 if (!BP_NOMCP(bp)) { 7457 if (CHIP_IS_E1x(bp)) 7458 bnx2x__common_init_phy(bp); 7459 } else 7460 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 7461 7462 if (SHMEM2_HAS(bp, netproc_fw_ver)) 7463 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 7464 7465 return 0; 7466 } 7467 7468 /** 7469 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. 7470 * 7471 * @bp: driver handle 7472 */ 7473 static int bnx2x_init_hw_common_chip(struct bnx2x *bp) 7474 { 7475 int rc = bnx2x_init_hw_common(bp); 7476 7477 if (rc) 7478 return rc; 7479 7480 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 7481 if (!BP_NOMCP(bp)) 7482 bnx2x__common_init_phy(bp); 7483 7484 return 0; 7485 } 7486 7487 static int bnx2x_init_hw_port(struct bnx2x *bp) 7488 { 7489 int port = BP_PORT(bp); 7490 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 7491 u32 low, high; 7492 u32 val, reg; 7493 7494 DP(NETIF_MSG_HW, "starting port init port %d\n", port); 7495 7496 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 7497 7498 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7499 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7500 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7501 7502 /* Timers bug workaround: disables the pf_master bit in pglue at 7503 * common phase, we need to enable it here before any dmae access are 7504 * attempted. Therefore we manually added the enable-master to the 7505 * port phase (it also happens in the function phase) 7506 */ 7507 if (!CHIP_IS_E1x(bp)) 7508 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7509 7510 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7511 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7512 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7513 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7514 7515 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7516 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7517 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7518 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7519 7520 /* QM cid (connection) count */ 7521 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); 7522 7523 if (CNIC_SUPPORT(bp)) { 7524 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7525 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); 7526 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 7527 } 7528 7529 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7530 7531 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7532 7533 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { 7534 7535 if (IS_MF(bp)) 7536 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); 7537 else if (bp->dev->mtu > 4096) { 7538 if (bp->flags & ONE_PORT_FLAG) 7539 low = 160; 7540 else { 7541 val = bp->dev->mtu; 7542 /* (24*1024 + val*4)/256 */ 7543 low = 96 + (val/64) + 7544 ((val % 64) ? 1 : 0); 7545 } 7546 } else 7547 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); 7548 high = low + 56; /* 14*1024/256 */ 7549 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 7550 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 7551 } 7552 7553 if (CHIP_MODE_IS_4_PORT(bp)) 7554 REG_WR(bp, (BP_PORT(bp) ? 7555 BRB1_REG_MAC_GUARANTIED_1 : 7556 BRB1_REG_MAC_GUARANTIED_0), 40); 7557 7558 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7559 if (CHIP_IS_E3B0(bp)) { 7560 if (IS_MF_AFEX(bp)) { 7561 /* configure headers for AFEX mode */ 7562 REG_WR(bp, BP_PORT(bp) ? 7563 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7564 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 7565 REG_WR(bp, BP_PORT(bp) ? 7566 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 7567 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 7568 REG_WR(bp, BP_PORT(bp) ? 7569 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 7570 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 7571 } else { 7572 /* Ovlan exists only if we are in multi-function + 7573 * switch-dependent mode, in switch-independent there 7574 * is no ovlan headers 7575 */ 7576 REG_WR(bp, BP_PORT(bp) ? 7577 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7578 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 7579 (bp->path_has_ovlan ? 7 : 6)); 7580 } 7581 } 7582 7583 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7584 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7585 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7586 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7587 7588 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7589 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7590 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7591 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7592 7593 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7594 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7595 7596 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7597 7598 if (CHIP_IS_E1x(bp)) { 7599 /* configure PBF to work without PAUSE mtu 9000 */ 7600 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 7601 7602 /* update threshold */ 7603 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 7604 /* update init credit */ 7605 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 7606 7607 /* probe changes */ 7608 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); 7609 udelay(50); 7610 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); 7611 } 7612 7613 if (CNIC_SUPPORT(bp)) 7614 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7615 7616 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7617 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7618 7619 if (CHIP_IS_E1(bp)) { 7620 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7621 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7622 } 7623 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7624 7625 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7626 7627 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7628 /* init aeu_mask_attn_func_0/1: 7629 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use 7630 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF 7631 * bits 4-7 are used for "per vn group attention" */ 7632 val = IS_MF(bp) ? 0xF7 : 0x7; 7633 /* Enable DCBX attention for all but E1 */ 7634 val |= CHIP_IS_E1(bp) ? 0 : 0x10; 7635 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 7636 7637 /* SCPAD_PARITY should NOT trigger close the gates */ 7638 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0; 7639 REG_WR(bp, reg, 7640 REG_RD(bp, reg) & 7641 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7642 7643 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0; 7644 REG_WR(bp, reg, 7645 REG_RD(bp, reg) & 7646 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7647 7648 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7649 7650 if (!CHIP_IS_E1x(bp)) { 7651 /* Bit-map indicating which L2 hdrs may appear after the 7652 * basic Ethernet header 7653 */ 7654 if (IS_MF_AFEX(bp)) 7655 REG_WR(bp, BP_PORT(bp) ? 7656 NIG_REG_P1_HDRS_AFTER_BASIC : 7657 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 7658 else 7659 REG_WR(bp, BP_PORT(bp) ? 7660 NIG_REG_P1_HDRS_AFTER_BASIC : 7661 NIG_REG_P0_HDRS_AFTER_BASIC, 7662 IS_MF_SD(bp) ? 7 : 6); 7663 7664 if (CHIP_IS_E3(bp)) 7665 REG_WR(bp, BP_PORT(bp) ? 7666 NIG_REG_LLH1_MF_MODE : 7667 NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7668 } 7669 if (!CHIP_IS_E3(bp)) 7670 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 7671 7672 if (!CHIP_IS_E1(bp)) { 7673 /* 0x2 disable mf_ov, 0x1 enable */ 7674 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 7675 (IS_MF_SD(bp) ? 0x1 : 0x2)); 7676 7677 if (!CHIP_IS_E1x(bp)) { 7678 val = 0; 7679 switch (bp->mf_mode) { 7680 case MULTI_FUNCTION_SD: 7681 val = 1; 7682 break; 7683 case MULTI_FUNCTION_SI: 7684 case MULTI_FUNCTION_AFEX: 7685 val = 2; 7686 break; 7687 } 7688 7689 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : 7690 NIG_REG_LLH0_CLS_TYPE), val); 7691 } 7692 { 7693 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 7694 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 7695 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 7696 } 7697 } 7698 7699 /* If SPIO5 is set to generate interrupts, enable it for this port */ 7700 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 7701 if (val & MISC_SPIO_SPIO5) { 7702 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 7703 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 7704 val = REG_RD(bp, reg_addr); 7705 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 7706 REG_WR(bp, reg_addr, val); 7707 } 7708 7709 if (CHIP_IS_E3B0(bp)) 7710 bp->flags |= PTP_SUPPORTED; 7711 7712 return 0; 7713 } 7714 7715 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) 7716 { 7717 int reg; 7718 u32 wb_write[2]; 7719 7720 if (CHIP_IS_E1(bp)) 7721 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 7722 else 7723 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 7724 7725 wb_write[0] = ONCHIP_ADDR1(addr); 7726 wb_write[1] = ONCHIP_ADDR2(addr); 7727 REG_WR_DMAE(bp, reg, wb_write, 2); 7728 } 7729 7730 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) 7731 { 7732 u32 data, ctl, cnt = 100; 7733 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 7734 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 7735 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 7736 u32 sb_bit = 1 << (idu_sb_id%32); 7737 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 7738 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 7739 7740 /* Not supported in BC mode */ 7741 if (CHIP_INT_MODE_IS_BC(bp)) 7742 return; 7743 7744 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup 7745 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 7746 IGU_REGULAR_CLEANUP_SET | 7747 IGU_REGULAR_BCLEANUP; 7748 7749 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 7750 func_encode << IGU_CTRL_REG_FID_SHIFT | 7751 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 7752 7753 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7754 data, igu_addr_data); 7755 REG_WR(bp, igu_addr_data, data); 7756 barrier(); 7757 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7758 ctl, igu_addr_ctl); 7759 REG_WR(bp, igu_addr_ctl, ctl); 7760 barrier(); 7761 7762 /* wait for clean up to finish */ 7763 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) 7764 msleep(20); 7765 7766 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { 7767 DP(NETIF_MSG_HW, 7768 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", 7769 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 7770 } 7771 } 7772 7773 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) 7774 { 7775 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); 7776 } 7777 7778 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) 7779 { 7780 u32 i, base = FUNC_ILT_BASE(func); 7781 for (i = base; i < base + ILT_PER_FUNC; i++) 7782 bnx2x_ilt_wr(bp, i, 0); 7783 } 7784 7785 static void bnx2x_init_searcher(struct bnx2x *bp) 7786 { 7787 int port = BP_PORT(bp); 7788 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); 7789 /* T1 hash bits value determines the T1 number of entries */ 7790 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 7791 } 7792 7793 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) 7794 { 7795 int rc; 7796 struct bnx2x_func_state_params func_params = {NULL}; 7797 struct bnx2x_func_switch_update_params *switch_update_params = 7798 &func_params.params.switch_update; 7799 7800 /* Prepare parameters for function state transitions */ 7801 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 7802 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 7803 7804 func_params.f_obj = &bp->func_obj; 7805 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 7806 7807 /* Function parameters */ 7808 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG, 7809 &switch_update_params->changes); 7810 if (suspend) 7811 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND, 7812 &switch_update_params->changes); 7813 7814 rc = bnx2x_func_state_change(bp, &func_params); 7815 7816 return rc; 7817 } 7818 7819 static int bnx2x_reset_nic_mode(struct bnx2x *bp) 7820 { 7821 int rc, i, port = BP_PORT(bp); 7822 int vlan_en = 0, mac_en[NUM_MACS]; 7823 7824 /* Close input from network */ 7825 if (bp->mf_mode == SINGLE_FUNCTION) { 7826 bnx2x_set_rx_filter(&bp->link_params, 0); 7827 } else { 7828 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : 7829 NIG_REG_LLH0_FUNC_EN); 7830 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7831 NIG_REG_LLH0_FUNC_EN, 0); 7832 for (i = 0; i < NUM_MACS; i++) { 7833 mac_en[i] = REG_RD(bp, port ? 7834 (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7835 4 * i) : 7836 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 7837 4 * i)); 7838 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7839 4 * i) : 7840 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); 7841 } 7842 } 7843 7844 /* Close BMC to host */ 7845 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7846 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); 7847 7848 /* Suspend Tx switching to the PF. Completion of this ramrod 7849 * further guarantees that all the packets of that PF / child 7850 * VFs in BRB were processed by the Parser, so it is safe to 7851 * change the NIC_MODE register. 7852 */ 7853 rc = bnx2x_func_switch_update(bp, 1); 7854 if (rc) { 7855 BNX2X_ERR("Can't suspend tx-switching!\n"); 7856 return rc; 7857 } 7858 7859 /* Change NIC_MODE register */ 7860 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7861 7862 /* Open input from network */ 7863 if (bp->mf_mode == SINGLE_FUNCTION) { 7864 bnx2x_set_rx_filter(&bp->link_params, 1); 7865 } else { 7866 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7867 NIG_REG_LLH0_FUNC_EN, vlan_en); 7868 for (i = 0; i < NUM_MACS; i++) { 7869 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7870 4 * i) : 7871 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 7872 mac_en[i]); 7873 } 7874 } 7875 7876 /* Enable BMC to host */ 7877 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7878 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); 7879 7880 /* Resume Tx switching to the PF */ 7881 rc = bnx2x_func_switch_update(bp, 0); 7882 if (rc) { 7883 BNX2X_ERR("Can't resume tx-switching!\n"); 7884 return rc; 7885 } 7886 7887 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7888 return 0; 7889 } 7890 7891 int bnx2x_init_hw_func_cnic(struct bnx2x *bp) 7892 { 7893 int rc; 7894 7895 bnx2x_ilt_init_op_cnic(bp, INITOP_SET); 7896 7897 if (CONFIGURE_NIC_MODE(bp)) { 7898 /* Configure searcher as part of function hw init */ 7899 bnx2x_init_searcher(bp); 7900 7901 /* Reset NIC mode */ 7902 rc = bnx2x_reset_nic_mode(bp); 7903 if (rc) 7904 BNX2X_ERR("Can't change NIC mode!\n"); 7905 return rc; 7906 } 7907 7908 return 0; 7909 } 7910 7911 /* previous driver DMAE transaction may have occurred when pre-boot stage ended 7912 * and boot began, or when kdump kernel was loaded. Either case would invalidate 7913 * the addresses of the transaction, resulting in was-error bit set in the pci 7914 * causing all hw-to-host pcie transactions to timeout. If this happened we want 7915 * to clear the interrupt which detected this from the pglueb and the was done 7916 * bit 7917 */ 7918 static void bnx2x_clean_pglue_errors(struct bnx2x *bp) 7919 { 7920 if (!CHIP_IS_E1x(bp)) 7921 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 7922 1 << BP_ABS_FUNC(bp)); 7923 } 7924 7925 static int bnx2x_init_hw_func(struct bnx2x *bp) 7926 { 7927 int port = BP_PORT(bp); 7928 int func = BP_FUNC(bp); 7929 int init_phase = PHASE_PF0 + func; 7930 struct bnx2x_ilt *ilt = BP_ILT(bp); 7931 u16 cdu_ilt_start; 7932 u32 addr, val; 7933 u32 main_mem_base, main_mem_size, main_mem_prty_clr; 7934 int i, main_mem_width, rc; 7935 7936 DP(NETIF_MSG_HW, "starting func init func %d\n", func); 7937 7938 /* FLR cleanup - hmmm */ 7939 if (!CHIP_IS_E1x(bp)) { 7940 rc = bnx2x_pf_flr_clnup(bp); 7941 if (rc) { 7942 bnx2x_fw_dump(bp); 7943 return rc; 7944 } 7945 } 7946 7947 /* set MSI reconfigure capability */ 7948 if (bp->common.int_block == INT_BLOCK_HC) { 7949 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 7950 val = REG_RD(bp, addr); 7951 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 7952 REG_WR(bp, addr, val); 7953 } 7954 7955 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7956 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7957 7958 ilt = BP_ILT(bp); 7959 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7960 7961 if (IS_SRIOV(bp)) 7962 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; 7963 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); 7964 7965 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes 7966 * those of the VFs, so start line should be reset 7967 */ 7968 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7969 for (i = 0; i < L2_ILT_LINES(bp); i++) { 7970 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; 7971 ilt->lines[cdu_ilt_start + i].page_mapping = 7972 bp->context[i].cxt_mapping; 7973 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; 7974 } 7975 7976 bnx2x_ilt_init_op(bp, INITOP_SET); 7977 7978 if (!CONFIGURE_NIC_MODE(bp)) { 7979 bnx2x_init_searcher(bp); 7980 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7981 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7982 } else { 7983 /* Set NIC mode */ 7984 REG_WR(bp, PRS_REG_NIC_MODE, 1); 7985 DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); 7986 } 7987 7988 if (!CHIP_IS_E1x(bp)) { 7989 u32 pf_conf = IGU_PF_CONF_FUNC_EN; 7990 7991 /* Turn on a single ISR mode in IGU if driver is going to use 7992 * INT#x or MSI 7993 */ 7994 if (!(bp->flags & USING_MSIX_FLAG)) 7995 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 7996 /* 7997 * Timers workaround bug: function init part. 7998 * Need to wait 20msec after initializing ILT, 7999 * needed to make sure there are no requests in 8000 * one of the PXP internal queues with "old" ILT addresses 8001 */ 8002 msleep(20); 8003 /* 8004 * Master enable - Due to WB DMAE writes performed before this 8005 * register is re-initialized as part of the regular function 8006 * init 8007 */ 8008 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 8009 /* Enable the function in IGU */ 8010 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); 8011 } 8012 8013 bp->dmae_ready = 1; 8014 8015 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 8016 8017 bnx2x_clean_pglue_errors(bp); 8018 8019 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 8020 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 8021 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 8022 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 8023 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 8024 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 8025 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 8026 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 8027 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 8028 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 8029 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 8030 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 8031 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 8032 8033 if (!CHIP_IS_E1x(bp)) 8034 REG_WR(bp, QM_REG_PF_EN, 1); 8035 8036 if (!CHIP_IS_E1x(bp)) { 8037 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8038 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8039 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8040 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8041 } 8042 bnx2x_init_block(bp, BLOCK_QM, init_phase); 8043 8044 bnx2x_init_block(bp, BLOCK_TM, init_phase); 8045 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 8046 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */ 8047 8048 bnx2x_iov_init_dq(bp); 8049 8050 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 8051 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 8052 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 8053 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 8054 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 8055 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 8056 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 8057 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 8058 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 8059 if (!CHIP_IS_E1x(bp)) 8060 REG_WR(bp, PBF_REG_DISABLE_PF, 0); 8061 8062 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 8063 8064 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 8065 8066 if (!CHIP_IS_E1x(bp)) 8067 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); 8068 8069 if (IS_MF(bp)) { 8070 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) { 8071 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 8072 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, 8073 bp->mf_ov); 8074 } 8075 } 8076 8077 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 8078 8079 /* HC init per function */ 8080 if (bp->common.int_block == INT_BLOCK_HC) { 8081 if (CHIP_IS_E1H(bp)) { 8082 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8083 8084 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8085 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8086 } 8087 bnx2x_init_block(bp, BLOCK_HC, init_phase); 8088 8089 } else { 8090 int num_segs, sb_idx, prod_offset; 8091 8092 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8093 8094 if (!CHIP_IS_E1x(bp)) { 8095 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8096 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8097 } 8098 8099 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 8100 8101 if (!CHIP_IS_E1x(bp)) { 8102 int dsb_idx = 0; 8103 /** 8104 * Producer memory: 8105 * E2 mode: address 0-135 match to the mapping memory; 8106 * 136 - PF0 default prod; 137 - PF1 default prod; 8107 * 138 - PF2 default prod; 139 - PF3 default prod; 8108 * 140 - PF0 attn prod; 141 - PF1 attn prod; 8109 * 142 - PF2 attn prod; 143 - PF3 attn prod; 8110 * 144-147 reserved. 8111 * 8112 * E1.5 mode - In backward compatible mode; 8113 * for non default SB; each even line in the memory 8114 * holds the U producer and each odd line hold 8115 * the C producer. The first 128 producers are for 8116 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 8117 * producers are for the DSB for each PF. 8118 * Each PF has five segments: (the order inside each 8119 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 8120 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 8121 * 144-147 attn prods; 8122 */ 8123 /* non-default-status-blocks */ 8124 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8125 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 8126 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { 8127 prod_offset = (bp->igu_base_sb + sb_idx) * 8128 num_segs; 8129 8130 for (i = 0; i < num_segs; i++) { 8131 addr = IGU_REG_PROD_CONS_MEMORY + 8132 (prod_offset + i) * 4; 8133 REG_WR(bp, addr, 0); 8134 } 8135 /* send consumer update with value 0 */ 8136 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, 8137 USTORM_ID, 0, IGU_INT_NOP, 1); 8138 bnx2x_igu_clear_sb(bp, 8139 bp->igu_base_sb + sb_idx); 8140 } 8141 8142 /* default-status-blocks */ 8143 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8144 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 8145 8146 if (CHIP_MODE_IS_4_PORT(bp)) 8147 dsb_idx = BP_FUNC(bp); 8148 else 8149 dsb_idx = BP_VN(bp); 8150 8151 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? 8152 IGU_BC_BASE_DSB_PROD + dsb_idx : 8153 IGU_NORM_BASE_DSB_PROD + dsb_idx); 8154 8155 /* 8156 * igu prods come in chunks of E1HVN_MAX (4) - 8157 * does not matters what is the current chip mode 8158 */ 8159 for (i = 0; i < (num_segs * E1HVN_MAX); 8160 i += E1HVN_MAX) { 8161 addr = IGU_REG_PROD_CONS_MEMORY + 8162 (prod_offset + i)*4; 8163 REG_WR(bp, addr, 0); 8164 } 8165 /* send consumer update with 0 */ 8166 if (CHIP_INT_MODE_IS_BC(bp)) { 8167 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8168 USTORM_ID, 0, IGU_INT_NOP, 1); 8169 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8170 CSTORM_ID, 0, IGU_INT_NOP, 1); 8171 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8172 XSTORM_ID, 0, IGU_INT_NOP, 1); 8173 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8174 TSTORM_ID, 0, IGU_INT_NOP, 1); 8175 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8176 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8177 } else { 8178 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8179 USTORM_ID, 0, IGU_INT_NOP, 1); 8180 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8181 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8182 } 8183 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); 8184 8185 /* !!! These should become driver const once 8186 rf-tool supports split-68 const */ 8187 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 8188 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 8189 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 8190 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 8191 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 8192 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 8193 } 8194 } 8195 8196 /* Reset PCIE errors for debug */ 8197 REG_WR(bp, 0x2114, 0xffffffff); 8198 REG_WR(bp, 0x2120, 0xffffffff); 8199 8200 if (CHIP_IS_E1x(bp)) { 8201 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 8202 main_mem_base = HC_REG_MAIN_MEMORY + 8203 BP_PORT(bp) * (main_mem_size * 4); 8204 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 8205 main_mem_width = 8; 8206 8207 val = REG_RD(bp, main_mem_prty_clr); 8208 if (val) 8209 DP(NETIF_MSG_HW, 8210 "Hmmm... Parity errors in HC block during function init (0x%x)!\n", 8211 val); 8212 8213 /* Clear "false" parity errors in MSI-X table */ 8214 for (i = main_mem_base; 8215 i < main_mem_base + main_mem_size * 4; 8216 i += main_mem_width) { 8217 bnx2x_read_dmae(bp, i, main_mem_width / 4); 8218 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), 8219 i, main_mem_width / 4); 8220 } 8221 /* Clear HC parity attention */ 8222 REG_RD(bp, main_mem_prty_clr); 8223 } 8224 8225 #ifdef BNX2X_STOP_ON_ERROR 8226 /* Enable STORMs SP logging */ 8227 REG_WR8(bp, BAR_USTRORM_INTMEM + 8228 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8229 REG_WR8(bp, BAR_TSTRORM_INTMEM + 8230 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8231 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8232 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8233 REG_WR8(bp, BAR_XSTRORM_INTMEM + 8234 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8235 #endif 8236 8237 bnx2x_phy_probe(&bp->link_params); 8238 8239 return 0; 8240 } 8241 8242 void bnx2x_free_mem_cnic(struct bnx2x *bp) 8243 { 8244 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); 8245 8246 if (!CHIP_IS_E1x(bp)) 8247 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, 8248 sizeof(struct host_hc_status_block_e2)); 8249 else 8250 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, 8251 sizeof(struct host_hc_status_block_e1x)); 8252 8253 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8254 } 8255 8256 void bnx2x_free_mem(struct bnx2x *bp) 8257 { 8258 int i; 8259 8260 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 8261 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 8262 8263 if (IS_VF(bp)) 8264 return; 8265 8266 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, 8267 sizeof(struct host_sp_status_block)); 8268 8269 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, 8270 sizeof(struct bnx2x_slowpath)); 8271 8272 for (i = 0; i < L2_ILT_LINES(bp); i++) 8273 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, 8274 bp->context[i].size); 8275 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); 8276 8277 BNX2X_FREE(bp->ilt->lines); 8278 8279 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); 8280 8281 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, 8282 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8283 8284 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8285 8286 bnx2x_iov_free_mem(bp); 8287 } 8288 8289 int bnx2x_alloc_mem_cnic(struct bnx2x *bp) 8290 { 8291 if (!CHIP_IS_E1x(bp)) { 8292 /* size = the status block + ramrod buffers */ 8293 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8294 sizeof(struct host_hc_status_block_e2)); 8295 if (!bp->cnic_sb.e2_sb) 8296 goto alloc_mem_err; 8297 } else { 8298 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8299 sizeof(struct host_hc_status_block_e1x)); 8300 if (!bp->cnic_sb.e1x_sb) 8301 goto alloc_mem_err; 8302 } 8303 8304 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8305 /* allocate searcher T2 table, as it wasn't allocated before */ 8306 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8307 if (!bp->t2) 8308 goto alloc_mem_err; 8309 } 8310 8311 /* write address to which L5 should insert its values */ 8312 bp->cnic_eth_dev.addr_drv_info_to_mcp = 8313 &bp->slowpath->drv_info_to_mcp; 8314 8315 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) 8316 goto alloc_mem_err; 8317 8318 return 0; 8319 8320 alloc_mem_err: 8321 bnx2x_free_mem_cnic(bp); 8322 BNX2X_ERR("Can't allocate memory\n"); 8323 return -ENOMEM; 8324 } 8325 8326 int bnx2x_alloc_mem(struct bnx2x *bp) 8327 { 8328 int i, allocated, context_size; 8329 8330 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8331 /* allocate searcher T2 table */ 8332 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8333 if (!bp->t2) 8334 goto alloc_mem_err; 8335 } 8336 8337 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping, 8338 sizeof(struct host_sp_status_block)); 8339 if (!bp->def_status_blk) 8340 goto alloc_mem_err; 8341 8342 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping, 8343 sizeof(struct bnx2x_slowpath)); 8344 if (!bp->slowpath) 8345 goto alloc_mem_err; 8346 8347 /* Allocate memory for CDU context: 8348 * This memory is allocated separately and not in the generic ILT 8349 * functions because CDU differs in few aspects: 8350 * 1. There are multiple entities allocating memory for context - 8351 * 'regular' driver, CNIC and SRIOV driver. Each separately controls 8352 * its own ILT lines. 8353 * 2. Since CDU page-size is not a single 4KB page (which is the case 8354 * for the other ILT clients), to be efficient we want to support 8355 * allocation of sub-page-size in the last entry. 8356 * 3. Context pointers are used by the driver to pass to FW / update 8357 * the context (for the other ILT clients the pointers are used just to 8358 * free the memory during unload). 8359 */ 8360 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); 8361 8362 for (i = 0, allocated = 0; allocated < context_size; i++) { 8363 bp->context[i].size = min(CDU_ILT_PAGE_SZ, 8364 (context_size - allocated)); 8365 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping, 8366 bp->context[i].size); 8367 if (!bp->context[i].vcxt) 8368 goto alloc_mem_err; 8369 allocated += bp->context[i].size; 8370 } 8371 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line), 8372 GFP_KERNEL); 8373 if (!bp->ilt->lines) 8374 goto alloc_mem_err; 8375 8376 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) 8377 goto alloc_mem_err; 8378 8379 if (bnx2x_iov_alloc_mem(bp)) 8380 goto alloc_mem_err; 8381 8382 /* Slow path ring */ 8383 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE); 8384 if (!bp->spq) 8385 goto alloc_mem_err; 8386 8387 /* EQ */ 8388 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping, 8389 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8390 if (!bp->eq_ring) 8391 goto alloc_mem_err; 8392 8393 return 0; 8394 8395 alloc_mem_err: 8396 bnx2x_free_mem(bp); 8397 BNX2X_ERR("Can't allocate memory\n"); 8398 return -ENOMEM; 8399 } 8400 8401 /* 8402 * Init service functions 8403 */ 8404 8405 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 8406 struct bnx2x_vlan_mac_obj *obj, bool set, 8407 int mac_type, unsigned long *ramrod_flags) 8408 { 8409 int rc; 8410 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8411 8412 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8413 8414 /* Fill general parameters */ 8415 ramrod_param.vlan_mac_obj = obj; 8416 ramrod_param.ramrod_flags = *ramrod_flags; 8417 8418 /* Fill a user request section if needed */ 8419 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8420 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 8421 8422 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 8423 8424 /* Set the command: ADD or DEL */ 8425 if (set) 8426 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8427 else 8428 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8429 } 8430 8431 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8432 8433 if (rc == -EEXIST) { 8434 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8435 /* do not treat adding same MAC as error */ 8436 rc = 0; 8437 } else if (rc < 0) 8438 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); 8439 8440 return rc; 8441 } 8442 8443 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan, 8444 struct bnx2x_vlan_mac_obj *obj, bool set, 8445 unsigned long *ramrod_flags) 8446 { 8447 int rc; 8448 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8449 8450 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8451 8452 /* Fill general parameters */ 8453 ramrod_param.vlan_mac_obj = obj; 8454 ramrod_param.ramrod_flags = *ramrod_flags; 8455 8456 /* Fill a user request section if needed */ 8457 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8458 ramrod_param.user_req.u.vlan.vlan = vlan; 8459 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags); 8460 /* Set the command: ADD or DEL */ 8461 if (set) 8462 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8463 else 8464 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8465 } 8466 8467 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8468 8469 if (rc == -EEXIST) { 8470 /* Do not treat adding same vlan as error. */ 8471 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8472 rc = 0; 8473 } else if (rc < 0) { 8474 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del")); 8475 } 8476 8477 return rc; 8478 } 8479 8480 void bnx2x_clear_vlan_info(struct bnx2x *bp) 8481 { 8482 struct bnx2x_vlan_entry *vlan; 8483 8484 /* Mark that hw forgot all entries */ 8485 list_for_each_entry(vlan, &bp->vlan_reg, link) 8486 vlan->hw = false; 8487 8488 bp->vlan_cnt = 0; 8489 } 8490 8491 static int bnx2x_del_all_vlans(struct bnx2x *bp) 8492 { 8493 struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj; 8494 unsigned long ramrod_flags = 0, vlan_flags = 0; 8495 int rc; 8496 8497 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8498 __set_bit(BNX2X_VLAN, &vlan_flags); 8499 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags); 8500 if (rc) 8501 return rc; 8502 8503 bnx2x_clear_vlan_info(bp); 8504 8505 return 0; 8506 } 8507 8508 int bnx2x_del_all_macs(struct bnx2x *bp, 8509 struct bnx2x_vlan_mac_obj *mac_obj, 8510 int mac_type, bool wait_for_comp) 8511 { 8512 int rc; 8513 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 8514 8515 /* Wait for completion of requested */ 8516 if (wait_for_comp) 8517 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8518 8519 /* Set the mac type of addresses we want to clear */ 8520 __set_bit(mac_type, &vlan_mac_flags); 8521 8522 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); 8523 if (rc < 0) 8524 BNX2X_ERR("Failed to delete MACs: %d\n", rc); 8525 8526 return rc; 8527 } 8528 8529 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) 8530 { 8531 if (IS_PF(bp)) { 8532 unsigned long ramrod_flags = 0; 8533 8534 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); 8535 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8536 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, 8537 &bp->sp_objs->mac_obj, set, 8538 BNX2X_ETH_MAC, &ramrod_flags); 8539 } else { /* vf */ 8540 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, 8541 bp->fp->index, set); 8542 } 8543 } 8544 8545 int bnx2x_setup_leading(struct bnx2x *bp) 8546 { 8547 if (IS_PF(bp)) 8548 return bnx2x_setup_queue(bp, &bp->fp[0], true); 8549 else /* VF */ 8550 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true); 8551 } 8552 8553 /** 8554 * bnx2x_set_int_mode - configure interrupt mode 8555 * 8556 * @bp: driver handle 8557 * 8558 * In case of MSI-X it will also try to enable MSI-X. 8559 */ 8560 int bnx2x_set_int_mode(struct bnx2x *bp) 8561 { 8562 int rc = 0; 8563 8564 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) { 8565 BNX2X_ERR("VF not loaded since interrupt mode not msix\n"); 8566 return -EINVAL; 8567 } 8568 8569 switch (int_mode) { 8570 case BNX2X_INT_MODE_MSIX: 8571 /* attempt to enable msix */ 8572 rc = bnx2x_enable_msix(bp); 8573 8574 /* msix attained */ 8575 if (!rc) 8576 return 0; 8577 8578 /* vfs use only msix */ 8579 if (rc && IS_VF(bp)) 8580 return rc; 8581 8582 /* failed to enable multiple MSI-X */ 8583 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", 8584 bp->num_queues, 8585 1 + bp->num_cnic_queues); 8586 8587 /* fall through */ 8588 case BNX2X_INT_MODE_MSI: 8589 bnx2x_enable_msi(bp); 8590 8591 /* fall through */ 8592 case BNX2X_INT_MODE_INTX: 8593 bp->num_ethernet_queues = 1; 8594 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 8595 BNX2X_DEV_INFO("set number of queues to 1\n"); 8596 break; 8597 default: 8598 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); 8599 return -EINVAL; 8600 } 8601 return 0; 8602 } 8603 8604 /* must be called prior to any HW initializations */ 8605 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) 8606 { 8607 if (IS_SRIOV(bp)) 8608 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; 8609 return L2_ILT_LINES(bp); 8610 } 8611 8612 void bnx2x_ilt_set_info(struct bnx2x *bp) 8613 { 8614 struct ilt_client_info *ilt_client; 8615 struct bnx2x_ilt *ilt = BP_ILT(bp); 8616 u16 line = 0; 8617 8618 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); 8619 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); 8620 8621 /* CDU */ 8622 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 8623 ilt_client->client_num = ILT_CLIENT_CDU; 8624 ilt_client->page_size = CDU_ILT_PAGE_SZ; 8625 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 8626 ilt_client->start = line; 8627 line += bnx2x_cid_ilt_lines(bp); 8628 8629 if (CNIC_SUPPORT(bp)) 8630 line += CNIC_ILT_LINES; 8631 ilt_client->end = line - 1; 8632 8633 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8634 ilt_client->start, 8635 ilt_client->end, 8636 ilt_client->page_size, 8637 ilt_client->flags, 8638 ilog2(ilt_client->page_size >> 12)); 8639 8640 /* QM */ 8641 if (QM_INIT(bp->qm_cid_count)) { 8642 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 8643 ilt_client->client_num = ILT_CLIENT_QM; 8644 ilt_client->page_size = QM_ILT_PAGE_SZ; 8645 ilt_client->flags = 0; 8646 ilt_client->start = line; 8647 8648 /* 4 bytes for each cid */ 8649 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 8650 QM_ILT_PAGE_SZ); 8651 8652 ilt_client->end = line - 1; 8653 8654 DP(NETIF_MSG_IFUP, 8655 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8656 ilt_client->start, 8657 ilt_client->end, 8658 ilt_client->page_size, 8659 ilt_client->flags, 8660 ilog2(ilt_client->page_size >> 12)); 8661 } 8662 8663 if (CNIC_SUPPORT(bp)) { 8664 /* SRC */ 8665 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 8666 ilt_client->client_num = ILT_CLIENT_SRC; 8667 ilt_client->page_size = SRC_ILT_PAGE_SZ; 8668 ilt_client->flags = 0; 8669 ilt_client->start = line; 8670 line += SRC_ILT_LINES; 8671 ilt_client->end = line - 1; 8672 8673 DP(NETIF_MSG_IFUP, 8674 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8675 ilt_client->start, 8676 ilt_client->end, 8677 ilt_client->page_size, 8678 ilt_client->flags, 8679 ilog2(ilt_client->page_size >> 12)); 8680 8681 /* TM */ 8682 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 8683 ilt_client->client_num = ILT_CLIENT_TM; 8684 ilt_client->page_size = TM_ILT_PAGE_SZ; 8685 ilt_client->flags = 0; 8686 ilt_client->start = line; 8687 line += TM_ILT_LINES; 8688 ilt_client->end = line - 1; 8689 8690 DP(NETIF_MSG_IFUP, 8691 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8692 ilt_client->start, 8693 ilt_client->end, 8694 ilt_client->page_size, 8695 ilt_client->flags, 8696 ilog2(ilt_client->page_size >> 12)); 8697 } 8698 8699 BUG_ON(line > ILT_MAX_LINES); 8700 } 8701 8702 /** 8703 * bnx2x_pf_q_prep_init - prepare INIT transition parameters 8704 * 8705 * @bp: driver handle 8706 * @fp: pointer to fastpath 8707 * @init_params: pointer to parameters structure 8708 * 8709 * parameters configured: 8710 * - HC configuration 8711 * - Queue's CDU context 8712 */ 8713 static void bnx2x_pf_q_prep_init(struct bnx2x *bp, 8714 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) 8715 { 8716 u8 cos; 8717 int cxt_index, cxt_offset; 8718 8719 /* FCoE Queue uses Default SB, thus has no HC capabilities */ 8720 if (!IS_FCOE_FP(fp)) { 8721 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); 8722 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); 8723 8724 /* If HC is supported, enable host coalescing in the transition 8725 * to INIT state. 8726 */ 8727 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); 8728 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); 8729 8730 /* HC rate */ 8731 init_params->rx.hc_rate = bp->rx_ticks ? 8732 (1000000 / bp->rx_ticks) : 0; 8733 init_params->tx.hc_rate = bp->tx_ticks ? 8734 (1000000 / bp->tx_ticks) : 0; 8735 8736 /* FW SB ID */ 8737 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = 8738 fp->fw_sb_id; 8739 8740 /* 8741 * CQ index among the SB indices: FCoE clients uses the default 8742 * SB, therefore it's different. 8743 */ 8744 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 8745 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 8746 } 8747 8748 /* set maximum number of COSs supported by this queue */ 8749 init_params->max_cos = fp->max_cos; 8750 8751 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", 8752 fp->index, init_params->max_cos); 8753 8754 /* set the context pointers queue object */ 8755 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 8756 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; 8757 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * 8758 ILT_PAGE_CIDS); 8759 init_params->cxts[cos] = 8760 &bp->context[cxt_index].vcxt[cxt_offset].eth; 8761 } 8762 } 8763 8764 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8765 struct bnx2x_queue_state_params *q_params, 8766 struct bnx2x_queue_setup_tx_only_params *tx_only_params, 8767 int tx_index, bool leading) 8768 { 8769 memset(tx_only_params, 0, sizeof(*tx_only_params)); 8770 8771 /* Set the command */ 8772 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 8773 8774 /* Set tx-only QUEUE flags: don't zero statistics */ 8775 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); 8776 8777 /* choose the index of the cid to send the slow path on */ 8778 tx_only_params->cid_index = tx_index; 8779 8780 /* Set general TX_ONLY_SETUP parameters */ 8781 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); 8782 8783 /* Set Tx TX_ONLY_SETUP parameters */ 8784 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); 8785 8786 DP(NETIF_MSG_IFUP, 8787 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", 8788 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], 8789 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, 8790 tx_only_params->gen_params.spcl_id, tx_only_params->flags); 8791 8792 /* send the ramrod */ 8793 return bnx2x_queue_state_change(bp, q_params); 8794 } 8795 8796 /** 8797 * bnx2x_setup_queue - setup queue 8798 * 8799 * @bp: driver handle 8800 * @fp: pointer to fastpath 8801 * @leading: is leading 8802 * 8803 * This function performs 2 steps in a Queue state machine 8804 * actually: 1) RESET->INIT 2) INIT->SETUP 8805 */ 8806 8807 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8808 bool leading) 8809 { 8810 struct bnx2x_queue_state_params q_params = {NULL}; 8811 struct bnx2x_queue_setup_params *setup_params = 8812 &q_params.params.setup; 8813 struct bnx2x_queue_setup_tx_only_params *tx_only_params = 8814 &q_params.params.tx_only; 8815 int rc; 8816 u8 tx_index; 8817 8818 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); 8819 8820 /* reset IGU state skip FCoE L2 queue */ 8821 if (!IS_FCOE_FP(fp)) 8822 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, 8823 IGU_INT_ENABLE, 0); 8824 8825 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8826 /* We want to wait for completion in this context */ 8827 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8828 8829 /* Prepare the INIT parameters */ 8830 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); 8831 8832 /* Set the command */ 8833 q_params.cmd = BNX2X_Q_CMD_INIT; 8834 8835 /* Change the state to INIT */ 8836 rc = bnx2x_queue_state_change(bp, &q_params); 8837 if (rc) { 8838 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); 8839 return rc; 8840 } 8841 8842 DP(NETIF_MSG_IFUP, "init complete\n"); 8843 8844 /* Now move the Queue to the SETUP state... */ 8845 memset(setup_params, 0, sizeof(*setup_params)); 8846 8847 /* Set QUEUE flags */ 8848 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); 8849 8850 /* Set general SETUP parameters */ 8851 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, 8852 FIRST_TX_COS_INDEX); 8853 8854 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, 8855 &setup_params->rxq_params); 8856 8857 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, 8858 FIRST_TX_COS_INDEX); 8859 8860 /* Set the command */ 8861 q_params.cmd = BNX2X_Q_CMD_SETUP; 8862 8863 if (IS_FCOE_FP(fp)) 8864 bp->fcoe_init = true; 8865 8866 /* Change the state to SETUP */ 8867 rc = bnx2x_queue_state_change(bp, &q_params); 8868 if (rc) { 8869 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); 8870 return rc; 8871 } 8872 8873 /* loop through the relevant tx-only indices */ 8874 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8875 tx_index < fp->max_cos; 8876 tx_index++) { 8877 8878 /* prepare and send tx-only ramrod*/ 8879 rc = bnx2x_setup_tx_only(bp, fp, &q_params, 8880 tx_only_params, tx_index, leading); 8881 if (rc) { 8882 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", 8883 fp->index, tx_index); 8884 return rc; 8885 } 8886 } 8887 8888 return rc; 8889 } 8890 8891 static int bnx2x_stop_queue(struct bnx2x *bp, int index) 8892 { 8893 struct bnx2x_fastpath *fp = &bp->fp[index]; 8894 struct bnx2x_fp_txdata *txdata; 8895 struct bnx2x_queue_state_params q_params = {NULL}; 8896 int rc, tx_index; 8897 8898 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); 8899 8900 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8901 /* We want to wait for completion in this context */ 8902 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8903 8904 /* close tx-only connections */ 8905 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8906 tx_index < fp->max_cos; 8907 tx_index++){ 8908 8909 /* ascertain this is a normal queue*/ 8910 txdata = fp->txdata_ptr[tx_index]; 8911 8912 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", 8913 txdata->txq_index); 8914 8915 /* send halt terminate on tx-only connection */ 8916 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8917 memset(&q_params.params.terminate, 0, 8918 sizeof(q_params.params.terminate)); 8919 q_params.params.terminate.cid_index = tx_index; 8920 8921 rc = bnx2x_queue_state_change(bp, &q_params); 8922 if (rc) 8923 return rc; 8924 8925 /* send halt terminate on tx-only connection */ 8926 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8927 memset(&q_params.params.cfc_del, 0, 8928 sizeof(q_params.params.cfc_del)); 8929 q_params.params.cfc_del.cid_index = tx_index; 8930 rc = bnx2x_queue_state_change(bp, &q_params); 8931 if (rc) 8932 return rc; 8933 } 8934 /* Stop the primary connection: */ 8935 /* ...halt the connection */ 8936 q_params.cmd = BNX2X_Q_CMD_HALT; 8937 rc = bnx2x_queue_state_change(bp, &q_params); 8938 if (rc) 8939 return rc; 8940 8941 /* ...terminate the connection */ 8942 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8943 memset(&q_params.params.terminate, 0, 8944 sizeof(q_params.params.terminate)); 8945 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 8946 rc = bnx2x_queue_state_change(bp, &q_params); 8947 if (rc) 8948 return rc; 8949 /* ...delete cfc entry */ 8950 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8951 memset(&q_params.params.cfc_del, 0, 8952 sizeof(q_params.params.cfc_del)); 8953 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 8954 return bnx2x_queue_state_change(bp, &q_params); 8955 } 8956 8957 static void bnx2x_reset_func(struct bnx2x *bp) 8958 { 8959 int port = BP_PORT(bp); 8960 int func = BP_FUNC(bp); 8961 int i; 8962 8963 /* Disable the function in the FW */ 8964 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 8965 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 8966 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 8967 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 8968 8969 /* FP SBs */ 8970 for_each_eth_queue(bp, i) { 8971 struct bnx2x_fastpath *fp = &bp->fp[i]; 8972 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8973 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 8974 SB_DISABLED); 8975 } 8976 8977 if (CNIC_LOADED(bp)) 8978 /* CNIC SB */ 8979 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8980 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 8981 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); 8982 8983 /* SP SB */ 8984 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8985 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 8986 SB_DISABLED); 8987 8988 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) 8989 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 8990 0); 8991 8992 /* Configure IGU */ 8993 if (bp->common.int_block == INT_BLOCK_HC) { 8994 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8995 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8996 } else { 8997 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8998 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8999 } 9000 9001 if (CNIC_LOADED(bp)) { 9002 /* Disable Timer scan */ 9003 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 9004 /* 9005 * Wait for at least 10ms and up to 2 second for the timers 9006 * scan to complete 9007 */ 9008 for (i = 0; i < 200; i++) { 9009 usleep_range(10000, 20000); 9010 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) 9011 break; 9012 } 9013 } 9014 /* Clear ILT */ 9015 bnx2x_clear_func_ilt(bp, func); 9016 9017 /* Timers workaround bug for E2: if this is vnic-3, 9018 * we need to set the entire ilt range for this timers. 9019 */ 9020 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { 9021 struct ilt_client_info ilt_cli; 9022 /* use dummy TM client */ 9023 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 9024 ilt_cli.start = 0; 9025 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 9026 ilt_cli.client_num = ILT_CLIENT_TM; 9027 9028 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); 9029 } 9030 9031 /* this assumes that reset_port() called before reset_func()*/ 9032 if (!CHIP_IS_E1x(bp)) 9033 bnx2x_pf_disable(bp); 9034 9035 bp->dmae_ready = 0; 9036 } 9037 9038 static void bnx2x_reset_port(struct bnx2x *bp) 9039 { 9040 int port = BP_PORT(bp); 9041 u32 val; 9042 9043 /* Reset physical Link */ 9044 bnx2x__link_reset(bp); 9045 9046 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 9047 9048 /* Do not rcv packets to BRB */ 9049 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 9050 /* Do not direct rcv packets that are not for MCP to the BRB */ 9051 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 9052 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 9053 9054 /* Configure AEU */ 9055 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 9056 9057 msleep(100); 9058 /* Check for BRB port occupancy */ 9059 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 9060 if (val) 9061 DP(NETIF_MSG_IFDOWN, 9062 "BRB1 is not empty %d blocks are occupied\n", val); 9063 9064 /* TODO: Close Doorbell port? */ 9065 } 9066 9067 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) 9068 { 9069 struct bnx2x_func_state_params func_params = {NULL}; 9070 9071 /* Prepare parameters for function state transitions */ 9072 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9073 9074 func_params.f_obj = &bp->func_obj; 9075 func_params.cmd = BNX2X_F_CMD_HW_RESET; 9076 9077 func_params.params.hw_init.load_phase = load_code; 9078 9079 return bnx2x_func_state_change(bp, &func_params); 9080 } 9081 9082 static int bnx2x_func_stop(struct bnx2x *bp) 9083 { 9084 struct bnx2x_func_state_params func_params = {NULL}; 9085 int rc; 9086 9087 /* Prepare parameters for function state transitions */ 9088 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9089 func_params.f_obj = &bp->func_obj; 9090 func_params.cmd = BNX2X_F_CMD_STOP; 9091 9092 /* 9093 * Try to stop the function the 'good way'. If fails (in case 9094 * of a parity error during bnx2x_chip_cleanup()) and we are 9095 * not in a debug mode, perform a state transaction in order to 9096 * enable further HW_RESET transaction. 9097 */ 9098 rc = bnx2x_func_state_change(bp, &func_params); 9099 if (rc) { 9100 #ifdef BNX2X_STOP_ON_ERROR 9101 return rc; 9102 #else 9103 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); 9104 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 9105 return bnx2x_func_state_change(bp, &func_params); 9106 #endif 9107 } 9108 9109 return 0; 9110 } 9111 9112 /** 9113 * bnx2x_send_unload_req - request unload mode from the MCP. 9114 * 9115 * @bp: driver handle 9116 * @unload_mode: requested function's unload mode 9117 * 9118 * Return unload mode returned by the MCP: COMMON, PORT or FUNC. 9119 */ 9120 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) 9121 { 9122 u32 reset_code = 0; 9123 int port = BP_PORT(bp); 9124 9125 /* Select the UNLOAD request mode */ 9126 if (unload_mode == UNLOAD_NORMAL) 9127 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9128 9129 else if (bp->flags & NO_WOL_FLAG) 9130 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 9131 9132 else if (bp->wol) { 9133 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 9134 u8 *mac_addr = bp->dev->dev_addr; 9135 struct pci_dev *pdev = bp->pdev; 9136 u32 val; 9137 u16 pmc; 9138 9139 /* The mac address is written to entries 1-4 to 9140 * preserve entry 0 which is used by the PMF 9141 */ 9142 u8 entry = (BP_VN(bp) + 1)*8; 9143 9144 val = (mac_addr[0] << 8) | mac_addr[1]; 9145 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); 9146 9147 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 9148 (mac_addr[4] << 8) | mac_addr[5]; 9149 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 9150 9151 /* Enable the PME and clear the status */ 9152 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc); 9153 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; 9154 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc); 9155 9156 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 9157 9158 } else 9159 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9160 9161 /* Send the request to the MCP */ 9162 if (!BP_NOMCP(bp)) 9163 reset_code = bnx2x_fw_command(bp, reset_code, 0); 9164 else { 9165 int path = BP_PATH(bp); 9166 9167 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", 9168 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9169 bnx2x_load_count[path][2]); 9170 bnx2x_load_count[path][0]--; 9171 bnx2x_load_count[path][1 + port]--; 9172 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", 9173 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9174 bnx2x_load_count[path][2]); 9175 if (bnx2x_load_count[path][0] == 0) 9176 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; 9177 else if (bnx2x_load_count[path][1 + port] == 0) 9178 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; 9179 else 9180 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; 9181 } 9182 9183 return reset_code; 9184 } 9185 9186 /** 9187 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. 9188 * 9189 * @bp: driver handle 9190 * @keep_link: true iff link should be kept up 9191 */ 9192 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) 9193 { 9194 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 9195 9196 /* Report UNLOAD_DONE to MCP */ 9197 if (!BP_NOMCP(bp)) 9198 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 9199 } 9200 9201 static int bnx2x_func_wait_started(struct bnx2x *bp) 9202 { 9203 int tout = 50; 9204 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 9205 9206 if (!bp->port.pmf) 9207 return 0; 9208 9209 /* 9210 * (assumption: No Attention from MCP at this stage) 9211 * PMF probably in the middle of TX disable/enable transaction 9212 * 1. Sync IRS for default SB 9213 * 2. Sync SP queue - this guarantees us that attention handling started 9214 * 3. Wait, that TX disable/enable transaction completes 9215 * 9216 * 1+2 guarantee that if DCBx attention was scheduled it already changed 9217 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 9218 * received completion for the transaction the state is TX_STOPPED. 9219 * State will return to STARTED after completion of TX_STOPPED-->STARTED 9220 * transaction. 9221 */ 9222 9223 /* make sure default SB ISR is done */ 9224 if (msix) 9225 synchronize_irq(bp->msix_table[0].vector); 9226 else 9227 synchronize_irq(bp->pdev->irq); 9228 9229 flush_workqueue(bnx2x_wq); 9230 flush_workqueue(bnx2x_iov_wq); 9231 9232 while (bnx2x_func_get_state(bp, &bp->func_obj) != 9233 BNX2X_F_STATE_STARTED && tout--) 9234 msleep(20); 9235 9236 if (bnx2x_func_get_state(bp, &bp->func_obj) != 9237 BNX2X_F_STATE_STARTED) { 9238 #ifdef BNX2X_STOP_ON_ERROR 9239 BNX2X_ERR("Wrong function state\n"); 9240 return -EBUSY; 9241 #else 9242 /* 9243 * Failed to complete the transaction in a "good way" 9244 * Force both transactions with CLR bit 9245 */ 9246 struct bnx2x_func_state_params func_params = {NULL}; 9247 9248 DP(NETIF_MSG_IFDOWN, 9249 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n"); 9250 9251 func_params.f_obj = &bp->func_obj; 9252 __set_bit(RAMROD_DRV_CLR_ONLY, 9253 &func_params.ramrod_flags); 9254 9255 /* STARTED-->TX_ST0PPED */ 9256 func_params.cmd = BNX2X_F_CMD_TX_STOP; 9257 bnx2x_func_state_change(bp, &func_params); 9258 9259 /* TX_ST0PPED-->STARTED */ 9260 func_params.cmd = BNX2X_F_CMD_TX_START; 9261 return bnx2x_func_state_change(bp, &func_params); 9262 #endif 9263 } 9264 9265 return 0; 9266 } 9267 9268 static void bnx2x_disable_ptp(struct bnx2x *bp) 9269 { 9270 int port = BP_PORT(bp); 9271 9272 /* Disable sending PTP packets to host */ 9273 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 9274 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 9275 9276 /* Reset PTP event detection rules */ 9277 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 9278 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 9279 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 9280 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 9281 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 9282 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 9283 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 9284 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 9285 9286 /* Disable the PTP feature */ 9287 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 9288 NIG_REG_P0_PTP_EN, 0x0); 9289 } 9290 9291 /* Called during unload, to stop PTP-related stuff */ 9292 static void bnx2x_stop_ptp(struct bnx2x *bp) 9293 { 9294 /* Cancel PTP work queue. Should be done after the Tx queues are 9295 * drained to prevent additional scheduling. 9296 */ 9297 cancel_work_sync(&bp->ptp_task); 9298 9299 if (bp->ptp_tx_skb) { 9300 dev_kfree_skb_any(bp->ptp_tx_skb); 9301 bp->ptp_tx_skb = NULL; 9302 } 9303 9304 /* Disable PTP in HW */ 9305 bnx2x_disable_ptp(bp); 9306 9307 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n"); 9308 } 9309 9310 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) 9311 { 9312 int port = BP_PORT(bp); 9313 int i, rc = 0; 9314 u8 cos; 9315 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 9316 u32 reset_code; 9317 9318 /* Wait until tx fastpath tasks complete */ 9319 for_each_tx_queue(bp, i) { 9320 struct bnx2x_fastpath *fp = &bp->fp[i]; 9321 9322 for_each_cos_in_tx_queue(fp, cos) 9323 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 9324 #ifdef BNX2X_STOP_ON_ERROR 9325 if (rc) 9326 return; 9327 #endif 9328 } 9329 9330 /* Give HW time to discard old tx messages */ 9331 usleep_range(1000, 2000); 9332 9333 /* Clean all ETH MACs */ 9334 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, 9335 false); 9336 if (rc < 0) 9337 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); 9338 9339 /* Clean up UC list */ 9340 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, 9341 true); 9342 if (rc < 0) 9343 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", 9344 rc); 9345 9346 /* The whole *vlan_obj structure may be not initialized if VLAN 9347 * filtering offload is not supported by hardware. Currently this is 9348 * true for all hardware covered by CHIP_IS_E1x(). 9349 */ 9350 if (!CHIP_IS_E1x(bp)) { 9351 /* Remove all currently configured VLANs */ 9352 rc = bnx2x_del_all_vlans(bp); 9353 if (rc < 0) 9354 BNX2X_ERR("Failed to delete all VLANs\n"); 9355 } 9356 9357 /* Disable LLH */ 9358 if (!CHIP_IS_E1(bp)) 9359 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 9360 9361 /* Set "drop all" (stop Rx). 9362 * We need to take a netif_addr_lock() here in order to prevent 9363 * a race between the completion code and this code. 9364 */ 9365 netif_addr_lock_bh(bp->dev); 9366 /* Schedule the rx_mode command */ 9367 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 9368 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 9369 else if (bp->slowpath) 9370 bnx2x_set_storm_rx_mode(bp); 9371 9372 /* Cleanup multicast configuration */ 9373 rparam.mcast_obj = &bp->mcast_obj; 9374 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 9375 if (rc < 0) 9376 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); 9377 9378 netif_addr_unlock_bh(bp->dev); 9379 9380 bnx2x_iov_chip_cleanup(bp); 9381 9382 /* 9383 * Send the UNLOAD_REQUEST to the MCP. This will return if 9384 * this function should perform FUNC, PORT or COMMON HW 9385 * reset. 9386 */ 9387 reset_code = bnx2x_send_unload_req(bp, unload_mode); 9388 9389 /* 9390 * (assumption: No Attention from MCP at this stage) 9391 * PMF probably in the middle of TX disable/enable transaction 9392 */ 9393 rc = bnx2x_func_wait_started(bp); 9394 if (rc) { 9395 BNX2X_ERR("bnx2x_func_wait_started failed\n"); 9396 #ifdef BNX2X_STOP_ON_ERROR 9397 return; 9398 #endif 9399 } 9400 9401 /* Close multi and leading connections 9402 * Completions for ramrods are collected in a synchronous way 9403 */ 9404 for_each_eth_queue(bp, i) 9405 if (bnx2x_stop_queue(bp, i)) 9406 #ifdef BNX2X_STOP_ON_ERROR 9407 return; 9408 #else 9409 goto unload_error; 9410 #endif 9411 9412 if (CNIC_LOADED(bp)) { 9413 for_each_cnic_queue(bp, i) 9414 if (bnx2x_stop_queue(bp, i)) 9415 #ifdef BNX2X_STOP_ON_ERROR 9416 return; 9417 #else 9418 goto unload_error; 9419 #endif 9420 } 9421 9422 /* If SP settings didn't get completed so far - something 9423 * very wrong has happen. 9424 */ 9425 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) 9426 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); 9427 9428 #ifndef BNX2X_STOP_ON_ERROR 9429 unload_error: 9430 #endif 9431 rc = bnx2x_func_stop(bp); 9432 if (rc) { 9433 BNX2X_ERR("Function stop failed!\n"); 9434 #ifdef BNX2X_STOP_ON_ERROR 9435 return; 9436 #endif 9437 } 9438 9439 /* stop_ptp should be after the Tx queues are drained to prevent 9440 * scheduling to the cancelled PTP work queue. It should also be after 9441 * function stop ramrod is sent, since as part of this ramrod FW access 9442 * PTP registers. 9443 */ 9444 if (bp->flags & PTP_SUPPORTED) { 9445 bnx2x_stop_ptp(bp); 9446 if (bp->ptp_clock) { 9447 ptp_clock_unregister(bp->ptp_clock); 9448 bp->ptp_clock = NULL; 9449 } 9450 } 9451 9452 /* Disable HW interrupts, NAPI */ 9453 bnx2x_netif_stop(bp, 1); 9454 /* Delete all NAPI objects */ 9455 bnx2x_del_all_napi(bp); 9456 if (CNIC_LOADED(bp)) 9457 bnx2x_del_all_napi_cnic(bp); 9458 9459 /* Release IRQs */ 9460 bnx2x_free_irq(bp); 9461 9462 /* Reset the chip, unless PCI function is offline. If we reach this 9463 * point following a PCI error handling, it means device is really 9464 * in a bad state and we're about to remove it, so reset the chip 9465 * is not a good idea. 9466 */ 9467 if (!pci_channel_offline(bp->pdev)) { 9468 rc = bnx2x_reset_hw(bp, reset_code); 9469 if (rc) 9470 BNX2X_ERR("HW_RESET failed\n"); 9471 } 9472 9473 /* Report UNLOAD_DONE to MCP */ 9474 bnx2x_send_unload_done(bp, keep_link); 9475 } 9476 9477 void bnx2x_disable_close_the_gate(struct bnx2x *bp) 9478 { 9479 u32 val; 9480 9481 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); 9482 9483 if (CHIP_IS_E1(bp)) { 9484 int port = BP_PORT(bp); 9485 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 9486 MISC_REG_AEU_MASK_ATTN_FUNC_0; 9487 9488 val = REG_RD(bp, addr); 9489 val &= ~(0x300); 9490 REG_WR(bp, addr, val); 9491 } else { 9492 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); 9493 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 9494 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 9495 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); 9496 } 9497 } 9498 9499 /* Close gates #2, #3 and #4: */ 9500 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) 9501 { 9502 u32 val; 9503 9504 /* Gates #2 and #4a are closed/opened for "not E1" only */ 9505 if (!CHIP_IS_E1(bp)) { 9506 /* #4 */ 9507 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 9508 /* #2 */ 9509 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 9510 } 9511 9512 /* #3 */ 9513 if (CHIP_IS_E1x(bp)) { 9514 /* Prevent interrupts from HC on both ports */ 9515 val = REG_RD(bp, HC_REG_CONFIG_1); 9516 REG_WR(bp, HC_REG_CONFIG_1, 9517 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 9518 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 9519 9520 val = REG_RD(bp, HC_REG_CONFIG_0); 9521 REG_WR(bp, HC_REG_CONFIG_0, 9522 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 9523 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 9524 } else { 9525 /* Prevent incoming interrupts in IGU */ 9526 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 9527 9528 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, 9529 (!close) ? 9530 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 9531 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 9532 } 9533 9534 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", 9535 close ? "closing" : "opening"); 9536 } 9537 9538 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ 9539 9540 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) 9541 { 9542 /* Do some magic... */ 9543 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9544 *magic_val = val & SHARED_MF_CLP_MAGIC; 9545 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 9546 } 9547 9548 /** 9549 * bnx2x_clp_reset_done - restore the value of the `magic' bit. 9550 * 9551 * @bp: driver handle 9552 * @magic_val: old value of the `magic' bit. 9553 */ 9554 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) 9555 { 9556 /* Restore the `magic' bit value... */ 9557 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9558 MF_CFG_WR(bp, shared_mf_config.clp_mb, 9559 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 9560 } 9561 9562 /** 9563 * bnx2x_reset_mcp_prep - prepare for MCP reset. 9564 * 9565 * @bp: driver handle 9566 * @magic_val: old value of 'magic' bit. 9567 * 9568 * Takes care of CLP configurations. 9569 */ 9570 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) 9571 { 9572 u32 shmem; 9573 u32 validity_offset; 9574 9575 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); 9576 9577 /* Set `magic' bit in order to save MF config */ 9578 if (!CHIP_IS_E1(bp)) 9579 bnx2x_clp_reset_prep(bp, magic_val); 9580 9581 /* Get shmem offset */ 9582 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9583 validity_offset = 9584 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); 9585 9586 /* Clear validity map flags */ 9587 if (shmem > 0) 9588 REG_WR(bp, shmem + validity_offset, 0); 9589 } 9590 9591 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 9592 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 9593 9594 /** 9595 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT 9596 * 9597 * @bp: driver handle 9598 */ 9599 static void bnx2x_mcp_wait_one(struct bnx2x *bp) 9600 { 9601 /* special handling for emulation and FPGA, 9602 wait 10 times longer */ 9603 if (CHIP_REV_IS_SLOW(bp)) 9604 msleep(MCP_ONE_TIMEOUT*10); 9605 else 9606 msleep(MCP_ONE_TIMEOUT); 9607 } 9608 9609 /* 9610 * initializes bp->common.shmem_base and waits for validity signature to appear 9611 */ 9612 static int bnx2x_init_shmem(struct bnx2x *bp) 9613 { 9614 int cnt = 0; 9615 u32 val = 0; 9616 9617 do { 9618 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9619 9620 /* If we read all 0xFFs, means we are in PCI error state and 9621 * should bail out to avoid crashes on adapter's FW reads. 9622 */ 9623 if (bp->common.shmem_base == 0xFFFFFFFF) { 9624 bp->flags |= NO_MCP_FLAG; 9625 return -ENODEV; 9626 } 9627 9628 if (bp->common.shmem_base) { 9629 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); 9630 if (val & SHR_MEM_VALIDITY_MB) 9631 return 0; 9632 } 9633 9634 bnx2x_mcp_wait_one(bp); 9635 9636 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 9637 9638 BNX2X_ERR("BAD MCP validity signature\n"); 9639 9640 return -ENODEV; 9641 } 9642 9643 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) 9644 { 9645 int rc = bnx2x_init_shmem(bp); 9646 9647 /* Restore the `magic' bit value */ 9648 if (!CHIP_IS_E1(bp)) 9649 bnx2x_clp_reset_done(bp, magic_val); 9650 9651 return rc; 9652 } 9653 9654 static void bnx2x_pxp_prep(struct bnx2x *bp) 9655 { 9656 if (!CHIP_IS_E1(bp)) { 9657 REG_WR(bp, PXP2_REG_RD_START_INIT, 0); 9658 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); 9659 } 9660 } 9661 9662 /* 9663 * Reset the whole chip except for: 9664 * - PCIE core 9665 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by 9666 * one reset bit) 9667 * - IGU 9668 * - MISC (including AEU) 9669 * - GRC 9670 * - RBCN, RBCP 9671 */ 9672 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) 9673 { 9674 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 9675 u32 global_bits2, stay_reset2; 9676 9677 /* 9678 * Bits that have to be set in reset_mask2 if we want to reset 'global' 9679 * (per chip) blocks. 9680 */ 9681 global_bits2 = 9682 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 9683 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 9684 9685 /* Don't reset the following blocks. 9686 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 9687 * reset, as in 4 port device they might still be owned 9688 * by the MCP (there is only one leader per path). 9689 */ 9690 not_reset_mask1 = 9691 MISC_REGISTERS_RESET_REG_1_RST_HC | 9692 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 9693 MISC_REGISTERS_RESET_REG_1_RST_PXP; 9694 9695 not_reset_mask2 = 9696 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 9697 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 9698 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 9699 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 9700 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 9701 MISC_REGISTERS_RESET_REG_2_RST_GRC | 9702 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 9703 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 9704 MISC_REGISTERS_RESET_REG_2_RST_ATC | 9705 MISC_REGISTERS_RESET_REG_2_PGLC | 9706 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 9707 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 9708 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 9709 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 9710 MISC_REGISTERS_RESET_REG_2_UMAC0 | 9711 MISC_REGISTERS_RESET_REG_2_UMAC1; 9712 9713 /* 9714 * Keep the following blocks in reset: 9715 * - all xxMACs are handled by the bnx2x_link code. 9716 */ 9717 stay_reset2 = 9718 MISC_REGISTERS_RESET_REG_2_XMAC | 9719 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 9720 9721 /* Full reset masks according to the chip */ 9722 reset_mask1 = 0xffffffff; 9723 9724 if (CHIP_IS_E1(bp)) 9725 reset_mask2 = 0xffff; 9726 else if (CHIP_IS_E1H(bp)) 9727 reset_mask2 = 0x1ffff; 9728 else if (CHIP_IS_E2(bp)) 9729 reset_mask2 = 0xfffff; 9730 else /* CHIP_IS_E3 */ 9731 reset_mask2 = 0x3ffffff; 9732 9733 /* Don't reset global blocks unless we need to */ 9734 if (!global) 9735 reset_mask2 &= ~global_bits2; 9736 9737 /* 9738 * In case of attention in the QM, we need to reset PXP 9739 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 9740 * because otherwise QM reset would release 'close the gates' shortly 9741 * before resetting the PXP, then the PSWRQ would send a write 9742 * request to PGLUE. Then when PXP is reset, PGLUE would try to 9743 * read the payload data from PSWWR, but PSWWR would not 9744 * respond. The write queue in PGLUE would stuck, dmae commands 9745 * would not return. Therefore it's important to reset the second 9746 * reset register (containing the 9747 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 9748 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 9749 * bit). 9750 */ 9751 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 9752 reset_mask2 & (~not_reset_mask2)); 9753 9754 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 9755 reset_mask1 & (~not_reset_mask1)); 9756 9757 barrier(); 9758 9759 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 9760 reset_mask2 & (~stay_reset2)); 9761 9762 barrier(); 9763 9764 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 9765 } 9766 9767 /** 9768 * bnx2x_er_poll_igu_vq - poll for pending writes bit. 9769 * It should get cleared in no more than 1s. 9770 * 9771 * @bp: driver handle 9772 * 9773 * It should get cleared in no more than 1s. Returns 0 if 9774 * pending writes bit gets cleared. 9775 */ 9776 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) 9777 { 9778 u32 cnt = 1000; 9779 u32 pend_bits = 0; 9780 9781 do { 9782 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); 9783 9784 if (pend_bits == 0) 9785 break; 9786 9787 usleep_range(1000, 2000); 9788 } while (cnt-- > 0); 9789 9790 if (cnt <= 0) { 9791 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", 9792 pend_bits); 9793 return -EBUSY; 9794 } 9795 9796 return 0; 9797 } 9798 9799 static int bnx2x_process_kill(struct bnx2x *bp, bool global) 9800 { 9801 int cnt = 1000; 9802 u32 val = 0; 9803 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 9804 u32 tags_63_32 = 0; 9805 9806 /* Empty the Tetris buffer, wait for 1s */ 9807 do { 9808 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); 9809 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); 9810 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); 9811 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); 9812 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); 9813 if (CHIP_IS_E3(bp)) 9814 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); 9815 9816 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 9817 ((port_is_idle_0 & 0x1) == 0x1) && 9818 ((port_is_idle_1 & 0x1) == 0x1) && 9819 (pgl_exp_rom2 == 0xffffffff) && 9820 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) 9821 break; 9822 usleep_range(1000, 2000); 9823 } while (cnt-- > 0); 9824 9825 if (cnt <= 0) { 9826 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); 9827 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 9828 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, 9829 pgl_exp_rom2); 9830 return -EAGAIN; 9831 } 9832 9833 barrier(); 9834 9835 /* Close gates #2, #3 and #4 */ 9836 bnx2x_set_234_gates(bp, true); 9837 9838 /* Poll for IGU VQs for 57712 and newer chips */ 9839 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) 9840 return -EAGAIN; 9841 9842 /* TBD: Indicate that "process kill" is in progress to MCP */ 9843 9844 /* Clear "unprepared" bit */ 9845 REG_WR(bp, MISC_REG_UNPREPARED, 0); 9846 barrier(); 9847 9848 /* Wait for 1ms to empty GLUE and PCI-E core queues, 9849 * PSWHST, GRC and PSWRD Tetris buffer. 9850 */ 9851 usleep_range(1000, 2000); 9852 9853 /* Prepare to chip reset: */ 9854 /* MCP */ 9855 if (global) 9856 bnx2x_reset_mcp_prep(bp, &val); 9857 9858 /* PXP */ 9859 bnx2x_pxp_prep(bp); 9860 barrier(); 9861 9862 /* reset the chip */ 9863 bnx2x_process_kill_chip_reset(bp, global); 9864 barrier(); 9865 9866 /* clear errors in PGB */ 9867 if (!CHIP_IS_E1x(bp)) 9868 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 9869 9870 /* Recover after reset: */ 9871 /* MCP */ 9872 if (global && bnx2x_reset_mcp_comp(bp, val)) 9873 return -EAGAIN; 9874 9875 /* TBD: Add resetting the NO_MCP mode DB here */ 9876 9877 /* Open the gates #2, #3 and #4 */ 9878 bnx2x_set_234_gates(bp, false); 9879 9880 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a 9881 * reset state, re-enable attentions. */ 9882 9883 return 0; 9884 } 9885 9886 static int bnx2x_leader_reset(struct bnx2x *bp) 9887 { 9888 int rc = 0; 9889 bool global = bnx2x_reset_is_global(bp); 9890 u32 load_code; 9891 9892 /* if not going to reset MCP - load "fake" driver to reset HW while 9893 * driver is owner of the HW 9894 */ 9895 if (!global && !BP_NOMCP(bp)) { 9896 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 9897 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 9898 if (!load_code) { 9899 BNX2X_ERR("MCP response failure, aborting\n"); 9900 rc = -EAGAIN; 9901 goto exit_leader_reset; 9902 } 9903 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 9904 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 9905 BNX2X_ERR("MCP unexpected resp, aborting\n"); 9906 rc = -EAGAIN; 9907 goto exit_leader_reset2; 9908 } 9909 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 9910 if (!load_code) { 9911 BNX2X_ERR("MCP response failure, aborting\n"); 9912 rc = -EAGAIN; 9913 goto exit_leader_reset2; 9914 } 9915 } 9916 9917 /* Try to recover after the failure */ 9918 if (bnx2x_process_kill(bp, global)) { 9919 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", 9920 BP_PATH(bp)); 9921 rc = -EAGAIN; 9922 goto exit_leader_reset2; 9923 } 9924 9925 /* 9926 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver 9927 * state. 9928 */ 9929 bnx2x_set_reset_done(bp); 9930 if (global) 9931 bnx2x_clear_reset_global(bp); 9932 9933 exit_leader_reset2: 9934 /* unload "fake driver" if it was loaded */ 9935 if (!global && !BP_NOMCP(bp)) { 9936 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 9937 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 9938 } 9939 exit_leader_reset: 9940 bp->is_leader = 0; 9941 bnx2x_release_leader_lock(bp); 9942 smp_mb(); 9943 return rc; 9944 } 9945 9946 static void bnx2x_recovery_failed(struct bnx2x *bp) 9947 { 9948 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); 9949 9950 /* Disconnect this device */ 9951 netif_device_detach(bp->dev); 9952 9953 /* 9954 * Block ifup for all function on this engine until "process kill" 9955 * or power cycle. 9956 */ 9957 bnx2x_set_reset_in_progress(bp); 9958 9959 /* Shut down the power */ 9960 bnx2x_set_power_state(bp, PCI_D3hot); 9961 9962 bp->recovery_state = BNX2X_RECOVERY_FAILED; 9963 9964 smp_mb(); 9965 } 9966 9967 /* 9968 * Assumption: runs under rtnl lock. This together with the fact 9969 * that it's called only from bnx2x_sp_rtnl() ensure that it 9970 * will never be called when netif_running(bp->dev) is false. 9971 */ 9972 static void bnx2x_parity_recover(struct bnx2x *bp) 9973 { 9974 u32 error_recovered, error_unrecovered; 9975 bool is_parity, global = false; 9976 #ifdef CONFIG_BNX2X_SRIOV 9977 int vf_idx; 9978 9979 for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) { 9980 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx); 9981 9982 if (vf) 9983 vf->state = VF_LOST; 9984 } 9985 #endif 9986 DP(NETIF_MSG_HW, "Handling parity\n"); 9987 while (1) { 9988 switch (bp->recovery_state) { 9989 case BNX2X_RECOVERY_INIT: 9990 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); 9991 is_parity = bnx2x_chk_parity_attn(bp, &global, false); 9992 WARN_ON(!is_parity); 9993 9994 /* Try to get a LEADER_LOCK HW lock */ 9995 if (bnx2x_trylock_leader_lock(bp)) { 9996 bnx2x_set_reset_in_progress(bp); 9997 /* 9998 * Check if there is a global attention and if 9999 * there was a global attention, set the global 10000 * reset bit. 10001 */ 10002 10003 if (global) 10004 bnx2x_set_reset_global(bp); 10005 10006 bp->is_leader = 1; 10007 } 10008 10009 /* Stop the driver */ 10010 /* If interface has been removed - break */ 10011 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) 10012 return; 10013 10014 bp->recovery_state = BNX2X_RECOVERY_WAIT; 10015 10016 /* Ensure "is_leader", MCP command sequence and 10017 * "recovery_state" update values are seen on other 10018 * CPUs. 10019 */ 10020 smp_mb(); 10021 break; 10022 10023 case BNX2X_RECOVERY_WAIT: 10024 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); 10025 if (bp->is_leader) { 10026 int other_engine = BP_PATH(bp) ? 0 : 1; 10027 bool other_load_status = 10028 bnx2x_get_load_status(bp, other_engine); 10029 bool load_status = 10030 bnx2x_get_load_status(bp, BP_PATH(bp)); 10031 global = bnx2x_reset_is_global(bp); 10032 10033 /* 10034 * In case of a parity in a global block, let 10035 * the first leader that performs a 10036 * leader_reset() reset the global blocks in 10037 * order to clear global attentions. Otherwise 10038 * the gates will remain closed for that 10039 * engine. 10040 */ 10041 if (load_status || 10042 (global && other_load_status)) { 10043 /* Wait until all other functions get 10044 * down. 10045 */ 10046 schedule_delayed_work(&bp->sp_rtnl_task, 10047 HZ/10); 10048 return; 10049 } else { 10050 /* If all other functions got down - 10051 * try to bring the chip back to 10052 * normal. In any case it's an exit 10053 * point for a leader. 10054 */ 10055 if (bnx2x_leader_reset(bp)) { 10056 bnx2x_recovery_failed(bp); 10057 return; 10058 } 10059 10060 /* If we are here, means that the 10061 * leader has succeeded and doesn't 10062 * want to be a leader any more. Try 10063 * to continue as a none-leader. 10064 */ 10065 break; 10066 } 10067 } else { /* non-leader */ 10068 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { 10069 /* Try to get a LEADER_LOCK HW lock as 10070 * long as a former leader may have 10071 * been unloaded by the user or 10072 * released a leadership by another 10073 * reason. 10074 */ 10075 if (bnx2x_trylock_leader_lock(bp)) { 10076 /* I'm a leader now! Restart a 10077 * switch case. 10078 */ 10079 bp->is_leader = 1; 10080 break; 10081 } 10082 10083 schedule_delayed_work(&bp->sp_rtnl_task, 10084 HZ/10); 10085 return; 10086 10087 } else { 10088 /* 10089 * If there was a global attention, wait 10090 * for it to be cleared. 10091 */ 10092 if (bnx2x_reset_is_global(bp)) { 10093 schedule_delayed_work( 10094 &bp->sp_rtnl_task, 10095 HZ/10); 10096 return; 10097 } 10098 10099 error_recovered = 10100 bp->eth_stats.recoverable_error; 10101 error_unrecovered = 10102 bp->eth_stats.unrecoverable_error; 10103 bp->recovery_state = 10104 BNX2X_RECOVERY_NIC_LOADING; 10105 if (bnx2x_nic_load(bp, LOAD_NORMAL)) { 10106 error_unrecovered++; 10107 netdev_err(bp->dev, 10108 "Recovery failed. Power cycle needed\n"); 10109 /* Disconnect this device */ 10110 netif_device_detach(bp->dev); 10111 /* Shut down the power */ 10112 bnx2x_set_power_state( 10113 bp, PCI_D3hot); 10114 smp_mb(); 10115 } else { 10116 bp->recovery_state = 10117 BNX2X_RECOVERY_DONE; 10118 error_recovered++; 10119 smp_mb(); 10120 } 10121 bp->eth_stats.recoverable_error = 10122 error_recovered; 10123 bp->eth_stats.unrecoverable_error = 10124 error_unrecovered; 10125 10126 return; 10127 } 10128 } 10129 default: 10130 return; 10131 } 10132 } 10133 } 10134 10135 static int bnx2x_udp_port_update(struct bnx2x *bp) 10136 { 10137 struct bnx2x_func_switch_update_params *switch_update_params; 10138 struct bnx2x_func_state_params func_params = {NULL}; 10139 struct bnx2x_udp_tunnel *udp_tunnel; 10140 u16 vxlan_port = 0, geneve_port = 0; 10141 int rc; 10142 10143 switch_update_params = &func_params.params.switch_update; 10144 10145 /* Prepare parameters for function state transitions */ 10146 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 10147 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 10148 10149 func_params.f_obj = &bp->func_obj; 10150 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 10151 10152 /* Function parameters */ 10153 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG, 10154 &switch_update_params->changes); 10155 10156 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) { 10157 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]; 10158 geneve_port = udp_tunnel->dst_port; 10159 switch_update_params->geneve_dst_port = geneve_port; 10160 } 10161 10162 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) { 10163 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]; 10164 vxlan_port = udp_tunnel->dst_port; 10165 switch_update_params->vxlan_dst_port = vxlan_port; 10166 } 10167 10168 /* Re-enable inner-rss for the offloaded UDP tunnels */ 10169 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS, 10170 &switch_update_params->changes); 10171 10172 rc = bnx2x_func_state_change(bp, &func_params); 10173 if (rc) 10174 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n", 10175 vxlan_port, geneve_port, rc); 10176 else 10177 DP(BNX2X_MSG_SP, 10178 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n", 10179 vxlan_port, geneve_port); 10180 10181 return rc; 10182 } 10183 10184 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port, 10185 enum bnx2x_udp_port_type type) 10186 { 10187 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type]; 10188 10189 if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp)) 10190 return; 10191 10192 if (udp_port->count && udp_port->dst_port == port) { 10193 udp_port->count++; 10194 return; 10195 } 10196 10197 if (udp_port->count) { 10198 DP(BNX2X_MSG_SP, 10199 "UDP tunnel [%d] - destination port limit reached\n", 10200 type); 10201 return; 10202 } 10203 10204 udp_port->dst_port = port; 10205 udp_port->count = 1; 10206 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0); 10207 } 10208 10209 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port, 10210 enum bnx2x_udp_port_type type) 10211 { 10212 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type]; 10213 10214 if (!IS_PF(bp) || CHIP_IS_E1x(bp)) 10215 return; 10216 10217 if (!udp_port->count || udp_port->dst_port != port) { 10218 DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n", 10219 type); 10220 return; 10221 } 10222 10223 /* Remove reference, and make certain it's no longer in use */ 10224 udp_port->count--; 10225 if (udp_port->count) 10226 return; 10227 udp_port->dst_port = 0; 10228 10229 if (netif_running(bp->dev)) 10230 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0); 10231 else 10232 DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n", 10233 type, port); 10234 } 10235 10236 static void bnx2x_udp_tunnel_add(struct net_device *netdev, 10237 struct udp_tunnel_info *ti) 10238 { 10239 struct bnx2x *bp = netdev_priv(netdev); 10240 u16 t_port = ntohs(ti->port); 10241 10242 switch (ti->type) { 10243 case UDP_TUNNEL_TYPE_VXLAN: 10244 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN); 10245 break; 10246 case UDP_TUNNEL_TYPE_GENEVE: 10247 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE); 10248 break; 10249 default: 10250 break; 10251 } 10252 } 10253 10254 static void bnx2x_udp_tunnel_del(struct net_device *netdev, 10255 struct udp_tunnel_info *ti) 10256 { 10257 struct bnx2x *bp = netdev_priv(netdev); 10258 u16 t_port = ntohs(ti->port); 10259 10260 switch (ti->type) { 10261 case UDP_TUNNEL_TYPE_VXLAN: 10262 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN); 10263 break; 10264 case UDP_TUNNEL_TYPE_GENEVE: 10265 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE); 10266 break; 10267 default: 10268 break; 10269 } 10270 } 10271 10272 static int bnx2x_close(struct net_device *dev); 10273 10274 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is 10275 * scheduled on a general queue in order to prevent a dead lock. 10276 */ 10277 static void bnx2x_sp_rtnl_task(struct work_struct *work) 10278 { 10279 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); 10280 10281 rtnl_lock(); 10282 10283 if (!netif_running(bp->dev)) { 10284 rtnl_unlock(); 10285 return; 10286 } 10287 10288 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { 10289 #ifdef BNX2X_STOP_ON_ERROR 10290 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10291 "you will need to reboot when done\n"); 10292 goto sp_rtnl_not_reset; 10293 #endif 10294 /* 10295 * Clear all pending SP commands as we are going to reset the 10296 * function anyway. 10297 */ 10298 bp->sp_rtnl_state = 0; 10299 smp_mb(); 10300 10301 bnx2x_parity_recover(bp); 10302 10303 rtnl_unlock(); 10304 return; 10305 } 10306 10307 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { 10308 #ifdef BNX2X_STOP_ON_ERROR 10309 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10310 "you will need to reboot when done\n"); 10311 goto sp_rtnl_not_reset; 10312 #endif 10313 10314 /* 10315 * Clear all pending SP commands as we are going to reset the 10316 * function anyway. 10317 */ 10318 bp->sp_rtnl_state = 0; 10319 smp_mb(); 10320 10321 /* Immediately indicate link as down */ 10322 bp->link_vars.link_up = 0; 10323 bp->force_link_down = true; 10324 netif_carrier_off(bp->dev); 10325 BNX2X_ERR("Indicating link is down due to Tx-timeout\n"); 10326 10327 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10328 /* When ret value shows failure of allocation failure, 10329 * the nic is rebooted again. If open still fails, a error 10330 * message to notify the user. 10331 */ 10332 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) { 10333 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10334 if (bnx2x_nic_load(bp, LOAD_NORMAL)) 10335 BNX2X_ERR("Open the NIC fails again!\n"); 10336 } 10337 rtnl_unlock(); 10338 return; 10339 } 10340 #ifdef BNX2X_STOP_ON_ERROR 10341 sp_rtnl_not_reset: 10342 #endif 10343 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) 10344 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); 10345 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) 10346 bnx2x_after_function_update(bp); 10347 /* 10348 * in case of fan failure we need to reset id if the "stop on error" 10349 * debug flag is set, since we trying to prevent permanent overheating 10350 * damage 10351 */ 10352 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { 10353 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); 10354 netif_device_detach(bp->dev); 10355 bnx2x_close(bp->dev); 10356 rtnl_unlock(); 10357 return; 10358 } 10359 10360 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { 10361 DP(BNX2X_MSG_SP, 10362 "sending set mcast vf pf channel message from rtnl sp-task\n"); 10363 bnx2x_vfpf_set_mcast(bp->dev); 10364 } 10365 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 10366 &bp->sp_rtnl_state)){ 10367 if (netif_carrier_ok(bp->dev)) { 10368 bnx2x_tx_disable(bp); 10369 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); 10370 } 10371 } 10372 10373 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) { 10374 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n"); 10375 bnx2x_set_rx_mode_inner(bp); 10376 } 10377 10378 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, 10379 &bp->sp_rtnl_state)) 10380 bnx2x_pf_set_vfs_vlan(bp); 10381 10382 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) { 10383 bnx2x_dcbx_stop_hw_tx(bp); 10384 bnx2x_dcbx_resume_hw_tx(bp); 10385 } 10386 10387 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION, 10388 &bp->sp_rtnl_state)) 10389 bnx2x_update_mng_version(bp); 10390 10391 if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state)) 10392 bnx2x_handle_update_svid_cmd(bp); 10393 10394 if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT, 10395 &bp->sp_rtnl_state)) { 10396 if (bnx2x_udp_port_update(bp)) { 10397 /* On error, forget configuration */ 10398 memset(bp->udp_tunnel_ports, 0, 10399 sizeof(struct bnx2x_udp_tunnel) * 10400 BNX2X_UDP_PORT_MAX); 10401 } else { 10402 /* Since we don't store additional port information, 10403 * if no ports are configured for any feature ask for 10404 * information about currently configured ports. 10405 */ 10406 if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count && 10407 !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) 10408 udp_tunnel_get_rx_info(bp->dev); 10409 } 10410 } 10411 10412 /* work which needs rtnl lock not-taken (as it takes the lock itself and 10413 * can be called from other contexts as well) 10414 */ 10415 rtnl_unlock(); 10416 10417 /* enable SR-IOV if applicable */ 10418 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, 10419 &bp->sp_rtnl_state)) { 10420 bnx2x_disable_sriov(bp); 10421 bnx2x_enable_sriov(bp); 10422 } 10423 } 10424 10425 static void bnx2x_period_task(struct work_struct *work) 10426 { 10427 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); 10428 10429 if (!netif_running(bp->dev)) 10430 goto period_task_exit; 10431 10432 if (CHIP_REV_IS_SLOW(bp)) { 10433 BNX2X_ERR("period task called on emulation, ignoring\n"); 10434 goto period_task_exit; 10435 } 10436 10437 bnx2x_acquire_phy_lock(bp); 10438 /* 10439 * The barrier is needed to ensure the ordering between the writing to 10440 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and 10441 * the reading here. 10442 */ 10443 smp_mb(); 10444 if (bp->port.pmf) { 10445 bnx2x_period_func(&bp->link_params, &bp->link_vars); 10446 10447 /* Re-queue task in 1 sec */ 10448 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); 10449 } 10450 10451 bnx2x_release_phy_lock(bp); 10452 period_task_exit: 10453 return; 10454 } 10455 10456 /* 10457 * Init service functions 10458 */ 10459 10460 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp) 10461 { 10462 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; 10463 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; 10464 return base + (BP_ABS_FUNC(bp)) * stride; 10465 } 10466 10467 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp, 10468 u8 port, u32 reset_reg, 10469 struct bnx2x_mac_vals *vals) 10470 { 10471 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 10472 u32 base_addr; 10473 10474 if (!(mask & reset_reg)) 10475 return false; 10476 10477 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port); 10478 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 10479 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG; 10480 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]); 10481 REG_WR(bp, vals->umac_addr[port], 0); 10482 10483 return true; 10484 } 10485 10486 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, 10487 struct bnx2x_mac_vals *vals) 10488 { 10489 u32 val, base_addr, offset, mask, reset_reg; 10490 bool mac_stopped = false; 10491 u8 port = BP_PORT(bp); 10492 10493 /* reset addresses as they also mark which values were changed */ 10494 memset(vals, 0, sizeof(*vals)); 10495 10496 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); 10497 10498 if (!CHIP_IS_E3(bp)) { 10499 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 10500 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 10501 if ((mask & reset_reg) && val) { 10502 u32 wb_data[2]; 10503 BNX2X_DEV_INFO("Disable bmac Rx\n"); 10504 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM 10505 : NIG_REG_INGRESS_BMAC0_MEM; 10506 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL 10507 : BIGMAC_REGISTER_BMAC_CONTROL; 10508 10509 /* 10510 * use rd/wr since we cannot use dmae. This is safe 10511 * since MCP won't access the bus due to the request 10512 * to unload, and no function on the path can be 10513 * loaded at this time. 10514 */ 10515 wb_data[0] = REG_RD(bp, base_addr + offset); 10516 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); 10517 vals->bmac_addr = base_addr + offset; 10518 vals->bmac_val[0] = wb_data[0]; 10519 vals->bmac_val[1] = wb_data[1]; 10520 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; 10521 REG_WR(bp, vals->bmac_addr, wb_data[0]); 10522 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); 10523 } 10524 BNX2X_DEV_INFO("Disable emac Rx\n"); 10525 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; 10526 vals->emac_val = REG_RD(bp, vals->emac_addr); 10527 REG_WR(bp, vals->emac_addr, 0); 10528 mac_stopped = true; 10529 } else { 10530 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 10531 BNX2X_DEV_INFO("Disable xmac Rx\n"); 10532 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 10533 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); 10534 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10535 val & ~(1 << 1)); 10536 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10537 val | (1 << 1)); 10538 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 10539 vals->xmac_val = REG_RD(bp, vals->xmac_addr); 10540 REG_WR(bp, vals->xmac_addr, 0); 10541 mac_stopped = true; 10542 } 10543 10544 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0, 10545 reset_reg, vals); 10546 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1, 10547 reset_reg, vals); 10548 } 10549 10550 if (mac_stopped) 10551 msleep(20); 10552 } 10553 10554 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 10555 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \ 10556 0x1848 + ((f) << 4)) 10557 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) 10558 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 10559 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 10560 10561 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07) 10562 #define BCM_5710_UNDI_FW_MF_MINOR (0x08) 10563 #define BCM_5710_UNDI_FW_MF_VERS (0x05) 10564 10565 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp) 10566 { 10567 /* UNDI marks its presence in DORQ - 10568 * it initializes CID offset for normal bell to 0x7 10569 */ 10570 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) & 10571 MISC_REGISTERS_RESET_REG_1_RST_DORQ)) 10572 return false; 10573 10574 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) { 10575 BNX2X_DEV_INFO("UNDI previously loaded\n"); 10576 return true; 10577 } 10578 10579 return false; 10580 } 10581 10582 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc) 10583 { 10584 u16 rcq, bd; 10585 u32 addr, tmp_reg; 10586 10587 if (BP_FUNC(bp) < 2) 10588 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp)); 10589 else 10590 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2); 10591 10592 tmp_reg = REG_RD(bp, addr); 10593 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; 10594 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; 10595 10596 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); 10597 REG_WR(bp, addr, tmp_reg); 10598 10599 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n", 10600 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq); 10601 } 10602 10603 static int bnx2x_prev_mcp_done(struct bnx2x *bp) 10604 { 10605 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 10606 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 10607 if (!rc) { 10608 BNX2X_ERR("MCP response failure, aborting\n"); 10609 return -EBUSY; 10610 } 10611 10612 return 0; 10613 } 10614 10615 static struct bnx2x_prev_path_list * 10616 bnx2x_prev_path_get_entry(struct bnx2x *bp) 10617 { 10618 struct bnx2x_prev_path_list *tmp_list; 10619 10620 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) 10621 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && 10622 bp->pdev->bus->number == tmp_list->bus && 10623 BP_PATH(bp) == tmp_list->path) 10624 return tmp_list; 10625 10626 return NULL; 10627 } 10628 10629 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) 10630 { 10631 struct bnx2x_prev_path_list *tmp_list; 10632 int rc; 10633 10634 rc = down_interruptible(&bnx2x_prev_sem); 10635 if (rc) { 10636 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10637 return rc; 10638 } 10639 10640 tmp_list = bnx2x_prev_path_get_entry(bp); 10641 if (tmp_list) { 10642 tmp_list->aer = 1; 10643 rc = 0; 10644 } else { 10645 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", 10646 BP_PATH(bp)); 10647 } 10648 10649 up(&bnx2x_prev_sem); 10650 10651 return rc; 10652 } 10653 10654 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) 10655 { 10656 struct bnx2x_prev_path_list *tmp_list; 10657 bool rc = false; 10658 10659 if (down_trylock(&bnx2x_prev_sem)) 10660 return false; 10661 10662 tmp_list = bnx2x_prev_path_get_entry(bp); 10663 if (tmp_list) { 10664 if (tmp_list->aer) { 10665 DP(NETIF_MSG_HW, "Path %d was marked by AER\n", 10666 BP_PATH(bp)); 10667 } else { 10668 rc = true; 10669 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", 10670 BP_PATH(bp)); 10671 } 10672 } 10673 10674 up(&bnx2x_prev_sem); 10675 10676 return rc; 10677 } 10678 10679 bool bnx2x_port_after_undi(struct bnx2x *bp) 10680 { 10681 struct bnx2x_prev_path_list *entry; 10682 bool val; 10683 10684 down(&bnx2x_prev_sem); 10685 10686 entry = bnx2x_prev_path_get_entry(bp); 10687 val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); 10688 10689 up(&bnx2x_prev_sem); 10690 10691 return val; 10692 } 10693 10694 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) 10695 { 10696 struct bnx2x_prev_path_list *tmp_list; 10697 int rc; 10698 10699 rc = down_interruptible(&bnx2x_prev_sem); 10700 if (rc) { 10701 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10702 return rc; 10703 } 10704 10705 /* Check whether the entry for this path already exists */ 10706 tmp_list = bnx2x_prev_path_get_entry(bp); 10707 if (tmp_list) { 10708 if (!tmp_list->aer) { 10709 BNX2X_ERR("Re-Marking the path.\n"); 10710 } else { 10711 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", 10712 BP_PATH(bp)); 10713 tmp_list->aer = 0; 10714 } 10715 up(&bnx2x_prev_sem); 10716 return 0; 10717 } 10718 up(&bnx2x_prev_sem); 10719 10720 /* Create an entry for this path and add it */ 10721 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); 10722 if (!tmp_list) { 10723 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); 10724 return -ENOMEM; 10725 } 10726 10727 tmp_list->bus = bp->pdev->bus->number; 10728 tmp_list->slot = PCI_SLOT(bp->pdev->devfn); 10729 tmp_list->path = BP_PATH(bp); 10730 tmp_list->aer = 0; 10731 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; 10732 10733 rc = down_interruptible(&bnx2x_prev_sem); 10734 if (rc) { 10735 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10736 kfree(tmp_list); 10737 } else { 10738 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", 10739 BP_PATH(bp)); 10740 list_add(&tmp_list->list, &bnx2x_prev_list); 10741 up(&bnx2x_prev_sem); 10742 } 10743 10744 return rc; 10745 } 10746 10747 static int bnx2x_do_flr(struct bnx2x *bp) 10748 { 10749 struct pci_dev *dev = bp->pdev; 10750 10751 if (CHIP_IS_E1x(bp)) { 10752 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); 10753 return -EINVAL; 10754 } 10755 10756 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 10757 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 10758 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", 10759 bp->common.bc_ver); 10760 return -EINVAL; 10761 } 10762 10763 if (!pci_wait_for_pending_transaction(dev)) 10764 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 10765 10766 BNX2X_DEV_INFO("Initiating FLR\n"); 10767 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); 10768 10769 return 0; 10770 } 10771 10772 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) 10773 { 10774 int rc; 10775 10776 BNX2X_DEV_INFO("Uncommon unload Flow\n"); 10777 10778 /* Test if previous unload process was already finished for this path */ 10779 if (bnx2x_prev_is_path_marked(bp)) 10780 return bnx2x_prev_mcp_done(bp); 10781 10782 BNX2X_DEV_INFO("Path is unmarked\n"); 10783 10784 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */ 10785 if (bnx2x_prev_is_after_undi(bp)) 10786 goto out; 10787 10788 /* If function has FLR capabilities, and existing FW version matches 10789 * the one required, then FLR will be sufficient to clean any residue 10790 * left by previous driver 10791 */ 10792 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false); 10793 10794 if (!rc) { 10795 /* fw version is good */ 10796 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); 10797 rc = bnx2x_do_flr(bp); 10798 } 10799 10800 if (!rc) { 10801 /* FLR was performed */ 10802 BNX2X_DEV_INFO("FLR successful\n"); 10803 return 0; 10804 } 10805 10806 BNX2X_DEV_INFO("Could not FLR\n"); 10807 10808 out: 10809 /* Close the MCP request, return failure*/ 10810 rc = bnx2x_prev_mcp_done(bp); 10811 if (!rc) 10812 rc = BNX2X_PREV_WAIT_NEEDED; 10813 10814 return rc; 10815 } 10816 10817 static int bnx2x_prev_unload_common(struct bnx2x *bp) 10818 { 10819 u32 reset_reg, tmp_reg = 0, rc; 10820 bool prev_undi = false; 10821 struct bnx2x_mac_vals mac_vals; 10822 10823 /* It is possible a previous function received 'common' answer, 10824 * but hasn't loaded yet, therefore creating a scenario of 10825 * multiple functions receiving 'common' on the same path. 10826 */ 10827 BNX2X_DEV_INFO("Common unload Flow\n"); 10828 10829 memset(&mac_vals, 0, sizeof(mac_vals)); 10830 10831 if (bnx2x_prev_is_path_marked(bp)) 10832 return bnx2x_prev_mcp_done(bp); 10833 10834 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); 10835 10836 /* Reset should be performed after BRB is emptied */ 10837 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 10838 u32 timer_count = 1000; 10839 10840 /* Close the MAC Rx to prevent BRB from filling up */ 10841 bnx2x_prev_unload_close_mac(bp, &mac_vals); 10842 10843 /* close LLH filters for both ports towards the BRB */ 10844 bnx2x_set_rx_filter(&bp->link_params, 0); 10845 bp->link_params.port ^= 1; 10846 bnx2x_set_rx_filter(&bp->link_params, 0); 10847 bp->link_params.port ^= 1; 10848 10849 /* Check if the UNDI driver was previously loaded */ 10850 if (bnx2x_prev_is_after_undi(bp)) { 10851 prev_undi = true; 10852 /* clear the UNDI indication */ 10853 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); 10854 /* clear possible idle check errors */ 10855 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); 10856 } 10857 if (!CHIP_IS_E1x(bp)) 10858 /* block FW from writing to host */ 10859 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 10860 10861 /* wait until BRB is empty */ 10862 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10863 while (timer_count) { 10864 u32 prev_brb = tmp_reg; 10865 10866 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10867 if (!tmp_reg) 10868 break; 10869 10870 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); 10871 10872 /* reset timer as long as BRB actually gets emptied */ 10873 if (prev_brb > tmp_reg) 10874 timer_count = 1000; 10875 else 10876 timer_count--; 10877 10878 /* If UNDI resides in memory, manually increment it */ 10879 if (prev_undi) 10880 bnx2x_prev_unload_undi_inc(bp, 1); 10881 10882 udelay(10); 10883 } 10884 10885 if (!timer_count) 10886 BNX2X_ERR("Failed to empty BRB, hope for the best\n"); 10887 } 10888 10889 /* No packets are in the pipeline, path is ready for reset */ 10890 bnx2x_reset_common(bp); 10891 10892 if (mac_vals.xmac_addr) 10893 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); 10894 if (mac_vals.umac_addr[0]) 10895 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]); 10896 if (mac_vals.umac_addr[1]) 10897 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]); 10898 if (mac_vals.emac_addr) 10899 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); 10900 if (mac_vals.bmac_addr) { 10901 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 10902 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 10903 } 10904 10905 rc = bnx2x_prev_mark_path(bp, prev_undi); 10906 if (rc) { 10907 bnx2x_prev_mcp_done(bp); 10908 return rc; 10909 } 10910 10911 return bnx2x_prev_mcp_done(bp); 10912 } 10913 10914 static int bnx2x_prev_unload(struct bnx2x *bp) 10915 { 10916 int time_counter = 10; 10917 u32 rc, fw, hw_lock_reg, hw_lock_val; 10918 BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); 10919 10920 /* clear hw from errors which may have resulted from an interrupted 10921 * dmae transaction. 10922 */ 10923 bnx2x_clean_pglue_errors(bp); 10924 10925 /* Release previously held locks */ 10926 hw_lock_reg = (BP_FUNC(bp) <= 5) ? 10927 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : 10928 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); 10929 10930 hw_lock_val = REG_RD(bp, hw_lock_reg); 10931 if (hw_lock_val) { 10932 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 10933 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); 10934 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, 10935 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); 10936 } 10937 10938 BNX2X_DEV_INFO("Release Previously held hw lock\n"); 10939 REG_WR(bp, hw_lock_reg, 0xffffffff); 10940 } else 10941 BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); 10942 10943 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { 10944 BNX2X_DEV_INFO("Release previously held alr\n"); 10945 bnx2x_release_alr(bp); 10946 } 10947 10948 do { 10949 int aer = 0; 10950 /* Lock MCP using an unload request */ 10951 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 10952 if (!fw) { 10953 BNX2X_ERR("MCP response failure, aborting\n"); 10954 rc = -EBUSY; 10955 break; 10956 } 10957 10958 rc = down_interruptible(&bnx2x_prev_sem); 10959 if (rc) { 10960 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", 10961 rc); 10962 } else { 10963 /* If Path is marked by EEH, ignore unload status */ 10964 aer = !!(bnx2x_prev_path_get_entry(bp) && 10965 bnx2x_prev_path_get_entry(bp)->aer); 10966 up(&bnx2x_prev_sem); 10967 } 10968 10969 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { 10970 rc = bnx2x_prev_unload_common(bp); 10971 break; 10972 } 10973 10974 /* non-common reply from MCP might require looping */ 10975 rc = bnx2x_prev_unload_uncommon(bp); 10976 if (rc != BNX2X_PREV_WAIT_NEEDED) 10977 break; 10978 10979 msleep(20); 10980 } while (--time_counter); 10981 10982 if (!time_counter || rc) { 10983 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n"); 10984 rc = -EPROBE_DEFER; 10985 } 10986 10987 /* Mark function if its port was used to boot from SAN */ 10988 if (bnx2x_port_after_undi(bp)) 10989 bp->link_params.feature_config_flags |= 10990 FEATURE_CONFIG_BOOT_FROM_SAN; 10991 10992 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); 10993 10994 return rc; 10995 } 10996 10997 static void bnx2x_get_common_hwinfo(struct bnx2x *bp) 10998 { 10999 u32 val, val2, val3, val4, id, boot_mode; 11000 u16 pmc; 11001 11002 /* Get the chip revision id and number. */ 11003 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 11004 val = REG_RD(bp, MISC_REG_CHIP_NUM); 11005 id = ((val & 0xffff) << 16); 11006 val = REG_RD(bp, MISC_REG_CHIP_REV); 11007 id |= ((val & 0xf) << 12); 11008 11009 /* Metal is read from PCI regs, but we can't access >=0x400 from 11010 * the configuration space (so we need to reg_rd) 11011 */ 11012 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); 11013 id |= (((val >> 24) & 0xf) << 4); 11014 val = REG_RD(bp, MISC_REG_BOND_ID); 11015 id |= (val & 0xf); 11016 bp->common.chip_id = id; 11017 11018 /* force 57811 according to MISC register */ 11019 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 11020 if (CHIP_IS_57810(bp)) 11021 bp->common.chip_id = (CHIP_NUM_57811 << 16) | 11022 (bp->common.chip_id & 0x0000FFFF); 11023 else if (CHIP_IS_57810_MF(bp)) 11024 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | 11025 (bp->common.chip_id & 0x0000FFFF); 11026 bp->common.chip_id |= 0x1; 11027 } 11028 11029 /* Set doorbell size */ 11030 bp->db_size = (1 << BNX2X_DB_SHIFT); 11031 11032 if (!CHIP_IS_E1x(bp)) { 11033 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); 11034 if ((val & 1) == 0) 11035 val = REG_RD(bp, MISC_REG_PORT4MODE_EN); 11036 else 11037 val = (val >> 1) & 1; 11038 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : 11039 "2_PORT_MODE"); 11040 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : 11041 CHIP_2_PORT_MODE; 11042 11043 if (CHIP_MODE_IS_4_PORT(bp)) 11044 bp->pfid = (bp->pf_num >> 1); /* 0..3 */ 11045 else 11046 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ 11047 } else { 11048 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ 11049 bp->pfid = bp->pf_num; /* 0..7 */ 11050 } 11051 11052 BNX2X_DEV_INFO("pf_id: %x", bp->pfid); 11053 11054 bp->link_params.chip_id = bp->common.chip_id; 11055 BNX2X_DEV_INFO("chip ID is 0x%x\n", id); 11056 11057 val = (REG_RD(bp, 0x2874) & 0x55); 11058 if ((bp->common.chip_id & 0x1) || 11059 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { 11060 bp->flags |= ONE_PORT_FLAG; 11061 BNX2X_DEV_INFO("single port device\n"); 11062 } 11063 11064 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); 11065 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << 11066 (val & MCPR_NVM_CFG4_FLASH_SIZE)); 11067 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", 11068 bp->common.flash_size, bp->common.flash_size); 11069 11070 bnx2x_init_shmem(bp); 11071 11072 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? 11073 MISC_REG_GENERIC_CR_1 : 11074 MISC_REG_GENERIC_CR_0)); 11075 11076 bp->link_params.shmem_base = bp->common.shmem_base; 11077 bp->link_params.shmem2_base = bp->common.shmem2_base; 11078 if (SHMEM2_RD(bp, size) > 11079 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 11080 bp->link_params.lfa_base = 11081 REG_RD(bp, bp->common.shmem2_base + 11082 (u32)offsetof(struct shmem2_region, 11083 lfa_host_addr[BP_PORT(bp)])); 11084 else 11085 bp->link_params.lfa_base = 0; 11086 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", 11087 bp->common.shmem_base, bp->common.shmem2_base); 11088 11089 if (!bp->common.shmem_base) { 11090 BNX2X_DEV_INFO("MCP not active\n"); 11091 bp->flags |= NO_MCP_FLAG; 11092 return; 11093 } 11094 11095 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); 11096 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); 11097 11098 bp->link_params.hw_led_mode = ((bp->common.hw_config & 11099 SHARED_HW_CFG_LED_MODE_MASK) >> 11100 SHARED_HW_CFG_LED_MODE_SHIFT); 11101 11102 bp->link_params.feature_config_flags = 0; 11103 val = SHMEM_RD(bp, dev_info.shared_feature_config.config); 11104 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) 11105 bp->link_params.feature_config_flags |= 11106 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 11107 else 11108 bp->link_params.feature_config_flags &= 11109 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 11110 11111 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; 11112 bp->common.bc_ver = val; 11113 BNX2X_DEV_INFO("bc_ver %X\n", val); 11114 if (val < BNX2X_BC_VER) { 11115 /* for now only warn 11116 * later we might need to enforce this */ 11117 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", 11118 BNX2X_BC_VER, val); 11119 } 11120 bp->link_params.feature_config_flags |= 11121 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? 11122 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; 11123 11124 bp->link_params.feature_config_flags |= 11125 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? 11126 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; 11127 bp->link_params.feature_config_flags |= 11128 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? 11129 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; 11130 bp->link_params.feature_config_flags |= 11131 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? 11132 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; 11133 11134 bp->link_params.feature_config_flags |= 11135 (val >= REQ_BC_VER_4_MT_SUPPORTED) ? 11136 FEATURE_CONFIG_MT_SUPPORT : 0; 11137 11138 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? 11139 BC_SUPPORTS_PFC_STATS : 0; 11140 11141 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? 11142 BC_SUPPORTS_FCOE_FEATURES : 0; 11143 11144 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? 11145 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; 11146 11147 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? 11148 BC_SUPPORTS_RMMOD_CMD : 0; 11149 11150 boot_mode = SHMEM_RD(bp, 11151 dev_info.port_feature_config[BP_PORT(bp)].mba_config) & 11152 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; 11153 switch (boot_mode) { 11154 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: 11155 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; 11156 break; 11157 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: 11158 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; 11159 break; 11160 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: 11161 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; 11162 break; 11163 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: 11164 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; 11165 break; 11166 } 11167 11168 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc); 11169 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; 11170 11171 BNX2X_DEV_INFO("%sWoL capable\n", 11172 (bp->flags & NO_WOL_FLAG) ? "not " : ""); 11173 11174 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); 11175 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); 11176 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); 11177 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); 11178 11179 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", 11180 val, val2, val3, val4); 11181 } 11182 11183 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 11184 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 11185 11186 static int bnx2x_get_igu_cam_info(struct bnx2x *bp) 11187 { 11188 int pfid = BP_FUNC(bp); 11189 int igu_sb_id; 11190 u32 val; 11191 u8 fid, igu_sb_cnt = 0; 11192 11193 bp->igu_base_sb = 0xff; 11194 if (CHIP_INT_MODE_IS_BC(bp)) { 11195 int vn = BP_VN(bp); 11196 igu_sb_cnt = bp->igu_sb_cnt; 11197 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * 11198 FP_SB_MAX_E1x; 11199 11200 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + 11201 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); 11202 11203 return 0; 11204 } 11205 11206 /* IGU in normal mode - read CAM */ 11207 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 11208 igu_sb_id++) { 11209 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 11210 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 11211 continue; 11212 fid = IGU_FID(val); 11213 if ((fid & IGU_FID_ENCODE_IS_PF)) { 11214 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) 11215 continue; 11216 if (IGU_VEC(val) == 0) 11217 /* default status block */ 11218 bp->igu_dsb_id = igu_sb_id; 11219 else { 11220 if (bp->igu_base_sb == 0xff) 11221 bp->igu_base_sb = igu_sb_id; 11222 igu_sb_cnt++; 11223 } 11224 } 11225 } 11226 11227 #ifdef CONFIG_PCI_MSI 11228 /* Due to new PF resource allocation by MFW T7.4 and above, it's 11229 * optional that number of CAM entries will not be equal to the value 11230 * advertised in PCI. 11231 * Driver should use the minimal value of both as the actual status 11232 * block count 11233 */ 11234 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); 11235 #endif 11236 11237 if (igu_sb_cnt == 0) { 11238 BNX2X_ERR("CAM configuration error\n"); 11239 return -EINVAL; 11240 } 11241 11242 return 0; 11243 } 11244 11245 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) 11246 { 11247 int cfg_size = 0, idx, port = BP_PORT(bp); 11248 11249 /* Aggregation of supported attributes of all external phys */ 11250 bp->port.supported[0] = 0; 11251 bp->port.supported[1] = 0; 11252 switch (bp->link_params.num_phys) { 11253 case 1: 11254 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; 11255 cfg_size = 1; 11256 break; 11257 case 2: 11258 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; 11259 cfg_size = 1; 11260 break; 11261 case 3: 11262 if (bp->link_params.multi_phy_config & 11263 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11264 bp->port.supported[1] = 11265 bp->link_params.phy[EXT_PHY1].supported; 11266 bp->port.supported[0] = 11267 bp->link_params.phy[EXT_PHY2].supported; 11268 } else { 11269 bp->port.supported[0] = 11270 bp->link_params.phy[EXT_PHY1].supported; 11271 bp->port.supported[1] = 11272 bp->link_params.phy[EXT_PHY2].supported; 11273 } 11274 cfg_size = 2; 11275 break; 11276 } 11277 11278 if (!(bp->port.supported[0] || bp->port.supported[1])) { 11279 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", 11280 SHMEM_RD(bp, 11281 dev_info.port_hw_config[port].external_phy_config), 11282 SHMEM_RD(bp, 11283 dev_info.port_hw_config[port].external_phy_config2)); 11284 return; 11285 } 11286 11287 if (CHIP_IS_E3(bp)) 11288 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); 11289 else { 11290 switch (switch_cfg) { 11291 case SWITCH_CFG_1G: 11292 bp->port.phy_addr = REG_RD( 11293 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 11294 break; 11295 case SWITCH_CFG_10G: 11296 bp->port.phy_addr = REG_RD( 11297 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 11298 break; 11299 default: 11300 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", 11301 bp->port.link_config[0]); 11302 return; 11303 } 11304 } 11305 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); 11306 /* mask what we support according to speed_cap_mask per configuration */ 11307 for (idx = 0; idx < cfg_size; idx++) { 11308 if (!(bp->link_params.speed_cap_mask[idx] & 11309 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) 11310 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; 11311 11312 if (!(bp->link_params.speed_cap_mask[idx] & 11313 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) 11314 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; 11315 11316 if (!(bp->link_params.speed_cap_mask[idx] & 11317 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) 11318 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; 11319 11320 if (!(bp->link_params.speed_cap_mask[idx] & 11321 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) 11322 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; 11323 11324 if (!(bp->link_params.speed_cap_mask[idx] & 11325 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) 11326 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | 11327 SUPPORTED_1000baseT_Full); 11328 11329 if (!(bp->link_params.speed_cap_mask[idx] & 11330 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) 11331 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; 11332 11333 if (!(bp->link_params.speed_cap_mask[idx] & 11334 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) 11335 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; 11336 11337 if (!(bp->link_params.speed_cap_mask[idx] & 11338 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) 11339 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; 11340 } 11341 11342 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], 11343 bp->port.supported[1]); 11344 } 11345 11346 static void bnx2x_link_settings_requested(struct bnx2x *bp) 11347 { 11348 u32 link_config, idx, cfg_size = 0; 11349 bp->port.advertising[0] = 0; 11350 bp->port.advertising[1] = 0; 11351 switch (bp->link_params.num_phys) { 11352 case 1: 11353 case 2: 11354 cfg_size = 1; 11355 break; 11356 case 3: 11357 cfg_size = 2; 11358 break; 11359 } 11360 for (idx = 0; idx < cfg_size; idx++) { 11361 bp->link_params.req_duplex[idx] = DUPLEX_FULL; 11362 link_config = bp->port.link_config[idx]; 11363 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 11364 case PORT_FEATURE_LINK_SPEED_AUTO: 11365 if (bp->port.supported[idx] & SUPPORTED_Autoneg) { 11366 bp->link_params.req_line_speed[idx] = 11367 SPEED_AUTO_NEG; 11368 bp->port.advertising[idx] |= 11369 bp->port.supported[idx]; 11370 if (bp->link_params.phy[EXT_PHY1].type == 11371 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 11372 bp->port.advertising[idx] |= 11373 (SUPPORTED_100baseT_Half | 11374 SUPPORTED_100baseT_Full); 11375 } else { 11376 /* force 10G, no AN */ 11377 bp->link_params.req_line_speed[idx] = 11378 SPEED_10000; 11379 bp->port.advertising[idx] |= 11380 (ADVERTISED_10000baseT_Full | 11381 ADVERTISED_FIBRE); 11382 continue; 11383 } 11384 break; 11385 11386 case PORT_FEATURE_LINK_SPEED_10M_FULL: 11387 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { 11388 bp->link_params.req_line_speed[idx] = 11389 SPEED_10; 11390 bp->port.advertising[idx] |= 11391 (ADVERTISED_10baseT_Full | 11392 ADVERTISED_TP); 11393 } else { 11394 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11395 link_config, 11396 bp->link_params.speed_cap_mask[idx]); 11397 return; 11398 } 11399 break; 11400 11401 case PORT_FEATURE_LINK_SPEED_10M_HALF: 11402 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { 11403 bp->link_params.req_line_speed[idx] = 11404 SPEED_10; 11405 bp->link_params.req_duplex[idx] = 11406 DUPLEX_HALF; 11407 bp->port.advertising[idx] |= 11408 (ADVERTISED_10baseT_Half | 11409 ADVERTISED_TP); 11410 } else { 11411 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11412 link_config, 11413 bp->link_params.speed_cap_mask[idx]); 11414 return; 11415 } 11416 break; 11417 11418 case PORT_FEATURE_LINK_SPEED_100M_FULL: 11419 if (bp->port.supported[idx] & 11420 SUPPORTED_100baseT_Full) { 11421 bp->link_params.req_line_speed[idx] = 11422 SPEED_100; 11423 bp->port.advertising[idx] |= 11424 (ADVERTISED_100baseT_Full | 11425 ADVERTISED_TP); 11426 } else { 11427 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11428 link_config, 11429 bp->link_params.speed_cap_mask[idx]); 11430 return; 11431 } 11432 break; 11433 11434 case PORT_FEATURE_LINK_SPEED_100M_HALF: 11435 if (bp->port.supported[idx] & 11436 SUPPORTED_100baseT_Half) { 11437 bp->link_params.req_line_speed[idx] = 11438 SPEED_100; 11439 bp->link_params.req_duplex[idx] = 11440 DUPLEX_HALF; 11441 bp->port.advertising[idx] |= 11442 (ADVERTISED_100baseT_Half | 11443 ADVERTISED_TP); 11444 } else { 11445 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11446 link_config, 11447 bp->link_params.speed_cap_mask[idx]); 11448 return; 11449 } 11450 break; 11451 11452 case PORT_FEATURE_LINK_SPEED_1G: 11453 if (bp->port.supported[idx] & 11454 SUPPORTED_1000baseT_Full) { 11455 bp->link_params.req_line_speed[idx] = 11456 SPEED_1000; 11457 bp->port.advertising[idx] |= 11458 (ADVERTISED_1000baseT_Full | 11459 ADVERTISED_TP); 11460 } else if (bp->port.supported[idx] & 11461 SUPPORTED_1000baseKX_Full) { 11462 bp->link_params.req_line_speed[idx] = 11463 SPEED_1000; 11464 bp->port.advertising[idx] |= 11465 ADVERTISED_1000baseKX_Full; 11466 } else { 11467 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11468 link_config, 11469 bp->link_params.speed_cap_mask[idx]); 11470 return; 11471 } 11472 break; 11473 11474 case PORT_FEATURE_LINK_SPEED_2_5G: 11475 if (bp->port.supported[idx] & 11476 SUPPORTED_2500baseX_Full) { 11477 bp->link_params.req_line_speed[idx] = 11478 SPEED_2500; 11479 bp->port.advertising[idx] |= 11480 (ADVERTISED_2500baseX_Full | 11481 ADVERTISED_TP); 11482 } else { 11483 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11484 link_config, 11485 bp->link_params.speed_cap_mask[idx]); 11486 return; 11487 } 11488 break; 11489 11490 case PORT_FEATURE_LINK_SPEED_10G_CX4: 11491 if (bp->port.supported[idx] & 11492 SUPPORTED_10000baseT_Full) { 11493 bp->link_params.req_line_speed[idx] = 11494 SPEED_10000; 11495 bp->port.advertising[idx] |= 11496 (ADVERTISED_10000baseT_Full | 11497 ADVERTISED_FIBRE); 11498 } else if (bp->port.supported[idx] & 11499 SUPPORTED_10000baseKR_Full) { 11500 bp->link_params.req_line_speed[idx] = 11501 SPEED_10000; 11502 bp->port.advertising[idx] |= 11503 (ADVERTISED_10000baseKR_Full | 11504 ADVERTISED_FIBRE); 11505 } else { 11506 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11507 link_config, 11508 bp->link_params.speed_cap_mask[idx]); 11509 return; 11510 } 11511 break; 11512 case PORT_FEATURE_LINK_SPEED_20G: 11513 bp->link_params.req_line_speed[idx] = SPEED_20000; 11514 11515 break; 11516 default: 11517 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", 11518 link_config); 11519 bp->link_params.req_line_speed[idx] = 11520 SPEED_AUTO_NEG; 11521 bp->port.advertising[idx] = 11522 bp->port.supported[idx]; 11523 break; 11524 } 11525 11526 bp->link_params.req_flow_ctrl[idx] = (link_config & 11527 PORT_FEATURE_FLOW_CONTROL_MASK); 11528 if (bp->link_params.req_flow_ctrl[idx] == 11529 BNX2X_FLOW_CTRL_AUTO) { 11530 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) 11531 bp->link_params.req_flow_ctrl[idx] = 11532 BNX2X_FLOW_CTRL_NONE; 11533 else 11534 bnx2x_set_requested_fc(bp); 11535 } 11536 11537 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", 11538 bp->link_params.req_line_speed[idx], 11539 bp->link_params.req_duplex[idx], 11540 bp->link_params.req_flow_ctrl[idx], 11541 bp->port.advertising[idx]); 11542 } 11543 } 11544 11545 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) 11546 { 11547 __be16 mac_hi_be = cpu_to_be16(mac_hi); 11548 __be32 mac_lo_be = cpu_to_be32(mac_lo); 11549 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); 11550 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); 11551 } 11552 11553 static void bnx2x_get_port_hwinfo(struct bnx2x *bp) 11554 { 11555 int port = BP_PORT(bp); 11556 u32 config; 11557 u32 ext_phy_type, ext_phy_config, eee_mode; 11558 11559 bp->link_params.bp = bp; 11560 bp->link_params.port = port; 11561 11562 bp->link_params.lane_config = 11563 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); 11564 11565 bp->link_params.speed_cap_mask[0] = 11566 SHMEM_RD(bp, 11567 dev_info.port_hw_config[port].speed_capability_mask) & 11568 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11569 bp->link_params.speed_cap_mask[1] = 11570 SHMEM_RD(bp, 11571 dev_info.port_hw_config[port].speed_capability_mask2) & 11572 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11573 bp->port.link_config[0] = 11574 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); 11575 11576 bp->port.link_config[1] = 11577 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); 11578 11579 bp->link_params.multi_phy_config = 11580 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); 11581 /* If the device is capable of WoL, set the default state according 11582 * to the HW 11583 */ 11584 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); 11585 bp->wol = (!(bp->flags & NO_WOL_FLAG) && 11586 (config & PORT_FEATURE_WOL_ENABLED)); 11587 11588 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11589 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) 11590 bp->flags |= NO_ISCSI_FLAG; 11591 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11592 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) 11593 bp->flags |= NO_FCOE_FLAG; 11594 11595 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", 11596 bp->link_params.lane_config, 11597 bp->link_params.speed_cap_mask[0], 11598 bp->port.link_config[0]); 11599 11600 bp->link_params.switch_cfg = (bp->port.link_config[0] & 11601 PORT_FEATURE_CONNECTED_SWITCH_MASK); 11602 bnx2x_phy_probe(&bp->link_params); 11603 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); 11604 11605 bnx2x_link_settings_requested(bp); 11606 11607 /* 11608 * If connected directly, work with the internal PHY, otherwise, work 11609 * with the external PHY 11610 */ 11611 ext_phy_config = 11612 SHMEM_RD(bp, 11613 dev_info.port_hw_config[port].external_phy_config); 11614 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); 11615 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 11616 bp->mdio.prtad = bp->port.phy_addr; 11617 11618 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 11619 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 11620 bp->mdio.prtad = 11621 XGXS_EXT_PHY_ADDR(ext_phy_config); 11622 11623 /* Configure link feature according to nvram value */ 11624 eee_mode = (((SHMEM_RD(bp, dev_info. 11625 port_feature_config[port].eee_power_mode)) & 11626 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 11627 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 11628 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 11629 bp->link_params.eee_mode = EEE_MODE_ADV_LPI | 11630 EEE_MODE_ENABLE_LPI | 11631 EEE_MODE_OUTPUT_TIME; 11632 } else { 11633 bp->link_params.eee_mode = 0; 11634 } 11635 } 11636 11637 void bnx2x_get_iscsi_info(struct bnx2x *bp) 11638 { 11639 u32 no_flags = NO_ISCSI_FLAG; 11640 int port = BP_PORT(bp); 11641 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11642 drv_lic_key[port].max_iscsi_conn); 11643 11644 if (!CNIC_SUPPORT(bp)) { 11645 bp->flags |= no_flags; 11646 return; 11647 } 11648 11649 /* Get the number of maximum allowed iSCSI connections */ 11650 bp->cnic_eth_dev.max_iscsi_conn = 11651 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> 11652 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; 11653 11654 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", 11655 bp->cnic_eth_dev.max_iscsi_conn); 11656 11657 /* 11658 * If maximum allowed number of connections is zero - 11659 * disable the feature. 11660 */ 11661 if (!bp->cnic_eth_dev.max_iscsi_conn) 11662 bp->flags |= no_flags; 11663 } 11664 11665 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) 11666 { 11667 /* Port info */ 11668 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11669 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); 11670 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11671 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); 11672 11673 /* Node info */ 11674 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11675 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); 11676 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11677 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); 11678 } 11679 11680 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) 11681 { 11682 u8 count = 0; 11683 11684 if (IS_MF(bp)) { 11685 u8 fid; 11686 11687 /* iterate over absolute function ids for this path: */ 11688 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { 11689 if (IS_MF_SD(bp)) { 11690 u32 cfg = MF_CFG_RD(bp, 11691 func_mf_config[fid].config); 11692 11693 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && 11694 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == 11695 FUNC_MF_CFG_PROTOCOL_FCOE)) 11696 count++; 11697 } else { 11698 u32 cfg = MF_CFG_RD(bp, 11699 func_ext_config[fid]. 11700 func_cfg); 11701 11702 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && 11703 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) 11704 count++; 11705 } 11706 } 11707 } else { /* SF */ 11708 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; 11709 11710 for (port = 0; port < port_cnt; port++) { 11711 u32 lic = SHMEM_RD(bp, 11712 drv_lic_key[port].max_fcoe_conn) ^ 11713 FW_ENCODE_32BIT_PATTERN; 11714 if (lic) 11715 count++; 11716 } 11717 } 11718 11719 return count; 11720 } 11721 11722 static void bnx2x_get_fcoe_info(struct bnx2x *bp) 11723 { 11724 int port = BP_PORT(bp); 11725 int func = BP_ABS_FUNC(bp); 11726 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11727 drv_lic_key[port].max_fcoe_conn); 11728 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); 11729 11730 if (!CNIC_SUPPORT(bp)) { 11731 bp->flags |= NO_FCOE_FLAG; 11732 return; 11733 } 11734 11735 /* Get the number of maximum allowed FCoE connections */ 11736 bp->cnic_eth_dev.max_fcoe_conn = 11737 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> 11738 BNX2X_MAX_FCOE_INIT_CONN_SHIFT; 11739 11740 /* Calculate the number of maximum allowed FCoE tasks */ 11741 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; 11742 11743 /* check if FCoE resources must be shared between different functions */ 11744 if (num_fcoe_func) 11745 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; 11746 11747 /* Read the WWN: */ 11748 if (!IS_MF(bp)) { 11749 /* Port info */ 11750 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11751 SHMEM_RD(bp, 11752 dev_info.port_hw_config[port]. 11753 fcoe_wwn_port_name_upper); 11754 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11755 SHMEM_RD(bp, 11756 dev_info.port_hw_config[port]. 11757 fcoe_wwn_port_name_lower); 11758 11759 /* Node info */ 11760 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11761 SHMEM_RD(bp, 11762 dev_info.port_hw_config[port]. 11763 fcoe_wwn_node_name_upper); 11764 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11765 SHMEM_RD(bp, 11766 dev_info.port_hw_config[port]. 11767 fcoe_wwn_node_name_lower); 11768 } else if (!IS_MF_SD(bp)) { 11769 /* Read the WWN info only if the FCoE feature is enabled for 11770 * this function. 11771 */ 11772 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp)) 11773 bnx2x_get_ext_wwn_info(bp, func); 11774 } else { 11775 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) 11776 bnx2x_get_ext_wwn_info(bp, func); 11777 } 11778 11779 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); 11780 11781 /* 11782 * If maximum allowed number of connections is zero - 11783 * disable the feature. 11784 */ 11785 if (!bp->cnic_eth_dev.max_fcoe_conn) { 11786 bp->flags |= NO_FCOE_FLAG; 11787 eth_zero_addr(bp->fip_mac); 11788 } 11789 } 11790 11791 static void bnx2x_get_cnic_info(struct bnx2x *bp) 11792 { 11793 /* 11794 * iSCSI may be dynamically disabled but reading 11795 * info here we will decrease memory usage by driver 11796 * if the feature is disabled for good 11797 */ 11798 bnx2x_get_iscsi_info(bp); 11799 bnx2x_get_fcoe_info(bp); 11800 } 11801 11802 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) 11803 { 11804 u32 val, val2; 11805 int func = BP_ABS_FUNC(bp); 11806 int port = BP_PORT(bp); 11807 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; 11808 u8 *fip_mac = bp->fip_mac; 11809 11810 if (IS_MF(bp)) { 11811 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or 11812 * FCoE MAC then the appropriate feature should be disabled. 11813 * In non SD mode features configuration comes from struct 11814 * func_ext_config. 11815 */ 11816 if (!IS_MF_SD(bp)) { 11817 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); 11818 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 11819 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11820 iscsi_mac_addr_upper); 11821 val = MF_CFG_RD(bp, func_ext_config[func]. 11822 iscsi_mac_addr_lower); 11823 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11824 BNX2X_DEV_INFO 11825 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11826 } else { 11827 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11828 } 11829 11830 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 11831 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11832 fcoe_mac_addr_upper); 11833 val = MF_CFG_RD(bp, func_ext_config[func]. 11834 fcoe_mac_addr_lower); 11835 bnx2x_set_mac_buf(fip_mac, val, val2); 11836 BNX2X_DEV_INFO 11837 ("Read FCoE L2 MAC: %pM\n", fip_mac); 11838 } else { 11839 bp->flags |= NO_FCOE_FLAG; 11840 } 11841 11842 bp->mf_ext_config = cfg; 11843 11844 } else { /* SD MODE */ 11845 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { 11846 /* use primary mac as iscsi mac */ 11847 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); 11848 11849 BNX2X_DEV_INFO("SD ISCSI MODE\n"); 11850 BNX2X_DEV_INFO 11851 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11852 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { 11853 /* use primary mac as fip mac */ 11854 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); 11855 BNX2X_DEV_INFO("SD FCoE MODE\n"); 11856 BNX2X_DEV_INFO 11857 ("Read FIP MAC: %pM\n", fip_mac); 11858 } 11859 } 11860 11861 /* If this is a storage-only interface, use SAN mac as 11862 * primary MAC. Notice that for SD this is already the case, 11863 * as the SAN mac was copied from the primary MAC. 11864 */ 11865 if (IS_MF_FCOE_AFEX(bp)) 11866 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN); 11867 } else { 11868 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11869 iscsi_mac_upper); 11870 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11871 iscsi_mac_lower); 11872 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11873 11874 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11875 fcoe_fip_mac_upper); 11876 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11877 fcoe_fip_mac_lower); 11878 bnx2x_set_mac_buf(fip_mac, val, val2); 11879 } 11880 11881 /* Disable iSCSI OOO if MAC configuration is invalid. */ 11882 if (!is_valid_ether_addr(iscsi_mac)) { 11883 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11884 eth_zero_addr(iscsi_mac); 11885 } 11886 11887 /* Disable FCoE if MAC configuration is invalid. */ 11888 if (!is_valid_ether_addr(fip_mac)) { 11889 bp->flags |= NO_FCOE_FLAG; 11890 eth_zero_addr(bp->fip_mac); 11891 } 11892 } 11893 11894 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) 11895 { 11896 u32 val, val2; 11897 int func = BP_ABS_FUNC(bp); 11898 int port = BP_PORT(bp); 11899 11900 /* Zero primary MAC configuration */ 11901 eth_zero_addr(bp->dev->dev_addr); 11902 11903 if (BP_NOMCP(bp)) { 11904 BNX2X_ERROR("warning: random MAC workaround active\n"); 11905 eth_hw_addr_random(bp->dev); 11906 } else if (IS_MF(bp)) { 11907 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11908 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); 11909 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && 11910 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) 11911 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11912 11913 if (CNIC_SUPPORT(bp)) 11914 bnx2x_get_cnic_mac_hwinfo(bp); 11915 } else { 11916 /* in SF read MACs from port configuration */ 11917 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11918 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11919 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11920 11921 if (CNIC_SUPPORT(bp)) 11922 bnx2x_get_cnic_mac_hwinfo(bp); 11923 } 11924 11925 if (!BP_NOMCP(bp)) { 11926 /* Read physical port identifier from shmem */ 11927 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11928 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11929 bnx2x_set_mac_buf(bp->phys_port_id, val, val2); 11930 bp->flags |= HAS_PHYS_PORT_ID; 11931 } 11932 11933 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); 11934 11935 if (!is_valid_ether_addr(bp->dev->dev_addr)) 11936 dev_err(&bp->pdev->dev, 11937 "bad Ethernet MAC address configuration: %pM\n" 11938 "change it manually before bringing up the appropriate network interface\n", 11939 bp->dev->dev_addr); 11940 } 11941 11942 static bool bnx2x_get_dropless_info(struct bnx2x *bp) 11943 { 11944 int tmp; 11945 u32 cfg; 11946 11947 if (IS_VF(bp)) 11948 return false; 11949 11950 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { 11951 /* Take function: tmp = func */ 11952 tmp = BP_ABS_FUNC(bp); 11953 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); 11954 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); 11955 } else { 11956 /* Take port: tmp = port */ 11957 tmp = BP_PORT(bp); 11958 cfg = SHMEM_RD(bp, 11959 dev_info.port_hw_config[tmp].generic_features); 11960 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); 11961 } 11962 return cfg; 11963 } 11964 11965 static void validate_set_si_mode(struct bnx2x *bp) 11966 { 11967 u8 func = BP_ABS_FUNC(bp); 11968 u32 val; 11969 11970 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11971 11972 /* check for legal mac (upper bytes) */ 11973 if (val != 0xffff) { 11974 bp->mf_mode = MULTI_FUNCTION_SI; 11975 bp->mf_config[BP_VN(bp)] = 11976 MF_CFG_RD(bp, func_mf_config[func].config); 11977 } else 11978 BNX2X_DEV_INFO("illegal MAC address for SI\n"); 11979 } 11980 11981 static int bnx2x_get_hwinfo(struct bnx2x *bp) 11982 { 11983 int /*abs*/func = BP_ABS_FUNC(bp); 11984 int vn; 11985 u32 val = 0, val2 = 0; 11986 int rc = 0; 11987 11988 /* Validate that chip access is feasible */ 11989 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) { 11990 dev_err(&bp->pdev->dev, 11991 "Chip read returns all Fs. Preventing probe from continuing\n"); 11992 return -EINVAL; 11993 } 11994 11995 bnx2x_get_common_hwinfo(bp); 11996 11997 /* 11998 * initialize IGU parameters 11999 */ 12000 if (CHIP_IS_E1x(bp)) { 12001 bp->common.int_block = INT_BLOCK_HC; 12002 12003 bp->igu_dsb_id = DEF_SB_IGU_ID; 12004 bp->igu_base_sb = 0; 12005 } else { 12006 bp->common.int_block = INT_BLOCK_IGU; 12007 12008 /* do not allow device reset during IGU info processing */ 12009 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 12010 12011 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 12012 12013 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 12014 int tout = 5000; 12015 12016 BNX2X_DEV_INFO("FORCING Normal Mode\n"); 12017 12018 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 12019 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); 12020 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); 12021 12022 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 12023 tout--; 12024 usleep_range(1000, 2000); 12025 } 12026 12027 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 12028 dev_err(&bp->pdev->dev, 12029 "FORCING Normal Mode failed!!!\n"); 12030 bnx2x_release_hw_lock(bp, 12031 HW_LOCK_RESOURCE_RESET); 12032 return -EPERM; 12033 } 12034 } 12035 12036 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 12037 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); 12038 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; 12039 } else 12040 BNX2X_DEV_INFO("IGU Normal Mode\n"); 12041 12042 rc = bnx2x_get_igu_cam_info(bp); 12043 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 12044 if (rc) 12045 return rc; 12046 } 12047 12048 /* 12049 * set base FW non-default (fast path) status block id, this value is 12050 * used to initialize the fw_sb_id saved on the fp/queue structure to 12051 * determine the id used by the FW. 12052 */ 12053 if (CHIP_IS_E1x(bp)) 12054 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); 12055 else /* 12056 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of 12057 * the same queue are indicated on the same IGU SB). So we prefer 12058 * FW and IGU SBs to be the same value. 12059 */ 12060 bp->base_fw_ndsb = bp->igu_base_sb; 12061 12062 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" 12063 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, 12064 bp->igu_sb_cnt, bp->base_fw_ndsb); 12065 12066 /* 12067 * Initialize MF configuration 12068 */ 12069 bp->mf_ov = 0; 12070 bp->mf_mode = 0; 12071 bp->mf_sub_mode = 0; 12072 vn = BP_VN(bp); 12073 12074 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { 12075 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", 12076 bp->common.shmem2_base, SHMEM2_RD(bp, size), 12077 (u32)offsetof(struct shmem2_region, mf_cfg_addr)); 12078 12079 if (SHMEM2_HAS(bp, mf_cfg_addr)) 12080 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); 12081 else 12082 bp->common.mf_cfg_base = bp->common.shmem_base + 12083 offsetof(struct shmem_region, func_mb) + 12084 E1H_FUNC_MAX * sizeof(struct drv_func_mb); 12085 /* 12086 * get mf configuration: 12087 * 1. Existence of MF configuration 12088 * 2. MAC address must be legal (check only upper bytes) 12089 * for Switch-Independent mode; 12090 * OVLAN must be legal for Switch-Dependent mode 12091 * 3. SF_MODE configures specific MF mode 12092 */ 12093 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12094 /* get mf configuration */ 12095 val = SHMEM_RD(bp, 12096 dev_info.shared_feature_config.config); 12097 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; 12098 12099 switch (val) { 12100 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 12101 validate_set_si_mode(bp); 12102 break; 12103 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 12104 if ((!CHIP_IS_E1x(bp)) && 12105 (MF_CFG_RD(bp, func_mf_config[func]. 12106 mac_upper) != 0xffff) && 12107 (SHMEM2_HAS(bp, 12108 afex_driver_support))) { 12109 bp->mf_mode = MULTI_FUNCTION_AFEX; 12110 bp->mf_config[vn] = MF_CFG_RD(bp, 12111 func_mf_config[func].config); 12112 } else { 12113 BNX2X_DEV_INFO("can not configure afex mode\n"); 12114 } 12115 break; 12116 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 12117 /* get OV configuration */ 12118 val = MF_CFG_RD(bp, 12119 func_mf_config[FUNC_0].e1hov_tag); 12120 val &= FUNC_MF_CFG_E1HOV_TAG_MASK; 12121 12122 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12123 bp->mf_mode = MULTI_FUNCTION_SD; 12124 bp->mf_config[vn] = MF_CFG_RD(bp, 12125 func_mf_config[func].config); 12126 } else 12127 BNX2X_DEV_INFO("illegal OV for SD\n"); 12128 break; 12129 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE: 12130 bp->mf_mode = MULTI_FUNCTION_SD; 12131 bp->mf_sub_mode = SUB_MF_MODE_BD; 12132 bp->mf_config[vn] = 12133 MF_CFG_RD(bp, 12134 func_mf_config[func].config); 12135 12136 if (SHMEM2_HAS(bp, mtu_size)) { 12137 int mtu_idx = BP_FW_MB_IDX(bp); 12138 u16 mtu_size; 12139 u32 mtu; 12140 12141 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]); 12142 mtu_size = (u16)mtu; 12143 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n", 12144 mtu_size, mtu); 12145 12146 /* if valid: update device mtu */ 12147 if ((mtu_size >= ETH_MIN_PACKET_SIZE) && 12148 (mtu_size <= 12149 ETH_MAX_JUMBO_PACKET_SIZE)) 12150 bp->dev->mtu = mtu_size; 12151 } 12152 break; 12153 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE: 12154 bp->mf_mode = MULTI_FUNCTION_SD; 12155 bp->mf_sub_mode = SUB_MF_MODE_UFP; 12156 bp->mf_config[vn] = 12157 MF_CFG_RD(bp, 12158 func_mf_config[func].config); 12159 break; 12160 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 12161 bp->mf_config[vn] = 0; 12162 break; 12163 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE: 12164 val2 = SHMEM_RD(bp, 12165 dev_info.shared_hw_config.config_3); 12166 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK; 12167 switch (val2) { 12168 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5: 12169 validate_set_si_mode(bp); 12170 bp->mf_sub_mode = 12171 SUB_MF_MODE_NPAR1_DOT_5; 12172 break; 12173 default: 12174 /* Unknown configuration */ 12175 bp->mf_config[vn] = 0; 12176 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n", 12177 val); 12178 } 12179 break; 12180 default: 12181 /* Unknown configuration: reset mf_config */ 12182 bp->mf_config[vn] = 0; 12183 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); 12184 } 12185 } 12186 12187 BNX2X_DEV_INFO("%s function mode\n", 12188 IS_MF(bp) ? "multi" : "single"); 12189 12190 switch (bp->mf_mode) { 12191 case MULTI_FUNCTION_SD: 12192 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 12193 FUNC_MF_CFG_E1HOV_TAG_MASK; 12194 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12195 bp->mf_ov = val; 12196 bp->path_has_ovlan = true; 12197 12198 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", 12199 func, bp->mf_ov, bp->mf_ov); 12200 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) || 12201 (bp->mf_sub_mode == SUB_MF_MODE_BD)) { 12202 dev_err(&bp->pdev->dev, 12203 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n", 12204 func); 12205 bp->path_has_ovlan = true; 12206 } else { 12207 dev_err(&bp->pdev->dev, 12208 "No valid MF OV for func %d, aborting\n", 12209 func); 12210 return -EPERM; 12211 } 12212 break; 12213 case MULTI_FUNCTION_AFEX: 12214 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); 12215 break; 12216 case MULTI_FUNCTION_SI: 12217 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", 12218 func); 12219 break; 12220 default: 12221 if (vn) { 12222 dev_err(&bp->pdev->dev, 12223 "VN %d is in a single function mode, aborting\n", 12224 vn); 12225 return -EPERM; 12226 } 12227 break; 12228 } 12229 12230 /* check if other port on the path needs ovlan: 12231 * Since MF configuration is shared between ports 12232 * Possible mixed modes are only 12233 * {SF, SI} {SF, SD} {SD, SF} {SI, SF} 12234 */ 12235 if (CHIP_MODE_IS_4_PORT(bp) && 12236 !bp->path_has_ovlan && 12237 !IS_MF(bp) && 12238 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12239 u8 other_port = !BP_PORT(bp); 12240 u8 other_func = BP_PATH(bp) + 2*other_port; 12241 val = MF_CFG_RD(bp, 12242 func_mf_config[other_func].e1hov_tag); 12243 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) 12244 bp->path_has_ovlan = true; 12245 } 12246 } 12247 12248 /* adjust igu_sb_cnt to MF for E1H */ 12249 if (CHIP_IS_E1H(bp) && IS_MF(bp)) 12250 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT); 12251 12252 /* port info */ 12253 bnx2x_get_port_hwinfo(bp); 12254 12255 /* Get MAC addresses */ 12256 bnx2x_get_mac_hwinfo(bp); 12257 12258 bnx2x_get_cnic_info(bp); 12259 12260 return rc; 12261 } 12262 12263 static void bnx2x_read_fwinfo(struct bnx2x *bp) 12264 { 12265 int cnt, i, block_end, rodi; 12266 char vpd_start[BNX2X_VPD_LEN+1]; 12267 char str_id_reg[VENDOR_ID_LEN+1]; 12268 char str_id_cap[VENDOR_ID_LEN+1]; 12269 char *vpd_data; 12270 char *vpd_extended_data = NULL; 12271 u8 len; 12272 12273 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); 12274 memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); 12275 12276 if (cnt < BNX2X_VPD_LEN) 12277 goto out_not_found; 12278 12279 /* VPD RO tag should be first tag after identifier string, hence 12280 * we should be able to find it in first BNX2X_VPD_LEN chars 12281 */ 12282 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, 12283 PCI_VPD_LRDT_RO_DATA); 12284 if (i < 0) 12285 goto out_not_found; 12286 12287 block_end = i + PCI_VPD_LRDT_TAG_SIZE + 12288 pci_vpd_lrdt_size(&vpd_start[i]); 12289 12290 i += PCI_VPD_LRDT_TAG_SIZE; 12291 12292 if (block_end > BNX2X_VPD_LEN) { 12293 vpd_extended_data = kmalloc(block_end, GFP_KERNEL); 12294 if (vpd_extended_data == NULL) 12295 goto out_not_found; 12296 12297 /* read rest of vpd image into vpd_extended_data */ 12298 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); 12299 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, 12300 block_end - BNX2X_VPD_LEN, 12301 vpd_extended_data + BNX2X_VPD_LEN); 12302 if (cnt < (block_end - BNX2X_VPD_LEN)) 12303 goto out_not_found; 12304 vpd_data = vpd_extended_data; 12305 } else 12306 vpd_data = vpd_start; 12307 12308 /* now vpd_data holds full vpd content in both cases */ 12309 12310 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12311 PCI_VPD_RO_KEYWORD_MFR_ID); 12312 if (rodi < 0) 12313 goto out_not_found; 12314 12315 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12316 12317 if (len != VENDOR_ID_LEN) 12318 goto out_not_found; 12319 12320 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12321 12322 /* vendor specific info */ 12323 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); 12324 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); 12325 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || 12326 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { 12327 12328 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12329 PCI_VPD_RO_KEYWORD_VENDOR0); 12330 if (rodi >= 0) { 12331 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12332 12333 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12334 12335 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { 12336 memcpy(bp->fw_ver, &vpd_data[rodi], len); 12337 bp->fw_ver[len] = ' '; 12338 } 12339 } 12340 kfree(vpd_extended_data); 12341 return; 12342 } 12343 out_not_found: 12344 kfree(vpd_extended_data); 12345 return; 12346 } 12347 12348 static void bnx2x_set_modes_bitmap(struct bnx2x *bp) 12349 { 12350 u32 flags = 0; 12351 12352 if (CHIP_REV_IS_FPGA(bp)) 12353 SET_FLAGS(flags, MODE_FPGA); 12354 else if (CHIP_REV_IS_EMUL(bp)) 12355 SET_FLAGS(flags, MODE_EMUL); 12356 else 12357 SET_FLAGS(flags, MODE_ASIC); 12358 12359 if (CHIP_MODE_IS_4_PORT(bp)) 12360 SET_FLAGS(flags, MODE_PORT4); 12361 else 12362 SET_FLAGS(flags, MODE_PORT2); 12363 12364 if (CHIP_IS_E2(bp)) 12365 SET_FLAGS(flags, MODE_E2); 12366 else if (CHIP_IS_E3(bp)) { 12367 SET_FLAGS(flags, MODE_E3); 12368 if (CHIP_REV(bp) == CHIP_REV_Ax) 12369 SET_FLAGS(flags, MODE_E3_A0); 12370 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ 12371 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 12372 } 12373 12374 if (IS_MF(bp)) { 12375 SET_FLAGS(flags, MODE_MF); 12376 switch (bp->mf_mode) { 12377 case MULTI_FUNCTION_SD: 12378 SET_FLAGS(flags, MODE_MF_SD); 12379 break; 12380 case MULTI_FUNCTION_SI: 12381 SET_FLAGS(flags, MODE_MF_SI); 12382 break; 12383 case MULTI_FUNCTION_AFEX: 12384 SET_FLAGS(flags, MODE_MF_AFEX); 12385 break; 12386 } 12387 } else 12388 SET_FLAGS(flags, MODE_SF); 12389 12390 #if defined(__LITTLE_ENDIAN) 12391 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 12392 #else /*(__BIG_ENDIAN)*/ 12393 SET_FLAGS(flags, MODE_BIG_ENDIAN); 12394 #endif 12395 INIT_MODE_FLAGS(bp) = flags; 12396 } 12397 12398 static int bnx2x_init_bp(struct bnx2x *bp) 12399 { 12400 int func; 12401 int rc; 12402 12403 mutex_init(&bp->port.phy_mutex); 12404 mutex_init(&bp->fw_mb_mutex); 12405 mutex_init(&bp->drv_info_mutex); 12406 sema_init(&bp->stats_lock, 1); 12407 bp->drv_info_mng_owner = false; 12408 INIT_LIST_HEAD(&bp->vlan_reg); 12409 12410 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); 12411 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); 12412 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); 12413 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task); 12414 if (IS_PF(bp)) { 12415 rc = bnx2x_get_hwinfo(bp); 12416 if (rc) 12417 return rc; 12418 } else { 12419 eth_zero_addr(bp->dev->dev_addr); 12420 } 12421 12422 bnx2x_set_modes_bitmap(bp); 12423 12424 rc = bnx2x_alloc_mem_bp(bp); 12425 if (rc) 12426 return rc; 12427 12428 bnx2x_read_fwinfo(bp); 12429 12430 func = BP_FUNC(bp); 12431 12432 /* need to reset chip if undi was active */ 12433 if (IS_PF(bp) && !BP_NOMCP(bp)) { 12434 /* init fw_seq */ 12435 bp->fw_seq = 12436 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 12437 DRV_MSG_SEQ_NUMBER_MASK; 12438 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 12439 12440 rc = bnx2x_prev_unload(bp); 12441 if (rc) { 12442 bnx2x_free_mem_bp(bp); 12443 return rc; 12444 } 12445 } 12446 12447 if (CHIP_REV_IS_FPGA(bp)) 12448 dev_err(&bp->pdev->dev, "FPGA detected\n"); 12449 12450 if (BP_NOMCP(bp) && (func == 0)) 12451 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); 12452 12453 bp->disable_tpa = disable_tpa; 12454 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp); 12455 /* Reduce memory usage in kdump environment by disabling TPA */ 12456 bp->disable_tpa |= is_kdump_kernel(); 12457 12458 /* Set TPA flags */ 12459 if (bp->disable_tpa) { 12460 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12461 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12462 } 12463 12464 if (CHIP_IS_E1(bp)) 12465 bp->dropless_fc = 0; 12466 else 12467 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); 12468 12469 bp->mrrs = mrrs; 12470 12471 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL; 12472 if (IS_VF(bp)) 12473 bp->rx_ring_size = MAX_RX_AVAIL; 12474 12475 /* make sure that the numbers are in the right granularity */ 12476 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; 12477 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; 12478 12479 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; 12480 12481 timer_setup(&bp->timer, bnx2x_timer, 0); 12482 bp->timer.expires = jiffies + bp->current_interval; 12483 12484 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && 12485 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && 12486 SHMEM2_HAS(bp, dcbx_en) && 12487 SHMEM2_RD(bp, dcbx_lldp_params_offset) && 12488 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) && 12489 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) { 12490 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); 12491 bnx2x_dcbx_init_params(bp); 12492 } else { 12493 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); 12494 } 12495 12496 if (CHIP_IS_E1x(bp)) 12497 bp->cnic_base_cl_id = FP_SB_MAX_E1x; 12498 else 12499 bp->cnic_base_cl_id = FP_SB_MAX_E2; 12500 12501 /* multiple tx priority */ 12502 if (IS_VF(bp)) 12503 bp->max_cos = 1; 12504 else if (CHIP_IS_E1x(bp)) 12505 bp->max_cos = BNX2X_MULTI_TX_COS_E1X; 12506 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) 12507 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; 12508 else if (CHIP_IS_E3B0(bp)) 12509 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; 12510 else 12511 BNX2X_ERR("unknown chip %x revision %x\n", 12512 CHIP_NUM(bp), CHIP_REV(bp)); 12513 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); 12514 12515 /* We need at least one default status block for slow-path events, 12516 * second status block for the L2 queue, and a third status block for 12517 * CNIC if supported. 12518 */ 12519 if (IS_VF(bp)) 12520 bp->min_msix_vec_cnt = 1; 12521 else if (CNIC_SUPPORT(bp)) 12522 bp->min_msix_vec_cnt = 3; 12523 else /* PF w/o cnic */ 12524 bp->min_msix_vec_cnt = 2; 12525 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); 12526 12527 bp->dump_preset_idx = 1; 12528 12529 return rc; 12530 } 12531 12532 /**************************************************************************** 12533 * General service functions 12534 ****************************************************************************/ 12535 12536 /* 12537 * net_device service functions 12538 */ 12539 12540 /* called with rtnl_lock */ 12541 static int bnx2x_open(struct net_device *dev) 12542 { 12543 struct bnx2x *bp = netdev_priv(dev); 12544 int rc; 12545 12546 bp->stats_init = true; 12547 12548 netif_carrier_off(dev); 12549 12550 bnx2x_set_power_state(bp, PCI_D0); 12551 12552 /* If parity had happen during the unload, then attentions 12553 * and/or RECOVERY_IN_PROGRES may still be set. In this case we 12554 * want the first function loaded on the current engine to 12555 * complete the recovery. 12556 * Parity recovery is only relevant for PF driver. 12557 */ 12558 if (IS_PF(bp)) { 12559 int other_engine = BP_PATH(bp) ? 0 : 1; 12560 bool other_load_status, load_status; 12561 bool global = false; 12562 12563 other_load_status = bnx2x_get_load_status(bp, other_engine); 12564 load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); 12565 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || 12566 bnx2x_chk_parity_attn(bp, &global, true)) { 12567 do { 12568 /* If there are attentions and they are in a 12569 * global blocks, set the GLOBAL_RESET bit 12570 * regardless whether it will be this function 12571 * that will complete the recovery or not. 12572 */ 12573 if (global) 12574 bnx2x_set_reset_global(bp); 12575 12576 /* Only the first function on the current 12577 * engine should try to recover in open. In case 12578 * of attentions in global blocks only the first 12579 * in the chip should try to recover. 12580 */ 12581 if ((!load_status && 12582 (!global || !other_load_status)) && 12583 bnx2x_trylock_leader_lock(bp) && 12584 !bnx2x_leader_reset(bp)) { 12585 netdev_info(bp->dev, 12586 "Recovered in open\n"); 12587 break; 12588 } 12589 12590 /* recovery has failed... */ 12591 bnx2x_set_power_state(bp, PCI_D3hot); 12592 bp->recovery_state = BNX2X_RECOVERY_FAILED; 12593 12594 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" 12595 "If you still see this message after a few retries then power cycle is required.\n"); 12596 12597 return -EAGAIN; 12598 } while (0); 12599 } 12600 } 12601 12602 bp->recovery_state = BNX2X_RECOVERY_DONE; 12603 rc = bnx2x_nic_load(bp, LOAD_OPEN); 12604 if (rc) 12605 return rc; 12606 12607 if (IS_PF(bp)) 12608 udp_tunnel_get_rx_info(dev); 12609 12610 return 0; 12611 } 12612 12613 /* called with rtnl_lock */ 12614 static int bnx2x_close(struct net_device *dev) 12615 { 12616 struct bnx2x *bp = netdev_priv(dev); 12617 12618 /* Unload the driver, release IRQs */ 12619 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 12620 12621 return 0; 12622 } 12623 12624 struct bnx2x_mcast_list_elem_group 12625 { 12626 struct list_head mcast_group_link; 12627 struct bnx2x_mcast_list_elem mcast_elems[]; 12628 }; 12629 12630 #define MCAST_ELEMS_PER_PG \ 12631 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \ 12632 sizeof(struct bnx2x_mcast_list_elem)) 12633 12634 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list) 12635 { 12636 struct bnx2x_mcast_list_elem_group *current_mcast_group; 12637 12638 while (!list_empty(mcast_group_list)) { 12639 current_mcast_group = list_first_entry(mcast_group_list, 12640 struct bnx2x_mcast_list_elem_group, 12641 mcast_group_link); 12642 list_del(¤t_mcast_group->mcast_group_link); 12643 free_page((unsigned long)current_mcast_group); 12644 } 12645 } 12646 12647 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, 12648 struct bnx2x_mcast_ramrod_params *p, 12649 struct list_head *mcast_group_list) 12650 { 12651 struct bnx2x_mcast_list_elem *mc_mac; 12652 struct netdev_hw_addr *ha; 12653 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL; 12654 int mc_count = netdev_mc_count(bp->dev); 12655 int offset = 0; 12656 12657 INIT_LIST_HEAD(&p->mcast_list); 12658 netdev_for_each_mc_addr(ha, bp->dev) { 12659 if (!offset) { 12660 current_mcast_group = 12661 (struct bnx2x_mcast_list_elem_group *) 12662 __get_free_page(GFP_ATOMIC); 12663 if (!current_mcast_group) { 12664 bnx2x_free_mcast_macs_list(mcast_group_list); 12665 BNX2X_ERR("Failed to allocate mc MAC list\n"); 12666 return -ENOMEM; 12667 } 12668 list_add(¤t_mcast_group->mcast_group_link, 12669 mcast_group_list); 12670 } 12671 mc_mac = ¤t_mcast_group->mcast_elems[offset]; 12672 mc_mac->mac = bnx2x_mc_addr(ha); 12673 list_add_tail(&mc_mac->link, &p->mcast_list); 12674 offset++; 12675 if (offset == MCAST_ELEMS_PER_PG) 12676 offset = 0; 12677 } 12678 p->mcast_list_len = mc_count; 12679 return 0; 12680 } 12681 12682 /** 12683 * bnx2x_set_uc_list - configure a new unicast MACs list. 12684 * 12685 * @bp: driver handle 12686 * 12687 * We will use zero (0) as a MAC type for these MACs. 12688 */ 12689 static int bnx2x_set_uc_list(struct bnx2x *bp) 12690 { 12691 int rc; 12692 struct net_device *dev = bp->dev; 12693 struct netdev_hw_addr *ha; 12694 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 12695 unsigned long ramrod_flags = 0; 12696 12697 /* First schedule a cleanup up of old configuration */ 12698 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); 12699 if (rc < 0) { 12700 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); 12701 return rc; 12702 } 12703 12704 netdev_for_each_uc_addr(ha, dev) { 12705 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, 12706 BNX2X_UC_LIST_MAC, &ramrod_flags); 12707 if (rc == -EEXIST) { 12708 DP(BNX2X_MSG_SP, 12709 "Failed to schedule ADD operations: %d\n", rc); 12710 /* do not treat adding same MAC as error */ 12711 rc = 0; 12712 12713 } else if (rc < 0) { 12714 12715 BNX2X_ERR("Failed to schedule ADD operations: %d\n", 12716 rc); 12717 return rc; 12718 } 12719 } 12720 12721 /* Execute the pending commands */ 12722 __set_bit(RAMROD_CONT, &ramrod_flags); 12723 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, 12724 BNX2X_UC_LIST_MAC, &ramrod_flags); 12725 } 12726 12727 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp) 12728 { 12729 LIST_HEAD(mcast_group_list); 12730 struct net_device *dev = bp->dev; 12731 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12732 int rc = 0; 12733 12734 rparam.mcast_obj = &bp->mcast_obj; 12735 12736 /* first, clear all configured multicast MACs */ 12737 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12738 if (rc < 0) { 12739 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); 12740 return rc; 12741 } 12742 12743 /* then, configure a new MACs list */ 12744 if (netdev_mc_count(dev)) { 12745 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list); 12746 if (rc) 12747 return rc; 12748 12749 /* Now add the new MACs */ 12750 rc = bnx2x_config_mcast(bp, &rparam, 12751 BNX2X_MCAST_CMD_ADD); 12752 if (rc < 0) 12753 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12754 rc); 12755 12756 bnx2x_free_mcast_macs_list(&mcast_group_list); 12757 } 12758 12759 return rc; 12760 } 12761 12762 static int bnx2x_set_mc_list(struct bnx2x *bp) 12763 { 12764 LIST_HEAD(mcast_group_list); 12765 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12766 struct net_device *dev = bp->dev; 12767 int rc = 0; 12768 12769 /* On older adapters, we need to flush and re-add filters */ 12770 if (CHIP_IS_E1x(bp)) 12771 return bnx2x_set_mc_list_e1x(bp); 12772 12773 rparam.mcast_obj = &bp->mcast_obj; 12774 12775 if (netdev_mc_count(dev)) { 12776 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list); 12777 if (rc) 12778 return rc; 12779 12780 /* Override the curently configured set of mc filters */ 12781 rc = bnx2x_config_mcast(bp, &rparam, 12782 BNX2X_MCAST_CMD_SET); 12783 if (rc < 0) 12784 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12785 rc); 12786 12787 bnx2x_free_mcast_macs_list(&mcast_group_list); 12788 } else { 12789 /* If no mc addresses are required, flush the configuration */ 12790 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12791 if (rc < 0) 12792 BNX2X_ERR("Failed to clear multicast configuration %d\n", 12793 rc); 12794 } 12795 12796 return rc; 12797 } 12798 12799 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ 12800 static void bnx2x_set_rx_mode(struct net_device *dev) 12801 { 12802 struct bnx2x *bp = netdev_priv(dev); 12803 12804 if (bp->state != BNX2X_STATE_OPEN) { 12805 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); 12806 return; 12807 } else { 12808 /* Schedule an SP task to handle rest of change */ 12809 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE, 12810 NETIF_MSG_IFUP); 12811 } 12812 } 12813 12814 void bnx2x_set_rx_mode_inner(struct bnx2x *bp) 12815 { 12816 u32 rx_mode = BNX2X_RX_MODE_NORMAL; 12817 12818 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); 12819 12820 netif_addr_lock_bh(bp->dev); 12821 12822 if (bp->dev->flags & IFF_PROMISC) { 12823 rx_mode = BNX2X_RX_MODE_PROMISC; 12824 } else if ((bp->dev->flags & IFF_ALLMULTI) || 12825 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) && 12826 CHIP_IS_E1(bp))) { 12827 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12828 } else { 12829 if (IS_PF(bp)) { 12830 /* some multicasts */ 12831 if (bnx2x_set_mc_list(bp) < 0) 12832 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12833 12834 /* release bh lock, as bnx2x_set_uc_list might sleep */ 12835 netif_addr_unlock_bh(bp->dev); 12836 if (bnx2x_set_uc_list(bp) < 0) 12837 rx_mode = BNX2X_RX_MODE_PROMISC; 12838 netif_addr_lock_bh(bp->dev); 12839 } else { 12840 /* configuring mcast to a vf involves sleeping (when we 12841 * wait for the pf's response). 12842 */ 12843 bnx2x_schedule_sp_rtnl(bp, 12844 BNX2X_SP_RTNL_VFPF_MCAST, 0); 12845 } 12846 } 12847 12848 bp->rx_mode = rx_mode; 12849 /* handle ISCSI SD mode */ 12850 if (IS_MF_ISCSI_ONLY(bp)) 12851 bp->rx_mode = BNX2X_RX_MODE_NONE; 12852 12853 /* Schedule the rx_mode command */ 12854 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { 12855 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 12856 netif_addr_unlock_bh(bp->dev); 12857 return; 12858 } 12859 12860 if (IS_PF(bp)) { 12861 bnx2x_set_storm_rx_mode(bp); 12862 netif_addr_unlock_bh(bp->dev); 12863 } else { 12864 /* VF will need to request the PF to make this change, and so 12865 * the VF needs to release the bottom-half lock prior to the 12866 * request (as it will likely require sleep on the VF side) 12867 */ 12868 netif_addr_unlock_bh(bp->dev); 12869 bnx2x_vfpf_storm_rx_mode(bp); 12870 } 12871 } 12872 12873 /* called with rtnl_lock */ 12874 static int bnx2x_mdio_read(struct net_device *netdev, int prtad, 12875 int devad, u16 addr) 12876 { 12877 struct bnx2x *bp = netdev_priv(netdev); 12878 u16 value; 12879 int rc; 12880 12881 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", 12882 prtad, devad, addr); 12883 12884 /* The HW expects different devad if CL22 is used */ 12885 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12886 12887 bnx2x_acquire_phy_lock(bp); 12888 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); 12889 bnx2x_release_phy_lock(bp); 12890 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); 12891 12892 if (!rc) 12893 rc = value; 12894 return rc; 12895 } 12896 12897 /* called with rtnl_lock */ 12898 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, 12899 u16 addr, u16 value) 12900 { 12901 struct bnx2x *bp = netdev_priv(netdev); 12902 int rc; 12903 12904 DP(NETIF_MSG_LINK, 12905 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", 12906 prtad, devad, addr, value); 12907 12908 /* The HW expects different devad if CL22 is used */ 12909 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12910 12911 bnx2x_acquire_phy_lock(bp); 12912 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); 12913 bnx2x_release_phy_lock(bp); 12914 return rc; 12915 } 12916 12917 /* called with rtnl_lock */ 12918 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12919 { 12920 struct bnx2x *bp = netdev_priv(dev); 12921 struct mii_ioctl_data *mdio = if_mii(ifr); 12922 12923 if (!netif_running(dev)) 12924 return -EAGAIN; 12925 12926 switch (cmd) { 12927 case SIOCSHWTSTAMP: 12928 return bnx2x_hwtstamp_ioctl(bp, ifr); 12929 default: 12930 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", 12931 mdio->phy_id, mdio->reg_num, mdio->val_in); 12932 return mdio_mii_ioctl(&bp->mdio, mdio, cmd); 12933 } 12934 } 12935 12936 static int bnx2x_validate_addr(struct net_device *dev) 12937 { 12938 struct bnx2x *bp = netdev_priv(dev); 12939 12940 /* query the bulletin board for mac address configured by the PF */ 12941 if (IS_VF(bp)) 12942 bnx2x_sample_bulletin(bp); 12943 12944 if (!is_valid_ether_addr(dev->dev_addr)) { 12945 BNX2X_ERR("Non-valid Ethernet address\n"); 12946 return -EADDRNOTAVAIL; 12947 } 12948 return 0; 12949 } 12950 12951 static int bnx2x_get_phys_port_id(struct net_device *netdev, 12952 struct netdev_phys_item_id *ppid) 12953 { 12954 struct bnx2x *bp = netdev_priv(netdev); 12955 12956 if (!(bp->flags & HAS_PHYS_PORT_ID)) 12957 return -EOPNOTSUPP; 12958 12959 ppid->id_len = sizeof(bp->phys_port_id); 12960 memcpy(ppid->id, bp->phys_port_id, ppid->id_len); 12961 12962 return 0; 12963 } 12964 12965 static netdev_features_t bnx2x_features_check(struct sk_buff *skb, 12966 struct net_device *dev, 12967 netdev_features_t features) 12968 { 12969 /* 12970 * A skb with gso_size + header length > 9700 will cause a 12971 * firmware panic. Drop GSO support. 12972 * 12973 * Eventually the upper layer should not pass these packets down. 12974 * 12975 * For speed, if the gso_size is <= 9000, assume there will 12976 * not be 700 bytes of headers and pass it through. Only do a 12977 * full (slow) validation if the gso_size is > 9000. 12978 * 12979 * (Due to the way SKB_BY_FRAGS works this will also do a full 12980 * validation in that case.) 12981 */ 12982 if (unlikely(skb_is_gso(skb) && 12983 (skb_shinfo(skb)->gso_size > 9000) && 12984 !skb_gso_validate_mac_len(skb, 9700))) 12985 features &= ~NETIF_F_GSO_MASK; 12986 12987 features = vlan_features_check(skb, features); 12988 return vxlan_features_check(skb, features); 12989 } 12990 12991 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add) 12992 { 12993 int rc; 12994 12995 if (IS_PF(bp)) { 12996 unsigned long ramrod_flags = 0; 12997 12998 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12999 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj, 13000 add, &ramrod_flags); 13001 } else { 13002 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add); 13003 } 13004 13005 return rc; 13006 } 13007 13008 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp) 13009 { 13010 struct bnx2x_vlan_entry *vlan; 13011 int rc = 0; 13012 13013 /* Configure all non-configured entries */ 13014 list_for_each_entry(vlan, &bp->vlan_reg, link) { 13015 if (vlan->hw) 13016 continue; 13017 13018 if (bp->vlan_cnt >= bp->vlan_credit) 13019 return -ENOBUFS; 13020 13021 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true); 13022 if (rc) { 13023 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid); 13024 return rc; 13025 } 13026 13027 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid); 13028 vlan->hw = true; 13029 bp->vlan_cnt++; 13030 } 13031 13032 return 0; 13033 } 13034 13035 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode) 13036 { 13037 bool need_accept_any_vlan; 13038 13039 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp); 13040 13041 if (bp->accept_any_vlan != need_accept_any_vlan) { 13042 bp->accept_any_vlan = need_accept_any_vlan; 13043 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n", 13044 bp->accept_any_vlan ? "raised" : "cleared"); 13045 if (set_rx_mode) { 13046 if (IS_PF(bp)) 13047 bnx2x_set_rx_mode_inner(bp); 13048 else 13049 bnx2x_vfpf_storm_rx_mode(bp); 13050 } 13051 } 13052 } 13053 13054 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp) 13055 { 13056 /* Don't set rx mode here. Our caller will do it. */ 13057 bnx2x_vlan_configure(bp, false); 13058 13059 return 0; 13060 } 13061 13062 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 13063 { 13064 struct bnx2x *bp = netdev_priv(dev); 13065 struct bnx2x_vlan_entry *vlan; 13066 13067 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid); 13068 13069 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL); 13070 if (!vlan) 13071 return -ENOMEM; 13072 13073 vlan->vid = vid; 13074 vlan->hw = false; 13075 list_add_tail(&vlan->link, &bp->vlan_reg); 13076 13077 if (netif_running(dev)) 13078 bnx2x_vlan_configure(bp, true); 13079 13080 return 0; 13081 } 13082 13083 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 13084 { 13085 struct bnx2x *bp = netdev_priv(dev); 13086 struct bnx2x_vlan_entry *vlan; 13087 bool found = false; 13088 int rc = 0; 13089 13090 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid); 13091 13092 list_for_each_entry(vlan, &bp->vlan_reg, link) 13093 if (vlan->vid == vid) { 13094 found = true; 13095 break; 13096 } 13097 13098 if (!found) { 13099 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid); 13100 return -EINVAL; 13101 } 13102 13103 if (netif_running(dev) && vlan->hw) { 13104 rc = __bnx2x_vlan_configure_vid(bp, vid, false); 13105 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid); 13106 bp->vlan_cnt--; 13107 } 13108 13109 list_del(&vlan->link); 13110 kfree(vlan); 13111 13112 if (netif_running(dev)) 13113 bnx2x_vlan_configure(bp, true); 13114 13115 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc); 13116 13117 return rc; 13118 } 13119 13120 static const struct net_device_ops bnx2x_netdev_ops = { 13121 .ndo_open = bnx2x_open, 13122 .ndo_stop = bnx2x_close, 13123 .ndo_start_xmit = bnx2x_start_xmit, 13124 .ndo_select_queue = bnx2x_select_queue, 13125 .ndo_set_rx_mode = bnx2x_set_rx_mode, 13126 .ndo_set_mac_address = bnx2x_change_mac_addr, 13127 .ndo_validate_addr = bnx2x_validate_addr, 13128 .ndo_do_ioctl = bnx2x_ioctl, 13129 .ndo_change_mtu = bnx2x_change_mtu, 13130 .ndo_fix_features = bnx2x_fix_features, 13131 .ndo_set_features = bnx2x_set_features, 13132 .ndo_tx_timeout = bnx2x_tx_timeout, 13133 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid, 13134 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid, 13135 .ndo_setup_tc = __bnx2x_setup_tc, 13136 #ifdef CONFIG_BNX2X_SRIOV 13137 .ndo_set_vf_mac = bnx2x_set_vf_mac, 13138 .ndo_set_vf_vlan = bnx2x_set_vf_vlan, 13139 .ndo_get_vf_config = bnx2x_get_vf_config, 13140 .ndo_set_vf_spoofchk = bnx2x_set_vf_spoofchk, 13141 #endif 13142 #ifdef NETDEV_FCOE_WWNN 13143 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, 13144 #endif 13145 13146 .ndo_get_phys_port_id = bnx2x_get_phys_port_id, 13147 .ndo_set_vf_link_state = bnx2x_set_vf_link_state, 13148 .ndo_features_check = bnx2x_features_check, 13149 .ndo_udp_tunnel_add = bnx2x_udp_tunnel_add, 13150 .ndo_udp_tunnel_del = bnx2x_udp_tunnel_del, 13151 }; 13152 13153 static int bnx2x_set_coherency_mask(struct bnx2x *bp) 13154 { 13155 struct device *dev = &bp->pdev->dev; 13156 13157 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 && 13158 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) { 13159 dev_err(dev, "System does not support DMA, aborting\n"); 13160 return -EIO; 13161 } 13162 13163 return 0; 13164 } 13165 13166 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp) 13167 { 13168 if (bp->flags & AER_ENABLED) { 13169 pci_disable_pcie_error_reporting(bp->pdev); 13170 bp->flags &= ~AER_ENABLED; 13171 } 13172 } 13173 13174 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, 13175 struct net_device *dev, unsigned long board_type) 13176 { 13177 int rc; 13178 u32 pci_cfg_dword; 13179 bool chip_is_e1x = (board_type == BCM57710 || 13180 board_type == BCM57711 || 13181 board_type == BCM57711E); 13182 13183 SET_NETDEV_DEV(dev, &pdev->dev); 13184 13185 bp->dev = dev; 13186 bp->pdev = pdev; 13187 13188 rc = pci_enable_device(pdev); 13189 if (rc) { 13190 dev_err(&bp->pdev->dev, 13191 "Cannot enable PCI device, aborting\n"); 13192 goto err_out; 13193 } 13194 13195 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 13196 dev_err(&bp->pdev->dev, 13197 "Cannot find PCI device base address, aborting\n"); 13198 rc = -ENODEV; 13199 goto err_out_disable; 13200 } 13201 13202 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { 13203 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); 13204 rc = -ENODEV; 13205 goto err_out_disable; 13206 } 13207 13208 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); 13209 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == 13210 PCICFG_REVESION_ID_ERROR_VAL) { 13211 pr_err("PCI device error, probably due to fan failure, aborting\n"); 13212 rc = -ENODEV; 13213 goto err_out_disable; 13214 } 13215 13216 if (atomic_read(&pdev->enable_cnt) == 1) { 13217 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 13218 if (rc) { 13219 dev_err(&bp->pdev->dev, 13220 "Cannot obtain PCI resources, aborting\n"); 13221 goto err_out_disable; 13222 } 13223 13224 pci_set_master(pdev); 13225 pci_save_state(pdev); 13226 } 13227 13228 if (IS_PF(bp)) { 13229 if (!pdev->pm_cap) { 13230 dev_err(&bp->pdev->dev, 13231 "Cannot find power management capability, aborting\n"); 13232 rc = -EIO; 13233 goto err_out_release; 13234 } 13235 } 13236 13237 if (!pci_is_pcie(pdev)) { 13238 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); 13239 rc = -EIO; 13240 goto err_out_release; 13241 } 13242 13243 rc = bnx2x_set_coherency_mask(bp); 13244 if (rc) 13245 goto err_out_release; 13246 13247 dev->mem_start = pci_resource_start(pdev, 0); 13248 dev->base_addr = dev->mem_start; 13249 dev->mem_end = pci_resource_end(pdev, 0); 13250 13251 dev->irq = pdev->irq; 13252 13253 bp->regview = pci_ioremap_bar(pdev, 0); 13254 if (!bp->regview) { 13255 dev_err(&bp->pdev->dev, 13256 "Cannot map register space, aborting\n"); 13257 rc = -ENOMEM; 13258 goto err_out_release; 13259 } 13260 13261 /* In E1/E1H use pci device function given by kernel. 13262 * In E2/E3 read physical function from ME register since these chips 13263 * support Physical Device Assignment where kernel BDF maybe arbitrary 13264 * (depending on hypervisor). 13265 */ 13266 if (chip_is_e1x) { 13267 bp->pf_num = PCI_FUNC(pdev->devfn); 13268 } else { 13269 /* chip is E2/3*/ 13270 pci_read_config_dword(bp->pdev, 13271 PCICFG_ME_REGISTER, &pci_cfg_dword); 13272 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> 13273 ME_REG_ABS_PF_NUM_SHIFT); 13274 } 13275 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); 13276 13277 /* clean indirect addresses */ 13278 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 13279 PCICFG_VENDOR_ID_OFFSET); 13280 13281 /* Set PCIe reset type to fundamental for EEH recovery */ 13282 pdev->needs_freset = 1; 13283 13284 /* AER (Advanced Error reporting) configuration */ 13285 rc = pci_enable_pcie_error_reporting(pdev); 13286 if (!rc) 13287 bp->flags |= AER_ENABLED; 13288 else 13289 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc); 13290 13291 /* 13292 * Clean the following indirect addresses for all functions since it 13293 * is not used by the driver. 13294 */ 13295 if (IS_PF(bp)) { 13296 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); 13297 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); 13298 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); 13299 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); 13300 13301 if (chip_is_e1x) { 13302 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); 13303 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); 13304 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); 13305 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); 13306 } 13307 13308 /* Enable internal target-read (in case we are probed after PF 13309 * FLR). Must be done prior to any BAR read access. Only for 13310 * 57712 and up 13311 */ 13312 if (!chip_is_e1x) 13313 REG_WR(bp, 13314 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13315 } 13316 13317 dev->watchdog_timeo = TX_TIMEOUT; 13318 13319 dev->netdev_ops = &bnx2x_netdev_ops; 13320 bnx2x_set_ethtool_ops(bp, dev); 13321 13322 dev->priv_flags |= IFF_UNICAST_FLT; 13323 13324 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13325 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13326 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW | 13327 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; 13328 if (!chip_is_e1x) { 13329 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | 13330 NETIF_F_GSO_IPXIP4 | 13331 NETIF_F_GSO_UDP_TUNNEL | 13332 NETIF_F_GSO_UDP_TUNNEL_CSUM | 13333 NETIF_F_GSO_PARTIAL; 13334 13335 dev->hw_enc_features = 13336 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13337 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13338 NETIF_F_GSO_IPXIP4 | 13339 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | 13340 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM | 13341 NETIF_F_GSO_PARTIAL; 13342 13343 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM | 13344 NETIF_F_GSO_UDP_TUNNEL_CSUM; 13345 } 13346 13347 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13348 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; 13349 13350 if (IS_PF(bp)) { 13351 if (chip_is_e1x) 13352 bp->accept_any_vlan = true; 13353 else 13354 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13355 } 13356 /* For VF we'll know whether to enable VLAN filtering after 13357 * getting a response to CHANNEL_TLV_ACQUIRE from PF. 13358 */ 13359 13360 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; 13361 dev->features |= NETIF_F_HIGHDMA; 13362 if (dev->features & NETIF_F_LRO) 13363 dev->features &= ~NETIF_F_GRO_HW; 13364 13365 /* Add Loopback capability to the device */ 13366 dev->hw_features |= NETIF_F_LOOPBACK; 13367 13368 #ifdef BCM_DCBNL 13369 dev->dcbnl_ops = &bnx2x_dcbnl_ops; 13370 #endif 13371 13372 /* MTU range, 46 - 9600 */ 13373 dev->min_mtu = ETH_MIN_PACKET_SIZE; 13374 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE; 13375 13376 /* get_port_hwinfo() will set prtad and mmds properly */ 13377 bp->mdio.prtad = MDIO_PRTAD_NONE; 13378 bp->mdio.mmds = 0; 13379 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; 13380 bp->mdio.dev = dev; 13381 bp->mdio.mdio_read = bnx2x_mdio_read; 13382 bp->mdio.mdio_write = bnx2x_mdio_write; 13383 13384 return 0; 13385 13386 err_out_release: 13387 if (atomic_read(&pdev->enable_cnt) == 1) 13388 pci_release_regions(pdev); 13389 13390 err_out_disable: 13391 pci_disable_device(pdev); 13392 13393 err_out: 13394 return rc; 13395 } 13396 13397 static int bnx2x_check_firmware(struct bnx2x *bp) 13398 { 13399 const struct firmware *firmware = bp->firmware; 13400 struct bnx2x_fw_file_hdr *fw_hdr; 13401 struct bnx2x_fw_file_section *sections; 13402 u32 offset, len, num_ops; 13403 __be16 *ops_offsets; 13404 int i; 13405 const u8 *fw_ver; 13406 13407 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { 13408 BNX2X_ERR("Wrong FW size\n"); 13409 return -EINVAL; 13410 } 13411 13412 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; 13413 sections = (struct bnx2x_fw_file_section *)fw_hdr; 13414 13415 /* Make sure none of the offsets and sizes make us read beyond 13416 * the end of the firmware data */ 13417 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { 13418 offset = be32_to_cpu(sections[i].offset); 13419 len = be32_to_cpu(sections[i].len); 13420 if (offset + len > firmware->size) { 13421 BNX2X_ERR("Section %d length is out of bounds\n", i); 13422 return -EINVAL; 13423 } 13424 } 13425 13426 /* Likewise for the init_ops offsets */ 13427 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); 13428 ops_offsets = (__force __be16 *)(firmware->data + offset); 13429 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); 13430 13431 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { 13432 if (be16_to_cpu(ops_offsets[i]) > num_ops) { 13433 BNX2X_ERR("Section offset %d is out of bounds\n", i); 13434 return -EINVAL; 13435 } 13436 } 13437 13438 /* Check FW version */ 13439 offset = be32_to_cpu(fw_hdr->fw_version.offset); 13440 fw_ver = firmware->data + offset; 13441 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || 13442 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || 13443 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || 13444 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { 13445 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", 13446 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], 13447 BCM_5710_FW_MAJOR_VERSION, 13448 BCM_5710_FW_MINOR_VERSION, 13449 BCM_5710_FW_REVISION_VERSION, 13450 BCM_5710_FW_ENGINEERING_VERSION); 13451 return -EINVAL; 13452 } 13453 13454 return 0; 13455 } 13456 13457 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13458 { 13459 const __be32 *source = (const __be32 *)_source; 13460 u32 *target = (u32 *)_target; 13461 u32 i; 13462 13463 for (i = 0; i < n/4; i++) 13464 target[i] = be32_to_cpu(source[i]); 13465 } 13466 13467 /* 13468 Ops array is stored in the following format: 13469 {op(8bit), offset(24bit, big endian), data(32bit, big endian)} 13470 */ 13471 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) 13472 { 13473 const __be32 *source = (const __be32 *)_source; 13474 struct raw_op *target = (struct raw_op *)_target; 13475 u32 i, j, tmp; 13476 13477 for (i = 0, j = 0; i < n/8; i++, j += 2) { 13478 tmp = be32_to_cpu(source[j]); 13479 target[i].op = (tmp >> 24) & 0xff; 13480 target[i].offset = tmp & 0xffffff; 13481 target[i].raw_data = be32_to_cpu(source[j + 1]); 13482 } 13483 } 13484 13485 /* IRO array is stored in the following format: 13486 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } 13487 */ 13488 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) 13489 { 13490 const __be32 *source = (const __be32 *)_source; 13491 struct iro *target = (struct iro *)_target; 13492 u32 i, j, tmp; 13493 13494 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { 13495 target[i].base = be32_to_cpu(source[j]); 13496 j++; 13497 tmp = be32_to_cpu(source[j]); 13498 target[i].m1 = (tmp >> 16) & 0xffff; 13499 target[i].m2 = tmp & 0xffff; 13500 j++; 13501 tmp = be32_to_cpu(source[j]); 13502 target[i].m3 = (tmp >> 16) & 0xffff; 13503 target[i].size = tmp & 0xffff; 13504 j++; 13505 } 13506 } 13507 13508 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13509 { 13510 const __be16 *source = (const __be16 *)_source; 13511 u16 *target = (u16 *)_target; 13512 u32 i; 13513 13514 for (i = 0; i < n/2; i++) 13515 target[i] = be16_to_cpu(source[i]); 13516 } 13517 13518 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ 13519 do { \ 13520 u32 len = be32_to_cpu(fw_hdr->arr.len); \ 13521 bp->arr = kmalloc(len, GFP_KERNEL); \ 13522 if (!bp->arr) \ 13523 goto lbl; \ 13524 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ 13525 (u8 *)bp->arr, len); \ 13526 } while (0) 13527 13528 static int bnx2x_init_firmware(struct bnx2x *bp) 13529 { 13530 const char *fw_file_name; 13531 struct bnx2x_fw_file_hdr *fw_hdr; 13532 int rc; 13533 13534 if (bp->firmware) 13535 return 0; 13536 13537 if (CHIP_IS_E1(bp)) 13538 fw_file_name = FW_FILE_NAME_E1; 13539 else if (CHIP_IS_E1H(bp)) 13540 fw_file_name = FW_FILE_NAME_E1H; 13541 else if (!CHIP_IS_E1x(bp)) 13542 fw_file_name = FW_FILE_NAME_E2; 13543 else { 13544 BNX2X_ERR("Unsupported chip revision\n"); 13545 return -EINVAL; 13546 } 13547 BNX2X_DEV_INFO("Loading %s\n", fw_file_name); 13548 13549 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); 13550 if (rc) { 13551 BNX2X_ERR("Can't load firmware file %s\n", 13552 fw_file_name); 13553 goto request_firmware_exit; 13554 } 13555 13556 rc = bnx2x_check_firmware(bp); 13557 if (rc) { 13558 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); 13559 goto request_firmware_exit; 13560 } 13561 13562 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; 13563 13564 /* Initialize the pointers to the init arrays */ 13565 /* Blob */ 13566 rc = -ENOMEM; 13567 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); 13568 13569 /* Opcodes */ 13570 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); 13571 13572 /* Offsets */ 13573 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, 13574 be16_to_cpu_n); 13575 13576 /* STORMs firmware */ 13577 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13578 be32_to_cpu(fw_hdr->tsem_int_table_data.offset); 13579 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + 13580 be32_to_cpu(fw_hdr->tsem_pram_data.offset); 13581 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13582 be32_to_cpu(fw_hdr->usem_int_table_data.offset); 13583 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + 13584 be32_to_cpu(fw_hdr->usem_pram_data.offset); 13585 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13586 be32_to_cpu(fw_hdr->xsem_int_table_data.offset); 13587 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + 13588 be32_to_cpu(fw_hdr->xsem_pram_data.offset); 13589 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13590 be32_to_cpu(fw_hdr->csem_int_table_data.offset); 13591 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + 13592 be32_to_cpu(fw_hdr->csem_pram_data.offset); 13593 /* IRO */ 13594 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); 13595 13596 return 0; 13597 13598 iro_alloc_err: 13599 kfree(bp->init_ops_offsets); 13600 init_offsets_alloc_err: 13601 kfree(bp->init_ops); 13602 init_ops_alloc_err: 13603 kfree(bp->init_data); 13604 request_firmware_exit: 13605 release_firmware(bp->firmware); 13606 bp->firmware = NULL; 13607 13608 return rc; 13609 } 13610 13611 static void bnx2x_release_firmware(struct bnx2x *bp) 13612 { 13613 kfree(bp->init_ops_offsets); 13614 kfree(bp->init_ops); 13615 kfree(bp->init_data); 13616 release_firmware(bp->firmware); 13617 bp->firmware = NULL; 13618 } 13619 13620 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { 13621 .init_hw_cmn_chip = bnx2x_init_hw_common_chip, 13622 .init_hw_cmn = bnx2x_init_hw_common, 13623 .init_hw_port = bnx2x_init_hw_port, 13624 .init_hw_func = bnx2x_init_hw_func, 13625 13626 .reset_hw_cmn = bnx2x_reset_common, 13627 .reset_hw_port = bnx2x_reset_port, 13628 .reset_hw_func = bnx2x_reset_func, 13629 13630 .gunzip_init = bnx2x_gunzip_init, 13631 .gunzip_end = bnx2x_gunzip_end, 13632 13633 .init_fw = bnx2x_init_firmware, 13634 .release_fw = bnx2x_release_firmware, 13635 }; 13636 13637 void bnx2x__init_func_obj(struct bnx2x *bp) 13638 { 13639 /* Prepare DMAE related driver resources */ 13640 bnx2x_setup_dmae(bp); 13641 13642 bnx2x_init_func_obj(bp, &bp->func_obj, 13643 bnx2x_sp(bp, func_rdata), 13644 bnx2x_sp_mapping(bp, func_rdata), 13645 bnx2x_sp(bp, func_afex_rdata), 13646 bnx2x_sp_mapping(bp, func_afex_rdata), 13647 &bnx2x_func_sp_drv); 13648 } 13649 13650 /* must be called after sriov-enable */ 13651 static int bnx2x_set_qm_cid_count(struct bnx2x *bp) 13652 { 13653 int cid_count = BNX2X_L2_MAX_CID(bp); 13654 13655 if (IS_SRIOV(bp)) 13656 cid_count += BNX2X_VF_CIDS; 13657 13658 if (CNIC_SUPPORT(bp)) 13659 cid_count += CNIC_CID_MAX; 13660 13661 return roundup(cid_count, QM_CID_ROUND); 13662 } 13663 13664 /** 13665 * bnx2x_get_num_none_def_sbs - return the number of none default SBs 13666 * 13667 * @dev: pci device 13668 * 13669 */ 13670 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt) 13671 { 13672 int index; 13673 u16 control = 0; 13674 13675 /* 13676 * If MSI-X is not supported - return number of SBs needed to support 13677 * one fast path queue: one FP queue + SB for CNIC 13678 */ 13679 if (!pdev->msix_cap) { 13680 dev_info(&pdev->dev, "no msix capability found\n"); 13681 return 1 + cnic_cnt; 13682 } 13683 dev_info(&pdev->dev, "msix capability found\n"); 13684 13685 /* 13686 * The value in the PCI configuration space is the index of the last 13687 * entry, namely one less than the actual size of the table, which is 13688 * exactly what we want to return from this function: number of all SBs 13689 * without the default SB. 13690 * For VFs there is no default SB, then we return (index+1). 13691 */ 13692 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control); 13693 13694 index = control & PCI_MSIX_FLAGS_QSIZE; 13695 13696 return index; 13697 } 13698 13699 static int set_max_cos_est(int chip_id) 13700 { 13701 switch (chip_id) { 13702 case BCM57710: 13703 case BCM57711: 13704 case BCM57711E: 13705 return BNX2X_MULTI_TX_COS_E1X; 13706 case BCM57712: 13707 case BCM57712_MF: 13708 return BNX2X_MULTI_TX_COS_E2_E3A0; 13709 case BCM57800: 13710 case BCM57800_MF: 13711 case BCM57810: 13712 case BCM57810_MF: 13713 case BCM57840_4_10: 13714 case BCM57840_2_20: 13715 case BCM57840_O: 13716 case BCM57840_MFO: 13717 case BCM57840_MF: 13718 case BCM57811: 13719 case BCM57811_MF: 13720 return BNX2X_MULTI_TX_COS_E3B0; 13721 case BCM57712_VF: 13722 case BCM57800_VF: 13723 case BCM57810_VF: 13724 case BCM57840_VF: 13725 case BCM57811_VF: 13726 return 1; 13727 default: 13728 pr_err("Unknown board_type (%d), aborting\n", chip_id); 13729 return -ENODEV; 13730 } 13731 } 13732 13733 static int set_is_vf(int chip_id) 13734 { 13735 switch (chip_id) { 13736 case BCM57712_VF: 13737 case BCM57800_VF: 13738 case BCM57810_VF: 13739 case BCM57840_VF: 13740 case BCM57811_VF: 13741 return true; 13742 default: 13743 return false; 13744 } 13745 } 13746 13747 /* nig_tsgen registers relative address */ 13748 #define tsgen_ctrl 0x0 13749 #define tsgen_freecount 0x10 13750 #define tsgen_synctime_t0 0x20 13751 #define tsgen_offset_t0 0x28 13752 #define tsgen_drift_t0 0x30 13753 #define tsgen_synctime_t1 0x58 13754 #define tsgen_offset_t1 0x60 13755 #define tsgen_drift_t1 0x68 13756 13757 /* FW workaround for setting drift */ 13758 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir, 13759 int best_val, int best_period) 13760 { 13761 struct bnx2x_func_state_params func_params = {NULL}; 13762 struct bnx2x_func_set_timesync_params *set_timesync_params = 13763 &func_params.params.set_timesync; 13764 13765 /* Prepare parameters for function state transitions */ 13766 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 13767 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 13768 13769 func_params.f_obj = &bp->func_obj; 13770 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 13771 13772 /* Function parameters */ 13773 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET; 13774 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 13775 set_timesync_params->add_sub_drift_adjust_value = 13776 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE; 13777 set_timesync_params->drift_adjust_value = best_val; 13778 set_timesync_params->drift_adjust_period = best_period; 13779 13780 return bnx2x_func_state_change(bp, &func_params); 13781 } 13782 13783 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 13784 { 13785 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13786 int rc; 13787 int drift_dir = 1; 13788 int val, period, period1, period2, dif, dif1, dif2; 13789 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0; 13790 13791 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb); 13792 13793 if (!netif_running(bp->dev)) { 13794 DP(BNX2X_MSG_PTP, 13795 "PTP adjfreq called while the interface is down\n"); 13796 return -ENETDOWN; 13797 } 13798 13799 if (ppb < 0) { 13800 ppb = -ppb; 13801 drift_dir = 0; 13802 } 13803 13804 if (ppb == 0) { 13805 best_val = 1; 13806 best_period = 0x1FFFFFF; 13807 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) { 13808 best_val = 31; 13809 best_period = 1; 13810 } else { 13811 /* Changed not to allow val = 8, 16, 24 as these values 13812 * are not supported in workaround. 13813 */ 13814 for (val = 0; val <= 31; val++) { 13815 if ((val & 0x7) == 0) 13816 continue; 13817 period1 = val * 1000000 / ppb; 13818 period2 = period1 + 1; 13819 if (period1 != 0) 13820 dif1 = ppb - (val * 1000000 / period1); 13821 else 13822 dif1 = BNX2X_MAX_PHC_DRIFT; 13823 if (dif1 < 0) 13824 dif1 = -dif1; 13825 dif2 = ppb - (val * 1000000 / period2); 13826 if (dif2 < 0) 13827 dif2 = -dif2; 13828 dif = (dif1 < dif2) ? dif1 : dif2; 13829 period = (dif1 < dif2) ? period1 : period2; 13830 if (dif < best_dif) { 13831 best_dif = dif; 13832 best_val = val; 13833 best_period = period; 13834 } 13835 } 13836 } 13837 13838 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val, 13839 best_period); 13840 if (rc) { 13841 BNX2X_ERR("Failed to set drift\n"); 13842 return -EFAULT; 13843 } 13844 13845 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val, 13846 best_period); 13847 13848 return 0; 13849 } 13850 13851 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 13852 { 13853 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13854 13855 if (!netif_running(bp->dev)) { 13856 DP(BNX2X_MSG_PTP, 13857 "PTP adjtime called while the interface is down\n"); 13858 return -ENETDOWN; 13859 } 13860 13861 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta); 13862 13863 timecounter_adjtime(&bp->timecounter, delta); 13864 13865 return 0; 13866 } 13867 13868 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 13869 { 13870 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13871 u64 ns; 13872 13873 if (!netif_running(bp->dev)) { 13874 DP(BNX2X_MSG_PTP, 13875 "PTP gettime called while the interface is down\n"); 13876 return -ENETDOWN; 13877 } 13878 13879 ns = timecounter_read(&bp->timecounter); 13880 13881 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns); 13882 13883 *ts = ns_to_timespec64(ns); 13884 13885 return 0; 13886 } 13887 13888 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp, 13889 const struct timespec64 *ts) 13890 { 13891 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13892 u64 ns; 13893 13894 if (!netif_running(bp->dev)) { 13895 DP(BNX2X_MSG_PTP, 13896 "PTP settime called while the interface is down\n"); 13897 return -ENETDOWN; 13898 } 13899 13900 ns = timespec64_to_ns(ts); 13901 13902 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns); 13903 13904 /* Re-init the timecounter */ 13905 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns); 13906 13907 return 0; 13908 } 13909 13910 /* Enable (or disable) ancillary features of the phc subsystem */ 13911 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp, 13912 struct ptp_clock_request *rq, int on) 13913 { 13914 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13915 13916 BNX2X_ERR("PHC ancillary features are not supported\n"); 13917 return -ENOTSUPP; 13918 } 13919 13920 void bnx2x_register_phc(struct bnx2x *bp) 13921 { 13922 /* Fill the ptp_clock_info struct and register PTP clock*/ 13923 bp->ptp_clock_info.owner = THIS_MODULE; 13924 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name); 13925 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */ 13926 bp->ptp_clock_info.n_alarm = 0; 13927 bp->ptp_clock_info.n_ext_ts = 0; 13928 bp->ptp_clock_info.n_per_out = 0; 13929 bp->ptp_clock_info.pps = 0; 13930 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq; 13931 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime; 13932 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime; 13933 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime; 13934 bp->ptp_clock_info.enable = bnx2x_ptp_enable; 13935 13936 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev); 13937 if (IS_ERR(bp->ptp_clock)) { 13938 bp->ptp_clock = NULL; 13939 BNX2X_ERR("PTP clock registration failed\n"); 13940 } 13941 } 13942 13943 static int bnx2x_init_one(struct pci_dev *pdev, 13944 const struct pci_device_id *ent) 13945 { 13946 struct net_device *dev = NULL; 13947 struct bnx2x *bp; 13948 int rc, max_non_def_sbs; 13949 int rx_count, tx_count, rss_count, doorbell_size; 13950 int max_cos_est; 13951 bool is_vf; 13952 int cnic_cnt; 13953 13954 /* Management FW 'remembers' living interfaces. Allow it some time 13955 * to forget previously living interfaces, allowing a proper re-load. 13956 */ 13957 if (is_kdump_kernel()) { 13958 ktime_t now = ktime_get_boottime(); 13959 ktime_t fw_ready_time = ktime_set(5, 0); 13960 13961 if (ktime_before(now, fw_ready_time)) 13962 msleep(ktime_ms_delta(fw_ready_time, now)); 13963 } 13964 13965 /* An estimated maximum supported CoS number according to the chip 13966 * version. 13967 * We will try to roughly estimate the maximum number of CoSes this chip 13968 * may support in order to minimize the memory allocated for Tx 13969 * netdev_queue's. This number will be accurately calculated during the 13970 * initialization of bp->max_cos based on the chip versions AND chip 13971 * revision in the bnx2x_init_bp(). 13972 */ 13973 max_cos_est = set_max_cos_est(ent->driver_data); 13974 if (max_cos_est < 0) 13975 return max_cos_est; 13976 is_vf = set_is_vf(ent->driver_data); 13977 cnic_cnt = is_vf ? 0 : 1; 13978 13979 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt); 13980 13981 /* add another SB for VF as it has no default SB */ 13982 max_non_def_sbs += is_vf ? 1 : 0; 13983 13984 /* Maximum number of RSS queues: one IGU SB goes to CNIC */ 13985 rss_count = max_non_def_sbs - cnic_cnt; 13986 13987 if (rss_count < 1) 13988 return -EINVAL; 13989 13990 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ 13991 rx_count = rss_count + cnic_cnt; 13992 13993 /* Maximum number of netdev Tx queues: 13994 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 13995 */ 13996 tx_count = rss_count * max_cos_est + cnic_cnt; 13997 13998 /* dev zeroed in init_etherdev */ 13999 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); 14000 if (!dev) 14001 return -ENOMEM; 14002 14003 bp = netdev_priv(dev); 14004 14005 bp->flags = 0; 14006 if (is_vf) 14007 bp->flags |= IS_VF_FLAG; 14008 14009 bp->igu_sb_cnt = max_non_def_sbs; 14010 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; 14011 bp->msg_enable = debug; 14012 bp->cnic_support = cnic_cnt; 14013 bp->cnic_probe = bnx2x_cnic_probe; 14014 14015 pci_set_drvdata(pdev, dev); 14016 14017 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); 14018 if (rc < 0) { 14019 free_netdev(dev); 14020 return rc; 14021 } 14022 14023 BNX2X_DEV_INFO("This is a %s function\n", 14024 IS_PF(bp) ? "physical" : "virtual"); 14025 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); 14026 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); 14027 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", 14028 tx_count, rx_count); 14029 14030 rc = bnx2x_init_bp(bp); 14031 if (rc) 14032 goto init_one_exit; 14033 14034 /* Map doorbells here as we need the real value of bp->max_cos which 14035 * is initialized in bnx2x_init_bp() to determine the number of 14036 * l2 connections. 14037 */ 14038 if (IS_VF(bp)) { 14039 bp->doorbells = bnx2x_vf_doorbells(bp); 14040 rc = bnx2x_vf_pci_alloc(bp); 14041 if (rc) 14042 goto init_one_freemem; 14043 } else { 14044 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); 14045 if (doorbell_size > pci_resource_len(pdev, 2)) { 14046 dev_err(&bp->pdev->dev, 14047 "Cannot map doorbells, bar size too small, aborting\n"); 14048 rc = -ENOMEM; 14049 goto init_one_freemem; 14050 } 14051 bp->doorbells = ioremap(pci_resource_start(pdev, 2), 14052 doorbell_size); 14053 } 14054 if (!bp->doorbells) { 14055 dev_err(&bp->pdev->dev, 14056 "Cannot map doorbell space, aborting\n"); 14057 rc = -ENOMEM; 14058 goto init_one_freemem; 14059 } 14060 14061 if (IS_VF(bp)) { 14062 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); 14063 if (rc) 14064 goto init_one_freemem; 14065 14066 #ifdef CONFIG_BNX2X_SRIOV 14067 /* VF with OLD Hypervisor or old PF do not support filtering */ 14068 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) { 14069 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 14070 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 14071 } 14072 #endif 14073 } 14074 14075 /* Enable SRIOV if capability found in configuration space */ 14076 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); 14077 if (rc) 14078 goto init_one_freemem; 14079 14080 /* calc qm_cid_count */ 14081 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); 14082 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); 14083 14084 /* disable FCOE L2 queue for E1x*/ 14085 if (CHIP_IS_E1x(bp)) 14086 bp->flags |= NO_FCOE_FLAG; 14087 14088 /* Set bp->num_queues for MSI-X mode*/ 14089 bnx2x_set_num_queues(bp); 14090 14091 /* Configure interrupt mode: try to enable MSI-X/MSI if 14092 * needed. 14093 */ 14094 rc = bnx2x_set_int_mode(bp); 14095 if (rc) { 14096 dev_err(&pdev->dev, "Cannot set interrupts\n"); 14097 goto init_one_freemem; 14098 } 14099 BNX2X_DEV_INFO("set interrupts successfully\n"); 14100 14101 /* register the net device */ 14102 rc = register_netdev(dev); 14103 if (rc) { 14104 dev_err(&pdev->dev, "Cannot register net device\n"); 14105 goto init_one_freemem; 14106 } 14107 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); 14108 14109 if (!NO_FCOE(bp)) { 14110 /* Add storage MAC address */ 14111 rtnl_lock(); 14112 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 14113 rtnl_unlock(); 14114 } 14115 BNX2X_DEV_INFO( 14116 "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n", 14117 board_info[ent->driver_data].name, 14118 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), 14119 dev->base_addr, bp->pdev->irq, dev->dev_addr); 14120 pcie_print_link_status(bp->pdev); 14121 14122 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 14123 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 14124 14125 return 0; 14126 14127 init_one_freemem: 14128 bnx2x_free_mem_bp(bp); 14129 14130 init_one_exit: 14131 bnx2x_disable_pcie_error_reporting(bp); 14132 14133 if (bp->regview) 14134 iounmap(bp->regview); 14135 14136 if (IS_PF(bp) && bp->doorbells) 14137 iounmap(bp->doorbells); 14138 14139 free_netdev(dev); 14140 14141 if (atomic_read(&pdev->enable_cnt) == 1) 14142 pci_release_regions(pdev); 14143 14144 pci_disable_device(pdev); 14145 14146 return rc; 14147 } 14148 14149 static void __bnx2x_remove(struct pci_dev *pdev, 14150 struct net_device *dev, 14151 struct bnx2x *bp, 14152 bool remove_netdev) 14153 { 14154 /* Delete storage MAC address */ 14155 if (!NO_FCOE(bp)) { 14156 rtnl_lock(); 14157 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 14158 rtnl_unlock(); 14159 } 14160 14161 #ifdef BCM_DCBNL 14162 /* Delete app tlvs from dcbnl */ 14163 bnx2x_dcbnl_update_applist(bp, true); 14164 #endif 14165 14166 if (IS_PF(bp) && 14167 !BP_NOMCP(bp) && 14168 (bp->flags & BC_SUPPORTS_RMMOD_CMD)) 14169 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); 14170 14171 /* Close the interface - either directly or implicitly */ 14172 if (remove_netdev) { 14173 unregister_netdev(dev); 14174 } else { 14175 rtnl_lock(); 14176 dev_close(dev); 14177 rtnl_unlock(); 14178 } 14179 14180 bnx2x_iov_remove_one(bp); 14181 14182 /* Power on: we can't let PCI layer write to us while we are in D3 */ 14183 if (IS_PF(bp)) { 14184 bnx2x_set_power_state(bp, PCI_D0); 14185 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED); 14186 14187 /* Set endianity registers to reset values in case next driver 14188 * boots in different endianty environment. 14189 */ 14190 bnx2x_reset_endianity(bp); 14191 } 14192 14193 /* Disable MSI/MSI-X */ 14194 bnx2x_disable_msi(bp); 14195 14196 /* Power off */ 14197 if (IS_PF(bp)) 14198 bnx2x_set_power_state(bp, PCI_D3hot); 14199 14200 /* Make sure RESET task is not scheduled before continuing */ 14201 cancel_delayed_work_sync(&bp->sp_rtnl_task); 14202 14203 /* send message via vfpf channel to release the resources of this vf */ 14204 if (IS_VF(bp)) 14205 bnx2x_vfpf_release(bp); 14206 14207 /* Assumes no further PCIe PM changes will occur */ 14208 if (system_state == SYSTEM_POWER_OFF) { 14209 pci_wake_from_d3(pdev, bp->wol); 14210 pci_set_power_state(pdev, PCI_D3hot); 14211 } 14212 14213 bnx2x_disable_pcie_error_reporting(bp); 14214 if (remove_netdev) { 14215 if (bp->regview) 14216 iounmap(bp->regview); 14217 14218 /* For vfs, doorbells are part of the regview and were unmapped 14219 * along with it. FW is only loaded by PF. 14220 */ 14221 if (IS_PF(bp)) { 14222 if (bp->doorbells) 14223 iounmap(bp->doorbells); 14224 14225 bnx2x_release_firmware(bp); 14226 } else { 14227 bnx2x_vf_pci_dealloc(bp); 14228 } 14229 bnx2x_free_mem_bp(bp); 14230 14231 free_netdev(dev); 14232 14233 if (atomic_read(&pdev->enable_cnt) == 1) 14234 pci_release_regions(pdev); 14235 14236 pci_disable_device(pdev); 14237 } 14238 } 14239 14240 static void bnx2x_remove_one(struct pci_dev *pdev) 14241 { 14242 struct net_device *dev = pci_get_drvdata(pdev); 14243 struct bnx2x *bp; 14244 14245 if (!dev) { 14246 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 14247 return; 14248 } 14249 bp = netdev_priv(dev); 14250 14251 __bnx2x_remove(pdev, dev, bp, true); 14252 } 14253 14254 static int bnx2x_eeh_nic_unload(struct bnx2x *bp) 14255 { 14256 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 14257 14258 bp->rx_mode = BNX2X_RX_MODE_NONE; 14259 14260 if (CNIC_LOADED(bp)) 14261 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 14262 14263 /* Stop Tx */ 14264 bnx2x_tx_disable(bp); 14265 /* Delete all NAPI objects */ 14266 bnx2x_del_all_napi(bp); 14267 if (CNIC_LOADED(bp)) 14268 bnx2x_del_all_napi_cnic(bp); 14269 netdev_reset_tc(bp->dev); 14270 14271 del_timer_sync(&bp->timer); 14272 cancel_delayed_work_sync(&bp->sp_task); 14273 cancel_delayed_work_sync(&bp->period_task); 14274 14275 if (!down_timeout(&bp->stats_lock, HZ / 10)) { 14276 bp->stats_state = STATS_STATE_DISABLED; 14277 up(&bp->stats_lock); 14278 } 14279 14280 bnx2x_save_statistics(bp); 14281 14282 netif_carrier_off(bp->dev); 14283 14284 return 0; 14285 } 14286 14287 /** 14288 * bnx2x_io_error_detected - called when PCI error is detected 14289 * @pdev: Pointer to PCI device 14290 * @state: The current pci connection state 14291 * 14292 * This function is called after a PCI bus error affecting 14293 * this device has been detected. 14294 */ 14295 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, 14296 pci_channel_state_t state) 14297 { 14298 struct net_device *dev = pci_get_drvdata(pdev); 14299 struct bnx2x *bp = netdev_priv(dev); 14300 14301 rtnl_lock(); 14302 14303 BNX2X_ERR("IO error detected\n"); 14304 14305 netif_device_detach(dev); 14306 14307 if (state == pci_channel_io_perm_failure) { 14308 rtnl_unlock(); 14309 return PCI_ERS_RESULT_DISCONNECT; 14310 } 14311 14312 if (netif_running(dev)) 14313 bnx2x_eeh_nic_unload(bp); 14314 14315 bnx2x_prev_path_mark_eeh(bp); 14316 14317 pci_disable_device(pdev); 14318 14319 rtnl_unlock(); 14320 14321 /* Request a slot reset */ 14322 return PCI_ERS_RESULT_NEED_RESET; 14323 } 14324 14325 /** 14326 * bnx2x_io_slot_reset - called after the PCI bus has been reset 14327 * @pdev: Pointer to PCI device 14328 * 14329 * Restart the card from scratch, as if from a cold-boot. 14330 */ 14331 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) 14332 { 14333 struct net_device *dev = pci_get_drvdata(pdev); 14334 struct bnx2x *bp = netdev_priv(dev); 14335 int i; 14336 14337 rtnl_lock(); 14338 BNX2X_ERR("IO slot reset initializing...\n"); 14339 if (pci_enable_device(pdev)) { 14340 dev_err(&pdev->dev, 14341 "Cannot re-enable PCI device after reset\n"); 14342 rtnl_unlock(); 14343 return PCI_ERS_RESULT_DISCONNECT; 14344 } 14345 14346 pci_set_master(pdev); 14347 pci_restore_state(pdev); 14348 pci_save_state(pdev); 14349 14350 if (netif_running(dev)) 14351 bnx2x_set_power_state(bp, PCI_D0); 14352 14353 if (netif_running(dev)) { 14354 BNX2X_ERR("IO slot reset --> driver unload\n"); 14355 14356 /* MCP should have been reset; Need to wait for validity */ 14357 if (bnx2x_init_shmem(bp)) { 14358 rtnl_unlock(); 14359 return PCI_ERS_RESULT_DISCONNECT; 14360 } 14361 14362 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 14363 u32 v; 14364 14365 v = SHMEM2_RD(bp, 14366 drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 14367 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 14368 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 14369 } 14370 bnx2x_drain_tx_queues(bp); 14371 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); 14372 bnx2x_netif_stop(bp, 1); 14373 bnx2x_free_irq(bp); 14374 14375 /* Report UNLOAD_DONE to MCP */ 14376 bnx2x_send_unload_done(bp, true); 14377 14378 bp->sp_state = 0; 14379 bp->port.pmf = 0; 14380 14381 bnx2x_prev_unload(bp); 14382 14383 /* We should have reseted the engine, so It's fair to 14384 * assume the FW will no longer write to the bnx2x driver. 14385 */ 14386 bnx2x_squeeze_objects(bp); 14387 bnx2x_free_skbs(bp); 14388 for_each_rx_queue(bp, i) 14389 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 14390 bnx2x_free_fp_mem(bp); 14391 bnx2x_free_mem(bp); 14392 14393 bp->state = BNX2X_STATE_CLOSED; 14394 } 14395 14396 rtnl_unlock(); 14397 14398 return PCI_ERS_RESULT_RECOVERED; 14399 } 14400 14401 /** 14402 * bnx2x_io_resume - called when traffic can start flowing again 14403 * @pdev: Pointer to PCI device 14404 * 14405 * This callback is called when the error recovery driver tells us that 14406 * its OK to resume normal operation. 14407 */ 14408 static void bnx2x_io_resume(struct pci_dev *pdev) 14409 { 14410 struct net_device *dev = pci_get_drvdata(pdev); 14411 struct bnx2x *bp = netdev_priv(dev); 14412 14413 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 14414 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); 14415 return; 14416 } 14417 14418 rtnl_lock(); 14419 14420 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 14421 DRV_MSG_SEQ_NUMBER_MASK; 14422 14423 if (netif_running(dev)) 14424 bnx2x_nic_load(bp, LOAD_NORMAL); 14425 14426 netif_device_attach(dev); 14427 14428 rtnl_unlock(); 14429 } 14430 14431 static const struct pci_error_handlers bnx2x_err_handler = { 14432 .error_detected = bnx2x_io_error_detected, 14433 .slot_reset = bnx2x_io_slot_reset, 14434 .resume = bnx2x_io_resume, 14435 }; 14436 14437 static void bnx2x_shutdown(struct pci_dev *pdev) 14438 { 14439 struct net_device *dev = pci_get_drvdata(pdev); 14440 struct bnx2x *bp; 14441 14442 if (!dev) 14443 return; 14444 14445 bp = netdev_priv(dev); 14446 if (!bp) 14447 return; 14448 14449 rtnl_lock(); 14450 netif_device_detach(dev); 14451 rtnl_unlock(); 14452 14453 /* Don't remove the netdevice, as there are scenarios which will cause 14454 * the kernel to hang, e.g., when trying to remove bnx2i while the 14455 * rootfs is mounted from SAN. 14456 */ 14457 __bnx2x_remove(pdev, dev, bp, false); 14458 } 14459 14460 static struct pci_driver bnx2x_pci_driver = { 14461 .name = DRV_MODULE_NAME, 14462 .id_table = bnx2x_pci_tbl, 14463 .probe = bnx2x_init_one, 14464 .remove = bnx2x_remove_one, 14465 .suspend = bnx2x_suspend, 14466 .resume = bnx2x_resume, 14467 .err_handler = &bnx2x_err_handler, 14468 #ifdef CONFIG_BNX2X_SRIOV 14469 .sriov_configure = bnx2x_sriov_configure, 14470 #endif 14471 .shutdown = bnx2x_shutdown, 14472 }; 14473 14474 static int __init bnx2x_init(void) 14475 { 14476 int ret; 14477 14478 bnx2x_wq = create_singlethread_workqueue("bnx2x"); 14479 if (bnx2x_wq == NULL) { 14480 pr_err("Cannot create workqueue\n"); 14481 return -ENOMEM; 14482 } 14483 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov"); 14484 if (!bnx2x_iov_wq) { 14485 pr_err("Cannot create iov workqueue\n"); 14486 destroy_workqueue(bnx2x_wq); 14487 return -ENOMEM; 14488 } 14489 14490 ret = pci_register_driver(&bnx2x_pci_driver); 14491 if (ret) { 14492 pr_err("Cannot register driver\n"); 14493 destroy_workqueue(bnx2x_wq); 14494 destroy_workqueue(bnx2x_iov_wq); 14495 } 14496 return ret; 14497 } 14498 14499 static void __exit bnx2x_cleanup(void) 14500 { 14501 struct list_head *pos, *q; 14502 14503 pci_unregister_driver(&bnx2x_pci_driver); 14504 14505 destroy_workqueue(bnx2x_wq); 14506 destroy_workqueue(bnx2x_iov_wq); 14507 14508 /* Free globally allocated resources */ 14509 list_for_each_safe(pos, q, &bnx2x_prev_list) { 14510 struct bnx2x_prev_path_list *tmp = 14511 list_entry(pos, struct bnx2x_prev_path_list, list); 14512 list_del(pos); 14513 kfree(tmp); 14514 } 14515 } 14516 14517 void bnx2x_notify_link_changed(struct bnx2x *bp) 14518 { 14519 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); 14520 } 14521 14522 module_init(bnx2x_init); 14523 module_exit(bnx2x_cleanup); 14524 14525 /** 14526 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). 14527 * 14528 * @bp: driver handle 14529 * @set: set or clear the CAM entry 14530 * 14531 * This function will wait until the ramrod completion returns. 14532 * Return 0 if success, -ENODEV if ramrod doesn't return. 14533 */ 14534 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) 14535 { 14536 unsigned long ramrod_flags = 0; 14537 14538 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 14539 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, 14540 &bp->iscsi_l2_mac_obj, true, 14541 BNX2X_ISCSI_ETH_MAC, &ramrod_flags); 14542 } 14543 14544 /* count denotes the number of new completions we have seen */ 14545 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) 14546 { 14547 struct eth_spe *spe; 14548 int cxt_index, cxt_offset; 14549 14550 #ifdef BNX2X_STOP_ON_ERROR 14551 if (unlikely(bp->panic)) 14552 return; 14553 #endif 14554 14555 spin_lock_bh(&bp->spq_lock); 14556 BUG_ON(bp->cnic_spq_pending < count); 14557 bp->cnic_spq_pending -= count; 14558 14559 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { 14560 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) 14561 & SPE_HDR_CONN_TYPE) >> 14562 SPE_HDR_CONN_TYPE_SHIFT; 14563 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) 14564 >> SPE_HDR_CMD_ID_SHIFT) & 0xff; 14565 14566 /* Set validation for iSCSI L2 client before sending SETUP 14567 * ramrod 14568 */ 14569 if (type == ETH_CONNECTION_TYPE) { 14570 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { 14571 cxt_index = BNX2X_ISCSI_ETH_CID(bp) / 14572 ILT_PAGE_CIDS; 14573 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - 14574 (cxt_index * ILT_PAGE_CIDS); 14575 bnx2x_set_ctx_validation(bp, 14576 &bp->context[cxt_index]. 14577 vcxt[cxt_offset].eth, 14578 BNX2X_ISCSI_ETH_CID(bp)); 14579 } 14580 } 14581 14582 /* 14583 * There may be not more than 8 L2, not more than 8 L5 SPEs 14584 * and in the air. We also check that number of outstanding 14585 * COMMON ramrods is not more than the EQ and SPQ can 14586 * accommodate. 14587 */ 14588 if (type == ETH_CONNECTION_TYPE) { 14589 if (!atomic_read(&bp->cq_spq_left)) 14590 break; 14591 else 14592 atomic_dec(&bp->cq_spq_left); 14593 } else if (type == NONE_CONNECTION_TYPE) { 14594 if (!atomic_read(&bp->eq_spq_left)) 14595 break; 14596 else 14597 atomic_dec(&bp->eq_spq_left); 14598 } else if ((type == ISCSI_CONNECTION_TYPE) || 14599 (type == FCOE_CONNECTION_TYPE)) { 14600 if (bp->cnic_spq_pending >= 14601 bp->cnic_eth_dev.max_kwqe_pending) 14602 break; 14603 else 14604 bp->cnic_spq_pending++; 14605 } else { 14606 BNX2X_ERR("Unknown SPE type: %d\n", type); 14607 bnx2x_panic(); 14608 break; 14609 } 14610 14611 spe = bnx2x_sp_get_next(bp); 14612 *spe = *bp->cnic_kwq_cons; 14613 14614 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", 14615 bp->cnic_spq_pending, bp->cnic_kwq_pending, count); 14616 14617 if (bp->cnic_kwq_cons == bp->cnic_kwq_last) 14618 bp->cnic_kwq_cons = bp->cnic_kwq; 14619 else 14620 bp->cnic_kwq_cons++; 14621 } 14622 bnx2x_sp_prod_update(bp); 14623 spin_unlock_bh(&bp->spq_lock); 14624 } 14625 14626 static int bnx2x_cnic_sp_queue(struct net_device *dev, 14627 struct kwqe_16 *kwqes[], u32 count) 14628 { 14629 struct bnx2x *bp = netdev_priv(dev); 14630 int i; 14631 14632 #ifdef BNX2X_STOP_ON_ERROR 14633 if (unlikely(bp->panic)) { 14634 BNX2X_ERR("Can't post to SP queue while panic\n"); 14635 return -EIO; 14636 } 14637 #endif 14638 14639 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && 14640 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 14641 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 14642 return -EAGAIN; 14643 } 14644 14645 spin_lock_bh(&bp->spq_lock); 14646 14647 for (i = 0; i < count; i++) { 14648 struct eth_spe *spe = (struct eth_spe *)kwqes[i]; 14649 14650 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) 14651 break; 14652 14653 *bp->cnic_kwq_prod = *spe; 14654 14655 bp->cnic_kwq_pending++; 14656 14657 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", 14658 spe->hdr.conn_and_cmd_data, spe->hdr.type, 14659 spe->data.update_data_addr.hi, 14660 spe->data.update_data_addr.lo, 14661 bp->cnic_kwq_pending); 14662 14663 if (bp->cnic_kwq_prod == bp->cnic_kwq_last) 14664 bp->cnic_kwq_prod = bp->cnic_kwq; 14665 else 14666 bp->cnic_kwq_prod++; 14667 } 14668 14669 spin_unlock_bh(&bp->spq_lock); 14670 14671 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) 14672 bnx2x_cnic_sp_post(bp, 0); 14673 14674 return i; 14675 } 14676 14677 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14678 { 14679 struct cnic_ops *c_ops; 14680 int rc = 0; 14681 14682 mutex_lock(&bp->cnic_mutex); 14683 c_ops = rcu_dereference_protected(bp->cnic_ops, 14684 lockdep_is_held(&bp->cnic_mutex)); 14685 if (c_ops) 14686 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14687 mutex_unlock(&bp->cnic_mutex); 14688 14689 return rc; 14690 } 14691 14692 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14693 { 14694 struct cnic_ops *c_ops; 14695 int rc = 0; 14696 14697 rcu_read_lock(); 14698 c_ops = rcu_dereference(bp->cnic_ops); 14699 if (c_ops) 14700 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14701 rcu_read_unlock(); 14702 14703 return rc; 14704 } 14705 14706 /* 14707 * for commands that have no data 14708 */ 14709 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) 14710 { 14711 struct cnic_ctl_info ctl = {0}; 14712 14713 ctl.cmd = cmd; 14714 14715 return bnx2x_cnic_ctl_send(bp, &ctl); 14716 } 14717 14718 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) 14719 { 14720 struct cnic_ctl_info ctl = {0}; 14721 14722 /* first we tell CNIC and only then we count this as a completion */ 14723 ctl.cmd = CNIC_CTL_COMPLETION_CMD; 14724 ctl.data.comp.cid = cid; 14725 ctl.data.comp.error = err; 14726 14727 bnx2x_cnic_ctl_send_bh(bp, &ctl); 14728 bnx2x_cnic_sp_post(bp, 0); 14729 } 14730 14731 /* Called with netif_addr_lock_bh() taken. 14732 * Sets an rx_mode config for an iSCSI ETH client. 14733 * Doesn't block. 14734 * Completion should be checked outside. 14735 */ 14736 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) 14737 { 14738 unsigned long accept_flags = 0, ramrod_flags = 0; 14739 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 14740 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; 14741 14742 if (start) { 14743 /* Start accepting on iSCSI L2 ring. Accept all multicasts 14744 * because it's the only way for UIO Queue to accept 14745 * multicasts (in non-promiscuous mode only one Queue per 14746 * function will receive multicast packets (leading in our 14747 * case). 14748 */ 14749 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); 14750 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); 14751 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); 14752 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 14753 14754 /* Clear STOP_PENDING bit if START is requested */ 14755 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); 14756 14757 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; 14758 } else 14759 /* Clear START_PENDING bit if STOP is requested */ 14760 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); 14761 14762 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 14763 set_bit(sched_state, &bp->sp_state); 14764 else { 14765 __set_bit(RAMROD_RX, &ramrod_flags); 14766 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, 14767 ramrod_flags); 14768 } 14769 } 14770 14771 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) 14772 { 14773 struct bnx2x *bp = netdev_priv(dev); 14774 int rc = 0; 14775 14776 switch (ctl->cmd) { 14777 case DRV_CTL_CTXTBL_WR_CMD: { 14778 u32 index = ctl->data.io.offset; 14779 dma_addr_t addr = ctl->data.io.dma_addr; 14780 14781 bnx2x_ilt_wr(bp, index, addr); 14782 break; 14783 } 14784 14785 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { 14786 int count = ctl->data.credit.credit_count; 14787 14788 bnx2x_cnic_sp_post(bp, count); 14789 break; 14790 } 14791 14792 /* rtnl_lock is held. */ 14793 case DRV_CTL_START_L2_CMD: { 14794 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14795 unsigned long sp_bits = 0; 14796 14797 /* Configure the iSCSI classification object */ 14798 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, 14799 cp->iscsi_l2_client_id, 14800 cp->iscsi_l2_cid, BP_FUNC(bp), 14801 bnx2x_sp(bp, mac_rdata), 14802 bnx2x_sp_mapping(bp, mac_rdata), 14803 BNX2X_FILTER_MAC_PENDING, 14804 &bp->sp_state, BNX2X_OBJ_TYPE_RX, 14805 &bp->macs_pool); 14806 14807 /* Set iSCSI MAC address */ 14808 rc = bnx2x_set_iscsi_eth_mac_addr(bp); 14809 if (rc) 14810 break; 14811 14812 barrier(); 14813 14814 /* Start accepting on iSCSI L2 ring */ 14815 14816 netif_addr_lock_bh(dev); 14817 bnx2x_set_iscsi_eth_rx_mode(bp, true); 14818 netif_addr_unlock_bh(dev); 14819 14820 /* bits to wait on */ 14821 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14822 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); 14823 14824 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14825 BNX2X_ERR("rx_mode completion timed out!\n"); 14826 14827 break; 14828 } 14829 14830 /* rtnl_lock is held. */ 14831 case DRV_CTL_STOP_L2_CMD: { 14832 unsigned long sp_bits = 0; 14833 14834 /* Stop accepting on iSCSI L2 ring */ 14835 netif_addr_lock_bh(dev); 14836 bnx2x_set_iscsi_eth_rx_mode(bp, false); 14837 netif_addr_unlock_bh(dev); 14838 14839 /* bits to wait on */ 14840 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14841 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); 14842 14843 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14844 BNX2X_ERR("rx_mode completion timed out!\n"); 14845 14846 barrier(); 14847 14848 /* Unset iSCSI L2 MAC */ 14849 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, 14850 BNX2X_ISCSI_ETH_MAC, true); 14851 break; 14852 } 14853 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { 14854 int count = ctl->data.credit.credit_count; 14855 14856 smp_mb__before_atomic(); 14857 atomic_add(count, &bp->cq_spq_left); 14858 smp_mb__after_atomic(); 14859 break; 14860 } 14861 case DRV_CTL_ULP_REGISTER_CMD: { 14862 int ulp_type = ctl->data.register_data.ulp_type; 14863 14864 if (CHIP_IS_E3(bp)) { 14865 int idx = BP_FW_MB_IDX(bp); 14866 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14867 int path = BP_PATH(bp); 14868 int port = BP_PORT(bp); 14869 int i; 14870 u32 scratch_offset; 14871 u32 *host_addr; 14872 14873 /* first write capability to shmem2 */ 14874 if (ulp_type == CNIC_ULP_ISCSI) 14875 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14876 else if (ulp_type == CNIC_ULP_FCOE) 14877 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14878 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14879 14880 if ((ulp_type != CNIC_ULP_FCOE) || 14881 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || 14882 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) 14883 break; 14884 14885 /* if reached here - should write fcoe capabilities */ 14886 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); 14887 if (!scratch_offset) 14888 break; 14889 scratch_offset += offsetof(struct glob_ncsi_oem_data, 14890 fcoe_features[path][port]); 14891 host_addr = (u32 *) &(ctl->data.register_data. 14892 fcoe_features); 14893 for (i = 0; i < sizeof(struct fcoe_capabilities); 14894 i += 4) 14895 REG_WR(bp, scratch_offset + i, 14896 *(host_addr + i/4)); 14897 } 14898 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14899 break; 14900 } 14901 14902 case DRV_CTL_ULP_UNREGISTER_CMD: { 14903 int ulp_type = ctl->data.ulp_type; 14904 14905 if (CHIP_IS_E3(bp)) { 14906 int idx = BP_FW_MB_IDX(bp); 14907 u32 cap; 14908 14909 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14910 if (ulp_type == CNIC_ULP_ISCSI) 14911 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14912 else if (ulp_type == CNIC_ULP_FCOE) 14913 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14914 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14915 } 14916 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14917 break; 14918 } 14919 14920 default: 14921 BNX2X_ERR("unknown command %x\n", ctl->cmd); 14922 rc = -EINVAL; 14923 } 14924 14925 /* For storage-only interfaces, change driver state */ 14926 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) { 14927 switch (ctl->drv_state) { 14928 case DRV_NOP: 14929 break; 14930 case DRV_ACTIVE: 14931 bnx2x_set_os_driver_state(bp, 14932 OS_DRIVER_STATE_ACTIVE); 14933 break; 14934 case DRV_INACTIVE: 14935 bnx2x_set_os_driver_state(bp, 14936 OS_DRIVER_STATE_DISABLED); 14937 break; 14938 case DRV_UNLOADED: 14939 bnx2x_set_os_driver_state(bp, 14940 OS_DRIVER_STATE_NOT_LOADED); 14941 break; 14942 default: 14943 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state); 14944 } 14945 } 14946 14947 return rc; 14948 } 14949 14950 static int bnx2x_get_fc_npiv(struct net_device *dev, 14951 struct cnic_fc_npiv_tbl *cnic_tbl) 14952 { 14953 struct bnx2x *bp = netdev_priv(dev); 14954 struct bdn_fc_npiv_tbl *tbl = NULL; 14955 u32 offset, entries; 14956 int rc = -EINVAL; 14957 int i; 14958 14959 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0])) 14960 goto out; 14961 14962 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n"); 14963 14964 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL); 14965 if (!tbl) { 14966 BNX2X_ERR("Failed to allocate fc_npiv table\n"); 14967 goto out; 14968 } 14969 14970 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]); 14971 if (!offset) { 14972 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n"); 14973 goto out; 14974 } 14975 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset); 14976 14977 /* Read the table contents from nvram */ 14978 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) { 14979 BNX2X_ERR("Failed to read FC-NPIV table\n"); 14980 goto out; 14981 } 14982 14983 /* Since bnx2x_nvram_read() returns data in be32, we need to convert 14984 * the number of entries back to cpu endianness. 14985 */ 14986 entries = tbl->fc_npiv_cfg.num_of_npiv; 14987 entries = (__force u32)be32_to_cpu((__force __be32)entries); 14988 tbl->fc_npiv_cfg.num_of_npiv = entries; 14989 14990 if (!tbl->fc_npiv_cfg.num_of_npiv) { 14991 DP(BNX2X_MSG_MCP, 14992 "No FC-NPIV table [valid, simply not present]\n"); 14993 goto out; 14994 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) { 14995 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n", 14996 tbl->fc_npiv_cfg.num_of_npiv); 14997 goto out; 14998 } else { 14999 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n", 15000 tbl->fc_npiv_cfg.num_of_npiv); 15001 } 15002 15003 /* Copy the data into cnic-provided struct */ 15004 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv; 15005 for (i = 0; i < cnic_tbl->count; i++) { 15006 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8); 15007 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8); 15008 } 15009 15010 rc = 0; 15011 out: 15012 kfree(tbl); 15013 return rc; 15014 } 15015 15016 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) 15017 { 15018 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15019 15020 if (bp->flags & USING_MSIX_FLAG) { 15021 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; 15022 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; 15023 cp->irq_arr[0].vector = bp->msix_table[1].vector; 15024 } else { 15025 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; 15026 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; 15027 } 15028 if (!CHIP_IS_E1x(bp)) 15029 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; 15030 else 15031 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; 15032 15033 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); 15034 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); 15035 cp->irq_arr[1].status_blk = bp->def_status_blk; 15036 cp->irq_arr[1].status_blk_num = DEF_SB_ID; 15037 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; 15038 15039 cp->num_irq = 2; 15040 } 15041 15042 void bnx2x_setup_cnic_info(struct bnx2x *bp) 15043 { 15044 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15045 15046 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 15047 bnx2x_cid_ilt_lines(bp); 15048 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 15049 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 15050 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 15051 15052 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n", 15053 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid, 15054 cp->iscsi_l2_cid); 15055 15056 if (NO_ISCSI_OOO(bp)) 15057 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 15058 } 15059 15060 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, 15061 void *data) 15062 { 15063 struct bnx2x *bp = netdev_priv(dev); 15064 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15065 int rc; 15066 15067 DP(NETIF_MSG_IFUP, "Register_cnic called\n"); 15068 15069 if (ops == NULL) { 15070 BNX2X_ERR("NULL ops received\n"); 15071 return -EINVAL; 15072 } 15073 15074 if (!CNIC_SUPPORT(bp)) { 15075 BNX2X_ERR("Can't register CNIC when not supported\n"); 15076 return -EOPNOTSUPP; 15077 } 15078 15079 if (!CNIC_LOADED(bp)) { 15080 rc = bnx2x_load_cnic(bp); 15081 if (rc) { 15082 BNX2X_ERR("CNIC-related load failed\n"); 15083 return rc; 15084 } 15085 } 15086 15087 bp->cnic_enabled = true; 15088 15089 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); 15090 if (!bp->cnic_kwq) 15091 return -ENOMEM; 15092 15093 bp->cnic_kwq_cons = bp->cnic_kwq; 15094 bp->cnic_kwq_prod = bp->cnic_kwq; 15095 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; 15096 15097 bp->cnic_spq_pending = 0; 15098 bp->cnic_kwq_pending = 0; 15099 15100 bp->cnic_data = data; 15101 15102 cp->num_irq = 0; 15103 cp->drv_state |= CNIC_DRV_STATE_REGD; 15104 cp->iro_arr = bp->iro_arr; 15105 15106 bnx2x_setup_cnic_irq_info(bp); 15107 15108 rcu_assign_pointer(bp->cnic_ops, ops); 15109 15110 /* Schedule driver to read CNIC driver versions */ 15111 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 15112 15113 return 0; 15114 } 15115 15116 static int bnx2x_unregister_cnic(struct net_device *dev) 15117 { 15118 struct bnx2x *bp = netdev_priv(dev); 15119 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15120 15121 mutex_lock(&bp->cnic_mutex); 15122 cp->drv_state = 0; 15123 RCU_INIT_POINTER(bp->cnic_ops, NULL); 15124 mutex_unlock(&bp->cnic_mutex); 15125 synchronize_rcu(); 15126 bp->cnic_enabled = false; 15127 kfree(bp->cnic_kwq); 15128 bp->cnic_kwq = NULL; 15129 15130 return 0; 15131 } 15132 15133 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) 15134 { 15135 struct bnx2x *bp = netdev_priv(dev); 15136 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 15137 15138 /* If both iSCSI and FCoE are disabled - return NULL in 15139 * order to indicate CNIC that it should not try to work 15140 * with this device. 15141 */ 15142 if (NO_ISCSI(bp) && NO_FCOE(bp)) 15143 return NULL; 15144 15145 cp->drv_owner = THIS_MODULE; 15146 cp->chip_id = CHIP_ID(bp); 15147 cp->pdev = bp->pdev; 15148 cp->io_base = bp->regview; 15149 cp->io_base2 = bp->doorbells; 15150 cp->max_kwqe_pending = 8; 15151 cp->ctx_blk_size = CDU_ILT_PAGE_SZ; 15152 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 15153 bnx2x_cid_ilt_lines(bp); 15154 cp->ctx_tbl_len = CNIC_ILT_LINES; 15155 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 15156 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; 15157 cp->drv_ctl = bnx2x_drv_ctl; 15158 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv; 15159 cp->drv_register_cnic = bnx2x_register_cnic; 15160 cp->drv_unregister_cnic = bnx2x_unregister_cnic; 15161 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 15162 cp->iscsi_l2_client_id = 15163 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 15164 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 15165 15166 if (NO_ISCSI_OOO(bp)) 15167 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 15168 15169 if (NO_ISCSI(bp)) 15170 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; 15171 15172 if (NO_FCOE(bp)) 15173 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; 15174 15175 BNX2X_DEV_INFO( 15176 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", 15177 cp->ctx_blk_size, 15178 cp->ctx_tbl_offset, 15179 cp->ctx_tbl_len, 15180 cp->starting_cid); 15181 return cp; 15182 } 15183 15184 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) 15185 { 15186 struct bnx2x *bp = fp->bp; 15187 u32 offset = BAR_USTRORM_INTMEM; 15188 15189 if (IS_VF(bp)) 15190 return bnx2x_vf_ustorm_prods_offset(bp, fp); 15191 else if (!CHIP_IS_E1x(bp)) 15192 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 15193 else 15194 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); 15195 15196 return offset; 15197 } 15198 15199 /* called only on E1H or E2. 15200 * When pretending to be PF, the pretend value is the function number 0...7 15201 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 15202 * combination 15203 */ 15204 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) 15205 { 15206 u32 pretend_reg; 15207 15208 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) 15209 return -1; 15210 15211 /* get my own pretend register */ 15212 pretend_reg = bnx2x_get_pretend_reg(bp); 15213 REG_WR(bp, pretend_reg, pretend_func_val); 15214 REG_RD(bp, pretend_reg); 15215 return 0; 15216 } 15217 15218 static void bnx2x_ptp_task(struct work_struct *work) 15219 { 15220 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task); 15221 int port = BP_PORT(bp); 15222 u32 val_seq; 15223 u64 timestamp, ns; 15224 struct skb_shared_hwtstamps shhwtstamps; 15225 bool bail = true; 15226 int i; 15227 15228 /* FW may take a while to complete timestamping; try a bit and if it's 15229 * still not complete, may indicate an error state - bail out then. 15230 */ 15231 for (i = 0; i < 10; i++) { 15232 /* Read Tx timestamp registers */ 15233 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15234 NIG_REG_P0_TLLH_PTP_BUF_SEQID); 15235 if (val_seq & 0x10000) { 15236 bail = false; 15237 break; 15238 } 15239 msleep(1 << i); 15240 } 15241 15242 if (!bail) { 15243 /* There is a valid timestamp value */ 15244 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB : 15245 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB); 15246 timestamp <<= 32; 15247 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB : 15248 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB); 15249 /* Reset timestamp register to allow new timestamp */ 15250 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15251 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15252 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15253 15254 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 15255 shhwtstamps.hwtstamp = ns_to_ktime(ns); 15256 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps); 15257 15258 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n", 15259 timestamp, ns); 15260 } else { 15261 DP(BNX2X_MSG_PTP, 15262 "Tx timestamp is not recorded (register read=%u)\n", 15263 val_seq); 15264 bp->eth_stats.ptp_skip_tx_ts++; 15265 } 15266 15267 dev_kfree_skb_any(bp->ptp_tx_skb); 15268 bp->ptp_tx_skb = NULL; 15269 } 15270 15271 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb) 15272 { 15273 int port = BP_PORT(bp); 15274 u64 timestamp, ns; 15275 15276 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB : 15277 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB); 15278 timestamp <<= 32; 15279 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB : 15280 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB); 15281 15282 /* Reset timestamp register to allow new timestamp */ 15283 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15284 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15285 15286 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15287 15288 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 15289 15290 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n", 15291 timestamp, ns); 15292 } 15293 15294 /* Read the PHC */ 15295 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc) 15296 { 15297 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter); 15298 int port = BP_PORT(bp); 15299 u32 wb_data[2]; 15300 u64 phc_cycles; 15301 15302 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 : 15303 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2); 15304 phc_cycles = wb_data[1]; 15305 phc_cycles = (phc_cycles << 32) + wb_data[0]; 15306 15307 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles); 15308 15309 return phc_cycles; 15310 } 15311 15312 static void bnx2x_init_cyclecounter(struct bnx2x *bp) 15313 { 15314 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter)); 15315 bp->cyclecounter.read = bnx2x_cyclecounter_read; 15316 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64); 15317 bp->cyclecounter.shift = 0; 15318 bp->cyclecounter.mult = 1; 15319 } 15320 15321 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp) 15322 { 15323 struct bnx2x_func_state_params func_params = {NULL}; 15324 struct bnx2x_func_set_timesync_params *set_timesync_params = 15325 &func_params.params.set_timesync; 15326 15327 /* Prepare parameters for function state transitions */ 15328 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 15329 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 15330 15331 func_params.f_obj = &bp->func_obj; 15332 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 15333 15334 /* Function parameters */ 15335 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET; 15336 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 15337 15338 return bnx2x_func_state_change(bp, &func_params); 15339 } 15340 15341 static int bnx2x_enable_ptp_packets(struct bnx2x *bp) 15342 { 15343 struct bnx2x_queue_state_params q_params; 15344 int rc, i; 15345 15346 /* send queue update ramrod to enable PTP packets */ 15347 memset(&q_params, 0, sizeof(q_params)); 15348 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 15349 q_params.cmd = BNX2X_Q_CMD_UPDATE; 15350 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, 15351 &q_params.params.update.update_flags); 15352 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS, 15353 &q_params.params.update.update_flags); 15354 15355 /* send the ramrod on all the queues of the PF */ 15356 for_each_eth_queue(bp, i) { 15357 struct bnx2x_fastpath *fp = &bp->fp[i]; 15358 15359 /* Set the appropriate Queue object */ 15360 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 15361 15362 /* Update the Queue state */ 15363 rc = bnx2x_queue_state_change(bp, &q_params); 15364 if (rc) { 15365 BNX2X_ERR("Failed to enable PTP packets\n"); 15366 return rc; 15367 } 15368 } 15369 15370 return 0; 15371 } 15372 15373 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5 15374 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB 15375 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA) 15376 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE) 15377 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE) 15378 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE) 15379 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA) 15380 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE) 15381 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF) 15382 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF) 15383 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA) 15384 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE) 15385 15386 int bnx2x_configure_ptp_filters(struct bnx2x *bp) 15387 { 15388 int port = BP_PORT(bp); 15389 u32 param, rule; 15390 int rc; 15391 15392 if (!bp->hwtstamp_ioctl_called) 15393 return 0; 15394 15395 param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15396 NIG_REG_P0_TLLH_PTP_PARAM_MASK; 15397 rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15398 NIG_REG_P0_TLLH_PTP_RULE_MASK; 15399 switch (bp->tx_type) { 15400 case HWTSTAMP_TX_ON: 15401 bp->flags |= TX_TIMESTAMPING_EN; 15402 REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK); 15403 REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK); 15404 break; 15405 case HWTSTAMP_TX_ONESTEP_SYNC: 15406 case HWTSTAMP_TX_ONESTEP_P2P: 15407 BNX2X_ERR("One-step timestamping is not supported\n"); 15408 return -ERANGE; 15409 } 15410 15411 param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15412 NIG_REG_P0_LLH_PTP_PARAM_MASK; 15413 rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15414 NIG_REG_P0_LLH_PTP_RULE_MASK; 15415 switch (bp->rx_filter) { 15416 case HWTSTAMP_FILTER_NONE: 15417 break; 15418 case HWTSTAMP_FILTER_ALL: 15419 case HWTSTAMP_FILTER_SOME: 15420 case HWTSTAMP_FILTER_NTP_ALL: 15421 bp->rx_filter = HWTSTAMP_FILTER_NONE; 15422 break; 15423 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 15424 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 15425 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 15426 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 15427 /* Initialize PTP detection for UDP/IPv4 events */ 15428 REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK); 15429 REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK); 15430 break; 15431 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 15432 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 15433 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 15434 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 15435 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */ 15436 REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK); 15437 REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK); 15438 break; 15439 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 15440 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 15441 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 15442 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 15443 /* Initialize PTP detection L2 events */ 15444 REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK); 15445 REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK); 15446 15447 break; 15448 case HWTSTAMP_FILTER_PTP_V2_EVENT: 15449 case HWTSTAMP_FILTER_PTP_V2_SYNC: 15450 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 15451 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 15452 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */ 15453 REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK); 15454 REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK); 15455 break; 15456 } 15457 15458 /* Indicate to FW that this PF expects recorded PTP packets */ 15459 rc = bnx2x_enable_ptp_packets(bp); 15460 if (rc) 15461 return rc; 15462 15463 /* Enable sending PTP packets to host */ 15464 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15465 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1); 15466 15467 return 0; 15468 } 15469 15470 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr) 15471 { 15472 struct hwtstamp_config config; 15473 int rc; 15474 15475 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n"); 15476 15477 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 15478 return -EFAULT; 15479 15480 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n", 15481 config.tx_type, config.rx_filter); 15482 15483 if (config.flags) { 15484 BNX2X_ERR("config.flags is reserved for future use\n"); 15485 return -EINVAL; 15486 } 15487 15488 bp->hwtstamp_ioctl_called = 1; 15489 bp->tx_type = config.tx_type; 15490 bp->rx_filter = config.rx_filter; 15491 15492 rc = bnx2x_configure_ptp_filters(bp); 15493 if (rc) 15494 return rc; 15495 15496 config.rx_filter = bp->rx_filter; 15497 15498 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 15499 -EFAULT : 0; 15500 } 15501 15502 /* Configures HW for PTP */ 15503 static int bnx2x_configure_ptp(struct bnx2x *bp) 15504 { 15505 int rc, port = BP_PORT(bp); 15506 u32 wb_data[2]; 15507 15508 /* Reset PTP event detection rules - will be configured in the IOCTL */ 15509 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15510 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 15511 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15512 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 15513 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15514 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 15515 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15516 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 15517 15518 /* Disable PTP packets to host - will be configured in the IOCTL*/ 15519 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15520 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 15521 15522 /* Enable the PTP feature */ 15523 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 15524 NIG_REG_P0_PTP_EN, 0x3F); 15525 15526 /* Enable the free-running counter */ 15527 wb_data[0] = 0; 15528 wb_data[1] = 0; 15529 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2); 15530 15531 /* Reset drift register (offset register is not reset) */ 15532 rc = bnx2x_send_reset_timesync_ramrod(bp); 15533 if (rc) { 15534 BNX2X_ERR("Failed to reset PHC drift register\n"); 15535 return -EFAULT; 15536 } 15537 15538 /* Reset possibly old timestamps */ 15539 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15540 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15541 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15542 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15543 15544 return 0; 15545 } 15546 15547 /* Called during load, to initialize PTP-related stuff */ 15548 void bnx2x_init_ptp(struct bnx2x *bp) 15549 { 15550 int rc; 15551 15552 /* Configure PTP in HW */ 15553 rc = bnx2x_configure_ptp(bp); 15554 if (rc) { 15555 BNX2X_ERR("Stopping PTP initialization\n"); 15556 return; 15557 } 15558 15559 /* Init work queue for Tx timestamping */ 15560 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task); 15561 15562 /* Init cyclecounter and timecounter. This is done only in the first 15563 * load. If done in every load, PTP application will fail when doing 15564 * unload / load (e.g. MTU change) while it is running. 15565 */ 15566 if (!bp->timecounter_init_done) { 15567 bnx2x_init_cyclecounter(bp); 15568 timecounter_init(&bp->timecounter, &bp->cyclecounter, 15569 ktime_to_ns(ktime_get_real())); 15570 bp->timecounter_init_done = 1; 15571 } 15572 15573 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n"); 15574 } 15575