1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65 
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION					\
70 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
72 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
73 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77 
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT		(5*HZ)
80 
81 static char version[] =
82 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87 		   "BCM57710/57711/57711E/"
88 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89 		   "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95 
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99 		 " Set number of queues (default is as a number of CPUs)");
100 
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104 
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108 				"(1 INT#x; 2 MSI)");
109 
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113 
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117 
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121 
122 struct workqueue_struct *bnx2x_wq;
123 
124 struct bnx2x_mac_vals {
125 	u32 xmac_addr;
126 	u32 xmac_val;
127 	u32 emac_addr;
128 	u32 emac_val;
129 	u32 umac_addr;
130 	u32 umac_val;
131 	u32 bmac_addr;
132 	u32 bmac_val[2];
133 };
134 
135 enum bnx2x_board_type {
136 	BCM57710 = 0,
137 	BCM57711,
138 	BCM57711E,
139 	BCM57712,
140 	BCM57712_MF,
141 	BCM57712_VF,
142 	BCM57800,
143 	BCM57800_MF,
144 	BCM57800_VF,
145 	BCM57810,
146 	BCM57810_MF,
147 	BCM57810_VF,
148 	BCM57840_4_10,
149 	BCM57840_2_20,
150 	BCM57840_MF,
151 	BCM57840_VF,
152 	BCM57811,
153 	BCM57811_MF,
154 	BCM57840_O,
155 	BCM57840_MFO,
156 	BCM57811_VF
157 };
158 
159 /* indexed by board_type, above */
160 static struct {
161 	char *name;
162 } board_info[] = {
163 	[BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164 	[BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165 	[BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166 	[BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167 	[BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168 	[BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169 	[BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170 	[BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171 	[BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172 	[BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173 	[BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174 	[BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175 	[BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176 	[BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177 	[BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178 	[BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179 	[BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180 	[BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181 	[BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182 	[BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183 	[BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185 
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
248 #endif
249 
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272 	{ 0 }
273 };
274 
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276 
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284 
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286 				       u32 addr, dma_addr_t mapping)
287 {
288 	REG_WR(bp,  addr, U64_LO(mapping));
289 	REG_WR(bp,  addr + 4, U64_HI(mapping));
290 }
291 
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293 				  dma_addr_t mapping, u16 abs_fid)
294 {
295 	u32 addr = XSEM_REG_FAST_MEMORY +
296 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297 
298 	__storm_memset_dma_mapping(bp, addr, mapping);
299 }
300 
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302 				  u16 pf_id)
303 {
304 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305 		pf_id);
306 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307 		pf_id);
308 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309 		pf_id);
310 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311 		pf_id);
312 }
313 
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315 				 u8 enable)
316 {
317 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318 		enable);
319 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320 		enable);
321 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322 		enable);
323 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324 		enable);
325 }
326 
327 static void storm_memset_eq_data(struct bnx2x *bp,
328 				 struct event_ring_data *eq_data,
329 				u16 pfid)
330 {
331 	size_t size = sizeof(struct event_ring_data);
332 
333 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334 
335 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337 
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339 				 u16 pfid)
340 {
341 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342 	REG_WR16(bp, addr, eq_prod);
343 }
344 
345 /* used only at init
346  * locking is done by mcp
347  */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353 			       PCICFG_VENDOR_ID_OFFSET);
354 }
355 
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358 	u32 val;
359 
360 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363 			       PCICFG_VENDOR_ID_OFFSET);
364 
365 	return val;
366 }
367 
368 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE	"dst_addr [none]"
373 
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375 			  struct dmae_command *dmae, int msglvl)
376 {
377 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378 	int i;
379 
380 	switch (dmae->opcode & DMAE_COMMAND_DST) {
381 	case DMAE_CMD_DST_PCI:
382 		if (src_type == DMAE_CMD_SRC_PCI)
383 			DP(msglvl, "DMAE: opcode 0x%08x\n"
384 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
386 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
389 			   dmae->comp_val);
390 		else
391 			DP(msglvl, "DMAE: opcode 0x%08x\n"
392 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
393 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
394 			   dmae->opcode, dmae->src_addr_lo >> 2,
395 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
397 			   dmae->comp_val);
398 		break;
399 	case DMAE_CMD_DST_GRC:
400 		if (src_type == DMAE_CMD_SRC_PCI)
401 			DP(msglvl, "DMAE: opcode 0x%08x\n"
402 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
404 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405 			   dmae->len, dmae->dst_addr_lo >> 2,
406 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
407 			   dmae->comp_val);
408 		else
409 			DP(msglvl, "DMAE: opcode 0x%08x\n"
410 			   "src [%08x], len [%d*4], dst [%08x]\n"
411 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
412 			   dmae->opcode, dmae->src_addr_lo >> 2,
413 			   dmae->len, dmae->dst_addr_lo >> 2,
414 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
415 			   dmae->comp_val);
416 		break;
417 	default:
418 		if (src_type == DMAE_CMD_SRC_PCI)
419 			DP(msglvl, "DMAE: opcode 0x%08x\n"
420 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
421 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
422 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424 			   dmae->comp_val);
425 		else
426 			DP(msglvl, "DMAE: opcode 0x%08x\n"
427 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
428 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429 			   dmae->opcode, dmae->src_addr_lo >> 2,
430 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431 			   dmae->comp_val);
432 		break;
433 	}
434 
435 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437 		   i, *(((u32 *)dmae) + i));
438 }
439 
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443 	u32 cmd_offset;
444 	int i;
445 
446 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449 	}
450 	REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452 
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456 			   DMAE_CMD_C_ENABLE);
457 }
458 
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461 	return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463 
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465 			     bool with_comp, u8 comp_type)
466 {
467 	u32 opcode = 0;
468 
469 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
471 
472 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473 
474 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478 
479 #ifdef __BIG_ENDIAN
480 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484 	if (with_comp)
485 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486 	return opcode;
487 }
488 
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490 				      struct dmae_command *dmae,
491 				      u8 src_type, u8 dst_type)
492 {
493 	memset(dmae, 0, sizeof(struct dmae_command));
494 
495 	/* set the opcode */
496 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497 					 true, DMAE_COMP_PCI);
498 
499 	/* fill in the completion parameters */
500 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502 	dmae->comp_val = DMAE_COMP_VAL;
503 }
504 
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
507 {
508 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
509 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510 	int rc = 0;
511 
512 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513 
514 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
515 	 * as long as this code is called both from syscall context and
516 	 * from ndo_set_rx_mode() flow that may be called from BH.
517 	 */
518 	spin_lock_bh(&bp->dmae_lock);
519 
520 	/* reset completion */
521 	*wb_comp = 0;
522 
523 	/* post the command on the channel used for initializations */
524 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525 
526 	/* wait for completion */
527 	udelay(5);
528 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529 
530 		if (!cnt ||
531 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533 			BNX2X_ERR("DMAE timeout!\n");
534 			rc = DMAE_TIMEOUT;
535 			goto unlock;
536 		}
537 		cnt--;
538 		udelay(50);
539 	}
540 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
541 		BNX2X_ERR("DMAE PCI error!\n");
542 		rc = DMAE_PCI_ERROR;
543 	}
544 
545 unlock:
546 	spin_unlock_bh(&bp->dmae_lock);
547 	return rc;
548 }
549 
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551 		      u32 len32)
552 {
553 	int rc;
554 	struct dmae_command dmae;
555 
556 	if (!bp->dmae_ready) {
557 		u32 *data = bnx2x_sp(bp, wb_data[0]);
558 
559 		if (CHIP_IS_E1(bp))
560 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561 		else
562 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
563 		return;
564 	}
565 
566 	/* set opcode and fixed command fields */
567 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568 
569 	/* fill in addresses and len */
570 	dmae.src_addr_lo = U64_LO(dma_addr);
571 	dmae.src_addr_hi = U64_HI(dma_addr);
572 	dmae.dst_addr_lo = dst_addr >> 2;
573 	dmae.dst_addr_hi = 0;
574 	dmae.len = len32;
575 
576 	/* issue the command and wait for completion */
577 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
578 	if (rc) {
579 		BNX2X_ERR("DMAE returned failure %d\n", rc);
580 		bnx2x_panic();
581 	}
582 }
583 
584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
585 {
586 	int rc;
587 	struct dmae_command dmae;
588 
589 	if (!bp->dmae_ready) {
590 		u32 *data = bnx2x_sp(bp, wb_data[0]);
591 		int i;
592 
593 		if (CHIP_IS_E1(bp))
594 			for (i = 0; i < len32; i++)
595 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
596 		else
597 			for (i = 0; i < len32; i++)
598 				data[i] = REG_RD(bp, src_addr + i*4);
599 
600 		return;
601 	}
602 
603 	/* set opcode and fixed command fields */
604 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
605 
606 	/* fill in addresses and len */
607 	dmae.src_addr_lo = src_addr >> 2;
608 	dmae.src_addr_hi = 0;
609 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
610 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
611 	dmae.len = len32;
612 
613 	/* issue the command and wait for completion */
614 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
615 	if (rc) {
616 		BNX2X_ERR("DMAE returned failure %d\n", rc);
617 		bnx2x_panic();
618 	}
619 }
620 
621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
622 				      u32 addr, u32 len)
623 {
624 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
625 	int offset = 0;
626 
627 	while (len > dmae_wr_max) {
628 		bnx2x_write_dmae(bp, phys_addr + offset,
629 				 addr + offset, dmae_wr_max);
630 		offset += dmae_wr_max * 4;
631 		len -= dmae_wr_max;
632 	}
633 
634 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
635 }
636 
637 static int bnx2x_mc_assert(struct bnx2x *bp)
638 {
639 	char last_idx;
640 	int i, rc = 0;
641 	u32 row0, row1, row2, row3;
642 
643 	/* XSTORM */
644 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
645 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
646 	if (last_idx)
647 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
648 
649 	/* print the asserts */
650 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
651 
652 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
653 			      XSTORM_ASSERT_LIST_OFFSET(i));
654 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
655 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
656 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
658 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
660 
661 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
662 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
663 				  i, row3, row2, row1, row0);
664 			rc++;
665 		} else {
666 			break;
667 		}
668 	}
669 
670 	/* TSTORM */
671 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
672 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
673 	if (last_idx)
674 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
675 
676 	/* print the asserts */
677 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
678 
679 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
680 			      TSTORM_ASSERT_LIST_OFFSET(i));
681 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
682 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
683 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
685 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
687 
688 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
689 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
690 				  i, row3, row2, row1, row0);
691 			rc++;
692 		} else {
693 			break;
694 		}
695 	}
696 
697 	/* CSTORM */
698 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
699 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
700 	if (last_idx)
701 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
702 
703 	/* print the asserts */
704 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
705 
706 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
707 			      CSTORM_ASSERT_LIST_OFFSET(i));
708 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
709 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
710 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
712 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
714 
715 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
716 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
717 				  i, row3, row2, row1, row0);
718 			rc++;
719 		} else {
720 			break;
721 		}
722 	}
723 
724 	/* USTORM */
725 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
726 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
727 	if (last_idx)
728 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
729 
730 	/* print the asserts */
731 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
732 
733 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
734 			      USTORM_ASSERT_LIST_OFFSET(i));
735 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
736 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
737 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
738 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
739 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
740 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
741 
742 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
743 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
744 				  i, row3, row2, row1, row0);
745 			rc++;
746 		} else {
747 			break;
748 		}
749 	}
750 
751 	return rc;
752 }
753 
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755 {
756 	u32 addr, val;
757 	u32 mark, offset;
758 	__be32 data[9];
759 	int word;
760 	u32 trace_shmem_base;
761 	if (BP_NOMCP(bp)) {
762 		BNX2X_ERR("NO MCP - can not dump\n");
763 		return;
764 	}
765 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766 		(bp->common.bc_ver & 0xff0000) >> 16,
767 		(bp->common.bc_ver & 0xff00) >> 8,
768 		(bp->common.bc_ver & 0xff));
769 
770 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773 
774 	if (BP_PATH(bp) == 0)
775 		trace_shmem_base = bp->common.shmem_base;
776 	else
777 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778 	addr = trace_shmem_base - 0x800;
779 
780 	/* validate TRCB signature */
781 	mark = REG_RD(bp, addr);
782 	if (mark != MFW_TRACE_SIGNATURE) {
783 		BNX2X_ERR("Trace buffer signature is missing.");
784 		return ;
785 	}
786 
787 	/* read cyclic buffer pointer */
788 	addr += 4;
789 	mark = REG_RD(bp, addr);
790 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
791 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
792 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
793 
794 	printk("%s", lvl);
795 
796 	/* dump buffer after the mark */
797 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
798 		for (word = 0; word < 8; word++)
799 			data[word] = htonl(REG_RD(bp, offset + 4*word));
800 		data[8] = 0x0;
801 		pr_cont("%s", (char *)data);
802 	}
803 
804 	/* dump buffer before the mark */
805 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
806 		for (word = 0; word < 8; word++)
807 			data[word] = htonl(REG_RD(bp, offset + 4*word));
808 		data[8] = 0x0;
809 		pr_cont("%s", (char *)data);
810 	}
811 	printk("%s" "end of fw dump\n", lvl);
812 }
813 
814 static void bnx2x_fw_dump(struct bnx2x *bp)
815 {
816 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
817 }
818 
819 static void bnx2x_hc_int_disable(struct bnx2x *bp)
820 {
821 	int port = BP_PORT(bp);
822 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
823 	u32 val = REG_RD(bp, addr);
824 
825 	/* in E1 we must use only PCI configuration space to disable
826 	 * MSI/MSIX capability
827 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
828 	 */
829 	if (CHIP_IS_E1(bp)) {
830 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
831 		 * Use mask register to prevent from HC sending interrupts
832 		 * after we exit the function
833 		 */
834 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
835 
836 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
837 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
838 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
839 	} else
840 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
841 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
842 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
843 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
844 
845 	DP(NETIF_MSG_IFDOWN,
846 	   "write %x to HC %d (addr 0x%x)\n",
847 	   val, port, addr);
848 
849 	/* flush all outstanding writes */
850 	mmiowb();
851 
852 	REG_WR(bp, addr, val);
853 	if (REG_RD(bp, addr) != val)
854 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
855 }
856 
857 static void bnx2x_igu_int_disable(struct bnx2x *bp)
858 {
859 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
860 
861 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
862 		 IGU_PF_CONF_INT_LINE_EN |
863 		 IGU_PF_CONF_ATTN_BIT_EN);
864 
865 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
866 
867 	/* flush all outstanding writes */
868 	mmiowb();
869 
870 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
871 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
872 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874 
875 static void bnx2x_int_disable(struct bnx2x *bp)
876 {
877 	if (bp->common.int_block == INT_BLOCK_HC)
878 		bnx2x_hc_int_disable(bp);
879 	else
880 		bnx2x_igu_int_disable(bp);
881 }
882 
883 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
884 {
885 	int i;
886 	u16 j;
887 	struct hc_sp_status_block_data sp_sb_data;
888 	int func = BP_FUNC(bp);
889 #ifdef BNX2X_STOP_ON_ERROR
890 	u16 start = 0, end = 0;
891 	u8 cos;
892 #endif
893 	if (disable_int)
894 		bnx2x_int_disable(bp);
895 
896 	bp->stats_state = STATS_STATE_DISABLED;
897 	bp->eth_stats.unrecoverable_error++;
898 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
899 
900 	BNX2X_ERR("begin crash dump -----------------\n");
901 
902 	/* Indices */
903 	/* Common */
904 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
905 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
906 		  bp->spq_prod_idx, bp->stats_counter);
907 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
908 		  bp->def_status_blk->atten_status_block.attn_bits,
909 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
910 		  bp->def_status_blk->atten_status_block.status_block_id,
911 		  bp->def_status_blk->atten_status_block.attn_bits_index);
912 	BNX2X_ERR("     def (");
913 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
914 		pr_cont("0x%x%s",
915 			bp->def_status_blk->sp_sb.index_values[i],
916 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
917 
918 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
919 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
920 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
921 			i*sizeof(u32));
922 
923 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
924 	       sp_sb_data.igu_sb_id,
925 	       sp_sb_data.igu_seg_id,
926 	       sp_sb_data.p_func.pf_id,
927 	       sp_sb_data.p_func.vnic_id,
928 	       sp_sb_data.p_func.vf_id,
929 	       sp_sb_data.p_func.vf_valid,
930 	       sp_sb_data.state);
931 
932 	for_each_eth_queue(bp, i) {
933 		struct bnx2x_fastpath *fp = &bp->fp[i];
934 		int loop;
935 		struct hc_status_block_data_e2 sb_data_e2;
936 		struct hc_status_block_data_e1x sb_data_e1x;
937 		struct hc_status_block_sm  *hc_sm_p =
938 			CHIP_IS_E1x(bp) ?
939 			sb_data_e1x.common.state_machine :
940 			sb_data_e2.common.state_machine;
941 		struct hc_index_data *hc_index_p =
942 			CHIP_IS_E1x(bp) ?
943 			sb_data_e1x.index_data :
944 			sb_data_e2.index_data;
945 		u8 data_size, cos;
946 		u32 *sb_data_p;
947 		struct bnx2x_fp_txdata txdata;
948 
949 		/* Rx */
950 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
951 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
952 			  fp->rx_comp_prod,
953 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
954 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
955 			  fp->rx_sge_prod, fp->last_max_sge,
956 			  le16_to_cpu(fp->fp_hc_idx));
957 
958 		/* Tx */
959 		for_each_cos_in_tx_queue(fp, cos)
960 		{
961 			txdata = *fp->txdata_ptr[cos];
962 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
963 				  i, txdata.tx_pkt_prod,
964 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
965 				  txdata.tx_bd_cons,
966 				  le16_to_cpu(*txdata.tx_cons_sb));
967 		}
968 
969 		loop = CHIP_IS_E1x(bp) ?
970 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
971 
972 		/* host sb data */
973 
974 		if (IS_FCOE_FP(fp))
975 			continue;
976 
977 		BNX2X_ERR("     run indexes (");
978 		for (j = 0; j < HC_SB_MAX_SM; j++)
979 			pr_cont("0x%x%s",
980 			       fp->sb_running_index[j],
981 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
982 
983 		BNX2X_ERR("     indexes (");
984 		for (j = 0; j < loop; j++)
985 			pr_cont("0x%x%s",
986 			       fp->sb_index_values[j],
987 			       (j == loop - 1) ? ")" : " ");
988 		/* fw sb data */
989 		data_size = CHIP_IS_E1x(bp) ?
990 			sizeof(struct hc_status_block_data_e1x) :
991 			sizeof(struct hc_status_block_data_e2);
992 		data_size /= sizeof(u32);
993 		sb_data_p = CHIP_IS_E1x(bp) ?
994 			(u32 *)&sb_data_e1x :
995 			(u32 *)&sb_data_e2;
996 		/* copy sb data in here */
997 		for (j = 0; j < data_size; j++)
998 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
999 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1000 				j * sizeof(u32));
1001 
1002 		if (!CHIP_IS_E1x(bp)) {
1003 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1004 				sb_data_e2.common.p_func.pf_id,
1005 				sb_data_e2.common.p_func.vf_id,
1006 				sb_data_e2.common.p_func.vf_valid,
1007 				sb_data_e2.common.p_func.vnic_id,
1008 				sb_data_e2.common.same_igu_sb_1b,
1009 				sb_data_e2.common.state);
1010 		} else {
1011 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1012 				sb_data_e1x.common.p_func.pf_id,
1013 				sb_data_e1x.common.p_func.vf_id,
1014 				sb_data_e1x.common.p_func.vf_valid,
1015 				sb_data_e1x.common.p_func.vnic_id,
1016 				sb_data_e1x.common.same_igu_sb_1b,
1017 				sb_data_e1x.common.state);
1018 		}
1019 
1020 		/* SB_SMs data */
1021 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1022 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1023 				j, hc_sm_p[j].__flags,
1024 				hc_sm_p[j].igu_sb_id,
1025 				hc_sm_p[j].igu_seg_id,
1026 				hc_sm_p[j].time_to_expire,
1027 				hc_sm_p[j].timer_value);
1028 		}
1029 
1030 		/* Indices data */
1031 		for (j = 0; j < loop; j++) {
1032 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1033 			       hc_index_p[j].flags,
1034 			       hc_index_p[j].timeout);
1035 		}
1036 	}
1037 
1038 #ifdef BNX2X_STOP_ON_ERROR
1039 
1040 	/* event queue */
1041 	BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1042 	for (i = 0; i < NUM_EQ_DESC; i++) {
1043 		u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1044 
1045 		BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1046 			  i, bp->eq_ring[i].message.opcode,
1047 			  bp->eq_ring[i].message.error);
1048 		BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1049 	}
1050 
1051 	/* Rings */
1052 	/* Rx */
1053 	for_each_valid_rx_queue(bp, i) {
1054 		struct bnx2x_fastpath *fp = &bp->fp[i];
1055 
1056 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1057 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1058 		for (j = start; j != end; j = RX_BD(j + 1)) {
1059 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1060 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1061 
1062 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1063 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1064 		}
1065 
1066 		start = RX_SGE(fp->rx_sge_prod);
1067 		end = RX_SGE(fp->last_max_sge);
1068 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1069 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1070 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1071 
1072 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1073 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1074 		}
1075 
1076 		start = RCQ_BD(fp->rx_comp_cons - 10);
1077 		end = RCQ_BD(fp->rx_comp_cons + 503);
1078 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1079 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1080 
1081 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1082 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1083 		}
1084 	}
1085 
1086 	/* Tx */
1087 	for_each_valid_tx_queue(bp, i) {
1088 		struct bnx2x_fastpath *fp = &bp->fp[i];
1089 		for_each_cos_in_tx_queue(fp, cos) {
1090 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1091 
1092 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1093 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1094 			for (j = start; j != end; j = TX_BD(j + 1)) {
1095 				struct sw_tx_bd *sw_bd =
1096 					&txdata->tx_buf_ring[j];
1097 
1098 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1099 					  i, cos, j, sw_bd->skb,
1100 					  sw_bd->first_bd);
1101 			}
1102 
1103 			start = TX_BD(txdata->tx_bd_cons - 10);
1104 			end = TX_BD(txdata->tx_bd_cons + 254);
1105 			for (j = start; j != end; j = TX_BD(j + 1)) {
1106 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1107 
1108 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1109 					  i, cos, j, tx_bd[0], tx_bd[1],
1110 					  tx_bd[2], tx_bd[3]);
1111 			}
1112 		}
1113 	}
1114 #endif
1115 	bnx2x_fw_dump(bp);
1116 	bnx2x_mc_assert(bp);
1117 	BNX2X_ERR("end crash dump -----------------\n");
1118 }
1119 
1120 /*
1121  * FLR Support for E2
1122  *
1123  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1124  * initialization.
1125  */
1126 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1127 #define FLR_WAIT_INTERVAL	50	/* usec */
1128 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1129 
1130 struct pbf_pN_buf_regs {
1131 	int pN;
1132 	u32 init_crd;
1133 	u32 crd;
1134 	u32 crd_freed;
1135 };
1136 
1137 struct pbf_pN_cmd_regs {
1138 	int pN;
1139 	u32 lines_occup;
1140 	u32 lines_freed;
1141 };
1142 
1143 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1144 				     struct pbf_pN_buf_regs *regs,
1145 				     u32 poll_count)
1146 {
1147 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1148 	u32 cur_cnt = poll_count;
1149 
1150 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1151 	crd = crd_start = REG_RD(bp, regs->crd);
1152 	init_crd = REG_RD(bp, regs->init_crd);
1153 
1154 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1155 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1156 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1157 
1158 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1159 	       (init_crd - crd_start))) {
1160 		if (cur_cnt--) {
1161 			udelay(FLR_WAIT_INTERVAL);
1162 			crd = REG_RD(bp, regs->crd);
1163 			crd_freed = REG_RD(bp, regs->crd_freed);
1164 		} else {
1165 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1166 			   regs->pN);
1167 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1168 			   regs->pN, crd);
1169 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1170 			   regs->pN, crd_freed);
1171 			break;
1172 		}
1173 	}
1174 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1175 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1176 }
1177 
1178 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1179 				     struct pbf_pN_cmd_regs *regs,
1180 				     u32 poll_count)
1181 {
1182 	u32 occup, to_free, freed, freed_start;
1183 	u32 cur_cnt = poll_count;
1184 
1185 	occup = to_free = REG_RD(bp, regs->lines_occup);
1186 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1187 
1188 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1189 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1190 
1191 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1192 		if (cur_cnt--) {
1193 			udelay(FLR_WAIT_INTERVAL);
1194 			occup = REG_RD(bp, regs->lines_occup);
1195 			freed = REG_RD(bp, regs->lines_freed);
1196 		} else {
1197 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1198 			   regs->pN);
1199 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1200 			   regs->pN, occup);
1201 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1202 			   regs->pN, freed);
1203 			break;
1204 		}
1205 	}
1206 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1207 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1208 }
1209 
1210 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1211 				    u32 expected, u32 poll_count)
1212 {
1213 	u32 cur_cnt = poll_count;
1214 	u32 val;
1215 
1216 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1217 		udelay(FLR_WAIT_INTERVAL);
1218 
1219 	return val;
1220 }
1221 
1222 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1223 				    char *msg, u32 poll_cnt)
1224 {
1225 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1226 	if (val != 0) {
1227 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1228 		return 1;
1229 	}
1230 	return 0;
1231 }
1232 
1233 /* Common routines with VF FLR cleanup */
1234 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1235 {
1236 	/* adjust polling timeout */
1237 	if (CHIP_REV_IS_EMUL(bp))
1238 		return FLR_POLL_CNT * 2000;
1239 
1240 	if (CHIP_REV_IS_FPGA(bp))
1241 		return FLR_POLL_CNT * 120;
1242 
1243 	return FLR_POLL_CNT;
1244 }
1245 
1246 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1247 {
1248 	struct pbf_pN_cmd_regs cmd_regs[] = {
1249 		{0, (CHIP_IS_E3B0(bp)) ?
1250 			PBF_REG_TQ_OCCUPANCY_Q0 :
1251 			PBF_REG_P0_TQ_OCCUPANCY,
1252 		    (CHIP_IS_E3B0(bp)) ?
1253 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1254 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1255 		{1, (CHIP_IS_E3B0(bp)) ?
1256 			PBF_REG_TQ_OCCUPANCY_Q1 :
1257 			PBF_REG_P1_TQ_OCCUPANCY,
1258 		    (CHIP_IS_E3B0(bp)) ?
1259 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1260 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1261 		{4, (CHIP_IS_E3B0(bp)) ?
1262 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1263 			PBF_REG_P4_TQ_OCCUPANCY,
1264 		    (CHIP_IS_E3B0(bp)) ?
1265 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1266 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1267 	};
1268 
1269 	struct pbf_pN_buf_regs buf_regs[] = {
1270 		{0, (CHIP_IS_E3B0(bp)) ?
1271 			PBF_REG_INIT_CRD_Q0 :
1272 			PBF_REG_P0_INIT_CRD ,
1273 		    (CHIP_IS_E3B0(bp)) ?
1274 			PBF_REG_CREDIT_Q0 :
1275 			PBF_REG_P0_CREDIT,
1276 		    (CHIP_IS_E3B0(bp)) ?
1277 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1278 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1279 		{1, (CHIP_IS_E3B0(bp)) ?
1280 			PBF_REG_INIT_CRD_Q1 :
1281 			PBF_REG_P1_INIT_CRD,
1282 		    (CHIP_IS_E3B0(bp)) ?
1283 			PBF_REG_CREDIT_Q1 :
1284 			PBF_REG_P1_CREDIT,
1285 		    (CHIP_IS_E3B0(bp)) ?
1286 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1287 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1288 		{4, (CHIP_IS_E3B0(bp)) ?
1289 			PBF_REG_INIT_CRD_LB_Q :
1290 			PBF_REG_P4_INIT_CRD,
1291 		    (CHIP_IS_E3B0(bp)) ?
1292 			PBF_REG_CREDIT_LB_Q :
1293 			PBF_REG_P4_CREDIT,
1294 		    (CHIP_IS_E3B0(bp)) ?
1295 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1296 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1297 	};
1298 
1299 	int i;
1300 
1301 	/* Verify the command queues are flushed P0, P1, P4 */
1302 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1303 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1304 
1305 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1306 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1307 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1308 }
1309 
1310 #define OP_GEN_PARAM(param) \
1311 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1312 
1313 #define OP_GEN_TYPE(type) \
1314 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1315 
1316 #define OP_GEN_AGG_VECT(index) \
1317 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1318 
1319 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1320 {
1321 	u32 op_gen_command = 0;
1322 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1323 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1324 	int ret = 0;
1325 
1326 	if (REG_RD(bp, comp_addr)) {
1327 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1328 		return 1;
1329 	}
1330 
1331 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1332 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1333 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1334 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1335 
1336 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1337 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1338 
1339 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1340 		BNX2X_ERR("FW final cleanup did not succeed\n");
1341 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1342 		   (REG_RD(bp, comp_addr)));
1343 		bnx2x_panic();
1344 		return 1;
1345 	}
1346 	/* Zero completion for next FLR */
1347 	REG_WR(bp, comp_addr, 0);
1348 
1349 	return ret;
1350 }
1351 
1352 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1353 {
1354 	u16 status;
1355 
1356 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1357 	return status & PCI_EXP_DEVSTA_TRPND;
1358 }
1359 
1360 /* PF FLR specific routines
1361 */
1362 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1363 {
1364 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1365 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1367 			"CFC PF usage counter timed out",
1368 			poll_cnt))
1369 		return 1;
1370 
1371 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1372 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373 			DORQ_REG_PF_USAGE_CNT,
1374 			"DQ PF usage counter timed out",
1375 			poll_cnt))
1376 		return 1;
1377 
1378 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1379 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1381 			"QM PF usage counter timed out",
1382 			poll_cnt))
1383 		return 1;
1384 
1385 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1386 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1388 			"Timers VNIC usage counter timed out",
1389 			poll_cnt))
1390 		return 1;
1391 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1393 			"Timers NUM_SCANS usage counter timed out",
1394 			poll_cnt))
1395 		return 1;
1396 
1397 	/* Wait DMAE PF usage counter to zero */
1398 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1399 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1400 			"DMAE command register timed out",
1401 			poll_cnt))
1402 		return 1;
1403 
1404 	return 0;
1405 }
1406 
1407 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1408 {
1409 	u32 val;
1410 
1411 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1412 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1413 
1414 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1415 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1416 
1417 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1418 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1419 
1420 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1421 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1422 
1423 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1424 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1425 
1426 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1427 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1428 
1429 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1430 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1431 
1432 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1433 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1434 	   val);
1435 }
1436 
1437 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1438 {
1439 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1440 
1441 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1442 
1443 	/* Re-enable PF target read access */
1444 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1445 
1446 	/* Poll HW usage counters */
1447 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1448 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1449 		return -EBUSY;
1450 
1451 	/* Zero the igu 'trailing edge' and 'leading edge' */
1452 
1453 	/* Send the FW cleanup command */
1454 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1455 		return -EBUSY;
1456 
1457 	/* ATC cleanup */
1458 
1459 	/* Verify TX hw is flushed */
1460 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1461 
1462 	/* Wait 100ms (not adjusted according to platform) */
1463 	msleep(100);
1464 
1465 	/* Verify no pending pci transactions */
1466 	if (bnx2x_is_pcie_pending(bp->pdev))
1467 		BNX2X_ERR("PCIE Transactions still pending\n");
1468 
1469 	/* Debug */
1470 	bnx2x_hw_enable_status(bp);
1471 
1472 	/*
1473 	 * Master enable - Due to WB DMAE writes performed before this
1474 	 * register is re-initialized as part of the regular function init
1475 	 */
1476 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1477 
1478 	return 0;
1479 }
1480 
1481 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1482 {
1483 	int port = BP_PORT(bp);
1484 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1485 	u32 val = REG_RD(bp, addr);
1486 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1487 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1488 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1489 
1490 	if (msix) {
1491 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1492 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1493 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495 		if (single_msix)
1496 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1497 	} else if (msi) {
1498 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1499 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1500 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1501 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1502 	} else {
1503 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1504 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1505 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1506 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1507 
1508 		if (!CHIP_IS_E1(bp)) {
1509 			DP(NETIF_MSG_IFUP,
1510 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1511 
1512 			REG_WR(bp, addr, val);
1513 
1514 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1515 		}
1516 	}
1517 
1518 	if (CHIP_IS_E1(bp))
1519 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1520 
1521 	DP(NETIF_MSG_IFUP,
1522 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1523 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1524 
1525 	REG_WR(bp, addr, val);
1526 	/*
1527 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1528 	 */
1529 	mmiowb();
1530 	barrier();
1531 
1532 	if (!CHIP_IS_E1(bp)) {
1533 		/* init leading/trailing edge */
1534 		if (IS_MF(bp)) {
1535 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1536 			if (bp->port.pmf)
1537 				/* enable nig and gpio3 attention */
1538 				val |= 0x1100;
1539 		} else
1540 			val = 0xffff;
1541 
1542 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1543 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1544 	}
1545 
1546 	/* Make sure that interrupts are indeed enabled from here on */
1547 	mmiowb();
1548 }
1549 
1550 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1551 {
1552 	u32 val;
1553 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1556 
1557 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1558 
1559 	if (msix) {
1560 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1561 			 IGU_PF_CONF_SINGLE_ISR_EN);
1562 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563 			IGU_PF_CONF_ATTN_BIT_EN);
1564 
1565 		if (single_msix)
1566 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1567 	} else if (msi) {
1568 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1569 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1570 			IGU_PF_CONF_ATTN_BIT_EN |
1571 			IGU_PF_CONF_SINGLE_ISR_EN);
1572 	} else {
1573 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1574 		val |= (IGU_PF_CONF_INT_LINE_EN |
1575 			IGU_PF_CONF_ATTN_BIT_EN |
1576 			IGU_PF_CONF_SINGLE_ISR_EN);
1577 	}
1578 
1579 	/* Clean previous status - need to configure igu prior to ack*/
1580 	if ((!msix) || single_msix) {
1581 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1582 		bnx2x_ack_int(bp);
1583 	}
1584 
1585 	val |= IGU_PF_CONF_FUNC_EN;
1586 
1587 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1588 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589 
1590 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1591 
1592 	if (val & IGU_PF_CONF_INT_LINE_EN)
1593 		pci_intx(bp->pdev, true);
1594 
1595 	barrier();
1596 
1597 	/* init leading/trailing edge */
1598 	if (IS_MF(bp)) {
1599 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600 		if (bp->port.pmf)
1601 			/* enable nig and gpio3 attention */
1602 			val |= 0x1100;
1603 	} else
1604 		val = 0xffff;
1605 
1606 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1607 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1608 
1609 	/* Make sure that interrupts are indeed enabled from here on */
1610 	mmiowb();
1611 }
1612 
1613 void bnx2x_int_enable(struct bnx2x *bp)
1614 {
1615 	if (bp->common.int_block == INT_BLOCK_HC)
1616 		bnx2x_hc_int_enable(bp);
1617 	else
1618 		bnx2x_igu_int_enable(bp);
1619 }
1620 
1621 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1622 {
1623 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1624 	int i, offset;
1625 
1626 	if (disable_hw)
1627 		/* prevent the HW from sending interrupts */
1628 		bnx2x_int_disable(bp);
1629 
1630 	/* make sure all ISRs are done */
1631 	if (msix) {
1632 		synchronize_irq(bp->msix_table[0].vector);
1633 		offset = 1;
1634 		if (CNIC_SUPPORT(bp))
1635 			offset++;
1636 		for_each_eth_queue(bp, i)
1637 			synchronize_irq(bp->msix_table[offset++].vector);
1638 	} else
1639 		synchronize_irq(bp->pdev->irq);
1640 
1641 	/* make sure sp_task is not running */
1642 	cancel_delayed_work(&bp->sp_task);
1643 	cancel_delayed_work(&bp->period_task);
1644 	flush_workqueue(bnx2x_wq);
1645 }
1646 
1647 /* fast path */
1648 
1649 /*
1650  * General service functions
1651  */
1652 
1653 /* Return true if succeeded to acquire the lock */
1654 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1655 {
1656 	u32 lock_status;
1657 	u32 resource_bit = (1 << resource);
1658 	int func = BP_FUNC(bp);
1659 	u32 hw_lock_control_reg;
1660 
1661 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1662 	   "Trying to take a lock on resource %d\n", resource);
1663 
1664 	/* Validating that the resource is within range */
1665 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1666 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1667 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1668 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1669 		return false;
1670 	}
1671 
1672 	if (func <= 5)
1673 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1674 	else
1675 		hw_lock_control_reg =
1676 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1677 
1678 	/* Try to acquire the lock */
1679 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1680 	lock_status = REG_RD(bp, hw_lock_control_reg);
1681 	if (lock_status & resource_bit)
1682 		return true;
1683 
1684 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1685 	   "Failed to get a lock on resource %d\n", resource);
1686 	return false;
1687 }
1688 
1689 /**
1690  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1691  *
1692  * @bp:	driver handle
1693  *
1694  * Returns the recovery leader resource id according to the engine this function
1695  * belongs to. Currently only only 2 engines is supported.
1696  */
1697 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1698 {
1699 	if (BP_PATH(bp))
1700 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1701 	else
1702 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1703 }
1704 
1705 /**
1706  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1707  *
1708  * @bp: driver handle
1709  *
1710  * Tries to acquire a leader lock for current engine.
1711  */
1712 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1713 {
1714 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1715 }
1716 
1717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1718 
1719 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1720 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1721 {
1722 	/* Set the interrupt occurred bit for the sp-task to recognize it
1723 	 * must ack the interrupt and transition according to the IGU
1724 	 * state machine.
1725 	 */
1726 	atomic_set(&bp->interrupt_occurred, 1);
1727 
1728 	/* The sp_task must execute only after this bit
1729 	 * is set, otherwise we will get out of sync and miss all
1730 	 * further interrupts. Hence, the barrier.
1731 	 */
1732 	smp_wmb();
1733 
1734 	/* schedule sp_task to workqueue */
1735 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1736 }
1737 
1738 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1739 {
1740 	struct bnx2x *bp = fp->bp;
1741 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1742 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1743 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1744 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1745 
1746 	DP(BNX2X_MSG_SP,
1747 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1748 	   fp->index, cid, command, bp->state,
1749 	   rr_cqe->ramrod_cqe.ramrod_type);
1750 
1751 	/* If cid is within VF range, replace the slowpath object with the
1752 	 * one corresponding to this VF
1753 	 */
1754 	if (cid >= BNX2X_FIRST_VF_CID  &&
1755 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1756 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1757 
1758 	switch (command) {
1759 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1760 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1761 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1762 		break;
1763 
1764 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1765 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1766 		drv_cmd = BNX2X_Q_CMD_SETUP;
1767 		break;
1768 
1769 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1770 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1771 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1772 		break;
1773 
1774 	case (RAMROD_CMD_ID_ETH_HALT):
1775 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1776 		drv_cmd = BNX2X_Q_CMD_HALT;
1777 		break;
1778 
1779 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1780 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1781 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1782 		break;
1783 
1784 	case (RAMROD_CMD_ID_ETH_EMPTY):
1785 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1786 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1787 		break;
1788 
1789 	default:
1790 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1791 			  command, fp->index);
1792 		return;
1793 	}
1794 
1795 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1796 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1797 		/* q_obj->complete_cmd() failure means that this was
1798 		 * an unexpected completion.
1799 		 *
1800 		 * In this case we don't want to increase the bp->spq_left
1801 		 * because apparently we haven't sent this command the first
1802 		 * place.
1803 		 */
1804 #ifdef BNX2X_STOP_ON_ERROR
1805 		bnx2x_panic();
1806 #else
1807 		return;
1808 #endif
1809 	/* SRIOV: reschedule any 'in_progress' operations */
1810 	bnx2x_iov_sp_event(bp, cid, true);
1811 
1812 	smp_mb__before_atomic_inc();
1813 	atomic_inc(&bp->cq_spq_left);
1814 	/* push the change in bp->spq_left and towards the memory */
1815 	smp_mb__after_atomic_inc();
1816 
1817 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1818 
1819 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1820 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1821 		/* if Q update ramrod is completed for last Q in AFEX vif set
1822 		 * flow, then ACK MCP at the end
1823 		 *
1824 		 * mark pending ACK to MCP bit.
1825 		 * prevent case that both bits are cleared.
1826 		 * At the end of load/unload driver checks that
1827 		 * sp_state is cleared, and this order prevents
1828 		 * races
1829 		 */
1830 		smp_mb__before_clear_bit();
1831 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1832 		wmb();
1833 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1834 		smp_mb__after_clear_bit();
1835 
1836 		/* schedule the sp task as mcp ack is required */
1837 		bnx2x_schedule_sp_task(bp);
1838 	}
1839 
1840 	return;
1841 }
1842 
1843 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1844 {
1845 	struct bnx2x *bp = netdev_priv(dev_instance);
1846 	u16 status = bnx2x_ack_int(bp);
1847 	u16 mask;
1848 	int i;
1849 	u8 cos;
1850 
1851 	/* Return here if interrupt is shared and it's not for us */
1852 	if (unlikely(status == 0)) {
1853 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1854 		return IRQ_NONE;
1855 	}
1856 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1857 
1858 #ifdef BNX2X_STOP_ON_ERROR
1859 	if (unlikely(bp->panic))
1860 		return IRQ_HANDLED;
1861 #endif
1862 
1863 	for_each_eth_queue(bp, i) {
1864 		struct bnx2x_fastpath *fp = &bp->fp[i];
1865 
1866 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1867 		if (status & mask) {
1868 			/* Handle Rx or Tx according to SB id */
1869 			for_each_cos_in_tx_queue(fp, cos)
1870 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1871 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1872 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1873 			status &= ~mask;
1874 		}
1875 	}
1876 
1877 	if (CNIC_SUPPORT(bp)) {
1878 		mask = 0x2;
1879 		if (status & (mask | 0x1)) {
1880 			struct cnic_ops *c_ops = NULL;
1881 
1882 			rcu_read_lock();
1883 			c_ops = rcu_dereference(bp->cnic_ops);
1884 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1885 				      CNIC_DRV_STATE_HANDLES_IRQ))
1886 				c_ops->cnic_handler(bp->cnic_data, NULL);
1887 			rcu_read_unlock();
1888 
1889 			status &= ~mask;
1890 		}
1891 	}
1892 
1893 	if (unlikely(status & 0x1)) {
1894 
1895 		/* schedule sp task to perform default status block work, ack
1896 		 * attentions and enable interrupts.
1897 		 */
1898 		bnx2x_schedule_sp_task(bp);
1899 
1900 		status &= ~0x1;
1901 		if (!status)
1902 			return IRQ_HANDLED;
1903 	}
1904 
1905 	if (unlikely(status))
1906 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1907 		   status);
1908 
1909 	return IRQ_HANDLED;
1910 }
1911 
1912 /* Link */
1913 
1914 /*
1915  * General service functions
1916  */
1917 
1918 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1919 {
1920 	u32 lock_status;
1921 	u32 resource_bit = (1 << resource);
1922 	int func = BP_FUNC(bp);
1923 	u32 hw_lock_control_reg;
1924 	int cnt;
1925 
1926 	/* Validating that the resource is within range */
1927 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1928 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1929 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1930 		return -EINVAL;
1931 	}
1932 
1933 	if (func <= 5) {
1934 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1935 	} else {
1936 		hw_lock_control_reg =
1937 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1938 	}
1939 
1940 	/* Validating that the resource is not already taken */
1941 	lock_status = REG_RD(bp, hw_lock_control_reg);
1942 	if (lock_status & resource_bit) {
1943 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1944 		   lock_status, resource_bit);
1945 		return -EEXIST;
1946 	}
1947 
1948 	/* Try for 5 second every 5ms */
1949 	for (cnt = 0; cnt < 1000; cnt++) {
1950 		/* Try to acquire the lock */
1951 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1952 		lock_status = REG_RD(bp, hw_lock_control_reg);
1953 		if (lock_status & resource_bit)
1954 			return 0;
1955 
1956 		usleep_range(5000, 10000);
1957 	}
1958 	BNX2X_ERR("Timeout\n");
1959 	return -EAGAIN;
1960 }
1961 
1962 int bnx2x_release_leader_lock(struct bnx2x *bp)
1963 {
1964 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1965 }
1966 
1967 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969 	u32 lock_status;
1970 	u32 resource_bit = (1 << resource);
1971 	int func = BP_FUNC(bp);
1972 	u32 hw_lock_control_reg;
1973 
1974 	/* Validating that the resource is within range */
1975 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1976 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1977 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1978 		return -EINVAL;
1979 	}
1980 
1981 	if (func <= 5) {
1982 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1983 	} else {
1984 		hw_lock_control_reg =
1985 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1986 	}
1987 
1988 	/* Validating that the resource is currently taken */
1989 	lock_status = REG_RD(bp, hw_lock_control_reg);
1990 	if (!(lock_status & resource_bit)) {
1991 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
1992 			  lock_status, resource_bit);
1993 		return -EFAULT;
1994 	}
1995 
1996 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1997 	return 0;
1998 }
1999 
2000 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2001 {
2002 	/* The GPIO should be swapped if swap register is set and active */
2003 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2004 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2005 	int gpio_shift = gpio_num +
2006 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2007 	u32 gpio_mask = (1 << gpio_shift);
2008 	u32 gpio_reg;
2009 	int value;
2010 
2011 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2012 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2013 		return -EINVAL;
2014 	}
2015 
2016 	/* read GPIO value */
2017 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2018 
2019 	/* get the requested pin value */
2020 	if ((gpio_reg & gpio_mask) == gpio_mask)
2021 		value = 1;
2022 	else
2023 		value = 0;
2024 
2025 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2026 
2027 	return value;
2028 }
2029 
2030 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2031 {
2032 	/* The GPIO should be swapped if swap register is set and active */
2033 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2034 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2035 	int gpio_shift = gpio_num +
2036 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2037 	u32 gpio_mask = (1 << gpio_shift);
2038 	u32 gpio_reg;
2039 
2040 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2041 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2042 		return -EINVAL;
2043 	}
2044 
2045 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2046 	/* read GPIO and mask except the float bits */
2047 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2048 
2049 	switch (mode) {
2050 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2051 		DP(NETIF_MSG_LINK,
2052 		   "Set GPIO %d (shift %d) -> output low\n",
2053 		   gpio_num, gpio_shift);
2054 		/* clear FLOAT and set CLR */
2055 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2056 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2057 		break;
2058 
2059 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2060 		DP(NETIF_MSG_LINK,
2061 		   "Set GPIO %d (shift %d) -> output high\n",
2062 		   gpio_num, gpio_shift);
2063 		/* clear FLOAT and set SET */
2064 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2065 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2066 		break;
2067 
2068 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2069 		DP(NETIF_MSG_LINK,
2070 		   "Set GPIO %d (shift %d) -> input\n",
2071 		   gpio_num, gpio_shift);
2072 		/* set FLOAT */
2073 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2074 		break;
2075 
2076 	default:
2077 		break;
2078 	}
2079 
2080 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2081 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2082 
2083 	return 0;
2084 }
2085 
2086 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2087 {
2088 	u32 gpio_reg = 0;
2089 	int rc = 0;
2090 
2091 	/* Any port swapping should be handled by caller. */
2092 
2093 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2094 	/* read GPIO and mask except the float bits */
2095 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2096 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2097 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2098 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2099 
2100 	switch (mode) {
2101 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2102 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2103 		/* set CLR */
2104 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2105 		break;
2106 
2107 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2108 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2109 		/* set SET */
2110 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2111 		break;
2112 
2113 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2114 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2115 		/* set FLOAT */
2116 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2117 		break;
2118 
2119 	default:
2120 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2121 		rc = -EINVAL;
2122 		break;
2123 	}
2124 
2125 	if (rc == 0)
2126 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2127 
2128 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2129 
2130 	return rc;
2131 }
2132 
2133 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2134 {
2135 	/* The GPIO should be swapped if swap register is set and active */
2136 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2137 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2138 	int gpio_shift = gpio_num +
2139 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2140 	u32 gpio_mask = (1 << gpio_shift);
2141 	u32 gpio_reg;
2142 
2143 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2144 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2145 		return -EINVAL;
2146 	}
2147 
2148 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2149 	/* read GPIO int */
2150 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2151 
2152 	switch (mode) {
2153 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2154 		DP(NETIF_MSG_LINK,
2155 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2156 		   gpio_num, gpio_shift);
2157 		/* clear SET and set CLR */
2158 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2159 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2160 		break;
2161 
2162 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2163 		DP(NETIF_MSG_LINK,
2164 		   "Set GPIO INT %d (shift %d) -> output high\n",
2165 		   gpio_num, gpio_shift);
2166 		/* clear CLR and set SET */
2167 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2168 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2169 		break;
2170 
2171 	default:
2172 		break;
2173 	}
2174 
2175 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2176 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177 
2178 	return 0;
2179 }
2180 
2181 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2182 {
2183 	u32 spio_reg;
2184 
2185 	/* Only 2 SPIOs are configurable */
2186 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2187 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2188 		return -EINVAL;
2189 	}
2190 
2191 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2192 	/* read SPIO and mask except the float bits */
2193 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2194 
2195 	switch (mode) {
2196 	case MISC_SPIO_OUTPUT_LOW:
2197 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2198 		/* clear FLOAT and set CLR */
2199 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2200 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2201 		break;
2202 
2203 	case MISC_SPIO_OUTPUT_HIGH:
2204 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2205 		/* clear FLOAT and set SET */
2206 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2207 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2208 		break;
2209 
2210 	case MISC_SPIO_INPUT_HI_Z:
2211 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2212 		/* set FLOAT */
2213 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2214 		break;
2215 
2216 	default:
2217 		break;
2218 	}
2219 
2220 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2221 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2222 
2223 	return 0;
2224 }
2225 
2226 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2227 {
2228 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2229 	switch (bp->link_vars.ieee_fc &
2230 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2231 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2232 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2233 						   ADVERTISED_Pause);
2234 		break;
2235 
2236 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2237 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2238 						  ADVERTISED_Pause);
2239 		break;
2240 
2241 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2242 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2243 		break;
2244 
2245 	default:
2246 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2247 						   ADVERTISED_Pause);
2248 		break;
2249 	}
2250 }
2251 
2252 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2253 {
2254 	/* Initialize link parameters structure variables
2255 	 * It is recommended to turn off RX FC for jumbo frames
2256 	 *  for better performance
2257 	 */
2258 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2259 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2260 	else
2261 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2262 }
2263 
2264 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2265 {
2266 	u32 pause_enabled = 0;
2267 
2268 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2269 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2270 			pause_enabled = 1;
2271 
2272 		REG_WR(bp, BAR_USTRORM_INTMEM +
2273 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2274 		       pause_enabled);
2275 	}
2276 
2277 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2278 	   pause_enabled ? "enabled" : "disabled");
2279 }
2280 
2281 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2282 {
2283 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2284 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2285 
2286 	if (!BP_NOMCP(bp)) {
2287 		bnx2x_set_requested_fc(bp);
2288 		bnx2x_acquire_phy_lock(bp);
2289 
2290 		if (load_mode == LOAD_DIAG) {
2291 			struct link_params *lp = &bp->link_params;
2292 			lp->loopback_mode = LOOPBACK_XGXS;
2293 			/* do PHY loopback at 10G speed, if possible */
2294 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2295 				if (lp->speed_cap_mask[cfx_idx] &
2296 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2297 					lp->req_line_speed[cfx_idx] =
2298 					SPEED_10000;
2299 				else
2300 					lp->req_line_speed[cfx_idx] =
2301 					SPEED_1000;
2302 			}
2303 		}
2304 
2305 		if (load_mode == LOAD_LOOPBACK_EXT) {
2306 			struct link_params *lp = &bp->link_params;
2307 			lp->loopback_mode = LOOPBACK_EXT;
2308 		}
2309 
2310 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2311 
2312 		bnx2x_release_phy_lock(bp);
2313 
2314 		bnx2x_init_dropless_fc(bp);
2315 
2316 		bnx2x_calc_fc_adv(bp);
2317 
2318 		if (bp->link_vars.link_up) {
2319 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2320 			bnx2x_link_report(bp);
2321 		}
2322 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2323 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2324 		return rc;
2325 	}
2326 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2327 	return -EINVAL;
2328 }
2329 
2330 void bnx2x_link_set(struct bnx2x *bp)
2331 {
2332 	if (!BP_NOMCP(bp)) {
2333 		bnx2x_acquire_phy_lock(bp);
2334 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2335 		bnx2x_release_phy_lock(bp);
2336 
2337 		bnx2x_init_dropless_fc(bp);
2338 
2339 		bnx2x_calc_fc_adv(bp);
2340 	} else
2341 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2342 }
2343 
2344 static void bnx2x__link_reset(struct bnx2x *bp)
2345 {
2346 	if (!BP_NOMCP(bp)) {
2347 		bnx2x_acquire_phy_lock(bp);
2348 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2349 		bnx2x_release_phy_lock(bp);
2350 	} else
2351 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2352 }
2353 
2354 void bnx2x_force_link_reset(struct bnx2x *bp)
2355 {
2356 	bnx2x_acquire_phy_lock(bp);
2357 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2358 	bnx2x_release_phy_lock(bp);
2359 }
2360 
2361 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2362 {
2363 	u8 rc = 0;
2364 
2365 	if (!BP_NOMCP(bp)) {
2366 		bnx2x_acquire_phy_lock(bp);
2367 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2368 				     is_serdes);
2369 		bnx2x_release_phy_lock(bp);
2370 	} else
2371 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2372 
2373 	return rc;
2374 }
2375 
2376 /* Calculates the sum of vn_min_rates.
2377    It's needed for further normalizing of the min_rates.
2378    Returns:
2379      sum of vn_min_rates.
2380        or
2381      0 - if all the min_rates are 0.
2382      In the later case fairness algorithm should be deactivated.
2383      If not all min_rates are zero then those that are zeroes will be set to 1.
2384  */
2385 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2386 				      struct cmng_init_input *input)
2387 {
2388 	int all_zero = 1;
2389 	int vn;
2390 
2391 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2392 		u32 vn_cfg = bp->mf_config[vn];
2393 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2394 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2395 
2396 		/* Skip hidden vns */
2397 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2398 			vn_min_rate = 0;
2399 		/* If min rate is zero - set it to 1 */
2400 		else if (!vn_min_rate)
2401 			vn_min_rate = DEF_MIN_RATE;
2402 		else
2403 			all_zero = 0;
2404 
2405 		input->vnic_min_rate[vn] = vn_min_rate;
2406 	}
2407 
2408 	/* if ETS or all min rates are zeros - disable fairness */
2409 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2410 		input->flags.cmng_enables &=
2411 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2412 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2413 	} else if (all_zero) {
2414 		input->flags.cmng_enables &=
2415 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2416 		DP(NETIF_MSG_IFUP,
2417 		   "All MIN values are zeroes fairness will be disabled\n");
2418 	} else
2419 		input->flags.cmng_enables |=
2420 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2421 }
2422 
2423 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2424 				    struct cmng_init_input *input)
2425 {
2426 	u16 vn_max_rate;
2427 	u32 vn_cfg = bp->mf_config[vn];
2428 
2429 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2430 		vn_max_rate = 0;
2431 	else {
2432 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2433 
2434 		if (IS_MF_SI(bp)) {
2435 			/* maxCfg in percents of linkspeed */
2436 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2437 		} else /* SD modes */
2438 			/* maxCfg is absolute in 100Mb units */
2439 			vn_max_rate = maxCfg * 100;
2440 	}
2441 
2442 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2443 
2444 	input->vnic_max_rate[vn] = vn_max_rate;
2445 }
2446 
2447 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2448 {
2449 	if (CHIP_REV_IS_SLOW(bp))
2450 		return CMNG_FNS_NONE;
2451 	if (IS_MF(bp))
2452 		return CMNG_FNS_MINMAX;
2453 
2454 	return CMNG_FNS_NONE;
2455 }
2456 
2457 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2458 {
2459 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2460 
2461 	if (BP_NOMCP(bp))
2462 		return; /* what should be the default value in this case */
2463 
2464 	/* For 2 port configuration the absolute function number formula
2465 	 * is:
2466 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2467 	 *
2468 	 *      and there are 4 functions per port
2469 	 *
2470 	 * For 4 port configuration it is
2471 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2472 	 *
2473 	 *      and there are 2 functions per port
2474 	 */
2475 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2476 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2477 
2478 		if (func >= E1H_FUNC_MAX)
2479 			break;
2480 
2481 		bp->mf_config[vn] =
2482 			MF_CFG_RD(bp, func_mf_config[func].config);
2483 	}
2484 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2485 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2486 		bp->flags |= MF_FUNC_DIS;
2487 	} else {
2488 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2489 		bp->flags &= ~MF_FUNC_DIS;
2490 	}
2491 }
2492 
2493 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2494 {
2495 	struct cmng_init_input input;
2496 	memset(&input, 0, sizeof(struct cmng_init_input));
2497 
2498 	input.port_rate = bp->link_vars.line_speed;
2499 
2500 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2501 		int vn;
2502 
2503 		/* read mf conf from shmem */
2504 		if (read_cfg)
2505 			bnx2x_read_mf_cfg(bp);
2506 
2507 		/* vn_weight_sum and enable fairness if not 0 */
2508 		bnx2x_calc_vn_min(bp, &input);
2509 
2510 		/* calculate and set min-max rate for each vn */
2511 		if (bp->port.pmf)
2512 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2513 				bnx2x_calc_vn_max(bp, vn, &input);
2514 
2515 		/* always enable rate shaping and fairness */
2516 		input.flags.cmng_enables |=
2517 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2518 
2519 		bnx2x_init_cmng(&input, &bp->cmng);
2520 		return;
2521 	}
2522 
2523 	/* rate shaping and fairness are disabled */
2524 	DP(NETIF_MSG_IFUP,
2525 	   "rate shaping and fairness are disabled\n");
2526 }
2527 
2528 static void storm_memset_cmng(struct bnx2x *bp,
2529 			      struct cmng_init *cmng,
2530 			      u8 port)
2531 {
2532 	int vn;
2533 	size_t size = sizeof(struct cmng_struct_per_port);
2534 
2535 	u32 addr = BAR_XSTRORM_INTMEM +
2536 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2537 
2538 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2539 
2540 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2541 		int func = func_by_vn(bp, vn);
2542 
2543 		addr = BAR_XSTRORM_INTMEM +
2544 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2545 		size = sizeof(struct rate_shaping_vars_per_vn);
2546 		__storm_memset_struct(bp, addr, size,
2547 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2548 
2549 		addr = BAR_XSTRORM_INTMEM +
2550 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2551 		size = sizeof(struct fairness_vars_per_vn);
2552 		__storm_memset_struct(bp, addr, size,
2553 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2554 	}
2555 }
2556 
2557 /* init cmng mode in HW according to local configuration */
2558 void bnx2x_set_local_cmng(struct bnx2x *bp)
2559 {
2560 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2561 
2562 	if (cmng_fns != CMNG_FNS_NONE) {
2563 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2564 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2565 	} else {
2566 		/* rate shaping and fairness are disabled */
2567 		DP(NETIF_MSG_IFUP,
2568 		   "single function mode without fairness\n");
2569 	}
2570 }
2571 
2572 /* This function is called upon link interrupt */
2573 static void bnx2x_link_attn(struct bnx2x *bp)
2574 {
2575 	/* Make sure that we are synced with the current statistics */
2576 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2577 
2578 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2579 
2580 	bnx2x_init_dropless_fc(bp);
2581 
2582 	if (bp->link_vars.link_up) {
2583 
2584 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2585 			struct host_port_stats *pstats;
2586 
2587 			pstats = bnx2x_sp(bp, port_stats);
2588 			/* reset old mac stats */
2589 			memset(&(pstats->mac_stx[0]), 0,
2590 			       sizeof(struct mac_stx));
2591 		}
2592 		if (bp->state == BNX2X_STATE_OPEN)
2593 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2594 	}
2595 
2596 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2597 		bnx2x_set_local_cmng(bp);
2598 
2599 	__bnx2x_link_report(bp);
2600 
2601 	if (IS_MF(bp))
2602 		bnx2x_link_sync_notify(bp);
2603 }
2604 
2605 void bnx2x__link_status_update(struct bnx2x *bp)
2606 {
2607 	if (bp->state != BNX2X_STATE_OPEN)
2608 		return;
2609 
2610 	/* read updated dcb configuration */
2611 	if (IS_PF(bp)) {
2612 		bnx2x_dcbx_pmf_update(bp);
2613 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2614 		if (bp->link_vars.link_up)
2615 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2616 		else
2617 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2618 			/* indicate link status */
2619 		bnx2x_link_report(bp);
2620 
2621 	} else { /* VF */
2622 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2623 					  SUPPORTED_10baseT_Full |
2624 					  SUPPORTED_100baseT_Half |
2625 					  SUPPORTED_100baseT_Full |
2626 					  SUPPORTED_1000baseT_Full |
2627 					  SUPPORTED_2500baseX_Full |
2628 					  SUPPORTED_10000baseT_Full |
2629 					  SUPPORTED_TP |
2630 					  SUPPORTED_FIBRE |
2631 					  SUPPORTED_Autoneg |
2632 					  SUPPORTED_Pause |
2633 					  SUPPORTED_Asym_Pause);
2634 		bp->port.advertising[0] = bp->port.supported[0];
2635 
2636 		bp->link_params.bp = bp;
2637 		bp->link_params.port = BP_PORT(bp);
2638 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2639 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2640 		bp->link_params.req_line_speed[0] = SPEED_10000;
2641 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2642 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2643 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2644 		bp->link_vars.line_speed = SPEED_10000;
2645 		bp->link_vars.link_status =
2646 			(LINK_STATUS_LINK_UP |
2647 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2648 		bp->link_vars.link_up = 1;
2649 		bp->link_vars.duplex = DUPLEX_FULL;
2650 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2651 		__bnx2x_link_report(bp);
2652 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2653 	}
2654 }
2655 
2656 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2657 				  u16 vlan_val, u8 allowed_prio)
2658 {
2659 	struct bnx2x_func_state_params func_params = {NULL};
2660 	struct bnx2x_func_afex_update_params *f_update_params =
2661 		&func_params.params.afex_update;
2662 
2663 	func_params.f_obj = &bp->func_obj;
2664 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2665 
2666 	/* no need to wait for RAMROD completion, so don't
2667 	 * set RAMROD_COMP_WAIT flag
2668 	 */
2669 
2670 	f_update_params->vif_id = vifid;
2671 	f_update_params->afex_default_vlan = vlan_val;
2672 	f_update_params->allowed_priorities = allowed_prio;
2673 
2674 	/* if ramrod can not be sent, response to MCP immediately */
2675 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2676 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2677 
2678 	return 0;
2679 }
2680 
2681 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2682 					  u16 vif_index, u8 func_bit_map)
2683 {
2684 	struct bnx2x_func_state_params func_params = {NULL};
2685 	struct bnx2x_func_afex_viflists_params *update_params =
2686 		&func_params.params.afex_viflists;
2687 	int rc;
2688 	u32 drv_msg_code;
2689 
2690 	/* validate only LIST_SET and LIST_GET are received from switch */
2691 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2692 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2693 			  cmd_type);
2694 
2695 	func_params.f_obj = &bp->func_obj;
2696 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2697 
2698 	/* set parameters according to cmd_type */
2699 	update_params->afex_vif_list_command = cmd_type;
2700 	update_params->vif_list_index = vif_index;
2701 	update_params->func_bit_map =
2702 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2703 	update_params->func_to_clear = 0;
2704 	drv_msg_code =
2705 		(cmd_type == VIF_LIST_RULE_GET) ?
2706 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2707 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2708 
2709 	/* if ramrod can not be sent, respond to MCP immediately for
2710 	 * SET and GET requests (other are not triggered from MCP)
2711 	 */
2712 	rc = bnx2x_func_state_change(bp, &func_params);
2713 	if (rc < 0)
2714 		bnx2x_fw_command(bp, drv_msg_code, 0);
2715 
2716 	return 0;
2717 }
2718 
2719 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2720 {
2721 	struct afex_stats afex_stats;
2722 	u32 func = BP_ABS_FUNC(bp);
2723 	u32 mf_config;
2724 	u16 vlan_val;
2725 	u32 vlan_prio;
2726 	u16 vif_id;
2727 	u8 allowed_prio;
2728 	u8 vlan_mode;
2729 	u32 addr_to_write, vifid, addrs, stats_type, i;
2730 
2731 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2732 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2733 		DP(BNX2X_MSG_MCP,
2734 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2735 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2736 	}
2737 
2738 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2739 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2740 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2741 		DP(BNX2X_MSG_MCP,
2742 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2743 		   vifid, addrs);
2744 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2745 					       addrs);
2746 	}
2747 
2748 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2749 		addr_to_write = SHMEM2_RD(bp,
2750 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2751 		stats_type = SHMEM2_RD(bp,
2752 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2753 
2754 		DP(BNX2X_MSG_MCP,
2755 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2756 		   addr_to_write);
2757 
2758 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2759 
2760 		/* write response to scratchpad, for MCP */
2761 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2762 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2763 			       *(((u32 *)(&afex_stats))+i));
2764 
2765 		/* send ack message to MCP */
2766 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2767 	}
2768 
2769 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2770 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2771 		bp->mf_config[BP_VN(bp)] = mf_config;
2772 		DP(BNX2X_MSG_MCP,
2773 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2774 		   mf_config);
2775 
2776 		/* if VIF_SET is "enabled" */
2777 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2778 			/* set rate limit directly to internal RAM */
2779 			struct cmng_init_input cmng_input;
2780 			struct rate_shaping_vars_per_vn m_rs_vn;
2781 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2782 			u32 addr = BAR_XSTRORM_INTMEM +
2783 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2784 
2785 			bp->mf_config[BP_VN(bp)] = mf_config;
2786 
2787 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2788 			m_rs_vn.vn_counter.rate =
2789 				cmng_input.vnic_max_rate[BP_VN(bp)];
2790 			m_rs_vn.vn_counter.quota =
2791 				(m_rs_vn.vn_counter.rate *
2792 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2793 
2794 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2795 
2796 			/* read relevant values from mf_cfg struct in shmem */
2797 			vif_id =
2798 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2799 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2800 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2801 			vlan_val =
2802 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2803 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2804 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2805 			vlan_prio = (mf_config &
2806 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2807 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2808 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2809 			vlan_mode =
2810 				(MF_CFG_RD(bp,
2811 					   func_mf_config[func].afex_config) &
2812 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2813 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2814 			allowed_prio =
2815 				(MF_CFG_RD(bp,
2816 					   func_mf_config[func].afex_config) &
2817 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2818 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2819 
2820 			/* send ramrod to FW, return in case of failure */
2821 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2822 						   allowed_prio))
2823 				return;
2824 
2825 			bp->afex_def_vlan_tag = vlan_val;
2826 			bp->afex_vlan_mode = vlan_mode;
2827 		} else {
2828 			/* notify link down because BP->flags is disabled */
2829 			bnx2x_link_report(bp);
2830 
2831 			/* send INVALID VIF ramrod to FW */
2832 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2833 
2834 			/* Reset the default afex VLAN */
2835 			bp->afex_def_vlan_tag = -1;
2836 		}
2837 	}
2838 }
2839 
2840 static void bnx2x_pmf_update(struct bnx2x *bp)
2841 {
2842 	int port = BP_PORT(bp);
2843 	u32 val;
2844 
2845 	bp->port.pmf = 1;
2846 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2847 
2848 	/*
2849 	 * We need the mb() to ensure the ordering between the writing to
2850 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2851 	 */
2852 	smp_mb();
2853 
2854 	/* queue a periodic task */
2855 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2856 
2857 	bnx2x_dcbx_pmf_update(bp);
2858 
2859 	/* enable nig attention */
2860 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2861 	if (bp->common.int_block == INT_BLOCK_HC) {
2862 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2863 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2864 	} else if (!CHIP_IS_E1x(bp)) {
2865 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2866 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2867 	}
2868 
2869 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2870 }
2871 
2872 /* end of Link */
2873 
2874 /* slow path */
2875 
2876 /*
2877  * General service functions
2878  */
2879 
2880 /* send the MCP a request, block until there is a reply */
2881 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2882 {
2883 	int mb_idx = BP_FW_MB_IDX(bp);
2884 	u32 seq;
2885 	u32 rc = 0;
2886 	u32 cnt = 1;
2887 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2888 
2889 	mutex_lock(&bp->fw_mb_mutex);
2890 	seq = ++bp->fw_seq;
2891 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2892 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2893 
2894 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2895 			(command | seq), param);
2896 
2897 	do {
2898 		/* let the FW do it's magic ... */
2899 		msleep(delay);
2900 
2901 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2902 
2903 		/* Give the FW up to 5 second (500*10ms) */
2904 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2905 
2906 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2907 	   cnt*delay, rc, seq);
2908 
2909 	/* is this a reply to our command? */
2910 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2911 		rc &= FW_MSG_CODE_MASK;
2912 	else {
2913 		/* FW BUG! */
2914 		BNX2X_ERR("FW failed to respond!\n");
2915 		bnx2x_fw_dump(bp);
2916 		rc = 0;
2917 	}
2918 	mutex_unlock(&bp->fw_mb_mutex);
2919 
2920 	return rc;
2921 }
2922 
2923 static void storm_memset_func_cfg(struct bnx2x *bp,
2924 				 struct tstorm_eth_function_common_config *tcfg,
2925 				 u16 abs_fid)
2926 {
2927 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2928 
2929 	u32 addr = BAR_TSTRORM_INTMEM +
2930 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2931 
2932 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2933 }
2934 
2935 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2936 {
2937 	if (CHIP_IS_E1x(bp)) {
2938 		struct tstorm_eth_function_common_config tcfg = {0};
2939 
2940 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2941 	}
2942 
2943 	/* Enable the function in the FW */
2944 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2945 	storm_memset_func_en(bp, p->func_id, 1);
2946 
2947 	/* spq */
2948 	if (p->func_flgs & FUNC_FLG_SPQ) {
2949 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2950 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2951 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2952 	}
2953 }
2954 
2955 /**
2956  * bnx2x_get_common_flags - Return common flags
2957  *
2958  * @bp		device handle
2959  * @fp		queue handle
2960  * @zero_stats	TRUE if statistics zeroing is needed
2961  *
2962  * Return the flags that are common for the Tx-only and not normal connections.
2963  */
2964 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2965 					    struct bnx2x_fastpath *fp,
2966 					    bool zero_stats)
2967 {
2968 	unsigned long flags = 0;
2969 
2970 	/* PF driver will always initialize the Queue to an ACTIVE state */
2971 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2972 
2973 	/* tx only connections collect statistics (on the same index as the
2974 	 * parent connection). The statistics are zeroed when the parent
2975 	 * connection is initialized.
2976 	 */
2977 
2978 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2979 	if (zero_stats)
2980 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2981 
2982 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2983 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2984 
2985 #ifdef BNX2X_STOP_ON_ERROR
2986 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2987 #endif
2988 
2989 	return flags;
2990 }
2991 
2992 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2993 				       struct bnx2x_fastpath *fp,
2994 				       bool leading)
2995 {
2996 	unsigned long flags = 0;
2997 
2998 	/* calculate other queue flags */
2999 	if (IS_MF_SD(bp))
3000 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3001 
3002 	if (IS_FCOE_FP(fp)) {
3003 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3004 		/* For FCoE - force usage of default priority (for afex) */
3005 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3006 	}
3007 
3008 	if (!fp->disable_tpa) {
3009 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3010 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3011 		if (fp->mode == TPA_MODE_GRO)
3012 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3013 	}
3014 
3015 	if (leading) {
3016 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3017 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3018 	}
3019 
3020 	/* Always set HW VLAN stripping */
3021 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3022 
3023 	/* configure silent vlan removal */
3024 	if (IS_MF_AFEX(bp))
3025 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3026 
3027 	return flags | bnx2x_get_common_flags(bp, fp, true);
3028 }
3029 
3030 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3031 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3032 	u8 cos)
3033 {
3034 	gen_init->stat_id = bnx2x_stats_id(fp);
3035 	gen_init->spcl_id = fp->cl_id;
3036 
3037 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3038 	if (IS_FCOE_FP(fp))
3039 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3040 	else
3041 		gen_init->mtu = bp->dev->mtu;
3042 
3043 	gen_init->cos = cos;
3044 }
3045 
3046 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3047 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3048 	struct bnx2x_rxq_setup_params *rxq_init)
3049 {
3050 	u8 max_sge = 0;
3051 	u16 sge_sz = 0;
3052 	u16 tpa_agg_size = 0;
3053 
3054 	if (!fp->disable_tpa) {
3055 		pause->sge_th_lo = SGE_TH_LO(bp);
3056 		pause->sge_th_hi = SGE_TH_HI(bp);
3057 
3058 		/* validate SGE ring has enough to cross high threshold */
3059 		WARN_ON(bp->dropless_fc &&
3060 				pause->sge_th_hi + FW_PREFETCH_CNT >
3061 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3062 
3063 		tpa_agg_size = TPA_AGG_SIZE;
3064 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3065 			SGE_PAGE_SHIFT;
3066 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3067 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3068 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3069 	}
3070 
3071 	/* pause - not for e1 */
3072 	if (!CHIP_IS_E1(bp)) {
3073 		pause->bd_th_lo = BD_TH_LO(bp);
3074 		pause->bd_th_hi = BD_TH_HI(bp);
3075 
3076 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3077 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3078 		/*
3079 		 * validate that rings have enough entries to cross
3080 		 * high thresholds
3081 		 */
3082 		WARN_ON(bp->dropless_fc &&
3083 				pause->bd_th_hi + FW_PREFETCH_CNT >
3084 				bp->rx_ring_size);
3085 		WARN_ON(bp->dropless_fc &&
3086 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3087 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3088 
3089 		pause->pri_map = 1;
3090 	}
3091 
3092 	/* rxq setup */
3093 	rxq_init->dscr_map = fp->rx_desc_mapping;
3094 	rxq_init->sge_map = fp->rx_sge_mapping;
3095 	rxq_init->rcq_map = fp->rx_comp_mapping;
3096 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3097 
3098 	/* This should be a maximum number of data bytes that may be
3099 	 * placed on the BD (not including paddings).
3100 	 */
3101 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3102 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3103 
3104 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3105 	rxq_init->tpa_agg_sz = tpa_agg_size;
3106 	rxq_init->sge_buf_sz = sge_sz;
3107 	rxq_init->max_sges_pkt = max_sge;
3108 	rxq_init->rss_engine_id = BP_FUNC(bp);
3109 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3110 
3111 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3112 	 *
3113 	 * For PF Clients it should be the maximum available number.
3114 	 * VF driver(s) may want to define it to a smaller value.
3115 	 */
3116 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3117 
3118 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3119 	rxq_init->fw_sb_id = fp->fw_sb_id;
3120 
3121 	if (IS_FCOE_FP(fp))
3122 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3123 	else
3124 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3125 	/* configure silent vlan removal
3126 	 * if multi function mode is afex, then mask default vlan
3127 	 */
3128 	if (IS_MF_AFEX(bp)) {
3129 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3130 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3131 	}
3132 }
3133 
3134 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3135 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3136 	u8 cos)
3137 {
3138 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3139 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3140 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3141 	txq_init->fw_sb_id = fp->fw_sb_id;
3142 
3143 	/*
3144 	 * set the tss leading client id for TX classification ==
3145 	 * leading RSS client id
3146 	 */
3147 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3148 
3149 	if (IS_FCOE_FP(fp)) {
3150 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3151 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3152 	}
3153 }
3154 
3155 static void bnx2x_pf_init(struct bnx2x *bp)
3156 {
3157 	struct bnx2x_func_init_params func_init = {0};
3158 	struct event_ring_data eq_data = { {0} };
3159 	u16 flags;
3160 
3161 	if (!CHIP_IS_E1x(bp)) {
3162 		/* reset IGU PF statistics: MSIX + ATTN */
3163 		/* PF */
3164 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3165 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3166 			   (CHIP_MODE_IS_4_PORT(bp) ?
3167 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3168 		/* ATTN */
3169 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3170 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3171 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3172 			   (CHIP_MODE_IS_4_PORT(bp) ?
3173 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3174 	}
3175 
3176 	/* function setup flags */
3177 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3178 
3179 	/* This flag is relevant for E1x only.
3180 	 * E2 doesn't have a TPA configuration in a function level.
3181 	 */
3182 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3183 
3184 	func_init.func_flgs = flags;
3185 	func_init.pf_id = BP_FUNC(bp);
3186 	func_init.func_id = BP_FUNC(bp);
3187 	func_init.spq_map = bp->spq_mapping;
3188 	func_init.spq_prod = bp->spq_prod_idx;
3189 
3190 	bnx2x_func_init(bp, &func_init);
3191 
3192 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3193 
3194 	/*
3195 	 * Congestion management values depend on the link rate
3196 	 * There is no active link so initial link rate is set to 10 Gbps.
3197 	 * When the link comes up The congestion management values are
3198 	 * re-calculated according to the actual link rate.
3199 	 */
3200 	bp->link_vars.line_speed = SPEED_10000;
3201 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3202 
3203 	/* Only the PMF sets the HW */
3204 	if (bp->port.pmf)
3205 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3206 
3207 	/* init Event Queue - PCI bus guarantees correct endianity*/
3208 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3209 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3210 	eq_data.producer = bp->eq_prod;
3211 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3212 	eq_data.sb_id = DEF_SB_ID;
3213 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3214 }
3215 
3216 static void bnx2x_e1h_disable(struct bnx2x *bp)
3217 {
3218 	int port = BP_PORT(bp);
3219 
3220 	bnx2x_tx_disable(bp);
3221 
3222 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3223 }
3224 
3225 static void bnx2x_e1h_enable(struct bnx2x *bp)
3226 {
3227 	int port = BP_PORT(bp);
3228 
3229 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3230 
3231 	/* Tx queue should be only re-enabled */
3232 	netif_tx_wake_all_queues(bp->dev);
3233 
3234 	/*
3235 	 * Should not call netif_carrier_on since it will be called if the link
3236 	 * is up when checking for link state
3237 	 */
3238 }
3239 
3240 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3241 
3242 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3243 {
3244 	struct eth_stats_info *ether_stat =
3245 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3246 	struct bnx2x_vlan_mac_obj *mac_obj =
3247 		&bp->sp_objs->mac_obj;
3248 	int i;
3249 
3250 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3251 		ETH_STAT_INFO_VERSION_LEN);
3252 
3253 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3254 	 * mac_local field in ether_stat struct. The base address is offset by 2
3255 	 * bytes to account for the field being 8 bytes but a mac address is
3256 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3257 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3258 	 * allocated by the ether_stat struct, so the macs will land in their
3259 	 * proper positions.
3260 	 */
3261 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3262 		memset(ether_stat->mac_local + i, 0,
3263 		       sizeof(ether_stat->mac_local[0]));
3264 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3265 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3266 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3267 				ETH_ALEN);
3268 	ether_stat->mtu_size = bp->dev->mtu;
3269 	if (bp->dev->features & NETIF_F_RXCSUM)
3270 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3271 	if (bp->dev->features & NETIF_F_TSO)
3272 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3273 	ether_stat->feature_flags |= bp->common.boot_mode;
3274 
3275 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3276 
3277 	ether_stat->txq_size = bp->tx_ring_size;
3278 	ether_stat->rxq_size = bp->rx_ring_size;
3279 }
3280 
3281 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3282 {
3283 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3284 	struct fcoe_stats_info *fcoe_stat =
3285 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3286 
3287 	if (!CNIC_LOADED(bp))
3288 		return;
3289 
3290 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3291 
3292 	fcoe_stat->qos_priority =
3293 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3294 
3295 	/* insert FCoE stats from ramrod response */
3296 	if (!NO_FCOE(bp)) {
3297 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3298 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3299 			tstorm_queue_statistics;
3300 
3301 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3302 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3303 			xstorm_queue_statistics;
3304 
3305 		struct fcoe_statistics_params *fw_fcoe_stat =
3306 			&bp->fw_stats_data->fcoe;
3307 
3308 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3309 			  fcoe_stat->rx_bytes_lo,
3310 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3311 
3312 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3313 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3314 			  fcoe_stat->rx_bytes_lo,
3315 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3316 
3317 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3318 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3319 			  fcoe_stat->rx_bytes_lo,
3320 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3321 
3322 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3323 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3324 			  fcoe_stat->rx_bytes_lo,
3325 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3326 
3327 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3328 			  fcoe_stat->rx_frames_lo,
3329 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3330 
3331 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3332 			  fcoe_stat->rx_frames_lo,
3333 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3334 
3335 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3336 			  fcoe_stat->rx_frames_lo,
3337 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3338 
3339 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3340 			  fcoe_stat->rx_frames_lo,
3341 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3342 
3343 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3344 			  fcoe_stat->tx_bytes_lo,
3345 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3346 
3347 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3348 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3349 			  fcoe_stat->tx_bytes_lo,
3350 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3351 
3352 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3353 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3354 			  fcoe_stat->tx_bytes_lo,
3355 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3356 
3357 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3358 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3359 			  fcoe_stat->tx_bytes_lo,
3360 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3361 
3362 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3363 			  fcoe_stat->tx_frames_lo,
3364 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3365 
3366 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3367 			  fcoe_stat->tx_frames_lo,
3368 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3369 
3370 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3371 			  fcoe_stat->tx_frames_lo,
3372 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3373 
3374 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3375 			  fcoe_stat->tx_frames_lo,
3376 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3377 	}
3378 
3379 	/* ask L5 driver to add data to the struct */
3380 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3381 }
3382 
3383 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3384 {
3385 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3386 	struct iscsi_stats_info *iscsi_stat =
3387 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3388 
3389 	if (!CNIC_LOADED(bp))
3390 		return;
3391 
3392 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3393 	       ETH_ALEN);
3394 
3395 	iscsi_stat->qos_priority =
3396 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3397 
3398 	/* ask L5 driver to add data to the struct */
3399 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3400 }
3401 
3402 /* called due to MCP event (on pmf):
3403  *	reread new bandwidth configuration
3404  *	configure FW
3405  *	notify others function about the change
3406  */
3407 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3408 {
3409 	if (bp->link_vars.link_up) {
3410 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3411 		bnx2x_link_sync_notify(bp);
3412 	}
3413 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3414 }
3415 
3416 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3417 {
3418 	bnx2x_config_mf_bw(bp);
3419 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3420 }
3421 
3422 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3423 {
3424 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3425 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3426 }
3427 
3428 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3429 {
3430 	enum drv_info_opcode op_code;
3431 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3432 
3433 	/* if drv_info version supported by MFW doesn't match - send NACK */
3434 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3435 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3436 		return;
3437 	}
3438 
3439 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3440 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3441 
3442 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3443 	       sizeof(union drv_info_to_mcp));
3444 
3445 	switch (op_code) {
3446 	case ETH_STATS_OPCODE:
3447 		bnx2x_drv_info_ether_stat(bp);
3448 		break;
3449 	case FCOE_STATS_OPCODE:
3450 		bnx2x_drv_info_fcoe_stat(bp);
3451 		break;
3452 	case ISCSI_STATS_OPCODE:
3453 		bnx2x_drv_info_iscsi_stat(bp);
3454 		break;
3455 	default:
3456 		/* if op code isn't supported - send NACK */
3457 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3458 		return;
3459 	}
3460 
3461 	/* if we got drv_info attn from MFW then these fields are defined in
3462 	 * shmem2 for sure
3463 	 */
3464 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3465 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3466 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3467 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3468 
3469 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3470 }
3471 
3472 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3473 {
3474 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3475 
3476 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3477 
3478 		/*
3479 		 * This is the only place besides the function initialization
3480 		 * where the bp->flags can change so it is done without any
3481 		 * locks
3482 		 */
3483 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3484 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3485 			bp->flags |= MF_FUNC_DIS;
3486 
3487 			bnx2x_e1h_disable(bp);
3488 		} else {
3489 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3490 			bp->flags &= ~MF_FUNC_DIS;
3491 
3492 			bnx2x_e1h_enable(bp);
3493 		}
3494 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3495 	}
3496 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3497 		bnx2x_config_mf_bw(bp);
3498 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3499 	}
3500 
3501 	/* Report results to MCP */
3502 	if (dcc_event)
3503 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3504 	else
3505 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3506 }
3507 
3508 /* must be called under the spq lock */
3509 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3510 {
3511 	struct eth_spe *next_spe = bp->spq_prod_bd;
3512 
3513 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3514 		bp->spq_prod_bd = bp->spq;
3515 		bp->spq_prod_idx = 0;
3516 		DP(BNX2X_MSG_SP, "end of spq\n");
3517 	} else {
3518 		bp->spq_prod_bd++;
3519 		bp->spq_prod_idx++;
3520 	}
3521 	return next_spe;
3522 }
3523 
3524 /* must be called under the spq lock */
3525 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3526 {
3527 	int func = BP_FUNC(bp);
3528 
3529 	/*
3530 	 * Make sure that BD data is updated before writing the producer:
3531 	 * BD data is written to the memory, the producer is read from the
3532 	 * memory, thus we need a full memory barrier to ensure the ordering.
3533 	 */
3534 	mb();
3535 
3536 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3537 		 bp->spq_prod_idx);
3538 	mmiowb();
3539 }
3540 
3541 /**
3542  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3543  *
3544  * @cmd:	command to check
3545  * @cmd_type:	command type
3546  */
3547 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3548 {
3549 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3550 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3551 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3552 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3553 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3554 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3555 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3556 		return true;
3557 	else
3558 		return false;
3559 }
3560 
3561 /**
3562  * bnx2x_sp_post - place a single command on an SP ring
3563  *
3564  * @bp:		driver handle
3565  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3566  * @cid:	SW CID the command is related to
3567  * @data_hi:	command private data address (high 32 bits)
3568  * @data_lo:	command private data address (low 32 bits)
3569  * @cmd_type:	command type (e.g. NONE, ETH)
3570  *
3571  * SP data is handled as if it's always an address pair, thus data fields are
3572  * not swapped to little endian in upper functions. Instead this function swaps
3573  * data as if it's two u32 fields.
3574  */
3575 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3576 		  u32 data_hi, u32 data_lo, int cmd_type)
3577 {
3578 	struct eth_spe *spe;
3579 	u16 type;
3580 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3581 
3582 #ifdef BNX2X_STOP_ON_ERROR
3583 	if (unlikely(bp->panic)) {
3584 		BNX2X_ERR("Can't post SP when there is panic\n");
3585 		return -EIO;
3586 	}
3587 #endif
3588 
3589 	spin_lock_bh(&bp->spq_lock);
3590 
3591 	if (common) {
3592 		if (!atomic_read(&bp->eq_spq_left)) {
3593 			BNX2X_ERR("BUG! EQ ring full!\n");
3594 			spin_unlock_bh(&bp->spq_lock);
3595 			bnx2x_panic();
3596 			return -EBUSY;
3597 		}
3598 	} else if (!atomic_read(&bp->cq_spq_left)) {
3599 			BNX2X_ERR("BUG! SPQ ring full!\n");
3600 			spin_unlock_bh(&bp->spq_lock);
3601 			bnx2x_panic();
3602 			return -EBUSY;
3603 	}
3604 
3605 	spe = bnx2x_sp_get_next(bp);
3606 
3607 	/* CID needs port number to be encoded int it */
3608 	spe->hdr.conn_and_cmd_data =
3609 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3610 				    HW_CID(bp, cid));
3611 
3612 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3613 
3614 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3615 		 SPE_HDR_FUNCTION_ID);
3616 
3617 	spe->hdr.type = cpu_to_le16(type);
3618 
3619 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3620 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3621 
3622 	/*
3623 	 * It's ok if the actual decrement is issued towards the memory
3624 	 * somewhere between the spin_lock and spin_unlock. Thus no
3625 	 * more explicit memory barrier is needed.
3626 	 */
3627 	if (common)
3628 		atomic_dec(&bp->eq_spq_left);
3629 	else
3630 		atomic_dec(&bp->cq_spq_left);
3631 
3632 	DP(BNX2X_MSG_SP,
3633 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3634 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3635 	   (u32)(U64_LO(bp->spq_mapping) +
3636 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3637 	   HW_CID(bp, cid), data_hi, data_lo, type,
3638 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3639 
3640 	bnx2x_sp_prod_update(bp);
3641 	spin_unlock_bh(&bp->spq_lock);
3642 	return 0;
3643 }
3644 
3645 /* acquire split MCP access lock register */
3646 static int bnx2x_acquire_alr(struct bnx2x *bp)
3647 {
3648 	u32 j, val;
3649 	int rc = 0;
3650 
3651 	might_sleep();
3652 	for (j = 0; j < 1000; j++) {
3653 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3654 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3655 		if (val & MCPR_ACCESS_LOCK_LOCK)
3656 			break;
3657 
3658 		usleep_range(5000, 10000);
3659 	}
3660 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3661 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3662 		rc = -EBUSY;
3663 	}
3664 
3665 	return rc;
3666 }
3667 
3668 /* release split MCP access lock register */
3669 static void bnx2x_release_alr(struct bnx2x *bp)
3670 {
3671 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3672 }
3673 
3674 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3675 #define BNX2X_DEF_SB_IDX	0x0002
3676 
3677 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3678 {
3679 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3680 	u16 rc = 0;
3681 
3682 	barrier(); /* status block is written to by the chip */
3683 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3684 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3685 		rc |= BNX2X_DEF_SB_ATT_IDX;
3686 	}
3687 
3688 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3689 		bp->def_idx = def_sb->sp_sb.running_index;
3690 		rc |= BNX2X_DEF_SB_IDX;
3691 	}
3692 
3693 	/* Do not reorder: indices reading should complete before handling */
3694 	barrier();
3695 	return rc;
3696 }
3697 
3698 /*
3699  * slow path service functions
3700  */
3701 
3702 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3703 {
3704 	int port = BP_PORT(bp);
3705 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3706 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3707 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3708 				       NIG_REG_MASK_INTERRUPT_PORT0;
3709 	u32 aeu_mask;
3710 	u32 nig_mask = 0;
3711 	u32 reg_addr;
3712 
3713 	if (bp->attn_state & asserted)
3714 		BNX2X_ERR("IGU ERROR\n");
3715 
3716 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3717 	aeu_mask = REG_RD(bp, aeu_addr);
3718 
3719 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3720 	   aeu_mask, asserted);
3721 	aeu_mask &= ~(asserted & 0x3ff);
3722 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3723 
3724 	REG_WR(bp, aeu_addr, aeu_mask);
3725 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3726 
3727 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3728 	bp->attn_state |= asserted;
3729 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3730 
3731 	if (asserted & ATTN_HARD_WIRED_MASK) {
3732 		if (asserted & ATTN_NIG_FOR_FUNC) {
3733 
3734 			bnx2x_acquire_phy_lock(bp);
3735 
3736 			/* save nig interrupt mask */
3737 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3738 
3739 			/* If nig_mask is not set, no need to call the update
3740 			 * function.
3741 			 */
3742 			if (nig_mask) {
3743 				REG_WR(bp, nig_int_mask_addr, 0);
3744 
3745 				bnx2x_link_attn(bp);
3746 			}
3747 
3748 			/* handle unicore attn? */
3749 		}
3750 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3751 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3752 
3753 		if (asserted & GPIO_2_FUNC)
3754 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3755 
3756 		if (asserted & GPIO_3_FUNC)
3757 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3758 
3759 		if (asserted & GPIO_4_FUNC)
3760 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3761 
3762 		if (port == 0) {
3763 			if (asserted & ATTN_GENERAL_ATTN_1) {
3764 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3765 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3766 			}
3767 			if (asserted & ATTN_GENERAL_ATTN_2) {
3768 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3769 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3770 			}
3771 			if (asserted & ATTN_GENERAL_ATTN_3) {
3772 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3773 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3774 			}
3775 		} else {
3776 			if (asserted & ATTN_GENERAL_ATTN_4) {
3777 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3778 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3779 			}
3780 			if (asserted & ATTN_GENERAL_ATTN_5) {
3781 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3782 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3783 			}
3784 			if (asserted & ATTN_GENERAL_ATTN_6) {
3785 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3786 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3787 			}
3788 		}
3789 
3790 	} /* if hardwired */
3791 
3792 	if (bp->common.int_block == INT_BLOCK_HC)
3793 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3794 			    COMMAND_REG_ATTN_BITS_SET);
3795 	else
3796 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3797 
3798 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3799 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3800 	REG_WR(bp, reg_addr, asserted);
3801 
3802 	/* now set back the mask */
3803 	if (asserted & ATTN_NIG_FOR_FUNC) {
3804 		/* Verify that IGU ack through BAR was written before restoring
3805 		 * NIG mask. This loop should exit after 2-3 iterations max.
3806 		 */
3807 		if (bp->common.int_block != INT_BLOCK_HC) {
3808 			u32 cnt = 0, igu_acked;
3809 			do {
3810 				igu_acked = REG_RD(bp,
3811 						   IGU_REG_ATTENTION_ACK_BITS);
3812 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3813 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3814 			if (!igu_acked)
3815 				DP(NETIF_MSG_HW,
3816 				   "Failed to verify IGU ack on time\n");
3817 			barrier();
3818 		}
3819 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3820 		bnx2x_release_phy_lock(bp);
3821 	}
3822 }
3823 
3824 static void bnx2x_fan_failure(struct bnx2x *bp)
3825 {
3826 	int port = BP_PORT(bp);
3827 	u32 ext_phy_config;
3828 	/* mark the failure */
3829 	ext_phy_config =
3830 		SHMEM_RD(bp,
3831 			 dev_info.port_hw_config[port].external_phy_config);
3832 
3833 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3834 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3835 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3836 		 ext_phy_config);
3837 
3838 	/* log the failure */
3839 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3840 			    "Please contact OEM Support for assistance\n");
3841 
3842 	/* Schedule device reset (unload)
3843 	 * This is due to some boards consuming sufficient power when driver is
3844 	 * up to overheat if fan fails.
3845 	 */
3846 	smp_mb__before_clear_bit();
3847 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3848 	smp_mb__after_clear_bit();
3849 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3850 }
3851 
3852 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3853 {
3854 	int port = BP_PORT(bp);
3855 	int reg_offset;
3856 	u32 val;
3857 
3858 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3859 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3860 
3861 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3862 
3863 		val = REG_RD(bp, reg_offset);
3864 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3865 		REG_WR(bp, reg_offset, val);
3866 
3867 		BNX2X_ERR("SPIO5 hw attention\n");
3868 
3869 		/* Fan failure attention */
3870 		bnx2x_hw_reset_phy(&bp->link_params);
3871 		bnx2x_fan_failure(bp);
3872 	}
3873 
3874 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3875 		bnx2x_acquire_phy_lock(bp);
3876 		bnx2x_handle_module_detect_int(&bp->link_params);
3877 		bnx2x_release_phy_lock(bp);
3878 	}
3879 
3880 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3881 
3882 		val = REG_RD(bp, reg_offset);
3883 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3884 		REG_WR(bp, reg_offset, val);
3885 
3886 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3887 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3888 		bnx2x_panic();
3889 	}
3890 }
3891 
3892 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3893 {
3894 	u32 val;
3895 
3896 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3897 
3898 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3899 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3900 		/* DORQ discard attention */
3901 		if (val & 0x2)
3902 			BNX2X_ERR("FATAL error from DORQ\n");
3903 	}
3904 
3905 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3906 
3907 		int port = BP_PORT(bp);
3908 		int reg_offset;
3909 
3910 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3911 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3912 
3913 		val = REG_RD(bp, reg_offset);
3914 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3915 		REG_WR(bp, reg_offset, val);
3916 
3917 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3918 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3919 		bnx2x_panic();
3920 	}
3921 }
3922 
3923 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3924 {
3925 	u32 val;
3926 
3927 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3928 
3929 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3930 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3931 		/* CFC error attention */
3932 		if (val & 0x2)
3933 			BNX2X_ERR("FATAL error from CFC\n");
3934 	}
3935 
3936 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3937 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3938 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3939 		/* RQ_USDMDP_FIFO_OVERFLOW */
3940 		if (val & 0x18000)
3941 			BNX2X_ERR("FATAL error from PXP\n");
3942 
3943 		if (!CHIP_IS_E1x(bp)) {
3944 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3945 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3946 		}
3947 	}
3948 
3949 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3950 
3951 		int port = BP_PORT(bp);
3952 		int reg_offset;
3953 
3954 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3955 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3956 
3957 		val = REG_RD(bp, reg_offset);
3958 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3959 		REG_WR(bp, reg_offset, val);
3960 
3961 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3962 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3963 		bnx2x_panic();
3964 	}
3965 }
3966 
3967 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3968 {
3969 	u32 val;
3970 
3971 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3972 
3973 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3974 			int func = BP_FUNC(bp);
3975 
3976 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3977 			bnx2x_read_mf_cfg(bp);
3978 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3979 					func_mf_config[BP_ABS_FUNC(bp)].config);
3980 			val = SHMEM_RD(bp,
3981 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3982 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3983 				bnx2x_dcc_event(bp,
3984 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3985 
3986 			if (val & DRV_STATUS_SET_MF_BW)
3987 				bnx2x_set_mf_bw(bp);
3988 
3989 			if (val & DRV_STATUS_DRV_INFO_REQ)
3990 				bnx2x_handle_drv_info_req(bp);
3991 
3992 			if (val & DRV_STATUS_VF_DISABLED)
3993 				bnx2x_vf_handle_flr_event(bp);
3994 
3995 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3996 				bnx2x_pmf_update(bp);
3997 
3998 			if (bp->port.pmf &&
3999 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4000 				bp->dcbx_enabled > 0)
4001 				/* start dcbx state machine */
4002 				bnx2x_dcbx_set_params(bp,
4003 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4004 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4005 				bnx2x_handle_afex_cmd(bp,
4006 					val & DRV_STATUS_AFEX_EVENT_MASK);
4007 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4008 				bnx2x_handle_eee_event(bp);
4009 			if (bp->link_vars.periodic_flags &
4010 			    PERIODIC_FLAGS_LINK_EVENT) {
4011 				/*  sync with link */
4012 				bnx2x_acquire_phy_lock(bp);
4013 				bp->link_vars.periodic_flags &=
4014 					~PERIODIC_FLAGS_LINK_EVENT;
4015 				bnx2x_release_phy_lock(bp);
4016 				if (IS_MF(bp))
4017 					bnx2x_link_sync_notify(bp);
4018 				bnx2x_link_report(bp);
4019 			}
4020 			/* Always call it here: bnx2x_link_report() will
4021 			 * prevent the link indication duplication.
4022 			 */
4023 			bnx2x__link_status_update(bp);
4024 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4025 
4026 			BNX2X_ERR("MC assert!\n");
4027 			bnx2x_mc_assert(bp);
4028 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4029 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4030 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4031 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4032 			bnx2x_panic();
4033 
4034 		} else if (attn & BNX2X_MCP_ASSERT) {
4035 
4036 			BNX2X_ERR("MCP assert!\n");
4037 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4038 			bnx2x_fw_dump(bp);
4039 
4040 		} else
4041 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4042 	}
4043 
4044 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4045 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4046 		if (attn & BNX2X_GRC_TIMEOUT) {
4047 			val = CHIP_IS_E1(bp) ? 0 :
4048 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4049 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4050 		}
4051 		if (attn & BNX2X_GRC_RSV) {
4052 			val = CHIP_IS_E1(bp) ? 0 :
4053 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4054 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4055 		}
4056 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4057 	}
4058 }
4059 
4060 /*
4061  * Bits map:
4062  * 0-7   - Engine0 load counter.
4063  * 8-15  - Engine1 load counter.
4064  * 16    - Engine0 RESET_IN_PROGRESS bit.
4065  * 17    - Engine1 RESET_IN_PROGRESS bit.
4066  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4067  *         on the engine
4068  * 19    - Engine1 ONE_IS_LOADED.
4069  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4070  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4071  *         just the one belonging to its engine).
4072  *
4073  */
4074 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4075 
4076 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4077 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4078 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4079 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4080 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4081 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4082 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4083 
4084 /*
4085  * Set the GLOBAL_RESET bit.
4086  *
4087  * Should be run under rtnl lock
4088  */
4089 void bnx2x_set_reset_global(struct bnx2x *bp)
4090 {
4091 	u32 val;
4092 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4093 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4094 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4095 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4096 }
4097 
4098 /*
4099  * Clear the GLOBAL_RESET bit.
4100  *
4101  * Should be run under rtnl lock
4102  */
4103 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4104 {
4105 	u32 val;
4106 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4107 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4108 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4109 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4110 }
4111 
4112 /*
4113  * Checks the GLOBAL_RESET bit.
4114  *
4115  * should be run under rtnl lock
4116  */
4117 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4118 {
4119 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4120 
4121 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4122 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4123 }
4124 
4125 /*
4126  * Clear RESET_IN_PROGRESS bit for the current engine.
4127  *
4128  * Should be run under rtnl lock
4129  */
4130 static void bnx2x_set_reset_done(struct bnx2x *bp)
4131 {
4132 	u32 val;
4133 	u32 bit = BP_PATH(bp) ?
4134 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4135 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4136 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4137 
4138 	/* Clear the bit */
4139 	val &= ~bit;
4140 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4141 
4142 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4143 }
4144 
4145 /*
4146  * Set RESET_IN_PROGRESS for the current engine.
4147  *
4148  * should be run under rtnl lock
4149  */
4150 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4151 {
4152 	u32 val;
4153 	u32 bit = BP_PATH(bp) ?
4154 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4155 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4156 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4157 
4158 	/* Set the bit */
4159 	val |= bit;
4160 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4161 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4162 }
4163 
4164 /*
4165  * Checks the RESET_IN_PROGRESS bit for the given engine.
4166  * should be run under rtnl lock
4167  */
4168 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4169 {
4170 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4171 	u32 bit = engine ?
4172 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4173 
4174 	/* return false if bit is set */
4175 	return (val & bit) ? false : true;
4176 }
4177 
4178 /*
4179  * set pf load for the current pf.
4180  *
4181  * should be run under rtnl lock
4182  */
4183 void bnx2x_set_pf_load(struct bnx2x *bp)
4184 {
4185 	u32 val1, val;
4186 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4187 			     BNX2X_PATH0_LOAD_CNT_MASK;
4188 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4189 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4190 
4191 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4192 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4193 
4194 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4195 
4196 	/* get the current counter value */
4197 	val1 = (val & mask) >> shift;
4198 
4199 	/* set bit of that PF */
4200 	val1 |= (1 << bp->pf_num);
4201 
4202 	/* clear the old value */
4203 	val &= ~mask;
4204 
4205 	/* set the new one */
4206 	val |= ((val1 << shift) & mask);
4207 
4208 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4209 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4210 }
4211 
4212 /**
4213  * bnx2x_clear_pf_load - clear pf load mark
4214  *
4215  * @bp:		driver handle
4216  *
4217  * Should be run under rtnl lock.
4218  * Decrements the load counter for the current engine. Returns
4219  * whether other functions are still loaded
4220  */
4221 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4222 {
4223 	u32 val1, val;
4224 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4225 			     BNX2X_PATH0_LOAD_CNT_MASK;
4226 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4227 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4228 
4229 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4230 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4231 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4232 
4233 	/* get the current counter value */
4234 	val1 = (val & mask) >> shift;
4235 
4236 	/* clear bit of that PF */
4237 	val1 &= ~(1 << bp->pf_num);
4238 
4239 	/* clear the old value */
4240 	val &= ~mask;
4241 
4242 	/* set the new one */
4243 	val |= ((val1 << shift) & mask);
4244 
4245 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4246 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4247 	return val1 != 0;
4248 }
4249 
4250 /*
4251  * Read the load status for the current engine.
4252  *
4253  * should be run under rtnl lock
4254  */
4255 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4256 {
4257 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4258 			     BNX2X_PATH0_LOAD_CNT_MASK);
4259 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4260 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4261 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4262 
4263 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4264 
4265 	val = (val & mask) >> shift;
4266 
4267 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4268 	   engine, val);
4269 
4270 	return val != 0;
4271 }
4272 
4273 static void _print_parity(struct bnx2x *bp, u32 reg)
4274 {
4275 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4276 }
4277 
4278 static void _print_next_block(int idx, const char *blk)
4279 {
4280 	pr_cont("%s%s", idx ? ", " : "", blk);
4281 }
4282 
4283 static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4284 					    int par_num, bool print)
4285 {
4286 	int i = 0;
4287 	u32 cur_bit = 0;
4288 	for (i = 0; sig; i++) {
4289 		cur_bit = ((u32)0x1 << i);
4290 		if (sig & cur_bit) {
4291 			switch (cur_bit) {
4292 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4293 				if (print) {
4294 					_print_next_block(par_num++, "BRB");
4295 					_print_parity(bp,
4296 						      BRB1_REG_BRB1_PRTY_STS);
4297 				}
4298 				break;
4299 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4300 				if (print) {
4301 					_print_next_block(par_num++, "PARSER");
4302 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4303 				}
4304 				break;
4305 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4306 				if (print) {
4307 					_print_next_block(par_num++, "TSDM");
4308 					_print_parity(bp,
4309 						      TSDM_REG_TSDM_PRTY_STS);
4310 				}
4311 				break;
4312 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4313 				if (print) {
4314 					_print_next_block(par_num++,
4315 							  "SEARCHER");
4316 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4317 				}
4318 				break;
4319 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4320 				if (print) {
4321 					_print_next_block(par_num++, "TCM");
4322 					_print_parity(bp,
4323 						      TCM_REG_TCM_PRTY_STS);
4324 				}
4325 				break;
4326 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4327 				if (print) {
4328 					_print_next_block(par_num++, "TSEMI");
4329 					_print_parity(bp,
4330 						      TSEM_REG_TSEM_PRTY_STS_0);
4331 					_print_parity(bp,
4332 						      TSEM_REG_TSEM_PRTY_STS_1);
4333 				}
4334 				break;
4335 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4336 				if (print) {
4337 					_print_next_block(par_num++, "XPB");
4338 					_print_parity(bp, GRCBASE_XPB +
4339 							  PB_REG_PB_PRTY_STS);
4340 				}
4341 				break;
4342 			}
4343 
4344 			/* Clear the bit */
4345 			sig &= ~cur_bit;
4346 		}
4347 	}
4348 
4349 	return par_num;
4350 }
4351 
4352 static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4353 					    int par_num, bool *global,
4354 					    bool print)
4355 {
4356 	int i = 0;
4357 	u32 cur_bit = 0;
4358 	for (i = 0; sig; i++) {
4359 		cur_bit = ((u32)0x1 << i);
4360 		if (sig & cur_bit) {
4361 			switch (cur_bit) {
4362 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4363 				if (print) {
4364 					_print_next_block(par_num++, "PBF");
4365 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4366 				}
4367 				break;
4368 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4369 				if (print) {
4370 					_print_next_block(par_num++, "QM");
4371 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4372 				}
4373 				break;
4374 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4375 				if (print) {
4376 					_print_next_block(par_num++, "TM");
4377 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4378 				}
4379 				break;
4380 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4381 				if (print) {
4382 					_print_next_block(par_num++, "XSDM");
4383 					_print_parity(bp,
4384 						      XSDM_REG_XSDM_PRTY_STS);
4385 				}
4386 				break;
4387 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4388 				if (print) {
4389 					_print_next_block(par_num++, "XCM");
4390 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4391 				}
4392 				break;
4393 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4394 				if (print) {
4395 					_print_next_block(par_num++, "XSEMI");
4396 					_print_parity(bp,
4397 						      XSEM_REG_XSEM_PRTY_STS_0);
4398 					_print_parity(bp,
4399 						      XSEM_REG_XSEM_PRTY_STS_1);
4400 				}
4401 				break;
4402 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4403 				if (print) {
4404 					_print_next_block(par_num++,
4405 							  "DOORBELLQ");
4406 					_print_parity(bp,
4407 						      DORQ_REG_DORQ_PRTY_STS);
4408 				}
4409 				break;
4410 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4411 				if (print) {
4412 					_print_next_block(par_num++, "NIG");
4413 					if (CHIP_IS_E1x(bp)) {
4414 						_print_parity(bp,
4415 							NIG_REG_NIG_PRTY_STS);
4416 					} else {
4417 						_print_parity(bp,
4418 							NIG_REG_NIG_PRTY_STS_0);
4419 						_print_parity(bp,
4420 							NIG_REG_NIG_PRTY_STS_1);
4421 					}
4422 				}
4423 				break;
4424 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4425 				if (print)
4426 					_print_next_block(par_num++,
4427 							  "VAUX PCI CORE");
4428 				*global = true;
4429 				break;
4430 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4431 				if (print) {
4432 					_print_next_block(par_num++, "DEBUG");
4433 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4434 				}
4435 				break;
4436 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4437 				if (print) {
4438 					_print_next_block(par_num++, "USDM");
4439 					_print_parity(bp,
4440 						      USDM_REG_USDM_PRTY_STS);
4441 				}
4442 				break;
4443 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4444 				if (print) {
4445 					_print_next_block(par_num++, "UCM");
4446 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4447 				}
4448 				break;
4449 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4450 				if (print) {
4451 					_print_next_block(par_num++, "USEMI");
4452 					_print_parity(bp,
4453 						      USEM_REG_USEM_PRTY_STS_0);
4454 					_print_parity(bp,
4455 						      USEM_REG_USEM_PRTY_STS_1);
4456 				}
4457 				break;
4458 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4459 				if (print) {
4460 					_print_next_block(par_num++, "UPB");
4461 					_print_parity(bp, GRCBASE_UPB +
4462 							  PB_REG_PB_PRTY_STS);
4463 				}
4464 				break;
4465 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4466 				if (print) {
4467 					_print_next_block(par_num++, "CSDM");
4468 					_print_parity(bp,
4469 						      CSDM_REG_CSDM_PRTY_STS);
4470 				}
4471 				break;
4472 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4473 				if (print) {
4474 					_print_next_block(par_num++, "CCM");
4475 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4476 				}
4477 				break;
4478 			}
4479 
4480 			/* Clear the bit */
4481 			sig &= ~cur_bit;
4482 		}
4483 	}
4484 
4485 	return par_num;
4486 }
4487 
4488 static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4489 					    int par_num, bool print)
4490 {
4491 	int i = 0;
4492 	u32 cur_bit = 0;
4493 	for (i = 0; sig; i++) {
4494 		cur_bit = ((u32)0x1 << i);
4495 		if (sig & cur_bit) {
4496 			switch (cur_bit) {
4497 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4498 				if (print) {
4499 					_print_next_block(par_num++, "CSEMI");
4500 					_print_parity(bp,
4501 						      CSEM_REG_CSEM_PRTY_STS_0);
4502 					_print_parity(bp,
4503 						      CSEM_REG_CSEM_PRTY_STS_1);
4504 				}
4505 				break;
4506 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4507 				if (print) {
4508 					_print_next_block(par_num++, "PXP");
4509 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4510 					_print_parity(bp,
4511 						      PXP2_REG_PXP2_PRTY_STS_0);
4512 					_print_parity(bp,
4513 						      PXP2_REG_PXP2_PRTY_STS_1);
4514 				}
4515 				break;
4516 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4517 				if (print)
4518 					_print_next_block(par_num++,
4519 					"PXPPCICLOCKCLIENT");
4520 				break;
4521 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4522 				if (print) {
4523 					_print_next_block(par_num++, "CFC");
4524 					_print_parity(bp,
4525 						      CFC_REG_CFC_PRTY_STS);
4526 				}
4527 				break;
4528 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4529 				if (print) {
4530 					_print_next_block(par_num++, "CDU");
4531 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4532 				}
4533 				break;
4534 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4535 				if (print) {
4536 					_print_next_block(par_num++, "DMAE");
4537 					_print_parity(bp,
4538 						      DMAE_REG_DMAE_PRTY_STS);
4539 				}
4540 				break;
4541 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4542 				if (print) {
4543 					_print_next_block(par_num++, "IGU");
4544 					if (CHIP_IS_E1x(bp))
4545 						_print_parity(bp,
4546 							HC_REG_HC_PRTY_STS);
4547 					else
4548 						_print_parity(bp,
4549 							IGU_REG_IGU_PRTY_STS);
4550 				}
4551 				break;
4552 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4553 				if (print) {
4554 					_print_next_block(par_num++, "MISC");
4555 					_print_parity(bp,
4556 						      MISC_REG_MISC_PRTY_STS);
4557 				}
4558 				break;
4559 			}
4560 
4561 			/* Clear the bit */
4562 			sig &= ~cur_bit;
4563 		}
4564 	}
4565 
4566 	return par_num;
4567 }
4568 
4569 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4570 					   bool *global, bool print)
4571 {
4572 	int i = 0;
4573 	u32 cur_bit = 0;
4574 	for (i = 0; sig; i++) {
4575 		cur_bit = ((u32)0x1 << i);
4576 		if (sig & cur_bit) {
4577 			switch (cur_bit) {
4578 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4579 				if (print)
4580 					_print_next_block(par_num++, "MCP ROM");
4581 				*global = true;
4582 				break;
4583 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4584 				if (print)
4585 					_print_next_block(par_num++,
4586 							  "MCP UMP RX");
4587 				*global = true;
4588 				break;
4589 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4590 				if (print)
4591 					_print_next_block(par_num++,
4592 							  "MCP UMP TX");
4593 				*global = true;
4594 				break;
4595 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4596 				if (print)
4597 					_print_next_block(par_num++,
4598 							  "MCP SCPAD");
4599 				*global = true;
4600 				break;
4601 			}
4602 
4603 			/* Clear the bit */
4604 			sig &= ~cur_bit;
4605 		}
4606 	}
4607 
4608 	return par_num;
4609 }
4610 
4611 static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4612 					    int par_num, bool print)
4613 {
4614 	int i = 0;
4615 	u32 cur_bit = 0;
4616 	for (i = 0; sig; i++) {
4617 		cur_bit = ((u32)0x1 << i);
4618 		if (sig & cur_bit) {
4619 			switch (cur_bit) {
4620 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4621 				if (print) {
4622 					_print_next_block(par_num++, "PGLUE_B");
4623 					_print_parity(bp,
4624 						PGLUE_B_REG_PGLUE_B_PRTY_STS);
4625 				}
4626 				break;
4627 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4628 				if (print) {
4629 					_print_next_block(par_num++, "ATC");
4630 					_print_parity(bp,
4631 						      ATC_REG_ATC_PRTY_STS);
4632 				}
4633 				break;
4634 			}
4635 
4636 			/* Clear the bit */
4637 			sig &= ~cur_bit;
4638 		}
4639 	}
4640 
4641 	return par_num;
4642 }
4643 
4644 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4645 			      u32 *sig)
4646 {
4647 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4648 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4649 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4650 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4651 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4652 		int par_num = 0;
4653 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4654 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4655 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4656 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4657 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4658 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4659 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4660 		if (print)
4661 			netdev_err(bp->dev,
4662 				   "Parity errors detected in blocks: ");
4663 		par_num = bnx2x_check_blocks_with_parity0(bp,
4664 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4665 		par_num = bnx2x_check_blocks_with_parity1(bp,
4666 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4667 		par_num = bnx2x_check_blocks_with_parity2(bp,
4668 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4669 		par_num = bnx2x_check_blocks_with_parity3(
4670 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4671 		par_num = bnx2x_check_blocks_with_parity4(bp,
4672 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4673 
4674 		if (print)
4675 			pr_cont("\n");
4676 
4677 		return true;
4678 	} else
4679 		return false;
4680 }
4681 
4682 /**
4683  * bnx2x_chk_parity_attn - checks for parity attentions.
4684  *
4685  * @bp:		driver handle
4686  * @global:	true if there was a global attention
4687  * @print:	show parity attention in syslog
4688  */
4689 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4690 {
4691 	struct attn_route attn = { {0} };
4692 	int port = BP_PORT(bp);
4693 
4694 	attn.sig[0] = REG_RD(bp,
4695 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4696 			     port*4);
4697 	attn.sig[1] = REG_RD(bp,
4698 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4699 			     port*4);
4700 	attn.sig[2] = REG_RD(bp,
4701 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4702 			     port*4);
4703 	attn.sig[3] = REG_RD(bp,
4704 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4705 			     port*4);
4706 
4707 	if (!CHIP_IS_E1x(bp))
4708 		attn.sig[4] = REG_RD(bp,
4709 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4710 				     port*4);
4711 
4712 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4713 }
4714 
4715 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4716 {
4717 	u32 val;
4718 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4719 
4720 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4721 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4722 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4723 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4724 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4725 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4726 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4727 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4728 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4729 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4730 		if (val &
4731 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4732 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4733 		if (val &
4734 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4735 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4736 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4737 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4738 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4739 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4740 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4741 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4742 	}
4743 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4744 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4745 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4746 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4747 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4748 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4749 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4750 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4751 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4752 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4753 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4754 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4755 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4756 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4757 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4758 	}
4759 
4760 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4761 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4762 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4763 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4764 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4765 	}
4766 }
4767 
4768 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4769 {
4770 	struct attn_route attn, *group_mask;
4771 	int port = BP_PORT(bp);
4772 	int index;
4773 	u32 reg_addr;
4774 	u32 val;
4775 	u32 aeu_mask;
4776 	bool global = false;
4777 
4778 	/* need to take HW lock because MCP or other port might also
4779 	   try to handle this event */
4780 	bnx2x_acquire_alr(bp);
4781 
4782 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4783 #ifndef BNX2X_STOP_ON_ERROR
4784 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4785 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4786 		/* Disable HW interrupts */
4787 		bnx2x_int_disable(bp);
4788 		/* In case of parity errors don't handle attentions so that
4789 		 * other function would "see" parity errors.
4790 		 */
4791 #else
4792 		bnx2x_panic();
4793 #endif
4794 		bnx2x_release_alr(bp);
4795 		return;
4796 	}
4797 
4798 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4799 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4800 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4801 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4802 	if (!CHIP_IS_E1x(bp))
4803 		attn.sig[4] =
4804 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4805 	else
4806 		attn.sig[4] = 0;
4807 
4808 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4809 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4810 
4811 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4812 		if (deasserted & (1 << index)) {
4813 			group_mask = &bp->attn_group[index];
4814 
4815 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4816 			   index,
4817 			   group_mask->sig[0], group_mask->sig[1],
4818 			   group_mask->sig[2], group_mask->sig[3],
4819 			   group_mask->sig[4]);
4820 
4821 			bnx2x_attn_int_deasserted4(bp,
4822 					attn.sig[4] & group_mask->sig[4]);
4823 			bnx2x_attn_int_deasserted3(bp,
4824 					attn.sig[3] & group_mask->sig[3]);
4825 			bnx2x_attn_int_deasserted1(bp,
4826 					attn.sig[1] & group_mask->sig[1]);
4827 			bnx2x_attn_int_deasserted2(bp,
4828 					attn.sig[2] & group_mask->sig[2]);
4829 			bnx2x_attn_int_deasserted0(bp,
4830 					attn.sig[0] & group_mask->sig[0]);
4831 		}
4832 	}
4833 
4834 	bnx2x_release_alr(bp);
4835 
4836 	if (bp->common.int_block == INT_BLOCK_HC)
4837 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4838 			    COMMAND_REG_ATTN_BITS_CLR);
4839 	else
4840 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4841 
4842 	val = ~deasserted;
4843 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4844 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4845 	REG_WR(bp, reg_addr, val);
4846 
4847 	if (~bp->attn_state & deasserted)
4848 		BNX2X_ERR("IGU ERROR\n");
4849 
4850 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4851 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4852 
4853 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4854 	aeu_mask = REG_RD(bp, reg_addr);
4855 
4856 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4857 	   aeu_mask, deasserted);
4858 	aeu_mask |= (deasserted & 0x3ff);
4859 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4860 
4861 	REG_WR(bp, reg_addr, aeu_mask);
4862 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4863 
4864 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4865 	bp->attn_state &= ~deasserted;
4866 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4867 }
4868 
4869 static void bnx2x_attn_int(struct bnx2x *bp)
4870 {
4871 	/* read local copy of bits */
4872 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4873 								attn_bits);
4874 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4875 								attn_bits_ack);
4876 	u32 attn_state = bp->attn_state;
4877 
4878 	/* look for changed bits */
4879 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4880 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4881 
4882 	DP(NETIF_MSG_HW,
4883 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4884 	   attn_bits, attn_ack, asserted, deasserted);
4885 
4886 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4887 		BNX2X_ERR("BAD attention state\n");
4888 
4889 	/* handle bits that were raised */
4890 	if (asserted)
4891 		bnx2x_attn_int_asserted(bp, asserted);
4892 
4893 	if (deasserted)
4894 		bnx2x_attn_int_deasserted(bp, deasserted);
4895 }
4896 
4897 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4898 		      u16 index, u8 op, u8 update)
4899 {
4900 	u32 igu_addr = bp->igu_base_addr;
4901 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4902 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4903 			     igu_addr);
4904 }
4905 
4906 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4907 {
4908 	/* No memory barriers */
4909 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4910 	mmiowb(); /* keep prod updates ordered */
4911 }
4912 
4913 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4914 				      union event_ring_elem *elem)
4915 {
4916 	u8 err = elem->message.error;
4917 
4918 	if (!bp->cnic_eth_dev.starting_cid  ||
4919 	    (cid < bp->cnic_eth_dev.starting_cid &&
4920 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4921 		return 1;
4922 
4923 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4924 
4925 	if (unlikely(err)) {
4926 
4927 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4928 			  cid);
4929 		bnx2x_panic_dump(bp, false);
4930 	}
4931 	bnx2x_cnic_cfc_comp(bp, cid, err);
4932 	return 0;
4933 }
4934 
4935 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4936 {
4937 	struct bnx2x_mcast_ramrod_params rparam;
4938 	int rc;
4939 
4940 	memset(&rparam, 0, sizeof(rparam));
4941 
4942 	rparam.mcast_obj = &bp->mcast_obj;
4943 
4944 	netif_addr_lock_bh(bp->dev);
4945 
4946 	/* Clear pending state for the last command */
4947 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4948 
4949 	/* If there are pending mcast commands - send them */
4950 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4951 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4952 		if (rc < 0)
4953 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4954 				  rc);
4955 	}
4956 
4957 	netif_addr_unlock_bh(bp->dev);
4958 }
4959 
4960 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4961 					    union event_ring_elem *elem)
4962 {
4963 	unsigned long ramrod_flags = 0;
4964 	int rc = 0;
4965 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4966 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4967 
4968 	/* Always push next commands out, don't wait here */
4969 	__set_bit(RAMROD_CONT, &ramrod_flags);
4970 
4971 	switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4972 			    >> BNX2X_SWCID_SHIFT) {
4973 	case BNX2X_FILTER_MAC_PENDING:
4974 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4975 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4976 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4977 		else
4978 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4979 
4980 		break;
4981 	case BNX2X_FILTER_MCAST_PENDING:
4982 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4983 		/* This is only relevant for 57710 where multicast MACs are
4984 		 * configured as unicast MACs using the same ramrod.
4985 		 */
4986 		bnx2x_handle_mcast_eqe(bp);
4987 		return;
4988 	default:
4989 		BNX2X_ERR("Unsupported classification command: %d\n",
4990 			  elem->message.data.eth_event.echo);
4991 		return;
4992 	}
4993 
4994 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4995 
4996 	if (rc < 0)
4997 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4998 	else if (rc > 0)
4999 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5000 }
5001 
5002 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5003 
5004 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5005 {
5006 	netif_addr_lock_bh(bp->dev);
5007 
5008 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5009 
5010 	/* Send rx_mode command again if was requested */
5011 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5012 		bnx2x_set_storm_rx_mode(bp);
5013 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5014 				    &bp->sp_state))
5015 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5016 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5017 				    &bp->sp_state))
5018 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5019 
5020 	netif_addr_unlock_bh(bp->dev);
5021 }
5022 
5023 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5024 					      union event_ring_elem *elem)
5025 {
5026 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5027 		DP(BNX2X_MSG_SP,
5028 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5029 		   elem->message.data.vif_list_event.func_bit_map);
5030 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5031 			elem->message.data.vif_list_event.func_bit_map);
5032 	} else if (elem->message.data.vif_list_event.echo ==
5033 		   VIF_LIST_RULE_SET) {
5034 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5035 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5036 	}
5037 }
5038 
5039 /* called with rtnl_lock */
5040 static void bnx2x_after_function_update(struct bnx2x *bp)
5041 {
5042 	int q, rc;
5043 	struct bnx2x_fastpath *fp;
5044 	struct bnx2x_queue_state_params queue_params = {NULL};
5045 	struct bnx2x_queue_update_params *q_update_params =
5046 		&queue_params.params.update;
5047 
5048 	/* Send Q update command with afex vlan removal values for all Qs */
5049 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5050 
5051 	/* set silent vlan removal values according to vlan mode */
5052 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5053 		  &q_update_params->update_flags);
5054 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5055 		  &q_update_params->update_flags);
5056 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5057 
5058 	/* in access mode mark mask and value are 0 to strip all vlans */
5059 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5060 		q_update_params->silent_removal_value = 0;
5061 		q_update_params->silent_removal_mask = 0;
5062 	} else {
5063 		q_update_params->silent_removal_value =
5064 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5065 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5066 	}
5067 
5068 	for_each_eth_queue(bp, q) {
5069 		/* Set the appropriate Queue object */
5070 		fp = &bp->fp[q];
5071 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5072 
5073 		/* send the ramrod */
5074 		rc = bnx2x_queue_state_change(bp, &queue_params);
5075 		if (rc < 0)
5076 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5077 				  q);
5078 	}
5079 
5080 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5081 		fp = &bp->fp[FCOE_IDX(bp)];
5082 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5083 
5084 		/* clear pending completion bit */
5085 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5086 
5087 		/* mark latest Q bit */
5088 		smp_mb__before_clear_bit();
5089 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5090 		smp_mb__after_clear_bit();
5091 
5092 		/* send Q update ramrod for FCoE Q */
5093 		rc = bnx2x_queue_state_change(bp, &queue_params);
5094 		if (rc < 0)
5095 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5096 				  q);
5097 	} else {
5098 		/* If no FCoE ring - ACK MCP now */
5099 		bnx2x_link_report(bp);
5100 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5101 	}
5102 }
5103 
5104 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5105 	struct bnx2x *bp, u32 cid)
5106 {
5107 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5108 
5109 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5110 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5111 	else
5112 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5113 }
5114 
5115 static void bnx2x_eq_int(struct bnx2x *bp)
5116 {
5117 	u16 hw_cons, sw_cons, sw_prod;
5118 	union event_ring_elem *elem;
5119 	u8 echo;
5120 	u32 cid;
5121 	u8 opcode;
5122 	int rc, spqe_cnt = 0;
5123 	struct bnx2x_queue_sp_obj *q_obj;
5124 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5125 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5126 
5127 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5128 
5129 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5130 	 * when we get the next-page we need to adjust so the loop
5131 	 * condition below will be met. The next element is the size of a
5132 	 * regular element and hence incrementing by 1
5133 	 */
5134 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5135 		hw_cons++;
5136 
5137 	/* This function may never run in parallel with itself for a
5138 	 * specific bp, thus there is no need in "paired" read memory
5139 	 * barrier here.
5140 	 */
5141 	sw_cons = bp->eq_cons;
5142 	sw_prod = bp->eq_prod;
5143 
5144 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5145 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5146 
5147 	for (; sw_cons != hw_cons;
5148 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5149 
5150 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5151 
5152 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5153 		if (!rc) {
5154 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5155 			   rc);
5156 			goto next_spqe;
5157 		}
5158 
5159 		/* elem CID originates from FW; actually LE */
5160 		cid = SW_CID((__force __le32)
5161 			     elem->message.data.cfc_del_event.cid);
5162 		opcode = elem->message.opcode;
5163 
5164 		/* handle eq element */
5165 		switch (opcode) {
5166 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5167 			DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5168 			bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5169 			continue;
5170 
5171 		case EVENT_RING_OPCODE_STAT_QUERY:
5172 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5173 			   "got statistics comp event %d\n",
5174 			   bp->stats_comp++);
5175 			/* nothing to do with stats comp */
5176 			goto next_spqe;
5177 
5178 		case EVENT_RING_OPCODE_CFC_DEL:
5179 			/* handle according to cid range */
5180 			/*
5181 			 * we may want to verify here that the bp state is
5182 			 * HALTING
5183 			 */
5184 			DP(BNX2X_MSG_SP,
5185 			   "got delete ramrod for MULTI[%d]\n", cid);
5186 
5187 			if (CNIC_LOADED(bp) &&
5188 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5189 				goto next_spqe;
5190 
5191 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5192 
5193 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5194 				break;
5195 
5196 			goto next_spqe;
5197 
5198 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5199 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5200 			if (f_obj->complete_cmd(bp, f_obj,
5201 						BNX2X_F_CMD_TX_STOP))
5202 				break;
5203 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5204 			goto next_spqe;
5205 
5206 		case EVENT_RING_OPCODE_START_TRAFFIC:
5207 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5208 			if (f_obj->complete_cmd(bp, f_obj,
5209 						BNX2X_F_CMD_TX_START))
5210 				break;
5211 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5212 			goto next_spqe;
5213 
5214 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5215 			echo = elem->message.data.function_update_event.echo;
5216 			if (echo == SWITCH_UPDATE) {
5217 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5218 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5219 				if (f_obj->complete_cmd(
5220 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5221 					break;
5222 
5223 			} else {
5224 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5225 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5226 				f_obj->complete_cmd(bp, f_obj,
5227 						    BNX2X_F_CMD_AFEX_UPDATE);
5228 
5229 				/* We will perform the Queues update from
5230 				 * sp_rtnl task as all Queue SP operations
5231 				 * should run under rtnl_lock.
5232 				 */
5233 				smp_mb__before_clear_bit();
5234 				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5235 					&bp->sp_rtnl_state);
5236 				smp_mb__after_clear_bit();
5237 
5238 				schedule_delayed_work(&bp->sp_rtnl_task, 0);
5239 			}
5240 
5241 			goto next_spqe;
5242 
5243 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5244 			f_obj->complete_cmd(bp, f_obj,
5245 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5246 			bnx2x_after_afex_vif_lists(bp, elem);
5247 			goto next_spqe;
5248 		case EVENT_RING_OPCODE_FUNCTION_START:
5249 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5250 			   "got FUNC_START ramrod\n");
5251 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5252 				break;
5253 
5254 			goto next_spqe;
5255 
5256 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5257 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5258 			   "got FUNC_STOP ramrod\n");
5259 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5260 				break;
5261 
5262 			goto next_spqe;
5263 		}
5264 
5265 		switch (opcode | bp->state) {
5266 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5267 		      BNX2X_STATE_OPEN):
5268 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5269 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5270 			cid = elem->message.data.eth_event.echo &
5271 				BNX2X_SWCID_MASK;
5272 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5273 			   cid);
5274 			rss_raw->clear_pending(rss_raw);
5275 			break;
5276 
5277 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5278 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5279 		case (EVENT_RING_OPCODE_SET_MAC |
5280 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5281 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5282 		      BNX2X_STATE_OPEN):
5283 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5284 		      BNX2X_STATE_DIAG):
5285 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5286 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5287 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5288 			bnx2x_handle_classification_eqe(bp, elem);
5289 			break;
5290 
5291 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5292 		      BNX2X_STATE_OPEN):
5293 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5294 		      BNX2X_STATE_DIAG):
5295 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5296 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5297 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5298 			bnx2x_handle_mcast_eqe(bp);
5299 			break;
5300 
5301 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5302 		      BNX2X_STATE_OPEN):
5303 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5304 		      BNX2X_STATE_DIAG):
5305 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5306 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5307 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5308 			bnx2x_handle_rx_mode_eqe(bp);
5309 			break;
5310 		default:
5311 			/* unknown event log error and continue */
5312 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5313 				  elem->message.opcode, bp->state);
5314 		}
5315 next_spqe:
5316 		spqe_cnt++;
5317 	} /* for */
5318 
5319 	smp_mb__before_atomic_inc();
5320 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5321 
5322 	bp->eq_cons = sw_cons;
5323 	bp->eq_prod = sw_prod;
5324 	/* Make sure that above mem writes were issued towards the memory */
5325 	smp_wmb();
5326 
5327 	/* update producer */
5328 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5329 }
5330 
5331 static void bnx2x_sp_task(struct work_struct *work)
5332 {
5333 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5334 
5335 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5336 
5337 	/* make sure the atomic interrupt_occurred has been written */
5338 	smp_rmb();
5339 	if (atomic_read(&bp->interrupt_occurred)) {
5340 
5341 		/* what work needs to be performed? */
5342 		u16 status = bnx2x_update_dsb_idx(bp);
5343 
5344 		DP(BNX2X_MSG_SP, "status %x\n", status);
5345 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5346 		atomic_set(&bp->interrupt_occurred, 0);
5347 
5348 		/* HW attentions */
5349 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5350 			bnx2x_attn_int(bp);
5351 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5352 		}
5353 
5354 		/* SP events: STAT_QUERY and others */
5355 		if (status & BNX2X_DEF_SB_IDX) {
5356 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5357 
5358 		if (FCOE_INIT(bp) &&
5359 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5360 				/* Prevent local bottom-halves from running as
5361 				 * we are going to change the local NAPI list.
5362 				 */
5363 				local_bh_disable();
5364 				napi_schedule(&bnx2x_fcoe(bp, napi));
5365 				local_bh_enable();
5366 			}
5367 
5368 			/* Handle EQ completions */
5369 			bnx2x_eq_int(bp);
5370 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5371 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5372 
5373 			status &= ~BNX2X_DEF_SB_IDX;
5374 		}
5375 
5376 		/* if status is non zero then perhaps something went wrong */
5377 		if (unlikely(status))
5378 			DP(BNX2X_MSG_SP,
5379 			   "got an unknown interrupt! (status 0x%x)\n", status);
5380 
5381 		/* ack status block only if something was actually handled */
5382 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5383 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5384 	}
5385 
5386 	/* must be called after the EQ processing (since eq leads to sriov
5387 	 * ramrod completion flows).
5388 	 * This flow may have been scheduled by the arrival of a ramrod
5389 	 * completion, or by the sriov code rescheduling itself.
5390 	 */
5391 	bnx2x_iov_sp_task(bp);
5392 
5393 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5394 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5395 			       &bp->sp_state)) {
5396 		bnx2x_link_report(bp);
5397 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5398 	}
5399 }
5400 
5401 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5402 {
5403 	struct net_device *dev = dev_instance;
5404 	struct bnx2x *bp = netdev_priv(dev);
5405 
5406 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5407 		     IGU_INT_DISABLE, 0);
5408 
5409 #ifdef BNX2X_STOP_ON_ERROR
5410 	if (unlikely(bp->panic))
5411 		return IRQ_HANDLED;
5412 #endif
5413 
5414 	if (CNIC_LOADED(bp)) {
5415 		struct cnic_ops *c_ops;
5416 
5417 		rcu_read_lock();
5418 		c_ops = rcu_dereference(bp->cnic_ops);
5419 		if (c_ops)
5420 			c_ops->cnic_handler(bp->cnic_data, NULL);
5421 		rcu_read_unlock();
5422 	}
5423 
5424 	/* schedule sp task to perform default status block work, ack
5425 	 * attentions and enable interrupts.
5426 	 */
5427 	bnx2x_schedule_sp_task(bp);
5428 
5429 	return IRQ_HANDLED;
5430 }
5431 
5432 /* end of slow path */
5433 
5434 void bnx2x_drv_pulse(struct bnx2x *bp)
5435 {
5436 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5437 		 bp->fw_drv_pulse_wr_seq);
5438 }
5439 
5440 static void bnx2x_timer(unsigned long data)
5441 {
5442 	struct bnx2x *bp = (struct bnx2x *) data;
5443 
5444 	if (!netif_running(bp->dev))
5445 		return;
5446 
5447 	if (IS_PF(bp) &&
5448 	    !BP_NOMCP(bp)) {
5449 		int mb_idx = BP_FW_MB_IDX(bp);
5450 		u32 drv_pulse;
5451 		u32 mcp_pulse;
5452 
5453 		++bp->fw_drv_pulse_wr_seq;
5454 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5455 		/* TBD - add SYSTEM_TIME */
5456 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5457 		bnx2x_drv_pulse(bp);
5458 
5459 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5460 			     MCP_PULSE_SEQ_MASK);
5461 		/* The delta between driver pulse and mcp response
5462 		 * should be 1 (before mcp response) or 0 (after mcp response)
5463 		 */
5464 		if ((drv_pulse != mcp_pulse) &&
5465 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5466 			/* someone lost a heartbeat... */
5467 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5468 				  drv_pulse, mcp_pulse);
5469 		}
5470 	}
5471 
5472 	if (bp->state == BNX2X_STATE_OPEN)
5473 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5474 
5475 	/* sample pf vf bulletin board for new posts from pf */
5476 	if (IS_VF(bp))
5477 		bnx2x_timer_sriov(bp);
5478 
5479 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5480 }
5481 
5482 /* end of Statistics */
5483 
5484 /* nic init */
5485 
5486 /*
5487  * nic init service functions
5488  */
5489 
5490 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5491 {
5492 	u32 i;
5493 	if (!(len%4) && !(addr%4))
5494 		for (i = 0; i < len; i += 4)
5495 			REG_WR(bp, addr + i, fill);
5496 	else
5497 		for (i = 0; i < len; i++)
5498 			REG_WR8(bp, addr + i, fill);
5499 }
5500 
5501 /* helper: writes FP SP data to FW - data_size in dwords */
5502 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5503 				int fw_sb_id,
5504 				u32 *sb_data_p,
5505 				u32 data_size)
5506 {
5507 	int index;
5508 	for (index = 0; index < data_size; index++)
5509 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5510 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5511 			sizeof(u32)*index,
5512 			*(sb_data_p + index));
5513 }
5514 
5515 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5516 {
5517 	u32 *sb_data_p;
5518 	u32 data_size = 0;
5519 	struct hc_status_block_data_e2 sb_data_e2;
5520 	struct hc_status_block_data_e1x sb_data_e1x;
5521 
5522 	/* disable the function first */
5523 	if (!CHIP_IS_E1x(bp)) {
5524 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5525 		sb_data_e2.common.state = SB_DISABLED;
5526 		sb_data_e2.common.p_func.vf_valid = false;
5527 		sb_data_p = (u32 *)&sb_data_e2;
5528 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5529 	} else {
5530 		memset(&sb_data_e1x, 0,
5531 		       sizeof(struct hc_status_block_data_e1x));
5532 		sb_data_e1x.common.state = SB_DISABLED;
5533 		sb_data_e1x.common.p_func.vf_valid = false;
5534 		sb_data_p = (u32 *)&sb_data_e1x;
5535 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5536 	}
5537 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5538 
5539 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5540 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5541 			CSTORM_STATUS_BLOCK_SIZE);
5542 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5543 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5544 			CSTORM_SYNC_BLOCK_SIZE);
5545 }
5546 
5547 /* helper:  writes SP SB data to FW */
5548 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5549 		struct hc_sp_status_block_data *sp_sb_data)
5550 {
5551 	int func = BP_FUNC(bp);
5552 	int i;
5553 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5554 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5555 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5556 			i*sizeof(u32),
5557 			*((u32 *)sp_sb_data + i));
5558 }
5559 
5560 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5561 {
5562 	int func = BP_FUNC(bp);
5563 	struct hc_sp_status_block_data sp_sb_data;
5564 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5565 
5566 	sp_sb_data.state = SB_DISABLED;
5567 	sp_sb_data.p_func.vf_valid = false;
5568 
5569 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5570 
5571 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5572 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5573 			CSTORM_SP_STATUS_BLOCK_SIZE);
5574 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5575 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5576 			CSTORM_SP_SYNC_BLOCK_SIZE);
5577 }
5578 
5579 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5580 					   int igu_sb_id, int igu_seg_id)
5581 {
5582 	hc_sm->igu_sb_id = igu_sb_id;
5583 	hc_sm->igu_seg_id = igu_seg_id;
5584 	hc_sm->timer_value = 0xFF;
5585 	hc_sm->time_to_expire = 0xFFFFFFFF;
5586 }
5587 
5588 /* allocates state machine ids. */
5589 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5590 {
5591 	/* zero out state machine indices */
5592 	/* rx indices */
5593 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5594 
5595 	/* tx indices */
5596 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5597 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5598 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5599 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5600 
5601 	/* map indices */
5602 	/* rx indices */
5603 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5604 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5605 
5606 	/* tx indices */
5607 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5608 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5609 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5610 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5611 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5612 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5613 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5614 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5615 }
5616 
5617 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5618 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5619 {
5620 	int igu_seg_id;
5621 
5622 	struct hc_status_block_data_e2 sb_data_e2;
5623 	struct hc_status_block_data_e1x sb_data_e1x;
5624 	struct hc_status_block_sm  *hc_sm_p;
5625 	int data_size;
5626 	u32 *sb_data_p;
5627 
5628 	if (CHIP_INT_MODE_IS_BC(bp))
5629 		igu_seg_id = HC_SEG_ACCESS_NORM;
5630 	else
5631 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5632 
5633 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5634 
5635 	if (!CHIP_IS_E1x(bp)) {
5636 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5637 		sb_data_e2.common.state = SB_ENABLED;
5638 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5639 		sb_data_e2.common.p_func.vf_id = vfid;
5640 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5641 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5642 		sb_data_e2.common.same_igu_sb_1b = true;
5643 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5644 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5645 		hc_sm_p = sb_data_e2.common.state_machine;
5646 		sb_data_p = (u32 *)&sb_data_e2;
5647 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5648 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5649 	} else {
5650 		memset(&sb_data_e1x, 0,
5651 		       sizeof(struct hc_status_block_data_e1x));
5652 		sb_data_e1x.common.state = SB_ENABLED;
5653 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5654 		sb_data_e1x.common.p_func.vf_id = 0xff;
5655 		sb_data_e1x.common.p_func.vf_valid = false;
5656 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5657 		sb_data_e1x.common.same_igu_sb_1b = true;
5658 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5659 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5660 		hc_sm_p = sb_data_e1x.common.state_machine;
5661 		sb_data_p = (u32 *)&sb_data_e1x;
5662 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5663 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5664 	}
5665 
5666 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5667 				       igu_sb_id, igu_seg_id);
5668 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5669 				       igu_sb_id, igu_seg_id);
5670 
5671 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5672 
5673 	/* write indices to HW - PCI guarantees endianity of regpairs */
5674 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5675 }
5676 
5677 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5678 				     u16 tx_usec, u16 rx_usec)
5679 {
5680 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5681 				    false, rx_usec);
5682 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5683 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5684 				       tx_usec);
5685 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5686 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5687 				       tx_usec);
5688 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5689 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5690 				       tx_usec);
5691 }
5692 
5693 static void bnx2x_init_def_sb(struct bnx2x *bp)
5694 {
5695 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5696 	dma_addr_t mapping = bp->def_status_blk_mapping;
5697 	int igu_sp_sb_index;
5698 	int igu_seg_id;
5699 	int port = BP_PORT(bp);
5700 	int func = BP_FUNC(bp);
5701 	int reg_offset, reg_offset_en5;
5702 	u64 section;
5703 	int index;
5704 	struct hc_sp_status_block_data sp_sb_data;
5705 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5706 
5707 	if (CHIP_INT_MODE_IS_BC(bp)) {
5708 		igu_sp_sb_index = DEF_SB_IGU_ID;
5709 		igu_seg_id = HC_SEG_ACCESS_DEF;
5710 	} else {
5711 		igu_sp_sb_index = bp->igu_dsb_id;
5712 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5713 	}
5714 
5715 	/* ATTN */
5716 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5717 					    atten_status_block);
5718 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5719 
5720 	bp->attn_state = 0;
5721 
5722 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5723 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5724 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5725 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5726 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5727 		int sindex;
5728 		/* take care of sig[0]..sig[4] */
5729 		for (sindex = 0; sindex < 4; sindex++)
5730 			bp->attn_group[index].sig[sindex] =
5731 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5732 
5733 		if (!CHIP_IS_E1x(bp))
5734 			/*
5735 			 * enable5 is separate from the rest of the registers,
5736 			 * and therefore the address skip is 4
5737 			 * and not 16 between the different groups
5738 			 */
5739 			bp->attn_group[index].sig[4] = REG_RD(bp,
5740 					reg_offset_en5 + 0x4*index);
5741 		else
5742 			bp->attn_group[index].sig[4] = 0;
5743 	}
5744 
5745 	if (bp->common.int_block == INT_BLOCK_HC) {
5746 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5747 				     HC_REG_ATTN_MSG0_ADDR_L);
5748 
5749 		REG_WR(bp, reg_offset, U64_LO(section));
5750 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5751 	} else if (!CHIP_IS_E1x(bp)) {
5752 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5753 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5754 	}
5755 
5756 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5757 					    sp_sb);
5758 
5759 	bnx2x_zero_sp_sb(bp);
5760 
5761 	/* PCI guarantees endianity of regpairs */
5762 	sp_sb_data.state		= SB_ENABLED;
5763 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5764 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5765 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5766 	sp_sb_data.igu_seg_id		= igu_seg_id;
5767 	sp_sb_data.p_func.pf_id		= func;
5768 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5769 	sp_sb_data.p_func.vf_id		= 0xff;
5770 
5771 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5772 
5773 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5774 }
5775 
5776 void bnx2x_update_coalesce(struct bnx2x *bp)
5777 {
5778 	int i;
5779 
5780 	for_each_eth_queue(bp, i)
5781 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5782 					 bp->tx_ticks, bp->rx_ticks);
5783 }
5784 
5785 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5786 {
5787 	spin_lock_init(&bp->spq_lock);
5788 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5789 
5790 	bp->spq_prod_idx = 0;
5791 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5792 	bp->spq_prod_bd = bp->spq;
5793 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5794 }
5795 
5796 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5797 {
5798 	int i;
5799 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5800 		union event_ring_elem *elem =
5801 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5802 
5803 		elem->next_page.addr.hi =
5804 			cpu_to_le32(U64_HI(bp->eq_mapping +
5805 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5806 		elem->next_page.addr.lo =
5807 			cpu_to_le32(U64_LO(bp->eq_mapping +
5808 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5809 	}
5810 	bp->eq_cons = 0;
5811 	bp->eq_prod = NUM_EQ_DESC;
5812 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5813 	/* we want a warning message before it gets wrought... */
5814 	atomic_set(&bp->eq_spq_left,
5815 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5816 }
5817 
5818 /* called with netif_addr_lock_bh() */
5819 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5820 			unsigned long rx_mode_flags,
5821 			unsigned long rx_accept_flags,
5822 			unsigned long tx_accept_flags,
5823 			unsigned long ramrod_flags)
5824 {
5825 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5826 	int rc;
5827 
5828 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5829 
5830 	/* Prepare ramrod parameters */
5831 	ramrod_param.cid = 0;
5832 	ramrod_param.cl_id = cl_id;
5833 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5834 	ramrod_param.func_id = BP_FUNC(bp);
5835 
5836 	ramrod_param.pstate = &bp->sp_state;
5837 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5838 
5839 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5840 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5841 
5842 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5843 
5844 	ramrod_param.ramrod_flags = ramrod_flags;
5845 	ramrod_param.rx_mode_flags = rx_mode_flags;
5846 
5847 	ramrod_param.rx_accept_flags = rx_accept_flags;
5848 	ramrod_param.tx_accept_flags = tx_accept_flags;
5849 
5850 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5851 	if (rc < 0) {
5852 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5853 		return rc;
5854 	}
5855 
5856 	return 0;
5857 }
5858 
5859 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5860 				   unsigned long *rx_accept_flags,
5861 				   unsigned long *tx_accept_flags)
5862 {
5863 	/* Clear the flags first */
5864 	*rx_accept_flags = 0;
5865 	*tx_accept_flags = 0;
5866 
5867 	switch (rx_mode) {
5868 	case BNX2X_RX_MODE_NONE:
5869 		/*
5870 		 * 'drop all' supersedes any accept flags that may have been
5871 		 * passed to the function.
5872 		 */
5873 		break;
5874 	case BNX2X_RX_MODE_NORMAL:
5875 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5876 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5877 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5878 
5879 		/* internal switching mode */
5880 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5881 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5882 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5883 
5884 		break;
5885 	case BNX2X_RX_MODE_ALLMULTI:
5886 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5887 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5888 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5889 
5890 		/* internal switching mode */
5891 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5892 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5893 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5894 
5895 		break;
5896 	case BNX2X_RX_MODE_PROMISC:
5897 		/* According to definition of SI mode, iface in promisc mode
5898 		 * should receive matched and unmatched (in resolution of port)
5899 		 * unicast packets.
5900 		 */
5901 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5902 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5903 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5904 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5905 
5906 		/* internal switching mode */
5907 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5908 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5909 
5910 		if (IS_MF_SI(bp))
5911 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5912 		else
5913 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5914 
5915 		break;
5916 	default:
5917 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5918 		return -EINVAL;
5919 	}
5920 
5921 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5922 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5923 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5924 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5925 	}
5926 
5927 	return 0;
5928 }
5929 
5930 /* called with netif_addr_lock_bh() */
5931 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5932 {
5933 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5934 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5935 	int rc;
5936 
5937 	if (!NO_FCOE(bp))
5938 		/* Configure rx_mode of FCoE Queue */
5939 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5940 
5941 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5942 				     &tx_accept_flags);
5943 	if (rc)
5944 		return rc;
5945 
5946 	__set_bit(RAMROD_RX, &ramrod_flags);
5947 	__set_bit(RAMROD_TX, &ramrod_flags);
5948 
5949 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5950 				   rx_accept_flags, tx_accept_flags,
5951 				   ramrod_flags);
5952 }
5953 
5954 static void bnx2x_init_internal_common(struct bnx2x *bp)
5955 {
5956 	int i;
5957 
5958 	if (IS_MF_SI(bp))
5959 		/*
5960 		 * In switch independent mode, the TSTORM needs to accept
5961 		 * packets that failed classification, since approximate match
5962 		 * mac addresses aren't written to NIG LLH
5963 		 */
5964 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5965 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5966 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5967 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5968 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5969 
5970 	/* Zero this manually as its initialization is
5971 	   currently missing in the initTool */
5972 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5973 		REG_WR(bp, BAR_USTRORM_INTMEM +
5974 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5975 	if (!CHIP_IS_E1x(bp)) {
5976 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5977 			CHIP_INT_MODE_IS_BC(bp) ?
5978 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5979 	}
5980 }
5981 
5982 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5983 {
5984 	switch (load_code) {
5985 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5986 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5987 		bnx2x_init_internal_common(bp);
5988 		/* no break */
5989 
5990 	case FW_MSG_CODE_DRV_LOAD_PORT:
5991 		/* nothing to do */
5992 		/* no break */
5993 
5994 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5995 		/* internal memory per function is
5996 		   initialized inside bnx2x_pf_init */
5997 		break;
5998 
5999 	default:
6000 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6001 		break;
6002 	}
6003 }
6004 
6005 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6006 {
6007 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6008 }
6009 
6010 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6011 {
6012 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6013 }
6014 
6015 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6016 {
6017 	if (CHIP_IS_E1x(fp->bp))
6018 		return BP_L_ID(fp->bp) + fp->index;
6019 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6020 		return bnx2x_fp_igu_sb_id(fp);
6021 }
6022 
6023 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6024 {
6025 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6026 	u8 cos;
6027 	unsigned long q_type = 0;
6028 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6029 	fp->rx_queue = fp_idx;
6030 	fp->cid = fp_idx;
6031 	fp->cl_id = bnx2x_fp_cl_id(fp);
6032 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6033 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6034 	/* qZone id equals to FW (per path) client id */
6035 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6036 
6037 	/* init shortcut */
6038 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6039 
6040 	/* Setup SB indices */
6041 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6042 
6043 	/* Configure Queue State object */
6044 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6045 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6046 
6047 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6048 
6049 	/* init tx data */
6050 	for_each_cos_in_tx_queue(fp, cos) {
6051 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6052 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6053 				  FP_COS_TO_TXQ(fp, cos, bp),
6054 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6055 		cids[cos] = fp->txdata_ptr[cos]->cid;
6056 	}
6057 
6058 	/* nothing more for vf to do here */
6059 	if (IS_VF(bp))
6060 		return;
6061 
6062 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6063 		      fp->fw_sb_id, fp->igu_sb_id);
6064 	bnx2x_update_fpsb_idx(fp);
6065 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6066 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6067 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6068 
6069 	/**
6070 	 * Configure classification DBs: Always enable Tx switching
6071 	 */
6072 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6073 
6074 	DP(NETIF_MSG_IFUP,
6075 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6076 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6077 	   fp->igu_sb_id);
6078 }
6079 
6080 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6081 {
6082 	int i;
6083 
6084 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6085 		struct eth_tx_next_bd *tx_next_bd =
6086 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6087 
6088 		tx_next_bd->addr_hi =
6089 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6090 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6091 		tx_next_bd->addr_lo =
6092 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6093 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6094 	}
6095 
6096 	*txdata->tx_cons_sb = cpu_to_le16(0);
6097 
6098 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6099 	txdata->tx_db.data.zero_fill1 = 0;
6100 	txdata->tx_db.data.prod = 0;
6101 
6102 	txdata->tx_pkt_prod = 0;
6103 	txdata->tx_pkt_cons = 0;
6104 	txdata->tx_bd_prod = 0;
6105 	txdata->tx_bd_cons = 0;
6106 	txdata->tx_pkt = 0;
6107 }
6108 
6109 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6110 {
6111 	int i;
6112 
6113 	for_each_tx_queue_cnic(bp, i)
6114 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6115 }
6116 
6117 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6118 {
6119 	int i;
6120 	u8 cos;
6121 
6122 	for_each_eth_queue(bp, i)
6123 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6124 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6125 }
6126 
6127 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6128 {
6129 	if (!NO_FCOE(bp))
6130 		bnx2x_init_fcoe_fp(bp);
6131 
6132 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6133 		      BNX2X_VF_ID_INVALID, false,
6134 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6135 
6136 	/* ensure status block indices were read */
6137 	rmb();
6138 	bnx2x_init_rx_rings_cnic(bp);
6139 	bnx2x_init_tx_rings_cnic(bp);
6140 
6141 	/* flush all */
6142 	mb();
6143 	mmiowb();
6144 }
6145 
6146 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6147 {
6148 	int i;
6149 
6150 	/* Setup NIC internals and enable interrupts */
6151 	for_each_eth_queue(bp, i)
6152 		bnx2x_init_eth_fp(bp, i);
6153 
6154 	/* ensure status block indices were read */
6155 	rmb();
6156 	bnx2x_init_rx_rings(bp);
6157 	bnx2x_init_tx_rings(bp);
6158 
6159 	if (IS_PF(bp)) {
6160 		/* Initialize MOD_ABS interrupts */
6161 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6162 				       bp->common.shmem_base,
6163 				       bp->common.shmem2_base, BP_PORT(bp));
6164 
6165 		/* initialize the default status block and sp ring */
6166 		bnx2x_init_def_sb(bp);
6167 		bnx2x_update_dsb_idx(bp);
6168 		bnx2x_init_sp_ring(bp);
6169 	} else {
6170 		bnx2x_memset_stats(bp);
6171 	}
6172 }
6173 
6174 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6175 {
6176 	bnx2x_init_eq_ring(bp);
6177 	bnx2x_init_internal(bp, load_code);
6178 	bnx2x_pf_init(bp);
6179 	bnx2x_stats_init(bp);
6180 
6181 	/* flush all before enabling interrupts */
6182 	mb();
6183 	mmiowb();
6184 
6185 	bnx2x_int_enable(bp);
6186 
6187 	/* Check for SPIO5 */
6188 	bnx2x_attn_int_deasserted0(bp,
6189 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6190 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6191 }
6192 
6193 /* gzip service functions */
6194 static int bnx2x_gunzip_init(struct bnx2x *bp)
6195 {
6196 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6197 					    &bp->gunzip_mapping, GFP_KERNEL);
6198 	if (bp->gunzip_buf  == NULL)
6199 		goto gunzip_nomem1;
6200 
6201 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6202 	if (bp->strm  == NULL)
6203 		goto gunzip_nomem2;
6204 
6205 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6206 	if (bp->strm->workspace == NULL)
6207 		goto gunzip_nomem3;
6208 
6209 	return 0;
6210 
6211 gunzip_nomem3:
6212 	kfree(bp->strm);
6213 	bp->strm = NULL;
6214 
6215 gunzip_nomem2:
6216 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6217 			  bp->gunzip_mapping);
6218 	bp->gunzip_buf = NULL;
6219 
6220 gunzip_nomem1:
6221 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6222 	return -ENOMEM;
6223 }
6224 
6225 static void bnx2x_gunzip_end(struct bnx2x *bp)
6226 {
6227 	if (bp->strm) {
6228 		vfree(bp->strm->workspace);
6229 		kfree(bp->strm);
6230 		bp->strm = NULL;
6231 	}
6232 
6233 	if (bp->gunzip_buf) {
6234 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6235 				  bp->gunzip_mapping);
6236 		bp->gunzip_buf = NULL;
6237 	}
6238 }
6239 
6240 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6241 {
6242 	int n, rc;
6243 
6244 	/* check gzip header */
6245 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6246 		BNX2X_ERR("Bad gzip header\n");
6247 		return -EINVAL;
6248 	}
6249 
6250 	n = 10;
6251 
6252 #define FNAME				0x8
6253 
6254 	if (zbuf[3] & FNAME)
6255 		while ((zbuf[n++] != 0) && (n < len));
6256 
6257 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6258 	bp->strm->avail_in = len - n;
6259 	bp->strm->next_out = bp->gunzip_buf;
6260 	bp->strm->avail_out = FW_BUF_SIZE;
6261 
6262 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6263 	if (rc != Z_OK)
6264 		return rc;
6265 
6266 	rc = zlib_inflate(bp->strm, Z_FINISH);
6267 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6268 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6269 			   bp->strm->msg);
6270 
6271 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6272 	if (bp->gunzip_outlen & 0x3)
6273 		netdev_err(bp->dev,
6274 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6275 				bp->gunzip_outlen);
6276 	bp->gunzip_outlen >>= 2;
6277 
6278 	zlib_inflateEnd(bp->strm);
6279 
6280 	if (rc == Z_STREAM_END)
6281 		return 0;
6282 
6283 	return rc;
6284 }
6285 
6286 /* nic load/unload */
6287 
6288 /*
6289  * General service functions
6290  */
6291 
6292 /* send a NIG loopback debug packet */
6293 static void bnx2x_lb_pckt(struct bnx2x *bp)
6294 {
6295 	u32 wb_write[3];
6296 
6297 	/* Ethernet source and destination addresses */
6298 	wb_write[0] = 0x55555555;
6299 	wb_write[1] = 0x55555555;
6300 	wb_write[2] = 0x20;		/* SOP */
6301 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6302 
6303 	/* NON-IP protocol */
6304 	wb_write[0] = 0x09000000;
6305 	wb_write[1] = 0x55555555;
6306 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6307 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6308 }
6309 
6310 /* some of the internal memories
6311  * are not directly readable from the driver
6312  * to test them we send debug packets
6313  */
6314 static int bnx2x_int_mem_test(struct bnx2x *bp)
6315 {
6316 	int factor;
6317 	int count, i;
6318 	u32 val = 0;
6319 
6320 	if (CHIP_REV_IS_FPGA(bp))
6321 		factor = 120;
6322 	else if (CHIP_REV_IS_EMUL(bp))
6323 		factor = 200;
6324 	else
6325 		factor = 1;
6326 
6327 	/* Disable inputs of parser neighbor blocks */
6328 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6329 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6330 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6331 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6332 
6333 	/*  Write 0 to parser credits for CFC search request */
6334 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6335 
6336 	/* send Ethernet packet */
6337 	bnx2x_lb_pckt(bp);
6338 
6339 	/* TODO do i reset NIG statistic? */
6340 	/* Wait until NIG register shows 1 packet of size 0x10 */
6341 	count = 1000 * factor;
6342 	while (count) {
6343 
6344 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6345 		val = *bnx2x_sp(bp, wb_data[0]);
6346 		if (val == 0x10)
6347 			break;
6348 
6349 		usleep_range(10000, 20000);
6350 		count--;
6351 	}
6352 	if (val != 0x10) {
6353 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6354 		return -1;
6355 	}
6356 
6357 	/* Wait until PRS register shows 1 packet */
6358 	count = 1000 * factor;
6359 	while (count) {
6360 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6361 		if (val == 1)
6362 			break;
6363 
6364 		usleep_range(10000, 20000);
6365 		count--;
6366 	}
6367 	if (val != 0x1) {
6368 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6369 		return -2;
6370 	}
6371 
6372 	/* Reset and init BRB, PRS */
6373 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6374 	msleep(50);
6375 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6376 	msleep(50);
6377 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6378 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6379 
6380 	DP(NETIF_MSG_HW, "part2\n");
6381 
6382 	/* Disable inputs of parser neighbor blocks */
6383 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6384 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6385 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6386 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6387 
6388 	/* Write 0 to parser credits for CFC search request */
6389 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6390 
6391 	/* send 10 Ethernet packets */
6392 	for (i = 0; i < 10; i++)
6393 		bnx2x_lb_pckt(bp);
6394 
6395 	/* Wait until NIG register shows 10 + 1
6396 	   packets of size 11*0x10 = 0xb0 */
6397 	count = 1000 * factor;
6398 	while (count) {
6399 
6400 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6401 		val = *bnx2x_sp(bp, wb_data[0]);
6402 		if (val == 0xb0)
6403 			break;
6404 
6405 		usleep_range(10000, 20000);
6406 		count--;
6407 	}
6408 	if (val != 0xb0) {
6409 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6410 		return -3;
6411 	}
6412 
6413 	/* Wait until PRS register shows 2 packets */
6414 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6415 	if (val != 2)
6416 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6417 
6418 	/* Write 1 to parser credits for CFC search request */
6419 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6420 
6421 	/* Wait until PRS register shows 3 packets */
6422 	msleep(10 * factor);
6423 	/* Wait until NIG register shows 1 packet of size 0x10 */
6424 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6425 	if (val != 3)
6426 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6427 
6428 	/* clear NIG EOP FIFO */
6429 	for (i = 0; i < 11; i++)
6430 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6431 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6432 	if (val != 1) {
6433 		BNX2X_ERR("clear of NIG failed\n");
6434 		return -4;
6435 	}
6436 
6437 	/* Reset and init BRB, PRS, NIG */
6438 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6439 	msleep(50);
6440 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6441 	msleep(50);
6442 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6443 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6444 	if (!CNIC_SUPPORT(bp))
6445 		/* set NIC mode */
6446 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6447 
6448 	/* Enable inputs of parser neighbor blocks */
6449 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6450 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6451 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6452 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6453 
6454 	DP(NETIF_MSG_HW, "done\n");
6455 
6456 	return 0; /* OK */
6457 }
6458 
6459 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6460 {
6461 	u32 val;
6462 
6463 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6464 	if (!CHIP_IS_E1x(bp))
6465 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6466 	else
6467 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6468 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6469 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6470 	/*
6471 	 * mask read length error interrupts in brb for parser
6472 	 * (parsing unit and 'checksum and crc' unit)
6473 	 * these errors are legal (PU reads fixed length and CAC can cause
6474 	 * read length error on truncated packets)
6475 	 */
6476 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6477 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6478 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6479 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6480 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6481 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6482 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6483 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6484 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6485 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6486 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6487 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6488 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6489 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6490 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6491 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6492 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6493 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6494 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6495 
6496 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6497 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6498 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6499 	if (!CHIP_IS_E1x(bp))
6500 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6501 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6502 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6503 
6504 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6505 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6506 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6507 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6508 
6509 	if (!CHIP_IS_E1x(bp))
6510 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6511 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6512 
6513 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6514 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6515 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6516 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6517 }
6518 
6519 static void bnx2x_reset_common(struct bnx2x *bp)
6520 {
6521 	u32 val = 0x1400;
6522 
6523 	/* reset_common */
6524 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6525 	       0xd3ffff7f);
6526 
6527 	if (CHIP_IS_E3(bp)) {
6528 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6529 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6530 	}
6531 
6532 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6533 }
6534 
6535 static void bnx2x_setup_dmae(struct bnx2x *bp)
6536 {
6537 	bp->dmae_ready = 0;
6538 	spin_lock_init(&bp->dmae_lock);
6539 }
6540 
6541 static void bnx2x_init_pxp(struct bnx2x *bp)
6542 {
6543 	u16 devctl;
6544 	int r_order, w_order;
6545 
6546 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6547 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6548 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6549 	if (bp->mrrs == -1)
6550 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6551 	else {
6552 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6553 		r_order = bp->mrrs;
6554 	}
6555 
6556 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6557 }
6558 
6559 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6560 {
6561 	int is_required;
6562 	u32 val;
6563 	int port;
6564 
6565 	if (BP_NOMCP(bp))
6566 		return;
6567 
6568 	is_required = 0;
6569 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6570 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6571 
6572 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6573 		is_required = 1;
6574 
6575 	/*
6576 	 * The fan failure mechanism is usually related to the PHY type since
6577 	 * the power consumption of the board is affected by the PHY. Currently,
6578 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6579 	 */
6580 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6581 		for (port = PORT_0; port < PORT_MAX; port++) {
6582 			is_required |=
6583 				bnx2x_fan_failure_det_req(
6584 					bp,
6585 					bp->common.shmem_base,
6586 					bp->common.shmem2_base,
6587 					port);
6588 		}
6589 
6590 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6591 
6592 	if (is_required == 0)
6593 		return;
6594 
6595 	/* Fan failure is indicated by SPIO 5 */
6596 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6597 
6598 	/* set to active low mode */
6599 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6600 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6601 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6602 
6603 	/* enable interrupt to signal the IGU */
6604 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6605 	val |= MISC_SPIO_SPIO5;
6606 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6607 }
6608 
6609 void bnx2x_pf_disable(struct bnx2x *bp)
6610 {
6611 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6612 	val &= ~IGU_PF_CONF_FUNC_EN;
6613 
6614 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6615 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6616 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6617 }
6618 
6619 static void bnx2x__common_init_phy(struct bnx2x *bp)
6620 {
6621 	u32 shmem_base[2], shmem2_base[2];
6622 	/* Avoid common init in case MFW supports LFA */
6623 	if (SHMEM2_RD(bp, size) >
6624 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6625 		return;
6626 	shmem_base[0] =  bp->common.shmem_base;
6627 	shmem2_base[0] = bp->common.shmem2_base;
6628 	if (!CHIP_IS_E1x(bp)) {
6629 		shmem_base[1] =
6630 			SHMEM2_RD(bp, other_shmem_base_addr);
6631 		shmem2_base[1] =
6632 			SHMEM2_RD(bp, other_shmem2_base_addr);
6633 	}
6634 	bnx2x_acquire_phy_lock(bp);
6635 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6636 			      bp->common.chip_id);
6637 	bnx2x_release_phy_lock(bp);
6638 }
6639 
6640 /**
6641  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6642  *
6643  * @bp:		driver handle
6644  */
6645 static int bnx2x_init_hw_common(struct bnx2x *bp)
6646 {
6647 	u32 val;
6648 
6649 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6650 
6651 	/*
6652 	 * take the RESET lock to protect undi_unload flow from accessing
6653 	 * registers while we're resetting the chip
6654 	 */
6655 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6656 
6657 	bnx2x_reset_common(bp);
6658 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6659 
6660 	val = 0xfffc;
6661 	if (CHIP_IS_E3(bp)) {
6662 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6663 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6664 	}
6665 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6666 
6667 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6668 
6669 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6670 
6671 	if (!CHIP_IS_E1x(bp)) {
6672 		u8 abs_func_id;
6673 
6674 		/**
6675 		 * 4-port mode or 2-port mode we need to turn of master-enable
6676 		 * for everyone, after that, turn it back on for self.
6677 		 * so, we disregard multi-function or not, and always disable
6678 		 * for all functions on the given path, this means 0,2,4,6 for
6679 		 * path 0 and 1,3,5,7 for path 1
6680 		 */
6681 		for (abs_func_id = BP_PATH(bp);
6682 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6683 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6684 				REG_WR(bp,
6685 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6686 				    1);
6687 				continue;
6688 			}
6689 
6690 			bnx2x_pretend_func(bp, abs_func_id);
6691 			/* clear pf enable */
6692 			bnx2x_pf_disable(bp);
6693 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6694 		}
6695 	}
6696 
6697 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6698 	if (CHIP_IS_E1(bp)) {
6699 		/* enable HW interrupt from PXP on USDM overflow
6700 		   bit 16 on INT_MASK_0 */
6701 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6702 	}
6703 
6704 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6705 	bnx2x_init_pxp(bp);
6706 
6707 #ifdef __BIG_ENDIAN
6708 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6709 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6710 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6711 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6712 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6713 	/* make sure this value is 0 */
6714 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6715 
6716 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6717 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6718 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6719 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6720 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6721 #endif
6722 
6723 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6724 
6725 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6726 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6727 
6728 	/* let the HW do it's magic ... */
6729 	msleep(100);
6730 	/* finish PXP init */
6731 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6732 	if (val != 1) {
6733 		BNX2X_ERR("PXP2 CFG failed\n");
6734 		return -EBUSY;
6735 	}
6736 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6737 	if (val != 1) {
6738 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6739 		return -EBUSY;
6740 	}
6741 
6742 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6743 	 * have entries with value "0" and valid bit on.
6744 	 * This needs to be done by the first PF that is loaded in a path
6745 	 * (i.e. common phase)
6746 	 */
6747 	if (!CHIP_IS_E1x(bp)) {
6748 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6749  * (i.e. vnic3) to start even if it is marked as "scan-off".
6750  * This occurs when a different function (func2,3) is being marked
6751  * as "scan-off". Real-life scenario for example: if a driver is being
6752  * load-unloaded while func6,7 are down. This will cause the timer to access
6753  * the ilt, translate to a logical address and send a request to read/write.
6754  * Since the ilt for the function that is down is not valid, this will cause
6755  * a translation error which is unrecoverable.
6756  * The Workaround is intended to make sure that when this happens nothing fatal
6757  * will occur. The workaround:
6758  *	1.  First PF driver which loads on a path will:
6759  *		a.  After taking the chip out of reset, by using pretend,
6760  *		    it will write "0" to the following registers of
6761  *		    the other vnics.
6762  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6763  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6764  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6765  *		    And for itself it will write '1' to
6766  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6767  *		    dmae-operations (writing to pram for example.)
6768  *		    note: can be done for only function 6,7 but cleaner this
6769  *			  way.
6770  *		b.  Write zero+valid to the entire ILT.
6771  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6772  *		    VNIC3 (of that port). The range allocated will be the
6773  *		    entire ILT. This is needed to prevent  ILT range error.
6774  *	2.  Any PF driver load flow:
6775  *		a.  ILT update with the physical addresses of the allocated
6776  *		    logical pages.
6777  *		b.  Wait 20msec. - note that this timeout is needed to make
6778  *		    sure there are no requests in one of the PXP internal
6779  *		    queues with "old" ILT addresses.
6780  *		c.  PF enable in the PGLC.
6781  *		d.  Clear the was_error of the PF in the PGLC. (could have
6782  *		    occurred while driver was down)
6783  *		e.  PF enable in the CFC (WEAK + STRONG)
6784  *		f.  Timers scan enable
6785  *	3.  PF driver unload flow:
6786  *		a.  Clear the Timers scan_en.
6787  *		b.  Polling for scan_on=0 for that PF.
6788  *		c.  Clear the PF enable bit in the PXP.
6789  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6790  *		e.  Write zero+valid to all ILT entries (The valid bit must
6791  *		    stay set)
6792  *		f.  If this is VNIC 3 of a port then also init
6793  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6794  *		    to the last entry in the ILT.
6795  *
6796  *	Notes:
6797  *	Currently the PF error in the PGLC is non recoverable.
6798  *	In the future the there will be a recovery routine for this error.
6799  *	Currently attention is masked.
6800  *	Having an MCP lock on the load/unload process does not guarantee that
6801  *	there is no Timer disable during Func6/7 enable. This is because the
6802  *	Timers scan is currently being cleared by the MCP on FLR.
6803  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6804  *	there is error before clearing it. But the flow above is simpler and
6805  *	more general.
6806  *	All ILT entries are written by zero+valid and not just PF6/7
6807  *	ILT entries since in the future the ILT entries allocation for
6808  *	PF-s might be dynamic.
6809  */
6810 		struct ilt_client_info ilt_cli;
6811 		struct bnx2x_ilt ilt;
6812 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6813 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6814 
6815 		/* initialize dummy TM client */
6816 		ilt_cli.start = 0;
6817 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6818 		ilt_cli.client_num = ILT_CLIENT_TM;
6819 
6820 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6821 		 * Step 2: set the timers first/last ilt entry to point
6822 		 * to the entire range to prevent ILT range error for 3rd/4th
6823 		 * vnic	(this code assumes existence of the vnic)
6824 		 *
6825 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6826 		 * with dummy TM client
6827 		 *
6828 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6829 		 * and his brother are split registers
6830 		 */
6831 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6832 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6833 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6834 
6835 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6836 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6837 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6838 	}
6839 
6840 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6841 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6842 
6843 	if (!CHIP_IS_E1x(bp)) {
6844 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6845 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6846 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6847 
6848 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6849 
6850 		/* let the HW do it's magic ... */
6851 		do {
6852 			msleep(200);
6853 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6854 		} while (factor-- && (val != 1));
6855 
6856 		if (val != 1) {
6857 			BNX2X_ERR("ATC_INIT failed\n");
6858 			return -EBUSY;
6859 		}
6860 	}
6861 
6862 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6863 
6864 	bnx2x_iov_init_dmae(bp);
6865 
6866 	/* clean the DMAE memory */
6867 	bp->dmae_ready = 1;
6868 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6869 
6870 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6871 
6872 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6873 
6874 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6875 
6876 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6877 
6878 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6879 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6880 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6881 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6882 
6883 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6884 
6885 	/* QM queues pointers table */
6886 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6887 
6888 	/* soft reset pulse */
6889 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6890 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6891 
6892 	if (CNIC_SUPPORT(bp))
6893 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6894 
6895 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6896 
6897 	if (!CHIP_REV_IS_SLOW(bp))
6898 		/* enable hw interrupt from doorbell Q */
6899 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6900 
6901 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6902 
6903 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6904 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6905 
6906 	if (!CHIP_IS_E1(bp))
6907 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6908 
6909 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6910 		if (IS_MF_AFEX(bp)) {
6911 			/* configure that VNTag and VLAN headers must be
6912 			 * received in afex mode
6913 			 */
6914 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6915 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6916 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6917 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6918 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6919 		} else {
6920 			/* Bit-map indicating which L2 hdrs may appear
6921 			 * after the basic Ethernet header
6922 			 */
6923 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6924 			       bp->path_has_ovlan ? 7 : 6);
6925 		}
6926 	}
6927 
6928 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6929 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6930 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6931 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6932 
6933 	if (!CHIP_IS_E1x(bp)) {
6934 		/* reset VFC memories */
6935 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6936 			   VFC_MEMORIES_RST_REG_CAM_RST |
6937 			   VFC_MEMORIES_RST_REG_RAM_RST);
6938 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6939 			   VFC_MEMORIES_RST_REG_CAM_RST |
6940 			   VFC_MEMORIES_RST_REG_RAM_RST);
6941 
6942 		msleep(20);
6943 	}
6944 
6945 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6946 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6947 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6948 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6949 
6950 	/* sync semi rtc */
6951 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6952 	       0x80000000);
6953 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6954 	       0x80000000);
6955 
6956 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6957 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6958 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6959 
6960 	if (!CHIP_IS_E1x(bp)) {
6961 		if (IS_MF_AFEX(bp)) {
6962 			/* configure that VNTag and VLAN headers must be
6963 			 * sent in afex mode
6964 			 */
6965 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6966 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6967 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6968 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6969 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6970 		} else {
6971 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6972 			       bp->path_has_ovlan ? 7 : 6);
6973 		}
6974 	}
6975 
6976 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6977 
6978 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6979 
6980 	if (CNIC_SUPPORT(bp)) {
6981 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6982 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6983 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6984 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6985 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6986 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6987 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6988 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6989 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6990 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6991 	}
6992 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6993 
6994 	if (sizeof(union cdu_context) != 1024)
6995 		/* we currently assume that a context is 1024 bytes */
6996 		dev_alert(&bp->pdev->dev,
6997 			  "please adjust the size of cdu_context(%ld)\n",
6998 			  (long)sizeof(union cdu_context));
6999 
7000 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7001 	val = (4 << 24) + (0 << 12) + 1024;
7002 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7003 
7004 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7005 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7006 	/* enable context validation interrupt from CFC */
7007 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7008 
7009 	/* set the thresholds to prevent CFC/CDU race */
7010 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7011 
7012 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7013 
7014 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7015 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7016 
7017 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7018 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7019 
7020 	/* Reset PCIE errors for debug */
7021 	REG_WR(bp, 0x2814, 0xffffffff);
7022 	REG_WR(bp, 0x3820, 0xffffffff);
7023 
7024 	if (!CHIP_IS_E1x(bp)) {
7025 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7026 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7027 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7028 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7029 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7030 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7031 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7032 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7033 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7034 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7035 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7036 	}
7037 
7038 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7039 	if (!CHIP_IS_E1(bp)) {
7040 		/* in E3 this done in per-port section */
7041 		if (!CHIP_IS_E3(bp))
7042 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7043 	}
7044 	if (CHIP_IS_E1H(bp))
7045 		/* not applicable for E2 (and above ...) */
7046 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7047 
7048 	if (CHIP_REV_IS_SLOW(bp))
7049 		msleep(200);
7050 
7051 	/* finish CFC init */
7052 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7053 	if (val != 1) {
7054 		BNX2X_ERR("CFC LL_INIT failed\n");
7055 		return -EBUSY;
7056 	}
7057 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7058 	if (val != 1) {
7059 		BNX2X_ERR("CFC AC_INIT failed\n");
7060 		return -EBUSY;
7061 	}
7062 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7063 	if (val != 1) {
7064 		BNX2X_ERR("CFC CAM_INIT failed\n");
7065 		return -EBUSY;
7066 	}
7067 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7068 
7069 	if (CHIP_IS_E1(bp)) {
7070 		/* read NIG statistic
7071 		   to see if this is our first up since powerup */
7072 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7073 		val = *bnx2x_sp(bp, wb_data[0]);
7074 
7075 		/* do internal memory self test */
7076 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7077 			BNX2X_ERR("internal mem self test failed\n");
7078 			return -EBUSY;
7079 		}
7080 	}
7081 
7082 	bnx2x_setup_fan_failure_detection(bp);
7083 
7084 	/* clear PXP2 attentions */
7085 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7086 
7087 	bnx2x_enable_blocks_attention(bp);
7088 	bnx2x_enable_blocks_parity(bp);
7089 
7090 	if (!BP_NOMCP(bp)) {
7091 		if (CHIP_IS_E1x(bp))
7092 			bnx2x__common_init_phy(bp);
7093 	} else
7094 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7095 
7096 	return 0;
7097 }
7098 
7099 /**
7100  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7101  *
7102  * @bp:		driver handle
7103  */
7104 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7105 {
7106 	int rc = bnx2x_init_hw_common(bp);
7107 
7108 	if (rc)
7109 		return rc;
7110 
7111 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7112 	if (!BP_NOMCP(bp))
7113 		bnx2x__common_init_phy(bp);
7114 
7115 	return 0;
7116 }
7117 
7118 static int bnx2x_init_hw_port(struct bnx2x *bp)
7119 {
7120 	int port = BP_PORT(bp);
7121 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7122 	u32 low, high;
7123 	u32 val;
7124 
7125 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7126 
7127 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7128 
7129 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7130 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7131 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7132 
7133 	/* Timers bug workaround: disables the pf_master bit in pglue at
7134 	 * common phase, we need to enable it here before any dmae access are
7135 	 * attempted. Therefore we manually added the enable-master to the
7136 	 * port phase (it also happens in the function phase)
7137 	 */
7138 	if (!CHIP_IS_E1x(bp))
7139 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7140 
7141 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7142 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7143 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7144 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7145 
7146 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7147 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7148 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7149 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7150 
7151 	/* QM cid (connection) count */
7152 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7153 
7154 	if (CNIC_SUPPORT(bp)) {
7155 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7156 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7157 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7158 	}
7159 
7160 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7161 
7162 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7163 
7164 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7165 
7166 		if (IS_MF(bp))
7167 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7168 		else if (bp->dev->mtu > 4096) {
7169 			if (bp->flags & ONE_PORT_FLAG)
7170 				low = 160;
7171 			else {
7172 				val = bp->dev->mtu;
7173 				/* (24*1024 + val*4)/256 */
7174 				low = 96 + (val/64) +
7175 						((val % 64) ? 1 : 0);
7176 			}
7177 		} else
7178 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7179 		high = low + 56;	/* 14*1024/256 */
7180 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7181 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7182 	}
7183 
7184 	if (CHIP_MODE_IS_4_PORT(bp))
7185 		REG_WR(bp, (BP_PORT(bp) ?
7186 			    BRB1_REG_MAC_GUARANTIED_1 :
7187 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7188 
7189 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7190 	if (CHIP_IS_E3B0(bp)) {
7191 		if (IS_MF_AFEX(bp)) {
7192 			/* configure headers for AFEX mode */
7193 			REG_WR(bp, BP_PORT(bp) ?
7194 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7195 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7196 			REG_WR(bp, BP_PORT(bp) ?
7197 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7198 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7199 			REG_WR(bp, BP_PORT(bp) ?
7200 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7201 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7202 		} else {
7203 			/* Ovlan exists only if we are in multi-function +
7204 			 * switch-dependent mode, in switch-independent there
7205 			 * is no ovlan headers
7206 			 */
7207 			REG_WR(bp, BP_PORT(bp) ?
7208 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7209 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7210 			       (bp->path_has_ovlan ? 7 : 6));
7211 		}
7212 	}
7213 
7214 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7215 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7216 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7217 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7218 
7219 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7220 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7221 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7222 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7223 
7224 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7225 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7226 
7227 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7228 
7229 	if (CHIP_IS_E1x(bp)) {
7230 		/* configure PBF to work without PAUSE mtu 9000 */
7231 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7232 
7233 		/* update threshold */
7234 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7235 		/* update init credit */
7236 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7237 
7238 		/* probe changes */
7239 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7240 		udelay(50);
7241 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7242 	}
7243 
7244 	if (CNIC_SUPPORT(bp))
7245 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7246 
7247 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7248 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7249 
7250 	if (CHIP_IS_E1(bp)) {
7251 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7252 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7253 	}
7254 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7255 
7256 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7257 
7258 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7259 	/* init aeu_mask_attn_func_0/1:
7260 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7261 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7262 	 *             bits 4-7 are used for "per vn group attention" */
7263 	val = IS_MF(bp) ? 0xF7 : 0x7;
7264 	/* Enable DCBX attention for all but E1 */
7265 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7266 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7267 
7268 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7269 
7270 	if (!CHIP_IS_E1x(bp)) {
7271 		/* Bit-map indicating which L2 hdrs may appear after the
7272 		 * basic Ethernet header
7273 		 */
7274 		if (IS_MF_AFEX(bp))
7275 			REG_WR(bp, BP_PORT(bp) ?
7276 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7277 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7278 		else
7279 			REG_WR(bp, BP_PORT(bp) ?
7280 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7281 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7282 			       IS_MF_SD(bp) ? 7 : 6);
7283 
7284 		if (CHIP_IS_E3(bp))
7285 			REG_WR(bp, BP_PORT(bp) ?
7286 				   NIG_REG_LLH1_MF_MODE :
7287 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7288 	}
7289 	if (!CHIP_IS_E3(bp))
7290 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7291 
7292 	if (!CHIP_IS_E1(bp)) {
7293 		/* 0x2 disable mf_ov, 0x1 enable */
7294 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7295 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7296 
7297 		if (!CHIP_IS_E1x(bp)) {
7298 			val = 0;
7299 			switch (bp->mf_mode) {
7300 			case MULTI_FUNCTION_SD:
7301 				val = 1;
7302 				break;
7303 			case MULTI_FUNCTION_SI:
7304 			case MULTI_FUNCTION_AFEX:
7305 				val = 2;
7306 				break;
7307 			}
7308 
7309 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7310 						  NIG_REG_LLH0_CLS_TYPE), val);
7311 		}
7312 		{
7313 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7314 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7315 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7316 		}
7317 	}
7318 
7319 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7320 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7321 	if (val & MISC_SPIO_SPIO5) {
7322 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7323 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7324 		val = REG_RD(bp, reg_addr);
7325 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7326 		REG_WR(bp, reg_addr, val);
7327 	}
7328 
7329 	return 0;
7330 }
7331 
7332 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7333 {
7334 	int reg;
7335 	u32 wb_write[2];
7336 
7337 	if (CHIP_IS_E1(bp))
7338 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7339 	else
7340 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7341 
7342 	wb_write[0] = ONCHIP_ADDR1(addr);
7343 	wb_write[1] = ONCHIP_ADDR2(addr);
7344 	REG_WR_DMAE(bp, reg, wb_write, 2);
7345 }
7346 
7347 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7348 {
7349 	u32 data, ctl, cnt = 100;
7350 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7351 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7352 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7353 	u32 sb_bit =  1 << (idu_sb_id%32);
7354 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7355 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7356 
7357 	/* Not supported in BC mode */
7358 	if (CHIP_INT_MODE_IS_BC(bp))
7359 		return;
7360 
7361 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7362 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7363 		IGU_REGULAR_CLEANUP_SET				|
7364 		IGU_REGULAR_BCLEANUP;
7365 
7366 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7367 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7368 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7369 
7370 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7371 			 data, igu_addr_data);
7372 	REG_WR(bp, igu_addr_data, data);
7373 	mmiowb();
7374 	barrier();
7375 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7376 			  ctl, igu_addr_ctl);
7377 	REG_WR(bp, igu_addr_ctl, ctl);
7378 	mmiowb();
7379 	barrier();
7380 
7381 	/* wait for clean up to finish */
7382 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7383 		msleep(20);
7384 
7385 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7386 		DP(NETIF_MSG_HW,
7387 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7388 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7389 	}
7390 }
7391 
7392 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7393 {
7394 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7395 }
7396 
7397 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7398 {
7399 	u32 i, base = FUNC_ILT_BASE(func);
7400 	for (i = base; i < base + ILT_PER_FUNC; i++)
7401 		bnx2x_ilt_wr(bp, i, 0);
7402 }
7403 
7404 static void bnx2x_init_searcher(struct bnx2x *bp)
7405 {
7406 	int port = BP_PORT(bp);
7407 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7408 	/* T1 hash bits value determines the T1 number of entries */
7409 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7410 }
7411 
7412 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7413 {
7414 	int rc;
7415 	struct bnx2x_func_state_params func_params = {NULL};
7416 	struct bnx2x_func_switch_update_params *switch_update_params =
7417 		&func_params.params.switch_update;
7418 
7419 	/* Prepare parameters for function state transitions */
7420 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7421 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7422 
7423 	func_params.f_obj = &bp->func_obj;
7424 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7425 
7426 	/* Function parameters */
7427 	switch_update_params->suspend = suspend;
7428 
7429 	rc = bnx2x_func_state_change(bp, &func_params);
7430 
7431 	return rc;
7432 }
7433 
7434 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7435 {
7436 	int rc, i, port = BP_PORT(bp);
7437 	int vlan_en = 0, mac_en[NUM_MACS];
7438 
7439 	/* Close input from network */
7440 	if (bp->mf_mode == SINGLE_FUNCTION) {
7441 		bnx2x_set_rx_filter(&bp->link_params, 0);
7442 	} else {
7443 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7444 				   NIG_REG_LLH0_FUNC_EN);
7445 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7446 			  NIG_REG_LLH0_FUNC_EN, 0);
7447 		for (i = 0; i < NUM_MACS; i++) {
7448 			mac_en[i] = REG_RD(bp, port ?
7449 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7450 					      4 * i) :
7451 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7452 					      4 * i));
7453 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7454 					      4 * i) :
7455 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7456 		}
7457 	}
7458 
7459 	/* Close BMC to host */
7460 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7461 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7462 
7463 	/* Suspend Tx switching to the PF. Completion of this ramrod
7464 	 * further guarantees that all the packets of that PF / child
7465 	 * VFs in BRB were processed by the Parser, so it is safe to
7466 	 * change the NIC_MODE register.
7467 	 */
7468 	rc = bnx2x_func_switch_update(bp, 1);
7469 	if (rc) {
7470 		BNX2X_ERR("Can't suspend tx-switching!\n");
7471 		return rc;
7472 	}
7473 
7474 	/* Change NIC_MODE register */
7475 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7476 
7477 	/* Open input from network */
7478 	if (bp->mf_mode == SINGLE_FUNCTION) {
7479 		bnx2x_set_rx_filter(&bp->link_params, 1);
7480 	} else {
7481 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7482 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7483 		for (i = 0; i < NUM_MACS; i++) {
7484 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7485 					      4 * i) :
7486 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7487 				  mac_en[i]);
7488 		}
7489 	}
7490 
7491 	/* Enable BMC to host */
7492 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7493 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7494 
7495 	/* Resume Tx switching to the PF */
7496 	rc = bnx2x_func_switch_update(bp, 0);
7497 	if (rc) {
7498 		BNX2X_ERR("Can't resume tx-switching!\n");
7499 		return rc;
7500 	}
7501 
7502 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7503 	return 0;
7504 }
7505 
7506 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7507 {
7508 	int rc;
7509 
7510 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7511 
7512 	if (CONFIGURE_NIC_MODE(bp)) {
7513 		/* Configure searcher as part of function hw init */
7514 		bnx2x_init_searcher(bp);
7515 
7516 		/* Reset NIC mode */
7517 		rc = bnx2x_reset_nic_mode(bp);
7518 		if (rc)
7519 			BNX2X_ERR("Can't change NIC mode!\n");
7520 		return rc;
7521 	}
7522 
7523 	return 0;
7524 }
7525 
7526 static int bnx2x_init_hw_func(struct bnx2x *bp)
7527 {
7528 	int port = BP_PORT(bp);
7529 	int func = BP_FUNC(bp);
7530 	int init_phase = PHASE_PF0 + func;
7531 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7532 	u16 cdu_ilt_start;
7533 	u32 addr, val;
7534 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7535 	int i, main_mem_width, rc;
7536 
7537 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7538 
7539 	/* FLR cleanup - hmmm */
7540 	if (!CHIP_IS_E1x(bp)) {
7541 		rc = bnx2x_pf_flr_clnup(bp);
7542 		if (rc) {
7543 			bnx2x_fw_dump(bp);
7544 			return rc;
7545 		}
7546 	}
7547 
7548 	/* set MSI reconfigure capability */
7549 	if (bp->common.int_block == INT_BLOCK_HC) {
7550 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7551 		val = REG_RD(bp, addr);
7552 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7553 		REG_WR(bp, addr, val);
7554 	}
7555 
7556 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7557 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7558 
7559 	ilt = BP_ILT(bp);
7560 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7561 
7562 	if (IS_SRIOV(bp))
7563 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7564 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7565 
7566 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7567 	 * those of the VFs, so start line should be reset
7568 	 */
7569 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7570 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7571 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7572 		ilt->lines[cdu_ilt_start + i].page_mapping =
7573 			bp->context[i].cxt_mapping;
7574 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7575 	}
7576 
7577 	bnx2x_ilt_init_op(bp, INITOP_SET);
7578 
7579 	if (!CONFIGURE_NIC_MODE(bp)) {
7580 		bnx2x_init_searcher(bp);
7581 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7582 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7583 	} else {
7584 		/* Set NIC mode */
7585 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7586 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7587 	}
7588 
7589 	if (!CHIP_IS_E1x(bp)) {
7590 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7591 
7592 		/* Turn on a single ISR mode in IGU if driver is going to use
7593 		 * INT#x or MSI
7594 		 */
7595 		if (!(bp->flags & USING_MSIX_FLAG))
7596 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7597 		/*
7598 		 * Timers workaround bug: function init part.
7599 		 * Need to wait 20msec after initializing ILT,
7600 		 * needed to make sure there are no requests in
7601 		 * one of the PXP internal queues with "old" ILT addresses
7602 		 */
7603 		msleep(20);
7604 		/*
7605 		 * Master enable - Due to WB DMAE writes performed before this
7606 		 * register is re-initialized as part of the regular function
7607 		 * init
7608 		 */
7609 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7610 		/* Enable the function in IGU */
7611 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7612 	}
7613 
7614 	bp->dmae_ready = 1;
7615 
7616 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7617 
7618 	if (!CHIP_IS_E1x(bp))
7619 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7620 
7621 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7622 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7623 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7624 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7625 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7626 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7627 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7628 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7629 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7630 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7631 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7632 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7633 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7634 
7635 	if (!CHIP_IS_E1x(bp))
7636 		REG_WR(bp, QM_REG_PF_EN, 1);
7637 
7638 	if (!CHIP_IS_E1x(bp)) {
7639 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7640 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7641 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7642 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7643 	}
7644 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7645 
7646 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7647 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7648 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7649 
7650 	bnx2x_iov_init_dq(bp);
7651 
7652 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7653 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7654 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7655 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7656 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7657 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7658 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7659 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7660 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7661 	if (!CHIP_IS_E1x(bp))
7662 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7663 
7664 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7665 
7666 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7667 
7668 	if (!CHIP_IS_E1x(bp))
7669 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7670 
7671 	if (IS_MF(bp)) {
7672 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7673 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7674 	}
7675 
7676 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7677 
7678 	/* HC init per function */
7679 	if (bp->common.int_block == INT_BLOCK_HC) {
7680 		if (CHIP_IS_E1H(bp)) {
7681 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7682 
7683 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7684 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7685 		}
7686 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7687 
7688 	} else {
7689 		int num_segs, sb_idx, prod_offset;
7690 
7691 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7692 
7693 		if (!CHIP_IS_E1x(bp)) {
7694 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7695 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7696 		}
7697 
7698 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7699 
7700 		if (!CHIP_IS_E1x(bp)) {
7701 			int dsb_idx = 0;
7702 			/**
7703 			 * Producer memory:
7704 			 * E2 mode: address 0-135 match to the mapping memory;
7705 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7706 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7707 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7708 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7709 			 * 144-147 reserved.
7710 			 *
7711 			 * E1.5 mode - In backward compatible mode;
7712 			 * for non default SB; each even line in the memory
7713 			 * holds the U producer and each odd line hold
7714 			 * the C producer. The first 128 producers are for
7715 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7716 			 * producers are for the DSB for each PF.
7717 			 * Each PF has five segments: (the order inside each
7718 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7719 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7720 			 * 144-147 attn prods;
7721 			 */
7722 			/* non-default-status-blocks */
7723 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7724 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7725 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7726 				prod_offset = (bp->igu_base_sb + sb_idx) *
7727 					num_segs;
7728 
7729 				for (i = 0; i < num_segs; i++) {
7730 					addr = IGU_REG_PROD_CONS_MEMORY +
7731 							(prod_offset + i) * 4;
7732 					REG_WR(bp, addr, 0);
7733 				}
7734 				/* send consumer update with value 0 */
7735 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7736 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7737 				bnx2x_igu_clear_sb(bp,
7738 						   bp->igu_base_sb + sb_idx);
7739 			}
7740 
7741 			/* default-status-blocks */
7742 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7743 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7744 
7745 			if (CHIP_MODE_IS_4_PORT(bp))
7746 				dsb_idx = BP_FUNC(bp);
7747 			else
7748 				dsb_idx = BP_VN(bp);
7749 
7750 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7751 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7752 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7753 
7754 			/*
7755 			 * igu prods come in chunks of E1HVN_MAX (4) -
7756 			 * does not matters what is the current chip mode
7757 			 */
7758 			for (i = 0; i < (num_segs * E1HVN_MAX);
7759 			     i += E1HVN_MAX) {
7760 				addr = IGU_REG_PROD_CONS_MEMORY +
7761 							(prod_offset + i)*4;
7762 				REG_WR(bp, addr, 0);
7763 			}
7764 			/* send consumer update with 0 */
7765 			if (CHIP_INT_MODE_IS_BC(bp)) {
7766 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7767 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7768 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7769 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7770 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7771 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7772 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7773 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7774 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7775 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7776 			} else {
7777 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7778 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7779 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7780 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7781 			}
7782 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7783 
7784 			/* !!! These should become driver const once
7785 			   rf-tool supports split-68 const */
7786 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7787 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7788 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7789 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7790 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7791 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7792 		}
7793 	}
7794 
7795 	/* Reset PCIE errors for debug */
7796 	REG_WR(bp, 0x2114, 0xffffffff);
7797 	REG_WR(bp, 0x2120, 0xffffffff);
7798 
7799 	if (CHIP_IS_E1x(bp)) {
7800 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7801 		main_mem_base = HC_REG_MAIN_MEMORY +
7802 				BP_PORT(bp) * (main_mem_size * 4);
7803 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7804 		main_mem_width = 8;
7805 
7806 		val = REG_RD(bp, main_mem_prty_clr);
7807 		if (val)
7808 			DP(NETIF_MSG_HW,
7809 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7810 			   val);
7811 
7812 		/* Clear "false" parity errors in MSI-X table */
7813 		for (i = main_mem_base;
7814 		     i < main_mem_base + main_mem_size * 4;
7815 		     i += main_mem_width) {
7816 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7817 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7818 					 i, main_mem_width / 4);
7819 		}
7820 		/* Clear HC parity attention */
7821 		REG_RD(bp, main_mem_prty_clr);
7822 	}
7823 
7824 #ifdef BNX2X_STOP_ON_ERROR
7825 	/* Enable STORMs SP logging */
7826 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7827 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7828 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7829 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7830 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7831 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7832 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7833 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7834 #endif
7835 
7836 	bnx2x_phy_probe(&bp->link_params);
7837 
7838 	return 0;
7839 }
7840 
7841 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7842 {
7843 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7844 
7845 	if (!CHIP_IS_E1x(bp))
7846 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7847 			       sizeof(struct host_hc_status_block_e2));
7848 	else
7849 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7850 			       sizeof(struct host_hc_status_block_e1x));
7851 
7852 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7853 }
7854 
7855 void bnx2x_free_mem(struct bnx2x *bp)
7856 {
7857 	int i;
7858 
7859 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7860 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7861 
7862 	if (IS_VF(bp))
7863 		return;
7864 
7865 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7866 		       sizeof(struct host_sp_status_block));
7867 
7868 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7869 		       sizeof(struct bnx2x_slowpath));
7870 
7871 	for (i = 0; i < L2_ILT_LINES(bp); i++)
7872 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7873 			       bp->context[i].size);
7874 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7875 
7876 	BNX2X_FREE(bp->ilt->lines);
7877 
7878 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7879 
7880 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7881 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7882 
7883 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7884 
7885 	bnx2x_iov_free_mem(bp);
7886 }
7887 
7888 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7889 {
7890 	if (!CHIP_IS_E1x(bp))
7891 		/* size = the status block + ramrod buffers */
7892 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7893 				sizeof(struct host_hc_status_block_e2));
7894 	else
7895 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7896 				&bp->cnic_sb_mapping,
7897 				sizeof(struct
7898 				       host_hc_status_block_e1x));
7899 
7900 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7901 		/* allocate searcher T2 table, as it wasn't allocated before */
7902 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7903 
7904 	/* write address to which L5 should insert its values */
7905 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
7906 		&bp->slowpath->drv_info_to_mcp;
7907 
7908 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7909 		goto alloc_mem_err;
7910 
7911 	return 0;
7912 
7913 alloc_mem_err:
7914 	bnx2x_free_mem_cnic(bp);
7915 	BNX2X_ERR("Can't allocate memory\n");
7916 	return -ENOMEM;
7917 }
7918 
7919 int bnx2x_alloc_mem(struct bnx2x *bp)
7920 {
7921 	int i, allocated, context_size;
7922 
7923 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7924 		/* allocate searcher T2 table */
7925 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7926 
7927 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7928 			sizeof(struct host_sp_status_block));
7929 
7930 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7931 			sizeof(struct bnx2x_slowpath));
7932 
7933 	/* Allocate memory for CDU context:
7934 	 * This memory is allocated separately and not in the generic ILT
7935 	 * functions because CDU differs in few aspects:
7936 	 * 1. There are multiple entities allocating memory for context -
7937 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7938 	 * its own ILT lines.
7939 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
7940 	 * for the other ILT clients), to be efficient we want to support
7941 	 * allocation of sub-page-size in the last entry.
7942 	 * 3. Context pointers are used by the driver to pass to FW / update
7943 	 * the context (for the other ILT clients the pointers are used just to
7944 	 * free the memory during unload).
7945 	 */
7946 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7947 
7948 	for (i = 0, allocated = 0; allocated < context_size; i++) {
7949 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7950 					  (context_size - allocated));
7951 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7952 				&bp->context[i].cxt_mapping,
7953 				bp->context[i].size);
7954 		allocated += bp->context[i].size;
7955 	}
7956 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7957 
7958 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7959 		goto alloc_mem_err;
7960 
7961 	if (bnx2x_iov_alloc_mem(bp))
7962 		goto alloc_mem_err;
7963 
7964 	/* Slow path ring */
7965 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7966 
7967 	/* EQ */
7968 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7969 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7970 
7971 	return 0;
7972 
7973 alloc_mem_err:
7974 	bnx2x_free_mem(bp);
7975 	BNX2X_ERR("Can't allocate memory\n");
7976 	return -ENOMEM;
7977 }
7978 
7979 /*
7980  * Init service functions
7981  */
7982 
7983 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7984 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7985 		      int mac_type, unsigned long *ramrod_flags)
7986 {
7987 	int rc;
7988 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7989 
7990 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7991 
7992 	/* Fill general parameters */
7993 	ramrod_param.vlan_mac_obj = obj;
7994 	ramrod_param.ramrod_flags = *ramrod_flags;
7995 
7996 	/* Fill a user request section if needed */
7997 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7998 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7999 
8000 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8001 
8002 		/* Set the command: ADD or DEL */
8003 		if (set)
8004 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8005 		else
8006 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8007 	}
8008 
8009 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8010 
8011 	if (rc == -EEXIST) {
8012 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8013 		/* do not treat adding same MAC as error */
8014 		rc = 0;
8015 	} else if (rc < 0)
8016 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8017 
8018 	return rc;
8019 }
8020 
8021 int bnx2x_del_all_macs(struct bnx2x *bp,
8022 		       struct bnx2x_vlan_mac_obj *mac_obj,
8023 		       int mac_type, bool wait_for_comp)
8024 {
8025 	int rc;
8026 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8027 
8028 	/* Wait for completion of requested */
8029 	if (wait_for_comp)
8030 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8031 
8032 	/* Set the mac type of addresses we want to clear */
8033 	__set_bit(mac_type, &vlan_mac_flags);
8034 
8035 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8036 	if (rc < 0)
8037 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8038 
8039 	return rc;
8040 }
8041 
8042 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8043 {
8044 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
8045 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8046 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8047 		   "Ignoring Zero MAC for STORAGE SD mode\n");
8048 		return 0;
8049 	}
8050 
8051 	if (IS_PF(bp)) {
8052 		unsigned long ramrod_flags = 0;
8053 
8054 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8055 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8056 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8057 					 &bp->sp_objs->mac_obj, set,
8058 					 BNX2X_ETH_MAC, &ramrod_flags);
8059 	} else { /* vf */
8060 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8061 					     bp->fp->index, true);
8062 	}
8063 }
8064 
8065 int bnx2x_setup_leading(struct bnx2x *bp)
8066 {
8067 	if (IS_PF(bp))
8068 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8069 	else /* VF */
8070 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8071 }
8072 
8073 /**
8074  * bnx2x_set_int_mode - configure interrupt mode
8075  *
8076  * @bp:		driver handle
8077  *
8078  * In case of MSI-X it will also try to enable MSI-X.
8079  */
8080 int bnx2x_set_int_mode(struct bnx2x *bp)
8081 {
8082 	int rc = 0;
8083 
8084 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8085 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8086 		return -EINVAL;
8087 	}
8088 
8089 	switch (int_mode) {
8090 	case BNX2X_INT_MODE_MSIX:
8091 		/* attempt to enable msix */
8092 		rc = bnx2x_enable_msix(bp);
8093 
8094 		/* msix attained */
8095 		if (!rc)
8096 			return 0;
8097 
8098 		/* vfs use only msix */
8099 		if (rc && IS_VF(bp))
8100 			return rc;
8101 
8102 		/* failed to enable multiple MSI-X */
8103 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8104 			       bp->num_queues,
8105 			       1 + bp->num_cnic_queues);
8106 
8107 		/* falling through... */
8108 	case BNX2X_INT_MODE_MSI:
8109 		bnx2x_enable_msi(bp);
8110 
8111 		/* falling through... */
8112 	case BNX2X_INT_MODE_INTX:
8113 		bp->num_ethernet_queues = 1;
8114 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8115 		BNX2X_DEV_INFO("set number of queues to 1\n");
8116 		break;
8117 	default:
8118 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8119 		return -EINVAL;
8120 	}
8121 	return 0;
8122 }
8123 
8124 /* must be called prior to any HW initializations */
8125 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8126 {
8127 	if (IS_SRIOV(bp))
8128 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8129 	return L2_ILT_LINES(bp);
8130 }
8131 
8132 void bnx2x_ilt_set_info(struct bnx2x *bp)
8133 {
8134 	struct ilt_client_info *ilt_client;
8135 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8136 	u16 line = 0;
8137 
8138 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8139 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8140 
8141 	/* CDU */
8142 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8143 	ilt_client->client_num = ILT_CLIENT_CDU;
8144 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8145 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8146 	ilt_client->start = line;
8147 	line += bnx2x_cid_ilt_lines(bp);
8148 
8149 	if (CNIC_SUPPORT(bp))
8150 		line += CNIC_ILT_LINES;
8151 	ilt_client->end = line - 1;
8152 
8153 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8154 	   ilt_client->start,
8155 	   ilt_client->end,
8156 	   ilt_client->page_size,
8157 	   ilt_client->flags,
8158 	   ilog2(ilt_client->page_size >> 12));
8159 
8160 	/* QM */
8161 	if (QM_INIT(bp->qm_cid_count)) {
8162 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8163 		ilt_client->client_num = ILT_CLIENT_QM;
8164 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8165 		ilt_client->flags = 0;
8166 		ilt_client->start = line;
8167 
8168 		/* 4 bytes for each cid */
8169 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8170 							 QM_ILT_PAGE_SZ);
8171 
8172 		ilt_client->end = line - 1;
8173 
8174 		DP(NETIF_MSG_IFUP,
8175 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8176 		   ilt_client->start,
8177 		   ilt_client->end,
8178 		   ilt_client->page_size,
8179 		   ilt_client->flags,
8180 		   ilog2(ilt_client->page_size >> 12));
8181 	}
8182 
8183 	if (CNIC_SUPPORT(bp)) {
8184 		/* SRC */
8185 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8186 		ilt_client->client_num = ILT_CLIENT_SRC;
8187 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8188 		ilt_client->flags = 0;
8189 		ilt_client->start = line;
8190 		line += SRC_ILT_LINES;
8191 		ilt_client->end = line - 1;
8192 
8193 		DP(NETIF_MSG_IFUP,
8194 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8195 		   ilt_client->start,
8196 		   ilt_client->end,
8197 		   ilt_client->page_size,
8198 		   ilt_client->flags,
8199 		   ilog2(ilt_client->page_size >> 12));
8200 
8201 		/* TM */
8202 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8203 		ilt_client->client_num = ILT_CLIENT_TM;
8204 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8205 		ilt_client->flags = 0;
8206 		ilt_client->start = line;
8207 		line += TM_ILT_LINES;
8208 		ilt_client->end = line - 1;
8209 
8210 		DP(NETIF_MSG_IFUP,
8211 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8212 		   ilt_client->start,
8213 		   ilt_client->end,
8214 		   ilt_client->page_size,
8215 		   ilt_client->flags,
8216 		   ilog2(ilt_client->page_size >> 12));
8217 	}
8218 
8219 	BUG_ON(line > ILT_MAX_LINES);
8220 }
8221 
8222 /**
8223  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8224  *
8225  * @bp:			driver handle
8226  * @fp:			pointer to fastpath
8227  * @init_params:	pointer to parameters structure
8228  *
8229  * parameters configured:
8230  *      - HC configuration
8231  *      - Queue's CDU context
8232  */
8233 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8234 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8235 {
8236 	u8 cos;
8237 	int cxt_index, cxt_offset;
8238 
8239 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8240 	if (!IS_FCOE_FP(fp)) {
8241 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8242 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8243 
8244 		/* If HC is supported, enable host coalescing in the transition
8245 		 * to INIT state.
8246 		 */
8247 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8248 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8249 
8250 		/* HC rate */
8251 		init_params->rx.hc_rate = bp->rx_ticks ?
8252 			(1000000 / bp->rx_ticks) : 0;
8253 		init_params->tx.hc_rate = bp->tx_ticks ?
8254 			(1000000 / bp->tx_ticks) : 0;
8255 
8256 		/* FW SB ID */
8257 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8258 			fp->fw_sb_id;
8259 
8260 		/*
8261 		 * CQ index among the SB indices: FCoE clients uses the default
8262 		 * SB, therefore it's different.
8263 		 */
8264 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8265 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8266 	}
8267 
8268 	/* set maximum number of COSs supported by this queue */
8269 	init_params->max_cos = fp->max_cos;
8270 
8271 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8272 	    fp->index, init_params->max_cos);
8273 
8274 	/* set the context pointers queue object */
8275 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8276 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8277 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8278 				ILT_PAGE_CIDS);
8279 		init_params->cxts[cos] =
8280 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8281 	}
8282 }
8283 
8284 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8285 			struct bnx2x_queue_state_params *q_params,
8286 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8287 			int tx_index, bool leading)
8288 {
8289 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8290 
8291 	/* Set the command */
8292 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8293 
8294 	/* Set tx-only QUEUE flags: don't zero statistics */
8295 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8296 
8297 	/* choose the index of the cid to send the slow path on */
8298 	tx_only_params->cid_index = tx_index;
8299 
8300 	/* Set general TX_ONLY_SETUP parameters */
8301 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8302 
8303 	/* Set Tx TX_ONLY_SETUP parameters */
8304 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8305 
8306 	DP(NETIF_MSG_IFUP,
8307 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8308 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8309 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8310 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8311 
8312 	/* send the ramrod */
8313 	return bnx2x_queue_state_change(bp, q_params);
8314 }
8315 
8316 /**
8317  * bnx2x_setup_queue - setup queue
8318  *
8319  * @bp:		driver handle
8320  * @fp:		pointer to fastpath
8321  * @leading:	is leading
8322  *
8323  * This function performs 2 steps in a Queue state machine
8324  *      actually: 1) RESET->INIT 2) INIT->SETUP
8325  */
8326 
8327 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8328 		       bool leading)
8329 {
8330 	struct bnx2x_queue_state_params q_params = {NULL};
8331 	struct bnx2x_queue_setup_params *setup_params =
8332 						&q_params.params.setup;
8333 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8334 						&q_params.params.tx_only;
8335 	int rc;
8336 	u8 tx_index;
8337 
8338 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8339 
8340 	/* reset IGU state skip FCoE L2 queue */
8341 	if (!IS_FCOE_FP(fp))
8342 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8343 			     IGU_INT_ENABLE, 0);
8344 
8345 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8346 	/* We want to wait for completion in this context */
8347 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8348 
8349 	/* Prepare the INIT parameters */
8350 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8351 
8352 	/* Set the command */
8353 	q_params.cmd = BNX2X_Q_CMD_INIT;
8354 
8355 	/* Change the state to INIT */
8356 	rc = bnx2x_queue_state_change(bp, &q_params);
8357 	if (rc) {
8358 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8359 		return rc;
8360 	}
8361 
8362 	DP(NETIF_MSG_IFUP, "init complete\n");
8363 
8364 	/* Now move the Queue to the SETUP state... */
8365 	memset(setup_params, 0, sizeof(*setup_params));
8366 
8367 	/* Set QUEUE flags */
8368 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8369 
8370 	/* Set general SETUP parameters */
8371 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8372 				FIRST_TX_COS_INDEX);
8373 
8374 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8375 			    &setup_params->rxq_params);
8376 
8377 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8378 			   FIRST_TX_COS_INDEX);
8379 
8380 	/* Set the command */
8381 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8382 
8383 	if (IS_FCOE_FP(fp))
8384 		bp->fcoe_init = true;
8385 
8386 	/* Change the state to SETUP */
8387 	rc = bnx2x_queue_state_change(bp, &q_params);
8388 	if (rc) {
8389 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8390 		return rc;
8391 	}
8392 
8393 	/* loop through the relevant tx-only indices */
8394 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8395 	      tx_index < fp->max_cos;
8396 	      tx_index++) {
8397 
8398 		/* prepare and send tx-only ramrod*/
8399 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8400 					  tx_only_params, tx_index, leading);
8401 		if (rc) {
8402 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8403 				  fp->index, tx_index);
8404 			return rc;
8405 		}
8406 	}
8407 
8408 	return rc;
8409 }
8410 
8411 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8412 {
8413 	struct bnx2x_fastpath *fp = &bp->fp[index];
8414 	struct bnx2x_fp_txdata *txdata;
8415 	struct bnx2x_queue_state_params q_params = {NULL};
8416 	int rc, tx_index;
8417 
8418 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8419 
8420 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8421 	/* We want to wait for completion in this context */
8422 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8423 
8424 	/* close tx-only connections */
8425 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8426 	     tx_index < fp->max_cos;
8427 	     tx_index++){
8428 
8429 		/* ascertain this is a normal queue*/
8430 		txdata = fp->txdata_ptr[tx_index];
8431 
8432 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8433 							txdata->txq_index);
8434 
8435 		/* send halt terminate on tx-only connection */
8436 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8437 		memset(&q_params.params.terminate, 0,
8438 		       sizeof(q_params.params.terminate));
8439 		q_params.params.terminate.cid_index = tx_index;
8440 
8441 		rc = bnx2x_queue_state_change(bp, &q_params);
8442 		if (rc)
8443 			return rc;
8444 
8445 		/* send halt terminate on tx-only connection */
8446 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8447 		memset(&q_params.params.cfc_del, 0,
8448 		       sizeof(q_params.params.cfc_del));
8449 		q_params.params.cfc_del.cid_index = tx_index;
8450 		rc = bnx2x_queue_state_change(bp, &q_params);
8451 		if (rc)
8452 			return rc;
8453 	}
8454 	/* Stop the primary connection: */
8455 	/* ...halt the connection */
8456 	q_params.cmd = BNX2X_Q_CMD_HALT;
8457 	rc = bnx2x_queue_state_change(bp, &q_params);
8458 	if (rc)
8459 		return rc;
8460 
8461 	/* ...terminate the connection */
8462 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8463 	memset(&q_params.params.terminate, 0,
8464 	       sizeof(q_params.params.terminate));
8465 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8466 	rc = bnx2x_queue_state_change(bp, &q_params);
8467 	if (rc)
8468 		return rc;
8469 	/* ...delete cfc entry */
8470 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8471 	memset(&q_params.params.cfc_del, 0,
8472 	       sizeof(q_params.params.cfc_del));
8473 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8474 	return bnx2x_queue_state_change(bp, &q_params);
8475 }
8476 
8477 static void bnx2x_reset_func(struct bnx2x *bp)
8478 {
8479 	int port = BP_PORT(bp);
8480 	int func = BP_FUNC(bp);
8481 	int i;
8482 
8483 	/* Disable the function in the FW */
8484 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8485 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8486 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8487 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8488 
8489 	/* FP SBs */
8490 	for_each_eth_queue(bp, i) {
8491 		struct bnx2x_fastpath *fp = &bp->fp[i];
8492 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8493 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8494 			   SB_DISABLED);
8495 	}
8496 
8497 	if (CNIC_LOADED(bp))
8498 		/* CNIC SB */
8499 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8500 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8501 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8502 
8503 	/* SP SB */
8504 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8505 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8506 		SB_DISABLED);
8507 
8508 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8509 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8510 		       0);
8511 
8512 	/* Configure IGU */
8513 	if (bp->common.int_block == INT_BLOCK_HC) {
8514 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8515 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8516 	} else {
8517 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8518 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8519 	}
8520 
8521 	if (CNIC_LOADED(bp)) {
8522 		/* Disable Timer scan */
8523 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8524 		/*
8525 		 * Wait for at least 10ms and up to 2 second for the timers
8526 		 * scan to complete
8527 		 */
8528 		for (i = 0; i < 200; i++) {
8529 			usleep_range(10000, 20000);
8530 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8531 				break;
8532 		}
8533 	}
8534 	/* Clear ILT */
8535 	bnx2x_clear_func_ilt(bp, func);
8536 
8537 	/* Timers workaround bug for E2: if this is vnic-3,
8538 	 * we need to set the entire ilt range for this timers.
8539 	 */
8540 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8541 		struct ilt_client_info ilt_cli;
8542 		/* use dummy TM client */
8543 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8544 		ilt_cli.start = 0;
8545 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8546 		ilt_cli.client_num = ILT_CLIENT_TM;
8547 
8548 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8549 	}
8550 
8551 	/* this assumes that reset_port() called before reset_func()*/
8552 	if (!CHIP_IS_E1x(bp))
8553 		bnx2x_pf_disable(bp);
8554 
8555 	bp->dmae_ready = 0;
8556 }
8557 
8558 static void bnx2x_reset_port(struct bnx2x *bp)
8559 {
8560 	int port = BP_PORT(bp);
8561 	u32 val;
8562 
8563 	/* Reset physical Link */
8564 	bnx2x__link_reset(bp);
8565 
8566 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8567 
8568 	/* Do not rcv packets to BRB */
8569 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8570 	/* Do not direct rcv packets that are not for MCP to the BRB */
8571 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8572 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8573 
8574 	/* Configure AEU */
8575 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8576 
8577 	msleep(100);
8578 	/* Check for BRB port occupancy */
8579 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8580 	if (val)
8581 		DP(NETIF_MSG_IFDOWN,
8582 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8583 
8584 	/* TODO: Close Doorbell port? */
8585 }
8586 
8587 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8588 {
8589 	struct bnx2x_func_state_params func_params = {NULL};
8590 
8591 	/* Prepare parameters for function state transitions */
8592 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8593 
8594 	func_params.f_obj = &bp->func_obj;
8595 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8596 
8597 	func_params.params.hw_init.load_phase = load_code;
8598 
8599 	return bnx2x_func_state_change(bp, &func_params);
8600 }
8601 
8602 static int bnx2x_func_stop(struct bnx2x *bp)
8603 {
8604 	struct bnx2x_func_state_params func_params = {NULL};
8605 	int rc;
8606 
8607 	/* Prepare parameters for function state transitions */
8608 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8609 	func_params.f_obj = &bp->func_obj;
8610 	func_params.cmd = BNX2X_F_CMD_STOP;
8611 
8612 	/*
8613 	 * Try to stop the function the 'good way'. If fails (in case
8614 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8615 	 * not in a debug mode, perform a state transaction in order to
8616 	 * enable further HW_RESET transaction.
8617 	 */
8618 	rc = bnx2x_func_state_change(bp, &func_params);
8619 	if (rc) {
8620 #ifdef BNX2X_STOP_ON_ERROR
8621 		return rc;
8622 #else
8623 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8624 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8625 		return bnx2x_func_state_change(bp, &func_params);
8626 #endif
8627 	}
8628 
8629 	return 0;
8630 }
8631 
8632 /**
8633  * bnx2x_send_unload_req - request unload mode from the MCP.
8634  *
8635  * @bp:			driver handle
8636  * @unload_mode:	requested function's unload mode
8637  *
8638  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8639  */
8640 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8641 {
8642 	u32 reset_code = 0;
8643 	int port = BP_PORT(bp);
8644 
8645 	/* Select the UNLOAD request mode */
8646 	if (unload_mode == UNLOAD_NORMAL)
8647 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8648 
8649 	else if (bp->flags & NO_WOL_FLAG)
8650 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8651 
8652 	else if (bp->wol) {
8653 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8654 		u8 *mac_addr = bp->dev->dev_addr;
8655 		struct pci_dev *pdev = bp->pdev;
8656 		u32 val;
8657 		u16 pmc;
8658 
8659 		/* The mac address is written to entries 1-4 to
8660 		 * preserve entry 0 which is used by the PMF
8661 		 */
8662 		u8 entry = (BP_VN(bp) + 1)*8;
8663 
8664 		val = (mac_addr[0] << 8) | mac_addr[1];
8665 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8666 
8667 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8668 		      (mac_addr[4] << 8) | mac_addr[5];
8669 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8670 
8671 		/* Enable the PME and clear the status */
8672 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8673 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8674 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8675 
8676 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8677 
8678 	} else
8679 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8680 
8681 	/* Send the request to the MCP */
8682 	if (!BP_NOMCP(bp))
8683 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8684 	else {
8685 		int path = BP_PATH(bp);
8686 
8687 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8688 		   path, load_count[path][0], load_count[path][1],
8689 		   load_count[path][2]);
8690 		load_count[path][0]--;
8691 		load_count[path][1 + port]--;
8692 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8693 		   path, load_count[path][0], load_count[path][1],
8694 		   load_count[path][2]);
8695 		if (load_count[path][0] == 0)
8696 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8697 		else if (load_count[path][1 + port] == 0)
8698 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8699 		else
8700 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8701 	}
8702 
8703 	return reset_code;
8704 }
8705 
8706 /**
8707  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8708  *
8709  * @bp:		driver handle
8710  * @keep_link:		true iff link should be kept up
8711  */
8712 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8713 {
8714 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8715 
8716 	/* Report UNLOAD_DONE to MCP */
8717 	if (!BP_NOMCP(bp))
8718 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8719 }
8720 
8721 static int bnx2x_func_wait_started(struct bnx2x *bp)
8722 {
8723 	int tout = 50;
8724 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8725 
8726 	if (!bp->port.pmf)
8727 		return 0;
8728 
8729 	/*
8730 	 * (assumption: No Attention from MCP at this stage)
8731 	 * PMF probably in the middle of TX disable/enable transaction
8732 	 * 1. Sync IRS for default SB
8733 	 * 2. Sync SP queue - this guarantees us that attention handling started
8734 	 * 3. Wait, that TX disable/enable transaction completes
8735 	 *
8736 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
8737 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8738 	 * received completion for the transaction the state is TX_STOPPED.
8739 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8740 	 * transaction.
8741 	 */
8742 
8743 	/* make sure default SB ISR is done */
8744 	if (msix)
8745 		synchronize_irq(bp->msix_table[0].vector);
8746 	else
8747 		synchronize_irq(bp->pdev->irq);
8748 
8749 	flush_workqueue(bnx2x_wq);
8750 
8751 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8752 				BNX2X_F_STATE_STARTED && tout--)
8753 		msleep(20);
8754 
8755 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8756 						BNX2X_F_STATE_STARTED) {
8757 #ifdef BNX2X_STOP_ON_ERROR
8758 		BNX2X_ERR("Wrong function state\n");
8759 		return -EBUSY;
8760 #else
8761 		/*
8762 		 * Failed to complete the transaction in a "good way"
8763 		 * Force both transactions with CLR bit
8764 		 */
8765 		struct bnx2x_func_state_params func_params = {NULL};
8766 
8767 		DP(NETIF_MSG_IFDOWN,
8768 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8769 
8770 		func_params.f_obj = &bp->func_obj;
8771 		__set_bit(RAMROD_DRV_CLR_ONLY,
8772 					&func_params.ramrod_flags);
8773 
8774 		/* STARTED-->TX_ST0PPED */
8775 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8776 		bnx2x_func_state_change(bp, &func_params);
8777 
8778 		/* TX_ST0PPED-->STARTED */
8779 		func_params.cmd = BNX2X_F_CMD_TX_START;
8780 		return bnx2x_func_state_change(bp, &func_params);
8781 #endif
8782 	}
8783 
8784 	return 0;
8785 }
8786 
8787 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8788 {
8789 	int port = BP_PORT(bp);
8790 	int i, rc = 0;
8791 	u8 cos;
8792 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8793 	u32 reset_code;
8794 
8795 	/* Wait until tx fastpath tasks complete */
8796 	for_each_tx_queue(bp, i) {
8797 		struct bnx2x_fastpath *fp = &bp->fp[i];
8798 
8799 		for_each_cos_in_tx_queue(fp, cos)
8800 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8801 #ifdef BNX2X_STOP_ON_ERROR
8802 		if (rc)
8803 			return;
8804 #endif
8805 	}
8806 
8807 	/* Give HW time to discard old tx messages */
8808 	usleep_range(1000, 2000);
8809 
8810 	/* Clean all ETH MACs */
8811 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8812 				false);
8813 	if (rc < 0)
8814 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8815 
8816 	/* Clean up UC list  */
8817 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8818 				true);
8819 	if (rc < 0)
8820 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8821 			  rc);
8822 
8823 	/* Disable LLH */
8824 	if (!CHIP_IS_E1(bp))
8825 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8826 
8827 	/* Set "drop all" (stop Rx).
8828 	 * We need to take a netif_addr_lock() here in order to prevent
8829 	 * a race between the completion code and this code.
8830 	 */
8831 	netif_addr_lock_bh(bp->dev);
8832 	/* Schedule the rx_mode command */
8833 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8834 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8835 	else
8836 		bnx2x_set_storm_rx_mode(bp);
8837 
8838 	/* Cleanup multicast configuration */
8839 	rparam.mcast_obj = &bp->mcast_obj;
8840 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8841 	if (rc < 0)
8842 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8843 
8844 	netif_addr_unlock_bh(bp->dev);
8845 
8846 	bnx2x_iov_chip_cleanup(bp);
8847 
8848 	/*
8849 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8850 	 * this function should perform FUNC, PORT or COMMON HW
8851 	 * reset.
8852 	 */
8853 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8854 
8855 	/*
8856 	 * (assumption: No Attention from MCP at this stage)
8857 	 * PMF probably in the middle of TX disable/enable transaction
8858 	 */
8859 	rc = bnx2x_func_wait_started(bp);
8860 	if (rc) {
8861 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8862 #ifdef BNX2X_STOP_ON_ERROR
8863 		return;
8864 #endif
8865 	}
8866 
8867 	/* Close multi and leading connections
8868 	 * Completions for ramrods are collected in a synchronous way
8869 	 */
8870 	for_each_eth_queue(bp, i)
8871 		if (bnx2x_stop_queue(bp, i))
8872 #ifdef BNX2X_STOP_ON_ERROR
8873 			return;
8874 #else
8875 			goto unload_error;
8876 #endif
8877 
8878 	if (CNIC_LOADED(bp)) {
8879 		for_each_cnic_queue(bp, i)
8880 			if (bnx2x_stop_queue(bp, i))
8881 #ifdef BNX2X_STOP_ON_ERROR
8882 				return;
8883 #else
8884 				goto unload_error;
8885 #endif
8886 	}
8887 
8888 	/* If SP settings didn't get completed so far - something
8889 	 * very wrong has happen.
8890 	 */
8891 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8892 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8893 
8894 #ifndef BNX2X_STOP_ON_ERROR
8895 unload_error:
8896 #endif
8897 	rc = bnx2x_func_stop(bp);
8898 	if (rc) {
8899 		BNX2X_ERR("Function stop failed!\n");
8900 #ifdef BNX2X_STOP_ON_ERROR
8901 		return;
8902 #endif
8903 	}
8904 
8905 	/* Disable HW interrupts, NAPI */
8906 	bnx2x_netif_stop(bp, 1);
8907 	/* Delete all NAPI objects */
8908 	bnx2x_del_all_napi(bp);
8909 	if (CNIC_LOADED(bp))
8910 		bnx2x_del_all_napi_cnic(bp);
8911 
8912 	/* Release IRQs */
8913 	bnx2x_free_irq(bp);
8914 
8915 	/* Reset the chip */
8916 	rc = bnx2x_reset_hw(bp, reset_code);
8917 	if (rc)
8918 		BNX2X_ERR("HW_RESET failed\n");
8919 
8920 	/* Report UNLOAD_DONE to MCP */
8921 	bnx2x_send_unload_done(bp, keep_link);
8922 }
8923 
8924 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8925 {
8926 	u32 val;
8927 
8928 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8929 
8930 	if (CHIP_IS_E1(bp)) {
8931 		int port = BP_PORT(bp);
8932 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8933 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8934 
8935 		val = REG_RD(bp, addr);
8936 		val &= ~(0x300);
8937 		REG_WR(bp, addr, val);
8938 	} else {
8939 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8940 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8941 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8942 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8943 	}
8944 }
8945 
8946 /* Close gates #2, #3 and #4: */
8947 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8948 {
8949 	u32 val;
8950 
8951 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8952 	if (!CHIP_IS_E1(bp)) {
8953 		/* #4 */
8954 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8955 		/* #2 */
8956 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8957 	}
8958 
8959 	/* #3 */
8960 	if (CHIP_IS_E1x(bp)) {
8961 		/* Prevent interrupts from HC on both ports */
8962 		val = REG_RD(bp, HC_REG_CONFIG_1);
8963 		REG_WR(bp, HC_REG_CONFIG_1,
8964 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8965 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8966 
8967 		val = REG_RD(bp, HC_REG_CONFIG_0);
8968 		REG_WR(bp, HC_REG_CONFIG_0,
8969 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8970 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8971 	} else {
8972 		/* Prevent incoming interrupts in IGU */
8973 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8974 
8975 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8976 		       (!close) ?
8977 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8978 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8979 	}
8980 
8981 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8982 		close ? "closing" : "opening");
8983 	mmiowb();
8984 }
8985 
8986 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8987 
8988 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8989 {
8990 	/* Do some magic... */
8991 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8992 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8993 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8994 }
8995 
8996 /**
8997  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8998  *
8999  * @bp:		driver handle
9000  * @magic_val:	old value of the `magic' bit.
9001  */
9002 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9003 {
9004 	/* Restore the `magic' bit value... */
9005 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9006 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9007 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9008 }
9009 
9010 /**
9011  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9012  *
9013  * @bp:		driver handle
9014  * @magic_val:	old value of 'magic' bit.
9015  *
9016  * Takes care of CLP configurations.
9017  */
9018 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9019 {
9020 	u32 shmem;
9021 	u32 validity_offset;
9022 
9023 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9024 
9025 	/* Set `magic' bit in order to save MF config */
9026 	if (!CHIP_IS_E1(bp))
9027 		bnx2x_clp_reset_prep(bp, magic_val);
9028 
9029 	/* Get shmem offset */
9030 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9031 	validity_offset =
9032 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9033 
9034 	/* Clear validity map flags */
9035 	if (shmem > 0)
9036 		REG_WR(bp, shmem + validity_offset, 0);
9037 }
9038 
9039 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9040 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9041 
9042 /**
9043  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9044  *
9045  * @bp:	driver handle
9046  */
9047 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9048 {
9049 	/* special handling for emulation and FPGA,
9050 	   wait 10 times longer */
9051 	if (CHIP_REV_IS_SLOW(bp))
9052 		msleep(MCP_ONE_TIMEOUT*10);
9053 	else
9054 		msleep(MCP_ONE_TIMEOUT);
9055 }
9056 
9057 /*
9058  * initializes bp->common.shmem_base and waits for validity signature to appear
9059  */
9060 static int bnx2x_init_shmem(struct bnx2x *bp)
9061 {
9062 	int cnt = 0;
9063 	u32 val = 0;
9064 
9065 	do {
9066 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9067 		if (bp->common.shmem_base) {
9068 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9069 			if (val & SHR_MEM_VALIDITY_MB)
9070 				return 0;
9071 		}
9072 
9073 		bnx2x_mcp_wait_one(bp);
9074 
9075 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9076 
9077 	BNX2X_ERR("BAD MCP validity signature\n");
9078 
9079 	return -ENODEV;
9080 }
9081 
9082 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9083 {
9084 	int rc = bnx2x_init_shmem(bp);
9085 
9086 	/* Restore the `magic' bit value */
9087 	if (!CHIP_IS_E1(bp))
9088 		bnx2x_clp_reset_done(bp, magic_val);
9089 
9090 	return rc;
9091 }
9092 
9093 static void bnx2x_pxp_prep(struct bnx2x *bp)
9094 {
9095 	if (!CHIP_IS_E1(bp)) {
9096 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9097 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9098 		mmiowb();
9099 	}
9100 }
9101 
9102 /*
9103  * Reset the whole chip except for:
9104  *      - PCIE core
9105  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9106  *              one reset bit)
9107  *      - IGU
9108  *      - MISC (including AEU)
9109  *      - GRC
9110  *      - RBCN, RBCP
9111  */
9112 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9113 {
9114 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9115 	u32 global_bits2, stay_reset2;
9116 
9117 	/*
9118 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9119 	 * (per chip) blocks.
9120 	 */
9121 	global_bits2 =
9122 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9123 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9124 
9125 	/* Don't reset the following blocks.
9126 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9127 	 *            reset, as in 4 port device they might still be owned
9128 	 *            by the MCP (there is only one leader per path).
9129 	 */
9130 	not_reset_mask1 =
9131 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9132 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9133 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9134 
9135 	not_reset_mask2 =
9136 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9137 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9138 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9139 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9140 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9141 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9142 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9143 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9144 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9145 		MISC_REGISTERS_RESET_REG_2_PGLC |
9146 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9147 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9148 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9149 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9150 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9151 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9152 
9153 	/*
9154 	 * Keep the following blocks in reset:
9155 	 *  - all xxMACs are handled by the bnx2x_link code.
9156 	 */
9157 	stay_reset2 =
9158 		MISC_REGISTERS_RESET_REG_2_XMAC |
9159 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9160 
9161 	/* Full reset masks according to the chip */
9162 	reset_mask1 = 0xffffffff;
9163 
9164 	if (CHIP_IS_E1(bp))
9165 		reset_mask2 = 0xffff;
9166 	else if (CHIP_IS_E1H(bp))
9167 		reset_mask2 = 0x1ffff;
9168 	else if (CHIP_IS_E2(bp))
9169 		reset_mask2 = 0xfffff;
9170 	else /* CHIP_IS_E3 */
9171 		reset_mask2 = 0x3ffffff;
9172 
9173 	/* Don't reset global blocks unless we need to */
9174 	if (!global)
9175 		reset_mask2 &= ~global_bits2;
9176 
9177 	/*
9178 	 * In case of attention in the QM, we need to reset PXP
9179 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9180 	 * because otherwise QM reset would release 'close the gates' shortly
9181 	 * before resetting the PXP, then the PSWRQ would send a write
9182 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9183 	 * read the payload data from PSWWR, but PSWWR would not
9184 	 * respond. The write queue in PGLUE would stuck, dmae commands
9185 	 * would not return. Therefore it's important to reset the second
9186 	 * reset register (containing the
9187 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9188 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9189 	 * bit).
9190 	 */
9191 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9192 	       reset_mask2 & (~not_reset_mask2));
9193 
9194 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9195 	       reset_mask1 & (~not_reset_mask1));
9196 
9197 	barrier();
9198 	mmiowb();
9199 
9200 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9201 	       reset_mask2 & (~stay_reset2));
9202 
9203 	barrier();
9204 	mmiowb();
9205 
9206 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9207 	mmiowb();
9208 }
9209 
9210 /**
9211  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9212  * It should get cleared in no more than 1s.
9213  *
9214  * @bp:	driver handle
9215  *
9216  * It should get cleared in no more than 1s. Returns 0 if
9217  * pending writes bit gets cleared.
9218  */
9219 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9220 {
9221 	u32 cnt = 1000;
9222 	u32 pend_bits = 0;
9223 
9224 	do {
9225 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9226 
9227 		if (pend_bits == 0)
9228 			break;
9229 
9230 		usleep_range(1000, 2000);
9231 	} while (cnt-- > 0);
9232 
9233 	if (cnt <= 0) {
9234 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9235 			  pend_bits);
9236 		return -EBUSY;
9237 	}
9238 
9239 	return 0;
9240 }
9241 
9242 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9243 {
9244 	int cnt = 1000;
9245 	u32 val = 0;
9246 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9247 	u32 tags_63_32 = 0;
9248 
9249 	/* Empty the Tetris buffer, wait for 1s */
9250 	do {
9251 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9252 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9253 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9254 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9255 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9256 		if (CHIP_IS_E3(bp))
9257 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9258 
9259 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9260 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9261 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9262 		    (pgl_exp_rom2 == 0xffffffff) &&
9263 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9264 			break;
9265 		usleep_range(1000, 2000);
9266 	} while (cnt-- > 0);
9267 
9268 	if (cnt <= 0) {
9269 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9270 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9271 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9272 			  pgl_exp_rom2);
9273 		return -EAGAIN;
9274 	}
9275 
9276 	barrier();
9277 
9278 	/* Close gates #2, #3 and #4 */
9279 	bnx2x_set_234_gates(bp, true);
9280 
9281 	/* Poll for IGU VQs for 57712 and newer chips */
9282 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9283 		return -EAGAIN;
9284 
9285 	/* TBD: Indicate that "process kill" is in progress to MCP */
9286 
9287 	/* Clear "unprepared" bit */
9288 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9289 	barrier();
9290 
9291 	/* Make sure all is written to the chip before the reset */
9292 	mmiowb();
9293 
9294 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9295 	 * PSWHST, GRC and PSWRD Tetris buffer.
9296 	 */
9297 	usleep_range(1000, 2000);
9298 
9299 	/* Prepare to chip reset: */
9300 	/* MCP */
9301 	if (global)
9302 		bnx2x_reset_mcp_prep(bp, &val);
9303 
9304 	/* PXP */
9305 	bnx2x_pxp_prep(bp);
9306 	barrier();
9307 
9308 	/* reset the chip */
9309 	bnx2x_process_kill_chip_reset(bp, global);
9310 	barrier();
9311 
9312 	/* Recover after reset: */
9313 	/* MCP */
9314 	if (global && bnx2x_reset_mcp_comp(bp, val))
9315 		return -EAGAIN;
9316 
9317 	/* TBD: Add resetting the NO_MCP mode DB here */
9318 
9319 	/* Open the gates #2, #3 and #4 */
9320 	bnx2x_set_234_gates(bp, false);
9321 
9322 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9323 	 * reset state, re-enable attentions. */
9324 
9325 	return 0;
9326 }
9327 
9328 static int bnx2x_leader_reset(struct bnx2x *bp)
9329 {
9330 	int rc = 0;
9331 	bool global = bnx2x_reset_is_global(bp);
9332 	u32 load_code;
9333 
9334 	/* if not going to reset MCP - load "fake" driver to reset HW while
9335 	 * driver is owner of the HW
9336 	 */
9337 	if (!global && !BP_NOMCP(bp)) {
9338 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9339 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9340 		if (!load_code) {
9341 			BNX2X_ERR("MCP response failure, aborting\n");
9342 			rc = -EAGAIN;
9343 			goto exit_leader_reset;
9344 		}
9345 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9346 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9347 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9348 			rc = -EAGAIN;
9349 			goto exit_leader_reset2;
9350 		}
9351 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9352 		if (!load_code) {
9353 			BNX2X_ERR("MCP response failure, aborting\n");
9354 			rc = -EAGAIN;
9355 			goto exit_leader_reset2;
9356 		}
9357 	}
9358 
9359 	/* Try to recover after the failure */
9360 	if (bnx2x_process_kill(bp, global)) {
9361 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9362 			  BP_PATH(bp));
9363 		rc = -EAGAIN;
9364 		goto exit_leader_reset2;
9365 	}
9366 
9367 	/*
9368 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9369 	 * state.
9370 	 */
9371 	bnx2x_set_reset_done(bp);
9372 	if (global)
9373 		bnx2x_clear_reset_global(bp);
9374 
9375 exit_leader_reset2:
9376 	/* unload "fake driver" if it was loaded */
9377 	if (!global && !BP_NOMCP(bp)) {
9378 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9379 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9380 	}
9381 exit_leader_reset:
9382 	bp->is_leader = 0;
9383 	bnx2x_release_leader_lock(bp);
9384 	smp_mb();
9385 	return rc;
9386 }
9387 
9388 static void bnx2x_recovery_failed(struct bnx2x *bp)
9389 {
9390 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9391 
9392 	/* Disconnect this device */
9393 	netif_device_detach(bp->dev);
9394 
9395 	/*
9396 	 * Block ifup for all function on this engine until "process kill"
9397 	 * or power cycle.
9398 	 */
9399 	bnx2x_set_reset_in_progress(bp);
9400 
9401 	/* Shut down the power */
9402 	bnx2x_set_power_state(bp, PCI_D3hot);
9403 
9404 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9405 
9406 	smp_mb();
9407 }
9408 
9409 /*
9410  * Assumption: runs under rtnl lock. This together with the fact
9411  * that it's called only from bnx2x_sp_rtnl() ensure that it
9412  * will never be called when netif_running(bp->dev) is false.
9413  */
9414 static void bnx2x_parity_recover(struct bnx2x *bp)
9415 {
9416 	bool global = false;
9417 	u32 error_recovered, error_unrecovered;
9418 	bool is_parity;
9419 
9420 	DP(NETIF_MSG_HW, "Handling parity\n");
9421 	while (1) {
9422 		switch (bp->recovery_state) {
9423 		case BNX2X_RECOVERY_INIT:
9424 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9425 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9426 			WARN_ON(!is_parity);
9427 
9428 			/* Try to get a LEADER_LOCK HW lock */
9429 			if (bnx2x_trylock_leader_lock(bp)) {
9430 				bnx2x_set_reset_in_progress(bp);
9431 				/*
9432 				 * Check if there is a global attention and if
9433 				 * there was a global attention, set the global
9434 				 * reset bit.
9435 				 */
9436 
9437 				if (global)
9438 					bnx2x_set_reset_global(bp);
9439 
9440 				bp->is_leader = 1;
9441 			}
9442 
9443 			/* Stop the driver */
9444 			/* If interface has been removed - break */
9445 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9446 				return;
9447 
9448 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9449 
9450 			/* Ensure "is_leader", MCP command sequence and
9451 			 * "recovery_state" update values are seen on other
9452 			 * CPUs.
9453 			 */
9454 			smp_mb();
9455 			break;
9456 
9457 		case BNX2X_RECOVERY_WAIT:
9458 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9459 			if (bp->is_leader) {
9460 				int other_engine = BP_PATH(bp) ? 0 : 1;
9461 				bool other_load_status =
9462 					bnx2x_get_load_status(bp, other_engine);
9463 				bool load_status =
9464 					bnx2x_get_load_status(bp, BP_PATH(bp));
9465 				global = bnx2x_reset_is_global(bp);
9466 
9467 				/*
9468 				 * In case of a parity in a global block, let
9469 				 * the first leader that performs a
9470 				 * leader_reset() reset the global blocks in
9471 				 * order to clear global attentions. Otherwise
9472 				 * the gates will remain closed for that
9473 				 * engine.
9474 				 */
9475 				if (load_status ||
9476 				    (global && other_load_status)) {
9477 					/* Wait until all other functions get
9478 					 * down.
9479 					 */
9480 					schedule_delayed_work(&bp->sp_rtnl_task,
9481 								HZ/10);
9482 					return;
9483 				} else {
9484 					/* If all other functions got down -
9485 					 * try to bring the chip back to
9486 					 * normal. In any case it's an exit
9487 					 * point for a leader.
9488 					 */
9489 					if (bnx2x_leader_reset(bp)) {
9490 						bnx2x_recovery_failed(bp);
9491 						return;
9492 					}
9493 
9494 					/* If we are here, means that the
9495 					 * leader has succeeded and doesn't
9496 					 * want to be a leader any more. Try
9497 					 * to continue as a none-leader.
9498 					 */
9499 					break;
9500 				}
9501 			} else { /* non-leader */
9502 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9503 					/* Try to get a LEADER_LOCK HW lock as
9504 					 * long as a former leader may have
9505 					 * been unloaded by the user or
9506 					 * released a leadership by another
9507 					 * reason.
9508 					 */
9509 					if (bnx2x_trylock_leader_lock(bp)) {
9510 						/* I'm a leader now! Restart a
9511 						 * switch case.
9512 						 */
9513 						bp->is_leader = 1;
9514 						break;
9515 					}
9516 
9517 					schedule_delayed_work(&bp->sp_rtnl_task,
9518 								HZ/10);
9519 					return;
9520 
9521 				} else {
9522 					/*
9523 					 * If there was a global attention, wait
9524 					 * for it to be cleared.
9525 					 */
9526 					if (bnx2x_reset_is_global(bp)) {
9527 						schedule_delayed_work(
9528 							&bp->sp_rtnl_task,
9529 							HZ/10);
9530 						return;
9531 					}
9532 
9533 					error_recovered =
9534 					  bp->eth_stats.recoverable_error;
9535 					error_unrecovered =
9536 					  bp->eth_stats.unrecoverable_error;
9537 					bp->recovery_state =
9538 						BNX2X_RECOVERY_NIC_LOADING;
9539 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9540 						error_unrecovered++;
9541 						netdev_err(bp->dev,
9542 							   "Recovery failed. Power cycle needed\n");
9543 						/* Disconnect this device */
9544 						netif_device_detach(bp->dev);
9545 						/* Shut down the power */
9546 						bnx2x_set_power_state(
9547 							bp, PCI_D3hot);
9548 						smp_mb();
9549 					} else {
9550 						bp->recovery_state =
9551 							BNX2X_RECOVERY_DONE;
9552 						error_recovered++;
9553 						smp_mb();
9554 					}
9555 					bp->eth_stats.recoverable_error =
9556 						error_recovered;
9557 					bp->eth_stats.unrecoverable_error =
9558 						error_unrecovered;
9559 
9560 					return;
9561 				}
9562 			}
9563 		default:
9564 			return;
9565 		}
9566 	}
9567 }
9568 
9569 static int bnx2x_close(struct net_device *dev);
9570 
9571 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9572  * scheduled on a general queue in order to prevent a dead lock.
9573  */
9574 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9575 {
9576 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9577 
9578 	rtnl_lock();
9579 
9580 	if (!netif_running(bp->dev)) {
9581 		rtnl_unlock();
9582 		return;
9583 	}
9584 
9585 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9586 #ifdef BNX2X_STOP_ON_ERROR
9587 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9588 			  "you will need to reboot when done\n");
9589 		goto sp_rtnl_not_reset;
9590 #endif
9591 		/*
9592 		 * Clear all pending SP commands as we are going to reset the
9593 		 * function anyway.
9594 		 */
9595 		bp->sp_rtnl_state = 0;
9596 		smp_mb();
9597 
9598 		bnx2x_parity_recover(bp);
9599 
9600 		rtnl_unlock();
9601 		return;
9602 	}
9603 
9604 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9605 #ifdef BNX2X_STOP_ON_ERROR
9606 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9607 			  "you will need to reboot when done\n");
9608 		goto sp_rtnl_not_reset;
9609 #endif
9610 
9611 		/*
9612 		 * Clear all pending SP commands as we are going to reset the
9613 		 * function anyway.
9614 		 */
9615 		bp->sp_rtnl_state = 0;
9616 		smp_mb();
9617 
9618 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9619 		bnx2x_nic_load(bp, LOAD_NORMAL);
9620 
9621 		rtnl_unlock();
9622 		return;
9623 	}
9624 #ifdef BNX2X_STOP_ON_ERROR
9625 sp_rtnl_not_reset:
9626 #endif
9627 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9628 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9629 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9630 		bnx2x_after_function_update(bp);
9631 	/*
9632 	 * in case of fan failure we need to reset id if the "stop on error"
9633 	 * debug flag is set, since we trying to prevent permanent overheating
9634 	 * damage
9635 	 */
9636 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9637 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9638 		netif_device_detach(bp->dev);
9639 		bnx2x_close(bp->dev);
9640 		rtnl_unlock();
9641 		return;
9642 	}
9643 
9644 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9645 		DP(BNX2X_MSG_SP,
9646 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
9647 		bnx2x_vfpf_set_mcast(bp->dev);
9648 	}
9649 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9650 			       &bp->sp_rtnl_state)){
9651 		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9652 			bnx2x_tx_disable(bp);
9653 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9654 		}
9655 	}
9656 
9657 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9658 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9659 		bnx2x_set_rx_mode_inner(bp);
9660 	}
9661 
9662 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9663 			       &bp->sp_rtnl_state))
9664 		bnx2x_pf_set_vfs_vlan(bp);
9665 
9666 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state))
9667 		bnx2x_dcbx_stop_hw_tx(bp);
9668 
9669 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_RESUME, &bp->sp_rtnl_state))
9670 		bnx2x_dcbx_resume_hw_tx(bp);
9671 
9672 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
9673 	 * can be called from other contexts as well)
9674 	 */
9675 	rtnl_unlock();
9676 
9677 	/* enable SR-IOV if applicable */
9678 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9679 					       &bp->sp_rtnl_state)) {
9680 		bnx2x_disable_sriov(bp);
9681 		bnx2x_enable_sriov(bp);
9682 	}
9683 }
9684 
9685 static void bnx2x_period_task(struct work_struct *work)
9686 {
9687 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9688 
9689 	if (!netif_running(bp->dev))
9690 		goto period_task_exit;
9691 
9692 	if (CHIP_REV_IS_SLOW(bp)) {
9693 		BNX2X_ERR("period task called on emulation, ignoring\n");
9694 		goto period_task_exit;
9695 	}
9696 
9697 	bnx2x_acquire_phy_lock(bp);
9698 	/*
9699 	 * The barrier is needed to ensure the ordering between the writing to
9700 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9701 	 * the reading here.
9702 	 */
9703 	smp_mb();
9704 	if (bp->port.pmf) {
9705 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9706 
9707 		/* Re-queue task in 1 sec */
9708 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9709 	}
9710 
9711 	bnx2x_release_phy_lock(bp);
9712 period_task_exit:
9713 	return;
9714 }
9715 
9716 /*
9717  * Init service functions
9718  */
9719 
9720 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9721 {
9722 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9723 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9724 	return base + (BP_ABS_FUNC(bp)) * stride;
9725 }
9726 
9727 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9728 					struct bnx2x_mac_vals *vals)
9729 {
9730 	u32 val, base_addr, offset, mask, reset_reg;
9731 	bool mac_stopped = false;
9732 	u8 port = BP_PORT(bp);
9733 
9734 	/* reset addresses as they also mark which values were changed */
9735 	vals->bmac_addr = 0;
9736 	vals->umac_addr = 0;
9737 	vals->xmac_addr = 0;
9738 	vals->emac_addr = 0;
9739 
9740 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9741 
9742 	if (!CHIP_IS_E3(bp)) {
9743 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9744 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9745 		if ((mask & reset_reg) && val) {
9746 			u32 wb_data[2];
9747 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9748 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9749 						: NIG_REG_INGRESS_BMAC0_MEM;
9750 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9751 						: BIGMAC_REGISTER_BMAC_CONTROL;
9752 
9753 			/*
9754 			 * use rd/wr since we cannot use dmae. This is safe
9755 			 * since MCP won't access the bus due to the request
9756 			 * to unload, and no function on the path can be
9757 			 * loaded at this time.
9758 			 */
9759 			wb_data[0] = REG_RD(bp, base_addr + offset);
9760 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9761 			vals->bmac_addr = base_addr + offset;
9762 			vals->bmac_val[0] = wb_data[0];
9763 			vals->bmac_val[1] = wb_data[1];
9764 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9765 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
9766 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9767 		}
9768 		BNX2X_DEV_INFO("Disable emac Rx\n");
9769 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9770 		vals->emac_val = REG_RD(bp, vals->emac_addr);
9771 		REG_WR(bp, vals->emac_addr, 0);
9772 		mac_stopped = true;
9773 	} else {
9774 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9775 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9776 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9777 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9778 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9779 			       val & ~(1 << 1));
9780 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9781 			       val | (1 << 1));
9782 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9783 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9784 			REG_WR(bp, vals->xmac_addr, 0);
9785 			mac_stopped = true;
9786 		}
9787 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9788 		if (mask & reset_reg) {
9789 			BNX2X_DEV_INFO("Disable umac Rx\n");
9790 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9791 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9792 			vals->umac_val = REG_RD(bp, vals->umac_addr);
9793 			REG_WR(bp, vals->umac_addr, 0);
9794 			mac_stopped = true;
9795 		}
9796 	}
9797 
9798 	if (mac_stopped)
9799 		msleep(20);
9800 }
9801 
9802 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9803 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9804 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9805 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9806 
9807 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9808 {
9809 	u16 rcq, bd;
9810 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9811 
9812 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9813 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9814 
9815 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9816 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9817 
9818 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9819 		       port, bd, rcq);
9820 }
9821 
9822 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9823 {
9824 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9825 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9826 	if (!rc) {
9827 		BNX2X_ERR("MCP response failure, aborting\n");
9828 		return -EBUSY;
9829 	}
9830 
9831 	return 0;
9832 }
9833 
9834 static struct bnx2x_prev_path_list *
9835 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
9836 {
9837 	struct bnx2x_prev_path_list *tmp_list;
9838 
9839 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9840 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9841 		    bp->pdev->bus->number == tmp_list->bus &&
9842 		    BP_PATH(bp) == tmp_list->path)
9843 			return tmp_list;
9844 
9845 	return NULL;
9846 }
9847 
9848 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9849 {
9850 	struct bnx2x_prev_path_list *tmp_list;
9851 	int rc;
9852 
9853 	rc = down_interruptible(&bnx2x_prev_sem);
9854 	if (rc) {
9855 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9856 		return rc;
9857 	}
9858 
9859 	tmp_list = bnx2x_prev_path_get_entry(bp);
9860 	if (tmp_list) {
9861 		tmp_list->aer = 1;
9862 		rc = 0;
9863 	} else {
9864 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9865 			  BP_PATH(bp));
9866 	}
9867 
9868 	up(&bnx2x_prev_sem);
9869 
9870 	return rc;
9871 }
9872 
9873 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9874 {
9875 	struct bnx2x_prev_path_list *tmp_list;
9876 	int rc = false;
9877 
9878 	if (down_trylock(&bnx2x_prev_sem))
9879 		return false;
9880 
9881 	tmp_list = bnx2x_prev_path_get_entry(bp);
9882 	if (tmp_list) {
9883 		if (tmp_list->aer) {
9884 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9885 			   BP_PATH(bp));
9886 		} else {
9887 			rc = true;
9888 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9889 				       BP_PATH(bp));
9890 		}
9891 	}
9892 
9893 	up(&bnx2x_prev_sem);
9894 
9895 	return rc;
9896 }
9897 
9898 bool bnx2x_port_after_undi(struct bnx2x *bp)
9899 {
9900 	struct bnx2x_prev_path_list *entry;
9901 	bool val;
9902 
9903 	down(&bnx2x_prev_sem);
9904 
9905 	entry = bnx2x_prev_path_get_entry(bp);
9906 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9907 
9908 	up(&bnx2x_prev_sem);
9909 
9910 	return val;
9911 }
9912 
9913 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9914 {
9915 	struct bnx2x_prev_path_list *tmp_list;
9916 	int rc;
9917 
9918 	rc = down_interruptible(&bnx2x_prev_sem);
9919 	if (rc) {
9920 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9921 		return rc;
9922 	}
9923 
9924 	/* Check whether the entry for this path already exists */
9925 	tmp_list = bnx2x_prev_path_get_entry(bp);
9926 	if (tmp_list) {
9927 		if (!tmp_list->aer) {
9928 			BNX2X_ERR("Re-Marking the path.\n");
9929 		} else {
9930 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9931 			   BP_PATH(bp));
9932 			tmp_list->aer = 0;
9933 		}
9934 		up(&bnx2x_prev_sem);
9935 		return 0;
9936 	}
9937 	up(&bnx2x_prev_sem);
9938 
9939 	/* Create an entry for this path and add it */
9940 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9941 	if (!tmp_list) {
9942 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9943 		return -ENOMEM;
9944 	}
9945 
9946 	tmp_list->bus = bp->pdev->bus->number;
9947 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9948 	tmp_list->path = BP_PATH(bp);
9949 	tmp_list->aer = 0;
9950 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9951 
9952 	rc = down_interruptible(&bnx2x_prev_sem);
9953 	if (rc) {
9954 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9955 		kfree(tmp_list);
9956 	} else {
9957 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9958 		   BP_PATH(bp));
9959 		list_add(&tmp_list->list, &bnx2x_prev_list);
9960 		up(&bnx2x_prev_sem);
9961 	}
9962 
9963 	return rc;
9964 }
9965 
9966 static int bnx2x_do_flr(struct bnx2x *bp)
9967 {
9968 	struct pci_dev *dev = bp->pdev;
9969 
9970 	if (CHIP_IS_E1x(bp)) {
9971 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9972 		return -EINVAL;
9973 	}
9974 
9975 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9976 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9977 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9978 			  bp->common.bc_ver);
9979 		return -EINVAL;
9980 	}
9981 
9982 	if (!pci_wait_for_pending_transaction(dev))
9983 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
9984 
9985 	BNX2X_DEV_INFO("Initiating FLR\n");
9986 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9987 
9988 	return 0;
9989 }
9990 
9991 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9992 {
9993 	int rc;
9994 
9995 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
9996 
9997 	/* Test if previous unload process was already finished for this path */
9998 	if (bnx2x_prev_is_path_marked(bp))
9999 		return bnx2x_prev_mcp_done(bp);
10000 
10001 	BNX2X_DEV_INFO("Path is unmarked\n");
10002 
10003 	/* If function has FLR capabilities, and existing FW version matches
10004 	 * the one required, then FLR will be sufficient to clean any residue
10005 	 * left by previous driver
10006 	 */
10007 	rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
10008 
10009 	if (!rc) {
10010 		/* fw version is good */
10011 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10012 		rc = bnx2x_do_flr(bp);
10013 	}
10014 
10015 	if (!rc) {
10016 		/* FLR was performed */
10017 		BNX2X_DEV_INFO("FLR successful\n");
10018 		return 0;
10019 	}
10020 
10021 	BNX2X_DEV_INFO("Could not FLR\n");
10022 
10023 	/* Close the MCP request, return failure*/
10024 	rc = bnx2x_prev_mcp_done(bp);
10025 	if (!rc)
10026 		rc = BNX2X_PREV_WAIT_NEEDED;
10027 
10028 	return rc;
10029 }
10030 
10031 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10032 {
10033 	u32 reset_reg, tmp_reg = 0, rc;
10034 	bool prev_undi = false;
10035 	struct bnx2x_mac_vals mac_vals;
10036 
10037 	/* It is possible a previous function received 'common' answer,
10038 	 * but hasn't loaded yet, therefore creating a scenario of
10039 	 * multiple functions receiving 'common' on the same path.
10040 	 */
10041 	BNX2X_DEV_INFO("Common unload Flow\n");
10042 
10043 	memset(&mac_vals, 0, sizeof(mac_vals));
10044 
10045 	if (bnx2x_prev_is_path_marked(bp))
10046 		return bnx2x_prev_mcp_done(bp);
10047 
10048 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10049 
10050 	/* Reset should be performed after BRB is emptied */
10051 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10052 		u32 timer_count = 1000;
10053 
10054 		/* Close the MAC Rx to prevent BRB from filling up */
10055 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10056 
10057 		/* close LLH filters towards the BRB */
10058 		bnx2x_set_rx_filter(&bp->link_params, 0);
10059 
10060 		/* Check if the UNDI driver was previously loaded
10061 		 * UNDI driver initializes CID offset for normal bell to 0x7
10062 		 */
10063 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10064 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10065 			if (tmp_reg == 0x7) {
10066 				BNX2X_DEV_INFO("UNDI previously loaded\n");
10067 				prev_undi = true;
10068 				/* clear the UNDI indication */
10069 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10070 				/* clear possible idle check errors */
10071 				REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10072 			}
10073 		}
10074 		if (!CHIP_IS_E1x(bp))
10075 			/* block FW from writing to host */
10076 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10077 
10078 		/* wait until BRB is empty */
10079 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10080 		while (timer_count) {
10081 			u32 prev_brb = tmp_reg;
10082 
10083 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10084 			if (!tmp_reg)
10085 				break;
10086 
10087 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10088 
10089 			/* reset timer as long as BRB actually gets emptied */
10090 			if (prev_brb > tmp_reg)
10091 				timer_count = 1000;
10092 			else
10093 				timer_count--;
10094 
10095 			/* If UNDI resides in memory, manually increment it */
10096 			if (prev_undi)
10097 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10098 
10099 			udelay(10);
10100 		}
10101 
10102 		if (!timer_count)
10103 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10104 	}
10105 
10106 	/* No packets are in the pipeline, path is ready for reset */
10107 	bnx2x_reset_common(bp);
10108 
10109 	if (mac_vals.xmac_addr)
10110 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10111 	if (mac_vals.umac_addr)
10112 		REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10113 	if (mac_vals.emac_addr)
10114 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10115 	if (mac_vals.bmac_addr) {
10116 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10117 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10118 	}
10119 
10120 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10121 	if (rc) {
10122 		bnx2x_prev_mcp_done(bp);
10123 		return rc;
10124 	}
10125 
10126 	return bnx2x_prev_mcp_done(bp);
10127 }
10128 
10129 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10130  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10131  * the addresses of the transaction, resulting in was-error bit set in the pci
10132  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10133  * to clear the interrupt which detected this from the pglueb and the was done
10134  * bit
10135  */
10136 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10137 {
10138 	if (!CHIP_IS_E1x(bp)) {
10139 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10140 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10141 			DP(BNX2X_MSG_SP,
10142 			   "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10143 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10144 			       1 << BP_FUNC(bp));
10145 		}
10146 	}
10147 }
10148 
10149 static int bnx2x_prev_unload(struct bnx2x *bp)
10150 {
10151 	int time_counter = 10;
10152 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10153 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10154 
10155 	/* clear hw from errors which may have resulted from an interrupted
10156 	 * dmae transaction.
10157 	 */
10158 	bnx2x_prev_interrupted_dmae(bp);
10159 
10160 	/* Release previously held locks */
10161 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10162 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10163 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10164 
10165 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10166 	if (hw_lock_val) {
10167 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10168 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10169 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10170 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10171 		}
10172 
10173 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10174 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10175 	} else
10176 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10177 
10178 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10179 		BNX2X_DEV_INFO("Release previously held alr\n");
10180 		bnx2x_release_alr(bp);
10181 	}
10182 
10183 	do {
10184 		int aer = 0;
10185 		/* Lock MCP using an unload request */
10186 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10187 		if (!fw) {
10188 			BNX2X_ERR("MCP response failure, aborting\n");
10189 			rc = -EBUSY;
10190 			break;
10191 		}
10192 
10193 		rc = down_interruptible(&bnx2x_prev_sem);
10194 		if (rc) {
10195 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10196 				  rc);
10197 		} else {
10198 			/* If Path is marked by EEH, ignore unload status */
10199 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10200 				 bnx2x_prev_path_get_entry(bp)->aer);
10201 			up(&bnx2x_prev_sem);
10202 		}
10203 
10204 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10205 			rc = bnx2x_prev_unload_common(bp);
10206 			break;
10207 		}
10208 
10209 		/* non-common reply from MCP might require looping */
10210 		rc = bnx2x_prev_unload_uncommon(bp);
10211 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10212 			break;
10213 
10214 		msleep(20);
10215 	} while (--time_counter);
10216 
10217 	if (!time_counter || rc) {
10218 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
10219 		rc = -EBUSY;
10220 	}
10221 
10222 	/* Mark function if its port was used to boot from SAN */
10223 	if (bnx2x_port_after_undi(bp))
10224 		bp->link_params.feature_config_flags |=
10225 			FEATURE_CONFIG_BOOT_FROM_SAN;
10226 
10227 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10228 
10229 	return rc;
10230 }
10231 
10232 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10233 {
10234 	u32 val, val2, val3, val4, id, boot_mode;
10235 	u16 pmc;
10236 
10237 	/* Get the chip revision id and number. */
10238 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10239 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10240 	id = ((val & 0xffff) << 16);
10241 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10242 	id |= ((val & 0xf) << 12);
10243 
10244 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10245 	 * the configuration space (so we need to reg_rd)
10246 	 */
10247 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10248 	id |= (((val >> 24) & 0xf) << 4);
10249 	val = REG_RD(bp, MISC_REG_BOND_ID);
10250 	id |= (val & 0xf);
10251 	bp->common.chip_id = id;
10252 
10253 	/* force 57811 according to MISC register */
10254 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10255 		if (CHIP_IS_57810(bp))
10256 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10257 				(bp->common.chip_id & 0x0000FFFF);
10258 		else if (CHIP_IS_57810_MF(bp))
10259 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10260 				(bp->common.chip_id & 0x0000FFFF);
10261 		bp->common.chip_id |= 0x1;
10262 	}
10263 
10264 	/* Set doorbell size */
10265 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10266 
10267 	if (!CHIP_IS_E1x(bp)) {
10268 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10269 		if ((val & 1) == 0)
10270 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10271 		else
10272 			val = (val >> 1) & 1;
10273 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10274 						       "2_PORT_MODE");
10275 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10276 						 CHIP_2_PORT_MODE;
10277 
10278 		if (CHIP_MODE_IS_4_PORT(bp))
10279 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10280 		else
10281 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10282 	} else {
10283 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10284 		bp->pfid = bp->pf_num;			/* 0..7 */
10285 	}
10286 
10287 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10288 
10289 	bp->link_params.chip_id = bp->common.chip_id;
10290 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10291 
10292 	val = (REG_RD(bp, 0x2874) & 0x55);
10293 	if ((bp->common.chip_id & 0x1) ||
10294 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10295 		bp->flags |= ONE_PORT_FLAG;
10296 		BNX2X_DEV_INFO("single port device\n");
10297 	}
10298 
10299 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10300 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10301 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10302 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10303 		       bp->common.flash_size, bp->common.flash_size);
10304 
10305 	bnx2x_init_shmem(bp);
10306 
10307 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10308 					MISC_REG_GENERIC_CR_1 :
10309 					MISC_REG_GENERIC_CR_0));
10310 
10311 	bp->link_params.shmem_base = bp->common.shmem_base;
10312 	bp->link_params.shmem2_base = bp->common.shmem2_base;
10313 	if (SHMEM2_RD(bp, size) >
10314 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10315 		bp->link_params.lfa_base =
10316 		REG_RD(bp, bp->common.shmem2_base +
10317 		       (u32)offsetof(struct shmem2_region,
10318 				     lfa_host_addr[BP_PORT(bp)]));
10319 	else
10320 		bp->link_params.lfa_base = 0;
10321 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10322 		       bp->common.shmem_base, bp->common.shmem2_base);
10323 
10324 	if (!bp->common.shmem_base) {
10325 		BNX2X_DEV_INFO("MCP not active\n");
10326 		bp->flags |= NO_MCP_FLAG;
10327 		return;
10328 	}
10329 
10330 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10331 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10332 
10333 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
10334 					SHARED_HW_CFG_LED_MODE_MASK) >>
10335 				       SHARED_HW_CFG_LED_MODE_SHIFT);
10336 
10337 	bp->link_params.feature_config_flags = 0;
10338 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10339 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10340 		bp->link_params.feature_config_flags |=
10341 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10342 	else
10343 		bp->link_params.feature_config_flags &=
10344 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10345 
10346 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10347 	bp->common.bc_ver = val;
10348 	BNX2X_DEV_INFO("bc_ver %X\n", val);
10349 	if (val < BNX2X_BC_VER) {
10350 		/* for now only warn
10351 		 * later we might need to enforce this */
10352 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10353 			  BNX2X_BC_VER, val);
10354 	}
10355 	bp->link_params.feature_config_flags |=
10356 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10357 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10358 
10359 	bp->link_params.feature_config_flags |=
10360 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10361 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10362 	bp->link_params.feature_config_flags |=
10363 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10364 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10365 	bp->link_params.feature_config_flags |=
10366 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10367 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10368 
10369 	bp->link_params.feature_config_flags |=
10370 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10371 		FEATURE_CONFIG_MT_SUPPORT : 0;
10372 
10373 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10374 			BC_SUPPORTS_PFC_STATS : 0;
10375 
10376 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10377 			BC_SUPPORTS_FCOE_FEATURES : 0;
10378 
10379 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10380 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10381 
10382 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10383 			BC_SUPPORTS_RMMOD_CMD : 0;
10384 
10385 	boot_mode = SHMEM_RD(bp,
10386 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10387 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10388 	switch (boot_mode) {
10389 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10390 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10391 		break;
10392 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10393 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10394 		break;
10395 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10396 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10397 		break;
10398 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10399 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10400 		break;
10401 	}
10402 
10403 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10404 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10405 
10406 	BNX2X_DEV_INFO("%sWoL capable\n",
10407 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10408 
10409 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10410 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10411 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10412 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10413 
10414 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10415 		 val, val2, val3, val4);
10416 }
10417 
10418 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10419 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10420 
10421 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10422 {
10423 	int pfid = BP_FUNC(bp);
10424 	int igu_sb_id;
10425 	u32 val;
10426 	u8 fid, igu_sb_cnt = 0;
10427 
10428 	bp->igu_base_sb = 0xff;
10429 	if (CHIP_INT_MODE_IS_BC(bp)) {
10430 		int vn = BP_VN(bp);
10431 		igu_sb_cnt = bp->igu_sb_cnt;
10432 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10433 			FP_SB_MAX_E1x;
10434 
10435 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10436 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10437 
10438 		return 0;
10439 	}
10440 
10441 	/* IGU in normal mode - read CAM */
10442 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10443 	     igu_sb_id++) {
10444 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10445 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10446 			continue;
10447 		fid = IGU_FID(val);
10448 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10449 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10450 				continue;
10451 			if (IGU_VEC(val) == 0)
10452 				/* default status block */
10453 				bp->igu_dsb_id = igu_sb_id;
10454 			else {
10455 				if (bp->igu_base_sb == 0xff)
10456 					bp->igu_base_sb = igu_sb_id;
10457 				igu_sb_cnt++;
10458 			}
10459 		}
10460 	}
10461 
10462 #ifdef CONFIG_PCI_MSI
10463 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10464 	 * optional that number of CAM entries will not be equal to the value
10465 	 * advertised in PCI.
10466 	 * Driver should use the minimal value of both as the actual status
10467 	 * block count
10468 	 */
10469 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10470 #endif
10471 
10472 	if (igu_sb_cnt == 0) {
10473 		BNX2X_ERR("CAM configuration error\n");
10474 		return -EINVAL;
10475 	}
10476 
10477 	return 0;
10478 }
10479 
10480 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10481 {
10482 	int cfg_size = 0, idx, port = BP_PORT(bp);
10483 
10484 	/* Aggregation of supported attributes of all external phys */
10485 	bp->port.supported[0] = 0;
10486 	bp->port.supported[1] = 0;
10487 	switch (bp->link_params.num_phys) {
10488 	case 1:
10489 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10490 		cfg_size = 1;
10491 		break;
10492 	case 2:
10493 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10494 		cfg_size = 1;
10495 		break;
10496 	case 3:
10497 		if (bp->link_params.multi_phy_config &
10498 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10499 			bp->port.supported[1] =
10500 				bp->link_params.phy[EXT_PHY1].supported;
10501 			bp->port.supported[0] =
10502 				bp->link_params.phy[EXT_PHY2].supported;
10503 		} else {
10504 			bp->port.supported[0] =
10505 				bp->link_params.phy[EXT_PHY1].supported;
10506 			bp->port.supported[1] =
10507 				bp->link_params.phy[EXT_PHY2].supported;
10508 		}
10509 		cfg_size = 2;
10510 		break;
10511 	}
10512 
10513 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10514 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10515 			   SHMEM_RD(bp,
10516 			   dev_info.port_hw_config[port].external_phy_config),
10517 			   SHMEM_RD(bp,
10518 			   dev_info.port_hw_config[port].external_phy_config2));
10519 			return;
10520 	}
10521 
10522 	if (CHIP_IS_E3(bp))
10523 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10524 	else {
10525 		switch (switch_cfg) {
10526 		case SWITCH_CFG_1G:
10527 			bp->port.phy_addr = REG_RD(
10528 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10529 			break;
10530 		case SWITCH_CFG_10G:
10531 			bp->port.phy_addr = REG_RD(
10532 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10533 			break;
10534 		default:
10535 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10536 				  bp->port.link_config[0]);
10537 			return;
10538 		}
10539 	}
10540 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10541 	/* mask what we support according to speed_cap_mask per configuration */
10542 	for (idx = 0; idx < cfg_size; idx++) {
10543 		if (!(bp->link_params.speed_cap_mask[idx] &
10544 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10545 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10546 
10547 		if (!(bp->link_params.speed_cap_mask[idx] &
10548 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10549 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10550 
10551 		if (!(bp->link_params.speed_cap_mask[idx] &
10552 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10553 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10554 
10555 		if (!(bp->link_params.speed_cap_mask[idx] &
10556 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10557 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10558 
10559 		if (!(bp->link_params.speed_cap_mask[idx] &
10560 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10561 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10562 						     SUPPORTED_1000baseT_Full);
10563 
10564 		if (!(bp->link_params.speed_cap_mask[idx] &
10565 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10566 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10567 
10568 		if (!(bp->link_params.speed_cap_mask[idx] &
10569 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10570 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10571 
10572 		if (!(bp->link_params.speed_cap_mask[idx] &
10573 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10574 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10575 	}
10576 
10577 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10578 		       bp->port.supported[1]);
10579 }
10580 
10581 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10582 {
10583 	u32 link_config, idx, cfg_size = 0;
10584 	bp->port.advertising[0] = 0;
10585 	bp->port.advertising[1] = 0;
10586 	switch (bp->link_params.num_phys) {
10587 	case 1:
10588 	case 2:
10589 		cfg_size = 1;
10590 		break;
10591 	case 3:
10592 		cfg_size = 2;
10593 		break;
10594 	}
10595 	for (idx = 0; idx < cfg_size; idx++) {
10596 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10597 		link_config = bp->port.link_config[idx];
10598 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10599 		case PORT_FEATURE_LINK_SPEED_AUTO:
10600 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10601 				bp->link_params.req_line_speed[idx] =
10602 					SPEED_AUTO_NEG;
10603 				bp->port.advertising[idx] |=
10604 					bp->port.supported[idx];
10605 				if (bp->link_params.phy[EXT_PHY1].type ==
10606 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10607 					bp->port.advertising[idx] |=
10608 					(SUPPORTED_100baseT_Half |
10609 					 SUPPORTED_100baseT_Full);
10610 			} else {
10611 				/* force 10G, no AN */
10612 				bp->link_params.req_line_speed[idx] =
10613 					SPEED_10000;
10614 				bp->port.advertising[idx] |=
10615 					(ADVERTISED_10000baseT_Full |
10616 					 ADVERTISED_FIBRE);
10617 				continue;
10618 			}
10619 			break;
10620 
10621 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10622 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10623 				bp->link_params.req_line_speed[idx] =
10624 					SPEED_10;
10625 				bp->port.advertising[idx] |=
10626 					(ADVERTISED_10baseT_Full |
10627 					 ADVERTISED_TP);
10628 			} else {
10629 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10630 					    link_config,
10631 				    bp->link_params.speed_cap_mask[idx]);
10632 				return;
10633 			}
10634 			break;
10635 
10636 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10637 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10638 				bp->link_params.req_line_speed[idx] =
10639 					SPEED_10;
10640 				bp->link_params.req_duplex[idx] =
10641 					DUPLEX_HALF;
10642 				bp->port.advertising[idx] |=
10643 					(ADVERTISED_10baseT_Half |
10644 					 ADVERTISED_TP);
10645 			} else {
10646 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10647 					    link_config,
10648 					  bp->link_params.speed_cap_mask[idx]);
10649 				return;
10650 			}
10651 			break;
10652 
10653 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10654 			if (bp->port.supported[idx] &
10655 			    SUPPORTED_100baseT_Full) {
10656 				bp->link_params.req_line_speed[idx] =
10657 					SPEED_100;
10658 				bp->port.advertising[idx] |=
10659 					(ADVERTISED_100baseT_Full |
10660 					 ADVERTISED_TP);
10661 			} else {
10662 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10663 					    link_config,
10664 					  bp->link_params.speed_cap_mask[idx]);
10665 				return;
10666 			}
10667 			break;
10668 
10669 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10670 			if (bp->port.supported[idx] &
10671 			    SUPPORTED_100baseT_Half) {
10672 				bp->link_params.req_line_speed[idx] =
10673 								SPEED_100;
10674 				bp->link_params.req_duplex[idx] =
10675 								DUPLEX_HALF;
10676 				bp->port.advertising[idx] |=
10677 					(ADVERTISED_100baseT_Half |
10678 					 ADVERTISED_TP);
10679 			} else {
10680 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10681 				    link_config,
10682 				    bp->link_params.speed_cap_mask[idx]);
10683 				return;
10684 			}
10685 			break;
10686 
10687 		case PORT_FEATURE_LINK_SPEED_1G:
10688 			if (bp->port.supported[idx] &
10689 			    SUPPORTED_1000baseT_Full) {
10690 				bp->link_params.req_line_speed[idx] =
10691 					SPEED_1000;
10692 				bp->port.advertising[idx] |=
10693 					(ADVERTISED_1000baseT_Full |
10694 					 ADVERTISED_TP);
10695 			} else {
10696 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10697 				    link_config,
10698 				    bp->link_params.speed_cap_mask[idx]);
10699 				return;
10700 			}
10701 			break;
10702 
10703 		case PORT_FEATURE_LINK_SPEED_2_5G:
10704 			if (bp->port.supported[idx] &
10705 			    SUPPORTED_2500baseX_Full) {
10706 				bp->link_params.req_line_speed[idx] =
10707 					SPEED_2500;
10708 				bp->port.advertising[idx] |=
10709 					(ADVERTISED_2500baseX_Full |
10710 						ADVERTISED_TP);
10711 			} else {
10712 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10713 				    link_config,
10714 				    bp->link_params.speed_cap_mask[idx]);
10715 				return;
10716 			}
10717 			break;
10718 
10719 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10720 			if (bp->port.supported[idx] &
10721 			    SUPPORTED_10000baseT_Full) {
10722 				bp->link_params.req_line_speed[idx] =
10723 					SPEED_10000;
10724 				bp->port.advertising[idx] |=
10725 					(ADVERTISED_10000baseT_Full |
10726 						ADVERTISED_FIBRE);
10727 			} else {
10728 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10729 				    link_config,
10730 				    bp->link_params.speed_cap_mask[idx]);
10731 				return;
10732 			}
10733 			break;
10734 		case PORT_FEATURE_LINK_SPEED_20G:
10735 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10736 
10737 			break;
10738 		default:
10739 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10740 				  link_config);
10741 				bp->link_params.req_line_speed[idx] =
10742 							SPEED_AUTO_NEG;
10743 				bp->port.advertising[idx] =
10744 						bp->port.supported[idx];
10745 			break;
10746 		}
10747 
10748 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10749 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10750 		if (bp->link_params.req_flow_ctrl[idx] ==
10751 		    BNX2X_FLOW_CTRL_AUTO) {
10752 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10753 				bp->link_params.req_flow_ctrl[idx] =
10754 							BNX2X_FLOW_CTRL_NONE;
10755 			else
10756 				bnx2x_set_requested_fc(bp);
10757 		}
10758 
10759 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10760 			       bp->link_params.req_line_speed[idx],
10761 			       bp->link_params.req_duplex[idx],
10762 			       bp->link_params.req_flow_ctrl[idx],
10763 			       bp->port.advertising[idx]);
10764 	}
10765 }
10766 
10767 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10768 {
10769 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
10770 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
10771 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10772 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10773 }
10774 
10775 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10776 {
10777 	int port = BP_PORT(bp);
10778 	u32 config;
10779 	u32 ext_phy_type, ext_phy_config, eee_mode;
10780 
10781 	bp->link_params.bp = bp;
10782 	bp->link_params.port = port;
10783 
10784 	bp->link_params.lane_config =
10785 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10786 
10787 	bp->link_params.speed_cap_mask[0] =
10788 		SHMEM_RD(bp,
10789 			 dev_info.port_hw_config[port].speed_capability_mask) &
10790 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10791 	bp->link_params.speed_cap_mask[1] =
10792 		SHMEM_RD(bp,
10793 			 dev_info.port_hw_config[port].speed_capability_mask2) &
10794 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10795 	bp->port.link_config[0] =
10796 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10797 
10798 	bp->port.link_config[1] =
10799 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10800 
10801 	bp->link_params.multi_phy_config =
10802 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10803 	/* If the device is capable of WoL, set the default state according
10804 	 * to the HW
10805 	 */
10806 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10807 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10808 		   (config & PORT_FEATURE_WOL_ENABLED));
10809 
10810 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10811 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10812 		bp->flags |= NO_ISCSI_FLAG;
10813 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10814 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10815 		bp->flags |= NO_FCOE_FLAG;
10816 
10817 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10818 		       bp->link_params.lane_config,
10819 		       bp->link_params.speed_cap_mask[0],
10820 		       bp->port.link_config[0]);
10821 
10822 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10823 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10824 	bnx2x_phy_probe(&bp->link_params);
10825 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10826 
10827 	bnx2x_link_settings_requested(bp);
10828 
10829 	/*
10830 	 * If connected directly, work with the internal PHY, otherwise, work
10831 	 * with the external PHY
10832 	 */
10833 	ext_phy_config =
10834 		SHMEM_RD(bp,
10835 			 dev_info.port_hw_config[port].external_phy_config);
10836 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10837 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10838 		bp->mdio.prtad = bp->port.phy_addr;
10839 
10840 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10841 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10842 		bp->mdio.prtad =
10843 			XGXS_EXT_PHY_ADDR(ext_phy_config);
10844 
10845 	/* Configure link feature according to nvram value */
10846 	eee_mode = (((SHMEM_RD(bp, dev_info.
10847 		      port_feature_config[port].eee_power_mode)) &
10848 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10849 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10850 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10851 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10852 					   EEE_MODE_ENABLE_LPI |
10853 					   EEE_MODE_OUTPUT_TIME;
10854 	} else {
10855 		bp->link_params.eee_mode = 0;
10856 	}
10857 }
10858 
10859 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10860 {
10861 	u32 no_flags = NO_ISCSI_FLAG;
10862 	int port = BP_PORT(bp);
10863 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10864 				drv_lic_key[port].max_iscsi_conn);
10865 
10866 	if (!CNIC_SUPPORT(bp)) {
10867 		bp->flags |= no_flags;
10868 		return;
10869 	}
10870 
10871 	/* Get the number of maximum allowed iSCSI connections */
10872 	bp->cnic_eth_dev.max_iscsi_conn =
10873 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10874 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10875 
10876 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10877 		       bp->cnic_eth_dev.max_iscsi_conn);
10878 
10879 	/*
10880 	 * If maximum allowed number of connections is zero -
10881 	 * disable the feature.
10882 	 */
10883 	if (!bp->cnic_eth_dev.max_iscsi_conn)
10884 		bp->flags |= no_flags;
10885 }
10886 
10887 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10888 {
10889 	/* Port info */
10890 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10891 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10892 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10893 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10894 
10895 	/* Node info */
10896 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10897 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10898 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10899 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10900 }
10901 
10902 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10903 {
10904 	u8 count = 0;
10905 
10906 	if (IS_MF(bp)) {
10907 		u8 fid;
10908 
10909 		/* iterate over absolute function ids for this path: */
10910 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10911 			if (IS_MF_SD(bp)) {
10912 				u32 cfg = MF_CFG_RD(bp,
10913 						    func_mf_config[fid].config);
10914 
10915 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10916 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10917 					    FUNC_MF_CFG_PROTOCOL_FCOE))
10918 					count++;
10919 			} else {
10920 				u32 cfg = MF_CFG_RD(bp,
10921 						    func_ext_config[fid].
10922 								      func_cfg);
10923 
10924 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10925 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10926 					count++;
10927 			}
10928 		}
10929 	} else { /* SF */
10930 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10931 
10932 		for (port = 0; port < port_cnt; port++) {
10933 			u32 lic = SHMEM_RD(bp,
10934 					   drv_lic_key[port].max_fcoe_conn) ^
10935 				  FW_ENCODE_32BIT_PATTERN;
10936 			if (lic)
10937 				count++;
10938 		}
10939 	}
10940 
10941 	return count;
10942 }
10943 
10944 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10945 {
10946 	int port = BP_PORT(bp);
10947 	int func = BP_ABS_FUNC(bp);
10948 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10949 				drv_lic_key[port].max_fcoe_conn);
10950 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
10951 
10952 	if (!CNIC_SUPPORT(bp)) {
10953 		bp->flags |= NO_FCOE_FLAG;
10954 		return;
10955 	}
10956 
10957 	/* Get the number of maximum allowed FCoE connections */
10958 	bp->cnic_eth_dev.max_fcoe_conn =
10959 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10960 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10961 
10962 	/* Calculate the number of maximum allowed FCoE tasks */
10963 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10964 
10965 	/* check if FCoE resources must be shared between different functions */
10966 	if (num_fcoe_func)
10967 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
10968 
10969 	/* Read the WWN: */
10970 	if (!IS_MF(bp)) {
10971 		/* Port info */
10972 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10973 			SHMEM_RD(bp,
10974 				 dev_info.port_hw_config[port].
10975 				 fcoe_wwn_port_name_upper);
10976 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10977 			SHMEM_RD(bp,
10978 				 dev_info.port_hw_config[port].
10979 				 fcoe_wwn_port_name_lower);
10980 
10981 		/* Node info */
10982 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10983 			SHMEM_RD(bp,
10984 				 dev_info.port_hw_config[port].
10985 				 fcoe_wwn_node_name_upper);
10986 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10987 			SHMEM_RD(bp,
10988 				 dev_info.port_hw_config[port].
10989 				 fcoe_wwn_node_name_lower);
10990 	} else if (!IS_MF_SD(bp)) {
10991 		/*
10992 		 * Read the WWN info only if the FCoE feature is enabled for
10993 		 * this function.
10994 		 */
10995 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10996 			bnx2x_get_ext_wwn_info(bp, func);
10997 
10998 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10999 		bnx2x_get_ext_wwn_info(bp, func);
11000 	}
11001 
11002 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11003 
11004 	/*
11005 	 * If maximum allowed number of connections is zero -
11006 	 * disable the feature.
11007 	 */
11008 	if (!bp->cnic_eth_dev.max_fcoe_conn)
11009 		bp->flags |= NO_FCOE_FLAG;
11010 }
11011 
11012 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11013 {
11014 	/*
11015 	 * iSCSI may be dynamically disabled but reading
11016 	 * info here we will decrease memory usage by driver
11017 	 * if the feature is disabled for good
11018 	 */
11019 	bnx2x_get_iscsi_info(bp);
11020 	bnx2x_get_fcoe_info(bp);
11021 }
11022 
11023 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11024 {
11025 	u32 val, val2;
11026 	int func = BP_ABS_FUNC(bp);
11027 	int port = BP_PORT(bp);
11028 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11029 	u8 *fip_mac = bp->fip_mac;
11030 
11031 	if (IS_MF(bp)) {
11032 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11033 		 * FCoE MAC then the appropriate feature should be disabled.
11034 		 * In non SD mode features configuration comes from struct
11035 		 * func_ext_config.
11036 		 */
11037 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11038 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11039 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11040 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11041 						 iscsi_mac_addr_upper);
11042 				val = MF_CFG_RD(bp, func_ext_config[func].
11043 						iscsi_mac_addr_lower);
11044 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11045 				BNX2X_DEV_INFO
11046 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11047 			} else {
11048 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11049 			}
11050 
11051 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11052 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11053 						 fcoe_mac_addr_upper);
11054 				val = MF_CFG_RD(bp, func_ext_config[func].
11055 						fcoe_mac_addr_lower);
11056 				bnx2x_set_mac_buf(fip_mac, val, val2);
11057 				BNX2X_DEV_INFO
11058 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11059 			} else {
11060 				bp->flags |= NO_FCOE_FLAG;
11061 			}
11062 
11063 			bp->mf_ext_config = cfg;
11064 
11065 		} else { /* SD MODE */
11066 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11067 				/* use primary mac as iscsi mac */
11068 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11069 
11070 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11071 				BNX2X_DEV_INFO
11072 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11073 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11074 				/* use primary mac as fip mac */
11075 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11076 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11077 				BNX2X_DEV_INFO
11078 					("Read FIP MAC: %pM\n", fip_mac);
11079 			}
11080 		}
11081 
11082 		/* If this is a storage-only interface, use SAN mac as
11083 		 * primary MAC. Notice that for SD this is already the case,
11084 		 * as the SAN mac was copied from the primary MAC.
11085 		 */
11086 		if (IS_MF_FCOE_AFEX(bp))
11087 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11088 	} else {
11089 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11090 				iscsi_mac_upper);
11091 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11092 			       iscsi_mac_lower);
11093 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11094 
11095 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11096 				fcoe_fip_mac_upper);
11097 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11098 			       fcoe_fip_mac_lower);
11099 		bnx2x_set_mac_buf(fip_mac, val, val2);
11100 	}
11101 
11102 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11103 	if (!is_valid_ether_addr(iscsi_mac)) {
11104 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11105 		memset(iscsi_mac, 0, ETH_ALEN);
11106 	}
11107 
11108 	/* Disable FCoE if MAC configuration is invalid. */
11109 	if (!is_valid_ether_addr(fip_mac)) {
11110 		bp->flags |= NO_FCOE_FLAG;
11111 		memset(bp->fip_mac, 0, ETH_ALEN);
11112 	}
11113 }
11114 
11115 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11116 {
11117 	u32 val, val2;
11118 	int func = BP_ABS_FUNC(bp);
11119 	int port = BP_PORT(bp);
11120 
11121 	/* Zero primary MAC configuration */
11122 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
11123 
11124 	if (BP_NOMCP(bp)) {
11125 		BNX2X_ERROR("warning: random MAC workaround active\n");
11126 		eth_hw_addr_random(bp->dev);
11127 	} else if (IS_MF(bp)) {
11128 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11129 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11130 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11131 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11132 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11133 
11134 		if (CNIC_SUPPORT(bp))
11135 			bnx2x_get_cnic_mac_hwinfo(bp);
11136 	} else {
11137 		/* in SF read MACs from port configuration */
11138 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11139 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11140 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11141 
11142 		if (CNIC_SUPPORT(bp))
11143 			bnx2x_get_cnic_mac_hwinfo(bp);
11144 	}
11145 
11146 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11147 
11148 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11149 		dev_err(&bp->pdev->dev,
11150 			"bad Ethernet MAC address configuration: %pM\n"
11151 			"change it manually before bringing up the appropriate network interface\n",
11152 			bp->dev->dev_addr);
11153 }
11154 
11155 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11156 {
11157 	int tmp;
11158 	u32 cfg;
11159 
11160 	if (IS_VF(bp))
11161 		return 0;
11162 
11163 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11164 		/* Take function: tmp = func */
11165 		tmp = BP_ABS_FUNC(bp);
11166 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11167 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11168 	} else {
11169 		/* Take port: tmp = port */
11170 		tmp = BP_PORT(bp);
11171 		cfg = SHMEM_RD(bp,
11172 			       dev_info.port_hw_config[tmp].generic_features);
11173 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11174 	}
11175 	return cfg;
11176 }
11177 
11178 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11179 {
11180 	int /*abs*/func = BP_ABS_FUNC(bp);
11181 	int vn;
11182 	u32 val = 0;
11183 	int rc = 0;
11184 
11185 	bnx2x_get_common_hwinfo(bp);
11186 
11187 	/*
11188 	 * initialize IGU parameters
11189 	 */
11190 	if (CHIP_IS_E1x(bp)) {
11191 		bp->common.int_block = INT_BLOCK_HC;
11192 
11193 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11194 		bp->igu_base_sb = 0;
11195 	} else {
11196 		bp->common.int_block = INT_BLOCK_IGU;
11197 
11198 		/* do not allow device reset during IGU info processing */
11199 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11200 
11201 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11202 
11203 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11204 			int tout = 5000;
11205 
11206 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11207 
11208 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11209 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11210 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11211 
11212 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11213 				tout--;
11214 				usleep_range(1000, 2000);
11215 			}
11216 
11217 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11218 				dev_err(&bp->pdev->dev,
11219 					"FORCING Normal Mode failed!!!\n");
11220 				bnx2x_release_hw_lock(bp,
11221 						      HW_LOCK_RESOURCE_RESET);
11222 				return -EPERM;
11223 			}
11224 		}
11225 
11226 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11227 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11228 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11229 		} else
11230 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11231 
11232 		rc = bnx2x_get_igu_cam_info(bp);
11233 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11234 		if (rc)
11235 			return rc;
11236 	}
11237 
11238 	/*
11239 	 * set base FW non-default (fast path) status block id, this value is
11240 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11241 	 * determine the id used by the FW.
11242 	 */
11243 	if (CHIP_IS_E1x(bp))
11244 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11245 	else /*
11246 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11247 	      * the same queue are indicated on the same IGU SB). So we prefer
11248 	      * FW and IGU SBs to be the same value.
11249 	      */
11250 		bp->base_fw_ndsb = bp->igu_base_sb;
11251 
11252 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11253 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11254 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
11255 
11256 	/*
11257 	 * Initialize MF configuration
11258 	 */
11259 
11260 	bp->mf_ov = 0;
11261 	bp->mf_mode = 0;
11262 	vn = BP_VN(bp);
11263 
11264 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11265 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11266 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
11267 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11268 
11269 		if (SHMEM2_HAS(bp, mf_cfg_addr))
11270 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11271 		else
11272 			bp->common.mf_cfg_base = bp->common.shmem_base +
11273 				offsetof(struct shmem_region, func_mb) +
11274 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11275 		/*
11276 		 * get mf configuration:
11277 		 * 1. Existence of MF configuration
11278 		 * 2. MAC address must be legal (check only upper bytes)
11279 		 *    for  Switch-Independent mode;
11280 		 *    OVLAN must be legal for Switch-Dependent mode
11281 		 * 3. SF_MODE configures specific MF mode
11282 		 */
11283 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11284 			/* get mf configuration */
11285 			val = SHMEM_RD(bp,
11286 				       dev_info.shared_feature_config.config);
11287 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11288 
11289 			switch (val) {
11290 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11291 				val = MF_CFG_RD(bp, func_mf_config[func].
11292 						mac_upper);
11293 				/* check for legal mac (upper bytes)*/
11294 				if (val != 0xffff) {
11295 					bp->mf_mode = MULTI_FUNCTION_SI;
11296 					bp->mf_config[vn] = MF_CFG_RD(bp,
11297 						   func_mf_config[func].config);
11298 				} else
11299 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
11300 				break;
11301 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11302 				if ((!CHIP_IS_E1x(bp)) &&
11303 				    (MF_CFG_RD(bp, func_mf_config[func].
11304 					       mac_upper) != 0xffff) &&
11305 				    (SHMEM2_HAS(bp,
11306 						afex_driver_support))) {
11307 					bp->mf_mode = MULTI_FUNCTION_AFEX;
11308 					bp->mf_config[vn] = MF_CFG_RD(bp,
11309 						func_mf_config[func].config);
11310 				} else {
11311 					BNX2X_DEV_INFO("can not configure afex mode\n");
11312 				}
11313 				break;
11314 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11315 				/* get OV configuration */
11316 				val = MF_CFG_RD(bp,
11317 					func_mf_config[FUNC_0].e1hov_tag);
11318 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11319 
11320 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11321 					bp->mf_mode = MULTI_FUNCTION_SD;
11322 					bp->mf_config[vn] = MF_CFG_RD(bp,
11323 						func_mf_config[func].config);
11324 				} else
11325 					BNX2X_DEV_INFO("illegal OV for SD\n");
11326 				break;
11327 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11328 				bp->mf_config[vn] = 0;
11329 				break;
11330 			default:
11331 				/* Unknown configuration: reset mf_config */
11332 				bp->mf_config[vn] = 0;
11333 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11334 			}
11335 		}
11336 
11337 		BNX2X_DEV_INFO("%s function mode\n",
11338 			       IS_MF(bp) ? "multi" : "single");
11339 
11340 		switch (bp->mf_mode) {
11341 		case MULTI_FUNCTION_SD:
11342 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11343 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
11344 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11345 				bp->mf_ov = val;
11346 				bp->path_has_ovlan = true;
11347 
11348 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11349 					       func, bp->mf_ov, bp->mf_ov);
11350 			} else {
11351 				dev_err(&bp->pdev->dev,
11352 					"No valid MF OV for func %d, aborting\n",
11353 					func);
11354 				return -EPERM;
11355 			}
11356 			break;
11357 		case MULTI_FUNCTION_AFEX:
11358 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11359 			break;
11360 		case MULTI_FUNCTION_SI:
11361 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11362 				       func);
11363 			break;
11364 		default:
11365 			if (vn) {
11366 				dev_err(&bp->pdev->dev,
11367 					"VN %d is in a single function mode, aborting\n",
11368 					vn);
11369 				return -EPERM;
11370 			}
11371 			break;
11372 		}
11373 
11374 		/* check if other port on the path needs ovlan:
11375 		 * Since MF configuration is shared between ports
11376 		 * Possible mixed modes are only
11377 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11378 		 */
11379 		if (CHIP_MODE_IS_4_PORT(bp) &&
11380 		    !bp->path_has_ovlan &&
11381 		    !IS_MF(bp) &&
11382 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11383 			u8 other_port = !BP_PORT(bp);
11384 			u8 other_func = BP_PATH(bp) + 2*other_port;
11385 			val = MF_CFG_RD(bp,
11386 					func_mf_config[other_func].e1hov_tag);
11387 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11388 				bp->path_has_ovlan = true;
11389 		}
11390 	}
11391 
11392 	/* adjust igu_sb_cnt to MF for E1x */
11393 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
11394 		bp->igu_sb_cnt /= E1HVN_MAX;
11395 
11396 	/* port info */
11397 	bnx2x_get_port_hwinfo(bp);
11398 
11399 	/* Get MAC addresses */
11400 	bnx2x_get_mac_hwinfo(bp);
11401 
11402 	bnx2x_get_cnic_info(bp);
11403 
11404 	return rc;
11405 }
11406 
11407 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11408 {
11409 	int cnt, i, block_end, rodi;
11410 	char vpd_start[BNX2X_VPD_LEN+1];
11411 	char str_id_reg[VENDOR_ID_LEN+1];
11412 	char str_id_cap[VENDOR_ID_LEN+1];
11413 	char *vpd_data;
11414 	char *vpd_extended_data = NULL;
11415 	u8 len;
11416 
11417 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11418 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11419 
11420 	if (cnt < BNX2X_VPD_LEN)
11421 		goto out_not_found;
11422 
11423 	/* VPD RO tag should be first tag after identifier string, hence
11424 	 * we should be able to find it in first BNX2X_VPD_LEN chars
11425 	 */
11426 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11427 			     PCI_VPD_LRDT_RO_DATA);
11428 	if (i < 0)
11429 		goto out_not_found;
11430 
11431 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11432 		    pci_vpd_lrdt_size(&vpd_start[i]);
11433 
11434 	i += PCI_VPD_LRDT_TAG_SIZE;
11435 
11436 	if (block_end > BNX2X_VPD_LEN) {
11437 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11438 		if (vpd_extended_data  == NULL)
11439 			goto out_not_found;
11440 
11441 		/* read rest of vpd image into vpd_extended_data */
11442 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11443 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11444 				   block_end - BNX2X_VPD_LEN,
11445 				   vpd_extended_data + BNX2X_VPD_LEN);
11446 		if (cnt < (block_end - BNX2X_VPD_LEN))
11447 			goto out_not_found;
11448 		vpd_data = vpd_extended_data;
11449 	} else
11450 		vpd_data = vpd_start;
11451 
11452 	/* now vpd_data holds full vpd content in both cases */
11453 
11454 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11455 				   PCI_VPD_RO_KEYWORD_MFR_ID);
11456 	if (rodi < 0)
11457 		goto out_not_found;
11458 
11459 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
11460 
11461 	if (len != VENDOR_ID_LEN)
11462 		goto out_not_found;
11463 
11464 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11465 
11466 	/* vendor specific info */
11467 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11468 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11469 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11470 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11471 
11472 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11473 						PCI_VPD_RO_KEYWORD_VENDOR0);
11474 		if (rodi >= 0) {
11475 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11476 
11477 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11478 
11479 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11480 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11481 				bp->fw_ver[len] = ' ';
11482 			}
11483 		}
11484 		kfree(vpd_extended_data);
11485 		return;
11486 	}
11487 out_not_found:
11488 	kfree(vpd_extended_data);
11489 	return;
11490 }
11491 
11492 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11493 {
11494 	u32 flags = 0;
11495 
11496 	if (CHIP_REV_IS_FPGA(bp))
11497 		SET_FLAGS(flags, MODE_FPGA);
11498 	else if (CHIP_REV_IS_EMUL(bp))
11499 		SET_FLAGS(flags, MODE_EMUL);
11500 	else
11501 		SET_FLAGS(flags, MODE_ASIC);
11502 
11503 	if (CHIP_MODE_IS_4_PORT(bp))
11504 		SET_FLAGS(flags, MODE_PORT4);
11505 	else
11506 		SET_FLAGS(flags, MODE_PORT2);
11507 
11508 	if (CHIP_IS_E2(bp))
11509 		SET_FLAGS(flags, MODE_E2);
11510 	else if (CHIP_IS_E3(bp)) {
11511 		SET_FLAGS(flags, MODE_E3);
11512 		if (CHIP_REV(bp) == CHIP_REV_Ax)
11513 			SET_FLAGS(flags, MODE_E3_A0);
11514 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11515 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11516 	}
11517 
11518 	if (IS_MF(bp)) {
11519 		SET_FLAGS(flags, MODE_MF);
11520 		switch (bp->mf_mode) {
11521 		case MULTI_FUNCTION_SD:
11522 			SET_FLAGS(flags, MODE_MF_SD);
11523 			break;
11524 		case MULTI_FUNCTION_SI:
11525 			SET_FLAGS(flags, MODE_MF_SI);
11526 			break;
11527 		case MULTI_FUNCTION_AFEX:
11528 			SET_FLAGS(flags, MODE_MF_AFEX);
11529 			break;
11530 		}
11531 	} else
11532 		SET_FLAGS(flags, MODE_SF);
11533 
11534 #if defined(__LITTLE_ENDIAN)
11535 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11536 #else /*(__BIG_ENDIAN)*/
11537 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11538 #endif
11539 	INIT_MODE_FLAGS(bp) = flags;
11540 }
11541 
11542 static int bnx2x_init_bp(struct bnx2x *bp)
11543 {
11544 	int func;
11545 	int rc;
11546 
11547 	mutex_init(&bp->port.phy_mutex);
11548 	mutex_init(&bp->fw_mb_mutex);
11549 	spin_lock_init(&bp->stats_lock);
11550 	sema_init(&bp->stats_sema, 1);
11551 
11552 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11553 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11554 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11555 	if (IS_PF(bp)) {
11556 		rc = bnx2x_get_hwinfo(bp);
11557 		if (rc)
11558 			return rc;
11559 	} else {
11560 		eth_zero_addr(bp->dev->dev_addr);
11561 	}
11562 
11563 	bnx2x_set_modes_bitmap(bp);
11564 
11565 	rc = bnx2x_alloc_mem_bp(bp);
11566 	if (rc)
11567 		return rc;
11568 
11569 	bnx2x_read_fwinfo(bp);
11570 
11571 	func = BP_FUNC(bp);
11572 
11573 	/* need to reset chip if undi was active */
11574 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
11575 		/* init fw_seq */
11576 		bp->fw_seq =
11577 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11578 							DRV_MSG_SEQ_NUMBER_MASK;
11579 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11580 
11581 		bnx2x_prev_unload(bp);
11582 	}
11583 
11584 	if (CHIP_REV_IS_FPGA(bp))
11585 		dev_err(&bp->pdev->dev, "FPGA detected\n");
11586 
11587 	if (BP_NOMCP(bp) && (func == 0))
11588 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11589 
11590 	bp->disable_tpa = disable_tpa;
11591 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11592 
11593 	/* Set TPA flags */
11594 	if (bp->disable_tpa) {
11595 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11596 		bp->dev->features &= ~NETIF_F_LRO;
11597 	} else {
11598 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11599 		bp->dev->features |= NETIF_F_LRO;
11600 	}
11601 
11602 	if (CHIP_IS_E1(bp))
11603 		bp->dropless_fc = 0;
11604 	else
11605 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11606 
11607 	bp->mrrs = mrrs;
11608 
11609 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11610 	if (IS_VF(bp))
11611 		bp->rx_ring_size = MAX_RX_AVAIL;
11612 
11613 	/* make sure that the numbers are in the right granularity */
11614 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11615 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11616 
11617 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11618 
11619 	init_timer(&bp->timer);
11620 	bp->timer.expires = jiffies + bp->current_interval;
11621 	bp->timer.data = (unsigned long) bp;
11622 	bp->timer.function = bnx2x_timer;
11623 
11624 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11625 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11626 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11627 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11628 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11629 		bnx2x_dcbx_init_params(bp);
11630 	} else {
11631 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11632 	}
11633 
11634 	if (CHIP_IS_E1x(bp))
11635 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11636 	else
11637 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11638 
11639 	/* multiple tx priority */
11640 	if (IS_VF(bp))
11641 		bp->max_cos = 1;
11642 	else if (CHIP_IS_E1x(bp))
11643 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11644 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11645 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11646 	else if (CHIP_IS_E3B0(bp))
11647 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11648 	else
11649 		BNX2X_ERR("unknown chip %x revision %x\n",
11650 			  CHIP_NUM(bp), CHIP_REV(bp));
11651 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11652 
11653 	/* We need at least one default status block for slow-path events,
11654 	 * second status block for the L2 queue, and a third status block for
11655 	 * CNIC if supported.
11656 	 */
11657 	if (IS_VF(bp))
11658 		bp->min_msix_vec_cnt = 1;
11659 	else if (CNIC_SUPPORT(bp))
11660 		bp->min_msix_vec_cnt = 3;
11661 	else /* PF w/o cnic */
11662 		bp->min_msix_vec_cnt = 2;
11663 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11664 
11665 	bp->dump_preset_idx = 1;
11666 
11667 	return rc;
11668 }
11669 
11670 /****************************************************************************
11671 * General service functions
11672 ****************************************************************************/
11673 
11674 /*
11675  * net_device service functions
11676  */
11677 
11678 /* called with rtnl_lock */
11679 static int bnx2x_open(struct net_device *dev)
11680 {
11681 	struct bnx2x *bp = netdev_priv(dev);
11682 	bool global = false;
11683 	int other_engine = BP_PATH(bp) ? 0 : 1;
11684 	bool other_load_status, load_status;
11685 	int rc;
11686 
11687 	bp->stats_init = true;
11688 
11689 	netif_carrier_off(dev);
11690 
11691 	bnx2x_set_power_state(bp, PCI_D0);
11692 
11693 	/* If parity had happen during the unload, then attentions
11694 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11695 	 * want the first function loaded on the current engine to
11696 	 * complete the recovery.
11697 	 * Parity recovery is only relevant for PF driver.
11698 	 */
11699 	if (IS_PF(bp)) {
11700 		other_load_status = bnx2x_get_load_status(bp, other_engine);
11701 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11702 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11703 		    bnx2x_chk_parity_attn(bp, &global, true)) {
11704 			do {
11705 				/* If there are attentions and they are in a
11706 				 * global blocks, set the GLOBAL_RESET bit
11707 				 * regardless whether it will be this function
11708 				 * that will complete the recovery or not.
11709 				 */
11710 				if (global)
11711 					bnx2x_set_reset_global(bp);
11712 
11713 				/* Only the first function on the current
11714 				 * engine should try to recover in open. In case
11715 				 * of attentions in global blocks only the first
11716 				 * in the chip should try to recover.
11717 				 */
11718 				if ((!load_status &&
11719 				     (!global || !other_load_status)) &&
11720 				      bnx2x_trylock_leader_lock(bp) &&
11721 				      !bnx2x_leader_reset(bp)) {
11722 					netdev_info(bp->dev,
11723 						    "Recovered in open\n");
11724 					break;
11725 				}
11726 
11727 				/* recovery has failed... */
11728 				bnx2x_set_power_state(bp, PCI_D3hot);
11729 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
11730 
11731 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11732 					  "If you still see this message after a few retries then power cycle is required.\n");
11733 
11734 				return -EAGAIN;
11735 			} while (0);
11736 		}
11737 	}
11738 
11739 	bp->recovery_state = BNX2X_RECOVERY_DONE;
11740 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
11741 	if (rc)
11742 		return rc;
11743 	return bnx2x_open_epilog(bp);
11744 }
11745 
11746 /* called with rtnl_lock */
11747 static int bnx2x_close(struct net_device *dev)
11748 {
11749 	struct bnx2x *bp = netdev_priv(dev);
11750 
11751 	/* Unload the driver, release IRQs */
11752 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11753 
11754 	return 0;
11755 }
11756 
11757 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11758 				      struct bnx2x_mcast_ramrod_params *p)
11759 {
11760 	int mc_count = netdev_mc_count(bp->dev);
11761 	struct bnx2x_mcast_list_elem *mc_mac =
11762 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11763 	struct netdev_hw_addr *ha;
11764 
11765 	if (!mc_mac)
11766 		return -ENOMEM;
11767 
11768 	INIT_LIST_HEAD(&p->mcast_list);
11769 
11770 	netdev_for_each_mc_addr(ha, bp->dev) {
11771 		mc_mac->mac = bnx2x_mc_addr(ha);
11772 		list_add_tail(&mc_mac->link, &p->mcast_list);
11773 		mc_mac++;
11774 	}
11775 
11776 	p->mcast_list_len = mc_count;
11777 
11778 	return 0;
11779 }
11780 
11781 static void bnx2x_free_mcast_macs_list(
11782 	struct bnx2x_mcast_ramrod_params *p)
11783 {
11784 	struct bnx2x_mcast_list_elem *mc_mac =
11785 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11786 				 link);
11787 
11788 	WARN_ON(!mc_mac);
11789 	kfree(mc_mac);
11790 }
11791 
11792 /**
11793  * bnx2x_set_uc_list - configure a new unicast MACs list.
11794  *
11795  * @bp: driver handle
11796  *
11797  * We will use zero (0) as a MAC type for these MACs.
11798  */
11799 static int bnx2x_set_uc_list(struct bnx2x *bp)
11800 {
11801 	int rc;
11802 	struct net_device *dev = bp->dev;
11803 	struct netdev_hw_addr *ha;
11804 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11805 	unsigned long ramrod_flags = 0;
11806 
11807 	/* First schedule a cleanup up of old configuration */
11808 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11809 	if (rc < 0) {
11810 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11811 		return rc;
11812 	}
11813 
11814 	netdev_for_each_uc_addr(ha, dev) {
11815 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11816 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11817 		if (rc == -EEXIST) {
11818 			DP(BNX2X_MSG_SP,
11819 			   "Failed to schedule ADD operations: %d\n", rc);
11820 			/* do not treat adding same MAC as error */
11821 			rc = 0;
11822 
11823 		} else if (rc < 0) {
11824 
11825 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11826 				  rc);
11827 			return rc;
11828 		}
11829 	}
11830 
11831 	/* Execute the pending commands */
11832 	__set_bit(RAMROD_CONT, &ramrod_flags);
11833 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11834 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
11835 }
11836 
11837 static int bnx2x_set_mc_list(struct bnx2x *bp)
11838 {
11839 	struct net_device *dev = bp->dev;
11840 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
11841 	int rc = 0;
11842 
11843 	rparam.mcast_obj = &bp->mcast_obj;
11844 
11845 	/* first, clear all configured multicast MACs */
11846 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11847 	if (rc < 0) {
11848 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11849 		return rc;
11850 	}
11851 
11852 	/* then, configure a new MACs list */
11853 	if (netdev_mc_count(dev)) {
11854 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11855 		if (rc) {
11856 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11857 				  rc);
11858 			return rc;
11859 		}
11860 
11861 		/* Now add the new MACs */
11862 		rc = bnx2x_config_mcast(bp, &rparam,
11863 					BNX2X_MCAST_CMD_ADD);
11864 		if (rc < 0)
11865 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11866 				  rc);
11867 
11868 		bnx2x_free_mcast_macs_list(&rparam);
11869 	}
11870 
11871 	return rc;
11872 }
11873 
11874 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11875 void bnx2x_set_rx_mode(struct net_device *dev)
11876 {
11877 	struct bnx2x *bp = netdev_priv(dev);
11878 
11879 	if (bp->state != BNX2X_STATE_OPEN) {
11880 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11881 		return;
11882 	} else {
11883 		/* Schedule an SP task to handle rest of change */
11884 		DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
11885 		smp_mb__before_clear_bit();
11886 		set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
11887 		smp_mb__after_clear_bit();
11888 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
11889 	}
11890 }
11891 
11892 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
11893 {
11894 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11895 
11896 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11897 
11898 	netif_addr_lock_bh(bp->dev);
11899 
11900 	if (bp->dev->flags & IFF_PROMISC) {
11901 		rx_mode = BNX2X_RX_MODE_PROMISC;
11902 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
11903 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
11904 		    CHIP_IS_E1(bp))) {
11905 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
11906 	} else {
11907 		if (IS_PF(bp)) {
11908 			/* some multicasts */
11909 			if (bnx2x_set_mc_list(bp) < 0)
11910 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
11911 
11912 			/* release bh lock, as bnx2x_set_uc_list might sleep */
11913 			netif_addr_unlock_bh(bp->dev);
11914 			if (bnx2x_set_uc_list(bp) < 0)
11915 				rx_mode = BNX2X_RX_MODE_PROMISC;
11916 			netif_addr_lock_bh(bp->dev);
11917 		} else {
11918 			/* configuring mcast to a vf involves sleeping (when we
11919 			 * wait for the pf's response).
11920 			 */
11921 			smp_mb__before_clear_bit();
11922 			set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11923 				&bp->sp_rtnl_state);
11924 			smp_mb__after_clear_bit();
11925 			schedule_delayed_work(&bp->sp_rtnl_task, 0);
11926 		}
11927 	}
11928 
11929 	bp->rx_mode = rx_mode;
11930 	/* handle ISCSI SD mode */
11931 	if (IS_MF_ISCSI_SD(bp))
11932 		bp->rx_mode = BNX2X_RX_MODE_NONE;
11933 
11934 	/* Schedule the rx_mode command */
11935 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11936 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11937 		netif_addr_unlock_bh(bp->dev);
11938 		return;
11939 	}
11940 
11941 	if (IS_PF(bp)) {
11942 		bnx2x_set_storm_rx_mode(bp);
11943 		netif_addr_unlock_bh(bp->dev);
11944 	} else {
11945 		/* VF will need to request the PF to make this change, and so
11946 		 * the VF needs to release the bottom-half lock prior to the
11947 		 * request (as it will likely require sleep on the VF side)
11948 		 */
11949 		netif_addr_unlock_bh(bp->dev);
11950 		bnx2x_vfpf_storm_rx_mode(bp);
11951 	}
11952 }
11953 
11954 /* called with rtnl_lock */
11955 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11956 			   int devad, u16 addr)
11957 {
11958 	struct bnx2x *bp = netdev_priv(netdev);
11959 	u16 value;
11960 	int rc;
11961 
11962 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11963 	   prtad, devad, addr);
11964 
11965 	/* The HW expects different devad if CL22 is used */
11966 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11967 
11968 	bnx2x_acquire_phy_lock(bp);
11969 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11970 	bnx2x_release_phy_lock(bp);
11971 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11972 
11973 	if (!rc)
11974 		rc = value;
11975 	return rc;
11976 }
11977 
11978 /* called with rtnl_lock */
11979 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11980 			    u16 addr, u16 value)
11981 {
11982 	struct bnx2x *bp = netdev_priv(netdev);
11983 	int rc;
11984 
11985 	DP(NETIF_MSG_LINK,
11986 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11987 	   prtad, devad, addr, value);
11988 
11989 	/* The HW expects different devad if CL22 is used */
11990 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11991 
11992 	bnx2x_acquire_phy_lock(bp);
11993 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11994 	bnx2x_release_phy_lock(bp);
11995 	return rc;
11996 }
11997 
11998 /* called with rtnl_lock */
11999 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12000 {
12001 	struct bnx2x *bp = netdev_priv(dev);
12002 	struct mii_ioctl_data *mdio = if_mii(ifr);
12003 
12004 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12005 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
12006 
12007 	if (!netif_running(dev))
12008 		return -EAGAIN;
12009 
12010 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12011 }
12012 
12013 #ifdef CONFIG_NET_POLL_CONTROLLER
12014 static void poll_bnx2x(struct net_device *dev)
12015 {
12016 	struct bnx2x *bp = netdev_priv(dev);
12017 	int i;
12018 
12019 	for_each_eth_queue(bp, i) {
12020 		struct bnx2x_fastpath *fp = &bp->fp[i];
12021 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12022 	}
12023 }
12024 #endif
12025 
12026 static int bnx2x_validate_addr(struct net_device *dev)
12027 {
12028 	struct bnx2x *bp = netdev_priv(dev);
12029 
12030 	/* query the bulletin board for mac address configured by the PF */
12031 	if (IS_VF(bp))
12032 		bnx2x_sample_bulletin(bp);
12033 
12034 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12035 		BNX2X_ERR("Non-valid Ethernet address\n");
12036 		return -EADDRNOTAVAIL;
12037 	}
12038 	return 0;
12039 }
12040 
12041 static const struct net_device_ops bnx2x_netdev_ops = {
12042 	.ndo_open		= bnx2x_open,
12043 	.ndo_stop		= bnx2x_close,
12044 	.ndo_start_xmit		= bnx2x_start_xmit,
12045 	.ndo_select_queue	= bnx2x_select_queue,
12046 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
12047 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
12048 	.ndo_validate_addr	= bnx2x_validate_addr,
12049 	.ndo_do_ioctl		= bnx2x_ioctl,
12050 	.ndo_change_mtu		= bnx2x_change_mtu,
12051 	.ndo_fix_features	= bnx2x_fix_features,
12052 	.ndo_set_features	= bnx2x_set_features,
12053 	.ndo_tx_timeout		= bnx2x_tx_timeout,
12054 #ifdef CONFIG_NET_POLL_CONTROLLER
12055 	.ndo_poll_controller	= poll_bnx2x,
12056 #endif
12057 	.ndo_setup_tc		= bnx2x_setup_tc,
12058 #ifdef CONFIG_BNX2X_SRIOV
12059 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
12060 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
12061 	.ndo_get_vf_config	= bnx2x_get_vf_config,
12062 #endif
12063 #ifdef NETDEV_FCOE_WWNN
12064 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
12065 #endif
12066 
12067 #ifdef CONFIG_NET_RX_BUSY_POLL
12068 	.ndo_busy_poll		= bnx2x_low_latency_recv,
12069 #endif
12070 };
12071 
12072 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12073 {
12074 	struct device *dev = &bp->pdev->dev;
12075 
12076 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
12077 		bp->flags |= USING_DAC_FLAG;
12078 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
12079 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
12080 			return -EIO;
12081 		}
12082 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
12083 		dev_err(dev, "System does not support DMA, aborting\n");
12084 		return -EIO;
12085 	}
12086 
12087 	return 0;
12088 }
12089 
12090 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12091 			  struct net_device *dev, unsigned long board_type)
12092 {
12093 	int rc;
12094 	u32 pci_cfg_dword;
12095 	bool chip_is_e1x = (board_type == BCM57710 ||
12096 			    board_type == BCM57711 ||
12097 			    board_type == BCM57711E);
12098 
12099 	SET_NETDEV_DEV(dev, &pdev->dev);
12100 
12101 	bp->dev = dev;
12102 	bp->pdev = pdev;
12103 
12104 	rc = pci_enable_device(pdev);
12105 	if (rc) {
12106 		dev_err(&bp->pdev->dev,
12107 			"Cannot enable PCI device, aborting\n");
12108 		goto err_out;
12109 	}
12110 
12111 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12112 		dev_err(&bp->pdev->dev,
12113 			"Cannot find PCI device base address, aborting\n");
12114 		rc = -ENODEV;
12115 		goto err_out_disable;
12116 	}
12117 
12118 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12119 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12120 		rc = -ENODEV;
12121 		goto err_out_disable;
12122 	}
12123 
12124 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12125 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12126 	    PCICFG_REVESION_ID_ERROR_VAL) {
12127 		pr_err("PCI device error, probably due to fan failure, aborting\n");
12128 		rc = -ENODEV;
12129 		goto err_out_disable;
12130 	}
12131 
12132 	if (atomic_read(&pdev->enable_cnt) == 1) {
12133 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12134 		if (rc) {
12135 			dev_err(&bp->pdev->dev,
12136 				"Cannot obtain PCI resources, aborting\n");
12137 			goto err_out_disable;
12138 		}
12139 
12140 		pci_set_master(pdev);
12141 		pci_save_state(pdev);
12142 	}
12143 
12144 	if (IS_PF(bp)) {
12145 		if (!pdev->pm_cap) {
12146 			dev_err(&bp->pdev->dev,
12147 				"Cannot find power management capability, aborting\n");
12148 			rc = -EIO;
12149 			goto err_out_release;
12150 		}
12151 	}
12152 
12153 	if (!pci_is_pcie(pdev)) {
12154 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12155 		rc = -EIO;
12156 		goto err_out_release;
12157 	}
12158 
12159 	rc = bnx2x_set_coherency_mask(bp);
12160 	if (rc)
12161 		goto err_out_release;
12162 
12163 	dev->mem_start = pci_resource_start(pdev, 0);
12164 	dev->base_addr = dev->mem_start;
12165 	dev->mem_end = pci_resource_end(pdev, 0);
12166 
12167 	dev->irq = pdev->irq;
12168 
12169 	bp->regview = pci_ioremap_bar(pdev, 0);
12170 	if (!bp->regview) {
12171 		dev_err(&bp->pdev->dev,
12172 			"Cannot map register space, aborting\n");
12173 		rc = -ENOMEM;
12174 		goto err_out_release;
12175 	}
12176 
12177 	/* In E1/E1H use pci device function given by kernel.
12178 	 * In E2/E3 read physical function from ME register since these chips
12179 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
12180 	 * (depending on hypervisor).
12181 	 */
12182 	if (chip_is_e1x) {
12183 		bp->pf_num = PCI_FUNC(pdev->devfn);
12184 	} else {
12185 		/* chip is E2/3*/
12186 		pci_read_config_dword(bp->pdev,
12187 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
12188 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12189 				  ME_REG_ABS_PF_NUM_SHIFT);
12190 	}
12191 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12192 
12193 	/* clean indirect addresses */
12194 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12195 			       PCICFG_VENDOR_ID_OFFSET);
12196 	/*
12197 	 * Clean the following indirect addresses for all functions since it
12198 	 * is not used by the driver.
12199 	 */
12200 	if (IS_PF(bp)) {
12201 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12202 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12203 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12204 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12205 
12206 		if (chip_is_e1x) {
12207 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12208 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12209 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12210 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12211 		}
12212 
12213 		/* Enable internal target-read (in case we are probed after PF
12214 		 * FLR). Must be done prior to any BAR read access. Only for
12215 		 * 57712 and up
12216 		 */
12217 		if (!chip_is_e1x)
12218 			REG_WR(bp,
12219 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12220 	}
12221 
12222 	dev->watchdog_timeo = TX_TIMEOUT;
12223 
12224 	dev->netdev_ops = &bnx2x_netdev_ops;
12225 	bnx2x_set_ethtool_ops(bp, dev);
12226 
12227 	dev->priv_flags |= IFF_UNICAST_FLT;
12228 
12229 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12230 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12231 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12232 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12233 	if (!CHIP_IS_E1x(bp)) {
12234 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12235 		dev->hw_enc_features =
12236 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12237 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12238 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12239 	}
12240 
12241 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12242 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12243 
12244 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12245 	if (bp->flags & USING_DAC_FLAG)
12246 		dev->features |= NETIF_F_HIGHDMA;
12247 
12248 	/* Add Loopback capability to the device */
12249 	dev->hw_features |= NETIF_F_LOOPBACK;
12250 
12251 #ifdef BCM_DCBNL
12252 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12253 #endif
12254 
12255 	/* get_port_hwinfo() will set prtad and mmds properly */
12256 	bp->mdio.prtad = MDIO_PRTAD_NONE;
12257 	bp->mdio.mmds = 0;
12258 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12259 	bp->mdio.dev = dev;
12260 	bp->mdio.mdio_read = bnx2x_mdio_read;
12261 	bp->mdio.mdio_write = bnx2x_mdio_write;
12262 
12263 	return 0;
12264 
12265 err_out_release:
12266 	if (atomic_read(&pdev->enable_cnt) == 1)
12267 		pci_release_regions(pdev);
12268 
12269 err_out_disable:
12270 	pci_disable_device(pdev);
12271 	pci_set_drvdata(pdev, NULL);
12272 
12273 err_out:
12274 	return rc;
12275 }
12276 
12277 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width,
12278 				       enum bnx2x_pci_bus_speed *speed)
12279 {
12280 	u32 link_speed, val = 0;
12281 
12282 	pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12283 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12284 
12285 	link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12286 
12287 	switch (link_speed) {
12288 	case 3:
12289 		*speed = BNX2X_PCI_LINK_SPEED_8000;
12290 		break;
12291 	case 2:
12292 		*speed = BNX2X_PCI_LINK_SPEED_5000;
12293 		break;
12294 	default:
12295 		*speed = BNX2X_PCI_LINK_SPEED_2500;
12296 	}
12297 }
12298 
12299 static int bnx2x_check_firmware(struct bnx2x *bp)
12300 {
12301 	const struct firmware *firmware = bp->firmware;
12302 	struct bnx2x_fw_file_hdr *fw_hdr;
12303 	struct bnx2x_fw_file_section *sections;
12304 	u32 offset, len, num_ops;
12305 	__be16 *ops_offsets;
12306 	int i;
12307 	const u8 *fw_ver;
12308 
12309 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12310 		BNX2X_ERR("Wrong FW size\n");
12311 		return -EINVAL;
12312 	}
12313 
12314 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12315 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
12316 
12317 	/* Make sure none of the offsets and sizes make us read beyond
12318 	 * the end of the firmware data */
12319 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12320 		offset = be32_to_cpu(sections[i].offset);
12321 		len = be32_to_cpu(sections[i].len);
12322 		if (offset + len > firmware->size) {
12323 			BNX2X_ERR("Section %d length is out of bounds\n", i);
12324 			return -EINVAL;
12325 		}
12326 	}
12327 
12328 	/* Likewise for the init_ops offsets */
12329 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12330 	ops_offsets = (__force __be16 *)(firmware->data + offset);
12331 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12332 
12333 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12334 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12335 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
12336 			return -EINVAL;
12337 		}
12338 	}
12339 
12340 	/* Check FW version */
12341 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
12342 	fw_ver = firmware->data + offset;
12343 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12344 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12345 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12346 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12347 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12348 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12349 		       BCM_5710_FW_MAJOR_VERSION,
12350 		       BCM_5710_FW_MINOR_VERSION,
12351 		       BCM_5710_FW_REVISION_VERSION,
12352 		       BCM_5710_FW_ENGINEERING_VERSION);
12353 		return -EINVAL;
12354 	}
12355 
12356 	return 0;
12357 }
12358 
12359 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12360 {
12361 	const __be32 *source = (const __be32 *)_source;
12362 	u32 *target = (u32 *)_target;
12363 	u32 i;
12364 
12365 	for (i = 0; i < n/4; i++)
12366 		target[i] = be32_to_cpu(source[i]);
12367 }
12368 
12369 /*
12370    Ops array is stored in the following format:
12371    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12372  */
12373 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12374 {
12375 	const __be32 *source = (const __be32 *)_source;
12376 	struct raw_op *target = (struct raw_op *)_target;
12377 	u32 i, j, tmp;
12378 
12379 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
12380 		tmp = be32_to_cpu(source[j]);
12381 		target[i].op = (tmp >> 24) & 0xff;
12382 		target[i].offset = tmp & 0xffffff;
12383 		target[i].raw_data = be32_to_cpu(source[j + 1]);
12384 	}
12385 }
12386 
12387 /* IRO array is stored in the following format:
12388  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12389  */
12390 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12391 {
12392 	const __be32 *source = (const __be32 *)_source;
12393 	struct iro *target = (struct iro *)_target;
12394 	u32 i, j, tmp;
12395 
12396 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12397 		target[i].base = be32_to_cpu(source[j]);
12398 		j++;
12399 		tmp = be32_to_cpu(source[j]);
12400 		target[i].m1 = (tmp >> 16) & 0xffff;
12401 		target[i].m2 = tmp & 0xffff;
12402 		j++;
12403 		tmp = be32_to_cpu(source[j]);
12404 		target[i].m3 = (tmp >> 16) & 0xffff;
12405 		target[i].size = tmp & 0xffff;
12406 		j++;
12407 	}
12408 }
12409 
12410 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12411 {
12412 	const __be16 *source = (const __be16 *)_source;
12413 	u16 *target = (u16 *)_target;
12414 	u32 i;
12415 
12416 	for (i = 0; i < n/2; i++)
12417 		target[i] = be16_to_cpu(source[i]);
12418 }
12419 
12420 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
12421 do {									\
12422 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
12423 	bp->arr = kmalloc(len, GFP_KERNEL);				\
12424 	if (!bp->arr)							\
12425 		goto lbl;						\
12426 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
12427 	     (u8 *)bp->arr, len);					\
12428 } while (0)
12429 
12430 static int bnx2x_init_firmware(struct bnx2x *bp)
12431 {
12432 	const char *fw_file_name;
12433 	struct bnx2x_fw_file_hdr *fw_hdr;
12434 	int rc;
12435 
12436 	if (bp->firmware)
12437 		return 0;
12438 
12439 	if (CHIP_IS_E1(bp))
12440 		fw_file_name = FW_FILE_NAME_E1;
12441 	else if (CHIP_IS_E1H(bp))
12442 		fw_file_name = FW_FILE_NAME_E1H;
12443 	else if (!CHIP_IS_E1x(bp))
12444 		fw_file_name = FW_FILE_NAME_E2;
12445 	else {
12446 		BNX2X_ERR("Unsupported chip revision\n");
12447 		return -EINVAL;
12448 	}
12449 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12450 
12451 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12452 	if (rc) {
12453 		BNX2X_ERR("Can't load firmware file %s\n",
12454 			  fw_file_name);
12455 		goto request_firmware_exit;
12456 	}
12457 
12458 	rc = bnx2x_check_firmware(bp);
12459 	if (rc) {
12460 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12461 		goto request_firmware_exit;
12462 	}
12463 
12464 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12465 
12466 	/* Initialize the pointers to the init arrays */
12467 	/* Blob */
12468 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12469 
12470 	/* Opcodes */
12471 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12472 
12473 	/* Offsets */
12474 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12475 			    be16_to_cpu_n);
12476 
12477 	/* STORMs firmware */
12478 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12479 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12480 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12481 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12482 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12483 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12484 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12485 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
12486 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12487 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12488 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12489 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12490 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12491 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12492 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12493 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
12494 	/* IRO */
12495 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12496 
12497 	return 0;
12498 
12499 iro_alloc_err:
12500 	kfree(bp->init_ops_offsets);
12501 init_offsets_alloc_err:
12502 	kfree(bp->init_ops);
12503 init_ops_alloc_err:
12504 	kfree(bp->init_data);
12505 request_firmware_exit:
12506 	release_firmware(bp->firmware);
12507 	bp->firmware = NULL;
12508 
12509 	return rc;
12510 }
12511 
12512 static void bnx2x_release_firmware(struct bnx2x *bp)
12513 {
12514 	kfree(bp->init_ops_offsets);
12515 	kfree(bp->init_ops);
12516 	kfree(bp->init_data);
12517 	release_firmware(bp->firmware);
12518 	bp->firmware = NULL;
12519 }
12520 
12521 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12522 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12523 	.init_hw_cmn      = bnx2x_init_hw_common,
12524 	.init_hw_port     = bnx2x_init_hw_port,
12525 	.init_hw_func     = bnx2x_init_hw_func,
12526 
12527 	.reset_hw_cmn     = bnx2x_reset_common,
12528 	.reset_hw_port    = bnx2x_reset_port,
12529 	.reset_hw_func    = bnx2x_reset_func,
12530 
12531 	.gunzip_init      = bnx2x_gunzip_init,
12532 	.gunzip_end       = bnx2x_gunzip_end,
12533 
12534 	.init_fw          = bnx2x_init_firmware,
12535 	.release_fw       = bnx2x_release_firmware,
12536 };
12537 
12538 void bnx2x__init_func_obj(struct bnx2x *bp)
12539 {
12540 	/* Prepare DMAE related driver resources */
12541 	bnx2x_setup_dmae(bp);
12542 
12543 	bnx2x_init_func_obj(bp, &bp->func_obj,
12544 			    bnx2x_sp(bp, func_rdata),
12545 			    bnx2x_sp_mapping(bp, func_rdata),
12546 			    bnx2x_sp(bp, func_afex_rdata),
12547 			    bnx2x_sp_mapping(bp, func_afex_rdata),
12548 			    &bnx2x_func_sp_drv);
12549 }
12550 
12551 /* must be called after sriov-enable */
12552 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12553 {
12554 	int cid_count = BNX2X_L2_MAX_CID(bp);
12555 
12556 	if (IS_SRIOV(bp))
12557 		cid_count += BNX2X_VF_CIDS;
12558 
12559 	if (CNIC_SUPPORT(bp))
12560 		cid_count += CNIC_CID_MAX;
12561 
12562 	return roundup(cid_count, QM_CID_ROUND);
12563 }
12564 
12565 /**
12566  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12567  *
12568  * @dev:	pci device
12569  *
12570  */
12571 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12572 {
12573 	int index;
12574 	u16 control = 0;
12575 
12576 	/*
12577 	 * If MSI-X is not supported - return number of SBs needed to support
12578 	 * one fast path queue: one FP queue + SB for CNIC
12579 	 */
12580 	if (!pdev->msix_cap) {
12581 		dev_info(&pdev->dev, "no msix capability found\n");
12582 		return 1 + cnic_cnt;
12583 	}
12584 	dev_info(&pdev->dev, "msix capability found\n");
12585 
12586 	/*
12587 	 * The value in the PCI configuration space is the index of the last
12588 	 * entry, namely one less than the actual size of the table, which is
12589 	 * exactly what we want to return from this function: number of all SBs
12590 	 * without the default SB.
12591 	 * For VFs there is no default SB, then we return (index+1).
12592 	 */
12593 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12594 
12595 	index = control & PCI_MSIX_FLAGS_QSIZE;
12596 
12597 	return index;
12598 }
12599 
12600 static int set_max_cos_est(int chip_id)
12601 {
12602 	switch (chip_id) {
12603 	case BCM57710:
12604 	case BCM57711:
12605 	case BCM57711E:
12606 		return BNX2X_MULTI_TX_COS_E1X;
12607 	case BCM57712:
12608 	case BCM57712_MF:
12609 	case BCM57712_VF:
12610 		return BNX2X_MULTI_TX_COS_E2_E3A0;
12611 	case BCM57800:
12612 	case BCM57800_MF:
12613 	case BCM57800_VF:
12614 	case BCM57810:
12615 	case BCM57810_MF:
12616 	case BCM57840_4_10:
12617 	case BCM57840_2_20:
12618 	case BCM57840_O:
12619 	case BCM57840_MFO:
12620 	case BCM57810_VF:
12621 	case BCM57840_MF:
12622 	case BCM57840_VF:
12623 	case BCM57811:
12624 	case BCM57811_MF:
12625 	case BCM57811_VF:
12626 		return BNX2X_MULTI_TX_COS_E3B0;
12627 		return 1;
12628 	default:
12629 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
12630 		return -ENODEV;
12631 	}
12632 }
12633 
12634 static int set_is_vf(int chip_id)
12635 {
12636 	switch (chip_id) {
12637 	case BCM57712_VF:
12638 	case BCM57800_VF:
12639 	case BCM57810_VF:
12640 	case BCM57840_VF:
12641 	case BCM57811_VF:
12642 		return true;
12643 	default:
12644 		return false;
12645 	}
12646 }
12647 
12648 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12649 
12650 static int bnx2x_init_one(struct pci_dev *pdev,
12651 				    const struct pci_device_id *ent)
12652 {
12653 	struct net_device *dev = NULL;
12654 	struct bnx2x *bp;
12655 	int pcie_width;
12656 	enum bnx2x_pci_bus_speed pcie_speed;
12657 	int rc, max_non_def_sbs;
12658 	int rx_count, tx_count, rss_count, doorbell_size;
12659 	int max_cos_est;
12660 	bool is_vf;
12661 	int cnic_cnt;
12662 
12663 	/* An estimated maximum supported CoS number according to the chip
12664 	 * version.
12665 	 * We will try to roughly estimate the maximum number of CoSes this chip
12666 	 * may support in order to minimize the memory allocated for Tx
12667 	 * netdev_queue's. This number will be accurately calculated during the
12668 	 * initialization of bp->max_cos based on the chip versions AND chip
12669 	 * revision in the bnx2x_init_bp().
12670 	 */
12671 	max_cos_est = set_max_cos_est(ent->driver_data);
12672 	if (max_cos_est < 0)
12673 		return max_cos_est;
12674 	is_vf = set_is_vf(ent->driver_data);
12675 	cnic_cnt = is_vf ? 0 : 1;
12676 
12677 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12678 
12679 	/* add another SB for VF as it has no default SB */
12680 	max_non_def_sbs += is_vf ? 1 : 0;
12681 
12682 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
12683 	rss_count = max_non_def_sbs - cnic_cnt;
12684 
12685 	if (rss_count < 1)
12686 		return -EINVAL;
12687 
12688 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12689 	rx_count = rss_count + cnic_cnt;
12690 
12691 	/* Maximum number of netdev Tx queues:
12692 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12693 	 */
12694 	tx_count = rss_count * max_cos_est + cnic_cnt;
12695 
12696 	/* dev zeroed in init_etherdev */
12697 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12698 	if (!dev)
12699 		return -ENOMEM;
12700 
12701 	bp = netdev_priv(dev);
12702 
12703 	bp->flags = 0;
12704 	if (is_vf)
12705 		bp->flags |= IS_VF_FLAG;
12706 
12707 	bp->igu_sb_cnt = max_non_def_sbs;
12708 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12709 	bp->msg_enable = debug;
12710 	bp->cnic_support = cnic_cnt;
12711 	bp->cnic_probe = bnx2x_cnic_probe;
12712 
12713 	pci_set_drvdata(pdev, dev);
12714 
12715 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12716 	if (rc < 0) {
12717 		free_netdev(dev);
12718 		return rc;
12719 	}
12720 
12721 	BNX2X_DEV_INFO("This is a %s function\n",
12722 		       IS_PF(bp) ? "physical" : "virtual");
12723 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12724 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12725 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12726 		       tx_count, rx_count);
12727 
12728 	rc = bnx2x_init_bp(bp);
12729 	if (rc)
12730 		goto init_one_exit;
12731 
12732 	/* Map doorbells here as we need the real value of bp->max_cos which
12733 	 * is initialized in bnx2x_init_bp() to determine the number of
12734 	 * l2 connections.
12735 	 */
12736 	if (IS_VF(bp)) {
12737 		bp->doorbells = bnx2x_vf_doorbells(bp);
12738 		rc = bnx2x_vf_pci_alloc(bp);
12739 		if (rc)
12740 			goto init_one_exit;
12741 	} else {
12742 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12743 		if (doorbell_size > pci_resource_len(pdev, 2)) {
12744 			dev_err(&bp->pdev->dev,
12745 				"Cannot map doorbells, bar size too small, aborting\n");
12746 			rc = -ENOMEM;
12747 			goto init_one_exit;
12748 		}
12749 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12750 						doorbell_size);
12751 	}
12752 	if (!bp->doorbells) {
12753 		dev_err(&bp->pdev->dev,
12754 			"Cannot map doorbell space, aborting\n");
12755 		rc = -ENOMEM;
12756 		goto init_one_exit;
12757 	}
12758 
12759 	if (IS_VF(bp)) {
12760 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12761 		if (rc)
12762 			goto init_one_exit;
12763 	}
12764 
12765 	/* Enable SRIOV if capability found in configuration space */
12766 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12767 	if (rc)
12768 		goto init_one_exit;
12769 
12770 	/* calc qm_cid_count */
12771 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12772 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12773 
12774 	/* disable FCOE L2 queue for E1x*/
12775 	if (CHIP_IS_E1x(bp))
12776 		bp->flags |= NO_FCOE_FLAG;
12777 
12778 	/* Set bp->num_queues for MSI-X mode*/
12779 	bnx2x_set_num_queues(bp);
12780 
12781 	/* Configure interrupt mode: try to enable MSI-X/MSI if
12782 	 * needed.
12783 	 */
12784 	rc = bnx2x_set_int_mode(bp);
12785 	if (rc) {
12786 		dev_err(&pdev->dev, "Cannot set interrupts\n");
12787 		goto init_one_exit;
12788 	}
12789 	BNX2X_DEV_INFO("set interrupts successfully\n");
12790 
12791 	/* register the net device */
12792 	rc = register_netdev(dev);
12793 	if (rc) {
12794 		dev_err(&pdev->dev, "Cannot register net device\n");
12795 		goto init_one_exit;
12796 	}
12797 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12798 
12799 	if (!NO_FCOE(bp)) {
12800 		/* Add storage MAC address */
12801 		rtnl_lock();
12802 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12803 		rtnl_unlock();
12804 	}
12805 
12806 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12807 	BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12808 		       pcie_width, pcie_speed);
12809 
12810 	BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12811 		       board_info[ent->driver_data].name,
12812 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12813 		       pcie_width,
12814 		       pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" :
12815 		       pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" :
12816 		       pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" :
12817 		       "Unknown",
12818 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
12819 
12820 	return 0;
12821 
12822 init_one_exit:
12823 	if (bp->regview)
12824 		iounmap(bp->regview);
12825 
12826 	if (IS_PF(bp) && bp->doorbells)
12827 		iounmap(bp->doorbells);
12828 
12829 	free_netdev(dev);
12830 
12831 	if (atomic_read(&pdev->enable_cnt) == 1)
12832 		pci_release_regions(pdev);
12833 
12834 	pci_disable_device(pdev);
12835 	pci_set_drvdata(pdev, NULL);
12836 
12837 	return rc;
12838 }
12839 
12840 static void __bnx2x_remove(struct pci_dev *pdev,
12841 			   struct net_device *dev,
12842 			   struct bnx2x *bp,
12843 			   bool remove_netdev)
12844 {
12845 	/* Delete storage MAC address */
12846 	if (!NO_FCOE(bp)) {
12847 		rtnl_lock();
12848 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12849 		rtnl_unlock();
12850 	}
12851 
12852 #ifdef BCM_DCBNL
12853 	/* Delete app tlvs from dcbnl */
12854 	bnx2x_dcbnl_update_applist(bp, true);
12855 #endif
12856 
12857 	if (IS_PF(bp) &&
12858 	    !BP_NOMCP(bp) &&
12859 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
12860 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
12861 
12862 	/* Close the interface - either directly or implicitly */
12863 	if (remove_netdev) {
12864 		unregister_netdev(dev);
12865 	} else {
12866 		rtnl_lock();
12867 		dev_close(dev);
12868 		rtnl_unlock();
12869 	}
12870 
12871 	bnx2x_iov_remove_one(bp);
12872 
12873 	/* Power on: we can't let PCI layer write to us while we are in D3 */
12874 	if (IS_PF(bp))
12875 		bnx2x_set_power_state(bp, PCI_D0);
12876 
12877 	/* Disable MSI/MSI-X */
12878 	bnx2x_disable_msi(bp);
12879 
12880 	/* Power off */
12881 	if (IS_PF(bp))
12882 		bnx2x_set_power_state(bp, PCI_D3hot);
12883 
12884 	/* Make sure RESET task is not scheduled before continuing */
12885 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
12886 
12887 	/* send message via vfpf channel to release the resources of this vf */
12888 	if (IS_VF(bp))
12889 		bnx2x_vfpf_release(bp);
12890 
12891 	/* Assumes no further PCIe PM changes will occur */
12892 	if (system_state == SYSTEM_POWER_OFF) {
12893 		pci_wake_from_d3(pdev, bp->wol);
12894 		pci_set_power_state(pdev, PCI_D3hot);
12895 	}
12896 
12897 	if (bp->regview)
12898 		iounmap(bp->regview);
12899 
12900 	/* for vf doorbells are part of the regview and were unmapped along with
12901 	 * it. FW is only loaded by PF.
12902 	 */
12903 	if (IS_PF(bp)) {
12904 		if (bp->doorbells)
12905 			iounmap(bp->doorbells);
12906 
12907 		bnx2x_release_firmware(bp);
12908 	}
12909 	bnx2x_free_mem_bp(bp);
12910 
12911 	if (remove_netdev)
12912 		free_netdev(dev);
12913 
12914 	if (atomic_read(&pdev->enable_cnt) == 1)
12915 		pci_release_regions(pdev);
12916 
12917 	pci_disable_device(pdev);
12918 	pci_set_drvdata(pdev, NULL);
12919 }
12920 
12921 static void bnx2x_remove_one(struct pci_dev *pdev)
12922 {
12923 	struct net_device *dev = pci_get_drvdata(pdev);
12924 	struct bnx2x *bp;
12925 
12926 	if (!dev) {
12927 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12928 		return;
12929 	}
12930 	bp = netdev_priv(dev);
12931 
12932 	__bnx2x_remove(pdev, dev, bp, true);
12933 }
12934 
12935 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12936 {
12937 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12938 
12939 	bp->rx_mode = BNX2X_RX_MODE_NONE;
12940 
12941 	if (CNIC_LOADED(bp))
12942 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12943 
12944 	/* Stop Tx */
12945 	bnx2x_tx_disable(bp);
12946 	/* Delete all NAPI objects */
12947 	bnx2x_del_all_napi(bp);
12948 	if (CNIC_LOADED(bp))
12949 		bnx2x_del_all_napi_cnic(bp);
12950 	netdev_reset_tc(bp->dev);
12951 
12952 	del_timer_sync(&bp->timer);
12953 	cancel_delayed_work(&bp->sp_task);
12954 	cancel_delayed_work(&bp->period_task);
12955 
12956 	spin_lock_bh(&bp->stats_lock);
12957 	bp->stats_state = STATS_STATE_DISABLED;
12958 	spin_unlock_bh(&bp->stats_lock);
12959 
12960 	bnx2x_save_statistics(bp);
12961 
12962 	netif_carrier_off(bp->dev);
12963 
12964 	return 0;
12965 }
12966 
12967 /**
12968  * bnx2x_io_error_detected - called when PCI error is detected
12969  * @pdev: Pointer to PCI device
12970  * @state: The current pci connection state
12971  *
12972  * This function is called after a PCI bus error affecting
12973  * this device has been detected.
12974  */
12975 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12976 						pci_channel_state_t state)
12977 {
12978 	struct net_device *dev = pci_get_drvdata(pdev);
12979 	struct bnx2x *bp = netdev_priv(dev);
12980 
12981 	rtnl_lock();
12982 
12983 	BNX2X_ERR("IO error detected\n");
12984 
12985 	netif_device_detach(dev);
12986 
12987 	if (state == pci_channel_io_perm_failure) {
12988 		rtnl_unlock();
12989 		return PCI_ERS_RESULT_DISCONNECT;
12990 	}
12991 
12992 	if (netif_running(dev))
12993 		bnx2x_eeh_nic_unload(bp);
12994 
12995 	bnx2x_prev_path_mark_eeh(bp);
12996 
12997 	pci_disable_device(pdev);
12998 
12999 	rtnl_unlock();
13000 
13001 	/* Request a slot reset */
13002 	return PCI_ERS_RESULT_NEED_RESET;
13003 }
13004 
13005 /**
13006  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13007  * @pdev: Pointer to PCI device
13008  *
13009  * Restart the card from scratch, as if from a cold-boot.
13010  */
13011 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13012 {
13013 	struct net_device *dev = pci_get_drvdata(pdev);
13014 	struct bnx2x *bp = netdev_priv(dev);
13015 	int i;
13016 
13017 	rtnl_lock();
13018 	BNX2X_ERR("IO slot reset initializing...\n");
13019 	if (pci_enable_device(pdev)) {
13020 		dev_err(&pdev->dev,
13021 			"Cannot re-enable PCI device after reset\n");
13022 		rtnl_unlock();
13023 		return PCI_ERS_RESULT_DISCONNECT;
13024 	}
13025 
13026 	pci_set_master(pdev);
13027 	pci_restore_state(pdev);
13028 	pci_save_state(pdev);
13029 
13030 	if (netif_running(dev))
13031 		bnx2x_set_power_state(bp, PCI_D0);
13032 
13033 	if (netif_running(dev)) {
13034 		BNX2X_ERR("IO slot reset --> driver unload\n");
13035 
13036 		/* MCP should have been reset; Need to wait for validity */
13037 		bnx2x_init_shmem(bp);
13038 
13039 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13040 			u32 v;
13041 
13042 			v = SHMEM2_RD(bp,
13043 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13044 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13045 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13046 		}
13047 		bnx2x_drain_tx_queues(bp);
13048 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13049 		bnx2x_netif_stop(bp, 1);
13050 		bnx2x_free_irq(bp);
13051 
13052 		/* Report UNLOAD_DONE to MCP */
13053 		bnx2x_send_unload_done(bp, true);
13054 
13055 		bp->sp_state = 0;
13056 		bp->port.pmf = 0;
13057 
13058 		bnx2x_prev_unload(bp);
13059 
13060 		/* We should have reseted the engine, so It's fair to
13061 		 * assume the FW will no longer write to the bnx2x driver.
13062 		 */
13063 		bnx2x_squeeze_objects(bp);
13064 		bnx2x_free_skbs(bp);
13065 		for_each_rx_queue(bp, i)
13066 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13067 		bnx2x_free_fp_mem(bp);
13068 		bnx2x_free_mem(bp);
13069 
13070 		bp->state = BNX2X_STATE_CLOSED;
13071 	}
13072 
13073 	rtnl_unlock();
13074 
13075 	return PCI_ERS_RESULT_RECOVERED;
13076 }
13077 
13078 /**
13079  * bnx2x_io_resume - called when traffic can start flowing again
13080  * @pdev: Pointer to PCI device
13081  *
13082  * This callback is called when the error recovery driver tells us that
13083  * its OK to resume normal operation.
13084  */
13085 static void bnx2x_io_resume(struct pci_dev *pdev)
13086 {
13087 	struct net_device *dev = pci_get_drvdata(pdev);
13088 	struct bnx2x *bp = netdev_priv(dev);
13089 
13090 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13091 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13092 		return;
13093 	}
13094 
13095 	rtnl_lock();
13096 
13097 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13098 							DRV_MSG_SEQ_NUMBER_MASK;
13099 
13100 	if (netif_running(dev))
13101 		bnx2x_nic_load(bp, LOAD_NORMAL);
13102 
13103 	netif_device_attach(dev);
13104 
13105 	rtnl_unlock();
13106 }
13107 
13108 static const struct pci_error_handlers bnx2x_err_handler = {
13109 	.error_detected = bnx2x_io_error_detected,
13110 	.slot_reset     = bnx2x_io_slot_reset,
13111 	.resume         = bnx2x_io_resume,
13112 };
13113 
13114 static void bnx2x_shutdown(struct pci_dev *pdev)
13115 {
13116 	struct net_device *dev = pci_get_drvdata(pdev);
13117 	struct bnx2x *bp;
13118 
13119 	if (!dev)
13120 		return;
13121 
13122 	bp = netdev_priv(dev);
13123 	if (!bp)
13124 		return;
13125 
13126 	rtnl_lock();
13127 	netif_device_detach(dev);
13128 	rtnl_unlock();
13129 
13130 	/* Don't remove the netdevice, as there are scenarios which will cause
13131 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
13132 	 * rootfs is mounted from SAN.
13133 	 */
13134 	__bnx2x_remove(pdev, dev, bp, false);
13135 }
13136 
13137 static struct pci_driver bnx2x_pci_driver = {
13138 	.name        = DRV_MODULE_NAME,
13139 	.id_table    = bnx2x_pci_tbl,
13140 	.probe       = bnx2x_init_one,
13141 	.remove      = bnx2x_remove_one,
13142 	.suspend     = bnx2x_suspend,
13143 	.resume      = bnx2x_resume,
13144 	.err_handler = &bnx2x_err_handler,
13145 #ifdef CONFIG_BNX2X_SRIOV
13146 	.sriov_configure = bnx2x_sriov_configure,
13147 #endif
13148 	.shutdown    = bnx2x_shutdown,
13149 };
13150 
13151 static int __init bnx2x_init(void)
13152 {
13153 	int ret;
13154 
13155 	pr_info("%s", version);
13156 
13157 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
13158 	if (bnx2x_wq == NULL) {
13159 		pr_err("Cannot create workqueue\n");
13160 		return -ENOMEM;
13161 	}
13162 
13163 	ret = pci_register_driver(&bnx2x_pci_driver);
13164 	if (ret) {
13165 		pr_err("Cannot register driver\n");
13166 		destroy_workqueue(bnx2x_wq);
13167 	}
13168 	return ret;
13169 }
13170 
13171 static void __exit bnx2x_cleanup(void)
13172 {
13173 	struct list_head *pos, *q;
13174 
13175 	pci_unregister_driver(&bnx2x_pci_driver);
13176 
13177 	destroy_workqueue(bnx2x_wq);
13178 
13179 	/* Free globally allocated resources */
13180 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
13181 		struct bnx2x_prev_path_list *tmp =
13182 			list_entry(pos, struct bnx2x_prev_path_list, list);
13183 		list_del(pos);
13184 		kfree(tmp);
13185 	}
13186 }
13187 
13188 void bnx2x_notify_link_changed(struct bnx2x *bp)
13189 {
13190 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13191 }
13192 
13193 module_init(bnx2x_init);
13194 module_exit(bnx2x_cleanup);
13195 
13196 /**
13197  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13198  *
13199  * @bp:		driver handle
13200  * @set:	set or clear the CAM entry
13201  *
13202  * This function will wait until the ramrod completion returns.
13203  * Return 0 if success, -ENODEV if ramrod doesn't return.
13204  */
13205 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13206 {
13207 	unsigned long ramrod_flags = 0;
13208 
13209 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13210 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13211 				 &bp->iscsi_l2_mac_obj, true,
13212 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13213 }
13214 
13215 /* count denotes the number of new completions we have seen */
13216 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13217 {
13218 	struct eth_spe *spe;
13219 	int cxt_index, cxt_offset;
13220 
13221 #ifdef BNX2X_STOP_ON_ERROR
13222 	if (unlikely(bp->panic))
13223 		return;
13224 #endif
13225 
13226 	spin_lock_bh(&bp->spq_lock);
13227 	BUG_ON(bp->cnic_spq_pending < count);
13228 	bp->cnic_spq_pending -= count;
13229 
13230 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13231 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13232 				& SPE_HDR_CONN_TYPE) >>
13233 				SPE_HDR_CONN_TYPE_SHIFT;
13234 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13235 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13236 
13237 		/* Set validation for iSCSI L2 client before sending SETUP
13238 		 *  ramrod
13239 		 */
13240 		if (type == ETH_CONNECTION_TYPE) {
13241 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13242 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13243 					ILT_PAGE_CIDS;
13244 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13245 					(cxt_index * ILT_PAGE_CIDS);
13246 				bnx2x_set_ctx_validation(bp,
13247 					&bp->context[cxt_index].
13248 							 vcxt[cxt_offset].eth,
13249 					BNX2X_ISCSI_ETH_CID(bp));
13250 			}
13251 		}
13252 
13253 		/*
13254 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
13255 		 * and in the air. We also check that number of outstanding
13256 		 * COMMON ramrods is not more than the EQ and SPQ can
13257 		 * accommodate.
13258 		 */
13259 		if (type == ETH_CONNECTION_TYPE) {
13260 			if (!atomic_read(&bp->cq_spq_left))
13261 				break;
13262 			else
13263 				atomic_dec(&bp->cq_spq_left);
13264 		} else if (type == NONE_CONNECTION_TYPE) {
13265 			if (!atomic_read(&bp->eq_spq_left))
13266 				break;
13267 			else
13268 				atomic_dec(&bp->eq_spq_left);
13269 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
13270 			   (type == FCOE_CONNECTION_TYPE)) {
13271 			if (bp->cnic_spq_pending >=
13272 			    bp->cnic_eth_dev.max_kwqe_pending)
13273 				break;
13274 			else
13275 				bp->cnic_spq_pending++;
13276 		} else {
13277 			BNX2X_ERR("Unknown SPE type: %d\n", type);
13278 			bnx2x_panic();
13279 			break;
13280 		}
13281 
13282 		spe = bnx2x_sp_get_next(bp);
13283 		*spe = *bp->cnic_kwq_cons;
13284 
13285 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13286 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13287 
13288 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13289 			bp->cnic_kwq_cons = bp->cnic_kwq;
13290 		else
13291 			bp->cnic_kwq_cons++;
13292 	}
13293 	bnx2x_sp_prod_update(bp);
13294 	spin_unlock_bh(&bp->spq_lock);
13295 }
13296 
13297 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13298 			       struct kwqe_16 *kwqes[], u32 count)
13299 {
13300 	struct bnx2x *bp = netdev_priv(dev);
13301 	int i;
13302 
13303 #ifdef BNX2X_STOP_ON_ERROR
13304 	if (unlikely(bp->panic)) {
13305 		BNX2X_ERR("Can't post to SP queue while panic\n");
13306 		return -EIO;
13307 	}
13308 #endif
13309 
13310 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13311 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13312 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
13313 		return -EAGAIN;
13314 	}
13315 
13316 	spin_lock_bh(&bp->spq_lock);
13317 
13318 	for (i = 0; i < count; i++) {
13319 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13320 
13321 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13322 			break;
13323 
13324 		*bp->cnic_kwq_prod = *spe;
13325 
13326 		bp->cnic_kwq_pending++;
13327 
13328 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13329 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
13330 		   spe->data.update_data_addr.hi,
13331 		   spe->data.update_data_addr.lo,
13332 		   bp->cnic_kwq_pending);
13333 
13334 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13335 			bp->cnic_kwq_prod = bp->cnic_kwq;
13336 		else
13337 			bp->cnic_kwq_prod++;
13338 	}
13339 
13340 	spin_unlock_bh(&bp->spq_lock);
13341 
13342 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13343 		bnx2x_cnic_sp_post(bp, 0);
13344 
13345 	return i;
13346 }
13347 
13348 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13349 {
13350 	struct cnic_ops *c_ops;
13351 	int rc = 0;
13352 
13353 	mutex_lock(&bp->cnic_mutex);
13354 	c_ops = rcu_dereference_protected(bp->cnic_ops,
13355 					  lockdep_is_held(&bp->cnic_mutex));
13356 	if (c_ops)
13357 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13358 	mutex_unlock(&bp->cnic_mutex);
13359 
13360 	return rc;
13361 }
13362 
13363 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13364 {
13365 	struct cnic_ops *c_ops;
13366 	int rc = 0;
13367 
13368 	rcu_read_lock();
13369 	c_ops = rcu_dereference(bp->cnic_ops);
13370 	if (c_ops)
13371 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13372 	rcu_read_unlock();
13373 
13374 	return rc;
13375 }
13376 
13377 /*
13378  * for commands that have no data
13379  */
13380 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13381 {
13382 	struct cnic_ctl_info ctl = {0};
13383 
13384 	ctl.cmd = cmd;
13385 
13386 	return bnx2x_cnic_ctl_send(bp, &ctl);
13387 }
13388 
13389 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13390 {
13391 	struct cnic_ctl_info ctl = {0};
13392 
13393 	/* first we tell CNIC and only then we count this as a completion */
13394 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13395 	ctl.data.comp.cid = cid;
13396 	ctl.data.comp.error = err;
13397 
13398 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
13399 	bnx2x_cnic_sp_post(bp, 0);
13400 }
13401 
13402 /* Called with netif_addr_lock_bh() taken.
13403  * Sets an rx_mode config for an iSCSI ETH client.
13404  * Doesn't block.
13405  * Completion should be checked outside.
13406  */
13407 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13408 {
13409 	unsigned long accept_flags = 0, ramrod_flags = 0;
13410 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13411 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13412 
13413 	if (start) {
13414 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
13415 		 * because it's the only way for UIO Queue to accept
13416 		 * multicasts (in non-promiscuous mode only one Queue per
13417 		 * function will receive multicast packets (leading in our
13418 		 * case).
13419 		 */
13420 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13421 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13422 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13423 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13424 
13425 		/* Clear STOP_PENDING bit if START is requested */
13426 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13427 
13428 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13429 	} else
13430 		/* Clear START_PENDING bit if STOP is requested */
13431 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13432 
13433 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13434 		set_bit(sched_state, &bp->sp_state);
13435 	else {
13436 		__set_bit(RAMROD_RX, &ramrod_flags);
13437 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13438 				    ramrod_flags);
13439 	}
13440 }
13441 
13442 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13443 {
13444 	struct bnx2x *bp = netdev_priv(dev);
13445 	int rc = 0;
13446 
13447 	switch (ctl->cmd) {
13448 	case DRV_CTL_CTXTBL_WR_CMD: {
13449 		u32 index = ctl->data.io.offset;
13450 		dma_addr_t addr = ctl->data.io.dma_addr;
13451 
13452 		bnx2x_ilt_wr(bp, index, addr);
13453 		break;
13454 	}
13455 
13456 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13457 		int count = ctl->data.credit.credit_count;
13458 
13459 		bnx2x_cnic_sp_post(bp, count);
13460 		break;
13461 	}
13462 
13463 	/* rtnl_lock is held.  */
13464 	case DRV_CTL_START_L2_CMD: {
13465 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13466 		unsigned long sp_bits = 0;
13467 
13468 		/* Configure the iSCSI classification object */
13469 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13470 				   cp->iscsi_l2_client_id,
13471 				   cp->iscsi_l2_cid, BP_FUNC(bp),
13472 				   bnx2x_sp(bp, mac_rdata),
13473 				   bnx2x_sp_mapping(bp, mac_rdata),
13474 				   BNX2X_FILTER_MAC_PENDING,
13475 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13476 				   &bp->macs_pool);
13477 
13478 		/* Set iSCSI MAC address */
13479 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13480 		if (rc)
13481 			break;
13482 
13483 		mmiowb();
13484 		barrier();
13485 
13486 		/* Start accepting on iSCSI L2 ring */
13487 
13488 		netif_addr_lock_bh(dev);
13489 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
13490 		netif_addr_unlock_bh(dev);
13491 
13492 		/* bits to wait on */
13493 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13494 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13495 
13496 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13497 			BNX2X_ERR("rx_mode completion timed out!\n");
13498 
13499 		break;
13500 	}
13501 
13502 	/* rtnl_lock is held.  */
13503 	case DRV_CTL_STOP_L2_CMD: {
13504 		unsigned long sp_bits = 0;
13505 
13506 		/* Stop accepting on iSCSI L2 ring */
13507 		netif_addr_lock_bh(dev);
13508 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
13509 		netif_addr_unlock_bh(dev);
13510 
13511 		/* bits to wait on */
13512 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13513 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13514 
13515 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
13516 			BNX2X_ERR("rx_mode completion timed out!\n");
13517 
13518 		mmiowb();
13519 		barrier();
13520 
13521 		/* Unset iSCSI L2 MAC */
13522 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13523 					BNX2X_ISCSI_ETH_MAC, true);
13524 		break;
13525 	}
13526 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13527 		int count = ctl->data.credit.credit_count;
13528 
13529 		smp_mb__before_atomic_inc();
13530 		atomic_add(count, &bp->cq_spq_left);
13531 		smp_mb__after_atomic_inc();
13532 		break;
13533 	}
13534 	case DRV_CTL_ULP_REGISTER_CMD: {
13535 		int ulp_type = ctl->data.register_data.ulp_type;
13536 
13537 		if (CHIP_IS_E3(bp)) {
13538 			int idx = BP_FW_MB_IDX(bp);
13539 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13540 			int path = BP_PATH(bp);
13541 			int port = BP_PORT(bp);
13542 			int i;
13543 			u32 scratch_offset;
13544 			u32 *host_addr;
13545 
13546 			/* first write capability to shmem2 */
13547 			if (ulp_type == CNIC_ULP_ISCSI)
13548 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13549 			else if (ulp_type == CNIC_ULP_FCOE)
13550 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13551 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13552 
13553 			if ((ulp_type != CNIC_ULP_FCOE) ||
13554 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13555 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13556 				break;
13557 
13558 			/* if reached here - should write fcoe capabilities */
13559 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13560 			if (!scratch_offset)
13561 				break;
13562 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
13563 						   fcoe_features[path][port]);
13564 			host_addr = (u32 *) &(ctl->data.register_data.
13565 					      fcoe_features);
13566 			for (i = 0; i < sizeof(struct fcoe_capabilities);
13567 			     i += 4)
13568 				REG_WR(bp, scratch_offset + i,
13569 				       *(host_addr + i/4));
13570 		}
13571 		break;
13572 	}
13573 
13574 	case DRV_CTL_ULP_UNREGISTER_CMD: {
13575 		int ulp_type = ctl->data.ulp_type;
13576 
13577 		if (CHIP_IS_E3(bp)) {
13578 			int idx = BP_FW_MB_IDX(bp);
13579 			u32 cap;
13580 
13581 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13582 			if (ulp_type == CNIC_ULP_ISCSI)
13583 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13584 			else if (ulp_type == CNIC_ULP_FCOE)
13585 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13586 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13587 		}
13588 		break;
13589 	}
13590 
13591 	default:
13592 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
13593 		rc = -EINVAL;
13594 	}
13595 
13596 	return rc;
13597 }
13598 
13599 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13600 {
13601 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13602 
13603 	if (bp->flags & USING_MSIX_FLAG) {
13604 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13605 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13606 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
13607 	} else {
13608 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13609 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13610 	}
13611 	if (!CHIP_IS_E1x(bp))
13612 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13613 	else
13614 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13615 
13616 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13617 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13618 	cp->irq_arr[1].status_blk = bp->def_status_blk;
13619 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13620 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13621 
13622 	cp->num_irq = 2;
13623 }
13624 
13625 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13626 {
13627 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13628 
13629 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13630 			     bnx2x_cid_ilt_lines(bp);
13631 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13632 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13633 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13634 
13635 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
13636 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
13637 	   cp->iscsi_l2_cid);
13638 
13639 	if (NO_ISCSI_OOO(bp))
13640 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13641 }
13642 
13643 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13644 			       void *data)
13645 {
13646 	struct bnx2x *bp = netdev_priv(dev);
13647 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13648 	int rc;
13649 
13650 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13651 
13652 	if (ops == NULL) {
13653 		BNX2X_ERR("NULL ops received\n");
13654 		return -EINVAL;
13655 	}
13656 
13657 	if (!CNIC_SUPPORT(bp)) {
13658 		BNX2X_ERR("Can't register CNIC when not supported\n");
13659 		return -EOPNOTSUPP;
13660 	}
13661 
13662 	if (!CNIC_LOADED(bp)) {
13663 		rc = bnx2x_load_cnic(bp);
13664 		if (rc) {
13665 			BNX2X_ERR("CNIC-related load failed\n");
13666 			return rc;
13667 		}
13668 	}
13669 
13670 	bp->cnic_enabled = true;
13671 
13672 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13673 	if (!bp->cnic_kwq)
13674 		return -ENOMEM;
13675 
13676 	bp->cnic_kwq_cons = bp->cnic_kwq;
13677 	bp->cnic_kwq_prod = bp->cnic_kwq;
13678 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13679 
13680 	bp->cnic_spq_pending = 0;
13681 	bp->cnic_kwq_pending = 0;
13682 
13683 	bp->cnic_data = data;
13684 
13685 	cp->num_irq = 0;
13686 	cp->drv_state |= CNIC_DRV_STATE_REGD;
13687 	cp->iro_arr = bp->iro_arr;
13688 
13689 	bnx2x_setup_cnic_irq_info(bp);
13690 
13691 	rcu_assign_pointer(bp->cnic_ops, ops);
13692 
13693 	return 0;
13694 }
13695 
13696 static int bnx2x_unregister_cnic(struct net_device *dev)
13697 {
13698 	struct bnx2x *bp = netdev_priv(dev);
13699 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13700 
13701 	mutex_lock(&bp->cnic_mutex);
13702 	cp->drv_state = 0;
13703 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
13704 	mutex_unlock(&bp->cnic_mutex);
13705 	synchronize_rcu();
13706 	bp->cnic_enabled = false;
13707 	kfree(bp->cnic_kwq);
13708 	bp->cnic_kwq = NULL;
13709 
13710 	return 0;
13711 }
13712 
13713 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13714 {
13715 	struct bnx2x *bp = netdev_priv(dev);
13716 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13717 
13718 	/* If both iSCSI and FCoE are disabled - return NULL in
13719 	 * order to indicate CNIC that it should not try to work
13720 	 * with this device.
13721 	 */
13722 	if (NO_ISCSI(bp) && NO_FCOE(bp))
13723 		return NULL;
13724 
13725 	cp->drv_owner = THIS_MODULE;
13726 	cp->chip_id = CHIP_ID(bp);
13727 	cp->pdev = bp->pdev;
13728 	cp->io_base = bp->regview;
13729 	cp->io_base2 = bp->doorbells;
13730 	cp->max_kwqe_pending = 8;
13731 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13732 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13733 			     bnx2x_cid_ilt_lines(bp);
13734 	cp->ctx_tbl_len = CNIC_ILT_LINES;
13735 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13736 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13737 	cp->drv_ctl = bnx2x_drv_ctl;
13738 	cp->drv_register_cnic = bnx2x_register_cnic;
13739 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13740 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13741 	cp->iscsi_l2_client_id =
13742 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13743 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13744 
13745 	if (NO_ISCSI_OOO(bp))
13746 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13747 
13748 	if (NO_ISCSI(bp))
13749 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13750 
13751 	if (NO_FCOE(bp))
13752 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13753 
13754 	BNX2X_DEV_INFO(
13755 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13756 	   cp->ctx_blk_size,
13757 	   cp->ctx_tbl_offset,
13758 	   cp->ctx_tbl_len,
13759 	   cp->starting_cid);
13760 	return cp;
13761 }
13762 
13763 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13764 {
13765 	struct bnx2x *bp = fp->bp;
13766 	u32 offset = BAR_USTRORM_INTMEM;
13767 
13768 	if (IS_VF(bp))
13769 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
13770 	else if (!CHIP_IS_E1x(bp))
13771 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13772 	else
13773 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13774 
13775 	return offset;
13776 }
13777 
13778 /* called only on E1H or E2.
13779  * When pretending to be PF, the pretend value is the function number 0...7
13780  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13781  * combination
13782  */
13783 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13784 {
13785 	u32 pretend_reg;
13786 
13787 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13788 		return -1;
13789 
13790 	/* get my own pretend register */
13791 	pretend_reg = bnx2x_get_pretend_reg(bp);
13792 	REG_WR(bp, pretend_reg, pretend_func_val);
13793 	REG_RD(bp, pretend_reg);
13794 	return 0;
13795 }
13796