1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2012 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64 
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION					\
69 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76 
77 /* Time in jiffies before concluding the transmitter is hung */
78 #define TX_TIMEOUT		(5*HZ)
79 
80 static char version[] __devinitdata =
81 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83 
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("Broadcom NetXtreme II "
86 		   "BCM57710/57711/57711E/"
87 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 		   "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_MODULE_VERSION);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93 MODULE_FIRMWARE(FW_FILE_NAME_E2);
94 
95 
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99 		 " Set number of queues (default is as a number of CPUs)");
100 
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104 
105 #define INT_MODE_INTx			1
106 #define INT_MODE_MSI			2
107 static int int_mode;
108 module_param(int_mode, int, 0);
109 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
110 				"(1 INT#x; 2 MSI)");
111 
112 static int dropless_fc;
113 module_param(dropless_fc, int, 0);
114 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
115 
116 static int mrrs = -1;
117 module_param(mrrs, int, 0);
118 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
119 
120 static int debug;
121 module_param(debug, int, 0);
122 MODULE_PARM_DESC(debug, " Default debug msglevel");
123 
124 
125 
126 struct workqueue_struct *bnx2x_wq;
127 
128 enum bnx2x_board_type {
129 	BCM57710 = 0,
130 	BCM57711,
131 	BCM57711E,
132 	BCM57712,
133 	BCM57712_MF,
134 	BCM57800,
135 	BCM57800_MF,
136 	BCM57810,
137 	BCM57810_MF,
138 	BCM57840,
139 	BCM57840_MF,
140 	BCM57811,
141 	BCM57811_MF
142 };
143 
144 /* indexed by board_type, above */
145 static struct {
146 	char *name;
147 } board_info[] __devinitdata = {
148 	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
149 	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
150 	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
151 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
152 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
153 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
154 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
155 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
156 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
157 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
158 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
159 	{ "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet"},
160 	{ "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function"},
161 };
162 
163 #ifndef PCI_DEVICE_ID_NX2_57710
164 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
165 #endif
166 #ifndef PCI_DEVICE_ID_NX2_57711
167 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
168 #endif
169 #ifndef PCI_DEVICE_ID_NX2_57711E
170 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
171 #endif
172 #ifndef PCI_DEVICE_ID_NX2_57712
173 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
174 #endif
175 #ifndef PCI_DEVICE_ID_NX2_57712_MF
176 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
177 #endif
178 #ifndef PCI_DEVICE_ID_NX2_57800
179 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
180 #endif
181 #ifndef PCI_DEVICE_ID_NX2_57800_MF
182 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
183 #endif
184 #ifndef PCI_DEVICE_ID_NX2_57810
185 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
186 #endif
187 #ifndef PCI_DEVICE_ID_NX2_57810_MF
188 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
189 #endif
190 #ifndef PCI_DEVICE_ID_NX2_57840
191 #define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57840_MF
194 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57811
197 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57811_MF
200 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
201 #endif
202 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
203 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
204 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
205 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
206 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
207 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
208 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
209 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
210 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
211 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
212 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
213 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
214 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
215 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
216 	{ 0 }
217 };
218 
219 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
220 
221 /* Global resources for unloading a previously loaded device */
222 #define BNX2X_PREV_WAIT_NEEDED 1
223 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
224 static LIST_HEAD(bnx2x_prev_list);
225 /****************************************************************************
226 * General service functions
227 ****************************************************************************/
228 
229 static void __storm_memset_dma_mapping(struct bnx2x *bp,
230 				       u32 addr, dma_addr_t mapping)
231 {
232 	REG_WR(bp,  addr, U64_LO(mapping));
233 	REG_WR(bp,  addr + 4, U64_HI(mapping));
234 }
235 
236 static void storm_memset_spq_addr(struct bnx2x *bp,
237 				  dma_addr_t mapping, u16 abs_fid)
238 {
239 	u32 addr = XSEM_REG_FAST_MEMORY +
240 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
241 
242 	__storm_memset_dma_mapping(bp, addr, mapping);
243 }
244 
245 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
246 				  u16 pf_id)
247 {
248 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
249 		pf_id);
250 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
251 		pf_id);
252 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
253 		pf_id);
254 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
255 		pf_id);
256 }
257 
258 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
259 				 u8 enable)
260 {
261 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
262 		enable);
263 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
264 		enable);
265 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
266 		enable);
267 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
268 		enable);
269 }
270 
271 static void storm_memset_eq_data(struct bnx2x *bp,
272 				 struct event_ring_data *eq_data,
273 				u16 pfid)
274 {
275 	size_t size = sizeof(struct event_ring_data);
276 
277 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
278 
279 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
280 }
281 
282 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
283 				 u16 pfid)
284 {
285 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
286 	REG_WR16(bp, addr, eq_prod);
287 }
288 
289 /* used only at init
290  * locking is done by mcp
291  */
292 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
293 {
294 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
295 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
296 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
297 			       PCICFG_VENDOR_ID_OFFSET);
298 }
299 
300 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
301 {
302 	u32 val;
303 
304 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
305 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
306 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
307 			       PCICFG_VENDOR_ID_OFFSET);
308 
309 	return val;
310 }
311 
312 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
313 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
314 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
315 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
316 #define DMAE_DP_DST_NONE	"dst_addr [none]"
317 
318 
319 /* copy command into DMAE command memory and set DMAE command go */
320 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
321 {
322 	u32 cmd_offset;
323 	int i;
324 
325 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
326 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
327 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
328 	}
329 	REG_WR(bp, dmae_reg_go_c[idx], 1);
330 }
331 
332 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
333 {
334 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
335 			   DMAE_CMD_C_ENABLE);
336 }
337 
338 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
339 {
340 	return opcode & ~DMAE_CMD_SRC_RESET;
341 }
342 
343 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
344 			     bool with_comp, u8 comp_type)
345 {
346 	u32 opcode = 0;
347 
348 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
349 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
350 
351 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
352 
353 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
354 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
355 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
356 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
357 
358 #ifdef __BIG_ENDIAN
359 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
360 #else
361 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
362 #endif
363 	if (with_comp)
364 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
365 	return opcode;
366 }
367 
368 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
369 				      struct dmae_command *dmae,
370 				      u8 src_type, u8 dst_type)
371 {
372 	memset(dmae, 0, sizeof(struct dmae_command));
373 
374 	/* set the opcode */
375 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
376 					 true, DMAE_COMP_PCI);
377 
378 	/* fill in the completion parameters */
379 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
380 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
381 	dmae->comp_val = DMAE_COMP_VAL;
382 }
383 
384 /* issue a dmae command over the init-channel and wailt for completion */
385 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
386 				      struct dmae_command *dmae)
387 {
388 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
389 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
390 	int rc = 0;
391 
392 	/*
393 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
394 	 * as long as this code is called both from syscall context and
395 	 * from ndo_set_rx_mode() flow that may be called from BH.
396 	 */
397 	spin_lock_bh(&bp->dmae_lock);
398 
399 	/* reset completion */
400 	*wb_comp = 0;
401 
402 	/* post the command on the channel used for initializations */
403 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
404 
405 	/* wait for completion */
406 	udelay(5);
407 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
408 
409 		if (!cnt ||
410 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
411 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
412 			BNX2X_ERR("DMAE timeout!\n");
413 			rc = DMAE_TIMEOUT;
414 			goto unlock;
415 		}
416 		cnt--;
417 		udelay(50);
418 	}
419 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
420 		BNX2X_ERR("DMAE PCI error!\n");
421 		rc = DMAE_PCI_ERROR;
422 	}
423 
424 unlock:
425 	spin_unlock_bh(&bp->dmae_lock);
426 	return rc;
427 }
428 
429 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
430 		      u32 len32)
431 {
432 	struct dmae_command dmae;
433 
434 	if (!bp->dmae_ready) {
435 		u32 *data = bnx2x_sp(bp, wb_data[0]);
436 
437 		if (CHIP_IS_E1(bp))
438 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
439 		else
440 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
441 		return;
442 	}
443 
444 	/* set opcode and fixed command fields */
445 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
446 
447 	/* fill in addresses and len */
448 	dmae.src_addr_lo = U64_LO(dma_addr);
449 	dmae.src_addr_hi = U64_HI(dma_addr);
450 	dmae.dst_addr_lo = dst_addr >> 2;
451 	dmae.dst_addr_hi = 0;
452 	dmae.len = len32;
453 
454 	/* issue the command and wait for completion */
455 	bnx2x_issue_dmae_with_comp(bp, &dmae);
456 }
457 
458 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
459 {
460 	struct dmae_command dmae;
461 
462 	if (!bp->dmae_ready) {
463 		u32 *data = bnx2x_sp(bp, wb_data[0]);
464 		int i;
465 
466 		if (CHIP_IS_E1(bp))
467 			for (i = 0; i < len32; i++)
468 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
469 		else
470 			for (i = 0; i < len32; i++)
471 				data[i] = REG_RD(bp, src_addr + i*4);
472 
473 		return;
474 	}
475 
476 	/* set opcode and fixed command fields */
477 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
478 
479 	/* fill in addresses and len */
480 	dmae.src_addr_lo = src_addr >> 2;
481 	dmae.src_addr_hi = 0;
482 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
483 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
484 	dmae.len = len32;
485 
486 	/* issue the command and wait for completion */
487 	bnx2x_issue_dmae_with_comp(bp, &dmae);
488 }
489 
490 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
491 				      u32 addr, u32 len)
492 {
493 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
494 	int offset = 0;
495 
496 	while (len > dmae_wr_max) {
497 		bnx2x_write_dmae(bp, phys_addr + offset,
498 				 addr + offset, dmae_wr_max);
499 		offset += dmae_wr_max * 4;
500 		len -= dmae_wr_max;
501 	}
502 
503 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
504 }
505 
506 static int bnx2x_mc_assert(struct bnx2x *bp)
507 {
508 	char last_idx;
509 	int i, rc = 0;
510 	u32 row0, row1, row2, row3;
511 
512 	/* XSTORM */
513 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
514 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
515 	if (last_idx)
516 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
517 
518 	/* print the asserts */
519 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
520 
521 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
522 			      XSTORM_ASSERT_LIST_OFFSET(i));
523 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
524 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
525 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
526 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
527 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
528 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
529 
530 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
531 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
532 				  i, row3, row2, row1, row0);
533 			rc++;
534 		} else {
535 			break;
536 		}
537 	}
538 
539 	/* TSTORM */
540 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
541 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
542 	if (last_idx)
543 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
544 
545 	/* print the asserts */
546 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
547 
548 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
549 			      TSTORM_ASSERT_LIST_OFFSET(i));
550 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
551 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
552 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
553 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
554 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
555 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
556 
557 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
558 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
559 				  i, row3, row2, row1, row0);
560 			rc++;
561 		} else {
562 			break;
563 		}
564 	}
565 
566 	/* CSTORM */
567 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
568 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
569 	if (last_idx)
570 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
571 
572 	/* print the asserts */
573 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
574 
575 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
576 			      CSTORM_ASSERT_LIST_OFFSET(i));
577 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
578 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
579 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
580 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
581 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
582 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
583 
584 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
585 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
586 				  i, row3, row2, row1, row0);
587 			rc++;
588 		} else {
589 			break;
590 		}
591 	}
592 
593 	/* USTORM */
594 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
595 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
596 	if (last_idx)
597 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
598 
599 	/* print the asserts */
600 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
601 
602 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
603 			      USTORM_ASSERT_LIST_OFFSET(i));
604 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
605 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
606 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
607 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
608 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
609 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
610 
611 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
612 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
613 				  i, row3, row2, row1, row0);
614 			rc++;
615 		} else {
616 			break;
617 		}
618 	}
619 
620 	return rc;
621 }
622 
623 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
624 {
625 	u32 addr, val;
626 	u32 mark, offset;
627 	__be32 data[9];
628 	int word;
629 	u32 trace_shmem_base;
630 	if (BP_NOMCP(bp)) {
631 		BNX2X_ERR("NO MCP - can not dump\n");
632 		return;
633 	}
634 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
635 		(bp->common.bc_ver & 0xff0000) >> 16,
636 		(bp->common.bc_ver & 0xff00) >> 8,
637 		(bp->common.bc_ver & 0xff));
638 
639 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
640 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
641 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
642 
643 	if (BP_PATH(bp) == 0)
644 		trace_shmem_base = bp->common.shmem_base;
645 	else
646 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
647 	addr = trace_shmem_base - 0x800;
648 
649 	/* validate TRCB signature */
650 	mark = REG_RD(bp, addr);
651 	if (mark != MFW_TRACE_SIGNATURE) {
652 		BNX2X_ERR("Trace buffer signature is missing.");
653 		return ;
654 	}
655 
656 	/* read cyclic buffer pointer */
657 	addr += 4;
658 	mark = REG_RD(bp, addr);
659 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
660 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
661 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
662 
663 	printk("%s", lvl);
664 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
665 		for (word = 0; word < 8; word++)
666 			data[word] = htonl(REG_RD(bp, offset + 4*word));
667 		data[8] = 0x0;
668 		pr_cont("%s", (char *)data);
669 	}
670 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
671 		for (word = 0; word < 8; word++)
672 			data[word] = htonl(REG_RD(bp, offset + 4*word));
673 		data[8] = 0x0;
674 		pr_cont("%s", (char *)data);
675 	}
676 	printk("%s" "end of fw dump\n", lvl);
677 }
678 
679 static void bnx2x_fw_dump(struct bnx2x *bp)
680 {
681 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
682 }
683 
684 void bnx2x_panic_dump(struct bnx2x *bp)
685 {
686 	int i;
687 	u16 j;
688 	struct hc_sp_status_block_data sp_sb_data;
689 	int func = BP_FUNC(bp);
690 #ifdef BNX2X_STOP_ON_ERROR
691 	u16 start = 0, end = 0;
692 	u8 cos;
693 #endif
694 
695 	bp->stats_state = STATS_STATE_DISABLED;
696 	bp->eth_stats.unrecoverable_error++;
697 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
698 
699 	BNX2X_ERR("begin crash dump -----------------\n");
700 
701 	/* Indices */
702 	/* Common */
703 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
704 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
705 		  bp->spq_prod_idx, bp->stats_counter);
706 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
707 		  bp->def_status_blk->atten_status_block.attn_bits,
708 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
709 		  bp->def_status_blk->atten_status_block.status_block_id,
710 		  bp->def_status_blk->atten_status_block.attn_bits_index);
711 	BNX2X_ERR("     def (");
712 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
713 		pr_cont("0x%x%s",
714 			bp->def_status_blk->sp_sb.index_values[i],
715 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
716 
717 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
718 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
719 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
720 			i*sizeof(u32));
721 
722 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
723 	       sp_sb_data.igu_sb_id,
724 	       sp_sb_data.igu_seg_id,
725 	       sp_sb_data.p_func.pf_id,
726 	       sp_sb_data.p_func.vnic_id,
727 	       sp_sb_data.p_func.vf_id,
728 	       sp_sb_data.p_func.vf_valid,
729 	       sp_sb_data.state);
730 
731 
732 	for_each_eth_queue(bp, i) {
733 		struct bnx2x_fastpath *fp = &bp->fp[i];
734 		int loop;
735 		struct hc_status_block_data_e2 sb_data_e2;
736 		struct hc_status_block_data_e1x sb_data_e1x;
737 		struct hc_status_block_sm  *hc_sm_p =
738 			CHIP_IS_E1x(bp) ?
739 			sb_data_e1x.common.state_machine :
740 			sb_data_e2.common.state_machine;
741 		struct hc_index_data *hc_index_p =
742 			CHIP_IS_E1x(bp) ?
743 			sb_data_e1x.index_data :
744 			sb_data_e2.index_data;
745 		u8 data_size, cos;
746 		u32 *sb_data_p;
747 		struct bnx2x_fp_txdata txdata;
748 
749 		/* Rx */
750 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
751 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
752 			  fp->rx_comp_prod,
753 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
754 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
755 			  fp->rx_sge_prod, fp->last_max_sge,
756 			  le16_to_cpu(fp->fp_hc_idx));
757 
758 		/* Tx */
759 		for_each_cos_in_tx_queue(fp, cos)
760 		{
761 			txdata = fp->txdata[cos];
762 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
763 				  i, txdata.tx_pkt_prod,
764 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
765 				  txdata.tx_bd_cons,
766 				  le16_to_cpu(*txdata.tx_cons_sb));
767 		}
768 
769 		loop = CHIP_IS_E1x(bp) ?
770 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
771 
772 		/* host sb data */
773 
774 #ifdef BCM_CNIC
775 		if (IS_FCOE_FP(fp))
776 			continue;
777 #endif
778 		BNX2X_ERR("     run indexes (");
779 		for (j = 0; j < HC_SB_MAX_SM; j++)
780 			pr_cont("0x%x%s",
781 			       fp->sb_running_index[j],
782 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
783 
784 		BNX2X_ERR("     indexes (");
785 		for (j = 0; j < loop; j++)
786 			pr_cont("0x%x%s",
787 			       fp->sb_index_values[j],
788 			       (j == loop - 1) ? ")" : " ");
789 		/* fw sb data */
790 		data_size = CHIP_IS_E1x(bp) ?
791 			sizeof(struct hc_status_block_data_e1x) :
792 			sizeof(struct hc_status_block_data_e2);
793 		data_size /= sizeof(u32);
794 		sb_data_p = CHIP_IS_E1x(bp) ?
795 			(u32 *)&sb_data_e1x :
796 			(u32 *)&sb_data_e2;
797 		/* copy sb data in here */
798 		for (j = 0; j < data_size; j++)
799 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
800 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
801 				j * sizeof(u32));
802 
803 		if (!CHIP_IS_E1x(bp)) {
804 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
805 				sb_data_e2.common.p_func.pf_id,
806 				sb_data_e2.common.p_func.vf_id,
807 				sb_data_e2.common.p_func.vf_valid,
808 				sb_data_e2.common.p_func.vnic_id,
809 				sb_data_e2.common.same_igu_sb_1b,
810 				sb_data_e2.common.state);
811 		} else {
812 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
813 				sb_data_e1x.common.p_func.pf_id,
814 				sb_data_e1x.common.p_func.vf_id,
815 				sb_data_e1x.common.p_func.vf_valid,
816 				sb_data_e1x.common.p_func.vnic_id,
817 				sb_data_e1x.common.same_igu_sb_1b,
818 				sb_data_e1x.common.state);
819 		}
820 
821 		/* SB_SMs data */
822 		for (j = 0; j < HC_SB_MAX_SM; j++) {
823 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
824 				j, hc_sm_p[j].__flags,
825 				hc_sm_p[j].igu_sb_id,
826 				hc_sm_p[j].igu_seg_id,
827 				hc_sm_p[j].time_to_expire,
828 				hc_sm_p[j].timer_value);
829 		}
830 
831 		/* Indecies data */
832 		for (j = 0; j < loop; j++) {
833 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
834 			       hc_index_p[j].flags,
835 			       hc_index_p[j].timeout);
836 		}
837 	}
838 
839 #ifdef BNX2X_STOP_ON_ERROR
840 	/* Rings */
841 	/* Rx */
842 	for_each_rx_queue(bp, i) {
843 		struct bnx2x_fastpath *fp = &bp->fp[i];
844 
845 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
846 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
847 		for (j = start; j != end; j = RX_BD(j + 1)) {
848 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
849 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
850 
851 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
852 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
853 		}
854 
855 		start = RX_SGE(fp->rx_sge_prod);
856 		end = RX_SGE(fp->last_max_sge);
857 		for (j = start; j != end; j = RX_SGE(j + 1)) {
858 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
859 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
860 
861 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
862 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
863 		}
864 
865 		start = RCQ_BD(fp->rx_comp_cons - 10);
866 		end = RCQ_BD(fp->rx_comp_cons + 503);
867 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
868 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
869 
870 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
871 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
872 		}
873 	}
874 
875 	/* Tx */
876 	for_each_tx_queue(bp, i) {
877 		struct bnx2x_fastpath *fp = &bp->fp[i];
878 		for_each_cos_in_tx_queue(fp, cos) {
879 			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
880 
881 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
882 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
883 			for (j = start; j != end; j = TX_BD(j + 1)) {
884 				struct sw_tx_bd *sw_bd =
885 					&txdata->tx_buf_ring[j];
886 
887 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
888 					  i, cos, j, sw_bd->skb,
889 					  sw_bd->first_bd);
890 			}
891 
892 			start = TX_BD(txdata->tx_bd_cons - 10);
893 			end = TX_BD(txdata->tx_bd_cons + 254);
894 			for (j = start; j != end; j = TX_BD(j + 1)) {
895 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
896 
897 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
898 					  i, cos, j, tx_bd[0], tx_bd[1],
899 					  tx_bd[2], tx_bd[3]);
900 			}
901 		}
902 	}
903 #endif
904 	bnx2x_fw_dump(bp);
905 	bnx2x_mc_assert(bp);
906 	BNX2X_ERR("end crash dump -----------------\n");
907 }
908 
909 /*
910  * FLR Support for E2
911  *
912  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
913  * initialization.
914  */
915 #define FLR_WAIT_USEC		10000	/* 10 miliseconds */
916 #define FLR_WAIT_INTERVAL	50	/* usec */
917 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
918 
919 struct pbf_pN_buf_regs {
920 	int pN;
921 	u32 init_crd;
922 	u32 crd;
923 	u32 crd_freed;
924 };
925 
926 struct pbf_pN_cmd_regs {
927 	int pN;
928 	u32 lines_occup;
929 	u32 lines_freed;
930 };
931 
932 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
933 				     struct pbf_pN_buf_regs *regs,
934 				     u32 poll_count)
935 {
936 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
937 	u32 cur_cnt = poll_count;
938 
939 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
940 	crd = crd_start = REG_RD(bp, regs->crd);
941 	init_crd = REG_RD(bp, regs->init_crd);
942 
943 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
944 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
945 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
946 
947 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
948 	       (init_crd - crd_start))) {
949 		if (cur_cnt--) {
950 			udelay(FLR_WAIT_INTERVAL);
951 			crd = REG_RD(bp, regs->crd);
952 			crd_freed = REG_RD(bp, regs->crd_freed);
953 		} else {
954 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
955 			   regs->pN);
956 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
957 			   regs->pN, crd);
958 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
959 			   regs->pN, crd_freed);
960 			break;
961 		}
962 	}
963 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
964 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
965 }
966 
967 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
968 				     struct pbf_pN_cmd_regs *regs,
969 				     u32 poll_count)
970 {
971 	u32 occup, to_free, freed, freed_start;
972 	u32 cur_cnt = poll_count;
973 
974 	occup = to_free = REG_RD(bp, regs->lines_occup);
975 	freed = freed_start = REG_RD(bp, regs->lines_freed);
976 
977 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
978 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
979 
980 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
981 		if (cur_cnt--) {
982 			udelay(FLR_WAIT_INTERVAL);
983 			occup = REG_RD(bp, regs->lines_occup);
984 			freed = REG_RD(bp, regs->lines_freed);
985 		} else {
986 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
987 			   regs->pN);
988 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
989 			   regs->pN, occup);
990 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
991 			   regs->pN, freed);
992 			break;
993 		}
994 	}
995 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
996 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
997 }
998 
999 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1000 				    u32 expected, u32 poll_count)
1001 {
1002 	u32 cur_cnt = poll_count;
1003 	u32 val;
1004 
1005 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1006 		udelay(FLR_WAIT_INTERVAL);
1007 
1008 	return val;
1009 }
1010 
1011 static int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1012 					   char *msg, u32 poll_cnt)
1013 {
1014 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1015 	if (val != 0) {
1016 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1017 		return 1;
1018 	}
1019 	return 0;
1020 }
1021 
1022 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1023 {
1024 	/* adjust polling timeout */
1025 	if (CHIP_REV_IS_EMUL(bp))
1026 		return FLR_POLL_CNT * 2000;
1027 
1028 	if (CHIP_REV_IS_FPGA(bp))
1029 		return FLR_POLL_CNT * 120;
1030 
1031 	return FLR_POLL_CNT;
1032 }
1033 
1034 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1035 {
1036 	struct pbf_pN_cmd_regs cmd_regs[] = {
1037 		{0, (CHIP_IS_E3B0(bp)) ?
1038 			PBF_REG_TQ_OCCUPANCY_Q0 :
1039 			PBF_REG_P0_TQ_OCCUPANCY,
1040 		    (CHIP_IS_E3B0(bp)) ?
1041 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1042 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1043 		{1, (CHIP_IS_E3B0(bp)) ?
1044 			PBF_REG_TQ_OCCUPANCY_Q1 :
1045 			PBF_REG_P1_TQ_OCCUPANCY,
1046 		    (CHIP_IS_E3B0(bp)) ?
1047 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1048 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1049 		{4, (CHIP_IS_E3B0(bp)) ?
1050 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1051 			PBF_REG_P4_TQ_OCCUPANCY,
1052 		    (CHIP_IS_E3B0(bp)) ?
1053 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1054 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1055 	};
1056 
1057 	struct pbf_pN_buf_regs buf_regs[] = {
1058 		{0, (CHIP_IS_E3B0(bp)) ?
1059 			PBF_REG_INIT_CRD_Q0 :
1060 			PBF_REG_P0_INIT_CRD ,
1061 		    (CHIP_IS_E3B0(bp)) ?
1062 			PBF_REG_CREDIT_Q0 :
1063 			PBF_REG_P0_CREDIT,
1064 		    (CHIP_IS_E3B0(bp)) ?
1065 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1066 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1067 		{1, (CHIP_IS_E3B0(bp)) ?
1068 			PBF_REG_INIT_CRD_Q1 :
1069 			PBF_REG_P1_INIT_CRD,
1070 		    (CHIP_IS_E3B0(bp)) ?
1071 			PBF_REG_CREDIT_Q1 :
1072 			PBF_REG_P1_CREDIT,
1073 		    (CHIP_IS_E3B0(bp)) ?
1074 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1075 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1076 		{4, (CHIP_IS_E3B0(bp)) ?
1077 			PBF_REG_INIT_CRD_LB_Q :
1078 			PBF_REG_P4_INIT_CRD,
1079 		    (CHIP_IS_E3B0(bp)) ?
1080 			PBF_REG_CREDIT_LB_Q :
1081 			PBF_REG_P4_CREDIT,
1082 		    (CHIP_IS_E3B0(bp)) ?
1083 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1084 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1085 	};
1086 
1087 	int i;
1088 
1089 	/* Verify the command queues are flushed P0, P1, P4 */
1090 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1091 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1092 
1093 
1094 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1095 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1096 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1097 }
1098 
1099 #define OP_GEN_PARAM(param) \
1100 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1101 
1102 #define OP_GEN_TYPE(type) \
1103 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1104 
1105 #define OP_GEN_AGG_VECT(index) \
1106 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1107 
1108 
1109 static int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1110 					 u32 poll_cnt)
1111 {
1112 	struct sdm_op_gen op_gen = {0};
1113 
1114 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1115 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1116 	int ret = 0;
1117 
1118 	if (REG_RD(bp, comp_addr)) {
1119 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1120 		return 1;
1121 	}
1122 
1123 	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1124 	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1125 	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1126 	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1127 
1128 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1129 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1130 
1131 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1132 		BNX2X_ERR("FW final cleanup did not succeed\n");
1133 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1134 		   (REG_RD(bp, comp_addr)));
1135 		ret = 1;
1136 	}
1137 	/* Zero completion for nxt FLR */
1138 	REG_WR(bp, comp_addr, 0);
1139 
1140 	return ret;
1141 }
1142 
1143 static u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1144 {
1145 	int pos;
1146 	u16 status;
1147 
1148 	pos = pci_pcie_cap(dev);
1149 	if (!pos)
1150 		return false;
1151 
1152 	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1153 	return status & PCI_EXP_DEVSTA_TRPND;
1154 }
1155 
1156 /* PF FLR specific routines
1157 */
1158 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1159 {
1160 
1161 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1162 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1163 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1164 			"CFC PF usage counter timed out",
1165 			poll_cnt))
1166 		return 1;
1167 
1168 
1169 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1170 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1171 			DORQ_REG_PF_USAGE_CNT,
1172 			"DQ PF usage counter timed out",
1173 			poll_cnt))
1174 		return 1;
1175 
1176 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1177 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1178 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1179 			"QM PF usage counter timed out",
1180 			poll_cnt))
1181 		return 1;
1182 
1183 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1184 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1185 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1186 			"Timers VNIC usage counter timed out",
1187 			poll_cnt))
1188 		return 1;
1189 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1190 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1191 			"Timers NUM_SCANS usage counter timed out",
1192 			poll_cnt))
1193 		return 1;
1194 
1195 	/* Wait DMAE PF usage counter to zero */
1196 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1197 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1198 			"DMAE dommand register timed out",
1199 			poll_cnt))
1200 		return 1;
1201 
1202 	return 0;
1203 }
1204 
1205 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1206 {
1207 	u32 val;
1208 
1209 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1210 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1211 
1212 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1213 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1214 
1215 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1216 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1217 
1218 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1219 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1220 
1221 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1222 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1223 
1224 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1225 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1226 
1227 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1228 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1229 
1230 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1231 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1232 	   val);
1233 }
1234 
1235 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1236 {
1237 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1238 
1239 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1240 
1241 	/* Re-enable PF target read access */
1242 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1243 
1244 	/* Poll HW usage counters */
1245 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1246 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1247 		return -EBUSY;
1248 
1249 	/* Zero the igu 'trailing edge' and 'leading edge' */
1250 
1251 	/* Send the FW cleanup command */
1252 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1253 		return -EBUSY;
1254 
1255 	/* ATC cleanup */
1256 
1257 	/* Verify TX hw is flushed */
1258 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1259 
1260 	/* Wait 100ms (not adjusted according to platform) */
1261 	msleep(100);
1262 
1263 	/* Verify no pending pci transactions */
1264 	if (bnx2x_is_pcie_pending(bp->pdev))
1265 		BNX2X_ERR("PCIE Transactions still pending\n");
1266 
1267 	/* Debug */
1268 	bnx2x_hw_enable_status(bp);
1269 
1270 	/*
1271 	 * Master enable - Due to WB DMAE writes performed before this
1272 	 * register is re-initialized as part of the regular function init
1273 	 */
1274 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1275 
1276 	return 0;
1277 }
1278 
1279 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1280 {
1281 	int port = BP_PORT(bp);
1282 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1283 	u32 val = REG_RD(bp, addr);
1284 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1285 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1286 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1287 
1288 	if (msix) {
1289 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1290 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1291 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1292 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1293 		if (single_msix)
1294 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1295 	} else if (msi) {
1296 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1297 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1298 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1299 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1300 	} else {
1301 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1302 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1303 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1304 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1305 
1306 		if (!CHIP_IS_E1(bp)) {
1307 			DP(NETIF_MSG_IFUP,
1308 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1309 
1310 			REG_WR(bp, addr, val);
1311 
1312 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1313 		}
1314 	}
1315 
1316 	if (CHIP_IS_E1(bp))
1317 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1318 
1319 	DP(NETIF_MSG_IFUP,
1320 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1321 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1322 
1323 	REG_WR(bp, addr, val);
1324 	/*
1325 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1326 	 */
1327 	mmiowb();
1328 	barrier();
1329 
1330 	if (!CHIP_IS_E1(bp)) {
1331 		/* init leading/trailing edge */
1332 		if (IS_MF(bp)) {
1333 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1334 			if (bp->port.pmf)
1335 				/* enable nig and gpio3 attention */
1336 				val |= 0x1100;
1337 		} else
1338 			val = 0xffff;
1339 
1340 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1341 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1342 	}
1343 
1344 	/* Make sure that interrupts are indeed enabled from here on */
1345 	mmiowb();
1346 }
1347 
1348 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1349 {
1350 	u32 val;
1351 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1352 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1353 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1354 
1355 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1356 
1357 	if (msix) {
1358 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1359 			 IGU_PF_CONF_SINGLE_ISR_EN);
1360 		val |= (IGU_PF_CONF_FUNC_EN |
1361 			IGU_PF_CONF_MSI_MSIX_EN |
1362 			IGU_PF_CONF_ATTN_BIT_EN);
1363 
1364 		if (single_msix)
1365 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1366 	} else if (msi) {
1367 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1368 		val |= (IGU_PF_CONF_FUNC_EN |
1369 			IGU_PF_CONF_MSI_MSIX_EN |
1370 			IGU_PF_CONF_ATTN_BIT_EN |
1371 			IGU_PF_CONF_SINGLE_ISR_EN);
1372 	} else {
1373 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1374 		val |= (IGU_PF_CONF_FUNC_EN |
1375 			IGU_PF_CONF_INT_LINE_EN |
1376 			IGU_PF_CONF_ATTN_BIT_EN |
1377 			IGU_PF_CONF_SINGLE_ISR_EN);
1378 	}
1379 
1380 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1381 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1382 
1383 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1384 
1385 	if (val & IGU_PF_CONF_INT_LINE_EN)
1386 		pci_intx(bp->pdev, true);
1387 
1388 	barrier();
1389 
1390 	/* init leading/trailing edge */
1391 	if (IS_MF(bp)) {
1392 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1393 		if (bp->port.pmf)
1394 			/* enable nig and gpio3 attention */
1395 			val |= 0x1100;
1396 	} else
1397 		val = 0xffff;
1398 
1399 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1400 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1401 
1402 	/* Make sure that interrupts are indeed enabled from here on */
1403 	mmiowb();
1404 }
1405 
1406 void bnx2x_int_enable(struct bnx2x *bp)
1407 {
1408 	if (bp->common.int_block == INT_BLOCK_HC)
1409 		bnx2x_hc_int_enable(bp);
1410 	else
1411 		bnx2x_igu_int_enable(bp);
1412 }
1413 
1414 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1415 {
1416 	int port = BP_PORT(bp);
1417 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1418 	u32 val = REG_RD(bp, addr);
1419 
1420 	/*
1421 	 * in E1 we must use only PCI configuration space to disable
1422 	 * MSI/MSIX capablility
1423 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1424 	 */
1425 	if (CHIP_IS_E1(bp)) {
1426 		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1427 		 *  Use mask register to prevent from HC sending interrupts
1428 		 *  after we exit the function
1429 		 */
1430 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1431 
1432 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1433 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1434 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1435 	} else
1436 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1437 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1438 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1439 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1440 
1441 	DP(NETIF_MSG_IFDOWN,
1442 	   "write %x to HC %d (addr 0x%x)\n",
1443 	   val, port, addr);
1444 
1445 	/* flush all outstanding writes */
1446 	mmiowb();
1447 
1448 	REG_WR(bp, addr, val);
1449 	if (REG_RD(bp, addr) != val)
1450 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1451 }
1452 
1453 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1454 {
1455 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1456 
1457 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1458 		 IGU_PF_CONF_INT_LINE_EN |
1459 		 IGU_PF_CONF_ATTN_BIT_EN);
1460 
1461 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1462 
1463 	/* flush all outstanding writes */
1464 	mmiowb();
1465 
1466 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1467 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1468 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1469 }
1470 
1471 void bnx2x_int_disable(struct bnx2x *bp)
1472 {
1473 	if (bp->common.int_block == INT_BLOCK_HC)
1474 		bnx2x_hc_int_disable(bp);
1475 	else
1476 		bnx2x_igu_int_disable(bp);
1477 }
1478 
1479 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1480 {
1481 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1482 	int i, offset;
1483 
1484 	if (disable_hw)
1485 		/* prevent the HW from sending interrupts */
1486 		bnx2x_int_disable(bp);
1487 
1488 	/* make sure all ISRs are done */
1489 	if (msix) {
1490 		synchronize_irq(bp->msix_table[0].vector);
1491 		offset = 1;
1492 #ifdef BCM_CNIC
1493 		offset++;
1494 #endif
1495 		for_each_eth_queue(bp, i)
1496 			synchronize_irq(bp->msix_table[offset++].vector);
1497 	} else
1498 		synchronize_irq(bp->pdev->irq);
1499 
1500 	/* make sure sp_task is not running */
1501 	cancel_delayed_work(&bp->sp_task);
1502 	cancel_delayed_work(&bp->period_task);
1503 	flush_workqueue(bnx2x_wq);
1504 }
1505 
1506 /* fast path */
1507 
1508 /*
1509  * General service functions
1510  */
1511 
1512 /* Return true if succeeded to acquire the lock */
1513 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1514 {
1515 	u32 lock_status;
1516 	u32 resource_bit = (1 << resource);
1517 	int func = BP_FUNC(bp);
1518 	u32 hw_lock_control_reg;
1519 
1520 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1521 	   "Trying to take a lock on resource %d\n", resource);
1522 
1523 	/* Validating that the resource is within range */
1524 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1525 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1526 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1527 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1528 		return false;
1529 	}
1530 
1531 	if (func <= 5)
1532 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1533 	else
1534 		hw_lock_control_reg =
1535 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1536 
1537 	/* Try to acquire the lock */
1538 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1539 	lock_status = REG_RD(bp, hw_lock_control_reg);
1540 	if (lock_status & resource_bit)
1541 		return true;
1542 
1543 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1544 	   "Failed to get a lock on resource %d\n", resource);
1545 	return false;
1546 }
1547 
1548 /**
1549  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1550  *
1551  * @bp:	driver handle
1552  *
1553  * Returns the recovery leader resource id according to the engine this function
1554  * belongs to. Currently only only 2 engines is supported.
1555  */
1556 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1557 {
1558 	if (BP_PATH(bp))
1559 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1560 	else
1561 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1562 }
1563 
1564 /**
1565  * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1566  *
1567  * @bp: driver handle
1568  *
1569  * Tries to aquire a leader lock for current engine.
1570  */
1571 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1572 {
1573 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1574 }
1575 
1576 #ifdef BCM_CNIC
1577 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1578 #endif
1579 
1580 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1581 {
1582 	struct bnx2x *bp = fp->bp;
1583 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1584 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1585 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1586 	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1587 
1588 	DP(BNX2X_MSG_SP,
1589 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1590 	   fp->index, cid, command, bp->state,
1591 	   rr_cqe->ramrod_cqe.ramrod_type);
1592 
1593 	switch (command) {
1594 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1595 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1596 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1597 		break;
1598 
1599 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1600 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1601 		drv_cmd = BNX2X_Q_CMD_SETUP;
1602 		break;
1603 
1604 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1605 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1606 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1607 		break;
1608 
1609 	case (RAMROD_CMD_ID_ETH_HALT):
1610 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1611 		drv_cmd = BNX2X_Q_CMD_HALT;
1612 		break;
1613 
1614 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1615 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1616 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1617 		break;
1618 
1619 	case (RAMROD_CMD_ID_ETH_EMPTY):
1620 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1621 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1622 		break;
1623 
1624 	default:
1625 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1626 			  command, fp->index);
1627 		return;
1628 	}
1629 
1630 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1631 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1632 		/* q_obj->complete_cmd() failure means that this was
1633 		 * an unexpected completion.
1634 		 *
1635 		 * In this case we don't want to increase the bp->spq_left
1636 		 * because apparently we haven't sent this command the first
1637 		 * place.
1638 		 */
1639 #ifdef BNX2X_STOP_ON_ERROR
1640 		bnx2x_panic();
1641 #else
1642 		return;
1643 #endif
1644 
1645 	smp_mb__before_atomic_inc();
1646 	atomic_inc(&bp->cq_spq_left);
1647 	/* push the change in bp->spq_left and towards the memory */
1648 	smp_mb__after_atomic_inc();
1649 
1650 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1651 
1652 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1653 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1654 		/* if Q update ramrod is completed for last Q in AFEX vif set
1655 		 * flow, then ACK MCP at the end
1656 		 *
1657 		 * mark pending ACK to MCP bit.
1658 		 * prevent case that both bits are cleared.
1659 		 * At the end of load/unload driver checks that
1660 		 * sp_state is cleaerd, and this order prevents
1661 		 * races
1662 		 */
1663 		smp_mb__before_clear_bit();
1664 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1665 		wmb();
1666 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1667 		smp_mb__after_clear_bit();
1668 
1669 		/* schedule workqueue to send ack to MCP */
1670 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1671 	}
1672 
1673 	return;
1674 }
1675 
1676 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1677 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1678 {
1679 	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1680 
1681 	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1682 				 start);
1683 }
1684 
1685 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1686 {
1687 	struct bnx2x *bp = netdev_priv(dev_instance);
1688 	u16 status = bnx2x_ack_int(bp);
1689 	u16 mask;
1690 	int i;
1691 	u8 cos;
1692 
1693 	/* Return here if interrupt is shared and it's not for us */
1694 	if (unlikely(status == 0)) {
1695 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1696 		return IRQ_NONE;
1697 	}
1698 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1699 
1700 #ifdef BNX2X_STOP_ON_ERROR
1701 	if (unlikely(bp->panic))
1702 		return IRQ_HANDLED;
1703 #endif
1704 
1705 	for_each_eth_queue(bp, i) {
1706 		struct bnx2x_fastpath *fp = &bp->fp[i];
1707 
1708 		mask = 0x2 << (fp->index + CNIC_PRESENT);
1709 		if (status & mask) {
1710 			/* Handle Rx or Tx according to SB id */
1711 			prefetch(fp->rx_cons_sb);
1712 			for_each_cos_in_tx_queue(fp, cos)
1713 				prefetch(fp->txdata[cos].tx_cons_sb);
1714 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1715 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1716 			status &= ~mask;
1717 		}
1718 	}
1719 
1720 #ifdef BCM_CNIC
1721 	mask = 0x2;
1722 	if (status & (mask | 0x1)) {
1723 		struct cnic_ops *c_ops = NULL;
1724 
1725 		if (likely(bp->state == BNX2X_STATE_OPEN)) {
1726 			rcu_read_lock();
1727 			c_ops = rcu_dereference(bp->cnic_ops);
1728 			if (c_ops)
1729 				c_ops->cnic_handler(bp->cnic_data, NULL);
1730 			rcu_read_unlock();
1731 		}
1732 
1733 		status &= ~mask;
1734 	}
1735 #endif
1736 
1737 	if (unlikely(status & 0x1)) {
1738 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1739 
1740 		status &= ~0x1;
1741 		if (!status)
1742 			return IRQ_HANDLED;
1743 	}
1744 
1745 	if (unlikely(status))
1746 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1747 		   status);
1748 
1749 	return IRQ_HANDLED;
1750 }
1751 
1752 /* Link */
1753 
1754 /*
1755  * General service functions
1756  */
1757 
1758 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1759 {
1760 	u32 lock_status;
1761 	u32 resource_bit = (1 << resource);
1762 	int func = BP_FUNC(bp);
1763 	u32 hw_lock_control_reg;
1764 	int cnt;
1765 
1766 	/* Validating that the resource is within range */
1767 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1768 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1769 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1770 		return -EINVAL;
1771 	}
1772 
1773 	if (func <= 5) {
1774 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1775 	} else {
1776 		hw_lock_control_reg =
1777 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1778 	}
1779 
1780 	/* Validating that the resource is not already taken */
1781 	lock_status = REG_RD(bp, hw_lock_control_reg);
1782 	if (lock_status & resource_bit) {
1783 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1784 		   lock_status, resource_bit);
1785 		return -EEXIST;
1786 	}
1787 
1788 	/* Try for 5 second every 5ms */
1789 	for (cnt = 0; cnt < 1000; cnt++) {
1790 		/* Try to acquire the lock */
1791 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1792 		lock_status = REG_RD(bp, hw_lock_control_reg);
1793 		if (lock_status & resource_bit)
1794 			return 0;
1795 
1796 		msleep(5);
1797 	}
1798 	BNX2X_ERR("Timeout\n");
1799 	return -EAGAIN;
1800 }
1801 
1802 int bnx2x_release_leader_lock(struct bnx2x *bp)
1803 {
1804 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1805 }
1806 
1807 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1808 {
1809 	u32 lock_status;
1810 	u32 resource_bit = (1 << resource);
1811 	int func = BP_FUNC(bp);
1812 	u32 hw_lock_control_reg;
1813 
1814 	/* Validating that the resource is within range */
1815 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1816 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1817 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1818 		return -EINVAL;
1819 	}
1820 
1821 	if (func <= 5) {
1822 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1823 	} else {
1824 		hw_lock_control_reg =
1825 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1826 	}
1827 
1828 	/* Validating that the resource is currently taken */
1829 	lock_status = REG_RD(bp, hw_lock_control_reg);
1830 	if (!(lock_status & resource_bit)) {
1831 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1832 		   lock_status, resource_bit);
1833 		return -EFAULT;
1834 	}
1835 
1836 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1837 	return 0;
1838 }
1839 
1840 
1841 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1842 {
1843 	/* The GPIO should be swapped if swap register is set and active */
1844 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1845 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1846 	int gpio_shift = gpio_num +
1847 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1848 	u32 gpio_mask = (1 << gpio_shift);
1849 	u32 gpio_reg;
1850 	int value;
1851 
1852 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1853 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1854 		return -EINVAL;
1855 	}
1856 
1857 	/* read GPIO value */
1858 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1859 
1860 	/* get the requested pin value */
1861 	if ((gpio_reg & gpio_mask) == gpio_mask)
1862 		value = 1;
1863 	else
1864 		value = 0;
1865 
1866 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1867 
1868 	return value;
1869 }
1870 
1871 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1872 {
1873 	/* The GPIO should be swapped if swap register is set and active */
1874 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1875 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1876 	int gpio_shift = gpio_num +
1877 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1878 	u32 gpio_mask = (1 << gpio_shift);
1879 	u32 gpio_reg;
1880 
1881 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1882 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1883 		return -EINVAL;
1884 	}
1885 
1886 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1887 	/* read GPIO and mask except the float bits */
1888 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1889 
1890 	switch (mode) {
1891 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1892 		DP(NETIF_MSG_LINK,
1893 		   "Set GPIO %d (shift %d) -> output low\n",
1894 		   gpio_num, gpio_shift);
1895 		/* clear FLOAT and set CLR */
1896 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1897 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1898 		break;
1899 
1900 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1901 		DP(NETIF_MSG_LINK,
1902 		   "Set GPIO %d (shift %d) -> output high\n",
1903 		   gpio_num, gpio_shift);
1904 		/* clear FLOAT and set SET */
1905 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1906 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1907 		break;
1908 
1909 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1910 		DP(NETIF_MSG_LINK,
1911 		   "Set GPIO %d (shift %d) -> input\n",
1912 		   gpio_num, gpio_shift);
1913 		/* set FLOAT */
1914 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1915 		break;
1916 
1917 	default:
1918 		break;
1919 	}
1920 
1921 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1922 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1923 
1924 	return 0;
1925 }
1926 
1927 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1928 {
1929 	u32 gpio_reg = 0;
1930 	int rc = 0;
1931 
1932 	/* Any port swapping should be handled by caller. */
1933 
1934 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1935 	/* read GPIO and mask except the float bits */
1936 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1937 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1938 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1939 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1940 
1941 	switch (mode) {
1942 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1943 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1944 		/* set CLR */
1945 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1946 		break;
1947 
1948 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1949 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1950 		/* set SET */
1951 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1952 		break;
1953 
1954 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1955 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
1956 		/* set FLOAT */
1957 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1958 		break;
1959 
1960 	default:
1961 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
1962 		rc = -EINVAL;
1963 		break;
1964 	}
1965 
1966 	if (rc == 0)
1967 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1968 
1969 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1970 
1971 	return rc;
1972 }
1973 
1974 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1975 {
1976 	/* The GPIO should be swapped if swap register is set and active */
1977 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1978 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1979 	int gpio_shift = gpio_num +
1980 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1981 	u32 gpio_mask = (1 << gpio_shift);
1982 	u32 gpio_reg;
1983 
1984 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1985 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1986 		return -EINVAL;
1987 	}
1988 
1989 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1990 	/* read GPIO int */
1991 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
1992 
1993 	switch (mode) {
1994 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
1995 		DP(NETIF_MSG_LINK,
1996 		   "Clear GPIO INT %d (shift %d) -> output low\n",
1997 		   gpio_num, gpio_shift);
1998 		/* clear SET and set CLR */
1999 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2000 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2001 		break;
2002 
2003 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2004 		DP(NETIF_MSG_LINK,
2005 		   "Set GPIO INT %d (shift %d) -> output high\n",
2006 		   gpio_num, gpio_shift);
2007 		/* clear CLR and set SET */
2008 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2009 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2010 		break;
2011 
2012 	default:
2013 		break;
2014 	}
2015 
2016 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2017 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2018 
2019 	return 0;
2020 }
2021 
2022 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2023 {
2024 	u32 spio_mask = (1 << spio_num);
2025 	u32 spio_reg;
2026 
2027 	if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2028 	    (spio_num > MISC_REGISTERS_SPIO_7)) {
2029 		BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2030 		return -EINVAL;
2031 	}
2032 
2033 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2034 	/* read SPIO and mask except the float bits */
2035 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2036 
2037 	switch (mode) {
2038 	case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2039 		DP(NETIF_MSG_HW, "Set SPIO %d -> output low\n", spio_num);
2040 		/* clear FLOAT and set CLR */
2041 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2042 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2043 		break;
2044 
2045 	case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2046 		DP(NETIF_MSG_HW, "Set SPIO %d -> output high\n", spio_num);
2047 		/* clear FLOAT and set SET */
2048 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2049 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2050 		break;
2051 
2052 	case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2053 		DP(NETIF_MSG_HW, "Set SPIO %d -> input\n", spio_num);
2054 		/* set FLOAT */
2055 		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2056 		break;
2057 
2058 	default:
2059 		break;
2060 	}
2061 
2062 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2063 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2064 
2065 	return 0;
2066 }
2067 
2068 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2069 {
2070 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2071 	switch (bp->link_vars.ieee_fc &
2072 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2073 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2074 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2075 						   ADVERTISED_Pause);
2076 		break;
2077 
2078 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2079 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2080 						  ADVERTISED_Pause);
2081 		break;
2082 
2083 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2084 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2085 		break;
2086 
2087 	default:
2088 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2089 						   ADVERTISED_Pause);
2090 		break;
2091 	}
2092 }
2093 
2094 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2095 {
2096 	if (!BP_NOMCP(bp)) {
2097 		u8 rc;
2098 		int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2099 		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2100 		/*
2101 		 * Initialize link parameters structure variables
2102 		 * It is recommended to turn off RX FC for jumbo frames
2103 		 * for better performance
2104 		 */
2105 		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2106 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2107 		else
2108 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2109 
2110 		bnx2x_acquire_phy_lock(bp);
2111 
2112 		if (load_mode == LOAD_DIAG) {
2113 			struct link_params *lp = &bp->link_params;
2114 			lp->loopback_mode = LOOPBACK_XGXS;
2115 			/* do PHY loopback at 10G speed, if possible */
2116 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2117 				if (lp->speed_cap_mask[cfx_idx] &
2118 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2119 					lp->req_line_speed[cfx_idx] =
2120 					SPEED_10000;
2121 				else
2122 					lp->req_line_speed[cfx_idx] =
2123 					SPEED_1000;
2124 			}
2125 		}
2126 
2127 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2128 
2129 		bnx2x_release_phy_lock(bp);
2130 
2131 		bnx2x_calc_fc_adv(bp);
2132 
2133 		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2134 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2135 			bnx2x_link_report(bp);
2136 		} else
2137 			queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2138 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2139 		return rc;
2140 	}
2141 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2142 	return -EINVAL;
2143 }
2144 
2145 void bnx2x_link_set(struct bnx2x *bp)
2146 {
2147 	if (!BP_NOMCP(bp)) {
2148 		bnx2x_acquire_phy_lock(bp);
2149 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2150 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2151 		bnx2x_release_phy_lock(bp);
2152 
2153 		bnx2x_calc_fc_adv(bp);
2154 	} else
2155 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2156 }
2157 
2158 static void bnx2x__link_reset(struct bnx2x *bp)
2159 {
2160 	if (!BP_NOMCP(bp)) {
2161 		bnx2x_acquire_phy_lock(bp);
2162 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2163 		bnx2x_release_phy_lock(bp);
2164 	} else
2165 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2166 }
2167 
2168 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2169 {
2170 	u8 rc = 0;
2171 
2172 	if (!BP_NOMCP(bp)) {
2173 		bnx2x_acquire_phy_lock(bp);
2174 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2175 				     is_serdes);
2176 		bnx2x_release_phy_lock(bp);
2177 	} else
2178 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2179 
2180 	return rc;
2181 }
2182 
2183 
2184 /* Calculates the sum of vn_min_rates.
2185    It's needed for further normalizing of the min_rates.
2186    Returns:
2187      sum of vn_min_rates.
2188        or
2189      0 - if all the min_rates are 0.
2190      In the later case fainess algorithm should be deactivated.
2191      If not all min_rates are zero then those that are zeroes will be set to 1.
2192  */
2193 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2194 				      struct cmng_init_input *input)
2195 {
2196 	int all_zero = 1;
2197 	int vn;
2198 
2199 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2200 		u32 vn_cfg = bp->mf_config[vn];
2201 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2202 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2203 
2204 		/* Skip hidden vns */
2205 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2206 			vn_min_rate = 0;
2207 		/* If min rate is zero - set it to 1 */
2208 		else if (!vn_min_rate)
2209 			vn_min_rate = DEF_MIN_RATE;
2210 		else
2211 			all_zero = 0;
2212 
2213 		input->vnic_min_rate[vn] = vn_min_rate;
2214 	}
2215 
2216 	/* if ETS or all min rates are zeros - disable fairness */
2217 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2218 		input->flags.cmng_enables &=
2219 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2220 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2221 	} else if (all_zero) {
2222 		input->flags.cmng_enables &=
2223 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2224 		DP(NETIF_MSG_IFUP,
2225 		   "All MIN values are zeroes fairness will be disabled\n");
2226 	} else
2227 		input->flags.cmng_enables |=
2228 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2229 }
2230 
2231 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2232 				    struct cmng_init_input *input)
2233 {
2234 	u16 vn_max_rate;
2235 	u32 vn_cfg = bp->mf_config[vn];
2236 
2237 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2238 		vn_max_rate = 0;
2239 	else {
2240 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2241 
2242 		if (IS_MF_SI(bp)) {
2243 			/* maxCfg in percents of linkspeed */
2244 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2245 		} else /* SD modes */
2246 			/* maxCfg is absolute in 100Mb units */
2247 			vn_max_rate = maxCfg * 100;
2248 	}
2249 
2250 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2251 
2252 	input->vnic_max_rate[vn] = vn_max_rate;
2253 }
2254 
2255 
2256 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2257 {
2258 	if (CHIP_REV_IS_SLOW(bp))
2259 		return CMNG_FNS_NONE;
2260 	if (IS_MF(bp))
2261 		return CMNG_FNS_MINMAX;
2262 
2263 	return CMNG_FNS_NONE;
2264 }
2265 
2266 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2267 {
2268 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2269 
2270 	if (BP_NOMCP(bp))
2271 		return; /* what should be the default bvalue in this case */
2272 
2273 	/* For 2 port configuration the absolute function number formula
2274 	 * is:
2275 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2276 	 *
2277 	 *      and there are 4 functions per port
2278 	 *
2279 	 * For 4 port configuration it is
2280 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2281 	 *
2282 	 *      and there are 2 functions per port
2283 	 */
2284 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2285 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2286 
2287 		if (func >= E1H_FUNC_MAX)
2288 			break;
2289 
2290 		bp->mf_config[vn] =
2291 			MF_CFG_RD(bp, func_mf_config[func].config);
2292 	}
2293 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2294 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2295 		bp->flags |= MF_FUNC_DIS;
2296 	} else {
2297 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2298 		bp->flags &= ~MF_FUNC_DIS;
2299 	}
2300 }
2301 
2302 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2303 {
2304 	struct cmng_init_input input;
2305 	memset(&input, 0, sizeof(struct cmng_init_input));
2306 
2307 	input.port_rate = bp->link_vars.line_speed;
2308 
2309 	if (cmng_type == CMNG_FNS_MINMAX) {
2310 		int vn;
2311 
2312 		/* read mf conf from shmem */
2313 		if (read_cfg)
2314 			bnx2x_read_mf_cfg(bp);
2315 
2316 		/* vn_weight_sum and enable fairness if not 0 */
2317 		bnx2x_calc_vn_min(bp, &input);
2318 
2319 		/* calculate and set min-max rate for each vn */
2320 		if (bp->port.pmf)
2321 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2322 				bnx2x_calc_vn_max(bp, vn, &input);
2323 
2324 		/* always enable rate shaping and fairness */
2325 		input.flags.cmng_enables |=
2326 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2327 
2328 		bnx2x_init_cmng(&input, &bp->cmng);
2329 		return;
2330 	}
2331 
2332 	/* rate shaping and fairness are disabled */
2333 	DP(NETIF_MSG_IFUP,
2334 	   "rate shaping and fairness are disabled\n");
2335 }
2336 
2337 static void storm_memset_cmng(struct bnx2x *bp,
2338 			      struct cmng_init *cmng,
2339 			      u8 port)
2340 {
2341 	int vn;
2342 	size_t size = sizeof(struct cmng_struct_per_port);
2343 
2344 	u32 addr = BAR_XSTRORM_INTMEM +
2345 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2346 
2347 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2348 
2349 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2350 		int func = func_by_vn(bp, vn);
2351 
2352 		addr = BAR_XSTRORM_INTMEM +
2353 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2354 		size = sizeof(struct rate_shaping_vars_per_vn);
2355 		__storm_memset_struct(bp, addr, size,
2356 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2357 
2358 		addr = BAR_XSTRORM_INTMEM +
2359 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2360 		size = sizeof(struct fairness_vars_per_vn);
2361 		__storm_memset_struct(bp, addr, size,
2362 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2363 	}
2364 }
2365 
2366 /* This function is called upon link interrupt */
2367 static void bnx2x_link_attn(struct bnx2x *bp)
2368 {
2369 	/* Make sure that we are synced with the current statistics */
2370 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2371 
2372 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2373 
2374 	if (bp->link_vars.link_up) {
2375 
2376 		/* dropless flow control */
2377 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2378 			int port = BP_PORT(bp);
2379 			u32 pause_enabled = 0;
2380 
2381 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2382 				pause_enabled = 1;
2383 
2384 			REG_WR(bp, BAR_USTRORM_INTMEM +
2385 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2386 			       pause_enabled);
2387 		}
2388 
2389 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2390 			struct host_port_stats *pstats;
2391 
2392 			pstats = bnx2x_sp(bp, port_stats);
2393 			/* reset old mac stats */
2394 			memset(&(pstats->mac_stx[0]), 0,
2395 			       sizeof(struct mac_stx));
2396 		}
2397 		if (bp->state == BNX2X_STATE_OPEN)
2398 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2399 	}
2400 
2401 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2402 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2403 
2404 		if (cmng_fns != CMNG_FNS_NONE) {
2405 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2406 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2407 		} else
2408 			/* rate shaping and fairness are disabled */
2409 			DP(NETIF_MSG_IFUP,
2410 			   "single function mode without fairness\n");
2411 	}
2412 
2413 	__bnx2x_link_report(bp);
2414 
2415 	if (IS_MF(bp))
2416 		bnx2x_link_sync_notify(bp);
2417 }
2418 
2419 void bnx2x__link_status_update(struct bnx2x *bp)
2420 {
2421 	if (bp->state != BNX2X_STATE_OPEN)
2422 		return;
2423 
2424 	/* read updated dcb configuration */
2425 	bnx2x_dcbx_pmf_update(bp);
2426 
2427 	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2428 
2429 	if (bp->link_vars.link_up)
2430 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2431 	else
2432 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2433 
2434 	/* indicate link status */
2435 	bnx2x_link_report(bp);
2436 }
2437 
2438 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2439 				  u16 vlan_val, u8 allowed_prio)
2440 {
2441 	struct bnx2x_func_state_params func_params = {0};
2442 	struct bnx2x_func_afex_update_params *f_update_params =
2443 		&func_params.params.afex_update;
2444 
2445 	func_params.f_obj = &bp->func_obj;
2446 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2447 
2448 	/* no need to wait for RAMROD completion, so don't
2449 	 * set RAMROD_COMP_WAIT flag
2450 	 */
2451 
2452 	f_update_params->vif_id = vifid;
2453 	f_update_params->afex_default_vlan = vlan_val;
2454 	f_update_params->allowed_priorities = allowed_prio;
2455 
2456 	/* if ramrod can not be sent, response to MCP immediately */
2457 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2458 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2459 
2460 	return 0;
2461 }
2462 
2463 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2464 					  u16 vif_index, u8 func_bit_map)
2465 {
2466 	struct bnx2x_func_state_params func_params = {0};
2467 	struct bnx2x_func_afex_viflists_params *update_params =
2468 		&func_params.params.afex_viflists;
2469 	int rc;
2470 	u32 drv_msg_code;
2471 
2472 	/* validate only LIST_SET and LIST_GET are received from switch */
2473 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2474 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2475 			  cmd_type);
2476 
2477 	func_params.f_obj = &bp->func_obj;
2478 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2479 
2480 	/* set parameters according to cmd_type */
2481 	update_params->afex_vif_list_command = cmd_type;
2482 	update_params->vif_list_index = cpu_to_le16(vif_index);
2483 	update_params->func_bit_map =
2484 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2485 	update_params->func_to_clear = 0;
2486 	drv_msg_code =
2487 		(cmd_type == VIF_LIST_RULE_GET) ?
2488 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2489 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2490 
2491 	/* if ramrod can not be sent, respond to MCP immediately for
2492 	 * SET and GET requests (other are not triggered from MCP)
2493 	 */
2494 	rc = bnx2x_func_state_change(bp, &func_params);
2495 	if (rc < 0)
2496 		bnx2x_fw_command(bp, drv_msg_code, 0);
2497 
2498 	return 0;
2499 }
2500 
2501 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2502 {
2503 	struct afex_stats afex_stats;
2504 	u32 func = BP_ABS_FUNC(bp);
2505 	u32 mf_config;
2506 	u16 vlan_val;
2507 	u32 vlan_prio;
2508 	u16 vif_id;
2509 	u8 allowed_prio;
2510 	u8 vlan_mode;
2511 	u32 addr_to_write, vifid, addrs, stats_type, i;
2512 
2513 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2514 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2515 		DP(BNX2X_MSG_MCP,
2516 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2517 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2518 	}
2519 
2520 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2521 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2522 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2523 		DP(BNX2X_MSG_MCP,
2524 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2525 		   vifid, addrs);
2526 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2527 					       addrs);
2528 	}
2529 
2530 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2531 		addr_to_write = SHMEM2_RD(bp,
2532 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2533 		stats_type = SHMEM2_RD(bp,
2534 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2535 
2536 		DP(BNX2X_MSG_MCP,
2537 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2538 		   addr_to_write);
2539 
2540 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2541 
2542 		/* write response to scratchpad, for MCP */
2543 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2544 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2545 			       *(((u32 *)(&afex_stats))+i));
2546 
2547 		/* send ack message to MCP */
2548 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2549 	}
2550 
2551 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2552 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2553 		bp->mf_config[BP_VN(bp)] = mf_config;
2554 		DP(BNX2X_MSG_MCP,
2555 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2556 		   mf_config);
2557 
2558 		/* if VIF_SET is "enabled" */
2559 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2560 			/* set rate limit directly to internal RAM */
2561 			struct cmng_init_input cmng_input;
2562 			struct rate_shaping_vars_per_vn m_rs_vn;
2563 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2564 			u32 addr = BAR_XSTRORM_INTMEM +
2565 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2566 
2567 			bp->mf_config[BP_VN(bp)] = mf_config;
2568 
2569 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2570 			m_rs_vn.vn_counter.rate =
2571 				cmng_input.vnic_max_rate[BP_VN(bp)];
2572 			m_rs_vn.vn_counter.quota =
2573 				(m_rs_vn.vn_counter.rate *
2574 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2575 
2576 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2577 
2578 			/* read relevant values from mf_cfg struct in shmem */
2579 			vif_id =
2580 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2581 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2582 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2583 			vlan_val =
2584 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2585 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2586 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2587 			vlan_prio = (mf_config &
2588 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2589 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2590 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2591 			vlan_mode =
2592 				(MF_CFG_RD(bp,
2593 					   func_mf_config[func].afex_config) &
2594 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2595 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2596 			allowed_prio =
2597 				(MF_CFG_RD(bp,
2598 					   func_mf_config[func].afex_config) &
2599 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2600 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2601 
2602 			/* send ramrod to FW, return in case of failure */
2603 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2604 						   allowed_prio))
2605 				return;
2606 
2607 			bp->afex_def_vlan_tag = vlan_val;
2608 			bp->afex_vlan_mode = vlan_mode;
2609 		} else {
2610 			/* notify link down because BP->flags is disabled */
2611 			bnx2x_link_report(bp);
2612 
2613 			/* send INVALID VIF ramrod to FW */
2614 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2615 
2616 			/* Reset the default afex VLAN */
2617 			bp->afex_def_vlan_tag = -1;
2618 		}
2619 	}
2620 }
2621 
2622 static void bnx2x_pmf_update(struct bnx2x *bp)
2623 {
2624 	int port = BP_PORT(bp);
2625 	u32 val;
2626 
2627 	bp->port.pmf = 1;
2628 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2629 
2630 	/*
2631 	 * We need the mb() to ensure the ordering between the writing to
2632 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2633 	 */
2634 	smp_mb();
2635 
2636 	/* queue a periodic task */
2637 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2638 
2639 	bnx2x_dcbx_pmf_update(bp);
2640 
2641 	/* enable nig attention */
2642 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2643 	if (bp->common.int_block == INT_BLOCK_HC) {
2644 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2645 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2646 	} else if (!CHIP_IS_E1x(bp)) {
2647 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2648 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2649 	}
2650 
2651 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2652 }
2653 
2654 /* end of Link */
2655 
2656 /* slow path */
2657 
2658 /*
2659  * General service functions
2660  */
2661 
2662 /* send the MCP a request, block until there is a reply */
2663 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2664 {
2665 	int mb_idx = BP_FW_MB_IDX(bp);
2666 	u32 seq;
2667 	u32 rc = 0;
2668 	u32 cnt = 1;
2669 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2670 
2671 	mutex_lock(&bp->fw_mb_mutex);
2672 	seq = ++bp->fw_seq;
2673 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2674 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2675 
2676 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2677 			(command | seq), param);
2678 
2679 	do {
2680 		/* let the FW do it's magic ... */
2681 		msleep(delay);
2682 
2683 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2684 
2685 		/* Give the FW up to 5 second (500*10ms) */
2686 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2687 
2688 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2689 	   cnt*delay, rc, seq);
2690 
2691 	/* is this a reply to our command? */
2692 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2693 		rc &= FW_MSG_CODE_MASK;
2694 	else {
2695 		/* FW BUG! */
2696 		BNX2X_ERR("FW failed to respond!\n");
2697 		bnx2x_fw_dump(bp);
2698 		rc = 0;
2699 	}
2700 	mutex_unlock(&bp->fw_mb_mutex);
2701 
2702 	return rc;
2703 }
2704 
2705 
2706 static void storm_memset_func_cfg(struct bnx2x *bp,
2707 				 struct tstorm_eth_function_common_config *tcfg,
2708 				 u16 abs_fid)
2709 {
2710 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2711 
2712 	u32 addr = BAR_TSTRORM_INTMEM +
2713 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2714 
2715 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2716 }
2717 
2718 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2719 {
2720 	if (CHIP_IS_E1x(bp)) {
2721 		struct tstorm_eth_function_common_config tcfg = {0};
2722 
2723 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2724 	}
2725 
2726 	/* Enable the function in the FW */
2727 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2728 	storm_memset_func_en(bp, p->func_id, 1);
2729 
2730 	/* spq */
2731 	if (p->func_flgs & FUNC_FLG_SPQ) {
2732 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2733 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2734 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2735 	}
2736 }
2737 
2738 /**
2739  * bnx2x_get_tx_only_flags - Return common flags
2740  *
2741  * @bp		device handle
2742  * @fp		queue handle
2743  * @zero_stats	TRUE if statistics zeroing is needed
2744  *
2745  * Return the flags that are common for the Tx-only and not normal connections.
2746  */
2747 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2748 					    struct bnx2x_fastpath *fp,
2749 					    bool zero_stats)
2750 {
2751 	unsigned long flags = 0;
2752 
2753 	/* PF driver will always initialize the Queue to an ACTIVE state */
2754 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2755 
2756 	/* tx only connections collect statistics (on the same index as the
2757 	 *  parent connection). The statistics are zeroed when the parent
2758 	 *  connection is initialized.
2759 	 */
2760 
2761 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2762 	if (zero_stats)
2763 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2764 
2765 
2766 	return flags;
2767 }
2768 
2769 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2770 				       struct bnx2x_fastpath *fp,
2771 				       bool leading)
2772 {
2773 	unsigned long flags = 0;
2774 
2775 	/* calculate other queue flags */
2776 	if (IS_MF_SD(bp))
2777 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2778 
2779 	if (IS_FCOE_FP(fp)) {
2780 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2781 		/* For FCoE - force usage of default priority (for afex) */
2782 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2783 	}
2784 
2785 	if (!fp->disable_tpa) {
2786 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2787 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2788 		if (fp->mode == TPA_MODE_GRO)
2789 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2790 	}
2791 
2792 	if (leading) {
2793 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2794 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2795 	}
2796 
2797 	/* Always set HW VLAN stripping */
2798 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2799 
2800 	/* configure silent vlan removal */
2801 	if (IS_MF_AFEX(bp))
2802 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
2803 
2804 
2805 	return flags | bnx2x_get_common_flags(bp, fp, true);
2806 }
2807 
2808 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2809 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2810 	u8 cos)
2811 {
2812 	gen_init->stat_id = bnx2x_stats_id(fp);
2813 	gen_init->spcl_id = fp->cl_id;
2814 
2815 	/* Always use mini-jumbo MTU for FCoE L2 ring */
2816 	if (IS_FCOE_FP(fp))
2817 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2818 	else
2819 		gen_init->mtu = bp->dev->mtu;
2820 
2821 	gen_init->cos = cos;
2822 }
2823 
2824 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2825 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2826 	struct bnx2x_rxq_setup_params *rxq_init)
2827 {
2828 	u8 max_sge = 0;
2829 	u16 sge_sz = 0;
2830 	u16 tpa_agg_size = 0;
2831 
2832 	if (!fp->disable_tpa) {
2833 		pause->sge_th_lo = SGE_TH_LO(bp);
2834 		pause->sge_th_hi = SGE_TH_HI(bp);
2835 
2836 		/* validate SGE ring has enough to cross high threshold */
2837 		WARN_ON(bp->dropless_fc &&
2838 				pause->sge_th_hi + FW_PREFETCH_CNT >
2839 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2840 
2841 		tpa_agg_size = min_t(u32,
2842 			(min_t(u32, 8, MAX_SKB_FRAGS) *
2843 			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2844 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2845 			SGE_PAGE_SHIFT;
2846 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2847 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2848 		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2849 				    0xffff);
2850 	}
2851 
2852 	/* pause - not for e1 */
2853 	if (!CHIP_IS_E1(bp)) {
2854 		pause->bd_th_lo = BD_TH_LO(bp);
2855 		pause->bd_th_hi = BD_TH_HI(bp);
2856 
2857 		pause->rcq_th_lo = RCQ_TH_LO(bp);
2858 		pause->rcq_th_hi = RCQ_TH_HI(bp);
2859 		/*
2860 		 * validate that rings have enough entries to cross
2861 		 * high thresholds
2862 		 */
2863 		WARN_ON(bp->dropless_fc &&
2864 				pause->bd_th_hi + FW_PREFETCH_CNT >
2865 				bp->rx_ring_size);
2866 		WARN_ON(bp->dropless_fc &&
2867 				pause->rcq_th_hi + FW_PREFETCH_CNT >
2868 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2869 
2870 		pause->pri_map = 1;
2871 	}
2872 
2873 	/* rxq setup */
2874 	rxq_init->dscr_map = fp->rx_desc_mapping;
2875 	rxq_init->sge_map = fp->rx_sge_mapping;
2876 	rxq_init->rcq_map = fp->rx_comp_mapping;
2877 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2878 
2879 	/* This should be a maximum number of data bytes that may be
2880 	 * placed on the BD (not including paddings).
2881 	 */
2882 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2883 		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2884 
2885 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2886 	rxq_init->tpa_agg_sz = tpa_agg_size;
2887 	rxq_init->sge_buf_sz = sge_sz;
2888 	rxq_init->max_sges_pkt = max_sge;
2889 	rxq_init->rss_engine_id = BP_FUNC(bp);
2890 	rxq_init->mcast_engine_id = BP_FUNC(bp);
2891 
2892 	/* Maximum number or simultaneous TPA aggregation for this Queue.
2893 	 *
2894 	 * For PF Clients it should be the maximum avaliable number.
2895 	 * VF driver(s) may want to define it to a smaller value.
2896 	 */
2897 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2898 
2899 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2900 	rxq_init->fw_sb_id = fp->fw_sb_id;
2901 
2902 	if (IS_FCOE_FP(fp))
2903 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2904 	else
2905 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2906 	/* configure silent vlan removal
2907 	 * if multi function mode is afex, then mask default vlan
2908 	 */
2909 	if (IS_MF_AFEX(bp)) {
2910 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
2911 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
2912 	}
2913 }
2914 
2915 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2916 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2917 	u8 cos)
2918 {
2919 	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2920 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2921 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2922 	txq_init->fw_sb_id = fp->fw_sb_id;
2923 
2924 	/*
2925 	 * set the tss leading client id for TX classfication ==
2926 	 * leading RSS client id
2927 	 */
2928 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2929 
2930 	if (IS_FCOE_FP(fp)) {
2931 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2932 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2933 	}
2934 }
2935 
2936 static void bnx2x_pf_init(struct bnx2x *bp)
2937 {
2938 	struct bnx2x_func_init_params func_init = {0};
2939 	struct event_ring_data eq_data = { {0} };
2940 	u16 flags;
2941 
2942 	if (!CHIP_IS_E1x(bp)) {
2943 		/* reset IGU PF statistics: MSIX + ATTN */
2944 		/* PF */
2945 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2946 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2947 			   (CHIP_MODE_IS_4_PORT(bp) ?
2948 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2949 		/* ATTN */
2950 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2951 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2952 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2953 			   (CHIP_MODE_IS_4_PORT(bp) ?
2954 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2955 	}
2956 
2957 	/* function setup flags */
2958 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2959 
2960 	/* This flag is relevant for E1x only.
2961 	 * E2 doesn't have a TPA configuration in a function level.
2962 	 */
2963 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2964 
2965 	func_init.func_flgs = flags;
2966 	func_init.pf_id = BP_FUNC(bp);
2967 	func_init.func_id = BP_FUNC(bp);
2968 	func_init.spq_map = bp->spq_mapping;
2969 	func_init.spq_prod = bp->spq_prod_idx;
2970 
2971 	bnx2x_func_init(bp, &func_init);
2972 
2973 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2974 
2975 	/*
2976 	 * Congestion management values depend on the link rate
2977 	 * There is no active link so initial link rate is set to 10 Gbps.
2978 	 * When the link comes up The congestion management values are
2979 	 * re-calculated according to the actual link rate.
2980 	 */
2981 	bp->link_vars.line_speed = SPEED_10000;
2982 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2983 
2984 	/* Only the PMF sets the HW */
2985 	if (bp->port.pmf)
2986 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2987 
2988 	/* init Event Queue */
2989 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2990 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2991 	eq_data.producer = bp->eq_prod;
2992 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2993 	eq_data.sb_id = DEF_SB_ID;
2994 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2995 }
2996 
2997 
2998 static void bnx2x_e1h_disable(struct bnx2x *bp)
2999 {
3000 	int port = BP_PORT(bp);
3001 
3002 	bnx2x_tx_disable(bp);
3003 
3004 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3005 }
3006 
3007 static void bnx2x_e1h_enable(struct bnx2x *bp)
3008 {
3009 	int port = BP_PORT(bp);
3010 
3011 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3012 
3013 	/* Tx queue should be only reenabled */
3014 	netif_tx_wake_all_queues(bp->dev);
3015 
3016 	/*
3017 	 * Should not call netif_carrier_on since it will be called if the link
3018 	 * is up when checking for link state
3019 	 */
3020 }
3021 
3022 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3023 
3024 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3025 {
3026 	struct eth_stats_info *ether_stat =
3027 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3028 
3029 	/* leave last char as NULL */
3030 	memcpy(ether_stat->version, DRV_MODULE_VERSION,
3031 	       ETH_STAT_INFO_VERSION_LEN - 1);
3032 
3033 	bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
3034 					 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3035 					 ether_stat->mac_local);
3036 
3037 	ether_stat->mtu_size = bp->dev->mtu;
3038 
3039 	if (bp->dev->features & NETIF_F_RXCSUM)
3040 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3041 	if (bp->dev->features & NETIF_F_TSO)
3042 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3043 	ether_stat->feature_flags |= bp->common.boot_mode;
3044 
3045 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3046 
3047 	ether_stat->txq_size = bp->tx_ring_size;
3048 	ether_stat->rxq_size = bp->rx_ring_size;
3049 }
3050 
3051 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3052 {
3053 #ifdef BCM_CNIC
3054 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3055 	struct fcoe_stats_info *fcoe_stat =
3056 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3057 
3058 	memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
3059 
3060 	fcoe_stat->qos_priority =
3061 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3062 
3063 	/* insert FCoE stats from ramrod response */
3064 	if (!NO_FCOE(bp)) {
3065 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3066 			&bp->fw_stats_data->queue_stats[FCOE_IDX].
3067 			tstorm_queue_statistics;
3068 
3069 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3070 			&bp->fw_stats_data->queue_stats[FCOE_IDX].
3071 			xstorm_queue_statistics;
3072 
3073 		struct fcoe_statistics_params *fw_fcoe_stat =
3074 			&bp->fw_stats_data->fcoe;
3075 
3076 		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
3077 		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3078 
3079 		ADD_64(fcoe_stat->rx_bytes_hi,
3080 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3081 		       fcoe_stat->rx_bytes_lo,
3082 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3083 
3084 		ADD_64(fcoe_stat->rx_bytes_hi,
3085 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3086 		       fcoe_stat->rx_bytes_lo,
3087 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3088 
3089 		ADD_64(fcoe_stat->rx_bytes_hi,
3090 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3091 		       fcoe_stat->rx_bytes_lo,
3092 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3093 
3094 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3095 		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3096 
3097 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3098 		       fcoe_q_tstorm_stats->rcv_ucast_pkts);
3099 
3100 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3101 		       fcoe_q_tstorm_stats->rcv_bcast_pkts);
3102 
3103 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3104 		       fcoe_q_tstorm_stats->rcv_mcast_pkts);
3105 
3106 		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3107 		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3108 
3109 		ADD_64(fcoe_stat->tx_bytes_hi,
3110 		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3111 		       fcoe_stat->tx_bytes_lo,
3112 		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3113 
3114 		ADD_64(fcoe_stat->tx_bytes_hi,
3115 		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3116 		       fcoe_stat->tx_bytes_lo,
3117 		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3118 
3119 		ADD_64(fcoe_stat->tx_bytes_hi,
3120 		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3121 		       fcoe_stat->tx_bytes_lo,
3122 		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3123 
3124 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3125 		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3126 
3127 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3128 		       fcoe_q_xstorm_stats->ucast_pkts_sent);
3129 
3130 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3131 		       fcoe_q_xstorm_stats->bcast_pkts_sent);
3132 
3133 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3134 		       fcoe_q_xstorm_stats->mcast_pkts_sent);
3135 	}
3136 
3137 	/* ask L5 driver to add data to the struct */
3138 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3139 #endif
3140 }
3141 
3142 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3143 {
3144 #ifdef BCM_CNIC
3145 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3146 	struct iscsi_stats_info *iscsi_stat =
3147 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3148 
3149 	memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3150 
3151 	iscsi_stat->qos_priority =
3152 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3153 
3154 	/* ask L5 driver to add data to the struct */
3155 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3156 #endif
3157 }
3158 
3159 /* called due to MCP event (on pmf):
3160  *	reread new bandwidth configuration
3161  *	configure FW
3162  *	notify others function about the change
3163  */
3164 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3165 {
3166 	if (bp->link_vars.link_up) {
3167 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3168 		bnx2x_link_sync_notify(bp);
3169 	}
3170 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3171 }
3172 
3173 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3174 {
3175 	bnx2x_config_mf_bw(bp);
3176 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3177 }
3178 
3179 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3180 {
3181 	enum drv_info_opcode op_code;
3182 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3183 
3184 	/* if drv_info version supported by MFW doesn't match - send NACK */
3185 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3186 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3187 		return;
3188 	}
3189 
3190 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3191 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3192 
3193 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3194 	       sizeof(union drv_info_to_mcp));
3195 
3196 	switch (op_code) {
3197 	case ETH_STATS_OPCODE:
3198 		bnx2x_drv_info_ether_stat(bp);
3199 		break;
3200 	case FCOE_STATS_OPCODE:
3201 		bnx2x_drv_info_fcoe_stat(bp);
3202 		break;
3203 	case ISCSI_STATS_OPCODE:
3204 		bnx2x_drv_info_iscsi_stat(bp);
3205 		break;
3206 	default:
3207 		/* if op code isn't supported - send NACK */
3208 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3209 		return;
3210 	}
3211 
3212 	/* if we got drv_info attn from MFW then these fields are defined in
3213 	 * shmem2 for sure
3214 	 */
3215 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3216 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3217 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3218 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3219 
3220 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3221 }
3222 
3223 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3224 {
3225 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3226 
3227 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3228 
3229 		/*
3230 		 * This is the only place besides the function initialization
3231 		 * where the bp->flags can change so it is done without any
3232 		 * locks
3233 		 */
3234 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3235 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3236 			bp->flags |= MF_FUNC_DIS;
3237 
3238 			bnx2x_e1h_disable(bp);
3239 		} else {
3240 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3241 			bp->flags &= ~MF_FUNC_DIS;
3242 
3243 			bnx2x_e1h_enable(bp);
3244 		}
3245 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3246 	}
3247 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3248 		bnx2x_config_mf_bw(bp);
3249 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3250 	}
3251 
3252 	/* Report results to MCP */
3253 	if (dcc_event)
3254 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3255 	else
3256 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3257 }
3258 
3259 /* must be called under the spq lock */
3260 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3261 {
3262 	struct eth_spe *next_spe = bp->spq_prod_bd;
3263 
3264 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3265 		bp->spq_prod_bd = bp->spq;
3266 		bp->spq_prod_idx = 0;
3267 		DP(BNX2X_MSG_SP, "end of spq\n");
3268 	} else {
3269 		bp->spq_prod_bd++;
3270 		bp->spq_prod_idx++;
3271 	}
3272 	return next_spe;
3273 }
3274 
3275 /* must be called under the spq lock */
3276 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3277 {
3278 	int func = BP_FUNC(bp);
3279 
3280 	/*
3281 	 * Make sure that BD data is updated before writing the producer:
3282 	 * BD data is written to the memory, the producer is read from the
3283 	 * memory, thus we need a full memory barrier to ensure the ordering.
3284 	 */
3285 	mb();
3286 
3287 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3288 		 bp->spq_prod_idx);
3289 	mmiowb();
3290 }
3291 
3292 /**
3293  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3294  *
3295  * @cmd:	command to check
3296  * @cmd_type:	command type
3297  */
3298 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3299 {
3300 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3301 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3302 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3303 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3304 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3305 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3306 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3307 		return true;
3308 	else
3309 		return false;
3310 
3311 }
3312 
3313 
3314 /**
3315  * bnx2x_sp_post - place a single command on an SP ring
3316  *
3317  * @bp:		driver handle
3318  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3319  * @cid:	SW CID the command is related to
3320  * @data_hi:	command private data address (high 32 bits)
3321  * @data_lo:	command private data address (low 32 bits)
3322  * @cmd_type:	command type (e.g. NONE, ETH)
3323  *
3324  * SP data is handled as if it's always an address pair, thus data fields are
3325  * not swapped to little endian in upper functions. Instead this function swaps
3326  * data as if it's two u32 fields.
3327  */
3328 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3329 		  u32 data_hi, u32 data_lo, int cmd_type)
3330 {
3331 	struct eth_spe *spe;
3332 	u16 type;
3333 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3334 
3335 #ifdef BNX2X_STOP_ON_ERROR
3336 	if (unlikely(bp->panic)) {
3337 		BNX2X_ERR("Can't post SP when there is panic\n");
3338 		return -EIO;
3339 	}
3340 #endif
3341 
3342 	spin_lock_bh(&bp->spq_lock);
3343 
3344 	if (common) {
3345 		if (!atomic_read(&bp->eq_spq_left)) {
3346 			BNX2X_ERR("BUG! EQ ring full!\n");
3347 			spin_unlock_bh(&bp->spq_lock);
3348 			bnx2x_panic();
3349 			return -EBUSY;
3350 		}
3351 	} else if (!atomic_read(&bp->cq_spq_left)) {
3352 			BNX2X_ERR("BUG! SPQ ring full!\n");
3353 			spin_unlock_bh(&bp->spq_lock);
3354 			bnx2x_panic();
3355 			return -EBUSY;
3356 	}
3357 
3358 	spe = bnx2x_sp_get_next(bp);
3359 
3360 	/* CID needs port number to be encoded int it */
3361 	spe->hdr.conn_and_cmd_data =
3362 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3363 				    HW_CID(bp, cid));
3364 
3365 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3366 
3367 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3368 		 SPE_HDR_FUNCTION_ID);
3369 
3370 	spe->hdr.type = cpu_to_le16(type);
3371 
3372 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3373 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3374 
3375 	/*
3376 	 * It's ok if the actual decrement is issued towards the memory
3377 	 * somewhere between the spin_lock and spin_unlock. Thus no
3378 	 * more explict memory barrier is needed.
3379 	 */
3380 	if (common)
3381 		atomic_dec(&bp->eq_spq_left);
3382 	else
3383 		atomic_dec(&bp->cq_spq_left);
3384 
3385 
3386 	DP(BNX2X_MSG_SP,
3387 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3388 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3389 	   (u32)(U64_LO(bp->spq_mapping) +
3390 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3391 	   HW_CID(bp, cid), data_hi, data_lo, type,
3392 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3393 
3394 	bnx2x_sp_prod_update(bp);
3395 	spin_unlock_bh(&bp->spq_lock);
3396 	return 0;
3397 }
3398 
3399 /* acquire split MCP access lock register */
3400 static int bnx2x_acquire_alr(struct bnx2x *bp)
3401 {
3402 	u32 j, val;
3403 	int rc = 0;
3404 
3405 	might_sleep();
3406 	for (j = 0; j < 1000; j++) {
3407 		val = (1UL << 31);
3408 		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3409 		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3410 		if (val & (1L << 31))
3411 			break;
3412 
3413 		msleep(5);
3414 	}
3415 	if (!(val & (1L << 31))) {
3416 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3417 		rc = -EBUSY;
3418 	}
3419 
3420 	return rc;
3421 }
3422 
3423 /* release split MCP access lock register */
3424 static void bnx2x_release_alr(struct bnx2x *bp)
3425 {
3426 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3427 }
3428 
3429 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3430 #define BNX2X_DEF_SB_IDX	0x0002
3431 
3432 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3433 {
3434 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3435 	u16 rc = 0;
3436 
3437 	barrier(); /* status block is written to by the chip */
3438 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3439 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3440 		rc |= BNX2X_DEF_SB_ATT_IDX;
3441 	}
3442 
3443 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3444 		bp->def_idx = def_sb->sp_sb.running_index;
3445 		rc |= BNX2X_DEF_SB_IDX;
3446 	}
3447 
3448 	/* Do not reorder: indecies reading should complete before handling */
3449 	barrier();
3450 	return rc;
3451 }
3452 
3453 /*
3454  * slow path service functions
3455  */
3456 
3457 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3458 {
3459 	int port = BP_PORT(bp);
3460 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3461 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3462 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3463 				       NIG_REG_MASK_INTERRUPT_PORT0;
3464 	u32 aeu_mask;
3465 	u32 nig_mask = 0;
3466 	u32 reg_addr;
3467 
3468 	if (bp->attn_state & asserted)
3469 		BNX2X_ERR("IGU ERROR\n");
3470 
3471 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3472 	aeu_mask = REG_RD(bp, aeu_addr);
3473 
3474 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3475 	   aeu_mask, asserted);
3476 	aeu_mask &= ~(asserted & 0x3ff);
3477 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3478 
3479 	REG_WR(bp, aeu_addr, aeu_mask);
3480 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3481 
3482 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3483 	bp->attn_state |= asserted;
3484 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3485 
3486 	if (asserted & ATTN_HARD_WIRED_MASK) {
3487 		if (asserted & ATTN_NIG_FOR_FUNC) {
3488 
3489 			bnx2x_acquire_phy_lock(bp);
3490 
3491 			/* save nig interrupt mask */
3492 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3493 
3494 			/* If nig_mask is not set, no need to call the update
3495 			 * function.
3496 			 */
3497 			if (nig_mask) {
3498 				REG_WR(bp, nig_int_mask_addr, 0);
3499 
3500 				bnx2x_link_attn(bp);
3501 			}
3502 
3503 			/* handle unicore attn? */
3504 		}
3505 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3506 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3507 
3508 		if (asserted & GPIO_2_FUNC)
3509 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3510 
3511 		if (asserted & GPIO_3_FUNC)
3512 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3513 
3514 		if (asserted & GPIO_4_FUNC)
3515 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3516 
3517 		if (port == 0) {
3518 			if (asserted & ATTN_GENERAL_ATTN_1) {
3519 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3520 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3521 			}
3522 			if (asserted & ATTN_GENERAL_ATTN_2) {
3523 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3524 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3525 			}
3526 			if (asserted & ATTN_GENERAL_ATTN_3) {
3527 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3528 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3529 			}
3530 		} else {
3531 			if (asserted & ATTN_GENERAL_ATTN_4) {
3532 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3533 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3534 			}
3535 			if (asserted & ATTN_GENERAL_ATTN_5) {
3536 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3537 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3538 			}
3539 			if (asserted & ATTN_GENERAL_ATTN_6) {
3540 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3541 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3542 			}
3543 		}
3544 
3545 	} /* if hardwired */
3546 
3547 	if (bp->common.int_block == INT_BLOCK_HC)
3548 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3549 			    COMMAND_REG_ATTN_BITS_SET);
3550 	else
3551 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3552 
3553 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3554 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3555 	REG_WR(bp, reg_addr, asserted);
3556 
3557 	/* now set back the mask */
3558 	if (asserted & ATTN_NIG_FOR_FUNC) {
3559 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3560 		bnx2x_release_phy_lock(bp);
3561 	}
3562 }
3563 
3564 static void bnx2x_fan_failure(struct bnx2x *bp)
3565 {
3566 	int port = BP_PORT(bp);
3567 	u32 ext_phy_config;
3568 	/* mark the failure */
3569 	ext_phy_config =
3570 		SHMEM_RD(bp,
3571 			 dev_info.port_hw_config[port].external_phy_config);
3572 
3573 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3574 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3575 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3576 		 ext_phy_config);
3577 
3578 	/* log the failure */
3579 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3580 			    "Please contact OEM Support for assistance\n");
3581 
3582 	/*
3583 	 * Scheudle device reset (unload)
3584 	 * This is due to some boards consuming sufficient power when driver is
3585 	 * up to overheat if fan fails.
3586 	 */
3587 	smp_mb__before_clear_bit();
3588 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3589 	smp_mb__after_clear_bit();
3590 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3591 
3592 }
3593 
3594 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3595 {
3596 	int port = BP_PORT(bp);
3597 	int reg_offset;
3598 	u32 val;
3599 
3600 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3601 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3602 
3603 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3604 
3605 		val = REG_RD(bp, reg_offset);
3606 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3607 		REG_WR(bp, reg_offset, val);
3608 
3609 		BNX2X_ERR("SPIO5 hw attention\n");
3610 
3611 		/* Fan failure attention */
3612 		bnx2x_hw_reset_phy(&bp->link_params);
3613 		bnx2x_fan_failure(bp);
3614 	}
3615 
3616 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3617 		bnx2x_acquire_phy_lock(bp);
3618 		bnx2x_handle_module_detect_int(&bp->link_params);
3619 		bnx2x_release_phy_lock(bp);
3620 	}
3621 
3622 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3623 
3624 		val = REG_RD(bp, reg_offset);
3625 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3626 		REG_WR(bp, reg_offset, val);
3627 
3628 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3629 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3630 		bnx2x_panic();
3631 	}
3632 }
3633 
3634 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3635 {
3636 	u32 val;
3637 
3638 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3639 
3640 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3641 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3642 		/* DORQ discard attention */
3643 		if (val & 0x2)
3644 			BNX2X_ERR("FATAL error from DORQ\n");
3645 	}
3646 
3647 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3648 
3649 		int port = BP_PORT(bp);
3650 		int reg_offset;
3651 
3652 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3653 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3654 
3655 		val = REG_RD(bp, reg_offset);
3656 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3657 		REG_WR(bp, reg_offset, val);
3658 
3659 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3660 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3661 		bnx2x_panic();
3662 	}
3663 }
3664 
3665 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3666 {
3667 	u32 val;
3668 
3669 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3670 
3671 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3672 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3673 		/* CFC error attention */
3674 		if (val & 0x2)
3675 			BNX2X_ERR("FATAL error from CFC\n");
3676 	}
3677 
3678 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3679 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3680 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3681 		/* RQ_USDMDP_FIFO_OVERFLOW */
3682 		if (val & 0x18000)
3683 			BNX2X_ERR("FATAL error from PXP\n");
3684 
3685 		if (!CHIP_IS_E1x(bp)) {
3686 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3687 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3688 		}
3689 	}
3690 
3691 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3692 
3693 		int port = BP_PORT(bp);
3694 		int reg_offset;
3695 
3696 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3697 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3698 
3699 		val = REG_RD(bp, reg_offset);
3700 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3701 		REG_WR(bp, reg_offset, val);
3702 
3703 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3704 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3705 		bnx2x_panic();
3706 	}
3707 }
3708 
3709 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3710 {
3711 	u32 val;
3712 
3713 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3714 
3715 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3716 			int func = BP_FUNC(bp);
3717 
3718 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3719 			bnx2x_read_mf_cfg(bp);
3720 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3721 					func_mf_config[BP_ABS_FUNC(bp)].config);
3722 			val = SHMEM_RD(bp,
3723 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3724 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3725 				bnx2x_dcc_event(bp,
3726 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3727 
3728 			if (val & DRV_STATUS_SET_MF_BW)
3729 				bnx2x_set_mf_bw(bp);
3730 
3731 			if (val & DRV_STATUS_DRV_INFO_REQ)
3732 				bnx2x_handle_drv_info_req(bp);
3733 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3734 				bnx2x_pmf_update(bp);
3735 
3736 			if (bp->port.pmf &&
3737 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3738 				bp->dcbx_enabled > 0)
3739 				/* start dcbx state machine */
3740 				bnx2x_dcbx_set_params(bp,
3741 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3742 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
3743 				bnx2x_handle_afex_cmd(bp,
3744 					val & DRV_STATUS_AFEX_EVENT_MASK);
3745 			if (bp->link_vars.periodic_flags &
3746 			    PERIODIC_FLAGS_LINK_EVENT) {
3747 				/*  sync with link */
3748 				bnx2x_acquire_phy_lock(bp);
3749 				bp->link_vars.periodic_flags &=
3750 					~PERIODIC_FLAGS_LINK_EVENT;
3751 				bnx2x_release_phy_lock(bp);
3752 				if (IS_MF(bp))
3753 					bnx2x_link_sync_notify(bp);
3754 				bnx2x_link_report(bp);
3755 			}
3756 			/* Always call it here: bnx2x_link_report() will
3757 			 * prevent the link indication duplication.
3758 			 */
3759 			bnx2x__link_status_update(bp);
3760 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3761 
3762 			BNX2X_ERR("MC assert!\n");
3763 			bnx2x_mc_assert(bp);
3764 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3765 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3766 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3767 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3768 			bnx2x_panic();
3769 
3770 		} else if (attn & BNX2X_MCP_ASSERT) {
3771 
3772 			BNX2X_ERR("MCP assert!\n");
3773 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3774 			bnx2x_fw_dump(bp);
3775 
3776 		} else
3777 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3778 	}
3779 
3780 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3781 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3782 		if (attn & BNX2X_GRC_TIMEOUT) {
3783 			val = CHIP_IS_E1(bp) ? 0 :
3784 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3785 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3786 		}
3787 		if (attn & BNX2X_GRC_RSV) {
3788 			val = CHIP_IS_E1(bp) ? 0 :
3789 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3790 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3791 		}
3792 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3793 	}
3794 }
3795 
3796 /*
3797  * Bits map:
3798  * 0-7   - Engine0 load counter.
3799  * 8-15  - Engine1 load counter.
3800  * 16    - Engine0 RESET_IN_PROGRESS bit.
3801  * 17    - Engine1 RESET_IN_PROGRESS bit.
3802  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3803  *         on the engine
3804  * 19    - Engine1 ONE_IS_LOADED.
3805  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3806  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3807  *         just the one belonging to its engine).
3808  *
3809  */
3810 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3811 
3812 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3813 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3814 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3815 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3816 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3817 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3818 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
3819 
3820 /*
3821  * Set the GLOBAL_RESET bit.
3822  *
3823  * Should be run under rtnl lock
3824  */
3825 void bnx2x_set_reset_global(struct bnx2x *bp)
3826 {
3827 	u32 val;
3828 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3829 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3830 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3831 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3832 }
3833 
3834 /*
3835  * Clear the GLOBAL_RESET bit.
3836  *
3837  * Should be run under rtnl lock
3838  */
3839 static void bnx2x_clear_reset_global(struct bnx2x *bp)
3840 {
3841 	u32 val;
3842 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3843 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3844 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3845 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3846 }
3847 
3848 /*
3849  * Checks the GLOBAL_RESET bit.
3850  *
3851  * should be run under rtnl lock
3852  */
3853 static bool bnx2x_reset_is_global(struct bnx2x *bp)
3854 {
3855 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3856 
3857 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3858 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3859 }
3860 
3861 /*
3862  * Clear RESET_IN_PROGRESS bit for the current engine.
3863  *
3864  * Should be run under rtnl lock
3865  */
3866 static void bnx2x_set_reset_done(struct bnx2x *bp)
3867 {
3868 	u32 val;
3869 	u32 bit = BP_PATH(bp) ?
3870 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3871 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3872 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3873 
3874 	/* Clear the bit */
3875 	val &= ~bit;
3876 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3877 
3878 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3879 }
3880 
3881 /*
3882  * Set RESET_IN_PROGRESS for the current engine.
3883  *
3884  * should be run under rtnl lock
3885  */
3886 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3887 {
3888 	u32 val;
3889 	u32 bit = BP_PATH(bp) ?
3890 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3891 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3892 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3893 
3894 	/* Set the bit */
3895 	val |= bit;
3896 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3897 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3898 }
3899 
3900 /*
3901  * Checks the RESET_IN_PROGRESS bit for the given engine.
3902  * should be run under rtnl lock
3903  */
3904 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3905 {
3906 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3907 	u32 bit = engine ?
3908 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3909 
3910 	/* return false if bit is set */
3911 	return (val & bit) ? false : true;
3912 }
3913 
3914 /*
3915  * set pf load for the current pf.
3916  *
3917  * should be run under rtnl lock
3918  */
3919 void bnx2x_set_pf_load(struct bnx2x *bp)
3920 {
3921 	u32 val1, val;
3922 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3923 			     BNX2X_PATH0_LOAD_CNT_MASK;
3924 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3925 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3926 
3927 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3928 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3929 
3930 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
3931 
3932 	/* get the current counter value */
3933 	val1 = (val & mask) >> shift;
3934 
3935 	/* set bit of that PF */
3936 	val1 |= (1 << bp->pf_num);
3937 
3938 	/* clear the old value */
3939 	val &= ~mask;
3940 
3941 	/* set the new one */
3942 	val |= ((val1 << shift) & mask);
3943 
3944 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3945 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3946 }
3947 
3948 /**
3949  * bnx2x_clear_pf_load - clear pf load mark
3950  *
3951  * @bp:		driver handle
3952  *
3953  * Should be run under rtnl lock.
3954  * Decrements the load counter for the current engine. Returns
3955  * whether other functions are still loaded
3956  */
3957 bool bnx2x_clear_pf_load(struct bnx2x *bp)
3958 {
3959 	u32 val1, val;
3960 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3961 			     BNX2X_PATH0_LOAD_CNT_MASK;
3962 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3963 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3964 
3965 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3966 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3967 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
3968 
3969 	/* get the current counter value */
3970 	val1 = (val & mask) >> shift;
3971 
3972 	/* clear bit of that PF */
3973 	val1 &= ~(1 << bp->pf_num);
3974 
3975 	/* clear the old value */
3976 	val &= ~mask;
3977 
3978 	/* set the new one */
3979 	val |= ((val1 << shift) & mask);
3980 
3981 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3982 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3983 	return val1 != 0;
3984 }
3985 
3986 /*
3987  * Read the load status for the current engine.
3988  *
3989  * should be run under rtnl lock
3990  */
3991 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
3992 {
3993 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3994 			     BNX2X_PATH0_LOAD_CNT_MASK);
3995 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3996 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
3997 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3998 
3999 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4000 
4001 	val = (val & mask) >> shift;
4002 
4003 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4004 	   engine, val);
4005 
4006 	return val != 0;
4007 }
4008 
4009 /*
4010  * Reset the load status for the current engine.
4011  */
4012 static void bnx2x_clear_load_status(struct bnx2x *bp)
4013 {
4014 	u32 val;
4015 	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4016 		    BNX2X_PATH0_LOAD_CNT_MASK);
4017 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4018 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4019 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
4020 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4021 }
4022 
4023 static void _print_next_block(int idx, const char *blk)
4024 {
4025 	pr_cont("%s%s", idx ? ", " : "", blk);
4026 }
4027 
4028 static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
4029 					   bool print)
4030 {
4031 	int i = 0;
4032 	u32 cur_bit = 0;
4033 	for (i = 0; sig; i++) {
4034 		cur_bit = ((u32)0x1 << i);
4035 		if (sig & cur_bit) {
4036 			switch (cur_bit) {
4037 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4038 				if (print)
4039 					_print_next_block(par_num++, "BRB");
4040 				break;
4041 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4042 				if (print)
4043 					_print_next_block(par_num++, "PARSER");
4044 				break;
4045 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4046 				if (print)
4047 					_print_next_block(par_num++, "TSDM");
4048 				break;
4049 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4050 				if (print)
4051 					_print_next_block(par_num++,
4052 							  "SEARCHER");
4053 				break;
4054 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4055 				if (print)
4056 					_print_next_block(par_num++, "TCM");
4057 				break;
4058 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4059 				if (print)
4060 					_print_next_block(par_num++, "TSEMI");
4061 				break;
4062 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4063 				if (print)
4064 					_print_next_block(par_num++, "XPB");
4065 				break;
4066 			}
4067 
4068 			/* Clear the bit */
4069 			sig &= ~cur_bit;
4070 		}
4071 	}
4072 
4073 	return par_num;
4074 }
4075 
4076 static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
4077 					   bool *global, bool print)
4078 {
4079 	int i = 0;
4080 	u32 cur_bit = 0;
4081 	for (i = 0; sig; i++) {
4082 		cur_bit = ((u32)0x1 << i);
4083 		if (sig & cur_bit) {
4084 			switch (cur_bit) {
4085 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4086 				if (print)
4087 					_print_next_block(par_num++, "PBF");
4088 				break;
4089 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4090 				if (print)
4091 					_print_next_block(par_num++, "QM");
4092 				break;
4093 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4094 				if (print)
4095 					_print_next_block(par_num++, "TM");
4096 				break;
4097 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4098 				if (print)
4099 					_print_next_block(par_num++, "XSDM");
4100 				break;
4101 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4102 				if (print)
4103 					_print_next_block(par_num++, "XCM");
4104 				break;
4105 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4106 				if (print)
4107 					_print_next_block(par_num++, "XSEMI");
4108 				break;
4109 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4110 				if (print)
4111 					_print_next_block(par_num++,
4112 							  "DOORBELLQ");
4113 				break;
4114 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4115 				if (print)
4116 					_print_next_block(par_num++, "NIG");
4117 				break;
4118 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4119 				if (print)
4120 					_print_next_block(par_num++,
4121 							  "VAUX PCI CORE");
4122 				*global = true;
4123 				break;
4124 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4125 				if (print)
4126 					_print_next_block(par_num++, "DEBUG");
4127 				break;
4128 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4129 				if (print)
4130 					_print_next_block(par_num++, "USDM");
4131 				break;
4132 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4133 				if (print)
4134 					_print_next_block(par_num++, "UCM");
4135 				break;
4136 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4137 				if (print)
4138 					_print_next_block(par_num++, "USEMI");
4139 				break;
4140 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4141 				if (print)
4142 					_print_next_block(par_num++, "UPB");
4143 				break;
4144 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4145 				if (print)
4146 					_print_next_block(par_num++, "CSDM");
4147 				break;
4148 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4149 				if (print)
4150 					_print_next_block(par_num++, "CCM");
4151 				break;
4152 			}
4153 
4154 			/* Clear the bit */
4155 			sig &= ~cur_bit;
4156 		}
4157 	}
4158 
4159 	return par_num;
4160 }
4161 
4162 static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4163 					   bool print)
4164 {
4165 	int i = 0;
4166 	u32 cur_bit = 0;
4167 	for (i = 0; sig; i++) {
4168 		cur_bit = ((u32)0x1 << i);
4169 		if (sig & cur_bit) {
4170 			switch (cur_bit) {
4171 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4172 				if (print)
4173 					_print_next_block(par_num++, "CSEMI");
4174 				break;
4175 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4176 				if (print)
4177 					_print_next_block(par_num++, "PXP");
4178 				break;
4179 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4180 				if (print)
4181 					_print_next_block(par_num++,
4182 					"PXPPCICLOCKCLIENT");
4183 				break;
4184 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4185 				if (print)
4186 					_print_next_block(par_num++, "CFC");
4187 				break;
4188 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4189 				if (print)
4190 					_print_next_block(par_num++, "CDU");
4191 				break;
4192 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4193 				if (print)
4194 					_print_next_block(par_num++, "DMAE");
4195 				break;
4196 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4197 				if (print)
4198 					_print_next_block(par_num++, "IGU");
4199 				break;
4200 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4201 				if (print)
4202 					_print_next_block(par_num++, "MISC");
4203 				break;
4204 			}
4205 
4206 			/* Clear the bit */
4207 			sig &= ~cur_bit;
4208 		}
4209 	}
4210 
4211 	return par_num;
4212 }
4213 
4214 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4215 					   bool *global, bool print)
4216 {
4217 	int i = 0;
4218 	u32 cur_bit = 0;
4219 	for (i = 0; sig; i++) {
4220 		cur_bit = ((u32)0x1 << i);
4221 		if (sig & cur_bit) {
4222 			switch (cur_bit) {
4223 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4224 				if (print)
4225 					_print_next_block(par_num++, "MCP ROM");
4226 				*global = true;
4227 				break;
4228 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4229 				if (print)
4230 					_print_next_block(par_num++,
4231 							  "MCP UMP RX");
4232 				*global = true;
4233 				break;
4234 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4235 				if (print)
4236 					_print_next_block(par_num++,
4237 							  "MCP UMP TX");
4238 				*global = true;
4239 				break;
4240 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4241 				if (print)
4242 					_print_next_block(par_num++,
4243 							  "MCP SCPAD");
4244 				*global = true;
4245 				break;
4246 			}
4247 
4248 			/* Clear the bit */
4249 			sig &= ~cur_bit;
4250 		}
4251 	}
4252 
4253 	return par_num;
4254 }
4255 
4256 static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4257 					   bool print)
4258 {
4259 	int i = 0;
4260 	u32 cur_bit = 0;
4261 	for (i = 0; sig; i++) {
4262 		cur_bit = ((u32)0x1 << i);
4263 		if (sig & cur_bit) {
4264 			switch (cur_bit) {
4265 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4266 				if (print)
4267 					_print_next_block(par_num++, "PGLUE_B");
4268 				break;
4269 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4270 				if (print)
4271 					_print_next_block(par_num++, "ATC");
4272 				break;
4273 			}
4274 
4275 			/* Clear the bit */
4276 			sig &= ~cur_bit;
4277 		}
4278 	}
4279 
4280 	return par_num;
4281 }
4282 
4283 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4284 			      u32 *sig)
4285 {
4286 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4287 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4288 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4289 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4290 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4291 		int par_num = 0;
4292 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4293 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4294 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4295 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4296 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4297 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4298 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4299 		if (print)
4300 			netdev_err(bp->dev,
4301 				   "Parity errors detected in blocks: ");
4302 		par_num = bnx2x_check_blocks_with_parity0(
4303 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4304 		par_num = bnx2x_check_blocks_with_parity1(
4305 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4306 		par_num = bnx2x_check_blocks_with_parity2(
4307 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4308 		par_num = bnx2x_check_blocks_with_parity3(
4309 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4310 		par_num = bnx2x_check_blocks_with_parity4(
4311 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4312 
4313 		if (print)
4314 			pr_cont("\n");
4315 
4316 		return true;
4317 	} else
4318 		return false;
4319 }
4320 
4321 /**
4322  * bnx2x_chk_parity_attn - checks for parity attentions.
4323  *
4324  * @bp:		driver handle
4325  * @global:	true if there was a global attention
4326  * @print:	show parity attention in syslog
4327  */
4328 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4329 {
4330 	struct attn_route attn = { {0} };
4331 	int port = BP_PORT(bp);
4332 
4333 	attn.sig[0] = REG_RD(bp,
4334 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4335 			     port*4);
4336 	attn.sig[1] = REG_RD(bp,
4337 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4338 			     port*4);
4339 	attn.sig[2] = REG_RD(bp,
4340 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4341 			     port*4);
4342 	attn.sig[3] = REG_RD(bp,
4343 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4344 			     port*4);
4345 
4346 	if (!CHIP_IS_E1x(bp))
4347 		attn.sig[4] = REG_RD(bp,
4348 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4349 				     port*4);
4350 
4351 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4352 }
4353 
4354 
4355 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4356 {
4357 	u32 val;
4358 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4359 
4360 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4361 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4362 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4363 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4364 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4365 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4366 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4367 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4368 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4369 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4370 		if (val &
4371 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4372 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4373 		if (val &
4374 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4375 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4376 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4377 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4378 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4379 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4380 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4381 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4382 	}
4383 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4384 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4385 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4386 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4387 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4388 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4389 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4390 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4391 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4392 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4393 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4394 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4395 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4396 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4397 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4398 	}
4399 
4400 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4401 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4402 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4403 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4404 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4405 	}
4406 
4407 }
4408 
4409 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4410 {
4411 	struct attn_route attn, *group_mask;
4412 	int port = BP_PORT(bp);
4413 	int index;
4414 	u32 reg_addr;
4415 	u32 val;
4416 	u32 aeu_mask;
4417 	bool global = false;
4418 
4419 	/* need to take HW lock because MCP or other port might also
4420 	   try to handle this event */
4421 	bnx2x_acquire_alr(bp);
4422 
4423 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4424 #ifndef BNX2X_STOP_ON_ERROR
4425 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4426 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4427 		/* Disable HW interrupts */
4428 		bnx2x_int_disable(bp);
4429 		/* In case of parity errors don't handle attentions so that
4430 		 * other function would "see" parity errors.
4431 		 */
4432 #else
4433 		bnx2x_panic();
4434 #endif
4435 		bnx2x_release_alr(bp);
4436 		return;
4437 	}
4438 
4439 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4440 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4441 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4442 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4443 	if (!CHIP_IS_E1x(bp))
4444 		attn.sig[4] =
4445 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4446 	else
4447 		attn.sig[4] = 0;
4448 
4449 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4450 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4451 
4452 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4453 		if (deasserted & (1 << index)) {
4454 			group_mask = &bp->attn_group[index];
4455 
4456 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4457 			   index,
4458 			   group_mask->sig[0], group_mask->sig[1],
4459 			   group_mask->sig[2], group_mask->sig[3],
4460 			   group_mask->sig[4]);
4461 
4462 			bnx2x_attn_int_deasserted4(bp,
4463 					attn.sig[4] & group_mask->sig[4]);
4464 			bnx2x_attn_int_deasserted3(bp,
4465 					attn.sig[3] & group_mask->sig[3]);
4466 			bnx2x_attn_int_deasserted1(bp,
4467 					attn.sig[1] & group_mask->sig[1]);
4468 			bnx2x_attn_int_deasserted2(bp,
4469 					attn.sig[2] & group_mask->sig[2]);
4470 			bnx2x_attn_int_deasserted0(bp,
4471 					attn.sig[0] & group_mask->sig[0]);
4472 		}
4473 	}
4474 
4475 	bnx2x_release_alr(bp);
4476 
4477 	if (bp->common.int_block == INT_BLOCK_HC)
4478 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4479 			    COMMAND_REG_ATTN_BITS_CLR);
4480 	else
4481 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4482 
4483 	val = ~deasserted;
4484 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4485 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4486 	REG_WR(bp, reg_addr, val);
4487 
4488 	if (~bp->attn_state & deasserted)
4489 		BNX2X_ERR("IGU ERROR\n");
4490 
4491 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4492 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4493 
4494 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4495 	aeu_mask = REG_RD(bp, reg_addr);
4496 
4497 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4498 	   aeu_mask, deasserted);
4499 	aeu_mask |= (deasserted & 0x3ff);
4500 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4501 
4502 	REG_WR(bp, reg_addr, aeu_mask);
4503 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4504 
4505 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4506 	bp->attn_state &= ~deasserted;
4507 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4508 }
4509 
4510 static void bnx2x_attn_int(struct bnx2x *bp)
4511 {
4512 	/* read local copy of bits */
4513 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4514 								attn_bits);
4515 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4516 								attn_bits_ack);
4517 	u32 attn_state = bp->attn_state;
4518 
4519 	/* look for changed bits */
4520 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4521 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4522 
4523 	DP(NETIF_MSG_HW,
4524 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4525 	   attn_bits, attn_ack, asserted, deasserted);
4526 
4527 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4528 		BNX2X_ERR("BAD attention state\n");
4529 
4530 	/* handle bits that were raised */
4531 	if (asserted)
4532 		bnx2x_attn_int_asserted(bp, asserted);
4533 
4534 	if (deasserted)
4535 		bnx2x_attn_int_deasserted(bp, deasserted);
4536 }
4537 
4538 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4539 		      u16 index, u8 op, u8 update)
4540 {
4541 	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4542 
4543 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4544 			     igu_addr);
4545 }
4546 
4547 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4548 {
4549 	/* No memory barriers */
4550 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4551 	mmiowb(); /* keep prod updates ordered */
4552 }
4553 
4554 #ifdef BCM_CNIC
4555 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4556 				      union event_ring_elem *elem)
4557 {
4558 	u8 err = elem->message.error;
4559 
4560 	if (!bp->cnic_eth_dev.starting_cid  ||
4561 	    (cid < bp->cnic_eth_dev.starting_cid &&
4562 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4563 		return 1;
4564 
4565 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4566 
4567 	if (unlikely(err)) {
4568 
4569 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4570 			  cid);
4571 		bnx2x_panic_dump(bp);
4572 	}
4573 	bnx2x_cnic_cfc_comp(bp, cid, err);
4574 	return 0;
4575 }
4576 #endif
4577 
4578 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4579 {
4580 	struct bnx2x_mcast_ramrod_params rparam;
4581 	int rc;
4582 
4583 	memset(&rparam, 0, sizeof(rparam));
4584 
4585 	rparam.mcast_obj = &bp->mcast_obj;
4586 
4587 	netif_addr_lock_bh(bp->dev);
4588 
4589 	/* Clear pending state for the last command */
4590 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4591 
4592 	/* If there are pending mcast commands - send them */
4593 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4594 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4595 		if (rc < 0)
4596 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4597 				  rc);
4598 	}
4599 
4600 	netif_addr_unlock_bh(bp->dev);
4601 }
4602 
4603 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4604 					    union event_ring_elem *elem)
4605 {
4606 	unsigned long ramrod_flags = 0;
4607 	int rc = 0;
4608 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4609 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4610 
4611 	/* Always push next commands out, don't wait here */
4612 	__set_bit(RAMROD_CONT, &ramrod_flags);
4613 
4614 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4615 	case BNX2X_FILTER_MAC_PENDING:
4616 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4617 #ifdef BCM_CNIC
4618 		if (cid == BNX2X_ISCSI_ETH_CID)
4619 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4620 		else
4621 #endif
4622 			vlan_mac_obj = &bp->fp[cid].mac_obj;
4623 
4624 		break;
4625 	case BNX2X_FILTER_MCAST_PENDING:
4626 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4627 		/* This is only relevant for 57710 where multicast MACs are
4628 		 * configured as unicast MACs using the same ramrod.
4629 		 */
4630 		bnx2x_handle_mcast_eqe(bp);
4631 		return;
4632 	default:
4633 		BNX2X_ERR("Unsupported classification command: %d\n",
4634 			  elem->message.data.eth_event.echo);
4635 		return;
4636 	}
4637 
4638 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4639 
4640 	if (rc < 0)
4641 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4642 	else if (rc > 0)
4643 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4644 
4645 }
4646 
4647 #ifdef BCM_CNIC
4648 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4649 #endif
4650 
4651 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4652 {
4653 	netif_addr_lock_bh(bp->dev);
4654 
4655 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4656 
4657 	/* Send rx_mode command again if was requested */
4658 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4659 		bnx2x_set_storm_rx_mode(bp);
4660 #ifdef BCM_CNIC
4661 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4662 				    &bp->sp_state))
4663 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4664 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4665 				    &bp->sp_state))
4666 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4667 #endif
4668 
4669 	netif_addr_unlock_bh(bp->dev);
4670 }
4671 
4672 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
4673 					      union event_ring_elem *elem)
4674 {
4675 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
4676 		DP(BNX2X_MSG_SP,
4677 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
4678 		   elem->message.data.vif_list_event.func_bit_map);
4679 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
4680 			elem->message.data.vif_list_event.func_bit_map);
4681 	} else if (elem->message.data.vif_list_event.echo ==
4682 		   VIF_LIST_RULE_SET) {
4683 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
4684 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
4685 	}
4686 }
4687 
4688 /* called with rtnl_lock */
4689 static void bnx2x_after_function_update(struct bnx2x *bp)
4690 {
4691 	int q, rc;
4692 	struct bnx2x_fastpath *fp;
4693 	struct bnx2x_queue_state_params queue_params = {NULL};
4694 	struct bnx2x_queue_update_params *q_update_params =
4695 		&queue_params.params.update;
4696 
4697 	/* Send Q update command with afex vlan removal values	for all Qs */
4698 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
4699 
4700 	/* set silent vlan removal values according to vlan mode */
4701 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4702 		  &q_update_params->update_flags);
4703 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
4704 		  &q_update_params->update_flags);
4705 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4706 
4707 	/* in access mode mark mask and value are 0 to strip all vlans */
4708 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
4709 		q_update_params->silent_removal_value = 0;
4710 		q_update_params->silent_removal_mask = 0;
4711 	} else {
4712 		q_update_params->silent_removal_value =
4713 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
4714 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
4715 	}
4716 
4717 	for_each_eth_queue(bp, q) {
4718 		/* Set the appropriate Queue object */
4719 		fp = &bp->fp[q];
4720 		queue_params.q_obj = &fp->q_obj;
4721 
4722 		/* send the ramrod */
4723 		rc = bnx2x_queue_state_change(bp, &queue_params);
4724 		if (rc < 0)
4725 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4726 				  q);
4727 	}
4728 
4729 #ifdef BCM_CNIC
4730 	if (!NO_FCOE(bp)) {
4731 		fp = &bp->fp[FCOE_IDX];
4732 		queue_params.q_obj = &fp->q_obj;
4733 
4734 		/* clear pending completion bit */
4735 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4736 
4737 		/* mark latest Q bit */
4738 		smp_mb__before_clear_bit();
4739 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
4740 		smp_mb__after_clear_bit();
4741 
4742 		/* send Q update ramrod for FCoE Q */
4743 		rc = bnx2x_queue_state_change(bp, &queue_params);
4744 		if (rc < 0)
4745 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4746 				  q);
4747 	} else {
4748 		/* If no FCoE ring - ACK MCP now */
4749 		bnx2x_link_report(bp);
4750 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4751 	}
4752 #else
4753 	/* If no FCoE ring - ACK MCP now */
4754 	bnx2x_link_report(bp);
4755 	bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4756 #endif /* BCM_CNIC */
4757 }
4758 
4759 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4760 	struct bnx2x *bp, u32 cid)
4761 {
4762 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4763 #ifdef BCM_CNIC
4764 	if (cid == BNX2X_FCOE_ETH_CID)
4765 		return &bnx2x_fcoe(bp, q_obj);
4766 	else
4767 #endif
4768 		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4769 }
4770 
4771 static void bnx2x_eq_int(struct bnx2x *bp)
4772 {
4773 	u16 hw_cons, sw_cons, sw_prod;
4774 	union event_ring_elem *elem;
4775 	u32 cid;
4776 	u8 opcode;
4777 	int spqe_cnt = 0;
4778 	struct bnx2x_queue_sp_obj *q_obj;
4779 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4780 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4781 
4782 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4783 
4784 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4785 	 * when we get the the next-page we nned to adjust so the loop
4786 	 * condition below will be met. The next element is the size of a
4787 	 * regular element and hence incrementing by 1
4788 	 */
4789 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4790 		hw_cons++;
4791 
4792 	/* This function may never run in parallel with itself for a
4793 	 * specific bp, thus there is no need in "paired" read memory
4794 	 * barrier here.
4795 	 */
4796 	sw_cons = bp->eq_cons;
4797 	sw_prod = bp->eq_prod;
4798 
4799 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4800 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4801 
4802 	for (; sw_cons != hw_cons;
4803 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4804 
4805 
4806 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4807 
4808 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4809 		opcode = elem->message.opcode;
4810 
4811 
4812 		/* handle eq element */
4813 		switch (opcode) {
4814 		case EVENT_RING_OPCODE_STAT_QUERY:
4815 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4816 			   "got statistics comp event %d\n",
4817 			   bp->stats_comp++);
4818 			/* nothing to do with stats comp */
4819 			goto next_spqe;
4820 
4821 		case EVENT_RING_OPCODE_CFC_DEL:
4822 			/* handle according to cid range */
4823 			/*
4824 			 * we may want to verify here that the bp state is
4825 			 * HALTING
4826 			 */
4827 			DP(BNX2X_MSG_SP,
4828 			   "got delete ramrod for MULTI[%d]\n", cid);
4829 #ifdef BCM_CNIC
4830 			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4831 				goto next_spqe;
4832 #endif
4833 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4834 
4835 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4836 				break;
4837 
4838 
4839 
4840 			goto next_spqe;
4841 
4842 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4843 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4844 			if (f_obj->complete_cmd(bp, f_obj,
4845 						BNX2X_F_CMD_TX_STOP))
4846 				break;
4847 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4848 			goto next_spqe;
4849 
4850 		case EVENT_RING_OPCODE_START_TRAFFIC:
4851 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4852 			if (f_obj->complete_cmd(bp, f_obj,
4853 						BNX2X_F_CMD_TX_START))
4854 				break;
4855 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4856 			goto next_spqe;
4857 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4858 			DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
4859 			   "AFEX: ramrod completed FUNCTION_UPDATE\n");
4860 			f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_AFEX_UPDATE);
4861 
4862 			/* We will perform the Queues update from sp_rtnl task
4863 			 * as all Queue SP operations should run under
4864 			 * rtnl_lock.
4865 			 */
4866 			smp_mb__before_clear_bit();
4867 			set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
4868 				&bp->sp_rtnl_state);
4869 			smp_mb__after_clear_bit();
4870 
4871 			schedule_delayed_work(&bp->sp_rtnl_task, 0);
4872 			goto next_spqe;
4873 
4874 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
4875 			f_obj->complete_cmd(bp, f_obj,
4876 					    BNX2X_F_CMD_AFEX_VIFLISTS);
4877 			bnx2x_after_afex_vif_lists(bp, elem);
4878 			goto next_spqe;
4879 		case EVENT_RING_OPCODE_FUNCTION_START:
4880 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4881 			   "got FUNC_START ramrod\n");
4882 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4883 				break;
4884 
4885 			goto next_spqe;
4886 
4887 		case EVENT_RING_OPCODE_FUNCTION_STOP:
4888 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4889 			   "got FUNC_STOP ramrod\n");
4890 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4891 				break;
4892 
4893 			goto next_spqe;
4894 		}
4895 
4896 		switch (opcode | bp->state) {
4897 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4898 		      BNX2X_STATE_OPEN):
4899 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4900 		      BNX2X_STATE_OPENING_WAIT4_PORT):
4901 			cid = elem->message.data.eth_event.echo &
4902 				BNX2X_SWCID_MASK;
4903 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4904 			   cid);
4905 			rss_raw->clear_pending(rss_raw);
4906 			break;
4907 
4908 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4909 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4910 		case (EVENT_RING_OPCODE_SET_MAC |
4911 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4912 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4913 		      BNX2X_STATE_OPEN):
4914 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4915 		      BNX2X_STATE_DIAG):
4916 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4917 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4918 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4919 			bnx2x_handle_classification_eqe(bp, elem);
4920 			break;
4921 
4922 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4923 		      BNX2X_STATE_OPEN):
4924 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4925 		      BNX2X_STATE_DIAG):
4926 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4927 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4928 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4929 			bnx2x_handle_mcast_eqe(bp);
4930 			break;
4931 
4932 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4933 		      BNX2X_STATE_OPEN):
4934 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4935 		      BNX2X_STATE_DIAG):
4936 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4937 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4938 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4939 			bnx2x_handle_rx_mode_eqe(bp);
4940 			break;
4941 		default:
4942 			/* unknown event log error and continue */
4943 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4944 				  elem->message.opcode, bp->state);
4945 		}
4946 next_spqe:
4947 		spqe_cnt++;
4948 	} /* for */
4949 
4950 	smp_mb__before_atomic_inc();
4951 	atomic_add(spqe_cnt, &bp->eq_spq_left);
4952 
4953 	bp->eq_cons = sw_cons;
4954 	bp->eq_prod = sw_prod;
4955 	/* Make sure that above mem writes were issued towards the memory */
4956 	smp_wmb();
4957 
4958 	/* update producer */
4959 	bnx2x_update_eq_prod(bp, bp->eq_prod);
4960 }
4961 
4962 static void bnx2x_sp_task(struct work_struct *work)
4963 {
4964 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4965 	u16 status;
4966 
4967 	status = bnx2x_update_dsb_idx(bp);
4968 /*	if (status == 0)				     */
4969 /*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
4970 
4971 	DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
4972 
4973 	/* HW attentions */
4974 	if (status & BNX2X_DEF_SB_ATT_IDX) {
4975 		bnx2x_attn_int(bp);
4976 		status &= ~BNX2X_DEF_SB_ATT_IDX;
4977 	}
4978 
4979 	/* SP events: STAT_QUERY and others */
4980 	if (status & BNX2X_DEF_SB_IDX) {
4981 #ifdef BCM_CNIC
4982 		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4983 
4984 		if ((!NO_FCOE(bp)) &&
4985 			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4986 			/*
4987 			 * Prevent local bottom-halves from running as
4988 			 * we are going to change the local NAPI list.
4989 			 */
4990 			local_bh_disable();
4991 			napi_schedule(&bnx2x_fcoe(bp, napi));
4992 			local_bh_enable();
4993 		}
4994 #endif
4995 		/* Handle EQ completions */
4996 		bnx2x_eq_int(bp);
4997 
4998 		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4999 			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5000 
5001 		status &= ~BNX2X_DEF_SB_IDX;
5002 	}
5003 
5004 	if (unlikely(status))
5005 		DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
5006 		   status);
5007 
5008 	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5009 	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5010 
5011 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5012 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5013 			       &bp->sp_state)) {
5014 		bnx2x_link_report(bp);
5015 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5016 	}
5017 }
5018 
5019 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5020 {
5021 	struct net_device *dev = dev_instance;
5022 	struct bnx2x *bp = netdev_priv(dev);
5023 
5024 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5025 		     IGU_INT_DISABLE, 0);
5026 
5027 #ifdef BNX2X_STOP_ON_ERROR
5028 	if (unlikely(bp->panic))
5029 		return IRQ_HANDLED;
5030 #endif
5031 
5032 #ifdef BCM_CNIC
5033 	{
5034 		struct cnic_ops *c_ops;
5035 
5036 		rcu_read_lock();
5037 		c_ops = rcu_dereference(bp->cnic_ops);
5038 		if (c_ops)
5039 			c_ops->cnic_handler(bp->cnic_data, NULL);
5040 		rcu_read_unlock();
5041 	}
5042 #endif
5043 	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
5044 
5045 	return IRQ_HANDLED;
5046 }
5047 
5048 /* end of slow path */
5049 
5050 
5051 void bnx2x_drv_pulse(struct bnx2x *bp)
5052 {
5053 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5054 		 bp->fw_drv_pulse_wr_seq);
5055 }
5056 
5057 
5058 static void bnx2x_timer(unsigned long data)
5059 {
5060 	struct bnx2x *bp = (struct bnx2x *) data;
5061 
5062 	if (!netif_running(bp->dev))
5063 		return;
5064 
5065 	if (!BP_NOMCP(bp)) {
5066 		int mb_idx = BP_FW_MB_IDX(bp);
5067 		u32 drv_pulse;
5068 		u32 mcp_pulse;
5069 
5070 		++bp->fw_drv_pulse_wr_seq;
5071 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5072 		/* TBD - add SYSTEM_TIME */
5073 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5074 		bnx2x_drv_pulse(bp);
5075 
5076 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5077 			     MCP_PULSE_SEQ_MASK);
5078 		/* The delta between driver pulse and mcp response
5079 		 * should be 1 (before mcp response) or 0 (after mcp response)
5080 		 */
5081 		if ((drv_pulse != mcp_pulse) &&
5082 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5083 			/* someone lost a heartbeat... */
5084 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5085 				  drv_pulse, mcp_pulse);
5086 		}
5087 	}
5088 
5089 	if (bp->state == BNX2X_STATE_OPEN)
5090 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5091 
5092 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5093 }
5094 
5095 /* end of Statistics */
5096 
5097 /* nic init */
5098 
5099 /*
5100  * nic init service functions
5101  */
5102 
5103 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5104 {
5105 	u32 i;
5106 	if (!(len%4) && !(addr%4))
5107 		for (i = 0; i < len; i += 4)
5108 			REG_WR(bp, addr + i, fill);
5109 	else
5110 		for (i = 0; i < len; i++)
5111 			REG_WR8(bp, addr + i, fill);
5112 
5113 }
5114 
5115 /* helper: writes FP SP data to FW - data_size in dwords */
5116 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5117 				int fw_sb_id,
5118 				u32 *sb_data_p,
5119 				u32 data_size)
5120 {
5121 	int index;
5122 	for (index = 0; index < data_size; index++)
5123 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5124 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5125 			sizeof(u32)*index,
5126 			*(sb_data_p + index));
5127 }
5128 
5129 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5130 {
5131 	u32 *sb_data_p;
5132 	u32 data_size = 0;
5133 	struct hc_status_block_data_e2 sb_data_e2;
5134 	struct hc_status_block_data_e1x sb_data_e1x;
5135 
5136 	/* disable the function first */
5137 	if (!CHIP_IS_E1x(bp)) {
5138 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5139 		sb_data_e2.common.state = SB_DISABLED;
5140 		sb_data_e2.common.p_func.vf_valid = false;
5141 		sb_data_p = (u32 *)&sb_data_e2;
5142 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5143 	} else {
5144 		memset(&sb_data_e1x, 0,
5145 		       sizeof(struct hc_status_block_data_e1x));
5146 		sb_data_e1x.common.state = SB_DISABLED;
5147 		sb_data_e1x.common.p_func.vf_valid = false;
5148 		sb_data_p = (u32 *)&sb_data_e1x;
5149 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5150 	}
5151 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5152 
5153 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5154 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5155 			CSTORM_STATUS_BLOCK_SIZE);
5156 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5157 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5158 			CSTORM_SYNC_BLOCK_SIZE);
5159 }
5160 
5161 /* helper:  writes SP SB data to FW */
5162 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5163 		struct hc_sp_status_block_data *sp_sb_data)
5164 {
5165 	int func = BP_FUNC(bp);
5166 	int i;
5167 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5168 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5169 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5170 			i*sizeof(u32),
5171 			*((u32 *)sp_sb_data + i));
5172 }
5173 
5174 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5175 {
5176 	int func = BP_FUNC(bp);
5177 	struct hc_sp_status_block_data sp_sb_data;
5178 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5179 
5180 	sp_sb_data.state = SB_DISABLED;
5181 	sp_sb_data.p_func.vf_valid = false;
5182 
5183 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5184 
5185 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5186 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5187 			CSTORM_SP_STATUS_BLOCK_SIZE);
5188 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5189 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5190 			CSTORM_SP_SYNC_BLOCK_SIZE);
5191 
5192 }
5193 
5194 
5195 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5196 					   int igu_sb_id, int igu_seg_id)
5197 {
5198 	hc_sm->igu_sb_id = igu_sb_id;
5199 	hc_sm->igu_seg_id = igu_seg_id;
5200 	hc_sm->timer_value = 0xFF;
5201 	hc_sm->time_to_expire = 0xFFFFFFFF;
5202 }
5203 
5204 
5205 /* allocates state machine ids. */
5206 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5207 {
5208 	/* zero out state machine indices */
5209 	/* rx indices */
5210 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5211 
5212 	/* tx indices */
5213 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5214 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5215 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5216 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5217 
5218 	/* map indices */
5219 	/* rx indices */
5220 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5221 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5222 
5223 	/* tx indices */
5224 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5225 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5226 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5227 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5228 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5229 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5230 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5231 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5232 }
5233 
5234 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5235 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5236 {
5237 	int igu_seg_id;
5238 
5239 	struct hc_status_block_data_e2 sb_data_e2;
5240 	struct hc_status_block_data_e1x sb_data_e1x;
5241 	struct hc_status_block_sm  *hc_sm_p;
5242 	int data_size;
5243 	u32 *sb_data_p;
5244 
5245 	if (CHIP_INT_MODE_IS_BC(bp))
5246 		igu_seg_id = HC_SEG_ACCESS_NORM;
5247 	else
5248 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5249 
5250 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5251 
5252 	if (!CHIP_IS_E1x(bp)) {
5253 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5254 		sb_data_e2.common.state = SB_ENABLED;
5255 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5256 		sb_data_e2.common.p_func.vf_id = vfid;
5257 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5258 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5259 		sb_data_e2.common.same_igu_sb_1b = true;
5260 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5261 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5262 		hc_sm_p = sb_data_e2.common.state_machine;
5263 		sb_data_p = (u32 *)&sb_data_e2;
5264 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5265 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5266 	} else {
5267 		memset(&sb_data_e1x, 0,
5268 		       sizeof(struct hc_status_block_data_e1x));
5269 		sb_data_e1x.common.state = SB_ENABLED;
5270 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5271 		sb_data_e1x.common.p_func.vf_id = 0xff;
5272 		sb_data_e1x.common.p_func.vf_valid = false;
5273 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5274 		sb_data_e1x.common.same_igu_sb_1b = true;
5275 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5276 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5277 		hc_sm_p = sb_data_e1x.common.state_machine;
5278 		sb_data_p = (u32 *)&sb_data_e1x;
5279 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5280 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5281 	}
5282 
5283 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5284 				       igu_sb_id, igu_seg_id);
5285 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5286 				       igu_sb_id, igu_seg_id);
5287 
5288 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5289 
5290 	/* write indecies to HW */
5291 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5292 }
5293 
5294 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5295 				     u16 tx_usec, u16 rx_usec)
5296 {
5297 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5298 				    false, rx_usec);
5299 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5300 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5301 				       tx_usec);
5302 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5303 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5304 				       tx_usec);
5305 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5306 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5307 				       tx_usec);
5308 }
5309 
5310 static void bnx2x_init_def_sb(struct bnx2x *bp)
5311 {
5312 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5313 	dma_addr_t mapping = bp->def_status_blk_mapping;
5314 	int igu_sp_sb_index;
5315 	int igu_seg_id;
5316 	int port = BP_PORT(bp);
5317 	int func = BP_FUNC(bp);
5318 	int reg_offset, reg_offset_en5;
5319 	u64 section;
5320 	int index;
5321 	struct hc_sp_status_block_data sp_sb_data;
5322 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5323 
5324 	if (CHIP_INT_MODE_IS_BC(bp)) {
5325 		igu_sp_sb_index = DEF_SB_IGU_ID;
5326 		igu_seg_id = HC_SEG_ACCESS_DEF;
5327 	} else {
5328 		igu_sp_sb_index = bp->igu_dsb_id;
5329 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5330 	}
5331 
5332 	/* ATTN */
5333 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5334 					    atten_status_block);
5335 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5336 
5337 	bp->attn_state = 0;
5338 
5339 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5340 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5341 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5342 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5343 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5344 		int sindex;
5345 		/* take care of sig[0]..sig[4] */
5346 		for (sindex = 0; sindex < 4; sindex++)
5347 			bp->attn_group[index].sig[sindex] =
5348 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5349 
5350 		if (!CHIP_IS_E1x(bp))
5351 			/*
5352 			 * enable5 is separate from the rest of the registers,
5353 			 * and therefore the address skip is 4
5354 			 * and not 16 between the different groups
5355 			 */
5356 			bp->attn_group[index].sig[4] = REG_RD(bp,
5357 					reg_offset_en5 + 0x4*index);
5358 		else
5359 			bp->attn_group[index].sig[4] = 0;
5360 	}
5361 
5362 	if (bp->common.int_block == INT_BLOCK_HC) {
5363 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5364 				     HC_REG_ATTN_MSG0_ADDR_L);
5365 
5366 		REG_WR(bp, reg_offset, U64_LO(section));
5367 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5368 	} else if (!CHIP_IS_E1x(bp)) {
5369 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5370 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5371 	}
5372 
5373 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5374 					    sp_sb);
5375 
5376 	bnx2x_zero_sp_sb(bp);
5377 
5378 	sp_sb_data.state		= SB_ENABLED;
5379 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5380 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5381 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5382 	sp_sb_data.igu_seg_id		= igu_seg_id;
5383 	sp_sb_data.p_func.pf_id		= func;
5384 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5385 	sp_sb_data.p_func.vf_id		= 0xff;
5386 
5387 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5388 
5389 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5390 }
5391 
5392 void bnx2x_update_coalesce(struct bnx2x *bp)
5393 {
5394 	int i;
5395 
5396 	for_each_eth_queue(bp, i)
5397 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5398 					 bp->tx_ticks, bp->rx_ticks);
5399 }
5400 
5401 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5402 {
5403 	spin_lock_init(&bp->spq_lock);
5404 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5405 
5406 	bp->spq_prod_idx = 0;
5407 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5408 	bp->spq_prod_bd = bp->spq;
5409 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5410 }
5411 
5412 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5413 {
5414 	int i;
5415 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5416 		union event_ring_elem *elem =
5417 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5418 
5419 		elem->next_page.addr.hi =
5420 			cpu_to_le32(U64_HI(bp->eq_mapping +
5421 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5422 		elem->next_page.addr.lo =
5423 			cpu_to_le32(U64_LO(bp->eq_mapping +
5424 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5425 	}
5426 	bp->eq_cons = 0;
5427 	bp->eq_prod = NUM_EQ_DESC;
5428 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5429 	/* we want a warning message before it gets rought... */
5430 	atomic_set(&bp->eq_spq_left,
5431 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5432 }
5433 
5434 
5435 /* called with netif_addr_lock_bh() */
5436 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5437 			 unsigned long rx_mode_flags,
5438 			 unsigned long rx_accept_flags,
5439 			 unsigned long tx_accept_flags,
5440 			 unsigned long ramrod_flags)
5441 {
5442 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5443 	int rc;
5444 
5445 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5446 
5447 	/* Prepare ramrod parameters */
5448 	ramrod_param.cid = 0;
5449 	ramrod_param.cl_id = cl_id;
5450 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5451 	ramrod_param.func_id = BP_FUNC(bp);
5452 
5453 	ramrod_param.pstate = &bp->sp_state;
5454 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5455 
5456 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5457 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5458 
5459 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5460 
5461 	ramrod_param.ramrod_flags = ramrod_flags;
5462 	ramrod_param.rx_mode_flags = rx_mode_flags;
5463 
5464 	ramrod_param.rx_accept_flags = rx_accept_flags;
5465 	ramrod_param.tx_accept_flags = tx_accept_flags;
5466 
5467 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5468 	if (rc < 0) {
5469 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5470 		return;
5471 	}
5472 }
5473 
5474 /* called with netif_addr_lock_bh() */
5475 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5476 {
5477 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5478 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5479 
5480 #ifdef BCM_CNIC
5481 	if (!NO_FCOE(bp))
5482 
5483 		/* Configure rx_mode of FCoE Queue */
5484 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5485 #endif
5486 
5487 	switch (bp->rx_mode) {
5488 	case BNX2X_RX_MODE_NONE:
5489 		/*
5490 		 * 'drop all' supersedes any accept flags that may have been
5491 		 * passed to the function.
5492 		 */
5493 		break;
5494 	case BNX2X_RX_MODE_NORMAL:
5495 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5496 		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5497 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5498 
5499 		/* internal switching mode */
5500 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5501 		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5502 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5503 
5504 		break;
5505 	case BNX2X_RX_MODE_ALLMULTI:
5506 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5507 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5508 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5509 
5510 		/* internal switching mode */
5511 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5512 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5513 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5514 
5515 		break;
5516 	case BNX2X_RX_MODE_PROMISC:
5517 		/* According to deffinition of SI mode, iface in promisc mode
5518 		 * should receive matched and unmatched (in resolution of port)
5519 		 * unicast packets.
5520 		 */
5521 		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5522 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5523 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5524 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5525 
5526 		/* internal switching mode */
5527 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5528 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5529 
5530 		if (IS_MF_SI(bp))
5531 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5532 		else
5533 			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5534 
5535 		break;
5536 	default:
5537 		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5538 		return;
5539 	}
5540 
5541 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5542 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5543 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5544 	}
5545 
5546 	__set_bit(RAMROD_RX, &ramrod_flags);
5547 	__set_bit(RAMROD_TX, &ramrod_flags);
5548 
5549 	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5550 			    tx_accept_flags, ramrod_flags);
5551 }
5552 
5553 static void bnx2x_init_internal_common(struct bnx2x *bp)
5554 {
5555 	int i;
5556 
5557 	if (IS_MF_SI(bp))
5558 		/*
5559 		 * In switch independent mode, the TSTORM needs to accept
5560 		 * packets that failed classification, since approximate match
5561 		 * mac addresses aren't written to NIG LLH
5562 		 */
5563 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5564 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5565 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5566 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5567 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5568 
5569 	/* Zero this manually as its initialization is
5570 	   currently missing in the initTool */
5571 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5572 		REG_WR(bp, BAR_USTRORM_INTMEM +
5573 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5574 	if (!CHIP_IS_E1x(bp)) {
5575 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5576 			CHIP_INT_MODE_IS_BC(bp) ?
5577 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5578 	}
5579 }
5580 
5581 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5582 {
5583 	switch (load_code) {
5584 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5585 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5586 		bnx2x_init_internal_common(bp);
5587 		/* no break */
5588 
5589 	case FW_MSG_CODE_DRV_LOAD_PORT:
5590 		/* nothing to do */
5591 		/* no break */
5592 
5593 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5594 		/* internal memory per function is
5595 		   initialized inside bnx2x_pf_init */
5596 		break;
5597 
5598 	default:
5599 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5600 		break;
5601 	}
5602 }
5603 
5604 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5605 {
5606 	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5607 }
5608 
5609 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5610 {
5611 	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5612 }
5613 
5614 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5615 {
5616 	if (CHIP_IS_E1x(fp->bp))
5617 		return BP_L_ID(fp->bp) + fp->index;
5618 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5619 		return bnx2x_fp_igu_sb_id(fp);
5620 }
5621 
5622 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5623 {
5624 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5625 	u8 cos;
5626 	unsigned long q_type = 0;
5627 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5628 	fp->rx_queue = fp_idx;
5629 	fp->cid = fp_idx;
5630 	fp->cl_id = bnx2x_fp_cl_id(fp);
5631 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5632 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5633 	/* qZone id equals to FW (per path) client id */
5634 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5635 
5636 	/* init shortcut */
5637 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5638 
5639 	/* Setup SB indicies */
5640 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5641 
5642 	/* Configure Queue State object */
5643 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5644 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5645 
5646 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5647 
5648 	/* init tx data */
5649 	for_each_cos_in_tx_queue(fp, cos) {
5650 		bnx2x_init_txdata(bp, &fp->txdata[cos],
5651 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5652 				  FP_COS_TO_TXQ(fp, cos),
5653 				  BNX2X_TX_SB_INDEX_BASE + cos);
5654 		cids[cos] = fp->txdata[cos].cid;
5655 	}
5656 
5657 	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5658 			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5659 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5660 
5661 	/**
5662 	 * Configure classification DBs: Always enable Tx switching
5663 	 */
5664 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5665 
5666 	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5667 		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5668 		   fp->igu_sb_id);
5669 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5670 		      fp->fw_sb_id, fp->igu_sb_id);
5671 
5672 	bnx2x_update_fpsb_idx(fp);
5673 }
5674 
5675 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
5676 {
5677 	int i;
5678 
5679 	for (i = 1; i <= NUM_TX_RINGS; i++) {
5680 		struct eth_tx_next_bd *tx_next_bd =
5681 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
5682 
5683 		tx_next_bd->addr_hi =
5684 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
5685 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5686 		tx_next_bd->addr_lo =
5687 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
5688 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5689 	}
5690 
5691 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
5692 	txdata->tx_db.data.zero_fill1 = 0;
5693 	txdata->tx_db.data.prod = 0;
5694 
5695 	txdata->tx_pkt_prod = 0;
5696 	txdata->tx_pkt_cons = 0;
5697 	txdata->tx_bd_prod = 0;
5698 	txdata->tx_bd_cons = 0;
5699 	txdata->tx_pkt = 0;
5700 }
5701 
5702 static void bnx2x_init_tx_rings(struct bnx2x *bp)
5703 {
5704 	int i;
5705 	u8 cos;
5706 
5707 	for_each_tx_queue(bp, i)
5708 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
5709 			bnx2x_init_tx_ring_one(&bp->fp[i].txdata[cos]);
5710 }
5711 
5712 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5713 {
5714 	int i;
5715 
5716 	for_each_eth_queue(bp, i)
5717 		bnx2x_init_eth_fp(bp, i);
5718 #ifdef BCM_CNIC
5719 	if (!NO_FCOE(bp))
5720 		bnx2x_init_fcoe_fp(bp);
5721 
5722 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5723 		      BNX2X_VF_ID_INVALID, false,
5724 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5725 
5726 #endif
5727 
5728 	/* Initialize MOD_ABS interrupts */
5729 	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5730 			       bp->common.shmem_base, bp->common.shmem2_base,
5731 			       BP_PORT(bp));
5732 	/* ensure status block indices were read */
5733 	rmb();
5734 
5735 	bnx2x_init_def_sb(bp);
5736 	bnx2x_update_dsb_idx(bp);
5737 	bnx2x_init_rx_rings(bp);
5738 	bnx2x_init_tx_rings(bp);
5739 	bnx2x_init_sp_ring(bp);
5740 	bnx2x_init_eq_ring(bp);
5741 	bnx2x_init_internal(bp, load_code);
5742 	bnx2x_pf_init(bp);
5743 	bnx2x_stats_init(bp);
5744 
5745 	/* flush all before enabling interrupts */
5746 	mb();
5747 	mmiowb();
5748 
5749 	bnx2x_int_enable(bp);
5750 
5751 	/* Check for SPIO5 */
5752 	bnx2x_attn_int_deasserted0(bp,
5753 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5754 				   AEU_INPUTS_ATTN_BITS_SPIO5);
5755 }
5756 
5757 /* end of nic init */
5758 
5759 /*
5760  * gzip service functions
5761  */
5762 
5763 static int bnx2x_gunzip_init(struct bnx2x *bp)
5764 {
5765 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5766 					    &bp->gunzip_mapping, GFP_KERNEL);
5767 	if (bp->gunzip_buf  == NULL)
5768 		goto gunzip_nomem1;
5769 
5770 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5771 	if (bp->strm  == NULL)
5772 		goto gunzip_nomem2;
5773 
5774 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5775 	if (bp->strm->workspace == NULL)
5776 		goto gunzip_nomem3;
5777 
5778 	return 0;
5779 
5780 gunzip_nomem3:
5781 	kfree(bp->strm);
5782 	bp->strm = NULL;
5783 
5784 gunzip_nomem2:
5785 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5786 			  bp->gunzip_mapping);
5787 	bp->gunzip_buf = NULL;
5788 
5789 gunzip_nomem1:
5790 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5791 	return -ENOMEM;
5792 }
5793 
5794 static void bnx2x_gunzip_end(struct bnx2x *bp)
5795 {
5796 	if (bp->strm) {
5797 		vfree(bp->strm->workspace);
5798 		kfree(bp->strm);
5799 		bp->strm = NULL;
5800 	}
5801 
5802 	if (bp->gunzip_buf) {
5803 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5804 				  bp->gunzip_mapping);
5805 		bp->gunzip_buf = NULL;
5806 	}
5807 }
5808 
5809 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5810 {
5811 	int n, rc;
5812 
5813 	/* check gzip header */
5814 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5815 		BNX2X_ERR("Bad gzip header\n");
5816 		return -EINVAL;
5817 	}
5818 
5819 	n = 10;
5820 
5821 #define FNAME				0x8
5822 
5823 	if (zbuf[3] & FNAME)
5824 		while ((zbuf[n++] != 0) && (n < len));
5825 
5826 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5827 	bp->strm->avail_in = len - n;
5828 	bp->strm->next_out = bp->gunzip_buf;
5829 	bp->strm->avail_out = FW_BUF_SIZE;
5830 
5831 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5832 	if (rc != Z_OK)
5833 		return rc;
5834 
5835 	rc = zlib_inflate(bp->strm, Z_FINISH);
5836 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5837 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5838 			   bp->strm->msg);
5839 
5840 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5841 	if (bp->gunzip_outlen & 0x3)
5842 		netdev_err(bp->dev,
5843 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5844 				bp->gunzip_outlen);
5845 	bp->gunzip_outlen >>= 2;
5846 
5847 	zlib_inflateEnd(bp->strm);
5848 
5849 	if (rc == Z_STREAM_END)
5850 		return 0;
5851 
5852 	return rc;
5853 }
5854 
5855 /* nic load/unload */
5856 
5857 /*
5858  * General service functions
5859  */
5860 
5861 /* send a NIG loopback debug packet */
5862 static void bnx2x_lb_pckt(struct bnx2x *bp)
5863 {
5864 	u32 wb_write[3];
5865 
5866 	/* Ethernet source and destination addresses */
5867 	wb_write[0] = 0x55555555;
5868 	wb_write[1] = 0x55555555;
5869 	wb_write[2] = 0x20;		/* SOP */
5870 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5871 
5872 	/* NON-IP protocol */
5873 	wb_write[0] = 0x09000000;
5874 	wb_write[1] = 0x55555555;
5875 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5876 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5877 }
5878 
5879 /* some of the internal memories
5880  * are not directly readable from the driver
5881  * to test them we send debug packets
5882  */
5883 static int bnx2x_int_mem_test(struct bnx2x *bp)
5884 {
5885 	int factor;
5886 	int count, i;
5887 	u32 val = 0;
5888 
5889 	if (CHIP_REV_IS_FPGA(bp))
5890 		factor = 120;
5891 	else if (CHIP_REV_IS_EMUL(bp))
5892 		factor = 200;
5893 	else
5894 		factor = 1;
5895 
5896 	/* Disable inputs of parser neighbor blocks */
5897 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5898 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5899 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5900 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5901 
5902 	/*  Write 0 to parser credits for CFC search request */
5903 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5904 
5905 	/* send Ethernet packet */
5906 	bnx2x_lb_pckt(bp);
5907 
5908 	/* TODO do i reset NIG statistic? */
5909 	/* Wait until NIG register shows 1 packet of size 0x10 */
5910 	count = 1000 * factor;
5911 	while (count) {
5912 
5913 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5914 		val = *bnx2x_sp(bp, wb_data[0]);
5915 		if (val == 0x10)
5916 			break;
5917 
5918 		msleep(10);
5919 		count--;
5920 	}
5921 	if (val != 0x10) {
5922 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5923 		return -1;
5924 	}
5925 
5926 	/* Wait until PRS register shows 1 packet */
5927 	count = 1000 * factor;
5928 	while (count) {
5929 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5930 		if (val == 1)
5931 			break;
5932 
5933 		msleep(10);
5934 		count--;
5935 	}
5936 	if (val != 0x1) {
5937 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5938 		return -2;
5939 	}
5940 
5941 	/* Reset and init BRB, PRS */
5942 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5943 	msleep(50);
5944 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5945 	msleep(50);
5946 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5947 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5948 
5949 	DP(NETIF_MSG_HW, "part2\n");
5950 
5951 	/* Disable inputs of parser neighbor blocks */
5952 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5953 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5954 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5955 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5956 
5957 	/* Write 0 to parser credits for CFC search request */
5958 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5959 
5960 	/* send 10 Ethernet packets */
5961 	for (i = 0; i < 10; i++)
5962 		bnx2x_lb_pckt(bp);
5963 
5964 	/* Wait until NIG register shows 10 + 1
5965 	   packets of size 11*0x10 = 0xb0 */
5966 	count = 1000 * factor;
5967 	while (count) {
5968 
5969 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5970 		val = *bnx2x_sp(bp, wb_data[0]);
5971 		if (val == 0xb0)
5972 			break;
5973 
5974 		msleep(10);
5975 		count--;
5976 	}
5977 	if (val != 0xb0) {
5978 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5979 		return -3;
5980 	}
5981 
5982 	/* Wait until PRS register shows 2 packets */
5983 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5984 	if (val != 2)
5985 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5986 
5987 	/* Write 1 to parser credits for CFC search request */
5988 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5989 
5990 	/* Wait until PRS register shows 3 packets */
5991 	msleep(10 * factor);
5992 	/* Wait until NIG register shows 1 packet of size 0x10 */
5993 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5994 	if (val != 3)
5995 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
5996 
5997 	/* clear NIG EOP FIFO */
5998 	for (i = 0; i < 11; i++)
5999 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6000 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6001 	if (val != 1) {
6002 		BNX2X_ERR("clear of NIG failed\n");
6003 		return -4;
6004 	}
6005 
6006 	/* Reset and init BRB, PRS, NIG */
6007 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6008 	msleep(50);
6009 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6010 	msleep(50);
6011 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6012 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6013 #ifndef BCM_CNIC
6014 	/* set NIC mode */
6015 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
6016 #endif
6017 
6018 	/* Enable inputs of parser neighbor blocks */
6019 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6020 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6021 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6022 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6023 
6024 	DP(NETIF_MSG_HW, "done\n");
6025 
6026 	return 0; /* OK */
6027 }
6028 
6029 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6030 {
6031 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6032 	if (!CHIP_IS_E1x(bp))
6033 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6034 	else
6035 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6036 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6037 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6038 	/*
6039 	 * mask read length error interrupts in brb for parser
6040 	 * (parsing unit and 'checksum and crc' unit)
6041 	 * these errors are legal (PU reads fixed length and CAC can cause
6042 	 * read length error on truncated packets)
6043 	 */
6044 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6045 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6046 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6047 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6048 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6049 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6050 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6051 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6052 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6053 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6054 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6055 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6056 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6057 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6058 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6059 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6060 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6061 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6062 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6063 
6064 	if (CHIP_REV_IS_FPGA(bp))
6065 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
6066 	else if (!CHIP_IS_E1x(bp))
6067 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
6068 			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
6069 				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
6070 				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
6071 				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
6072 				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
6073 	else
6074 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
6075 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6076 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6077 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6078 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6079 
6080 	if (!CHIP_IS_E1x(bp))
6081 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6082 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6083 
6084 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6085 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6086 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6087 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6088 }
6089 
6090 static void bnx2x_reset_common(struct bnx2x *bp)
6091 {
6092 	u32 val = 0x1400;
6093 
6094 	/* reset_common */
6095 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6096 	       0xd3ffff7f);
6097 
6098 	if (CHIP_IS_E3(bp)) {
6099 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6100 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6101 	}
6102 
6103 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6104 }
6105 
6106 static void bnx2x_setup_dmae(struct bnx2x *bp)
6107 {
6108 	bp->dmae_ready = 0;
6109 	spin_lock_init(&bp->dmae_lock);
6110 }
6111 
6112 static void bnx2x_init_pxp(struct bnx2x *bp)
6113 {
6114 	u16 devctl;
6115 	int r_order, w_order;
6116 
6117 	pci_read_config_word(bp->pdev,
6118 			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
6119 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6120 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6121 	if (bp->mrrs == -1)
6122 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6123 	else {
6124 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6125 		r_order = bp->mrrs;
6126 	}
6127 
6128 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6129 }
6130 
6131 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6132 {
6133 	int is_required;
6134 	u32 val;
6135 	int port;
6136 
6137 	if (BP_NOMCP(bp))
6138 		return;
6139 
6140 	is_required = 0;
6141 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6142 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6143 
6144 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6145 		is_required = 1;
6146 
6147 	/*
6148 	 * The fan failure mechanism is usually related to the PHY type since
6149 	 * the power consumption of the board is affected by the PHY. Currently,
6150 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6151 	 */
6152 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6153 		for (port = PORT_0; port < PORT_MAX; port++) {
6154 			is_required |=
6155 				bnx2x_fan_failure_det_req(
6156 					bp,
6157 					bp->common.shmem_base,
6158 					bp->common.shmem2_base,
6159 					port);
6160 		}
6161 
6162 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6163 
6164 	if (is_required == 0)
6165 		return;
6166 
6167 	/* Fan failure is indicated by SPIO 5 */
6168 	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
6169 		       MISC_REGISTERS_SPIO_INPUT_HI_Z);
6170 
6171 	/* set to active low mode */
6172 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6173 	val |= ((1 << MISC_REGISTERS_SPIO_5) <<
6174 					MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
6175 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6176 
6177 	/* enable interrupt to signal the IGU */
6178 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6179 	val |= (1 << MISC_REGISTERS_SPIO_5);
6180 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6181 }
6182 
6183 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
6184 {
6185 	u32 offset = 0;
6186 
6187 	if (CHIP_IS_E1(bp))
6188 		return;
6189 	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
6190 		return;
6191 
6192 	switch (BP_ABS_FUNC(bp)) {
6193 	case 0:
6194 		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
6195 		break;
6196 	case 1:
6197 		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
6198 		break;
6199 	case 2:
6200 		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
6201 		break;
6202 	case 3:
6203 		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
6204 		break;
6205 	case 4:
6206 		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
6207 		break;
6208 	case 5:
6209 		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
6210 		break;
6211 	case 6:
6212 		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
6213 		break;
6214 	case 7:
6215 		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
6216 		break;
6217 	default:
6218 		return;
6219 	}
6220 
6221 	REG_WR(bp, offset, pretend_func_num);
6222 	REG_RD(bp, offset);
6223 	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
6224 }
6225 
6226 void bnx2x_pf_disable(struct bnx2x *bp)
6227 {
6228 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6229 	val &= ~IGU_PF_CONF_FUNC_EN;
6230 
6231 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6232 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6233 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6234 }
6235 
6236 static void bnx2x__common_init_phy(struct bnx2x *bp)
6237 {
6238 	u32 shmem_base[2], shmem2_base[2];
6239 	shmem_base[0] =  bp->common.shmem_base;
6240 	shmem2_base[0] = bp->common.shmem2_base;
6241 	if (!CHIP_IS_E1x(bp)) {
6242 		shmem_base[1] =
6243 			SHMEM2_RD(bp, other_shmem_base_addr);
6244 		shmem2_base[1] =
6245 			SHMEM2_RD(bp, other_shmem2_base_addr);
6246 	}
6247 	bnx2x_acquire_phy_lock(bp);
6248 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6249 			      bp->common.chip_id);
6250 	bnx2x_release_phy_lock(bp);
6251 }
6252 
6253 /**
6254  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6255  *
6256  * @bp:		driver handle
6257  */
6258 static int bnx2x_init_hw_common(struct bnx2x *bp)
6259 {
6260 	u32 val;
6261 
6262 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6263 
6264 	/*
6265 	 * take the UNDI lock to protect undi_unload flow from accessing
6266 	 * registers while we're resetting the chip
6267 	 */
6268 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6269 
6270 	bnx2x_reset_common(bp);
6271 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6272 
6273 	val = 0xfffc;
6274 	if (CHIP_IS_E3(bp)) {
6275 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6276 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6277 	}
6278 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6279 
6280 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6281 
6282 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6283 
6284 	if (!CHIP_IS_E1x(bp)) {
6285 		u8 abs_func_id;
6286 
6287 		/**
6288 		 * 4-port mode or 2-port mode we need to turn of master-enable
6289 		 * for everyone, after that, turn it back on for self.
6290 		 * so, we disregard multi-function or not, and always disable
6291 		 * for all functions on the given path, this means 0,2,4,6 for
6292 		 * path 0 and 1,3,5,7 for path 1
6293 		 */
6294 		for (abs_func_id = BP_PATH(bp);
6295 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6296 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6297 				REG_WR(bp,
6298 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6299 				    1);
6300 				continue;
6301 			}
6302 
6303 			bnx2x_pretend_func(bp, abs_func_id);
6304 			/* clear pf enable */
6305 			bnx2x_pf_disable(bp);
6306 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6307 		}
6308 	}
6309 
6310 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6311 	if (CHIP_IS_E1(bp)) {
6312 		/* enable HW interrupt from PXP on USDM overflow
6313 		   bit 16 on INT_MASK_0 */
6314 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6315 	}
6316 
6317 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6318 	bnx2x_init_pxp(bp);
6319 
6320 #ifdef __BIG_ENDIAN
6321 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6322 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6323 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6324 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6325 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6326 	/* make sure this value is 0 */
6327 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6328 
6329 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6330 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6331 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6332 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6333 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6334 #endif
6335 
6336 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6337 
6338 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6339 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6340 
6341 	/* let the HW do it's magic ... */
6342 	msleep(100);
6343 	/* finish PXP init */
6344 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6345 	if (val != 1) {
6346 		BNX2X_ERR("PXP2 CFG failed\n");
6347 		return -EBUSY;
6348 	}
6349 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6350 	if (val != 1) {
6351 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6352 		return -EBUSY;
6353 	}
6354 
6355 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6356 	 * have entries with value "0" and valid bit on.
6357 	 * This needs to be done by the first PF that is loaded in a path
6358 	 * (i.e. common phase)
6359 	 */
6360 	if (!CHIP_IS_E1x(bp)) {
6361 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6362  * (i.e. vnic3) to start even if it is marked as "scan-off".
6363  * This occurs when a different function (func2,3) is being marked
6364  * as "scan-off". Real-life scenario for example: if a driver is being
6365  * load-unloaded while func6,7 are down. This will cause the timer to access
6366  * the ilt, translate to a logical address and send a request to read/write.
6367  * Since the ilt for the function that is down is not valid, this will cause
6368  * a translation error which is unrecoverable.
6369  * The Workaround is intended to make sure that when this happens nothing fatal
6370  * will occur. The workaround:
6371  *	1.  First PF driver which loads on a path will:
6372  *		a.  After taking the chip out of reset, by using pretend,
6373  *		    it will write "0" to the following registers of
6374  *		    the other vnics.
6375  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6376  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6377  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6378  *		    And for itself it will write '1' to
6379  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6380  *		    dmae-operations (writing to pram for example.)
6381  *		    note: can be done for only function 6,7 but cleaner this
6382  *			  way.
6383  *		b.  Write zero+valid to the entire ILT.
6384  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6385  *		    VNIC3 (of that port). The range allocated will be the
6386  *		    entire ILT. This is needed to prevent  ILT range error.
6387  *	2.  Any PF driver load flow:
6388  *		a.  ILT update with the physical addresses of the allocated
6389  *		    logical pages.
6390  *		b.  Wait 20msec. - note that this timeout is needed to make
6391  *		    sure there are no requests in one of the PXP internal
6392  *		    queues with "old" ILT addresses.
6393  *		c.  PF enable in the PGLC.
6394  *		d.  Clear the was_error of the PF in the PGLC. (could have
6395  *		    occured while driver was down)
6396  *		e.  PF enable in the CFC (WEAK + STRONG)
6397  *		f.  Timers scan enable
6398  *	3.  PF driver unload flow:
6399  *		a.  Clear the Timers scan_en.
6400  *		b.  Polling for scan_on=0 for that PF.
6401  *		c.  Clear the PF enable bit in the PXP.
6402  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6403  *		e.  Write zero+valid to all ILT entries (The valid bit must
6404  *		    stay set)
6405  *		f.  If this is VNIC 3 of a port then also init
6406  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6407  *		    to the last enrty in the ILT.
6408  *
6409  *	Notes:
6410  *	Currently the PF error in the PGLC is non recoverable.
6411  *	In the future the there will be a recovery routine for this error.
6412  *	Currently attention is masked.
6413  *	Having an MCP lock on the load/unload process does not guarantee that
6414  *	there is no Timer disable during Func6/7 enable. This is because the
6415  *	Timers scan is currently being cleared by the MCP on FLR.
6416  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6417  *	there is error before clearing it. But the flow above is simpler and
6418  *	more general.
6419  *	All ILT entries are written by zero+valid and not just PF6/7
6420  *	ILT entries since in the future the ILT entries allocation for
6421  *	PF-s might be dynamic.
6422  */
6423 		struct ilt_client_info ilt_cli;
6424 		struct bnx2x_ilt ilt;
6425 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6426 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6427 
6428 		/* initialize dummy TM client */
6429 		ilt_cli.start = 0;
6430 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6431 		ilt_cli.client_num = ILT_CLIENT_TM;
6432 
6433 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6434 		 * Step 2: set the timers first/last ilt entry to point
6435 		 * to the entire range to prevent ILT range error for 3rd/4th
6436 		 * vnic	(this code assumes existance of the vnic)
6437 		 *
6438 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6439 		 * with dummy TM client
6440 		 *
6441 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6442 		 * and his brother are split registers
6443 		 */
6444 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6445 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6446 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6447 
6448 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6449 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6450 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6451 	}
6452 
6453 
6454 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6455 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6456 
6457 	if (!CHIP_IS_E1x(bp)) {
6458 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6459 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6460 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6461 
6462 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6463 
6464 		/* let the HW do it's magic ... */
6465 		do {
6466 			msleep(200);
6467 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6468 		} while (factor-- && (val != 1));
6469 
6470 		if (val != 1) {
6471 			BNX2X_ERR("ATC_INIT failed\n");
6472 			return -EBUSY;
6473 		}
6474 	}
6475 
6476 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6477 
6478 	/* clean the DMAE memory */
6479 	bp->dmae_ready = 1;
6480 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6481 
6482 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6483 
6484 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6485 
6486 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6487 
6488 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6489 
6490 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6491 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6492 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6493 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6494 
6495 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6496 
6497 
6498 	/* QM queues pointers table */
6499 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6500 
6501 	/* soft reset pulse */
6502 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6503 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6504 
6505 #ifdef BCM_CNIC
6506 	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6507 #endif
6508 
6509 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6510 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6511 	if (!CHIP_REV_IS_SLOW(bp))
6512 		/* enable hw interrupt from doorbell Q */
6513 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6514 
6515 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6516 
6517 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6518 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6519 
6520 	if (!CHIP_IS_E1(bp))
6521 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6522 
6523 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6524 		if (IS_MF_AFEX(bp)) {
6525 			/* configure that VNTag and VLAN headers must be
6526 			 * received in afex mode
6527 			 */
6528 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6529 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6530 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6531 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6532 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6533 		} else {
6534 			/* Bit-map indicating which L2 hdrs may appear
6535 			 * after the basic Ethernet header
6536 			 */
6537 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6538 			       bp->path_has_ovlan ? 7 : 6);
6539 		}
6540 	}
6541 
6542 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6543 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6544 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6545 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6546 
6547 	if (!CHIP_IS_E1x(bp)) {
6548 		/* reset VFC memories */
6549 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6550 			   VFC_MEMORIES_RST_REG_CAM_RST |
6551 			   VFC_MEMORIES_RST_REG_RAM_RST);
6552 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6553 			   VFC_MEMORIES_RST_REG_CAM_RST |
6554 			   VFC_MEMORIES_RST_REG_RAM_RST);
6555 
6556 		msleep(20);
6557 	}
6558 
6559 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6560 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6561 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6562 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6563 
6564 	/* sync semi rtc */
6565 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6566 	       0x80000000);
6567 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6568 	       0x80000000);
6569 
6570 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6571 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6572 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6573 
6574 	if (!CHIP_IS_E1x(bp)) {
6575 		if (IS_MF_AFEX(bp)) {
6576 			/* configure that VNTag and VLAN headers must be
6577 			 * sent in afex mode
6578 			 */
6579 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6580 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6581 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6582 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6583 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6584 		} else {
6585 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6586 			       bp->path_has_ovlan ? 7 : 6);
6587 		}
6588 	}
6589 
6590 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6591 
6592 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6593 
6594 #ifdef BCM_CNIC
6595 	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6596 	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6597 	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6598 	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6599 	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6600 	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6601 	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6602 	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6603 	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6604 	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6605 #endif
6606 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6607 
6608 	if (sizeof(union cdu_context) != 1024)
6609 		/* we currently assume that a context is 1024 bytes */
6610 		dev_alert(&bp->pdev->dev,
6611 			  "please adjust the size of cdu_context(%ld)\n",
6612 			  (long)sizeof(union cdu_context));
6613 
6614 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6615 	val = (4 << 24) + (0 << 12) + 1024;
6616 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6617 
6618 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6619 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6620 	/* enable context validation interrupt from CFC */
6621 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6622 
6623 	/* set the thresholds to prevent CFC/CDU race */
6624 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6625 
6626 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6627 
6628 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6629 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6630 
6631 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6632 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6633 
6634 	/* Reset PCIE errors for debug */
6635 	REG_WR(bp, 0x2814, 0xffffffff);
6636 	REG_WR(bp, 0x3820, 0xffffffff);
6637 
6638 	if (!CHIP_IS_E1x(bp)) {
6639 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6640 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6641 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6642 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6643 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6644 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6645 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6646 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6647 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6648 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6649 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6650 	}
6651 
6652 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6653 	if (!CHIP_IS_E1(bp)) {
6654 		/* in E3 this done in per-port section */
6655 		if (!CHIP_IS_E3(bp))
6656 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6657 	}
6658 	if (CHIP_IS_E1H(bp))
6659 		/* not applicable for E2 (and above ...) */
6660 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6661 
6662 	if (CHIP_REV_IS_SLOW(bp))
6663 		msleep(200);
6664 
6665 	/* finish CFC init */
6666 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6667 	if (val != 1) {
6668 		BNX2X_ERR("CFC LL_INIT failed\n");
6669 		return -EBUSY;
6670 	}
6671 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6672 	if (val != 1) {
6673 		BNX2X_ERR("CFC AC_INIT failed\n");
6674 		return -EBUSY;
6675 	}
6676 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6677 	if (val != 1) {
6678 		BNX2X_ERR("CFC CAM_INIT failed\n");
6679 		return -EBUSY;
6680 	}
6681 	REG_WR(bp, CFC_REG_DEBUG0, 0);
6682 
6683 	if (CHIP_IS_E1(bp)) {
6684 		/* read NIG statistic
6685 		   to see if this is our first up since powerup */
6686 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6687 		val = *bnx2x_sp(bp, wb_data[0]);
6688 
6689 		/* do internal memory self test */
6690 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6691 			BNX2X_ERR("internal mem self test failed\n");
6692 			return -EBUSY;
6693 		}
6694 	}
6695 
6696 	bnx2x_setup_fan_failure_detection(bp);
6697 
6698 	/* clear PXP2 attentions */
6699 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6700 
6701 	bnx2x_enable_blocks_attention(bp);
6702 	bnx2x_enable_blocks_parity(bp);
6703 
6704 	if (!BP_NOMCP(bp)) {
6705 		if (CHIP_IS_E1x(bp))
6706 			bnx2x__common_init_phy(bp);
6707 	} else
6708 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6709 
6710 	return 0;
6711 }
6712 
6713 /**
6714  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6715  *
6716  * @bp:		driver handle
6717  */
6718 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6719 {
6720 	int rc = bnx2x_init_hw_common(bp);
6721 
6722 	if (rc)
6723 		return rc;
6724 
6725 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6726 	if (!BP_NOMCP(bp))
6727 		bnx2x__common_init_phy(bp);
6728 
6729 	return 0;
6730 }
6731 
6732 static int bnx2x_init_hw_port(struct bnx2x *bp)
6733 {
6734 	int port = BP_PORT(bp);
6735 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6736 	u32 low, high;
6737 	u32 val;
6738 
6739 	bnx2x__link_reset(bp);
6740 
6741 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
6742 
6743 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6744 
6745 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6746 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6747 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6748 
6749 	/* Timers bug workaround: disables the pf_master bit in pglue at
6750 	 * common phase, we need to enable it here before any dmae access are
6751 	 * attempted. Therefore we manually added the enable-master to the
6752 	 * port phase (it also happens in the function phase)
6753 	 */
6754 	if (!CHIP_IS_E1x(bp))
6755 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6756 
6757 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6758 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6759 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6760 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6761 
6762 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6763 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6764 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6765 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6766 
6767 	/* QM cid (connection) count */
6768 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6769 
6770 #ifdef BCM_CNIC
6771 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
6772 	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6773 	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6774 #endif
6775 
6776 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6777 
6778 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6779 		bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6780 
6781 		if (IS_MF(bp))
6782 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6783 		else if (bp->dev->mtu > 4096) {
6784 			if (bp->flags & ONE_PORT_FLAG)
6785 				low = 160;
6786 			else {
6787 				val = bp->dev->mtu;
6788 				/* (24*1024 + val*4)/256 */
6789 				low = 96 + (val/64) +
6790 						((val % 64) ? 1 : 0);
6791 			}
6792 		} else
6793 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6794 		high = low + 56;	/* 14*1024/256 */
6795 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6796 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6797 	}
6798 
6799 	if (CHIP_MODE_IS_4_PORT(bp))
6800 		REG_WR(bp, (BP_PORT(bp) ?
6801 			    BRB1_REG_MAC_GUARANTIED_1 :
6802 			    BRB1_REG_MAC_GUARANTIED_0), 40);
6803 
6804 
6805 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6806 	if (CHIP_IS_E3B0(bp)) {
6807 		if (IS_MF_AFEX(bp)) {
6808 			/* configure headers for AFEX mode */
6809 			REG_WR(bp, BP_PORT(bp) ?
6810 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6811 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
6812 			REG_WR(bp, BP_PORT(bp) ?
6813 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
6814 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
6815 			REG_WR(bp, BP_PORT(bp) ?
6816 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
6817 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
6818 		} else {
6819 			/* Ovlan exists only if we are in multi-function +
6820 			 * switch-dependent mode, in switch-independent there
6821 			 * is no ovlan headers
6822 			 */
6823 			REG_WR(bp, BP_PORT(bp) ?
6824 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6825 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6826 			       (bp->path_has_ovlan ? 7 : 6));
6827 		}
6828 	}
6829 
6830 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6831 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6832 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6833 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6834 
6835 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6836 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6837 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6838 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6839 
6840 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6841 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6842 
6843 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6844 
6845 	if (CHIP_IS_E1x(bp)) {
6846 		/* configure PBF to work without PAUSE mtu 9000 */
6847 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6848 
6849 		/* update threshold */
6850 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6851 		/* update init credit */
6852 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6853 
6854 		/* probe changes */
6855 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6856 		udelay(50);
6857 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6858 	}
6859 
6860 #ifdef BCM_CNIC
6861 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6862 #endif
6863 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6864 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6865 
6866 	if (CHIP_IS_E1(bp)) {
6867 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6868 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6869 	}
6870 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6871 
6872 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6873 
6874 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6875 	/* init aeu_mask_attn_func_0/1:
6876 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6877 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6878 	 *             bits 4-7 are used for "per vn group attention" */
6879 	val = IS_MF(bp) ? 0xF7 : 0x7;
6880 	/* Enable DCBX attention for all but E1 */
6881 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6882 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6883 
6884 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6885 
6886 	if (!CHIP_IS_E1x(bp)) {
6887 		/* Bit-map indicating which L2 hdrs may appear after the
6888 		 * basic Ethernet header
6889 		 */
6890 		if (IS_MF_AFEX(bp))
6891 			REG_WR(bp, BP_PORT(bp) ?
6892 			       NIG_REG_P1_HDRS_AFTER_BASIC :
6893 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
6894 		else
6895 			REG_WR(bp, BP_PORT(bp) ?
6896 			       NIG_REG_P1_HDRS_AFTER_BASIC :
6897 			       NIG_REG_P0_HDRS_AFTER_BASIC,
6898 			       IS_MF_SD(bp) ? 7 : 6);
6899 
6900 		if (CHIP_IS_E3(bp))
6901 			REG_WR(bp, BP_PORT(bp) ?
6902 				   NIG_REG_LLH1_MF_MODE :
6903 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6904 	}
6905 	if (!CHIP_IS_E3(bp))
6906 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6907 
6908 	if (!CHIP_IS_E1(bp)) {
6909 		/* 0x2 disable mf_ov, 0x1 enable */
6910 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6911 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6912 
6913 		if (!CHIP_IS_E1x(bp)) {
6914 			val = 0;
6915 			switch (bp->mf_mode) {
6916 			case MULTI_FUNCTION_SD:
6917 				val = 1;
6918 				break;
6919 			case MULTI_FUNCTION_SI:
6920 			case MULTI_FUNCTION_AFEX:
6921 				val = 2;
6922 				break;
6923 			}
6924 
6925 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6926 						  NIG_REG_LLH0_CLS_TYPE), val);
6927 		}
6928 		{
6929 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6930 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6931 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6932 		}
6933 	}
6934 
6935 
6936 	/* If SPIO5 is set to generate interrupts, enable it for this port */
6937 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6938 	if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6939 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6940 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6941 		val = REG_RD(bp, reg_addr);
6942 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6943 		REG_WR(bp, reg_addr, val);
6944 	}
6945 
6946 	return 0;
6947 }
6948 
6949 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6950 {
6951 	int reg;
6952 	u32 wb_write[2];
6953 
6954 	if (CHIP_IS_E1(bp))
6955 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6956 	else
6957 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6958 
6959 	wb_write[0] = ONCHIP_ADDR1(addr);
6960 	wb_write[1] = ONCHIP_ADDR2(addr);
6961 	REG_WR_DMAE(bp, reg, wb_write, 2);
6962 }
6963 
6964 static void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
6965 				   u8 idu_sb_id, bool is_Pf)
6966 {
6967 	u32 data, ctl, cnt = 100;
6968 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
6969 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
6970 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
6971 	u32 sb_bit =  1 << (idu_sb_id%32);
6972 	u32 func_encode = func | (is_Pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
6973 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
6974 
6975 	/* Not supported in BC mode */
6976 	if (CHIP_INT_MODE_IS_BC(bp))
6977 		return;
6978 
6979 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
6980 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
6981 		IGU_REGULAR_CLEANUP_SET				|
6982 		IGU_REGULAR_BCLEANUP;
6983 
6984 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
6985 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
6986 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
6987 
6988 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
6989 			 data, igu_addr_data);
6990 	REG_WR(bp, igu_addr_data, data);
6991 	mmiowb();
6992 	barrier();
6993 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
6994 			  ctl, igu_addr_ctl);
6995 	REG_WR(bp, igu_addr_ctl, ctl);
6996 	mmiowb();
6997 	barrier();
6998 
6999 	/* wait for clean up to finish */
7000 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7001 		msleep(20);
7002 
7003 
7004 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7005 		DP(NETIF_MSG_HW,
7006 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7007 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7008 	}
7009 }
7010 
7011 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7012 {
7013 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7014 }
7015 
7016 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7017 {
7018 	u32 i, base = FUNC_ILT_BASE(func);
7019 	for (i = base; i < base + ILT_PER_FUNC; i++)
7020 		bnx2x_ilt_wr(bp, i, 0);
7021 }
7022 
7023 static int bnx2x_init_hw_func(struct bnx2x *bp)
7024 {
7025 	int port = BP_PORT(bp);
7026 	int func = BP_FUNC(bp);
7027 	int init_phase = PHASE_PF0 + func;
7028 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7029 	u16 cdu_ilt_start;
7030 	u32 addr, val;
7031 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7032 	int i, main_mem_width, rc;
7033 
7034 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7035 
7036 	/* FLR cleanup - hmmm */
7037 	if (!CHIP_IS_E1x(bp)) {
7038 		rc = bnx2x_pf_flr_clnup(bp);
7039 		if (rc)
7040 			return rc;
7041 	}
7042 
7043 	/* set MSI reconfigure capability */
7044 	if (bp->common.int_block == INT_BLOCK_HC) {
7045 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7046 		val = REG_RD(bp, addr);
7047 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7048 		REG_WR(bp, addr, val);
7049 	}
7050 
7051 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7052 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7053 
7054 	ilt = BP_ILT(bp);
7055 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7056 
7057 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7058 		ilt->lines[cdu_ilt_start + i].page =
7059 			bp->context.vcxt + (ILT_PAGE_CIDS * i);
7060 		ilt->lines[cdu_ilt_start + i].page_mapping =
7061 			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
7062 		/* cdu ilt pages are allocated manually so there's no need to
7063 		set the size */
7064 	}
7065 	bnx2x_ilt_init_op(bp, INITOP_SET);
7066 
7067 #ifdef BCM_CNIC
7068 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7069 
7070 	/* T1 hash bits value determines the T1 number of entries */
7071 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7072 #endif
7073 
7074 #ifndef BCM_CNIC
7075 	/* set NIC mode */
7076 	REG_WR(bp, PRS_REG_NIC_MODE, 1);
7077 #endif  /* BCM_CNIC */
7078 
7079 	if (!CHIP_IS_E1x(bp)) {
7080 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7081 
7082 		/* Turn on a single ISR mode in IGU if driver is going to use
7083 		 * INT#x or MSI
7084 		 */
7085 		if (!(bp->flags & USING_MSIX_FLAG))
7086 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7087 		/*
7088 		 * Timers workaround bug: function init part.
7089 		 * Need to wait 20msec after initializing ILT,
7090 		 * needed to make sure there are no requests in
7091 		 * one of the PXP internal queues with "old" ILT addresses
7092 		 */
7093 		msleep(20);
7094 		/*
7095 		 * Master enable - Due to WB DMAE writes performed before this
7096 		 * register is re-initialized as part of the regular function
7097 		 * init
7098 		 */
7099 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7100 		/* Enable the function in IGU */
7101 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7102 	}
7103 
7104 	bp->dmae_ready = 1;
7105 
7106 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7107 
7108 	if (!CHIP_IS_E1x(bp))
7109 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7110 
7111 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7112 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7113 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7114 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7115 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7116 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7117 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7118 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7119 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7120 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7121 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7122 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7123 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7124 
7125 	if (!CHIP_IS_E1x(bp))
7126 		REG_WR(bp, QM_REG_PF_EN, 1);
7127 
7128 	if (!CHIP_IS_E1x(bp)) {
7129 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7130 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7131 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7132 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7133 	}
7134 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7135 
7136 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7137 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7138 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7139 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7140 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7141 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7142 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7143 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7144 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7145 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7146 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7147 	if (!CHIP_IS_E1x(bp))
7148 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7149 
7150 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7151 
7152 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7153 
7154 	if (!CHIP_IS_E1x(bp))
7155 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7156 
7157 	if (IS_MF(bp)) {
7158 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7159 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7160 	}
7161 
7162 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7163 
7164 	/* HC init per function */
7165 	if (bp->common.int_block == INT_BLOCK_HC) {
7166 		if (CHIP_IS_E1H(bp)) {
7167 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7168 
7169 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7170 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7171 		}
7172 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7173 
7174 	} else {
7175 		int num_segs, sb_idx, prod_offset;
7176 
7177 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7178 
7179 		if (!CHIP_IS_E1x(bp)) {
7180 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7181 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7182 		}
7183 
7184 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7185 
7186 		if (!CHIP_IS_E1x(bp)) {
7187 			int dsb_idx = 0;
7188 			/**
7189 			 * Producer memory:
7190 			 * E2 mode: address 0-135 match to the mapping memory;
7191 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7192 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7193 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7194 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7195 			 * 144-147 reserved.
7196 			 *
7197 			 * E1.5 mode - In backward compatible mode;
7198 			 * for non default SB; each even line in the memory
7199 			 * holds the U producer and each odd line hold
7200 			 * the C producer. The first 128 producers are for
7201 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7202 			 * producers are for the DSB for each PF.
7203 			 * Each PF has five segments: (the order inside each
7204 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7205 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7206 			 * 144-147 attn prods;
7207 			 */
7208 			/* non-default-status-blocks */
7209 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7210 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7211 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7212 				prod_offset = (bp->igu_base_sb + sb_idx) *
7213 					num_segs;
7214 
7215 				for (i = 0; i < num_segs; i++) {
7216 					addr = IGU_REG_PROD_CONS_MEMORY +
7217 							(prod_offset + i) * 4;
7218 					REG_WR(bp, addr, 0);
7219 				}
7220 				/* send consumer update with value 0 */
7221 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7222 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7223 				bnx2x_igu_clear_sb(bp,
7224 						   bp->igu_base_sb + sb_idx);
7225 			}
7226 
7227 			/* default-status-blocks */
7228 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7229 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7230 
7231 			if (CHIP_MODE_IS_4_PORT(bp))
7232 				dsb_idx = BP_FUNC(bp);
7233 			else
7234 				dsb_idx = BP_VN(bp);
7235 
7236 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7237 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7238 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7239 
7240 			/*
7241 			 * igu prods come in chunks of E1HVN_MAX (4) -
7242 			 * does not matters what is the current chip mode
7243 			 */
7244 			for (i = 0; i < (num_segs * E1HVN_MAX);
7245 			     i += E1HVN_MAX) {
7246 				addr = IGU_REG_PROD_CONS_MEMORY +
7247 							(prod_offset + i)*4;
7248 				REG_WR(bp, addr, 0);
7249 			}
7250 			/* send consumer update with 0 */
7251 			if (CHIP_INT_MODE_IS_BC(bp)) {
7252 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7253 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7254 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7255 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7256 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7257 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7258 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7259 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7260 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7261 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7262 			} else {
7263 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7264 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7265 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7266 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7267 			}
7268 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7269 
7270 			/* !!! these should become driver const once
7271 			   rf-tool supports split-68 const */
7272 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7273 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7274 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7275 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7276 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7277 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7278 		}
7279 	}
7280 
7281 	/* Reset PCIE errors for debug */
7282 	REG_WR(bp, 0x2114, 0xffffffff);
7283 	REG_WR(bp, 0x2120, 0xffffffff);
7284 
7285 	if (CHIP_IS_E1x(bp)) {
7286 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7287 		main_mem_base = HC_REG_MAIN_MEMORY +
7288 				BP_PORT(bp) * (main_mem_size * 4);
7289 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7290 		main_mem_width = 8;
7291 
7292 		val = REG_RD(bp, main_mem_prty_clr);
7293 		if (val)
7294 			DP(NETIF_MSG_HW,
7295 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7296 			   val);
7297 
7298 		/* Clear "false" parity errors in MSI-X table */
7299 		for (i = main_mem_base;
7300 		     i < main_mem_base + main_mem_size * 4;
7301 		     i += main_mem_width) {
7302 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7303 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7304 					 i, main_mem_width / 4);
7305 		}
7306 		/* Clear HC parity attention */
7307 		REG_RD(bp, main_mem_prty_clr);
7308 	}
7309 
7310 #ifdef BNX2X_STOP_ON_ERROR
7311 	/* Enable STORMs SP logging */
7312 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7313 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7314 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7315 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7316 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7317 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7318 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7319 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7320 #endif
7321 
7322 	bnx2x_phy_probe(&bp->link_params);
7323 
7324 	return 0;
7325 }
7326 
7327 
7328 void bnx2x_free_mem(struct bnx2x *bp)
7329 {
7330 	/* fastpath */
7331 	bnx2x_free_fp_mem(bp);
7332 	/* end of fastpath */
7333 
7334 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7335 		       sizeof(struct host_sp_status_block));
7336 
7337 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7338 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7339 
7340 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7341 		       sizeof(struct bnx2x_slowpath));
7342 
7343 	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
7344 		       bp->context.size);
7345 
7346 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7347 
7348 	BNX2X_FREE(bp->ilt->lines);
7349 
7350 #ifdef BCM_CNIC
7351 	if (!CHIP_IS_E1x(bp))
7352 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7353 			       sizeof(struct host_hc_status_block_e2));
7354 	else
7355 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7356 			       sizeof(struct host_hc_status_block_e1x));
7357 
7358 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7359 #endif
7360 
7361 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7362 
7363 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7364 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7365 }
7366 
7367 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7368 {
7369 	int num_groups;
7370 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7371 
7372 	/* number of queues for statistics is number of eth queues + FCoE */
7373 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7374 
7375 	/* Total number of FW statistics requests =
7376 	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7377 	 * num of queues
7378 	 */
7379 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7380 
7381 
7382 	/* Request is built from stats_query_header and an array of
7383 	 * stats_query_cmd_group each of which contains
7384 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7385 	 * configured in the stats_query_header.
7386 	 */
7387 	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7388 		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7389 
7390 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7391 			num_groups * sizeof(struct stats_query_cmd_group);
7392 
7393 	/* Data for statistics requests + stats_conter
7394 	 *
7395 	 * stats_counter holds per-STORM counters that are incremented
7396 	 * when STORM has finished with the current request.
7397 	 *
7398 	 * memory for FCoE offloaded statistics are counted anyway,
7399 	 * even if they will not be sent.
7400 	 */
7401 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7402 		sizeof(struct per_pf_stats) +
7403 		sizeof(struct fcoe_statistics_params) +
7404 		sizeof(struct per_queue_stats) * num_queue_stats +
7405 		sizeof(struct stats_counter);
7406 
7407 	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7408 			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7409 
7410 	/* Set shortcuts */
7411 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7412 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7413 
7414 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7415 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7416 
7417 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7418 				   bp->fw_stats_req_sz;
7419 	return 0;
7420 
7421 alloc_mem_err:
7422 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7423 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7424 	BNX2X_ERR("Can't allocate memory\n");
7425 	return -ENOMEM;
7426 }
7427 
7428 
7429 int bnx2x_alloc_mem(struct bnx2x *bp)
7430 {
7431 #ifdef BCM_CNIC
7432 	if (!CHIP_IS_E1x(bp))
7433 		/* size = the status block + ramrod buffers */
7434 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7435 				sizeof(struct host_hc_status_block_e2));
7436 	else
7437 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7438 				sizeof(struct host_hc_status_block_e1x));
7439 
7440 	/* allocate searcher T2 table */
7441 	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7442 #endif
7443 
7444 
7445 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7446 			sizeof(struct host_sp_status_block));
7447 
7448 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7449 			sizeof(struct bnx2x_slowpath));
7450 
7451 #ifdef BCM_CNIC
7452 	/* write address to which L5 should insert its values */
7453 	bp->cnic_eth_dev.addr_drv_info_to_mcp = &bp->slowpath->drv_info_to_mcp;
7454 #endif
7455 
7456 	/* Allocated memory for FW statistics  */
7457 	if (bnx2x_alloc_fw_stats_mem(bp))
7458 		goto alloc_mem_err;
7459 
7460 	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7461 
7462 	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7463 			bp->context.size);
7464 
7465 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7466 
7467 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7468 		goto alloc_mem_err;
7469 
7470 	/* Slow path ring */
7471 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7472 
7473 	/* EQ */
7474 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7475 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7476 
7477 
7478 	/* fastpath */
7479 	/* need to be done at the end, since it's self adjusting to amount
7480 	 * of memory available for RSS queues
7481 	 */
7482 	if (bnx2x_alloc_fp_mem(bp))
7483 		goto alloc_mem_err;
7484 	return 0;
7485 
7486 alloc_mem_err:
7487 	bnx2x_free_mem(bp);
7488 	BNX2X_ERR("Can't allocate memory\n");
7489 	return -ENOMEM;
7490 }
7491 
7492 /*
7493  * Init service functions
7494  */
7495 
7496 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7497 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7498 		      int mac_type, unsigned long *ramrod_flags)
7499 {
7500 	int rc;
7501 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7502 
7503 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7504 
7505 	/* Fill general parameters */
7506 	ramrod_param.vlan_mac_obj = obj;
7507 	ramrod_param.ramrod_flags = *ramrod_flags;
7508 
7509 	/* Fill a user request section if needed */
7510 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7511 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7512 
7513 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7514 
7515 		/* Set the command: ADD or DEL */
7516 		if (set)
7517 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7518 		else
7519 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7520 	}
7521 
7522 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7523 	if (rc < 0)
7524 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7525 	return rc;
7526 }
7527 
7528 int bnx2x_del_all_macs(struct bnx2x *bp,
7529 		       struct bnx2x_vlan_mac_obj *mac_obj,
7530 		       int mac_type, bool wait_for_comp)
7531 {
7532 	int rc;
7533 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7534 
7535 	/* Wait for completion of requested */
7536 	if (wait_for_comp)
7537 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7538 
7539 	/* Set the mac type of addresses we want to clear */
7540 	__set_bit(mac_type, &vlan_mac_flags);
7541 
7542 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7543 	if (rc < 0)
7544 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7545 
7546 	return rc;
7547 }
7548 
7549 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7550 {
7551 	unsigned long ramrod_flags = 0;
7552 
7553 #ifdef BCM_CNIC
7554 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
7555 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
7556 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7557 		   "Ignoring Zero MAC for STORAGE SD mode\n");
7558 		return 0;
7559 	}
7560 #endif
7561 
7562 	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7563 
7564 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7565 	/* Eth MAC is set on RSS leading client (fp[0]) */
7566 	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7567 				 BNX2X_ETH_MAC, &ramrod_flags);
7568 }
7569 
7570 int bnx2x_setup_leading(struct bnx2x *bp)
7571 {
7572 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7573 }
7574 
7575 /**
7576  * bnx2x_set_int_mode - configure interrupt mode
7577  *
7578  * @bp:		driver handle
7579  *
7580  * In case of MSI-X it will also try to enable MSI-X.
7581  */
7582 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7583 {
7584 	switch (int_mode) {
7585 	case INT_MODE_MSI:
7586 		bnx2x_enable_msi(bp);
7587 		/* falling through... */
7588 	case INT_MODE_INTx:
7589 		bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7590 		BNX2X_DEV_INFO("set number of queues to 1\n");
7591 		break;
7592 	default:
7593 		/* Set number of queues for MSI-X mode */
7594 		bnx2x_set_num_queues(bp);
7595 
7596 		BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
7597 
7598 		/* if we can't use MSI-X we only need one fp,
7599 		 * so try to enable MSI-X with the requested number of fp's
7600 		 * and fallback to MSI or legacy INTx with one fp
7601 		 */
7602 		if (bnx2x_enable_msix(bp) ||
7603 		    bp->flags & USING_SINGLE_MSIX_FLAG) {
7604 			/* failed to enable multiple MSI-X */
7605 			BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
7606 				       bp->num_queues, 1 + NON_ETH_CONTEXT_USE);
7607 
7608 			bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7609 
7610 			/* Try to enable MSI */
7611 			if (!(bp->flags & USING_SINGLE_MSIX_FLAG) &&
7612 			    !(bp->flags & DISABLE_MSI_FLAG))
7613 				bnx2x_enable_msi(bp);
7614 		}
7615 		break;
7616 	}
7617 }
7618 
7619 /* must be called prioir to any HW initializations */
7620 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7621 {
7622 	return L2_ILT_LINES(bp);
7623 }
7624 
7625 void bnx2x_ilt_set_info(struct bnx2x *bp)
7626 {
7627 	struct ilt_client_info *ilt_client;
7628 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7629 	u16 line = 0;
7630 
7631 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7632 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7633 
7634 	/* CDU */
7635 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7636 	ilt_client->client_num = ILT_CLIENT_CDU;
7637 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7638 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7639 	ilt_client->start = line;
7640 	line += bnx2x_cid_ilt_lines(bp);
7641 #ifdef BCM_CNIC
7642 	line += CNIC_ILT_LINES;
7643 #endif
7644 	ilt_client->end = line - 1;
7645 
7646 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7647 	   ilt_client->start,
7648 	   ilt_client->end,
7649 	   ilt_client->page_size,
7650 	   ilt_client->flags,
7651 	   ilog2(ilt_client->page_size >> 12));
7652 
7653 	/* QM */
7654 	if (QM_INIT(bp->qm_cid_count)) {
7655 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7656 		ilt_client->client_num = ILT_CLIENT_QM;
7657 		ilt_client->page_size = QM_ILT_PAGE_SZ;
7658 		ilt_client->flags = 0;
7659 		ilt_client->start = line;
7660 
7661 		/* 4 bytes for each cid */
7662 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7663 							 QM_ILT_PAGE_SZ);
7664 
7665 		ilt_client->end = line - 1;
7666 
7667 		DP(NETIF_MSG_IFUP,
7668 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7669 		   ilt_client->start,
7670 		   ilt_client->end,
7671 		   ilt_client->page_size,
7672 		   ilt_client->flags,
7673 		   ilog2(ilt_client->page_size >> 12));
7674 
7675 	}
7676 	/* SRC */
7677 	ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7678 #ifdef BCM_CNIC
7679 	ilt_client->client_num = ILT_CLIENT_SRC;
7680 	ilt_client->page_size = SRC_ILT_PAGE_SZ;
7681 	ilt_client->flags = 0;
7682 	ilt_client->start = line;
7683 	line += SRC_ILT_LINES;
7684 	ilt_client->end = line - 1;
7685 
7686 	DP(NETIF_MSG_IFUP,
7687 	   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7688 	   ilt_client->start,
7689 	   ilt_client->end,
7690 	   ilt_client->page_size,
7691 	   ilt_client->flags,
7692 	   ilog2(ilt_client->page_size >> 12));
7693 
7694 #else
7695 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7696 #endif
7697 
7698 	/* TM */
7699 	ilt_client = &ilt->clients[ILT_CLIENT_TM];
7700 #ifdef BCM_CNIC
7701 	ilt_client->client_num = ILT_CLIENT_TM;
7702 	ilt_client->page_size = TM_ILT_PAGE_SZ;
7703 	ilt_client->flags = 0;
7704 	ilt_client->start = line;
7705 	line += TM_ILT_LINES;
7706 	ilt_client->end = line - 1;
7707 
7708 	DP(NETIF_MSG_IFUP,
7709 	   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7710 	   ilt_client->start,
7711 	   ilt_client->end,
7712 	   ilt_client->page_size,
7713 	   ilt_client->flags,
7714 	   ilog2(ilt_client->page_size >> 12));
7715 
7716 #else
7717 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7718 #endif
7719 	BUG_ON(line > ILT_MAX_LINES);
7720 }
7721 
7722 /**
7723  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7724  *
7725  * @bp:			driver handle
7726  * @fp:			pointer to fastpath
7727  * @init_params:	pointer to parameters structure
7728  *
7729  * parameters configured:
7730  *      - HC configuration
7731  *      - Queue's CDU context
7732  */
7733 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7734 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7735 {
7736 
7737 	u8 cos;
7738 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7739 	if (!IS_FCOE_FP(fp)) {
7740 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7741 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7742 
7743 		/* If HC is supporterd, enable host coalescing in the transition
7744 		 * to INIT state.
7745 		 */
7746 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7747 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7748 
7749 		/* HC rate */
7750 		init_params->rx.hc_rate = bp->rx_ticks ?
7751 			(1000000 / bp->rx_ticks) : 0;
7752 		init_params->tx.hc_rate = bp->tx_ticks ?
7753 			(1000000 / bp->tx_ticks) : 0;
7754 
7755 		/* FW SB ID */
7756 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7757 			fp->fw_sb_id;
7758 
7759 		/*
7760 		 * CQ index among the SB indices: FCoE clients uses the default
7761 		 * SB, therefore it's different.
7762 		 */
7763 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7764 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7765 	}
7766 
7767 	/* set maximum number of COSs supported by this queue */
7768 	init_params->max_cos = fp->max_cos;
7769 
7770 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
7771 	    fp->index, init_params->max_cos);
7772 
7773 	/* set the context pointers queue object */
7774 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7775 		init_params->cxts[cos] =
7776 			&bp->context.vcxt[fp->txdata[cos].cid].eth;
7777 }
7778 
7779 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7780 			struct bnx2x_queue_state_params *q_params,
7781 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7782 			int tx_index, bool leading)
7783 {
7784 	memset(tx_only_params, 0, sizeof(*tx_only_params));
7785 
7786 	/* Set the command */
7787 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7788 
7789 	/* Set tx-only QUEUE flags: don't zero statistics */
7790 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7791 
7792 	/* choose the index of the cid to send the slow path on */
7793 	tx_only_params->cid_index = tx_index;
7794 
7795 	/* Set general TX_ONLY_SETUP parameters */
7796 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7797 
7798 	/* Set Tx TX_ONLY_SETUP parameters */
7799 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7800 
7801 	DP(NETIF_MSG_IFUP,
7802 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
7803 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7804 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7805 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7806 
7807 	/* send the ramrod */
7808 	return bnx2x_queue_state_change(bp, q_params);
7809 }
7810 
7811 
7812 /**
7813  * bnx2x_setup_queue - setup queue
7814  *
7815  * @bp:		driver handle
7816  * @fp:		pointer to fastpath
7817  * @leading:	is leading
7818  *
7819  * This function performs 2 steps in a Queue state machine
7820  *      actually: 1) RESET->INIT 2) INIT->SETUP
7821  */
7822 
7823 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7824 		       bool leading)
7825 {
7826 	struct bnx2x_queue_state_params q_params = {NULL};
7827 	struct bnx2x_queue_setup_params *setup_params =
7828 						&q_params.params.setup;
7829 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7830 						&q_params.params.tx_only;
7831 	int rc;
7832 	u8 tx_index;
7833 
7834 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
7835 
7836 	/* reset IGU state skip FCoE L2 queue */
7837 	if (!IS_FCOE_FP(fp))
7838 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7839 			     IGU_INT_ENABLE, 0);
7840 
7841 	q_params.q_obj = &fp->q_obj;
7842 	/* We want to wait for completion in this context */
7843 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7844 
7845 	/* Prepare the INIT parameters */
7846 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7847 
7848 	/* Set the command */
7849 	q_params.cmd = BNX2X_Q_CMD_INIT;
7850 
7851 	/* Change the state to INIT */
7852 	rc = bnx2x_queue_state_change(bp, &q_params);
7853 	if (rc) {
7854 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7855 		return rc;
7856 	}
7857 
7858 	DP(NETIF_MSG_IFUP, "init complete\n");
7859 
7860 
7861 	/* Now move the Queue to the SETUP state... */
7862 	memset(setup_params, 0, sizeof(*setup_params));
7863 
7864 	/* Set QUEUE flags */
7865 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7866 
7867 	/* Set general SETUP parameters */
7868 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7869 				FIRST_TX_COS_INDEX);
7870 
7871 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7872 			    &setup_params->rxq_params);
7873 
7874 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7875 			   FIRST_TX_COS_INDEX);
7876 
7877 	/* Set the command */
7878 	q_params.cmd = BNX2X_Q_CMD_SETUP;
7879 
7880 	/* Change the state to SETUP */
7881 	rc = bnx2x_queue_state_change(bp, &q_params);
7882 	if (rc) {
7883 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7884 		return rc;
7885 	}
7886 
7887 	/* loop through the relevant tx-only indices */
7888 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7889 	      tx_index < fp->max_cos;
7890 	      tx_index++) {
7891 
7892 		/* prepare and send tx-only ramrod*/
7893 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7894 					  tx_only_params, tx_index, leading);
7895 		if (rc) {
7896 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7897 				  fp->index, tx_index);
7898 			return rc;
7899 		}
7900 	}
7901 
7902 	return rc;
7903 }
7904 
7905 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7906 {
7907 	struct bnx2x_fastpath *fp = &bp->fp[index];
7908 	struct bnx2x_fp_txdata *txdata;
7909 	struct bnx2x_queue_state_params q_params = {NULL};
7910 	int rc, tx_index;
7911 
7912 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
7913 
7914 	q_params.q_obj = &fp->q_obj;
7915 	/* We want to wait for completion in this context */
7916 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7917 
7918 
7919 	/* close tx-only connections */
7920 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7921 	     tx_index < fp->max_cos;
7922 	     tx_index++){
7923 
7924 		/* ascertain this is a normal queue*/
7925 		txdata = &fp->txdata[tx_index];
7926 
7927 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
7928 							txdata->txq_index);
7929 
7930 		/* send halt terminate on tx-only connection */
7931 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7932 		memset(&q_params.params.terminate, 0,
7933 		       sizeof(q_params.params.terminate));
7934 		q_params.params.terminate.cid_index = tx_index;
7935 
7936 		rc = bnx2x_queue_state_change(bp, &q_params);
7937 		if (rc)
7938 			return rc;
7939 
7940 		/* send halt terminate on tx-only connection */
7941 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7942 		memset(&q_params.params.cfc_del, 0,
7943 		       sizeof(q_params.params.cfc_del));
7944 		q_params.params.cfc_del.cid_index = tx_index;
7945 		rc = bnx2x_queue_state_change(bp, &q_params);
7946 		if (rc)
7947 			return rc;
7948 	}
7949 	/* Stop the primary connection: */
7950 	/* ...halt the connection */
7951 	q_params.cmd = BNX2X_Q_CMD_HALT;
7952 	rc = bnx2x_queue_state_change(bp, &q_params);
7953 	if (rc)
7954 		return rc;
7955 
7956 	/* ...terminate the connection */
7957 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7958 	memset(&q_params.params.terminate, 0,
7959 	       sizeof(q_params.params.terminate));
7960 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7961 	rc = bnx2x_queue_state_change(bp, &q_params);
7962 	if (rc)
7963 		return rc;
7964 	/* ...delete cfc entry */
7965 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7966 	memset(&q_params.params.cfc_del, 0,
7967 	       sizeof(q_params.params.cfc_del));
7968 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7969 	return bnx2x_queue_state_change(bp, &q_params);
7970 }
7971 
7972 
7973 static void bnx2x_reset_func(struct bnx2x *bp)
7974 {
7975 	int port = BP_PORT(bp);
7976 	int func = BP_FUNC(bp);
7977 	int i;
7978 
7979 	/* Disable the function in the FW */
7980 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7981 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7982 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7983 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7984 
7985 	/* FP SBs */
7986 	for_each_eth_queue(bp, i) {
7987 		struct bnx2x_fastpath *fp = &bp->fp[i];
7988 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
7989 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7990 			   SB_DISABLED);
7991 	}
7992 
7993 #ifdef BCM_CNIC
7994 	/* CNIC SB */
7995 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7996 		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7997 		SB_DISABLED);
7998 #endif
7999 	/* SP SB */
8000 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8001 		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8002 		   SB_DISABLED);
8003 
8004 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8005 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8006 		       0);
8007 
8008 	/* Configure IGU */
8009 	if (bp->common.int_block == INT_BLOCK_HC) {
8010 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8011 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8012 	} else {
8013 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8014 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8015 	}
8016 
8017 #ifdef BCM_CNIC
8018 	/* Disable Timer scan */
8019 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8020 	/*
8021 	 * Wait for at least 10ms and up to 2 second for the timers scan to
8022 	 * complete
8023 	 */
8024 	for (i = 0; i < 200; i++) {
8025 		msleep(10);
8026 		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8027 			break;
8028 	}
8029 #endif
8030 	/* Clear ILT */
8031 	bnx2x_clear_func_ilt(bp, func);
8032 
8033 	/* Timers workaround bug for E2: if this is vnic-3,
8034 	 * we need to set the entire ilt range for this timers.
8035 	 */
8036 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8037 		struct ilt_client_info ilt_cli;
8038 		/* use dummy TM client */
8039 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8040 		ilt_cli.start = 0;
8041 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8042 		ilt_cli.client_num = ILT_CLIENT_TM;
8043 
8044 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8045 	}
8046 
8047 	/* this assumes that reset_port() called before reset_func()*/
8048 	if (!CHIP_IS_E1x(bp))
8049 		bnx2x_pf_disable(bp);
8050 
8051 	bp->dmae_ready = 0;
8052 }
8053 
8054 static void bnx2x_reset_port(struct bnx2x *bp)
8055 {
8056 	int port = BP_PORT(bp);
8057 	u32 val;
8058 
8059 	/* Reset physical Link */
8060 	bnx2x__link_reset(bp);
8061 
8062 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8063 
8064 	/* Do not rcv packets to BRB */
8065 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8066 	/* Do not direct rcv packets that are not for MCP to the BRB */
8067 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8068 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8069 
8070 	/* Configure AEU */
8071 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8072 
8073 	msleep(100);
8074 	/* Check for BRB port occupancy */
8075 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8076 	if (val)
8077 		DP(NETIF_MSG_IFDOWN,
8078 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8079 
8080 	/* TODO: Close Doorbell port? */
8081 }
8082 
8083 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8084 {
8085 	struct bnx2x_func_state_params func_params = {NULL};
8086 
8087 	/* Prepare parameters for function state transitions */
8088 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8089 
8090 	func_params.f_obj = &bp->func_obj;
8091 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8092 
8093 	func_params.params.hw_init.load_phase = load_code;
8094 
8095 	return bnx2x_func_state_change(bp, &func_params);
8096 }
8097 
8098 static int bnx2x_func_stop(struct bnx2x *bp)
8099 {
8100 	struct bnx2x_func_state_params func_params = {NULL};
8101 	int rc;
8102 
8103 	/* Prepare parameters for function state transitions */
8104 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8105 	func_params.f_obj = &bp->func_obj;
8106 	func_params.cmd = BNX2X_F_CMD_STOP;
8107 
8108 	/*
8109 	 * Try to stop the function the 'good way'. If fails (in case
8110 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8111 	 * not in a debug mode, perform a state transaction in order to
8112 	 * enable further HW_RESET transaction.
8113 	 */
8114 	rc = bnx2x_func_state_change(bp, &func_params);
8115 	if (rc) {
8116 #ifdef BNX2X_STOP_ON_ERROR
8117 		return rc;
8118 #else
8119 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8120 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8121 		return bnx2x_func_state_change(bp, &func_params);
8122 #endif
8123 	}
8124 
8125 	return 0;
8126 }
8127 
8128 /**
8129  * bnx2x_send_unload_req - request unload mode from the MCP.
8130  *
8131  * @bp:			driver handle
8132  * @unload_mode:	requested function's unload mode
8133  *
8134  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8135  */
8136 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8137 {
8138 	u32 reset_code = 0;
8139 	int port = BP_PORT(bp);
8140 
8141 	/* Select the UNLOAD request mode */
8142 	if (unload_mode == UNLOAD_NORMAL)
8143 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8144 
8145 	else if (bp->flags & NO_WOL_FLAG)
8146 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8147 
8148 	else if (bp->wol) {
8149 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8150 		u8 *mac_addr = bp->dev->dev_addr;
8151 		u32 val;
8152 		u16 pmc;
8153 
8154 		/* The mac address is written to entries 1-4 to
8155 		 * preserve entry 0 which is used by the PMF
8156 		 */
8157 		u8 entry = (BP_VN(bp) + 1)*8;
8158 
8159 		val = (mac_addr[0] << 8) | mac_addr[1];
8160 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8161 
8162 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8163 		      (mac_addr[4] << 8) | mac_addr[5];
8164 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8165 
8166 		/* Enable the PME and clear the status */
8167 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8168 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8169 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8170 
8171 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8172 
8173 	} else
8174 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8175 
8176 	/* Send the request to the MCP */
8177 	if (!BP_NOMCP(bp))
8178 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8179 	else {
8180 		int path = BP_PATH(bp);
8181 
8182 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8183 		   path, load_count[path][0], load_count[path][1],
8184 		   load_count[path][2]);
8185 		load_count[path][0]--;
8186 		load_count[path][1 + port]--;
8187 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8188 		   path, load_count[path][0], load_count[path][1],
8189 		   load_count[path][2]);
8190 		if (load_count[path][0] == 0)
8191 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8192 		else if (load_count[path][1 + port] == 0)
8193 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8194 		else
8195 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8196 	}
8197 
8198 	return reset_code;
8199 }
8200 
8201 /**
8202  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8203  *
8204  * @bp:		driver handle
8205  */
8206 void bnx2x_send_unload_done(struct bnx2x *bp)
8207 {
8208 	/* Report UNLOAD_DONE to MCP */
8209 	if (!BP_NOMCP(bp))
8210 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8211 }
8212 
8213 static int bnx2x_func_wait_started(struct bnx2x *bp)
8214 {
8215 	int tout = 50;
8216 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8217 
8218 	if (!bp->port.pmf)
8219 		return 0;
8220 
8221 	/*
8222 	 * (assumption: No Attention from MCP at this stage)
8223 	 * PMF probably in the middle of TXdisable/enable transaction
8224 	 * 1. Sync IRS for default SB
8225 	 * 2. Sync SP queue - this guarantes us that attention handling started
8226 	 * 3. Wait, that TXdisable/enable transaction completes
8227 	 *
8228 	 * 1+2 guranty that if DCBx attention was scheduled it already changed
8229 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
8230 	 * received complettion for the transaction the state is TX_STOPPED.
8231 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8232 	 * transaction.
8233 	 */
8234 
8235 	/* make sure default SB ISR is done */
8236 	if (msix)
8237 		synchronize_irq(bp->msix_table[0].vector);
8238 	else
8239 		synchronize_irq(bp->pdev->irq);
8240 
8241 	flush_workqueue(bnx2x_wq);
8242 
8243 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8244 				BNX2X_F_STATE_STARTED && tout--)
8245 		msleep(20);
8246 
8247 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8248 						BNX2X_F_STATE_STARTED) {
8249 #ifdef BNX2X_STOP_ON_ERROR
8250 		BNX2X_ERR("Wrong function state\n");
8251 		return -EBUSY;
8252 #else
8253 		/*
8254 		 * Failed to complete the transaction in a "good way"
8255 		 * Force both transactions with CLR bit
8256 		 */
8257 		struct bnx2x_func_state_params func_params = {NULL};
8258 
8259 		DP(NETIF_MSG_IFDOWN,
8260 		   "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8261 
8262 		func_params.f_obj = &bp->func_obj;
8263 		__set_bit(RAMROD_DRV_CLR_ONLY,
8264 					&func_params.ramrod_flags);
8265 
8266 		/* STARTED-->TX_ST0PPED */
8267 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8268 		bnx2x_func_state_change(bp, &func_params);
8269 
8270 		/* TX_ST0PPED-->STARTED */
8271 		func_params.cmd = BNX2X_F_CMD_TX_START;
8272 		return bnx2x_func_state_change(bp, &func_params);
8273 #endif
8274 	}
8275 
8276 	return 0;
8277 }
8278 
8279 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
8280 {
8281 	int port = BP_PORT(bp);
8282 	int i, rc = 0;
8283 	u8 cos;
8284 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8285 	u32 reset_code;
8286 
8287 	/* Wait until tx fastpath tasks complete */
8288 	for_each_tx_queue(bp, i) {
8289 		struct bnx2x_fastpath *fp = &bp->fp[i];
8290 
8291 		for_each_cos_in_tx_queue(fp, cos)
8292 			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
8293 #ifdef BNX2X_STOP_ON_ERROR
8294 		if (rc)
8295 			return;
8296 #endif
8297 	}
8298 
8299 	/* Give HW time to discard old tx messages */
8300 	usleep_range(1000, 1000);
8301 
8302 	/* Clean all ETH MACs */
8303 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
8304 	if (rc < 0)
8305 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8306 
8307 	/* Clean up UC list  */
8308 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
8309 				true);
8310 	if (rc < 0)
8311 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8312 			  rc);
8313 
8314 	/* Disable LLH */
8315 	if (!CHIP_IS_E1(bp))
8316 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8317 
8318 	/* Set "drop all" (stop Rx).
8319 	 * We need to take a netif_addr_lock() here in order to prevent
8320 	 * a race between the completion code and this code.
8321 	 */
8322 	netif_addr_lock_bh(bp->dev);
8323 	/* Schedule the rx_mode command */
8324 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8325 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8326 	else
8327 		bnx2x_set_storm_rx_mode(bp);
8328 
8329 	/* Cleanup multicast configuration */
8330 	rparam.mcast_obj = &bp->mcast_obj;
8331 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8332 	if (rc < 0)
8333 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8334 
8335 	netif_addr_unlock_bh(bp->dev);
8336 
8337 
8338 
8339 	/*
8340 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8341 	 * this function should perform FUNC, PORT or COMMON HW
8342 	 * reset.
8343 	 */
8344 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8345 
8346 	/*
8347 	 * (assumption: No Attention from MCP at this stage)
8348 	 * PMF probably in the middle of TXdisable/enable transaction
8349 	 */
8350 	rc = bnx2x_func_wait_started(bp);
8351 	if (rc) {
8352 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8353 #ifdef BNX2X_STOP_ON_ERROR
8354 		return;
8355 #endif
8356 	}
8357 
8358 	/* Close multi and leading connections
8359 	 * Completions for ramrods are collected in a synchronous way
8360 	 */
8361 	for_each_queue(bp, i)
8362 		if (bnx2x_stop_queue(bp, i))
8363 #ifdef BNX2X_STOP_ON_ERROR
8364 			return;
8365 #else
8366 			goto unload_error;
8367 #endif
8368 	/* If SP settings didn't get completed so far - something
8369 	 * very wrong has happen.
8370 	 */
8371 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8372 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8373 
8374 #ifndef BNX2X_STOP_ON_ERROR
8375 unload_error:
8376 #endif
8377 	rc = bnx2x_func_stop(bp);
8378 	if (rc) {
8379 		BNX2X_ERR("Function stop failed!\n");
8380 #ifdef BNX2X_STOP_ON_ERROR
8381 		return;
8382 #endif
8383 	}
8384 
8385 	/* Disable HW interrupts, NAPI */
8386 	bnx2x_netif_stop(bp, 1);
8387 
8388 	/* Release IRQs */
8389 	bnx2x_free_irq(bp);
8390 
8391 	/* Reset the chip */
8392 	rc = bnx2x_reset_hw(bp, reset_code);
8393 	if (rc)
8394 		BNX2X_ERR("HW_RESET failed\n");
8395 
8396 
8397 	/* Report UNLOAD_DONE to MCP */
8398 	bnx2x_send_unload_done(bp);
8399 }
8400 
8401 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8402 {
8403 	u32 val;
8404 
8405 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8406 
8407 	if (CHIP_IS_E1(bp)) {
8408 		int port = BP_PORT(bp);
8409 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8410 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8411 
8412 		val = REG_RD(bp, addr);
8413 		val &= ~(0x300);
8414 		REG_WR(bp, addr, val);
8415 	} else {
8416 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8417 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8418 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8419 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8420 	}
8421 }
8422 
8423 /* Close gates #2, #3 and #4: */
8424 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8425 {
8426 	u32 val;
8427 
8428 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8429 	if (!CHIP_IS_E1(bp)) {
8430 		/* #4 */
8431 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8432 		/* #2 */
8433 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8434 	}
8435 
8436 	/* #3 */
8437 	if (CHIP_IS_E1x(bp)) {
8438 		/* Prevent interrupts from HC on both ports */
8439 		val = REG_RD(bp, HC_REG_CONFIG_1);
8440 		REG_WR(bp, HC_REG_CONFIG_1,
8441 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8442 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8443 
8444 		val = REG_RD(bp, HC_REG_CONFIG_0);
8445 		REG_WR(bp, HC_REG_CONFIG_0,
8446 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8447 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8448 	} else {
8449 		/* Prevent incomming interrupts in IGU */
8450 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8451 
8452 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8453 		       (!close) ?
8454 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8455 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8456 	}
8457 
8458 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8459 		close ? "closing" : "opening");
8460 	mmiowb();
8461 }
8462 
8463 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8464 
8465 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8466 {
8467 	/* Do some magic... */
8468 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8469 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8470 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8471 }
8472 
8473 /**
8474  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8475  *
8476  * @bp:		driver handle
8477  * @magic_val:	old value of the `magic' bit.
8478  */
8479 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8480 {
8481 	/* Restore the `magic' bit value... */
8482 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8483 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8484 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8485 }
8486 
8487 /**
8488  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8489  *
8490  * @bp:		driver handle
8491  * @magic_val:	old value of 'magic' bit.
8492  *
8493  * Takes care of CLP configurations.
8494  */
8495 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8496 {
8497 	u32 shmem;
8498 	u32 validity_offset;
8499 
8500 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8501 
8502 	/* Set `magic' bit in order to save MF config */
8503 	if (!CHIP_IS_E1(bp))
8504 		bnx2x_clp_reset_prep(bp, magic_val);
8505 
8506 	/* Get shmem offset */
8507 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8508 	validity_offset = offsetof(struct shmem_region, validity_map[0]);
8509 
8510 	/* Clear validity map flags */
8511 	if (shmem > 0)
8512 		REG_WR(bp, shmem + validity_offset, 0);
8513 }
8514 
8515 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8516 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8517 
8518 /**
8519  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8520  *
8521  * @bp:	driver handle
8522  */
8523 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
8524 {
8525 	/* special handling for emulation and FPGA,
8526 	   wait 10 times longer */
8527 	if (CHIP_REV_IS_SLOW(bp))
8528 		msleep(MCP_ONE_TIMEOUT*10);
8529 	else
8530 		msleep(MCP_ONE_TIMEOUT);
8531 }
8532 
8533 /*
8534  * initializes bp->common.shmem_base and waits for validity signature to appear
8535  */
8536 static int bnx2x_init_shmem(struct bnx2x *bp)
8537 {
8538 	int cnt = 0;
8539 	u32 val = 0;
8540 
8541 	do {
8542 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8543 		if (bp->common.shmem_base) {
8544 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8545 			if (val & SHR_MEM_VALIDITY_MB)
8546 				return 0;
8547 		}
8548 
8549 		bnx2x_mcp_wait_one(bp);
8550 
8551 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8552 
8553 	BNX2X_ERR("BAD MCP validity signature\n");
8554 
8555 	return -ENODEV;
8556 }
8557 
8558 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8559 {
8560 	int rc = bnx2x_init_shmem(bp);
8561 
8562 	/* Restore the `magic' bit value */
8563 	if (!CHIP_IS_E1(bp))
8564 		bnx2x_clp_reset_done(bp, magic_val);
8565 
8566 	return rc;
8567 }
8568 
8569 static void bnx2x_pxp_prep(struct bnx2x *bp)
8570 {
8571 	if (!CHIP_IS_E1(bp)) {
8572 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8573 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8574 		mmiowb();
8575 	}
8576 }
8577 
8578 /*
8579  * Reset the whole chip except for:
8580  *      - PCIE core
8581  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8582  *              one reset bit)
8583  *      - IGU
8584  *      - MISC (including AEU)
8585  *      - GRC
8586  *      - RBCN, RBCP
8587  */
8588 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8589 {
8590 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8591 	u32 global_bits2, stay_reset2;
8592 
8593 	/*
8594 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8595 	 * (per chip) blocks.
8596 	 */
8597 	global_bits2 =
8598 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8599 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8600 
8601 	/* Don't reset the following blocks */
8602 	not_reset_mask1 =
8603 		MISC_REGISTERS_RESET_REG_1_RST_HC |
8604 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8605 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8606 
8607 	not_reset_mask2 =
8608 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8609 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8610 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8611 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8612 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8613 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8614 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8615 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8616 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8617 		MISC_REGISTERS_RESET_REG_2_PGLC;
8618 
8619 	/*
8620 	 * Keep the following blocks in reset:
8621 	 *  - all xxMACs are handled by the bnx2x_link code.
8622 	 */
8623 	stay_reset2 =
8624 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8625 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8626 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8627 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8628 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8629 		MISC_REGISTERS_RESET_REG_2_UMAC1 |
8630 		MISC_REGISTERS_RESET_REG_2_XMAC |
8631 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8632 
8633 	/* Full reset masks according to the chip */
8634 	reset_mask1 = 0xffffffff;
8635 
8636 	if (CHIP_IS_E1(bp))
8637 		reset_mask2 = 0xffff;
8638 	else if (CHIP_IS_E1H(bp))
8639 		reset_mask2 = 0x1ffff;
8640 	else if (CHIP_IS_E2(bp))
8641 		reset_mask2 = 0xfffff;
8642 	else /* CHIP_IS_E3 */
8643 		reset_mask2 = 0x3ffffff;
8644 
8645 	/* Don't reset global blocks unless we need to */
8646 	if (!global)
8647 		reset_mask2 &= ~global_bits2;
8648 
8649 	/*
8650 	 * In case of attention in the QM, we need to reset PXP
8651 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8652 	 * because otherwise QM reset would release 'close the gates' shortly
8653 	 * before resetting the PXP, then the PSWRQ would send a write
8654 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8655 	 * read the payload data from PSWWR, but PSWWR would not
8656 	 * respond. The write queue in PGLUE would stuck, dmae commands
8657 	 * would not return. Therefore it's important to reset the second
8658 	 * reset register (containing the
8659 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8660 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8661 	 * bit).
8662 	 */
8663 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8664 	       reset_mask2 & (~not_reset_mask2));
8665 
8666 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8667 	       reset_mask1 & (~not_reset_mask1));
8668 
8669 	barrier();
8670 	mmiowb();
8671 
8672 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8673 	       reset_mask2 & (~stay_reset2));
8674 
8675 	barrier();
8676 	mmiowb();
8677 
8678 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8679 	mmiowb();
8680 }
8681 
8682 /**
8683  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8684  * It should get cleared in no more than 1s.
8685  *
8686  * @bp:	driver handle
8687  *
8688  * It should get cleared in no more than 1s. Returns 0 if
8689  * pending writes bit gets cleared.
8690  */
8691 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8692 {
8693 	u32 cnt = 1000;
8694 	u32 pend_bits = 0;
8695 
8696 	do {
8697 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8698 
8699 		if (pend_bits == 0)
8700 			break;
8701 
8702 		usleep_range(1000, 1000);
8703 	} while (cnt-- > 0);
8704 
8705 	if (cnt <= 0) {
8706 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8707 			  pend_bits);
8708 		return -EBUSY;
8709 	}
8710 
8711 	return 0;
8712 }
8713 
8714 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8715 {
8716 	int cnt = 1000;
8717 	u32 val = 0;
8718 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8719 
8720 
8721 	/* Empty the Tetris buffer, wait for 1s */
8722 	do {
8723 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8724 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8725 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8726 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8727 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8728 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8729 		    ((port_is_idle_0 & 0x1) == 0x1) &&
8730 		    ((port_is_idle_1 & 0x1) == 0x1) &&
8731 		    (pgl_exp_rom2 == 0xffffffff))
8732 			break;
8733 		usleep_range(1000, 1000);
8734 	} while (cnt-- > 0);
8735 
8736 	if (cnt <= 0) {
8737 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
8738 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8739 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8740 			  pgl_exp_rom2);
8741 		return -EAGAIN;
8742 	}
8743 
8744 	barrier();
8745 
8746 	/* Close gates #2, #3 and #4 */
8747 	bnx2x_set_234_gates(bp, true);
8748 
8749 	/* Poll for IGU VQs for 57712 and newer chips */
8750 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8751 		return -EAGAIN;
8752 
8753 
8754 	/* TBD: Indicate that "process kill" is in progress to MCP */
8755 
8756 	/* Clear "unprepared" bit */
8757 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
8758 	barrier();
8759 
8760 	/* Make sure all is written to the chip before the reset */
8761 	mmiowb();
8762 
8763 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
8764 	 * PSWHST, GRC and PSWRD Tetris buffer.
8765 	 */
8766 	usleep_range(1000, 1000);
8767 
8768 	/* Prepare to chip reset: */
8769 	/* MCP */
8770 	if (global)
8771 		bnx2x_reset_mcp_prep(bp, &val);
8772 
8773 	/* PXP */
8774 	bnx2x_pxp_prep(bp);
8775 	barrier();
8776 
8777 	/* reset the chip */
8778 	bnx2x_process_kill_chip_reset(bp, global);
8779 	barrier();
8780 
8781 	/* Recover after reset: */
8782 	/* MCP */
8783 	if (global && bnx2x_reset_mcp_comp(bp, val))
8784 		return -EAGAIN;
8785 
8786 	/* TBD: Add resetting the NO_MCP mode DB here */
8787 
8788 	/* PXP */
8789 	bnx2x_pxp_prep(bp);
8790 
8791 	/* Open the gates #2, #3 and #4 */
8792 	bnx2x_set_234_gates(bp, false);
8793 
8794 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8795 	 * reset state, re-enable attentions. */
8796 
8797 	return 0;
8798 }
8799 
8800 int bnx2x_leader_reset(struct bnx2x *bp)
8801 {
8802 	int rc = 0;
8803 	bool global = bnx2x_reset_is_global(bp);
8804 	u32 load_code;
8805 
8806 	/* if not going to reset MCP - load "fake" driver to reset HW while
8807 	 * driver is owner of the HW
8808 	 */
8809 	if (!global && !BP_NOMCP(bp)) {
8810 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 0);
8811 		if (!load_code) {
8812 			BNX2X_ERR("MCP response failure, aborting\n");
8813 			rc = -EAGAIN;
8814 			goto exit_leader_reset;
8815 		}
8816 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
8817 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
8818 			BNX2X_ERR("MCP unexpected resp, aborting\n");
8819 			rc = -EAGAIN;
8820 			goto exit_leader_reset2;
8821 		}
8822 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
8823 		if (!load_code) {
8824 			BNX2X_ERR("MCP response failure, aborting\n");
8825 			rc = -EAGAIN;
8826 			goto exit_leader_reset2;
8827 		}
8828 	}
8829 
8830 	/* Try to recover after the failure */
8831 	if (bnx2x_process_kill(bp, global)) {
8832 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
8833 			  BP_PATH(bp));
8834 		rc = -EAGAIN;
8835 		goto exit_leader_reset2;
8836 	}
8837 
8838 	/*
8839 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8840 	 * state.
8841 	 */
8842 	bnx2x_set_reset_done(bp);
8843 	if (global)
8844 		bnx2x_clear_reset_global(bp);
8845 
8846 exit_leader_reset2:
8847 	/* unload "fake driver" if it was loaded */
8848 	if (!global && !BP_NOMCP(bp)) {
8849 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
8850 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8851 	}
8852 exit_leader_reset:
8853 	bp->is_leader = 0;
8854 	bnx2x_release_leader_lock(bp);
8855 	smp_mb();
8856 	return rc;
8857 }
8858 
8859 static void bnx2x_recovery_failed(struct bnx2x *bp)
8860 {
8861 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8862 
8863 	/* Disconnect this device */
8864 	netif_device_detach(bp->dev);
8865 
8866 	/*
8867 	 * Block ifup for all function on this engine until "process kill"
8868 	 * or power cycle.
8869 	 */
8870 	bnx2x_set_reset_in_progress(bp);
8871 
8872 	/* Shut down the power */
8873 	bnx2x_set_power_state(bp, PCI_D3hot);
8874 
8875 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
8876 
8877 	smp_mb();
8878 }
8879 
8880 /*
8881  * Assumption: runs under rtnl lock. This together with the fact
8882  * that it's called only from bnx2x_sp_rtnl() ensure that it
8883  * will never be called when netif_running(bp->dev) is false.
8884  */
8885 static void bnx2x_parity_recover(struct bnx2x *bp)
8886 {
8887 	bool global = false;
8888 	u32 error_recovered, error_unrecovered;
8889 	bool is_parity;
8890 
8891 	DP(NETIF_MSG_HW, "Handling parity\n");
8892 	while (1) {
8893 		switch (bp->recovery_state) {
8894 		case BNX2X_RECOVERY_INIT:
8895 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8896 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
8897 			WARN_ON(!is_parity);
8898 
8899 			/* Try to get a LEADER_LOCK HW lock */
8900 			if (bnx2x_trylock_leader_lock(bp)) {
8901 				bnx2x_set_reset_in_progress(bp);
8902 				/*
8903 				 * Check if there is a global attention and if
8904 				 * there was a global attention, set the global
8905 				 * reset bit.
8906 				 */
8907 
8908 				if (global)
8909 					bnx2x_set_reset_global(bp);
8910 
8911 				bp->is_leader = 1;
8912 			}
8913 
8914 			/* Stop the driver */
8915 			/* If interface has been removed - break */
8916 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8917 				return;
8918 
8919 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
8920 
8921 			/* Ensure "is_leader", MCP command sequence and
8922 			 * "recovery_state" update values are seen on other
8923 			 * CPUs.
8924 			 */
8925 			smp_mb();
8926 			break;
8927 
8928 		case BNX2X_RECOVERY_WAIT:
8929 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8930 			if (bp->is_leader) {
8931 				int other_engine = BP_PATH(bp) ? 0 : 1;
8932 				bool other_load_status =
8933 					bnx2x_get_load_status(bp, other_engine);
8934 				bool load_status =
8935 					bnx2x_get_load_status(bp, BP_PATH(bp));
8936 				global = bnx2x_reset_is_global(bp);
8937 
8938 				/*
8939 				 * In case of a parity in a global block, let
8940 				 * the first leader that performs a
8941 				 * leader_reset() reset the global blocks in
8942 				 * order to clear global attentions. Otherwise
8943 				 * the the gates will remain closed for that
8944 				 * engine.
8945 				 */
8946 				if (load_status ||
8947 				    (global && other_load_status)) {
8948 					/* Wait until all other functions get
8949 					 * down.
8950 					 */
8951 					schedule_delayed_work(&bp->sp_rtnl_task,
8952 								HZ/10);
8953 					return;
8954 				} else {
8955 					/* If all other functions got down -
8956 					 * try to bring the chip back to
8957 					 * normal. In any case it's an exit
8958 					 * point for a leader.
8959 					 */
8960 					if (bnx2x_leader_reset(bp)) {
8961 						bnx2x_recovery_failed(bp);
8962 						return;
8963 					}
8964 
8965 					/* If we are here, means that the
8966 					 * leader has succeeded and doesn't
8967 					 * want to be a leader any more. Try
8968 					 * to continue as a none-leader.
8969 					 */
8970 					break;
8971 				}
8972 			} else { /* non-leader */
8973 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8974 					/* Try to get a LEADER_LOCK HW lock as
8975 					 * long as a former leader may have
8976 					 * been unloaded by the user or
8977 					 * released a leadership by another
8978 					 * reason.
8979 					 */
8980 					if (bnx2x_trylock_leader_lock(bp)) {
8981 						/* I'm a leader now! Restart a
8982 						 * switch case.
8983 						 */
8984 						bp->is_leader = 1;
8985 						break;
8986 					}
8987 
8988 					schedule_delayed_work(&bp->sp_rtnl_task,
8989 								HZ/10);
8990 					return;
8991 
8992 				} else {
8993 					/*
8994 					 * If there was a global attention, wait
8995 					 * for it to be cleared.
8996 					 */
8997 					if (bnx2x_reset_is_global(bp)) {
8998 						schedule_delayed_work(
8999 							&bp->sp_rtnl_task,
9000 							HZ/10);
9001 						return;
9002 					}
9003 
9004 					error_recovered =
9005 					  bp->eth_stats.recoverable_error;
9006 					error_unrecovered =
9007 					  bp->eth_stats.unrecoverable_error;
9008 					bp->recovery_state =
9009 						BNX2X_RECOVERY_NIC_LOADING;
9010 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9011 						error_unrecovered++;
9012 						netdev_err(bp->dev,
9013 							   "Recovery failed. Power cycle needed\n");
9014 						/* Disconnect this device */
9015 						netif_device_detach(bp->dev);
9016 						/* Shut down the power */
9017 						bnx2x_set_power_state(
9018 							bp, PCI_D3hot);
9019 						smp_mb();
9020 					} else {
9021 						bp->recovery_state =
9022 							BNX2X_RECOVERY_DONE;
9023 						error_recovered++;
9024 						smp_mb();
9025 					}
9026 					bp->eth_stats.recoverable_error =
9027 						error_recovered;
9028 					bp->eth_stats.unrecoverable_error =
9029 						error_unrecovered;
9030 
9031 					return;
9032 				}
9033 			}
9034 		default:
9035 			return;
9036 		}
9037 	}
9038 }
9039 
9040 static int bnx2x_close(struct net_device *dev);
9041 
9042 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9043  * scheduled on a general queue in order to prevent a dead lock.
9044  */
9045 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9046 {
9047 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9048 
9049 	rtnl_lock();
9050 
9051 	if (!netif_running(bp->dev))
9052 		goto sp_rtnl_exit;
9053 
9054 	/* if stop on error is defined no recovery flows should be executed */
9055 #ifdef BNX2X_STOP_ON_ERROR
9056 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9057 		  "you will need to reboot when done\n");
9058 	goto sp_rtnl_not_reset;
9059 #endif
9060 
9061 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9062 		/*
9063 		 * Clear all pending SP commands as we are going to reset the
9064 		 * function anyway.
9065 		 */
9066 		bp->sp_rtnl_state = 0;
9067 		smp_mb();
9068 
9069 		bnx2x_parity_recover(bp);
9070 
9071 		goto sp_rtnl_exit;
9072 	}
9073 
9074 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9075 		/*
9076 		 * Clear all pending SP commands as we are going to reset the
9077 		 * function anyway.
9078 		 */
9079 		bp->sp_rtnl_state = 0;
9080 		smp_mb();
9081 
9082 		bnx2x_nic_unload(bp, UNLOAD_NORMAL);
9083 		bnx2x_nic_load(bp, LOAD_NORMAL);
9084 
9085 		goto sp_rtnl_exit;
9086 	}
9087 #ifdef BNX2X_STOP_ON_ERROR
9088 sp_rtnl_not_reset:
9089 #endif
9090 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9091 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9092 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9093 		bnx2x_after_function_update(bp);
9094 	/*
9095 	 * in case of fan failure we need to reset id if the "stop on error"
9096 	 * debug flag is set, since we trying to prevent permanent overheating
9097 	 * damage
9098 	 */
9099 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9100 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9101 		netif_device_detach(bp->dev);
9102 		bnx2x_close(bp->dev);
9103 	}
9104 
9105 sp_rtnl_exit:
9106 	rtnl_unlock();
9107 }
9108 
9109 /* end of nic load/unload */
9110 
9111 static void bnx2x_period_task(struct work_struct *work)
9112 {
9113 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9114 
9115 	if (!netif_running(bp->dev))
9116 		goto period_task_exit;
9117 
9118 	if (CHIP_REV_IS_SLOW(bp)) {
9119 		BNX2X_ERR("period task called on emulation, ignoring\n");
9120 		goto period_task_exit;
9121 	}
9122 
9123 	bnx2x_acquire_phy_lock(bp);
9124 	/*
9125 	 * The barrier is needed to ensure the ordering between the writing to
9126 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9127 	 * the reading here.
9128 	 */
9129 	smp_mb();
9130 	if (bp->port.pmf) {
9131 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9132 
9133 		/* Re-queue task in 1 sec */
9134 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9135 	}
9136 
9137 	bnx2x_release_phy_lock(bp);
9138 period_task_exit:
9139 	return;
9140 }
9141 
9142 /*
9143  * Init service functions
9144  */
9145 
9146 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9147 {
9148 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9149 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9150 	return base + (BP_ABS_FUNC(bp)) * stride;
9151 }
9152 
9153 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
9154 {
9155 	u32 reg = bnx2x_get_pretend_reg(bp);
9156 
9157 	/* Flush all outstanding writes */
9158 	mmiowb();
9159 
9160 	/* Pretend to be function 0 */
9161 	REG_WR(bp, reg, 0);
9162 	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
9163 
9164 	/* From now we are in the "like-E1" mode */
9165 	bnx2x_int_disable(bp);
9166 
9167 	/* Flush all outstanding writes */
9168 	mmiowb();
9169 
9170 	/* Restore the original function */
9171 	REG_WR(bp, reg, BP_ABS_FUNC(bp));
9172 	REG_RD(bp, reg);
9173 }
9174 
9175 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
9176 {
9177 	if (CHIP_IS_E1(bp))
9178 		bnx2x_int_disable(bp);
9179 	else
9180 		bnx2x_undi_int_disable_e1h(bp);
9181 }
9182 
9183 static void __devinit bnx2x_prev_unload_close_mac(struct bnx2x *bp)
9184 {
9185 	u32 val, base_addr, offset, mask, reset_reg;
9186 	bool mac_stopped = false;
9187 	u8 port = BP_PORT(bp);
9188 
9189 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9190 
9191 	if (!CHIP_IS_E3(bp)) {
9192 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9193 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9194 		if ((mask & reset_reg) && val) {
9195 			u32 wb_data[2];
9196 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9197 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9198 						: NIG_REG_INGRESS_BMAC0_MEM;
9199 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9200 						: BIGMAC_REGISTER_BMAC_CONTROL;
9201 
9202 			/*
9203 			 * use rd/wr since we cannot use dmae. This is safe
9204 			 * since MCP won't access the bus due to the request
9205 			 * to unload, and no function on the path can be
9206 			 * loaded at this time.
9207 			 */
9208 			wb_data[0] = REG_RD(bp, base_addr + offset);
9209 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9210 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9211 			REG_WR(bp, base_addr + offset, wb_data[0]);
9212 			REG_WR(bp, base_addr + offset + 0x4, wb_data[1]);
9213 
9214 		}
9215 		BNX2X_DEV_INFO("Disable emac Rx\n");
9216 		REG_WR(bp, NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4, 0);
9217 
9218 		mac_stopped = true;
9219 	} else {
9220 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9221 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9222 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9223 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9224 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9225 			       val & ~(1 << 1));
9226 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9227 			       val | (1 << 1));
9228 			REG_WR(bp, base_addr + XMAC_REG_CTRL, 0);
9229 			mac_stopped = true;
9230 		}
9231 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9232 		if (mask & reset_reg) {
9233 			BNX2X_DEV_INFO("Disable umac Rx\n");
9234 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9235 			REG_WR(bp, base_addr + UMAC_REG_COMMAND_CONFIG, 0);
9236 			mac_stopped = true;
9237 		}
9238 	}
9239 
9240 	if (mac_stopped)
9241 		msleep(20);
9242 
9243 }
9244 
9245 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9246 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9247 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9248 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9249 
9250 static void __devinit bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port,
9251 						 u8 inc)
9252 {
9253 	u16 rcq, bd;
9254 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9255 
9256 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9257 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9258 
9259 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9260 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9261 
9262 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9263 		       port, bd, rcq);
9264 }
9265 
9266 static int __devinit bnx2x_prev_mcp_done(struct bnx2x *bp)
9267 {
9268 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9269 	if (!rc) {
9270 		BNX2X_ERR("MCP response failure, aborting\n");
9271 		return -EBUSY;
9272 	}
9273 
9274 	return 0;
9275 }
9276 
9277 static bool __devinit bnx2x_prev_is_path_marked(struct bnx2x *bp)
9278 {
9279 	struct bnx2x_prev_path_list *tmp_list;
9280 	int rc = false;
9281 
9282 	if (down_trylock(&bnx2x_prev_sem))
9283 		return false;
9284 
9285 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
9286 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9287 		    bp->pdev->bus->number == tmp_list->bus &&
9288 		    BP_PATH(bp) == tmp_list->path) {
9289 			rc = true;
9290 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9291 				       BP_PATH(bp));
9292 			break;
9293 		}
9294 	}
9295 
9296 	up(&bnx2x_prev_sem);
9297 
9298 	return rc;
9299 }
9300 
9301 static int __devinit bnx2x_prev_mark_path(struct bnx2x *bp)
9302 {
9303 	struct bnx2x_prev_path_list *tmp_list;
9304 	int rc;
9305 
9306 	tmp_list = (struct bnx2x_prev_path_list *)
9307 		    kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9308 	if (!tmp_list) {
9309 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9310 		return -ENOMEM;
9311 	}
9312 
9313 	tmp_list->bus = bp->pdev->bus->number;
9314 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9315 	tmp_list->path = BP_PATH(bp);
9316 
9317 	rc = down_interruptible(&bnx2x_prev_sem);
9318 	if (rc) {
9319 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9320 		kfree(tmp_list);
9321 	} else {
9322 		BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
9323 				BP_PATH(bp));
9324 		list_add(&tmp_list->list, &bnx2x_prev_list);
9325 		up(&bnx2x_prev_sem);
9326 	}
9327 
9328 	return rc;
9329 }
9330 
9331 static bool __devinit bnx2x_can_flr(struct bnx2x *bp)
9332 {
9333 	int pos;
9334 	u32 cap;
9335 	struct pci_dev *dev = bp->pdev;
9336 
9337 	pos = pci_pcie_cap(dev);
9338 	if (!pos)
9339 		return false;
9340 
9341 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
9342 	if (!(cap & PCI_EXP_DEVCAP_FLR))
9343 		return false;
9344 
9345 	return true;
9346 }
9347 
9348 static int __devinit bnx2x_do_flr(struct bnx2x *bp)
9349 {
9350 	int i, pos;
9351 	u16 status;
9352 	struct pci_dev *dev = bp->pdev;
9353 
9354 	/* probe the capability first */
9355 	if (bnx2x_can_flr(bp))
9356 		return -ENOTTY;
9357 
9358 	pos = pci_pcie_cap(dev);
9359 	if (!pos)
9360 		return -ENOTTY;
9361 
9362 	/* Wait for Transaction Pending bit clean */
9363 	for (i = 0; i < 4; i++) {
9364 		if (i)
9365 			msleep((1 << (i - 1)) * 100);
9366 
9367 		pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
9368 		if (!(status & PCI_EXP_DEVSTA_TRPND))
9369 			goto clear;
9370 	}
9371 
9372 	dev_err(&dev->dev,
9373 		"transaction is not cleared; proceeding with reset anyway\n");
9374 
9375 clear:
9376 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9377 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9378 			  bp->common.bc_ver);
9379 		return -EINVAL;
9380 	}
9381 
9382 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9383 
9384 	return 0;
9385 }
9386 
9387 static int __devinit bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9388 {
9389 	int rc;
9390 
9391 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
9392 
9393 	/* Test if previous unload process was already finished for this path */
9394 	if (bnx2x_prev_is_path_marked(bp))
9395 		return bnx2x_prev_mcp_done(bp);
9396 
9397 	/* If function has FLR capabilities, and existing FW version matches
9398 	 * the one required, then FLR will be sufficient to clean any residue
9399 	 * left by previous driver
9400 	 */
9401 	if (bnx2x_test_firmware_version(bp, false) && bnx2x_can_flr(bp))
9402 		return bnx2x_do_flr(bp);
9403 
9404 	/* Close the MCP request, return failure*/
9405 	rc = bnx2x_prev_mcp_done(bp);
9406 	if (!rc)
9407 		rc = BNX2X_PREV_WAIT_NEEDED;
9408 
9409 	return rc;
9410 }
9411 
9412 static int __devinit bnx2x_prev_unload_common(struct bnx2x *bp)
9413 {
9414 	u32 reset_reg, tmp_reg = 0, rc;
9415 	/* It is possible a previous function received 'common' answer,
9416 	 * but hasn't loaded yet, therefore creating a scenario of
9417 	 * multiple functions receiving 'common' on the same path.
9418 	 */
9419 	BNX2X_DEV_INFO("Common unload Flow\n");
9420 
9421 	if (bnx2x_prev_is_path_marked(bp))
9422 		return bnx2x_prev_mcp_done(bp);
9423 
9424 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9425 
9426 	/* Reset should be performed after BRB is emptied */
9427 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9428 		u32 timer_count = 1000;
9429 		bool prev_undi = false;
9430 
9431 		/* Close the MAC Rx to prevent BRB from filling up */
9432 		bnx2x_prev_unload_close_mac(bp);
9433 
9434 		/* Check if the UNDI driver was previously loaded
9435 		 * UNDI driver initializes CID offset for normal bell to 0x7
9436 		 */
9437 		reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9438 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9439 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9440 			if (tmp_reg == 0x7) {
9441 				BNX2X_DEV_INFO("UNDI previously loaded\n");
9442 				prev_undi = true;
9443 				/* clear the UNDI indication */
9444 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9445 			}
9446 		}
9447 		/* wait until BRB is empty */
9448 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9449 		while (timer_count) {
9450 			u32 prev_brb = tmp_reg;
9451 
9452 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9453 			if (!tmp_reg)
9454 				break;
9455 
9456 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9457 
9458 			/* reset timer as long as BRB actually gets emptied */
9459 			if (prev_brb > tmp_reg)
9460 				timer_count = 1000;
9461 			else
9462 				timer_count--;
9463 
9464 			/* If UNDI resides in memory, manually increment it */
9465 			if (prev_undi)
9466 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9467 
9468 			udelay(10);
9469 		}
9470 
9471 		if (!timer_count)
9472 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9473 
9474 	}
9475 
9476 	/* No packets are in the pipeline, path is ready for reset */
9477 	bnx2x_reset_common(bp);
9478 
9479 	rc = bnx2x_prev_mark_path(bp);
9480 	if (rc) {
9481 		bnx2x_prev_mcp_done(bp);
9482 		return rc;
9483 	}
9484 
9485 	return bnx2x_prev_mcp_done(bp);
9486 }
9487 
9488 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
9489  * and boot began, or when kdump kernel was loaded. Either case would invalidate
9490  * the addresses of the transaction, resulting in was-error bit set in the pci
9491  * causing all hw-to-host pcie transactions to timeout. If this happened we want
9492  * to clear the interrupt which detected this from the pglueb and the was done
9493  * bit
9494  */
9495 static void __devinit bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
9496 {
9497 	u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
9498 	if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9499 		BNX2X_ERR("was error bit was found to be set in pglueb upon startup. Clearing");
9500 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << BP_FUNC(bp));
9501 	}
9502 }
9503 
9504 static int __devinit bnx2x_prev_unload(struct bnx2x *bp)
9505 {
9506 	int time_counter = 10;
9507 	u32 rc, fw, hw_lock_reg, hw_lock_val;
9508 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
9509 
9510 	/* clear hw from errors which may have resulted from an interrupted
9511 	 * dmae transaction.
9512 	 */
9513 	bnx2x_prev_interrupted_dmae(bp);
9514 
9515 	/* Release previously held locks */
9516 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
9517 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
9518 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
9519 
9520 	hw_lock_val = (REG_RD(bp, hw_lock_reg));
9521 	if (hw_lock_val) {
9522 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9523 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
9524 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
9525 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
9526 		}
9527 
9528 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
9529 		REG_WR(bp, hw_lock_reg, 0xffffffff);
9530 	} else
9531 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
9532 
9533 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
9534 		BNX2X_DEV_INFO("Release previously held alr\n");
9535 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
9536 	}
9537 
9538 
9539 	do {
9540 		/* Lock MCP using an unload request */
9541 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9542 		if (!fw) {
9543 			BNX2X_ERR("MCP response failure, aborting\n");
9544 			rc = -EBUSY;
9545 			break;
9546 		}
9547 
9548 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9549 			rc = bnx2x_prev_unload_common(bp);
9550 			break;
9551 		}
9552 
9553 		/* non-common reply from MCP night require looping */
9554 		rc = bnx2x_prev_unload_uncommon(bp);
9555 		if (rc != BNX2X_PREV_WAIT_NEEDED)
9556 			break;
9557 
9558 		msleep(20);
9559 	} while (--time_counter);
9560 
9561 	if (!time_counter || rc) {
9562 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
9563 		rc = -EBUSY;
9564 	}
9565 
9566 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
9567 
9568 	return rc;
9569 }
9570 
9571 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
9572 {
9573 	u32 val, val2, val3, val4, id, boot_mode;
9574 	u16 pmc;
9575 
9576 	/* Get the chip revision id and number. */
9577 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
9578 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
9579 	id = ((val & 0xffff) << 16);
9580 	val = REG_RD(bp, MISC_REG_CHIP_REV);
9581 	id |= ((val & 0xf) << 12);
9582 	val = REG_RD(bp, MISC_REG_CHIP_METAL);
9583 	id |= ((val & 0xff) << 4);
9584 	val = REG_RD(bp, MISC_REG_BOND_ID);
9585 	id |= (val & 0xf);
9586 	bp->common.chip_id = id;
9587 
9588 	/* force 57811 according to MISC register */
9589 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
9590 		if (CHIP_IS_57810(bp))
9591 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
9592 				(bp->common.chip_id & 0x0000FFFF);
9593 		else if (CHIP_IS_57810_MF(bp))
9594 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
9595 				(bp->common.chip_id & 0x0000FFFF);
9596 		bp->common.chip_id |= 0x1;
9597 	}
9598 
9599 	/* Set doorbell size */
9600 	bp->db_size = (1 << BNX2X_DB_SHIFT);
9601 
9602 	if (!CHIP_IS_E1x(bp)) {
9603 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
9604 		if ((val & 1) == 0)
9605 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
9606 		else
9607 			val = (val >> 1) & 1;
9608 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
9609 						       "2_PORT_MODE");
9610 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
9611 						 CHIP_2_PORT_MODE;
9612 
9613 		if (CHIP_MODE_IS_4_PORT(bp))
9614 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
9615 		else
9616 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
9617 	} else {
9618 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9619 		bp->pfid = bp->pf_num;			/* 0..7 */
9620 	}
9621 
9622 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
9623 
9624 	bp->link_params.chip_id = bp->common.chip_id;
9625 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9626 
9627 	val = (REG_RD(bp, 0x2874) & 0x55);
9628 	if ((bp->common.chip_id & 0x1) ||
9629 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9630 		bp->flags |= ONE_PORT_FLAG;
9631 		BNX2X_DEV_INFO("single port device\n");
9632 	}
9633 
9634 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9635 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9636 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
9637 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9638 		       bp->common.flash_size, bp->common.flash_size);
9639 
9640 	bnx2x_init_shmem(bp);
9641 
9642 
9643 
9644 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9645 					MISC_REG_GENERIC_CR_1 :
9646 					MISC_REG_GENERIC_CR_0));
9647 
9648 	bp->link_params.shmem_base = bp->common.shmem_base;
9649 	bp->link_params.shmem2_base = bp->common.shmem2_base;
9650 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
9651 		       bp->common.shmem_base, bp->common.shmem2_base);
9652 
9653 	if (!bp->common.shmem_base) {
9654 		BNX2X_DEV_INFO("MCP not active\n");
9655 		bp->flags |= NO_MCP_FLAG;
9656 		return;
9657 	}
9658 
9659 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
9660 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
9661 
9662 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
9663 					SHARED_HW_CFG_LED_MODE_MASK) >>
9664 				       SHARED_HW_CFG_LED_MODE_SHIFT);
9665 
9666 	bp->link_params.feature_config_flags = 0;
9667 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9668 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9669 		bp->link_params.feature_config_flags |=
9670 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9671 	else
9672 		bp->link_params.feature_config_flags &=
9673 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9674 
9675 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9676 	bp->common.bc_ver = val;
9677 	BNX2X_DEV_INFO("bc_ver %X\n", val);
9678 	if (val < BNX2X_BC_VER) {
9679 		/* for now only warn
9680 		 * later we might need to enforce this */
9681 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
9682 			  BNX2X_BC_VER, val);
9683 	}
9684 	bp->link_params.feature_config_flags |=
9685 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9686 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9687 
9688 	bp->link_params.feature_config_flags |=
9689 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9690 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9691 	bp->link_params.feature_config_flags |=
9692 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
9693 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
9694 	bp->link_params.feature_config_flags |=
9695 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9696 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9697 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9698 			BC_SUPPORTS_PFC_STATS : 0;
9699 
9700 	boot_mode = SHMEM_RD(bp,
9701 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9702 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9703 	switch (boot_mode) {
9704 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9705 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9706 		break;
9707 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9708 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9709 		break;
9710 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9711 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9712 		break;
9713 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9714 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9715 		break;
9716 	}
9717 
9718 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9719 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9720 
9721 	BNX2X_DEV_INFO("%sWoL capable\n",
9722 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
9723 
9724 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9725 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9726 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9727 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9728 
9729 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9730 		 val, val2, val3, val4);
9731 }
9732 
9733 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9734 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9735 
9736 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9737 {
9738 	int pfid = BP_FUNC(bp);
9739 	int igu_sb_id;
9740 	u32 val;
9741 	u8 fid, igu_sb_cnt = 0;
9742 
9743 	bp->igu_base_sb = 0xff;
9744 	if (CHIP_INT_MODE_IS_BC(bp)) {
9745 		int vn = BP_VN(bp);
9746 		igu_sb_cnt = bp->igu_sb_cnt;
9747 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9748 			FP_SB_MAX_E1x;
9749 
9750 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
9751 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9752 
9753 		return;
9754 	}
9755 
9756 	/* IGU in normal mode - read CAM */
9757 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9758 	     igu_sb_id++) {
9759 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9760 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9761 			continue;
9762 		fid = IGU_FID(val);
9763 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
9764 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9765 				continue;
9766 			if (IGU_VEC(val) == 0)
9767 				/* default status block */
9768 				bp->igu_dsb_id = igu_sb_id;
9769 			else {
9770 				if (bp->igu_base_sb == 0xff)
9771 					bp->igu_base_sb = igu_sb_id;
9772 				igu_sb_cnt++;
9773 			}
9774 		}
9775 	}
9776 
9777 #ifdef CONFIG_PCI_MSI
9778 	/*
9779 	 * It's expected that number of CAM entries for this functions is equal
9780 	 * to the number evaluated based on the MSI-X table size. We want a
9781 	 * harsh warning if these values are different!
9782 	 */
9783 	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9784 #endif
9785 
9786 	if (igu_sb_cnt == 0)
9787 		BNX2X_ERR("CAM configuration error\n");
9788 }
9789 
9790 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9791 						    u32 switch_cfg)
9792 {
9793 	int cfg_size = 0, idx, port = BP_PORT(bp);
9794 
9795 	/* Aggregation of supported attributes of all external phys */
9796 	bp->port.supported[0] = 0;
9797 	bp->port.supported[1] = 0;
9798 	switch (bp->link_params.num_phys) {
9799 	case 1:
9800 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9801 		cfg_size = 1;
9802 		break;
9803 	case 2:
9804 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9805 		cfg_size = 1;
9806 		break;
9807 	case 3:
9808 		if (bp->link_params.multi_phy_config &
9809 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9810 			bp->port.supported[1] =
9811 				bp->link_params.phy[EXT_PHY1].supported;
9812 			bp->port.supported[0] =
9813 				bp->link_params.phy[EXT_PHY2].supported;
9814 		} else {
9815 			bp->port.supported[0] =
9816 				bp->link_params.phy[EXT_PHY1].supported;
9817 			bp->port.supported[1] =
9818 				bp->link_params.phy[EXT_PHY2].supported;
9819 		}
9820 		cfg_size = 2;
9821 		break;
9822 	}
9823 
9824 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
9825 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
9826 			   SHMEM_RD(bp,
9827 			   dev_info.port_hw_config[port].external_phy_config),
9828 			   SHMEM_RD(bp,
9829 			   dev_info.port_hw_config[port].external_phy_config2));
9830 			return;
9831 	}
9832 
9833 	if (CHIP_IS_E3(bp))
9834 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9835 	else {
9836 		switch (switch_cfg) {
9837 		case SWITCH_CFG_1G:
9838 			bp->port.phy_addr = REG_RD(
9839 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9840 			break;
9841 		case SWITCH_CFG_10G:
9842 			bp->port.phy_addr = REG_RD(
9843 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9844 			break;
9845 		default:
9846 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9847 				  bp->port.link_config[0]);
9848 			return;
9849 		}
9850 	}
9851 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9852 	/* mask what we support according to speed_cap_mask per configuration */
9853 	for (idx = 0; idx < cfg_size; idx++) {
9854 		if (!(bp->link_params.speed_cap_mask[idx] &
9855 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9856 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9857 
9858 		if (!(bp->link_params.speed_cap_mask[idx] &
9859 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9860 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9861 
9862 		if (!(bp->link_params.speed_cap_mask[idx] &
9863 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9864 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9865 
9866 		if (!(bp->link_params.speed_cap_mask[idx] &
9867 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9868 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9869 
9870 		if (!(bp->link_params.speed_cap_mask[idx] &
9871 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9872 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9873 						     SUPPORTED_1000baseT_Full);
9874 
9875 		if (!(bp->link_params.speed_cap_mask[idx] &
9876 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9877 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9878 
9879 		if (!(bp->link_params.speed_cap_mask[idx] &
9880 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9881 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9882 
9883 	}
9884 
9885 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9886 		       bp->port.supported[1]);
9887 }
9888 
9889 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9890 {
9891 	u32 link_config, idx, cfg_size = 0;
9892 	bp->port.advertising[0] = 0;
9893 	bp->port.advertising[1] = 0;
9894 	switch (bp->link_params.num_phys) {
9895 	case 1:
9896 	case 2:
9897 		cfg_size = 1;
9898 		break;
9899 	case 3:
9900 		cfg_size = 2;
9901 		break;
9902 	}
9903 	for (idx = 0; idx < cfg_size; idx++) {
9904 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9905 		link_config = bp->port.link_config[idx];
9906 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9907 		case PORT_FEATURE_LINK_SPEED_AUTO:
9908 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9909 				bp->link_params.req_line_speed[idx] =
9910 					SPEED_AUTO_NEG;
9911 				bp->port.advertising[idx] |=
9912 					bp->port.supported[idx];
9913 				if (bp->link_params.phy[EXT_PHY1].type ==
9914 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
9915 					bp->port.advertising[idx] |=
9916 					(SUPPORTED_100baseT_Half |
9917 					 SUPPORTED_100baseT_Full);
9918 			} else {
9919 				/* force 10G, no AN */
9920 				bp->link_params.req_line_speed[idx] =
9921 					SPEED_10000;
9922 				bp->port.advertising[idx] |=
9923 					(ADVERTISED_10000baseT_Full |
9924 					 ADVERTISED_FIBRE);
9925 				continue;
9926 			}
9927 			break;
9928 
9929 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
9930 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9931 				bp->link_params.req_line_speed[idx] =
9932 					SPEED_10;
9933 				bp->port.advertising[idx] |=
9934 					(ADVERTISED_10baseT_Full |
9935 					 ADVERTISED_TP);
9936 			} else {
9937 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9938 					    link_config,
9939 				    bp->link_params.speed_cap_mask[idx]);
9940 				return;
9941 			}
9942 			break;
9943 
9944 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
9945 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9946 				bp->link_params.req_line_speed[idx] =
9947 					SPEED_10;
9948 				bp->link_params.req_duplex[idx] =
9949 					DUPLEX_HALF;
9950 				bp->port.advertising[idx] |=
9951 					(ADVERTISED_10baseT_Half |
9952 					 ADVERTISED_TP);
9953 			} else {
9954 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9955 					    link_config,
9956 					  bp->link_params.speed_cap_mask[idx]);
9957 				return;
9958 			}
9959 			break;
9960 
9961 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
9962 			if (bp->port.supported[idx] &
9963 			    SUPPORTED_100baseT_Full) {
9964 				bp->link_params.req_line_speed[idx] =
9965 					SPEED_100;
9966 				bp->port.advertising[idx] |=
9967 					(ADVERTISED_100baseT_Full |
9968 					 ADVERTISED_TP);
9969 			} else {
9970 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9971 					    link_config,
9972 					  bp->link_params.speed_cap_mask[idx]);
9973 				return;
9974 			}
9975 			break;
9976 
9977 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
9978 			if (bp->port.supported[idx] &
9979 			    SUPPORTED_100baseT_Half) {
9980 				bp->link_params.req_line_speed[idx] =
9981 								SPEED_100;
9982 				bp->link_params.req_duplex[idx] =
9983 								DUPLEX_HALF;
9984 				bp->port.advertising[idx] |=
9985 					(ADVERTISED_100baseT_Half |
9986 					 ADVERTISED_TP);
9987 			} else {
9988 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
9989 				    link_config,
9990 				    bp->link_params.speed_cap_mask[idx]);
9991 				return;
9992 			}
9993 			break;
9994 
9995 		case PORT_FEATURE_LINK_SPEED_1G:
9996 			if (bp->port.supported[idx] &
9997 			    SUPPORTED_1000baseT_Full) {
9998 				bp->link_params.req_line_speed[idx] =
9999 					SPEED_1000;
10000 				bp->port.advertising[idx] |=
10001 					(ADVERTISED_1000baseT_Full |
10002 					 ADVERTISED_TP);
10003 			} else {
10004 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10005 				    link_config,
10006 				    bp->link_params.speed_cap_mask[idx]);
10007 				return;
10008 			}
10009 			break;
10010 
10011 		case PORT_FEATURE_LINK_SPEED_2_5G:
10012 			if (bp->port.supported[idx] &
10013 			    SUPPORTED_2500baseX_Full) {
10014 				bp->link_params.req_line_speed[idx] =
10015 					SPEED_2500;
10016 				bp->port.advertising[idx] |=
10017 					(ADVERTISED_2500baseX_Full |
10018 						ADVERTISED_TP);
10019 			} else {
10020 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10021 				    link_config,
10022 				    bp->link_params.speed_cap_mask[idx]);
10023 				return;
10024 			}
10025 			break;
10026 
10027 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10028 			if (bp->port.supported[idx] &
10029 			    SUPPORTED_10000baseT_Full) {
10030 				bp->link_params.req_line_speed[idx] =
10031 					SPEED_10000;
10032 				bp->port.advertising[idx] |=
10033 					(ADVERTISED_10000baseT_Full |
10034 						ADVERTISED_FIBRE);
10035 			} else {
10036 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10037 				    link_config,
10038 				    bp->link_params.speed_cap_mask[idx]);
10039 				return;
10040 			}
10041 			break;
10042 		case PORT_FEATURE_LINK_SPEED_20G:
10043 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10044 
10045 			break;
10046 		default:
10047 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10048 				  link_config);
10049 				bp->link_params.req_line_speed[idx] =
10050 							SPEED_AUTO_NEG;
10051 				bp->port.advertising[idx] =
10052 						bp->port.supported[idx];
10053 			break;
10054 		}
10055 
10056 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10057 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10058 		if ((bp->link_params.req_flow_ctrl[idx] ==
10059 		     BNX2X_FLOW_CTRL_AUTO) &&
10060 		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
10061 			bp->link_params.req_flow_ctrl[idx] =
10062 				BNX2X_FLOW_CTRL_NONE;
10063 		}
10064 
10065 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10066 			       bp->link_params.req_line_speed[idx],
10067 			       bp->link_params.req_duplex[idx],
10068 			       bp->link_params.req_flow_ctrl[idx],
10069 			       bp->port.advertising[idx]);
10070 	}
10071 }
10072 
10073 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10074 {
10075 	mac_hi = cpu_to_be16(mac_hi);
10076 	mac_lo = cpu_to_be32(mac_lo);
10077 	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
10078 	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
10079 }
10080 
10081 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
10082 {
10083 	int port = BP_PORT(bp);
10084 	u32 config;
10085 	u32 ext_phy_type, ext_phy_config;
10086 
10087 	bp->link_params.bp = bp;
10088 	bp->link_params.port = port;
10089 
10090 	bp->link_params.lane_config =
10091 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10092 
10093 	bp->link_params.speed_cap_mask[0] =
10094 		SHMEM_RD(bp,
10095 			 dev_info.port_hw_config[port].speed_capability_mask);
10096 	bp->link_params.speed_cap_mask[1] =
10097 		SHMEM_RD(bp,
10098 			 dev_info.port_hw_config[port].speed_capability_mask2);
10099 	bp->port.link_config[0] =
10100 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10101 
10102 	bp->port.link_config[1] =
10103 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10104 
10105 	bp->link_params.multi_phy_config =
10106 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10107 	/* If the device is capable of WoL, set the default state according
10108 	 * to the HW
10109 	 */
10110 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10111 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10112 		   (config & PORT_FEATURE_WOL_ENABLED));
10113 
10114 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10115 		       bp->link_params.lane_config,
10116 		       bp->link_params.speed_cap_mask[0],
10117 		       bp->port.link_config[0]);
10118 
10119 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10120 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10121 	bnx2x_phy_probe(&bp->link_params);
10122 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10123 
10124 	bnx2x_link_settings_requested(bp);
10125 
10126 	/*
10127 	 * If connected directly, work with the internal PHY, otherwise, work
10128 	 * with the external PHY
10129 	 */
10130 	ext_phy_config =
10131 		SHMEM_RD(bp,
10132 			 dev_info.port_hw_config[port].external_phy_config);
10133 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10134 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10135 		bp->mdio.prtad = bp->port.phy_addr;
10136 
10137 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10138 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10139 		bp->mdio.prtad =
10140 			XGXS_EXT_PHY_ADDR(ext_phy_config);
10141 
10142 	/*
10143 	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
10144 	 * In MF mode, it is set to cover self test cases
10145 	 */
10146 	if (IS_MF(bp))
10147 		bp->port.need_hw_lock = 1;
10148 	else
10149 		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
10150 							bp->common.shmem_base,
10151 							bp->common.shmem2_base);
10152 }
10153 
10154 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10155 {
10156 	u32 no_flags = NO_ISCSI_FLAG;
10157 #ifdef BCM_CNIC
10158 	int port = BP_PORT(bp);
10159 
10160 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10161 				drv_lic_key[port].max_iscsi_conn);
10162 
10163 	/* Get the number of maximum allowed iSCSI connections */
10164 	bp->cnic_eth_dev.max_iscsi_conn =
10165 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10166 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10167 
10168 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10169 		       bp->cnic_eth_dev.max_iscsi_conn);
10170 
10171 	/*
10172 	 * If maximum allowed number of connections is zero -
10173 	 * disable the feature.
10174 	 */
10175 	if (!bp->cnic_eth_dev.max_iscsi_conn)
10176 		bp->flags |= no_flags;
10177 #else
10178 	bp->flags |= no_flags;
10179 #endif
10180 }
10181 
10182 #ifdef BCM_CNIC
10183 static void __devinit bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10184 {
10185 	/* Port info */
10186 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10187 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10188 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10189 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10190 
10191 	/* Node info */
10192 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10193 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10194 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10195 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10196 }
10197 #endif
10198 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
10199 {
10200 #ifdef BCM_CNIC
10201 	int port = BP_PORT(bp);
10202 	int func = BP_ABS_FUNC(bp);
10203 
10204 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10205 				drv_lic_key[port].max_fcoe_conn);
10206 
10207 	/* Get the number of maximum allowed FCoE connections */
10208 	bp->cnic_eth_dev.max_fcoe_conn =
10209 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10210 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10211 
10212 	/* Read the WWN: */
10213 	if (!IS_MF(bp)) {
10214 		/* Port info */
10215 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10216 			SHMEM_RD(bp,
10217 				dev_info.port_hw_config[port].
10218 				 fcoe_wwn_port_name_upper);
10219 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10220 			SHMEM_RD(bp,
10221 				dev_info.port_hw_config[port].
10222 				 fcoe_wwn_port_name_lower);
10223 
10224 		/* Node info */
10225 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10226 			SHMEM_RD(bp,
10227 				dev_info.port_hw_config[port].
10228 				 fcoe_wwn_node_name_upper);
10229 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10230 			SHMEM_RD(bp,
10231 				dev_info.port_hw_config[port].
10232 				 fcoe_wwn_node_name_lower);
10233 	} else if (!IS_MF_SD(bp)) {
10234 		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10235 
10236 		/*
10237 		 * Read the WWN info only if the FCoE feature is enabled for
10238 		 * this function.
10239 		 */
10240 		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
10241 			bnx2x_get_ext_wwn_info(bp, func);
10242 
10243 	} else if (IS_MF_FCOE_SD(bp))
10244 		bnx2x_get_ext_wwn_info(bp, func);
10245 
10246 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10247 
10248 	/*
10249 	 * If maximum allowed number of connections is zero -
10250 	 * disable the feature.
10251 	 */
10252 	if (!bp->cnic_eth_dev.max_fcoe_conn)
10253 		bp->flags |= NO_FCOE_FLAG;
10254 #else
10255 	bp->flags |= NO_FCOE_FLAG;
10256 #endif
10257 }
10258 
10259 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
10260 {
10261 	/*
10262 	 * iSCSI may be dynamically disabled but reading
10263 	 * info here we will decrease memory usage by driver
10264 	 * if the feature is disabled for good
10265 	 */
10266 	bnx2x_get_iscsi_info(bp);
10267 	bnx2x_get_fcoe_info(bp);
10268 }
10269 
10270 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
10271 {
10272 	u32 val, val2;
10273 	int func = BP_ABS_FUNC(bp);
10274 	int port = BP_PORT(bp);
10275 #ifdef BCM_CNIC
10276 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10277 	u8 *fip_mac = bp->fip_mac;
10278 #endif
10279 
10280 	/* Zero primary MAC configuration */
10281 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
10282 
10283 	if (BP_NOMCP(bp)) {
10284 		BNX2X_ERROR("warning: random MAC workaround active\n");
10285 		eth_hw_addr_random(bp->dev);
10286 	} else if (IS_MF(bp)) {
10287 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
10288 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
10289 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
10290 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
10291 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10292 
10293 #ifdef BCM_CNIC
10294 		/*
10295 		 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
10296 		 * FCoE MAC then the appropriate feature should be disabled.
10297 		 *
10298 		 * In non SD mode features configuration comes from
10299 		 * struct func_ext_config.
10300 		 */
10301 		if (!IS_MF_SD(bp)) {
10302 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10303 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
10304 				val2 = MF_CFG_RD(bp, func_ext_config[func].
10305 						     iscsi_mac_addr_upper);
10306 				val = MF_CFG_RD(bp, func_ext_config[func].
10307 						    iscsi_mac_addr_lower);
10308 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
10309 				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
10310 					       iscsi_mac);
10311 			} else
10312 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10313 
10314 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
10315 				val2 = MF_CFG_RD(bp, func_ext_config[func].
10316 						     fcoe_mac_addr_upper);
10317 				val = MF_CFG_RD(bp, func_ext_config[func].
10318 						    fcoe_mac_addr_lower);
10319 				bnx2x_set_mac_buf(fip_mac, val, val2);
10320 				BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
10321 					       fip_mac);
10322 
10323 			} else
10324 				bp->flags |= NO_FCOE_FLAG;
10325 
10326 			bp->mf_ext_config = cfg;
10327 
10328 		} else { /* SD MODE */
10329 			if (IS_MF_STORAGE_SD(bp)) {
10330 				if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
10331 					/* use primary mac as iscsi mac */
10332 					memcpy(iscsi_mac, bp->dev->dev_addr,
10333 					       ETH_ALEN);
10334 
10335 					BNX2X_DEV_INFO("SD ISCSI MODE\n");
10336 					BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
10337 						       iscsi_mac);
10338 				} else { /* FCoE */
10339 					memcpy(fip_mac, bp->dev->dev_addr,
10340 					       ETH_ALEN);
10341 					BNX2X_DEV_INFO("SD FCoE MODE\n");
10342 					BNX2X_DEV_INFO("Read FIP MAC: %pM\n",
10343 						       fip_mac);
10344 				}
10345 				/* Zero primary MAC configuration */
10346 				memset(bp->dev->dev_addr, 0, ETH_ALEN);
10347 			}
10348 		}
10349 
10350 		if (IS_MF_FCOE_AFEX(bp))
10351 			/* use FIP MAC as primary MAC */
10352 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
10353 
10354 #endif
10355 	} else {
10356 		/* in SF read MACs from port configuration */
10357 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
10358 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
10359 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10360 
10361 #ifdef BCM_CNIC
10362 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10363 				    iscsi_mac_upper);
10364 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10365 				   iscsi_mac_lower);
10366 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
10367 
10368 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10369 				    fcoe_fip_mac_upper);
10370 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10371 				   fcoe_fip_mac_lower);
10372 		bnx2x_set_mac_buf(fip_mac, val, val2);
10373 #endif
10374 	}
10375 
10376 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
10377 	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
10378 
10379 #ifdef BCM_CNIC
10380 	/* Disable iSCSI if MAC configuration is
10381 	 * invalid.
10382 	 */
10383 	if (!is_valid_ether_addr(iscsi_mac)) {
10384 		bp->flags |= NO_ISCSI_FLAG;
10385 		memset(iscsi_mac, 0, ETH_ALEN);
10386 	}
10387 
10388 	/* Disable FCoE if MAC configuration is
10389 	 * invalid.
10390 	 */
10391 	if (!is_valid_ether_addr(fip_mac)) {
10392 		bp->flags |= NO_FCOE_FLAG;
10393 		memset(bp->fip_mac, 0, ETH_ALEN);
10394 	}
10395 #endif
10396 
10397 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10398 		dev_err(&bp->pdev->dev,
10399 			"bad Ethernet MAC address configuration: %pM\n"
10400 			"change it manually before bringing up the appropriate network interface\n",
10401 			bp->dev->dev_addr);
10402 
10403 
10404 }
10405 
10406 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
10407 {
10408 	int /*abs*/func = BP_ABS_FUNC(bp);
10409 	int vn;
10410 	u32 val = 0;
10411 	int rc = 0;
10412 
10413 	bnx2x_get_common_hwinfo(bp);
10414 
10415 	/*
10416 	 * initialize IGU parameters
10417 	 */
10418 	if (CHIP_IS_E1x(bp)) {
10419 		bp->common.int_block = INT_BLOCK_HC;
10420 
10421 		bp->igu_dsb_id = DEF_SB_IGU_ID;
10422 		bp->igu_base_sb = 0;
10423 	} else {
10424 		bp->common.int_block = INT_BLOCK_IGU;
10425 
10426 		/* do not allow device reset during IGU info preocessing */
10427 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10428 
10429 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
10430 
10431 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10432 			int tout = 5000;
10433 
10434 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
10435 
10436 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
10437 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
10438 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
10439 
10440 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10441 				tout--;
10442 				usleep_range(1000, 1000);
10443 			}
10444 
10445 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10446 				dev_err(&bp->pdev->dev,
10447 					"FORCING Normal Mode failed!!!\n");
10448 				return -EPERM;
10449 			}
10450 		}
10451 
10452 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10453 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
10454 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
10455 		} else
10456 			BNX2X_DEV_INFO("IGU Normal Mode\n");
10457 
10458 		bnx2x_get_igu_cam_info(bp);
10459 
10460 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10461 	}
10462 
10463 	/*
10464 	 * set base FW non-default (fast path) status block id, this value is
10465 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
10466 	 * determine the id used by the FW.
10467 	 */
10468 	if (CHIP_IS_E1x(bp))
10469 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
10470 	else /*
10471 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
10472 	      * the same queue are indicated on the same IGU SB). So we prefer
10473 	      * FW and IGU SBs to be the same value.
10474 	      */
10475 		bp->base_fw_ndsb = bp->igu_base_sb;
10476 
10477 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
10478 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
10479 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
10480 
10481 	/*
10482 	 * Initialize MF configuration
10483 	 */
10484 
10485 	bp->mf_ov = 0;
10486 	bp->mf_mode = 0;
10487 	vn = BP_VN(bp);
10488 
10489 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
10490 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
10491 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
10492 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
10493 
10494 		if (SHMEM2_HAS(bp, mf_cfg_addr))
10495 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
10496 		else
10497 			bp->common.mf_cfg_base = bp->common.shmem_base +
10498 				offsetof(struct shmem_region, func_mb) +
10499 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
10500 		/*
10501 		 * get mf configuration:
10502 		 * 1. existence of MF configuration
10503 		 * 2. MAC address must be legal (check only upper bytes)
10504 		 *    for  Switch-Independent mode;
10505 		 *    OVLAN must be legal for Switch-Dependent mode
10506 		 * 3. SF_MODE configures specific MF mode
10507 		 */
10508 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10509 			/* get mf configuration */
10510 			val = SHMEM_RD(bp,
10511 				       dev_info.shared_feature_config.config);
10512 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
10513 
10514 			switch (val) {
10515 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
10516 				val = MF_CFG_RD(bp, func_mf_config[func].
10517 						mac_upper);
10518 				/* check for legal mac (upper bytes)*/
10519 				if (val != 0xffff) {
10520 					bp->mf_mode = MULTI_FUNCTION_SI;
10521 					bp->mf_config[vn] = MF_CFG_RD(bp,
10522 						   func_mf_config[func].config);
10523 				} else
10524 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
10525 				break;
10526 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
10527 				if ((!CHIP_IS_E1x(bp)) &&
10528 				    (MF_CFG_RD(bp, func_mf_config[func].
10529 					       mac_upper) != 0xffff) &&
10530 				    (SHMEM2_HAS(bp,
10531 						afex_driver_support))) {
10532 					bp->mf_mode = MULTI_FUNCTION_AFEX;
10533 					bp->mf_config[vn] = MF_CFG_RD(bp,
10534 						func_mf_config[func].config);
10535 				} else {
10536 					BNX2X_DEV_INFO("can not configure afex mode\n");
10537 				}
10538 				break;
10539 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
10540 				/* get OV configuration */
10541 				val = MF_CFG_RD(bp,
10542 					func_mf_config[FUNC_0].e1hov_tag);
10543 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
10544 
10545 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10546 					bp->mf_mode = MULTI_FUNCTION_SD;
10547 					bp->mf_config[vn] = MF_CFG_RD(bp,
10548 						func_mf_config[func].config);
10549 				} else
10550 					BNX2X_DEV_INFO("illegal OV for SD\n");
10551 				break;
10552 			default:
10553 				/* Unknown configuration: reset mf_config */
10554 				bp->mf_config[vn] = 0;
10555 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
10556 			}
10557 		}
10558 
10559 		BNX2X_DEV_INFO("%s function mode\n",
10560 			       IS_MF(bp) ? "multi" : "single");
10561 
10562 		switch (bp->mf_mode) {
10563 		case MULTI_FUNCTION_SD:
10564 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
10565 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
10566 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10567 				bp->mf_ov = val;
10568 				bp->path_has_ovlan = true;
10569 
10570 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
10571 					       func, bp->mf_ov, bp->mf_ov);
10572 			} else {
10573 				dev_err(&bp->pdev->dev,
10574 					"No valid MF OV for func %d, aborting\n",
10575 					func);
10576 				return -EPERM;
10577 			}
10578 			break;
10579 		case MULTI_FUNCTION_AFEX:
10580 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
10581 			break;
10582 		case MULTI_FUNCTION_SI:
10583 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
10584 				       func);
10585 			break;
10586 		default:
10587 			if (vn) {
10588 				dev_err(&bp->pdev->dev,
10589 					"VN %d is in a single function mode, aborting\n",
10590 					vn);
10591 				return -EPERM;
10592 			}
10593 			break;
10594 		}
10595 
10596 		/* check if other port on the path needs ovlan:
10597 		 * Since MF configuration is shared between ports
10598 		 * Possible mixed modes are only
10599 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
10600 		 */
10601 		if (CHIP_MODE_IS_4_PORT(bp) &&
10602 		    !bp->path_has_ovlan &&
10603 		    !IS_MF(bp) &&
10604 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10605 			u8 other_port = !BP_PORT(bp);
10606 			u8 other_func = BP_PATH(bp) + 2*other_port;
10607 			val = MF_CFG_RD(bp,
10608 					func_mf_config[other_func].e1hov_tag);
10609 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
10610 				bp->path_has_ovlan = true;
10611 		}
10612 	}
10613 
10614 	/* adjust igu_sb_cnt to MF for E1x */
10615 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
10616 		bp->igu_sb_cnt /= E1HVN_MAX;
10617 
10618 	/* port info */
10619 	bnx2x_get_port_hwinfo(bp);
10620 
10621 	/* Get MAC addresses */
10622 	bnx2x_get_mac_hwinfo(bp);
10623 
10624 	bnx2x_get_cnic_info(bp);
10625 
10626 	return rc;
10627 }
10628 
10629 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
10630 {
10631 	int cnt, i, block_end, rodi;
10632 	char vpd_start[BNX2X_VPD_LEN+1];
10633 	char str_id_reg[VENDOR_ID_LEN+1];
10634 	char str_id_cap[VENDOR_ID_LEN+1];
10635 	char *vpd_data;
10636 	char *vpd_extended_data = NULL;
10637 	u8 len;
10638 
10639 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
10640 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
10641 
10642 	if (cnt < BNX2X_VPD_LEN)
10643 		goto out_not_found;
10644 
10645 	/* VPD RO tag should be first tag after identifier string, hence
10646 	 * we should be able to find it in first BNX2X_VPD_LEN chars
10647 	 */
10648 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
10649 			     PCI_VPD_LRDT_RO_DATA);
10650 	if (i < 0)
10651 		goto out_not_found;
10652 
10653 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
10654 		    pci_vpd_lrdt_size(&vpd_start[i]);
10655 
10656 	i += PCI_VPD_LRDT_TAG_SIZE;
10657 
10658 	if (block_end > BNX2X_VPD_LEN) {
10659 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
10660 		if (vpd_extended_data  == NULL)
10661 			goto out_not_found;
10662 
10663 		/* read rest of vpd image into vpd_extended_data */
10664 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
10665 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
10666 				   block_end - BNX2X_VPD_LEN,
10667 				   vpd_extended_data + BNX2X_VPD_LEN);
10668 		if (cnt < (block_end - BNX2X_VPD_LEN))
10669 			goto out_not_found;
10670 		vpd_data = vpd_extended_data;
10671 	} else
10672 		vpd_data = vpd_start;
10673 
10674 	/* now vpd_data holds full vpd content in both cases */
10675 
10676 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10677 				   PCI_VPD_RO_KEYWORD_MFR_ID);
10678 	if (rodi < 0)
10679 		goto out_not_found;
10680 
10681 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
10682 
10683 	if (len != VENDOR_ID_LEN)
10684 		goto out_not_found;
10685 
10686 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10687 
10688 	/* vendor specific info */
10689 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10690 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10691 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10692 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
10693 
10694 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10695 						PCI_VPD_RO_KEYWORD_VENDOR0);
10696 		if (rodi >= 0) {
10697 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
10698 
10699 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10700 
10701 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10702 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
10703 				bp->fw_ver[len] = ' ';
10704 			}
10705 		}
10706 		kfree(vpd_extended_data);
10707 		return;
10708 	}
10709 out_not_found:
10710 	kfree(vpd_extended_data);
10711 	return;
10712 }
10713 
10714 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10715 {
10716 	u32 flags = 0;
10717 
10718 	if (CHIP_REV_IS_FPGA(bp))
10719 		SET_FLAGS(flags, MODE_FPGA);
10720 	else if (CHIP_REV_IS_EMUL(bp))
10721 		SET_FLAGS(flags, MODE_EMUL);
10722 	else
10723 		SET_FLAGS(flags, MODE_ASIC);
10724 
10725 	if (CHIP_MODE_IS_4_PORT(bp))
10726 		SET_FLAGS(flags, MODE_PORT4);
10727 	else
10728 		SET_FLAGS(flags, MODE_PORT2);
10729 
10730 	if (CHIP_IS_E2(bp))
10731 		SET_FLAGS(flags, MODE_E2);
10732 	else if (CHIP_IS_E3(bp)) {
10733 		SET_FLAGS(flags, MODE_E3);
10734 		if (CHIP_REV(bp) == CHIP_REV_Ax)
10735 			SET_FLAGS(flags, MODE_E3_A0);
10736 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10737 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10738 	}
10739 
10740 	if (IS_MF(bp)) {
10741 		SET_FLAGS(flags, MODE_MF);
10742 		switch (bp->mf_mode) {
10743 		case MULTI_FUNCTION_SD:
10744 			SET_FLAGS(flags, MODE_MF_SD);
10745 			break;
10746 		case MULTI_FUNCTION_SI:
10747 			SET_FLAGS(flags, MODE_MF_SI);
10748 			break;
10749 		case MULTI_FUNCTION_AFEX:
10750 			SET_FLAGS(flags, MODE_MF_AFEX);
10751 			break;
10752 		}
10753 	} else
10754 		SET_FLAGS(flags, MODE_SF);
10755 
10756 #if defined(__LITTLE_ENDIAN)
10757 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10758 #else /*(__BIG_ENDIAN)*/
10759 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
10760 #endif
10761 	INIT_MODE_FLAGS(bp) = flags;
10762 }
10763 
10764 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10765 {
10766 	int func;
10767 	int rc;
10768 
10769 	mutex_init(&bp->port.phy_mutex);
10770 	mutex_init(&bp->fw_mb_mutex);
10771 	spin_lock_init(&bp->stats_lock);
10772 #ifdef BCM_CNIC
10773 	mutex_init(&bp->cnic_mutex);
10774 #endif
10775 
10776 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10777 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10778 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10779 	rc = bnx2x_get_hwinfo(bp);
10780 	if (rc)
10781 		return rc;
10782 
10783 	bnx2x_set_modes_bitmap(bp);
10784 
10785 	rc = bnx2x_alloc_mem_bp(bp);
10786 	if (rc)
10787 		return rc;
10788 
10789 	bnx2x_read_fwinfo(bp);
10790 
10791 	func = BP_FUNC(bp);
10792 
10793 	/* need to reset chip if undi was active */
10794 	if (!BP_NOMCP(bp)) {
10795 		/* init fw_seq */
10796 		bp->fw_seq =
10797 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10798 							DRV_MSG_SEQ_NUMBER_MASK;
10799 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10800 
10801 		bnx2x_prev_unload(bp);
10802 	}
10803 
10804 
10805 	if (CHIP_REV_IS_FPGA(bp))
10806 		dev_err(&bp->pdev->dev, "FPGA detected\n");
10807 
10808 	if (BP_NOMCP(bp) && (func == 0))
10809 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
10810 
10811 	bp->disable_tpa = disable_tpa;
10812 
10813 #ifdef BCM_CNIC
10814 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
10815 #endif
10816 
10817 	/* Set TPA flags */
10818 	if (bp->disable_tpa) {
10819 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10820 		bp->dev->features &= ~NETIF_F_LRO;
10821 	} else {
10822 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
10823 		bp->dev->features |= NETIF_F_LRO;
10824 	}
10825 
10826 	if (CHIP_IS_E1(bp))
10827 		bp->dropless_fc = 0;
10828 	else
10829 		bp->dropless_fc = dropless_fc;
10830 
10831 	bp->mrrs = mrrs;
10832 
10833 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
10834 
10835 	/* make sure that the numbers are in the right granularity */
10836 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10837 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10838 
10839 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
10840 
10841 	init_timer(&bp->timer);
10842 	bp->timer.expires = jiffies + bp->current_interval;
10843 	bp->timer.data = (unsigned long) bp;
10844 	bp->timer.function = bnx2x_timer;
10845 
10846 	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10847 	bnx2x_dcbx_init_params(bp);
10848 
10849 #ifdef BCM_CNIC
10850 	if (CHIP_IS_E1x(bp))
10851 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10852 	else
10853 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
10854 #endif
10855 
10856 	/* multiple tx priority */
10857 	if (CHIP_IS_E1x(bp))
10858 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10859 	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10860 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10861 	if (CHIP_IS_E3B0(bp))
10862 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10863 
10864 	return rc;
10865 }
10866 
10867 
10868 /****************************************************************************
10869 * General service functions
10870 ****************************************************************************/
10871 
10872 /*
10873  * net_device service functions
10874  */
10875 
10876 /* called with rtnl_lock */
10877 static int bnx2x_open(struct net_device *dev)
10878 {
10879 	struct bnx2x *bp = netdev_priv(dev);
10880 	bool global = false;
10881 	int other_engine = BP_PATH(bp) ? 0 : 1;
10882 	bool other_load_status, load_status;
10883 
10884 	bp->stats_init = true;
10885 
10886 	netif_carrier_off(dev);
10887 
10888 	bnx2x_set_power_state(bp, PCI_D0);
10889 
10890 	other_load_status = bnx2x_get_load_status(bp, other_engine);
10891 	load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
10892 
10893 	/*
10894 	 * If parity had happen during the unload, then attentions
10895 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10896 	 * want the first function loaded on the current engine to
10897 	 * complete the recovery.
10898 	 */
10899 	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10900 	    bnx2x_chk_parity_attn(bp, &global, true))
10901 		do {
10902 			/*
10903 			 * If there are attentions and they are in a global
10904 			 * blocks, set the GLOBAL_RESET bit regardless whether
10905 			 * it will be this function that will complete the
10906 			 * recovery or not.
10907 			 */
10908 			if (global)
10909 				bnx2x_set_reset_global(bp);
10910 
10911 			/*
10912 			 * Only the first function on the current engine should
10913 			 * try to recover in open. In case of attentions in
10914 			 * global blocks only the first in the chip should try
10915 			 * to recover.
10916 			 */
10917 			if ((!load_status &&
10918 			     (!global || !other_load_status)) &&
10919 			    bnx2x_trylock_leader_lock(bp) &&
10920 			    !bnx2x_leader_reset(bp)) {
10921 				netdev_info(bp->dev, "Recovered in open\n");
10922 				break;
10923 			}
10924 
10925 			/* recovery has failed... */
10926 			bnx2x_set_power_state(bp, PCI_D3hot);
10927 			bp->recovery_state = BNX2X_RECOVERY_FAILED;
10928 
10929 			BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
10930 				  "If you still see this message after a few retries then power cycle is required.\n");
10931 
10932 			return -EAGAIN;
10933 		} while (0);
10934 
10935 	bp->recovery_state = BNX2X_RECOVERY_DONE;
10936 	return bnx2x_nic_load(bp, LOAD_OPEN);
10937 }
10938 
10939 /* called with rtnl_lock */
10940 static int bnx2x_close(struct net_device *dev)
10941 {
10942 	struct bnx2x *bp = netdev_priv(dev);
10943 
10944 	/* Unload the driver, release IRQs */
10945 	bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10946 
10947 	/* Power off */
10948 	bnx2x_set_power_state(bp, PCI_D3hot);
10949 
10950 	return 0;
10951 }
10952 
10953 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10954 				      struct bnx2x_mcast_ramrod_params *p)
10955 {
10956 	int mc_count = netdev_mc_count(bp->dev);
10957 	struct bnx2x_mcast_list_elem *mc_mac =
10958 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10959 	struct netdev_hw_addr *ha;
10960 
10961 	if (!mc_mac)
10962 		return -ENOMEM;
10963 
10964 	INIT_LIST_HEAD(&p->mcast_list);
10965 
10966 	netdev_for_each_mc_addr(ha, bp->dev) {
10967 		mc_mac->mac = bnx2x_mc_addr(ha);
10968 		list_add_tail(&mc_mac->link, &p->mcast_list);
10969 		mc_mac++;
10970 	}
10971 
10972 	p->mcast_list_len = mc_count;
10973 
10974 	return 0;
10975 }
10976 
10977 static void bnx2x_free_mcast_macs_list(
10978 	struct bnx2x_mcast_ramrod_params *p)
10979 {
10980 	struct bnx2x_mcast_list_elem *mc_mac =
10981 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10982 				 link);
10983 
10984 	WARN_ON(!mc_mac);
10985 	kfree(mc_mac);
10986 }
10987 
10988 /**
10989  * bnx2x_set_uc_list - configure a new unicast MACs list.
10990  *
10991  * @bp: driver handle
10992  *
10993  * We will use zero (0) as a MAC type for these MACs.
10994  */
10995 static int bnx2x_set_uc_list(struct bnx2x *bp)
10996 {
10997 	int rc;
10998 	struct net_device *dev = bp->dev;
10999 	struct netdev_hw_addr *ha;
11000 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
11001 	unsigned long ramrod_flags = 0;
11002 
11003 	/* First schedule a cleanup up of old configuration */
11004 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11005 	if (rc < 0) {
11006 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11007 		return rc;
11008 	}
11009 
11010 	netdev_for_each_uc_addr(ha, dev) {
11011 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11012 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11013 		if (rc < 0) {
11014 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11015 				  rc);
11016 			return rc;
11017 		}
11018 	}
11019 
11020 	/* Execute the pending commands */
11021 	__set_bit(RAMROD_CONT, &ramrod_flags);
11022 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11023 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
11024 }
11025 
11026 static int bnx2x_set_mc_list(struct bnx2x *bp)
11027 {
11028 	struct net_device *dev = bp->dev;
11029 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
11030 	int rc = 0;
11031 
11032 	rparam.mcast_obj = &bp->mcast_obj;
11033 
11034 	/* first, clear all configured multicast MACs */
11035 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11036 	if (rc < 0) {
11037 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11038 		return rc;
11039 	}
11040 
11041 	/* then, configure a new MACs list */
11042 	if (netdev_mc_count(dev)) {
11043 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11044 		if (rc) {
11045 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11046 				  rc);
11047 			return rc;
11048 		}
11049 
11050 		/* Now add the new MACs */
11051 		rc = bnx2x_config_mcast(bp, &rparam,
11052 					BNX2X_MCAST_CMD_ADD);
11053 		if (rc < 0)
11054 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11055 				  rc);
11056 
11057 		bnx2x_free_mcast_macs_list(&rparam);
11058 	}
11059 
11060 	return rc;
11061 }
11062 
11063 
11064 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11065 void bnx2x_set_rx_mode(struct net_device *dev)
11066 {
11067 	struct bnx2x *bp = netdev_priv(dev);
11068 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11069 
11070 	if (bp->state != BNX2X_STATE_OPEN) {
11071 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11072 		return;
11073 	}
11074 
11075 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11076 
11077 	if (dev->flags & IFF_PROMISC)
11078 		rx_mode = BNX2X_RX_MODE_PROMISC;
11079 	else if ((dev->flags & IFF_ALLMULTI) ||
11080 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11081 		  CHIP_IS_E1(bp)))
11082 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
11083 	else {
11084 		/* some multicasts */
11085 		if (bnx2x_set_mc_list(bp) < 0)
11086 			rx_mode = BNX2X_RX_MODE_ALLMULTI;
11087 
11088 		if (bnx2x_set_uc_list(bp) < 0)
11089 			rx_mode = BNX2X_RX_MODE_PROMISC;
11090 	}
11091 
11092 	bp->rx_mode = rx_mode;
11093 #ifdef BCM_CNIC
11094 	/* handle ISCSI SD mode */
11095 	if (IS_MF_ISCSI_SD(bp))
11096 		bp->rx_mode = BNX2X_RX_MODE_NONE;
11097 #endif
11098 
11099 	/* Schedule the rx_mode command */
11100 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11101 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11102 		return;
11103 	}
11104 
11105 	bnx2x_set_storm_rx_mode(bp);
11106 }
11107 
11108 /* called with rtnl_lock */
11109 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11110 			   int devad, u16 addr)
11111 {
11112 	struct bnx2x *bp = netdev_priv(netdev);
11113 	u16 value;
11114 	int rc;
11115 
11116 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11117 	   prtad, devad, addr);
11118 
11119 	/* The HW expects different devad if CL22 is used */
11120 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11121 
11122 	bnx2x_acquire_phy_lock(bp);
11123 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11124 	bnx2x_release_phy_lock(bp);
11125 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11126 
11127 	if (!rc)
11128 		rc = value;
11129 	return rc;
11130 }
11131 
11132 /* called with rtnl_lock */
11133 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11134 			    u16 addr, u16 value)
11135 {
11136 	struct bnx2x *bp = netdev_priv(netdev);
11137 	int rc;
11138 
11139 	DP(NETIF_MSG_LINK,
11140 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11141 	   prtad, devad, addr, value);
11142 
11143 	/* The HW expects different devad if CL22 is used */
11144 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11145 
11146 	bnx2x_acquire_phy_lock(bp);
11147 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11148 	bnx2x_release_phy_lock(bp);
11149 	return rc;
11150 }
11151 
11152 /* called with rtnl_lock */
11153 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11154 {
11155 	struct bnx2x *bp = netdev_priv(dev);
11156 	struct mii_ioctl_data *mdio = if_mii(ifr);
11157 
11158 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11159 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
11160 
11161 	if (!netif_running(dev))
11162 		return -EAGAIN;
11163 
11164 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11165 }
11166 
11167 #ifdef CONFIG_NET_POLL_CONTROLLER
11168 static void poll_bnx2x(struct net_device *dev)
11169 {
11170 	struct bnx2x *bp = netdev_priv(dev);
11171 
11172 	disable_irq(bp->pdev->irq);
11173 	bnx2x_interrupt(bp->pdev->irq, dev);
11174 	enable_irq(bp->pdev->irq);
11175 }
11176 #endif
11177 
11178 static int bnx2x_validate_addr(struct net_device *dev)
11179 {
11180 	struct bnx2x *bp = netdev_priv(dev);
11181 
11182 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11183 		BNX2X_ERR("Non-valid Ethernet address\n");
11184 		return -EADDRNOTAVAIL;
11185 	}
11186 	return 0;
11187 }
11188 
11189 static const struct net_device_ops bnx2x_netdev_ops = {
11190 	.ndo_open		= bnx2x_open,
11191 	.ndo_stop		= bnx2x_close,
11192 	.ndo_start_xmit		= bnx2x_start_xmit,
11193 	.ndo_select_queue	= bnx2x_select_queue,
11194 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
11195 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
11196 	.ndo_validate_addr	= bnx2x_validate_addr,
11197 	.ndo_do_ioctl		= bnx2x_ioctl,
11198 	.ndo_change_mtu		= bnx2x_change_mtu,
11199 	.ndo_fix_features	= bnx2x_fix_features,
11200 	.ndo_set_features	= bnx2x_set_features,
11201 	.ndo_tx_timeout		= bnx2x_tx_timeout,
11202 #ifdef CONFIG_NET_POLL_CONTROLLER
11203 	.ndo_poll_controller	= poll_bnx2x,
11204 #endif
11205 	.ndo_setup_tc		= bnx2x_setup_tc,
11206 
11207 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
11208 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
11209 #endif
11210 };
11211 
11212 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
11213 {
11214 	struct device *dev = &bp->pdev->dev;
11215 
11216 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
11217 		bp->flags |= USING_DAC_FLAG;
11218 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
11219 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
11220 			return -EIO;
11221 		}
11222 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
11223 		dev_err(dev, "System does not support DMA, aborting\n");
11224 		return -EIO;
11225 	}
11226 
11227 	return 0;
11228 }
11229 
11230 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
11231 				    struct net_device *dev,
11232 				    unsigned long board_type)
11233 {
11234 	struct bnx2x *bp;
11235 	int rc;
11236 	u32 pci_cfg_dword;
11237 	bool chip_is_e1x = (board_type == BCM57710 ||
11238 			    board_type == BCM57711 ||
11239 			    board_type == BCM57711E);
11240 
11241 	SET_NETDEV_DEV(dev, &pdev->dev);
11242 	bp = netdev_priv(dev);
11243 
11244 	bp->dev = dev;
11245 	bp->pdev = pdev;
11246 	bp->flags = 0;
11247 
11248 	rc = pci_enable_device(pdev);
11249 	if (rc) {
11250 		dev_err(&bp->pdev->dev,
11251 			"Cannot enable PCI device, aborting\n");
11252 		goto err_out;
11253 	}
11254 
11255 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11256 		dev_err(&bp->pdev->dev,
11257 			"Cannot find PCI device base address, aborting\n");
11258 		rc = -ENODEV;
11259 		goto err_out_disable;
11260 	}
11261 
11262 	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
11263 		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
11264 		       " base address, aborting\n");
11265 		rc = -ENODEV;
11266 		goto err_out_disable;
11267 	}
11268 
11269 	if (atomic_read(&pdev->enable_cnt) == 1) {
11270 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11271 		if (rc) {
11272 			dev_err(&bp->pdev->dev,
11273 				"Cannot obtain PCI resources, aborting\n");
11274 			goto err_out_disable;
11275 		}
11276 
11277 		pci_set_master(pdev);
11278 		pci_save_state(pdev);
11279 	}
11280 
11281 	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
11282 	if (bp->pm_cap == 0) {
11283 		dev_err(&bp->pdev->dev,
11284 			"Cannot find power management capability, aborting\n");
11285 		rc = -EIO;
11286 		goto err_out_release;
11287 	}
11288 
11289 	if (!pci_is_pcie(pdev)) {
11290 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
11291 		rc = -EIO;
11292 		goto err_out_release;
11293 	}
11294 
11295 	rc = bnx2x_set_coherency_mask(bp);
11296 	if (rc)
11297 		goto err_out_release;
11298 
11299 	dev->mem_start = pci_resource_start(pdev, 0);
11300 	dev->base_addr = dev->mem_start;
11301 	dev->mem_end = pci_resource_end(pdev, 0);
11302 
11303 	dev->irq = pdev->irq;
11304 
11305 	bp->regview = pci_ioremap_bar(pdev, 0);
11306 	if (!bp->regview) {
11307 		dev_err(&bp->pdev->dev,
11308 			"Cannot map register space, aborting\n");
11309 		rc = -ENOMEM;
11310 		goto err_out_release;
11311 	}
11312 
11313 	/* In E1/E1H use pci device function given by kernel.
11314 	 * In E2/E3 read physical function from ME register since these chips
11315 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
11316 	 * (depending on hypervisor).
11317 	 */
11318 	if (chip_is_e1x)
11319 		bp->pf_num = PCI_FUNC(pdev->devfn);
11320 	else {/* chip is E2/3*/
11321 		pci_read_config_dword(bp->pdev,
11322 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
11323 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
11324 		    ME_REG_ABS_PF_NUM_SHIFT);
11325 	}
11326 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
11327 
11328 	bnx2x_set_power_state(bp, PCI_D0);
11329 
11330 	/* clean indirect addresses */
11331 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
11332 			       PCICFG_VENDOR_ID_OFFSET);
11333 	/*
11334 	 * Clean the following indirect addresses for all functions since it
11335 	 * is not used by the driver.
11336 	 */
11337 	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
11338 	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
11339 	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
11340 	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
11341 
11342 	if (chip_is_e1x) {
11343 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
11344 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
11345 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
11346 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
11347 	}
11348 
11349 	/*
11350 	 * Enable internal target-read (in case we are probed after PF FLR).
11351 	 * Must be done prior to any BAR read access. Only for 57712 and up
11352 	 */
11353 	if (!chip_is_e1x)
11354 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11355 
11356 	/* Reset the load counter */
11357 	bnx2x_clear_load_status(bp);
11358 
11359 	dev->watchdog_timeo = TX_TIMEOUT;
11360 
11361 	dev->netdev_ops = &bnx2x_netdev_ops;
11362 	bnx2x_set_ethtool_ops(dev);
11363 
11364 	dev->priv_flags |= IFF_UNICAST_FLT;
11365 
11366 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11367 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
11368 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
11369 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
11370 
11371 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11372 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
11373 
11374 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
11375 	if (bp->flags & USING_DAC_FLAG)
11376 		dev->features |= NETIF_F_HIGHDMA;
11377 
11378 	/* Add Loopback capability to the device */
11379 	dev->hw_features |= NETIF_F_LOOPBACK;
11380 
11381 #ifdef BCM_DCBNL
11382 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
11383 #endif
11384 
11385 	/* get_port_hwinfo() will set prtad and mmds properly */
11386 	bp->mdio.prtad = MDIO_PRTAD_NONE;
11387 	bp->mdio.mmds = 0;
11388 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
11389 	bp->mdio.dev = dev;
11390 	bp->mdio.mdio_read = bnx2x_mdio_read;
11391 	bp->mdio.mdio_write = bnx2x_mdio_write;
11392 
11393 	return 0;
11394 
11395 err_out_release:
11396 	if (atomic_read(&pdev->enable_cnt) == 1)
11397 		pci_release_regions(pdev);
11398 
11399 err_out_disable:
11400 	pci_disable_device(pdev);
11401 	pci_set_drvdata(pdev, NULL);
11402 
11403 err_out:
11404 	return rc;
11405 }
11406 
11407 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
11408 						 int *width, int *speed)
11409 {
11410 	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
11411 
11412 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
11413 
11414 	/* return value of 1=2.5GHz 2=5GHz */
11415 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
11416 }
11417 
11418 static int bnx2x_check_firmware(struct bnx2x *bp)
11419 {
11420 	const struct firmware *firmware = bp->firmware;
11421 	struct bnx2x_fw_file_hdr *fw_hdr;
11422 	struct bnx2x_fw_file_section *sections;
11423 	u32 offset, len, num_ops;
11424 	u16 *ops_offsets;
11425 	int i;
11426 	const u8 *fw_ver;
11427 
11428 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
11429 		BNX2X_ERR("Wrong FW size\n");
11430 		return -EINVAL;
11431 	}
11432 
11433 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
11434 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
11435 
11436 	/* Make sure none of the offsets and sizes make us read beyond
11437 	 * the end of the firmware data */
11438 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
11439 		offset = be32_to_cpu(sections[i].offset);
11440 		len = be32_to_cpu(sections[i].len);
11441 		if (offset + len > firmware->size) {
11442 			BNX2X_ERR("Section %d length is out of bounds\n", i);
11443 			return -EINVAL;
11444 		}
11445 	}
11446 
11447 	/* Likewise for the init_ops offsets */
11448 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
11449 	ops_offsets = (u16 *)(firmware->data + offset);
11450 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
11451 
11452 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
11453 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
11454 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
11455 			return -EINVAL;
11456 		}
11457 	}
11458 
11459 	/* Check FW version */
11460 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
11461 	fw_ver = firmware->data + offset;
11462 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
11463 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
11464 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
11465 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
11466 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
11467 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
11468 		       BCM_5710_FW_MAJOR_VERSION,
11469 		       BCM_5710_FW_MINOR_VERSION,
11470 		       BCM_5710_FW_REVISION_VERSION,
11471 		       BCM_5710_FW_ENGINEERING_VERSION);
11472 		return -EINVAL;
11473 	}
11474 
11475 	return 0;
11476 }
11477 
11478 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11479 {
11480 	const __be32 *source = (const __be32 *)_source;
11481 	u32 *target = (u32 *)_target;
11482 	u32 i;
11483 
11484 	for (i = 0; i < n/4; i++)
11485 		target[i] = be32_to_cpu(source[i]);
11486 }
11487 
11488 /*
11489    Ops array is stored in the following format:
11490    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
11491  */
11492 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
11493 {
11494 	const __be32 *source = (const __be32 *)_source;
11495 	struct raw_op *target = (struct raw_op *)_target;
11496 	u32 i, j, tmp;
11497 
11498 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
11499 		tmp = be32_to_cpu(source[j]);
11500 		target[i].op = (tmp >> 24) & 0xff;
11501 		target[i].offset = tmp & 0xffffff;
11502 		target[i].raw_data = be32_to_cpu(source[j + 1]);
11503 	}
11504 }
11505 
11506 /**
11507  * IRO array is stored in the following format:
11508  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
11509  */
11510 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
11511 {
11512 	const __be32 *source = (const __be32 *)_source;
11513 	struct iro *target = (struct iro *)_target;
11514 	u32 i, j, tmp;
11515 
11516 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
11517 		target[i].base = be32_to_cpu(source[j]);
11518 		j++;
11519 		tmp = be32_to_cpu(source[j]);
11520 		target[i].m1 = (tmp >> 16) & 0xffff;
11521 		target[i].m2 = tmp & 0xffff;
11522 		j++;
11523 		tmp = be32_to_cpu(source[j]);
11524 		target[i].m3 = (tmp >> 16) & 0xffff;
11525 		target[i].size = tmp & 0xffff;
11526 		j++;
11527 	}
11528 }
11529 
11530 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11531 {
11532 	const __be16 *source = (const __be16 *)_source;
11533 	u16 *target = (u16 *)_target;
11534 	u32 i;
11535 
11536 	for (i = 0; i < n/2; i++)
11537 		target[i] = be16_to_cpu(source[i]);
11538 }
11539 
11540 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
11541 do {									\
11542 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
11543 	bp->arr = kmalloc(len, GFP_KERNEL);				\
11544 	if (!bp->arr)							\
11545 		goto lbl;						\
11546 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
11547 	     (u8 *)bp->arr, len);					\
11548 } while (0)
11549 
11550 static int bnx2x_init_firmware(struct bnx2x *bp)
11551 {
11552 	const char *fw_file_name;
11553 	struct bnx2x_fw_file_hdr *fw_hdr;
11554 	int rc;
11555 
11556 	if (bp->firmware)
11557 		return 0;
11558 
11559 	if (CHIP_IS_E1(bp))
11560 		fw_file_name = FW_FILE_NAME_E1;
11561 	else if (CHIP_IS_E1H(bp))
11562 		fw_file_name = FW_FILE_NAME_E1H;
11563 	else if (!CHIP_IS_E1x(bp))
11564 		fw_file_name = FW_FILE_NAME_E2;
11565 	else {
11566 		BNX2X_ERR("Unsupported chip revision\n");
11567 		return -EINVAL;
11568 	}
11569 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
11570 
11571 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
11572 	if (rc) {
11573 		BNX2X_ERR("Can't load firmware file %s\n",
11574 			  fw_file_name);
11575 		goto request_firmware_exit;
11576 	}
11577 
11578 	rc = bnx2x_check_firmware(bp);
11579 	if (rc) {
11580 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
11581 		goto request_firmware_exit;
11582 	}
11583 
11584 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
11585 
11586 	/* Initialize the pointers to the init arrays */
11587 	/* Blob */
11588 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
11589 
11590 	/* Opcodes */
11591 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
11592 
11593 	/* Offsets */
11594 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
11595 			    be16_to_cpu_n);
11596 
11597 	/* STORMs firmware */
11598 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11599 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
11600 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
11601 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
11602 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11603 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
11604 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
11605 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
11606 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11607 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
11608 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
11609 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
11610 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11611 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
11612 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
11613 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
11614 	/* IRO */
11615 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
11616 
11617 	return 0;
11618 
11619 iro_alloc_err:
11620 	kfree(bp->init_ops_offsets);
11621 init_offsets_alloc_err:
11622 	kfree(bp->init_ops);
11623 init_ops_alloc_err:
11624 	kfree(bp->init_data);
11625 request_firmware_exit:
11626 	release_firmware(bp->firmware);
11627 	bp->firmware = NULL;
11628 
11629 	return rc;
11630 }
11631 
11632 static void bnx2x_release_firmware(struct bnx2x *bp)
11633 {
11634 	kfree(bp->init_ops_offsets);
11635 	kfree(bp->init_ops);
11636 	kfree(bp->init_data);
11637 	release_firmware(bp->firmware);
11638 	bp->firmware = NULL;
11639 }
11640 
11641 
11642 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
11643 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
11644 	.init_hw_cmn      = bnx2x_init_hw_common,
11645 	.init_hw_port     = bnx2x_init_hw_port,
11646 	.init_hw_func     = bnx2x_init_hw_func,
11647 
11648 	.reset_hw_cmn     = bnx2x_reset_common,
11649 	.reset_hw_port    = bnx2x_reset_port,
11650 	.reset_hw_func    = bnx2x_reset_func,
11651 
11652 	.gunzip_init      = bnx2x_gunzip_init,
11653 	.gunzip_end       = bnx2x_gunzip_end,
11654 
11655 	.init_fw          = bnx2x_init_firmware,
11656 	.release_fw       = bnx2x_release_firmware,
11657 };
11658 
11659 void bnx2x__init_func_obj(struct bnx2x *bp)
11660 {
11661 	/* Prepare DMAE related driver resources */
11662 	bnx2x_setup_dmae(bp);
11663 
11664 	bnx2x_init_func_obj(bp, &bp->func_obj,
11665 			    bnx2x_sp(bp, func_rdata),
11666 			    bnx2x_sp_mapping(bp, func_rdata),
11667 			    bnx2x_sp(bp, func_afex_rdata),
11668 			    bnx2x_sp_mapping(bp, func_afex_rdata),
11669 			    &bnx2x_func_sp_drv);
11670 }
11671 
11672 /* must be called after sriov-enable */
11673 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
11674 {
11675 	int cid_count = BNX2X_L2_CID_COUNT(bp);
11676 
11677 #ifdef BCM_CNIC
11678 	cid_count += CNIC_CID_MAX;
11679 #endif
11680 	return roundup(cid_count, QM_CID_ROUND);
11681 }
11682 
11683 /**
11684  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
11685  *
11686  * @dev:	pci device
11687  *
11688  */
11689 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
11690 {
11691 	int pos;
11692 	u16 control;
11693 
11694 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
11695 
11696 	/*
11697 	 * If MSI-X is not supported - return number of SBs needed to support
11698 	 * one fast path queue: one FP queue + SB for CNIC
11699 	 */
11700 	if (!pos)
11701 		return 1 + CNIC_PRESENT;
11702 
11703 	/*
11704 	 * The value in the PCI configuration space is the index of the last
11705 	 * entry, namely one less than the actual size of the table, which is
11706 	 * exactly what we want to return from this function: number of all SBs
11707 	 * without the default SB.
11708 	 */
11709 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
11710 	return control & PCI_MSIX_FLAGS_QSIZE;
11711 }
11712 
11713 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11714 				    const struct pci_device_id *ent)
11715 {
11716 	struct net_device *dev = NULL;
11717 	struct bnx2x *bp;
11718 	int pcie_width, pcie_speed;
11719 	int rc, max_non_def_sbs;
11720 	int rx_count, tx_count, rss_count;
11721 	/*
11722 	 * An estimated maximum supported CoS number according to the chip
11723 	 * version.
11724 	 * We will try to roughly estimate the maximum number of CoSes this chip
11725 	 * may support in order to minimize the memory allocated for Tx
11726 	 * netdev_queue's. This number will be accurately calculated during the
11727 	 * initialization of bp->max_cos based on the chip versions AND chip
11728 	 * revision in the bnx2x_init_bp().
11729 	 */
11730 	u8 max_cos_est = 0;
11731 
11732 	switch (ent->driver_data) {
11733 	case BCM57710:
11734 	case BCM57711:
11735 	case BCM57711E:
11736 		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11737 		break;
11738 
11739 	case BCM57712:
11740 	case BCM57712_MF:
11741 		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11742 		break;
11743 
11744 	case BCM57800:
11745 	case BCM57800_MF:
11746 	case BCM57810:
11747 	case BCM57810_MF:
11748 	case BCM57840:
11749 	case BCM57840_MF:
11750 	case BCM57811:
11751 	case BCM57811_MF:
11752 		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11753 		break;
11754 
11755 	default:
11756 		pr_err("Unknown board_type (%ld), aborting\n",
11757 			   ent->driver_data);
11758 		return -ENODEV;
11759 	}
11760 
11761 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11762 
11763 	/* !!! FIXME !!!
11764 	 * Do not allow the maximum SB count to grow above 16
11765 	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11766 	 * We will use the FP_SB_MAX_E1x macro for this matter.
11767 	 */
11768 	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11769 
11770 	WARN_ON(!max_non_def_sbs);
11771 
11772 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
11773 	rss_count = max_non_def_sbs - CNIC_PRESENT;
11774 
11775 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11776 	rx_count = rss_count + FCOE_PRESENT;
11777 
11778 	/*
11779 	 * Maximum number of netdev Tx queues:
11780 	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
11781 	 */
11782 	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11783 
11784 	/* dev zeroed in init_etherdev */
11785 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11786 	if (!dev)
11787 		return -ENOMEM;
11788 
11789 	bp = netdev_priv(dev);
11790 
11791 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
11792 			  tx_count, rx_count);
11793 
11794 	bp->igu_sb_cnt = max_non_def_sbs;
11795 	bp->msg_enable = debug;
11796 	pci_set_drvdata(pdev, dev);
11797 
11798 	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11799 	if (rc < 0) {
11800 		free_netdev(dev);
11801 		return rc;
11802 	}
11803 
11804 	BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs);
11805 
11806 	rc = bnx2x_init_bp(bp);
11807 	if (rc)
11808 		goto init_one_exit;
11809 
11810 	/*
11811 	 * Map doorbels here as we need the real value of bp->max_cos which
11812 	 * is initialized in bnx2x_init_bp().
11813 	 */
11814 	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11815 					min_t(u64, BNX2X_DB_SIZE(bp),
11816 					      pci_resource_len(pdev, 2)));
11817 	if (!bp->doorbells) {
11818 		dev_err(&bp->pdev->dev,
11819 			"Cannot map doorbell space, aborting\n");
11820 		rc = -ENOMEM;
11821 		goto init_one_exit;
11822 	}
11823 
11824 	/* calc qm_cid_count */
11825 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11826 
11827 #ifdef BCM_CNIC
11828 	/* disable FCOE L2 queue for E1x */
11829 	if (CHIP_IS_E1x(bp))
11830 		bp->flags |= NO_FCOE_FLAG;
11831 
11832 #endif
11833 
11834 	/* Configure interrupt mode: try to enable MSI-X/MSI if
11835 	 * needed, set bp->num_queues appropriately.
11836 	 */
11837 	bnx2x_set_int_mode(bp);
11838 
11839 	/* Add all NAPI objects */
11840 	bnx2x_add_all_napi(bp);
11841 
11842 	rc = register_netdev(dev);
11843 	if (rc) {
11844 		dev_err(&pdev->dev, "Cannot register net device\n");
11845 		goto init_one_exit;
11846 	}
11847 
11848 #ifdef BCM_CNIC
11849 	if (!NO_FCOE(bp)) {
11850 		/* Add storage MAC address */
11851 		rtnl_lock();
11852 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11853 		rtnl_unlock();
11854 	}
11855 #endif
11856 
11857 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11858 
11859 	BNX2X_DEV_INFO(
11860 		"%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11861 		    board_info[ent->driver_data].name,
11862 		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11863 		    pcie_width,
11864 		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11865 		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11866 		    "5GHz (Gen2)" : "2.5GHz",
11867 		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
11868 
11869 	return 0;
11870 
11871 init_one_exit:
11872 	if (bp->regview)
11873 		iounmap(bp->regview);
11874 
11875 	if (bp->doorbells)
11876 		iounmap(bp->doorbells);
11877 
11878 	free_netdev(dev);
11879 
11880 	if (atomic_read(&pdev->enable_cnt) == 1)
11881 		pci_release_regions(pdev);
11882 
11883 	pci_disable_device(pdev);
11884 	pci_set_drvdata(pdev, NULL);
11885 
11886 	return rc;
11887 }
11888 
11889 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11890 {
11891 	struct net_device *dev = pci_get_drvdata(pdev);
11892 	struct bnx2x *bp;
11893 
11894 	if (!dev) {
11895 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11896 		return;
11897 	}
11898 	bp = netdev_priv(dev);
11899 
11900 #ifdef BCM_CNIC
11901 	/* Delete storage MAC address */
11902 	if (!NO_FCOE(bp)) {
11903 		rtnl_lock();
11904 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11905 		rtnl_unlock();
11906 	}
11907 #endif
11908 
11909 #ifdef BCM_DCBNL
11910 	/* Delete app tlvs from dcbnl */
11911 	bnx2x_dcbnl_update_applist(bp, true);
11912 #endif
11913 
11914 	unregister_netdev(dev);
11915 
11916 	/* Delete all NAPI objects */
11917 	bnx2x_del_all_napi(bp);
11918 
11919 	/* Power on: we can't let PCI layer write to us while we are in D3 */
11920 	bnx2x_set_power_state(bp, PCI_D0);
11921 
11922 	/* Disable MSI/MSI-X */
11923 	bnx2x_disable_msi(bp);
11924 
11925 	/* Power off */
11926 	bnx2x_set_power_state(bp, PCI_D3hot);
11927 
11928 	/* Make sure RESET task is not scheduled before continuing */
11929 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
11930 
11931 	if (bp->regview)
11932 		iounmap(bp->regview);
11933 
11934 	if (bp->doorbells)
11935 		iounmap(bp->doorbells);
11936 
11937 	bnx2x_release_firmware(bp);
11938 
11939 	bnx2x_free_mem_bp(bp);
11940 
11941 	free_netdev(dev);
11942 
11943 	if (atomic_read(&pdev->enable_cnt) == 1)
11944 		pci_release_regions(pdev);
11945 
11946 	pci_disable_device(pdev);
11947 	pci_set_drvdata(pdev, NULL);
11948 }
11949 
11950 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11951 {
11952 	int i;
11953 
11954 	bp->state = BNX2X_STATE_ERROR;
11955 
11956 	bp->rx_mode = BNX2X_RX_MODE_NONE;
11957 
11958 #ifdef BCM_CNIC
11959 	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11960 #endif
11961 	/* Stop Tx */
11962 	bnx2x_tx_disable(bp);
11963 
11964 	bnx2x_netif_stop(bp, 0);
11965 
11966 	del_timer_sync(&bp->timer);
11967 
11968 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11969 
11970 	/* Release IRQs */
11971 	bnx2x_free_irq(bp);
11972 
11973 	/* Free SKBs, SGEs, TPA pool and driver internals */
11974 	bnx2x_free_skbs(bp);
11975 
11976 	for_each_rx_queue(bp, i)
11977 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11978 
11979 	bnx2x_free_mem(bp);
11980 
11981 	bp->state = BNX2X_STATE_CLOSED;
11982 
11983 	netif_carrier_off(bp->dev);
11984 
11985 	return 0;
11986 }
11987 
11988 static void bnx2x_eeh_recover(struct bnx2x *bp)
11989 {
11990 	u32 val;
11991 
11992 	mutex_init(&bp->port.phy_mutex);
11993 
11994 
11995 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11996 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11997 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11998 		BNX2X_ERR("BAD MCP validity signature\n");
11999 }
12000 
12001 /**
12002  * bnx2x_io_error_detected - called when PCI error is detected
12003  * @pdev: Pointer to PCI device
12004  * @state: The current pci connection state
12005  *
12006  * This function is called after a PCI bus error affecting
12007  * this device has been detected.
12008  */
12009 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12010 						pci_channel_state_t state)
12011 {
12012 	struct net_device *dev = pci_get_drvdata(pdev);
12013 	struct bnx2x *bp = netdev_priv(dev);
12014 
12015 	rtnl_lock();
12016 
12017 	netif_device_detach(dev);
12018 
12019 	if (state == pci_channel_io_perm_failure) {
12020 		rtnl_unlock();
12021 		return PCI_ERS_RESULT_DISCONNECT;
12022 	}
12023 
12024 	if (netif_running(dev))
12025 		bnx2x_eeh_nic_unload(bp);
12026 
12027 	pci_disable_device(pdev);
12028 
12029 	rtnl_unlock();
12030 
12031 	/* Request a slot reset */
12032 	return PCI_ERS_RESULT_NEED_RESET;
12033 }
12034 
12035 /**
12036  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12037  * @pdev: Pointer to PCI device
12038  *
12039  * Restart the card from scratch, as if from a cold-boot.
12040  */
12041 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12042 {
12043 	struct net_device *dev = pci_get_drvdata(pdev);
12044 	struct bnx2x *bp = netdev_priv(dev);
12045 
12046 	rtnl_lock();
12047 
12048 	if (pci_enable_device(pdev)) {
12049 		dev_err(&pdev->dev,
12050 			"Cannot re-enable PCI device after reset\n");
12051 		rtnl_unlock();
12052 		return PCI_ERS_RESULT_DISCONNECT;
12053 	}
12054 
12055 	pci_set_master(pdev);
12056 	pci_restore_state(pdev);
12057 
12058 	if (netif_running(dev))
12059 		bnx2x_set_power_state(bp, PCI_D0);
12060 
12061 	rtnl_unlock();
12062 
12063 	return PCI_ERS_RESULT_RECOVERED;
12064 }
12065 
12066 /**
12067  * bnx2x_io_resume - called when traffic can start flowing again
12068  * @pdev: Pointer to PCI device
12069  *
12070  * This callback is called when the error recovery driver tells us that
12071  * its OK to resume normal operation.
12072  */
12073 static void bnx2x_io_resume(struct pci_dev *pdev)
12074 {
12075 	struct net_device *dev = pci_get_drvdata(pdev);
12076 	struct bnx2x *bp = netdev_priv(dev);
12077 
12078 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
12079 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
12080 		return;
12081 	}
12082 
12083 	rtnl_lock();
12084 
12085 	bnx2x_eeh_recover(bp);
12086 
12087 	if (netif_running(dev))
12088 		bnx2x_nic_load(bp, LOAD_NORMAL);
12089 
12090 	netif_device_attach(dev);
12091 
12092 	rtnl_unlock();
12093 }
12094 
12095 static struct pci_error_handlers bnx2x_err_handler = {
12096 	.error_detected = bnx2x_io_error_detected,
12097 	.slot_reset     = bnx2x_io_slot_reset,
12098 	.resume         = bnx2x_io_resume,
12099 };
12100 
12101 static struct pci_driver bnx2x_pci_driver = {
12102 	.name        = DRV_MODULE_NAME,
12103 	.id_table    = bnx2x_pci_tbl,
12104 	.probe       = bnx2x_init_one,
12105 	.remove      = __devexit_p(bnx2x_remove_one),
12106 	.suspend     = bnx2x_suspend,
12107 	.resume      = bnx2x_resume,
12108 	.err_handler = &bnx2x_err_handler,
12109 };
12110 
12111 static int __init bnx2x_init(void)
12112 {
12113 	int ret;
12114 
12115 	pr_info("%s", version);
12116 
12117 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
12118 	if (bnx2x_wq == NULL) {
12119 		pr_err("Cannot create workqueue\n");
12120 		return -ENOMEM;
12121 	}
12122 
12123 	ret = pci_register_driver(&bnx2x_pci_driver);
12124 	if (ret) {
12125 		pr_err("Cannot register driver\n");
12126 		destroy_workqueue(bnx2x_wq);
12127 	}
12128 	return ret;
12129 }
12130 
12131 static void __exit bnx2x_cleanup(void)
12132 {
12133 	struct list_head *pos, *q;
12134 	pci_unregister_driver(&bnx2x_pci_driver);
12135 
12136 	destroy_workqueue(bnx2x_wq);
12137 
12138 	/* Free globablly allocated resources */
12139 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
12140 		struct bnx2x_prev_path_list *tmp =
12141 			list_entry(pos, struct bnx2x_prev_path_list, list);
12142 		list_del(pos);
12143 		kfree(tmp);
12144 	}
12145 }
12146 
12147 void bnx2x_notify_link_changed(struct bnx2x *bp)
12148 {
12149 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
12150 }
12151 
12152 module_init(bnx2x_init);
12153 module_exit(bnx2x_cleanup);
12154 
12155 #ifdef BCM_CNIC
12156 /**
12157  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
12158  *
12159  * @bp:		driver handle
12160  * @set:	set or clear the CAM entry
12161  *
12162  * This function will wait until the ramdord completion returns.
12163  * Return 0 if success, -ENODEV if ramrod doesn't return.
12164  */
12165 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
12166 {
12167 	unsigned long ramrod_flags = 0;
12168 
12169 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12170 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
12171 				 &bp->iscsi_l2_mac_obj, true,
12172 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
12173 }
12174 
12175 /* count denotes the number of new completions we have seen */
12176 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
12177 {
12178 	struct eth_spe *spe;
12179 
12180 #ifdef BNX2X_STOP_ON_ERROR
12181 	if (unlikely(bp->panic))
12182 		return;
12183 #endif
12184 
12185 	spin_lock_bh(&bp->spq_lock);
12186 	BUG_ON(bp->cnic_spq_pending < count);
12187 	bp->cnic_spq_pending -= count;
12188 
12189 
12190 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
12191 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
12192 				& SPE_HDR_CONN_TYPE) >>
12193 				SPE_HDR_CONN_TYPE_SHIFT;
12194 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
12195 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
12196 
12197 		/* Set validation for iSCSI L2 client before sending SETUP
12198 		 *  ramrod
12199 		 */
12200 		if (type == ETH_CONNECTION_TYPE) {
12201 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
12202 				bnx2x_set_ctx_validation(bp, &bp->context.
12203 					vcxt[BNX2X_ISCSI_ETH_CID].eth,
12204 					BNX2X_ISCSI_ETH_CID);
12205 		}
12206 
12207 		/*
12208 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
12209 		 * and in the air. We also check that number of outstanding
12210 		 * COMMON ramrods is not more than the EQ and SPQ can
12211 		 * accommodate.
12212 		 */
12213 		if (type == ETH_CONNECTION_TYPE) {
12214 			if (!atomic_read(&bp->cq_spq_left))
12215 				break;
12216 			else
12217 				atomic_dec(&bp->cq_spq_left);
12218 		} else if (type == NONE_CONNECTION_TYPE) {
12219 			if (!atomic_read(&bp->eq_spq_left))
12220 				break;
12221 			else
12222 				atomic_dec(&bp->eq_spq_left);
12223 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
12224 			   (type == FCOE_CONNECTION_TYPE)) {
12225 			if (bp->cnic_spq_pending >=
12226 			    bp->cnic_eth_dev.max_kwqe_pending)
12227 				break;
12228 			else
12229 				bp->cnic_spq_pending++;
12230 		} else {
12231 			BNX2X_ERR("Unknown SPE type: %d\n", type);
12232 			bnx2x_panic();
12233 			break;
12234 		}
12235 
12236 		spe = bnx2x_sp_get_next(bp);
12237 		*spe = *bp->cnic_kwq_cons;
12238 
12239 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
12240 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
12241 
12242 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
12243 			bp->cnic_kwq_cons = bp->cnic_kwq;
12244 		else
12245 			bp->cnic_kwq_cons++;
12246 	}
12247 	bnx2x_sp_prod_update(bp);
12248 	spin_unlock_bh(&bp->spq_lock);
12249 }
12250 
12251 static int bnx2x_cnic_sp_queue(struct net_device *dev,
12252 			       struct kwqe_16 *kwqes[], u32 count)
12253 {
12254 	struct bnx2x *bp = netdev_priv(dev);
12255 	int i;
12256 
12257 #ifdef BNX2X_STOP_ON_ERROR
12258 	if (unlikely(bp->panic)) {
12259 		BNX2X_ERR("Can't post to SP queue while panic\n");
12260 		return -EIO;
12261 	}
12262 #endif
12263 
12264 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
12265 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
12266 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
12267 		return -EAGAIN;
12268 	}
12269 
12270 	spin_lock_bh(&bp->spq_lock);
12271 
12272 	for (i = 0; i < count; i++) {
12273 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
12274 
12275 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
12276 			break;
12277 
12278 		*bp->cnic_kwq_prod = *spe;
12279 
12280 		bp->cnic_kwq_pending++;
12281 
12282 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
12283 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
12284 		   spe->data.update_data_addr.hi,
12285 		   spe->data.update_data_addr.lo,
12286 		   bp->cnic_kwq_pending);
12287 
12288 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
12289 			bp->cnic_kwq_prod = bp->cnic_kwq;
12290 		else
12291 			bp->cnic_kwq_prod++;
12292 	}
12293 
12294 	spin_unlock_bh(&bp->spq_lock);
12295 
12296 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
12297 		bnx2x_cnic_sp_post(bp, 0);
12298 
12299 	return i;
12300 }
12301 
12302 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12303 {
12304 	struct cnic_ops *c_ops;
12305 	int rc = 0;
12306 
12307 	mutex_lock(&bp->cnic_mutex);
12308 	c_ops = rcu_dereference_protected(bp->cnic_ops,
12309 					  lockdep_is_held(&bp->cnic_mutex));
12310 	if (c_ops)
12311 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12312 	mutex_unlock(&bp->cnic_mutex);
12313 
12314 	return rc;
12315 }
12316 
12317 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12318 {
12319 	struct cnic_ops *c_ops;
12320 	int rc = 0;
12321 
12322 	rcu_read_lock();
12323 	c_ops = rcu_dereference(bp->cnic_ops);
12324 	if (c_ops)
12325 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12326 	rcu_read_unlock();
12327 
12328 	return rc;
12329 }
12330 
12331 /*
12332  * for commands that have no data
12333  */
12334 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
12335 {
12336 	struct cnic_ctl_info ctl = {0};
12337 
12338 	ctl.cmd = cmd;
12339 
12340 	return bnx2x_cnic_ctl_send(bp, &ctl);
12341 }
12342 
12343 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
12344 {
12345 	struct cnic_ctl_info ctl = {0};
12346 
12347 	/* first we tell CNIC and only then we count this as a completion */
12348 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
12349 	ctl.data.comp.cid = cid;
12350 	ctl.data.comp.error = err;
12351 
12352 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
12353 	bnx2x_cnic_sp_post(bp, 0);
12354 }
12355 
12356 
12357 /* Called with netif_addr_lock_bh() taken.
12358  * Sets an rx_mode config for an iSCSI ETH client.
12359  * Doesn't block.
12360  * Completion should be checked outside.
12361  */
12362 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
12363 {
12364 	unsigned long accept_flags = 0, ramrod_flags = 0;
12365 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12366 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
12367 
12368 	if (start) {
12369 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
12370 		 * because it's the only way for UIO Queue to accept
12371 		 * multicasts (in non-promiscuous mode only one Queue per
12372 		 * function will receive multicast packets (leading in our
12373 		 * case).
12374 		 */
12375 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
12376 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
12377 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
12378 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
12379 
12380 		/* Clear STOP_PENDING bit if START is requested */
12381 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
12382 
12383 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
12384 	} else
12385 		/* Clear START_PENDING bit if STOP is requested */
12386 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
12387 
12388 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
12389 		set_bit(sched_state, &bp->sp_state);
12390 	else {
12391 		__set_bit(RAMROD_RX, &ramrod_flags);
12392 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
12393 				    ramrod_flags);
12394 	}
12395 }
12396 
12397 
12398 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
12399 {
12400 	struct bnx2x *bp = netdev_priv(dev);
12401 	int rc = 0;
12402 
12403 	switch (ctl->cmd) {
12404 	case DRV_CTL_CTXTBL_WR_CMD: {
12405 		u32 index = ctl->data.io.offset;
12406 		dma_addr_t addr = ctl->data.io.dma_addr;
12407 
12408 		bnx2x_ilt_wr(bp, index, addr);
12409 		break;
12410 	}
12411 
12412 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
12413 		int count = ctl->data.credit.credit_count;
12414 
12415 		bnx2x_cnic_sp_post(bp, count);
12416 		break;
12417 	}
12418 
12419 	/* rtnl_lock is held.  */
12420 	case DRV_CTL_START_L2_CMD: {
12421 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12422 		unsigned long sp_bits = 0;
12423 
12424 		/* Configure the iSCSI classification object */
12425 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
12426 				   cp->iscsi_l2_client_id,
12427 				   cp->iscsi_l2_cid, BP_FUNC(bp),
12428 				   bnx2x_sp(bp, mac_rdata),
12429 				   bnx2x_sp_mapping(bp, mac_rdata),
12430 				   BNX2X_FILTER_MAC_PENDING,
12431 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
12432 				   &bp->macs_pool);
12433 
12434 		/* Set iSCSI MAC address */
12435 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
12436 		if (rc)
12437 			break;
12438 
12439 		mmiowb();
12440 		barrier();
12441 
12442 		/* Start accepting on iSCSI L2 ring */
12443 
12444 		netif_addr_lock_bh(dev);
12445 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
12446 		netif_addr_unlock_bh(dev);
12447 
12448 		/* bits to wait on */
12449 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12450 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
12451 
12452 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
12453 			BNX2X_ERR("rx_mode completion timed out!\n");
12454 
12455 		break;
12456 	}
12457 
12458 	/* rtnl_lock is held.  */
12459 	case DRV_CTL_STOP_L2_CMD: {
12460 		unsigned long sp_bits = 0;
12461 
12462 		/* Stop accepting on iSCSI L2 ring */
12463 		netif_addr_lock_bh(dev);
12464 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
12465 		netif_addr_unlock_bh(dev);
12466 
12467 		/* bits to wait on */
12468 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12469 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
12470 
12471 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
12472 			BNX2X_ERR("rx_mode completion timed out!\n");
12473 
12474 		mmiowb();
12475 		barrier();
12476 
12477 		/* Unset iSCSI L2 MAC */
12478 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
12479 					BNX2X_ISCSI_ETH_MAC, true);
12480 		break;
12481 	}
12482 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
12483 		int count = ctl->data.credit.credit_count;
12484 
12485 		smp_mb__before_atomic_inc();
12486 		atomic_add(count, &bp->cq_spq_left);
12487 		smp_mb__after_atomic_inc();
12488 		break;
12489 	}
12490 	case DRV_CTL_ULP_REGISTER_CMD: {
12491 		int ulp_type = ctl->data.ulp_type;
12492 
12493 		if (CHIP_IS_E3(bp)) {
12494 			int idx = BP_FW_MB_IDX(bp);
12495 			u32 cap;
12496 
12497 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12498 			if (ulp_type == CNIC_ULP_ISCSI)
12499 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12500 			else if (ulp_type == CNIC_ULP_FCOE)
12501 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12502 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12503 		}
12504 		break;
12505 	}
12506 	case DRV_CTL_ULP_UNREGISTER_CMD: {
12507 		int ulp_type = ctl->data.ulp_type;
12508 
12509 		if (CHIP_IS_E3(bp)) {
12510 			int idx = BP_FW_MB_IDX(bp);
12511 			u32 cap;
12512 
12513 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12514 			if (ulp_type == CNIC_ULP_ISCSI)
12515 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12516 			else if (ulp_type == CNIC_ULP_FCOE)
12517 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12518 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12519 		}
12520 		break;
12521 	}
12522 
12523 	default:
12524 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
12525 		rc = -EINVAL;
12526 	}
12527 
12528 	return rc;
12529 }
12530 
12531 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
12532 {
12533 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12534 
12535 	if (bp->flags & USING_MSIX_FLAG) {
12536 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
12537 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
12538 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
12539 	} else {
12540 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
12541 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
12542 	}
12543 	if (!CHIP_IS_E1x(bp))
12544 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
12545 	else
12546 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
12547 
12548 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
12549 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
12550 	cp->irq_arr[1].status_blk = bp->def_status_blk;
12551 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
12552 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
12553 
12554 	cp->num_irq = 2;
12555 }
12556 
12557 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
12558 			       void *data)
12559 {
12560 	struct bnx2x *bp = netdev_priv(dev);
12561 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12562 
12563 	if (ops == NULL) {
12564 		BNX2X_ERR("NULL ops received\n");
12565 		return -EINVAL;
12566 	}
12567 
12568 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
12569 	if (!bp->cnic_kwq)
12570 		return -ENOMEM;
12571 
12572 	bp->cnic_kwq_cons = bp->cnic_kwq;
12573 	bp->cnic_kwq_prod = bp->cnic_kwq;
12574 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
12575 
12576 	bp->cnic_spq_pending = 0;
12577 	bp->cnic_kwq_pending = 0;
12578 
12579 	bp->cnic_data = data;
12580 
12581 	cp->num_irq = 0;
12582 	cp->drv_state |= CNIC_DRV_STATE_REGD;
12583 	cp->iro_arr = bp->iro_arr;
12584 
12585 	bnx2x_setup_cnic_irq_info(bp);
12586 
12587 	rcu_assign_pointer(bp->cnic_ops, ops);
12588 
12589 	return 0;
12590 }
12591 
12592 static int bnx2x_unregister_cnic(struct net_device *dev)
12593 {
12594 	struct bnx2x *bp = netdev_priv(dev);
12595 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12596 
12597 	mutex_lock(&bp->cnic_mutex);
12598 	cp->drv_state = 0;
12599 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
12600 	mutex_unlock(&bp->cnic_mutex);
12601 	synchronize_rcu();
12602 	kfree(bp->cnic_kwq);
12603 	bp->cnic_kwq = NULL;
12604 
12605 	return 0;
12606 }
12607 
12608 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
12609 {
12610 	struct bnx2x *bp = netdev_priv(dev);
12611 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12612 
12613 	/* If both iSCSI and FCoE are disabled - return NULL in
12614 	 * order to indicate CNIC that it should not try to work
12615 	 * with this device.
12616 	 */
12617 	if (NO_ISCSI(bp) && NO_FCOE(bp))
12618 		return NULL;
12619 
12620 	cp->drv_owner = THIS_MODULE;
12621 	cp->chip_id = CHIP_ID(bp);
12622 	cp->pdev = bp->pdev;
12623 	cp->io_base = bp->regview;
12624 	cp->io_base2 = bp->doorbells;
12625 	cp->max_kwqe_pending = 8;
12626 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
12627 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12628 			     bnx2x_cid_ilt_lines(bp);
12629 	cp->ctx_tbl_len = CNIC_ILT_LINES;
12630 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12631 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
12632 	cp->drv_ctl = bnx2x_drv_ctl;
12633 	cp->drv_register_cnic = bnx2x_register_cnic;
12634 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
12635 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
12636 	cp->iscsi_l2_client_id =
12637 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12638 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
12639 
12640 	if (NO_ISCSI_OOO(bp))
12641 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12642 
12643 	if (NO_ISCSI(bp))
12644 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
12645 
12646 	if (NO_FCOE(bp))
12647 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
12648 
12649 	BNX2X_DEV_INFO(
12650 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
12651 	   cp->ctx_blk_size,
12652 	   cp->ctx_tbl_offset,
12653 	   cp->ctx_tbl_len,
12654 	   cp->starting_cid);
12655 	return cp;
12656 }
12657 EXPORT_SYMBOL(bnx2x_cnic_probe);
12658 
12659 #endif /* BCM_CNIC */
12660 
12661